Science.gov

Sample records for marmoratipennis neuroptera hemerobiidae

  1. Jumping mechanisms in lacewings (Neuroptera, Chrysopidae and Hemerobiidae).

    PubMed

    Burrows, Malcolm; Dorosenko, Marina

    2014-12-01

    Lacewings launch themselves into the air by simultaneous propulsive movements of the middle and hind legs as revealed in video images captured at a rate of 1000 s(-1). These movements were powered largely by thoracic trochanteral depressor muscles but did not start from a particular preset position of these legs. Ridges on the lateral sides of the meso- and metathorax fluoresced bright blue when illuminated with ultraviolet light, suggesting the presence of the elastic protein resilin. The middle and hind legs were longer than the front legs but their femora and tibiae were narrow tubes of similar diameter. Jumps were of two types. First, those in which the body was oriented almost parallel to the ground (-7±8 deg in green lacewings, 13.7±7 deg in brown lacewings) at take-off and remained stable once animals were airborne. The wings did not move until 5 ms after take-off when flapping flight ensued. Second, were jumps in which the head pointed downwards at take-off (green lacewings, -37±3 deg; brown lacewings, -35±4 deg) and the body rotated in the pitch plane once airborne without the wings opening. The larger green lacewings (mass 9 mg, body length 10.3 mm) took 15 ms and the smaller brown lacewings (3.6 mg and 5.3 mm) 9 ms to accelerate the body to mean take-off velocities of 0.6 and 0.5 m s(-1). During their fastest jumps green and brown lacewings experienced accelerations of 5.5 or 6.3 G: , respectively. They required an energy expenditure of 5.6 or 0.7 μJ, a power output of 0.3 or 0.1 mW and exerted a force of 0.6 or 0.2 mN. The required power was well within the maximum active contractile limit of normal muscle, so that jumping could be produced by direct muscle contractions without a power amplification mechanism or an energy store.

  2. Five novel Candida species in insect-associated yeast clades isolated from Neuroptera and other insects.

    PubMed

    Nguyen, Nhu H; Suh, Sung-Oui; Blackwell, Meredith

    2007-01-01

    Ascomycete yeasts are found commonly in the guts of basidioma-feeding beetles but little is known about their occurrence in the gut of other insects. In this study we isolated 95 yeasts from the gut of adult insects in five neuropteran families (Neuroptera: Corydalidae, Chrysopidae, Ascalaphidae, Mantispidae and Hemerobiidae) and a roach (Blattodea: Blattidae). Based on DNA sequence comparisons and other taxonomic characteristics, they were identified as more than 15 species of Saccharomycetes as well as occasional Cryptococcus-like basidiomycete yeasts. Yeast species such as Lachancea fermentati, Lachancea thermotolerans and Hanseniaspora vineae were isolated repeatedly from the gut of three species of corydalids, suggesting a close association of these species and their insect hosts. Among the yeasts isolated in this study 12 were identified as five novel Candida species that occurred in three phylogenetically distinct clades. Molecular phylogenetic analyses showed that Candida chauliodes sp. nov. (NRRL Y-27909T) and Candida corydali sp. nov. (NRRL Y-27910T) were sister taxa in the Candida albicans/ Lodderomyces elongisporus clade. Candida dosseyi sp. nov. (NRRL Y-27950T) and Candida blattae sp. nov. (NRRL Y-27698T) were sister taxa in the Candida intermedia clade. Candida ascalaphidarum sp. nov. (NRRL Y-27908T) fell on a basal branch in a clade containing Candida membranifaciens and many other insect-associated species. Descriptions of these novel yeast species are provided as well as discussion of their ecology in relation to their insect hosts.

  3. A new species of the brown lacewing genus Zachobiella Banks from China (Neuroptera, Hemerobiidae) with a key to species

    PubMed Central

    Zhao, Yang; Yan, Bingzhen; Liu, Zhiqi

    2015-01-01

    Abstract The genus Zachobiella Banks, 1920 is reviewed and a new species Zachobiella yunanica sp. n. described from China. All species found in China are redescribed, and Zachobiella submarginata Esben-Petersen, 1929 is recorded from China for the first time. A key to the adults of Zachobiella is provided. PMID:26019662

  4. Fauna Europaea: Neuropterida (Raphidioptera, Megaloptera, Neuroptera)

    PubMed Central

    2015-01-01

    Abstract Fauna Europaea provides a public web-service with an index of scientific names of all living European land and freshwater animals, their geographical distribution at country level (up to the Urals, excluding the Caucasus region), and some additional information. The Fauna Europaea project covers about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies, which is much more than the originally projected number of 100,000 species. This represents a huge effort by more than 400 contributing specialists throughout Europe and is a unique (standard) reference suitable for many users in science, government, industry, nature conservation and education. For Neuropterida, data from three Insect orders (Raphidioptera, Megaloptera, Neuroptera), comprising 15 families and 397 species, are included. PMID:25941450

  5. Head anatomy of adult Sisyra terminalis (Insecta: Neuroptera: Sisyridae)--functional adaptations and phylogenetic implications.

    PubMed

    Randolf, Susanne; Zimmermann, Dominique; Aspöck, Ulrike

    2013-11-01

    The external and internal head anatomy of Sisyra terminalis is described in detail and compared with data from literature. A salivary pump consisting of a peculiar reservoir and a hitherto unknown muscle, M. ductus salivarii, is newly described for Neuroptera. The upward folded paraglossae form a secondary prolongation of the salivary system. These structures are discussed as functional adaptations for feeding on aphids and desiccated honeydew. In a phylogenetic analysis the basal position of the Sisyridae within Neuroptera is retrieved. The following new synapomorphies are postulated: (1) for Neuropterida, the presence of a M. submentomentalis and prepharyngeal ventral transverse muscles, and the absence of a M. submentopraementalis; (2) for Neuroptera and Sialidae, the presence of a mandibular gland; (3) for Neuroptera, the presence of four scapopedicellar muscles; (4) for Neuroptera exclusive Nevrorthidae and Sisyridae, the weakening of dorsal tentorial arms, the presence of a M. tentoriomandibularis medialis superior and the shifted origin of M. tentoriocardinalis.

  6. The First Mitochondrial Genomes of Antlion (Neuroptera: Myrmeleontidae) and Split-footed Lacewing (Neuroptera: Nymphidae), with Phylogenetic Implications of Myrmeleontiformia

    PubMed Central

    Yan, Yan; Wang, Yuyu; Liu, Xingyue; Winterton, Shaun L.; Yang, Ding

    2014-01-01

    In the holometabolous insect order Neuroptera (lacewings), the cosmopolitan Myrmeleontidae (antlions) are the most species-rich family, while the closely related Nymphidae (split-footed lacewings) are a small endemic family from the Australian-Malesian region. Both families belong to the suborder Myrmeleontiformia, within which controversial hypotheses on the interfamilial phylogenetic relationships exist. Herein, we describe the complete mitochondrial (mt) genomes of an antlion (Myrmeleon immanis Walker, 1853) and a split-footed lacewing (Nymphes myrmeleonoides Leach, 1814), representing the first mt genomes for both families. These mt genomes are relatively small (respectively composed of 15,799 and 15,713 bp) compared to other lacewing mt genomes, and comprise 37 genes (13 protein coding genes, 22 tRNA genes and two rRNA genes). The arrangement of these two mt genomes is the same as in most derived Neuroptera mt genomes previously sequenced, specifically with a translocation of trnC. The start codons of all PCGs are started by ATN, with an exception of cox1, which is ACG in the M. immanis mt genome and TCG in N. myrmeleonoides. All tRNA genes have a typical clover-leaf structure of mitochondrial tRNA, with the exception of trnS1(AGN). The secondary structures of rrnL and rrnS are similar with those proposed insects and the domain I contains nine helices rather than eight helices, which is common within Neuroptera. A phylogenetic analysis based on the mt genomic data for all Neuropterida sequenced thus far, supports the monophyly of Myrmeleontiformia and the sister relationship between Ascalaphidae and Myrmeleontidae. PMID:25170303

  7. A new species of Spongilla-fly from Western Africa (Neuroptera: Sisyridae).

    PubMed

    Monserrat, Victor J; Duelli, Peter

    2014-01-01

    A new species of spongilla-fly (Neuropterida, Neuroptera, Sisyridae: Sisyra) is described from Western Africa (Guinea and Ivory Coast). This new Sisyra species differs from all other known African species both in its morphology and genitalia, and it seems to be most closely related to a species in Thailand. PMID:25543749

  8. Pharmacophagy in green lacewings (Neuroptera: Chrysopidae: Chrysopa spp.)?

    PubMed Central

    Chauhan, Kamal; Zhang, Qing-He

    2016-01-01

    Green lacewings (Neuroptera: Chrysopidae) are voracious predators of aphids and other small, soft-bodied insects and mites. Earlier, we identified (1R,2S,5R,8R)-iridodial from wild males of the goldeneyed lacewing, Chrysopa oculata Say, which is released from thousands of microscopic dermal glands on the abdominal sterna. Iridodial-baited traps attract C. oculata and other Chrysopa spp. males into traps, while females come to the vicinity of, but do not usually enter traps. Despite their healthy appearance and normal fertility, laboratory-reared C. oculata males do not produce iridodial. Surprisingly, goldeneyed lacewing males caught alive in iridodial-baited traps attempt to eat the lure and, in Asia, males of other Chrysopa species reportedly eat the native plant, Actinidia polygama (Siebold & Zucc.) Maxim. (Actinidiaceae) to obtain the monoterpenoid, neomatatabiol. These observations suggest that Chrysopa males must sequester exogenous natural iridoids in order to produce iridodial; we investigated this phenomenon in laboratory feeding studies. Lacewing adult males fed various monoterpenes reduced carbonyls to alcohols and saturated double bonds, but did not convert these compounds to iridodial. Only males fed the common aphid sex pheromone component, (1R,4aS,7S,7aR)-nepetalactol, produced (1R,2S,5R,8R)-iridodial. Furthermore, although C. oculata males fed the second common aphid sex pheromone component, (4aS,7S,7aR)-nepetalactone, did not produce iridodial, they did convert ∼75% of this compound to the corresponding dihydronepetalactone, and wild C. oculata males collected in early spring contained traces of this dihydronepetalactone. These findings are consistent with the hypothesis that Chrysopa males feed on oviparae (the late-season pheromone producing stage of aphids) to obtain nepetalactol as a precursor to iridodial. In the spring, however, wild C. oculata males produce less iridodial than do males collected later in the season. Therefore, we further

  9. Patterns of developmental stability of Chrysopa perla L. (Neuroptera: Chrysopidae) in response to environmental pollution

    SciTech Connect

    Clarke, G.M. )

    1993-12-01

    The level of developmental stability of Chrysopa perla L. (Neuroptera: Chrysopidae) collected from control and contaminated sites in the vicinity of an agrochemical manufacturing facility was assessed using fluctuating asymmetry and phenodeviant analysis. There were no significant differences in the level of asymmetry between control and contaminated sites for four characters. The number of phenodeviants for two characters was significantly greater at sites located in close proximity to the facility compared with a control site. Results are discussed with reference to the relationship between asymmetry and phenodeviants as indicators of stability and the use of development stability as a means of assessing environmental quality.

  10. Volatile semiochemicals increase trap catch of Green Lacewings (Neuroptera: Chrysopidae) and Flower Flies (Diptera: Syrphidae) in corn and soybean plots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge about beneficial insects’ responsiveness to plant-produced volatiles may improve understanding of insect chemical ecology and lead to practical means of enhancing ecosystem services. This study reports on the attractiveness of various volatile chemicals to green lacewings (Neuroptera: Chr...

  11. A new species of Spiroberotha Adams 1989 (Neuroptera: Berothidae) and the first record of the genus in Brazil.

    PubMed

    Machado, Renato Jose Pires; Krolow, Tiago Kütter

    2016-01-01

    The genus Spiroberotha Adams, 1989 is classified in Berothidae (Neuroptera) with two described species: S. fernandezi Adams, 1989 from Venezuela and S. sanctarosae Adams, 1989 from Colombia, Costa Rica and Venezuela. Here we describe a new species, S. tocantinensis n. sp., from Palmas, Tocantins, Brazil. This is the first record of the genus in Brazil, extending its geographical distribution. PMID:27394485

  12. Using plant volatile traps to develop phenology models for natural enemies: an example using Chrysopa nigricornis (Burmeister) (Neuroptera: Chrysopidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A model predicting phenology of adult Chrysopa nigricornis (Burmeister) (Neuroptera: Chrysopidae) in orchards was developed from field (trapping) data supplemented with developmental data collected under laboratory conditions. Lower and upper thresholds of 10.1°C and 29.9 °C, respectively, were es...

  13. A review of the current state of knowledge of fossil Mantispidae (Insecta: Neuroptera).

    PubMed

    Jepson, James E

    2015-01-01

    There are 32 individual specimens of Mantispidae (Insecta: Neuroptera) currently recorded from the fossil record, the oldest of which dates back to the Lower Jurassic. These include 19 described species (in 16 genera), 1 specimen described to genus level and 9 unnamed specimens The specimens have been assigned to the extant subfamilies Drepanicinae (4), Mantispinae (10), Symphrasinae (1), and the extinct subfamily Mesomantispinae (16), with one incertae sedis within Mantispidae. There are currently no known fossil representatives of the subfamily Calomantispinae. Mesithoninae has been removed from Mantispidae and placed back within Berothidae. The species Mesithone carnaria and M. monstruosa, however, are true mantispids and have been removed from Mesithone and placed within a new genus Karataumantispa gen. nov. in the subfamily Mesomantispinae. The current state of knowledge of the fossil record of Mantispidae is reviewed and a key to the genera of Mesomantispinae is provided. PMID:26249453

  14. A Remarkable New Family of Jurassic Insects (Neuroptera) with Primitive Wing Venation and Its Phylogenetic Position in Neuropterida

    PubMed Central

    Yang, Qiang; Makarkin, Vladimir N.; Winterton, Shaun L.; Khramov, Alexander V.; Ren, Dong

    2012-01-01

    Background Lacewings (insect order Neuroptera), known in the fossil record since the Early Permian, were most diverse in the Mesozoic. A dramatic variety of forms ranged in that time from large butterfly-like Kalligrammatidae to minute two-winged Dipteromantispidae. Principal Findings We describe the intriguing new neuropteran family Parakseneuridae fam. nov. with three new genera and 15 new species from the Middle Jurassic of Daohugou (Inner Mongolia, China) and the Early/Middle Jurassic of Sai-Sagul (Kyrgyzstan): Parakseneura undula gen. et sp. nov., P. albomacula gen. et sp. nov., P. curvivenis gen. et sp. nov., P. nigromacula gen. et sp. nov., P. nigrolinea gen. et sp. nov., P. albadelta gen. et sp. nov., P. cavomaculata gen. et sp. nov., P. inflata gen. et sp. nov., P. metallica gen. et sp. nov., P. emarginata gen. et sp. nov., P. directa gen. et sp. nov., Pseudorapisma jurassicum gen. et sp. nov., P. angustipenne gen. et sp. nov., P. maculatum gen. et sp. nov. (Daohugou); Shuraboneura ovata gen. et sp. nov. (Sai-Sagul). The family comprises large neuropterans with most primitive wing venation in the order indicated by the presence of ScA and AA1+2, and the dichotomous branching of MP, CuA, CuP, AA3+4, AP1+2. The phylogenetic position of Parakseneuridae was investigated using a phylogenetic analysis of morphological scoring for 33 families of extinct and extant Neuropterida combined with DNA sequence data for representatives of all extant families. Parakseneuridae were recovered in a clade with Osmylopsychopidae, Prohemerobiidae, and Ithonidae. Conclusions/Significance The presence of the presumed AA1+2 in wings of Parakseneuridae is a unique plesiomorphic condition hitherto unknown in Neuropterida, the clade comprising Neuroptera, Megaloptera, Raphidioptera. The relative uncertainty of phylogenetic position of Parakseneuridae and the majority of other families of Neuroptera reflects deficient paleontological data, especially from critical important periods

  15. Familial Clarification of Saucrosmylidae stat. nov. and New Saucrosmylids from Daohugou, China (Insecta, Neuroptera)

    PubMed Central

    Fang, Hui; Ren, Dong; Wang, Yongjie

    2015-01-01

    Backgound Saucrosmylids are characterized by the typically large body size, complicated venation and diverse wing markings, which were only discovered in Middle Jurassic of Daohugou, Ningcheng county, Inner Mongolia, China. Principal Findings Saucrosmylinae Ren, 2003, originally included as a subfamily in the Osmylidae, was transferred and elevated to family rank based on the definitive synapomorphic character. The updated definition of Saucrosmylidae stat. nov. was outlined in detail: presence of nygma and trichosors; diverse markings on membrane; complicated cross-veins; distal fusion of Sc and R1; expanded space between R1 and Rs having 2–7 rows of cells that should be a synapomorphic character of the family; proximal MP fork. And the previous misuses of Saucrosmylidae are also clarified. Furthermore, a new genus with a new species and an indeterminate species of Saucrosmylidae are described as Ulrikezza aspoeckae gen. et sp. nov. and Ulrikezza sp. from the Middle Jurassic of Daohugou, Inner Mongolia, China. A key to genera of Saucrosmylidae is provided. Conclusions/Significance The intriguing group represents a particular lineage of Neuroptera in the Mesozoic Era. The familial status of Saucrosmylidae was firstly advanced that clarified the former incorrect citation and use of the family name. As an extinct clade, many species of the saucrosmylids were erected just based on a single fore- or hindwing, and it should be realized that providing more stable characters is necessary when describing new lacewing taxa just based on an isolated hindwing. It is vital for the systematics of Saucrosmylidae. PMID:26485027

  16. Development of Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) on pollen from Bt-transgenic and conventional maize.

    PubMed

    Meissle, Michael; Zünd, Jan; Waldburger, Mario; Romeis, Jörg

    2014-01-01

    Maize (Zea mays) pollen is highly nutritious and can be used by predatory arthropods to supplement or replace a carnivorous diet. We demonstrate that maize pollen can be utilized by larvae of the green lacewing, Chrysoperla carnea (Neuroptera: Chrysopidae) under laboratory conditions. Complete development on maize pollen was not possible, but 25% of neonates reached the third instar. When only one instar was fed with pollen and the other two instars with eggs of Ephestia kuehniella (Lepidoptera: Pyralidae), 58-87% of the larvae reached the pupal stage. The experiments included pollen produced by nine cultivars: three genetically modified (GM) cultivars expressing the Bacillus thuringiensis proteins Cry1Ab or Cry3Bb1, their corresponding non-transformed near-isolines, and three conventional cultivars. Maize cultivars were grown in two batches in a glasshouse. Their pollen differed by up to 59% in total protein content, 25% in C:N ratio, and 14% in grain diameter, but the differences were inconsistent and depended on the batch. Lacewing performance was not affected by maize cultivar. For environmental risk assessment of GM plants, in planta studies must consider the variability among conventional cultivars, individual plants, batches, and environmental conditions when evaluating the ecological significance of differences observed between GM and near-isolines. PMID:25082074

  17. Impact of insect growth regulators on the predator Ceraeochrysa cincta (Schneider) (Neuroptera: Chrysopidae).

    PubMed

    Rugno, Gabriel Rodrigo; Zanardi, Odimar Zanuzo; Bajonero Cuervo, Johanna; de Morais, Matheus Rovere; Yamamoto, Pedro Takao

    2016-07-01

    The generalist predator Ceraeochrysa cincta (Schneider) (Neuroptera: Chrysopidae) is an important biological control agent of several arthropod pests in different agroecosystems. This study assessed the lethal and sublethal effects of six insect growth regulators sprayed on first-instar larvae of C. cincta. Lufenuron and diflubenzuron were highly harmful to first-instar larvae of C. cincta, causing 100 % of mortality before they reached the second instar. Buprofezin caused ~25 % mortality of the larvae and considerably reduced the fecundity and longevity of the insects, but substantially increased the proportion of females in the surviving population of C. cincta. Methoxyfenozide and tebufenozide did not affect the duration and survival of the immature stages, but methoxyfenozide significantly reduced the fecundity and longevity of the insects. Pyriproxyfen reduced the survival of the larval stage by 19.5 %, but did not affect the development, survival and reproduction of the surviving individuals. Based on reduction coefficient, the insecticides diflubenzuron and lufenuron were considered harmful to C. cincta, whereas buprofezin and methoxyfenozide were slightly harmful and tebufenozide and pyriproxyfen were harmless. The estimation of life-table parameters indicated that buprofezin and methoxyfenozide significantly reduced the R o , r and λ of C. cincta, whereas pyriproxyfen and tebufenozide caused no adverse effect on population parameters, indicating that these insecticides could be suitable for use in pest management programs towards the conservation and population increase of the predator in agroecosystems. However, more studies should be conducted to evaluate the compatibility of these insecticides with the predator C. cincta under semi-field and field conditions. PMID:27137778

  18. Investigation on some biological aspects of Chrysoperla lucasina (Chrysopidae: Neuroptera) on Bemisia tabaci in laboratory conditions.

    PubMed

    Baghdadi, A; Sharifi, F; Mirmoayedi, A

    2012-01-01

    Bemisia tabaci is one of the most important key pests of many types of cultivated plants. Lacewings (Chrysopidae: Neuroptera) are predatory insects, widely used in biological control programs. Between them green lacewing is a promising biological control agent of pests in green houses and crop fields. In this study, gravid females of the green lacewing Chrysoperla lucasina (Lacroix) were captured from Sarepolzahab ( altitude 540m, latitude 34 degrees ,14' N 46 degrees, 9' E) in western part of Iran. Collected insects were reared in a growth chamber, under experimental conditions (25 +/- 1 degrees C, 70 +/- 5% RH and a photoperiod of 16:8 L: D). Different diets were offered to larvae which consisted of a whitefly species B. tabaci, an aphid Myzus persica and also lyophilized powder of drone honeybee (Apis melifera). As different foods were used to nurish larvae, so for each diet, mean larval period were calculated, and finally means were compared to each other. Anova in MSTAT-C was used for analysis of variance, and Duncan multiple range test (DMRT) to compare between means. The results showed that larvae had maximum duration of 27 +/- 0.33 days when fed on honeybee lyophilized powder and the minimum value was 17.9 +/- 0.3 days for B. tabaci. 25 +/- 0.27 day recorded for M. persicae. Food preference of the 3rd instar larvae of green lacewing was surveyed, they showed a food preference to M. persicae, to compare with B. tabaci, as the former has a bigger body size, so more easily to be captured by the predator larvae. The 3rd instar larvae of lacewing were more voracious on preys, than the 1st or the 2nd instar larvae. Statistically speaking, there were a significantly difference when mean of different preys consumed by predator larvae were compared. We found, that when the predator larvae have fed on B. tabaci, their development time was shorter, and when arrived to adult stage, the adults showed, an improved fertility. The results indicated that the suitable prey

  19. Investigation on some biological aspects of Chrysoperla lucasina (Chrysopidae: Neuroptera) on Bemisia tabaci in laboratory conditions.

    PubMed

    Baghdadi, A; Sharifi, F; Mirmoayedi, A

    2012-01-01

    Bemisia tabaci is one of the most important key pests of many types of cultivated plants. Lacewings (Chrysopidae: Neuroptera) are predatory insects, widely used in biological control programs. Between them green lacewing is a promising biological control agent of pests in green houses and crop fields. In this study, gravid females of the green lacewing Chrysoperla lucasina (Lacroix) were captured from Sarepolzahab ( altitude 540m, latitude 34 degrees ,14' N 46 degrees, 9' E) in western part of Iran. Collected insects were reared in a growth chamber, under experimental conditions (25 +/- 1 degrees C, 70 +/- 5% RH and a photoperiod of 16:8 L: D). Different diets were offered to larvae which consisted of a whitefly species B. tabaci, an aphid Myzus persica and also lyophilized powder of drone honeybee (Apis melifera). As different foods were used to nurish larvae, so for each diet, mean larval period were calculated, and finally means were compared to each other. Anova in MSTAT-C was used for analysis of variance, and Duncan multiple range test (DMRT) to compare between means. The results showed that larvae had maximum duration of 27 +/- 0.33 days when fed on honeybee lyophilized powder and the minimum value was 17.9 +/- 0.3 days for B. tabaci. 25 +/- 0.27 day recorded for M. persicae. Food preference of the 3rd instar larvae of green lacewing was surveyed, they showed a food preference to M. persicae, to compare with B. tabaci, as the former has a bigger body size, so more easily to be captured by the predator larvae. The 3rd instar larvae of lacewing were more voracious on preys, than the 1st or the 2nd instar larvae. Statistically speaking, there were a significantly difference when mean of different preys consumed by predator larvae were compared. We found, that when the predator larvae have fed on B. tabaci, their development time was shorter, and when arrived to adult stage, the adults showed, an improved fertility. The results indicated that the suitable prey

  20. Effect of energetic cost to maintain the trap for Myrmeleon brasiliensis (Neuroptera, Myrmeleontidae) in its development and adult size.

