Science.gov

Sample records for marmoratipennis neuroptera hemerobiidae

  1. A new genus of Hemerobiidae (Neuroptera) from Baltic amber, with a critical review of the Cenozoic Megalomus-like taxa and remarks on the wing venation variability of the family.

    PubMed

    Makarkin, Vladimir N; Wedmann, Sonja; Weiterschan, Thomas

    2016-10-31

    A new genus and two new species of Hemerobiidae (Neuroptera) are described from the late Eocene Baltic amber, i.e., Proneuronema gradatum gen. et sp. nov. and P. minor gen. et sp. nov. Several Early Eocene species (mostly unnamed) from Europe and North America are also considered to belong to this genus, including Proneuronema wehri (Makarkin et al., 2003), comb. nov. The new genus is probably most closely related to the extant genus Neuronema McLachlan, 1869, and therefore assigned to Drepanepteryginae. A critical review of Cenozoic taxa of the Megalomus-like hemerobiids is provided. Prophlebonema Krüger, 1923 is considered as a new subjective synonym of Drepanepteryx Leach, 1815. Plesiorobius Klimaszewski et Kevan, 1986 from the Late Cretaceous is considered as belonging to Hemerobiidae. It is noted that wing venation variability in species of Hemerobiidae (including these fossils) is high. Some of their venational abnormalities (anomalies) may have phylogenetic implications.

  2. Injuries from larval Neuroptera.

    PubMed

    Southcott, R V

    1991-03-04

    Bites from larval Neuroptera (lacewings) in Australia are recorded. This order of insects is among the most primitive of the higher or holometabolous insects, those with a life-history of complete metamorphoses--namely, from egg to larva to pupa to adult. The mobile instars (larva and adult) live by predation. Larvae have generally long, sharp-pointed jaws, which are used in piercing and sucking prey. One family (Chrysopidae) has larvae with jaws capable of piercing human skin. The larvae seek their prey on leaves of shrubs and trees, and occasionally cause bites to gardeners and others, but as these larvae commonly camouflage themselves with the cast skins of their prey (small insects and mites), as well as other material, such as caterpillar faeces and scraps of vegetable debris, they are mostly not recognised by their human victims. The effects are of immediate local pain with erythema and a local papule, lasting a few hours or at most a day or so. No treatment is required.

  3. A new species of Hemerobiella Kimmins (Neuroptera, Hemerobiidae) from Venezuela with notes on the genus.

    PubMed

    Sosa, Francisco; Lara, Rogéria I R; Martins, Caleb C

    2015-10-09

    Hemerobiella periotoi Sosa & Lara sp. nov. is described from Venezuela. The new species was collected at the edges of a mature cloud forest in Lara state. This is the third species known in Hemerobiella Kimmins, and the second recorded from Venezuela. Additionally, new Venezuelan records and illustrations of H. oswaldi Monserrat, as well as, a key to Hemerobiella species are provided.

  4. Potential indicator species of climate changes occurring in Québec, Part 1: the small brown lacewing fly Micromus posticus (Walker) (Neuroptera: Hemerobiidae)

    PubMed Central

    2013-01-01

    Abstract Micromus posticus (Walker) is a small brown lacewing fly rarely collected in Canada and represented in collections by only a limited number of specimens. Indeed, fewer than 50 specimens were captured in Québec and Ontario over the last century, all within a small area delimited by the northern shore of Lake Erie, Ottawa and Montréal. Aylmer, located on the north shore of the Ottawa River, northwest of Ottawa, is a new, most southwestern locality record of this species for Québec. The Aylmer specimens were collected 1-7 days later than any of the known specimens collected elsewhere in Québec or in Ontario, and 16-22 days later than in the neighbouring localities, indicating an apparent phenological shift. PMID:24723766

  5. New data on brown lacewing genus Wesmaelius Krüger, 1922 from China (Neuroptera, Hemerobiidae), with a key to Chinese species.

    PubMed

    Zhao, Yang; Tian, Yanlin; Liu, Zhiqi

    2017-06-01

    A new species of the genus Wesmaelius is described from China: Wesmaelius dissectus sp. nov., which was found in Sichuan province. Wesmaelius ravus (Withycombe, 1923) was recorded in China for the first time in Hubei province and Inner Mongolia. The Wesmaelius helanensis Tian & Liu, 2011 is redescribed, with the first discovery of female in China. Updated keys to the adult males and females of the Wesmaelius from China are also provided.

  6. Fauna europaea: neuropterida (raphidioptera, megaloptera, neuroptera).

    PubMed

    Aspöck, Ulrike; Aspöck, Horst; Letardi, Agostino; de Jong, Yde

    2015-01-01

    Fauna Europaea provides a public web-service with an index of scientific names of all living European land and freshwater animals, their geographical distribution at country level (up to the Urals, excluding the Caucasus region), and some additional information. The Fauna Europaea project covers about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies, which is much more than the originally projected number of 100,000 species. This represents a huge effort by more than 400 contributing specialists throughout Europe and is a unique (standard) reference suitable for many users in science, government, industry, nature conservation and education. For Neuropterida, data from three Insect orders (Raphidioptera, Megaloptera, Neuroptera), comprising 15 families and 397 species, are included.

  7. Fauna Europaea: Neuropterida (Raphidioptera, Megaloptera, Neuroptera)

    PubMed Central

    2015-01-01

    Abstract Fauna Europaea provides a public web-service with an index of scientific names of all living European land and freshwater animals, their geographical distribution at country level (up to the Urals, excluding the Caucasus region), and some additional information. The Fauna Europaea project covers about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies, which is much more than the originally projected number of 100,000 species. This represents a huge effort by more than 400 contributing specialists throughout Europe and is a unique (standard) reference suitable for many users in science, government, industry, nature conservation and education. For Neuropterida, data from three Insect orders (Raphidioptera, Megaloptera, Neuroptera), comprising 15 families and 397 species, are included. PMID:25941450

  8. ESTs from developed embryos, Chrysoperla rufilabris (Neuroptera: Chrysopidae)

    USDA-ARS?s Scientific Manuscript database

    Chrysoperla rufilabris (Burmeister) (Neuroptera: Chrysopidae), a green lacewing, is a generalist predator commercially sold as a biological control product. Very few molecular genetic analyses of this or similar organisms have been performed. To establish a baseline of expressed sequence data for th...

  9. Head anatomy of adult Sisyra terminalis (Insecta: Neuroptera: Sisyridae)--functional adaptations and phylogenetic implications.

