Science.gov

Sample records for market time series

  1. Spot foreign exchange market and time series

    NASA Astrophysics Data System (ADS)

    Petroni, F.; Serva, M.

    2003-08-01

    We investigate high frequency price dynamics in foreign exchange market using data from Reuters information system (the dataset has been provided to us by Olsen and Associates). In our analysis we show that a naïve approach to the definition of price (for example using the spot mid price) may lead to wrong conclusions on price behavior as for example the presence of short term correlations for returns. For this purpose we introduce an algorithm which only uses the non arbitrage principle to estimate real prices from the spot ones. The new definition leads to returns which are not affected by spurious correlations. Furthermore, any apparent information (defined by using Shannon entropy) contained in the data disappears.

  2. The multiscale analysis between stock market time series

    NASA Astrophysics Data System (ADS)

    Shi, Wenbin; Shang, Pengjian

    2015-11-01

    This paper is devoted to multiscale cross-correlation analysis on stock market time series, where multiscale DCCA cross-correlation coefficient as well as multiscale cross-sample entropy (MSCE) is applied. Multiscale DCCA cross-correlation coefficient is a realization of DCCA cross-correlation coefficient on multiple scales. The results of this method present a good scaling characterization. More significantly, this method is able to group stock markets by areas. Compared to multiscale DCCA cross-correlation coefficient, MSCE presents a more remarkable scaling characterization and the value of each log return of financial time series decreases with the increasing of scale factor. But the results of grouping is not as good as multiscale DCCA cross-correlation coefficient.

  3. Time series analysis for minority game simulations of financial markets

    NASA Astrophysics Data System (ADS)

    Ferreira, Fernando F.; Francisco, Gerson; Machado, Birajara S.; Muruganandam, Paulsamy

    2003-04-01

    The minority game (MG) model introduced recently provides promising insights into the understanding of the evolution of prices, indices and rates in the financial markets. In this paper we perform a time series analysis of the model employing tools from statistics, dynamical systems theory and stochastic processes. Using benchmark systems and a financial index for comparison, several conclusions are obtained about the generating mechanism for this kind of evolution. The motion is deterministic, driven by occasional random external perturbation. When the interval between two successive perturbations is sufficiently large, one can find low dimensional chaos in this regime. However, the full motion of the MG model is found to be similar to that of the first differences of the SP500 index: stochastic, nonlinear and (unit root) stationary.

  4. A refined fuzzy time series model for stock market forecasting

    NASA Astrophysics Data System (ADS)

    Jilani, Tahseen Ahmed; Burney, Syed Muhammad Aqil

    2008-05-01

    Time series models have been used to make predictions of stock prices, academic enrollments, weather, road accident casualties, etc. In this paper we present a simple time-variant fuzzy time series forecasting method. The proposed method uses heuristic approach to define frequency-density-based partitions of the universe of discourse. We have proposed a fuzzy metric to use the frequency-density-based partitioning. The proposed fuzzy metric also uses a trend predictor to calculate the forecast. The new method is applied for forecasting TAIEX and enrollments’ forecasting of the University of Alabama. It is shown that the proposed method work with higher accuracy as compared to other fuzzy time series methods developed for forecasting TAIEX and enrollments of the University of Alabama.

  5. Time series momentum and contrarian effects in the Chinese stock market

    NASA Astrophysics Data System (ADS)

    Shi, Huai-Long; Zhou, Wei-Xing

    2017-10-01

    This paper concentrates on the time series momentum or contrarian effects in the Chinese stock market. We evaluate the performance of the time series momentum strategy applied to major stock indices in mainland China and explore the relation between the performance of time series momentum strategies and some firm-specific characteristics. Our findings indicate that there is a time series momentum effect in the short run and a contrarian effect in the long run in the Chinese stock market. The performances of the time series momentum and contrarian strategies are highly dependent on the look-back and holding periods and firm-specific characteristics.

  6. Time series analysis of the developed financial markets' integration using visibility graphs

    NASA Astrophysics Data System (ADS)

    Zhuang, Enyu; Small, Michael; Feng, Gang

    2014-09-01

    A time series representing the developed financial markets' segmentation from 1973 to 2012 is studied. The time series reveals an obvious market integration trend. To further uncover the features of this time series, we divide it into seven windows and generate seven visibility graphs. The measuring capabilities of the visibility graphs provide means to quantitatively analyze the original time series. It is found that the important historical incidents that influenced market integration coincide with variations in the measured graphical node degree. Through the measure of neighborhood span, the frequencies of the historical incidents are disclosed. Moreover, it is also found that large "cycles" and significant noise in the time series are linked to large and small communities in the generated visibility graphs. For large cycles, how historical incidents significantly affected market integration is distinguished by density and compactness of the corresponding communities.

  7. Time series analysis and long range correlations of Nordic spot electricity market data

    NASA Astrophysics Data System (ADS)

    Erzgräber, Hartmut; Strozzi, Fernanda; Zaldívar, José-Manuel; Touchette, Hugo; Gutiérrez, Eugénio; Arrowsmith, David K.

    2008-11-01

    The electricity system price of the Nord Pool spot market is analysed. Different time scale analysis tools are assessed with focus on the Hurst exponent and long range correlations. Daily and weekly periodicities of the spot market are identified. Even though space time separation plots suggest more stationary behaviour than other financial time series, we find large fluctuations of the spot price market which suggest time-dependent scaling parameters.

  8. Predictive fuzzy reasoning method for time series stock market data mining

    NASA Astrophysics Data System (ADS)

    Khokhar, Rashid H.; Md Sap, Mohd Noor

    2005-03-01

    Data mining is able to uncover hidden patterns and predict future trends and behaviors in financial markets. In this research we approach quantitative time series stock selection as a data mining problem. We present another modification of extraction of weighted fuzzy production rules (WFPRs) from fuzzy decision tree by using proposed similarity-based fuzzy reasoning method called predictive reasoning (PR) method. In proposed predictive reasoning method weight parameter can be assigned to each proposition in the antecedent of a fuzzy production rule (FPR) and certainty factor (CF) to each rule. Certainty factors are calculated by using some important variables like effect of other companies, effect of other local stock market, effect of overall world situation, and effect of political situation from stock market. The predictive FDT has been tested using three data sets including KLSE, NYSE and LSE. The experimental results show that WFPRs rules have high learning accuracy and also better predictive accuracy of stock market time series data.

  9. A hybrid approach EMD-HW for short-term forecasting of daily stock market time series data

    NASA Astrophysics Data System (ADS)

    Awajan, Ahmad Mohd; Ismail, Mohd Tahir

    2017-08-01

    Recently, forecasting time series has attracted considerable attention in the field of analyzing financial time series data, specifically within the stock market index. Moreover, stock market forecasting is a challenging area of financial time-series forecasting. In this study, a hybrid methodology between Empirical Mode Decomposition with the Holt-Winter method (EMD-HW) is used to improve forecasting performances in financial time series. The strength of this EMD-HW lies in its ability to forecast non-stationary and non-linear time series without a need to use any transformation method. Moreover, EMD-HW has a relatively high accuracy and offers a new forecasting method in time series. The daily stock market time series data of 11 countries is applied to show the forecasting performance of the proposed EMD-HW. Based on the three forecast accuracy measures, the results indicate that EMD-HW forecasting performance is superior to traditional Holt-Winter forecasting method.

  10. Forecasting the portuguese stock market time series by using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Isfan, Monica; Menezes, Rui; Mendes, Diana A.

    2010-04-01

    In this paper, we show that neural networks can be used to uncover the non-linearity that exists in the financial data. First, we follow a traditional approach by analysing the deterministic/stochastic characteristics of the Portuguese stock market data and some typical features are studied, like the Hurst exponents, among others. We also simulate a BDS test to investigate nonlinearities and the results are as expected: the financial time series do not exhibit linear dependence. Secondly, we trained four types of neural networks for the stock markets and used the models to make forecasts. The artificial neural networks were obtained using a three-layer feed-forward topology and the back-propagation learning algorithm. The quite large number of parameters that must be selected to develop a neural network forecasting model involves some trial and as a consequence the error is not small enough. In order to improve this we use a nonlinear optimization algorithm to minimize the error. Finally, the output of the 4 models is quite similar, leading to a qualitative forecast that we compare with the results of the application of k-nearest-neighbor for the same time series.

  11. Proposal of Classification Method of Time Series Data in International Emissions Trading Market Using Agent-based Simulation

    NASA Astrophysics Data System (ADS)

    Nakada, Tomohiro; Takadama, Keiki; Watanabe, Shigeyoshi

    This paper proposes the classification method using Bayesian analytical method to classify the time series data in the international emissions trading market depend on the agent-based simulation and compares the case with Discrete Fourier transform analytical method. The purpose demonstrates the analytical methods mapping time series data such as market price. These analytical methods have revealed the following results: (1) the classification methods indicate the distance of mapping from the time series data, it is easier the understanding and inference than time series data; (2) these methods can analyze the uncertain time series data using the distance via agent-based simulation including stationary process and non-stationary process; and (3) Bayesian analytical method can show the 1% difference description of the emission reduction targets of agent.

  12. The string prediction models as invariants of time series in the forex market

    NASA Astrophysics Data System (ADS)

    Pincak, R.

    2013-12-01

    In this paper we apply a new approach of string theory to the real financial market. The models are constructed with an idea of prediction models based on the string invariants (PMBSI). The performance of PMBSI is compared to support vector machines (SVM) and artificial neural networks (ANN) on an artificial and a financial time series. A brief overview of the results and analysis is given. The first model is based on the correlation function as invariant and the second one is an application based on the deviations from the closed string/pattern form (PMBCS). We found the difference between these two approaches. The first model cannot predict the behavior of the forex market with good efficiency in comparison with the second one which is, in addition, able to make relevant profit per year. The presented string models could be useful for portfolio creation and financial risk management in the banking sector as well as for a nonlinear statistical approach to data optimization.

  13. Intra-day variability of the stock market activity versus stationarity of the financial time series

    NASA Astrophysics Data System (ADS)

    Gubiec, T.; Wiliński, M.

    2015-08-01

    In this paper we propose a new approach to a well-known phenomena of intra-day activity pattern on the stock market. We suggest that seasonality of inter-transaction times has a more significant impact than intra-day pattern of volatility. Our aim is not to remove the intra-day pattern from the data but to describe its impact on autocorrelation function estimators. We obtain an exact, analytical formula relating estimators of the autocorrelation functions of non-stationary (seasonal) process to its stationary counterpart. Hence, we prove that the day seasonality of inter-transaction times extends the memory of the process. That is, autocorrelation of both, price returns and their absolute values, relaxation to zero is longer.

  14. Scaling analysis of time series of daily prices from stock markets of transitional economies in the Western Balkans

    NASA Astrophysics Data System (ADS)

    Sarvan, Darko; Stratimirović, Djordje; Blesić, Suzana; Miljković, Vladimir

    2014-12-01

    In this paper we have analyzed scaling properties of time series of stock market indices (SMIs) of developing economies of Western Balkans, and have compared the results we have obtained with the results from more developed economies. We have used three different techniques of data analysis to obtain and verify our findings: detrended fluctuation analysis (DFA) method, detrended moving average (DMA) method, and wavelet transformation (WT) analysis. We have found scaling behavior in all SMI data sets that we have analyzed. The scaling of our SMI series changes from long-range correlated to slightly anti-correlated behavior with the change in growth or maturity of the economy the stock market is embedded in. We also report the presence of effects of potential periodic-like influences on the SMI data that we have analyzed. One such influence is visible in all our SMI series, and appears at a period Tp ≈ 90 days. We propose that the existence of various periodic-like influences on SMI data may partially explain the observed difference in types of correlated behavior of corresponding scaling functions.

  15. New Results on Gain-Loss Asymmetry for Stock Markets Time Series

    NASA Astrophysics Data System (ADS)

    Grudziecki, M.; Gnatowska, E.; Karpio, K.; Orłowski, A.; Załuska-Kotur, M.

    2008-09-01

    A method called investment horizon approach was successfully used to analyze stock markets of many different countries. Here we apply a version of this method to study characteristics of the Polish Pioneer mutual funds. We decided to analyze Pioneer because of its longest involvement in investing on the Polish market. Moreover, it apparently manages the biggest amount of money among all similar institutions in Poland. We compare various types of Pioneer mutual funds, characterized by different financial instruments they invest in. Previously, investment horizon approach produced different characteristics of emerging markets as opposed to mature ones, providing a possible way to quantify stock market maturity. Here we generalize the above mentioned results for mutual funds of various types.

  16. Segmentation algorithm for non-stationary compound Poisson processes. With an application to inventory time series of market members in a financial market

    NASA Astrophysics Data System (ADS)

    Tóth, B.; Lillo, F.; Farmer, J. D.

    2010-11-01

    We introduce an algorithm for the segmentation of a class of regime switching processes. The segmentation algorithm is a non parametric statistical method able to identify the regimes (patches) of a time series. The process is composed of consecutive patches of variable length. In each patch the process is described by a stationary compound Poisson process, i.e. a Poisson process where each count is associated with a fluctuating signal. The parameters of the process are different in each patch and therefore the time series is non-stationary. Our method is a generalization of the algorithm introduced by Bernaola-Galván, et al. [Phys. Rev. Lett. 87, 168105 (2001)]. We show that the new algorithm outperforms the original one for regime switching models of compound Poisson processes. As an application we use the algorithm to segment the time series of the inventory of market members of the London Stock Exchange and we observe that our method finds almost three times more patches than the original one.

  17. Time Series Explorer

    NASA Astrophysics Data System (ADS)

    Scargle, J.

    With the generation of long, precise, and finely sampled time series the Age of Digital Astronomy is uncovering and elucidating energetic dynamical processes throughout the Universe. Fulfilling these opportunities requires data effective analysis techniques rapidly and automatically implementing advanced concepts. The Time Series Explorer, under development in collaboration with Tom Loredo, provides tools ranging from simple but optimal histograms to time and frequency domain analysis for arbitrary data modes with any time sampling. Examples of application of these tools for automated time series discovery will be given.

  18. Dynamical Decomposition of Multifractal Time Series as Fractal Evolution and Long-Term Cycles: Applications to Foreign Currency Exchange Market

    NASA Astrophysics Data System (ADS)

    Turiel, A.; Perez-Vicente, C.

    The application of the multifractal formalism to the study of some time series with scale invariant evolution has given rise to a rich framework of models and processing tools for the analysis of these signals. The formalism has been successfully exploited in different ways and with different goals: to obtain the effective variables governing the evolution of the series, to predict its future evolution, to estimate in which regime the series are, etc. In this paper, we discuss on the capabilities of a new, powerful processing tool, namely the computation of dynamical sources. With the aid of the source field, we will separate the fast, chaotic dynamics defined by the multifractal structure from a new, so-far unknown slow dynamics which concerns long cycles in the series. We discuss the results on the perspective of detection of sharp dynamic changes and forecasting.

  19. The market dynamics of generic medicines in the private sector of 19 low and middle income countries between 2001 and 2011: a descriptive time series analysis.

    PubMed

    Kaplan, Warren A; Wirtz, Veronika J; Stephens, Peter

    2013-01-01

    This observational study investigates the private sector, retail pharmaceutical market of 19 low and middle income countries (LMICs) in Latin America, Asia and the Middle East/South Africa analyzing the relationships between volume market share of generic and originator medicines over a time series from 2001 to 2011. Over 5000 individual pharmaceutical substances were divided into generic (unbranded generic, branded generic medicines) and originator categories for each country, including the United States as a comparator. In 9 selected LMICs, the market share of those originator substances with the largest decrease over time was compared to the market share of their counterpart generic versions. Generic medicines (branded generic plus unbranded generic) represent between 70 and 80% of market share in the private sector of these LMICs which exceeds that of most European countries. Branded generic medicine market share is higher than that of unbranded generics in all three regions and this is in contrast to the U.S. Although switching from an originator to its generic counterpart can save money, this narrative in reality is complex at the level of individual medicines. In some countries, the market behavior of some originator medicines that showed the most temporal decrease, showed switching to their generic counterpart. In other countries such as in the Middle East/South Africa and Asia, the loss of these originators was not accompanied by any change at all in market share of the equivalent generic version. For those countries with a significant increase in generic medicines market share and/or with evidence of comprehensive "switching" to generic versions, notably in Latin America, it would be worthwhile to establish cause-effect relationships between pharmaceutical policies and uptake of generic medicines. The absence of change in the generic medicines market share in other countries suggests that, at a minimum, generic medicines have not been strongly promoted.

  20. The Market Dynamics of Generic Medicines in the Private Sector of 19 Low and Middle Income Countries between 2001 and 2011: A Descriptive Time Series Analysis

    PubMed Central

    Kaplan, Warren A.; Wirtz, Veronika J.; Stephens, Peter

    2013-01-01

    This observational study investigates the private sector, retail pharmaceutical market of 19 low and middle income countries (LMICs) in Latin America, Asia and the Middle East/South Africa analyzing the relationships between volume market share of generic and originator medicines over a time series from 2001 to 2011. Over 5000 individual pharmaceutical substances were divided into generic (unbranded generic, branded generic medicines) and originator categories for each country, including the United States as a comparator. In 9 selected LMICs, the market share of those originator substances with the largest decrease over time was compared to the market share of their counterpart generic versions. Generic medicines (branded generic plus unbranded generic) represent between 70 and 80% of market share in the private sector of these LMICs which exceeds that of most European countries. Branded generic medicine market share is higher than that of unbranded generics in all three regions and this is in contrast to the U.S. Although switching from an originator to its generic counterpart can save money, this narrative in reality is complex at the level of individual medicines. In some countries, the market behavior of some originator medicines that showed the most temporal decrease, showed switching to their generic counterpart. In other countries such as in the Middle East/South Africa and Asia, the loss of these originators was not accompanied by any change at all in market share of the equivalent generic version. For those countries with a significant increase in generic medicines market share and/or with evidence of comprehensive “switching” to generic versions, notably in Latin America, it would be worthwhile to establish cause-effect relationships between pharmaceutical policies and uptake of generic medicines. The absence of change in the generic medicines market share in other countries suggests that, at a minimum, generic medicines have not been strongly

  1. Time Series Explorer

    NASA Astrophysics Data System (ADS)

    Loredo, Thomas

    The key, central objectives of the proposed Time Series Explorer project are to develop an organized collection of software tools for analysis of time series data in current and future NASA astrophysics data archives, and to make the tools available in two ways: as a library (the Time Series Toolbox) that individual science users can use to write their own data analysis pipelines, and as an application (the Time Series Automaton) providing an accessible, data-ready interface to many Toolbox algorithms, facilitating rapid exploration and automatic processing of time series databases. A number of time series analysis methods will be implemented, including techniques that range from standard ones to state-of-the-art developments by the proposers and others. Most of the algorithms will be able to handle time series data subject to real-world problems such as data gaps, sampling that is otherwise irregular, asynchronous sampling (in multi-wavelength settings), and data with non-Gaussian measurement errors. The proposed research responds to the ADAP element supporting the development of tools for mining the vast reservoir of information residing in NASA databases. The tools that will be provided to the community of astronomers studying variability of astronomical objects (from nearby stars and extrasolar planets, through galactic and extragalactic sources) will revolutionize the quality of timing analyses that can be carried out, and greatly enhance the scientific throughput of all NASA astrophysics missions past, present, and future. The Automaton will let scientists explore time series - individual records or large data bases -- with the most informative and useful analysis methods available, without having to develop the tools themselves or understand the computational details. Both elements, the Toolbox and the Automaton, will enable deep but efficient exploratory time series data analysis, which is why we have named the project the Time Series Explorer. Science

  2. The Time Series Toolbox

    NASA Astrophysics Data System (ADS)

    Božić, Bojan; Havlik, Denis

    2010-05-01

    Many applications commonly used in sensor service networks operate on the same type of data repeatedly over time. This kind of data is most naturally represented in the form of "time series". In its simplest form, a time series may consist of a single floating point number (e.g. temperature), that is recorded at regular intervals. More complex forms of time series include time series of complex observations (e.g. aggregations of related measurements, spectra, 2D coverages/images, ...), and time series recorded at irregular intervals. In addition, the time series may contain meta-information describing e.g. the provenance, uncertainty, and reliability of observations. The Time Series Toolbox (TS Toolbox) provides a set of software components and application programming interfaces that simplify recording, storage, processing and publishing of time series. This includes (1) "data connector" components implementing access to data using various protocols and data formats; (2) core components interfacing with the connector components and providing specific additional functionalities like data processing or caching; and (3) front-end components implementing interface functionality (user interfaces or software interfaces). The functionalities implemented by TS Toolbox components provide application developers with higher-level building blocks than typical general purpose libraries, and allow rapid development of fully fledged applications. The TS Toolbox also includes example applications that can be either used as they are, or as a basis for developing more complex applications. The TS-Toolbox, which was initially developed by the Austrian Institute of Technology in the scope of SANY "Sensors Anywhere", is written in Java, published under the terms of the GPL, and available for download on the SANY web site.

  3. Welfare States, Labor Markets, Political Dynamics, and Population Health: A Time-Series Cross-Sectional Analysis Among East and Southeast Asian Nations.

    PubMed

    Ng, Edwin; Muntaner, Carles; Chung, Haejoo

    2016-04-01

    Recent scholarship offers different theories on how macrosocial determinants affect the population health of East and Southeast Asian nations. Dominant theories emphasize the effects of welfare regimes, welfare generosity, and labor market institutions. In this article, we conduct exploratory time-series cross-sectional analyses to generate new evidence on these theories while advancing a political explanation. Using unbalanced data of 7 East Asian countries and 11 Southeast Asian nations from 1960 to 2012, primary findings are 3-fold. First, welfare generosity measured as education and health spending has a positive impact on life expectancy, net of GDP. Second, life expectancy varies significantly by labor markets; however, these differences are explained by differences in welfare generosity. Third, as East and Southeast Asian countries become more democratic, welfare generosity increases, and population health improves. This study provides new evidence on the value of considering politics, welfare states, and labor markets within the same conceptual framework. © 2016 APJPH.

  4. Disaggregating times series data

    SciTech Connect

    Joubert, S.B.; Burr, T.; Scovel, J.C.

    1997-05-01

    This report describes our experiences with disaggregating time series data. Suppose we have gathered data every two seconds and want to guess the data at one-second intervals. Under certain assumptions, there are several reasonable disaggregation methods as well as several performance measures to judge their performance. Here we present results for both simulated and real data for two methods using several performance criteria.

  5. Next Day Price Forecasting in Deregulated Market by Combination of Artificial Neural Network and ARIMA Time Series Models

    NASA Astrophysics Data System (ADS)

    Areekul, Phatchakorn; Senjyu, Tomonobu; Urasaki, Naomitsu; Yona, Atsushi

    Electricity price forecasting is becoming increasingly relevant to power producers and consumers in the new competitive electric power markets, when planning bidding strategies in order to maximize their benefits and utilities, respectively. This paper proposed a method to predict hourly electricity prices for next-day electricity markets by combination methodology of ARIMA and ANN models. The proposed method is examined on the Australian National Electricity Market (NEM), New South Wales regional in year 2006. Comparison of forecasting performance with the proposed ARIMA, ANN and combination (ARIMA-ANN) models are presented. Empirical results indicate that an ARIMA-ANN model can improve the price forecasting accuracy.

  6. Nonlinear Time Series Analysis via Neural Networks

    NASA Astrophysics Data System (ADS)

    Volná, Eva; Janošek, Michal; Kocian, Václav; Kotyrba, Martin

    This article deals with a time series analysis based on neural networks in order to make an effective forex market [Moore and Roche, J. Int. Econ. 58, 387-411 (2002)] pattern recognition. Our goal is to find and recognize important patterns which repeatedly appear in the market history to adapt our trading system behaviour based on them.

  7. Investigation of market efficiency and Financial Stability between S&P 500 and London Stock Exchange: Monthly and yearly Forecasting of Time Series Stock Returns using ARMA model

    NASA Astrophysics Data System (ADS)

    Rounaghi, Mohammad Mahdi; Nassir Zadeh, Farzaneh

    2016-08-01

    We investigated the presence and changes in, long memory features in the returns and volatility dynamics of S&P 500 and London Stock Exchange using ARMA model. Recently, multifractal analysis has been evolved as an important way to explain the complexity of financial markets which can hardly be described by linear methods of efficient market theory. In financial markets, the weak form of the efficient market hypothesis implies that price returns are serially uncorrelated sequences. In other words, prices should follow a random walk behavior. The random walk hypothesis is evaluated against alternatives accommodating either unifractality or multifractality. Several studies find that the return volatility of stocks tends to exhibit long-range dependence, heavy tails, and clustering. Because stochastic processes with self-similarity possess long-range dependence and heavy tails, it has been suggested that self-similar processes be employed to capture these characteristics in return volatility modeling. The present study applies monthly and yearly forecasting of Time Series Stock Returns in S&P 500 and London Stock Exchange using ARMA model. The statistical analysis of S&P 500 shows that the ARMA model for S&P 500 outperforms the London stock exchange and it is capable for predicting medium or long horizons using real known values. The statistical analysis in London Stock Exchange shows that the ARMA model for monthly stock returns outperforms the yearly. ​A comparison between S&P 500 and London Stock Exchange shows that both markets are efficient and have Financial Stability during periods of boom and bust.

  8. The Hog Cycle of Law Professors: An Econometric Time Series Analysis of the Entry-Level Job Market in Legal Academia

    PubMed Central

    Hamann, Hanjo

    2016-01-01

    The (German) market for law professors fulfils the conditions for a hog cycle: In the short run, supply cannot be extended or limited; future law professors must be hired soon after they first present themselves, or leave the market; demand is inelastic. Using a comprehensive German dataset, we show that the number of market entries today is negatively correlated with the number of market entries eight years ago. This suggests short-sighted behavior of young scholars at the time when they decide to prepare for the market. Using our statistical model, we make out-of-sample predictions for the German academic market in law until 2020. PMID:27467518

  9. The Hog Cycle of Law Professors: An Econometric Time Series Analysis of the Entry-Level Job Market in Legal Academia.

    PubMed

    Engel, Christoph; Hamann, Hanjo

    2016-01-01

    The (German) market for law professors fulfils the conditions for a hog cycle: In the short run, supply cannot be extended or limited; future law professors must be hired soon after they first present themselves, or leave the market; demand is inelastic. Using a comprehensive German dataset, we show that the number of market entries today is negatively correlated with the number of market entries eight years ago. This suggests short-sighted behavior of young scholars at the time when they decide to prepare for the market. Using our statistical model, we make out-of-sample predictions for the German academic market in law until 2020.

  10. Timing matters in foreign exchange markets

    NASA Astrophysics Data System (ADS)

    Hirata, Yoshito; Aihara, Kazuyuki

    2012-02-01

    We show using nonlinear time series analysis that the timing of trades in foreign exchange markets has significant information. We apply a set of methods for analyzing point process data developed in neuroscience and nonlinear science. Our results imply that foreign exchange markets might be chaotic and have short-term predictability.

  11. The influence of market deregulation on fast food consumption and body mass index: a cross-national time series analysis.

    PubMed

    De Vogli, Roberto; Kouvonen, Anne; Gimeno, David

    2014-02-01

    To investigate the effect of fast food consumption on mean population body mass index (BMI) and explore the possible influence of market deregulation on fast food consumption and BMI. The within-country association between fast food consumption and BMI in 25 high-income member countries of the Organisation for Economic Co-operation and Development between 1999 and 2008 was explored through multivariate panel regression models, after adjustment for per capita gross domestic product, urbanization, trade openness, lifestyle indicators and other covariates. The possible mediating effect of annual per capita intake of soft drinks, animal fats and total calories on the association between fast food consumption and BMI was also analysed. Two-stage least squares regression models were conducted, using economic freedom as an instrumental variable, to study the causal effect of fast food consumption on BMI. After adjustment for covariates, each 1-unit increase in annual fast food transactions per capita was associated with an increase of 0.033 kg/m2 in age-standardized BMI (95% confidence interval, CI: 0.013-0.052). Only the intake of soft drinks--not animal fat or total calories--mediated the observed association (β: 0.030; 95% CI: 0.010-0.050). Economic freedom was an independent predictor of fast food consumption (β: 0.27; 95% CI: 0.16-0.37). When economic freedom was used as an instrumental variable, the association between fast food and BMI weakened but remained significant (β: 0.023; 95% CI: 0.001-0.045). Fast food consumption is an independent predictor of mean BMI in high-income countries. Market deregulation policies may contribute to the obesity epidemic by facilitating the spread of fast food.

  12. The influence of market deregulation on fast food consumption and body mass index: a cross-national time series analysis

    PubMed Central

    Kouvonen, Anne; Gimeno, David

    2014-01-01

    Abstract Objective To investigate the effect of fast food consumption on mean population body mass index (BMI) and explore the possible influence of market deregulation on fast food consumption and BMI. Methods The within-country association between fast food consumption and BMI in 25 high-income member countries of the Organisation for Economic Co-operation and Development between 1999 and 2008 was explored through multivariate panel regression models, after adjustment for per capita gross domestic product, urbanization, trade openness, lifestyle indicators and other covariates. The possible mediating effect of annual per capita intake of soft drinks, animal fats and total calories on the association between fast food consumption and BMI was also analysed. Two-stage least squares regression models were conducted, using economic freedom as an instrumental variable, to study the causal effect of fast food consumption on BMI. Findings After adjustment for covariates, each 1-unit increase in annual fast food transactions per capita was associated with an increase of 0.033 kg/m2 in age-standardized BMI (95% confidence interval, CI: 0.013–0.052). Only the intake of soft drinks – not animal fat or total calories – mediated the observed association (β: 0.030; 95% CI: 0.010–0.050). Economic freedom was an independent predictor of fast food consumption (β: 0.27; 95% CI: 0.16–0.37). When economic freedom was used as an instrumental variable, the association between fast food and BMI weakened but remained significant (β: 0.023; 95% CI: 0.001–0.045). Conclusion Fast food consumption is an independent predictor of mean BMI in high-income countries. Market deregulation policies may contribute to the obesity epidemic by facilitating the spread of fast food. PMID:24623903

  13. GPS Position Time Series @ JPL

    NASA Technical Reports Server (NTRS)

    Owen, Susan; Moore, Angelyn; Kedar, Sharon; Liu, Zhen; Webb, Frank; Heflin, Mike; Desai, Shailen

    2013-01-01

    Different flavors of GPS time series analysis at JPL - Use same GPS Precise Point Positioning Analysis raw time series - Variations in time series analysis/post-processing driven by different users. center dot JPL Global Time Series/Velocities - researchers studying reference frame, combining with VLBI/SLR/DORIS center dot JPL/SOPAC Combined Time Series/Velocities - crustal deformation for tectonic, volcanic, ground water studies center dot ARIA Time Series/Coseismic Data Products - Hazard monitoring and response focused center dot ARIA data system designed to integrate GPS and InSAR - GPS tropospheric delay used for correcting InSAR - Caltech's GIANT time series analysis uses GPS to correct orbital errors in InSAR - Zhen Liu's talking tomorrow on InSAR Time Series analysis

  14. GPS Position Time Series @ JPL

    NASA Technical Reports Server (NTRS)

    Owen, Susan; Moore, Angelyn; Kedar, Sharon; Liu, Zhen; Webb, Frank; Heflin, Mike; Desai, Shailen

    2013-01-01

    Different flavors of GPS time series analysis at JPL - Use same GPS Precise Point Positioning Analysis raw time series - Variations in time series analysis/post-processing driven by different users. center dot JPL Global Time Series/Velocities - researchers studying reference frame, combining with VLBI/SLR/DORIS center dot JPL/SOPAC Combined Time Series/Velocities - crustal deformation for tectonic, volcanic, ground water studies center dot ARIA Time Series/Coseismic Data Products - Hazard monitoring and response focused center dot ARIA data system designed to integrate GPS and InSAR - GPS tropospheric delay used for correcting InSAR - Caltech's GIANT time series analysis uses GPS to correct orbital errors in InSAR - Zhen Liu's talking tomorrow on InSAR Time Series analysis

  15. Impact of universal health insurance coverage in Thailand on sales and market share of medicines for non-communicable diseases: an interrupted time series study

    PubMed Central

    Garabedian, Laura Faden; Ross-Degnan, Dennis; Ratanawijitrasin, Sauwakon; Stephens, Peter; Wagner, Anita Katharina

    2012-01-01

    Objective In 2001, Thailand implemented the Universal Coverage Scheme (UCS), a public insurance system that aimed to achieve universal access to healthcare, including essential medicines, and to influence primary care centres and hospitals to use resources efficiently, via capitated payment for outpatient services and other payment policies for inpatient care. Our objective was to evaluate the impact of the UCS on utilisation of medicines in Thailand for three non-communicable diseases: cancer, cardiovascular disease and diabetes. Design Interrupted time-series design, with a non-equivalent comparison group. Setting Thailand, 1998–2006. Data Quarterly purchases of medicines from hospital and retail pharmacies collected by IMS Health between 1998 and 2006. Intervention UCS implementation, April–October 2001. Outcome measures Total pharmaceutical sales volume and percent market share by licensing status and National Essential Medicine List status. Results The UCS was associated with long-term increases in sales of medicines for conditions that are typically treated in outpatient primary care settings, such as diabetes, high cholesterol and high blood pressure, but not for medicines for diseases that are typically treated in secondary or tertiary care settings, such as heart failure, arrhythmias and cancer. Although the majority of increases in sales were for essential medicines, there were also postpolicy increases in sales of non-essential medicines. Immediately following the reform, there was a significant shift in hospital sector market share by licensing status for most classes of medicines. Government-produced products often replaced branded generic or generic competitors. Conclusions Our results suggest that expanding health insurance coverage with a medicine benefit to the entire Thai population increased access to medicines in primary care. However, our study also suggests that the UCS may have had potentially undesirable effects. Evaluations of the long

  16. Permutations and time series analysis.

    PubMed

    Cánovas, Jose S; Guillamón, Antonio

    2009-12-01

    The main aim of this paper is to show how the use of permutations can be useful in the study of time series analysis. In particular, we introduce a test for checking the independence of a time series which is based on the number of admissible permutations on it. The main improvement in our tests is that we are able to give a theoretical distribution for independent time series.

  17. FROG: Time-series analysis

    NASA Astrophysics Data System (ADS)

    Allan, Alasdair

    2014-06-01

    FROG performs time series analysis and display. It provides a simple user interface for astronomers wanting to do time-domain astrophysics but still offers the powerful features found in packages such as PERIOD (ascl:1406.005). FROG includes a number of tools for manipulation of time series. Among other things, the user can combine individual time series, detrend series (multiple methods) and perform basic arithmetic functions. The data can also be exported directly into the TOPCAT (ascl:1101.010) application for further manipulation if needed.

  18. Time averaging, ageing and delay analysis of financial time series

    NASA Astrophysics Data System (ADS)

    Cherstvy, Andrey G.; Vinod, Deepak; Aghion, Erez; Chechkin, Aleksei V.; Metzler, Ralf

    2017-06-01

    We introduce three strategies for the analysis of financial time series based on time averaged observables. These comprise the time averaged mean squared displacement (MSD) as well as the ageing and delay time methods for varying fractions of the financial time series. We explore these concepts via statistical analysis of historic time series for several Dow Jones Industrial indices for the period from the 1960s to 2015. Remarkably, we discover a simple universal law for the delay time averaged MSD. The observed features of the financial time series dynamics agree well with our analytical results for the time averaged measurables for geometric Brownian motion, underlying the famed Black-Scholes-Merton model. The concepts we promote here are shown to be useful for financial data analysis and enable one to unveil new universal features of stock market dynamics.

  19. Predicting Nonlinear Time Series

    DTIC Science & Technology

    1993-12-01

    response becomes R,(k) = f (Y FV,(k)) (2.4) where Wy specifies the weight associated with the output of node i to the input of nodej in the next layer and...interconnections for each of these previous nodes. 18 prr~~~o• wfe :t iam i -- ---- --- --- --- Figure 5: Delay block for ATNN [9] Thus, nodej receives the...computed values, aj(tn), and dj(tn) denotes the desired output of nodej at time in. In this thesis, the weights and time delays update after each input

  20. Langevin equations from time series.

    PubMed

    Racca, E; Porporato, A

    2005-02-01

    We discuss the link between the approach to obtain the drift and diffusion of one-dimensional Langevin equations from time series, and Pope and Ching's relationship for stationary signals. The two approaches are based on different interpretations of conditional averages of the time derivatives of the time series at given levels. The analysis provides a useful indication for the correct application of Pope and Ching's relationship to obtain stochastic differential equations from time series and shows its validity, in a generalized sense, for nondifferentiable processes originating from Langevin equations.

  1. Time and foreign exchange markets

    NASA Astrophysics Data System (ADS)

    Berardi, Luca; Serva, Maurizio

    2005-08-01

    The definition of time is still an open question when one deals with high-frequency time series. If time is simply the calendar time, prices can be modeled as continuous random processes and values resulting from transactions or given quotes are discrete samples of this underlying dynamics. On the contrary, if one takes the business time point of view, price dynamics is a discrete random process, and time is simply the ordering according to which prices are quoted in the market. In this paper, we suggest that the business time approach is perhaps a better way of modeling price dynamics than calendar time. This conclusion comes from testing probability densities and conditional variances predicted by the two models against the experimental ones. The data set we use contains the DEM/USD exchange quotes provided to us by Olsen & Associates during a period of one year from January to December 1998. In this period, 1,620,843 quotes entries in the EFX system were recorded.

  2. Visibility Graph Based Time Series Analysis

    PubMed Central

    Stephen, Mutua; Gu, Changgui; Yang, Huijie

    2015-01-01

    Network based time series analysis has made considerable achievements in the recent years. By mapping mono/multivariate time series into networks, one can investigate both it’s microscopic and macroscopic behaviors. However, most proposed approaches lead to the construction of static networks consequently providing limited information on evolutionary behaviors. In the present paper we propose a method called visibility graph based time series analysis, in which series segments are mapped to visibility graphs as being descriptions of the corresponding states and the successively occurring states are linked. This procedure converts a time series to a temporal network and at the same time a network of networks. Findings from empirical records for stock markets in USA (S&P500 and Nasdaq) and artificial series generated by means of fractional Gaussian motions show that the method can provide us rich information benefiting short-term and long-term predictions. Theoretically, we propose a method to investigate time series from the viewpoint of network of networks. PMID:26571115

  3. Visibility Graph Based Time Series Analysis.

    PubMed

    Stephen, Mutua; Gu, Changgui; Yang, Huijie

    2015-01-01

    Network based time series analysis has made considerable achievements in the recent years. By mapping mono/multivariate time series into networks, one can investigate both it's microscopic and macroscopic behaviors. However, most proposed approaches lead to the construction of static networks consequently providing limited information on evolutionary behaviors. In the present paper we propose a method called visibility graph based time series analysis, in which series segments are mapped to visibility graphs as being descriptions of the corresponding states and the successively occurring states are linked. This procedure converts a time series to a temporal network and at the same time a network of networks. Findings from empirical records for stock markets in USA (S&P500 and Nasdaq) and artificial series generated by means of fractional Gaussian motions show that the method can provide us rich information benefiting short-term and long-term predictions. Theoretically, we propose a method to investigate time series from the viewpoint of network of networks.

  4. Economic Time-Series Page.

    ERIC Educational Resources Information Center

    Bos, Theodore; Culver, Sarah E.

    2000-01-01

    Describes the Economagic Web site, a comprehensive site of free economic time-series data that can be used for research and instruction. Explains that it contains 100,000+ economic data series from sources such as the Federal Reserve Banking System, the Census Bureau, and the Department of Commerce. (CMK)

  5. Economic Time-Series Page.

    ERIC Educational Resources Information Center

    Bos, Theodore; Culver, Sarah E.

    2000-01-01

    Describes the Economagic Web site, a comprehensive site of free economic time-series data that can be used for research and instruction. Explains that it contains 100,000+ economic data series from sources such as the Federal Reserve Banking System, the Census Bureau, and the Department of Commerce. (CMK)

  6. Time series with tailored nonlinearities

    NASA Astrophysics Data System (ADS)

    Räth, C.; Laut, I.

    2015-10-01

    It is demonstrated how to generate time series with tailored nonlinearities by inducing well-defined constraints on the Fourier phases. Correlations between the phase information of adjacent phases and (static and dynamic) measures of nonlinearities are established and their origin is explained. By applying a set of simple constraints on the phases of an originally linear and uncorrelated Gaussian time series, the observed scaling behavior of the intensity distribution of empirical time series can be reproduced. The power law character of the intensity distributions being typical for, e.g., turbulence and financial data can thus be explained in terms of phase correlations.

  7. Measuring nonlinear behavior in time series data

    NASA Astrophysics Data System (ADS)

    Wai, Phoong Seuk; Ismail, Mohd Tahir

    2014-12-01

    Stationary Test is an important test in detect the time series behavior since financial and economic data series always have missing data, structural change as well as jumps or breaks in the data set. Moreover, stationary test is able to transform the nonlinear time series variable to become stationary by taking difference-stationary process or trend-stationary process. Two different types of hypothesis testing of stationary tests that are Augmented Dickey-Fuller (ADF) test and Kwiatkowski-Philips-Schmidt-Shin (KPSS) test are examine in this paper to describe the properties of the time series variables in financial model. Besides, Least Square method is used in Augmented Dickey-Fuller test to detect the changes of the series and Lagrange multiplier is used in Kwiatkowski-Philips-Schmidt-Shin test to examine the properties of oil price, gold price and Malaysia stock market. Moreover, Quandt-Andrews, Bai-Perron and Chow tests are also use to detect the existence of break in the data series. The monthly index data are ranging from December 1989 until May 2012. Result is shown that these three series exhibit nonlinear properties but are able to transform to stationary series after taking first difference process.

  8. Time series prediction in agroecosystems

    NASA Astrophysics Data System (ADS)

    Cortina-Januchs, M. G.; Quintanilla-Dominguez, J.; Vega-Corona, A.; Andina, D.

    2012-04-01

    This work proposes a novel model to predict time series such as frost, precipitation, temperature, solar radiation, all of them important variables for the agriculture process. In the proposed model, Artificial Neural Networks (ANN) combined with clustering algorithms and sensor data fusion are used. The real time series are obtained from different sensors. The clustering algorithms find relationships between variables, clustering involves the task of dividing data sets, which assigns the same label to members who belong to the same group, so that each group is homogeneous and distinct from the others. Those relationships provide information to the ANN in order to obtain the time series prediction. The most important issue of ANN in time series prediction is generalization, which refers to their ability to produce reasonable predictions on data sets other than those used for the estimation of the model parameters.

  9. Multiscale multifractal time irreversibility analysis of stock markets

    NASA Astrophysics Data System (ADS)

    Jiang, Chenguang; Shang, Pengjian; Shi, Wenbin

    2016-11-01

    Time irreversibility is one of the most important properties of nonstationary time series. Complex time series often demonstrate even multiscale time irreversibility, such that not only the original but also coarse-grained time series are asymmetric over a wide range of scales. We study the multiscale time irreversibility of time series. In this paper, we develop a method called multiscale multifractal time irreversibility analysis (MMRA), which allows us to extend the description of time irreversibility to include the dependence on the segment size and statistical moments. We test the effectiveness of MMRA in detecting multifractality and time irreversibility of time series generated from delayed Henon map and binomial multifractal model. Then we employ our method to the time irreversibility analysis of stock markets in different regions. We find that the emerging market has higher multifractality degree and time irreversibility compared with developed markets. In this sense, the MMRA method may provide new angles in assessing the evolution stage of stock markets.

  10. Market Research. Cooperative Education Marketing Digest Series 1.

    ERIC Educational Resources Information Center

    Pride, Cletis G.; Fowler, Joseph S.

    An overview of market research is provided, with advice about conducting market research for the educator. Market research is any kind of research that gives information about the current state of the market and offers guidance in improving one's position in that market. The relative advantages of conducting market research by oneself or by hiring…

  11. Intrinsic superstatistical components of financial time series

    NASA Astrophysics Data System (ADS)

    Vamoş, Călin; Crăciun, Maria

    2014-12-01

    Time series generated by a complex hierarchical system exhibit various types of dynamics at different time scales. A financial time series is an example of such a multiscale structure with time scales ranging from minutes to several years. In this paper we decompose the volatility of financial indices into five intrinsic components and we show that it has a heterogeneous scale structure. The small-scale components have a stochastic nature and they are independent 99% of the time, becoming synchronized during financial crashes and enhancing the heavy tails of the volatility distribution. The deterministic behavior of the large-scale components is related to the nonstationarity of the financial markets evolution. Our decomposition of the financial volatility is a superstatistical model more complex than those usually limited to a superposition of two independent statistics at well-separated time scales.

  12. Entropy of electromyography time series

    NASA Astrophysics Data System (ADS)

    Kaufman, Miron; Zurcher, Ulrich; Sung, Paul S.

    2007-12-01

    A nonlinear analysis based on Renyi entropy is applied to electromyography (EMG) time series from back muscles. The time dependence of the entropy of the EMG signal exhibits a crossover from a subdiffusive regime at short times to a plateau at longer times. We argue that this behavior characterizes complex biological systems. The plateau value of the entropy can be used to differentiate between healthy and low back pain individuals.

  13. Random time series in astronomy.

    PubMed

    Vaughan, Simon

    2013-02-13

    Progress in astronomy comes from interpreting the signals encoded in the light received from distant objects: the distribution of light over the sky (images), over photon wavelength (spectrum), over polarization angle and over time (usually called light curves by astronomers). In the time domain, we see transient events such as supernovae, gamma-ray bursts and other powerful explosions; we see periodic phenomena such as the orbits of planets around nearby stars, radio pulsars and pulsations of stars in nearby galaxies; and we see persistent aperiodic variations ('noise') from powerful systems such as accreting black holes. I review just a few of the recent and future challenges in the burgeoning area of time domain astrophysics, with particular attention to persistently variable sources, the recovery of reliable noise power spectra from sparsely sampled time series, higher order properties of accreting black holes, and time delays and correlations in multi-variate time series.

  14. Hurst exponents for short time series

    NASA Astrophysics Data System (ADS)

    Qi, Jingchao; Yang, Huijie

    2011-12-01

    A concept called balanced estimator of diffusion entropy is proposed to detect quantitatively scalings in short time series. The effectiveness is verified by detecting successfully scaling properties for a large number of artificial fractional Brownian motions. Calculations show that this method can give reliable scalings for short time series with length ˜102. It is also used to detect scalings in the Shanghai Stock Index, five stock catalogs, and a total of 134 stocks collected from the Shanghai Stock Exchange Market. The scaling exponent for each catalog is significantly larger compared with that for the stocks included in the catalog. Selecting a window with size 650, the evolution of scaling for the Shanghai Stock Index is obtained by the window's sliding along the series. Global patterns in the evolutionary process are captured from the smoothed evolutionary curve. By comparing the patterns with the important event list in the history of the considered stock market, the evolution of scaling is matched with the stock index series. We can find that the important events fit very well with global transitions of the scaling behaviors.

  15. Hurst exponents for short time series.

    PubMed

    Qi, Jingchao; Yang, Huijie

    2011-12-01

    A concept called balanced estimator of diffusion entropy is proposed to detect quantitatively scalings in short time series. The effectiveness is verified by detecting successfully scaling properties for a large number of artificial fractional Brownian motions. Calculations show that this method can give reliable scalings for short time series with length ~10(2). It is also used to detect scalings in the Shanghai Stock Index, five stock catalogs, and a total of 134 stocks collected from the Shanghai Stock Exchange Market. The scaling exponent for each catalog is significantly larger compared with that for the stocks included in the catalog. Selecting a window with size 650, the evolution of scaling for the Shanghai Stock Index is obtained by the window's sliding along the series. Global patterns in the evolutionary process are captured from the smoothed evolutionary curve. By comparing the patterns with the important event list in the history of the considered stock market, the evolution of scaling is matched with the stock index series. We can find that the important events fit very well with global transitions of the scaling behaviors.

  16. Pattern Recognition in Time Series

    NASA Astrophysics Data System (ADS)

    Lin, Jessica; Williamson, Sheri; Borne, Kirk D.; DeBarr, David

    2012-03-01

    Perhaps the most commonly encountered data types are time series, touching almost every aspect of human life, including astronomy. One obvious problem of handling time-series databases concerns with its typically massive size—gigabytes or even terabytes are common, with more and more databases reaching the petabyte scale. For example, in telecommunication, large companies like AT&T produce several hundred millions long-distance records per day [Cort00]. In astronomy, time-domain surveys are relatively new—these are surveys that cover a significant fraction of the sky with many repeat observations, thereby producing time series for millions or billions of objects. Several such time-domain sky surveys are now completed, such as the MACHO [Alco01],OGLE [Szym05], SDSS Stripe 82 [Bram08], SuperMACHO [Garg08], and Berkeley’s Transients Classification Pipeline (TCP) [Star08] projects. The Pan-STARRS project is an active sky survey—it began in 2010, a 3-year survey covering three-fourths of the sky with ˜60 observations of each field [Kais04]. The Large Synoptic Survey Telescope (LSST) project proposes to survey 50% of the visible sky repeatedly approximately 1000 times over a 10-year period, creating a 100-petabyte image archive and a 20-petabyte science database (http://www.lsst.org/). The LSST science database will include time series of over 100 scientific parameters for each of approximately 50 billion astronomical sources—this will be the largest data collection (and certainly the largest time series database) ever assembled in astronomy, and it rivals any other discipline’s massive data collections for sheer size and complexity. More common in astronomy are time series of flux measurements. As a consequence of many decades of observations (and in some cases, hundreds of years), a large variety of flux variations have been detected in astronomical objects, including periodic variations (e.g., pulsating stars, rotators, pulsars, eclipsing binaries

  17. Time series analysis of injuries.

    PubMed

    Martinez-Schnell, B; Zaidi, A

    1989-12-01

    We used time series models in the exploratory and confirmatory analysis of selected fatal injuries in the United States from 1972 to 1983. We built autoregressive integrated moving average (ARIMA) models for monthly, weekly, and daily series of deaths and used these models to generate hypotheses. These deaths resulted from six causes of injuries: motor vehicles, suicides, homicides, falls, drownings, and residential fires. For each cause of injury, we estimated calendar effects on the monthly death counts. We confirmed the significant effect of vehicle miles travelled on motor vehicle fatalities with a transfer function model. Finally, we applied intervention analysis to deaths due to motor vehicles.

  18. Inductive time series modeling program

    SciTech Connect

    Kirk, B.L.; Rust, B.W.

    1985-10-01

    A number of features that comprise environmental time series share a common mathematical behavior. Analysis of the Mauna Loa carbon dioxide record and other time series is aimed at constructing mathematical functions which describe as many major features of the data as possible. A trend function is fit to the data, removed, and the resulting residuals analyzed for any significant behavior. This is repeated until the residuals are driven to white noise. In the following discussion, the concept of trend will include cyclic components. The mathematical tools and program packages used are VARPRO (Golub and Pereyra 1973), for the least squares fit, and a modified version of our spectral analysis program (Kirk et al. 1979), for spectrum and noise analysis. The program is written in FORTRAN. All computations are done in double precision, except for the plotting calls where the DISSPLA package is used. The core requirement varies between 600 K and 700 K. The program is implemented on the IBM 360/370. Currently, the program can analyze up to five different time series where each series contains no more than 300 points. 12 refs.

  19. Interactive Marketing: Customers as Collaborators. Marketing Strategies Series.

    ERIC Educational Resources Information Center

    Durkin, Dorothy

    This booklet, which is intended for individuals responsible for marketing continuing higher education, presents an interactive approach to educational marketing in which customers play the role of collaborators. The booklet begins with brief profiles of successful interactive marketing programs at three universities. Examined next are labor market…

  20. Interactive Marketing: Customers as Collaborators. Marketing Strategies Series.

    ERIC Educational Resources Information Center

    Durkin, Dorothy

    This booklet, which is intended for individuals responsible for marketing continuing higher education, presents an interactive approach to educational marketing in which customers play the role of collaborators. The booklet begins with brief profiles of successful interactive marketing programs at three universities. Examined next are labor market…

  1. Modeling North Pacific Time Series

    NASA Astrophysics Data System (ADS)

    Overland, J. E.; Percival, D. B.; Mofjeld, H. O.

    2002-05-01

    We present a case study in modeling the North Pacific (NP) index, a time series of the wintertime Aleutian low sea level pressure from 1900 to 1999. We consider three statistical models, namely, a Gaussian stationary autoregressive process, a Gaussian fractionally difference (FD) or ``long-memory" process, and a ``signal plus noise" process consisting of a square wave oscillation with a pentadecadal period embedded in Gaussian white noise. Each model depends upon three parameters, so all three models are equally simple. The shortness of the time series makes it unrealistic to formally prefer one model over the other: we estimate it would take a 300 year record to differentiate between the models. Although the models fit equally well, they have quite different implications for the long-term behavior of the NP index, e.g. generation of regimes of characteristic lengths. Additional information and physical arguments may add support for a particular model. The FD - ``long memory" process suggests multiple physical contributions with different damping constants many North Pacific biological time series which are influenced by atmospheric and oceanic processes, show regime-like ecosystem reorganizations.

  2. Time series, periodograms, and significance

    NASA Astrophysics Data System (ADS)

    Hernandez, G.

    1999-05-01

    The geophysical literature shows a wide and conflicting usage of methods employed to extract meaningful information on coherent oscillations from measurements. This makes it difficult, if not impossible, to relate the findings reported by different authors. Therefore, we have undertaken a critical investigation of the tests and methodology used for determining the presence of statistically significant coherent oscillations in periodograms derived from time series. Statistical significance tests are only valid when performed on the independent frequencies present in a measurement. Both the number of possible independent frequencies in a periodogram and the significance tests are determined by the number of degrees of freedom, which is the number of true independent measurements, present in the time series, rather than the number of sample points in the measurement. The number of degrees of freedom is an intrinsic property of the data, and it must be determined from the serial coherence of the time series. As part of this investigation, a detailed study has been performed which clearly illustrates the deleterious effects that the apparently innocent and commonly used processes of filtering, de-trending, and tapering of data have on periodogram analysis and the consequent difficulties in the interpretation of the statistical significance thus derived. For the sake of clarity, a specific example of actual field measurements containing unevenly-spaced measurements, gaps, etc., as well as synthetic examples, have been used to illustrate the periodogram approach, and pitfalls, leading to the (statistical) significance tests for the presence of coherent oscillations. Among the insights of this investigation are: (1) the concept of a time series being (statistically) band limited by its own serial coherence and thus having a critical sampling rate which defines one of the necessary requirements for the proper statistical design of an experiment; (2) the design of a critical

  3. Classifying of financial time series based on multiscale entropy and multiscale time irreversibility

    NASA Astrophysics Data System (ADS)

    Xia, Jianan; Shang, Pengjian; Wang, Jing; Shi, Wenbin

    2014-04-01

    Time irreversibility is a fundamental property of many time series. We apply the multiscale entropy (MSE) and multiscale time irreversibility (MSTI) to analyze the financial time series, and succeed to classify the financial markets. Interestingly, both methods have nearly the same classification results, which mean that they are capable of distinguishing different series in a reliable manner. By comparing the results of shuffled data with the original results, we confirm that the asymmetry property is an inherent property of financial time series and it can extend over a wide range of scales. In addition, the effect of noise on Americas markets and Europe markets are relatively more significant than the effect on Asia markets, and loss of time irreversibility has been detected in high noise added series.