    PubMed

    Lima, T N; Silva, D C R

    2016-07-25

    Antlion larvae Myrmeleon brasiliensis Návas, 1914 (Neuroptera, Myrmeleontidae) are sit-and-wait predators who build traps to catch their prey. The aim of this study was to observe under laboratory conditions, how the energy cost spent on maintenance of their traps affects: the larval developmental time, time spent as a pupa, mortality rate of larvae and adult size. M. brasiliensis larvae were collected in the municipality of Aquidauana, Mato Grosso do Sul, Brazil and were individually maintained in plastic containers and subjected to two treatments. In the control treatment larvae did not have their traps disturbed while in the manipulated treatment, larvae had their traps disturbed three times a week. The experiments were followed until adult emergence. When the adults emerged, their body size (head-abdomen), anterior and posterior wing span and width were measured. Furthermore, the number of larvae that died during the experiment was recorded. The results showed that the larvae whose traps were manipulated had longer larval development time, smaller pupal development time and were smaller adults. It can be concluded that the energy expenditure spent on maintenance of the trap constructed by M. brasiliensis larvae can affect the development of negative ways, represented by a longer larval development and reduced adult size. PMID:27463831

  1. A charismatic new species of green lacewing discovered in Malaysia (Neuroptera, Chrysopidae): the confluence of citizen scientist, online image database and cybertaxonomy.

    PubMed

    Winterton, Shaun L; Guek, Hock Ping; Brooks, Stephen J

    2012-01-01

    An unusual new species of green lacewing (Neuroptera: Chrysopidae: Semachrysa jadesp. n.) is described from Selangor (Malaysia) as a joint discovery by citizen scientist and professional taxonomists. The incidental nature of this discovery is underscored by the fact that the species was initially photographed and then released, with images subsequently posted to an online image database. It was not until the images in the database were randomly examined by the professional taxonomists that it was determined that the species was in fact new. A subsequent specimen was collected at the same locality and is described herein along with another specimen identified from nearby Sabah.

  2. Volatile Semiochemicals Increase Trap Catch of Green Lacewings (Neuroptera: Chrysopidae) and Flower Flies (Diptera: Syrphidae) in Corn and Soybean Plots

    PubMed Central

    Hesler, Louis S.

    2016-01-01

    This study reports on the attractiveness of volatile chemicals to green lacewings (Neuroptera: Chrysopidae) and flower flies (Diptera: Syrphidae) as measured by catch on yellow sticky traps within corn [Zea mays L. (Cyperales: Poaceae)] and soybean [Glycine max (L.) Merr. (Fabales: Fabaceae)] plots. Green lacewings were attracted to eugenol-baited traps in two tests in soybean plots. Follow-up testing in corn showed that catch of green lacewings was enhanced when traps were baited with eugenol, its structural analog isoeugenol, or 2-phenylethanol; trap catch of green lacewings was greater with these compounds than with structural analog, 4-alllylanisole. In a follow-up test in soybean, more green lacewings were caught on traps baited with isoeugenol than with 4-allylanisole. Catch did not differ among traps baited with eugenol, isoeugenol, or 2-phenylethanol or among those baited with eugenol, 2-phenylethanol, or the ethanol control. In a 6-wk experiment in soybean, green lacewings were attracted to eugenol-baited traps in 5 of 6 wks but to traps baited with structural analog methyl eugenol in only 1 wk. Flower flies were attracted to 2-phenylethanol in initial tests in corn and soybean plots. Subsequent testing in soybeans with 2-phenylethanol and structural analogs confirmed attraction to 2-phenylethanol and also showed attractancy of 2-phenylacetaldehyde but not benzylamine. A 6-wk test in soybean found that flower flies were also attracted to traps baited with either eugenol or methyl eugenol. This is the first report of green lacewing attraction to eugenol and isoeugenol and first report of flower fly attraction to eugenol. Structure-activity relationships among attractants and practical aspects of their use are discussed. PMID:27531905

  3. Volatile Semiochemicals Increase Trap Catch of Green Lacewings (Neuroptera: Chrysopidae) and Flower Flies (Diptera: Syrphidae) in Corn and Soybean Plots.

    PubMed

    Hesler, Louis S

    2016-01-01

    This study reports on the attractiveness of volatile chemicals to green lacewings (Neuroptera: Chrysopidae) and flower flies (Diptera: Syrphidae) as measured by catch on yellow sticky traps within corn [Zea mays L. (Cyperales: Poaceae)] and soybean [Glycine max (L.) Merr. (Fabales: Fabaceae)] plots. Green lacewings were attracted to eugenol-baited traps in two tests in soybean plots. Follow-up testing in corn showed that catch of green lacewings was enhanced when traps were baited with eugenol, its structural analog isoeugenol, or 2-phenylethanol; trap catch of green lacewings was greater with these compounds than with structural analog, 4-alllylanisole. In a follow-up test in soybean, more green lacewings were caught on traps baited with isoeugenol than with 4-allylanisole. Catch did not differ among traps baited with eugenol, isoeugenol, or 2-phenylethanol or among those baited with eugenol, 2-phenylethanol, or the ethanol control. In a 6-wk experiment in soybean, green lacewings were attracted to eugenol-baited traps in 5 of 6 wks but to traps baited with structural analog methyl eugenol in only 1 wk. Flower flies were attracted to 2-phenylethanol in initial tests in corn and soybean plots. Subsequent testing in soybeans with 2-phenylethanol and structural analogs confirmed attraction to 2-phenylethanol and also showed attractancy of 2-phenylacetaldehyde but not benzylamine. A 6-wk test in soybean found that flower flies were also attracted to traps baited with either eugenol or methyl eugenol. This is the first report of green lacewing attraction to eugenol and isoeugenol and first report of flower fly attraction to eugenol. Structure-activity relationships among attractants and practical aspects of their use are discussed. PMID:27531905

  4. Volatile Semiochemicals Increase Trap Catch of Green Lacewings (Neuroptera: Chrysopidae) and Flower Flies (Diptera: Syrphidae) in Corn and Soybean Plots.

    PubMed

    Hesler, Louis S

    2016-01-01

    This study reports on the attractiveness of volatile chemicals to green lacewings (Neuroptera: Chrysopidae) and flower flies (Diptera: Syrphidae) as measured by catch on yellow sticky traps within corn [Zea mays L. (Cyperales: Poaceae)] and soybean [Glycine max (L.) Merr. (Fabales: Fabaceae)] plots. Green lacewings were attracted to eugenol-baited traps in two tests in soybean plots. Follow-up testing in corn showed that catch of green lacewings was enhanced when traps were baited with eugenol, its structural analog isoeugenol, or 2-phenylethanol; trap catch of green lacewings was greater with these compounds than with structural analog, 4-alllylanisole. In a follow-up test in soybean, more green lacewings were caught on traps baited with isoeugenol than with 4-allylanisole. Catch did not differ among traps baited with eugenol, isoeugenol, or 2-phenylethanol or among those baited with eugenol, 2-phenylethanol, or the ethanol control. In a 6-wk experiment in soybean, green lacewings were attracted to eugenol-baited traps in 5 of 6 wks but to traps baited with structural analog methyl eugenol in only 1 wk. Flower flies were attracted to 2-phenylethanol in initial tests in corn and soybean plots. Subsequent testing in soybeans with 2-phenylethanol and structural analogs confirmed attraction to 2-phenylethanol and also showed attractancy of 2-phenylacetaldehyde but not benzylamine. A 6-wk test in soybean found that flower flies were also attracted to traps baited with either eugenol or methyl eugenol. This is the first report of green lacewing attraction to eugenol and isoeugenol and first report of flower fly attraction to eugenol. Structure-activity relationships among attractants and practical aspects of their use are discussed.

  5. The presence of the recurrent veinlet in the Middle Jurassic Nymphidae (Neuroptera): a unique character condition in Myrmeleontoidea

    PubMed Central

    Makarkin, Vladimir N.; Yang, Qiang; Shi, Chaofan; Ren, Dong

    2013-01-01

    Abstract A well-developed recurrent veinlet is found in the forewing of two species of Nymphidae from the Middle Jurassic locality of Daohugou (Inner Mongolia, China), Liminympha makarkini Ren & Engel and Daonymphes bisulca gen. et sp. n. This is the first record of this trait in the clade comprised of the superfamilies Myrmeleontoidea and Chrysopoidea. We interpret the recurrent veinlet in these species as a remnant of the condition present more basally in the psychopsoid + ithonoid + chrysopoid + myrmeleontoid clade (i.e., as a plesiomorphy). Other venational character states of Daonymphes bisulca of interest include the configuration of subcosta anterior (ScA), which is very similar to that of extant Nymphidae. We consider the short ScA terminating on ScP to be an autapomorphy of Neuroptera. PMID:24003318

  6. Comparative effects of insecticides with different mechanisms of action on Chrysoperla externa (Neuroptera: Chrysopidae): lethal, sublethal and dose-response effects.

    PubMed

    Joao Zotti, Moises; Dionel Grutzmacher, Anderson; Heres Lopes, Isac; Smagghe, Guy

    2013-12-01

    The comprehensive knowledge that the delayed systemic and reproduction side effects can be even more deleterious than acute toxicity, has caused a shift in focus toward sublethal effects assessment on physiology and behavior of beneficial insects. In this study, we assessed the risks posed by some insecticides with different mode of action through lethal and delayed systemic sublethal effects on the pupation, adult emergence, and reproduction of the chrysopid Chrysoperla externa (Hagen, 1861; Neuroptera: Chrysopidae), an important predator in pest biological control. The maximum field recommended dose (MFRD) and twice (2×MFRD) for chlorantraniliprole, tebufenozide, and pyriproxyfen were harmless to C. externa. In contrast, all the tested chitin synthesis inhibitors (CSIs) were highly detrimental to the predator, despite of their lack of acute lethal toxicity. Therefore, the safety assumed by using IGRs toward beneficial insects is not valid for chrysopids. Dose-response data showed that although all CSIs have a similar mechanism of action, the relative extent of toxicity may differ (novaluron > lufenuron > teflubenzuron). For CSIs, the delayed systemic effects became obvious at adult emergence, where the predicted no observable effect dose (NOED) was 1/2 048 of the MFRD for novaluron (0.085 ng/insect), and 1/256 of the MFRD for both lufenuron (0.25 ng/insect) and teflubenzuron (0.6 ng/insect). Finally, this work emphasized the significance of performing toxicity risk assessments with an adequate posttreatment period to avoid underestimating the toxicities of insecticides, as the acute lethal toxicity assays may not provide accurate information regarding the long-range effects of hazardous compounds. PMID:23956013

  7. Consumption of Bt maize pollen expressing Cry1Ab or Cry3Bb1 does not harm adult green Lacewings, Chrysoperla carnea (Neuroptera: Chrysopidae).

    PubMed

    Li, Yunhe; Meissle, Michael; Romeis, Jörg

    2008-01-01

    Adults of the common green lacewing, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae), are prevalent pollen-consumers in maize fields. They are therefore exposed to insecticidal proteins expressed in the pollen of insect-resistant, genetically engineered maize varieties expressing Cry proteins derived from Bacillus thuringiensis (Bt). Laboratory experiments were conducted to evaluate the impact of Cry3Bb1 or Cry1Ab-expressing transgenic maize (MON 88017, Event Bt176) pollen on fitness parameters of adult C. carnea. Adults were fed pollen from Bt maize varieties or their corresponding near isolines together with sucrose solution for 28 days. Survival, pre-oviposition period, fecundity, fertility and dry weight were not different between Bt or non-Bt maize pollen treatments. In order to ensure that adults of C. carnea are not sensitive to the tested toxins independent from the plant background and to add certainty to the hazard assessment, adult C. carnea were fed with artificial diet containing purified Cry3Bb1 or Cry1Ab at about a 10 times higher concentration than in maize pollen. Artificial diet containing Galanthus nivalis agglutinin (GNA) was included as a positive control. No differences were found in any life-table parameter between Cry protein containing diet treatments and control diet. However, the pre-oviposition period, daily and total fecundity and dry weight of C. carnea were significantly negatively affected by GNA-feeding. In both feeding assays, the stability and bioactivity of Cry proteins in the food sources as well as the uptake by C. carnea was confirmed. These results show that adults of C. carnea are not affected by Bt maize pollen and are not sensitive to Cry1Ab and Cry3Bb1 at concentrations exceeding the levels in pollen. Consequently, Bt maize pollen consumption will pose a negligible risk to adult C. carnea. PMID:18682800

  8. The rare Chrysopidae (Neuroptera) of southwestern Europe

    NASA Astrophysics Data System (ADS)

    Canard, Michel; Letardi, Agostino; Thierry, Dominique

    2007-05-01

    Quantitative surveys of the chrysopid fauna from southwestern Europe, namely the Iberian and Italian peninsulas, France south of 46° N, and the west-Mediterranean Islands, were analysed. A total of 56 species of Chrysopidae were reported, of which three species were abundant. These, Chrysoperla carnea (Stephens, 1836) sensu lato, Dichochrysa prasina (Burmeister, 1839) and D. flavifrons (Brauer, 1850), comprised a large percentage of the specimens. For the rarer species, comments are made on their distributions, the enhanced geographic range of exotic ones, and on levels of endemism and stenotopy.

  9. Spongillaflies (Neuroptera, Sisyridae) in Baltic amber.

    PubMed

    Wichard, Wilfried; Wedmann, Sonja; Weiterschan, Thomas

    2016-01-01

    Two spongillaflies species are described and illustrated from Eocene Baltic amber: Paleosisyra minor n. sp. and Paleosisyra electrobaltica Wichard et al., 2009; the latter species was described based on a female and is now re-described in consideration of the male genitalia of two new male specimens. Extant Sisyridae comprise few species, and their fossil record is very scarce. PMID:27615874

  10. Revision of the green lacewing subgenus Ankylopteryx (Sencera) (Neuroptera, Chrysopidae)

    PubMed Central

    Breitkreuz, Laura C.V.; Winterton, Shaun L.; Engel, Michael S.

    2015-01-01

    Abstract The Australasian and Oriental green lacewing subgenus Ankylopteryx (Sencera) Navás (Chrysopinae: Ankylopterygini) is examined and its diversity and placement among other members of the tribe Ankylopterygini is discussed. After study of specimens spanning the full distribution and anatomical range of variation for the subgenus, all prior putative species, resulting in the sole valid species are newly synonymized, Ankylopteryx (Sencera) anomala (Brauer). Accordingly, the following new synonymies are established: Sencera scioneura Navás, syn. n., Sencera feae Navás, syn. n., and Sencera exquisita Nakahara, syn. n. [all under the name Ankylopteryx (Sencera) anomala]. A lectotype is newly designated for Ankylopteryx (Sencera) anomala so as to stabilize the application of the name. To support our hypotheses, the wing and general body coloration as well as the male genitalia are reviewed. We elaborate on the possibility of Ankylopteryx (Sencera) anomala being nothing more than an autapomorphic species of Ankylopteryx Brauer, as it was originally described. The species is not sufficiently distinct to warrant recognition as a separate subgenus within the group, and most certainly not as its own genus as has been advocated by past authors. Nonetheless, we do not for now go so far as to synonymize the subgenus until a more extensive phylogenetic analysis is undertaken with multiple representative species from across Ankylopteryx and other ankylopterygine genera. Lastly, we comment on the biology of Ankylopteryx (Sencera) anomala in terms of the attraction of males to methyl eugenol and on the widespread practice of splitting within Chrysopidae. PMID:26798287

  11. Chromosome numbers in antlions (Myrmeleontidae) and owlflies (Ascalaphidae) (Insecta, Neuroptera)

    PubMed Central

    Kuznetsova, Valentina G.; Khabiev, Gadzhimurad N.; Krivokhatsky, Victor A.

    2015-01-01

    Abstract A short review of main cytogenetic features of insects belonging to the sister neuropteran families Myrmeleontidae (antlions) and Ascalaphidae (owlflies) is presented, with a particular focus on their chromosome numbers and sex chromosome systems. Diploid male chromosome numbers are listed for 37 species, 21 genera from 9 subfamilies of the antlions as well as for seven species and five genera of the owlfly subfamily Ascalaphinae. The list includes data on five species whose karyotypes were studied in the present work. It is shown here that antlions and owlflies share a simple sex chromosome system XY/XX; a similar range of chromosome numbers, 2n = 14-26 and 2n = 18-22 respectively; and a peculiar distant pairing of sex chromosomes in male meiosis. Usually the karyotype is particularly stable within a genus but there are some exceptions in both families (in the genera Palpares and Libelloides respectively). The Myrmeleontidae and Ascalaphidae differ in their modal chromosome numbers. Most antlions exhibit 2n = 14 and 16, and Palparinae are the only subfamily characterized by higher numbers, 2n = 22, 24, and 26. The higher numbers, 2n = 20 and 22, are also found in owlflies. Since the Palparinae represent a basal phylogenetic lineage of the Myrmeleontidae, it is hypothesized that higher chromosome numbers are ancestral for antlions and were inherited from the common ancestor of Myrmeleontidae + Ascalaphidae. They were preserved in the Palparinae (Myrmeleontidae), but changed via chromosomal fusions toward lower numbers in other subfamilies. PMID:26807036

  12. Three new species of Osmylus Latreille from China (Neuroptera, Osmylidae)

    PubMed Central

    Xu, Han; Wang, Yongjie; Liu, Zhiqi

    2016-01-01

    Abstract Three new species of Osmylus Latreille are described from China: Osmylus maoershanicola sp. n., Osmylus shaanxiensis sp. n. and Osmylus angustimarginatus sp. n. These new species are distinguishable from other related species by the shape of the 9th tergite of both sexes, as well as the shape of gonarcus, mediuncus and spermatheca. A key is given to differentiate Palaearctic and Oriental species of Osmylus. PMID:27408537

  13. On Afromantispa and Mantispa (Insecta, Neuroptera, Mantispidae): elucidating generic boundaries

    PubMed Central

    Snyman, Louwtjie P.; Sole, Catherine L.; Ohl, Michael

    2015-01-01

    Abstract The genus Afromantispa Snyman & Ohl, 2012 was recently synonymised with Mantispa Illiger, 1798 by Monserrat (2014). Here morphological evidence is presented in support of restoring the genus Afromantispa stat. rev. to its previous status as a valid and morphologically distinct genus. Twelve new combinations (comb. n.) are proposed as species of Afromantispa including three new synonyms. PMID:26478700

  14. Are the Pupae and Eggs of the Lacewing Ceraeochrysa cubana (Neuroptera: Chrysopidae) Tolerant to Insecticides?

    PubMed

    Rugno, Gabriel Rodrigo; Zanardi, Odimar Zanuzo; Yamamoto, Pedro Takao

    2015-12-01

    The tolerance of Ceraeochrysa cubana (Hagen) pupae and eggs to 11 insecticides was evaluated under laboratory conditions, based on lethal and sublethal effects. Eggs at three ages (≤24-h-old, 48- to 72-h-old, and 96- to 120-h-old) and pupae at ≤48-h-old were used. All the insecticides were considered harmless when applied at the pupal stage. Phosmet and pyriproxyfen insecticides were considered harmless to eggs irrespective of the age. Esfenvalerate was harmless to eggs at the ages of ≤24-h-old and 48- to 72-h-old. Imidacloprid SC and azadirachtin were harmless to eggs at ages of 48- to 72-h-old and 96- to 120-h-old, and thiamethoxam was only harmless to eggs at 96- to 120-h-old of age. In contrast, chlorpyrifos and malathion were harmful to eggs at the age of 96- to 120-h-old, and imidacloprid WG was slightly harmful to the three egg ages evaluated. Lambda-cyhalothrin + chlorantraniliprole and lambda-cyhalothrin + thiamethoxam were slightly and/or moderately harmful to all egg ages evaluated. Based on the life table parameters, the insecticides thiamethoxam, imidacloprid SC, phosmet, pyriproxyfen, and azadirachtin did not affect the net rate of reproduction (Ro) of C. cubana. Lambda-cyhalothrin + chlorantraniliprole decreased the Ro and increased the population doubling time (Td) independently of the egg ages evaluated. Therefore, the insecticides pyriproxyfen and phosmet are compatible with eggs of the predator C. cubana, but other insecticides should be evaluated under field conditions to verify their effects on the predator. PMID:26340225

  15. The larva of Tricholeon relictus Hölzel & Monserrat, 2002 a synanthropic antlion (Neuroptera, Myrmeleontidae).

    PubMed

    Acevedo, Fernando; Badano, Davide; Monserrat, Víctor J

    2014-01-01

    The larva of Tricholeon relictus, a Spanish endemic antlion of Afrotropical affinities, is described and illustrated for the first time also providing a comparison with the only other European member of the tribe Dendroleontini, Dendroleon pantherinus. The larva of this species is synanthropic but probably originally lived in cave-like habitats. PMID:25081458

  16. Mesozoic lacewings from China provide phylogenetic insight into evolution of the Kalligrammatidae (Neuroptera)

    PubMed Central

    2014-01-01

    Background The Kalligrammatidae are distinctive, large, conspicuous, lacewings found in Eurasia from the Middle Jurassic to mid Early Cretaceous. Because of incomplete and often inadequate fossil preservation, an absence of detailed morphology, unclear relationships, and unknown evolutionary trends, the Kalligrammatidae are poorly understood. Results We describe three new subfamilies, four new genera, twelve new species and four unassigned species from the late Middle Jurassic Jiulongshan and mid Early Cretaceous Yixian Formations of China. These kalligrammatid taxa exhibit diverse morphological characters, such as mandibulate mouthparts in one major clade and siphonate mouthparts in the remaining four major clades, the presence or absence of a variety of distinctive wing markings such as stripes, wing spots and eyespots, as well as multiple major wing shapes. Based on phylogenetic analyses, the Kalligrammatidae are divided into five principal clades: Kalligrammatinae Handlirsch, 1906, Kallihemerobiinae Ren & Engel, 2008, Meioneurinae subfam. nov., Oregrammatinae subfam. nov. and Sophogrammatinae subfam. nov., each of which is accorded subfamily-level status. Our results show significant morphological and evolutionary differentiation of the Kalligrammatidae family during a 40 million-year-interval of the mid Mesozoic. Conclusion A new phylogeny and classification of five subfamilies and their constituent genera is proposed for the Kalligrammatidae. These diverse, yet highly specialized taxa from northeastern China suggest that eastern Eurasia likely was an important diversification center for the Kalligrammatidae. Kalligrammatids possess an extraordinary morphological breadth and panoply of adaptations during the mid-Mesozoic that highlight our conclusion that their evolutionary biology is much more complex than heretofore realized. PMID:24912379

  17. Rediscovery of Nuvol umbrosus Navás (Neuroptera, Chrysopidae, Leucochrysini): a redescription and discussion

    PubMed Central

    Tauber, Catherine A.; Sosa, Francisco

    2015-01-01

    Abstract The monotypic leucochrysine genus Nuvol was previously known from three specimens of Nuvol umbrosus Navás, collected in the Atlantic Forest region of Brazil. For many years these specimens have been missing, and the genus has remained without a modern description. Here, the species is redescribed based on two newly discovered specimens (females) from the Amazonian region. The female terminalia are relatively simple, except for the subgenitale, which is enlarged, folded into two sections, and heavily sclerotized. Unique aspects of the wing venation and the unusual pattern of banding on the wings support the retention of Nuvol as a valid genus within the Leucochrysini. There are differences between the Amazonian specimens studied here and the earlier descriptions based on specimens from the Atlantic Forest. These differences may indicate the presence of two distinct, geographically separated species within the genus. However, largely because we do not know the sexes of the earlier specimens, we are treating the differences discovered in the two female specimens as expressions of intraspecific variation. PMID:26448710

  18. Chrysopa septempunctata (Neuroptera: Chrysopidae) Vitellogenin Functions Through Effects on Egg Production and Hatching.

    PubMed

    Liu, C; Mao, J; Zeng, F

    2015-12-01

    Vitellogenin (Vg) is a precursor of major egg storage protein, vitellin (Vt), and plays primary roles in reproduction of oviparous vertebrates and invertebrates. Chrysopa septempunctata Wesmael is an important and common predator of various insect pests. Here, we first cloned C. septempunctata Vg gene, CsVg. The complete CsVg cDNA was 5664 bp, which encodes an 1810-residues protein with a predicted molecular mass of 206.23 kDa. Expression profile revealed that CsVg mRNA first appeared on day 4 after emergence, maximally accumulated on day 10, and then declined gradually. RNAi mediated by injection of dsRNA depleted CsVg transcripts, significantly reduced egg-laying amount, and decreased egg hatching rate, suggesting that CsVg functions through effects on egg production and hatching in C. septempunctata. PMID:26470375

  19. Action of neem oil (Azadirachta indica A. Juss) on cocoon spinning in Ceraeochrysa claveri (Neuroptera: Chrysopidae).