    PubMed

    Randolf, Susanne; Zimmermann, Dominique; Aspöck, Ulrike

    2013-11-01

    The external and internal head anatomy of Sisyra terminalis is described in detail and compared with data from literature. A salivary pump consisting of a peculiar reservoir and a hitherto unknown muscle, M. ductus salivarii, is newly described for Neuroptera. The upward folded paraglossae form a secondary prolongation of the salivary system. These structures are discussed as functional adaptations for feeding on aphids and desiccated honeydew. In a phylogenetic analysis the basal position of the Sisyridae within Neuroptera is retrieved. The following new synapomorphies are postulated: (1) for Neuropterida, the presence of a M. submentomentalis and prepharyngeal ventral transverse muscles, and the absence of a M. submentopraementalis; (2) for Neuroptera and Sialidae, the presence of a mandibular gland; (3) for Neuroptera, the presence of four scapopedicellar muscles; (4) for Neuroptera exclusive Nevrorthidae and Sisyridae, the weakening of dorsal tentorial arms, the presence of a M. tentoriomandibularis medialis superior and the shifted origin of M. tentoriocardinalis.

  10. First record of spongillaflies (Neuroptera: Sisyridae) from Colombia.

    PubMed

    Ardila-Camacho, Adrian; Martins, Caleb C

    2017-06-09

    The family Sisyridae (spongillaflies) is a small group of neuropterans distributed in all Biogeographic realms (Cover & Resh 2008). As in Nevrorthidae, Sisyridae is distinguished among other Neuroptera families by their strictly aquatic larvae (Wichard et al. 2002). The phylogenetic relationships of Sisyridae have been controversial i.e. the family was recovered at different positions within the Neuropterida phylogeny as a basal group among members of Neuroptera or whitin the suborder Hemerobiiformia with a very variable placement (Randolf et al. 2013). Currently the species richness of this group reaches 70 representatives in four genera, namely Climacia McLachlan, 1869 (New World), Sisyra Burmeister, 1839 (cosmopolitan), Sisyrina Banks, 1939 (Africa, Asia and Australia), and Sisyborina Monserrat, 1981 (endemic to Africa) (Parfin & Gurney 1956; Cover & Resh 2008).

  11. The First Mitochondrial Genomes of Antlion (Neuroptera: Myrmeleontidae) and Split-footed Lacewing (Neuroptera: Nymphidae), with Phylogenetic Implications of Myrmeleontiformia

    PubMed Central

    Yan, Yan; Wang, Yuyu; Liu, Xingyue; Winterton, Shaun L.; Yang, Ding

    2014-01-01

    In the holometabolous insect order Neuroptera (lacewings), the cosmopolitan Myrmeleontidae (antlions) are the most species-rich family, while the closely related Nymphidae (split-footed lacewings) are a small endemic family from the Australian-Malesian region. Both families belong to the suborder Myrmeleontiformia, within which controversial hypotheses on the interfamilial phylogenetic relationships exist. Herein, we describe the complete mitochondrial (mt) genomes of an antlion (Myrmeleon immanis Walker, 1853) and a split-footed lacewing (Nymphes myrmeleonoides Leach, 1814), representing the first mt genomes for both families. These mt genomes are relatively small (respectively composed of 15,799 and 15,713 bp) compared to other lacewing mt genomes, and comprise 37 genes (13 protein coding genes, 22 tRNA genes and two rRNA genes). The arrangement of these two mt genomes is the same as in most derived Neuroptera mt genomes previously sequenced, specifically with a translocation of trnC. The start codons of all PCGs are started by ATN, with an exception of cox1, which is ACG in the M. immanis mt genome and TCG in N. myrmeleonoides. All tRNA genes have a typical clover-leaf structure of mitochondrial tRNA, with the exception of trnS1(AGN). The secondary structures of rrnL and rrnS are similar with those proposed insects and the domain I contains nine helices rather than eight helices, which is common within Neuroptera. A phylogenetic analysis based on the mt genomic data for all Neuropterida sequenced thus far, supports the monophyly of Myrmeleontiformia and the sister relationship between Ascalaphidae and Myrmeleontidae. PMID:25170303

  12. Pharmacophagy in green lacewings (Neuroptera: Chrysopidae: Chrysopa spp.)?

    PubMed Central

    Chauhan, Kamal; Zhang, Qing-He

    2016-01-01

    Green lacewings (Neuroptera: Chrysopidae) are voracious predators of aphids and other small, soft-bodied insects and mites. Earlier, we identified (1R,2S,5R,8R)-iridodial from wild males of the goldeneyed lacewing, Chrysopa oculata Say, which is released from thousands of microscopic dermal glands on the abdominal sterna. Iridodial-baited traps attract C. oculata and other Chrysopa spp. males into traps, while females come to the vicinity of, but do not usually enter traps. Despite their healthy appearance and normal fertility, laboratory-reared C. oculata males do not produce iridodial. Surprisingly, goldeneyed lacewing males caught alive in iridodial-baited traps attempt to eat the lure and, in Asia, males of other Chrysopa species reportedly eat the native plant, Actinidia polygama (Siebold & Zucc.) Maxim. (Actinidiaceae) to obtain the monoterpenoid, neomatatabiol. These observations suggest that Chrysopa males must sequester exogenous natural iridoids in order to produce iridodial; we investigated this phenomenon in laboratory feeding studies. Lacewing adult males fed various monoterpenes reduced carbonyls to alcohols and saturated double bonds, but did not convert these compounds to iridodial. Only males fed the common aphid sex pheromone component, (1R,4aS,7S,7aR)-nepetalactol, produced (1R,2S,5R,8R)-iridodial. Furthermore, although C. oculata males fed the second common aphid sex pheromone component, (4aS,7S,7aR)-nepetalactone, did not produce iridodial, they did convert ∼75% of this compound to the corresponding dihydronepetalactone, and wild C. oculata males collected in early spring contained traces of this dihydronepetalactone. These findings are consistent with the hypothesis that Chrysopa males feed on oviparae (the late-season pheromone producing stage of aphids) to obtain nepetalactol as a precursor to iridodial. In the spring, however, wild C. oculata males produce less iridodial than do males collected later in the season. Therefore, we further

  13. A new genus of Saucrosmylinae (Insecta, Neuroptera) from the Middle Jurassic of Daohugou, Inner Mongolia, China.

    PubMed

    Liu, Qing; Zhang, Haichun; Wang, Bo; Fang, Yan; Zheng, Daran; Zhang, Qi; Jarzembowski, Edmund A

    2013-11-14

    A new genus and new species of Saucrosmylinae (Insecta, Neuroptera) is described as Huiyingosmylus bellus gen. et sp. nov., based on a well-preserved forewing from the Middle Jurassic of Daohugou, Inner Mongolia, China. Huiyingosmylus gen. nov. is characterized by the large size of forewing, relatively wide R1 space with several rows of cells, anteriorly bent Rs, dense crossveins over the entire wing and undulate outer margin. A key to the genera of Saucrosymylinae is provided.