  4. Introduction to Time Series Analysis

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.

    1986-01-01

    The field of time series analysis is explored from its logical foundations to the most modern data analysis techniques. The presentation is developed, as far as possible, for continuous data, so that the inevitable use of discrete mathematics is postponed until the reader has gained some familiarity with the concepts. The monograph seeks to provide the reader with both the theoretical overview and the practical details necessary to correctly apply the full range of these powerful techniques. In addition, the last chapter introduces many specialized areas where research is currently in progress.

  5. Multiple Indicator Stationary Time Series Models.

    ERIC Educational Resources Information Center

    Sivo, Stephen A.

    2001-01-01

    Discusses the propriety and practical advantages of specifying multivariate time series models in the context of structural equation modeling for time series and longitudinal panel data. For time series data, the multiple indicator model specification improves on classical time series analysis. For panel data, the multiple indicator model…

  6. Multiple Indicator Stationary Time Series Models.

    ERIC Educational Resources Information Center

    Sivo, Stephen A.

    2001-01-01

    Discusses the propriety and practical advantages of specifying multivariate time series models in the context of structural equation modeling for time series and longitudinal panel data. For time series data, the multiple indicator model specification improves on classical time series analysis. For panel data, the multiple indicator model…

  7. Detecting chaos from time series

    NASA Astrophysics Data System (ADS)

    Xiaofeng, Gong; Lai, C. H.

    2000-02-01

    In this paper, an entirely data-based method to detect chaos from the time series is developed by introducing icons/Journals/Common/epsilon" ALT="epsilon" ALIGN="TOP"/> p -neighbour points (the p -steps icons/Journals/Common/epsilon" ALT="epsilon" ALIGN="TOP"/> -neighbour points). We demonstrate that for deterministic chaotic systems, there exists a linear relationship between the logarithm of the average number of icons/Journals/Common/epsilon" ALT="epsilon" ALIGN="TOP"/> p -neighbour points, lnn p ,icons/Journals/Common/epsilon" ALT="epsilon" ALIGN="TOP"/> , and the time step, p . The coefficient can be related to the KS entropy of the system. The effects of the embedding dimension and noise are also discussed.

  8. Efficient Algorithms for Segmentation of Item-Set Time Series

    NASA Astrophysics Data System (ADS)

    Chundi, Parvathi; Rosenkrantz, Daniel J.

    We propose a special type of time series, which we call an item-set time series, to facilitate the temporal analysis of software version histories, email logs, stock market data, etc. In an item-set time series, each observed data value is a set of discrete items. We formalize the concept of an item-set time series and present efficient algorithms for segmenting a given item-set time series. Segmentation of a time series partitions the time series into a sequence of segments where each segment is constructed by combining consecutive time points of the time series. Each segment is associated with an item set that is computed from the item sets of the time points in that segment, using a function which we call a measure function. We then define a concept called the segment difference, which measures the difference between the item set of a segment and the item sets of the time points in that segment. The segment difference values are required to construct an optimal segmentation of the time series. We describe novel and efficient algorithms to compute segment difference values for each of the measure functions described in the paper. We outline a dynamic programming based scheme to construct an optimal segmentation of the given item-set time series. We use the item-set time series segmentation techniques to analyze the temporal content of three different data sets—Enron email, stock market data, and a synthetic data set. The experimental results show that an optimal segmentation of item-set time series data captures much more temporal content than a segmentation constructed based on the number of time points in each segment, without examining the item set data at the time points, and can be used to analyze different types of temporal data.

  9. Managing distribution changes in time series prediction

    NASA Astrophysics Data System (ADS)

    Matias, J. M.; Gonzalez-Manteiga, W.; Taboada, J.; Ordonez, C.

    2006-07-01

    When a problem is modeled statistically, a single distribution model is usually postulated that is assumed to be valid for the entire space. Nonetheless, this practice may be somewhat unrealistic in certain application areas, in which the conditions of the process that generates the data may change; as far as we are aware, however, no techniques have been developed to tackle this problem.This article proposes a technique for modeling and predicting this change in time series with a view to improving estimates and predictions. The technique is applied, among other models, to the hypernormal distribution recently proposed. When tested on real data from a range of stock market indices the technique produces better results that when a single distribution model is assumed to be valid for the entire period of time studied.Moreover, when a global model is postulated, it is highly recommended to select the hypernormal distribution parameter in the same likelihood maximization process.

  10. Wavelet transform approach for fitting financial time series data

    NASA Astrophysics Data System (ADS)

    Ahmed, Amel Abdoullah; Ismail, Mohd Tahir

    2015-10-01

    This study investigates a newly developed technique; a combined wavelet filtering and VEC model, to study the dynamic relationship among financial time series. Wavelet filter has been used to annihilate noise data in daily data set of NASDAQ stock market of US, and three stock markets of Middle East and North Africa (MENA) region, namely, Egypt, Jordan, and Istanbul. The data covered is from 6/29/2001 to 5/5/2009. After that, the returns of generated series by wavelet filter and original series are analyzed by cointegration test and VEC model. The results show that the cointegration test affirms the existence of cointegration between the studied series, and there is a long-term relationship between the US, stock markets and MENA stock markets. A comparison between the proposed model and traditional model demonstrates that, the proposed model (DWT with VEC model) outperforms traditional model (VEC model) to fit the financial stock markets series well, and shows real information about these relationships among the stock markets.

  11. Normalizing the causality between time series

    NASA Astrophysics Data System (ADS)

    Liang, X. San

    2015-08-01

    Recently, a rigorous yet concise formula was derived to evaluate information flow, and hence the causality in a quantitative sense, between time series. To assess the importance of a resulting causality, it needs to be normalized. The normalization is achieved through distinguishing a Lyapunov exponent-like, one-dimensional phase-space stretching rate and a noise-to-signal ratio from the rate of information flow in the balance of the marginal entropy evolution of the flow recipient. It is verified with autoregressive models and applied to a real financial analysis problem. An unusually strong one-way causality is identified from IBM (International Business Machines Corporation) to GE (General Electric Company) in their early era, revealing to us an old story, which has almost faded into oblivion, about "Seven Dwarfs" competing with a giant for the mainframe computer market.

  12. Normalizing the causality between time series.

    PubMed

    Liang, X San

    2015-08-01

    Recently, a rigorous yet concise formula was derived to evaluate information flow, and hence the causality in a quantitative sense, between time series. To assess the importance of a resulting causality, it needs to be normalized. The normalization is achieved through distinguishing a Lyapunov exponent-like, one-dimensional phase-space stretching rate and a noise-to-signal ratio from the rate of information flow in the balance of the marginal entropy evolution of the flow recipient. It is verified with autoregressive models and applied to a real financial analysis problem. An unusually strong one-way causality is identified from IBM (International Business Machines Corporation) to GE (General Electric Company) in their early era, revealing to us an old story, which has almost faded into oblivion, about "Seven Dwarfs" competing with a giant for the mainframe computer market.

  13. Regenerating time series from ordinal networks.

    PubMed

    McCullough, Michael; Sakellariou, Konstantinos; Stemler, Thomas; Small, Michael

    2017-03-01

    Recently proposed ordinal networks not only afford novel methods of nonlinear time series analysis but also constitute stochastic approximations of the deterministic flow time series from which the network models are constructed. In this paper, we construct ordinal networks from discrete sampled continuous chaotic time series and then regenerate new time series by taking random walks on the ordinal network. We then investigate the extent to which the dynamics of the original time series are encoded in the ordinal networks and retained through the process of regenerating new time series by using several distinct quantitative approaches. First, we use recurrence quantification analysis on traditional recurrence plots and order recurrence plots to compare the temporal structure of the original time series with random walk surrogate time series. Second, we estimate the largest Lyapunov exponent from the original time series and investigate the extent to which this invariant measure can be estimated from the surrogate time series. Finally, estimates of correlation dimension are computed to compare the topological properties of the original and surrogate time series dynamics. Our findings show that ordinal networks constructed from univariate time series data constitute stochastic models which approximate important dynamical properties of the original systems.

  14. Regenerating time series from ordinal networks

    NASA Astrophysics Data System (ADS)

    McCullough, Michael; Sakellariou, Konstantinos; Stemler, Thomas; Small, Michael

    2017-03-01

    Recently proposed ordinal networks not only afford novel methods of nonlinear time series analysis but also constitute stochastic approximations of the deterministic flow time series from which the network models are constructed. In this paper, we construct ordinal networks from discrete sampled continuous chaotic time series and then regenerate new time series by taking random walks on the ordinal network. We then investigate the extent to which the dynamics of the original time series are encoded in the ordinal networks and retained through the process of regenerating new time series by using several distinct quantitative approaches. First, we use recurrence quantification analysis on traditional recurrence plots and order recurrence plots to compare the temporal structure of the original time series with random walk surrogate time series. Second, we estimate the largest Lyapunov exponent from the original time series and investigate the extent to which this invariant measure can be estimated from the surrogate time series. Finally, estimates of correlation dimension are computed to compare the topological properties of the original and surrogate time series dynamics. Our findings show that ordinal networks constructed from univariate time series data constitute stochastic models which approximate important dynamical properties of the original systems.

  15. Financial time series analysis based on information categorization method

    NASA Astrophysics Data System (ADS)

    Tian, Qiang; Shang, Pengjian; Feng, Guochen

    2014-12-01

    The paper mainly applies the information categorization method to analyze the financial time series. The method is used to examine the similarity of different sequences by calculating the distances between them. We apply this method to quantify the similarity of different stock markets. And we report the results of similarity in US and Chinese stock markets in periods 1991-1998 (before the Asian currency crisis), 1999-2006 (after the Asian currency crisis and before the global financial crisis), and 2007-2013 (during and after global financial crisis) by using this method. The results show the difference of similarity between different stock markets in different time periods and the similarity of the two stock markets become larger after these two crises. Also we acquire the results of similarity of 10 stock indices in three areas; it means the method can distinguish different areas' markets from the phylogenetic trees. The results show that we can get satisfactory information from financial markets by this method. The information categorization method can not only be used in physiologic time series, but also in financial time series.

  16. Duality between Time Series and Networks

    PubMed Central

    Campanharo, Andriana S. L. O.; Sirer, M. Irmak; Malmgren, R. Dean; Ramos, Fernando M.; Amaral, Luís A. Nunes.

    2011-01-01

    Studying the interaction between a system's components and the temporal evolution of the system are two common ways to uncover and characterize its internal workings. Recently, several maps from a time series to a network have been proposed with the intent of using network metrics to characterize time series. Although these maps demonstrate that different time series result in networks with distinct topological properties, it remains unclear how these topological properties relate to the original time series. Here, we propose a map from a time series to a network with an approximate inverse operation, making it possible to use network statistics to characterize time series and time series statistics to characterize networks. As a proof of concept, we generate an ensemble of time series ranging from periodic to random and confirm that application of the proposed map retains much of the information encoded in the original time series (or networks) after application of the map (or its inverse). Our results suggest that network analysis can be used to distinguish different dynamic regimes in time series and, perhaps more importantly, time series analysis can provide a powerful set of tools that augment the traditional network analysis toolkit to quantify networks in new and useful ways. PMID:21858093

  17. A Review of Subsequence Time Series Clustering

    PubMed Central

    Teh, Ying Wah

    2014-01-01

    Clustering of subsequence time series remains an open issue in time series clustering. Subsequence time series clustering is used in different fields, such as e-commerce, outlier detection, speech recognition, biological systems, DNA recognition, and text mining. One of the useful fields in the domain of subsequence time series clustering is pattern recognition. To improve this field, a sequence of time series data is used. This paper reviews some definitions and backgrounds related to subsequence time series clustering. The categorization of the literature reviews is divided into three groups: preproof, interproof, and postproof period. Moreover, various state-of-the-art approaches in performing subsequence time series clustering are discussed under each of the following categories. The strengths and weaknesses of the employed methods are evaluated as potential issues for future studies. PMID:25140332

  18. A review of subsequence time series clustering.

    PubMed

    Zolhavarieh, Seyedjamal; Aghabozorgi, Saeed; Teh, Ying Wah

    2014-01-01

    Clustering of subsequence time series remains an open issue in time series clustering. Subsequence time series clustering is used in different fields, such as e-commerce, outlier detection, speech recognition, biological systems, DNA recognition, and text mining. One of the useful fields in the domain of subsequence time series clustering is pattern recognition. To improve this field, a sequence of time series data is used. This paper reviews some definitions and backgrounds related to subsequence time series clustering. The categorization of the literature reviews is divided into three groups: preproof, interproof, and postproof period. Moreover, various state-of-the-art approaches in performing subsequence time series clustering are discussed under each of the following categories. The strengths and weaknesses of the employed methods are evaluated as potential issues for future studies.

  19. Estimation of Hurst Exponent for the Financial Time Series

    NASA Astrophysics Data System (ADS)

    Kumar, J.; Manchanda, P.

    2009-07-01

    Till recently statistical methods and Fourier analysis were employed to study fluctuations in stock markets in general and Indian stock market in particular. However current trend is to apply the concepts of wavelet methodology and Hurst exponent, see for example the work of Manchanda, J. Kumar and Siddiqi, Journal of the Frankline Institute 144 (2007), 613-636 and paper of Cajueiro and B. M. Tabak. Cajueiro and Tabak, Physica A, 2003, have checked the efficiency of emerging markets by computing Hurst component over a time window of 4 years of data. Our goal in the present paper is to understand the dynamics of the Indian stock market. We look for the persistency in the stock market through Hurst exponent and fractal dimension of time series data of BSE 100 and NIFTY 50.

  20. Empirical method to measure stochasticity and multifractality in nonlinear time series.

    PubMed

    Lin, Chih-Hao; Chang, Chia-Seng; Li, Sai-Ping

    2013-12-01

    An empirical algorithm is used here to study the stochastic and multifractal nature of nonlinear time series. A parameter can be defined to quantitatively measure the deviation of the time series from a Wiener process so that the stochasticity of different time series can be compared. The local volatility of the time series under study can be constructed using this algorithm, and the multifractal structure of the time series can be analyzed by using this local volatility. As an example, we employ this method to analyze financial time series from different stock markets. The result shows that while developed markets evolve very much like an Ito process, the emergent markets are far from efficient. Differences about the multifractal structures and leverage effects between developed and emergent markets are discussed. The algorithm used here can be applied in a similar fashion to study time series of other complex systems.

  1. Empirical method to measure stochasticity and multifractality in nonlinear time series

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Hao; Chang, Chia-Seng; Li, Sai-Ping

    2013-12-01

    An empirical algorithm is used here to study the stochastic and multifractal nature of nonlinear time series. A parameter can be defined to quantitatively measure the deviation of the time series from a Wiener process so that the stochasticity of different time series can be compared. The local volatility of the time series under study can be constructed using this algorithm, and the multifractal structure of the time series can be analyzed by using this local volatility. As an example, we employ this method to analyze financial time series from different stock markets. The result shows that while developed markets evolve very much like an Ito process, the emergent markets are far from efficient. Differences about the multifractal structures and leverage effects between developed and emergent markets are discussed. The algorithm used here can be applied in a similar fashion to study time series of other complex systems.

  2. Association mining of dependency between time series

    NASA Astrophysics Data System (ADS)

    Hafez, Alaaeldin

    2001-03-01

    Time series analysis is considered as a crucial component of strategic control over a broad variety of disciplines in business, science and engineering. Time series data is a sequence of observations collected over intervals of time. Each time series describes a phenomenon as a function of time. Analysis on time series data includes discovering trends (or patterns) in a time series sequence. In the last few years, data mining has emerged and been recognized as a new technology for data analysis. Data Mining is the process of discovering potentially valuable patterns, associations, trends, sequences and dependencies in data. Data mining techniques can discover information that many traditional business analysis and statistical techniques fail to deliver. In this paper, we adapt and innovate data mining techniques to analyze time series data. By using data mining techniques, maximal frequent patterns are discovered and used in predicting future sequences or trends, where trends describe the behavior of a sequence. In order to include different types of time series (e.g. irregular and non- systematic), we consider past frequent patterns of the same time sequences (local patterns) and of other dependent time sequences (global patterns). We use the word 'dependent' instead of the word 'similar' for emphasis on real life time series where two time series sequences could be completely different (in values, shapes, etc.), but they still react to the same conditions in a dependent way. In this paper, we propose the Dependence Mining Technique that could be used in predicting time series sequences. The proposed technique consists of three phases: (a) for all time series sequences, generate their trend sequences, (b) discover maximal frequent trend patterns, generate pattern vectors (to keep information of frequent trend patterns), use trend pattern vectors to predict future time series sequences.

  3. Smoothing of climate time series revisited

    NASA Astrophysics Data System (ADS)

    Mann, Michael E.

    2008-08-01

    We present an easily implemented method for smoothing climate time series, generalizing upon an approach previously described by Mann (2004). The method adaptively weights the three lowest order time series boundary constraints to optimize the fit with the raw time series. We apply the method to the instrumental global mean temperature series from 1850-2007 and to various surrogate global mean temperature series from 1850-2100 derived from the CMIP3 multimodel intercomparison project. These applications demonstrate that the adaptive method systematically out-performs certain widely used default smoothing methods, and is more likely to yield accurate assessments of long-term warming trends.

  4. Phase correlation of foreign exchange time series

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Chya

    2007-03-01

    Correlation of foreign exchange rates in currency markets is investigated based on the empirical data of USD/DEM and USD/JPY exchange rates for a period from February 1 1986 to December 31 1996. The return of exchange time series is first decomposed into a number of intrinsic mode functions (IMFs) by the empirical mode decomposition method. The instantaneous phases of the resultant IMFs calculated by the Hilbert transform are then used to characterize the behaviors of pricing transmissions, and the correlation is probed by measuring the phase differences between two IMFs in the same order. From the distribution of phase differences, our results show explicitly that the correlations are stronger in daily time scale than in longer time scales. The demonstration for the correlations in periods of 1986-1989 and 1990-1993 indicates two exchange rates in the former period were more correlated than in the latter period. The result is consistent with the observations from the cross-correlation calculation.

  5. What Makes a Coursebook Series Stand the Test of Time?

    ERIC Educational Resources Information Center

    Illes, Eva

    2009-01-01

    Intriguingly, at a time when the ELT market is inundated with state-of-the-art coursebooks teaching modern-day English, a 30-year-old series enjoys continuing popularity in some secondary schools in Hungary. Why would teachers, several of whom are school-based teacher-mentors in the vanguard of the profession, purposefully choose materials which…

  6. Marketing Education/Business Management & Ownership Series. Duty Task List.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains the occupational duty/task lists for eight occupations in the marketing education/business management and ownership series. Each occupation is divided into 4 to 12 duties. A separate page for each duty in the occupation lists the tasks in that duty along with its code number and columns to indicate whether that particular…

  7. TSAN: a package for time series analysis.

    PubMed

    Wang, D C; Vagnucci, A H

    1980-04-01

    Many biomedical data are in the form of time series. Analyses of these data include: (1) search for any biorhythm; (2) test of homogeneity of several time series; (3) assessment of stationarity; (4) test of normality of the time series histogram; (5) evaluation of dependence between data points. In this paper we present a subroutine package called TSAN. It is developed to accomplish these tasks. Computational methods, as well as flowcharts, for these subroutines are described. Two sample runs are demonstrated.

  8. The Theory of Standardized Time Series.

    DTIC Science & Technology

    1985-04-01

    3.1)),’the method of standardized time series produces asymptotically valid confidence intevals for steady7&tepi1Tsmneters. However, these intervals...the method of standardized time series produces asymptotically valid confidence intevals for steady-state parameters. However, these intervals are...fa o & s d ......ary O W f, . .d by W eek m b o ), Da~cn an o~simulation output analysis confidence intervals standardized time series functional

  9. Forecasting Enrollments with Fuzzy Time Series.

    ERIC Educational Resources Information Center

    Song, Qiang; Chissom, Brad S.

    The concept of fuzzy time series is introduced and used to forecast the enrollment of a university. Fuzzy time series, an aspect of fuzzy set theory, forecasts enrollment using a first-order time-invariant model. To evaluate the model, the conventional linear regression technique is applied and the predicted values obtained are compared to the…

  10. Financial Time Series Prediction Using Elman Recurrent Random Neural Networks

    PubMed Central

    Wang, Jie; Wang, Jun; Fang, Wen; Niu, Hongli

    2016-01-01

    In recent years, financial market dynamics forecasting has been a focus of economic research. To predict the price indices of stock markets, we developed an architecture which combined Elman recurrent neural networks with stochastic time effective function. By analyzing the proposed model with the linear regression, complexity invariant distance (CID), and multiscale CID (MCID) analysis methods and taking the model compared with different models such as the backpropagation neural network (BPNN), the stochastic time effective neural network (STNN), and the Elman recurrent neural network (ERNN), the empirical results show that the proposed neural network displays the best performance among these neural networks in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, TWSE, KOSPI, and Nikkei225 with the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. The experimental results show that this approach gives good performance in predicting the values from the stock market indices. PMID:27293423

  11. Transfer entropy between multivariate time series

    NASA Astrophysics Data System (ADS)

    Mao, Xuegeng; Shang, Pengjian

    2017-06-01

    It is a crucial topic to identify the direction and strength of the interdependence between time series in multivariate systems. In this paper, we propose the method of transfer entropy based on the theory of time-delay reconstruction of a phase space, which is a model-free approach to detect causalities in multivariate time series. This method overcomes the limitation that original transfer entropy only can capture which system drives the transition probabilities of another in scalar time series. Using artificial time series, we show that the driving character is obviously reflected with the increase of the coupling strength between two signals and confirm the effectiveness of the method with noise added. Furthermore, we utilize it to real-world data, namely financial time series, in order to characterize the information flow among different stocks.

  12. Statistical criteria for characterizing irradiance time series.

    SciTech Connect

    Stein, Joshua S.; Ellis, Abraham; Hansen, Clifford W.

    2010-10-01

    We propose and examine several statistical criteria for characterizing time series of solar irradiance. Time series of irradiance are used in analyses that seek to quantify the performance of photovoltaic (PV) power systems over time. Time series of irradiance are either measured or are simulated using models. Simulations of irradiance are often calibrated to or generated from statistics for observed irradiance and simulations are validated by comparing the simulation output to the observed irradiance. Criteria used in this comparison should derive from the context of the analyses in which the simulated irradiance is to be used. We examine three statistics that characterize time series and their use as criteria for comparing time series. We demonstrate these statistics using observed irradiance data recorded in August 2007 in Las Vegas, Nevada, and in June 2009 in Albuquerque, New Mexico.

  13. Generation of artificial helioseismic time-series

    NASA Technical Reports Server (NTRS)

    Schou, J.; Brown, T. M.

    1993-01-01

    We present an outline of an algorithm to generate artificial helioseismic time-series, taking into account as much as possible of the knowledge we have on solar oscillations. The hope is that it will be possible to find the causes of some of the systematic errors in analysis algorithms by testing them with such artificial time-series.

  14. Linear Relations in Time Series Models. I.

    ERIC Educational Resources Information Center

    Villegas, C.

    1976-01-01

    A multiple time series is defined as the sum of an autoregressive process on a line and independent Gaussian white noise or a hyperplane that goes through the origin and intersects the line at a single point. This process is a multiple autoregressive time series in which the regression matrices satisfy suitable conditions. For a related article…

  15. Minimum entropy density method for the time series analysis

    NASA Astrophysics Data System (ADS)

    Lee, Jeong Won; Park, Joongwoo Brian; Jo, Hang-Hyun; Yang, Jae-Suk; Moon, Hie-Tae

    2009-01-01

    The entropy density is an intuitive and powerful concept to study the complicated nonlinear processes derived from physical systems. We develop the minimum entropy density method (MEDM) to detect the structure scale of a given time series, which is defined as the scale in which the uncertainty is minimized, hence the pattern is revealed most. The MEDM is applied to the financial time series of Standard and Poor’s 500 index from February 1983 to April 2006. Then the temporal behavior of structure scale is obtained and analyzed in relation to the information delivery time and efficient market hypothesis.

  16. On reconstruction of time series in climatology

    NASA Astrophysics Data System (ADS)

    Privalsky, V.; Gluhovsky, A.

    2015-10-01

    The approach to time series reconstruction in climatology based upon cross-correlation coefficients and regression equations is mathematically incorrect because it ignores the dependence of time series upon their past. The proper method described here for the bivariate case requires the autoregressive time- and frequency domains modeling of the time series which contains simultaneous observations of both scalar series with subsequent application of the model to restore the shorter one into the past. The method presents further development of previous efforts taken by a number of authors starting from A. Douglass who introduced some concepts of time series analysis into paleoclimatology. The method is applied to the monthly data of total solar irradiance (TSI), 1979-2014, and sunspot numbers (SSN), 1749-2014, to restore the TSI data over 1749-1978. The results of the reconstruction are in statistical agreement with observations.

  17. Turbo marketing through time compression.

    PubMed

    Kotler, P; Stonich, P J

    1991-01-01

    A host of advantages will flow to companies that learn to make and deliver goods and services faster than their competitors. However, four key questions must be answered to determine if a turbo marketing approach is suitable for your company.

  18. Entropic Analysis of Electromyography Time Series

    NASA Astrophysics Data System (ADS)

    Kaufman, Miron; Sung, Paul

    2005-03-01

    We are in the process of assessing the effectiveness of fractal and entropic measures for the diagnostic of low back pain from surface electromyography (EMG) time series. Surface electromyography (EMG) is used to assess patients with low back pain. In a typical EMG measurement, the voltage is measured every millisecond. We observed back muscle fatiguing during one minute, which results in a time series with 60,000 entries. We characterize the complexity of time series by computing the Shannon entropy time dependence. The analysis of the time series from different relevant muscles from healthy and low back pain (LBP) individuals provides evidence that the level of variability of back muscle activities is much larger for healthy individuals than for individuals with LBP. In general the time dependence of the entropy shows a crossover from a diffusive regime to a regime characterized by long time correlations (self organization) at about 0.01s.

  19. A radar image time series

    NASA Technical Reports Server (NTRS)

    Leberl, F.; Fuchs, H.; Ford, J. P.

    1981-01-01

    A set of ten side-looking radar images of a mining area in Arizona that were aquired over a period of 14 yr are studied to demonstrate the photogrammetric differential-rectification technique applied to radar images and to examine changes that occurred in the area over time. Five of the images are rectified by using ground control points and a digital height model taken from a map. Residual coordinate errors in ground control are reduced from several hundred meters in all cases to + or - 19 to 70 m. The contents of the radar images are compared with a Landsat image and with aerial photographs. Effects of radar system parameters on radar images are briefly reviewed.

  20. Time Series of Jupiter Aurora

    NASA Image and Video Library

    1998-06-10

    These mosaics of Jupiter's night side show the Jovian aurora at approximately 45 minute intervals as the auroral ring rotated with the planet below the spacecraft. The images were obtained by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft. during its eleventh orbit of Jupiter. The auroral ring is offset from Jupiter's pole of rotation and reaches the lowest latitude near 165 degrees west longitude. The aurora is hundreds of kilometers wide, and when it crosses the edge of Jupiter, it is about 250 kilometers above the planet. As on Earth, the auroral emission is caused by electrically charged particles striking atoms in the upper atmosphere from above. The particles travel along Jupiter's magnetic field lines, but their origin is not fully understood. The field lines where the aurora is most intense cross the Jovian equator at large distances (many Jovian radii) from the planet. The faint background throughout the image is scattered light in the camera. This stray light comes from the sunlit portion of Jupiter, which is out of the image. In multispectral observations the aurora appears red, consistent with how atomic hydrogen in Jupiter's atmosphere would glow. Galileo's unique perspective allows it to view the night side of the planet at short range, revealing details that cannot be seen from Earth. These detailed features are time dependent, and can be followed in this sequence of Galileo images. In the first mosaic, the auroral ring is directly over Jupiter's limb and is seen "edge on." In the fifth mosaic, the auroral emission is coming from several distinct bands. This mosaic also shows the footprint of the Io flux tube. Volcanic eruptions on Jupiter's moon, Io, spew forth particles that become ionized and are pulled into Jupiter's magnetic field to form an invisible tube, the Io flux tube, between Jupiter and Io. The bright circular feature towards the lower right may mark the location where these energetic particles impact Jupiter. Stars

  1. Network structure of multivariate time series.

    PubMed

    Lacasa, Lucas; Nicosia, Vincenzo; Latora, Vito

    2015-10-21

    Our understanding of a variety of phenomena in physics, biology and economics crucially depends on the analysis of multivariate time series. While a wide range tools and techniques for time series analysis already exist, the increasing availability of massive data structures calls for new approaches for multidimensional signal processing. We present here a non-parametric method to analyse multivariate time series, based on the mapping of a multidimensional time series into a multilayer network, which allows to extract information on a high dimensional dynamical system through the analysis of the structure of the associated multiplex network. The method is simple to implement, general, scalable, does not require ad hoc phase space partitioning, and is thus suitable for the analysis of large, heterogeneous and non-stationary time series. We show that simple structural descriptors of the associated multiplex networks allow to extract and quantify nontrivial properties of coupled chaotic maps, including the transition between different dynamical phases and the onset of various types of synchronization. As a concrete example we then study financial time series, showing that a multiplex network analysis can efficiently discriminate crises from periods of financial stability, where standard methods based on time-series symbolization often fail.

  2. Homogenising time series: beliefs, dogmas and facts

    NASA Astrophysics Data System (ADS)

    Domonkos, P.

    2011-06-01

    In the recent decades various homogenisation methods have been developed, but the real effects of their application on time series are still not known sufficiently. The ongoing COST action HOME (COST ES0601) is devoted to reveal the real impacts of homogenisation methods more detailed and with higher confidence than earlier. As a part of the COST activity, a benchmark dataset was built whose characteristics approach well the characteristics of real networks of observed time series. This dataset offers much better opportunity than ever before to test the wide variety of homogenisation methods, and analyse the real effects of selected theoretical recommendations. Empirical results show that real observed time series usually include several inhomogeneities of different sizes. Small inhomogeneities often have similar statistical characteristics than natural changes caused by climatic variability, thus the pure application of the classic theory that change-points of observed time series can be found and corrected one-by-one is impossible. However, after homogenisation the linear trends, seasonal changes and long-term fluctuations of time series are usually much closer to the reality than in raw time series. Some problems around detecting multiple structures of inhomogeneities, as well as that of time series comparisons within homogenisation procedures are discussed briefly in the study.

  3. Network structure of multivariate time series

    NASA Astrophysics Data System (ADS)

    Lacasa, Lucas; Nicosia, Vincenzo; Latora, Vito

    2015-10-01

    Our understanding of a variety of phenomena in physics, biology and economics crucially depends on the analysis of multivariate time series. While a wide range tools and techniques for time series analysis already exist, the increasing availability of massive data structures calls for new approaches for multidimensional signal processing. We present here a non-parametric method to analyse multivariate time series, based on the mapping of a multidimensional time series into a multilayer network, which allows to extract information on a high dimensional dynamical system through the analysis of the structure of the associated multiplex network. The method is simple to implement, general, scalable, does not require ad hoc phase space partitioning, and is thus suitable for the analysis of large, heterogeneous and non-stationary time series. We show that simple structural descriptors of the associated multiplex networks allow to extract and quantify nontrivial properties of coupled chaotic maps, including the transition between different dynamical phases and the onset of various types of synchronization. As a concrete example we then study financial time series, showing that a multiplex network analysis can efficiently discriminate crises from periods of financial stability, where standard methods based on time-series symbolization often fail.

  4. Network structure of multivariate time series

    PubMed Central

    Lacasa, Lucas; Nicosia, Vincenzo; Latora, Vito

    2015-01-01

    Our understanding of a variety of phenomena in physics, biology and economics crucially depends on the analysis of multivariate time series. While a wide range tools and techniques for time series analysis already exist, the increasing availability of massive data structures calls for new approaches for multidimensional signal processing. We present here a non-parametric method to analyse multivariate time series, based on the mapping of a multidimensional time series into a multilayer network, which allows to extract information on a high dimensional dynamical system through the analysis of the structure of the associated multiplex network. The method is simple to implement, general, scalable, does not require ad hoc phase space partitioning, and is thus suitable for the analysis of large, heterogeneous and non-stationary time series. We show that simple structural descriptors of the associated multiplex networks allow to extract and quantify nontrivial properties of coupled chaotic maps, including the transition between different dynamical phases and the onset of various types of synchronization. As a concrete example we then study financial time series, showing that a multiplex network analysis can efficiently discriminate crises from periods of financial stability, where standard methods based on time-series symbolization often fail. PMID:26487040

  5. Multiresolution analysis of Bursa Malaysia KLCI time series

    NASA Astrophysics Data System (ADS)

    Ismail, Mohd Tahir; Dghais, Amel Abdoullah Ahmed

    2017-05-01

    In general, a time series is simply a sequence of numbers collected at regular intervals over a period. Financial time series data processing is concerned with the theory and practice of processing asset price over time, such as currency, commodity data, and stock market data. The primary aim of this study is to understand the fundamental characteristics of selected financial time series by using the time as well as the frequency domain analysis. After that prediction can be executed for the desired system for in sample forecasting. In this study, multiresolution analysis which the assist of discrete wavelet transforms (DWT) and maximal overlap discrete wavelet transform (MODWT) will be used to pinpoint special characteristics of Bursa Malaysia KLCI (Kuala Lumpur Composite Index) daily closing prices and return values. In addition, further case study discussions include the modeling of Bursa Malaysia KLCI using linear ARIMA with wavelets to address how multiresolution approach improves fitting and forecasting results.

  6. Modeling Time Series Data for Supervised Learning

    ERIC Educational Resources Information Center

    Baydogan, Mustafa Gokce

    2012-01-01

    Temporal data are increasingly prevalent and important in analytics. Time series (TS) data are chronological sequences of observations and an important class of temporal data. Fields such as medicine, finance, learning science and multimedia naturally generate TS data. Each series provide a high-dimensional data vector that challenges the learning…

  7. Modeling Time Series Data for Supervised Learning

    ERIC Educational Resources Information Center

    Baydogan, Mustafa Gokce

    2012-01-01

    Temporal data are increasingly prevalent and important in analytics. Time series (TS) data are chronological sequences of observations and an important class of temporal data. Fields such as medicine, finance, learning science and multimedia naturally generate TS data. Each series provide a high-dimensional data vector that challenges the learning…

  8. Developing consistent time series landsat data products

    USDA-ARS?s Scientific Manuscript database

    The Landsat series satellite has provided earth observation data record continuously since early 1970s. There are increasing demands on having a consistent time series of Landsat data products. In this presentation, I will summarize the work supported by the USGS Landsat Science Team project from 20...

  9. Modelling of nonlinear filtering Poisson time series

    NASA Astrophysics Data System (ADS)

    Bochkarev, Vladimir V.; Belashova, Inna A.

    2016-08-01

    In this article, algorithms of non-linear filtering of Poisson time series are tested using statistical modelling. The objective is to find a representation of a time series as a wavelet series with a small number of non-linear coefficients, which allows distinguishing statistically significant details. There are well-known efficient algorithms of non-linear wavelet filtering for the case when the values of a time series have a normal distribution. However, if the distribution is not normal, good results can be expected using the maximum likelihood estimations. The filtration is studied according to the criterion of maximum likelihood by the example of Poisson time series. For direct optimisation of the likelihood function, different stochastic (genetic algorithms, annealing method) and deterministic optimization algorithms are used. Testing of the algorithm using both simulated series and empirical data (series of rare words frequencies according to the Google Books Ngram data were used) showed that filtering based on the criterion of maximum likelihood has a great advantage over well-known algorithms for the case of Poisson series. Also, the most perspective methods of optimisation were selected for this problem.

  10. Time varying market efficiency of the GCC stock markets

    NASA Astrophysics Data System (ADS)

    Charfeddine, Lanouar; Khediri, Karim Ben

    2016-02-01

    This paper investigates the time-varying levels of weak-form market efficiency for the GCC stock markets over the period spanning from May 2005 to September 2013. We use two empirical approaches: (1) the generalized autoregressive conditional heteroscedasticity in mean (GARCH-M) model with state space time varying parameter (Kalman filter), and (2) a rolling technique sample test of the fractional long memory parameter d. As long memory estimation methods, we use the detrended fluctuation analysis (DFA) technique, the modified R/S statistic, the exact local whittle (ELW) and the feasible Exact Local Whittle (FELW) methods. Moreover, we use the Bai and Perron (1998, 2003) multiple structural breaks technique to test and date the time varying behavior of stock market efficiency. Empirical results show that GCC markets have different degrees of time-varying efficiency, and also have experiencing periods of efficiency improvement. Results also show evidence of structural breaks in all GCC markets. Moreover, we observe that the recent financial shocks such as Arab spring and subprime crises have a significant impact on the time path evolution of market efficiency.

  11. Regularization of Nutation Time Series at GSFC

    NASA Astrophysics Data System (ADS)

    Le Bail, K.; Gipson, J. M.; Bolotin, S.

    2012-12-01

    VLBI is unique in its ability to measure all five Earth orientation parameters. In this paper we focus on the two nutation parameters which characterize the orientation of the Earth's rotation axis in space. We look at the periodicities and the spectral characteristics of these parameters for both R1 and R4 sessions independently. The study of the most significant periodic signals for periods shorter than 600 days is common for these four time series (period of 450 days), and the type of noise determined by the Allan variance is a white noise for the four series. To investigate methods of regularizing the series, we look at a Singular Spectrum Analysis-derived method and at the Kalman filter. The two methods adequately reproduce the tendency of the nutation time series, but the resulting series are noisier using the Singular Spectrum Analysis-derived method.

  12. Homogenising time series: Beliefs, dogmas and facts

    NASA Astrophysics Data System (ADS)

    Domonkos, P.

    2010-09-01

    For obtaining reliable information about climate change and climate variability the use of high quality data series is essentially important, and one basic tool of quality improvements is the statistical homogenisation of observed time series. In the recent decades large number of homogenisation methods has been developed, but the real effects of their application on time series are still not known entirely. The ongoing COST HOME project (COST ES0601) is devoted to reveal the real impacts of homogenisation methods more detailed and with higher confidence than earlier. As part of the COST activity, a benchmark dataset was built whose characteristics approach well the characteristics of real networks of observed time series. This dataset offers much better opportunity than ever to test the wide variety of homogenisation methods, and analyse the real effects of selected theoretical recommendations. The author believes that several old theoretical rules have to be re-evaluated. Some examples of the hot questions, a) Statistically detected change-points can be accepted only with the confirmation of metadata information? b) Do semi-hierarchic algorithms for detecting multiple change-points in time series function effectively in practise? c) Is it good to limit the spatial comparison of candidate series with up to five other series in the neighbourhood? Empirical results - those from the COST benchmark, and other experiments too - show that real observed time series usually include several inhomogeneities of different sizes. Small inhomogeneities seem like part of the climatic variability, thus the pure application of classic theory that change-points of observed time series can be found and corrected one-by-one is impossible. However, after homogenisation the linear trends, seasonal changes and long-term fluctuations of time series are usually much closer to the reality, than in raw time series. The developers and users of homogenisation methods have to bear in mind that

  13. Complex network approach to fractional time series

    SciTech Connect

    Manshour, Pouya

    2015-10-15

    In order to extract correlation information inherited in stochastic time series, the visibility graph algorithm has been recently proposed, by which a time series can be mapped onto a complex network. We demonstrate that the visibility algorithm is not an appropriate one to study the correlation aspects of a time series. We then employ the horizontal visibility algorithm, as a much simpler one, to map fractional processes onto complex networks. The degree distributions are shown to have parabolic exponential forms with Hurst dependent fitting parameter. Further, we take into account other topological properties such as maximum eigenvalue of the adjacency matrix and the degree assortativity, and show that such topological quantities can also be used to predict the Hurst exponent, with an exception for anti-persistent fractional Gaussian noises. To solve this problem, we take into account the Spearman correlation coefficient between nodes' degrees and their corresponding data values in the original time series.

  14. Nonlinear Analysis of Surface EMG Time Series

    NASA Astrophysics Data System (ADS)

    Zurcher, Ulrich; Kaufman, Miron; Sung, Paul

    2004-04-01

    Applications of nonlinear analysis of surface electromyography time series of patients with and without low back pain are presented. Limitations of the standard methods based on the power spectrum are discussed.

  15. Improving Intercomparability of Marine Biogeochemical Time Series

    NASA Astrophysics Data System (ADS)

    Benway, Heather M.; Telszewski, Maciej; Lorenzoni, Laura

    2013-04-01

    Shipboard biogeochemical time series represent one of the most valuable tools scientists have to quantify marine elemental fluxes and associated biogeochemical processes and to understand their links to changing climate. They provide the long, temporally resolved data sets needed to characterize ocean climate, biogeochemistry, and ecosystem variability and change. However, to monitor and differentiate natural cycles and human-driven changes in the global oceans, time series methodologies must be transparent and intercomparable when possible. To review current shipboard biogeochemical time series sampling and analytical methods, the International Ocean Carbon Coordination Project (IOCCP; http://www.ioccp.org/) and the Ocean Carbon and Biogeochemistry Program (http://www.us-ocb.org/) convened an international ocean time series workshop at the Bermuda Institute for Ocean Sciences.

  16. Spectra: Time series power spectrum calculator

    NASA Astrophysics Data System (ADS)

    Gallardo, Tabaré

    2017-01-01

    Spectra calculates the power spectrum of a time series equally spaced or not based on the Spectral Correlation Coefficient (Ferraz-Mello 1981, Astron. Journal 86 (4), 619). It is very efficient for detection of low frequencies.

  17. Spectral analysis of multiple time series

    NASA Technical Reports Server (NTRS)

    Dubman, M. R.

    1972-01-01

    Application of spectral analysis for mathematically determining relationship of random vibrations in structures and concurrent events in electric circuits, physiology, economics, and seismograms is discussed. Computer program for performing spectral analysis of multiple time series is described.

  18. Detecting nonlinear structure in time series

    SciTech Connect

    Theiler, J.

    1991-01-01

    We describe an approach for evaluating the statistical significance of evidence for nonlinearity in a time series. The formal application of our method requires the careful statement of a null hypothesis which characterizes a candidate linear process, the generation of an ensemble of surrogate'' data sets which are similar to the original time series but consistent with the null hypothesis, and the computation of a discriminating statistic for the original and for each of the surrogate data sets. The idea is to test the original time series against the null hypothesis by checking whether the discriminating statistic computed for the original time series differs significantly from the statistics computed for each of the surrogate sets. While some data sets very cleanly exhibit low-dimensional chaos, there are many cases where the evidence is sketchy and difficult to evaluate. We hope to provide a framework within which such claims of nonlinearity can be evaluated. 5 refs., 4 figs.

  19. Advanced spectral methods for climatic time series

    USGS Publications Warehouse

    Ghil, M.; Allen, M.R.; Dettinger, M.D.; Ide, K.; Kondrashov, D.; Mann, M.E.; Robertson, A.W.; Saunders, A.; Tian, Y.; Varadi, F.; Yiou, P.

    2002-01-01

    The analysis of univariate or multivariate time series provides crucial information to describe, understand, and predict climatic variability. The discovery and implementation of a number of novel methods for extracting useful information from time series has recently revitalized this classical field of study. Considerable progress has also been made in interpreting the information so obtained in terms of dynamical systems theory. In this review we describe the connections between time series analysis and nonlinear dynamics, discuss signal- to-noise enhancement, and present some of the novel methods for spectral analysis. The various steps, as well as the advantages and disadvantages of these methods, are illustrated by their application to an important climatic time series, the Southern Oscillation Index. This index captures major features of interannual climate variability and is used extensively in its prediction. Regional and global sea surface temperature data sets are used to illustrate multivariate spectral methods. Open questions and further prospects conclude the review.

  20. Multivariate Time Series Decomposition into Oscillation Components.

    PubMed

    Matsuda, Takeru; Komaki, Fumiyasu

    2017-08-01

    Many time series are considered to be a superposition of several oscillation components. We have proposed a method for decomposing univariate time series into oscillation components and estimating their phases (Matsuda & Komaki, 2017 ). In this study, we extend that method to multivariate time series. We assume that several oscillators underlie the given multivariate time series and that each variable corresponds to a superposition of the projections of the oscillators. Thus, the oscillators superpose on each variable with amplitude and phase modulation. Based on this idea, we develop gaussian linear state-space models and use them to decompose the given multivariate time series. The model parameters are estimated from data using the empirical Bayes method, and the number of oscillators is determined using the Akaike information criterion. Therefore, the proposed method extracts underlying oscillators in a data-driven manner and enables investigation of phase dynamics in a given multivariate time series. Numerical results show the effectiveness of the proposed method. From monthly mean north-south sunspot number data, the proposed method reveals an interesting phase relationship.

  1. Detecting chaos in irregularly sampled time series.

    PubMed

    Kulp, C W

    2013-09-01

    Recently, Wiebe and Virgin [Chaos 22, 013136 (2012)] developed an algorithm which detects chaos by analyzing a time series' power spectrum which is computed using the Discrete Fourier Transform (DFT). Their algorithm, like other time series characterization algorithms, requires that the time series be regularly sampled. Real-world data, however, are often irregularly sampled, thus, making the detection of chaotic behavior difficult or impossible with those methods. In this paper, a characterization algorithm is presented, which effectively detects chaos in irregularly sampled time series. The work presented here is a modification of Wiebe and Virgin's algorithm and uses the Lomb-Scargle Periodogram (LSP) to compute a series' power spectrum instead of the DFT. The DFT is not appropriate for irregularly sampled time series. However, the LSP is capable of computing the frequency content of irregularly sampled data. Furthermore, a new method of analyzing the power spectrum is developed, which can be useful for differentiating between chaotic and non-chaotic behavior. The new characterization algorithm is successfully applied to irregularly sampled data generated by a model as well as data consisting of observations of variable stars.

  2. Time series prediction using artificial neural network for power stabilization

    SciTech Connect

    Puranik, G.; Philip, T.; Nail, B.

    1996-12-31

    Time series prediction has been applied to many business and scientific applications. Prominent among them are stock market prediction, weather forecasting, etc. Here, this technique has been applied to forecast plasma torch voltages to stabilize power using a backpropagation, a model of artificial neural network. The Extended-Delta-Bar-Delta algorithm is used to improve the convergence rate of the network and also to avoid local minima. Results from off-line data was quite promising to use in on-line.

  3. 77 FR 22282 - Milk in the Northeast and Other Marketing Areas; Determination of Equivalent Price Series

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... Agricultural Marketing Service Milk in the Northeast and Other Marketing Areas; Determination of Equivalent Price Series AGENCY: Agricultural Marketing Service, USDA. ACTION: Determination of equivalent price... products price series in the Dairy Products Sales report released by the Agricultural Marketing Service...

  4. Ordinal pattern dependence between hydrological time series

    NASA Astrophysics Data System (ADS)

    Fischer, Svenja; Schumann, Andreas; Schnurr, Alexander

    2017-05-01

    Ordinal patterns provide a method to measure dependencies between time series. In contrast to classical correlation measures like the Pearson correlation coefficient they are able to measure not only linear correlation but also non-linear correlation even in the presence of non-stationarity. Hence, they are a noteworthy alternative to the classical approaches when considering discharge series. Discharge series naturally show a high variation as well as single extraordinary extreme events and, caused by anthropogenic and climatic impacts, non-stationary behaviour. Here, the method of ordinal patterns is used to compare pairwise discharge series derived from macro- and mesoscale catchments in Germany. Differences of coincident groups were detected for winter and summer annual maxima. Hydrological series, which are mainly driven by annual climatic conditions (yearly discharges and low water discharges) showed other and in some cases surprising interdependencies between macroscale catchments. Anthropogenic impacts as the construction of a reservoir or different flood conditions caused by urbanization could be detected.

  5. Forbidden patterns in financial time series.

    PubMed

    Zanin, Massimiliano

    2008-03-01

    The existence of forbidden patterns, i.e., certain missing sequences in a given time series, is a recently proposed instrument of potential application in the study of time series. Forbidden patterns are related to the permutation entropy, which has the basic properties of classic chaos indicators, such as Lyapunov exponent or Kolmogorov entropy, thus allowing to separate deterministic (usually chaotic) from random series; however, it requires fewer values of the series to be calculated, and it is suitable for using with small datasets. In this paper, the appearance of forbidden patterns is studied in different economical indicators such as stock indices (Dow Jones Industrial Average and Nasdaq Composite), NYSE stocks (IBM and Boeing), and others (ten year Bond interest rate), to find evidence of deterministic behavior in their evolutions. Moreover, the rate of appearance of the forbidden patterns is calculated, and some considerations about the underlying dynamics are suggested.

  6. Forbidden patterns in financial time series

    NASA Astrophysics Data System (ADS)

    Zanin, Massimiliano

    2008-03-01

    The existence of forbidden patterns, i.e., certain missing sequences in a given time series, is a recently proposed instrument of potential application in the study of time series. Forbidden patterns are related to the permutation entropy, which has the basic properties of classic chaos indicators, such as Lyapunov exponent or Kolmogorov entropy, thus allowing to separate deterministic (usually chaotic) from random series; however, it requires fewer values of the series to be calculated, and it is suitable for using with small datasets. In this paper, the appearance of forbidden patterns is studied in different economical indicators such as stock indices (Dow Jones Industrial Average and Nasdaq Composite), NYSE stocks (IBM and Boeing), and others (ten year Bond interest rate), to find evidence of deterministic behavior in their evolutions. Moreover, the rate of appearance of the forbidden patterns is calculated, and some considerations about the underlying dynamics are suggested.

  7. Highly comparative time-series analysis: the empirical structure of time series and their methods

    PubMed Central

    Fulcher, Ben D.; Little, Max A.; Jones, Nick S.

    2013-01-01

    The process of collecting and organizing sets of observations represents a common theme throughout the history of science. However, despite the ubiquity of scientists measuring, recording and analysing the dynamics of different processes, an extensive organization of scientific time-series data and analysis methods has never been performed. Addressing this, annotated collections of over 35 000 real-world and model-generated time series, and over 9000 time-series analysis algorithms are analysed in this work. We introduce reduced representations of both time series, in terms of their properties measured by diverse scientific methods, and of time-series analysis methods, in terms of their behaviour on empirical time series, and use them to organize these interdisciplinary resources. This new approach to comparing across diverse scientific data and methods allows us to organize time-series datasets automatically according to their properties, retrieve alternatives to particular analysis methods developed in other scientific disciplines and automate the selection of useful methods for time-series classification and regression tasks. The broad scientific utility of these tools is demonstrated on datasets of electroencephalograms, self-affine time series, heartbeat intervals, speech signals and others, in each case contributing novel analysis techniques to the existing literature. Highly comparative techniques that compare across an interdisciplinary literature can thus be used to guide more focused research in time-series analysis for applications across the scientific disciplines. PMID:23554344

  8. Highly comparative time-series analysis: the empirical structure of time series and their methods.

    PubMed

    Fulcher, Ben D; Little, Max A; Jones, Nick S

    2013-06-06

    The process of collecting and organizing sets of observations represents a common theme throughout the history of science. However, despite the ubiquity of scientists measuring, recording and analysing the dynamics of different processes, an extensive organization of scientific time-series data and analysis methods has never been performed. Addressing this, annotated collections of over 35 000 real-world and model-generated time series, and over 9000 time-series analysis algorithms are analysed in this work. We introduce reduced representations of both time series, in terms of their properties measured by diverse scientific methods, and of time-series analysis methods, in terms of their behaviour on empirical time series, and use them to organize these interdisciplinary resources. This new approach to comparing across diverse scientific data and methods allows us to organize time-series datasets automatically according to their properties, retrieve alternatives to particular analysis methods developed in other scientific disciplines and automate the selection of useful methods for time-series classification and regression tasks. The broad scientific utility of these tools is demonstrated on datasets of electroencephalograms, self-affine time series, heartbeat intervals, speech signals and others, in each case contributing novel analysis techniques to the existing literature. Highly comparative techniques that compare across an interdisciplinary literature can thus be used to guide more focused research in time-series analysis for applications across the scientific disciplines.

  9. Turbulencelike Behavior of Seismic Time Series

    SciTech Connect

    Manshour, P.; Saberi, S.; Sahimi, Muhammad; Peinke, J.; Pacheco, Amalio F.; Rahimi Tabar, M. Reza

    2009-01-09

    We report on a stochastic analysis of Earth's vertical velocity time series by using methods originally developed for complex hierarchical systems and, in particular, for turbulent flows. Analysis of the fluctuations of the detrended increments of the series reveals a pronounced transition in their probability density function from Gaussian to non-Gaussian. The transition occurs 5-10 hours prior to a moderate or large earthquake, hence representing a new and reliable precursor for detecting such earthquakes.

  10. Predicting road accidents: Structural time series approach

    NASA Astrophysics Data System (ADS)

    Junus, Noor Wahida Md; Ismail, Mohd Tahir

    2014-07-01

    In this paper, the model for occurrence of road accidents in Malaysia between the years of 1970 to 2010 was developed and throughout this model the number of road accidents have been predicted by using the structural time series approach. The models are developed by using stepwise method and the residual of each step has been analyzed. The accuracy of the model is analyzed by using the mean absolute percentage error (MAPE) and the best model is chosen based on the smallest Akaike information criterion (AIC) value. A structural time series approach found that local linear trend model is the best model to represent the road accidents. This model allows level and slope component to be varied over time. In addition, this approach also provides useful information on improving the conventional time series method.

  11. Learning time series for intelligent monitoring

    NASA Technical Reports Server (NTRS)

    Manganaris, Stefanos; Fisher, Doug

    1994-01-01

    We address the problem of classifying time series according to their morphological features in the time domain. In a supervised machine-learning framework, we induce a classification procedure from a set of preclassified examples. For each class, we infer a model that captures its morphological features using Bayesian model induction and the minimum message length approach to assign priors. In the performance task, we classify a time series in one of the learned classes when there is enough evidence to support that decision. Time series with sufficiently novel features, belonging to classes not present in the training set, are recognized as such. We report results from experiments in a monitoring domain of interest to NASA.

  12. Integrated method for chaotic time series analysis

    DOEpatents

    Hively, L.M.; Ng, E.G.

    1998-09-29

    Methods and apparatus for automatically detecting differences between similar but different states in a nonlinear process monitor nonlinear data are disclosed. Steps include: acquiring the data; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis; obtaining time serial trends in the nonlinear measures; and determining by comparison whether differences between similar but different states are indicated. 8 figs.

  13. Integrated method for chaotic time series analysis

    DOEpatents

    Hively, Lee M.; Ng, Esmond G.

    1998-01-01

    Methods and apparatus for automatically detecting differences between similar but different states in a nonlinear process monitor nonlinear data. Steps include: acquiring the data; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis; obtaining time serial trends in the nonlinear measures; and determining by comparison whether differences between similar but different states are indicated.

  14. Alternative predictors in chaotic time series

    NASA Astrophysics Data System (ADS)

    Alves, P. R. L.; Duarte, L. G. S.; da Mota, L. A. C. P.

    2017-06-01

    In the scheme of reconstruction, non-polynomial predictors improve the forecast from chaotic time series. The algebraic manipulation in the Maple environment is the basis for obtaining of accurate predictors. Beyond the different times of prediction, the optional arguments of the computational routines optimize the running and the analysis of global mappings.