    PubMed

    Scudeler, Elton Luiz; Garcia, Ana Silvia Gimenes; Padovani, Carlos Roberto; Santos, Daniela Carvalho

    2013-11-01

    Neem oil is a biopesticide that disturbs the endocrine and neuroendocrine systems of pests and may interfere with molting, metamorphosis and cocoon spinning. The cocoon serves protective functions for the pupa during metamorphosis, and these functions are dependent on cocoon structure. To assess the changes in cocoon spinning caused by neem oil ingestion, Ceraeochrysa claveri larvae, a common polyphagous predator, were fed with neem oil throughout the larval period. When treated with neem oil, changes were observed on the outer and inner surfaces of the C. claveri cocoon, such as decreased wall thickness and impaired ability to attach to a substrate. These negative effects may reduce the effectiveness of the mechanical and protective functions of cocoons during pupation, which makes the specimen more vulnerable to natural enemies and environmental factors.

  20. Larval morphology of the antlion Myrmecaelurus trigrammus (Pallas, 1771) (Neuroptera, Myrmeleontidae), with notes on larval biology.

    PubMed

    Devetak, Dušan; Klokočovnik, Vesna; Lipovšek, Saška; Bock, Elisabeth; Leitinger, Gerd

    2013-01-01

    Morphology and behaviour of third instar larvae of the Holomediterranean antlion species Myrmecaelurus trigranunus (Pallas) are described. Larvae are facultative pit-builders, they either ambush their prey at the surface, or dig pitfall traps that prey fall in to. Dark brown spots on dorsal and ventral sides of the head and on dorsal side of the thorax are characteristic of the larvae. Eye tubercles are not prominent. Jaws are equipped with long bristles, campaniform sensilla, sensilla coeloconica, and digitiform sensilla. A unique feature is the shape of the tips of all three teeth that is screw-like with a polyhedral surface. The body surface is covered with longitudinally grooved bristles and plumose hairs. On the tip of the antennae and on terminal and subterminal parts of labial palps sensilla basiconica occur. On the 9th abdominal segment there are two bulges, each of them bearing four digging bristles. Non-prominent eye tubercles and numerous mandibular bristles are morphological traits of pit-builders. Most of the behavioural traits are related to pit builders, whereas forward movement, waiting for prey without a pit and frequent changing of ambush location are traits of non-pit builders.

  1. Are the Pupae and Eggs of the Lacewing Ceraeochrysa cubana (Neuroptera: Chrysopidae) Tolerant to Insecticides?

    PubMed

    Rugno, Gabriel Rodrigo; Zanardi, Odimar Zanuzo; Yamamoto, Pedro Takao

    2015-12-01

    The tolerance of Ceraeochrysa cubana (Hagen) pupae and eggs to 11 insecticides was evaluated under laboratory conditions, based on lethal and sublethal effects. Eggs at three ages (≤24-h-old, 48- to 72-h-old, and 96- to 120-h-old) and pupae at ≤48-h-old were used. All the insecticides were considered harmless when applied at the pupal stage. Phosmet and pyriproxyfen insecticides were considered harmless to eggs irrespective of the age. Esfenvalerate was harmless to eggs at the ages of ≤24-h-old and 48- to 72-h-old. Imidacloprid SC and azadirachtin were harmless to eggs at ages of 48- to 72-h-old and 96- to 120-h-old, and thiamethoxam was only harmless to eggs at 96- to 120-h-old of age. In contrast, chlorpyrifos and malathion were harmful to eggs at the age of 96- to 120-h-old, and imidacloprid WG was slightly harmful to the three egg ages evaluated. Lambda-cyhalothrin + chlorantraniliprole and lambda-cyhalothrin + thiamethoxam were slightly and/or moderately harmful to all egg ages evaluated. Based on the life table parameters, the insecticides thiamethoxam, imidacloprid SC, phosmet, pyriproxyfen, and azadirachtin did not affect the net rate of reproduction (Ro) of C. cubana. Lambda-cyhalothrin + chlorantraniliprole decreased the Ro and increased the population doubling time (Td) independently of the egg ages evaluated. Therefore, the insecticides pyriproxyfen and phosmet are compatible with eggs of the predator C. cubana, but other insecticides should be evaluated under field conditions to verify their effects on the predator.

  2. Phylogeny and biogeography of southern African spoon-winged lacewings (Neuroptera: Nemopteridae: Nemopterinae).

    PubMed

    Sole, Catherine L; Scholtz, Clarke H; Ball, Jonathan B; Mansell, Mervyn W

    2013-01-01

    Nemopteridae are a charismatic family of lacewings characterised by uniquely extended hind wings. They are an ancient widespread group in the drier regions of the world. The family comprises two subfamilies, Crocinae (thread-wings) and Nemopterinae (spoon- and ribbon-wings). The present distribution of the family has been largely influenced by the vicariant events of plate tectonics, resulting in relict populations in some parts of the world and extensive evolutionary radiations in others, particularly southern Africa where the vast majority of the species are endemic to the Western and Northern Cape Provinces of South Africa. This study aimed to establish the validity of the 11 currently recognised genera and infer their biogeographic history using molecular sequence data from four gene regions. The hypothesis that the Cape nemopterines co-evolved with certain taxa in the Cape Floristic Region was also tested. Phylogenetic analysis supports seven of the 11 currently recognised genera. The crown age of the Nemopterinae is estimated to be at ca. 145.6 Mya, indicating that the group has been present since the late Jurassic. Most of the genera appear to have diversified during the middle Eocene and into the middle Miocene (ca. 44-11 Mya) with recent rapid radiation of several of the genera occurring during the late Miocene (ca. 6-4.5 Mya). While these data support an initial radiation with the Rushioideae (Aizoaceae) it is recommended that further study including observations and gut content be carried out. PMID:23085135

  3. Iridodial: a powerful attractant for the green lacewing, Chrysopa septempunctata (Neuroptera: Chrysopidae)

    NASA Astrophysics Data System (ADS)

    Zhang, Qing-He; Sheng, Maoling; Chen, Guofa; Aldrich, Jeffrey R.; Chauhan, Kamlesh R.

    2006-09-01

    The lacewing Chrysopa septempunctata Wesmael is an important, common predator of several insects in China, Japan, Russia, and many parts of Europe. Our field trapping experiments in northeast China showed that males of this green lacewing are strongly attracted to the lacewing pheromone of Chrysopa oculata Say, (1 R,2 S,5 R,8 R)-iridodial. The induced plant volatile, methyl salicylate, was unattractive to C. septempunctata by itself at the concentration tested, but synergistic when combined with iridodial where the lacewing population was high. (1 R,4a S,7 S,7a R)-Nepetalactol and (4a S,7 S,7a R)-nepetalactone (aphid sex pheromone components) caught significantly more males of C. septempunctata than did blank control traps, but were inferior to iridodial dispensers, which remained strongly attractive to C. septempunctata males for at least 2.5 months. These results indicate that (1 R,2 S,5 R,8 R)-iridodial is a powerful attractant for C. septempunctata, and may have great potential for enhanced biological control of garden, agricultural, and forest insect pests.

  4. Electrophysiological and Behavioral Responses of Chrysopa phyllochroma (Neuroptera: Chrysopidae) to Plant Volatiles.

    PubMed

    Xu, Xiuxiu; Cai, Xiaoming; Bian, Lei; Luo, Zongxiu; Xin, Zhaojun; Chen, Zongmao

    2015-10-01

    The lacewing Chrysopa phyllochroma Waesmael is a polyphagous predator of many pests. Releasing lacewings is an important component of biological control programs, but it is difficult to establish populations on field crops. Electrophysiological and behavioral responses to 10 common plant volatiles were recorded to screen for lacewing-attracting compounds. Electroantennographic assays indicated that all of the tested compounds elicited responses from C. phyllochroma. Three green-leaf volatiles-(E)-2-hexenal, (Z)-3-hexenyl acetate, and (Z)-3-hexenol-produced the strongest responses. Weaker responses were observed to six terpenes-ocimene, linalool, (3E)-4,8-dimethyl-1,3,7-nonatriene, (E,E)-α-farnesene, limonene, and nerolidol-and to methyl salicylate. Using a Y-tube olfactometer, the behavioral assays of the eight most active compounds demonstrated that four-(Z)-3-hexenyl acetate, (Z)-3-hexenol, (3E)-4,8-dimethyl-1,3,7-nonatriene, and linalool-were significant attractants for C. phyllochroma at specific concentrations. Three common plant volatile compounds-(Z)-3-hexenyl acetate, (3E)-4,8-dimethyl-1,3,7-nonatriene, and linalool-were also found to significantly enhance female ovipositing, resulting in a concentration of eggs. These observations are important for lacewing release as a pest control measure because they suggest means for retaining individuals and establishing populations using common plant volatiles. PMID:26314008

  5. Action of neem oil (Azadirachta indica A. Juss) on cocoon spinning in Ceraeochrysa claveri (Neuroptera: Chrysopidae).

    PubMed

    Scudeler, Elton Luiz; Garcia, Ana Silvia Gimenes; Padovani, Carlos Roberto; Santos, Daniela Carvalho

    2013-11-01

    Neem oil is a biopesticide that disturbs the endocrine and neuroendocrine systems of pests and may interfere with molting, metamorphosis and cocoon spinning. The cocoon serves protective functions for the pupa during metamorphosis, and these functions are dependent on cocoon structure. To assess the changes in cocoon spinning caused by neem oil ingestion, Ceraeochrysa claveri larvae, a common polyphagous predator, were fed with neem oil throughout the larval period. When treated with neem oil, changes were observed on the outer and inner surfaces of the C. claveri cocoon, such as decreased wall thickness and impaired ability to attach to a substrate. These negative effects may reduce the effectiveness of the mechanical and protective functions of cocoons during pupation, which makes the specimen more vulnerable to natural enemies and environmental factors. PMID:23993219

  6. Larvae of five horticulturally important species of Chrysopodes (Neuroptera, Chrysopidae): shared generic features, descriptions and keys

    PubMed Central

    Silva, Patrícia S.; Tauber, Catherine A.; Albuquerque, Gilberto S.; Tauber, Maurice J.

    2013-01-01

    Abstract An expanded list of generic level larval characteristics is presented for Chrysopodes; it includes a reinterpretation of the mesothoracic and metathoracic structure and setation. Keys, descriptions and images of Semaphoront A (first instar) and Semaphoront B (second and third instars) are offered for identifying five species of Chrysopodes (Chrysopodes) that are commonly reported from horticultural habitats in the Neotropical region. PMID:23653514

  7. Oviposition response of green lacewings (Neuroptera: Chrysopidae) to aphids (Hemiptera: Aphididae) and potential attractants on pecan.

    PubMed

    Kunkel, Brian A; Cottrell, Ted E

    2007-06-01

    Pecan foliage is attacked by three species of aphids [Monellia caryella (Fitch), Melanocallis caryaefoliae (Davis), and Monelliopsis pecanis Bissell], resulting in damage that can reduce tree nut yield. In this study, we assayed the ovipositional response of the green lacewing Chrysoperla rufilabris (Burmeister) to M. caryella and M. caryaefoliae at high and low aphid densities and the development of C. rufilabris larvae when fed solely on each of the three pecan aphid species. During 2004 and 2005, combinations of attractants and food sprays were applied to pecan trees in an orchard to monitor green lacewing ovipositional response. We found that C. rufilabris laid more eggs on seedling trees infested with the M. caryella (at both high and low densities) than on seedlings infested with M. caryaefoliae. Development of C. rufilabris was unaffected by aphid species. At least one attractant/food spray treatment applied to trees in an orchard significantly increased green lacewing oviposition for three of the five treatment dates over both years. These results show that larvae of C. rufilabris will consume all aphid species attacking pecan, even though female ovipositional response can differ for aphid species. It is likely that combinations of attractants and food sprays can be used to enhance green lacewing populations in orchards. PMID:17540067

  8. “Pheromonal Investigations of Green Lacewings (Neuroptera: Chrysopidae: Chrysopa spp.) in the Field and Laboratory”

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field-collected male goldeneyed lacewings, Chrysopa oculata, release (1R,2S,5R,8R)-iridodial but, laboratory-reared C. oculata males did not produce iridodial, despite their healthy appearance and apparently normal fertility. Previous research showed that C. oculata males enter traps baited with iri...

  9. Two newly recorded genera and species of Owlflies (Neuroptera: Ascalaphidae) from China

    PubMed Central

    Yang, Ming xue; Sun, Ming xia

    2016-01-01

    Abstract Background The records of genus Bubopsis McLachlan, 1898 with species Bubopsis tancrei Weele, 1908 and the genus Nousera Navás, 1923 with species Nousera gibba Navás, 1923 have not been published in China. New information The genus Bubopsis McLachlan, 1898 with species Bubopsis tancrei Weele, 1908 and the genus Nousera Navás, 1923 with species Nousera gibba Navás, 1923 are recorded for the first time from China. We provide detailed descriptions and illlustrations of specimens and the collecting information of the specimens are also provided. PMID:26929716

  10. The larva of Tricholeon relictus Hölzel & Monserrat, 2002 a synanthropic antlion (Neuroptera, Myrmeleontidae).

    PubMed

    Acevedo, Fernando; Badano, Davide; Monserrat, Víctor J

    2014-07-11

    The larva of Tricholeon relictus, a Spanish endemic antlion of Afrotropical affinities, is described and illustrated for the first time also providing a comparison with the only other European member of the tribe Dendroleontini, Dendroleon pantherinus. The larva of this species is synanthropic but probably originally lived in cave-like habitats.

  11. New fossil Osmylopsychopidae (Neuroptera) from the Early/Middle Jurassic of Kyrgyzstan, Central Asia.

    PubMed

    Khramov, Alexander V; Makarkin, Vladimir N

    2015-01-01

    Four genera and four species of Osmylopsychopidae are described from the Jurassic of Kyrgyzstan, Central Asia: Oligophlebiopsis biramosa gen. et sp. nov. (Early Jurassic of Sogyuty); Osmylopsychoides anteromedialis gen. et sp. nov., Psychostoechotes undulatus gen. et sp. nov. and Osmylopsychostoechus sogulensis gen. et sp. nov. (all from the late Early to early Middle Jurassic of Sai-Sagul). By their poorly-developed outer gradate series of crossveins, these taxa (except O. anteromedialis gen. et sp. nov.) are more similar to Triassic genera than to the Middle/Late Jurassic Osmylopsychopidae (particularly from Daohugou, China). Two isolated hind wings from Sai-Sagul (i.e., Osmylopsychostoechus sp. and Osmylopsychopidae gen. et sp. indet.) are preliminarily assigned to this family. PMID:26701556

  12. Population genetics of Chrysoperla externa (Neuroptera: Chrysopidae) and implications for biological control.

    PubMed

    Lavagnini, T C; Morales, A C; Freitas, S

    2015-11-01

    Green lacewings are insects with great potential to be use in the biological control of agricultural pests, but relatively few studies have attempted to understand the genetic structure of these agents, especially those of predatory insects. The purpose of this study was to characterize genetically populations of C. externa using sequences of subunit I of the cytochrome oxidase, a mitochondrial gene, and examine the population structure of this species in sampled areas in São Paulo state. The results indicate high genetic diversity but no genetic structure, detected by AMOVA analysis, and high levels of haplotype sharing in the network. These genetic patterns could be a consequence of environmental homogeneity provided by agroecosystem (citrus orchard), allowing gene flow among populations. Probably there is a unique population in the area sampled that could be used as a population (genetic) source for mass-reared and posterior release in these farms.

  13. Agricultural management systems affect the green lacewing community (Neuroptera: Chrysopidae) in olive orchards in southern Spain.

    PubMed

    Porcel, M; Ruano, F; Cotes, B; Peña, A; Campos, M

    2013-02-01

    Green lacewings are generalist predators whose conservation is important for pest control in olive orchards (Olea europaea L.) Sustainable farming practices, as opposed to conventional management techniques, are believed to foster the presence of natural enemies. This study therefore aims to analyze the effect of 1) herbicidal weed cover removal and insecticide applications, and 2) the general management systems used in the olive orchards of southern Spain on chrysopid assemblages and abundance. Green lacewing adults and larvae were collected from olive orchards under conventional, integrated, and organic management systems. In addition, chemical analyses of residues were carried out to determine the presence of insecticidal and herbicidal residues. Eight adult species and three genera of larvae were identified. No rare species were captured from the most intensively farmed orchard, which therefore recorded the most limited chrysopid diversity with a very marked dominance of Chrysoperla carnea s.l.. No effect of dimethoate treatments on Chrysoperla larvae or C. carnea s.l. adults was observed. However, the presence of insecticide residues was associated with the depletion of Dichochrysa larvae. The absence of herbicide treatments favored C. carnea s.l. adult presence on olive trees while larval abundance decreased. Dichochrysa larvae were more abundant when weed cover received no treatment. In relation to the management systems studied, no difference in Chrysoperla larval abundance was observed between conventional and organic orchards. However, Dichochrysa larvae were more abundant in orchards under organic management.

  14. Chrysopa septempunctata (Neuroptera: Chrysopidae) Vitellogenin Functions Through Effects on Egg Production and Hatching.

    PubMed

    Liu, C; Mao, J; Zeng, F

    2015-12-01

    Vitellogenin (Vg) is a precursor of major egg storage protein, vitellin (Vt), and plays primary roles in reproduction of oviparous vertebrates and invertebrates. Chrysopa septempunctata Wesmael is an important and common predator of various insect pests. Here, we first cloned C. septempunctata Vg gene, CsVg. The complete CsVg cDNA was 5664 bp, which encodes an 1810-residues protein with a predicted molecular mass of 206.23 kDa. Expression profile revealed that CsVg mRNA first appeared on day 4 after emergence, maximally accumulated on day 10, and then declined gradually. RNAi mediated by injection of dsRNA depleted CsVg transcripts, significantly reduced egg-laying amount, and decreased egg hatching rate, suggesting that CsVg functions through effects on egg production and hatching in C. septempunctata.

  15. Extrachromosomal amplification of rDNA in oocytes of Hemerobius spp. (Insecta, Neuroptera).

    PubMed

    Kubrakiewicz, J; Biliński, S M

    1995-05-01

    In previtellogenic oocytes of the neuropteran, Hemerobius spp., two distinct, DNA-positive intranuclear structures have been observed. Chromosomes of meiotic prophase assemble in the center of the oocyte nucleus forming a highly polymorphic karyosphere, which persists in this position until the very late stages of vitellogenesis. The extrachromosomal DNA body, containing amplified ribosomal genes, undergoes fragmentation and dispersion in the nucleoplasm. At the onset of previtellogenic growth, transcription of extra rDNA starts, which is accompanied by the appearance of dense, granular material (multiple nucleoli). Arising nucleoli gradually fill the nucleoplasm. At the electron microscopic (EM) level two electron dense structural forms of the granular material have been described. Together with general histological and ultrastructural analysis the amplification of rDNA genes in Hemerobius spp. oocytes has been demonstrated by means of the spreading technique, which has shown that extra rDNA is organized in rings containing various numbers of active ribosomal genes. The transcription activity of amplified genes is manifested in the form of typical "Christmas tree" structures.

  16. [Spatio-temporal dynamic of green lacewings (Neuroptera: Chrysopidae) taxocenosis on natural ecosystems].

    PubMed

    Costa, Renildo I F; Souza, Brígida; Freitas, Sérgio De

    2010-01-01

    In order to study the interactions of green lacewings toxocenosis on natural ecossystems, samplings were carried out in the Parque Ecológico Quedas do Rio Bonito, located in Lavras, Alto Rio Grande region, South of Minas Gerais, Brazil. The species inventory was accomplished in two vegetation types: semi-evergreen forest and open field formations, including areas of montane grassland, rocky montane grassland and "cerrado". Insects were captured with a butterfly net during 2h, walking through each vegetation formation. Sampling resulted in 1,948 specimens belonging to 30 species, of which 14 were Chrysopini and 16 Leucochrysini. Representatives of these tribes were observed both in forest and in open field formations. Species of the genera Ceraeochrysa, Chrysoperla, Chrysopodes, Plesiochrysa and Leucochrysa were found in forests and in open field formations, except for Plesiochrysa. The highest richness and diversity of species were observed in the forest. The similarity index among the communities of green lacewings in the studied areas was 27%.

  17. A revision and key to the genera of Afrotropical Mantispidae (Neuropterida, Neuroptera), with the description of a new genus

    PubMed Central

    Snyman, Louwtjie P.; Ohl, Michael; Mansell, Mervyn W.; Scholtz, Clarke H.

    2012-01-01

    Abstract The Afrotropical Mantispidae genera have previously been neglected and are poorly known. The genera are revised and redescribed. A new genus Afromantispa Snyman and Ohl is described with Afromantispa tenella comb. n.as type species. Perlamantispa (Handschin, 1960) is synonymised with Sagittalata Handschin, 1959. The new combinations within the genus include Sagittalata austroafrica comb. n., Sagittalata bequaerti comb. n., Sagittalata dorsalis comb. n., Sagittalata girardi comb. n., Sagittalata nubila comb. n., Sagittalata perla comb. n., Sagittalata pusilla comb. n., Sagittalata similata comb. n., Sagittalata royi comb. n., Sagittalata tincta comb. n. and Sagittalata vassei comb. n. An illustrated key to the genera Afromantispa gen. n., Sagittalata Handschin, 1959, Mantispa Illiger, 1798, Cercomantispa Handschin, 1959, Rectinerva Handschin, 1959, Nampista Navás, 1914, and Pseudoclimaciella Handschin, 1960 is provided. The wing venation of Mantispidae is redescribed. Similarities between the genera are discussed. Subsequent studies will focus on revising the taxonomic status of species, which are not dealt with in this study. PMID:22573953

  18. Distribution and Biology of Mallada desjardinsi (Neuroptera: Chrysopidae) in India and Its Predatory Potential Against Aleurodicus dispersus (Hemiptera: Aleyrodidae)

    PubMed Central

    Boopathi, T.; Singh, S. B.; Ravi, M.; Manju, T.

    2016-01-01

    In this study, we report the prevalence of Mallada desjardinsi (Navas) in seven geographical regions of India and provide the first report of its kind outlining the preying of all stages of the spiraling whitefly, Aleurodicus dispersus Russell, by M. desjardinsi. Sampling was conducted in seven regions of two provinces in India, Bengaluru (Karnataka) and Tiruppur (Tamil Nadu), which demonstrated that M. desjardinsi populations were most dense at the former and least at the later. To the best of our knowledge, this is the first report of its kind outlining observations regarding the biology and feeding potential of M. desjardinsi on A. dispersus under laboratory conditions. It was observed that the second nymphal stadium of A. dispersus was most preferred prey for M. desjardinsi and the least preferred was the A. dispersus adult. It was also seen that the third stadium of M. desjardinsi consumed more A. dispersus individuals than any other life stages. The longevity of female and the total developmental period of M. desjardinsi were computed as 27.6 ± 1.69 and 24.1 ± 0.99 d, respectively. The average total number of eggs laid by the M. desjardinsi female was 211.1 ± 6.35 eggs. M. desjardinsi was observed to be extremely efficient in terms of prey searching and predatory potential with respect to A. dispersus. The results of this study indicate strongly that M. desjardinsi has the potential to be used for the control of A. dispersus. PMID:27417642

  19. A revision and key to the genera of Afrotropical Mantispidae (Neuropterida, Neuroptera), with the description of a new genus.

    PubMed

    Snyman, Louwtjie P; Ohl, Michael; Mansell, Mervyn W; Scholtz, Clarke H

    2012-01-01

    The Afrotropical Mantispidae genera have previously been neglected and are poorly known. The genera are revised and redescribed. A new genus Afromantispa Snyman and Ohl is described with Afromantispa tenellacomb. n.as type species. Perlamantispa (Handschin, 1960) is synonymised with Sagittalata Handschin, 1959. The new combinations within the genus include Sagittalata austroafricacomb. n., Sagittalata bequaerticomb. n., Sagittalata dorsaliscomb. n., Sagittalata girardicomb. n., Sagittalata nubilacomb. n.,Sagittalata perlacomb. n.,Sagittalata pusillacomb. n., Sagittalata similatacomb. n., Sagittalata royicomb. n., Sagittalata tinctacomb. n. andSagittalata vasseicomb. n. An illustrated key to the genera Afromantispagen. n., Sagittalata Handschin, 1959, Mantispa Illiger, 1798, Cercomantispa Handschin, 1959, Rectinerva Handschin, 1959, Nampista Navás, 1914, and Pseudoclimaciella Handschin, 1960 is provided. The wing venation of Mantispidae is redescribed. Similarities between the genera are discussed. Subsequent studies will focus on revising the taxonomic status of species, which are not dealt with in this study. PMID:22573953

  20. Two new species of Sinosmylites Hong (Neuroptera, Berothidae) from the Middle Jurassic of China, with notes on Mesoberothidae

    PubMed Central

    Makarkin, Vladimir N.; Yang, Qiang; Ren, Dong

    2011-01-01

    Abstract Two new species of the genus Sinosmylites Hong are described from the Middle Jurassic locality at Daohugou (Inner Mongolia, China): Sinosmylites fumosus sp. n. and Sinosmylites rasnitsyni sp. n. This is the oldest known occurrence of the family Berothidae. The berothid affinity of this genus is confirmed by examination of the hind wing venation characteristic of the family. The Late Triassic family Mesoberothidae may represent an early group of Berothidae. PMID:22259277

  1. Two common and problematic leucochrysine species - Leucochrysa (Leucochrysa) varia (Schneider) and L. (L.) pretiosa (Banks) (Neuroptera, Chrysopidae): redescriptions and synonymies.