  14. Patterns of developmental stability of Chrysopa perla L. (Neuroptera: Chrysopidae) in response to environmental pollution

    SciTech Connect

    Clarke, G.M. )

    1993-12-01

    The level of developmental stability of Chrysopa perla L. (Neuroptera: Chrysopidae) collected from control and contaminated sites in the vicinity of an agrochemical manufacturing facility was assessed using fluctuating asymmetry and phenodeviant analysis. There were no significant differences in the level of asymmetry between control and contaminated sites for four characters. The number of phenodeviants for two characters was significantly greater at sites located in close proximity to the facility compared with a control site. Results are discussed with reference to the relationship between asymmetry and phenodeviants as indicators of stability and the use of development stability as a means of assessing environmental quality.

  15. An interesting new genus of Berothinae (Neuroptera: Berothidae) from the early Eocene Green River Formation, Colorado.

    PubMed

    Makarkin, Vladimir N

    2017-01-30

    Xenoberotha angustialata gen. et sp. nov. (Neuroptera: Berothidae) is described from the early Eocene of the Parachute Creek Member of the Green River Formation (U.S.A., Colorado). It is assigned to Berothinae as an oldest known member of the subfamily based on the presence of scale-like setae on the foreleg coxae. Distal crossveins of the fourth (outer) gradate series which are located very close to the wing margin in Xenoberotha gen. nov. is a character state previously unknown in Berothinae.

  16. A remarkable new genus of Protosmylinae (Neuroptera: Osmylidae) from late Eocene Florissant, Colorado.

    PubMed

    Makarkin, Vladimir N

    2017-05-18

    Pseudosmylidia relicta gen. et sp. nov. (Neuroptera: Osmylidae) is described from the late Eocene of Florissant (U.S.A., Colorado). It is assigned to the subfamily Protosmylinae based on the presence of two venational features characteristic of the subfamily: most crossveins in the radial to intramedial spaces of the forewing are arranged in four gradate series, and CuP is short and simple or forked only once in the hind wing. This genus is remarkable by CuP in the forewing bearing few pectinate branches. This is the only genus of extant and Cenozoic fossil Osmylidae in which this plesiomorphic condition is retained.

  17. A new species of Spiroberotha Adams 1989 (Neuroptera: Berothidae) and the first record of the genus in Brazil.

    PubMed

    Machado, Renato Jose Pires; Krolow, Tiago Kütter

    2016-03-20

    The genus Spiroberotha Adams, 1989 is classified in Berothidae (Neuroptera) with two described species: S. fernandezi Adams, 1989 from Venezuela and S. sanctarosae Adams, 1989 from Colombia, Costa Rica and Venezuela. Here we describe a new species, S. tocantinensis n. sp., from Palmas, Tocantins, Brazil. This is the first record of the genus in Brazil, extending its geographical distribution.

  18. Using plant volatile traps to develop phenology models for natural enemies: an example using Chrysopa nigricornis (Burmeister) (Neuroptera: Chrysopidae)

    USDA-ARS?s Scientific Manuscript database

    A model predicting phenology of adult Chrysopa nigricornis (Burmeister) (Neuroptera: Chrysopidae) in orchards was developed from field (trapping) data supplemented with developmental data collected under laboratory conditions. Lower and upper thresholds of 10.1°C and 29.9 °C, respectively, were es...

  19. Volatile semiochemicals increase trap catch of Green Lacewings (Neuroptera: Chrysopidae) and Flower Flies (Diptera: Syrphidae) in corn and soybean plots

    USDA-ARS?s Scientific Manuscript database

    Knowledge about beneficial insects’ responsiveness to plant-produced volatiles may improve understanding of insect chemical ecology and lead to practical means of enhancing ecosystem services. This study reports on the attractiveness of various volatile chemicals to green lacewings (Neuroptera: Chr...

  20. First records of Ungla Navás (Neuroptera: Chrysopidae) from Venezuela, with descriptions of seven new species.

    PubMed

    Sosa, Francisco

    2015-09-15

    Ungla Navás is a small and relatively unstudied genus of Neotropical Chrysopini (Neuroptera: Chrysopidae: Chrysopinae) from Central and South America. Here, the genus is reported from Venezuela for the first time, and seven new species are described: Ungla demarmelsi sp. nov.; Ungla diazi sp. nov.; Ungla curimaguensis sp. nov.; Ungla martinsi sp. nov.; Ungla nigromaculifrons sp. nov.; Ungla rubricosa sp. nov.; and Ungla yutajensis sp. nov.

  1. Comparative Mitogenomic Analysis Reveals Sexual Dimorphism in a Rare Montane Lacewing (Insecta: Neuroptera: Ithonidae)

    PubMed Central

    Wang, Yuyu; Liu, Xingyue; Winterton, Shaun L.; Yan, Yan; Chang, Wencheng; Yang, Ding

    2013-01-01

    Rapisma McLachlan, 1866 (Neuroptera: Ithonidae) is a rarely encountered genus of lacewings found inmontane tropical or subtropical forests in Oriental Asia. In Xizang Autonomous Region (Tibet) of China there are two sympatrically distributed species of Rapisma, i.e. Rapisma xizangense Yang, 1993 and Rapisma zayuanum Yang, 1993, in which R. xizangense is only known as male and has dull brownish body and wing coloration, while R. zayuanum is only known as female and has bright green body and wing coloration. In order to clarify the relationship between these two species, we determined the complete mitochondrial (mt) genomes of R. xizangense and R. zayuanum for the first time. The mt genomes are 15,961 and 15,984 bp in size, respectively, and comprised 37 genes (13 protein coding genes, 22 tRNA genes and 2 rRNA genes). A major noncoding (control) region was 1,167 bp in R. xizangense and 1,193 bp in R. zayuanum with structural organizations simpler than that reported in other Neuropterida species, notably lacking conserved blocks or long tandem repeats. Besides similar mitogenomic structure, the genetic distance between R. xizangense and R. zayuanum based on two rRNAs and 13 protein coding genes (PCGs) as well as the genetic distance between each of these two Tibetan Rapisma species and a Thai Rapisma species (R. cryptunum) based on partial rrnL show that R. xizangense and R. zayuanum are most likely conspecific. Thus, R. zayuanum syn. nov. is herein treated as a junior synonym of R. xizangense. The present finding represents a rare example of distinct sexual dimorphism in lacewings. This comparative mitogenomic analysis sheds new light on the identification of rare species with sexual dimorphism and the biology of Neuroptera. PMID:24391859