  15. Building Chaotic Model From Incomplete Time Series

    NASA Astrophysics Data System (ADS)

    Siek, Michael; Solomatine, Dimitri

    2010-05-01

    This paper presents a number of novel techniques for building a predictive chaotic model from incomplete time series. A predictive chaotic model is built by reconstructing the time-delayed phase space from observed time series and the prediction is made by a global model or adaptive local models based on the dynamical neighbors found in the reconstructed phase space. In general, the building of any data-driven models depends on the completeness and quality of the data itself. However, the completeness of the data availability can not always be guaranteed since the measurement or data transmission is intermittently not working properly due to some reasons. We propose two main solutions dealing with incomplete time series: using imputing and non-imputing methods. For imputing methods, we utilized the interpolation methods (weighted sum of linear interpolations, Bayesian principle component analysis and cubic spline interpolation) and predictive models (neural network, kernel machine, chaotic model) for estimating the missing values. After imputing the missing values, the phase space reconstruction and chaotic model prediction are executed as a standard procedure. For non-imputing methods, we reconstructed the time-delayed phase space from observed time series with missing values. This reconstruction results in non-continuous trajectories. However, the local model prediction can still be made from the other dynamical neighbors reconstructed from non-missing values. We implemented and tested these methods to construct a chaotic model for predicting storm surges at Hoek van Holland as the entrance of Rotterdam Port. The hourly surge time series is available for duration of 1990-1996. For measuring the performance of the proposed methods, a synthetic time series with missing values generated by a particular random variable to the original (complete) time series is utilized. There exist two main performance measures used in this work: (1) error measures between the actual

  16. Layered Ensemble Architecture for Time Series Forecasting.

    PubMed

    Rahman, Md Mustafizur; Islam, Md Monirul; Murase, Kazuyuki; Yao, Xin

    2016-01-01

    Time series forecasting (TSF) has been widely used in many application areas such as science, engineering, and finance. The phenomena generating time series are usually unknown and information available for forecasting is only limited to the past values of the series. It is, therefore, necessary to use an appropriate number of past values, termed lag, for forecasting. This paper proposes a layered ensemble architecture (LEA) for TSF problems. Our LEA consists of two layers, each of which uses an ensemble of multilayer perceptron (MLP) networks. While the first ensemble layer tries to find an appropriate lag, the second ensemble layer employs the obtained lag for forecasting. Unlike most previous work on TSF, the proposed architecture considers both accuracy and diversity of the individual networks in constructing an ensemble. LEA trains different networks in the ensemble by using different training sets with an aim of maintaining diversity among the networks. However, it uses the appropriate lag and combines the best trained networks to construct the ensemble. This indicates LEAs emphasis on accuracy of the networks. The proposed architecture has been tested extensively on time series data of neural network (NN)3 and NN5 competitions. It has also been tested on several standard benchmark time series data. In terms of forecasting accuracy, our experimental results have revealed clearly that LEA is better than other ensemble and nonensemble methods.

  17. Complex network analysis of time series

    NASA Astrophysics Data System (ADS)

    Gao, Zhong-Ke; Small, Michael; Kurths, Jürgen

    2016-12-01

    Revealing complicated behaviors from time series constitutes a fundamental problem of continuing interest and it has attracted a great deal of attention from a wide variety of fields on account of its significant importance. The past decade has witnessed a rapid development of complex network studies, which allow to characterize many types of systems in nature and technology that contain a large number of components interacting with each other in a complicated manner. Recently, the complex network theory has been incorporated into the analysis of time series and fruitful achievements have been obtained. Complex network analysis of time series opens up new venues to address interdisciplinary challenges in climate dynamics, multiphase flow, brain functions, ECG dynamics, economics and traffic systems.

  18. Global periodic effects of GPS time series

    NASA Astrophysics Data System (ADS)

    Poutanen, M.; Jokela, J.; Bilker, M.; Ollikainen, M.; Koivula, H.

    2003-04-01

    We have analysed time series of permanent GPS stations of the IGS network. Data used are the daily station coordinates of the IGS official solutions. Lomb periodograms show in most cases a statistically significant annual period in station height, which can be addressed to the periodic vertical motion of the site. We determined the amplitude and phase of the variation, and confirmed the phase shift between the Northern and Southern hemisphere. A similar behaviour can be seen in DORIS time series. In a regional network, the Finnish permanent GPS network, FinnRef, we have discovered an annual scale variation which can be explained as a loading effect of the crust. For the global network, a similar analysis will be made. We discuss on the geophysical reasons of the annual periods, and their consequences on the high-precision GPS observations. Additonal constraints, e.g. time series from a superconducting gravimeter are also discussed.

  19. Time series of the northeast Pacific

    NASA Astrophysics Data System (ADS)

    Peña, M. Angelica; Bograd, Steven J.

    2007-10-01

    In July 2006, the North Pacific Marine Science Organization (PICES) and Fisheries & Oceans Canada sponsored the symposium “Time Series of the Northeast Pacific: A symposium to mark the 50th anniversary of Line P”. The symposium, which celebrated 50 years of oceanography along Line P and at Ocean Station Papa (OSP), explored the scientific value of the Line P and other long oceanographic time series of the northeast Pacific (NEP). Overviews of the principal NEP time-series were presented, which facilitated regional comparisons and promoted interaction and exchange of information among investigators working in the NEP. More than 80 scientists from 8 countries attended the symposium. This introductory essay is a brief overview of the symposium and the 10 papers that were selected for this special issue of Progress in Oceanography.

  20. Rényi’s information transfer between financial time series

    NASA Astrophysics Data System (ADS)

    Jizba, Petr; Kleinert, Hagen; Shefaat, Mohammad

    2012-05-01

    In this paper, we quantify the statistical coherence between financial time series by means of the Rényi entropy. With the help of Campbell’s coding theorem, we show that the Rényi entropy selectively emphasizes only certain sectors of the underlying empirical distribution while strongly suppressing others. This accentuation is controlled with Rényi’s parameter q. To tackle the issue of the information flow between time series, we formulate the concept of Rényi’s transfer entropy as a measure of information that is transferred only between certain parts of underlying distributions. This is particularly pertinent in financial time series, where the knowledge of marginal events such as spikes or sudden jumps is of a crucial importance. We apply the Rényian information flow to stock market time series from 11 world stock indices as sampled at a daily rate in the time period 02.01.1990-31.12.2009. Corresponding heat maps and net information flows are represented graphically. A detailed discussion of the transfer entropy between the DAX and S&P500 indices based on minute tick data gathered in the period 02.04.2008-11.09.2009 is also provided. Our analysis shows that the bivariate information flow between world markets is strongly asymmetric with a distinct information surplus flowing from the Asia-Pacific region to both European and US markets. An important yet less dramatic excess of information also flows from Europe to the US. This is particularly clearly seen from a careful analysis of Rényi information flow between the DAX and S&P500 indices.

  1. Clustering Short Time-Series Microarray

    NASA Astrophysics Data System (ADS)

    Ping, Loh Wei; Hasan, Yahya Abu

    2008-01-01

    Most microarray analyses are carried out on static gene expressions. However, the dynamical study of microarrays has lately gained more attention. Most researches on time-series microarray emphasize on the bioscience and medical aspects but few from the numerical aspect. This study attempts to analyze short time-series microarray mathematically using STEM clustering tool which formally preprocess data followed by clustering. We next introduce the Circular Mould Distance (CMD) algorithm with combinations of both preprocessing and clustering analysis. Both methods are subsequently compared in terms of efficiencies.

  2. Interrupted time series analysis in clinical research.

    PubMed

    Matowe, Lloyd K; Leister, Cathie A; Crivera, Concetta; Korth-Bradley, Joan M

    2003-01-01

    To demonstrate the usefulness of interrupted time series analysis in clinical trial design. A safety data set of electrocardiographic (ECG) information was simulated from actual data that had been collected in a Phase I study. Simulated data on 18 healthy volunteers based on a study performed in a contract research facility were collected based on single doses of an experimental medication that may affect ECG parameters. Serial ECGs were collected before and during treatment with the experimental medication. Data from 7 real subjects receiving placebo were used to simulate the pretreatment phase of time series; data from 18 real subjects receiving active treatment were used to simulate the treatment phase of the time series. Visual inspection of data was performed, followed by tests for trend, seasonality, and autocorrelation by use of SAS. There was no evidence of trend, seasonality, or autocorrelation. In 11 of 18 simulated individuals, statistically significant changes in QTc intervals were observed following treatment with the experimental medication. A significant time of day and treatment interaction was observed in 4 simulated patients. Interrupted time series analysis techniques offer an additional tool for the study of clinical situations in which patients must act as their own controls and where serial data can be collected at evenly distributed intervals.

  3. Scaling and Multiscaling in Financial Time Series

    DTIC Science & Technology

    2007-11-02

    Prescribed by ANSI Std Z39-18 Outline 1/ A brief overview of financial markets • Basic definitions and problems related to finance • Scaling in finance 2...quantitative finance • Rational investment and risk management - Price dynamics - Risk quantification and control - Financial instruments: derivatives... finance • Supported by empirical observations • Practical interests. - Stability over time scales (by aggregation) - The same model is valid over a wide

  4. Market volatility modeling for short time window

    NASA Astrophysics Data System (ADS)

    de Mattos Neto, Paulo S. G.; Silva, David A.; Ferreira, Tiago A. E.; Cavalcanti, George D. C.

    2011-10-01

    The gain or loss of an investment can be defined by the movement of the market. This movement can be estimated by the difference between the magnitudes of two stock prices in distinct periods and this difference can be used to calculate the volatility of the markets. The volatility characterizes the sensitivity of a market change in the world economy. Traditionally, the probability density function (pdf) of the movement of the markets is analyzed by using power laws. The contributions of this work is two-fold: (i) an analysis of the volatility dynamic of the world market indexes is performed by using a two-year window time data. In this case, the experiments show that the pdf of the volatility is better fitted by exponential function than power laws, in all range of pdf; (ii) after that, we investigate a relationship between the volatility of the markets and the coefficient of the exponential function based on the Maxwell-Boltzmann ideal gas theory. The results show an inverse relationship between the volatility and the coefficient of the exponential function. This information can be used, for example, to predict the future behavior of the markets or to cluster the markets in order to analyze economic patterns.

  5. Determinism test for very short time series.

    PubMed

    Binder, P-M; Igarashi, Ryu; Seymour, William; Takeishi, Candy

    2005-03-01

    A test for determinism suitable for time series shorter than 100 points is presented, and applied to numerical and observed data. The method exploits the linear d(d(0)) dependence in the expression d(t) approximately d(0)e(lambda t) which describes the growth of small separations between trajectories in chaotic systems.

  6. Nonlinear time-series analysis revisited.

    PubMed

    Bradley, Elizabeth; Kantz, Holger

    2015-09-01

    In 1980 and 1981, two pioneering papers laid the foundation for what became known as nonlinear time-series analysis: the analysis of observed data-typically univariate-via dynamical systems theory. Based on the concept of state-space reconstruction, this set of methods allows us to compute characteristic quantities such as Lyapunov exponents and fractal dimensions, to predict the future course of the time series, and even to reconstruct the equations of motion in some cases. In practice, however, there are a number of issues that restrict the power of this approach: whether the signal accurately and thoroughly samples the dynamics, for instance, and whether it contains noise. Moreover, the numerical algorithms that we use to instantiate these ideas are not perfect; they involve approximations, scale parameters, and finite-precision arithmetic, among other things. Even so, nonlinear time-series analysis has been used to great advantage on thousands of real and synthetic data sets from a wide variety of systems ranging from roulette wheels to lasers to the human heart. Even in cases where the data do not meet the mathematical or algorithmic requirements to assure full topological conjugacy, the results of nonlinear time-series analysis can be helpful in understanding, characterizing, and predicting dynamical systems.

  7. Nonlinear time-series analysis revisited

    NASA Astrophysics Data System (ADS)

    Bradley, Elizabeth; Kantz, Holger

    2015-09-01

    In 1980 and 1981, two pioneering papers laid the foundation for what became known as nonlinear time-series analysis: the analysis of observed data—typically univariate—via dynamical systems theory. Based on the concept of state-space reconstruction, this set of methods allows us to compute characteristic quantities such as Lyapunov exponents and fractal dimensions, to predict the future course of the time series, and even to reconstruct the equations of motion in some cases. In practice, however, there are a number of issues that restrict the power of this approach: whether the signal accurately and thoroughly samples the dynamics, for instance, and whether it contains noise. Moreover, the numerical algorithms that we use to instantiate these ideas are not perfect; they involve approximations, scale parameters, and finite-precision arithmetic, among other things. Even so, nonlinear time-series analysis has been used to great advantage on thousands of real and synthetic data sets from a wide variety of systems ranging from roulette wheels to lasers to the human heart. Even in cases where the data do not meet the mathematical or algorithmic requirements to assure full topological conjugacy, the results of nonlinear time-series analysis can be helpful in understanding, characterizing, and predicting dynamical systems.

  8. Circulant Matrices and Time-Series Analysis

    ERIC Educational Resources Information Center

    Pollock, D. S. G.

    2002-01-01

    This paper sets forth some salient results in the algebra of circulant matrices which can be used in time-series analysis. It provides easy derivations of some results that are central to the analysis of statistical periodograms and empirical spectral density functions. A statistical test for the stationarity or homogeneity of empirical processes…

  9. Directionality volatility in electroencephalogram time series

    NASA Astrophysics Data System (ADS)

    Mansor, Mahayaudin M.; Green, David A.; Metcalfe, Andrew V.

    2016-06-01

    We compare time series of electroencephalograms (EEGs) from healthy volunteers with EEGs from subjects diagnosed with epilepsy. The EEG time series from the healthy group are recorded during awake state with their eyes open and eyes closed, and the records from subjects with epilepsy are taken from three different recording regions of pre-surgical diagnosis: hippocampal, epileptogenic and seizure zone. The comparisons for these 5 categories are in terms of deviations from linear time series models with constant variance Gaussian white noise error inputs. One feature investigated is directionality, and how this can be modelled by either non-linear threshold autoregressive models or non-Gaussian errors. A second feature is volatility, which is modelled by Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) processes. Other features include the proportion of variability accounted for by time series models, and the skewness and the kurtosis of the residuals. The results suggest these comparisons may have diagnostic potential for epilepsy and provide early warning of seizures.

  10. Complex dynamic in ecological time series

    Treesearch

    Peter Turchin; Andrew D. Taylor

    1992-01-01

    Although the possibility of complex dynamical behaviors-limit cycles, quasiperiodic oscillations, and aperiodic chaos-has been recognized theoretically, most ecologists are skeptical of their importance in nature. In this paper we develop a methodology for reconstructing endogenous (or deterministic) dynamics from ecological time series. Our method consists of fitting...

  11. Flood prediction using Time Series Data Mining

    NASA Astrophysics Data System (ADS)

    Damle, Chaitanya; Yalcin, Ali

    2007-02-01

    SummaryThis paper describes a novel approach to river flood prediction using Time Series Data Mining which combines chaos theory and data mining to characterize and predict events in complex, nonperiodic and chaotic time series. Geophysical phenomena, including earthquakes, floods and rainfall, represent a class of nonlinear systems termed chaotic, in which the relationships between variables in a system are dynamic and disproportionate, however completely deterministic. Chaos theory provides a structured explanation for irregular behavior and anomalies in systems that are not inherently stochastic. While nonlinear approaches such as Artificial Neural Networks, Hidden Markov Models and Nonlinear Prediction are useful in forecasting of daily discharge values in a river, the focus of these approaches is on forecasting magnitudes of future discharge values rather than the prediction of floods. The described Time Series Data Mining methodology focuses on the prediction of events where floods constitute the events in a river daily discharge time series. The methodology is demonstrated using data collected at the St. Louis gauging station located on the Mississippi River in the USA. Results associated with the impact of earliness of prediction and the acceptable risk-level vs. prediction accuracy are presented.

  12. Parsimonious Linear Fingerprinting for Time Series

    DTIC Science & Technology

    2010-09-01

    like to detect such groups of harmonics. Fig. 1(d) gives a quick preview of the visualization and effectiveness of the proposed PLiF method: For the...coefficients of each individual frequency. As we find harmonic frequency sets in music , in real time- series like motions, we will expect to usually find

  13. Time Series Analysis Without Model Identification.

    ERIC Educational Resources Information Center

    Velicer, Wayne F.; McDonald, Roderick P.

    1984-01-01

    A new approach to time series analysis was developed. It employs a generalized transformation of the observed data to meet the assumptions of the general linear model, thus eliminating the need to identify a specific model. This approach permits alternative computational procedures, based on a generalized least squares algorithm. (Author/BW)

  14. Circulant Matrices and Time-Series Analysis

    ERIC Educational Resources Information Center

    Pollock, D. S. G.

    2002-01-01

    This paper sets forth some salient results in the algebra of circulant matrices which can be used in time-series analysis. It provides easy derivations of some results that are central to the analysis of statistical periodograms and empirical spectral density functions. A statistical test for the stationarity or homogeneity of empirical processes…

  15. Three Analysis Examples for Time Series Data

    USDA-ARS?s Scientific Manuscript database

    With improvements in instrumentation and the automation of data collection, plot level repeated measures and time series data are increasingly available to monitor and assess selected variables throughout the duration of an experiment or project. Records and metadata on variables of interest alone o...

  16. Nonlinear transformation on the transfer entropy of financial time series

    NASA Astrophysics Data System (ADS)

    Wu, Zhenyu; Shang, Pengjian

    2017-09-01

    Transfer entropy (TE) now is widely used in the data mining and economic field. However, TE itself demands that time series intend to be stationary and meet Markov condition. Naturally, we are interested in investigating the effect of the nonlinear transformation of the two series on the TE. Therefore, the paper is designed to study the TE of five nonlinear ;volatile; transformations based on the data which are generated by the linear modeling and the logistic maps modeling, as well as the dataset that come from financial markets. With only one of the TE of nonlinear transformations fluctuating around the TE of original series, the TE of others all have increased with different degrees.

  17. Offset detection in GPS coordinate time series

    NASA Astrophysics Data System (ADS)

    Gazeaux, J.; King, M. A.; Williams, S. D.

    2013-12-01

    Global Positioning System (GPS) time series are commonly affected by offsets of unknown magnitude and the large volume of data globally warrants investigation of automated detection approaches. The Detection of Offsets in GPS Experiment (DOGEx) showed that accuracy of Global Positioning System (GPS) time series can be significantly improved by applying statistical offset detection methods (see Gazeaux et al. (2013)). However, the best of these approaches did not perform as well as manual detection by expert analysts. Many of the features of GPS coordinates time series have not yet been fully taken into account in existing methods. Here, we apply Bayesian theory in order to make use of prior knowledge of the site noise characteristics and metadata in an attempt to make the offset detection more accurate. In the past decades, Bayesian theory has shown relevant results for a widespread range of applications, but has not yet been applied to GPS coordinates time series. Such methods incorporate different inputs such as a dynamic model (linear trend, periodic signal..) and a-priori information in a process that provides the best estimate of parameters (velocity, phase and amplitude of periodic signals...) based on all the available information. We test the new method on the DOGEx simulated dataset and compare it to previous solutions, and to Monte-Carlo method to test the accuracy of the procedure. We make a preliminary extension of the DOGEx dataset to introduce metadata information, allowing us to test the value of this data type in detecting offsets. The flexibility, robustness and limitations of the new approach are discussed. Gazeaux, J. Williams, S., King, M., Bos, M., Dach, R., Deo, M.,Moore, A.W., Ostini, L., Petrie, E., Roggero, M., Teferle, F.N., Olivares, G.,Webb, F.H. 2013. Detecting offsets in GPS time series: First results from the detection of offsets in GPS experiment. Journal of Geophysical Research: Solid Earth 118. 5. pp:2169-9356. Keywords : GPS

  18. Remote Sensing Time Series Product Tool

    NASA Technical Reports Server (NTRS)

    Predos, Don; Ryan, Robert E.; Ross, Kenton W.

    2006-01-01

    The TSPT (Time Series Product Tool) software was custom-designed for NASA to rapidly create and display single-band and band-combination time series, such as NDVI (Normalized Difference Vegetation Index) images, for wide-area crop surveillance and for other time-critical applications. The TSPT, developed in MATLAB, allows users to create and display various MODIS (Moderate Resolution Imaging Spectroradiometer) or simulated VIIRS (Visible/Infrared Imager Radiometer Suite) products as single images, as time series plots at a selected location, or as temporally processed image videos. Manually creating these types of products is extremely labor intensive; however, the TSPT development tool makes the process simplified and efficient. MODIS is ideal for monitoring large crop areas because of its wide swath (2330 km), its relatively small ground sample distance (250 m), and its high temporal revisit time (twice daily). Furthermore, because MODIS imagery is acquired daily, rapid changes in vegetative health can potentially be detected. The new TSPT technology provides users with the ability to temporally process high-revisit-rate satellite imagery, such as that acquired from MODIS and from its successor, the VIIRS. The TSPT features the important capability of fusing data from both MODIS instruments onboard the Terra and Aqua satellites, which drastically improves cloud statistics. With the TSPT, MODIS metadata is used to find and optionally remove bad and suspect data. Noise removal and temporal processing techniques allow users to create low-noise time series plots and image videos and to select settings and thresholds that tailor particular output products. The TSPT GUI (graphical user interface) provides an interactive environment for crafting what-if scenarios by enabling a user to repeat product generation using different settings and thresholds. The TSPT Application Programming Interface provides more fine-tuned control of product generation, allowing experienced

  19. Delay differential analysis of time series.

    PubMed

    Lainscsek, Claudia; Sejnowski, Terrence J

    2015-03-01

    Nonlinear dynamical system analysis based on embedding theory has been used for modeling and prediction, but it also has applications to signal detection and classification of time series. An embedding creates a multidimensional geometrical object from a single time series. Traditionally either delay or derivative embeddings have been used. The delay embedding is composed of delayed versions of the signal, and the derivative embedding is composed of successive derivatives of the signal. The delay embedding has been extended to nonuniform embeddings to take multiple timescales into account. Both embeddings provide information on the underlying dynamical system without having direct access to all the system variables. Delay differential analysis is based on functional embeddings, a combination of the derivative embedding with nonuniform delay embeddings. Small delay differential equation (DDE) models that best represent relevant dynamic features of time series data are selected from a pool of candidate models for detection or classification. We show that the properties of DDEs support spectral analysis in the time domain where nonlinear correlation functions are used to detect frequencies, frequency and phase couplings, and bispectra. These can be efficiently computed with short time windows and are robust to noise. For frequency analysis, this framework is a multivariate extension of discrete Fourier transform (DFT), and for higher-order spectra, it is a linear and multivariate alternative to multidimensional fast Fourier transform of multidimensional correlations. This method can be applied to short or sparse time series and can be extended to cross-trial and cross-channel spectra if multiple short data segments of the same experiment are available. Together, this time-domain toolbox provides higher temporal resolution, increased frequency and phase coupling information, and it allows an easy and straightforward implementation of higher-order spectra across time

  20. Delay Differential Analysis of Time Series

    PubMed Central

    Lainscsek, Claudia; Sejnowski, Terrence J.

    2015-01-01

    Nonlinear dynamical system analysis based on embedding theory has been used for modeling and prediction, but it also has applications to signal detection and classification of time series. An embedding creates a multidimensional geometrical object from a single time series. Traditionally either delay or derivative embeddings have been used. The delay embedding is composed of delayed versions of the signal, and the derivative embedding is composed of successive derivatives of the signal. The delay embedding has been extended to nonuniform embeddings to take multiple timescales into account. Both embeddings provide information on the underlying dynamical system without having direct access to all the system variables. Delay differential analysis is based on functional embeddings, a combination of the derivative embedding with nonuniform delay embeddings. Small delay differential equation (DDE) models that best represent relevant dynamic features of time series data are selected from a pool of candidate models for detection or classification. We show that the properties of DDEs support spectral analysis in the time domain where nonlinear correlation functions are used to detect frequencies, frequency and phase couplings, and bispectra. These can be efficiently computed with short time windows and are robust to noise. For frequency analysis, this framework is a multivariate extension of discrete Fourier transform (DFT), and for higher-order spectra, it is a linear and multivariate alternative to multidimensional fast Fourier transform of multidimensional correlations. This method can be applied to short or sparse time series and can be extended to cross-trial and cross-channel spectra if multiple short data segments of the same experiment are available. Together, this time-domain toolbox provides higher temporal resolution, increased frequency and phase coupling information, and it allows an easy and straightforward implementation of higher-order spectra across time

  1. Time-frequency analysis of electroencephalogram series

    NASA Astrophysics Data System (ADS)

    Blanco, S.; Quiroga, R. Quian; Rosso, O. A.; Kochen, S.

    1995-03-01

    In this paper we propose a method, based on the Gabor transform, to quantify and visualize the time evolution of the traditional frequency bands defined in the analysis of electroencephalogram (EEG) series. The information obtained in this way can be used for the information transfer analyses of the epileptic seizure as well as for their characterization. We found an optimal correlation between EEG visual inspection and the proposed method in the characterization of paroxism, spikes, and other transient alterations of background activity. The dynamical changes during an epileptic seizure are shown through the phase portrait. The method proposed was examplified with EEG series obtained with depth electrodes in refractory epileptic patients.

  2. Periodic Effects In GPS Time Series

    NASA Astrophysics Data System (ADS)

    Koivula, H.; Ollikainen, M.; Poutanen, M.

    We have computed the Lomb periodograms of GPS time series in the Finnish per- manent GPS network FinnRef. We can distinguish an annual period but also a diur- nal period in all vector components between any two stations, including the baseline length. The amplitude of the annual period is a function of the baseline length, thus behaving like a scale error. We have also analysed the diurnal period, which is most clearly visible between neighbouring stations. The FinnRef network is used e.g. for studying the Fennoscandian postglacial rebound. The periodic terms may be cancelled out in the solution of the height components of the stations by including seasonal terms in the solution. The method can be used when long series of observations are available, but in episodic campaigns the periodicity will degrade the accuracy. A geophysical interpretation of the annual variations in the height component of the GPS time series must be done with caution because the reason can be computational, not a physical one. We discuss on the effect and possible reasons for periods and tests made for studying the periodicity. We also discuss on the loading effect and their causes on the crustal deformation that can explain the observed scale variation in GPS time series.

  3. Algorithm for Compressing Time-Series Data

    NASA Technical Reports Server (NTRS)

    Hawkins, S. Edward, III; Darlington, Edward Hugo

    2012-01-01

    An algorithm based on Chebyshev polynomials effects lossy compression of time-series data or other one-dimensional data streams (e.g., spectral data) that are arranged in blocks for sequential transmission. The algorithm was developed for use in transmitting data from spacecraft scientific instruments to Earth stations. In spite of its lossy nature, the algorithm preserves the information needed for scientific analysis. The algorithm is computationally simple, yet compresses data streams by factors much greater than two. The algorithm is not restricted to spacecraft or scientific uses: it is applicable to time-series data in general. The algorithm can also be applied to general multidimensional data that have been converted to time-series data, a typical example being image data acquired by raster scanning. However, unlike most prior image-data-compression algorithms, this algorithm neither depends on nor exploits the two-dimensional spatial correlations that are generally present in images. In order to understand the essence of this compression algorithm, it is necessary to understand that the net effect of this algorithm and the associated decompression algorithm is to approximate the original stream of data as a sequence of finite series of Chebyshev polynomials. For the purpose of this algorithm, a block of data or interval of time for which a Chebyshev polynomial series is fitted to the original data is denoted a fitting interval. Chebyshev approximation has two properties that make it particularly effective for compressing serial data streams with minimal loss of scientific information: The errors associated with a Chebyshev approximation are nearly uniformly distributed over the fitting interval (this is known in the art as the "equal error property"); and the maximum deviations of the fitted Chebyshev polynomial from the original data have the smallest possible values (this is known in the art as the "min-max property").

  4. Modelling population change from time series data

    USGS Publications Warehouse

    Barker, R.J.; Sauer, J.R.; McCullough, D.R.; Barrett, R.H.

    1992-01-01

    Information on change in population size over time is among the most basic inputs for population management. Unfortunately, population changes are generally difficult to identify, and once identified difficult to explain. Sources of variald (patterns) in population data include: changes in environment that affect carrying capaciyy and produce trend, autocorrelative processes, irregular environmentally induced perturbations, and stochasticity arising from population processes. In addition. populations are almost never censused and many surveys (e.g., the North American Breeding Bird Survey) produce multiple, incomplete time series of population indices, providing further sampling complications. We suggest that each source of pattern should be used to address specific hypotheses regarding population change, but that failure to correctly model each source can lead to false conclusions about the dynamics of populations. We consider hypothesis tests based on each source of pattern, and the effects of autocorrelated observations and sampling error. We identify important constraints on analyses of time series that limit their use in identifying underlying relationships.

  5. Pseudotime estimation: deconfounding single cell time series

    PubMed Central

    Reid, John E.; Wernisch, Lorenz

    2016-01-01

    Motivation: Repeated cross-sectional time series single cell data confound several sources of variation, with contributions from measurement noise, stochastic cell-to-cell variation and cell progression at different rates. Time series from single cell assays are particularly susceptible to confounding as the measurements are not averaged over populations of cells. When several genes are assayed in parallel these effects can be estimated and corrected for under certain smoothness assumptions on cell progression. Results: We present a principled probabilistic model with a Bayesian inference scheme to analyse such data. We demonstrate our method’s utility on public microarray, nCounter and RNA-seq datasets from three organisms. Our method almost perfectly recovers withheld capture times in an Arabidopsis dataset, it accurately estimates cell cycle peak times in a human prostate cancer cell line and it correctly identifies two precocious cells in a study of paracrine signalling in mouse dendritic cells. Furthermore, our method compares favourably with Monocle, a state-of-the-art technique. We also show using held-out data that uncertainty in the temporal dimension is a common confounder and should be accounted for in analyses of repeated cross-sectional time series. Availability and Implementation: Our method is available on CRAN in the DeLorean package. Contact: john.reid@mrc-bsu.cam.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27318198

  6. Time series regression studies in environmental epidemiology

    PubMed Central

    Bhaskaran, Krishnan; Gasparrini, Antonio; Hajat, Shakoor; Smeeth, Liam; Armstrong, Ben

    2013-01-01

    Time series regression studies have been widely used in environmental epidemiology, notably in investigating the short-term associations between exposures such as air pollution, weather variables or pollen, and health outcomes such as mortality, myocardial infarction or disease-specific hospital admissions. Typically, for both exposure and outcome, data are available at regular time intervals (e.g. daily pollution levels and daily mortality counts) and the aim is to explore short-term associations between them. In this article, we describe the general features of time series data, and we outline the analysis process, beginning with descriptive analysis, then focusing on issues in time series regression that differ from other regression methods: modelling short-term fluctuations in the presence of seasonal and long-term patterns, dealing with time varying confounding factors and modelling delayed (‘lagged’) associations between exposure and outcome. We finish with advice on model checking and sensitivity analysis, and some common extensions to the basic model. PMID:23760528

  7. Pseudotime estimation: deconfounding single cell time series.

    PubMed

    Reid, John E; Wernisch, Lorenz

    2016-10-01

    Repeated cross-sectional time series single cell data confound several sources of variation, with contributions from measurement noise, stochastic cell-to-cell variation and cell progression at different rates. Time series from single cell assays are particularly susceptible to confounding as the measurements are not averaged over populations of cells. When several genes are assayed in parallel these effects can be estimated and corrected for under certain smoothness assumptions on cell progression. We present a principled probabilistic model with a Bayesian inference scheme to analyse such data. We demonstrate our method's utility on public microarray, nCounter and RNA-seq datasets from three organisms. Our method almost perfectly recovers withheld capture times in an Arabidopsis dataset, it accurately estimates cell cycle peak times in a human prostate cancer cell line and it correctly identifies two precocious cells in a study of paracrine signalling in mouse dendritic cells. Furthermore, our method compares favourably with Monocle, a state-of-the-art technique. We also show using held-out data that uncertainty in the temporal dimension is a common confounder and should be accounted for in analyses of repeated cross-sectional time series. Our method is available on CRAN in the DeLorean package. john.reid@mrc-bsu.cam.ac.uk Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  8. Non-linear forecasting in high-frequency financial time series

    NASA Astrophysics Data System (ADS)

    Strozzi, F.; Zaldívar, J. M.

    2005-08-01

    A new methodology based on state space reconstruction techniques has been developed for trading in financial markets. The methodology has been tested using 18 high-frequency foreign exchange time series. The results are in apparent contradiction with the efficient market hypothesis which states that no profitable information about future movements can be obtained by studying the past prices series. In our (off-line) analysis positive gain may be obtained in all those series. The trading methodology is quite general and may be adapted to other financial time series. Finally, the steps for its on-line application are discussed.

  9. Time-Series Analysis: A Cautionary Tale

    NASA Technical Reports Server (NTRS)

    Damadeo, Robert

    2015-01-01

    Time-series analysis has often been a useful tool in atmospheric science for deriving long-term trends in various atmospherically important parameters (e.g., temperature or the concentration of trace gas species). In particular, time-series analysis has been repeatedly applied to satellite datasets in order to derive the long-term trends in stratospheric ozone, which is a critical atmospheric constituent. However, many of the potential pitfalls relating to the non-uniform sampling of the datasets were often ignored and the results presented by the scientific community have been unknowingly biased. A newly developed and more robust application of this technique is applied to the Stratospheric Aerosol and Gas Experiment (SAGE) II version 7.0 ozone dataset and the previous biases and newly derived trends are presented.

  10. Visibility graphlet approach to chaotic time series

    SciTech Connect

    Mutua, Stephen; Gu, Changgui E-mail: hjyang@ustc.edu.cn; Yang, Huijie E-mail: hjyang@ustc.edu.cn

    2016-05-15

    Many novel methods have been proposed for mapping time series into complex networks. Although some dynamical behaviors can be effectively captured by existing approaches, the preservation and tracking of the temporal behaviors of a chaotic system remains an open problem. In this work, we extended the visibility graphlet approach to investigate both discrete and continuous chaotic time series. We applied visibility graphlets to capture the reconstructed local states, so that each is treated as a node and tracked downstream to create a temporal chain link. Our empirical findings show that the approach accurately captures the dynamical properties of chaotic systems. Networks constructed from periodic dynamic phases all converge to regular networks and to unique network structures for each model in the chaotic zones. Furthermore, our results show that the characterization of chaotic and non-chaotic zones in the Lorenz system corresponds to the maximal Lyapunov exponent, thus providing a simple and straightforward way to analyze chaotic systems.

  11. Detecting anomalous phase synchronization from time series

    SciTech Connect

    Tokuda, Isao T.; Kumar Dana, Syamal; Kurths, Juergen

    2008-06-15

    Modeling approaches are presented for detecting an anomalous route to phase synchronization from time series of two interacting nonlinear oscillators. The anomalous transition is characterized by an enlargement of the mean frequency difference between the oscillators with an initial increase in the coupling strength. Although such a structure is common in a large class of coupled nonisochronous oscillators, prediction of the anomalous transition is nontrivial for experimental systems, whose dynamical properties are unknown. Two approaches are examined; one is a phase equational modeling of coupled limit cycle oscillators and the other is a nonlinear predictive modeling of coupled chaotic oscillators. Application to prototypical models such as two interacting predator-prey systems in both limit cycle and chaotic regimes demonstrates the capability of detecting the anomalous structure from only a few sets of time series. Experimental data from two coupled Chua circuits shows its applicability to real experimental system.

  12. Multivariate Voronoi Outlier Detection for Time Series.

    PubMed

    Zwilling, Chris E; Wang, Michelle Yongmei

    2014-10-01

    Outlier detection is a primary step in many data mining and analysis applications, including healthcare and medical research. This paper presents a general method to identify outliers in multivariate time series based on a Voronoi diagram, which we call Multivariate Voronoi Outlier Detection (MVOD). The approach copes with outliers in a multivariate framework, via designing and extracting effective attributes or features from the data that can take parametric or nonparametric forms. Voronoi diagrams allow for automatic configuration of the neighborhood relationship of the data points, which facilitates the differentiation of outliers and non-outliers. Experimental evaluation demonstrates that our MVOD is an accurate, sensitive, and robust method for detecting outliers in multivariate time series data.

  13. Visibility graphlet approach to chaotic time series.

    PubMed

    Mutua, Stephen; Gu, Changgui; Yang, Huijie

    2016-05-01

    Many novel methods have been proposed for mapping time series into complex networks. Although some dynamical behaviors can be effectively captured by existing approaches, the preservation and tracking of the temporal behaviors of a chaotic system remains an open problem. In this work, we extended the visibility graphlet approach to investigate both discrete and continuous chaotic time series. We applied visibility graphlets to capture the reconstructed local states, so that each is treated as a node and tracked downstream to create a temporal chain link. Our empirical findings show that the approach accurately captures the dynamical properties of chaotic systems. Networks constructed from periodic dynamic phases all converge to regular networks and to unique network structures for each model in the chaotic zones. Furthermore, our results show that the characterization of chaotic and non-chaotic zones in the Lorenz system corresponds to the maximal Lyapunov exponent, thus providing a simple and straightforward way to analyze chaotic systems.

  14. Automatic pattern recognition in ECG time series.

    PubMed

    Sternickel, Karsten

    2002-05-01

    In this paper, a technique for the automatic detection of any recurrent pattern in ECG time series is introduced. The wavelet transform is used to obtain a multiresolution representation of some example patterns for signal structure extraction. Neural Networks are trained with the wavelet transformed templates providing an efficient detector even for temporally varying patterns within the complete time series. The method is also robust against offsets and stable for signal to noise ratios larger than one. Its reliability was tested on 60 Holter ECG recordings of patients at the Department of Cardiology (University of Bonn). Due to the convincing results and its fast implementation the method can easily be used in clinical medicine. In particular, it solves the problem of automatic P wave detection in Holter ECG recordings.

  15. Aggregated Indexing of Biomedical Time Series Data.

    PubMed

    Woodbridge, Jonathan; Mortazavi, Bobak; Sarrafzadeh, Majid; Bui, Alex A T

    2012-09-01

    Remote and wearable medical sensing has the potential to create very large and high dimensional datasets. Medical time series databases must be able to efficiently store, index, and mine these datasets to enable medical professionals to effectively analyze data collected from their patients. Conventional high dimensional indexing methods are a two stage process. First, a superset of the true matches is efficiently extracted from the database. Second, supersets are pruned by comparing each of their objects to the query object and rejecting any objects falling outside a predetermined radius. This pruning stage heavily dominates the computational complexity of most conventional search algorithms. Therefore, indexing algorithms can be significantly improved by reducing the amount of pruning. This paper presents an online algorithm to aggregate biomedical times series data to significantly reduce the search space (index size) without compromising the quality of search results. This algorithm is built on the observation that biomedical time series signals are composed of cyclical and often similar patterns. This algorithm takes in a stream of segments and groups them to highly concentrated collections. Locality Sensitive Hashing (LSH) is used to reduce the overall complexity of the algorithm, allowing it to run online. The output of this aggregation is used to populate an index. The proposed algorithm yields logarithmic growth of the index (with respect to the total number of objects) while keeping sensitivity and specificity simultaneously above 98%. Both memory and runtime complexities of time series search are improved when using aggregated indexes. In addition, data mining tasks, such as clustering, exhibit runtimes that are orders of magnitudes faster when run on aggregated indexes.

  16. Analysis of Polyphonic Musical Time Series

    NASA Astrophysics Data System (ADS)

    Sommer, Katrin; Weihs, Claus

    A general model for pitch tracking of polyphonic musical time series will be introduced. Based on a model of Davy and Godsill (Bayesian harmonic models for musical pitch estimation and analysis, Technical Report 431, Cambridge University Engineering Department, 2002) Davy and Godsill (2002) the different pitches of the musical sound are estimated with MCMC methods simultaneously. Additionally a preprocessing step is designed to improve the estimation of the fundamental frequencies (A comparative study on polyphonic musical time series using MCMC methods. In C. Preisach et al., editors, Data Analysis, Machine Learning, and Applications, Springer, Berlin, 2008). The preprocessing step compares real audio data with an alphabet constructed from the McGill Master Samples (Opolko and Wapnick, McGill University Master Samples [Compact disc], McGill University, Montreal, 1987) and consists of tones of different instruments. The tones with minimal Itakura-Saito distortion (Gray et al., Transactions on Acoustics, Speech, and Signal Processing ASSP-28(4):367-376, 1980) are chosen as first estimates and as starting points for the MCMC algorithms. Furthermore the implementation of the alphabet is an approach for the recognition of the instruments generating the musical time series. Results are presented for mixed monophonic data from McGill and for self recorded polyphonic audio data.

  17. 17 CFR 38.157 - Real-time market monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 1 2014-04-01 2014-04-01 false Real-time market monitoring... DESIGNATED CONTRACT MARKETS Compliance With Rules § 38.157 Real-time market monitoring. A designated contract market must conduct real-time market monitoring of all trading activity on its electronic...

  18. 17 CFR 38.157 - Real-time market monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 1 2013-04-01 2013-04-01 false Real-time market monitoring... DESIGNATED CONTRACT MARKETS Compliance With Rules § 38.157 Real-time market monitoring. A designated contract market must conduct real-time market monitoring of all trading activity on its electronic...

  19. Weighted Dynamic Time Warping for Time Series Classification

    SciTech Connect

    Jeong, Young-Seon; Jeong, Myong K; Omitaomu, Olufemi A

    2011-01-01

    Dynamic time warping (DTW), which finds the minimum path by providing non-linear alignments between two time series, has been widely used as a distance measure for time series classification and clustering. However, DTW does not account for the relative importance regarding the phase difference between a reference point and a testing point. This may lead to misclassification especially in applications where the shape similarity between two sequences is a major consideration for an accurate recognition. Therefore, we propose a novel distance measure, called a weighted DTW (WDTW), which is a penalty-based DTW. Our approach penalizes points with higher phase difference between a reference point and a testing point in order to prevent minimum distance distortion caused by outliers. The rationale underlying the proposed distance measure is demonstrated with some illustrative examples. A new weight function, called the modified logistic weight function (MLWF), is also proposed to systematically assign weights as a function of the phase difference between a reference point and a testing point. By applying different weights to adjacent points, the proposed algorithm can enhance the detection of similarity between two time series. We show that some popular distance measures such as DTW and Euclidean distance are special cases of our proposed WDTW measure. We extend the proposed idea to other variants of DTW such as derivative dynamic time warping (DDTW) and propose the weighted version of DDTW. We have compared the performances of our proposed procedures with other popular approaches using public data sets available through the UCR Time Series Data Mining Archive for both time series classification and clustering problems. The experimental results indicate that the proposed approaches can achieve improved accuracy for time series classification and clustering problems.

  20. On the Prediction of α-Stable Time Series

    NASA Astrophysics Data System (ADS)

    Mohammadi, Mohammad; Mohammadpour, Adel

    2016-07-01

    This paper addresses the point prediction of α-stable time series. Our key idea is to define a new Hilbert space that contains α-stable processes. Then, we apply the advantage of Hilbert space theory for finding the best linear prediction. We show how to use the presented predictor practically for α-stable linear processes. The implementation of the presented method is easier than the implementation of the minimum dispersion method. We reveal the appropriateness of the presented method through an empirical study on predicting the natural logarithms of the volumes of SP500 market.

  1. Asymmetric asynchrony of financial time series based on asymmetric multiscale cross-sample entropy.

    PubMed

    Yin, Yi; Shang, Pengjian

    2015-03-01

    The paper proposes the asymmetric multiscale cross-sample entropy (AMCSE) method and applies it to analyze the financial time series of US, Chinese, and European stock markets. The asynchronies of these time series in USA, China, and Europe all decrease (the correlations increase) with the increase in scale which declares that taking into account bigger time scale to study these financial time series is capable of revealing the intrinsic relations between these stock markets. Meanwhile, we find that there is a crossover between the upwards and the downwards in these AMCSE results, which indicates that when the scale reach a certain value, the asynchronies of the upwards and the downwards for these stock markets are equal and symmetric. But for the other scales, the asynchronies of the upwards and the downwards are different from each other indicating the necessity and importance of multiscale analysis for revealing the most comprehensive information of stock markets. The series with a positive trend have a higher decreasing pace on asynchrony than those with a negative trend, while the asynchrony between the series with a positive or negative trend is lower than that between the original series. Moreover, it is noticeable that there are some small abnormal rises at some abnormal scales. We find that the asynchronies are the highest at scales smaller than 2 when investigating the time series of stock markets with a negative trend. The existences of asymmetries declare the inaccuracy and weakness of multiscale cross-sample entropy, while by comparing the asymmetries of US, Chinese, and European markets, similar conclusions can be drawn and we acquire that the asymmetries of Chinese markets are the smallest and the asymmetries of European markets are the biggest. Thus, it is of great value and benefit to investigate the series with different trends using AMCSE method.

  2. Asymmetric asynchrony of financial time series based on asymmetric multiscale cross-sample entropy

    NASA Astrophysics Data System (ADS)

    Yin, Yi; Shang, Pengjian

    2015-03-01

    The paper proposes the asymmetric multiscale cross-sample entropy (AMCSE) method and applies it to analyze the financial time series of US, Chinese, and European stock markets. The asynchronies of these time series in USA, China, and Europe all decrease (the correlations increase) with the increase in scale which declares that taking into account bigger time scale to study these financial time series is capable of revealing the intrinsic relations between these stock markets. Meanwhile, we find that there is a crossover between the upwards and the downwards in these AMCSE results, which indicates that when the scale reach a certain value, the asynchronies of the upwards and the downwards for these stock markets are equal and symmetric. But for the other scales, the asynchronies of the upwards and the downwards are different from each other indicating the necessity and importance of multiscale analysis for revealing the most comprehensive information of stock markets. The series with a positive trend have a higher decreasing pace on asynchrony than those with a negative trend, while the asynchrony between the series with a positive or negative trend is lower than that between the original series. Moreover, it is noticeable that there are some small abnormal rises at some abnormal scales. We find that the asynchronies are the highest at scales smaller than 2 when investigating the time series of stock markets with a negative trend. The existences of asymmetries declare the inaccuracy and weakness of multiscale cross-sample entropy, while by comparing the asymmetries of US, Chinese, and European markets, similar conclusions can be drawn and we acquire that the asymmetries of Chinese markets are the smallest and the asymmetries of European markets are the biggest. Thus, it is of great value and benefit to investigate the series with different trends using AMCSE method.

  3. Direct Mail Marketing for Cooperative Education. Cooperative Education Marketing Digest Series 5.

    ERIC Educational Resources Information Center

    McGookey, Kathy

    Seven guidelines for enhancing direct mail marketing are as follows: target the most promising audience; frame the right message for the audience; state the benefits of making a positive response; send the message at an appropriate time; tell the reader what response is desired; plan follow-up mailings or other contact; and measure results.…

  4. Direct Mail Marketing for Cooperative Education. Cooperative Education Marketing Digest Series 5.

    ERIC Educational Resources Information Center

    McGookey, Kathy

    Seven guidelines for enhancing direct mail marketing are as follows: target the most promising audience; frame the right message for the audience; state the benefits of making a positive response; send the message at an appropriate time; tell the reader what response is desired; plan follow-up mailings or other contact; and measure results.…

  5. Fractal fluctuations in cardiac time series

    NASA Technical Reports Server (NTRS)

    West, B. J.; Zhang, R.; Sanders, A. W.; Miniyar, S.; Zuckerman, J. H.; Levine, B. D.; Blomqvist, C. G. (Principal Investigator)

    1999-01-01

    Human heart rate, controlled by complex feedback mechanisms, is a vital index of systematic circulation. However, it has been shown that beat-to-beat values of heart rate fluctuate continually over a wide range of time scales. Herein we use the relative dispersion, the ratio of the standard deviation to the mean, to show, by systematically aggregating the data, that the correlation in the beat-to-beat cardiac time series is a modulated inverse power law. This scaling property indicates the existence of long-time memory in the underlying cardiac control process and supports the conclusion that heart rate variability is a temporal fractal. We argue that the cardiac control system has allometric properties that enable it to respond to a dynamical environment through scaling.

  6. Radar Interferometry Time Series Analysis and Tools

    NASA Astrophysics Data System (ADS)

    Buckley, S. M.

    2006-12-01

    We consider the use of several multi-interferogram analysis techniques for identifying transient ground motions. Our approaches range from specialized InSAR processing for persistent scatterer and small baseline subset methods to the post-processing of geocoded displacement maps using a linear inversion-singular value decomposition solution procedure. To better understand these approaches, we have simulated sets of interferograms spanning several deformation phenomena, including localized subsidence bowls with constant velocity and seasonal deformation fluctuations. We will present results and insights from the application of these time series analysis techniques to several land subsidence study sites with varying deformation and environmental conditions, e.g., arid Phoenix and coastal Houston-Galveston metropolitan areas and rural Texas sink holes. We consistently find that the time invested in implementing, applying and comparing multiple InSAR time series approaches for a given study site is rewarded with a deeper understanding of the techniques and deformation phenomena. To this end, and with support from NSF, we are preparing a first-version of an InSAR post-processing toolkit to be released to the InSAR science community. These studies form a baseline of results to compare against the higher spatial and temporal sampling anticipated from TerraSAR-X as well as the trade-off between spatial coverage and resolution when relying on ScanSAR interferometry.

  7. Modeling stylized facts for financial time series

    NASA Astrophysics Data System (ADS)

    Krivoruchenko, M. I.; Alessio, E.; Frappietro, V.; Streckert, L. J.

    2004-12-01

    Multivariate probability density functions of returns are constructed in order to model the empirical behavior of returns in a financial time series. They describe the well-established deviations from the Gaussian random walk, such as an approximate scaling and heavy tails of the return distributions, long-ranged volatility-volatility correlations (volatility clustering) and return-volatility correlations (leverage effect). The model is tested successfully to fit joint distributions of the 100+ years of daily price returns of the Dow Jones 30 Industrial Average.

  8. Confidence bands for time series trends

    NASA Astrophysics Data System (ADS)

    Gluhovsky, A.

    2010-12-01

    This talk will discuss the construction of subsampling simultaneous confidence bands for an unknown trend in time series composed of deterministic and stochastic components. For the latter, an iid noise, a stationary short-memory process, and a stationary long-memory process will be considered. Subsampling is a computer-intensive statistical method, which works under the weakest assumptions about data (contrasting standard statistical methods, which are based on strong assumptions rarely met in geosciences). This work is supported by the National Science Foundation Grant ATM-0756624.

  9. Consistency of IVS nutation time series

    NASA Astrophysics Data System (ADS)

    Gattano, César; Lambert, Sébastien; Bizouard, Christian

    2016-04-01

    We give a review of the various VLBI-derived nutation time series provided by the different operational analysis centers of the IVS and three combination centers (IVS, IERS EOP Center, and Rapid Service/Prediction Center). We focus on the stability of small nutation amplitudes, including the free core nutation and other atmospherically-driven nutations, that are of interest for improving Earth models. We discuss the possible origins of the differences (software packaged, inversion methods, analysis configuration including a priori and estimation strategy) and the consequences for scientific exploitation of the data, especially in terms of nutation modeling and inference of the Earth's internal structure.

  10. Gwilym Jenkins, Experimental Design and Time Series.

    DTIC Science & Technology

    1984-04-01

    of a changing process. This led to studies of discrete dynamic models and control problems and finally to work on time series and forecasting. A4S...practice based on sound -2- I theory in a never-ending iteration. The results of this mode of thinking come through strongly for example in his book with...arrival in Princeton marked the beginning of a long and happy collaboration between us which later resulted in much visiting to and from between England and

  11. Time series modeling for automatic target recognition

    NASA Astrophysics Data System (ADS)

    Sokolnikov, Andre

    2012-05-01

    Time series modeling is proposed for identification of targets whose images are not clearly seen. The model building takes into account air turbulence, precipitation, fog, smoke and other factors obscuring and distorting the image. The complex of library data (of images, etc.) serving as a basis for identification provides the deterministic part of the identification process, while the partial image features, distorted parts, irrelevant pieces and absence of particular features comprise the stochastic part of the target identification. The missing data approach is elaborated that helps the prediction process for the image creation or reconstruction. The results are provided.

  12. Detecting noise in a time series.

    PubMed

    Cellucci, C. J.; Albano, A. M.; Rapp, P. E.; Pittenger, R. A.; Josiassen, R. C.

    1997-09-01

    A numerical algorithm is presented for estimating whether, and roughly to what extent, a time series is noise corrupted. Using phase-randomized surrogates constructed from the original signal, metrics are defined which can be used to quantify the noise level. A saturation occurs in these metrics at signal to noise ratios (SNRs) of around 0 dB and below, and also at around 20 dB and above. In between these two regions there is a monotonic transition in the value of the metrics from one region to the other corresponding to changes in the SNR. (c) 1997 American Institute of Physics.

  13. Time series analyses of global change data.

    PubMed

    Lane, L J; Nichols, M H; Osborn, H B

    1994-01-01

    The hypothesis that statistical analyses of historical time series data can be used to separate the influences of natural variations from anthropogenic sources on global climate change is tested. Point, regional, national, and global temperature data are analyzed. Trend analyses for the period 1901-1987 suggest mean annual temperatures increased (in degrees C per century) globally at the rate of about 0.5, in the USA at about 0.3, in the south-western USA desert region at about 1.2, and at the Walnut Gulch Experimental Watershed in south-eastern Arizona at about 0.8. However, the rates of temperature change are not constant but vary within the 87-year period. Serial correlation and spectral density analysis of the temperature time series showed weak periodicities at various frequencies. The only common periodicity among the temperature series is an apparent cycle of about 43 years. The temperature time series were correlated with the Wolf sunspot index, atmospheric CO(2) concentrations interpolated from the Siple ice core data, and atmospheric CO(2) concentration data from Mauna Loa measurements. Correlation analysis of temperature data with concurrent data on atmospheric CO(2) concentrations and the Wolf sunspot index support previously reported significant correlation over the 1901-1987 period. Correlation analysis between temperature, atmospheric CO(2) concentration, and the Wolf sunspot index for the shorter period, 1958-1987, when continuous Mauna Loa CO(2) data are available, suggest significant correlation between global warming and atmospheric CO(2) concentrations but no significant correlation between global warming and the Wolf sunspot index. This may be because the Wolf sunspot index apparently increased from 1901 until about 1960 and then decreased thereafter, while global warming apparently continued to increase through 1987. Correlation of sunspot activity with global warming may be spurious but additional analyses are required to test this hypothesis

  14. Singular spectrum analysis for time series with missing data

    USGS Publications Warehouse

    Schoellhamer, D.H.

    2001-01-01

    Geophysical time series often contain missing data, which prevents analysis with many signal processing and multivariate tools. A modification of singular spectrum analysis for time series with missing data is developed and successfully tested with synthetic and actual incomplete time series of suspended-sediment concentration from San Francisco Bay. This method also can be used to low pass filter incomplete time series.