    PubMed

    Tauber, Catherine A; Sosa, Francisco; Albuquerque, Gilberto S

    2013-01-01

    We dedicate this article to the memory of Sergio de Freitas, FCAV-UNESP, Jaboticabal, São Paulo, Brazil (deceased, 2012). He was an active and enthusiastic Neuropterist and the cherished mentor and friend of Francisco Sosa. Leucochrysa McLachlan is the largest genus in the Chrysopidae, yet it has received relatively little taxonomic attention. We treat two problematic and common Leucochrysa species - Leucochrysa (Leucochrysa) varia (Schneider, 1851) and Leucochrysa (Leucochrysa) pretiosa (Banks, 1910). Both are highly variable in coloration and were described before the systematic importance of chrysopid genitalia was recognized. Recent studies show that these species occur within a large complex of cryptic species and that they have accumulated a number of taxonomic problems. We identify new synonymies for each of the species-for Leucochrysa (Leucochrysa) varia: Leucochrysa (Leucochrysa) ampla (Walker, 1853), Leucochrysa internata (Walker, 1853), and Leucochrysa (Leucochrysa) walkerina Navás, 1913; for Leucochrysa (Leucochrysa) pretiosa: Leucochrysa (Leucochrysa) erminea Banks, 1946. The synonymy of Leucochrysa delicata Navás, 1925 with Leucochrysa (Leucochrysa) pretiosa is stabilized by the designation of a neotype. The following species, which were previously synonymized with Leucochrysa (Leucochrysa) varia or Leucochrysa (Leucochrysa) pretiosa, are reinstated as valid: Leucochrysa (Leucochrysa) phaeocephala Navás, 1929, Leucochrysa (Leucochrysa) angrandi (Navás, 1911), and Leucochrysa (Leucochrysa) variata (Navás, 1913). To help stabilize Leucochrysa taxonomy, lectotypes are designated for Allochrysa pretiosa and Allochrysa variata. Finally, Leucochrysa vegana Navás, 1917 is considered a nomen dubium.

  2. Suitability of leguminous cover crop pollens as food source for the green lacewing Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae).

    PubMed

    Venzon, Madelaine; Rosado, Maria C; Euzébio, Denise E; Souza, Brígida; Schoereder, José H

    2006-01-01

    Diversification of crops with species that provide suitable pollen for predators may reduce pest population on crops by enhancing predator effectiveness. In this paper we evaluated the suitability of leguminous cover crop pollens to the predatory green lacewing Chrysoperla externa (Hagen). The predator is commonly found in coffee agroecosystems and the plant species tested were pigeon pea and sunn hemp, which are used in organic coffee systems. Newly emerged females and males of C. externa were reared on diets containing pollen of pigeon pea, sunn hemp, or castor bean, used as a control. The reproductive success of C. externa was evaluated when females fed the pollen species and when honey was added to the diets, to verify the predator need for an extra carbohydrate source. Similar intrinsic growth rates were found for females fed on pigeon pea pollen and on sunn hemp pollen but these rates increased significantly when honey was added to the diets. Females fed with pigeon pea pollen plus honey and with sunn hemp pollen plus honey had higher intrinsic growth rates than those fed with castor bean pollen plus honey. Females fed on castor bean pollen only or on honey only, did not oviposit. Leguminous pollen species were equally suitable for C. externa especially when they were complemented with honey. The results suggest that to successfully enhance predator effectiveness, organic coffee plantation should be diversified with plant providing pollen in combination with plant providing nectar.

  3. Ultrastructure and molecular characterization of the microsporidium, Nosema chrysoperlae sp. nov., from the green lacewing, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) used for biological pest control.

    PubMed

    Bjørnson, S; Steele, T; Hu, Q; Ellis, B; Saito, T

    2013-09-01

    Lacewing larvae are generalist predators that are commercially available for aphid control on a variety of crops in both Europe and North America. Although lacewings are known for their symbiotic association with yeasts and bacteria, there are few reports of microsporidia in these natural enemies. An undescribed microsporidium was found in Chrysoperla carnea (Stephens) during the routine examination of specimens that were obtained from a commercial insectary for biological pest control. The objective of this study was to describe the pathogen by means of ultrastructure, molecular characterization and tissue pathology. All stages of the microsporidium were diplokaryotic and developed in direct contact with the host cell cytoplasm. Merogony and sporogony were not observed. Mature spores measured 3.49±0.10×1.52±0.05μm and had an isofilar polar filament with 8-10 coils that were frequently arranged in a single row, although double rows were also observed. Spores contained a lamellar polaroplast and a relatively small and inconspicuous polar vacuole was observed in the posterior region of about half of the spores that were examined. Tubular structures, similar in appearance to those in Nosema granulosis were observed in both sporonts and in spores. A cluster of small tubules was also observed in the posterior region of some spores. Microsporidian spores were observed in cells of the proventriculus, diverticulum and in epithelial cells of the posterior midgut. The Malpighian tubules, ileum, and rectum were heavily infected. Spores were also observed in the fat body, peripheral region of the ganglia, within and between the flight muscles, and beneath the cuticle. Although the tissues adjacent to the ovaries were heavily infected, microsporidian spores were not observed within the developing eggs. Pathogen transmission was not studied directly because it was difficult to maintain microsporidia-infected C. carnea in the laboratory. The presence of microsporidian spores in the alimentary canal suggests that the pathogen is transmitted per os and horizontal transmission may occur when infected larvae or adults are cannibalized by uninfected larvae. Molecular analysis of the microsporidian genome showed that the pathogen described in this study was 99% similar to Nosema bombycis, N. furnacalis, N. granulosis and N. spodopterae. Based on information gained during this study, we propose that the microsporidium in C. carnea be given the name Nosema chrysoperlae sp. nov.

  4. Post-exposure temperature influence on the toxicity of conventional and new chemistry insecticides to green lacewing Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae).

    PubMed

    Mansoor, Muhammad Mudassir; Afzal, Muhammad; Raza, Abu Bakar M; Akram, Zeeshan; Waqar, Adil; Afzal, Muhammad Babar Shahzad

    2015-05-01

    Chrysoperla carnea (Stephens) is an important biological control agent currently being used in many integrated pest management (IPM) programs to control insect pests. The effect of post-treatment temperature on insecticide toxicity of a spinosyn (spinosad), pyrethroid (lambda cyhalothrin), organophosphate (chlorpyrifos) and new chemistry (acetamiprid) to C. carnea larvae was investigated under laboratory conditions. Temperature coefficients of each insecticide tested were evaluated. From 20 to 40 °C, toxicity of lambda cyhalothrin and spinosad decreased by 2.15- and 1.87-fold while toxicity of acetamiprid and chlorpyrifos increased by 2.00 and 1.79-fold, respectively. The study demonstrates that pesticide effectiveness may vary according to environmental conditions. In cropping systems where multiple insecticide products are used, attention should be given to temperature variation as a key factor in making pest management strategies safer for biological control agents. Insecticides with a negative temperature coefficient may play a constructive role to conserve C. carnea populations. PMID:25972753

  5. Revision of the genus Gryposmylus Krüger, 1913 (Neuroptera, Osmylidae) with a remarkable example of convergence in wing disruptive patterning

    PubMed Central

    Winterton, Shaun L.; Wang, Yongjie

    2016-01-01

    Abstract The charismatic lance lacewing genus Gryposmylus Krüger, 1913 (Osmylidae: Protosmylinae) from South East Asia is revised with a new species (Gryposmylus pennyi sp. n.) described from Malaysia. The genus is diagnosed and both species in the genus redescribed and figured. An extraordinary example of morphological convergence is presented, with disruptive camouflaging wing markings in Gryposmylus pennyi sp. n. being remarkably similar to the South American green lacewing Vieira leschenaulti Navás (Chrysopidae). PMID:27667953

  6. Side Effects of Neem Oil on the Midgut Endocrine Cells of the Green Lacewing Ceraeochrysa claveri (Navás) (Neuroptera: Chrysopidae).

    PubMed

    Scudeler, E L; Santos, D C

    2014-04-01

    We described the ultrastructure of Ceraeochrysa claveri (Navás) midgut endocrine cells in larva, pupa, and adult, and evaluated the side effects of ingested neem oil, a botanical insecticide obtained from the seeds of the neem tree (Azadirachta indica), on these cells. During the larval period, C. claveri were fed (ad libitum) Diatraea saccharalis (F.) eggs treated with neem oil at concentrations of 0.5%, 1%, or 2%. Transmission electron microscopy showed that two subtypes of endocrine cells, namely granular and vesicular, occurred in the midgut epithelium during the three stages of the life cycle. Both cell types did not reach the midgut lumen and were positioned basally in the epithelium. The endocrine cells did not show extensive infoldings of the basal plasma membrane, and there were numerous secretory granules in the basal region of the cytoplasm. In the granular endocrine cells, the granules were completely filled with a dense matrix. In the vesicular endocrine cells, the main secretory products consisted of haloed vesicles. Ultrastructural examination indicated that only the granular endocrine cells exhibited signs of morphologic changes of cell injury present in all life cycle stages after the larvae were chronically exposed to neem oil by ingestion. The major cellular damage consisted of dilatation and vesiculation of the rough endoplasmic reticulum and the development of smooth endoplasmic reticulum and mitochondrial swelling. Our data suggest that cytotoxic effects on midgut endocrine cells can contribute to a generalized disruption of the physiological processes in this organ due to a general alteration of endocrine function.

  7. Effects of neem oil (Azadirachta indica A. Juss) on midgut cells of predatory larvae Ceraeochrysa claveri (Navás, 1911) (Neuroptera: Chrysopidae).

    PubMed

    Scudeler, Elton Luiz; dos Santos, Daniela Carvalho

    2013-01-01

    The effects of ingested neem oil, a botanical insecticide obtained from the seeds of the neem tree, Azadirachta indica, on the midgut cells of predatory larvae Ceraeochrysa claveri were analyzed. C. claveri were fed on eggs of Diatraea saccharalis treated with neem oil at a concentration of 0.5%, 1% and 2% during throughout the larval period. Light and electron microscopy showed severe damages in columnar cells, which had many cytoplasmic protrusions, clustering and ruptured of the microvilli, swollen cells, ruptured cells, dilatation and vesiculation of rough endoplasmic reticulum, development of smooth endoplasmic reticulum, enlargement of extracellular spaces of the basal labyrinth, intercellular spaces and necrosis. The indirect ingestion of neem oil with prey can result in severe alterations showing direct cytotoxic effects of neem oil on midgut cells of C. claveri larvae. Therefore, the safety of neem oil to non-target species as larvae of C. claveri was refuted, thus the notion that plants derived are safer to non-target species must be questioned in future ecotoxicological studies.

  8. Two common and problematic leucochrysine species – Leucochrysa (Leucochrysa) varia (Schneider) and L. (L.) pretiosa (Banks) (Neuroptera, Chrysopidae): redescriptions and synonymies

    PubMed Central

    Tauber, Catherine A.; Sosa, Francisco; Albuquerque, Gilberto S.

    2013-01-01

    Abstract We dedicate this article to the memory of Sergio de Freitas, FCAV-UNESP, Jaboticabal, São Paulo, Brazil (deceased, 2012). He was an active and enthusiastic Neuropterist and the cherished mentor and friend of Francisco Sosa. Leucochrysa McLachlan is the largest genus in the Chrysopidae, yet it has received relatively little taxonomic attention. We treat two problematic and common Leucochrysa species – Leucochrysa (Leucochrysa) varia (Schneider, 1851) and Leucochrysa (Leucochrysa) pretiosa (Banks, 1910). Both are highly variable in coloration and were described before the systematic importance of chrysopid genitalia was recognized. Recent studies show that these species occur within a large complex of cryptic species and that they have accumulated a number of taxonomic problems. We identify new synonymies for each of the species–for Leucochrysa (Leucochrysa) varia: Leucochrysa (Leucochrysa) ampla (Walker, 1853), Leucochrysa internata (Walker, 1853), and Leucochrysa (Leucochrysa) walkerina Navás, 1913; for Leucochrysa (Leucochrysa) pretiosa: Leucochrysa (Leucochrysa) erminea Banks, 1946. The synonymy of Leucochrysa delicata Navás, 1925 with Leucochrysa (Leucochrysa) pretiosa is stabilized by the designation of a neotype. The following species, which were previously synonymized with Leucochrysa (Leucochrysa) varia or Leucochrysa (Leucochrysa) pretiosa, are reinstated as valid: Leucochrysa (Leucochrysa) phaeocephala Navás, 1929, Leucochrysa (Leucochrysa) angrandi (Navás, 1911), and Leucochrysa (Leucochrysa) variata (Navás, 1913). To help stabilize Leucochrysa taxonomy, lectotypes are designated for Allochrysa pretiosa and Allochrysa variata. Finally, Leucochrysa vegana Navás, 1917 is considered a nomen dubium. PMID:23805050

  9. Toxicity and sublethal effects of six insecticides to last instar larvae and adults of the biocontrol agents Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) and Adalia bipunctata (L.) (Coleoptera: Coccinellidae).

    PubMed

    Garzón, A; Medina, P; Amor, F; Viñuela, E; Budia, F

    2015-08-01

    To further develop Integrated Pest Management (IPM) strategies against crop pests, it is important to evaluate the effects of insecticides on biological control agents. Therefore, we tested the toxicity and sublethal effects (fecundity and fertility) of flonicamid, flubendiamide, metaflumizone, spirotetramat, sulfoxaflor and deltamethrin on the natural enemies Chrysoperla carnea and Adalia bipunctata. The side effects of the active ingredients of the insecticides were evaluated with residual contact tests for the larvae and adults of these predators in the laboratory. Flonicamid, flubendiamide, metaflumizone and spirotetramat were innocuous to last instar larvae and adults of C. carnea and A. bipunctata. Sulfoxaflor was slightly toxic to adults of C. carnea and was highly toxic to the L4 larvae of A. bipunctata. For A. bipunctata, sulfoxaflor and deltamethrin were the most damaging compounds with a cumulative larval mortality of 100%. Deltamethrin was also the most toxic compound to larvae and adults of C. carnea. In accordance with the results obtained, the compounds flonicamid, flubendiamide, metaflumizone and spirotetramat might be incorporated into IPM programs in combination with these natural enemies for the control of particular greenhouse pests. Nevertheless, the use of sulfoxaflor and deltamethrin in IPM strategies should be taken into consideration when releasing either of these biological control agents, due to the toxic behavior observed under laboratory conditions. The need for developing sustainable approaches to combine the use of these insecticides and natural enemies within an IPM framework is discussed.

  10. Eggs of Mallada desjardinsi (Neuroptera: Chrysopidae) are protected by ants: the role of egg stalks in ant-tended aphid colonies.

    PubMed

    Hayashi, Masayuki; Nomura, Masashi

    2014-08-01

    In ant-aphid mutualisms, ants usually attack and exclude enemies of aphids. However, larvae of the green lacewing Mallada desjardinsi (Navas) prey on ant-tended aphids without being excluded by ants; these larvae protect themselves from ants by carrying aphid carcasses on their backs. Eggs of M. desjardinsi laid at the tips of stalks have also been observed in ant-tended aphid colonies in the field. Here, we examined whether the egg stalks of M. desjardinsi protect the eggs from ants and predators. When exposed to ants, almost all eggs with intact stalks were untouched, whereas 50-80% of eggs in which stalks had been severed at their bases were destroyed by ants. In contrast, most eggs were preyed upon by larvae of the lacewing Chrysoperla nipponensis (Okamoto), an intraguild predator of M. desjardinsi, regardless of whether their stalks had been severed. These findings suggest that egg stalks provide protection from ants but not from C. nipponensis larvae. To test whether M. desjardinsi eggs are protected from predators by aphid-tending ants, we introduced C. nipponensis larvae onto plants colonized by ant-tended aphids. A significantly greater number of eggs survived in the presence of ants because aphid-tending ants excluded larvae of C. nipponensis. This finding indicates that M. desjardinsi eggs are indirectly protected from predators by ants in ant-tended aphid colonies.

  11. Revision of the genus Gryposmylus Krüger, 1913 (Neuroptera, Osmylidae) with a remarkable example of convergence in wing disruptive patterning.

    PubMed

    Winterton, Shaun L; Wang, Yongjie

    2016-01-01

    The charismatic lance lacewing genus Gryposmylus Krüger, 1913 (Osmylidae: Protosmylinae) from South East Asia is revised with a new species (Gryposmylus pennyi sp. n.) described from Malaysia. The genus is diagnosed and both species in the genus redescribed and figured. An extraordinary example of morphological convergence is presented, with disruptive camouflaging wing markings in Gryposmylus pennyi sp. n. being remarkably similar to the South American green lacewing Vieira leschenaulti Navás (Chrysopidae). PMID:27667953

  12. Preference and Performance of Hippodamia convergens (Coleoptera: Coccinellidae) and Chrysoperla carnea (Neuroptera: Chrysopidae) on Brevicoryne brassicae, Lipaphis erysimi, and Myzus persicae (Hemiptera: Aphididae) from Winter-Adapted Canola.

    PubMed

    Jessie, W P; Giles, K L; Rebek, E J; Payton, M E; Jessie, C N; McCornack, B P

    2015-06-01

    In the southern plains of the United States, winter-adapted canola (Brassica napus L.) is a recently introduced annual oilseed crop that has rapidly increased in hectares during the past 10 yr. Winter canola fields are infested annually with populations of Brevicoryne brassicae (L.) and Lipaphis erysimi (Kaltenbach), and these Brassica specialists are known to sequester plant volatiles from host plants, producing a chemical defense system against predators. Myzus persicae (Sulzer) is also common in winter canola fields, but as a generalist herbivore, does not sequester plant compounds. These three aphid species are expected to affect predator survival and development in very different ways. We conducted laboratory studies to 1) determine whether Hippodamia convergens (Guérin-Méneville) and Chrysoperla carnea (Stephens) larvae demonstrate feeding preferences among winter canola aphids and 2) describe the suitability of these prey species. Predators demonstrated no significant preference among prey, and each aphid species was suitable for predator survival to the adult stage. However, prey species significantly affected development times and adult weights of each predator species. Overall, predator development was delayed and surviving adults weighed less when provided with L. erysimi or B. brassicae, which sequestered high levels of indole glucosinolates from their host plants. Our results indicate that although common winter canola aphids were suitable prey for H. convergens and C. carnea, qualitative differences in nutritional suitability exist between Brassica-specialist aphids and the generalist M. persicae. These differences appear to be influenced by levels of sequestered plant compounds that are toxic to aphid predators. PMID:26313995

  13. Side Effects of Neem Oil on the Midgut Endocrine Cells of the Green Lacewing Ceraeochrysa claveri (Navás) (Neuroptera: Chrysopidae).

    PubMed

    Scudeler, E L; Santos, D C

    2014-04-01

    We described the ultrastructure of Ceraeochrysa claveri (Navás) midgut endocrine cells in larva, pupa, and adult, and evaluated the side effects of ingested neem oil, a botanical insecticide obtained from the seeds of the neem tree (Azadirachta indica), on these cells. During the larval period, C. claveri were fed (ad libitum) Diatraea saccharalis (F.) eggs treated with neem oil at concentrations of 0.5%, 1%, or 2%. Transmission electron microscopy showed that two subtypes of endocrine cells, namely granular and vesicular, occurred in the midgut epithelium during the three stages of the life cycle. Both cell types did not reach the midgut lumen and were positioned basally in the epithelium. The endocrine cells did not show extensive infoldings of the basal plasma membrane, and there were numerous secretory granules in the basal region of the cytoplasm. In the granular endocrine cells, the granules were completely filled with a dense matrix. In the vesicular endocrine cells, the main secretory products consisted of haloed vesicles. Ultrastructural examination indicated that only the granular endocrine cells exhibited signs of morphologic changes of cell injury present in all life cycle stages after the larvae were chronically exposed to neem oil by ingestion. The major cellular damage consisted of dilatation and vesiculation of the rough endoplasmic reticulum and the development of smooth endoplasmic reticulum and mitochondrial swelling. Our data suggest that cytotoxic effects on midgut endocrine cells can contribute to a generalized disruption of the physiological processes in this organ due to a general alteration of endocrine function. PMID:27193522

  14. Post-exposure temperature influence on the toxicity of conventional and new chemistry insecticides to green lacewing Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae)

    PubMed Central

    Mansoor, Muhammad Mudassir; Afzal, Muhammad; Raza, Abu Bakar M.; Akram, Zeeshan; Waqar, Adil; Afzal, Muhammad Babar Shahzad

    2014-01-01

    Chrysoperla carnea (Stephens) is an important biological control agent currently being used in many integrated pest management (IPM) programs to control insect pests. The effect of post-treatment temperature on insecticide toxicity of a spinosyn (spinosad), pyrethroid (lambda cyhalothrin), organophosphate (chlorpyrifos) and new chemistry (acetamiprid) to C. carnea larvae was investigated under laboratory conditions. Temperature coefficients of each insecticide tested were evaluated. From 20 to 40 °C, toxicity of lambda cyhalothrin and spinosad decreased by 2.15- and 1.87-fold while toxicity of acetamiprid and chlorpyrifos increased by 2.00 and 1.79-fold, respectively. The study demonstrates that pesticide effectiveness may vary according to environmental conditions. In cropping systems where multiple insecticide products are used, attention should be given to temperature variation as a key factor in making pest management strategies safer for biological control agents. Insecticides with a negative temperature coefficient may play a constructive role to conserve C. carnea populations. PMID:25972753

  15. Post-exposure temperature influence on the toxicity of conventional and new chemistry insecticides to green lacewing Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae).

    PubMed

    Mansoor, Muhammad Mudassir; Afzal, Muhammad; Raza, Abu Bakar M; Akram, Zeeshan; Waqar, Adil; Afzal, Muhammad Babar Shahzad

    2015-05-01

    Chrysoperla carnea (Stephens) is an important biological control agent currently being used in many integrated pest management (IPM) programs to control insect pests. The effect of post-treatment temperature on insecticide toxicity of a spinosyn (spinosad), pyrethroid (lambda cyhalothrin), organophosphate (chlorpyrifos) and new chemistry (acetamiprid) to C. carnea larvae was investigated under laboratory conditions. Temperature coefficients of each insecticide tested were evaluated. From 20 to 40 °C, toxicity of lambda cyhalothrin and spinosad decreased by 2.15- and 1.87-fold while toxicity of acetamiprid and chlorpyrifos increased by 2.00 and 1.79-fold, respectively. The study demonstrates that pesticide effectiveness may vary according to environmental conditions. In cropping systems where multiple insecticide products are used, attention should be given to temperature variation as a key factor in making pest management strategies safer for biological control agents. Insecticides with a negative temperature coefficient may play a constructive role to conserve C. carnea populations.

  16. Foraging on and consumption of two species of papaya pest mites, Tetranychus kanzawai and Panonychus citri (Acari: tetranychidae) by Mallada basalis (Neuroptera: Chrysopidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tetranychus kanzawai Kishida and Panonychus citri (McGregor) are two major acarine pests of the principal papaya variety in Taiwan, and they often co-occur in the same papaya screenhouses. This study measured prey acceptability, foraging schedule, short-term consumption rate, and handling time of la...

  17. Effects of neem oil (Azadirachta indica A. Juss) on midgut cells of predatory larvae Ceraeochrysa claveri (Navás, 1911) (Neuroptera: Chrysopidae).