  2. A Remarkable New Family of Jurassic Insects (Neuroptera) with Primitive Wing Venation and Its Phylogenetic Position in Neuropterida

    PubMed Central

    Yang, Qiang; Makarkin, Vladimir N.; Winterton, Shaun L.; Khramov, Alexander V.; Ren, Dong

    2012-01-01

    Background Lacewings (insect order Neuroptera), known in the fossil record since the Early Permian, were most diverse in the Mesozoic. A dramatic variety of forms ranged in that time from large butterfly-like Kalligrammatidae to minute two-winged Dipteromantispidae. Principal Findings We describe the intriguing new neuropteran family Parakseneuridae fam. nov. with three new genera and 15 new species from the Middle Jurassic of Daohugou (Inner Mongolia, China) and the Early/Middle Jurassic of Sai-Sagul (Kyrgyzstan): Parakseneura undula gen. et sp. nov., P. albomacula gen. et sp. nov., P. curvivenis gen. et sp. nov., P. nigromacula gen. et sp. nov., P. nigrolinea gen. et sp. nov., P. albadelta gen. et sp. nov., P. cavomaculata gen. et sp. nov., P. inflata gen. et sp. nov., P. metallica gen. et sp. nov., P. emarginata gen. et sp. nov., P. directa gen. et sp. nov., Pseudorapisma jurassicum gen. et sp. nov., P. angustipenne gen. et sp. nov., P. maculatum gen. et sp. nov. (Daohugou); Shuraboneura ovata gen. et sp. nov. (Sai-Sagul). The family comprises large neuropterans with most primitive wing venation in the order indicated by the presence of ScA and AA1+2, and the dichotomous branching of MP, CuA, CuP, AA3+4, AP1+2. The phylogenetic position of Parakseneuridae was investigated using a phylogenetic analysis of morphological scoring for 33 families of extinct and extant Neuropterida combined with DNA sequence data for representatives of all extant families. Parakseneuridae were recovered in a clade with Osmylopsychopidae, Prohemerobiidae, and Ithonidae. Conclusions/Significance The presence of the presumed AA1+2 in wings of Parakseneuridae is a unique plesiomorphic condition hitherto unknown in Neuropterida, the clade comprising Neuroptera, Megaloptera, Raphidioptera. The relative uncertainty of phylogenetic position of Parakseneuridae and the majority of other families of Neuroptera reflects deficient paleontological data, especially from critical important periods

  3. A remarkable new family of Jurassic insects (Neuroptera) with primitive wing venation and its phylogenetic position in Neuropterida.

    PubMed

    Yang, Qiang; Makarkin, Vladimir N; Winterton, Shaun L; Khramov, Alexander V; Ren, Dong

    2012-01-01

    Lacewings (insect order Neuroptera), known in the fossil record since the Early Permian, were most diverse in the Mesozoic. A dramatic variety of forms ranged in that time from large butterfly-like Kalligrammatidae to minute two-winged Dipteromantispidae. We describe the intriguing new neuropteran family Parakseneuridae fam. nov. with three new genera and 15 new species from the Middle Jurassic of Daohugou (Inner Mongolia, China) and the Early/Middle Jurassic of Sai-Sagul (Kyrgyzstan): Parakseneura undula gen. et sp. nov., P. albomacula gen. et sp. nov., P. curvivenis gen. et sp. nov., P. nigromacula gen. et sp. nov., P. nigrolinea gen. et sp. nov., P. albadelta gen. et sp. nov., P. cavomaculata gen. et sp. nov., P. inflata gen. et sp. nov., P. metallica gen. et sp. nov., P. emarginata gen. et sp. nov., P. directa gen. et sp. nov., Pseudorapisma jurassicum gen. et sp. nov., P. angustipenne gen. et sp. nov., P. maculatum gen. et sp. nov. (Daohugou); Shuraboneura ovata gen. et sp. nov. (Sai-Sagul). The family comprises large neuropterans with most primitive wing venation in the order indicated by the presence of ScA and AA1+2, and the dichotomous branching of MP, CuA, CuP, AA3+4, AP1+2. The phylogenetic position of Parakseneuridae was investigated using a phylogenetic analysis of morphological scoring for 33 families of extinct and extant Neuropterida combined with DNA sequence data for representatives of all extant families. Parakseneuridae were recovered in a clade with Osmylopsychopidae, Prohemerobiidae, and Ithonidae. The presence of the presumed AA1+2 in wings of Parakseneuridae is a unique plesiomorphic condition hitherto unknown in Neuropterida, the clade comprising Neuroptera, Megaloptera, Raphidioptera. The relative uncertainty of phylogenetic position of Parakseneuridae and the majority of other families of Neuroptera reflects deficient paleontological data, especially from critical important periods for the order, earliest Triassic and latest Triassic

  4. Cytogenetic study on antlions (Neuroptera, Myrmeleontidae): first data on telomere structure and rDNA location

    PubMed Central

    Kuznetsova, Valentina G.; Khabiev, Gadzhimurad N.; Anokhin, Boris A.