  15. Time series analysis of temporal networks

    NASA Astrophysics Data System (ADS)

    Sikdar, Sandipan; Ganguly, Niloy; Mukherjee, Animesh

    2016-01-01

    A common but an important feature of all real-world networks is that they are temporal in nature, i.e., the network structure changes over time. Due to this dynamic nature, it becomes difficult to propose suitable growth models that can explain the various important characteristic properties of these networks. In fact, in many application oriented studies only knowing these properties is sufficient. For instance, if one wishes to launch a targeted attack on a network, this can be done even without the knowledge of the full network structure; rather an estimate of some of the properties is sufficient enough to launch the attack. We, in this paper show that even if the network structure at a future time point is not available one can still manage to estimate its properties. We propose a novel method to map a temporal network to a set of time series instances, analyze them and using a standard forecast model of time series, try to predict the properties of a temporal network at a later time instance. To our aim, we consider eight properties such as number of active nodes, average degree, clustering coefficient etc. and apply our prediction framework on them. We mainly focus on the temporal network of human face-to-face contacts and observe that it represents a stochastic process with memory that can be modeled as Auto-Regressive-Integrated-Moving-Average (ARIMA). We use cross validation techniques to find the percentage accuracy of our predictions. An important observation is that the frequency domain properties of the time series obtained from spectrogram analysis could be used to refine the prediction framework by identifying beforehand the cases where the error in prediction is likely to be high. This leads to an improvement of 7.96% (for error level ≤20%) in prediction accuracy on an average across all datasets. As an application we show how such prediction scheme can be used to launch targeted attacks on temporal networks. Contribution to the Topical Issue

  16. Multiscale Symbolic Phase Transfer Entropy in Financial Time Series Classification

    NASA Astrophysics Data System (ADS)

    Zhang, Ningning; Lin, Aijing; Shang, Pengjian

    We address the challenge of classifying financial time series via a newly proposed multiscale symbolic phase transfer entropy (MSPTE). Using MSPTE method, we succeed to quantify the strength and direction of information flow between financial systems and classify financial time series, which are the stock indices from Europe, America and China during the period from 2006 to 2016 and the stocks of banking, aviation industry and pharmacy during the period from 2007 to 2016, simultaneously. The MSPTE analysis shows that the value of symbolic phase transfer entropy (SPTE) among stocks decreases with the increasing scale factor. It is demonstrated that MSPTE method can well divide stocks into groups by areas and industries. In addition, it can be concluded that the MSPTE analysis quantify the similarity among the stock markets. The symbolic phase transfer entropy (SPTE) between the two stocks from the same area is far less than the SPTE between stocks from different areas. The results also indicate that four stocks from America and Europe have relatively high degree of similarity and the stocks of banking and pharmaceutical industry have higher similarity for CA. It is worth mentioning that the pharmaceutical industry has weaker particular market mechanism than banking and aviation industry.

  17. Dimensionless embedding for nonlinear time series analysis

    NASA Astrophysics Data System (ADS)

    Hirata, Yoshito; Aihara, Kazuyuki

    2017-09-01

    Recently, infinite-dimensional delay coordinates (InDDeCs) have been proposed for predicting high-dimensional dynamics instead of conventional delay coordinates. Although InDDeCs can realize faster computation and more accurate short-term prediction, it is still not well-known whether InDDeCs can be used in other applications of nonlinear time series analysis in which reconstruction is needed for the underlying dynamics from a scalar time series generated from a dynamical system. Here, we give theoretical support for justifying the use of InDDeCs and provide numerical examples to show that InDDeCs can be used for various applications for obtaining the recurrence plots, correlation dimensions, and maximal Lyapunov exponents, as well as testing directional couplings and extracting slow-driving forces. We demonstrate performance of the InDDeCs using the weather data. Thus, InDDeCs can eventually realize "dimensionless embedding" while we enjoy faster and more reliable computations.

  18. Forecasting the Time Series of Sunspot Numbers

    NASA Astrophysics Data System (ADS)

    Aguirre, L. A.; Letellier, C.; Maquet, J.

    2008-05-01

    Forecasting the solar cycle is of great importance for weather prediction and environmental monitoring, and also constitutes a difficult scientific benchmark in nonlinear dynamical modeling. This paper describes the identification of a model and its use in the forecasting the time series comprised of Wolf’s sunspot numbers. A key feature of this procedure is that the original time series is first transformed into a symmetrical space where the dynamics of the solar dynamo are unfolded in a better way, thus improving the model. The nonlinear model obtained is parsimonious and has both deterministic and stochastic parts. Monte Carlo simulation of the whole model produces very consistent results with the deterministic part of the model but allows for the determination of confidence bands. The obtained model was used to predict cycles 24 and 25, although the forecast of the latter is seen as a crude approximation, given the long prediction horizon required. As for the 24th cycle, two estimates were obtained with peaks of 65±16 and of 87±13 units of sunspot numbers. The simulated results suggest that the 24th cycle will be shorter and less active than the preceding one.

  19. Tremor classification and tremor time series analysis

    NASA Astrophysics Data System (ADS)

    Deuschl, Günther; Lauk, Michael; Timmer, Jens

    1995-03-01

    The separation between physiologic tremor (PT) in normal subjects and the pathological tremors of essential tremor (ET) or Parkinson's disease (PD) was investigated on the basis of monoaxial accelerometric recordings of 35 s hand tremor epochs. Frequency and amplitude were insufficient to separate between these conditions, except for the trivial distinction between normal and pathologic tremors that is already defined on the basis of amplitude. We found that waveform analysis revealed highly significant differences between normal and pathologic tremors, and, more importantly, among different forms of pathologic tremors. We found in our group of 25 patients with PT and 15 with ET a reasonable distinction with the third momentum and the time reversal invariance. A nearly complete distinction between these two conditions on the basis of the asymmetric decay of the autocorrelation function. We conclude that time series analysis can probably be developed into a powerful tool for the objective analysis of tremors.

  20. Time series for blind biosignal classification model.

    PubMed

    Wong, Derek F; Chao, Lidia S; Zeng, Xiaodong; Vai, Mang-I; Lam, Heng-Leong

    2014-11-01

    Biosignals such as electrocardiograms (ECG), electroencephalograms (EEG), and electromyograms (EMG), are important noninvasive measurements useful for making diagnostic decisions. Recently, considerable research has been conducted in order to potentially automate signal classification for assisting in disease diagnosis. However, the biosignal type (ECG, EEG, EMG or other) needs to be known prior to the classification process. If the given biosignal is of an unknown type, none of the existing methodologies can be utilized. In this paper, a blind biosignal classification model (B(2)SC Model) is proposed in order to identify the source biosignal type automatically, and thus ultimately benefit the diagnostic decision. The approach employs time series algorithms for constructing the model. It uses a dynamic time warping (DTW) algorithm with clustering to discover the similarity between two biosignals, and consequently classifies disease without prior knowledge of the source signal type. The empirical experiments presented in this paper demonstrate the effectiveness of the method as well as the scalability of the approach.

  1. Time scales involved in emergent market coherence

    NASA Astrophysics Data System (ADS)

    Kwapień, J.; Drożdż, S.; Speth, J.

    2004-06-01

    In addressing the question of the time scales characteristic for the market formation, we analyze high-frequency tick-by-tick data from the NYSE and from the German market. By using returns on various time scales ranging from seconds or minutes up to 2 days, we compare magnitude of the largest eigenvalue of the correlation matrix for the same set of securities but for different time scales. For various sets of stocks of different capitalization (and the average trading frequency), we observe a significant elevation of the largest eigenvalue with increasing time scale. Our results from the correlation matrix study can be considered as a manifestation of the so-called Epps effect. There is no unique explanation of this effect and it seems that many different factors play a role here. One of such factors is randomness in transaction moments for different stocks. Another interesting conclusion to be drawn from our results is that in the contemporary markets the emergence of significant correlations occurs on time scales much smaller than in the more distant history.

  2. Cross-sample entropy of foreign exchange time series

    NASA Astrophysics Data System (ADS)

    Liu, Li-Zhi; Qian, Xi-Yuan; Lu, Heng-Yao

    2010-11-01

    The correlation of foreign exchange rates in currency markets is investigated based on the empirical data of DKK/USD, NOK/USD, CAD/USD, JPY/USD, KRW/USD, SGD/USD, THB/USD and TWD/USD for a period from 1995 to 2002. Cross-SampEn (cross-sample entropy) method is used to compare the returns of every two exchange rate time series to assess their degree of asynchrony. The calculation method of confidence interval of SampEn is extended and applied to cross-SampEn. The cross-SampEn and its confidence interval for every two of the exchange rate time series in periods 1995-1998 (before the Asian currency crisis) and 1999-2002 (after the Asian currency crisis) are calculated. The results show that the cross-SampEn of every two of these exchange rates becomes higher after the Asian currency crisis, indicating a higher asynchrony between the exchange rates. Especially for Singapore, Thailand and Taiwan, the cross-SampEn values after the Asian currency crisis are significantly higher than those before the Asian currency crisis. Comparison with the correlation coefficient shows that cross-SampEn is superior to describe the correlation between time series.

  3. Jobs in Marketing and Distribution. Job Family Series.

    ERIC Educational Resources Information Center

    Science Research Associates, Inc., Chicago, IL.

    The booklet describes jobs in marketing and distribution in the following chapter classifications: product development, marketing products and property, salesworkers unlimited, selling intangibles (ideas and services), purchasing and distribution, and management and marketing services. For each occupation duties are outlined and working conditions…

  4. Jobs in Marketing and Distribution. Job Family Series.

    ERIC Educational Resources Information Center

    Science Research Associates, Inc., Chicago, IL.

    The booklet describes jobs in marketing and distribution in the following chapter classifications: product development, marketing products and property, salesworkers unlimited, selling intangibles (ideas and services), purchasing and distribution, and management and marketing services. For each occupation duties are outlined and working conditions…

  5. Automated time series forecasting for biosurveillance.

    PubMed

    Burkom, Howard S; Murphy, Sean Patrick; Shmueli, Galit

    2007-09-30

    For robust detection performance, traditional control chart monitoring for biosurveillance is based on input data free of trends, day-of-week effects, and other systematic behaviour. Time series forecasting methods may be used to remove this behaviour by subtracting forecasts from observations to form residuals for algorithmic input. We describe three forecast methods and compare their predictive accuracy on each of 16 authentic syndromic data streams. The methods are (1) a non-adaptive regression model using a long historical baseline, (2) an adaptive regression model with a shorter, sliding baseline, and (3) the Holt-Winters method for generalized exponential smoothing. Criteria for comparing the forecasts were the root-mean-square error, the median absolute per cent error (MedAPE), and the median absolute deviation. The median-based criteria showed best overall performance for the Holt-Winters method. The MedAPE measures over the 16 test series averaged 16.5, 11.6, and 9.7 for the non-adaptive regression, adaptive regression, and Holt-Winters methods, respectively. The non-adaptive regression forecasts were degraded by changes in the data behaviour in the fixed baseline period used to compute model coefficients. The mean-based criterion was less conclusive because of the effects of poor forecasts on a small number of calendar holidays. The Holt-Winters method was also most effective at removing serial autocorrelation, with most 1-day-lag autocorrelation coefficients below 0.15. The forecast methods were compared without tuning them to the behaviour of individual series. We achieved improved predictions with such tuning of the Holt-Winters method, but practical use of such improvements for routine surveillance will require reliable data classification methods.

  6. Cross-correlation dynamics in financial time series

    NASA Astrophysics Data System (ADS)

    Conlon, T.; Ruskin, H. J.; Crane, M.

    2009-03-01

    The dynamics of the equal-time cross-correlation matrix of multivariate financial time series is explored by examination of the eigenvalue spectrum over sliding time windows. Empirical results for the S&P 500 and the Dow Jones Euro Stoxx 50 indices reveal that the dynamics of the small eigenvalues of the cross-correlation matrix, over these time windows, oppose those of the largest eigenvalue. This behaviour is shown to be independent of the size of the time window and the number of stocks examined. A basic one-factor model is then proposed, which captures the main dynamical features of the eigenvalue spectrum of the empirical data. Through the addition of perturbations to the one-factor model, (leading to a ‘market plus sectors’ model), additional sectoral features are added, resulting in an Inverse Participation Ratio comparable to that found for empirical data. By partitioning the eigenvalue time series, we then show that negative index returns, ( drawdowns), are associated with periods where the largest eigenvalue is greatest, while positive index returns, ( drawups), are associated with periods where the largest eigenvalue is smallest. The study of correlation dynamics provides some insight on the collective behaviour of traders with varying strategies.

  7. Periodograms for multiband astronomical time series

    NASA Astrophysics Data System (ADS)

    Ivezic, Z.; VanderPlas, J. T.

    2016-05-01

    We summarize the multiband periodogram, a general extension of the well-known Lomb-Scargle approach for detecting periodic signals in time- domain data developed by VanderPlas & Ivezic (2015). A Python implementation of this method is available on GitHub. The multiband periodogram significantly improves period finding for randomly sampled multiband light curves (e.g., Pan-STARRS, DES, and LSST), and can treat non-uniform sampling and heteroscedastic errors. The light curves in each band are modeled as arbitrary truncated Fourier series, with the period and phase shared across all bands. The key aspect is the use of Tikhonov regularization which drives most of the variability into the so-called base model common to all bands, while fits for individual bands describe residuals relative to the base model and typically require lower-order Fourier series. We use simulated light curves and randomly subsampled SDSS Stripe 82 data to demonstrate the superiority of this method compared to other methods from the literature, and find that this method will be able to efficiently determine the correct period in the majority of LSST's bright RR Lyrae stars with as little as six months of LSST data.

  8. Correcting and combining time series forecasters.

    PubMed

    Firmino, Paulo Renato A; de Mattos Neto, Paulo S G; Ferreira, Tiago A E

    2014-02-01

    Combined forecasters have been in the vanguard of stochastic time series modeling. In this way it has been usual to suppose that each single model generates a residual or prediction error like a white noise. However, mostly because of disturbances not captured by each model, it is yet possible that such supposition is violated. The present paper introduces a two-step method for correcting and combining forecasting models. Firstly, the stochastic process underlying the bias of each predictive model is built according to a recursive ARIMA algorithm in order to achieve a white noise behavior. At each iteration of the algorithm the best ARIMA adjustment is determined according to a given information criterion (e.g. Akaike). Then, in the light of the corrected predictions, it is considered a maximum likelihood combined estimator. Applications involving single ARIMA and artificial neural networks models for Dow Jones Industrial Average Index, S&P500 Index, Google Stock Value, and Nasdaq Index series illustrate the usefulness of the proposed framework.

  9. A New SBUV Ozone Profile Time Series

    NASA Technical Reports Server (NTRS)

    McPeters, Richard

    2011-01-01

    Under NASA's MEaSUREs program for creating long term multi-instrument data sets, our group at Goddard has re-processed ozone profile data from a series of SBUV instruments. We have processed data from the Nimbus 7 SBUV instrument (1979-1990) and data from SBUV/2 instruments on NOAA-9 (1985-1998), NOAA-11 (1989-1995), NOAA-16 (2001-2010), NOAA-17 (2002-2010), and NOAA-18 (2005-2010). This reprocessing uses the version 8 ozone profile algorithm but now uses the Brion, Daumont, and Malicet (BMD) ozone cross sections instead of the Bass and Paur cross sections. The new cross sections have much better resolution, and extended wavelength range, and a more consistent temperature dependence. The re-processing also uses an improved cloud height climatology based on the Raman cloud retrievals of OMI. Finally, the instrument-to-instrument calibration is set using matched scenes so that ozone diurnal variation in the upper stratosphere does not alias into the ozone trands. Where there is no instrument overlap, SAGE and MLS are used to estimate calibration offsets. Preliminary analysis shows a more coherent time series as a function of altitude. The net effect on profile total column ozone is on average an absolute reduction of about one percent. Comparisons with ground-based systems are significantly better at high latitudes.

  10. Modified cross sample entropy and surrogate data analysis method for financial time series

    NASA Astrophysics Data System (ADS)

    Yin, Yi; Shang, Pengjian

    2015-09-01

    For researching multiscale behaviors from the angle of entropy, we propose a modified cross sample entropy (MCSE) and combine surrogate data analysis with it in order to compute entropy differences between original dynamics and surrogate series (MCSDiff). MCSDiff is applied to simulated signals to show accuracy and then employed to US and Chinese stock markets. We illustrate the presence of multiscale behavior in the MCSDiff results and reveal that there are synchrony containing in the original financial time series and they have some intrinsic relations, which are destroyed by surrogate data analysis. Furthermore, the multifractal behaviors of cross-correlations between these financial time series are investigated by multifractal detrended cross-correlation analysis (MF-DCCA) method, since multifractal analysis is a multiscale analysis. We explore the multifractal properties of cross-correlation between these US and Chinese markets and show the distinctiveness of NQCI and HSI among the markets in their own region. It can be concluded that the weaker cross-correlation between US markets gives the evidence for the better inner mechanism in the US stock markets than that of Chinese stock markets. To study the multiscale features and properties of financial time series can provide valuable information for understanding the inner mechanism of financial markets.

  11. Detection of statistical asymmetries in non-stationary sign time series: Analysis of foreign exchange data.

    PubMed

    Yamashita Rios de Sousa, Arthur Matsuo; Takayasu, Hideki; Takayasu, Misako

    2017-01-01

    We extend the concept of statistical symmetry as the invariance of a probability distribution under transformation to analyze binary sign time series data of price difference from the foreign exchange market. We model segments of the sign time series as Markov sequences and apply a local hypothesis test to evaluate the symmetries of independence and time reversion in different periods of the market. For the test, we derive the probability of a binary Markov process to generate a given set of number of symbol pairs. Using such analysis, we could not only segment the time series according the different behaviors but also characterize the segments in terms of statistical symmetries. As a particular result, we find that the foreign exchange market is essentially time reversible but this symmetry is broken when there is a strong external influence.

  12. Detection of statistical asymmetries in non-stationary sign time series: Analysis of foreign exchange data

    PubMed Central

    Takayasu, Hideki; Takayasu, Misako

    2017-01-01

    We extend the concept of statistical symmetry as the invariance of a probability distribution under transformation to analyze binary sign time series data of price difference from the foreign exchange market. We model segments of the sign time series as Markov sequences and apply a local hypothesis test to evaluate the symmetries of independence and time reversion in different periods of the market. For the test, we derive the probability of a binary Markov process to generate a given set of number of symbol pairs. Using such analysis, we could not only segment the time series according the different behaviors but also characterize the segments in terms of statistical symmetries. As a particular result, we find that the foreign exchange market is essentially time reversible but this symmetry is broken when there is a strong external influence. PMID:28542208

  13. Deconvolution of time series in the laboratory

    NASA Astrophysics Data System (ADS)

    John, Thomas; Pietschmann, Dirk; Becker, Volker; Wagner, Christian

    2016-10-01

    In this study, we present two practical applications of the deconvolution of time series in Fourier space. First, we reconstruct a filtered input signal of sound cards that has been heavily distorted by a built-in high-pass filter using a software approach. Using deconvolution, we can partially bypass the filter and extend the dynamic frequency range by two orders of magnitude. Second, we construct required input signals for a mechanical shaker in order to obtain arbitrary acceleration waveforms, referred to as feedforward control. For both situations, experimental and theoretical approaches are discussed to determine the system-dependent frequency response. Moreover, for the shaker, we propose a simple feedback loop as an extension to the feedforward control in order to handle nonlinearities of the system.

  14. Scaling laws from geomagnetic time series

    USGS Publications Warehouse

    Voros, Z.; Kovacs, P.; Juhasz, A.; Kormendi, A.; Green, A.W.

    1998-01-01

    The notion of extended self-similarity (ESS) is applied here for the X - component time series of geomagnetic field fluctuations. Plotting nth order structure functions against the fourth order structure function we show that low-frequency geomagnetic fluctuations up to the order n = 10 follow the same scaling laws as MHD fluctuations in solar wind, however, for higher frequencies (f > l/5[h]) a clear departure from the expected universality is observed for n > 6. ESS does not allow to make an unambiguous statement about the non triviality of scaling laws in "geomagnetic" turbulence. However, we suggest to use higher order moments as promising diagnostic tools for mapping the contributions of various remote magnetospheric sources to local observatory data. Copyright 1998 by the American Geophysical Union.

  15. Using entropy to cut complex time series

    NASA Astrophysics Data System (ADS)

    Mertens, David; Poncela Casasnovas, Julia; Spring, Bonnie; Amaral, L. A. N.

    2013-03-01

    Using techniques from statistical physics, physicists have modeled and analyzed human phenomena varying from academic citation rates to disease spreading to vehicular traffic jams. The last decade's explosion of digital information and the growing ubiquity of smartphones has led to a wealth of human self-reported data. This wealth of data comes at a cost, including non-uniform sampling and statistically significant but physically insignificant correlations. In this talk I present our work using entropy to identify stationary sub-sequences of self-reported human weight from a weight management web site. Our entropic approach-inspired by the infomap network community detection algorithm-is far less biased by rare fluctuations than more traditional time series segmentation techniques. Supported by the Howard Hughes Medical Institute

  16. Geodesic Regression for Image Time-Series

    PubMed Central

    Niethammer, Marc; Huang, Yang; Vialard, François-Xavier

    2014-01-01

    Registration of image-time series has so far been accomplished (i) by concatenating registrations between image pairs, (ii) by solving a joint estimation problem resulting in piecewise geodesic paths between image pairs, (iii) by kernel based local averaging or (iv) by augmenting the joint estimation with additional temporal irregularity penalties. Here, we propose a generative model extending least squares linear regression to the space of images by using a second-order dynamic formulation for image registration. Unlike previous approaches, the formulation allows for a compact representation of an approximation to the full spatio-temporal trajectory through its initial values. The method also opens up possibilities to design image-based approximation algorithms. The resulting optimization problem is solved using an adjoint method. PMID:21995085

  17. Multiscale multifractal multiproperty analysis of financial time series based on Rényi entropy

    NASA Astrophysics Data System (ADS)

    Yujun, Yang; Jianping, Li; Yimei, Yang

    This paper introduces a multiscale multifractal multiproperty analysis based on Rényi entropy (3MPAR) method to analyze short-range and long-range characteristics of financial time series, and then applies this method to the five time series of five properties in four stock indices. Combining the two analysis techniques of Rényi entropy and multifractal detrended fluctuation analysis (MFDFA), the 3MPAR method focuses on the curves of Rényi entropy and generalized Hurst exponent of five properties of four stock time series, which allows us to study more universal and subtle fluctuation characteristics of financial time series. By analyzing the curves of the Rényi entropy and the profiles of the logarithm distribution of MFDFA of five properties of four stock indices, the 3MPAR method shows some fluctuation characteristics of the financial time series and the stock markets. Then, it also shows a richer information of the financial time series by comparing the profile of five properties of four stock indices. In this paper, we not only focus on the multifractality of time series but also the fluctuation characteristics of the financial time series and subtle differences in the time series of different properties. We find that financial time series is far more complex than reported in some research works using one property of time series.

  18. Reconstructing complex networks without time series

    NASA Astrophysics Data System (ADS)

    Ma, Chuang; Zhang, Hai-Feng; Lai, Ying-Cheng

    2017-08-01

    In the real world there are situations where the network dynamics are transient (e.g., various spreading processes) and the final nodal states represent the available data. Can the network topology be reconstructed based on data that are not time series? Assuming that an ensemble of the final nodal states resulting from statistically independent initial triggers (signals) of the spreading dynamics is available, we develop a maximum likelihood estimation-based framework to accurately infer the interaction topology. For dynamical processes that result in a binary final state, the framework enables network reconstruction based solely on the final nodal states. Additional information, such as the first arrival time of each signal at each node, can improve the reconstruction accuracy. For processes with a uniform final state, the first arrival times can be exploited to reconstruct the network. We derive a mathematical theory for our framework and validate its performance and robustness using various combinations of spreading dynamics and real-world network topologies.

  19. PERIODOGRAMS FOR MULTIBAND ASTRONOMICAL TIME SERIES

    SciTech Connect

    VanderPlas, Jacob T.; Ivezic, Željko

    2015-10-10

    This paper introduces the multiband periodogram, a general extension of the well-known Lomb–Scargle approach for detecting periodic signals in time-domain data. In addition to advantages of the Lomb–Scargle method such as treatment of non-uniform sampling and heteroscedastic errors, the multiband periodogram significantly improves period finding for randomly sampled multiband light curves (e.g., Pan-STARRS, DES, and LSST). The light curves in each band are modeled as arbitrary truncated Fourier series, with the period and phase shared across all bands. The key aspect is the use of Tikhonov regularization which drives most of the variability into the so-called base model common to all bands, while fits for individual bands describe residuals relative to the base model and typically require lower-order Fourier series. This decrease in the effective model complexity is the main reason for improved performance. After a pedagogical development of the formalism of least-squares spectral analysis, which motivates the essential features of the multiband model, we use simulated light curves and randomly subsampled SDSS Stripe 82 data to demonstrate the superiority of this method compared to other methods from the literature and find that this method will be able to efficiently determine the correct period in the majority of LSST’s bright RR Lyrae stars with as little as six months of LSST data, a vast improvement over the years of data reported to be required by previous studies. A Python implementation of this method, along with code to fully reproduce the results reported here, is available on GitHub.

  20. Periodograms for Multiband Astronomical Time Series

    NASA Astrophysics Data System (ADS)

    VanderPlas, Jacob T.; Ivezić, Željko

    2015-10-01

    This paper introduces the multiband periodogram, a general extension of the well-known Lomb-Scargle approach for detecting periodic signals in time-domain data. In addition to advantages of the Lomb-Scargle method such as treatment of non-uniform sampling and heteroscedastic errors, the multiband periodogram significantly improves period finding for randomly sampled multiband light curves (e.g., Pan-STARRS, DES, and LSST). The light curves in each band are modeled as arbitrary truncated Fourier series, with the period and phase shared across all bands. The key aspect is the use of Tikhonov regularization which drives most of the variability into the so-called base model common to all bands, while fits for individual bands describe residuals relative to the base model and typically require lower-order Fourier series. This decrease in the effective model complexity is the main reason for improved performance. After a pedagogical development of the formalism of least-squares spectral analysis, which motivates the essential features of the multiband model, we use simulated light curves and randomly subsampled SDSS Stripe 82 data to demonstrate the superiority of this method compared to other methods from the literature and find that this method will be able to efficiently determine the correct period in the majority of LSST’s bright RR Lyrae stars with as little as six months of LSST data, a vast improvement over the years of data reported to be required by previous studies. A Python implementation of this method, along with code to fully reproduce the results reported here, is available on GitHub.

  1. Comparative Analysis on Time Series with Included Structural Break

    NASA Astrophysics Data System (ADS)

    Andreeski, Cvetko J.; Vasant, Pandian

    2009-08-01

    The time series analysis (ARIMA models) is a good approach for identification of time series. But, if we have structural break in the time series, we cannot create only one model of time series. Further more, if we don't have enough data between two structural breaks, it's impossible to create valid time series models for identification of the time series. This paper explores the possibility of identification of the inflation process dynamics via of the system-theoretic, by means of both Box-Jenkins ARIMA methodologies and artificial neural networks.

  2. Extraction of stochastic dynamics from time series.

    PubMed

    Petelczyc, M; Żebrowski, J J; Gac, J M

    2012-07-01

    We present a method for the reconstruction of the dynamics of processes with discrete time. The time series from such a system is described by a stochastic recurrence equation, the continuous form of which is known as the Langevin equation. The deterministic f and stochastic g components of the stochastic equation are directly extracted from the measurement data with the assumption that the noise has finite moments and has a zero mean and a unit variance. No other information about the noise distribution is needed. This is contrary to the usual Langevin description, in which the additional assumption that the noise is Gaussian (δ-correlated) distributed as necessary. We test the method using one dimensional deterministic systems (the tent and logistic maps) with Gaussian and with Gumbel noise. In addition, results for human heart rate variability are presented as an example of the application of our method to real data. The differences between cardiological cases can be observed in the properties of the deterministic part f and of the reconstructed noise distribution.

  3. Fisher information framework for time series modeling

    NASA Astrophysics Data System (ADS)

    Venkatesan, R. C.; Plastino, A.

    2017-08-01

    A robust prediction model invoking the Takens embedding theorem, whose working hypothesis is obtained via an inference procedure based on the minimum Fisher information principle, is presented. The coefficients of the ansatz, central to the working hypothesis satisfy a time independent Schrödinger-like equation in a vector setting. The inference of (i) the probability density function of the coefficients of the working hypothesis and (ii) the establishing of constraint driven pseudo-inverse condition for the modeling phase of the prediction scheme, is made, for the case of normal distributions, with the aid of the quantum mechanical virial theorem. The well-known reciprocity relations and the associated Legendre transform structure for the Fisher information measure (FIM, hereafter)-based model in a vector setting (with least square constraints) are self-consistently derived. These relations are demonstrated to yield an intriguing form of the FIM for the modeling phase, which defines the working hypothesis, solely in terms of the observed data. Cases for prediction employing time series' obtained from the: (i) the Mackey-Glass delay-differential equation, (ii) one ECG signal from the MIT-Beth Israel Deaconess Hospital (MIT-BIH) cardiac arrhythmia database, and (iii) one ECG signal from the Creighton University ventricular tachyarrhythmia database. The ECG samples were obtained from the Physionet online repository. These examples demonstrate the efficiency of the prediction model. Numerical examples for exemplary cases are provided.

  4. Extraction of stochastic dynamics from time series

    NASA Astrophysics Data System (ADS)

    Petelczyc, M.; Żebrowski, J. J.; Gac, J. M.

    2012-07-01

    We present a method for the reconstruction of the dynamics of processes with discrete time. The time series from such a system is described by a stochastic recurrence equation, the continuous form of which is known as the Langevin equation. The deterministic f and stochastic g components of the stochastic equation are directly extracted from the measurement data with the assumption that the noise has finite moments and has a zero mean and a unit variance. No other information about the noise distribution is needed. This is contrary to the usual Langevin description, in which the additional assumption that the noise is Gaussian (δ-correlated) distributed as necessary. We test the method using one dimensional deterministic systems (the tent and logistic maps) with Gaussian and with Gumbel noise. In addition, results for human heart rate variability are presented as an example of the application of our method to real data. The differences between cardiological cases can be observed in the properties of the deterministic part f and of the reconstructed noise distribution.

  5. Timing calibration and spectral cleaning of LOFAR time series data

    NASA Astrophysics Data System (ADS)

    Corstanje, A.; Buitink, S.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Krause, M.; Nelles, A.; Rachen, J. P.; Schellart, P.; Scholten, O.; ter Veen, S.; Thoudam, S.; Trinh, T. N. G.

    2016-05-01

    We describe a method for spectral cleaning and timing calibration of short time series data of the voltage in individual radio interferometer receivers. It makes use of phase differences in fast Fourier transform (FFT) spectra across antenna pairs. For strong, localized terrestrial sources these are stable over time, while being approximately uniform-random for a sum over many sources or for noise. Using only milliseconds-long datasets, the method finds the strongest interfering transmitters, a first-order solution for relative timing calibrations, and faulty data channels. No knowledge of gain response or quiescent noise levels of the receivers is required. With relatively small data volumes, this approach is suitable for use in an online system monitoring setup for interferometric arrays. We have applied the method to our cosmic-ray data collection, a collection of measurements of short pulses from extensive air showers, recorded by the LOFAR radio telescope. Per air shower, we have collected 2 ms of raw time series data for each receiver. The spectral cleaning has a calculated optimal sensitivity corresponding to a power signal-to-noise ratio of 0.08 (or -11 dB) in a spectral window of 25 kHz, for 2 ms of data in 48 antennas. This is well sufficient for our application. Timing calibration across individual antenna pairs has been performed at 0.4 ns precision; for calibration of signal clocks across stations of 48 antennas the precision is 0.1 ns. Monitoring differences in timing calibration per antenna pair over the course of the period 2011 to 2015 shows a precision of 0.08 ns, which is useful for monitoring and correcting drifts in signal path synchronizations. A cross-check method for timing calibration is presented, using a pulse transmitter carried by a drone flying over the array. Timing precision is similar, 0.3 ns, but is limited by transmitter position measurements, while requiring dedicated flights.

  6. Going to the Market. Teacher Edition. Fashion Buying Series.

    ERIC Educational Resources Information Center

    Collins, Cindy

    This teacher's guide presents material for a unit on attending the retail fashion market. Content focuses on previewing merchandise for purchase, factors involved in a major market trip, common terms used when ordering merchandise, and pricing strategies. The guide contains 4 objectives, 6 group learning activities keyed to the objectives, 12…

  7. Rotavirus and adenovirus gastroenteritis: time series analysis.

    PubMed

    Celik, Cem; Gozel, Mustafa Gokhan; Turkay, Hakan; Bakici, Mustafa Zahir; Güven, Ahmet Sami; Elaldi, Nazif

    2015-08-01

    This study investigated the effects of changes in weather conditions (monthly average temperature, monthly minimum temperature, monthly average humidity) on rotavirus and adenovirus gastroenteritis frequency and whether there was a seasonal correlation. Between 2006 and 2012, 4702 fecal samples were taken from patients ≤ 5 years of age with acute gastroenteritis; these samples were analyzed in terms of rotavirus group A and adenovirus serotype 40-41 antigens using time-series and negative binomial regression analysis. Rotavirus antigens were found in 797 samples (17.0%), adenovirus antigens in 113 samples (2.4%), and rotavirus and adenovirus antigens together in 16 samples (0.3%). There was a seasonal change in rotavirus gastroenteritis (P < 0.001), and a 1°C decrease in average temperature increased the ratio of rotavirus cases in those with diarrhea by 0.523%. In addition, compared with data from other years, the number of patients was lower in the first month of 2008 and in the second month of 2012, when the temperature was below -20°C (monthly minimum temperature). There was no statistically significant relationship between adenovirus infection and change in weather conditions. Various factors such as change in weather conditions, as well as the population's sensitivity and associated changes in activity, play a role in the spread of rotavirus infection. © 2015 Japan Pediatric Society.

  8. With string model to time series forecasting

    NASA Astrophysics Data System (ADS)

    Pinčák, Richard; Bartoš, Erik

    2015-10-01

    Overwhelming majority of econometric models applied on a long term basis in the financial forex market do not work sufficiently well. The reason is that transaction costs and arbitrage opportunity are not included, as this does not simulate the real financial markets. Analyses are not conducted on the non equidistant date but rather on the aggregate date, which is also not a real financial case. In this paper, we would like to show a new way how to analyze and, moreover, forecast financial market. We utilize the projections of the real exchange rate dynamics onto the string-like topology in the OANDA market. The latter approach allows us to build the stable prediction models in trading in the financial forex market. The real application of the multi-string structures is provided to demonstrate our ideas for the solution of the problem of the robust portfolio selection. The comparison with the trend following strategies was performed, the stability of the algorithm on the transaction costs for long trade periods was confirmed.

  9. Transmission of linear regression patterns between time series: from relationship in time series to complex networks.

    PubMed

    Gao, Xiangyun; An, Haizhong; Fang, Wei; Huang, Xuan; Li, Huajiao; Zhong, Weiqiong; Ding, Yinghui

    2014-07-01

    The linear regression parameters between two time series can be different under different lengths of observation period. If we study the whole period by the sliding window of a short period, the change of the linear regression parameters is a process of dynamic transmission over time. We tackle fundamental research that presents a simple and efficient computational scheme: a linear regression patterns transmission algorithm, which transforms linear regression patterns into directed and weighted networks. The linear regression patterns (nodes) are defined by the combination of intervals of the linear regression parameters and the results of the significance testing under different sizes of the sliding window. The transmissions between adjacent patterns are defined as edges, and the weights of the edges are the frequency of the transmissions. The major patterns, the distance, and the medium in the process of the transmission can be captured. The statistical results of weighted out-degree and betweenness centrality are mapped on timelines, which shows the features of the distribution of the results. Many measurements in different areas that involve two related time series variables could take advantage of this algorithm to characterize the dynamic relationships between the time series from a new perspective.

  10. Transmission of linear regression patterns between time series: From relationship in time series to complex networks

    NASA Astrophysics Data System (ADS)

    Gao, Xiangyun; An, Haizhong; Fang, Wei; Huang, Xuan; Li, Huajiao; Zhong, Weiqiong; Ding, Yinghui

    2014-07-01

    The linear regression parameters between two time series can be different under different lengths of observation period. If we study the whole period by the sliding window of a short period, the change of the linear regression parameters is a process of dynamic transmission over time. We tackle fundamental research that presents a simple and efficient computational scheme: a linear regression patterns transmission algorithm, which transforms linear regression patterns into directed and weighted networks. The linear regression patterns (nodes) are defined by the combination of intervals of the linear regression parameters and the results of the significance testing under different sizes of the sliding window. The transmissions between adjacent patterns are defined as edges, and the weights of the edges are the frequency of the transmissions. The major patterns, the distance, and the medium in the process of the transmission can be captured. The statistical results of weighted out-degree and betweenness centrality are mapped on timelines, which shows the features of the distribution of the results. Many measurements in different areas that involve two related time series variables could take advantage of this algorithm to characterize the dynamic relationships between the time series from a new perspective.

  11. A Course in Teaching Time Series to Chemical Engineers.

    ERIC Educational Resources Information Center

    Graham, B. P.; Jutan, A.

    1985-01-01

    A one-month graduate course on time series analysis is offered in the department of chemical engineering at the University of Queensland (Australia). Describes the course, which is based on an interactive graphics time series identification and modelling computer package (TSIM). Also describes time-series analysis procedure and the TSIM package.…

  12. Time Series Analysis of Mother-Infant Interaction.

    ERIC Educational Resources Information Center

    Rosenfeld, Howard M.

    A method of studying attachment behavior in infants was devised using time series and time sequence analyses. Time series analysis refers to relationships between events coded over adjacent fixed-time units. Time sequence analysis refers to the distribution of exact times at which particular events happen. Using these techniques, multivariate…

  13. Carbon time series in the Norwegian sea

    NASA Astrophysics Data System (ADS)

    Gislefoss, Jorunn S.; Nydal, Reidar; Slagstad, Dag; Sonninen, Eloni; Holmén, Kim

    1998-02-01

    Depth profiles of carbon parameters were obtained monthly from 1991 to 1994 as the first time series from the weathership station M located in the Norwegian Sea at 66°N 2°E. CO 2 was extracted from acidified seawater by a flushing procedure, with nitrogen as the carrier gas. The pure CO 2 gas was measured using a manometric technique, and the gas was further used for 13C and 14C measurements. The precision of the dissolved inorganic carbon (DIC) was better than ±6‰. Satisfactory agreement was obtained with standard seawater from Scripps Institution of Oceanography. The partial pressure of CO 2 (pCO 2) was measured in the atmosphere and surface water, beginning in October 1991. The most visible seasonal variation in DIC, 13C and pCO 2 was due to the plankton bloom in the upper 50-100 m. Typical values for surface water in the winter were: 2.140±0.012 mmol kg -1 for DIC, 1.00±0.04‰ for δ 13C and 357±15 μatm for pCO 2, and the corresponding values in the summer were as low as 2.04 mmol kg -1, greater than 2.1‰, and as low as 270-300 μatm. The values for deep water are more constant during the year, with DIC values of about 2.17±0.01 mmol kg -1, and δ 13C values between 0.97 and 1.14‰. A simple one-dimensional biological model was applied in order to investigate possible short-term variability in DIC caused by the phytoplankton growth and depth variations of the wind-mixed layer. The simulated seasonal pattern was in reasonable agreement with the observed data, but there were significant temporal variations with shorter time interval than the monthly measurements. As a supplement to the measurements at station M, some representative profiles of DIC, δ 13C, Δ 14C, salinity and temperature from other locations in the Nordic Seas and the North Atlantic Ocean are also presented. The results are also compared with some data obtained ( Δ 14C) by the TTO expedition in 1981 and the GEOSECS expedition in 1972. The carbon profiles reflect the stable deep

  14. Measuring persistence in time series of temperature anomalies

    NASA Astrophysics Data System (ADS)

    Triacca, Umberto; Pasini, Antonello; Attanasio, Alessandro

    2014-11-01

    Studies on persistence are important for the clarification of statistical properties of the analyzed time series and for understanding the dynamics of the systems which create these series. In climatology, the analysis of the autocorrelation function has been the main tool to investigate the persistence of a time series. In this paper, we propose to use a more sophisticated econometric instrument. Using this tool, we obtain an estimate of the persistence in global land and ocean and hemispheric temperature time series.

  15. Noise reduction by recycling dynamically coupled time series.

    PubMed

    Mera, M Eugenia; Morán, Manuel

    2011-12-01

    We say that several scalar time series are dynamically coupled if they record the values of measurements of the state variables of the same smooth dynamical system. We show that much of the information lost due to measurement noise in a target time series can be recovered with a noise reduction algorithm by crossing the time series with another time series with which it is dynamically coupled. The method is particularly useful for reduction of measurement noise in short length time series with high uncertainties.

  16. The scaling of time series size towards detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Gao, Xiaolei; Ren, Liwei; Shang, Pengjian; Feng, Guochen

    2016-06-01

    In this paper, we introduce a modification of detrended fluctuation analysis (DFA), called multivariate DFA (MNDFA) method, based on the scaling of time series size N. In traditional DFA method, we obtained the influence of the sequence segmentation interval s, and it inspires us to propose a new model MNDFA to discuss the scaling of time series size towards DFA. The effectiveness of the procedure is verified by numerical experiments with both artificial and stock returns series. Results show that the proposed MNDFA method contains more significant information of series compared to traditional DFA method. The scaling of time series size has an influence on the auto-correlation (AC) in time series. For certain series, we obtain an exponential relationship, and also calculate the slope through the fitting function. Our analysis and finite-size effect test demonstrate that an appropriate choice of the time series size can avoid unnecessary influences, and also make the testing results more accurate.

  17. Detecting inhomogeneities in pan evaporation time series

    NASA Astrophysics Data System (ADS)

    Kirono, D. G. C.

    2009-04-01

    There is increasingly growing demand for evaporation data for studies of surface water and energy fluxes, especially for studies which address the impacts of global warming. To serve this purpose, a homogeneous evaporation data are necessary. This paper describes the use of two tests for detecting and adjusting discontinuities in Class A pan evaporation time series for 28 stations across Australia, and illustrates the benefit of using corrected records in climate studies. The two tests being the bivariate test of Maronna and Yohai (1978), also known as the Potter method (WMO 2003), and the RHTest of Wang and Feng (2004). Overall, 58 per cent of the inhomogeneities detected by the bivariate test were also identified by the RHTest. The fact that the other 42 per cent of inhomogeneities were not consistently detected is due to different sensitivities of the two methods. Ninety-two per cent of the inhomogeneities detected by the bivariate test are consistent with documented changes that can be strongly associated with the discontinuity. Having identified inhomogeneities, the adjusments were only applied to records which contained inhomogeneities that could be verified as having a non-climatic origin. The benefit of using the original and adjusted pan evaporation records in a climate study were then investigated from two points of view: correlation analyses and trend analysis. As an illustration, the results show that the trend (1970-2004) in the all-stations average was -2.8±1.7 for the original data but only -0.7±1.6 mm/year/year for the adjusted data, demonstrating the importance of screening the data before their use in climate studies. References Maronna, R. and Yohai, V.J. 1978. A bivariate test for the detection of a systematic change in mean. J. Amer. Statis. Assoc., 73, 640-645. Wang, X.L. and Feng, Y. 2004. RHTest User manual. Available from http://cccma.seos.uvic.ca/ETCCDMI/RHTestUserManual.doc WMO. 2003. Guidelines on climate metadata and homogenization

  18. Supervisors & Marketing. Supervising: Technical Aspects of Supervision. The Choice Series #45. A Self Learning Opportunity.

    ERIC Educational Resources Information Center

    Johnson, David W.

    This learning unit on supervisors and marketing is one in the Choice Series, a self-learning development program for supervisors. Purpose stated for the approximately eight-hour-long unit is to enable the supervisor to understand the nature of marketing both to the organization and to the individual in it, understand how customer needs are met by…

  19. To Market, To Market--Careers in the Online Industry. . .Fifth in a Series.

    ERIC Educational Resources Information Center

    Kremin, Michael C.

    1985-01-01

    Reviews demand for marketing personnel in online industry and provides brief descriptions of generic positions which include information on background and experience needed: vice president of marketing, sales manager, sales representative, advertising manager, product manager, marketing research manager, distribution manager, service manager,…

  20. To Market, To Market--Careers in the Online Industry. . .Fifth in a Series.

    ERIC Educational Resources Information Center

    Kremin, Michael C.

    1985-01-01

    Reviews demand for marketing personnel in online industry and provides brief descriptions of generic positions which include information on background and experience needed: vice president of marketing, sales manager, sales representative, advertising manager, product manager, marketing research manager, distribution manager, service manager,…

  1. Apparel and Accessories. Second Edition. Career Competencies in Marketing Series.

    ERIC Educational Resources Information Center

    Winn, Marilyn G.; Lynch, Richard L., Ed.

    This competency-based instructional text focuses on preparing students for apparel industry positions at the career-sustaining and marketing specialist levels. It also includes materials to help students develop the competencies needed for entry-level and managerial positions. The text is divided into four units. Unit 1 contains a chapter…

  2. From time series to complex networks: the visibility graph.

    PubMed

    Lacasa, Lucas; Luque, Bartolo; Ballesteros, Fernando; Luque, Jordi; Nuño, Juan Carlos

    2008-04-01

    In this work we present a simple and fast computational method, the visibility algorithm, that converts a time series into a graph. The constructed graph inherits several properties of the series in its structure. Thereby, periodic series convert into regular graphs, and random series do so into random graphs. Moreover, fractal series convert into scale-free networks, enhancing the fact that power law degree distributions are related to fractality, something highly discussed recently. Some remarkable examples and analytical tools are outlined to test the method's reliability. Many different measures, recently developed in the complex network theory, could by means of this new approach characterize time series from a new point of view.

  3. Detrended fluctuation analysis of multivariate time series

    NASA Astrophysics Data System (ADS)

    Xiong, Hui; Shang, P.

    2017-01-01

    In this work, we generalize the detrended fluctuation analysis (DFA) to the multivariate case, named multivariate DFA (MVDFA). The validity of the proposed MVDFA is illustrated by numerical simulations on synthetic multivariate processes, where the cases that initial data are generated independently from the same system and from different systems as well as the correlated variate from one system are considered. Moreover, the proposed MVDFA works well when applied to the multi-scale analysis of the returns of stock indices in Chinese and US stock markets. Generally, connections between the multivariate system and the individual variate are uncovered, showing the solid performances of MVDFA and the multi-scale MVDFA.

  4. Approximate Entropies for Stochastic Time Series and EKG Time Series of Patients with Epilepsy and Pseudoseizures

    NASA Astrophysics Data System (ADS)

    Vyhnalek, Brian; Zurcher, Ulrich; O'Dwyer, Rebecca; Kaufman, Miron

    2009-10-01

    A wide range of heart rate irregularities have been reported in small studies of patients with temporal lobe epilepsy [TLE]. We hypothesize that patients with TLE display cardiac dysautonomia in either a subclinical or clinical manner. In a small study, we have retrospectively identified (2003-8) two groups of patients from the epilepsy monitoring unit [EMU] at the Cleveland Clinic. No patients were diagnosed with cardiovascular morbidities. The control group consisted of patients with confirmed pseudoseizures and the experimental group had confirmed right temporal lobe epilepsy through a seizure free outcome after temporal lobectomy. We quantified the heart rate variability using the approximate entropy [ApEn]. We found similar values of the ApEn in all three states of consciousness (awake, sleep, and proceeding seizure onset). In the TLE group, there is some evidence for greater variability in the awake than in either the sleep or proceeding seizure onset. Here we present results for mathematically-generated time series: the heart rate fluctuations ξ follow the γ statistics i.e., p(ξ)=γ-1(k) ξ^k exp(-ξ). This probability function has well-known properties and its Shannon entropy can be expressed in terms of the γ-function. The parameter k allows us to generate a family of heart rate time series with different statistics. The ApEn calculated for the generated time series for different values of k mimic the properties found for the TLE and pseudoseizure group. Our results suggest that the ApEn is an effective tool to probe differences in statistics of heart rate fluctuations.

  5. Adequate Sampling of a Chaotic Time Series

    DTIC Science & Technology

    1991-12-01

    Dab values exist. This average value (Dab) assures us not only of better finding a minimum data set that defines convergence in each case, but also...generating a long series. 118 More specifically, although 480,000 points represents the minimum data set required to achieve maximum convergence, we...is a dependence of he minimum data set necessary to produce histogram convergence on the sampling interval that we use, at least for intervals less

  6. Volatility behavior of visibility graph EMD financial time series from Ising interacting system

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Wang, Jun; Fang, Wen

    2015-08-01

    A financial market dynamics model is developed and investigated by stochastic Ising system, where the Ising model is the most popular ferromagnetic model in statistical physics systems. Applying two graph based analysis and multiscale entropy method, we investigate and compare the statistical volatility behavior of return time series and the corresponding IMF series derived from the empirical mode decomposition (EMD) method. And the real stock market indices are considered to be comparatively studied with the simulation data of the proposed model. Further, we find that the degree distribution of visibility graph for the simulation series has the power law tails, and the assortative network exhibits the mixing pattern property. All these features are in agreement with the real market data, the research confirms that the financial model established by the Ising system is reasonable.

  7. Bernstein polynomials for evolutionary algebraic prediction of short time series

    NASA Astrophysics Data System (ADS)

    Lukoseviciute, Kristina; Howard, Daniel; Ragulskis, Minvydas

    2017-07-01

    Short time series prediction technique based on Bernstein polynomials is presented in this paper. Firstly, the straightforward Bernstein polynomial extrapolation scheme is improved by extending the interval of approximation. Secondly, the forecasting scheme is designed in the evolutionary computational setup which is based on the conciliation between the coarseness of the algebraic prediction and the smoothness of the time average prediction. Computational experiments with the test time series suggest that this time series prediction technique could be applicable for various forecasting applications.

  8. The high order dispersion analysis based on first-passage-time probability in financial markets

    NASA Astrophysics Data System (ADS)

    Liu, Chenggong; Shang, Pengjian; Feng, Guochen

    2017-04-01

    The study of first-passage-time (FPT) event about financial time series has gained broad research recently, which can provide reference for risk management and investment. In this paper, a new measurement-high order dispersion (HOD)-is developed based on FPT probability to explore financial time series. The tick-by-tick data of three Chinese stock markets and three American stock markets are investigated. We classify the financial markets successfully through analyzing the scaling properties of FPT probabilities of six stock markets and employing HOD method to compare the differences of FPT decay curves. It can be concluded that long-range correlation, fat-tailed broad probability density function and its coupling with nonlinearity mainly lead to the multifractality of financial time series by applying HOD method. Furthermore, we take the fluctuation function of multifractal detrended fluctuation analysis (MF-DFA) to distinguish markets and get consistent results with HOD method, whereas the HOD method is capable of fractionizing the stock markets effectively in the same region. We convince that such explorations are relevant for a better understanding of the financial market mechanisms.

  9. A free market in telescope time?

    NASA Astrophysics Data System (ADS)

    Etherton, Jason; Steele, Iain A.; Mottram, Christopher J.

    2004-09-01

    As distributed systems are becoming more and more diverse in application there is a growing need for more intelligent resource scheduling. eSTAR Is a geographically distributed network of Grid-enabled telescopes, using grid middleware to provide telescope users with an authentication and authorisation method, allowing secure, remote access to such resources. The eSTAR paradigm is based upon this secure, single sign-on, giving astronomers or their agent proxies direct access to these telescopes. This concept, however, involves the complex issue of how to schedule observations stored within physically distributed media, on geographically distributed resources. This matter is complicated further by the varying degrees of constraints placed upon observations such as timeliness, atmospheric and meteorological conditions, and sky brightness to name a few. This paper discusses a free market approach to this scheduling problem, where astronomers are given credit, instead of time, from their respective TAGs to spend on telescopes as they see fit. This approach will ultimately provide a community-driven schedule, genuine indicators of the worth of specific telescope time and promote a more efficient use of that time, as well as demonstrating a 'survival of the fittest' type selection.

  10. Weighted permutation entropy based on different symbolic approaches for financial time series

    NASA Astrophysics Data System (ADS)

    Yin, Yi; Shang, Pengjian

    2016-02-01

    In this paper, we introduce weighted permutation entropy (WPE) and three different symbolic approaches to investigate the complexities of stock time series containing amplitude-coded information and explore the influence of using different symbolic approaches on obtained WPE results. We employ WPE based on symbolic approaches to the US and Chinese stock markets and make a comparison between the results of US and Chinese stock markets. Three symbolic approaches are able to help the complexity containing in the stock time series by WPE method drop whatever the embedding dimension is. The similarity between these stock markets can be detected by the WPE based on Binary Δ-coding-method, while the difference between them can be revealed by the WPE based on σ-method, Max-min-method. The combinations of the symbolic approaches: σ-method and Max-min-method, and WPE method are capable of reflecting the multiscale structure of complexity by different time delay and analyze the differences between complexities of stock time series in more detail and more accurately. Furthermore, the correlations between stock markets in the same region and the similarities hidden in the S&P500 and DJI, ShangZheng and ShenCheng are uncovered by the comparison of the WPE based on Binary Δ-coding-method of six stock markets.

  11. Is the Market Fair? Series on Public Issues No. 8.

    ERIC Educational Resources Information Center

    Keim, Gerald

    In this booklet, one of a series intended to apply economic principles to major social and political issues of the day, the position is taken that questions of fairness have little meaning when discussing economic issues like prices, wages, and profits. It is argued that one reason for the frequent use of terms like fair and fairness is ignorance…

  12. Stochastic nonlinear time series forecasting using time-delay reservoir computers: performance and universality.

    PubMed

    Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo

    2014-07-01

    Reservoir computing is a recently introduced machine learning paradigm that has already shown excellent performances in the processing of empirical data. We study a particular kind of reservoir computers called time-delay reservoirs that are constructed out of the sampling of the solution of a time-delay differential equation and show their good performance in the forecasting of the conditional covariances associated to multivariate discrete-time nonlinear stochastic processes of VEC-GARCH type as well as in the prediction of factual daily market realized volatilities computed with intraday quotes, using as training input daily log-return series of moderate size. We tackle some problems associated to the lack of task-universality for individually operating reservoirs and propose a solution based on the use of parallel arrays of time-delay reservoirs.

  13. Analysis of Nonstationary Time Series for Biological Rhythms Research.

    PubMed

    Leise, Tanya L

    2017-06-01

    This article is part of a Journal of Biological Rhythms series exploring analysis and statistics topics relevant to researchers in biological rhythms and sleep research. The goal is to provide an overview of the most common issues that arise in the analysis and interpretation of data in these fields. In this article on time series analysis for biological rhythms, we describe some methods for assessing the rhythmic properties of time series, including tests of whether a time series is indeed rhythmic. Because biological rhythms can exhibit significant fluctuations in their period, phase, and amplitude, their analysis may require methods appropriate for nonstationary time series, such as wavelet transforms, which can measure how these rhythmic parameters change over time. We illustrate these methods using simulated and real time series.

  14. A novel weight determination method for time series data aggregation

    NASA Astrophysics Data System (ADS)

    Xu, Paiheng; Zhang, Rong; Deng, Yong

    2017-09-01

    Aggregation in time series is of great importance in time series smoothing, predicting and other time series analysis process, which makes it crucial to address the weights in times series correctly and reasonably. In this paper, a novel method to obtain the weights in time series is proposed, in which we adopt induced ordered weighted aggregation (IOWA) operator and visibility graph averaging (VGA) operator and linearly combine the weights separately generated by the two operator. The IOWA operator is introduced to the weight determination of time series, through which the time decay factor is taken into consideration. The VGA operator is able to generate weights with respect to the degree distribution in the visibility graph constructed from the corresponding time series, which reflects the relative importance of vertices in time series. The proposed method is applied to two practical datasets to illustrate its merits. The aggregation of Construction Cost Index (CCI) demonstrates the ability of proposed method to smooth time series, while the aggregation of The Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) illustrate how proposed method maintain the variation tendency of original data.