    PubMed

    Scudeler, Elton Luiz; dos Santos, Daniela Carvalho

    2013-01-01

    The effects of ingested neem oil, a botanical insecticide obtained from the seeds of the neem tree, Azadirachta indica, on the midgut cells of predatory larvae Ceraeochrysa claveri were analyzed. C. claveri were fed on eggs of Diatraea saccharalis treated with neem oil at a concentration of 0.5%, 1% and 2% during throughout the larval period. Light and electron microscopy showed severe damages in columnar cells, which had many cytoplasmic protrusions, clustering and ruptured of the microvilli, swollen cells, ruptured cells, dilatation and vesiculation of rough endoplasmic reticulum, development of smooth endoplasmic reticulum, enlargement of extracellular spaces of the basal labyrinth, intercellular spaces and necrosis. The indirect ingestion of neem oil with prey can result in severe alterations showing direct cytotoxic effects of neem oil on midgut cells of C. claveri larvae. Therefore, the safety of neem oil to non-target species as larvae of C. claveri was refuted, thus the notion that plants derived are safer to non-target species must be questioned in future ecotoxicological studies. PMID:22739123

  18. (1R,2S,5R,8R)-Iridodial and Z,E-nepetalactol: first long-range 4 chemical attractants for antlions (Neuroptera: Myrmeleontidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    e synthetic green lacewing pheromone compound, (1R,2S,5R,8R)-iridodial, strongly attracted adult males and females of the North American antlion, Dendroleon speciosus Banks, and an aphid sex pheromone component, Z,E-nepetalactol, was weakly attractive to D. speciosus adults. Iridodial and Z,E-nepeta...

  19. Revision of the genus Gryposmylus Krüger, 1913 (Neuroptera, Osmylidae) with a remarkable example of convergence in wing disruptive patterning

    PubMed Central

    Winterton, Shaun L.; Wang, Yongjie

    2016-01-01

    Abstract The charismatic lance lacewing genus Gryposmylus Krüger, 1913 (Osmylidae: Protosmylinae) from South East Asia is revised with a new species (Gryposmylus pennyi sp. n.) described from Malaysia. The genus is diagnosed and both species in the genus redescribed and figured. An extraordinary example of morphological convergence is presented, with disruptive camouflaging wing markings in Gryposmylus pennyi sp. n. being remarkably similar to the South American green lacewing Vieira leschenaulti Navás (Chrysopidae).

  20. The case for developing a lacewing genetic model organism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lacewings (Chrysopidae: Neuroptera) are a family of insect predators, also called aphidlions because of their voracious feeding on aphids. While lacewings have been popular with growers, gardeners, and biological control scientists, they have had little visibility in the world of genetics. Generalis...

  1. Lacewing as a Genetic Model Organism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lacewings (Chrysopidae: Neuroptera) are a family of insect predators, also called aphidlions because of their voracious feeding on aphids. They are well recognized, commericalized beneficial insects, and are appreciated as generalist predators by both individual gardeners and commercial growers of f...

  2. Fossil and Living Conchostracan Distribution in Kansas-Oklahoma across a 2OO-Millon-Year Time Gap.

    PubMed

    Tasch, P; Zimmerman, J R

    1961-02-24

    Fifty-nine of 493 ponds sampled in the Wellington fossil conchostracan belt contained Cyzicus mexicanus (Claus). Persistent habitat preference and faunal association were also found for four orders of insects (Odonata, Ephemeroptera, Neuroptera, and Homoptera). Comparative limnology is detailed. Greater geographic fractionation of Permian conchostracan gene-pools is attributed to a more arid climate indicated by evaporites. PMID:17777095

  3. Fossil and Living Conchostracan Distribution in Kansas-Oklahoma across a 2OO-Millon-Year Time Gap.

    PubMed

    Tasch, P; Zimmerman, J R

    1961-02-24

    Fifty-nine of 493 ponds sampled in the Wellington fossil conchostracan belt contained Cyzicus mexicanus (Claus). Persistent habitat preference and faunal association were also found for four orders of insects (Odonata, Ephemeroptera, Neuroptera, and Homoptera). Comparative limnology is detailed. Greater geographic fractionation of Permian conchostracan gene-pools is attributed to a more arid climate indicated by evaporites.

  4. Population Dynamics of Empoasca fabae (Hemiptera: Cicadellidae) in Central Iowa Alfalfa Fields.

    PubMed

    Weiser Erlandson, L A; Obrycki, J J

    2015-01-01

    Adults and nymphs of Empoasca fabae Harris (Hemiptera: Cicadellidae) and adults of predatory species in the families Coccinellidae, Anthocoridae, Nabidae, Chrysopidae, and Hemerobiidae were sampled in Iowa alfalfa fields from June to September in 1999 and 2000. The relationship between each predatory taxa and E. fabae was examined using regression analysis. In 2000, all predators were found to be positively correlated with the presence of E. fabae during all periods sampled and most likely contributed to mortality. Orius insidiosus (Say) (Hemiptera: Anthoridae) was the most numerous insect predatory species; population numbers ranged from 0 to 1 and 0.1 to 3.7 adults per 0.25 m(2) in 1999 and 2000, respectively. Partial life tables were constructed for E. fabae nymphs for two alfalfa-growing periods. Nymphs were grouped into three age intervals: first and second, third and fourth, and fifth instars. For the first alfalfa growing period examined, E. fabae nymphal mortality was 70% in 1999 and 49% in 2000. During the last growing period of each season (August-September), total nymphal mortality was relatively low (<25%). Adult E. fabae density ranged from 5.4 to 25.6 and 1.4-9.2 per 0.25 m(2) in 1999 and 2000, respectively. E. fabae population peaks were similar for each age interval in all growing periods. This study provides further information on the population dynamics of E. fabae and its relationship with select predatory species in Iowa alfalfa fields.

  5. Aquatic insects in Montezuma Well, Arizona, USA: A travertine spring mound with high alkalinity and dissolved carbon dioxide

    SciTech Connect

    Blinn, D.W.; Sanderson, M.W. )

    1989-01-31

    An annotated list of aquatic insects from the high carbonate system of Montezuma Well, Arizona, USA, is presented for collections taken during 1976-1986. Fifty-seven taxa in 16 families are reported, including new distribution records for Arizona (Anacaena signaticollis, Laccobius ellipticus, and Crenitulus sp. (nr. debilis)) and the USA (Enochrus sharpi). Larval stages for Trichoptera, Lepidoptera, Megaloptera, Neuroptera, Chironomidae, and Anisoptera were absent even though the habitat lacks fish, and water temperature, dissolved oxygen, available food, and substrata appear adequate in Montezuma Well. The potential importance of alkalinity in restricting these insect groups is discussed.

  6. Early Morphological Specialization for Insect-Spider Associations in Mesozoic Lacewings.

    PubMed

    Liu, Xingyue; Zhang, Weiwei; Winterton, Shaun L; Breitkreuz, Laura C V; Engel, Michael S

    2016-06-20

    Insects exhibit a wide diversity of anatomical specializations in their adult and immature stages associated with particular aspects of their biology. The order Neuroptera (lacewings, antlions, and their relatives) are a moderately diverse lineage of principally predatory animals, at least in their immature stages, as all have a modified piercing-sucking mandible-maxillary complex that allows them to drain fluids from their prey. As such, the larvae of various groups have evolved unique anatomical and behavioral specializations for approaching and subduing their prey, particularly the green lacewings (Chrysopidae), where immatures are also adept at camouflage [1-4]. Here we report the discovery of a unique mode of life among mid-Cretaceous mesochrysopids, an early stem group to modern green lacewings [5-7] exhibiting a combination of morphological modifications in both adults and larvae unknown among living and fossil Neuroptera, even across winged insects. The new mesochrysopids exhibit a uniquely prolonged thorax, elongate legs, and dramatically reduced hind wings in adults, and larvae have extremely elongate, slender legs with pectinate pretarsal claws and lacking trumpet-shaped empodia. The peculiarities of the larvae include features principally found in spider-associated insect groups, implying that these lacewings were early specialists on web-spinning spiders, either as active predators or kleptoparasites. This reveals a dramatic and ancient degree of ecological refinement in a major lineage of insect predators, for a food resource otherwise not utilized by most lacewings. PMID:27212405

  7. A tool for developing an automatic insect identification system based on wing outlines.

    PubMed

    Yang, He-Ping; Ma, Chun-Sen; Wen, Hui; Zhan, Qing-Bin; Wang, Xin-Li

    2015-01-01

    For some insect groups, wing outline is an important character for species identification. We have constructed a program as the integral part of an automated system to identify insects based on wing outlines (DAIIS). This program includes two main functions: (1) outline digitization and Elliptic Fourier transformation and (2) classifier model training by pattern recognition of support vector machines and model validation. To demonstrate the utility of this program, a sample of 120 owlflies (Neuroptera: Ascalaphidae) was split into training and validation sets. After training, the sample was sorted into seven species using this tool. In five repeated experiments, the mean accuracy for identification of each species ranged from 90% to 98%. The accuracy increased to 99% when the samples were first divided into two groups based on features of their compound eyes. DAIIS can therefore be a useful tool for developing a system of automated insect identification. PMID:26251292

  8. Aboard a spider—a complex developmental strategy fossilized in amber

    NASA Astrophysics Data System (ADS)

    Ohl, Michael

    2011-05-01

    Mantid flies (Mantispidae) are an unusual group of lacewings (Neuroptera). Adults markedly resemble mantids in their general appearance and predatory behavior. The larvae of most mantispids exclusively prey on spider eggs, whereby the first instar larva is highly mobile and active and the other two larval stages immobile and maggot like. One of the larval strategies to pursue spider eggs is spider-boarding. Here, I report on the first record of a fossil mantispid larva. It was found in Middle Eocene Baltic amber, and it is the first record of Mantispidae from this deposit. The larva is attached to a clubionoid spider in a position typical for most mantispid larvae, and, thus, it is also the first fossil record of this complex larval behavior and development.

  9. [Trophic ecology and predation of the greater noctule bat (Nyctalus lasiopterus) in Russia].

    PubMed

    Smirnov, D G; Vekhnik, V P

    2013-01-01

    The trophic ecology of Nyctalus lasiopterus in the Samara Bend during 2008-2010 has been studied. It has been revealed that the main feeding stations for this species are old ecotonal black poplar stands and willow groves. N. lasiopterus keeps to opportunistic foraging by using easily accessible and properly sized food objects. Having analyzed 129 fecal samples, we singled out 10 categories of food objects belonging to six orders of insects. The representatives of Lepidoptera constitute the major part of the ration. Their abundance rates undergo asynchronous changes relative to each other. Homoptera and Neuroptera are found more rarely in the feces. Orthoptera and Diptera are extremely rare. Besides insects, bird feathers were found in 14 faecal samples of N. lasiopterus. They made up from 60 to 90% of the total fecal mass.

  10. Fluid-structure interaction of reticulated porous wings

    NASA Astrophysics Data System (ADS)

    Strong, Elizabeth; Jawed, Mohammad; Reis, Pedro

    Insects of the orders Neuroptera and Hymenoptera locomote via flapping flight with reticulated wings that have porous structures that confers them with remarkable lightweight characteristics. Yet these porous wings still perform as contiguous plates to provide the necessary aerodynamic lift and drag required for flight. Even though the fluid flow past the bulk of these insects may be in high Reynolds conditions, viscosity can dominate over inertia in the flow through the porous sub-features. Further considering the flexibility of these reticulated wings yields a highly nonlinear fluid-structure interaction problem. We perform a series of dynamically-scaled precision model experiments to gain physical insight into this system. Our experiments are complemented with computer simulations that combine the Discrete Elastic Rods method and a model for the fluid loading that takes into account the `leakiness' through the porous structure. Our results are anticipated to find applications in micro-air vehicle aerodynamics.

  11. An annotated list of aquatic insects of Fort Sill, Oklahoma, excluding diptera with notes on several new state records

    USGS Publications Warehouse

    Zuellig, R.E.; Kondratieff, B.C.; Schmidt, J.P.; Durfee, R.S.; Ruiter, D.E.; Prather, I.E.

    2006-01-01

    Qualitative collections of aquatic insects were made at Fort Sill, Lawton, Oklahoma, between 2002 and 2004. Ephemeroptera, Plecoptera, Trichoptera, Odonata, Coleoptera, aquatic Heteroptera, Neuroptera, and Megaloptera were targeted. Additional records are included from a survey that took place in 1999. More than 11,000 specimens from more than 290 collections were examined. Based on the current understanding of aquatic insect systematics, 276 taxa distributed over 8 orders, 46 families, and 141 genera were identified. Twenty-three of the 276 taxa, Plauditus texanus Wiersema, Tricorythodes allectus (Needham), Palmacorixa nana walleyi Hungerford, Climacia chapini Partin and Gurney, Oxyethira forcipata Mosely, Oxyethira janella Denning, Triaenodes helo Milne, Ylodes frontalis (Banks), Acilius fraternus Harris, Coptotomus loticus Hilsenhoff, Coptotomus venustus (Say), Desmopachria dispersa Crotch, Graphoderus liberus (Say), Hydrovatus pustulatus (Melsheimer), Hygrotus acaroides (LeConte), Liodessus flavicollis (LeConte), Uvarus texanus (Sharp), Gyrinus woodruffi Fall, Haliplus fasciatus Aube, Haliplus lewisii Crotch, Haliplus tortilipenis Brigham & Sanderson, Chaetarthria bicolor Sharp, Epimetopus costatus complex, and Hydrochus simplex LeConte are reported from Oklahoma for the first time. The three most diverse orders included Coleoptera (86 species), Odonata (67 species) and Trichoptera (59 species), and the remaining taxa were distributed among Heteroptera, (30 species), Ephemeroptera (21 species), Plecoptera (6 species), Megaloptera (4 species), and Neuroptera (3 species). Based on previous published records, many of the species collected during this study were expected to be found at Fort Sill; however, 276 taxa of aquatic insects identified from such a small geographic area is noteworthy, especially when considering local climatic conditions and the relatively small size of Fort Sill (38,300 ha). Despite agricultural practices in Oklahoma, the dust bowl days

  12. The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology.

    PubMed

    Whiting, M F; Carpenter, J C; Wheeler, Q D; Wheeler, W C

    1997-03-01

    Phylogenetic relationships among the holometabolous insect orders were inferred from cladistic analysis of nucleotide sequences of 18S ribosomal DNA (rDNA) (85 exemplars) and 28S rDNA (52 exemplars) and morphological characters. Exemplar outgroup taxa were Collembola (1 sequence), Archaeognatha (1), Ephemerida (1), Odonata (2), Plecoptera (2), Blattodea (1), Mantodea (1), Dermaptera (1), Orthoptera (1), Phasmatodea (1), Embioptera (1), Psocoptera (1), Phthiraptera (1), Hemiptera (4), and Thysanoptera (1). Exemplar ingroup taxa were Coleoptera: Archostemata (1), Adephaga (2), and Polyphaga (7); Megaloptera (1); Raphidioptera (1); Neuroptera (sensu stricto = Planipennia): Mantispoidea (2), Hemerobioidea (2), and Myrmeleontoidea (2); Hymenoptera: Symphyta (4) and Apocrita (19); Trichoptera: Hydropsychoidea (1) and Limnephiloidea (2); Lepidoptera: Ditrysia (3); Siphonaptera: Pulicoidea (1) and Ceratophylloidea (2); Mecoptera: Meropeidae (1), Boreidae (1), Panorpidae (1), and Bittacidae (2); Diptera: Nematocera (1), Brachycera (2), and Cyclorrhapha (1); and Strepsiptera: Corioxenidae (1), Myrmecolacidae (1), Elenchidae (1), and Stylopidae (3). We analyzed approximately 1 kilobase of 18S rDNA, starting 398 nucleotides downstream of the 5' end, and approximately 400 bp of 28S rDNA in expansion segment D3. Multiple alignment of the 18S and 28S sequences resulted in 1,116 nucleotide positions with 24 insert regions and 398 positions with 14 insert regions, respectively. All Strepsiptera and Neuroptera have large insert regions in 18S and 28S. The secondary structure of 18S insert 23 is composed of long stems that are GC rich in the basal Strepsiptera and AT rich in the more derived Strepsiptera. A matrix of 176 morphological characters was analyzed for holometabolous orders. Incongruence length difference tests indicate that the 28S + morphological data sets are incongruent but that 28S + 18S, 18S + morphology, and 28S + 18S + morphology fail to reject the hypothesis of

  13. Assessment of fennel aphids (Hemiptera: Aphididae) and their predators in fennel intercropped with cotton with colored fibers.

    PubMed

    Ramalho, F S; Fernandes, F S; Nascimento, A R B; Nascimento Júnior, J L; Malaquias, J B; Silva, C A D

    2012-02-01

    The fennel aphid, Hyadaphis foeniculi (Passerini) (Hemiptera: Aphididae) is a major pest of fennel, Foeniculum vulgare Miller in northeast region of Brazil. We hypothesize that intercropping can be used as an alternative pest management strategy to reduce aphid yield loss in fennel. Thus, we investigated the severity of fennel plant damage in relation to infestation by the fennel aphid and predation by Cycloneda sanguinea (L.) (Coleoptera: Coccinellidae) (spotless lady beetle), green lacewing, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae), and Scymnus spp. (Coleoptera: Coccinellidae) in sole fennel plots and plots of fennel intercropped with cotton with colored fibers. The fennel aphid populations in nontreated plots were significantly larger in sole fennel plots than in intercropped plots. The highest densities of C. sanguinea, green lacewings and Scymnus spp., associated with the suppression of fennel aphid populations was found in fennel in the intercropping systems. Fennel aphids reduced the fennel seed yield by 80% in the sole fennel plots compared with approximately 30% for all intercropping systems. The results obtained in this research are of practical significance for designing appropriate strategies for fennel aphid control in fennel-cotton intercropping systems. In summary, intercropping fennel with cotton with colored fibers apparently promoted biocontrol of fennel aphid in fennel.

  14. A new Cretaceous genus of xyelydid sawfly illuminating nygmata evolution in Hymenoptera

    PubMed Central

    2014-01-01

    Background Nygmata are prominent glandular structures on the wings of insects. They have been documented in some extant insects, including several families of Neuroptera and Mecoptera, the majority of Trichoptera, and a few of the hymenopteran Symphyta. However, because nygmata are rarely preserved in compression fossils, their early development and evolution are still enigmatic. For example, the only documented nygmata in the Hymenoptera are on the forewings of the Triassic xyelids Asioxyela paurura and Madygenius primitives. Results This study describes and illustrates a new genus and species from the family Xyelydidae, Rectilyda sticta gen. et sp. nov., from the Early Cretaceous Yixian Formation of Duolun County, Inner Mongolia, China. This genus has 1-RS reclival and linearly aligned with 1-M, which is different from all other genera in the Xyelydidae. In addition, R. sticta gen. et sp. nov. has clearly preserved nygmata: four symmetrical nygmata on each forewing and two on each hind wing. Conclusion Previous reports of nygmata on the forewings of Triassic xyelids and extant sawflies, together with this new fossil record of nygmata, provide rare insights into their developmental trends, as well as into the evolution of hymenopterans and insects in general. PMID:24935215

  15. Evaluation of native plant flower characteristics for conservation biological control of Prays oleae.

    PubMed

    Nave, A; Gonçalves, F; Crespí, A L; Campos, M; Torres, L

    2016-04-01

    Several studies have shown that manipulating flowering weeds within an agroecosystem can have an important role in pest control by natural enemies, by providing them nectar and pollen, which are significant sources of nutrition for adults. The aim of this study was to assess if the olive moth, Prays oleae (Bernard, 1788) (Lepidoptera: Praydidae), and five of its main natural enemies, the parasitoid species Chelonus elaeaphilus Silvestri (Hymenoptera: Braconidae), Apanteles xanthostigma (Haliday) (Hymenoptera: Braconidae), Ageniaspis fuscicollis (Dalman) (Hymenoptera: Encyrtidae) and Elasmus flabellatus (Fonscolombe) (Hymenoptera: Eulophidae), as well as the predator Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae), can theoretically access the nectar from 21 flowering weeds that naturally occur in olive groves. Thus, the architecture of the flowers as well as the mouthpart structure and/or the head and thorax width of the pest and its enemies were analyzed. The results suggested that all beneficial insects were able to reach nectar of the plant species from Apiaceae family, i.e. Conopodium majus (Gouan) Loret, Daucus carota L. and Foeniculum vulgare Mill., as well as Asparagus acutifolius L., Echium plantagineum L., Capsella bursa-pastoris (L.) Medik., Raphanus raphanistrum L., Lonicera hispanica Boiss. et Reut., Silene gallica L., Spergula arvensis L., Hypericum perforatum L., Calamintha baetica Boiss. et Reut, Malva neglecta Wallr. and Linaria saxatilis (L.) Chaz. P. oleae was not able to access nectar from five plant species, namely: Andryala integrifolia L., Chondrilla juncea L., Dittrichia viscosa (L.) Greuter, Sonchus asper (L.) Hill and Lavandula stoechas L. PMID:26780918

  16. Extremely miniaturised and highly complex: the thoracic morphology of the first instar larva of Mengenilla chobauti (Insecta, Strepsiptera).

    PubMed

    Osswald, Judith; Pohl, Hans; Beutel, Rolf Georg

    2010-07-01

    Thoracic structures of the extremely small first instar larva of the strepsipteran species Mengenilla chobauti (ca. 200 microm) were examined, described and reconstructed 3-dimensionally. The focus is on the skeletomuscular system. The characters were compared to conditions found in other insect larvae of very small (Ptiliidae) or large (Dytiscus) size (both Coleoptera) and features of "triungulin" larvae, first instar larvae of Rhipiphoridae, Meloidae (both Coleoptera), and Mantispidae (Neuroptera). The specific lifestyle and the extreme degree of miniaturisation result in numerous thoracic modifications. Many sclerites of the exo- and endoskeleton are reduced. Cervical sclerites, pleural ridges, furcae and spinae are absent. Most of the longitudinal muscles are connected within the thorax, and a pair of ventral longitudinal muscles is present in the pleural region of the meso- and metathorax. This results in a high intersegmental flexibility. Due to the size reduction and the correlated shift of the brain to the thorax, with 94 identified muscles the thoracic musculature appears highly compact. Compared to larger larvae the number of both the individual muscles and the muscle bundles are distinctly reduced. The thorax of the first instar larvae displays many additional strepsipteran autapomorphies. At least partly due to the highly specialised condition, potential synapomorphies with other groups were not found.

  17. The evolutionary convergence of mid-Mesozoic lacewings and Cenozoic butterflies

    PubMed Central

    Labandeira, Conrad C.; Yang, Qiang; Santiago-Blay, Jorge A.; Hotton, Carol L.; Monteiro, Antónia; Wang, Yong-Jie; Goreva, Yulia; Shih, ChungKun; Siljeström, Sandra; Rose, Tim R.; Dilcher, David L.; Ren, Dong

    2016-01-01

    Mid-Mesozoic kalligrammatid lacewings (Neuroptera) entered the fossil record 165 million years ago (Ma) and disappeared 45 Ma later. Extant papilionoid butterflies (Lepidoptera) probably originated 80–70 Ma, long after kalligrammatids became extinct. Although poor preservation of kalligrammatid fossils previously prevented their detailed morphological and ecological characterization, we examine new, well-preserved, kalligrammatid fossils from Middle Jurassic and Early Cretaceous sites in northeastern China to unravel a surprising array of similar morphological and ecological features in these two, unrelated clades. We used polarized light and epifluorescence photography, SEM imaging, energy dispersive spectrometry and time-of-flight secondary ion mass spectrometry to examine kalligrammatid fossils and their environment. We mapped the evolution of specific traits onto a kalligrammatid phylogeny and discovered that these extinct lacewings convergently evolved wing eyespots that possibly contained melanin, and wing scales, elongate tubular proboscides, similar feeding styles, and seed–plant associations, similar to butterflies. Long-proboscid kalligrammatid lacewings lived in ecosystems with gymnosperm–insect relationships and likely accessed bennettitalean pollination drops and pollen. This system later was replaced by mid-Cretaceous angiosperms and their insect pollinators. PMID:26842570

  18. Chemical defense against predation in an insect egg.

    PubMed

    Eisner, T; Eisner, M; Rossini, C; Iyengar, V K; Roach, B L; Benedikt, E; Meinwald, J

    2000-02-15

    The larva of the green lacewing (Ceraeochrysa cubana) (Neuroptera, Chrysopidae) is a natural predator of eggs of Utetheisa ornatrix (Lepidoptera, Arctiidae), a moth that sequesters pyrrolizidine alkaloids from its larval foodplant (Fabaceae, Crotalaria spp.). Utetheisa eggs are ordinarily endowed with the alkaloid. Alkaloid-free Utetheisa eggs, produced experimentally, are pierced by the larva with its sharp tubular jaws and sucked out. Alkaloid-laden eggs, in contrast, are rejected. When attacking an Utetheisa egg cluster (numbering on average 20 eggs), the larva subjects it to an inspection process. It prods and/or pierces a small number of eggs (on average two to three) and, if these contain alkaloid, it passes "negative judgement" on the remainder of the cluster and turns away. Such generalization on the part of the larva makes sense, because the eggs within clusters differ little in alkaloid content. There is, however, considerable between-cluster variation in egg alkaloid content, so clusters in nature can be expected to range widely in palatability. To check each cluster for acceptability must therefore be adaptive for the larva, just as it must be adaptive for Utetheisa to lay its eggs in large clusters and to apportion alkaloid evenly among eggs of a cluster.