    2016-01-01

    Abstract Myrmeleontidae, commonly known as “antlions”, are the most diverse family of the insect order Neuroptera, with over 1700 described species (in 191 genera) of which 37 species (in 21 genera) have so far been studied in respect to standard karyotypes. In the present paper we provide first data on the occurrence of the “insect-type” telomeric repeat (TTAGG)n and location of 18S rDNA clusters in the antlion karyotypes studied using fluorescence in situ hybridization (FISH). We show that males of Palpares libelluloides (Linnaeus, 1764) (Palparinae), Acanthaclisis occitanica (Villers, 1789) (Acanthaclisinae) and Distoleon tetragrammicus (Fabricius, 1798) (Nemoleontinae) have rDNA clusters on a large bivalent, two last species having an additional rDNA cluster on one of the sex chromosomes, most probably the X. (TTAGG)n - containing telomeres are clearly characteristic of Palpares libelluloides and Acanthaclisis occitanica; the presence of this telomeric motif in Distoleon tetragrammicus is questionable. In addition, we detected the presence of the (TTAGG)n telomeric repeat in Libelloides macaronius (Scopoli, 1763) from the family Ascalaphidae (owlflies), a sister group to the Myrmeleontidae. We presume that the “insect” motif (TTAGG)n was present in a common ancestor of the families Ascalaphidae and Myrmeleontidae within the neuropteran suborder Myrmeleontiformia. PMID:28123685

  5. Development of Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) on pollen from Bt-transgenic and conventional maize

    PubMed Central

    Meissle, Michael; Zünd, Jan; Waldburger, Mario; Romeis, Jörg

    2014-01-01

    Maize (Zea mays) pollen is highly nutritious and can be used by predatory arthropods to supplement or replace a carnivorous diet. We demonstrate that maize pollen can be utilized by larvae of the green lacewing, Chrysoperla carnea (Neuroptera: Chrysopidae) under laboratory conditions. Complete development on maize pollen was not possible, but 25% of neonates reached the third instar. When only one instar was fed with pollen and the other two instars with eggs of Ephestia kuehniella (Lepidoptera: Pyralidae), 58–87% of the larvae reached the pupal stage. The experiments included pollen produced by nine cultivars: three genetically modified (GM) cultivars expressing the Bacillus thuringiensis proteins Cry1Ab or Cry3Bb1, their corresponding non-transformed near-isolines, and three conventional cultivars. Maize cultivars were grown in two batches in a glasshouse. Their pollen differed by up to 59% in total protein content, 25% in C:N ratio, and 14% in grain diameter, but the differences were inconsistent and depended on the batch. Lacewing performance was not affected by maize cultivar. For environmental risk assessment of GM plants, in planta studies must consider the variability among conventional cultivars, individual plants, batches, and environmental conditions when evaluating the ecological significance of differences observed between GM and near-isolines. PMID:25082074

  6. The Potential Effect of Bt Maize on Chrysoperla pudica (Neuroptera: Chrysopidae).

    PubMed

    Van Den Berg, J; Warren, J F; Du Plessis, H

    2017-02-17

    Previous studies into third trophic level exposure of Chrysoperla spp. (Neuroptera: Chrysopidae) to Cry1Ab proteins produced by Bt crops yielded contradicting results. These contradictions were largely ascribed to differences in prey quality and exposure methods. In this study, we used healthy prey to expose lacewing larvae to Cry1Ab protein produced by Bt maize, and also determined the concentration of this protein at different trophic levels. Experiments were conducted in which Chrysoperla pudica (Navás) larvae were fed different diets which included aphids and healthy Bt-resistant Busseola fusca (Fuller) (Lepidoptera: Noctuidae) larvae feeding on Bt maize tissue. Lacewing larval and pupal development times as well as overall mortality were determined. The concentration of Cry1Ab protein in B. fusca larvae were fourfold reduced compared with that in leaf tissue and was below detection level in lacewing larvae. Survival to the pupal stage was higher than 96% in all treatments. Larval and pupal development periods did not differ significantly between treatments in which prey fed on Bt or non-Bt maize. This study showed feeding on healthy prey that consumed Cry1Ab protein has no adverse effect on the biology of C. pudica.

  7. Familial Clarification of Saucrosmylidae stat. nov. and New Saucrosmylids from Daohugou, China (Insecta, Neuroptera)

    PubMed Central

    Fang, Hui; Ren, Dong; Wang, Yongjie

    2015-01-01

    Backgound Saucrosmylids are characterized by the typically large body size, complicated venation and diverse wing markings, which were only discovered in Middle Jurassic of Daohugou, Ningcheng county, Inner Mongolia, China. Principal Findings Saucrosmylinae Ren, 2003, originally included as a subfamily in the Osmylidae, was transferred and elevated to family rank based on the definitive synapomorphic character. The updated definition of Saucrosmylidae stat. nov. was outlined in detail: presence of nygma and trichosors; diverse markings on membrane; complicated cross-veins; distal fusion of Sc and R1; expanded space between R1 and Rs having 2–7 rows of cells that should be a synapomorphic character of the family; proximal MP fork. And the previous misuses of Saucrosmylidae are also clarified. Furthermore, a new genus with a new species and an indeterminate species of Saucrosmylidae are described as Ulrikezza aspoeckae gen. et sp. nov. and Ulrikezza sp. from the Middle Jurassic of Daohugou, Inner Mongolia, China. A key to genera of Saucrosmylidae is provided. Conclusions/Significance The intriguing group represents a particular lineage of Neuroptera in the Mesozoic Era. The familial status of Saucrosmylidae was firstly advanced that clarified the former incorrect citation and use of the family name. As an extinct clade, many species of the saucrosmylids were erected just based on a single fore- or hindwing, and it should be realized that providing more stable characters is necessary when describing new lacewing taxa just based on an isolated hindwing. It is vital for the systematics of Saucrosmylidae. PMID:26485027

  8. Loss of genetic variability induced by Agroecosystems: Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) as a case study.

    PubMed

    Morales, A C; Lavagnini, T C; Freitas, S

    2013-02-01

    Four species of green lacewings occur in Brazil, of which Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) exhibits the widest geographical distribution. Chrysoperla externa is a predatory insect that is potentially useful as a biological control agent of agricultural pests. Studies on the genetic diversity of lacewing populations are essential to reduce the environmental and economic harm that may be caused by organisms with a low ability to adapt to the adverse and/or different environmental conditions to which they are exposed. We used the cytochrome oxidase I mitochondrial gene as a molecular marker to investigate the genetic diversity of green lacewing species collected from native and agroecosystem environments. Populations derived from native areas showed higher rates of genetic variability compared to populations from agroecosystems. Demographic changes in the form of population expansion were observed in agroecosystems, whereas populations in the native environment appeared stable over time. A statistical analysis showed significant genetic structure between each of the sampled groups, combined with its complete absence within each group, corroborating each group's identity. We infer that the loss of variability exhibited by populations from the agroecosystems is the result of genetic drift by means of the founder effect, a similar effect that has been observed in other introduced populations. Agroecosystems might therefore function as exotic areas for green lacewings, even when these areas are within the normal range of the species.