  15. A study of stationarity in time series by using wavelet transform

    NASA Astrophysics Data System (ADS)

    Dghais, Amel Abdoullah Ahmed; Ismail, Mohd Tahir

    2014-07-01

    In this work the core objective is to apply discrete wavelet transform (DWT) functions namely Haar, Daubechies, Symmlet, Coiflet and discrete approximation of the meyer wavelets in non-stationary financial time series data from US stock market (DJIA30). The data consists of 2048 daily data of closing index starting from December 17, 2004 until October 23, 2012. From the unit root test the results show that the data is non stationary in the level. In order to study the stationarity of a time series, the autocorrelation function (ACF) is used. Results indicate that, Haar function is the lowest function to obtain noisy series as compared to Daubechies, Symmlet, Coiflet and discrete approximation of the meyer wavelets. In addition, the original data after decomposition by DWT is less noisy series than decomposition by DWT for return time series.

  16. Cracking the Hidden Job Market. Pocket Job Series No. 3.

    ERIC Educational Resources Information Center

    Lindgren, Amy

    This book is the third in a series of six pocket-sized books written for career changers and laid-off workers. Each book is written at a 7th- to 10th-grade reading level and contains examples, hands-on self-discovery exercises, and step-by-step advice for a successful job search. This book identifies steps for finding the unadvertised jobs--80-95…

  17. Foot gait time series estimation based on support vector machine.

    PubMed

    Pant, Jeevan K; Krishnan, Sridhar

    2014-01-01

    A new algorithm for the estimation of stride interval time series from foot gait signals is proposed. The algorithm is based on the detection of beginning of heel strikes in the signal by using the support vector machine. Morphological operations are used to enhance the accuracy of detection. By taking backward differences of the detected beginning of heel strikes, stride interval time series is estimated. Simulation results are presented which shows that the proposed algorithm yields fairly accurate estimation of stride interval time series where estimation error for mean and standard deviation of the time series is of the order of 10(-4).

  18. Using neural networks for dynamic light scattering time series processing

    NASA Astrophysics Data System (ADS)

    Chicea, Dan

    2017-04-01

    A basic experiment to record dynamic light scattering (DLS) time series was assembled using basic components. The DLS time series processing using the Lorentzian function fit was considered as reference. A Neural Network was designed and trained using simulated frequency spectra for spherical particles in the range 0-350 nm, assumed to be scattering centers, and the neural network design and training procedure are described in detail. The neural network output accuracy was tested both on simulated and on experimental time series. The match with the DLS results, considered as reference, was good serving as a proof of concept for using neural networks in fast DLS time series processing.

  19. Trend time-series modeling and forecasting with neural networks.

    PubMed

    Qi, Min; Zhang, G Peter

    2008-05-01

    Despite its great importance, there has been no general consensus on how to model the trends in time-series data. Compared to traditional approaches, neural networks (NNs) have shown some promise in time-series forecasting. This paper investigates how to best model trend time series using NNs. Four different strategies (raw data, raw data with time index, detrending, and differencing) are used to model various trend patterns (linear, nonlinear, deterministic, stochastic, and breaking trend). We find that with NNs differencing often gives meritorious results regardless of the underlying data generating processes (DGPs). This finding is also confirmed by the real gross national product (GNP) series.

  20. Apparatus for statistical time-series analysis of electrical signals

    NASA Technical Reports Server (NTRS)

    Stewart, C. H. (Inventor)

    1973-01-01

    An apparatus for performing statistical time-series analysis of complex electrical signal waveforms, permitting prompt and accurate determination of statistical characteristics of the signal is presented.

  1. gatspy: General tools for Astronomical Time Series in Python

    NASA Astrophysics Data System (ADS)

    VanderPlas, Jake

    2016-10-01

    Gatspy contains efficient, well-documented implementations of several common routines for Astronomical time series analysis, including the Lomb-Scargle periodogram, the Supersmoother method, and others.

  2. Characteristics of the transmission of autoregressive sub-patterns in financial time series.

    PubMed

    Gao, Xiangyun; An, Haizhong; Fang, Wei; Huang, Xuan; Li, Huajiao; Zhong, Weiqiong

    2014-09-05

    There are many types of autoregressive patterns in financial time series, and they form a transmission process. Here, we define autoregressive patterns quantitatively through an econometrical regression model. We present a computational algorithm that sets the autoregressive patterns as nodes and transmissions between patterns as edges, and then converts the transmission process of autoregressive patterns in a time series into a network. We utilised daily Shanghai (securities) composite index time series to study the transmission characteristics of autoregressive patterns. We found statistically significant evidence that the financial market is not random and that there are similar characteristics between parts and whole time series. A few types of autoregressive sub-patterns and transmission patterns drive the oscillations of the financial market. A clustering effect on fluctuations appears in the transmission process, and certain non-major autoregressive sub-patterns have high media capabilities in the financial time series. Different stock indexes exhibit similar characteristics in the transmission of fluctuation information. This work not only proposes a distinctive perspective for analysing financial time series but also provides important information for investors.

  3. Characteristics of the transmission of autoregressive sub-patterns in financial time series

    NASA Astrophysics Data System (ADS)

    Gao, Xiangyun; An, Haizhong; Fang, Wei; Huang, Xuan; Li, Huajiao; Zhong, Weiqiong

    2014-09-01

    There are many types of autoregressive patterns in financial time series, and they form a transmission process. Here, we define autoregressive patterns quantitatively through an econometrical regression model. We present a computational algorithm that sets the autoregressive patterns as nodes and transmissions between patterns as edges, and then converts the transmission process of autoregressive patterns in a time series into a network. We utilised daily Shanghai (securities) composite index time series to study the transmission characteristics of autoregressive patterns. We found statistically significant evidence that the financial market is not random and that there are similar characteristics between parts and whole time series. A few types of autoregressive sub-patterns and transmission patterns drive the oscillations of the financial market. A clustering effect on fluctuations appears in the transmission process, and certain non-major autoregressive sub-patterns have high media capabilities in the financial time series. Different stock indexes exhibit similar characteristics in the transmission of fluctuation information. This work not only proposes a distinctive perspective for analysing financial time series but also provides important information for investors.

  4. Characteristics of the transmission of autoregressive sub-patterns in financial time series

    PubMed Central

    Gao, Xiangyun; An, Haizhong; Fang, Wei; Huang, Xuan; Li, Huajiao; Zhong, Weiqiong

    2014-01-01

    There are many types of autoregressive patterns in financial time series, and they form a transmission process. Here, we define autoregressive patterns quantitatively through an econometrical regression model. We present a computational algorithm that sets the autoregressive patterns as nodes and transmissions between patterns as edges, and then converts the transmission process of autoregressive patterns in a time series into a network. We utilised daily Shanghai (securities) composite index time series to study the transmission characteristics of autoregressive patterns. We found statistically significant evidence that the financial market is not random and that there are similar characteristics between parts and whole time series. A few types of autoregressive sub-patterns and transmission patterns drive the oscillations of the financial market. A clustering effect on fluctuations appears in the transmission process, and certain non-major autoregressive sub-patterns have high media capabilities in the financial time series. Different stock indexes exhibit similar characteristics in the transmission of fluctuation information. This work not only proposes a distinctive perspective for analysing financial time series but also provides important information for investors. PMID:25189200

  5. Permutation approach, high frequency trading and variety of micro patterns in financial time series

    NASA Astrophysics Data System (ADS)

    Aghamohammadi, Cina; Ebrahimian, Mehran; Tahmooresi, Hamed

    2014-11-01

    Permutation approach is suggested as a method to investigate financial time series in micro scales. The method is used to see how high frequency trading in recent years has affected the micro patterns which may be seen in financial time series. Tick to tick exchange rates are considered as examples. It is seen that variety of patterns evolve through time; and that the scale over which the target markets have no dominant patterns, have decreased steadily over time with the emergence of higher frequency trading.

  6. Marketers and Educationalists--Two Communities Divided by Time?

    ERIC Educational Resources Information Center

    Gibbs, Paul

    2008-01-01

    Purpose: In this conceptual discussion paper the author seeks to suggest that marketing as a technology of the market has contributed to the foreshortening of educational horizons within which we act or observe but can only hold for declining durations. To satisfy this demand for more in time, marketing has contributed to the commoditisation of…

  7. Marketers and Educationalists--Two Communities Divided by Time?

    ERIC Educational Resources Information Center

    Gibbs, Paul

    2008-01-01

    Purpose: In this conceptual discussion paper the author seeks to suggest that marketing as a technology of the market has contributed to the foreshortening of educational horizons within which we act or observe but can only hold for declining durations. To satisfy this demand for more in time, marketing has contributed to the commoditisation of…

  8. Interpretable Early Classification of Multivariate Time Series

    ERIC Educational Resources Information Center

    Ghalwash, Mohamed F.

    2013-01-01

    Recent advances in technology have led to an explosion in data collection over time rather than in a single snapshot. For example, microarray technology allows us to measure gene expression levels in different conditions over time. Such temporal data grants the opportunity for data miners to develop algorithms to address domain-related problems,…

  9. Interpretable Early Classification of Multivariate Time Series

    ERIC Educational Resources Information Center

    Ghalwash, Mohamed F.

    2013-01-01

    Recent advances in technology have led to an explosion in data collection over time rather than in a single snapshot. For example, microarray technology allows us to measure gene expression levels in different conditions over time. Such temporal data grants the opportunity for data miners to develop algorithms to address domain-related problems,…

  10. 800 series bumpers for UK/European markets

    SciTech Connect

    Robinson, F.J.

    1987-01-01

    For the launch of the 800 series ARG set out to maintain the pain on line process for plastic bumpers developed for Maestro and Montego, to achieve this, new and exciting problems had to be overcome. A vehicle weight of 1420kg for the highest derivative, a maximum centreline deflection of 15mm front and rear, a profile collapse calculated to absorb energy within 65% of it's cross sectional area and show no damage within the terms of the ECE 42 regulation, ie 4kph centreline and mounting, 2.5kph corner and a perfect colour match combined with the highest quality.

  11. Quantifying complexity of financial short-term time series by composite multiscale entropy measure

    NASA Astrophysics Data System (ADS)

    Niu, Hongli; Wang, Jun

    2015-05-01

    It is significant to study the complexity of financial time series since the financial market is a complex evolved dynamic system. Multiscale entropy is a prevailing method used to quantify the complexity of a time series. Due to its less reliability of entropy estimation for short-term time series at large time scales, a modification method, the composite multiscale entropy, is applied to the financial market. To qualify its effectiveness, its applications in the synthetic white noise and 1 / f noise with different data lengths are reproduced first in the present paper. Then it is introduced for the first time to make a reliability test with two Chinese stock indices. After conducting on short-time return series, the CMSE method shows the advantages in reducing deviations of entropy estimation and demonstrates more stable and reliable results when compared with the conventional MSE algorithm. Finally, the composite multiscale entropy of six important stock indices from the world financial markets is investigated, and some useful and interesting empirical results are obtained.

  12. Simulation of Ground Winds Time Series

    NASA Technical Reports Server (NTRS)

    Adelfang, S. I.

    2008-01-01

    A simulation process has been developed for generation of the longitudinal and lateral components of ground wind atmospheric turbulence as a function of mean wind speed, elevation, temporal frequency range and distance between locations. The distance between locations influences the spectral coherence between the simulated series at adjacent locations. Short distances reduce correlation only at high frequencies; as distances increase correlation is reduced over a wider range of frequencies. The choice of values for the constants d1 and d3 in the PSD model is the subject of work in progress. An improved knowledge of the values for zO as a function of wind direction at the ARES-1 launch pads is necessary for definition of d1. Results of other studies at other locations may be helpful as summarized in Fichtl's recent correspondence. Ideally, further research is needed based on measurements of ground wind turbulence with high resolution anemometers at a number of altitudes at a new KSC tower located closer to the ARES-1 launch pad .The proposed research would be based on turbulence measurements that may be influenced by surface terrain roughness that may be significantly different from roughness prior to 1970 in Fichtl's measurements. Significant improvements in instrumentation, data storage end processing will greatly enhance the capability to model ground wind profiles and ground wind turbulence.

  13. Testing time series irreversibility using complex network methods

    NASA Astrophysics Data System (ADS)

    Donges, Jonathan F.; Donner, Reik V.; Kurths, Jürgen

    2013-04-01

    The absence of time-reversal symmetry is a fundamental property of many nonlinear time series. Here, we propose a new set of statistical tests for time series irreversibility based on standard and horizontal visibility graphs. Specifically, we statistically compare the distributions of time-directed variants of the common complex network measures degree and local clustering coefficient. Our approach does not involve surrogate data and is applicable to relatively short time series. We demonstrate its performance for paradigmatic model systems with known time-reversal properties as well as for picking up signatures of nonlinearity in neuro-physiological data.

  14. Modeling multivariate covariance nonstationary time series and their dependency structure

    SciTech Connect

    Gersch, W.

    1985-08-01

    The parametric modeling of covariance nonstationary time series and the computation of their changing interdependency structure from the fitted model are treated. The nonstationary time series are modeled by a multivariate time varying autoregressive (AR) model. The time evolution of the AR parameters is expressed as linear combinations of discrete Legendre orthogonal polynomial functions of time. The model is fitted by a Householder transformation-AIC order determination, regression subset selection method. The computation of the instantaneous dependence, feedback and causality structure of the time series from the fitted model, is discussed. An example of the modeling and determination of instantaneous causality in a human implanted electrode seizure event EEG is shown.

  15. Common trends in northeast Atlantic squid time series

    NASA Astrophysics Data System (ADS)

    Zuur, A. F.; Pierce, G. J.

    2004-06-01

    In this paper, dynamic factor analysis is used to estimate common trends in time series of squid catch per unit effort in Scottish (UK) waters. Results indicated that time series of most months were related to sea surface temperature measured at Millport (UK) and a few series were related to the NAO index. The DFA methodology identified three common trends in the squid time series not revealed by traditional approaches, which suggest a possible shift in relative abundance of summer- and winter-spawning populations.

  16. Distance measure with improved lower bound for multivariate time series

    NASA Astrophysics Data System (ADS)

    Li, Hailin

    2017-02-01

    Lower bound function is one of the important techniques used to fast search and index time series data. Multivariate time series has two aspects of high dimensionality including the time-based dimension and the variable-based dimension. Due to the influence of variable-based dimension, a novel method is proposed to deal with the lower bound distance computation for multivariate time series. The proposed method like the traditional ones also reduces the dimensionality of time series in its first step and thus does not directly apply the lower bound function on the multivariate time series. The dimensionality reduction is that multivariate time series is reduced to univariate time series denoted as center sequences according to the principle of piecewise aggregate approximation. In addition, an extended lower bound function is designed to obtain good tightness and fast measure the distance between any two center sequences. The experimental results demonstrate that the proposed lower bound function has better tightness and improves the performance of similarity search in multivariate time series datasets.

  17. Horizontal visibility graphs: exact results for random time series.

    PubMed

    Luque, B; Lacasa, L; Ballesteros, F; Luque, J

    2009-10-01

    The visibility algorithm has been recently introduced as a mapping between time series and complex networks. This procedure allows us to apply methods of complex network theory for characterizing time series. In this work we present the horizontal visibility algorithm, a geometrically simpler and analytically solvable version of our former algorithm, focusing on the mapping of random series (series of independent identically distributed random variables). After presenting some properties of the algorithm, we present exact results on the topological properties of graphs associated with random series, namely, the degree distribution, the clustering coefficient, and the mean path length. We show that the horizontal visibility algorithm stands as a simple method to discriminate randomness in time series since any random series maps to a graph with an exponential degree distribution of the shape P(k)=(1/3)(2/3)(k-2), independent of the probability distribution from which the series was generated. Accordingly, visibility graphs with other P(k) are related to nonrandom series. Numerical simulations confirm the accuracy of the theorems for finite series. In a second part, we show that the method is able to distinguish chaotic series from independent and identically distributed (i.i.d.) theory, studying the following situations: (i) noise-free low-dimensional chaotic series, (ii) low-dimensional noisy chaotic series, even in the presence of large amounts of noise, and (iii) high-dimensional chaotic series (coupled map lattice), without needs for additional techniques such as surrogate data or noise reduction methods. Finally, heuristic arguments are given to explain the topological properties of chaotic series, and several sequences that are conjectured to be random are analyzed.

  18. Multiscale structure of time series revealed by the monotony spectrum.

    PubMed

    Vamoş, Călin

    2017-03-01

    Observation of complex systems produces time series with specific dynamics at different time scales. The majority of the existing numerical methods for multiscale analysis first decompose the time series into several simpler components and the multiscale structure is given by the properties of their components. We present a numerical method which describes the multiscale structure of arbitrary time series without decomposing them. It is based on the monotony spectrum defined as the variation of the mean amplitude of the monotonic segments with respect to the mean local time scale during successive averagings of the time series, the local time scales being the durations of the monotonic segments. The maxima of the monotony spectrum indicate the time scales which dominate the variations of the time series. We show that the monotony spectrum can correctly analyze a diversity of artificial time series and can discriminate the existence of deterministic variations at large time scales from the random fluctuations. As an application we analyze the multifractal structure of some hydrological time series.

  19. Multiscale structure of time series revealed by the monotony spectrum

    NASA Astrophysics Data System (ADS)

    Vamoş, Cǎlin

    2017-03-01

    Observation of complex systems produces time series with specific dynamics at different time scales. The majority of the existing numerical methods for multiscale analysis first decompose the time series into several simpler components and the multiscale structure is given by the properties of their components. We present a numerical method which describes the multiscale structure of arbitrary time series without decomposing them. It is based on the monotony spectrum defined as the variation of the mean amplitude of the monotonic segments with respect to the mean local time scale during successive averagings of the time series, the local time scales being the durations of the monotonic segments. The maxima of the monotony spectrum indicate the time scales which dominate the variations of the time series. We show that the monotony spectrum can correctly analyze a diversity of artificial time series and can discriminate the existence of deterministic variations at large time scales from the random fluctuations. As an application we analyze the multifractal structure of some hydrological time series.

  20. Short time-series microarray analysis: Methods and challenges

    PubMed Central

    Wang, Xuewei; Wu, Ming; Li, Zheng; Chan, Christina

    2008-01-01

    The detection and analysis of steady-state gene expression has become routine. Time-series microarrays are of growing interest to systems biologists for deciphering the dynamic nature and complex regulation of biosystems. Most temporal microarray data only contain a limited number of time points, giving rise to short-time-series data, which imposes challenges for traditional methods of extracting meaningful information. To obtain useful information from the wealth of short-time series data requires addressing the problems that arise due to limited sampling. Current efforts have shown promise in improving the analysis of short time-series microarray data, although challenges remain. This commentary addresses recent advances in methods for short-time series analysis including simplification-based approaches and the integration of multi-source information. Nevertheless, further studies and development of computational methods are needed to provide practical solutions to fully exploit the potential of this data. PMID:18605994

  1. Time series analysis of air pollutants in Beirut, Lebanon.

    PubMed

    Farah, Wehbeh; Nakhlé, Myriam Mrad; Abboud, Maher; Annesi-Maesano, Isabella; Zaarour, Rita; Saliba, Nada; Germanos, Georges; Gerard, Jocelyne

    2014-12-01

    This study reports for the first time a time series analysis of daily urban air pollutant levels (CO, NO, NO2, O3, PM10, and SO2) in Beirut, Lebanon. The study examines data obtained between September 2005 and July 2006, and their descriptive analysis shows long-term variations of daily levels of air pollution concentrations. Strong persistence of these daily levels is identified in the time series using an autocorrelation function, except for SO2. Time series of standardized residual values (SRVs) are also calculated to compare fluctuations of the time series with different levels. Time series plots of the SRVs indicate that NO and NO2 had similar temporal fluctuations. However, NO2 and O3 had opposite temporal fluctuations, attributable to weather conditions and the accumulation of vehicular emissions. The effects of both desert dust storms and airborne particulate matter resulting from the Lebanon War in July 2006 are also discernible in the SRV plots.

  2. The Clodia database: a long time series of fishery data from the Adriatic Sea.

    PubMed

    Mazzoldi, Carlotta; Sambo, Andrea; Riginella, Emilio

    2014-01-01

    Long-term time series of species abundances can depict population declines and changes in communities in response to anthropogenic activities, climate changes, alterations of trophic relationships. Here we present a database of historical marine fishery landing data, covering a remarkably long time series (1945-2013) and referring to one of the most exploited areas of the Mediterranean Sea, the Adriatic Sea. The database includes two time series of landing data, 1945-2013 and 1997-2013, from the official statistics of the fish market of Chioggia, where the major fishing fleet of the area operates. Comparisons between the landing data of the database and landing data from other fisheries or data from scientific surveys support the reliability of the time series in depicting changes in species abundances. The database is expected to be used by fishery biologists and ecologists interested in depicting and understanding temporal variations in species abundances and community composition, in relation to environmental and anthropogenic factors.

  3. Time scale defined by the fractal structure of the price fluctuations in foreign exchange markets

    NASA Astrophysics Data System (ADS)

    Kumagai, Yoshiaki

    2010-04-01

    In this contribution, a new time scale named C-fluctuation time is defined by price fluctuations observed at a given resolution. The intraday fractal structures and the relations of the three time scales: real time (physical time), tick time and C-fluctuation time, in foreign exchange markets are analyzed. The data set used is trading prices of foreign exchange rates; US dollar (USD)/Japanese yen (JPY), USD/Euro (EUR), and EUR/JPY. The accuracy of the data is one minute and data within a minute are recorded in order of transaction. The series of instantaneous velocity of C-fluctuation time flowing are exponentially distributed for small C when they are measured by real time and for tiny C when they are measured by tick time. When the market is volatile, for larger C, the series of instantaneous velocity are exponentially distributed.

  4. Cleveland Clinic television series enhances branding in active market.

    PubMed

    Rees, T

    2001-01-01

    "Medical Miracles" premiered April 26. It is an information-packed series of programs showcasing The Cleveland Clinic's advanced medical practices. The Cleveland Clinic teamed with local NBC-affiliate, WKYC to develop half-hour shows on topics including neuro-sciences, orthopedics, eye, heart, pediatrics and cancer. As of this writing, three of the half-hour shows already have aired. They will resume in September, October and November, following a summer break. The collaboration is a healthy prospect all the way around. For Cleveland Clinic, it provides highly credible visibility in a competitive marketplace. And, according to WKYC president and general manager, Brooke Spectorsky, " Medical news and information is a high priority among our viewers."

  5. Small Sample Properties of Bayesian Multivariate Autoregressive Time Series Models

    ERIC Educational Resources Information Center

    Price, Larry R.

    2012-01-01

    The aim of this study was to compare the small sample (N = 1, 3, 5, 10, 15) performance of a Bayesian multivariate vector autoregressive (BVAR-SEM) time series model relative to frequentist power and parameter estimation bias. A multivariate autoregressive model was developed based on correlated autoregressive time series vectors of varying…

  6. The Prediction of Teacher Turnover Employing Time Series Analysis.

    ERIC Educational Resources Information Center

    Costa, Crist H.

    The purpose of this study was to combine knowledge of teacher demographic data with time-series forecasting methods to predict teacher turnover. Moving averages and exponential smoothing were used to forecast discrete time series. The study used data collected from the 22 largest school districts in Iowa, designated as FACT schools. Predictions…

  7. Nonlinear parametric model for Granger causality of time series

    NASA Astrophysics Data System (ADS)

    Marinazzo, Daniele; Pellicoro, Mario; Stramaglia, Sebastiano

    2006-06-01

    The notion of Granger causality between two time series examines if the prediction of one series could be improved by incorporating information of the other. In particular, if the prediction error of the first time series is reduced by including measurements from the second time series, then the second time series is said to have a causal influence on the first one. We propose a radial basis function approach to nonlinear Granger causality. The proposed model is not constrained to be additive in variables from the two time series and can approximate any function of these variables, still being suitable to evaluate causality. Usefulness of this measure of causality is shown in two applications. In the first application, a physiological one, we consider time series of heart rate and blood pressure in congestive heart failure patients and patients affected by sepsis: we find that sepsis patients, unlike congestive heart failure patients, show symmetric causal relationships between the two time series. In the second application, we consider the feedback loop in a model of excitatory and inhibitory neurons: we find that in this system causality measures the combined influence of couplings and membrane time constants.

  8. Measurements of spatial population synchrony: influence of time series transformations.

    PubMed

    Chevalier, Mathieu; Laffaille, Pascal; Ferdy, Jean-Baptiste; Grenouillet, Gaël

    2015-09-01

    Two mechanisms have been proposed to explain spatial population synchrony: dispersal among populations, and the spatial correlation of density-independent factors (the "Moran effect"). To identify which of these two mechanisms is driving spatial population synchrony, time series transformations (TSTs) of abundance data have been used to remove the signature of one mechanism, and highlight the effect of the other. However, several issues with TSTs remain, and to date no consensus has emerged about how population time series should be handled in synchrony studies. Here, by using 3131 time series involving 34 fish species found in French rivers, we computed several metrics commonly used in synchrony studies to determine whether a large-scale climatic factor (temperature) influenced fish population dynamics at the regional scale, and to test the effect of three commonly used TSTs (detrending, prewhitening and a combination of both) on these metrics. We also tested whether the influence of TSTs on time series and population synchrony levels was related to the features of the time series using both empirical and simulated time series. For several species, and regardless of the TST used, we evidenced a Moran effect on freshwater fish populations. However, these results were globally biased downward by TSTs which reduced our ability to detect significant signals. Depending on the species and the features of the time series, we found that TSTs could lead to contradictory results, regardless of the metric considered. Finally, we suggest guidelines on how population time series should be processed in synchrony studies.

  9. A Computer Evolution in Teaching Undergraduate Time Series

    ERIC Educational Resources Information Center

    Hodgess, Erin M.

    2004-01-01

    In teaching undergraduate time series courses, we have used a mixture of various statistical packages. We have finally been able to teach all of the applied concepts within one statistical package; R. This article describes the process that we use to conduct a thorough analysis of a time series. An example with a data set is provided. We compare…

  10. Small Sample Properties of Bayesian Multivariate Autoregressive Time Series Models

    ERIC Educational Resources Information Center

    Price, Larry R.

    2012-01-01

    The aim of this study was to compare the small sample (N = 1, 3, 5, 10, 15) performance of a Bayesian multivariate vector autoregressive (BVAR-SEM) time series model relative to frequentist power and parameter estimation bias. A multivariate autoregressive model was developed based on correlated autoregressive time series vectors of varying…

  11. Transition Icons for Time Series Visualization and Exploratory Analysis.

    PubMed

    Nickerson, Paul; Baharloo, Raheleh; Wanigatunga, Amal A; Manini, Todd D; Tighe, Patrick J; Rashidi, Parisa

    2017-05-16

    The modern healthcare landscape has seen the rapid emergence of techniques and devices which temporally monitor and record physiological signals. The prevalence of time series data within the healthcare field necessitates the development of methods which can analyze the data in order to draw meaningful conclusions. Time series behavior is notoriously difficult to intuitively understand due to its intrinsic high-dimensionality, which is compounded in the case of analyzing groups of time series collected from different patients. Our framework, which we call Transition Icons, renders common patterns in a visual format useful for understanding the shared behavior within groups of time series. Transition Icons are adept at detecting and displaying subtle differences and similarities e.g. between measurements taken from patients receiving different treatment strategies or stratified by demographics. We introduce various methods which collectively allow for exploratory analysis of groups of time series, while being free of distribution assumptions and including simple heuristics for parameter determination. Our technique extracts discrete transition patterns from Symbolic Aggregate approXimation (SAX) representations, and compiles transition frequencies into a Bag of Patterns (BoP) constructed for each group. These transition frequencies are normalized and aligned in icon form to intuitively display the underlying patterns. We demonstrate the Transition Icon technique for two time series data sets - postoperative pain scores, and hip-worn accelerometer activity counts. We believe Transition Icons can be an important tool for researchers approaching time series data, as they give rich and intuitive information about collective time series behaviors.

  12. Improved singular spectrum analysis for time series with missing data

    NASA Astrophysics Data System (ADS)

    Shen, Y.; Peng, F.; Li, B.

    2015-07-01

    Singular spectrum analysis (SSA) is a powerful technique for time series analysis. Based on the property that the original time series can be reproduced from its principal components, this contribution develops an improved SSA (ISSA) for processing the incomplete time series and the modified SSA (SSAM) of Schoellhamer (2001) is its special case. The approach is evaluated with the synthetic and real incomplete time series data of suspended-sediment concentration from San Francisco Bay. The result from the synthetic time series with missing data shows that the relative errors of the principal components reconstructed by ISSA are much smaller than those reconstructed by SSAM. Moreover, when the percentage of the missing data over the whole time series reaches 60 %, the improvements of relative errors are up to 19.64, 41.34, 23.27 and 50.30 % for the first four principal components, respectively. Both the mean absolute error and mean root mean squared error of the reconstructed time series by ISSA are also smaller than those by SSAM. The respective improvements are 34.45 and 33.91 % when the missing data accounts for 60 %. The results from real incomplete time series also show that the standard deviation (SD) derived by ISSA is 12.27 mg L-1, smaller than the 13.48 mg L-1 derived by SSAM.

  13. Improved singular spectrum analysis for time series with missing data

    NASA Astrophysics Data System (ADS)

    Shen, Y.; Peng, F.; Li, B.

    2014-12-01

    Singular spectrum analysis (SSA) is a powerful technique for time series analysis. Based on the property that the original time series can be reproduced from its principal components, this contribution will develop an improved SSA (ISSA) for processing the incomplete time series and the modified SSA (SSAM) of Schoellhamer (2001) is its special case. The approach was evaluated with the synthetic and real incomplete time series data of suspended-sediment concentration from San Francisco Bay. The result from the synthetic time series with missing data shows that the relative errors of the principal components reconstructed by ISSA are much smaller than those reconstructed by SSAM. Moreover, when the percentage of the missing data over the whole time series reaches 60%, the improvements of relative errors are up to 19.64, 41.34, 23.27 and 50.30% for the first four principal components, respectively. Besides, both the mean absolute errors and mean root mean squared errors of the reconstructed time series by ISSA are also much smaller than those by SSAM. The respective improvements are 34.45 and 33.91% when the missing data accounts for 60%. The results from real incomplete time series also show that the SD derived by ISSA is 12.27 mg L-1, smaller than 13.48 mg L-1 derived by SSAM.

  14. Investigation on gait time series by means of factorial moments

    NASA Astrophysics Data System (ADS)

    Yang, Huijie; Zhao, Fangcui; Zhuo, Yizhong; Wu, Xizhen; Li, Zhuxia

    2002-09-01

    By means of factorial moments (FM), the fractal structures embedded in gait time series are investigated. Intermittency is found in records for healthy objects. And this kind of intermittency is much sensitive to disease or outside influences. It is found that FM is an effective tool to deal with this kind of time series.

  15. Using Time-Series Regression to Predict Academic Library Circulations.

    ERIC Educational Resources Information Center

    Brooks, Terrence A.

    1984-01-01

    Four methods were used to forecast monthly circulation totals in 15 midwestern academic libraries: dummy time-series regression, lagged time-series regression, simple average (straight-line forecasting), monthly average (naive forecasting). In tests of forecasting accuracy, dummy regression method and monthly mean method exhibited smallest average…

  16. Time Series Econometrics for the 21st Century

    ERIC Educational Resources Information Center

    Hansen, Bruce E.

    2017-01-01

    The field of econometrics largely started with time series analysis because many early datasets were time-series macroeconomic data. As the field developed, more cross-sectional and longitudinal datasets were collected, which today dominate the majority of academic empirical research. In nonacademic (private sector, central bank, and governmental)…

  17. Using Time-Series Regression to Predict Academic Library Circulations.

    ERIC Educational Resources Information Center

    Brooks, Terrence A.

    1984-01-01

    Four methods were used to forecast monthly circulation totals in 15 midwestern academic libraries: dummy time-series regression, lagged time-series regression, simple average (straight-line forecasting), monthly average (naive forecasting). In tests of forecasting accuracy, dummy regression method and monthly mean method exhibited smallest average…

  18. Time Series Model Identification by Estimating Information, Memory, and Quantiles.

    DTIC Science & Technology

    1983-07-01

    G. J. (1982) Determining the degree of differencing for time series via the log spectrum. Journal of Time Series Analysis, 3, 177-183. Mandelbrot , B... Mandelbrot , B. (1982) The Fractal Geometry of Nature, Freeman: San Francisco. Rosenblatt, M. (1981) Limit theorems for Fourier transforms of

  19. A Computer Evolution in Teaching Undergraduate Time Series

    ERIC Educational Resources Information Center

    Hodgess, Erin M.

    2004-01-01

    In teaching undergraduate time series courses, we have used a mixture of various statistical packages. We have finally been able to teach all of the applied concepts within one statistical package; R. This article describes the process that we use to conduct a thorough analysis of a time series. An example with a data set is provided. We compare…

  20. Financial time series analysis based on effective phase transfer entropy

    NASA Astrophysics Data System (ADS)

    Yang, Pengbo; Shang, Pengjian; Lin, Aijing

    2017-02-01

    Transfer entropy is a powerful technique which is able to quantify the impact of one dynamic system on another system. In this paper, we propose the effective phase transfer entropy method based on the transfer entropy method. We use simulated data to test the performance of this method, and the experimental results confirm that the proposed approach is capable of detecting the information transfer between the systems. We also explore the relationship between effective phase transfer entropy and some variables, such as data size, coupling strength and noise. The effective phase transfer entropy is positively correlated with the data size and the coupling strength. Even in the presence of a large amount of noise, it can detect the information transfer between systems, and it is very robust to noise. Moreover, this measure is indeed able to accurately estimate the information flow between systems compared with phase transfer entropy. In order to reflect the application of this method in practice, we apply this method to financial time series and gain new insight into the interactions between systems. It is demonstrated that the effective phase transfer entropy can be used to detect some economic fluctuations in the financial market. To summarize, the effective phase transfer entropy method is a very efficient tool to estimate the information flow between systems.

  1. Time Series Analysis Programs for Stratigraphic Data,

    DTIC Science & Technology

    1984-07-01

    species of planktonic foraminifers with changing relative abundances in the same core will show apparent offsets in the timing of events due to mixing...isotope carrier ( foraminifer species) as described in Hutson (1980). The user is asked for input file- names for isotopes, abundances and the mixing...complicated driver program that attempts to remove stratigraphic offset between two stable isotope signals from different foraminifer species in a single core

  2. Time series diagnosis of tree hydraulic characteristics.

    PubMed

    Phillips, Nathan G; Oren, Ram; Licata, Julian; Linder, Sune

    2004-08-01

    An in vivo method for diagnosing hydraulic characteristics of branches and whole trees is described. The method imposes short-lived perturbations of transpiration and traces the propagation of the hydraulic response through trees. The water uptake response contains the integrated signature of hydraulic resistance and capacitance within trees. The method produces large signal to noise ratios for analysis, but does not cause damage or destruction to tree stems or branches. Based on results with two conifer tree species, we show that the method allows for the simple parameterization of bulk hydraulic resistance and capacitance of trees. Bulk tree parameterization of resistance and capacitance predicted the overall diel shape of water uptake, but did not predict the overshoot water uptake response in trees to shorter-term variations in transpiration, created by step changes in transpiration rate. Stomatal dynamics likely complicated the use of simple resistance-capacitance models of tree water transport on these short time scales. The results provide insight into dominant hydraulic and physiological factors controlling tree water flux on varying time scales, and allow for the practical assessment of necessary tree hydraulic model complexity in relation to the time step of soil- vegetation-atmosphere transport models.

  3. Time Series Analysis of JEPX Spot Price with the Box-Jenkins Method

    NASA Astrophysics Data System (ADS)

    Nishikawa, Hiroshi

    Following the examples of other countries, in April 2005 Japan launched wholesale electric power exchange operations as a primary item of system reform in line with electric liberalization. Only two years have passed since the initiation of these operations. However, in the summer of 2005, the surge in market prices was evident, which suggested that certain measures should be taken to confront potential market risks. Establishing a useful system for forecasting market prices through the modeling of price fluctuations in the wholesale electric market became essential. Currently, various price models are being proposed. Taking both the limited amount of data and the model's purpose into consideration, this study adopted the univariate time series model. We conducted a time series analysis on the open price indexes in the JEPX spot market with the Box-Jenkins method. Since a seven-day cycle can be observed in the data, we adopted the seasonal ARIMA model. In accordance with the procedures of the Box-Jenkins method, we determined the degree of the model's polynomial using the autocorrelation and partial autocorrelation of the data and estimated the parameters of the model with the maximum likelihood method. We conducted a forecast on next day JEPX spot market prices with this time series model and examined its validity and utility as a forecasting tool. Price forecasts made with this model require only a small amount of data and will save substantial analysis work. Consequently, this method is expected to be widely used by market participants as the reference data for their bid pricing.

  4. Time Series of North Pacific Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Dehn, J.; Worden, A. K.; Webley, P. W.

    2011-12-01

    The record of volcanic eruptions was gathered from the 1986 eruption of Augustine Volcano to present for Alaska, Kamchatka and the Kuriles Islands. In this time over 400 ash producing eruptions were noted, and many more events that produced some other activity, e.g. lava, lahar, small explosion, seismic crisis. This represents a minimum for the volcanic activity in this region. It is thought that the records for Alaska are complete for this time period, but it is possible that activity in the Kuriles and Kamchatka could have been overlooked, particularly smaller events. For the Alaska region, 19 different volcanoes have been active in this time. Mt. Cleveland shows the most activity over the time period (40 % likely to have activity in a 3 month period), followed closely by Pavlof (34% likely)volcano. In Kamchatka only 7 volcanoes have been active, Shiveluch is the most active (83% likely) followed by Bezymianny and Kliuchevskoi volcanoes (tied at 60%). The Kuriles only has had 4 active volcanoes, and only 6 known eruptions. Overall this region is one of the most active in the world, in any 3 month period there is a 77% likelihood of volcano activity. For well instrumented volcanoes, the majority of activity is preceded by significant seismicity. For just over half of the events, explosive activity is preceded by thermal signals in infrared satellite data. Rarely (only about 5% of the time) is a stand alone thermal signal not followed within 3 months by an explosive eruption. For remaining events where an ash plume begins the activity, over 90% of the cases show a thermal signal the eruption. The volcanoes with the most activity are the least likely to produce large ash plumes. Conversely the volcanoes that erupt rarely often begin with larger ash producing events. Though there appears to be a recurrent progression of volcanic activity down the chain from east to west, this may be an artifact of several independent systems, each working at their own rate, that

  5. Scale Invariance in Rain Time Series

    NASA Astrophysics Data System (ADS)

    Deluca, A.; Corral, A.

    2009-09-01

    In the last few years there have been pieces of evidence that rain events can be considered analogous to other nonequilibrium relaxation processes in Nature such as earthquakes, solar flares and avalanches. In this work we compare the probability densities of rain event size, duration, and recurrence times (i.e., drought periods) between one Mediterranean site and different sites worldwide. We test the existence of scale invariance in these distributions and the possibility of a universal scaling exponent, despite the different climatic characteristics of the different places.

  6. Sunspot Time Series: Passive and Active Intervals

    NASA Astrophysics Data System (ADS)

    Zięba, S.; Nieckarz, Z.

    2014-07-01

    Solar activity slowly and irregularly decreases from the first spotless day (FSD) in the declining phase of the old sunspot cycle and systematically, but also in an irregular way, increases to the new cycle maximum after the last spotless day (LSD). The time interval between the first and the last spotless day can be called the passive interval (PI), while the time interval from the last spotless day to the first one after the new cycle maximum is the related active interval (AI). Minima of solar cycles are inside PIs, while maxima are inside AIs. In this article, we study the properties of passive and active intervals to determine the relation between them. We have found that some properties of PIs, and related AIs, differ significantly between two group of solar cycles; this has allowed us to classify Cycles 8 - 15 as passive cycles, and Cycles 17 - 23 as active ones. We conclude that the solar activity in the PI declining phase (a descending phase of the previous cycle) determines the strength of the approaching maximum in the case of active cycles, while the activity of the PI rising phase (a phase of the ongoing cycle early growth) determines the strength of passive cycles. This can have implications for solar dynamo models. Our approach indicates the important role of solar activity during the declining and the rising phases of the solar-cycle minimum.

  7. Comparison of New and Old Sunspot Number Time Series

    NASA Astrophysics Data System (ADS)

    Cliver, E. W.

    2016-11-01

    Four new sunspot number time series have been published in this Topical Issue: a backbone-based group number in Svalgaard and Schatten ( Solar Phys., 2016; referred to here as SS, 1610 - present), a group number series in Usoskin et al. ( Solar Phys., 2016; UEA, 1749 - present) that employs active day fractions from which it derives an observational threshold in group spot area as a measure of observer merit, a provisional group number series in Cliver and Ling ( Solar Phys., 2016; CL, 1841 - 1976) that removed flaws in the Hoyt and Schatten ( Solar Phys. 179, 189, 1998a; 181, 491, 1998b) normalization scheme for the original relative group sunspot number (RG, 1610 - 1995), and a corrected Wolf (international, RI) number in Clette and Lefèvre ( Solar Phys., 2016; SN, 1700 - present). Despite quite different construction methods, the four new series agree well after about 1900. Before 1900, however, the UEA time series is lower than SS, CL, and SN, particularly so before about 1885. Overall, the UEA series most closely resembles the original RG series. Comparison of the UEA and SS series with a new solar wind B time series (Owens et al. in J. Geophys. Res., 2016; 1845 - present) indicates that the UEA time series is too low before 1900. We point out incongruities in the Usoskin et al. ( Solar Phys., 2016) observer normalization scheme and present evidence that this method under-estimates group counts before 1900. In general, a correction factor time series, obtained by dividing an annual group count series by the corresponding yearly averages of raw group counts for all observers, can be used to assess the reliability of new sunspot number reconstructions.

  8. Inference on periodicity of circadian time series

    PubMed Central

    Costa, Maria J.; Finkenstädt, Bärbel; Roche, Véronique; Lévi, Francis; Gould, Peter D.; Foreman, Julia; Halliday, Karen; Hall, Anthony; Rand, David A.

    2013-01-01

    Estimation of the period length of time-course data from cyclical biological processes, such as those driven by the circadian pacemaker, is crucial for inferring the properties of the biological clock found in many living organisms. We propose a methodology for period estimation based on spectrum resampling (SR) techniques. Simulation studies show that SR is superior and more robust to non-sinusoidal and noisy cycles than a currently used routine based on Fourier approximations. In addition, a simple fit to the oscillations using linear least squares is available, together with a non-parametric test for detecting changes in period length which allows for period estimates with different variances, as frequently encountered in practice. The proposed methods are motivated by and applied to various data examples from chronobiology. PMID:23743206

  9. High performance biomedical time series indexes using salient segmentation.

    PubMed

    Woodbridge, Jonathan; Mortazavi, Bobak; Bui, Alex A T; Sarrafzadeh, Majid

    2012-01-01

    The advent of remote and wearable medical sensing has created a dire need for efficient medical time series databases. Wearable medical sensing devices provide continuous patient monitoring by various types of sensors and have the potential to create massive amounts of data. Therefore, time series databases must utilize highly optimized indexes in order to efficiently search and analyze stored data. This paper presents a highly efficient technique for indexing medical time series signals using Locality Sensitive Hashing (LSH). Unlike previous work, only salient (or interesting) segments are inserted into the index. This technique reduces search times by up to 95% while yielding near identical search results.

  10. Detecting unstable periodic orbits from transient chaotic time series

    PubMed

    Dhamala; Lai; Kostelich

    2000-06-01

    We address the detection of unstable periodic orbits from experimentally measured transient chaotic time series. In particular, we examine recurrence times of trajectories in the vector space reconstructed from an ensemble of such time series. Numerical experiments demonstrate that this strategy can yield periodic orbits of low periods even when noise is present. We analyze the probability of finding periodic orbits from transient chaotic time series and derive a scaling law for this probability. The scaling law implies that unstable periodic orbits of high periods are practically undetectable from transient chaos.

  11. Characterizing time series: when Granger causality triggers complex networks

    NASA Astrophysics Data System (ADS)

    Ge, Tian; Cui, Yindong; Lin, Wei; Kurths, Jürgen; Liu, Chong

    2012-08-01

    In this paper, we propose a new approach to characterize time series with noise perturbations in both the time and frequency domains by combining Granger causality and complex networks. We construct directed and weighted complex networks from time series and use representative network measures to describe their physical and topological properties. Through analyzing the typical dynamical behaviors of some physical models and the MIT-BIHMassachusetts Institute of Technology-Beth Israel Hospital. human electrocardiogram data sets, we show that the proposed approach is able to capture and characterize various dynamics and has much potential for analyzing real-world time series of rather short length.

  12. From time series to complex networks: The visibility graph

    PubMed Central

    Lacasa, Lucas; Luque, Bartolo; Ballesteros, Fernando; Luque, Jordi; Nuño, Juan Carlos

    2008-01-01

    In this work we present a simple and fast computational method, the visibility algorithm, that converts a time series into a graph. The constructed graph inherits several properties of the series in its structure. Thereby, periodic series convert into regular graphs, and random series do so into random graphs. Moreover, fractal series convert into scale-free networks, enhancing the fact that power law degree distributions are related to fractality, something highly discussed recently. Some remarkable examples and analytical tools are outlined to test the method's reliability. Many different measures, recently developed in the complex network theory, could by means of this new approach characterize time series from a new point of view. PMID:18362361

  13. Detecting and visualizing structural changes in groundwater head time series

    NASA Astrophysics Data System (ADS)

    van Geer, Frans

    2013-04-01

    Since the fifties of the past century the dynamic behavior of the groundwater head has been monitored at many locations throughout the Netherlands and elsewhere. The data base of the Geological Survey of the Netherlands contains over 30,000 groundwater time series. For many water management purposes characteristics of the dynamic behavior are required, such as average, median, percentile etc.. These characteristics are estimated from the time series. In principle, the longer the time series, the more reliable the estimate. However, due to natural as well as man induced changes, the characteristics of a long time series are often changing in time as well. For water management it is important to be able to distinguish extreme values as part of the 'normal' pattern from structural changes in the groundwater regime. Whether or not structural changes are present in the time series can't be decided completely objective. Choices have to be made concerning the length of the period and the statistical parameters. Here a method is proposed to visualize the probability of structural changes in the time series using well known basic statistical tests. The visualization method is based on the mean values and standard deviation in a moving window. Apart from several characteristics that are calculated for each period separately, all pairs of two periods are compared and the difference is statistically tested. The results of these well known tests are combined in a visualization to supply to the user comprehensive information to examine structural changes in time series.

  14. Sensor-Generated Time Series Events: A Definition Language

    PubMed Central

    Anguera, Aurea; Lara, Juan A.; Lizcano, David; Martínez, Maria Aurora; Pazos, Juan

    2012-01-01

    There are now a great many domains where information is recorded by sensors over a limited time period or on a permanent basis. This data flow leads to sequences of data known as time series. In many domains, like seismography or medicine, time series analysis focuses on particular regions of interest, known as events, whereas the remainder of the time series contains hardly any useful information. In these domains, there is a need for mechanisms to identify and locate such events. In this paper, we propose an events definition language that is general enough to be used to easily and naturally define events in time series recorded by sensors in any domain. The proposed language has been applied to the definition of time series events generated within the branch of medicine dealing with balance-related functions in human beings. A device, called posturograph, is used to study balance-related functions. The platform has four sensors that record the pressure intensity being exerted on the platform, generating four interrelated time series. As opposed to the existing ad hoc proposals, the results confirm that the proposed language is valid, that is generally applicable and accurate, for identifying the events contained in the time series.

  15. Automated analysis of brachial ultrasound time series

    NASA Astrophysics Data System (ADS)

    Liang, Weidong; Browning, Roger L.; Lauer, Ronald M.; Sonka, Milan

    1998-07-01

    Atherosclerosis begins in childhood with the accumulation of lipid in the intima of arteries to form fatty streaks, advances through adult life when occlusive vascular disease may result in coronary heart disease, stroke and peripheral vascular disease. Non-invasive B-mode ultrasound has been found useful in studying risk factors in the symptom-free population. Large amount of data is acquired from continuous imaging of the vessels in a large study population. A high quality brachial vessel diameter measurement method is necessary such that accurate diameters can be measured consistently in all frames in a sequence, across different observers. Though human expert has the advantage over automated computer methods in recognizing noise during diameter measurement, manual measurement suffers from inter- and intra-observer variability. It is also time-consuming. An automated measurement method is presented in this paper which utilizes quality assurance approaches to adapt to specific image features, to recognize and minimize the noise effect. Experimental results showed the method's potential for clinical usage in the epidemiological studies.

  16. Performance of multifractal detrended fluctuation analysis on short time series

    NASA Astrophysics Data System (ADS)

    López, Juan Luis; Contreras, Jesús Guillermo

    2013-02-01

    The performance of the multifractal detrended analysis on short time series is evaluated for synthetic samples of several mono- and multifractal models. The reconstruction of the generalized Hurst exponents is used to determine the range of applicability of the method and the precision of its results as a function of the decreasing length of the series. As an application the series of the daily exchange rate between the U.S. dollar and the euro is studied.

  17. Quantifying the behavior of price dynamics at opening time in stock market

    NASA Astrophysics Data System (ADS)

    Ochiai, Tomoshiro; Takada, Hideyuki; Nacher, Jose C.

    2014-11-01

    The availability of huge volume of financial data has offered the possibility for understanding the markets as a complex system characterized by several stylized facts. Here we first show that the time evolution of the Japan’s Nikkei stock average index (Nikkei 225) futures follows the resistance and breaking-acceleration effects when the complete time series data is analyzed. However, in stock markets there are periods where no regular trades occur between the close of the market on one day and the next day’s open. To examine these time gaps we decompose the time series data into opening time and intermediate time. Our analysis indicates that for the intermediate time, both the resistance and the breaking-acceleration effects are still observed. However, for the opening time there are almost no resistance and breaking-acceleration effects, and volatility is always constantly high. These findings highlight unique dynamic differences between stock markets and forex market and suggest that current risk management strategies may need to be revised to address the absence of these dynamic effects at the opening time.

  18. Volatility Behaviors of Financial Time Series by Percolation System on Sierpinski Carpet Lattice

    NASA Astrophysics Data System (ADS)

    Pei, Anqi; Wang, Jun

    2015-01-01

    The financial time series is simulated and investigated by the percolation system on the Sierpinski carpet lattice, where percolation is usually employed to describe the behavior of connected clusters in a random graph, and the Sierpinski carpet lattice is a graph which corresponds the fractal — Sierpinski carpet. To study the fluctuation behavior of returns for the financial model and the Shanghai Composite Index, we establish a daily volatility measure — multifractal volatility (MFV) measure to obtain MFV series, which have long-range cross-correlations with squared daily return series. The autoregressive fractionally integrated moving average (ARFIMA) model is used to analyze the MFV series, which performs better when compared to other volatility series. By a comparative study of the multifractality and volatility analysis of the data, the simulation data of the proposed model exhibits very similar behaviors to those of the real stock index, which indicates somewhat rationality of the model to the market application.

  19. Time series modeling of system self-assessment of survival

    SciTech Connect

    Lu, H.; Kolarik, W.J.

    1999-06-01

    Self-assessment of survival for a system, subsystem or component is implemented by assessing conditional performance reliability in real-time, which includes modeling and analysis of physical performance data. This paper proposes a time series analysis approach to system self-assessment (prediction) of survival. In the approach, physical performance data are modeled in a time series. The performance forecast is based on the model developed and is converted to the reliability of system survival. In contrast to a standard regression model, a time series model, using on-line data, is suitable for the real-time performance prediction. This paper illustrates an example of time series modeling and survival assessment, regarding an excessive tool edge wear failure mode for a twist drill operation.

  20. Nonlinear independent component analysis and multivariate time series analysis

    NASA Astrophysics Data System (ADS)

    Storck, Jan; Deco, Gustavo

    1997-02-01

    We derive an information-theory-based unsupervised learning paradigm for nonlinear independent component analysis (NICA) with neural networks. We demonstrate that under the constraint of bounded and invertible output transfer functions the two main goals of unsupervised learning, redundancy reduction and maximization of the transmitted information between input and output (Infomax-principle), are equivalent. No assumptions are made concerning the kind of input and output distributions, i.e. the kind of nonlinearity of correlations. An adapted version of the general NICA network is used for the modeling of multivariate time series by unsupervised learning. Given time series of various observables of a dynamical system, our net learns their evolution in time by extracting statistical dependencies between past and present elements of the time series. Multivariate modeling is obtained by making present value of each time series statistically independent not only from their own past but also from the past of the other series. Therefore, in contrast to univariate methods, the information lying in the couplings between the observables is also used and a detection of higher-order cross correlations is possible. We apply our method to time series of the two-dimensional Hénon map and to experimental time series obtained from the measurements of axial velocities in different locations in weakly turbulent Taylor-Couette flow.

  1. Time Series Decomposition into Oscillation Components and Phase Estimation.

    PubMed

    Matsuda, Takeru; Komaki, Fumiyasu

    2017-02-01

    Many time series are naturally considered as a superposition of several oscillation components. For example, electroencephalogram (EEG) time series include oscillation components such as alpha, beta, and gamma. We propose a method for decomposing time series into such oscillation components using state-space models. Based on the concept of random frequency modulation, gaussian linear state-space models for oscillation components are developed. In this model, the frequency of an oscillator fluctuates by noise. Time series decomposition is accomplished by this model like the Bayesian seasonal adjustment method. Since the model parameters are estimated from data by the empirical Bayes' method, the amplitudes and the frequencies of oscillation components are determined in a data-driven manner. Also, the appropriate number of oscillation components is determined with the Akaike information criterion (AIC). In this way, the proposed method provides a natural decomposition of the given time series into oscillation components. In neuroscience, the phase of neural time series plays an important role in neural information processing. The proposed method can be used to estimate the phase of each oscillation component and has several advantages over a conventional method based on the Hilbert transform. Thus, the proposed method enables an investigation of the phase dynamics of time series. Numerical results show that the proposed method succeeds in extracting intermittent oscillations like ripples and detecting the phase reset phenomena. We apply the proposed method to real data from various fields such as astronomy, ecology, tidology, and neuroscience.

  2. Model-free quantification of time-series predictability.

    PubMed

    Garland, Joshua; James, Ryan; Bradley, Elizabeth

    2014-11-01

    This paper provides insight into when, why, and how forecast strategies fail when they are applied to complicated time series. We conjecture that the inherent complexity of real-world time-series data, which results from the dimension, nonlinearity, and nonstationarity of the generating process, as well as from measurement issues such as noise, aggregation, and finite data length, is both empirically quantifiable and directly correlated with predictability. In particular, we argue that redundancy is an effective way to measure complexity and predictive structure in an experimental time series and that weighted permutation entropy is an effective way to estimate that redundancy. To validate these conjectures, we study 120 different time-series data sets. For each time series, we construct predictions using a wide variety of forecast models, then compare the accuracy of the predictions with the permutation entropy of that time series. We use the results to develop a model-free heuristic that can help practitioners recognize when a particular prediction method is not well matched to the task at hand: that is, when the time series has more predictive structure than that method can capture and exploit.