  19. A cute and highly contrast-sensitive superposition eye - the diurnal owlfly Libelloides macaronius.

    PubMed

    Belušič, Gregor; Pirih, Primož; Stavenga, Doekele G

    2013-06-01

    The owlfly Libelloides macaronius (Insecta: Neuroptera) has large bipartite eyes of the superposition type. The spatial resolution and sensitivity of the photoreceptor array in the dorsofrontal eye part was studied with optical and electrophysiological methods. Using structured illumination microscopy, the interommatidial angle in the central part of the dorsofrontal eye was determined to be Δϕ=1.1 deg. Eye shine measurements with an epi-illumination microscope yielded an effective superposition pupil size of about 300 facets. Intracellular recordings confirmed that all photoreceptors were UV-receptors (λmax=350 nm). The average photoreceptor acceptance angle was 1.8 deg, with a minimum of 1.4 deg. The receptor dynamic range was two log units, and the Hill coefficient of the intensity-response function was n=1.2. The signal-to-noise ratio of the receptor potential was remarkably high and constant across the whole dynamic range (root mean square r.m.s. noise=0.5% Vmax). Quantum bumps could not be observed at any light intensity, indicating low voltage gain. Presumably, the combination of large aperture superposition optics feeding an achromatic array of relatively insensitive receptors with a steep intensity-response function creates a low-noise, high spatial acuity instrument. The sensitivity shift to the UV range reduces the clutter created by clouds within the sky image. These properties of the visual system are optimal for detecting small insect prey as contrasting spots against both clear and cloudy skies.

  20. An Unlikely Silk: The Composite Material of Green Lacewing Cocoons

    SciTech Connect

    Weisman, Sarah; Trueman, Holly E.; Mudie, Stephen T.; Church, Jeffrey S.; Sutherland, Tara D.; Haritos, Victoria S.

    2009-01-15

    Spiders routinely produce multiple types of silk; however, common wisdom has held that insect species produce one type of silk each. This work reports that the green lacewing (Mallada signata, Neuroptera) produces two distinct classes of silk. We identified and sequenced the gene that encodes the major protein component of the larval lacewing cocoon silk and demonstrated that it is unrelated to the adult lacewing egg-stalk silk. The cocoon silk protein is 49 kDa in size and is alanine rich (>40%), and it contains an {alpha}-helical secondary structure. The final instar lacewing larvae spin protein fibers of {approx}2 {mu}m diameter to construct a loosely woven cocoon. In a second stage of cocoon construction, the insects lay down an inner wall of lipids that uses the fibers as a scaffold. We propose that the silk protein fibers provide the mechanical strength of the composite lacewing cocoon whereas the lipid layer provides a barrier to water loss during pupation.

  1. The green lacewing, Chrysoperla carnea: preference between lettuce aphids, Nasonovia ribisnigri, and Western flower thrips, Frankliniella occidentalis.

    PubMed

    Shrestha, Govinda; Enkegaard, Annie

    2013-01-01

    This study investigated the prey preference of 3(rd) instar green lacewing, Chrysoperla carnea Stephens (Neuroptera: Chrysopidae), between western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), and lettuce aphids, Nasonovia ribisnigri (Mosley) (Hemiptera: Aphididae) in laboratory experiments at 25 ± 1° C and 70 ± 5% RH with five prey ratios (10 aphids:80 thrips, 25 aphids:65 thrips, 45 aphids:45 thrips, 65 aphids:25 thrips, and 80 aphids:10 thrips). Third instar C. carnea larvae readily preyed upon both thrips and aphids, with thrips mortality varying between 40 and 90%, and aphid mortality between 52 and 98%. Chrysoperla carnea had a significant preference for N. ribisnigri at two ratios (10 aphids:80 thrips, 65 aphids:25 thrips), but no preference for either prey at the other ratios. There was no significant linear relationship between preference index and prey ratio, but a significant intercept of the linear regression indicated an overall preference of C. carnea for aphids with a value of 0.651 ± 0.054. The possible implications of these findings for control of N. ribisnigri and F. occidentalis by C. carnea are discussed.

  2. The evolutionary convergence of mid-Mesozoic lacewings and Cenozoic butterflies.

    PubMed

    Labandeira, Conrad C; Yang, Qiang; Santiago-Blay, Jorge A; Hotton, Carol L; Monteiro, Antónia; Wang, Yong-Jie; Goreva, Yulia; Shih, ChungKun; Siljeström, Sandra; Rose, Tim R; Dilcher, David L; Ren, Dong

    2016-02-10

    Mid-Mesozoic kalligrammatid lacewings (Neuroptera) entered the fossil record 165 million years ago (Ma) and disappeared 45 Ma later. Extant papilionoid butterflies (Lepidoptera) probably originated 80-70 Ma, long after kalligrammatids became extinct. Although poor preservation of kalligrammatid fossils previously prevented their detailed morphological and ecological characterization, we examine new, well-preserved, kalligrammatid fossils from Middle Jurassic and Early Cretaceous sites in northeastern China to unravel a surprising array of similar morphological and ecological features in these two, unrelated clades. We used polarized light and epifluorescence photography, SEM imaging, energy dispersive spectrometry and time-of-flight secondary ion mass spectrometry to examine kalligrammatid fossils and their environment. We mapped the evolution of specific traits onto a kalligrammatid phylogeny and discovered that these extinct lacewings convergently evolved wing eyespots that possibly contained melanin, and wing scales, elongate tubular proboscides, similar feeding styles, and seed-plant associations, similar to butterflies. Long-proboscid kalligrammatid lacewings lived in ecosystems with gymnosperm-insect relationships and likely accessed bennettitalean pollination drops and pollen. This system later was replaced by mid-Cretaceous angiosperms and their insect pollinators. PMID:26842570

  3. The evolutionary convergence of mid-Mesozoic lacewings and Cenozoic butterflies.

    PubMed

    Labandeira, Conrad C; Yang, Qiang; Santiago-Blay, Jorge A; Hotton, Carol L; Monteiro, Antónia; Wang, Yong-Jie; Goreva, Yulia; Shih, ChungKun; Siljeström, Sandra; Rose, Tim R; Dilcher, David L; Ren, Dong

    2016-02-10

    Mid-Mesozoic kalligrammatid lacewings (Neuroptera) entered the fossil record 165 million years ago (Ma) and disappeared 45 Ma later. Extant papilionoid butterflies (Lepidoptera) probably originated 80-70 Ma, long after kalligrammatids became extinct. Although poor preservation of kalligrammatid fossils previously prevented their detailed morphological and ecological characterization, we examine new, well-preserved, kalligrammatid fossils from Middle Jurassic and Early Cretaceous sites in northeastern China to unravel a surprising array of similar morphological and ecological features in these two, unrelated clades. We used polarized light and epifluorescence photography, SEM imaging, energy dispersive spectrometry and time-of-flight secondary ion mass spectrometry to examine kalligrammatid fossils and their environment. We mapped the evolution of specific traits onto a kalligrammatid phylogeny and discovered that these extinct lacewings convergently evolved wing eyespots that possibly contained melanin, and wing scales, elongate tubular proboscides, similar feeding styles, and seed-plant associations, similar to butterflies. Long-proboscid kalligrammatid lacewings lived in ecosystems with gymnosperm-insect relationships and likely accessed bennettitalean pollination drops and pollen. This system later was replaced by mid-Cretaceous angiosperms and their insect pollinators.

  4. Metschnikowia noctiluminum sp. nov., Metschnikowia corniflorae sp. nov., and Candida chrysomelidarum sp. nov., isolated from green lacewings and beetles.

    PubMed

    Nguyen, Nhu H; Suh, Sung-Oui; Erbil, Cennet K; Blackwell, Meredith

    2006-03-01

    Fourteen yeast isolates belonging to the Metschnikowia clade were isolated from the digestive tracts of lacewings (Neuroptera: Chrysopidae), soldier beetles and leaf beetles (Coleoptera: Cantharidae and Chrysomelidae), and a caddisfly (Trichoptera: Hydropsychidae). The insect hosts were associated with sugary substances of plants, a typical habitat for yeasts in this clade. Based on DNA sequence comparisons and phenetic characters, the yeasts were identified as Candida picachoensis, Candida pimensis, and four undescribed taxa. Among the undescribed taxa, three yeasts were distinguished from one another and from other described taxa by nucleotide differences in the ribosomal DNA repeat, which were sufficient to consider them as new species. Two of the novel yeast species are described as Metschnikowia noctiluminum (NRRL Y-27753(T)) and M. cornifloraespp. nov. (NRRL Y-27750(T)) based in part on production of needle-shaped ascospores, which are found in most Metschnikowia species. Sexual reproduction was not observed in the third new yeast, Candida chrysomelidarumsp. nov. (NRRL Y-27749(T)). A fourth isolate, NRRL Y-27752, was not significantly distinct from Metschnikowia viticola and Candida kofuensis to be described as a new species. Phylogenetic analysis of the D1/D2 loop sequences placed M. noctiluminum within the M. viticola clade, while C. chrysomelidarum was a sister taxon of Candida rancensis. Metschnikowia corniflorae was phylogenetically distinct from other new species and fell outside of the large-spored Metschnikowia group.

  5. Extremely miniaturised and highly complex: the thoracic morphology of the first instar larva of Mengenilla chobauti (Insecta, Strepsiptera).

    PubMed

    Osswald, Judith; Pohl, Hans; Beutel, Rolf Georg

    2010-07-01

    Thoracic structures of the extremely small first instar larva of the strepsipteran species Mengenilla chobauti (ca. 200 microm) were examined, described and reconstructed 3-dimensionally. The focus is on the skeletomuscular system. The characters were compared to conditions found in other insect larvae of very small (Ptiliidae) or large (Dytiscus) size (both Coleoptera) and features of "triungulin" larvae, first instar larvae of Rhipiphoridae, Meloidae (both Coleoptera), and Mantispidae (Neuroptera). The specific lifestyle and the extreme degree of miniaturisation result in numerous thoracic modifications. Many sclerites of the exo- and endoskeleton are reduced. Cervical sclerites, pleural ridges, furcae and spinae are absent. Most of the longitudinal muscles are connected within the thorax, and a pair of ventral longitudinal muscles is present in the pleural region of the meso- and metathorax. This results in a high intersegmental flexibility. Due to the size reduction and the correlated shift of the brain to the thorax, with 94 identified muscles the thoracic musculature appears highly compact. Compared to larger larvae the number of both the individual muscles and the muscle bundles are distinctly reduced. The thorax of the first instar larvae displays many additional strepsipteran autapomorphies. At least partly due to the highly specialised condition, potential synapomorphies with other groups were not found. PMID:19874911

  6. Trophic interactions between two herbivorous insects, Galerucella calmariensis and Myzus lythri, feeding on purple loosestrife, Lythrum salicaria, and two insect predators, Harmonia axyridis and Chrysoperla carnea.

    PubMed

    Matos, Bethzayda; Obrycki, John J

    2007-01-01

    The effects of two herbivorous insects, Galerucella calmariensis Duftschmid and Myzus lythri L. (Coleoptera: Chrysomelidae), feeding on purple loosestrife, Lythrum salicaria L. (Myrtiflorae: Lythraceae), were measured in the presence of two insect predators, Harmonia axyridis Pallas (Coleoptera: Coccinellidae) and Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). A greenhouse cage experiment examined the direct effects of these predators on these herbivores, and indirect effects of predation on aboveground biomass, defoliation, number of leaves, and internode length. Eight treatment combinations with G. calmariensis, M. lythri, H. axyridis and C. carnea were applied to caged L. salicaria. The experiment ended when G. calmariensis adults were observed, 11 to 13 days after release of first instar G. calmariensis. G. calmariensis larvae alone removed significant amounts of leaf tissue and reduced the number of L. salicaria leaves. Predators did not reduce levels of defoliation by G. calmariensis. C. carnea had no effect on G. calmariensis survival, but H. axyridis reduced G. calmariensis survival in the presence of M. lythri. Both predators reduced the survival of M. lythri. This short duration greenhouse study did not demonstrate that predator-prey interactions altered herbivore effects on L. salicaria.

  7. Natural enemies associated to aphids in peach orchards in Araucária, Paraná, Brazil.

    PubMed

    Schuber, J M; Monteiro, L B; Almeida, L M; Zawadneak, M A C

    2012-11-01

    Natural enemies of the Class Insecta are important agents in the balance of aphid populations and an alternative to using insecticides to control these insects. The aim of this study was to identify the species of natural enemies associated with aphids present in peach orchards and observe the efficiency of capturing different sampling methods. The experiment was conducted from July, 2005 to September, 2006 in six peach orchards 'Chimarrita', in Araucária, PR, Brazil. The samples were taken by visual analysis in peach plants and weeds, yellow pan traps, sticky traps and funnels. Predator species were identified: Cryptolaemus montrouzieri, Cycloneda pulchella, Cycloneda sanguinea, Eriopis connexa, Harmonia axyridis, Hippodamia convergens and Scymnus sp. (Coleoptera, Coccinellidae), Allograpta sp., Palpada sp. and Toxomerus sp. (Diptera, Syrphidae) and Chrysoperla sp. (Neuroptera, Chrysopidae) and the parasitoids: Diaretiella rapae, Opius sp. and Praon sp (Braconidae). Examples of Encyrtidae and Eulophidae await identification. Chrysoperla sp. was a less abundant species. There were no statistically significant differences between the different sampling methods tested.

  8. Natural enemies associated to aphids in peach orchards in Araucária, Paraná, Brazil.

    PubMed

    Schuber, J M; Monteiro, L B; Almeida, L M; Zawadneak, M A C

    2012-11-01

    Natural enemies of the Class Insecta are important agents in the balance of aphid populations and an alternative to using insecticides to control these insects. The aim of this study was to identify the species of natural enemies associated with aphids present in peach orchards and observe the efficiency of capturing different sampling methods. The experiment was conducted from July, 2005 to September, 2006 in six peach orchards 'Chimarrita', in Araucária, PR, Brazil. The samples were taken by visual analysis in peach plants and weeds, yellow pan traps, sticky traps and funnels. Predator species were identified: Cryptolaemus montrouzieri, Cycloneda pulchella, Cycloneda sanguinea, Eriopis connexa, Harmonia axyridis, Hippodamia convergens and Scymnus sp. (Coleoptera, Coccinellidae), Allograpta sp., Palpada sp. and Toxomerus sp. (Diptera, Syrphidae) and Chrysoperla sp. (Neuroptera, Chrysopidae) and the parasitoids: Diaretiella rapae, Opius sp. and Praon sp (Braconidae). Examples of Encyrtidae and Eulophidae await identification. Chrysoperla sp. was a less abundant species. There were no statistically significant differences between the different sampling methods tested. PMID:23295513

  9. A defensive behavior and plant-insect interaction in Early Cretaceous amber--The case of the immature lacewing Hallucinochrysa diogenesi.

    PubMed

    Pérez-de la Fuente, Ricardo; Delclòs, Xavier; Peñalver, Enrique; Engel, Michael S

    2016-03-01

    Amber holds special paleobiological significance due to its ability to preserve direct evidence of biotic interactions and animal behaviors for millions of years. Here we review the finding of Hallucinochrysa diogenesi Pérez-de la Fuente, Delclòs, Peñalver and Engel, 2012, a morphologically atypical larva related to modern green lacewings (Insecta: Neuroptera) that was described in Early Cretaceous amber from the El Soplao outcrop (northern Spain). The fossil larva is preserved with a dense cloud of fern trichomes that corresponds to the trash packet the insect gathered and carried on its back for camouflaging and shielding, similar to that which is done by its extant relatives. This finding supports the prominent role of wildfires in the paleoecosystem and provides direct evidence of both an ancient plant-insect interaction and an early acquisition of a defensive behavior in an insect lineage. Overall, the fossil of H. diogenesi showcases the potential that the amber record offers to reconstruct not only the morphology of fossil arthropods but, more remarkably, their lifestyles and ecological relationships. PMID:26319268

  10. Evaluation of native plant flower characteristics for conservation biological control of Prays oleae.

    PubMed

    Nave, A; Gonçalves, F; Crespí, A L; Campos, M; Torres, L

    2016-04-01

    Several studies have shown that manipulating flowering weeds within an agroecosystem can have an important role in pest control by natural enemies, by providing them nectar and pollen, which are significant sources of nutrition for adults. The aim of this study was to assess if the olive moth, Prays oleae (Bernard, 1788) (Lepidoptera: Praydidae), and five of its main natural enemies, the parasitoid species Chelonus elaeaphilus Silvestri (Hymenoptera: Braconidae), Apanteles xanthostigma (Haliday) (Hymenoptera: Braconidae), Ageniaspis fuscicollis (Dalman) (Hymenoptera: Encyrtidae) and Elasmus flabellatus (Fonscolombe) (Hymenoptera: Eulophidae), as well as the predator Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae), can theoretically access the nectar from 21 flowering weeds that naturally occur in olive groves. Thus, the architecture of the flowers as well as the mouthpart structure and/or the head and thorax width of the pest and its enemies were analyzed. The results suggested that all beneficial insects were able to reach nectar of the plant species from Apiaceae family, i.e. Conopodium majus (Gouan) Loret, Daucus carota L. and Foeniculum vulgare Mill., as well as Asparagus acutifolius L., Echium plantagineum L., Capsella bursa-pastoris (L.) Medik., Raphanus raphanistrum L., Lonicera hispanica Boiss. et Reut., Silene gallica L., Spergula arvensis L., Hypericum perforatum L., Calamintha baetica Boiss. et Reut, Malva neglecta Wallr. and Linaria saxatilis (L.) Chaz. P. oleae was not able to access nectar from five plant species, namely: Andryala integrifolia L., Chondrilla juncea L., Dittrichia viscosa (L.) Greuter, Sonchus asper (L.) Hill and Lavandula stoechas L.

  11. Seasonal variation in the populations of Polyphagotarsonemus latus and Tetranychus bastosi in physic nut (Jatropha curcas) plantations.

    PubMed

    Rosado, Jander F; Picanço, Marcelo C; Sarmento, Renato A; da Silva, Ricardo Siqueira; Pedro-Neto, Marçal; Carvalho, Marcos Alberto; Erasmo, Eduardo A L; Silva, Laila Cristina Rezende

    2015-07-01

    Studies on the seasonal variation of agricultural pest species are important for the establishment of integrated pest control programs. The seasonality of pest attacks on crops is affected by biotic and abiotic factors, for example, climate and natural enemies. Besides that, characteristics of the host plant, crop management, location and the pests' bioecology also affect this seasonality. The mites Polyphagotarsonemus latus (Prostigmata: Tarsonemidae) and Tetranychus bastosi (Prostigmata: Tetranychidae) are the most important pests in the cultivation of physic nut, Jatropha curcas (Euphorbiaceae). All parts of J. curcas can be used for a wide range of purposes. In addition many researchers have studied its potential for use as neat oil, as transesterified oil (biodiesel), or as a blend with diesel. However studies about physic nut pests have been little known. The objective of this study was to assess the seasonal variation of P. latus and T. bastosi in physic nut. This study was conducted at three sites in the state of Tocantins, Brazil. We monitored climatic elements and the densities of the two mite species and of their natural enemies for a period of 2 years. Attack by P. latus occurred during rainy seasons, when the photoperiod was short and the physic nut had new leaves. In contrast, attack by T. bastosi occurred during warmer seasons with longer photoperiods and stronger winds. Populations of both mites and their natural enemies were greater in sites with greater plant diversity adjacent to the plantations. The predators found in association with P. latus and T. bastosi were Euseius concordis (Acari: Phytoseiidae), spiders, Stethorus sp. (Coleoptera: Coccinellidae) and Chrysoperla sp. (Neuroptera: Chrysopidae). PMID:25910991

  12. Is the multicolored Asian ladybeetle, Harmonia axyridis, the most abundant natural enemy to aphids in agroecosystems?

    PubMed

    Vandereycken, Axel; Durieux, Delphine; Joie, Emilie; Sloggett, John J; Haubruge, Eric; Verheggen, François J

    2013-01-01

    The multicolored Asian ladybeetle, Harmonia axyridis Pallas (Coleoptera: Coccinellidae), was introduced into Western Europe in the late 1990s. Since the late 2000s, this species has been commonly considered one of the most abundant aphid predators in most Western European countries. In spite of the large amount of research on H. axyridis, information concerning its relative abundance in agroecosystems is lacking. This study aims to evaluate the abundance of H. axyridis within the aphidophage community in four crops situated in southern Belgium: wheat, Triticum aestivum L. (Poales: Poaceae), corn, Zea mays, potato, Solanum tuberosum (Solanales: Solanaceae), and broad bean Vicia faba (Fabales: Fabaceae). In order to assess the species diversity, the collected data were analyzed by considering (1) the species richness and (2) the evenness according to the Shannon diversity index. Eleven aphidophages were observed in every inventoried agroecosystem, including five abundant species: three coccinellids, the seven-spotted ladybug, Coccinella septempunctata L. (Coleoptera: Coccinellidae), the 14-spotted Ladybird, Propylea quatuordecimpunctata, and H. axyridis; one hoverfly, the marmalade hoverfly, Episyrphus balteatus De Geer (Diptera: Syrphidae); and one lacewing, the common green lacewing, Chrysoperla carnea Stephens sensu lato (= s.l.) (Neuroptera: Chrysopidae). Harmonia axyridis has been observed to thrive, breed, and reproduce on the four studied crops. Harmonia axyridis is the most abundant predator of aphids in corn followed by C. septempunctata, which is the main aphid predator observed in the three other inventoried crops. In wheat and potato fields, H. axyridis occurs in low numbers compared to other aphidophage. These observations suggest that H. axyridis could be considered an invasive species of agrosystems, and that potato and wheat may intermittently act as refuges for other aphidophages vulnerable to intraguild predation by this invader. Harmonia axyridis

  13. IPM-compatibility of foliar insecticides for citrus: indices derived from toxicity to beneficial insects from four orders.