  9. Impact of insect growth regulators on the predator Ceraeochrysa cincta (Schneider) (Neuroptera: Chrysopidae).

    PubMed

    Rugno, Gabriel Rodrigo; Zanardi, Odimar Zanuzo; Bajonero Cuervo, Johanna; de Morais, Matheus Rovere; Yamamoto, Pedro Takao

    2016-07-01

    The generalist predator Ceraeochrysa cincta (Schneider) (Neuroptera: Chrysopidae) is an important biological control agent of several arthropod pests in different agroecosystems. This study assessed the lethal and sublethal effects of six insect growth regulators sprayed on first-instar larvae of C. cincta. Lufenuron and diflubenzuron were highly harmful to first-instar larvae of C. cincta, causing 100 % of mortality before they reached the second instar. Buprofezin caused ~25 % mortality of the larvae and considerably reduced the fecundity and longevity of the insects, but substantially increased the proportion of females in the surviving population of C. cincta. Methoxyfenozide and tebufenozide did not affect the duration and survival of the immature stages, but methoxyfenozide significantly reduced the fecundity and longevity of the insects. Pyriproxyfen reduced the survival of the larval stage by 19.5 %, but did not affect the development, survival and reproduction of the surviving individuals. Based on reduction coefficient, the insecticides diflubenzuron and lufenuron were considered harmful to C. cincta, whereas buprofezin and methoxyfenozide were slightly harmful and tebufenozide and pyriproxyfen were harmless. The estimation of life-table parameters indicated that buprofezin and methoxyfenozide significantly reduced the R o , r and λ of C. cincta, whereas pyriproxyfen and tebufenozide caused no adverse effect on population parameters, indicating that these insecticides could be suitable for use in pest management programs towards the conservation and population increase of the predator in agroecosystems. However, more studies should be conducted to evaluate the compatibility of these insecticides with the predator C. cincta under semi-field and field conditions.

  10. First fossil larvae of Berothidae (Neuroptera) from Baltic amber, with notes on the biology and termitophily of the family.

    PubMed

    Wedmann, Sonja; Makarkin, Vladimir N; Weiterscham, Thomas; Hörnschemeyer, Thomas

    2013-01-01

    Four fossil larvae of Berothidae (Neuroptera) from Baltic amber are described in detail, and the main characters of a fifth larva are discussed briefly. Two first instars very probably belong to the Berothinae; the subfamilial affinities of three othe (probably full-grown) larvae are unclear. The latter are characterized by features not found so far in extant taxa of Berothi dae: antennae and labial palps with six to seven segments; ecdysial cleavage lines consist of only frontal and coronal sutures (the lateral suture is absent); pronotal sclerites large and very close to each other along midline. However, these larvae belong with certainty to Berothidae as indicated by the structure of their mouthparts, and their general appearance. Morphological and biological data on the larvae of Berothidae are summarized and analyzed. It is presumed that termitophily might have evolved during the Cretaceous (or in the early Cenozoic), and only in Berothinae (or in subfamilies closely related to this group). The Baltic amber berothid assemblage apparently included both termitophilous and noni termitophilous larvae.

  11. A charismatic new species of green lacewing discovered in Malaysia (Neuroptera, Chrysopidae): the confluence of citizen scientist, online image database and cybertaxonomy.

    PubMed

    Winterton, Shaun L; Guek, Hock Ping; Brooks, Stephen J

    2012-01-01

    An unusual new species of green lacewing (Neuroptera: Chrysopidae: Semachrysa jadesp. n.) is described from Selangor (Malaysia) as a joint discovery by citizen scientist and professional taxonomists. The incidental nature of this discovery is underscored by the fact that the species was initially photographed and then released, with images subsequently posted to an online image database. It was not until the images in the database were randomly examined by the professional taxonomists that it was determined that the species was in fact new. A subsequent specimen was collected at the same locality and is described herein along with another specimen identified from nearby Sabah.

  12. A charismatic new species of green lacewing discovered in Malaysia (Neuroptera, Chrysopidae): the confluence of citizen scientist, online image database and cybertaxonomy

    PubMed Central

    Winterton, Shaun L.; Guek, Hock Ping; Brooks, Stephen J.

    2012-01-01

    Abstract An unusual new species of green lacewing (Neuroptera: Chrysopidae: Semachrysa jade sp. n.) is described from Selangor (Malaysia) as a joint discovery by citizen scientist and professional taxonomists. The incidental nature of this discovery is underscored by the fact that the species was initially photographed and then released, with images subsequently posted to an online image database. It was not until the images in the database were randomly examined by the professional taxonomists that it was determined that the species was in fact new. A subsequent specimen was collected at the same locality and is described herein along with another specimen identified from nearby Sabah. PMID:22936863

  13. Volatile Semiochemicals Increase Trap Catch of Green Lacewings (Neuroptera: Chrysopidae) and Flower Flies (Diptera: Syrphidae) in Corn and Soybean Plots.

    PubMed

    Hesler, Louis S

    2016-01-01

    This study reports on the attractiveness of volatile chemicals to green lacewings (Neuroptera: Chrysopidae) and flower flies (Diptera: Syrphidae) as measured by catch on yellow sticky traps within corn [Zea mays L. (Cyperales: Poaceae)] and soybean [Glycine max (L.) Merr. (Fabales: Fabaceae)] plots. Green lacewings were attracted to eugenol-baited traps in two tests in soybean plots. Follow-up testing in corn showed that catch of green lacewings was enhanced when traps were baited with eugenol, its structural analog isoeugenol, or 2-phenylethanol; trap catch of green lacewings was greater with these compounds than with structural analog, 4-alllylanisole. In a follow-up test in soybean, more green lacewings were caught on traps baited with isoeugenol than with 4-allylanisole. Catch did not differ among traps baited with eugenol, isoeugenol, or 2-phenylethanol or among those baited with eugenol, 2-phenylethanol, or the ethanol control. In a 6-wk experiment in soybean, green lacewings were attracted to eugenol-baited traps in 5 of 6 wks but to traps baited with structural analog methyl eugenol in only 1 wk. Flower flies were attracted to 2-phenylethanol in initial tests in corn and soybean plots. Subsequent testing in soybeans with 2-phenylethanol and structural analogs confirmed attraction to 2-phenylethanol and also showed attractancy of 2-phenylacetaldehyde but not benzylamine. A 6-wk test in soybean found that flower flies were also attracted to traps baited with either eugenol or methyl eugenol. This is the first report of green lacewing attraction to eugenol and isoeugenol and first report of flower fly attraction to eugenol. Structure-activity relationships among attractants and practical aspects of their use are discussed.

  14. Volatile Semiochemicals Increase Trap Catch of Green Lacewings (Neuroptera: Chrysopidae) and Flower Flies (Diptera: Syrphidae) in Corn and Soybean Plots

    PubMed Central

    Hesler, Louis S.