  3. Database for Hydrological Time Series of Inland Waters (DAHITI)

    NASA Astrophysics Data System (ADS)

    Schwatke, Christian; Dettmering, Denise

    2016-04-01

    Satellite altimetry was designed for ocean applications. However, since some years, satellite altimetry is also used over inland water to estimate water level time series of lakes, rivers and wetlands. The resulting water level time series can help to understand the water cycle of system earth and makes altimetry to a very useful instrument for hydrological applications. In this poster, we introduce the "Database for Hydrological Time Series of Inland Waters" (DAHITI). Currently, the database contains about 350 water level time series of lakes, reservoirs, rivers, and wetlands which are freely available after a short registration process via http://dahiti.dgfi.tum.de. In this poster, we introduce the product of DAHITI and the functionality of the DAHITI web service. Furthermore, selected examples of inland water targets are presented in detail. DAHITI provides time series of water level heights of inland water bodies and their formal errors . These time series are available within the period of 1992-2015 and have varying temporal resolutions depending on the data coverage of the investigated water body. The accuracies of the water level time series depend mainly on the extent of the investigated water body and the quality of the altimeter measurements. Hereby, an external validation with in-situ data reveals RMS differences between 5 cm and 40 cm for lakes and 10 cm and 140 cm for rivers, respectively.

  4. DEM time series of an agricultural watershed

    NASA Astrophysics Data System (ADS)

    Pineux, Nathalie; Lisein, Jonathan; Swerts, Gilles; Degré, Aurore

    2014-05-01

    In agricultural landscape soil surface evolves notably due to erosion and deposition phenomenon. Even if most of the field data come from plot scale studies, the watershed scale seems to be more appropriate to understand them. Currently, small unmanned aircraft systems and images treatments are improving. In this way, 3D models are built from multiple covering shots. When techniques for large areas would be to expensive for a watershed level study or techniques for small areas would be too time consumer, the unmanned aerial system seems to be a promising solution to quantify the erosion and deposition patterns. The increasing technical improvements in this growth field allow us to obtain a really good quality of data and a very high spatial resolution with a high Z accuracy. In the center of Belgium, we equipped an agricultural watershed of 124 ha. For three years (2011-2013), we have been monitoring weather (including rainfall erosivity using a spectropluviograph), discharge at three different locations, sediment in runoff water, and watershed microtopography through unmanned airborne imagery (Gatewing X100). We also collected all available historical data to try to capture the "long-term" changes in watershed morphology during the last decades: old topography maps, soil historical descriptions, etc. An erosion model (LANDSOIL) is also used to assess the evolution of the relief. Short-term evolution of the surface are now observed through flights done at 200m height. The pictures are taken with a side overlap equal to 80%. To precisely georeference the DEM produced, ground control points are placed on the study site and surveyed using a Leica GPS1200 (accuracy of 1cm for x and y coordinates and 1.5cm for the z coordinate). Flights are done each year in December to have an as bare as possible ground surface. Specific treatments are developed to counteract vegetation effect because it is know as key sources of error in the DEM produced by small unmanned aircraft

  5. Estimation of Parameters from Discrete Random Nonstationary Time Series

    NASA Astrophysics Data System (ADS)

    Takayasu, H.; Nakamura, T.

    For the analysis of nonstationary stochastic time series we introduce a formulation to estimate the underlying time-dependent parameters. This method is designed for random events with small numbers that are out of the applicability range of the normal distribution. The method is demonstrated for numerical data generated by a known system, and applied to time series of traffic accidents, batting average of a baseball player and sales volume of home electronics.

  6. Clinical time series prediction: Toward a hierarchical dynamical system framework.

    PubMed

    Liu, Zitao; Hauskrecht, Milos

    2015-09-01

    Developing machine learning and data mining algorithms for building temporal models of clinical time series is important for understanding of the patient condition, the dynamics of a disease, effect of various patient management interventions and clinical decision making. In this work, we propose and develop a novel hierarchical framework for modeling clinical time series data of varied length and with irregularly sampled observations. Our hierarchical dynamical system framework for modeling clinical time series combines advantages of the two temporal modeling approaches: the linear dynamical system and the Gaussian process. We model the irregularly sampled clinical time series by using multiple Gaussian process sequences in the lower level of our hierarchical framework and capture the transitions between Gaussian processes by utilizing the linear dynamical system. The experiments are conducted on the complete blood count (CBC) panel data of 1000 post-surgical cardiac patients during their hospitalization. Our framework is evaluated and compared to multiple baseline approaches in terms of the mean absolute prediction error and the absolute percentage error. We tested our framework by first learning the time series model from data for the patients in the training set, and then using it to predict future time series values for the patients in the test set. We show that our model outperforms multiple existing models in terms of its predictive accuracy. Our method achieved a 3.13% average prediction accuracy improvement on ten CBC lab time series when it was compared against the best performing baseline. A 5.25% average accuracy improvement was observed when only short-term predictions were considered. A new hierarchical dynamical system framework that lets us model irregularly sampled time series data is a promising new direction for modeling clinical time series and for improving their predictive performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Clinical time series prediction: towards a hierarchical dynamical system framework

    PubMed Central

    Liu, Zitao; Hauskrecht, Milos

    2014-01-01

    Objective Developing machine learning and data mining algorithms for building temporal models of clinical time series is important for understanding of the patient condition, the dynamics of a disease, effect of various patient management interventions and clinical decision making. In this work, we propose and develop a novel hierarchical framework for modeling clinical time series data of varied length and with irregularly sampled observations. Materials and methods Our hierarchical dynamical system framework for modeling clinical time series combines advantages of the two temporal modeling approaches: the linear dynamical system and the Gaussian process. We model the irregularly sampled clinical time series by using multiple Gaussian process sequences in the lower level of our hierarchical framework and capture the transitions between Gaussian processes by utilizing the linear dynamical system. The experiments are conducted on the complete blood count (CBC) panel data of 1000 post-surgical cardiac patients during their hospitalization. Our framework is evaluated and compared to multiple baseline approaches in terms of the mean absolute prediction error and the absolute percentage error. Results We tested our framework by first learning the time series model from data for the patient in the training set, and then applying the model in order to predict future time series values on the patients in the test set. We show that our model outperforms multiple existing models in terms of its predictive accuracy. Our method achieved a 3.13% average prediction accuracy improvement on ten CBC lab time series when it was compared against the best performing baseline. A 5.25% average accuracy improvement was observed when only short-term predictions were considered. Conclusion A new hierarchical dynamical system framework that lets us model irregularly sampled time series data is a promising new direction for modeling clinical time series and for improving their predictive

  8. Modeling Persistence In Hydrological Time Series Using Fractional Differencing

    NASA Astrophysics Data System (ADS)

    Hosking, J. R. M.

    1984-12-01

    The class of autoregressive integrated moving average (ARIMA) time series models may be generalized by permitting the degree of differencing d to take fractional values. Models including fractional differencing are capable of representing persistent series (d > 0) or short-memory series (d = 0). The class of fractionally differenced ARIMA processes provides a more flexible way than has hitherto been available of simultaneously modeling the long-term and short-term behavior of a time series. In this paper some fundamental properties of fractionally differenced ARIMA processes are presented. Methods of simulating these processes are described. Estimation of the parameters of fractionally differenced ARIMA models is discussed, and an approximate maximum likelihood method is proposed. The methodology is illustrated by fitting fractionally differenced models to time series of streamflows and annual temperatures.

  9. Superstatistical fluctuations in time series: Applications to share-price dynamics and turbulence

    NASA Astrophysics Data System (ADS)

    van der Straeten, Erik; Beck, Christian

    2009-09-01

    We report a general technique to study a given experimental time series with superstatistics. Crucial for the applicability of the superstatistics concept is the existence of a parameter β that fluctuates on a large time scale as compared to the other time scales of the complex system under consideration. The proposed method extracts the main superstatistical parameters out of a given data set and examines the validity of the superstatistical model assumptions. We test the method thoroughly with surrogate data sets. Then the applicability of the superstatistical approach is illustrated using real experimental data. We study two examples, velocity time series measured in turbulent Taylor-Couette flows and time series of log returns of the closing prices of some stock market indices.

  10. Modelling road accidents: An approach using structural time series

    NASA Astrophysics Data System (ADS)

    Junus, Noor Wahida Md; Ismail, Mohd Tahir

    2014-09-01

    In this paper, the trend of road accidents in Malaysia for the years 2001 until 2012 was modelled using a structural time series approach. The structural time series model was identified using a stepwise method, and the residuals for each model were tested. The best-fitted model was chosen based on the smallest Akaike Information Criterion (AIC) and prediction error variance. In order to check the quality of the model, a data validation procedure was performed by predicting the monthly number of road accidents for the year 2012. Results indicate that the best specification of the structural time series model to represent road accidents is the local level with a seasonal model.

  11. Analyzing multiple nonlinear time series with extended Granger causality

    NASA Astrophysics Data System (ADS)

    Chen, Yonghong; Rangarajan, Govindan; Feng, Jianfeng; Ding, Mingzhou

    2004-04-01

    Identifying causal relations among simultaneously acquired signals is an important problem in multivariate time series analysis. For linear stochastic systems Granger proposed a simple procedure called the Granger causality to detect such relations. In this work we consider nonlinear extensions of Granger's idea and refer to the result as extended Granger causality. A simple approach implementing the extended Granger causality is presented and applied to multiple chaotic time series and other types of nonlinear signals. In addition, for situations with three or more time series we propose a conditional extended Granger causality measure that enables us to determine whether the causal relation between two signals is direct or mediated by another process.

  12. Wavelet analysis and scaling properties of time series

    NASA Astrophysics Data System (ADS)

    Manimaran, P.; Panigrahi, Prasanta K.; Parikh, Jitendra C.

    2005-10-01

    We propose a wavelet based method for the characterization of the scaling behavior of nonstationary time series. It makes use of the built-in ability of the wavelets for capturing the trends in a data set, in variable window sizes. Discrete wavelets from the Daubechies family are used to illustrate the efficacy of this procedure. After studying binomial multifractal time series with the present and earlier approaches of detrending for comparison, we analyze the time series of averaged spin density in the 2D Ising model at the critical temperature, along with several experimental data sets possessing multifractal behavior.

  13. A Dimensionality Reduction Technique for Efficient Time Series Similarity Analysis

    PubMed Central

    Wang, Qiang; Megalooikonomou, Vasileios

    2008-01-01

    We propose a dimensionality reduction technique for time series analysis that significantly improves the efficiency and accuracy of similarity searches. In contrast to piecewise constant approximation (PCA) techniques that approximate each time series with constant value segments, the proposed method--Piecewise Vector Quantized Approximation--uses the closest (based on a distance measure) codeword from a codebook of key-sequences to represent each segment. The new representation is symbolic and it allows for the application of text-based retrieval techniques into time series similarity analysis. Experiments on real and simulated datasets show that the proposed technique generally outperforms PCA techniques in clustering and similarity searches. PMID:18496587

  14. Scalable Prediction of Energy Consumption using Incremental Time Series Clustering

    SciTech Connect

    Simmhan, Yogesh; Noor, Muhammad Usman

    2013-10-09

    Time series datasets are a canonical form of high velocity Big Data, and often generated by pervasive sensors, such as found in smart infrastructure. Performing predictive analytics on time series data can be computationally complex, and requires approximation techniques. In this paper, we motivate this problem using a real application from the smart grid domain. We propose an incremental clustering technique, along with a novel affinity score for determining cluster similarity, which help reduce the prediction error for cumulative time series within a cluster. We evaluate this technique, along with optimizations, using real datasets from smart meters, totaling ~700,000 data points, and show the efficacy of our techniques in improving the prediction error of time series data within polynomial time.

  15. Publication Design & Printing Basics for Cooperative Education Professionals. Cooperative Education Marketing Digest Series 4.

    ERIC Educational Resources Information Center

    Pattison, Polly

    1990-01-01

    One of a series of digests on topics related to the marketing of cooperative education, this digest discusses publication basics for cooperative education professionals. Designed to provide the kind of nuts and bolts information to be kept at hand for review before beginning any printing project, the digest discusses: (1) simplicity in the…

  16. Fractal markets: Liquidity and investors on different time horizons

    NASA Astrophysics Data System (ADS)

    Li, Da-Ye; Nishimura, Yusaku; Men, Ming

    2014-08-01

    In this paper, we propose a new agent-based model to study the source of liquidity and the “emergent” phenomenon in financial market with fractal structure. The model rests on fractal market hypothesis and agents with different time horizons of investments. What is interesting is that though the agent-based model reveals that the interaction between these heterogeneous agents affects the stability and liquidity of the financial market the real world market lacks detailed data to bring it to light since it is difficult to identify and distinguish the investors with different time horizons in the empirical approach. results show that in a relatively short period of time fractal market provides liquidity from investors with different horizons and the market gains stability when the market structure changes from uniformity to diversification. In the real world the fractal structure with the finite of horizons can only stabilize the market within limits. With the finite maximum horizons, the greater diversity of the investors and the fractal structure will not necessarily bring more stability to the market which might come with greater fluctuation in large time scale.

  17. Quantifying memory in complex physiological time-series.

    PubMed

    Shirazi, Amir H; Raoufy, Mohammad R; Ebadi, Haleh; De Rui, Michele; Schiff, Sami; Mazloom, Roham; Hajizadeh, Sohrab; Gharibzadeh, Shahriar; Dehpour, Ahmad R; Amodio, Piero; Jafari, G Reza; Montagnese, Sara; Mani, Ali R

    2013-01-01

    In a time-series, memory is a statistical feature that lasts for a period of time and distinguishes the time-series from a random, or memory-less, process. In the present study, the concept of "memory length" was used to define the time period, or scale over which rare events within a physiological time-series do not appear randomly. The method is based on inverse statistical analysis and provides empiric evidence that rare fluctuations in cardio-respiratory time-series are 'forgotten' quickly in healthy subjects while the memory for such events is significantly prolonged in pathological conditions such as asthma (respiratory time-series) and liver cirrhosis (heart-beat time-series). The memory length was significantly higher in patients with uncontrolled asthma compared to healthy volunteers. Likewise, it was significantly higher in patients with decompensated cirrhosis compared to those with compensated cirrhosis and healthy volunteers. We also observed that the cardio-respiratory system has simple low order dynamics and short memory around its average, and high order dynamics around rare fluctuations.

  18. Scale-dependent intrinsic entropies of complex time series.

    PubMed

    Yeh, Jia-Rong; Peng, Chung-Kang; Huang, Norden E

    2016-04-13

    Multi-scale entropy (MSE) was developed as a measure of complexity for complex time series, and it has been applied widely in recent years. The MSE algorithm is based on the assumption that biological systems possess the ability to adapt and function in an ever-changing environment, and these systems need to operate across multiple temporal and spatial scales, such that their complexity is also multi-scale and hierarchical. Here, we present a systematic approach to apply the empirical mode decomposition algorithm, which can detrend time series on various time scales, prior to analysing a signal's complexity by measuring the irregularity of its dynamics on multiple time scales. Simulated time series of fractal Gaussian noise and human heartbeat time series were used to study the performance of this new approach. We show that our method can successfully quantify the fractal properties of the simulated time series and can accurately distinguish modulations in human heartbeat time series in health and disease. © 2016 The Author(s).

  19. Quantifying Memory in Complex Physiological Time-Series

    PubMed Central

    Shirazi, Amir H.; Raoufy, Mohammad R.; Ebadi, Haleh; De Rui, Michele; Schiff, Sami; Mazloom, Roham; Hajizadeh, Sohrab; Gharibzadeh, Shahriar; Dehpour, Ahmad R.; Amodio, Piero; Jafari, G. Reza; Montagnese, Sara; Mani, Ali R.

    2013-01-01

    In a time-series, memory is a statistical feature that lasts for a period of time and distinguishes the time-series from a random, or memory-less, process. In the present study, the concept of “memory length” was used to define the time period, or scale over which rare events within a physiological time-series do not appear randomly. The method is based on inverse statistical analysis and provides empiric evidence that rare fluctuations in cardio-respiratory time-series are ‘forgotten’ quickly in healthy subjects while the memory for such events is significantly prolonged in pathological conditions such as asthma (respiratory time-series) and liver cirrhosis (heart-beat time-series). The memory length was significantly higher in patients with uncontrolled asthma compared to healthy volunteers. Likewise, it was significantly higher in patients with decompensated cirrhosis compared to those with compensated cirrhosis and healthy volunteers. We also observed that the cardio-respiratory system has simple low order dynamics and short memory around its average, and high order dynamics around rare fluctuations. PMID:24039811

  20. Graphical Data Analysis on the Circle: Wrap-Around Time Series Plots for (Interrupted) Time Series Designs.

    PubMed

    Rodgers, Joseph Lee; Beasley, William Howard; Schuelke, Matthew

    2014-01-01

    Many data structures, particularly time series data, are naturally seasonal, cyclical, or otherwise circular. Past graphical methods for time series have focused on linear plots. In this article, we move graphical analysis onto the circle. We focus on 2 particular methods, one old and one new. Rose diagrams are circular histograms and can be produced in several different forms using the RRose software system. In addition, we propose, develop, illustrate, and provide software support for a new circular graphical method, called Wrap-Around Time Series Plots (WATS Plots), which is a graphical method useful to support time series analyses in general but in particular in relation to interrupted time series designs. We illustrate the use of WATS Plots with an interrupted time series design evaluating the effect of the Oklahoma City bombing on birthrates in Oklahoma County during the 10 years surrounding the bombing of the Murrah Building in Oklahoma City. We compare WATS Plots with linear time series representations and overlay them with smoothing and error bands. Each method is shown to have advantages in relation to the other; in our example, the WATS Plots more clearly show the existence and effect size of the fertility differential.

  1. Distinguishing chaotic time series from noise: A random matrix approach

    NASA Astrophysics Data System (ADS)

    Ye, Bin; Chen, Jianxing; Ju, Chen; Li, Huijun; Wang, Xuesong

    2017-03-01

    Deterministically chaotic systems can often give rise to random and unpredictable behaviors which make the time series obtained from them to be almost indistinguishable from noise. Motivated by the fact that data points in a chaotic time series will have intrinsic correlations between them, we propose a random matrix theory (RMT) approach to identify the deterministic or stochastic dynamics of the system. We show that the spectral distributions of the correlation matrices, constructed from the chaotic time series, deviate significantly from the predictions of random matrix ensembles. On the contrary, the eigenvalue statistics for a noisy signal follow closely those of random matrix ensembles. Numerical results also indicate that the approach is to some extent robust to additive observational noise which pollutes the data in many practical situations. Our approach is efficient in recognizing the continuous chaotic dynamics underlying the evolution of the time series.

  2. A probability distribution approach to synthetic turbulence time series

    NASA Astrophysics Data System (ADS)

    Sinhuber, Michael; Bodenschatz, Eberhard; Wilczek, Michael

    2016-11-01

    The statistical features of turbulence can be described in terms of multi-point probability density functions (PDFs). The complexity of these statistical objects increases rapidly with the number of points. This raises the question of how much information has to be incorporated into statistical models of turbulence to capture essential features such as inertial-range scaling and intermittency. Using high Reynolds number hot-wire data obtained at the Variable Density Turbulence Tunnel at the Max Planck Institute for Dynamics and Self-Organization, we establish a PDF-based approach on generating synthetic time series that reproduce those features. To do this, we measure three-point conditional PDFs from the experimental data and use an adaption-rejection method to draw random velocities from this distribution to produce synthetic time series. Analyzing these synthetic time series, we find that time series based on even low-dimensional conditional PDFs already capture some essential features of real turbulent flows.

  3. Mount Etna InSAR Time Series Animation

    NASA Image and Video Library

    2012-02-06

    This animation depicts a time-series of ground deformation at Mount Etna Volcano between 1992 and 2001. The deformation results from changes in the volume of a shallow chamber centered approximately 5 km 3 miles below sea level.

  4. Searching for periodicity in weighted time point series.

    NASA Astrophysics Data System (ADS)

    Jetsu, L.; Pelt, J.

    1996-09-01

    Consistent statistics for two methods of searching for periodicity in a series of weighted time points are formulated. An approach based on the bootstrap method to estimate the accuracy of detected periodicity is presented.

  5. A mixed time series model of binomial counts

    NASA Astrophysics Data System (ADS)

    Khoo, Wooi Chen; Ong, Seng Huat

    2015-10-01

    Continuous time series modelling has been an active research in the past few decades. However, time series data in terms of correlated counts appear in many situations such as the counts of rainy days and access downloading. Therefore, the study on count data has become popular in time series modelling recently. This article introduces a new mixture model, which is an univariate non-negative stationary time series model with binomial marginal distribution, arising from the combination of the well-known binomial thinning and Pegram's operators. A brief review of important properties will be carried out and the EM algorithm is applied in parameter estimation. A numerical study is presented to show the performance of the model. Finally, a potential real application will be presented to illustrate the advantage of the new mixture model.

  6. Asset price dynamics in a financial market with heterogeneous trading strategies and time delays

    NASA Astrophysics Data System (ADS)

    Sansone, Alessandro; Garofalo, Giuseppe

    2007-08-01

    In this paper we present a continuous time dynamical model of heterogeneous agents interacting in a financial market where transactions are cleared by a market maker. The market is composed of fundamentalist, trend following and contrarian agents who process market information with different time delays. Each class of investors is characterized by path dependent risk aversion. We also allow for the possibility of evolutionary switching between trend following and contrarian strategies. We find that the system shows periodic, quasi-periodic and chaotic dynamics as well as synchronization between technical traders. Furthermore, the model is able to generate time series of returns that exhibit statistical properties similar to those of the S&P 500 index, which is characterized by excess kurtosis, volatility clustering and long memory.

  7. The use of synthetic input sequences in time series modeling

    NASA Astrophysics Data System (ADS)

    de Oliveira, Dair José; Letellier, Christophe; Gomes, Murilo E. D.; Aguirre, Luis A.

    2008-08-01

    In many situations time series models obtained from noise-like data settle to trivial solutions under iteration. This Letter proposes a way of producing a synthetic (dummy) input, that is included to prevent the model from settling down to a trivial solution, while maintaining features of the original signal. Simulated benchmark models and a real time series of RR intervals from an ECG are used to illustrate the procedure.

  8. Identification of Significant Outliers in Time Series Data

    DTIC Science & Technology

    1993-03-01

    Control (Revised Edition). London: Holden-Day, 1976. 5. Brockwell , Peter J . and Richard A . Davis . Time Series: Theory and Methods (Second Edition...through 20 November, 1992. 8. Currie, Dr. Lloyd A , "Pseudo-Code for Plume Detection." Unpublished. 18 July 1991. 9. Diggle, Peter J . Time Series: A ...place. I am indebted to Dr. Peter J . Rousseeuw, upon whose work and book my methodology is based. I am especially grateful to Dr. Rousseeuw for

  9. Digital time series analysis for flutter test data

    NASA Technical Reports Server (NTRS)

    Batill, S. M.; Carey, D. M.; Kehoe, M. W.

    1992-01-01

    An application of digital time series analysis to flutter test data processing was conducted. A numerical investigation was used to evaluate the method, as well as its sensitivity to noise and parameter variations. These parameters included those involved with data acquisition, as well as system response characteristics. This digital time series method was then used to predict flutter speed from subcritical response wind tunnel tests. Flutter speeds predicted from forced response, subcritical wind tunnel tests were compared to the experimental flutter speeds.

  10. Marketing time predicts naturalization of horticultural plants.

    PubMed

    Pemberton, Robert W; Liu, Hong

    2009-01-01

    Horticulture is an important source of naturalized plants, but our knowledge about naturalization frequencies and potential patterns of naturalization in horticultural plants is limited. We analyzed a unique set of data derived from the detailed sales catalogs (1887-1930) of the most important early Florida, USA, plant nursery (Royal Palm Nursery) to detect naturalization patterns of these horticultural plants in the state. Of the 1903 nonnative species sold by the nursery, 15% naturalized. The probability of plants becoming naturalized increases significantly with the number of years the plants were marketed. Plants that became invasive and naturalized were sold for an average of 19.6 and 14.8 years, respectively, compared to 6.8 years for non-naturalized plants, and the naturalization of plants sold for 30 years or more is 70%. Unexpectedly, plants that were sold earlier were less likely to naturalize than those sold later. The nursery's inexperience, which caused them to grow and market many plants unsuited to Florida during their early period, may account for this pattern. Plants with pantropical distributions and those native to both Africa and Asia were more likely to naturalize (42%), than were plants native to other smaller regions, suggesting that plants with large native ranges were more likely to naturalize. Naturalization percentages also differed according to plant life form, with the most naturalization occurring in aquatic herbs (36.8%) and vines (30.8%). Plants belonging to the families Araceae, Apocynaceae, Convolvulaceae, Moraceae, Oleaceae, and Verbenaceae had higher than expected naturalization. Information theoretic model selection indicated that the number of years a plant was sold, alone or together with the first year a plant was sold, was the strongest predictor of naturalization. Because continued importation and marketing of nonnative horticultural plants will lead to additional plant naturalization and invasion, a comprehensive approach

  11. Visualizing frequent patterns in large multivariate time series

    NASA Astrophysics Data System (ADS)

    Hao, M.; Marwah, M.; Janetzko, H.; Sharma, R.; Keim, D. A.; Dayal, U.; Patnaik, D.; Ramakrishnan, N.

    2011-01-01

    The detection of previously unknown, frequently occurring patterns in time series, often called motifs, has been recognized as an important task. However, it is difficult to discover and visualize these motifs as their numbers increase, especially in large multivariate time series. To find frequent motifs, we use several temporal data mining and event encoding techniques to cluster and convert a multivariate time series to a sequence of events. Then we quantify the efficiency of the discovered motifs by linking them with a performance metric. To visualize frequent patterns in a large time series with potentially hundreds of nested motifs on a single display, we introduce three novel visual analytics methods: (1) motif layout, using colored rectangles for visualizing the occurrences and hierarchical relationships of motifs in a multivariate time series, (2) motif distortion, for enlarging or shrinking motifs as appropriate for easy analysis and (3) motif merging, to combine a number of identical adjacent motif instances without cluttering the display. Analysts can interactively optimize the degree of distortion and merging to get the best possible view. A specific motif (e.g., the most efficient or least efficient motif) can be quickly detected from a large time series for further investigation. We have applied these methods to two real-world data sets: data center cooling and oil well production. The results provide important new insights into the recurring patterns.

  12. Time Series Analysis of Insar Data: Methods and Trends

    NASA Technical Reports Server (NTRS)

    Osmanoglu, Batuhan; Sunar, Filiz; Wdowinski, Shimon; Cano-Cabral, Enrique

    2015-01-01

    Time series analysis of InSAR data has emerged as an important tool for monitoring and measuring the displacement of the Earth's surface. Changes in the Earth's surface can result from a wide range of phenomena such as earthquakes, volcanoes, landslides, variations in ground water levels, and changes in wetland water levels. Time series analysis is applied to interferometric phase measurements, which wrap around when the observed motion is larger than one-half of the radar wavelength. Thus, the spatio-temporal ''unwrapping" of phase observations is necessary to obtain physically meaningful results. Several different algorithms have been developed for time series analysis of InSAR data to solve for this ambiguity. These algorithms may employ different models for time series analysis, but they all generate a first-order deformation rate, which can be compared to each other. However, there is no single algorithm that can provide optimal results in all cases. Since time series analyses of InSAR data are used in a variety of applications with different characteristics, each algorithm possesses inherently unique strengths and weaknesses. In this review article, following a brief overview of InSAR technology, we discuss several algorithms developed for time series analysis of InSAR data using an example set of results for measuring subsidence rates in Mexico City.

  13. Time Series Analysis of Insar Data: Methods and Trends

    NASA Technical Reports Server (NTRS)

    Osmanoglu, Batuhan; Sunar, Filiz; Wdowinski, Shimon; Cano-Cabral, Enrique

    2015-01-01

    Time series analysis of InSAR data has emerged as an important tool for monitoring and measuring the displacement of the Earth's surface. Changes in the Earth's surface can result from a wide range of phenomena such as earthquakes, volcanoes, landslides, variations in ground water levels, and changes in wetland water levels. Time series analysis is applied to interferometric phase measurements, which wrap around when the observed motion is larger than one-half of the radar wavelength. Thus, the spatio-temporal ''unwrapping" of phase observations is necessary to obtain physically meaningful results. Several different algorithms have been developed for time series analysis of InSAR data to solve for this ambiguity. These algorithms may employ different models for time series analysis, but they all generate a first-order deformation rate, which can be compared to each other. However, there is no single algorithm that can provide optimal results in all cases. Since time series analyses of InSAR data are used in a variety of applications with different characteristics, each algorithm possesses inherently unique strengths and weaknesses. In this review article, following a brief overview of InSAR technology, we discuss several algorithms developed for time series analysis of InSAR data using an example set of results for measuring subsidence rates in Mexico City.

  14. Prediction of Long-Memory Time Series: A Tutorial Review

    NASA Astrophysics Data System (ADS)

    Bhansali, R. J.; Kokoszka, P. S.

    Two different approaches, called Type-I and Type-II, to linear least-squares prediction of a long-memory time series are distinguished. In the former, no new theory is required and a long-memory time series is treated on par with a standard short-memory time series and its multistep predictions are obtained by using the existing modelling approaches to prediction of such time series. The latter, by contrast, seeks to model the long-memory stochastic characteristics of the observed time series by a fractional process such that its dth fractional difference, 0 < d < 0.5, follows a standard short-memory process. The various approaches to constructing long-memory stochastic models are reviewed, and the associated question of parameter estimation for these models is discussed. Having fitted a long-memory stochastic model to a time series, linear multi-step forecasts of its future values are constructed from the model itself. The question of how to evaluate the multistep prediction constants is considered and three different methods proposed for doing so are outlined; it is further noted that, under appropriate regularity conditions, these methods apply also to the class of linear long memory processes with infinite variance. In addition, a brief review of the class of non-linear chaotic maps implying long-memory is given.

  15. PRESEE: An MDL/MML Algorithm to Time-Series Stream Segmenting

    PubMed Central

    Jiang, Yexi; Tang, Mingjie; Yuan, Changan; Tang, Changjie

    2013-01-01

    Time-series stream is one of the most common data types in data mining field. It is prevalent in fields such as stock market, ecology, and medical care. Segmentation is a key step to accelerate the processing speed of time-series stream mining. Previous algorithms for segmenting mainly focused on the issue of ameliorating precision instead of paying much attention to the efficiency. Moreover, the performance of these algorithms depends heavily on parameters, which are hard for the users to set. In this paper, we propose PRESEE (parameter-free, real-time, and scalable time-series stream segmenting algorithm), which greatly improves the efficiency of time-series stream segmenting. PRESEE is based on both MDL (minimum description length) and MML (minimum message length) methods, which could segment the data automatically. To evaluate the performance of PRESEE, we conduct several experiments on time-series streams of different types and compare it with the state-of-art algorithm. The empirical results show that PRESEE is very efficient for real-time stream datasets by improving segmenting speed nearly ten times. The novelty of this algorithm is further demonstrated by the application of PRESEE in segmenting real-time stream datasets from ChinaFLUX sensor networks data stream. PMID:23956693

  16. PRESEE: an MDL/MML algorithm to time-series stream segmenting.

    PubMed

    Xu, Kaikuo; Jiang, Yexi; Tang, Mingjie; Yuan, Changan; Tang, Changjie

    2013-01-01

    Time-series stream is one of the most common data types in data mining field. It is prevalent in fields such as stock market, ecology, and medical care. Segmentation is a key step to accelerate the processing speed of time-series stream mining. Previous algorithms for segmenting mainly focused on the issue of ameliorating precision instead of paying much attention to the efficiency. Moreover, the performance of these algorithms depends heavily on parameters, which are hard for the users to set. In this paper, we propose PRESEE (parameter-free, real-time, and scalable time-series stream segmenting algorithm), which greatly improves the efficiency of time-series stream segmenting. PRESEE is based on both MDL (minimum description length) and MML (minimum message length) methods, which could segment the data automatically. To evaluate the performance of PRESEE, we conduct several experiments on time-series streams of different types and compare it with the state-of-art algorithm. The empirical results show that PRESEE is very efficient for real-time stream datasets by improving segmenting speed nearly ten times. The novelty of this algorithm is further demonstrated by the application of PRESEE in segmenting real-time stream datasets from ChinaFLUX sensor networks data stream.

  17. Eat, drink and gamble: marketing messages about 'risky' products in an Australian major sporting series.

    PubMed

    Lindsay, Sophie; Thomas, Samantha; Lewis, Sophie; Westberg, Kate; Moodie, Rob; Jones, Sandra

    2013-08-05

    To investigate the alcohol, gambling, and unhealthy food marketing strategies during a nationally televised, free to air, sporting series in Australia. Using the Australian National Rugby League 2012 State of Origin three-game series, we conducted a mixed methods content analysis of the frequency, duration, placement and content of advertising strategies, comparing these strategies both within and across the three games. There were a total of 4445 episodes (mean = 1481.67, SD = 336.58), and 233.23 minutes (mean = 77.74, SD = 7.31) of marketing for alcoholic beverages, gambling products and unhealthy foods and non-alcoholic beverages during the 360 minutes of televised coverage of the three State of Origin 2012 games. This included an average per game of 1354 episodes (SD = 368.79) and 66.29 minutes (SD = 7.62) of alcohol marketing; 110.67 episodes (SD = 43.89), and 8.72 minutes (SD = 1.29) of gambling marketing; and 17 episodes (SD = 7.55), and 2.74 minutes (SD = 0.78) of unhealthy food and beverage marketing. Content analysis revealed that there was a considerable embedding of product marketing within the match play, including within match commentary, sporting equipment, and special replays. Sport is increasingly used as a vehicle for the promotion of range of 'risky consumption' products. This study raises important ethical and health policy questions about the extent and impact of saturation and incidental marketing strategies on health and wellbeing, the transparency of embedded marketing strategies, and how these strategies may influence product consumption.

  18. Vowel Recognition from Articulatory Position Time-Series Data.

    PubMed

    Wang, Jun; Samal, Ashok; Green, Jordan R; Carrell, Tom D

    2009-09-28

    A new approach of recognizing vowels from articulatory position time-series data was proposed and tested in this paper. This approach directly mapped articulatory position time-series data to vowels without extracting articulatory features such as mouth opening. The input time-series data were time-normalized and sampled to fixed-width vectors of articulatory positions. Three commonly used classifiers, Neural Network, Support Vector Machine and Decision Tree were used and their performances were compared on the vectors. A single speaker dataset of eight major English vowels acquired using Electromagnetic Articulograph (EMA) AG500 was used. Recognition rate using cross validation ranged from 76.07% to 91.32% for the three classifiers. In addition, the trained decision trees were consistent with articulatory features commonly used to descriptively distinguish vowels in classical phonetics. The findings are intended to improve the accuracy and response time of a real-time articulatory-to-acoustics synthesizer.

  19. A method for detecting changes in long time series

    SciTech Connect

    Downing, D.J.; Lawkins, W.F.; Morris, M.D.; Ostrouchov, G.

    1995-09-01

    Modern scientific activities, both physical and computational, can result in time series of many thousands or even millions of data values. Here the authors describe a statistically motivated algorithm for quick screening of very long time series data for the presence of potentially interesting but arbitrary changes. The basic data model is a stationary Gaussian stochastic process, and the approach to detecting a change is the comparison of two predictions of the series at a time point or contiguous collection of time points. One prediction is a ``forecast``, i.e. based on data from earlier times, while the other a ``backcast``, i.e. based on data from later times. The statistic is the absolute value of the log-likelihood ratio for these two predictions, evaluated at the observed data. A conservative procedure is suggested for specifying critical values for the statistic under the null hypothesis of ``no change``.

  20. Symplectic geometry spectrum regression for prediction of noisy time series

    NASA Astrophysics Data System (ADS)

    Xie, Hong-Bo; Dokos, Socrates; Sivakumar, Bellie; Mengersen, Kerrie

    2016-05-01

    We present the symplectic geometry spectrum regression (SGSR) technique as well as a regularized method based on SGSR for prediction of nonlinear time series. The main tool of analysis is the symplectic geometry spectrum analysis, which decomposes a time series into the sum of a small number of independent and interpretable components. The key to successful regularization is to damp higher order symplectic geometry spectrum components. The effectiveness of SGSR and its superiority over local approximation using ordinary least squares are demonstrated through prediction of two noisy synthetic chaotic time series (Lorenz and Rössler series), and then tested for prediction of three real-world data sets (Mississippi River flow data and electromyographic and mechanomyographic signal recorded from human body).

  1. Similarity estimators for irregular and age-uncertain time series

    NASA Astrophysics Data System (ADS)

    Rehfeld, K.; Kurths, J.

    2014-01-01

    Paleoclimate time series are often irregularly sampled and age uncertain, which is an important technical challenge to overcome for successful reconstruction of past climate variability and dynamics. Visual comparison and interpolation-based linear correlation approaches have been used to infer dependencies from such proxy time series. While the first is subjective, not measurable and not suitable for the comparison of many data sets at a time, the latter introduces interpolation bias, and both face difficulties if the underlying dependencies are nonlinear. In this paper we investigate similarity estimators that could be suitable for the quantitative investigation of dependencies in irregular and age-uncertain time series. We compare the Gaussian-kernel-based cross-correlation (gXCF, Rehfeld et al., 2011) and mutual information (gMI, Rehfeld et al., 2013) against their interpolation-based counterparts and the new event synchronization function (ESF). We test the efficiency of the methods in estimating coupling strength and coupling lag numerically, using ensembles of synthetic stalagmites with short, autocorrelated, linear and nonlinearly coupled proxy time series, and in the application to real stalagmite time series. In the linear test case, coupling strength increases are identified consistently for all estimators, while in the nonlinear test case the correlation-based approaches fail. The lag at which the time series are coupled is identified correctly as the maximum of the similarity functions in around 60-55% (in the linear case) to 53-42% (for the nonlinear processes) of the cases when the dating of the synthetic stalagmite is perfectly precise. If the age uncertainty increases beyond 5% of the time series length, however, the true coupling lag is not identified more often than the others for which the similarity function was estimated. Age uncertainty contributes up to half of the uncertainty in the similarity estimation process. Time series irregularity

  2. Similarity estimators for irregular and age uncertain time series

    NASA Astrophysics Data System (ADS)

    Rehfeld, K.; Kurths, J.

    2013-09-01

    Paleoclimate time series are often irregularly sampled and age uncertain, which is an important technical challenge to overcome for successful reconstruction of past climate variability and dynamics. Visual comparison and interpolation-based linear correlation approaches have been used to infer dependencies from such proxy time series. While the first is subjective, not measurable and not suitable for the comparison of many datasets at a time, the latter introduces interpolation bias, and both face difficulties if the underlying dependencies are nonlinear. In this paper we investigate similarity estimators that could be suitable for the quantitative investigation of dependencies in irregular and age uncertain time series. We compare the Gaussian-kernel based cross correlation (gXCF, Rehfeld et al., 2011) and mutual information (gMI, Rehfeld et al., 2013) against their interpolation-based counterparts and the new event synchronization function (ESF). We test the efficiency of the methods in estimating coupling strength and coupling lag numerically, using ensembles of synthetic stalagmites with short, autocorrelated, linear and nonlinearly coupled proxy time series, and in the application to real stalagmite time series. In the linear test case coupling strength increases are identified consistently for all estimators, while in the nonlinear test case the correlation-based approaches fail. The lag at which the time series are coupled is identified correctly as the maximum of the similarity functions in around 60-55% (in the linear case) to 53-42% (for the nonlinear processes) of the cases when the dating of the synthetic stalagmite is perfectly precise. If the age uncertainty increases beyond 5% of the time series length, however, the true coupling lag is not identified more often than the others for which the similarity function was estimated. Age uncertainty contributes up to half of the uncertainty in the similarity estimation process. Time series irregularity

  3. Analyses of Inhomogeneities in Radiosonde Temperature and Humidity Time Series.

    NASA Astrophysics Data System (ADS)

    Zhai, Panmao; Eskridge, Robert E.

    1996-04-01

    Twice daily radiosonde data from selected stations in the United States (period 1948 to 1990) and China (period 1958 to 1990) were sorted into time series. These stations have one sounding taken in darkness and the other in sunlight. The analysis shows that the 0000 and 1200 UTC time series are highly correlated. Therefore, the Easterling and Peterson technique was tested on the 0000 and 1200 time series to detect inhomogeneities and to estimate the size of the biases. Discontinuities were detected using the difference series created from the 0000 and 1200 UTC time series. To establish that the detected bias was significant, a t test was performed to confirm that the change occurs in the daytime series but not in the nighttime series.Both U.S. and Chinese radiosonde temperature and humidity data include inhomogeneities caused by changes in radiosonde sensors and observation times. The U.S. humidity data have inhomogeneities that were caused by instrument changes and the censoring of data. The practice of reporting relative humidity as 19% when it is lower than 20% or the temperature is below 40°C is called censoring. This combination of procedural and instrument changes makes the detection of biases and adjustment of the data very difficult. In the Chinese temperatures, them are inhomogeneities related to a change in the radiation correction procedure.Test results demonstrate that a modified Easterling and Peterson method is suitable for use in detecting and adjusting time series radiosonde data.Accurate stations histories are very desirable. Stations histories can confirm that detected inhomogeneities are related to instrument or procedural changes. Adjustments can then he made to the data with some confidence.

  4. Record statistics of financial time series and geometric random walks

    NASA Astrophysics Data System (ADS)

    Sabir, Behlool; Santhanam, M. S.

    2014-09-01

    The study of record statistics of correlated series in physics, such as random walks, is gaining momentum, and several analytical results have been obtained in the past few years. In this work, we study the record statistics of correlated empirical data for which random walk models have relevance. We obtain results for the records statistics of select stock market data and the geometric random walk, primarily through simulations. We show that the distribution of the age of records is a power law with the exponent α lying in the range 1.5≤α≤1.8. Further, the longest record ages follow the Fréchet distribution of extreme value theory. The records statistics of geometric random walk series is in good agreement with that obtained from empirical stock data.

  5. Record statistics of financial time series and geometric random walks.

    PubMed

    Sabir, Behlool; Santhanam, M S

    2014-09-01

    The study of record statistics of correlated series in physics, such as random walks, is gaining momentum, and several analytical results have been obtained in the past few years. In this work, we study the record statistics of correlated empirical data for which random walk models have relevance. We obtain results for the records statistics of select stock market data and the geometric random walk, primarily through simulations. We show that the distribution of the age of records is a power law with the exponent α lying in the range 1.5≤α≤1.8. Further, the longest record ages follow the Fréchet distribution of extreme value theory. The records statistics of geometric random walk series is in good agreement with that obtained from empirical stock data.

  6. Time is Money: Designing Cost-Effective Time Series Experiments.

    PubMed

    Slonim, Donna K

    2016-07-01

    A new theoretical model helps to evaluate the tradeoffs between running technical replicates in high-throughput experiments and sampling at more time points. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Fluctuation complexity of agent-based financial time series model by stochastic Potts system

    NASA Astrophysics Data System (ADS)

    Hong, Weijia; Wang, Jun

    2015-03-01

    Financial market is a complex evolved dynamic system with high volatilities and noises, and the modeling and analyzing of financial time series are regarded as the rather challenging tasks in financial research. In this work, by applying the Potts dynamic system, a random agent-based financial time series model is developed in an attempt to uncover the empirical laws in finance, where the Potts model is introduced to imitate the trading interactions among the investing agents. Based on the computer simulation in conjunction with the statistical analysis and the nonlinear analysis, we present numerical research to investigate the fluctuation behaviors of the proposed time series model. Furthermore, in order to get a robust conclusion, we consider the daily returns of Shanghai Composite Index and Shenzhen Component Index, and the comparison analysis of return behaviors between the simulation data and the actual data is exhibited.

  8. Correlation measure to detect time series distances, whence economy globalization

    NASA Astrophysics Data System (ADS)

    Miśkiewicz, Janusz; Ausloos, Marcel

    2008-11-01

    An instantaneous time series distance is defined through the equal time correlation coefficient. The idea is applied to the Gross Domestic Product (GDP) yearly increments of 21 rich countries between 1950 and 2005 in order to test the process of economic globalisation. Some data discussion is first presented to decide what (EKS, GK, or derived) GDP series should be studied. Distances are then calculated from the correlation coefficient values between pairs of series. The role of time averaging of the distances over finite size windows is discussed. Three network structures are next constructed based on the hierarchy of distances. It is shown that the mean distance between the most developed countries on several networks actually decreases in time, -which we consider as a proof of globalization. An empirical law is found for the evolution after 1990, similar to that found in flux creep. The optimal observation time window size is found ≃15 years.

  9. Exploratory Causal Analysis in Bivariate Time Series Data

    NASA Astrophysics Data System (ADS)

    McCracken, James M.

    Many scientific disciplines rely on observational data of systems for which it is difficult (or impossible) to implement controlled experiments and data analysis techniques are required for identifying causal information and relationships directly from observational data. This need has lead to the development of many different time series causality approaches and tools including transfer entropy, convergent cross-mapping (CCM), and Granger causality statistics. In this thesis, the existing time series causality method of CCM is extended by introducing a new method called pairwise asymmetric inference (PAI). It is found that CCM may provide counter-intuitive causal inferences for simple dynamics with strong intuitive notions of causality, and the CCM causal inference can be a function of physical parameters that are seemingly unrelated to the existence of a driving relationship in the system. For example, a CCM causal inference might alternate between ''voltage drives current'' and ''current drives voltage'' as the frequency of the voltage signal is changed in a series circuit with a single resistor and inductor. PAI is introduced to address both of these limitations. Many of the current approaches in the times series causality literature are not computationally straightforward to apply, do not follow directly from assumptions of probabilistic causality, depend on assumed models for the time series generating process, or rely on embedding procedures. A new approach, called causal leaning, is introduced in this work to avoid these issues. The leaning is found to provide causal inferences that agree with intuition for both simple systems and more complicated empirical examples, including space weather data sets. The leaning may provide a clearer interpretation of the results than those from existing time series causality tools. A practicing analyst can explore the literature to find many proposals for identifying drivers and causal connections in times series data

  10. Evaluation of Scaling Invariance Embedded in Short Time Series

    PubMed Central

    Pan, Xue; Hou, Lei; Stephen, Mutua; Yang, Huijie; Zhu, Chenping

    2014-01-01

    Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length . Calculations with specified Hurst exponent values of show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias () and sharp confidential interval (standard deviation ). Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records. PMID:25549356

  11. Evaluation of scaling invariance embedded in short time series.

    PubMed

    Pan, Xue; Hou, Lei; Stephen, Mutua; Yang, Huijie; Zhu, Chenping

    2014-01-01

    Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length ~10(2). Calculations with specified Hurst exponent values of 0.2,0.3,...,0.9 show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias (≤0.03) and sharp confidential interval (standard deviation ≤0.05). Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records.

  12. Modeling Non-Gaussian Time Series with Nonparametric Bayesian Model.

    PubMed

    Xu, Zhiguang; MacEachern, Steven; Xu, Xinyi

    2015-02-01

    We present a class of Bayesian copula models whose major components are the marginal (limiting) distribution of a stationary time series and the internal dynamics of the series. We argue that these are the two features with which an analyst is typically most familiar, and hence that these are natural components with which to work. For the marginal distribution, we use a nonparametric Bayesian prior distribution along with a cdf-inverse cdf transformation to obtain large support. For the internal dynamics, we rely on the traditionally successful techniques of normal-theory time series. Coupling the two components gives us a family of (Gaussian) copula transformed autoregressive models. The models provide coherent adjustments of time scales and are compatible with many extensions, including changes in volatility of the series. We describe basic properties of the models, show their ability to recover non-Gaussian marginal distributions, and use a GARCH modification of the basic model to analyze stock index return series. The models are found to provide better fit and improved short-range and long-range predictions than Gaussian competitors. The models are extensible to a large variety of fields, including continuous time models, spatial models, models for multiple series, models driven by external covariate streams, and non-stationary models.

  13. Statistical modelling of agrometeorological time series by exponential smoothing

    NASA Astrophysics Data System (ADS)

    Murat, Małgorzata; Malinowska, Iwona; Hoffmann, Holger; Baranowski, Piotr

    2016-01-01

    Meteorological time series are used in modelling agrophysical processes of the soil-plant-atmosphere system which determine plant growth and yield. Additionally, long-term meteorological series are used in climate change scenarios. Such studies often require forecasting or projection of meteorological variables, eg the projection of occurrence of the extreme events. The aim of the article was to determine the most suitable exponential smoothing models to generate forecast using data on air temperature, wind speed, and precipitation time series in Jokioinen (Finland), Dikopshof (Germany), Lleida (Spain), and Lublin (Poland). These series exhibit regular additive seasonality or non-seasonality without any trend, which is confirmed by their autocorrelation functions and partial autocorrelation functions. The most suitable models were indicated by the smallest mean absolute error and the smallest root mean squared error.

  14. Drunk driving detection based on classification of multivariate time series.

    PubMed

    Li, Zhenlong; Jin, Xue; Zhao, Xiaohua

    2015-09-01

    This paper addresses the problem of detecting drunk driving based on classification of multivariate time series. First, driving performance measures were collected from a test in a driving simulator located in the Traffic Research Center, Beijing University of Technology. Lateral position and steering angle were used to detect drunk driving. Second, multivariate time series analysis was performed to extract the features. A piecewise linear representation was used to represent multivariate time series. A bottom-up algorithm was then employed to separate multivariate time series. The slope and time interval of each segment were extracted as the features for classification. Third, a support vector machine classifier was used to classify driver's state into two classes (normal or drunk) according to the extracted features. The proposed approach achieved an accuracy of 80.0%. Drunk driving detection based on the analysis of multivariate time series is feasible and effective. The approach has implications for drunk driving detection. Copyright © 2015 Elsevier Ltd and National Safety Council. All rights reserved.

  15. Self-affinity in the dengue fever time series

    NASA Astrophysics Data System (ADS)

    Azevedo, S. M.; Saba, H.; Miranda, J. G. V.; Filho, A. S. Nascimento; Moret, M. A.

    2016-06-01

    Dengue is a complex public health problem that is common in tropical and subtropical regions. This disease has risen substantially in the last three decades, and the physical symptoms depict the self-affine behavior of the occurrences of reported dengue cases in Bahia, Brazil. This study uses detrended fluctuation analysis (DFA) to verify the scale behavior in a time series of dengue cases and to evaluate the long-range correlations that are characterized by the power law α exponent for different cities in Bahia, Brazil. The scaling exponent (α) presents different long-range correlations, i.e. uncorrelated, anti-persistent, persistent and diffusive behaviors. The long-range correlations highlight the complex behavior of the time series of this disease. The findings show that there are two distinct types of scale behavior. In the first behavior, the time series presents a persistent α exponent for a one-month period. For large periods, the time series signal approaches subdiffusive behavior. The hypothesis of the long-range correlations in the time series of the occurrences of reported dengue cases was validated. The observed self-affinity is useful as a forecasting tool for future periods through extrapolation of the α exponent behavior. This complex system has a higher predictability in a relatively short time (approximately one month), and it suggests a new tool in epidemiological control strategies. However, predictions for large periods using DFA are hidden by the subdiffusive behavior.

  16. Stochastic modeling of hourly rainfall times series in Campania (Italy)

    NASA Astrophysics Data System (ADS)

    Giorgio, M.; Greco, R.

    2009-04-01

    Occurrence of flowslides and floods in small catchments is uneasy to predict, since it is affected by a number of variables, such as mechanical and hydraulic soil properties, slope morphology, vegetation coverage, rainfall spatial and temporal variability. Consequently, landslide risk assessment procedures and early warning systems still rely on simple empirical models based on correlation between recorded rainfall data and observed landslides and/or river discharges. Effectiveness of such systems could be improved by reliable quantitative rainfall prediction, which can allow gaining larger lead-times. Analysis of on-site recorded rainfall height time series represents the most effective approach for a reliable prediction of local temporal evolution of rainfall. Hydrological time series analysis is a widely studied field in hydrology, often carried out by means of autoregressive models, such as AR, ARMA, ARX, ARMAX (e.g. Salas [1992]). Such models gave the best results when applied to the analysis of autocorrelated hydrological time series, like river flow or level time series. Conversely, they are not able to model the behaviour of intermittent time series, like point rainfall height series usually are, especially when recorded with short sampling time intervals. More useful for this issue are the so-called DRIP (Disaggregated Rectangular Intensity Pulse) and NSRP (Neymann-Scott Rectangular Pulse) model [Heneker et al., 2001; Cowpertwait et al., 2002], usually adopted to generate synthetic point rainfall series. In this paper, the DRIP model approach is adopted, in which the sequence of rain storms and dry intervals constituting the structure of rainfall time series is modeled as an alternating renewal process. Final aim of the study is to provide a useful tool to implement an early warning system for hydrogeological risk management. Model calibration has been carried out with hourly rainfall hieght data provided by the rain gauges of Campania Region civil

  17. Degree-Pruning Dynamic Programming Approaches to Central Time Series Minimizing Dynamic Time Warping Distance.

    PubMed

    Sun, Tao; Liu, Hongbo; Yu, Hong; Chen, C L Philip

    2016-06-28

    The central time series crystallizes the common patterns of the set it represents. In this paper, we propose a global constrained degree-pruning dynamic programming (g(dp)²) approach to obtain the central time series through minimizing dynamic time warping (DTW) distance between two time series. The DTW matching path theory with global constraints is proved theoretically for our degree-pruning strategy, which is helpful to reduce the time complexity and computational cost. Our approach can achieve the optimal solution between two time series. An approximate method to the central time series of multiple time series [called as m_g(dp)²] is presented based on DTW barycenter averaging and our g(dp)² approach by considering hierarchically merging strategy. As illustrated by the experimental results, our approaches provide better within-group sum of squares and robustness than other relevant algorithms.

  18. Multiscale multifractal diffusion entropy analysis of financial time series

    NASA Astrophysics Data System (ADS)

    Huang, Jingjing; Shang, Pengjian

    2015-02-01

    This paper introduces a multiscale multifractal diffusion entropy analysis (MMDEA) method to analyze long-range correlation then applies this method to stock index series. The method combines the techniques of diffusion process and Rényi entropy to focus on the scaling behaviors of stock index series using a multiscale, which allows us to extend the description of stock index variability to include the dependence on the magnitude of the variability and time scale. Compared to multifractal diffusion entropy analysis, the MMDEA can show more details of scale properties and provide a reliable analysis. In this paper, we concentrate not only on the fact that the stock index series has multifractal properties but also that these properties depend on the time scale in which the multifractality is measured. This time scale is related to the frequency band of the signal. We find that stock index variability appears to be far more complex than reported in the studies using a fixed time scale.

  19. Generalized Dynamic Factor Models for Mixed-Measurement Time Series

    PubMed Central

    Cui, Kai; Dunson, David B.