    PubMed

    Michaud, J P; Grant, A K

    2003-01-01

    A series of compounds representing four major pesticide groups were tested for toxicity to beneficial insects representing four different insect orders: Coleoptera (Coccinellidae), Hemiptera (Anthocoridae), Hymenoptera (Aphelinidae), and Neuroptera (Chrysopidae). These materials included organophosphates (methidathion, esfenvalerate and phosmet), carbamates (carbofuran, methomyl and carbaryl), pyrethroids (bifenthrin, fenpropathrin, zeta-cypermethrin, cyfluthrin and permethrin) and the oxadiazine indoxacarb. Toxicity to coccinellid and lacewing species was assessed by treating 1st instar larvae with the recommended field rate of commercial products, and two 10 fold dilutions of these materials, in topical spray applications. Adult Aphytis melinus Debach and 2nd instar Orius insidiosus (Say) were exposed to leaf residues of the same concentrations for 24 h. ANOVA performed on composite survival indices derived from these data resolved significant differences among materials with respect to their overall toxicity to beneficial insects. Cyfluthrin, fenpropathrin and zeta-cypermethrin all increased the developmental time of the lacewing and one or more coccinellid species for larvae that survived topical applications. Bifenthrin increased developmental time for two coccinellid species and decreased it in a third. Indoxacarb (Avaunt WG, DuPont Corp.) ranked highest overall for safety to beneficial insects, largely because of its low dermal toxicity to all species tested. Zeta-cypermethrin (Super Fury), FMC Corporation) received the second best safety rating, largely because of its low toxicity as a leaf residue to A. melinus and O. insidiosus. Phosmet (Imidan 70W, Gowan Co.) and methidathion (Supracide 25W, Gowan Co.) ranked high for safety to coccinellid species, but compounds currently recommended for use in citrus such as fenpropathrin (Danitol 2.4EC, Sumimoto Chem. Co.) and carbaryl (Sevin XLR EC, Rhone Poulenc Ag. Co.) ranked very low for IPM-compatibility based on

  14. Side-effects of glyphosate on the life parameters of Eriopis connexa (Coleoptera: Coccinelidae) in Argentina.

    PubMed

    Mirande, L; Haramboure, M; Smagghe, G; Piñeda, S; Schneider, M I

    2010-01-01

    In Argentina, transgenic soybean crop (Roundup Ready, RR) has undergone a major expansion over the last 15 years, with the consequent increase of glyphosate applications, a broad-spectrum and post emergence herbicide. Soybean crops are inhabited by several arthropods. Eriopis connexa Germar (Coleoptera: Coccinelidae) is a predator associated to soybean soft-bodies pest and have a Neotropical distribution. Nowadays, it is being considered a potentially biological control agent in South America. The objectives of this work were to evaluate the side-effects of glyphosate on larvae (third instar) and adults of this predator. Commercial compound and the maximum registered concentrations for field use were employed: GlifoGlex 48 (48% glyphosate, 192 mg a.i./litre, Gleba Argentina S.A.). The exposure was by ingestion through the treated prey (Rophalosiphum padi) or by drinking treated water during 48 h for treatment of the adult. The herbicide solutions were prepared using distilled water as solvent. The bioassays were carried out in the laboratory under controlled conditions: 23 +/- 0.5 degrees C, 75 +/- 5% RH and 16:8 (L:D) of photoperiod. Development time, weight of pupae, adult emergence, pre-oviposition period, fecundity and fertility were evaluated as endpoints. Larvae from glyphosate treatment molted earlier than controls. In addition, the weight of pupae, longevity, fecundity and fertility were drastically reduced in treated organisms. The reductions were more drastic when the treatments were performed at the third larval stage than as adult. The reproduction capacity of the predator was the most affected parameter and could be related to a hormonal disruption by glyphosate in the treated organisms. This work can confirm the deleterious effects of this herbicide on beneficial organisms. Also, it agrees with prior studies carried out on other predators associated to soybean pest, such as Chrysoperla externa (Neuroptera: Chrysopidae) and Alpaida veniliae (Araneae

  15. An evolutionary analysis of flightin reveals a conserved motif unique and widespread in Pancrustacea.

    PubMed

    Soto-Adames, Felipe N; Alvarez-Ortiz, Pedro; Vigoreaux, Jim O

    2014-01-01

    Flightin is a thick filament protein that in Drosophila melanogaster is uniquely expressed in the asynchronous, indirect flight muscles (IFM). Flightin is required for the structure and function of the IFM and is indispensable for flight in Drosophila. Given the importance of flight acquisition in the evolutionary history of insects, here we study the phylogeny and distribution of flightin. Flightin was identified in 69 species of hexapods in classes Collembola (springtails), Protura, Diplura, and insect orders Thysanura (silverfish), Dictyoptera (roaches), Orthoptera (grasshoppers), Pthiraptera (lice), Hemiptera (true bugs), Coleoptera (beetles), Neuroptera (green lacewing), Hymenoptera (bees, ants, and wasps), Lepidoptera (moths), and Diptera (flies and mosquitoes). Flightin was also found in 14 species of crustaceans in orders Anostraca (water flea), Cladocera (brine shrimp), Isopoda (pill bugs), Amphipoda (scuds, sideswimmers), and Decapoda (lobsters, crabs, and shrimps). Flightin was not identified in representatives of chelicerates, myriapods, or any species outside Pancrustacea (Tetraconata, sensu Dohle). Alignment of amino acid sequences revealed a conserved region of 52 amino acids, referred herein as WYR, that is bound by strictly conserved tryptophan (W) and arginine (R) and an intervening sequence with a high content of tyrosines (Y). This motif has no homologs in GenBank or PROSITE and is unique to flightin and paraflightin, a putative flightin paralog identified in decapods. A third motif of unclear affinities to pancrustacean WYR was observed in chelicerates. Phylogenetic analysis of amino acid sequences of the conserved motif suggests that paraflightin originated before the divergence of amphipods, isopods, and decapods. We conclude that flightin originated de novo in the ancestor of Pancrustacea > 500 MYA, well before the divergence of insects (~400 MYA) and the origin of flight (~325 MYA), and that its IFM-specific function in Drosophila is a more

  16. NEW INSIGHTS OF SIDE-EFFECTS OF TAU-FLUVALINATE ON BIOLOGICAL AGENTS AND POLLINATORS.

    PubMed

    Sterk, G M K M; Kolokytha, P D

    2015-01-01

    A high number of side-effects trials were developed and carried out on beneficial insects and mites by the 'Side-effects on beneficial organisms' IOBC working group and subsequently published in the IOBC bulletins over a number of years. In general, these tests were mainly carried out under laboratory and/or semi-field conditions following the very worst case scenario applications, leading to an IOBC classification of 3 (moderately toxic) and 4 (harmful) for many of the tested compounds However, feedback from applications under practical conditions, often indicated that the published results were far from realism for a number of compounds. Due to the fact that some of these active ingredients are still regularly used, or even growing in importance, a number of them were tested on many beneficial arthropods and pollinators and the upcoming results were compared with the registered IOBC data. Among these compounds, Tau-fluvalinate (Mavrik), a widely used synthetic pyrethroid against aphids, caterpillars and beetles in a large number of crops, was tested in the facilities of IPM Impact. While this compound was often considered as being very toxic for all beneficial organisms, slightly toxicity was shown on adults of Aphidius colemani (Hymenoptera: Aphidiidae), and larvae of Chrysoperla carnea (Neuroptera: Chrysopidae) and Anthocoris nemoralis (Heteroptera: Anthocoridae). However, the moderately toxicity or toxicity appeared on adults of Trichogramma brassicae (Hymenoptera: Trichogrammatidae) as well as larvae of Adalia bipunctata (Coleoptera: Coccinellidae) and Episyrphus balteatus (Diptera: Syrphidae), was moderated by short persistence of less than 3 days. Concerning large earth bumblebee, Bombus terrestris (Hymenoptera: Apidae), the compound was characterized as completely safe, even when being sprayed in the full flight phase of the bumblebees. This indicates that for a high number of pollinator species and some of the most important beneficial insects, tau

  17. Phylogenetic relationships among insect orders based on three nuclear protein-coding gene sequences.

    PubMed

    Ishiwata, Keisuke; Sasaki, Go; Ogawa, Jiro; Miyata, Takashi; Su, Zhi-Hui

    2011-02-01

    Many attempts to resolve the phylogenetic relationships of higher groups of insects have been made based on both morphological and molecular evidence; nonetheless, most of the interordinal relationships of insects remain unclear or are controversial. As a new approach, in this study we sequenced three nuclear genes encoding the catalytic subunit of DNA polymerase delta and the two largest subunits of RNA polymerase II from all insect orders. The predicted amino acid sequences (In total, approx. 3500 amino acid sites) of these proteins were subjected to phylogenetic analyses based on the maximum likelihood and Bayesian analysis methods with various models. The resulting trees strongly support the monophyly of Palaeoptera, Neoptera, Polyneoptera, and Holometabola, while within Polyneoptera, the groupings of Isoptera/"Blattaria"/Mantodea (Superorder Dictyoptera), Dictyoptera/Zoraptera, Dermaptera/Plecoptera, Mantophasmatodea/Grylloblattodea, and Embioptera/Phasmatodea are supported. Although Paraneoptera is not supported as a monophyletic group, the grouping of Phthiraptera/Psocoptera is robustly supported. The interordinal relationships within Holometabola are well resolved and strongly supported that the order Hymenoptera is the sister lineage to all other holometabolous insects. The other orders of Holometabola are separated into two large groups, and the interordinal relationships of each group are (((Siphonaptera, Mecoptera), Diptera), (Trichoptera, Lepidoptera)) and ((Coleoptera, Strepsiptera), (Neuroptera, Raphidioptera, Megaloptera)). The sister relationship between Strepsiptera and Diptera are significantly rejected by all the statistical tests (AU, KH and wSH), while the affinity between Hymenoptera and Mecopterida are significantly rejected only by AU and KH tests. Our results show that the use of amino acid sequences of these three nuclear genes is an effective approach for resolving the relationships of higher groups of insects. PMID:21075208

  18. The morphology and evolution of the female postabdomen of Holometabola (Insecta).

    PubMed

    Hünefeld, Frank; Missbach, Christine; Beutel, Rolf Georg

    2012-07-01

    In the present article homology issues, character evolution and phylogenetic implications related to the female postabdomen of the holometabolan insects are discussed, based on an earlier analysis of a comprehensive morphological data set. Hymenoptera, the sistergroup of the remaining Holometabola, are the only group where the females have retained a fully developed primary ovipositor of the lepismatid type. There are no characters of the female abdomen supporting a clade Coleopterida + Neuropterida. The invagination of the terminal segments is an autapomorphy of Coleoptera. The ovipositor is substantially modified in Raphidioptera and distinctly reduced in Megaloptera and Neuroptera. The entire female abdomen is extremely simplified in Strepsiptera. The postabdomen is tapering posteriorly in Mecopterida and retractile in a telescopic manner (oviscapt). The paired ventral sclerites of segments VIII and IX are preserved, but valvifers and valvulae are not distinguishable. In Amphiesmenoptera sclerotizations derived from the ventral appendages VIII are fused ventromedially, forming a solid plate, and the appendages IX are reduced. The terminal segments are fused and form a terminal unit which bears the genital opening subapically. The presence of two pairs of apophyses and the related protraction of the terminal unit by muscle force are additional autapomorphies, as is the fusion of the rectum with the posterior part of the genital chamber (cloaca). Antliophora are supported by the presence of a transverse muscle between the ventral sclerites of segment VIII. Secondary egg laying tubes have evolved independently within Boreidae (absent in Caurinus) and in Tipulomorpha. The loss of two muscle associated with the genital chamber are likely autapomorphies of Diptera. The secondary loss of the telescopic retractability of the postabdomen is one of many autapomorphies of Siphonaptera. PMID:22583791

  19. Seasonal variation in the populations of Polyphagotarsonemus latus and Tetranychus bastosi in physic nut (Jatropha curcas) plantations.

    PubMed

    Rosado, Jander F; Picanço, Marcelo C; Sarmento, Renato A; da Silva, Ricardo Siqueira; Pedro-Neto, Marçal; Carvalho, Marcos Alberto; Erasmo, Eduardo A L; Silva, Laila Cristina Rezende

    2015-07-01

    Studies on the seasonal variation of agricultural pest species are important for the establishment of integrated pest control programs. The seasonality of pest attacks on crops is affected by biotic and abiotic factors, for example, climate and natural enemies. Besides that, characteristics of the host plant, crop management, location and the pests' bioecology also affect this seasonality. The mites Polyphagotarsonemus latus (Prostigmata: Tarsonemidae) and Tetranychus bastosi (Prostigmata: Tetranychidae) are the most important pests in the cultivation of physic nut, Jatropha curcas (Euphorbiaceae). All parts of J. curcas can be used for a wide range of purposes. In addition many researchers have studied its potential for use as neat oil, as transesterified oil (biodiesel), or as a blend with diesel. However studies about physic nut pests have been little known. The objective of this study was to assess the seasonal variation of P. latus and T. bastosi in physic nut. This study was conducted at three sites in the state of Tocantins, Brazil. We monitored climatic elements and the densities of the two mite species and of their natural enemies for a period of 2 years. Attack by P. latus occurred during rainy seasons, when the photoperiod was short and the physic nut had new leaves. In contrast, attack by T. bastosi occurred during warmer seasons with longer photoperiods and stronger winds. Populations of both mites and their natural enemies were greater in sites with greater plant diversity adjacent to the plantations. The predators found in association with P. latus and T. bastosi were Euseius concordis (Acari: Phytoseiidae), spiders, Stethorus sp. (Coleoptera: Coccinellidae) and Chrysoperla sp. (Neuroptera: Chrysopidae).

  20. Is the Multicolored Asian Ladybeetle, Harmonia axyridis, the Most Abundant Natural Enemy to Aphids in Agroecosystems?

    PubMed Central

    Vandereycken, Axel; Durieux, Delphine; Joie, Emilie; Sloggett, John J.; Haubruge, Eric; Verheggen, François J.

    2013-01-01

    The multicolored Asian ladybeetle, Harmonia axyridis Pallas (Coleoptera: Coccinellidae), was introduced into Western Europe in the late 1990s. Since the late 2000s, this species has been commonly considered one of the most abundant aphid predators in most Western European countries. In spite of the large amount of research on H. axyridis, information concerning its relative abundance in agroecosystems is lacking. This study aims to evaluate the abundance of H. axyridis within the aphidophage community in four crops situated in southern Belgium: wheat, Triticum aestivum L. (Poales: Poaceae), corn, Zea mays, potato, Solanum tuberosum (Solanales: Solanaceae), and broad bean Vicia faba (Fabales: Fabaceae). In order to assess the species diversity, the collected data were analyzed by considering (1) the species richness and (2) the evenness according to the Shannon diversity index. Eleven aphidophages were observed in every inventoried agroecosystem, including five abundant species: three coccinellids, the seven-spotted ladybug, Coccinella septempunctata L. (Coleoptera: Coccinellidae), the 14-spotted Ladybird, Propylea quatuordecimpunctata, and H. axyridis; one hoverfly, the marmalade hoverfly, Episyrphus balteatus De Geer (Diptera: Syrphidae); and one lacewing, the common green lacewing, Chrysoperla carnea Stephens sensu lato (= s.l.) (Neuroptera: Chrysopidae). Harmonia axyridis has been observed to thrive, breed, and reproduce on the four studied crops. Harmonia axyridis is the most abundant predator of aphids in corn followed by C. septempunctata, which is the main aphid predator observed in the three other inventoried crops. In wheat and potato fields, H. axyridis occurs in low numbers compared to other aphidophage. These observations suggest that H. axyridis could be considered an invasive species of agrosystems, and that potato and wheat may intermittently act as refuges for other aphidophages vulnerable to intraguild predation by this invader. Harmonia axyridis

  1. A Nightmare for Males? A Maternally Transmitted Male-Killing Bacterium and Strong Female Bias in a Green Lacewing Population

    PubMed Central

    Hayashi, Masayuki; Watanabe, Masaya; Yukuhiro, Fumiko; Nomura, Masashi

    2016-01-01

    For maternally transmitted microbes, a female-biased host sex ratio is of reproductive advantage. Here we found a strong female bias in a field population of the green lacewing, Mallada desjardinsi (Insecta; Neuroptera). This bias was attributed to the predominance of individuals harboring a maternally inherited male-killing bacterium that was phylogenetically closely related to the plant-pathogenic Spiroplasma phoeniceum and Spiroplasma kunkelii. Among 35 laboratory-reared broods produced by wild-caught females, 21 broods (60%)—all infected with Spiroplasma—consisted of only females (940 individuals). Among 14 broods consisting of both males and females (516 and 635 individuals, respectively), 4 broods were doubly infected with Spiroplasma and Rickettsia, 6 broods were singly infected with Rickettsia, and 3 broods were uninfected (remaining one brood was unknown). Mortality during embryonic and larval development was prominent in all-female broods but not in normal sex ratio broods. Following antibiotic treatment on all-female broods, mortality was significantly reduced and the sex ratio was restored to 1:1. Strong expression and high prevalence of this male-killer is remarkable considering its low density (~10−5–10−4 cells per host mitochondrial gene copy based on quantitative PCR). In addition, a bacterium closely related to Rickettsia bellii was present in 25 of 34 broods (73.5%), irrespective of the sex ratio, with the infection density comparable to other cases of endosymbiosis (~10−2–10−1 cells per mitochondrial gene copy). Higher density of Rickettsia than Spiroplasma was also demonstrated by electron microscopy which visualized both Spiroplasma-like cells and Rickettsia-like cells inside and outside the ovarian cells. PMID:27304213

  2. Effect of plant nutrition on aphid size, prey consumption, and life history characteristics of green lacewing.

    PubMed

    Aqueel, Muhammad A; Collins, Catherine M; Raza, Abu-bakar M; Ahmad, Shahbaz; Tariq, Muhammad; Leather, Simon R

    2014-02-01

    Plant quality can directly and indirectly affect the third trophic level. The predation by all the instars of green lacewing, Chrysoperla carnea (S.) (Neuroptera: Chrysopidae) on the cereal aphids, Rhopalosiphum padi (L.), and Sitobion avenae (F.) at varying nitrogen fertilizer levels was calculated under laboratory conditions. Wheat plants were grown on four nitrogen fertilizer levels and aphids were fed on these plants and subsequently offered as food to the C. carnea. Aphid densities of 10, 30, and 90 were offered to first, second, and third instar larvae of green lacewing. Increased nitrogen application improved nitrogen contents of the plants and also the body weight of cereal aphids feeding on them. Aphid consumption by green lacewings was reduced with the increase in nitrogen content in the host plants of aphids. Predation of both aphid species by first, second, and third instars larvae of C. carnea was highest on aphids reared on plants with the lowest rate of fertilization, suggesting a compensatory consumption to overcome reduced biomass (lower aphid size). Total biomass devoured by C. carnea on all nitrogen fertilizer treatments was not statistically different. Additionally, the heavier host prey influenced by the plant nutrition had an effect on the life history characteristics of green lacewings. The larval duration, pupal weight, pupal duration, fecundity, and male and female longevity were significantly affected by the level of nitrogen fertilization to the aphid's host plants, except for pupal duration when fed on S. avenae. This study showed that quantity of prey supplied to the larvae affects the prey consumption and thereafter the life history characteristics of green lacewings.

  3. Methyl salicylate attracts natural enemies and reduces populations of soybean aphids (Hemiptera: Aphididae) in soybean agroecosystems.

    PubMed

    Mallinger, Rachel E; Hogg, David B; Gratton, Claudio

    2011-02-01

    Methyl salicylate, an herbivore-induced plant volatile, has been shown to attract natural enemies and affect herbivore behavior. In this study, methyl salicylate was examined for its attractiveness to natural enemies of the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), and for its direct effects on soybean aphid population growth rates. Methyl salicylate lures were deployed in plots within organic soybean [Glycine max (L.) Merr.] fields. Sticky card traps adjacent to and 1.5 m from the lure measured the relative abundance of natural enemies, and soybean aphid populations were monitored within treated and untreated plots. In addition, exclusion cage studies were conducted to determine methyl salicylate's effect on soybean aphid population growth rates in the absence of natural enemies. Significantly greater numbers of syrphid flies (Diptera: Syrphidae) and green lacewings (Neuroptera: Chrysopidae) were caught on traps adjacent to the methyl salicylate lure, but no differences in abundance were found at traps 1.5 m from the lure. Furthermore, abundance of soybean aphids was significantly lower in methyl salicylate-treated plots. In exclusion cage studies, soybean aphid numbers were significantly reduced on treated soybean plants when all plants were open to natural enemies. When plants were caged, however, soybean aphid numbers and population growth rates did not differ between treated and untreated plants suggesting no effect of methyl salicylate on soybean aphid reproduction and implicating the role of natural enemies in depressing aphid populations. Although aphid populations were reduced locally around methyl salicylate lures, larger scale studies are needed to assess the technology at the whole-field scale.

  4. [Effects of Beauveria bassiana on Myzus persicae and its two predaceous natural enemies].

    PubMed

    Zhu, Hong; Luo, Xu-mei; Song, Jin-xin; Fan, Mei-zhen; Li, Zeng-zhi

    2011-09-01

    A Beauveria bassiana strain Bb21 was isolated from naturally infected green peach aphid Myzus persicae (Hemiptera: Aphididae). The effects of the strain on M. persicae and its two predaceous natural enemies Chrysoperla carnea (Neuroptera: Chrysopidae) and Harmonia axyridis (Coleoptera: Coccinellidae) were investigated under laboratory conditions. Bb21 had strong pathogenicity to M. persicae, with the LD50 of 97 conidia x mm(-2) (45-191, 95% confidence interval), but was less pathogenic to the second instar nymph of C. carnea, with the LD50 of 1089 conidia x mm(-2). The LD50 for C. carnea was 10.2 times higher than that for M. persicae. The pathogenicity of Bb21 to H. axyridis was very weak, with a low infection rate of 13% even at a high concentration 5 x 10(8) conidia x mL(-1). The Bb21 at low conidia concentration had less effect on the developmental period and fecundity of the two predaceous natural enemies. However, when applied at the high concentration 5 x 10(8) spores x mL(-1), Bb21 shortened the larval stage of H. axyridis averagely by 1.4 d and decreased the adult emergence rate and fecundity by 33% and 14%, respectively, and shortened the larval stage of C. carnea averagely by 0.7 d and decreased the adult emergence rate and fecundity by 24% and 11%, respectively. Since the LD50 for green peach aphid was much lower than that for the two predaceous natural enemies, and had very low effect on the adult emergence rate and fecundity of the two predators at the concentration recommended for field spray, Bb21 could be applied as a biocontrol agent of M. persicae in the integrated management of pernicious organisms.

  5. IPM-compatibility of foliar insecticides for citrus: Indices derived from toxicity to beneficial insects from four orders

    PubMed Central

    Michaud, J.P.; Grant, A.K.

    2003-01-01

    A series of compounds representing four major pesticide groups were tested for toxicity to beneficial insects representing four different insect orders: Coleoptera (Coccinellidae), Hemiptera (Anthocoridae), Hymenoptera (Aphelinidae), and Neuroptera (Chrysopidae). These materials included organophosphates (methidathion, esfenvalerate and phosmet), carbamates (carbofuran, methomyl and carbaryl), pyrethroids (bifenthrin, fenpropathrin, zeta-cypermethrin, cyfluthrin and permethrin) and the oxadiazine indoxacarb. Toxicity to coccinellid and lacewing species was assessed by treating 1st instar larvae with the recommended field rate of commercial products, and two 10 fold dilutions of these materials, in topical spray applications. Adult Aphytis melinus Debach and 2nd instar Orius insidiosus (Say) were exposed to leaf residues of the same concentrations for 24 h. ANOVA performed on composite survival indices derived from these data resolved significant differences among materials with respect to their overall toxicity to beneficial insects. Cyfluthrin, fenpropathrin and zeta-cypermethrin all increased the developmental time of the lacewing and one or more coccinellid species for larvae that survived topical applications. Bifenthrin increased developmental time for two coccinellid species and decreased it in a third. Indoxacarb (Avaunt® WG, DuPont Corp.) ranked highest overall for safety to beneficial insects, largely because of its low dermal toxicity to all species tested. Zeta-cypermethrin (Super Fury®, FMC Corporation) received the second best safety rating, largely because of its low toxicity as a leaf residue to A. melinus and O. insidiosus. Phosmet (Imidan® 70W, Gowan Co.) and methidathion (Supracide® 25W, Gowan Co.) ranked high for safety to coccinellid species, but compounds currently recommended for use in citrus such as fenpropathrin (Danitol® 2.4EC, Sumimoto Chem. Co.) and carbaryl (Sevin® XLR EC, Rhone Poulenc Ag. Co.) ranked very low for IPM

  6. Future rainfall patterns will reduce arthropod abundance in model arable agroecosystems with different soil types

    NASA Astrophysics Data System (ADS)

    Zaller, Johann; Simmer, Laura; Tabi Tataw, James; Formayer, Herbert; Hösch, Johannes; Baumgarten, Andreas

    2013-04-01

    Climate change scenarios for eastern Austria predict a seasonal shift in precipitation patterns with fewer but heavier rainfall events and longer drought periods during the growing season and more precipitation during winter. This is expected to alter arthropods living in natural and agricultural ecosystems with consequences for several ecosystem functions and services. In order to better understand the effects of future rainfall patterns on aboveground arthropods inhabiting an agroecosystem, we conducted an experiment where we simulated rainfall patterns in model arable systems with three different soil types. Experiments were conducted in winter wheat cultivated in a lysimeter facility near Vienna, Austria, where three different soil types (calcaric phaeozem, calcic chernozem and gleyic phaeozem) were subjected to long-term current vs. predicted rainfall patterns according to regionalized climate change projections for 2071-2100. Aboveground arthropods were assessed by suction sampling in April, May and June 2012. We found significant differences in mean total arthropod abundances between the sampling dates with 20 ± 2 m-2, 90 ± 20 m-2 and 289 ± 54 m-2 in April, May and June, respectively. Across all three sampling dates, future rainfall patterns significantly reduced the abundance of Araneae (-43%), Auchenorrhyncha (-39%), Coleoptera (-48%), Carabidae (-41%), Chrysomelidae (-64%), Collembola (-58%), Diptera (-75%) and Neuroptera (-73%). Generally, different soil types had no effect on the abundance of arthropods. The diversity of arthropod communities was unaffected by rainfall patterns or soil types. Correlation analyses of arthropod abundances with crop biomass, weed density and abundance suggest that rainfall effects indirectly affected arthropods via changes on crops and weeds. In conclusion, these results show that future rainfall patterns will have detrimental effects on the abundance of a variety of aboveground arthropods in winter wheat with potential

  7. Modulation in the feeding prey capture of the ant-lion, Myrmeleon crudelis.

    PubMed

    Lambert, Eric Patten; Motta, Philip Jay; Lowry, Dayv

    2011-12-01

    Ant-lions are pit-building larvae (Neuroptera: Myrmeleontidae), which possess relatively large mandibles used for catching and consuming prey. Few studies involving terrestrial arthropod larva have investigated prey capture behavior and kinematics and no study has shown modulation of strike kinematics. We examined feeding kinematics of the ant-lion, Myrmeleon crudelis, using high-speed video to investigate whether larvae modulate strike behavior based on prey location relative to the mandible. Based on seven capture events from five M. crudelis, the strike took 17.60 ± 2.92 msec and was characterized by near-simultaneous contact of both mandibles with the prey. Modulation of the angular velocity of the mandibles based on prey location was clearly demonstrated. M. crudelis larvae attempted to simultaneously contact prey with both mandibles by increasing mean angular velocity of the far mandible (65 ± 21 rad sec(-1) ) compared with the near mandible (35 ± 14 rad sec(-1) ). Furthermore, kinematic results showed a significant difference for mean angular velocity between the two mandibles (P<0.005). Given the lengthy strike duration compared with other fast-striking arthropods, these data suggest that there is a tradeoff between the ability to modulate strike behavior for accurate simultaneous mandible contact and the overall velocity of the strike. The ability to modulate prey capture behavior may increase dietary breadth and capture success rate in these predatory larvae by allowing responsive adjustment to small-scale variations in prey size, presentation, and escape response.