    2016-01-01

    This study reports on the attractiveness of volatile chemicals to green lacewings (Neuroptera: Chrysopidae) and flower flies (Diptera: Syrphidae) as measured by catch on yellow sticky traps within corn [Zea mays L. (Cyperales: Poaceae)] and soybean [Glycine max (L.) Merr. (Fabales: Fabaceae)] plots. Green lacewings were attracted to eugenol-baited traps in two tests in soybean plots. Follow-up testing in corn showed that catch of green lacewings was enhanced when traps were baited with eugenol, its structural analog isoeugenol, or 2-phenylethanol; trap catch of green lacewings was greater with these compounds than with structural analog, 4-alllylanisole. In a follow-up test in soybean, more green lacewings were caught on traps baited with isoeugenol than with 4-allylanisole. Catch did not differ among traps baited with eugenol, isoeugenol, or 2-phenylethanol or among those baited with eugenol, 2-phenylethanol, or the ethanol control. In a 6-wk experiment in soybean, green lacewings were attracted to eugenol-baited traps in 5 of 6 wks but to traps baited with structural analog methyl eugenol in only 1 wk. Flower flies were attracted to 2-phenylethanol in initial tests in corn and soybean plots. Subsequent testing in soybeans with 2-phenylethanol and structural analogs confirmed attraction to 2-phenylethanol and also showed attractancy of 2-phenylacetaldehyde but not benzylamine. A 6-wk test in soybean found that flower flies were also attracted to traps baited with either eugenol or methyl eugenol. This is the first report of green lacewing attraction to eugenol and isoeugenol and first report of flower fly attraction to eugenol. Structure-activity relationships among attractants and practical aspects of their use are discussed. PMID:27531905

  15. Toxicity and Metabolism of Zeta-Cypermethrin in Field-Collected and Laboratory Strains of the Neotropical Predator Chrysoperla externa Hagen (Neuroptera: Chrysopidae).

    PubMed

    Haramboure, M; Smagghe, G; Niu, J; Christiaens, O; Spanoghe, P; Alzogaray, R A

    2017-03-09

    Resistance to pesticides has been studied in several insect pests, but information on the natural enemies of pests-including the Neotropical predator Chrysoperla externa Hagen (Neuroptera: Chrysopidae), a major biological control agent in South America-is lacking. We report here a comparative study between a field-collected strain of C. externa subjected to monthly sprayings of pyrethroids and neonicotinoids and a laboratory strain without exposure to pesticides. The tolerance of both strains against zeta-cypermethrin was similar, and addition of the synergist piperonyl butoxide increased the toxicity by 30% in both strains. Gas-chromatography analyses and mixed-function-oxidase measurements indicated similar values in both strains and also confirmed the key role of oxidative metabolism in this species. Because C. externa has maintained a tolerance to zeta-cypermethrin without previous pesticide exposure, this species could potentially be mass-reared and released in fields in the presence of pesticide pressure.

  16. The presence of the recurrent veinlet in the Middle Jurassic Nymphidae (Neuroptera): a unique character condition in Myrmeleontoidea

    PubMed Central

    Makarkin, Vladimir N.; Yang, Qiang; Shi, Chaofan; Ren, Dong

    2013-01-01

    Abstract A well-developed recurrent veinlet is found in the forewing of two species of Nymphidae from the Middle Jurassic locality of Daohugou (Inner Mongolia, China), Liminympha makarkini Ren & Engel and Daonymphes bisulca gen. et sp. n. This is the first record of this trait in the clade comprised of the superfamilies Myrmeleontoidea and Chrysopoidea. We interpret the recurrent veinlet in these species as a remnant of the condition present more basally in the psychopsoid + ithonoid + chrysopoid + myrmeleontoid clade (i.e., as a plesiomorphy). Other venational character states of Daonymphes bisulca of interest include the configuration of subcosta anterior (ScA), which is very similar to that of extant Nymphidae. We consider the short ScA terminating on ScP to be an autapomorphy of Neuroptera. PMID:24003318

  17. Rapid, high-throughput detection of azalea lace bug (Hemiptera: Tingidae) predation by Chrysoperla rufilabris (Neuroptera: Chrysopidae), using fluorescent-polymerase chain reaction primers.

    PubMed

    Rinehart, Timothy A; Boyd, David W

    2006-12-01

    Azalea lace bugs, Stephanitis pyrioides (Scott) (Hemiptera: Tingidae), are the most common pest of azaleas (Rhododendron spp.) in nursery production and the landscape. Although pesticides are commonly used to control lace bugs, natural enemies can be a significant source of lace bug mortality. Lacewings (Neuroptera: Chrysopidae) are natural enemies of lace bugs and easily consume them in laboratory studies. Field studies on lacewing biocontrol of azalea lace bugs are underway; however, monitoring lacewing predation in a nursery environment by direct observation is impractical. Here, we describe a fluorescent-polymerase chain reaction method to estimate S. pyrioides consumption based on the gut contents of lacewing predators. Lace bug DNA was detected in fed lacewings up to 32 h after ingestion. More than 80% of the ingested lace bugs were detected using our method with only one false positive result. The assay is both high-throughput and relatively inexpensive, making it a practical approach to documenting lace bug predation in the field.

  18. Study of individual and sex genetic diversity among each genus and between two genera of Chrysopa and Chrysoperla (Neuroptera, Chrysopidae) based on RAPD-PCR polymorphism.

    PubMed

    Mirmoayedi, Alinaghi; Kahrizi, Danial; Ebadi, Ali Akbar; Yari, Kheirollah; Mohammadi, Mehdi

    2012-09-01

    RAPD (random amplification of polymorphic DNA) was used to distinguish the genetic diversities between two genera of Chrysopa and Chrysoperla (Neuroptera, Chrysopidae). Sixty specimens were collected in different places in Kermanshah, west of Iran. The wing venation was used for identification of each type of two genera, and the gender was determined by study of external genitalia. 20 random primers were used for polymerase chain reaction. Then, the electrophoresis was used for separation of the PCR products on agarose gel. 294 bands were amplified, which 235 bands were polymorph and others (59s) determined as monomorph. The electrophoresis results showed that the primers OPA02 with 19 bands and OPA03 with 8 bands successively amplified the maximum and minimum of bands among the applied primers. The results showed that there are maximum of genetic diversity and minimum of genetic similarity between Chrysopa male (Chrysopa-M) and Chrysoperla female)Chrysoperla-F) population, in contrast, there are maximum of genetic similarity and minimum of genetic diversity between Chrysoperla-M and Chrysoperla-F, and Chrysopa-M and Chrysopa-F. There are also more genetic similarities, between males and females of Chrysopa and Chrysoperla, than between male of Chrysopa with female of Chrysoperla or vice versa.