    2013-01-01

    In this article, we propose generalized Bayesian dynamic factor models for jointly modeling mixed-measurement time series. The framework allows mixed-scale measurements associated with each time series, with different measurements having different distributions in the exponential family conditionally on time-varying latent factor(s). Efficient Bayesian computational algorithms are developed for posterior inference on both the latent factors and model parameters, based on a Metropolis Hastings algorithm with adaptive proposals. The algorithm relies on a Greedy Density Kernel Approximation (GDKA) and parameter expansion with latent factor normalization. We tested the framework and algorithms in simulated studies and applied them to the analysis of intertwined credit and recovery risk for Moody’s rated firms from 1982–2008, illustrating the importance of jointly modeling mixed-measurement time series. The article has supplemental materials available online. PMID:24791133

  20. Generalized Dynamic Factor Models for Mixed-Measurement Time Series.

    PubMed

    Cui, Kai; Dunson, David B

    2014-02-12

    In this article, we propose generalized Bayesian dynamic factor models for jointly modeling mixed-measurement time series. The framework allows mixed-scale measurements associated with each time series, with different measurements having different distributions in the exponential family conditionally on time-varying latent factor(s). Efficient Bayesian computational algorithms are developed for posterior inference on both the latent factors and model parameters, based on a Metropolis Hastings algorithm with adaptive proposals. The algorithm relies on a Greedy Density Kernel Approximation (GDKA) and parameter expansion with latent factor normalization. We tested the framework and algorithms in simulated studies and applied them to the analysis of intertwined credit and recovery risk for Moody's rated firms from 1982-2008, illustrating the importance of jointly modeling mixed-measurement time series. The article has supplemental materials available online.

  1. Compounding approach for univariate time series with nonstationary variances

    NASA Astrophysics Data System (ADS)

    Schäfer, Rudi; Barkhofen, Sonja; Guhr, Thomas; Stöckmann, Hans-Jürgen; Kuhl, Ulrich

    2015-12-01

    A defining feature of nonstationary systems is the time dependence of their statistical parameters. Measured time series may exhibit Gaussian statistics on short time horizons, due to the central limit theorem. The sample statistics for long time horizons, however, averages over the time-dependent variances. To model the long-term statistical behavior, we compound the local distribution with the distribution of its parameters. Here, we consider two concrete, but diverse, examples of such nonstationary systems: the turbulent air flow of a fan and a time series of foreign exchange rates. Our main focus is to empirically determine the appropriate parameter distribution for the compounding approach. To this end, we extract the relevant time scales by decomposing the time signals into windows and determine the distribution function of the thus obtained local variances.

  2. An introduction to chaotic and random time series analysis

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey D.

    1989-01-01

    The origin of chaotic behavior and the relation of chaos to randomness are explained. Two mathematical results are described: (1) a representation theorem guarantees the existence of a specific time-domain model for chaos and addresses the relation between chaotic, random, and strictly deterministic processes; (2) a theorem assures that information on the behavior of a physical system in its complete state space can be extracted from time-series data on a single observable. Focus is placed on an important connection between the dynamical state space and an observable time series. These two results lead to a practical deconvolution technique combining standard random process modeling methods with new embedded techniques.

  3. An introduction to chaotic and random time series analysis

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey D.

    1989-01-01

    The origin of chaotic behavior and the relation of chaos to randomness are explained. Two mathematical results are described: (1) a representation theorem guarantees the existence of a specific time-domain model for chaos and addresses the relation between chaotic, random, and strictly deterministic processes; (2) a theorem assures that information on the behavior of a physical system in its complete state space can be extracted from time-series data on a single observable. Focus is placed on an important connection between the dynamical state space and an observable time series. These two results lead to a practical deconvolution technique combining standard random process modeling methods with new embedded techniques.

  4. Higher-Order Hurst Signatures: Dynamical Information in Time Series

    NASA Astrophysics Data System (ADS)

    Ferenbaugh, Willis

    2005-10-01

    Understanding and comparing time series from different systems requires characteristic measures of the dynamics embedded in the series. The Hurst exponent is a second-order dynamical measure of a time series which grew up within the blossoming fractal world of Mandelbrot. This characteristic measure is directly related to the behavior of the autocorrelation, the power-spectrum, and other second-order things. And as with these other measures, the Hurst exponent captures and quantifies some but not all of the intrinsic nature of a series. The more elusive characteristics live in the phase spectrum and the higher-order spectra. This research is a continuing quest to (more) fully characterize the dynamical information in time series produced by plasma experiments or models. The goal is to supplement the series information which can be represented by a Hurst exponent, and we would like to develop supplemental techniques in analogy with Hurst's original R/S analysis. These techniques should be another way to plumb the higher-order dynamics.

  5. Irregularity, volatility, risk, and financial market time series

    PubMed Central

    Pincus, Steve; Kalman, Rudolf E.

    2004-01-01

    The need to assess subtle, potentially exploitable changes in serial structure is paramount in the analysis of financial data. Herein, we demonstrate the utility of approximate entropy (ApEn), a model-independent measure of sequential irregularity, toward this goal, by several distinct applications. We consider both empirical data and models, including composite indices (Standard and Poor's 500 and Hang Seng), individual stock prices, the random-walk hypothesis, and the Black–Scholes and fractional Brownian motion models. Notably, ApEn appears to be a potentially useful marker of system stability, with rapid increases possibly foreshadowing significant changes in a financial variable. PMID:15358860

  6. Wavelet analysis for non-stationary, nonlinear time series

    NASA Astrophysics Data System (ADS)

    Schulte, Justin A.

    2016-08-01

    Methods for detecting and quantifying nonlinearities in nonstationary time series are introduced and developed. In particular, higher-order wavelet analysis was applied to an ideal time series and the quasi-biennial oscillation (QBO) time series. Multiple-testing problems inherent in wavelet analysis were addressed by controlling the false discovery rate. A new local autobicoherence spectrum facilitated the detection of local nonlinearities and the quantification of cycle geometry. The local autobicoherence spectrum of the QBO time series showed that the QBO time series contained a mode with a period of 28 months that was phase coupled to a harmonic with a period of 14 months. An additional nonlinearly interacting triad was found among modes with periods of 10, 16 and 26 months. Local biphase spectra determined that the nonlinear interactions were not quadratic and that the effect of the nonlinearities was to produce non-smoothly varying oscillations. The oscillations were found to be skewed so that negative QBO regimes were preferred, and also asymmetric in the sense that phase transitions between the easterly and westerly phases occurred more rapidly than those from westerly to easterly regimes.

  7. Recurrent Neural Network Applications for Astronomical Time Series

    NASA Astrophysics Data System (ADS)

    Protopapas, Pavlos

    2017-06-01

    The benefits of good predictive models in astronomy lie in early event prediction systems and effective resource allocation. Current time series methods applicable to regular time series have not evolved to generalize for irregular time series. In this talk, I will describe two Recurrent Neural Network methods, Long Short-Term Memory (LSTM) and Echo State Networks (ESNs) for predicting irregular time series. Feature engineering along with a non-linear modeling proved to be an effective predictor. For noisy time series, the prediction is improved by training the network on error realizations using the error estimates from astronomical light curves. In addition to this, we propose a new neural network architecture to remove correlation from the residuals in order to improve prediction and compensate for the noisy data. Finally, I show how to set hyperparameters for a stable and performant solution correctly. In this work, we circumvent this obstacle by optimizing ESN hyperparameters using Bayesian optimization with Gaussian Process priors. This automates the tuning procedure, enabling users to employ the power of RNN without needing an in-depth understanding of the tuning procedure.

  8. Characterizing time series via complexity-entropy curves

    NASA Astrophysics Data System (ADS)

    Ribeiro, Haroldo V.; Jauregui, Max; Zunino, Luciano; Lenzi, Ervin K.

    2017-06-01

    The search for patterns in time series is a very common task when dealing with complex systems. This is usually accomplished by employing a complexity measure such as entropies and fractal dimensions. However, such measures usually only capture a single aspect of the system dynamics. Here, we propose a family of complexity measures for time series based on a generalization of the complexity-entropy causality plane. By replacing the Shannon entropy by a monoparametric entropy (Tsallis q entropy) and after considering the proper generalization of the statistical complexity (q complexity), we build up a parametric curve (the q -complexity-entropy curve) that is used for characterizing and classifying time series. Based on simple exact results and numerical simulations of stochastic processes, we show that these curves can distinguish among different long-range, short-range, and oscillating correlated behaviors. Also, we verify that simulated chaotic and stochastic time series can be distinguished based on whether these curves are open or closed. We further test this technique in experimental scenarios related to chaotic laser intensity, stock price, sunspot, and geomagnetic dynamics, confirming its usefulness. Finally, we prove that these curves enhance the automatic classification of time series with long-range correlations and interbeat intervals of healthy subjects and patients with heart disease.

  9. Characterizing time series via complexity-entropy curves.

    PubMed

    Ribeiro, Haroldo V; Jauregui, Max; Zunino, Luciano; Lenzi, Ervin K

    2017-06-01

    The search for patterns in time series is a very common task when dealing with complex systems. This is usually accomplished by employing a complexity measure such as entropies and fractal dimensions. However, such measures usually only capture a single aspect of the system dynamics. Here, we propose a family of complexity measures for time series based on a generalization of the complexity-entropy causality plane. By replacing the Shannon entropy by a monoparametric entropy (Tsallis q entropy) and after considering the proper generalization of the statistical complexity (q complexity), we build up a parametric curve (the q-complexity-entropy curve) that is used for characterizing and classifying time series. Based on simple exact results and numerical simulations of stochastic processes, we show that these curves can distinguish among different long-range, short-range, and oscillating correlated behaviors. Also, we verify that simulated chaotic and stochastic time series can be distinguished based on whether these curves are open or closed. We further test this technique in experimental scenarios related to chaotic laser intensity, stock price, sunspot, and geomagnetic dynamics, confirming its usefulness. Finally, we prove that these curves enhance the automatic classification of time series with long-range correlations and interbeat intervals of healthy subjects and patients with heart disease.

  10. Nonlinear Analysis of Surface EMG Time Series of Back Muscles

    NASA Astrophysics Data System (ADS)

    Dolton, Donald C.; Zurcher, Ulrich; Kaufman, Miron; Sung, Paul

    2004-10-01

    A nonlinear analysis of surface electromyography time series of subjects with and without low back pain is presented. The mean-square displacement and entropy shows anomalous diffusive behavior on intermediate time range 10 ms < t < 1 s. This behavior implies the presence of correlations in the signal. We discuss the shape of the power spectrum of the signal.

  11. Time Series Analysis Based on Running Mann Whitney Z Statistics

    USDA-ARS?s Scientific Manuscript database

    A sensitive and objective time series analysis method based on the calculation of Mann Whitney U statistics is described. This method samples data rankings over moving time windows, converts those samples to Mann-Whitney U statistics, and then normalizes the U statistics to Z statistics using Monte-...

  12. Long-range correlations in time series generated by time-fractional diffusion: A numerical study

    NASA Astrophysics Data System (ADS)

    Barbieri, Davide; Vivoli, Alessandro

    2005-09-01

    Time series models showing power law tails in autocorrelation functions are common in econometrics. A special non-Markovian model for such kind of time series is provided by the random walk introduced by Gorenflo et al. as a discretization of time fractional diffusion. The time series so obtained are analyzed here from a numerical point of view in terms of autocorrelations and covariance matrices.

  13. Model-based Clustering of Categorical Time Series with Multinomial Logit Classification

    NASA Astrophysics Data System (ADS)

    Frühwirth-Schnatter, Sylvia; Pamminger, Christoph; Winter-Ebmer, Rudolf; Weber, Andrea

    2010-09-01

    A common problem in many areas of applied statistics is to identify groups of similar time series in a panel of time series. However, distance-based clustering methods cannot easily be extended to time series data, where an appropriate distance-measure is rather difficult to define, particularly for discrete-valued time series. Markov chain clustering, proposed by Pamminger and Frühwirth-Schnatter [6], is an approach for clustering discrete-valued time series obtained by observing a categorical variable with several states. This model-based clustering method is based on finite mixtures of first-order time-homogeneous Markov chain models. In order to further explain group membership we present an extension to the approach of Pamminger and Frühwirth-Schnatter [6] by formulating a probabilistic model for the latent group indicators within the Bayesian classification rule by using a multinomial logit model. The parameters are estimated for a fixed number of clusters within a Bayesian framework using an Markov chain Monte Carlo (MCMC) sampling scheme representing a (full) Gibbs-type sampler which involves only draws from standard distributions. Finally, an application to a panel of Austrian wage mobility data is presented which leads to an interesting segmentation of the Austrian labour market.

  14. MODIS Vegetation Indices time series improvement considering real acquisition dates

    NASA Astrophysics Data System (ADS)

    Testa, S.; Borgogno Mondino, E.

    2013-12-01

    Satellite Vegetation Indices (VI) time series images are widely used for the characterization phenology, which requires a high temporal accuracy of the satellite data. The present work is based on the MODerate resolution Imaging Spectroradiometer (MODIS) MOD13Q1 product - Vegetation Indices 16-Day L3 Global 250m, which is generated through a maximum value compositing process that reduces the number of cloudy pixels and excludes, when possible, off-nadir ones. Because of its 16-days compositing period, the distance between two adjacent-in-time values within each pixel NDVI time series can range from 1 to 32 days, thus not acceptable for phenologic studies. Moreover, most of the available smoothing algorithms, which are widely used for phenology characterization, assume that data points are equidistant in time and contemporary over the image. The objective of this work was to assess temporal features of NDVI time series over a test area, composed by Castanea sativa (chestnut) and Fagus sylvatica (beech) pure pixels within the Piemonte region in Northwestern Italy. Firstly, NDVI, Pixel Reliability (PR) and Composite Day of the Year (CDOY) data ranging from 2000 to 2011 were extracted from MOD13Q1 and corresponding time series were generated (in further computations, 2000 was not considered since it is not complete because acquisition began in February and calibration is unreliable until October). Analysis of CDOY time series (containing the actual reference date of each NDVI value) over the selected study areas showed NDVI values to be prevalently generated from data acquired at the centre of each 16-days period (the 9th day), at least constantly along the year. This leads to consider each original NDVI value nominally placed to the centre of its 16-days reference period. Then, a new NDVI time series was generated: a) moving each NDVI value to its actual "acquisition" date, b) interpolating the obtained temporary time series through SPLINE functions, c) sampling such

  15. Improvements to surrogate data methods for nonstationary time series.

    PubMed

    Lucio, J H; Valdés, R; Rodríguez, L R

    2012-05-01

    The method of surrogate data has been extensively applied to hypothesis testing of system linearity, when only one realization of the system, a time series, is known. Normally, surrogate data should preserve the linear stochastic structure and the amplitude distribution of the original series. Classical surrogate data methods (such as random permutation, amplitude adjusted Fourier transform, or iterative amplitude adjusted Fourier transform) are successful at preserving one or both of these features in stationary cases. However, they always produce stationary surrogates, hence existing nonstationarity could be interpreted as dynamic nonlinearity. Certain modifications have been proposed that additionally preserve some nonstationarity, at the expense of reproducing a great deal of nonlinearity. However, even those methods generally fail to preserve the trend (i.e., global nonstationarity in the mean) of the original series. This is the case of time series with unit roots in their autoregressive structure. Additionally, those methods, based on Fourier transform, either need first and last values in the original series to match, or they need to select a piece of the original series with matching ends. These conditions are often inapplicable and the resulting surrogates are adversely affected by the well-known artefact problem. In this study, we propose a simple technique that, applied within existing Fourier-transform-based methods, generates surrogate data that jointly preserve the aforementioned characteristics of the original series, including (even strong) trends. Moreover, our technique avoids the negative effects of end mismatch. Several artificial and real, stationary and nonstationary, linear and nonlinear time series are examined, in order to demonstrate the advantages of the methods. Corresponding surrogate data are produced with the classical and with the proposed methods, and the results are compared.

  16. Mining approximate periodic pattern in hydrological time series

    NASA Astrophysics Data System (ADS)

    Zhu, Y. L.; Li, S. J.; Bao, N. N.; Wan, D. S.

    2012-04-01

    There is a lot of information about the hidden laws of nature evolution and the influences of human beings activities on the earth surface in long sequence of hydrological time series. Data mining technology can help find those hidden laws, such as flood frequency and abrupt change, which is useful for the decision support of hydrological prediction and flood control scheduling. The periodic nature of hydrological time series is important for trend forecasting of drought and flood and hydraulic engineering planning. In Hydrology, the full period analysis of hydrological time series has attracted a lot of attention, such as the discrete periodogram, simple partial wave method, Fourier analysis method, and maximum entropy spectral analysis method and wavelet analysis. In fact, the hydrological process is influenced both by deterministic factors and stochastic ones. For example, the tidal level is also affected by moon circling the Earth, in addition to the Earth revolution and its rotation. Hence, there is some kind of approximate period hidden in the hydrological time series, sometimes which is also called the cryptic period. Recently, partial period mining originated from the data mining domain can be a remedy for the traditional period analysis methods in hydrology, which has a loose request of the data integrity and continuity. They can find some partial period in the time series. This paper is focused on the partial period mining in the hydrological time series. Based on asynchronous periodic pattern and partial period mining with suffix tree, this paper proposes to mine multi-event asynchronous periodic pattern based on modified suffix tree representation and traversal, and invent a dynamic candidate period intervals adjusting method, which can avoids period omissions or waste of time and space. The experimental results on synthetic data and real water level data of the Yangtze River at Nanjing station indicate that this algorithm can discover hydrological

  17. Cloud masking and removal in remote sensing image time series

    NASA Astrophysics Data System (ADS)

    Gómez-Chova, Luis; Amorós-López, Julia; Mateo-García, Gonzalo; Muñoz-Marí, Jordi; Camps-Valls, Gustau

    2017-01-01

    Automatic cloud masking of Earth observation images is one of the first required steps in optical remote sensing data processing since the operational use and product generation from satellite image time series might be hampered by undetected clouds. The high temporal revisit of current and forthcoming missions and the scarcity of labeled data force us to cast cloud screening as an unsupervised change detection problem in the temporal domain. We introduce a cloud screening method based on detecting abrupt changes along the time dimension. The main assumption is that image time series follow smooth variations over land (background) and abrupt changes will be mainly due to the presence of clouds. The method estimates the background surface changes using the information in the time series. In particular, we propose linear and nonlinear least squares regression algorithms that minimize both the prediction and the estimation error simultaneously. Then, significant differences in the image of interest with respect to the estimated background are identified as clouds. The use of kernel methods allows the generalization of the algorithm to account for higher-order (nonlinear) feature relations. After the proposed cloud masking and cloud removal, cloud-free time series at high spatial resolution can be used to obtain a better monitoring of land cover dynamics and to generate more elaborated products. The method is tested in a dataset with 5-day revisit time series from SPOT-4 at high resolution and with Landsat-8 time series. Experimental results show that the proposed method yields more accurate cloud masks when confronted with state-of-the-art approaches typically used in operational settings. In addition, the algorithm has been implemented in the Google Earth Engine platform, which allows us to access the full Landsat-8 catalog and work in a parallel distributed platform to extend its applicability to a global planetary scale.

  18. Time series, correlation matrices and random matrix models

    SciTech Connect

    Vinayak; Seligman, Thomas H.

    2014-01-08

    In this set of five lectures the authors have presented techniques to analyze open classical and quantum systems using correlation matrices. For diverse reasons we shall see that random matrices play an important role to describe a null hypothesis or a minimum information hypothesis for the description of a quantum system or subsystem. In the former case various forms of correlation matrices of time series associated with the classical observables of some system. The fact that such series are necessarily finite, inevitably introduces noise and this finite time influence lead to a random or stochastic component in these time series. By consequence random correlation matrices have a random component, and corresponding ensembles are used. In the latter we use random matrices to describe high temperature environment or uncontrolled perturbations, ensembles of differing chaotic systems etc. The common theme of the lectures is thus the importance of random matrix theory in a wide range of fields in and around physics.

  19. Time series characterization via horizontal visibility graph and Information Theory

    NASA Astrophysics Data System (ADS)

    Gonçalves, Bruna Amin; Carpi, Laura; Rosso, Osvaldo A.; Ravetti, Martín G.

    2016-12-01

    Complex networks theory have gained wider applicability since methods for transformation of time series to networks were proposed and successfully tested. In the last few years, horizontal visibility graph has become a popular method due to its simplicity and good results when applied to natural and artificially generated data. In this work, we explore different ways of extracting information from the network constructed from the horizontal visibility graph and evaluated by Information Theory quantifiers. Most works use the degree distribution of the network, however, we found alternative probability distributions, more efficient than the degree distribution in characterizing dynamical systems. In particular, we find that, when using distributions based on distances and amplitude values, significant shorter time series are required. We analyze fractional Brownian motion time series, and a paleoclimatic proxy record of ENSO from the Pallcacocha Lake to study dynamical changes during the Holocene.

  20. Neural network versus classical time series forecasting models

    NASA Astrophysics Data System (ADS)

    Nor, Maria Elena; Safuan, Hamizah Mohd; Shab, Noorzehan Fazahiyah Md; Asrul, Mohd; Abdullah, Affendi; Mohamad, Nurul Asmaa Izzati; Lee, Muhammad Hisyam

    2017-05-01

    Artificial neural network (ANN) has advantage in time series forecasting as it has potential to solve complex forecasting problems. This is because ANN is data driven approach which able to be trained to map past values of a time series. In this study the forecast performance between neural network and classical time series forecasting method namely seasonal autoregressive integrated moving average models was being compared by utilizing gold price data. Moreover, the effect of different data preprocessing on the forecast performance of neural network being examined. The forecast accuracy was evaluated using mean absolute deviation, root mean square error and mean absolute percentage error. It was found that ANN produced the most accurate forecast when Box-Cox transformation was used as data preprocessing.

  1. Characterizing Complex Time Series from the Scaling of Prediction Error.

    NASA Astrophysics Data System (ADS)

    Hinrichs, Brant Eric

    This thesis concerns characterizing complex time series from the scaling of prediction error. We use the global modeling technique of radial basis function approximation to build models from a state-space reconstruction of a time series that otherwise appears complicated or random (i.e. aperiodic, irregular). Prediction error as a function of prediction horizon is obtained from the model using the direct method. The relationship between the underlying dynamics of the time series and the logarithmic scaling of prediction error as a function of prediction horizon is investigated. We use this relationship to characterize the dynamics of both a model chaotic system and physical data from the optic tectum of an attentive pigeon exhibiting the important phenomena of nonstationary neuronal oscillations in response to visual stimuli.

  2. On fractal analysis of cardiac interbeat time series

    NASA Astrophysics Data System (ADS)

    Guzmán-Vargas, L.; Calleja-Quevedo, E.; Angulo-Brown, F.

    2003-09-01

    In recent years the complexity of a cardiac beat-to-beat time series has been taken as an auxiliary tool to identify the health status of human hearts. Several methods has been employed to characterize the time series complexity. In this work we calculate the fractal dimension of interbeat time series arising from three groups: 10 young healthy persons, 8 elderly healthy persons and 10 patients with congestive heart failures. Our numerical results reflect evident differences in the dynamic behavior corresponding to each group. We discuss these results within the context of the neuroautonomic control of heart rate dynamics. We also propose a numerical simulation which reproduce aging effects of heart rate behavior.

  3. Test to determine the Markov order of a time series.

    PubMed

    Racca, E; Laio, F; Poggi, D; Ridolfi, L

    2007-01-01

    The Markov order of a time series is an important measure of the "memory" of a process, and its knowledge is fundamental for the correct simulation of the characteristics of the process. For this reason, several techniques have been proposed in the past for its estimation. However, most of this methods are rather complex, and often can be applied only in the case of Markov chains. Here we propose a simple and robust test to evaluate the Markov order of a time series. Only the first-order moment of the conditional probability density function characterizing the process is used to evaluate the memory of the process itself. This measure is called the "expected value Markov (EVM) order." We show that there is good agreement between the EVM order and the known Markov order of some synthetic time series.

  4. Causal analysis of time series from hydrological systems

    NASA Astrophysics Data System (ADS)

    Selle, Benny; Aufgebauer, Britta; Knorr, Klaus-Holger

    2017-04-01

    It is often difficult to infer cause and effect in hydrological systems for which time series of system inputs, outputs and state variables are observed. A recently published technique called Convergent Cross Mapping could be a promising tool to detect causality between time series. A response variable Y may be causally related to a forcing variable X, if the so called cross mapping of X using Y improves with the amount of data included. The idea is that a response variable contains information on the history of its driving variable whereas the reverse may not be true. We propose an alternative approach based on similar ideas using neural networks. Our approach is firstly compared to Convergent Cross Mapping using a synthetic time series of precipitation and streamflow generated by a rainfall runoff model. Secondly, measured concentrations of dissolved organic carbon and dissolved iron from a mountainous stream in Germany, that were previously hypothesised to be casually linked, are tested.

  5. Appropriate Algorithms for Nonlinear Time Series Analysis in Psychology

    NASA Astrophysics Data System (ADS)

    Scheier, Christian; Tschacher, Wolfgang

    Chaos theory has a strong appeal for psychology because it allows for the investigation of the dynamics and nonlinearity of psychological systems. Consequently, chaos-theoretic concepts and methods have recently gained increasing attention among psychologists and positive claims for chaos have been published in nearly every field of psychology. Less attention, however, has been paid to the appropriateness of chaos-theoretic algorithms for psychological time series. An appropriate algorithm can deal with short, noisy data sets and yields `objective' results. In the present paper it is argued that most of the classical nonlinear techniques don't satisfy these constraints and thus are not appropriate for psychological data. A methodological approach is introduced that is based on nonlinear forecasting and the method of surrogate data. In artificial data sets and empirical time series we can show that this methodology reliably assesses nonlinearity and chaos in time series even if they are short and contaminated by noise.

  6. Permutation test for periodicity in short time series data

    PubMed Central

    Ptitsyn, Andrey A; Zvonic, Sanjin; Gimble, Jeffrey M

    2006-01-01

    Background Periodic processes, such as the circadian rhythm, are important factors modulating and coordinating transcription of genes governing key metabolic pathways. Theoretically, even small fluctuations in the orchestration of circadian gene expression patterns among different tissues may result in functional asynchrony at the organism level and may contribute to a wide range of pathologic disorders. Identification of circadian expression pattern in time series data is important, but equally challenging. Microarray technology allows estimation of relative expression of thousands of genes at each time point. However, this estimation often lacks precision and microarray experiments are prohibitively expensive, limiting the number of data points in a time series expression profile. The data produced in these experiments carries a high degree of stochastic variation, obscuring the periodic pattern and a limited number of replicates, typically covering not more than two complete periods of oscillation. Results To address this issue, we have developed a simple, but effective, computational technique for the identification of a periodic pattern in relatively short time series, typical for microarray studies of circadian expression. This test is based on a random permutation of time points in order to estimate non-randomness of a periodogram. The Permutated time, or Pt-test, is able to detect oscillations within a given period in expression profiles dominated by a high degree of stochastic fluctuations or oscillations of different irrelevant frequencies. We have conducted a comprehensive study of circadian expression on a large data set produced at PBRC, representing three different peripheral murine tissues. We have also re-analyzed a number of similar time series data sets produced and published independently by other research groups over the past few years. Conclusion The Permutated time test (Pt-test) is demonstrated to be effective for detection of periodicity in

  7. A multidisciplinary database for geophysical time series management

    NASA Astrophysics Data System (ADS)

    Montalto, P.; Aliotta, M.; Cassisi, C.; Prestifilippo, M.; Cannata, A.

    2013-12-01

    The variables collected by a sensor network constitute a heterogeneous data source that needs to be properly organized in order to be used in research and geophysical monitoring. With the time series term we refer to a set of observations of a given phenomenon acquired sequentially in time. When the time intervals are equally spaced one speaks of period or sampling frequency. Our work describes in detail a possible methodology for storage and management of time series using a specific data structure. We designed a framework, hereinafter called TSDSystem (Time Series Database System), in order to acquire time series from different data sources and standardize them within a relational database. The operation of standardization provides the ability to perform operations, such as query and visualization, of many measures synchronizing them using a common time scale. The proposed architecture follows a multiple layer paradigm (Loaders layer, Database layer and Business Logic layer). Each layer is specialized in performing particular operations for the reorganization and archiving of data from different sources such as ASCII, Excel, ODBC (Open DataBase Connectivity), file accessible from the Internet (web pages, XML). In particular, the loader layer performs a security check of the working status of each running software through an heartbeat system, in order to automate the discovery of acquisition issues and other warning conditions. Although our system has to manage huge amounts of data, performance is guaranteed by using a smart partitioning table strategy, that keeps balanced the percentage of data stored in each database table. TSDSystem also contains modules for the visualization of acquired data, that provide the possibility to query different time series on a specified time range, or follow the realtime signal acquisition, according to a data access policy from the users.

  8. Noise analysis of GPS time series in Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, You-Chia; Chang, Wu-Lung

    2017-04-01

    Global positioning system (GPS) usually used for researches of plate tectonics and crustal deformation. In most studies, GPS time series considered only time-independent noises (white noise), but time-dependent noises (flicker noise, random walk noise) which were found by nearly twenty years are also important to the precision of data. The rate uncertainties of stations will be underestimated if the GPS time series are assumed only time-independent noise. Therefore studying the noise properties of GPS time series is necessary in order to realize the precision and reliability of velocity estimates. The lengths of our GPS time series are from over 500 stations around Taiwan with time spans longer than 2.5 years up to 20 years. The GPS stations include different monument types such as deep drill braced, roof, metal tripod, and concrete pier, and the most common type in Taiwan is the metal tripod. We investigated the noise properties of continuous GPS time series by using the spectral index and amplitude of the power law noise. During the process we first remove the data outliers, and then estimate linear trend, size of offsets, and seasonal signals, and finally the amplitudes of the power-law and white noise are estimated simultaneously. Our preliminary results show that the noise amplitudes of the north component are smaller than that of the other two components, and the largest amplitudes are in the vertical. We also find that the amplitudes of white noise and power-law noises are positively correlated in three components. Comparisons of noise amplitudes of different monument types in Taiwan reveal that the deep drill braced monuments have smaller data uncertainties and therefore are more stable than other monuments.

  9. A novel time series link prediction method: Learning automata approach

    NASA Astrophysics Data System (ADS)

    Moradabadi, Behnaz; Meybodi, Mohammad Reza

    2017-09-01

    Link prediction is a main social network challenge that uses the network structure to predict future links. The common link prediction approaches to predict hidden links use a static graph representation where a snapshot of the network is analyzed to find hidden or future links. For example, similarity metric based link predictions are a common traditional approach that calculates the similarity metric for each non-connected link and sort the links based on their similarity metrics and label the links with higher similarity scores as the future links. Because people activities in social networks are dynamic and uncertainty, and the structure of the networks changes over time, using deterministic graphs for modeling and analysis of the social network may not be appropriate. In the time-series link prediction problem, the time series link occurrences are used to predict the future links In this paper, we propose a new time series link prediction based on learning automata. In the proposed algorithm for each link that must be predicted there is one learning automaton and each learning automaton tries to predict the existence or non-existence of the corresponding link. To predict the link occurrence in time T, there is a chain consists of stages 1 through T - 1 and the learning automaton passes from these stages to learn the existence or non-existence of the corresponding link. Our preliminary link prediction experiments with co-authorship and email networks have provided satisfactory results when time series link occurrences are considered.

  10. Time series patterns and language support in DBMS

    NASA Astrophysics Data System (ADS)

    Telnarova, Zdenka

    2017-07-01

    This contribution is focused on pattern type Time Series as a rich in semantics representation of data. Some example of implementation of this pattern type in traditional Data Base Management Systems is briefly presented. There are many approaches how to manipulate with patterns and query patterns. Crucial issue can be seen in systematic approach to pattern management and specific pattern query language which takes into consideration semantics of patterns. Query language SQL-TS for manipulating with patterns is shown on Time Series data.

  11. Detecting unstable periodic orbits in chaotic time series using synchronization

    NASA Astrophysics Data System (ADS)

    Olyaei, Ali Azimi; Wu, Christine; Kinsner, Witold

    2017-07-01

    An alternative approach of detecting unstable periodic orbits in chaotic time series is proposed using synchronization techniques. A master-slave synchronization scheme is developed, in which the chaotic system drives a system of harmonic oscillators through a proper coupling condition. The proposed scheme is designed so that the power of the coupling signal exhibits notches that drop to zero once the system approaches an unstable orbit yielding an explicit indication of the presence of a periodic motion. The results shows that the proposed approach is particularly suitable in practical situations, where the time series is short and noisy, or it is obtained from high-dimensional chaotic systems.

  12. Microbial oceanography and the Hawaii Ocean Time-series programme.

    PubMed

    Karl, David M; Church, Matthew J

    2014-10-01

    The Hawaii Ocean Time-series (HOT) programme has been tracking microbial and biogeochemical processes in the North Pacific Subtropical Gyre since October 1988. The near-monthly time series observations have revealed previously undocumented phenomena within a temporally dynamic ecosystem that is vulnerable to climate change. Novel microorganisms, genes and unexpected metabolic pathways have been discovered and are being integrated into our evolving ecological paradigms. Continued research, including higher-frequency observations and at-sea experimentation, will help to provide a comprehensive scientific understanding of microbial processes in the largest biome on Earth.

  13. Testing for intracycle determinism in pseudoperiodic time series

    NASA Astrophysics Data System (ADS)

    Coelho, Mara C. S.; Mendes, Eduardo M. A. M.; Aguirre, Luis A.

    2008-06-01

    A determinism test is proposed based on the well-known method of the surrogate data. Assuming predictability to be a signature of determinism, the proposed method checks for intracycle (e.g., short-term) determinism in the pseudoperiodic time series for which standard methods of surrogate analysis do not apply. The approach presented is composed of two steps. First, the data are preprocessed to reduce the effects of seasonal and trend components. Second, standard tests of surrogate analysis can then be used. The determinism test is applied to simulated and experimental pseudoperiodic time series and the results show the applicability of the proposed test.

  14. The time series modelling of non-Gaussian engineering processes

    NASA Astrophysics Data System (ADS)

    Watson, W.; Spedding, T. A.

    1982-12-01

    The basic methods of the time series modeling of surface profiles are extended to non-Gaussian processes which can involve complex correlation structures (e.g., periodic components obtained from turning and other similar processes). Particular attention is given to a class of models for time series formed by a combination of autoregressive (AR) and moving average (MA) processes. The results presented here show that these models are capable of accurately simulating a wide range of surface profile characteristics. The models can be programmed to run automatically and can be combined with standard procedures for fitting ARMA models and, if required, with one or several methods for separating random and periodic components.

  15. Application of nonlinear time series models to driven systems

    SciTech Connect

    Hunter, N.F. Jr.

    1990-01-01

    In our laboratory we have been engaged in an effort to model nonlinear systems using time series methods. Our objectives have been, first, to understand how the time series response of a nonlinear system unfolds as a function of the underlying state variables, second, to model the evolution of the state variables, and finally, to predict nonlinear system responses. We hope to address the relationship between model parameters and system parameters in the near future. Control of nonlinear systems based on experimentally derived parameters is also a planned topic of future research. 28 refs., 15 figs., 2 tabs.

  16. Kālī: Time series data modeler

    NASA Astrophysics Data System (ADS)

    Kasliwal, Vishal P.

    2016-07-01

    The fully parallelized and vectorized software package Kālī models time series data using various stochastic processes such as continuous-time ARMA (C-ARMA) processes and uses Bayesian Markov Chain Monte-Carlo (MCMC) for inferencing a stochastic light curve. Kālimacr; is written in c++ with Python language bindings for ease of use. K¯lī is named jointly after the Hindu goddess of time, change, and power and also as an acronym for KArma LIbrary.

  17. Adaptive median filtering for preprocessing of time series measurements

    NASA Technical Reports Server (NTRS)

    Paunonen, Matti

    1993-01-01

    A median (L1-norm) filtering program using polynomials was developed. This program was used in automatic recycling data screening. Additionally, a special adaptive program to work with asymmetric distributions was developed. Examples of adaptive median filtering of satellite laser range observations and TV satellite time measurements are given. The program proved to be versatile and time saving in data screening of time series measurements.

  18. Modelling Limit Order Execution Times from Market Data

    NASA Astrophysics Data System (ADS)

    Kim, Adlar; Farmer, Doyne; Lo, Andrew

    2007-03-01

    Although the term ``liquidity'' is widely used in finance literatures, its meaning is very loosely defined and there is no quantitative measure for it. Generally, ``liquidity'' means an ability to quickly trade stocks without causing a significant impact on the stock price. From this definition, we identified two facets of liquidity -- 1.execution time of limit orders, and 2.price impact of market orders. The limit order is an order to transact a prespecified number of shares at a prespecified price, which will not cause an immediate execution. On the other hand, the market order is an order to transact a prespecified number of shares at a market price, which will cause an immediate execution, but are subject to price impact. Therefore, when the stock is liquid, market participants will experience quick limit order executions and small market order impacts. As a first step to understand market liquidity, we studied the facet of liquidity related to limit order executions -- execution times. In this talk, we propose a novel approach of modeling limit order execution times and show how they are affected by size and price of orders. We used q-Weibull distribution, which is a generalized form of Weibull distribution that can control the fatness of tail to model limit order execution times.

  19. Marketing Time: Evolving Timescapes in Aacademia

    ERIC Educational Resources Information Center

    Guzmán-Valenzuela, Carolina; Barnett, Ronald

    2013-01-01

    In countries such as Chile in which a neoliberal economic approach is predominant, higher education systems are characterized by productivity, competition for resources and income generation, all of which have impact on academics' experiences of time. Through a qualitative approach in which 20 interviews and two focus groups were conducted, this…

  20. Marketing Time: Evolving Timescapes in Aacademia

    ERIC Educational Resources Information Center

    Guzmán-Valenzuela, Carolina; Barnett, Ronald

    2013-01-01

    In countries such as Chile in which a neoliberal economic approach is predominant, higher education systems are characterized by productivity, competition for resources and income generation, all of which have impact on academics' experiences of time. Through a qualitative approach in which 20 interviews and two focus groups were conducted, this…

  1. Ozone Time Series From GOMOS and SAGE II Measurements

    NASA Astrophysics Data System (ADS)

    Kyrola, E. T.; Laine, M.; Tukiainen, S.; Sofieva, V.; Zawodny, J. M.; Thomason, L. W.

    2011-12-01

    Satellite measurements are essential for monitoring changes in the global stratospheric ozone distribution. Both the natural variation and anthropogenic change are strongly dependent on altitude. Stratospheric ozone has been measured from space with good vertical resolution since 1985 by the SAGE II solar occultation instrument. The advantage of the occultation measurement principle is the self-calibration, which is essential to ensuring stable time series. SAGE II measurements in 1985-2005 have been a valuable data set in investigations of trends in the vertical distribution of ozone. This time series can now be extended by the GOMOS measurements started in 2002. GOMOS is a stellar occultation instrument and offers, therefore, a natural continuation of SAGE II measurements. In this paper we study how well GOMOS and SAGE II measurements agree with each other in the period 2002-2005 when both instruments were measuring. We detail how the different spatial and temporal sampling of these two instruments affect the conformity of measurements. We study also how the retrieval specifics like absorption cross sections and assumed aerosol modeling affect the results. Various combined time series are constructed using different estimators and latitude-time grids. We also show preliminary results from a novel time series analysis based on Markov chain Monte Carlo approach.

  2. Fractal dimension of electroencephalographic time series and underlying brain processes.

    PubMed

    Lutzenberger, W; Preissl, H; Pulvermüller, F

    1995-10-01

    Fractal dimension has been proposed as a useful measure for the characterization of electrophysiological time series. This paper investigates what the pointwise dimension of electroencephalographic (EEG) time series can reveal about underlying neuronal generators. The following theoretical assumptions concerning brain function were made (i) within the cortex, strongly coupled neural assemblies exist which oscillate at certain frequencies when they are active, (ii) several such assemblies can oscillate at a time, and (iii) activity flow between assemblies is minimal. If these assumptions are made, cortical activity can be considered as the weighted sum of a finite number of oscillations (plus noise). It is shown that the correlation dimension of finite time series generated by multiple oscillators increases monotonically with the number of oscillators. Furthermore, it is shown that a reliable estimate of the pointwise dimension of the raw EEG signal can be calculated from a time series as short as a few seconds. These results indicate that (i) The pointwise dimension of the EEG allows conclusions regarding the number of independently oscillating networks in the cortex, and (ii) a reliable estimate of the pointwise dimension of the EEG is possible on the basis of short raw signals.

  3. A window-based time series feature extraction method.

    PubMed

    Katircioglu-Öztürk, Deniz; Güvenir, H Altay; Ravens, Ursula; Baykal, Nazife

    2017-08-09

    This study proposes a robust similarity score-based time series feature extraction method that is termed as Window-based Time series Feature ExtraCtion (WTC). Specifically, WTC generates domain-interpretable results and involves significantly low computational complexity thereby rendering itself useful for densely sampled and populated time series datasets. In this study, WTC is applied to a proprietary action potential (AP) time series dataset on human cardiomyocytes and three precordial leads from a publicly available electrocardiogram (ECG) dataset. This is followed by comparing WTC in terms of predictive accuracy and computational complexity with shapelet transform and fast shapelet transform (which constitutes an accelerated variant of the shapelet transform). The results indicate that WTC achieves a slightly higher classification performance with significantly lower execution time when compared to its shapelet-based alternatives. With respect to its interpretable features, WTC has a potential to enable medical experts to explore definitive common trends in novel datasets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Learning time series evolution by unsupervised extraction of correlations

    SciTech Connect

    Deco, G.; Schuermann, B. )

    1995-03-01

    As a consequence, we are able to model chaotic and nonchaotic time series. Furthermore, one critical point in modeling time series is the determination of the dimension of the embedding vector used, i.e., the number of components of the past that are needed to predict the future. With this method we can detect the embedding dimension by extracting the influence of the past on the future, i.e., the correlation of remote past and future. Optimal embedding dimensions are obtained for the Henon map and the Mackey-Glass series. When noisy data corrupted by colored noise are used, a model is still possible. The noise will then be decorrelated by the network. In the case of modeling a chemical reaction, the most natural architecture that conserves the volume is a symplectic network which describes a system that conserves the entropy and therefore the transmitted information.

  5. Power Computations in Time Series Analyses for Traffic Safety Interventions

    PubMed Central

    McLeod, A. Ian; Vingilis, E. R.

    2008-01-01

    The evaluation of traffic safety interventions or other policies that can affect road safety often requires the collection of administrative time series data, such as monthly motor vehicle collision data that may be difficult and/or expensive to collect. Furthermore, since policy decisions may be based on the results found from the intervention analysis of the policy, it is important to ensure that the statistical tests have enough power, that is, that we have collected enough time series data both before and after the intervention so that a meaningful change in the series will likely be detected. In this short paper we present a simple methodology for doing this. It is expected that the methodology presented will be useful for sample size determination in a wide variety of traffic safety intervention analysis applications. Our method is illustrated with a proposed traffic safety study that was funded by NIH. PMID:18460394

  6. Segmentation of time series with long-range fractal correlations

    NASA Astrophysics Data System (ADS)

    Bernaola-Galván, P.; Oliver, J. L.; Hackenberg, M.; Coronado, A. V.; Ivanov, P. Ch.; Carpena, P.

    2012-06-01

    Segmentation is a standard method of data analysis to identify change-points dividing a nonstationary time series into homogeneous segments. However, for long-range fractal correlated series, most of the segmentation techniques detect spurious change-points which are simply due to the heterogeneities induced by the correlations and not to real nonstationarities. To avoid this oversegmentation, we present a segmentation algorithm which takes as a reference for homogeneity, instead of a random i.i.d. series, a correlated series modeled by a fractional noise with the same degree of correlations as the series to be segmented. We apply our algorithm to artificial series with long-range correlations and show that it systematically detects only the change-points produced by real nonstationarities and not those created by the correlations of the signal. Further, we apply the method to the sequence of the long arm of human chromosome 21, which is known to have long-range fractal correlations. We obtain only three segments that clearly correspond to the three regions of different G + C composition revealed by means of a multi-scale wavelet plot. Similar results have been obtained when segmenting all human chromosome sequences, showing the existence of previously unknown huge compositional superstructures in the human genome.

  7. Segmentation of time series with long-range fractal correlations

    PubMed Central

    Bernaola-Galván, P.; Oliver, J.L.; Hackenberg, M.; Coronado, A.V.; Ivanov, P.Ch.; Carpena, P.

    2012-01-01

    Segmentation is a standard method of data analysis to identify change-points dividing a nonstationary time series into homogeneous segments. However, for long-range fractal correlated series, most of the segmentation techniques detect spurious change-points which are simply due to the heterogeneities induced by the correlations and not to real nonstationarities. To avoid this oversegmentation, we present a segmentation algorithm which takes as a reference for homogeneity, instead of a random i.i.d. series, a correlated series modeled by a fractional noise with the same degree of correlations as the series to be segmented. We apply our algorithm to artificial series with long-range correlations and show that it systematically detects only the change-points produced by real nonstationarities and not those created by the correlations of the signal. Further, we apply the method to the sequence of the long arm of human chromosome 21, which is known to have long-range fractal correlations. We obtain only three segments that clearly correspond to the three regions of different G + C composition revealed by means of a multi-scale wavelet plot. Similar results have been obtained when segmenting all human chromosome sequences, showing the existence of previously unknown huge compositional superstructures in the human genome. PMID:23645997

  8. Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market

    SciTech Connect

    Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman, D.; Simpkins, T.; Argo, A.

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  9. Transportation Energy Futures Series. Projected Biomass Utilization for Fuels and Power in a Mature Market

    SciTech Connect

    Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman, D.; Simpkins, T.; Argo, A.

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  10. Detecting macroeconomic phases in the Dow Jones Industrial Average time series

    NASA Astrophysics Data System (ADS)

    Wong, Jian Cheng; Lian, Heng; Cheong, Siew Ann

    2009-11-01

    In this paper, we perform statistical segmentation and clustering analysis of the Dow Jones Industrial Average (DJI) time series between January 1997 and August 2008. Modeling the index movements and log-index movements as stationary Gaussian processes, we find a total of 116 and 119 statistically stationary segments respectively. These can then be grouped into between five and seven clusters, each representing a different macroeconomic phase. The macroeconomic phases are distinguished primarily by their volatilities. We find that the US economy, as measured by the DJI, spends most of its time in a low-volatility phase and a high-volatility phase. The former can be roughly associated with economic expansion, while the latter contains the economic contraction phase in the standard economic cycle. Both phases are interrupted by a moderate-volatility market correction phase, but extremely-high-volatility market crashes are found mostly within the high-volatility phase. From the temporal distribution of various phases, we see a high-volatility phase from mid-1998 to mid-2003, and another starting mid-2007 (the current global financial crisis). Transitions from the low-volatility phase to the high-volatility phase are preceded by a series of precursor shocks, whereas the transition from the high-volatility phase to the low-volatility phase is preceded by a series of inverted shocks. The time scale for both types of transitions is about a year. We also identify the July 1997 Asian Financial Crisis to be the trigger for the mid-1998 transition, and an unnamed May 2006 market event related to corrections in the Chinese markets to be the trigger for the mid-2007 transition.

  11. A comparison between MS-VECM and MS-VECMX on economic time series data

    NASA Astrophysics Data System (ADS)

    Phoong, Seuk-Wai; Ismail, Mohd Tahir; Sek, Siok-Kun

    2014-07-01

    Multivariate Markov switching models able to provide useful information on the study of structural change data since the regime switching model can analyze the time varying data and capture the mean and variance in the series of dependence structure. This paper will investigates the oil price and gold price effects on Malaysia, Singapore, Thailand and Indonesia stock market returns. Two forms of Multivariate Markov switching models are used namely the mean adjusted heteroskedasticity Markov Switching Vector Error Correction Model (MSMH-VECM) and the mean adjusted heteroskedasticity Markov Switching Vector Error Correction Model with exogenous variable (MSMH-VECMX). The reason for using these two models are to capture the transition probabilities of the data since real financial time series data always exhibit nonlinear properties such as regime switching, cointegrating relations, jumps or breaks passing the time. A comparison between these two models indicates that MSMH-VECM model able to fit the time series data better than the MSMH-VECMX model. In addition, it was found that oil price and gold price affected the stock market changes in the four selected countries.

  12. Long GPS coordinate time series: multipath and geometry effects

    NASA Astrophysics Data System (ADS)

    King, M.; Watson, C. S.

    2009-12-01

    Within analyses of Global Positioning System (GPS) observations, unmodelled sub-daily signals are known to propagate into long-period signals via a number of different mechanisms. We report on the effects of time-variable satellite geometry and the propagation of an unmodelled multipath signal. Multipath reflectors at H=0.1 m, 0.2 m and 1.5 m below the antenna are modeled and their effects on GPS coordinate time series are examined. Simulated time series at 20 global IGS sites for 2000-2008 were derived using the satellite geometry as defined by daily broadcast orbits, in addition to that defined using a perfectly repeating synthetic orbit. For the simulations generated using the broadcast orbits with a perfectly clear horizon, we observe the introduction of a time variable bias in the time series of up to several centimeters. Considerable site to site variability of the frequency and magnitude of the signal is observed, in addition to variation as a function of multipath source. When adopting realistic GPS observation geometries obtained from real data (e.g., those that include the effects of tracking outages, local obstructions, etc.), we observe concerning levels of temporal coordinate variation in the presence of the multipath signals. In these cases, we observe spurious signals across the frequency domain, in addition to what appears as offsets and secular trends. Velocity biases of more than 1mm/yr are evident at some few sites. The propagated signal in the vertical component is consistent with a noise model with a spectral index marginally above flicker noise (mean index -1.4), with some sites exhibiting power law magnitudes at comparable levels to actual height time series generated in GIPSY. The propagated signal also shows clear spectral peaks across all coordinate components at harmonics of the draconitic year for a GPS satellite (351.2 days). When a perfectly repeating synthetic GPS constellation is used, the simulations show near-negligible power law

  13. Ocean time-series near Bermuda: Hydrostation S and the US JGOFS Bermuda Atlantic time-series study

    NASA Technical Reports Server (NTRS)

    Michaels, Anthony F.; Knap, Anthony H.

    1992-01-01

    Bermuda is the site of two ocean time-series programs. At Hydrostation S, the ongoing biweekly profiles of temperature, salinity and oxygen now span 37 years. This is one of the longest open-ocean time-series data sets and provides a view of decadal scale variability in ocean processes. In 1988, the U.S. JGOFS Bermuda Atlantic Time-series Study began a wide range of measurements at a frequency of 14-18 cruises each year to understand temporal variability in ocean biogeochemistry. On each cruise, the data range from chemical analyses of discrete water samples to data from electronic packages of hydrographic and optics sensors. In addition, a range of biological and geochemical rate measurements are conducted that integrate over time-periods of minutes to days. This sampling strategy yields a reasonable resolution of the major seasonal patterns and of decadal scale variability. The Sargasso Sea also has a variety of episodic production events on scales of days to weeks and these are only poorly resolved. In addition, there is a substantial amount of mesoscale variability in this region and some of the perceived temporal patterns are caused by the intersection of the biweekly sampling with the natural spatial variability. In the Bermuda time-series programs, we have added a series of additional cruises to begin to assess these other sources of variation and their impacts on the interpretation of the main time-series record. However, the adequate resolution of higher frequency temporal patterns will probably require the introduction of new sampling strategies and some emerging technologies such as biogeochemical moorings and autonomous underwater vehicles.

  14. A Data Mining Framework for Time Series Estimation

    PubMed Central

    Hu, Xiao; Xu, Peng; Wu, Shaozhi; Asgari, Shadnaz; Bergsneider, Marvin

    2009-01-01

    Time series estimation techniques are usually employed in biomedical research to derive variables less accessible from a set of related and more accessible variables. These techniques are traditionally built from systems modeling approaches including simulation, blind decovolution, and state estimation. In this work, we define target time series (TTS) and its related time series (RTS) as the output and input of a time series estimation process, respectively. We then propose a novel data mining framework for time series estimation when TTS and RTS represent different sets of observed variables from the same dynamic system. This is made possible by mining a database of instances of TTS, its simultaneously recorded RTS, and the input/output dynamic models between them. The key mining strategy is to formulate a mapping function for each TTS-RTS pair in the database that translates a feature vector extracted from RTS to the dissimilarity between true TTS and its estimate from the dynamic model associated with the same TTS-RTS pair. At run time, a feature vector is extracted from an inquiry RTS and supplied to the mapping function associated with each TTS-RTS pair to calculate a dissimilarity measure. An optimal TTS-RTS pair is then selected by analyzing these dissimilarity measures. The associated input/output model of the selected TTS-RTS pair is then used to simulate the TTS given the inquiry RTS as an input. An exemplary implementation was built to address a biomedical problem of noninvasive intracranial pressure assessment. The performance of the proposed method was superior to that of a simple training-free approach of finding the optimal TTS-RTS pair by a conventional similarity-based search on RTS features. PMID:19900575

  15. Complexity analysis of the turbulent environmental fluid flow time series

    NASA Astrophysics Data System (ADS)

    Mihailović, D. T.; Nikolić-Đorić, E.; Drešković, N.; Mimić, G.

    2014-02-01

    We have used the Kolmogorov complexities, sample and permutation entropies to quantify the randomness degree in river flow time series of two mountain rivers in Bosnia and Herzegovina, representing the turbulent environmental fluid, for the period 1926-1990. In particular, we have examined the monthly river flow time series from two rivers (the Miljacka and the Bosnia) in the mountain part of their flow and then calculated the Kolmogorov complexity (KL) based on the Lempel-Ziv Algorithm (LZA) (lower-KLL and upper-KLU), sample entropy (SE) and permutation entropy (PE) values for each time series. The results indicate that the KLL, KLU, SE and PE values in two rivers are close to each other regardless of the amplitude differences in their monthly flow rates. We have illustrated the changes in mountain river flow complexity by experiments using (i) the data set for the Bosnia River and (ii) anticipated human activities and projected climate changes. We have explored the sensitivity of considered measures in dependence on the length of time series. In addition, we have divided the period 1926-1990 into three subintervals: (a) 1926-1945, (b) 1946-1965, (c) 1966-1990, and calculated the KLL, KLU, SE, PE values for the various time series in these subintervals. It is found that during the period 1946-1965, there is a decrease in their complexities, and corresponding changes in the SE and PE, in comparison to the period 1926-1990. This complexity loss may be primarily attributed to (i) human interventions, after the Second World War, on these two rivers because of their use for water consumption and (ii) climate change in recent times.

  16. IDENTIFICATION OF REGIME SHIFTS IN TIME SERIES USING NEIGHBORHOOD STATISTICS

    EPA Science Inventory

    The identification of alternative dynamic regimes in ecological systems requires several lines of evidence. Previous work on time series analysis of dynamic regimes includes mainly model-fitting methods. We introduce two methods that do not use models. These approaches use state-...