  8. The movement of proteins across the insect and tick digestive system.

    PubMed

    Jeffers, Laura A; Michael Roe, R

    2008-02-01

    The movement of intact proteins across the digestive system was shown in a number of different blood-feeding and non-blood-feeding insects in the orders Blattaria, Coleoptera, Diptera, Hemiptera, Lepidoptera, Orthoptera, Neuroptera and Siphonaptera, as well as in two tick families Ixodidae and Argasidae. Protein movement was observed for both normal dietary and xenobiotic proteins, which suggest that the mechanism for transfer is not substrate specific. The number of studies on the mechanism of movement is limited. The research so far suggests that movement can occur by either a transcellular or an intercellular pathway in the ventriculus with most of the research describing the former. Transfer is by continuous diffusion with no evidence of pinocytosis or vesicular transport common in mammalian systems. Proteins can move across the digestive system without modification of their primary or multimeric structure and with retention of their functional characteristics. Accumulation in the hemolymph is the result of the protein degradation rate in the gut and hemolymph and transfer rate across the digestive system and can be highly variable depending on species. Research on the development of delivery systems to enhance protein movement across the insect digestive system is in its infancy. The approaches so far considered with some success include the use of lipophilic-polyethylene glycol (PEG) polymers, the development of fusion proteins with lectins, reduced gut protease activity and the development of amphiphilic peptidic analogs. Additional research on understanding the basic mechanisms of protein delivery across the insect digestive system, the importance of structure activity in this transfer and the development of technology to improve movement across the gut could be highly significant to the future of protein and nucleic acid-based insecticide development as well as traditional chemical insecticidal technologies.

  9. An evolutionary analysis of flightin reveals a conserved motif unique and widespread in Pancrustacea.

    PubMed

    Soto-Adames, Felipe N; Alvarez-Ortiz, Pedro; Vigoreaux, Jim O

    2014-01-01

    Flightin is a thick filament protein that in Drosophila melanogaster is uniquely expressed in the asynchronous, indirect flight muscles (IFM). Flightin is required for the structure and function of the IFM and is indispensable for flight in Drosophila. Given the importance of flight acquisition in the evolutionary history of insects, here we study the phylogeny and distribution of flightin. Flightin was identified in 69 species of hexapods in classes Collembola (springtails), Protura, Diplura, and insect orders Thysanura (silverfish), Dictyoptera (roaches), Orthoptera (grasshoppers), Pthiraptera (lice), Hemiptera (true bugs), Coleoptera (beetles), Neuroptera (green lacewing), Hymenoptera (bees, ants, and wasps), Lepidoptera (moths), and Diptera (flies and mosquitoes). Flightin was also found in 14 species of crustaceans in orders Anostraca (water flea), Cladocera (brine shrimp), Isopoda (pill bugs), Amphipoda (scuds, sideswimmers), and Decapoda (lobsters, crabs, and shrimps). Flightin was not identified in representatives of chelicerates, myriapods, or any species outside Pancrustacea (Tetraconata, sensu Dohle). Alignment of amino acid sequences revealed a conserved region of 52 amino acids, referred herein as WYR, that is bound by strictly conserved tryptophan (W) and arginine (R) and an intervening sequence with a high content of tyrosines (Y). This motif has no homologs in GenBank or PROSITE and is unique to flightin and paraflightin, a putative flightin paralog identified in decapods. A third motif of unclear affinities to pancrustacean WYR was observed in chelicerates. Phylogenetic analysis of amino acid sequences of the conserved motif suggests that paraflightin originated before the divergence of amphipods, isopods, and decapods. We conclude that flightin originated de novo in the ancestor of Pancrustacea > 500 MYA, well before the divergence of insects (~400 MYA) and the origin of flight (~325 MYA), and that its IFM-specific function in Drosophila is a more

  10. Selectivity of Pesticides used in Integrated Apple Production to the Lacewing, Chrysoperla externa

    PubMed Central

    Moura, Alexandre Pinho; Carvalho, Geraldo Andrade; Moscardini, Valéria Fonseca; Lasmar, Olinto; Rezende, Denise Tourino; Marques, Márcio Candeias

    2010-01-01

    This research aimed to assess the toxicity of the pesticides abamectin 18 CE (0.02 g a.i. L-1), carbaryl 480 SC (1.73 g a.i. L-1), sulfur 800 GrDA (4.8 g a.i. L-1), fenitrothion 500 CE (0.75 g a.i. L-1), methidathion 400 CE (0.4 g a.i. L-1), and trichlorfon 500 SC (1.5 g a.i. L-1) as applied in integrated apple production in Brazil on the survival, oviposition capacity, and egg viability of the lacewing, Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) from Bento Gonçalves and Vacaria, Rio Grande do Sul State, Brazil. An attempt was made to study morphological changes caused by some of these chemicals, by means of ultrastructural analysis, using a scanning electronic microscope. Carbaryl, fenitrothion, and methidathion caused 100% adult mortality for both populations, avoiding evaluation of pesticides' effects on predator reproductive parameters. Abamectin and sulfur also affected the survival of these individuals with mortality rates of 10% and 6.7%, respectively, for adults from Bento Gonçalves, and were harmless to those from Vacaria at the end of evaluation. Trichlorfon was also harmless to adults from both populations. No compound reduced oviposition capacity. C. externa from Vacaria presented higher reproductive potential than those from Bento Gonçalves. In relation to egg viability, sulfur was the most damaging compound to both populations of C. externa. Ultrastructural analyses showed morphological changes in the micropyle and the chorion of eggs laid by C. externa treated with either abamectin or sulfur. The treatment may have influenced the fertilization of C. externa eggs and embryonic development. Sulfur was responsible for malformations in the end region of the abdomen and genitals of treated females. When applied to adults, abamectin, sulfur, and trichlorfon were harmless, while carbaryl, fenitrothion, and methidathion were harmful, according to the IOBC classification. PMID:20879916

  11. Identifying the predator complex of Homalodisca vitripennis (Hemiptera: Cicadellidae): a comparative study of the efficacy of an ELISA and PCR gut content assay.

    PubMed

    Fournier, Valerie; Hagler, James; Daane, Kent; de León, Jesse; Groves, Russell

    2008-10-01

    A growing number of ecologists are using molecular gut content assays to qualitatively measure predation. The two most popular gut content assays are immunoassays employing pest-specific monoclonal antibodies (mAb) and polymerase chain reaction (PCR) assays employing pest-specific DNA. Here, we present results from the first study to simultaneously use both methods to identify predators of the glassy winged sharpshooter (GWSS), Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae). A total of 1,229 arthropod predators, representing 30 taxa, were collected from urban landscapes in central California and assayed first by means of enzyme-linked immunosorbent assay (ELISA) using a GWSS egg-specific mAb and then by PCR using a GWSS-specific DNA marker that amplifies a 197-base pair fragment of its cytochrome oxidase gene (subunit I). The gut content analyses revealed that GWSS remains were present in 15.5% of the predators examined, with 18% of the spiders and 11% of the insect predators testing positive. Common spider predators included members of the Salticidae, Clubionidae, Anyphaenidae, Miturgidae, and Corinnidae families. Common insect predators included lacewings (Neuroptera: Chrysopidae), praying mantis (Mantodea: Mantidae), ants (Hymenoptera: Formicidae), assassin bugs (Hemiptera: Reduviidae), and damsel bugs (Hemiptera: Nabidae). Comparison of the two assays indicated that they were not equally effective at detecting GWSS remains in predator guts. The advantages of combining the attributes of both types of assays to more precisely assess field predation and the pros and cons of each assay for mass-screening predators are discussed. PMID:18618149

  12. Is the multicolored Asian ladybeetle, Harmonia axyridis, the most abundant natural enemy to aphids in agroecosystems?

    PubMed

    Vandereycken, Axel; Durieux, Delphine; Joie, Emilie; Sloggett, John J; Haubruge, Eric; Verheggen, François J

    2013-01-01

    The multicolored Asian ladybeetle, Harmonia axyridis Pallas (Coleoptera: Coccinellidae), was introduced into Western Europe in the late 1990s. Since the late 2000s, this species has been commonly considered one of the most abundant aphid predators in most Western European countries. In spite of the large amount of research on H. axyridis, information concerning its relative abundance in agroecosystems is lacking. This study aims to evaluate the abundance of H. axyridis within the aphidophage community in four crops situated in southern Belgium: wheat, Triticum aestivum L. (Poales: Poaceae), corn, Zea mays, potato, Solanum tuberosum (Solanales: Solanaceae), and broad bean Vicia faba (Fabales: Fabaceae). In order to assess the species diversity, the collected data were analyzed by considering (1) the species richness and (2) the evenness according to the Shannon diversity index. Eleven aphidophages were observed in every inventoried agroecosystem, including five abundant species: three coccinellids, the seven-spotted ladybug, Coccinella septempunctata L. (Coleoptera: Coccinellidae), the 14-spotted Ladybird, Propylea quatuordecimpunctata, and H. axyridis; one hoverfly, the marmalade hoverfly, Episyrphus balteatus De Geer (Diptera: Syrphidae); and one lacewing, the common green lacewing, Chrysoperla carnea Stephens sensu lato (= s.l.) (Neuroptera: Chrysopidae). Harmonia axyridis has been observed to thrive, breed, and reproduce on the four studied crops. Harmonia axyridis is the most abundant predator of aphids in corn followed by C. septempunctata, which is the main aphid predator observed in the three other inventoried crops. In wheat and potato fields, H. axyridis occurs in low numbers compared to other aphidophage. These observations suggest that H. axyridis could be considered an invasive species of agrosystems, and that potato and wheat may intermittently act as refuges for other aphidophages vulnerable to intraguild predation by this invader. Harmonia axyridis

  13. Real-time monitoring of (E)-β-farnesene emission in colonies of the pea aphid, Acyrthosiphon pisum, under lacewing and ladybird predation.

    PubMed

    Joachim, Christoph; Weisser, Wolfgang W

    2013-10-01

    Aphids (Homoptera) are constantly under attack by a variety of predators and parasitoids. Upon attack, most aphids release alarm pheromone that induces escape behavior in other colony members, such as dropping off the host plant. In the pea aphid, Acyrthosiphon pisum Harris (Aphididae), the only component of this alarm pheromone is the sesquiterpene (E)-β-farnesene (EBF). EBF is thought to act as a kairomone by attracting various species of parasitoids and predators including lacewings and ladybirds. Lately, it also was proposed that EBF is constantly emitted in low quantities and used by aphids as a social cue. No study has focused on emission dynamics of this compound over a long time period. Here, we present the first long-time monitoring of EBF emission in aphid colonies using real-time monitoring. We used a zNose(TM) to analyze the headspace of colonies of the pea aphid, under lacewing (Neuroptera: Chrysopidae) and ladybird (Coleoptera: Coccinellidae) predation, over 24 hr. We found no emission of EBF in the absence of predation. When either a ladybird adult or a lacewing larva was placed in an aphid colony, EBF was detected in the headspace of the colonies in the form of emission blocks; i.e., periods in which EBF was emitted alternating with periods without EBF emission. The number of emission blocks correlated well with the number of predation events that were determined at the end of each experiment. There was no circadian rhythm in alarm pheromone emission, and both predators were active during both night and day. Our results show that alarm pheromone emission pattern within an aphid colony is driven by the feeding behavior of a predator. PMID:24158268

  14. Real-time monitoring of (E)-β-farnesene emission in colonies of the pea aphid, Acyrthosiphon pisum, under lacewing and ladybird predation.

    PubMed

    Joachim, Christoph; Weisser, Wolfgang W

    2013-10-01

    Aphids (Homoptera) are constantly under attack by a variety of predators and parasitoids. Upon attack, most aphids release alarm pheromone that induces escape behavior in other colony members, such as dropping off the host plant. In the pea aphid, Acyrthosiphon pisum Harris (Aphididae), the only component of this alarm pheromone is the sesquiterpene (E)-β-farnesene (EBF). EBF is thought to act as a kairomone by attracting various species of parasitoids and predators including lacewings and ladybirds. Lately, it also was proposed that EBF is constantly emitted in low quantities and used by aphids as a social cue. No study has focused on emission dynamics of this compound over a long time period. Here, we present the first long-time monitoring of EBF emission in aphid colonies using real-time monitoring. We used a zNose(TM) to analyze the headspace of colonies of the pea aphid, under lacewing (Neuroptera: Chrysopidae) and ladybird (Coleoptera: Coccinellidae) predation, over 24 hr. We found no emission of EBF in the absence of predation. When either a ladybird adult or a lacewing larva was placed in an aphid colony, EBF was detected in the headspace of the colonies in the form of emission blocks; i.e., periods in which EBF was emitted alternating with periods without EBF emission. The number of emission blocks correlated well with the number of predation events that were determined at the end of each experiment. There was no circadian rhythm in alarm pheromone emission, and both predators were active during both night and day. Our results show that alarm pheromone emission pattern within an aphid colony is driven by the feeding behavior of a predator.

  15. Comparative mitogenomics of Braconidae (Insecta: Hymenoptera) and the phylogenetic utility of mitochondrial genomes with special reference to Holometabolous insects

    PubMed Central

    2010-01-01

    sister-group of Diptera. Neuropterida (Neuroptera + Megaloptera), and a sister-group relationship with (Diptera + Mecoptera) were supported across all analyses. Conclusions Our comparative studies indicate that mitochondrial genomes are a useful phylogenetic tool at the ordinal level within Holometabola, at the superfamily within Hymenoptera and at the subfamily level within Braconidae. Variation at all of these hierarchical levels suggests that the utility of mitochondrial genomes is likely to be a valuable tool for systematics in other groups of arthropods. PMID:20537196

  16. Inventory and assessment of foliar natural enemies of the soybean aphid (Hemiptera: Aphididae) in South Dakota.

    PubMed

    Hesler, Louis S

    2014-06-01

    Soybean aphid (Aphis glycines Matsumura) (Hemiptera: Aphididae) is a major pest of soybean in northern production regions of North America, and insecticides have been the primary management approach while alternative methods are developed. Knowledge of arthropod natural enemies and their impact on soybean aphid is critical for developing biological control as a management tool. Soybean is a major field crop in South Dakota, but information about its natural enemies and their impact on soybean aphid is lacking. Thus, this study was conducted in field plots in eastern South Dakota during July and August of 2004 and 2005 to characterize foliar-dwelling, arthropod natural enemies of soybean aphid, and it used exclusion techniques to determine impact of natural enemies and ants (Hymenoptera: Formicidae) on soybean aphid densities. In open field plots, weekly soybean aphid densities reached a plateau of several hundred aphids per plant in 2004, and peaked at roughly 400 aphids per plant in 2005. Despite these densities, a relatively high frequency of aphid-infested plants lacked arthropod natural enemies. Lady beetles (Coleoptera: Coccinellidae) were most abundant, peaking at 90 and 52% of all natural enemies sampled in respective years, and Harmonia axyridis Pallas was the most abundant lady beetle. Green lacewings (Neuroptera: Chrysopidae) were abundant in 2005, due mainly to large numbers of their eggs. Abundances of arachnids and coccinellid larvae correlated with soybean aphid densities each year, and chrysopid egg abundance was correlated with aphid density in 2005. Three-week cage treatments of artificially infested soybean plants in 2004 showed that noncaged plants had fewer soybean aphids than caged plants, but abundance of soybean aphid did not differ among open cages and ones that provided partial or total exclusion of natural enemies. In 2005, plants within open cages had fewer soybean aphids than those within cages that excluded natural enemies, and aphid

  17. Shallot aphids, Myzus ascalonicus, in strawberry: biocontrol potential of three predators and three parasitoids.

    PubMed

    Enkegaard, Annie; Sigsgaard, Lene; Kristensen, Kristian

    2013-01-01

    The parasitization capacity of 3 parasitoids and the predation capacity of 3 predators towards the shallot aphid, Myzus ascalonicus Doncaster (Homoptera: Aphididae), on strawberry, Fragaria x ananassa Duchesne (Rosales: Rosaceae) cv. Honeoye, were examined in laboratory experiments. In Petri dish assays, both Aphidius colemani Viereck (Hymenoptera: Aphidiidae) and A. ervi Haliday readily stung shallot aphids, with no significant difference in stinging frequency between the two species. A. ervi induced a significantly higher mortality (79.0 ± 7.2%) in terms of stung aphids compared with A. colemani (55.3 ± 4.1%); however, only a minor fraction (2.7 ± 1.8% and 7.1 ± 3.1%, respectively) of the killed aphids resulted in formation of mummies, presumably due to a physiological response to parasitism. The low percentage of mummification precludes the use of either Aphidius species in anything but inundative biocontrol. In similar set-ups, Aphelinus abdominalis (Dalman) (Hymenoptera: Aphelinidae) killed almost half (49.6 ± 5.3%) of the exposed aphids through host feeding. In addition, 23.2 ± 7.3% of non-host-fed aphids developed into mummified aphids, and 38.1 ± 13.2% of non-host-fed aphids died from other parasitoid-induced causes. However, the host feeding rate was reduced to only 1.2 ± 0.8%, and no significant parasitization mortality was observed on strawberry plants, suggesting that host plants interfered with A. abdominalis activity. This parasitoid does not, therefore, seem to be suited to either inoculative or inundative biocontrol of shallot aphids in strawberry. The three predators studied were the green lacewing, Chrysoperla carnea Steph. (Neuroptera: Chrysopidae), the two-spotted lady beetle, Adalia bipunctata L. (Coleoptera: Coccinellidae), and the gall midge Aphidoletes aphidimyza (Rondani) (Diptera: Cecidomyiidae). Third instars of all 3 predators readily preyed upon the shallot aphid in Petri dish set-ups with significant differences in daily

  18. Shallot aphids, Myzus ascalonicus, in strawberry: biocontrol potential of three predators and three parasitoids.

    PubMed

    Enkegaard, Annie; Sigsgaard, Lene; Kristensen, Kristian

    2013-01-01

    The parasitization capacity of 3 parasitoids and the predation capacity of 3 predators towards the shallot aphid, Myzus ascalonicus Doncaster (Homoptera: Aphididae), on strawberry, Fragaria x ananassa Duchesne (Rosales: Rosaceae) cv. Honeoye, were examined in laboratory experiments. In Petri dish assays, both Aphidius colemani Viereck (Hymenoptera: Aphidiidae) and A. ervi Haliday readily stung shallot aphids, with no significant difference in stinging frequency between the two species. A. ervi induced a significantly higher mortality (79.0 ± 7.2%) in terms of stung aphids compared with A. colemani (55.3 ± 4.1%); however, only a minor fraction (2.7 ± 1.8% and 7.1 ± 3.1%, respectively) of the killed aphids resulted in formation of mummies, presumably due to a physiological response to parasitism. The low percentage of mummification precludes the use of either Aphidius species in anything but inundative biocontrol. In similar set-ups, Aphelinus abdominalis (Dalman) (Hymenoptera: Aphelinidae) killed almost half (49.6 ± 5.3%) of the exposed aphids through host feeding. In addition, 23.2 ± 7.3% of non-host-fed aphids developed into mummified aphids, and 38.1 ± 13.2% of non-host-fed aphids died from other parasitoid-induced causes. However, the host feeding rate was reduced to only 1.2 ± 0.8%, and no significant parasitization mortality was observed on strawberry plants, suggesting that host plants interfered with A. abdominalis activity. This parasitoid does not, therefore, seem to be suited to either inoculative or inundative biocontrol of shallot aphids in strawberry. The three predators studied were the green lacewing, Chrysoperla carnea Steph. (Neuroptera: Chrysopidae), the two-spotted lady beetle, Adalia bipunctata L. (Coleoptera: Coccinellidae), and the gall midge Aphidoletes aphidimyza (Rondani) (Diptera: Cecidomyiidae). Third instars of all 3 predators readily preyed upon the shallot aphid in Petri dish set-ups with significant differences in daily

  19. Shallot Aphids, Myzus ascalonicus, in Strawberry: Biocontrol Potential of Three Predators and Three Parasitoids

    PubMed Central

    Enkegaard, Annie; Sigsgaard, Lene; Kristensen, Kristian

    2013-01-01

    The parasitization capacity of 3 parasitoids and the predation capacity of 3 predators towards the shallot aphid, Myzus ascalonicus Doncaster (Homoptera: Aphididae), on strawberry, Fragaria x ananassa Duchesne (Rosales: Rosaceae) cv. Honeoye, were examined in laboratory experiments. In Petri dish assays, both Aphidius colemani Viereck (Hymenoptera: Aphidiidae) and A. ervi Haliday readily stung shallot aphids, with no significant difference in stinging frequency between the two species. A. ervi induced a significantly higher mortality (79.0 ± 7.2%) in terms of stung aphids compared with A. colemani (55.3 ± 4.1%); however, only a minor fraction (2.7 ± 1.8% and 7.1 ± 3.1%, respectively) of the killed aphids resulted in formation of mummies, presumably due to a physiological response to parasitism. The low percentage of mummification precludes the use of either Aphidius species in anything but inundative biocontrol. In similar set-ups, Aphelinus abdominalis (Dalman) (Hymenoptera: Aphelinidae) killed almost half (49.6 ± 5.3%) of the exposed aphids through host feeding. In addition, 23.2 ± 7.3% of non-host-fed aphids developed into mummified aphids, and 38.1 ± 13.2% of non-host-fed aphids died from other parasitoid-induced causes. However, the host feeding rate was reduced to only 1.2 ± 0.8%, and no significant parasitization mortality was observed on strawberry plants, suggesting that host plants interfered with A. abdominalis activity. This parasitoid does not, therefore, seem to be suited to either inoculative or inundative biocontrol of shallot aphids in strawberry. The three predators studied were the green lacewing, Chrysoperla carnea Steph. (Neuroptera: Chrysopidae), the two-spotted lady beetle, Adalia bipunctata L. (Coleoptera: Coccinellidae), and the gall midge Aphidoletes aphidimyza (Rondani) (Diptera: Cecidomyiidae). Third instars of all 3 predators readily preyed upon the shallot aphid in Petri dish set-ups with significant differences in daily

  20. An assessment of arthropod prey resources at Nakula Natural Area Reserve, a potential site of reintroduction for Kiwikiu (Pseudonestor xanthophrys) and Maui `Alauahio (Parareomyza montana).

    USGS Publications Warehouse

    Banko, Paul C.; Peck, Robert W.; Cappadonna, Justin; Steele, Claire; Leonard, David L.; Mounce, Hanna L.; Becker, Dusti; Swinnerton, Kirsty

    2015-01-01

    ), which comprised 90% of all prey items for 50 adult birds and 98% of all prey for two nestlings. Caterpillars were also the most important prey for Maui ‘alauahio (43% for 104 adult birds) although spiders (Araneae, 16%), beetles (12%) and true bugs, planthoppers and psyllids (Hemiptera; 12%) were also important. Caterpillars were generally the most abundant type of arthropod in the foliage of koa and ‘ōhi‘a, although spiders, beetles and hemipterans were also common. Total arthropod biomass and caterpillar biomass at Nakula was as great, or greater, than that observed at Hanawi and Waikamoi per unit of foliage of both koa and ‘ōhi‘a. Spiders generally dominated the bark fauna on both koa and ‘ōhi‘a at all sites although isopods (Isopoda), millipedes (Myriapoda: Millipeda) and lacewings (Neuroptera) were also abundant at Waikamoi and Hanawi. Total arthropod biomass on bark, as well as the biomass of several individual taxa, was significantly lower at Nakula than the other sites. Our measurement of the density of beetle exit holes in dead koa branches found no difference between Nakula and Waikamoi. Finally, no difference existed in the abundance of arthropods (primarily caterpillars and moth pupae) within ‘ākala stems among sites. With the exception of bark surfaces, our results suggest that the arthropod prey base for birds on primary foraging substrates at Nakula is similar to that found at two sites within the current range of kiwikiu and Maui ‘alauahio. However, our results should be viewed with caution because they are limited to the scale of individual branch, tree, or ‘ākala stem. To complete the assessment, our results should be scaled up to the landscape level by determining the density of each substrate within each site. Key arthropod prey of kiwikiu and Maui ‘alauahio are available at Nakula and, as habitat restoration continues, food abundance should increase to the point at which populations of these birds can be supported.