  17. A Time-Series Analysis of Hispanic Unemployment.

    ERIC Educational Resources Information Center

    Defreitas, Gregory

    1986-01-01

    This study undertakes the first systematic time-series research on the cyclical patterns and principal determinants of Hispanic joblessness in the United States. The principal findings indicate that Hispanics tend to bear a disproportionate share of increases in unemployment during recessions. (Author/CT)

  18. A Method for Comparing Multivariate Time Series with Different Dimensions

    PubMed Central

    Tapinos, Avraam; Mendes, Pedro

    2013-01-01

    In many situations it is desirable to compare dynamical systems based on their behavior. Similarity of behavior often implies similarity of internal mechanisms or dependency on common extrinsic factors. While there are widely used methods for comparing univariate time series, most dynamical systems are characterized by multivariate time series. Yet, comparison of multivariate time series has been limited to cases where they share a common dimensionality. A semi-metric is a distance function that has the properties of non-negativity, symmetry and reflexivity, but not sub-additivity. Here we develop a semi-metric – SMETS – that can be used for comparing groups of time series that may have different dimensions. To demonstrate its utility, the method is applied to dynamic models of biochemical networks and to portfolios of shares. The former is an example of a case where the dependencies between system variables are known, while in the latter the system is treated (and behaves) as a black box. PMID:23393554

  19. IDENTIFICATION OF REGIME SHIFTS IN TIME SERIES USING NEIGHBORHOOD STATISTICS

    EPA Science Inventory

    The identification of alternative dynamic regimes in ecological systems requires several lines of evidence. Previous work on time series analysis of dynamic regimes includes mainly model-fitting methods. We introduce two methods that do not use models. These approaches use state-...

  20. Handbook for Using the Intensive Time-Series Design.

    ERIC Educational Resources Information Center

    Mayer, Victor J.; Monk, John S.

    Work on the development of the intensive time-series design was initiated because of the dissatisfaction with existing research designs. This dissatisfaction resulted from the paucity of data obtained from designs such as the pre-post and randomized posttest-only designs. All have the common characteristic of yielding data from only one or two…

  1. TSNet--a distributed architecture for time series analysis.

    PubMed

    Hunter, Jim

    2008-01-01

    This paper describes an infrastructure (TSNet) which can be used by geographically separated research groups to develop algorithms for the abstraction of complex time series data. The framework was specifically designed for the kinds of abstractions required for the application of clinical guidelines within intensive care.

  2. Time series analysis of monthly pulpwood use in the Northeast

    Treesearch

    James T. Bones

    1980-01-01

    Time series analysis was used to develop a model that depicts pulpwood use in the Northeast. The model is useful in forecasting future pulpwood requirements (short term) or monitoring pulpwood-use activity in relation to past use patterns. The model predicted a downturn in use during 1980.

  3. Time Series Data Visualization in World Wide Telescope

    NASA Astrophysics Data System (ADS)

    Fay, J.

    WorldWide Telescope provides a rich set of timer series visualization for both archival and real time data. WWT consists of both interactive desktop tools for interactive immersive visualization and HTML5 web based controls that can be utilized in customized web pages. WWT supports a range of display options including full dome, power walls, stereo and virtual reality headsets.

  4. New Confidence Interval Estimators Using Standardized Time Series.

    DTIC Science & Technology

    1984-12-01

    We develop new confidence interval estimators for the underlying mean of a stationary simulation process. These estimators can be viewed as...generalizations of Schruben’s so-called standardized time series area confidence interval estimators. Various properties of the new estimators are given.

  5. A Time-Series Analysis of Student and Teacher Interaction.

    ERIC Educational Resources Information Center

    Schempp, Paul G.

    The stability of teaching behavior was examined by observing student/teacher interaction over one academic year. One teacher was studied using a time-series analysis. He had 14 years experience and taught physical education in grades K-6 in a single school. Data were collected over one academic year using the Cheffers Adaptation of Flanders…

  6. Daily time series evapotranspiration maps for Oklahoma and Texas panhandle

    USDA-ARS?s Scientific Manuscript database

    Evapotranspiration (ET) is an important process in ecosystems’ water budget and closely linked to its productivity. Therefore, regional scale daily time series ET maps developed at high and medium resolutions have large utility in studying the carbon-energy-water nexus and managing water resources. ...

  7. A Time-Series Analysis of Hispanic Unemployment.

    ERIC Educational Resources Information Center

    Defreitas, Gregory

    1986-01-01

    This study undertakes the first systematic time-series research on the cyclical patterns and principal determinants of Hispanic joblessness in the United States. The principal findings indicate that Hispanics tend to bear a disproportionate share of increases in unemployment during recessions. (Author/CT)

  8. Time Series, Stochastic Processes and Completeness of Quantum Theory

    NASA Astrophysics Data System (ADS)

    Kupczynski, Marian

    2011-03-01

    Most of physical experiments are usually described as repeated measurements of some random variables. Experimental data registered by on-line computers form time series of outcomes. The frequencies of different outcomes are compared with the probabilities provided by the algorithms of quantum theory (QT). In spite of statistical predictions of QT a claim was made that it provided the most complete description of the data and of the underlying physical phenomena. This claim could be easily rejected if some fine structures, averaged out in the standard descriptive statistical analysis, were found in time series of experimental data. To search for these structures one has to use more subtle statistical tools which were developed to study time series produced by various stochastic processes. In this talk we review some of these tools. As an example we show how the standard descriptive statistical analysis of the data is unable to reveal a fine structure in a simulated sample of AR (2) stochastic process. We emphasize once again that the violation of Bell inequalities gives no information on the completeness or the non locality of QT. The appropriate way to test the completeness of quantum theory is to search for fine structures in time series of the experimental data by means of the purity tests or by studying the autocorrelation and partial autocorrelation functions.

  9. Application of time series analysis for assessing reservoir trophic status

    Treesearch

    Paris Honglay Chen; Ka-Chu Leung

    2000-01-01

    This study is to develop and apply a practical procedure for the time series analysis of reservoir eutrophication conditions. A multiplicative decomposition method is used to determine the trophic variations including seasonal, circular, long-term and irregular changes. The results indicate that (1) there is a long high peak for seven months from April to October...

  10. United States forest disturbance trends observed with landsat time series

    Treesearch

    Jeffrey G. Masek; Samuel N. Goward; Robert E. Kennedy; Warren B. Cohen; Gretchen G. Moisen; Karen Schleweiss; Chengquan. Huang

    2013-01-01

    Disturbance events strongly affect the composition, structure, and function of forest ecosystems; however, existing US land management inventories were not designed to monitor disturbance. To begin addressing this gap, the North American Forest Dynamics (NAFD) project has examined a geographic sample of 50 Landsat satellite image time series to assess trends in forest...

  11. The Design of Time-Series Comparisons under Resource Constraints.

    ERIC Educational Resources Information Center

    Willemain, Thomas R.; Hartunian, Nelson S.

    1982-01-01

    Two methods for dividing an interrupted time-series study between baseline and experimental phases when study resources are limited are compared. In fixed designs, the baseline duration is predetermined. In flexible designs the baseline duration is contingent on remaining resources and the match of results to prior expectations of the evaluator.…

  12. Catchment classification and similarity using correlation in streamflow time series

    NASA Astrophysics Data System (ADS)

    Fleming, B.; Archfield, S. A.

    2012-12-01

    Catchment classification is an important component of hydrologic analyses, particularly for linking changes in ecological integrity to streamflow alteration, transferring time series or model parameters from gauged to ungauged locations, and as a way to understand the similarity in the response of catchments to change. Metrics of similarity used in catchment classification have ranged from aggregate catchment properties such as geologic or climate characteristics to variables derived from the daily streamflow hydrograph; however, no one set of classification variables can fully describe similarity between catchments as the variables used for such assessments often depend on the question being asked. We propose an alternative method based on similarity for hydrologic classification: correlation between the daily streamflow time series. If one assumes that the streamflow signal is the integrated response of a catchment to both climate and geology, then the strength of correlation in streamflow between two catchments is a measure of the strength of similarity in hydrologic response between those two catchments. Using the nonparametric Spearman rho correlation coefficient between streamflow time series at 54 unregulated and unaltered streamgauges in the mid-Atlantic United States, we show that correlation is a parsimonious classification metric that results in physically interpretable classes. Using the correlation between the deseasonalized streamflow time series and reclassifying the streamgauges, we also find that seasonality plays an important role in understanding catchment flow dynamics, especially those that can be linked to ecological response and similarity although not to a large extent in this study area.

  13. Identification of Tectonic Signals in GPS Positional Time Series

    NASA Astrophysics Data System (ADS)

    Comte, D.; Ortega-Culaciati, F.; Krumm, N.

    2016-12-01

    During the last decades, the development of space geodesy resulted in an increased amount and quality of crustal deformation observations. In particular, instruments of the Global Positioning System (GPS) provide positional time series constituted by crustal displacement signals carrying information about different geophysical processes. For instance, signals associated to tectonic processes that occur during the different stages of the seismic cycle. The aim of this work is to efficiently separate out and characterize the different signals present in GPS time series with the ultimate goal of obtaining precise crustal surface observations that can be used to better understand the geophysical processes occurring during the seismic cycle. We use a Basis Pursue scheme in which we identify and separate the different signals in the positional time series from a vast library of ad-hoc basis functions. We use an optimization algorithm (SPGL1, Van der Berg & Friedlander, 2008) that allows for a sparse representation of the positional time series by selecting the minimum amount of basis functions that are needed to represent such signal. We apply the methodology to GPS observations from the Chilean National Seismological Center to separate and analyze the tectonic and non tectonic signals present in such observations.

  14. Chaotic time series prediction using artificial neural networks

    SciTech Connect

    Bartlett, E.B.

    1991-12-31

    This paper describes the use of artificial neural networks to model the complex oscillations defined by a chaotic Verhuist animal population dynamic. A predictive artificial neural network model is developed and tested, and results of computer simulations are given. These results show that the artificial neural network model predicts the chaotic time series with various initial conditions, growth parameters, or noise.

  15. Chaotic time series prediction using artificial neural networks

    SciTech Connect

    Bartlett, E.B.

    1991-01-01

    This paper describes the use of artificial neural networks to model the complex oscillations defined by a chaotic Verhuist animal population dynamic. A predictive artificial neural network model is developed and tested, and results of computer simulations are given. These results show that the artificial neural network model predicts the chaotic time series with various initial conditions, growth parameters, or noise.

  16. Application of modern time series analysis to high stability oscillators

    NASA Technical Reports Server (NTRS)

    Farrell, B. F.; Mattison, W. M.; Vessot, R. F. C.

    1980-01-01

    Techniques of modern time series analysis useful for investigating the characteristics of high-stability oscillators and identifying systematic perturbations are discussed with reference to an experiment in which the frequencies of superconducting cavity-stabilized oscillators and hydrogen masers were compared. The techniques examined include transformation to stationarity, autocorrelation and cross-correlation, superresolution, and transfer function determination.

  17. Identification of human operator performance models utilizing time series analysis

    NASA Technical Reports Server (NTRS)

    Holden, F. M.; Shinners, S. M.

    1973-01-01

    The results of an effort performed by Sperry Systems Management Division for AMRL in applying time series analysis as a tool for modeling the human operator are presented. This technique is utilized for determining the variation of the human transfer function under various levels of stress. The human operator's model is determined based on actual input and output data from a tracking experiment.

  18. Model Identification in Time-Series Analysis: Some Empirical Results.

    ERIC Educational Resources Information Center

    Padia, William L.

    Model identification of time-series data is essential to valid statistical tests of intervention effects. Model identification is, at best, inexact in the social and behavioral sciences where one is often confronted with small numbers of observations. These problems are discussed, and the results of independent identifications of 130 social and…

  19. Dynamic Factor Analysis of Nonstationary Multivariate Time Series.

    ERIC Educational Resources Information Center

    Molenaar, Peter C. M.; And Others

    1992-01-01

    The dynamic factor model proposed by P. C. Molenaar (1985) is exhibited, and a dynamic nonstationary factor model (DNFM) is constructed with latent factor series that have time-varying mean functions. The use of a DNFM is illustrated using data from a television viewing habits study. (SLD)

  20. ADAPTIVE DATA ANALYSIS OF COMPLEX FLUCTUATIONS IN PHYSIOLOGIC TIME SERIES

    PubMed Central

    PENG, C.-K.; COSTA, MADALENA; GOLDBERGER, ARY L.

    2009-01-01

    We introduce a generic framework of dynamical complexity to understand and quantify fluctuations of physiologic time series. In particular, we discuss the importance of applying adaptive data analysis techniques, such as the empirical mode decomposition algorithm, to address the challenges of nonlinearity and nonstationarity that are typically exhibited in biological fluctuations. PMID:20041035

  1. Long GPS coordinate time series: multipath and geometry effects

    NASA Astrophysics Data System (ADS)

    King, M. A.; Watson, C. S.

    2009-04-01

    Within analyses of Global Positioning System (GPS) observations, unmodelled sub-daily signals are known to propagate into long-period signals via a number of different mechanisms. In this paper, we investigate the effects of time-variable satellite geometry and the propagation of an unmodelled multipath signal that is analogous to a change in the elevation dependant phase centre of the receiving antenna. Multipath reflectors at H=0.1 m, 0.2 m and 1.5 m below the antenna are modeled and their effects on GPS coordinate time series are examined. Simulated time series at 20 global IGS sites for 2000-2008 were derived using the satellite geometry as defined by daily broadcast orbits, in addition to that defined using a perfectly repeating synthetic orbit. For the simulations generated using the broadcast orbits with a perfectly clear horizon, we observe the introduction of a time variable bias in the time series of up to several centimeters. Considerable site to site variability of the frequency and magnitude of the signal is observed, in addition to variation as a function of multipath source. When adopting realistic GPS observation geometries obtained from real data (e.g., those that include the effects of tracking outages, local obstructions, etc.), we observe concerning levels of temporal coordinate variation in the presence of the multipath signals. In these cases, we observe spurious signals across the frequency domain, in addition to what appears as offsets and secular trends. Velocity biases of more than 1mm/yr are evident at some few sites. The propagated signal in the vertical component is consistent with a noise model with a spectral index marginally above flicker noise (mean index -1.4), with some sites exhibiting power law magnitudes at comparable levels to actual height time series generated in GIPSY. The propagated signal also shows clear spectral peaks across all coordinate components at harmonics of the draconitic year for a GPS satellite (351.4 days

  2. Measuring information interactions on the ordinal pattern of stock time series.

    PubMed

    Zhao, Xiaojun; Shang, Pengjian; Wang, Jing

    2013-02-01

    The interactions among time series as individual components of complex systems can be quantified by measuring to what extent they exchange information among each other. In many applications, one focuses not on the original series but on its ordinal pattern. In such cases, trivial noises appear more likely to be filtered and the abrupt influence of extreme values can be weakened. Cross-sample entropy and inner composition alignment have been introduced as prominent methods to estimate the information interactions of complex systems. In this paper, we modify both methods to detect the interactions among the ordinal pattern of stock return and volatility series, and we try to uncover the information exchanges across sectors in Chinese stock markets.

  3. Measuring information interactions on the ordinal pattern of stock time series

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaojun; Shang, Pengjian; Wang, Jing

    2013-02-01

    The interactions among time series as individual components of complex systems can be quantified by measuring to what extent they exchange information among each other. In many applications, one focuses not on the original series but on its ordinal pattern. In such cases, trivial noises appear more likely to be filtered and the abrupt influence of extreme values can be weakened. Cross-sample entropy and inner composition alignment have been introduced as prominent methods to estimate the information interactions of complex systems. In this paper, we modify both methods to detect the interactions among the ordinal pattern of stock return and volatility series, and we try to uncover the information exchanges across sectors in Chinese stock markets.

  4. [Anomaly Detection of Multivariate Time Series Based on Riemannian Manifolds].

    PubMed

    Xu, Yonghong; Hou, Xiaoying; Li Shuting; Cui, Jie

    2015-06-01

    Multivariate time series problems widely exist in production and life in the society. Anomaly detection has provided people with a lot of valuable information in financial, hydrological, meteorological fields, and the research areas of earthquake, video surveillance, medicine and others. In order to quickly and efficiently find exceptions in time sequence so that it can be presented in front of people in an intuitive way, we in this study combined the Riemannian manifold with statistical process control charts, based on sliding window, with a description of the covariance matrix as the time sequence, to achieve the multivariate time series of anomaly detection and its visualization. We made MA analog data flow and abnormal electrocardiogram data from MIT-BIH as experimental objects, and verified the anomaly detection method. The results showed that the method was reasonable and effective.

  5. Multiple imputation for time series data with Amelia package.

    PubMed

    Zhang, Zhongheng

    2016-02-01

    Time series data are common in medical researches. Many laboratory variables or study endpoints could be measured repeatedly over time. Multiple imputation (MI) without considering time trend of a variable may cause it to be unreliable. The article illustrates how to perform MI by using Amelia package in a clinical scenario. Amelia package is powerful in that it allows for MI for time series data. External information on the variable of interest can also be incorporated by using prior or bound argument. Such information may be based on previous published observations, academic consensus, and personal experience. Diagnostics of imputation model can be performed by examining the distributions of imputed and observed values, or by using over-imputation technique.

  6. Classification of time series patterns from complex dynamic systems

    SciTech Connect

    Schryver, J.C.; Rao, N.

    1998-07-01

    An increasing availability of high-performance computing and data storage media at decreasing cost is making possible the proliferation of large-scale numerical databases and data warehouses. Numeric warehousing enterprises on the order of hundreds of gigabytes to terabytes are a reality in many fields such as finance, retail sales, process systems monitoring, biomedical monitoring, surveillance and transportation. Large-scale databases are becoming more accessible to larger user communities through the internet, web-based applications and database connectivity. Consequently, most researchers now have access to a variety of massive datasets. This trend will probably only continue to grow over the next several years. Unfortunately, the availability of integrated tools to explore, analyze and understand the data warehoused in these archives is lagging far behind the ability to gain access to the same data. In particular, locating and identifying patterns of interest in numerical time series data is an increasingly important problem for which there are few available techniques. Temporal pattern recognition poses many interesting problems in classification, segmentation, prediction, diagnosis and anomaly detection. This research focuses on the problem of classification or characterization of numerical time series data. Highway vehicles and their drivers are examples of complex dynamic systems (CDS) which are being used by transportation agencies for field testing to generate large-scale time series datasets. Tools for effective analysis of numerical time series in databases generated by highway vehicle systems are not yet available, or have not been adapted to the target problem domain. However, analysis tools from similar domains may be adapted to the problem of classification of numerical time series data.

  7. Mixed Spectrum Analysis on fMRI Time-Series.

    PubMed

    Kumar, Arun; Lin, Feng; Rajapakse, Jagath C

    2016-06-01

    Temporal autocorrelation present in functional magnetic resonance image (fMRI) data poses challenges to its analysis. The existing approaches handling autocorrelation in fMRI time-series often presume a specific model of autocorrelation such as an auto-regressive model. The main limitation here is that the correlation structure of voxels is generally unknown and varies in different brain regions because of different levels of neurogenic noises and pulsatile effects. Enforcing a universal model on all brain regions leads to bias and loss of efficiency in the analysis. In this paper, we propose the mixed spectrum analysis of the voxel time-series to separate the discrete component corresponding to input stimuli and the continuous component carrying temporal autocorrelation. A mixed spectral analysis technique based on M-spectral estimator is proposed, which effectively removes autocorrelation effects from voxel time-series and identify significant peaks of the spectrum. As the proposed method does not assume any prior model for the autocorrelation effect in voxel time-series, varying correlation structure among the brain regions does not affect its performance. We have modified the standard M-spectral method for an application on a spatial set of time-series by incorporating the contextual information related to the continuous spectrum of neighborhood voxels, thus reducing considerably the computation cost. Likelihood of the activation is predicted by comparing the amplitude of discrete component at stimulus frequency of voxels across the brain by using normal distribution and modeling spatial correlations among the likelihood with a conditional random field. We also demonstrate the application of the proposed method in detecting other desired frequencies.

  8. Distinguishing quasiperiodic dynamics from chaos in short-time series.

    PubMed

    Zou, Y; Pazó, D; Romano, M C; Thiel, M; Kurths, J

    2007-07-01

    We propose a procedure to distinguish quasiperiodic from chaotic orbits in short-time series, which is based on the recurrence properties in phase space. The histogram of the return times in a recurrence plot is introduced to disclose the recurrence property consisting of only three peaks imposed by Slater's theorem. Noise effects on the statistics are studied. Our approach is demonstrated to be efficient in recognizing regular and chaotic trajectories of a Hamiltonian system with mixed phase space.

  9. Improving predictability of time series using maximum entropy methods

    NASA Astrophysics Data System (ADS)

    Chliamovitch, G.; Dupuis, A.; Golub, A.; Chopard, B.

    2015-04-01

    We discuss how maximum entropy methods may be applied to the reconstruction of Markov processes underlying empirical time series and compare this approach to usual frequency sampling. It is shown that, in low dimension, there exists a subset of the space of stochastic matrices for which the MaxEnt method is more efficient than sampling, in the sense that shorter historical samples have to be considered to reach the same accuracy. Considering short samples is of particular interest when modelling smoothly non-stationary processes, which provides, under some conditions, a powerful forecasting tool. The method is illustrated for a discretized empirical series of exchange rates.

  10. Time-dependent spectral analysis of epidemiological time-series with wavelets.

    PubMed

    Cazelles, Bernard; Chavez, Mario; Magny, Guillaume Constantin de; Guégan, Jean-Francois; Hales, Simon

    2007-08-22

    In the current context of global infectious disease risks, a better understanding of the dynamics of major epidemics is urgently needed. Time-series analysis has appeared as an interesting approach to explore the dynamics of numerous diseases. Classical time-series methods can only be used for stationary time-series (in which the statistical properties do not vary with time). However, epidemiological time-series are typically noisy, complex and strongly non-stationary. Given this specific nature, wavelet analysis appears particularly attractive because it is well suited to the analysis of non-stationary signals. Here, we review the basic properties of the wavelet approach as an appropriate and elegant method for time-series analysis in epidemiological studies. The wavelet decomposition offers several advantages that are discussed in this paper based on epidemiological examples. In particular, the wavelet approach permits analysis of transient relationships between two signals and is especially suitable for gradual change in force by exogenous variables.

  11. Normalization methods in time series of platelet function assays

    PubMed Central

    Van Poucke, Sven; Zhang, Zhongheng; Roest, Mark; Vukicevic, Milan; Beran, Maud; Lauwereins, Bart; Zheng, Ming-Hua; Henskens, Yvonne; Lancé, Marcus; Marcus, Abraham

    2016-01-01

    Abstract Platelet function can be quantitatively assessed by specific assays such as light-transmission aggregometry, multiple-electrode aggregometry measuring the response to adenosine diphosphate (ADP), arachidonic acid, collagen, and thrombin-receptor activating peptide and viscoelastic tests such as rotational thromboelastometry (ROTEM). The task of extracting meaningful statistical and clinical information from high-dimensional data spaces in temporal multivariate clinical data represented in multivariate time series is complex. Building insightful visualizations for multivariate time series demands adequate usage of normalization techniques. In this article, various methods for data normalization (z-transformation, range transformation, proportion transformation, and interquartile range) are presented and visualized discussing the most suited approach for platelet function data series. Normalization was calculated per assay (test) for all time points and per time point for all tests. Interquartile range, range transformation, and z-transformation demonstrated the correlation as calculated by the Spearman correlation test, when normalized per assay (test) for all time points. When normalizing per time point for all tests, no correlation could be abstracted from the charts as was the case when using all data as 1 dataset for normalization. PMID:27428217

  12. Scale-space analysis of time series in circulatory research.

    PubMed

    Mortensen, Kim Erlend; Godtliebsen, Fred; Revhaug, Arthur

    2006-12-01

    Statistical analysis of time series is still inadequate within circulation research. With the advent of increasing computational power and real-time recordings from hemodynamic studies, one is increasingly dealing with vast amounts of data in time series. This paper aims to illustrate how statistical analysis using the significant nonstationarities (SiNoS) method may complement traditional repeated-measures ANOVA and linear mixed models. We applied these methods on a dataset of local hepatic and systemic circulatory changes induced by aortoportal shunting and graded liver resection. We found SiNoS analysis more comprehensive when compared with traditional statistical analysis in the following four ways: 1) the method allows better signal-to-noise detection; 2) including all data points from real time recordings in a statistical analysis permits better detection of significant features in the data; 3) analysis with multiple scales of resolution facilitates a more differentiated observation of the material; and 4) the method affords excellent visual presentation by combining group differences, time trends, and multiscale statistical analysis allowing the observer to quickly view and evaluate the material. It is our opinion that SiNoS analysis of time series is a very powerful statistical tool that may be used to complement conventional statistical methods.

  13. An entropic approach to the analysis of time series

    NASA Astrophysics Data System (ADS)

    Scafetta, Nicola

    Statistical analysis of time series. With compelling arguments we show that the Diffusion Entropy Analysis (DEA) is the only method of the literature of the Science of Complexity that correctly determines the scaling hidden within a time series reflecting a Complex Process. The time series is thought of as a source of fluctuations, and the DEA is based on the Shannon entropy of the diffusion process generated by these fluctuations. All traditional methods of scaling analysis, instead, are based on the variance of this diffusion process. The variance methods detect the real scaling only if the Gaussian assumption holds true. We call H the scaling exponent detected by the variance methods and delta the real scaling exponent. If the time series is characterized by Fractional Brownian Motion, we have H = delta and the scaling can be safely determined, in this case, by using the variance methods. If, on the contrary, the time series is characterized, for example, by Levy statistics, H ≠ delta and the variance methods cannot be used to detect the true scaling. Levy walk yields the relation delta = 1/(3 - 2H). In the case of Levy flights, the variance diverges and the exponent H cannot be determined, whereas the scaling delta exists and can be established by using the DEA. Therefore, only the joint use of two different scaling analysis methods, the variance scaling analysis and the DEA, can assess the real nature, Gauss or Levy or something else, of a time series. Moreover, the DEA determines the information content, under the form of Shannon entropy, or of any other convenient entropic indicator, at each time step of the process that, given a sufficiently large number of data, is expected to become diffusion with scaling. This makes it possible to study the regime of transition from dynamics to thermodynamics, non-stationary regimes, and the saturation regime as well. First of all, the efficiency of the DEA is proved with theoretical arguments and with numerical work

  14. Fast computation of recurrences in long time series

    NASA Astrophysics Data System (ADS)

    Rawald, Tobias; Sips, Mike; Marwan, Norbert; Dransch, Doris

    2014-05-01

    The quadratic time complexity of calculating basic RQA measures, doubling the size of the input time series leads to a quadrupling in operations, impairs the fast computation of RQA in many application scenarios. As an example, we analyze the Potsdamer Reihe, an ongoing non-interrupted hourly temperature profile since 1893, consisting of 1,043,112 data points. Using an optimized single-threaded CPU implementation this analysis requires about six hours. Our approach conducts RQA for the Potsdamer Reihe in five minutes. We automatically split a long time series into smaller chunks (Divide) and distribute the computation of RQA measures across multiple GPU devices. To guarantee valid RQA results, we employ carryover buffers that allow sharing information between pairs of chunks (Recombine). We demonstrate the capabilities of our Divide and Recombine approach to process long time series by comparing the runtime of our implementation to existing RQA tools. We support a variety of platforms by employing the computing framework OpenCL. Our current implementation supports the computation of standard RQA measures (recurrence rate, determinism, laminarity, ratio, average diagonal line length, trapping time, longest diagonal line, longest vertical line, divergence, entropy, trend) and also calculates recurrence times. To utilize the potential of our approach for a number of applications, we plan to release our implementation under an Open Source software license. It will be available at http://www.gfz-potsdam.de/fast-rqa/. Since our approach allows to compute RQA measures for a long time series fast, we plan to extend our implementation to support multi-scale RQA.

  15. The Mount Wilson Ca ii K Plage Index Time Series

    NASA Astrophysics Data System (ADS)

    Bertello, L.; Ulrich, R. K.; Boyden, J. E.

    2010-06-01

    It is well established that both total and spectral solar irradiance are modulated by variable magnetic activity on the solar surface. However, there is still disagreement about the contribution of individual solar features for changes in the solar output, in particular over decadal time scales. Ionized Ca ii K line spectroheliograms are one of the major resources for these long-term trend studies, mainly because such measurements have been available now for more than 100 years. In this paper we introduce a new Ca ii K plage and active network index time series derived from the digitization of almost 40 000 photographic solar images that were obtained at the 60-foot solar tower, between 1915 and 1985, as a part of the monitoring program of the Mount Wilson Observatory. We describe here the procedure we applied to calibrate the images and the properties of our new defined index, which is strongly correlated to the average fractional area of the visible solar disk occupied by plages and active network. We show that the long-term variation of this index is in an excellent agreement with the 11-year solar-cycle trend determined from the annual international sunspot numbers series. Our time series agrees also very well with similar indicators derived from a different reduction of the same data base and other Ca ii K spectroheliograms long-term synoptic programs, such as those at Kodaikanal Observatory (India), and at the National Solar Observatory at Sacramento Peak (USA). Finally, we show that using appropriate proxies it is possible to extend this time series up to date, making this data set one of the longest Ca ii K index series currently available.

  16. Autoregression of Quasi-Stationary Time Series (Invited)

    NASA Astrophysics Data System (ADS)

    Meier, T. M.; Küperkoch, L.

    2009-12-01

    Autoregression is a model based tool for spectral analysis and prediction of time series. It has the potential to increase the resolution of spectral estimates. However, the validity of the assumed model has to be tested. Here we review shortly methods for the determination of the parameters of autoregression and summarize properties of autoregressive prediction and autoregressive spectral analysis. Time series with a limited number of dominant frequencies varying slowly in time (quasi-stationary time series) may well be described by a time-dependent autoregressive model of low order. An algorithm for the estimation of the autoregression parameters in a moving window is presented. Time-varying dominant frequencies are estimated. The comparison to results obtained by Fourier transform based methods and the visualization of the time dependent normalized prediction error are essential for quality assessment of the results. The algorithm is applied to synthetic examples as well as to mircoseism and tremor. The sensitivity of the results to the choice of model and filter parameters is discussed. Autoregressive forward prediction offers the opportunity to detect body wave phases in seismograms and to determine arrival times automatically. Examples are shown for P- and S-phases at local and regional distances. In order to determine S-wave arrival times the autoregressive model is extended to multi-component recordings. For the detection of significant temporal changes in waveforms, the choice of the model appears to be less crucial compared to spectral analysis. Temporal changes in frequency, amplitude, phase, and polarisation are detectable by autoregressive prediction. Quality estimates of automatically determined onset times may be obtained from the slope of the absolute prediction error as a function of time and the signal-to-noise ratio. Results are compared to manual readings.

  17. A noise model for InSAR time series

    NASA Astrophysics Data System (ADS)

    Agram, P. S.; Simons, M.

    2015-04-01

    Interferometric synthetic aperture radar (InSAR) time series methods estimate the spatiotemporal evolution of surface deformation by incorporating information from multiple SAR interferograms. While various models have been developed to describe the interferometric phase and correlation statistics in individual interferograms, efforts to model the generalized covariance matrix that is directly applicable to joint analysis of networks of interferograms have been limited in scope. In this work, we build on existing decorrelation and atmospheric phase screen models and develop a covariance model for interferometric phase noise over space and time. We present arguments to show that the exploitation of the full 3-D covariance structure within conventional time series inversion techniques is computationally challenging. However, the presented covariance model can aid in designing new inversion techniques that can at least mitigate the impact of spatial correlated nature of InSAR observations.

  18. A multivariate heuristic model for fuzzy time-series forecasting.

    PubMed

    Huarng, Kun-Huang; Yu, Tiffany Hui-Kuang; Hsu, Yu Wei

    2007-08-01

    Fuzzy time-series models have been widely applied due to their ability to handle nonlinear data directly and because no rigid assumptions for the data are needed. In addition, many such models have been shown to provide better forecasting results than their conventional counterparts. However, since most of these models require complicated matrix computations, this paper proposes the adoption of a multivariate heuristic function that can be integrated with univariate fuzzy time-series models into multivariate models. Such a multivariate heuristic function can easily be extended and integrated with various univariate models. Furthermore, the integrated model can handle multiple variables to improve forecasting results and, at the same time, avoid complicated computations due to the inclusion of multiple variables.

  19. Learning dynamics from nonstationary time series: Analysis of electroencephalograms

    NASA Astrophysics Data System (ADS)

    Gribkov, Dmitrii; Gribkova, Valentina

    2000-06-01

    We propose an empirical modeling technique for a nonstationary time series analysis. Proposed methods include a high-dimensional (N>3) dynamical model construction in the form of delay differential equations, a nonparametric method of respective time delay calculation, the detection of quasistationary regions of the process by reccurence analysis in the space of model coefficients, and final fitting of the model to quasistationary segments of observed time series. We also demonstrate the effectiveness of our approach for nonstationary signal classification in the space of model coefficients. Applying the empirical modeling technique to electroencephalogram (EEG) records analysis, we find evidence of high-dimensional nonlinear dynamics in quasistationary EEG segments. Reccurence analysis of model parameters reveals long-term correlations in nonstationary EEG records. Using the dynamical model as a nonlinear filter, we find that different emotional states of subjects can be clearly distinguished in the space of model coefficients.

  20. Examination of time series through randomly broken windows

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Shoub, E. C.

    1981-01-01

    In order to determine the Fourier transform of a quasi-periodic time series (linear problem), or the power spectrum of a stationary random time series (quadratic problem), data should be recorded without interruption over a long time interval. The effect of regular interruption such as the day/night cycle is well known. The effect of irregular interruption of data collection (the "breaking" of the window function) with the simplifying assumption that there is a uniform probability p that each interval of length tau, of the total interval of length T = N sub tau, yields no data, is investigated. For the linear case it is found that the noise-to-signal ratio will have a (one-sigma) value less than epsilon if N exceeds p(-1)(1-p)epsilon(-2). For the quadratic case, the same requirement is met by the less restrictive requirement that N exceed p(-1)(1-p)epsilon(-1).

  1. Least Squares Time-Series Synchronization in Image Acquisition Systems.

    PubMed

    Piazzo, Lorenzo; Raguso, Maria Carmela; Calzoletti, Luca; Seu, Roberto; Altieri, Bruno

    2016-07-18

    We consider an acquisition system constituted by an array of sensors scanning an image. Each sensor produces a sequence of readouts, called a time-series. In this framework, we discuss the image estimation problem when the time-series are affected by noise and by a time shift. In particular, we introduce an appropriate data model and consider the Least Squares (LS) estimate, showing that it has no closed form. However, the LS problem has a structure that can be exploited to simplify the solution. In particular, based on two known techniques, namely Separable Nonlinear Least Squares (SNLS) and Alternating Least Squares (ALS), we propose and analyze several practical estimation methods. As an additional contribution, we discuss the application of these methods to the data of the Photodetector Array Camera and Spectrometer (PACS), which is an infrared photometer onboard the Herschel satellite. In this context, we investigate the accuracy and the computational complexity of the methods, using both true and simulated data.

  2. Segmentation of biological multivariate time-series data

    NASA Astrophysics Data System (ADS)

    Omranian, Nooshin; Mueller-Roeber, Bernd; Nikoloski, Zoran

    2015-03-01

    Time-series data from multicomponent systems capture the dynamics of the ongoing processes and reflect the interactions between the components. The progression of processes in such systems usually involves check-points and events at which the relationships between the components are altered in response to stimuli. Detecting these events together with the implicated components can help understand the temporal aspects of complex biological systems. Here we propose a regularized regression-based approach for identifying breakpoints and corresponding segments from multivariate time-series data. In combination with techniques from clustering, the approach also allows estimating the significance of the determined breakpoints as well as the key components implicated in the emergence of the breakpoints. Comparative analysis with the existing alternatives demonstrates the power of the approach to identify biologically meaningful breakpoints in diverse time-resolved transcriptomics data sets from the yeast Saccharomyces cerevisiae and the diatom Thalassiosira pseudonana.

  3. Reconstruction of ensembles of coupled time-delay systems from time series.

    PubMed

    Sysoev, I V; Prokhorov, M D; Ponomarenko, V I; Bezruchko, B P

    2014-06-01

    We propose a method to recover from time series the parameters of coupled time-delay systems and the architecture of couplings between them. The method is based on a reconstruction of model delay-differential equations and estimation of statistical significance of couplings. It can be applied to networks composed of nonidentical nodes with an arbitrary number of unidirectional and bidirectional couplings. We test our method on chaotic and periodic time series produced by model equations of ensembles of diffusively coupled time-delay systems in the presence of noise, and apply it to experimental time series obtained from electronic oscillators with delayed feedback coupled by resistors.

  4. Factors That Have An Influence On Time Series

    NASA Astrophysics Data System (ADS)

    Notti, D.; Meisina, C.; Zucca, F.; Crosetto, M.; Montserrat, O.

    2012-01-01

    In the last years the development in the processing of SAR persistent scatterers interferometry (PSI) data has allowed an improvement in time series precision, also with the data processed on regional scale. It is possible now to study the behaviour in the time of different type of natural process. The more recent data are elaborated also with non-linear models and this allows, even if with many restrictions and problems, to study also the temporal variation in the evolution of a process. In this work we have analyzed the time series (TS) of ERS (1992-2001) and RADARSAT (2003-2010) data elaborated with SqueeSARTM processing over three studied areas in NW Italy (Western Piemonte, Province of Pavia and Province of Imperia). We compared the time series with other monitoring data in order to validate them and to find the positive and negative aspects in the detection of natural processes. At the same time the TS were used to understand the kinematics of some geological processes.

  5. Active Mining from Process Time Series by Learning Classifier System

    NASA Astrophysics Data System (ADS)

    Kurahashi, Setsuya; Terano, Takao

    Continuation processes in chemical and/or biotechnical plants always generate a large amount of time series data. However, since conventional process models are described as a set of control models, it is difficult to explain the complicated and active plant behaviors. Based on the background, this research proposes a novel method to develop a process response model from continuous time-series data. The method consists of the following phases: 1) Collect continuous process data at each tag point in a target plant; 2) Normalize the data in the interval between zero and one; 3) Get the delay time, which maximizes the correlation between given two time series data; 4) Select tags with the higher correlation; 5) Develop a process response model to describe the relations among the process data using the delay time and the correlation values; 6) Develop a process prediction model via several tag points data using a neural network; 1) Discover control rules from the process prediction model using Learning Classifier system. The main contribution of the research is to establish a method to mine a set of meaningful control rules from Learning Classifier System using the Minimal Description Length criteria. The proposed method has been applied to an actual process of a biochemical plant and has shown the validity and the effectiveness.

  6. Nonlinear time series analysis of solar and stellar data

    NASA Astrophysics Data System (ADS)

    Jevtic, Nada

    2003-06-01

    Nonlinear time series analysis was developed to study chaotic systems. Its utility was investigated for the study of solar and stellar data time series. Sunspot data are the longest astronomical time series, and it reflects the long-term variation of the solar magnetic field. Due to periods of low solar activity, such as the Maunder minimum, and the solar cycle's quasiperiodicity, it has been postulated that the solar dynamo is a chaotic system. We show that, due to the definition of sunspot number, using nonlinear time series methods, it is not possible to test this postulate. To complement the sunspot data analysis, theoretically generated data for the α-Ω solar dynamo with meridional circulation were analyzed. Effects of stochastic fluctuations on the energy of an α-Ω dynamo with meridional circulation were investigated. This proved extremely useful in generating a clearer understanding of the effect of dynamical noise on the unperturbed system. This was useful in the study of the light intensity curve of white dwarf PG 1351+489. Dynamical resetting was identified for PG 1351+489, using phase space methods, and then, using nonlinear noise reduction methods, the white noise tail of the power spectrum was lowered by a factor of 40. This allowed the identification of 10 new lines in the power spectrum. Finally, using Poincare section return times, a periodicity in the light curve of cataclysmic variable SS Cygni was identified. We initially expected that time delay methods would be useful as a qualitative comparison tool. However, they were capable, under the proper set of constraints on the data sets, of providing quantitative information about the signal source.

  7. Interpolation based consensus clustering for gene expression time series.

    PubMed

    Chiu, Tai-Yu; Hsu, Ting-Chieh; Yen, Chia-Cheng; Wang, Jia-Shung

    2015-04-16

    Unsupervised analyses such as clustering are the essential tools required to interpret time-series expression data from microarrays. Several clustering algorithms have been developed to analyze gene expression data. Early methods such as k-means, hierarchical clustering, and self-organizing maps are popular for their simplicity. However, because of noise and uncertainty of measurement, these common algorithms have low accuracy. Moreover, because gene expression is a temporal process, the relationship between successive time points should be considered in the analyses. In addition, biological processes are generally continuous; therefore, the datasets collected from time series experiments are often found to have an insufficient number of data points and, as a result, compensation for missing data can also be an issue. An affinity propagation-based clustering algorithm for time-series gene expression data is proposed. The algorithm explores the relationship between genes using a sliding-window mechanism to extract a large number of features. In addition, the time-course datasets are resampled with spline interpolation to predict the unobserved values. Finally, a consensus process is applied to enhance the robustness of the method. Some real gene expression datasets were analyzed to demonstrate the accuracy and efficiency of the algorithm. The proposed algorithm has benefitted from the use of cubic B-splines interpolation, sliding-window, affinity propagation, gene relativity graph, and a consensus process, and, as a result, provides both appropriate and effective clustering of time-series gene expression data. The proposed method was tested with gene expression data from the Yeast galactose dataset, the Yeast cell-cycle dataset (Y5), and the Yeast sporulation dataset, and the results illustrated the relationships between the expressed genes, which may give some insights into the biological processes involved.

  8. Time warp edit distance with stiffness adjustment for time series matching.

    PubMed

    Marteau, Pierre-François

    2009-02-01

    In a way similar to the string-to-string correction problem, we address discrete time series similarity in light of a time-series-to-time-series-correction problem for which the similarity between two time series is measured as the minimum cost sequence of edit operations needed to transform one time series into another. To define the edit operations, we use the paradigm of a graphical editing process and end up with a dynamic programming algorithm that we call Time Warp Edit Distance (TWED). TWED is slightly different in form from Dynamic Time Warping (DTW), Longest Common Subsequence (LCSS), or Edit Distance with Real Penalty (ERP) algorithms. In particular, it highlights a parameter that controls a kind of stiffness of the elastic measure along the time axis. We show that the similarity provided by TWED is a potentially useful metric in time series retrieval applications since it could benefit from the triangular inequality property to speed up the retrieval process while tuning the parameters of the elastic measure. In that context, a lower bound is derived to link the matching of time series into downsampled representation spaces to the matching into the original space. The empiric quality of the TWED distance is evaluated on a simple classification task. Compared to Edit Distance, DTW, LCSS, and ERP, TWED has proved to be quite effective on the considered experimental task.

  9. A Time-Frequency Functional Model for Locally Stationary Time Series Data

    PubMed Central

    Qin, Li; Guo, Wensheng; Litt, Brian

    2009-01-01

    Unlike traditional time series analysis that focuses on one long time series, in many biomedical experiments, it is common to collect multiple time series and focus on how the design covariates impact the patterns of stochastic variation over time. In this article, we propose a time-frequency functional model for a family of time series indexed by a set of covariates. This model can be used to compare groups of time series in terms of the patterns of stochastic variation and to estimate the covariate effects. We focus our development on locally stationary time series and propose the covariate-indexed locally stationary setting, which include stationary processes as special cases. We use smoothing spline ANOVA models for the time-frequency coefficients. A two-stage procedure is introduced for estimation. To reduce the computational demand, we develop an equivalent state space model to the proposed model with an efficient algorithm. We also propose a new simulation method to generate replicated time series from their design spectra. An epileptic intracranial electroencephalogram (IEEG) dataset is analyzed for illustration. PMID:20228961

  10. Exploring large scale time-series data using nested timelines

    NASA Astrophysics Data System (ADS)

    Xie, Zaixian; Ward, Matthew O.; Rundensteiner, Elke A.

    2013-01-01

    When data analysts study time-series data, an important task is to discover how data patterns change over time. If the dataset is very large, this task becomes challenging. Researchers have developed many visualization techniques to help address this problem. However, little work has been done regarding the changes of multivariate patterns, such as linear trends and clusters, on time-series data. In this paper, we describe a set of history views to fill this gap. This technique works under two modes: merge and non-merge. For the merge mode, merge algorithms were applied to selected time windows to generate a change-based hierarchy. Contiguous time windows having similar patterns are merged first. Users can choose different levels of merging with the tradeoff between more details in the data and less visual clutter in the visualizations. In the non-merge mode, the framework can use natural hierarchical time units or one defined by domain experts to represent timelines. This can help users navigate across long time periods. Gridbased views were designed to provide a compact overview for the history data. In addition, MDS pattern starfields and distance maps were developed to enable users to quickly investigate the degree of pattern similarity among different time periods. The usability evaluation demonstrated that most participants could understand the concepts of the history views correctly and finished assigned tasks with a high accuracy and relatively fast response time.

  11. Perception of acoustically presented time series with varied intervals.

    PubMed

    Wackermann, Jiří; Pacer, Jakob; Wittmann, Marc

    2014-03-01

    Data from three experiments on serial perception of temporal intervals in the supra-second domain are reported. Sequences of short acoustic signals ("pips") separated by periods of silence were presented to the observers. Two types of time series, geometric or alternating, were used, where the modulus 1+δ of the inter-pip series and the base duration Tb (range from 1.1 to 6s) were varied as independent parameters. The observers had to judge whether the series were accelerating, decelerating, or uniform (3 paradigm), or to distinguish regular from irregular sequences (2 paradigm). "Intervals of subjective uniformity" (isus) were obtained by fitting Gaussian psychometric functions to individual subjects' responses. Progression towards longer base durations (Tb=4.4 or 6s) shifts the isus towards negative δs, i.e., accelerating series. This finding is compatible with the phenomenon of "subjective shortening" of past temporal intervals, which is naturally accounted for by the lossy integration model of internal time representation. The opposite effect observed for short durations (Tb=1.1 or 1.5s) remains unexplained by the lossy integration model, and presents a challenge for further research. © 2013 Elsevier B.V. All rights reserved.

  12. FTSPlot: Fast Time Series Visualization for Large Datasets

    PubMed Central

    Riss, Michael

    2014-01-01

    The analysis of electrophysiological recordings often involves visual inspection of time series data to locate specific experiment epochs, mask artifacts, and verify the results of signal processing steps, such as filtering or spike detection. Long-term experiments with continuous data acquisition generate large amounts of data. Rapid browsing through these massive datasets poses a challenge to conventional data plotting software because the plotting time increases proportionately to the increase in the volume of data. This paper presents FTSPlot, which is a visualization concept for large-scale time series datasets using techniques from the field of high performance computer graphics, such as hierarchic level of detail and out-of-core data handling. In a preprocessing step, time series data, event, and interval annotations are converted into an optimized data format, which then permits fast, interactive visualization. The preprocessing step has a computational complexity of ; the visualization itself can be done with a complexity of and is therefore independent of the amount of data. A demonstration prototype has been implemented and benchmarks show that the technology is capable of displaying large amounts of time series data, event, and interval annotations lag-free with ms. The current 64-bit implementation theoretically supports datasets with up to bytes, on the x86_64 architecture currently up to bytes are supported, and benchmarks have been conducted with bytes/1 TiB or double precision samples. The presented software is freely available and can be included as a Qt GUI component in future software projects, providing a standard visualization method for long-term electrophysiological experiments. PMID:24732865

  13. Dynamical Analysis and Visualization of Tornadoes Time Series

    PubMed Central

    2015-01-01

    In this paper we analyze the behavior of tornado time-series in the U.S. from the perspective of dynamical systems. A tornado is a violently rotating column of air extending from a cumulonimbus cloud down to the ground. Such phenomena reveal features that are well described by power law functions and unveil characteristics found in systems with long range memory effects. Tornado time series are viewed as the output of a complex system and are interpreted as a manifestation of its dynamics. Tornadoes are modeled as sequences of Dirac impulses with amplitude proportional to the events size. First, a collection of time series involving 64 years is analyzed in the frequency domain by means of the Fourier transform. The amplitude spectra are approximated by power law functions and their parameters are read as an underlying signature of the system dynamics. Second, it is adopted the concept of circular time and the collective behavior of tornadoes analyzed. Clustering techniques are then adopted to identify and visualize the emerging patterns. PMID:25790281

  14. Inverse problem for multivariate time series using dynamical latent variables

    NASA Astrophysics Data System (ADS)

    Zamparo, M.; Stramaglia, S.; Banavar, J. R.; Maritan, A.

    2012-06-01

    Factor analysis is a well known statistical method to describe the variability among observed variables in terms of a smaller number of unobserved latent variables called factors. While dealing with multivariate time series, the temporal correlation structure of data may be modeled by including correlations in latent factors, but a crucial choice is the covariance function to be implemented. We show that analyzing multivariate time series in terms of latent Gaussian processes, which are mutually independent but with each of them being characterized by exponentially decaying temporal correlations, leads to an efficient implementation of the expectation-maximization algorithm for the maximum likelihood estimation of parameters, due to the properties of block-tridiagonal matrices. The proposed approach solves an ambiguity known as the identifiability problem, which renders the solution of factor analysis determined only up to an orthogonal transformation. Samples with just two temporal points are sufficient for the parameter estimation: hence the proposed approach may be applied even in the absence of prior information about the correlation structure of latent variables by fitting the model to pairs of points with varying time delay. Our modeling allows one to make predictions of the future values of time series and we illustrate our method by applying it to an analysis of published gene expression data from cell culture HeLa.

  15. Dynamical analysis and visualization of tornadoes time series.

    PubMed

    Lopes, António M; Tenreiro Machado, J A

    2015-01-01

    In this paper we analyze the behavior of tornado time-series in the U.S. from the perspective of dynamical systems. A tornado is a violently rotating column of air extending from a cumulonimbus cloud down to the ground. Such phenomena reveal features that are well described by power law functions and unveil characteristics found in systems with long range memory effects. Tornado time series are viewed as the output of a complex system and are interpreted as a manifestation of its dynamics. Tornadoes are modeled as sequences of Dirac impulses with amplitude proportional to the events size. First, a collection of time series involving 64 years is analyzed in the frequency domain by means of the Fourier transform. The amplitude spectra are approximated by power law functions and their parameters are read as an underlying signature of the system dynamics. Second, it is adopted the concept of circular time and the collective behavior of tornadoes analyzed. Clustering techniques are then adopted to identify and visualize the emerging patterns.

  16. A multivariate time-series approach to marital interaction

    PubMed Central

    Kupfer, Jörg; Brosig, Burkhard; Brähler, Elmar

    2005-01-01

    Time-series analysis (TSA) is frequently used in order to clarify complex structures of mutually interacting panel data. The method helps in understanding how the course of a dependent variable is predicted by independent time-series with no time lag, as well as by previous observations of that dependent variable (autocorrelation) and of independent variables (cross-correlation). The study analyzes the marital interaction of a married couple under clinical conditions over a period of 144 days by means of TSA. The data were collected within a course of couple therapy. The male partner was affected by a severe condition of atopic dermatitis and the woman suffered from bulimia nervosa. Each of the partners completed a mood questionnaire and a body symptom checklist. After the determination of auto- and cross-correlations between and within the parallel data sets, multivariate time-series models were specified. Mutual and individual patterns of emotional reactions explained 14% (skin) and 33% (bulimia) of the total variance in both dependent variables (adj. R², p<0.0001 for the multivariate models). The question was discussed whether multivariate TSA-models represent a suitable approach to the empirical exploration of clinical marital interaction. PMID:19742066

  17. A multivariate time-series approach to marital interaction.

    PubMed

    Kupfer, Jörg; Brosig, Burkhard; Brähler, Elmar

    2005-08-02

    Time-series analysis (TSA) is frequently used in order to clarify complex structures of mutually interacting panel data. The method helps in understanding how the course of a dependent variable is predicted by independent time-series with no time lag, as well as by previous observations of that dependent variable (autocorrelation) and of independent variables (cross-correlation).The study analyzes the marital interaction of a married couple under clinical conditions over a period of 144 days by means of TSA. The data were collected within a course of couple therapy. The male partner was affected by a severe condition of atopic dermatitis and the woman suffered from bulimia nervosa.Each of the partners completed a mood questionnaire and a body symptom checklist. After the determination of auto- and cross-correlations between and within the parallel data sets, multivariate time-series models were specified. Mutual and individual patterns of emotional reactions explained 14% (skin) and 33% (bulimia) of the total variance in both dependent variables (adj. R(2), p<0.0001 for the multivariate models).The question was discussed whether multivariate TSA-models represent a suitable approach to the empirical exploration of clinical marital interaction.

  18. Deducing acidification rates based on short-term time series

    PubMed Central

    Lui, Hon-Kit; Arthur Chen, Chen-Tung

    2015-01-01

    We show that, statistically, the simple linear regression (SLR)-determined rate of temporal change in seawater pH (βpH), the so-called acidification rate, can be expressed as a linear combination of a constant (the estimated rate of temporal change in pH) and SLR-determined rates of temporal changes in other variables (deviation largely due to various sampling distributions), despite complications due to different observation durations and temporal sampling distributions. Observations show that five time series data sets worldwide, with observation times from 9 to 23 years, have yielded βpH values that vary from 1.61 × 10−3 to −2.5 × 10−3 pH unit yr−1. After correcting for the deviation, these data now all yield an acidification rate similar to what is expected under the air-sea CO2 equilibrium (−1.6 × 10−3 ~ −1.8 × 10−3 pH unit yr−1). Although long-term time series stations may have evenly distributed datasets, shorter time series may suffer large errors which are correctable by this method. PMID:26143749

  19. Nonstationary hydrological time series forecasting using nonlinear dynamic methods

    NASA Astrophysics Data System (ADS)

    Coulibaly, Paulin; Baldwin, Connely K.

    2005-06-01

    Recent evidence of nonstationary trends in water resources time series as result of natural and/or anthropogenic climate variability and change, has raised more interest in nonlinear dynamic system modeling methods. In this study, the effectiveness of dynamically driven recurrent neural networks (RNN) for complex time-varying water resources system modeling is investigated. An optimal dynamic RNN approach is proposed to directly forecast different nonstationary hydrological time series. The proposed method automatically selects the most optimally trained network in any case. The simulation performance of the dynamic RNN-based model is compared with the results obtained from optimal multivariate adaptive regression splines (MARS) models. It is shown that the dynamically driven RNN model can be a good alternative for the modeling of complex dynamics of a hydrological system, performing better than the MARS model on the three selected hydrological time series, namely the historical storage volumes of the Great Salt Lake, the Saint-Lawrence River flows, and the Nile River flows.

  20. Satellite time series analysis using Empirical Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Pannimpullath, R. Renosh; Doolaeghe, Diane; Loisel, Hubert; Vantrepotte, Vincent; Schmitt, Francois G.

    2016-04-01

    Geophysical fields possess large fluctuations over many spatial and temporal scales. Satellite successive images provide interesting sampling of this spatio-temporal multiscale variability. Here we propose to consider such variability by performing satellite time series analysis, pixel by pixel, using Empirical Mode Decomposition (EMD). EMD is a time series analysis technique able to decompose an original time series into a sum of modes, each one having a different mean frequency. It can be used to smooth signals, to extract trends. It is built in a data-adaptative way, and is able to extract information from nonlinear signals. Here we use MERIS Suspended Particulate Matter (SPM) data, on a weekly basis, during 10 years. There are 458 successive time steps. We have selected 5 different regions of coastal waters for the present study. They are Vietnam coastal waters, Brahmaputra region, St. Lawrence, English Channel and McKenzie. These regions have high SPM concentrations due to large scale river run off. Trend and Hurst exponents are derived for each pixel in each region. The energy also extracted using Hilberts Spectral Analysis (HSA) along with EMD method. Normalised energy computed for each mode for each region with the total energy. The total energy computed using all the modes are extracted using EMD method.