  19. Metschnikowia chrysoperlae sp. nov., Candida picachoensis sp. nov. and Candida pimensis sp. nov., isolated from the green lacewings Chrysoperla comanche and Chrysoperla carnea (Neuroptera: Chrysopidae).

    PubMed

    Suh, Sung-Oui; Gibson, Cara M; Blackwell, Meredith

    2004-09-01

    Fourteen yeast isolates comprising three taxa were cultured from digestive tracts of adult Chrysoperla species (Neuroptera: Chrysopidae) and their eggs. The yeast taxa were distinguished based on an estimated molecular phylogeny, DNA sequences and traditional taxonomic criteria. The new yeasts are closely related to Metschnikowia pulcherrima but are sufficiently distinguished by sequence comparison of rRNA gene sequences to consider them as novel species. Here, three novel species are described and their relationships with other taxa in the Saccharomycetes are discussed. Metschnikowia chrysoperlae sp. nov. (type strain, NRRL Y-27615T = CBS 9803T) produced needle-shaped ascospores and was the only teleomorph found. Large numbers of chlamydospores similar to those observed in M. pulcherrima were also produced. The other two novel species are asexual yeasts, Candida picachoensis sp. nov. (type strain, NRRL Y-27607T = CBS 9804T) and Candida pimensis sp. nov. (type strain, NRRL Y-27619T = CBS 9805T), sister taxa of M. chrysoperlae and M. pulcherrima. A specialized relationship between yeasts and lacewing hosts may exist, because the yeasts were isolated consistently from lacewings only. Although M. chrysoperlae was isolated from eggs and adult lacewings, suggesting the possibility of vertical transmission, no yeast was isolated from larvae.

  20. Neotropical osmylids (Neuroptera, Osmylidae): Three new species of Isostenosmylus Krüger, 1913, new distributional records, redescriptions, checklist and key for the Neotropical species.

    PubMed

    Martins, Caleb Califre; Ardila-Camacho, Adrian; Aspöck, Ulrike

    2016-08-09

    Osmylidae is a small family of Neuroptera with a worldwide distribution. Only four subfamilies and five genera of Osmylidae have been reported to date for the Neotropical region, with a total of 16 species, whilst 200 species are known in the world. In this study three new species are described-Isostenosmylus bifurcatus n. sp., I. irroratus n. sp. and I. julianae n. sp. Moreover, species of Gumilla Navás, 1912 and Paryphosmylus Krüger, 1913 are redescribed; additionally one larva of Isostenosmylus sp. and the female of Isostenosmylus fasciatus Kimmins, 1940 are described. Images of type specimens of Neotropical species of Osmylidae are provided. New records of known species are reported and a distribution map is presented. An updated checklist and a key for Neotropical species of Osmylidae are provided.

  1. Mantidflies of Colombia (Neuroptera, Mantispidae).

    PubMed

    Ardila-Camacho, Adrian; García, Alexander

    2015-03-26

    This study revises the Mantispidae of Colombia. 151 adult specimens of 12 entomological museums of Colombia were examined and identified. On the basis of the specimens studied and a comprehensive literature search, it is determined that 20 nominal species (including two doubtful records) plus four proposed as new to science, in ten genera (Anchieta, Plega, Trichoscelia, Gerstaeckerella, Buyda, Climaciella, Dicromantispa, Entanoneura, Leptomantispa, and Zeugomantispa) and, three subfamilies (Symphrasinae, Drepanicinae, and Mantispinae) occur in Colombia. In addition, A. eurydella (Westwood), C. amapaensis Penny and P. fasciatella (Westwood) are redescribed, providing complementary information to the original descriptions. A list of Colombian Mantispidae, distribution maps and taxonomic keys to subfamilies, genera and species are included. Illustrations of the external morphology and male genitalia are provided for selected species. The taxonomic status of P. hagenella (Westwood) is discussed, and its diagnostic characters are redefined. Anchieta remipes (Gerstaecker) is newly transferred to this genus from Trichoscelia.

  2. Identification of plant families associated with the predators Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) and Hippodamia convergens Guérin-Menéville (Coleoptera: Coccinelidae) using pollen grain as a natural marker.

    PubMed

    Medeiros, M A; Ribeiro, P A; Morais, H C; Castelo Branco, M; Sujii, E R; Salgado-Laboriau, M L

    2010-05-01

    The predators Hippodamia convergens Guérin-Menéville (Coleoptera: Coccinelidae) and Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae), are frequently observed on vegetable crops, especially on tomato plants, as well as on flowers of several plants around crop fields. It is well known that when predators feed on pollen and nectar they can increase their longevity and reproductive capacity. The objective of this work was to identify plants that could be a pollen source for H. convergens and C. externa in order to develop strategies to attract and keep these predators in vegetable fields like the tomato crop. Adults of C. externa (53 individuals) and H. convergens (43 individuals) were collected in fields from 2004-2005 at Embrapa Hortaliças, Brasília, Federal District. The insects were processed by the acetolysis method and pollen from them was extracted and identified. A total of 11335 grains of pollen belonging to 21 families were extracted from C. externa. A total of 46 pollen grains belonging to ten families were extracted from H. convergens. The Poaceae family was the most abundant one for C. externa while Asteraceae was the commonest pollen for H. convergens. The importance of pollen from different plant species as a food resource for each predator species gives an indication of the importance of plant community structure inside and around crop fields for the establishment of these predator populations and to enhance conservation biological control.

  3. Chromosome numbers in antlions (Myrmeleontidae) and owlflies (Ascalaphidae) (Insecta, Neuroptera).

    PubMed

    Kuznetsova, Valentina G; Khabiev, Gadzhimurad N; Krivokhatsky, Victor A

    2015-01-01

    A short review of main cytogenetic features of insects belonging to the sister neuropteran families Myrmeleontidae (antlions) and Ascalaphidae (owlflies) is presented, with a particular focus on their chromosome numbers and sex chromosome systems. Diploid male chromosome numbers are listed for 37 species, 21 genera from 9 subfamilies of the antlions as well as for seven species and five genera of the owlfly subfamily Ascalaphinae. The list includes data on five species whose karyotypes were studied in the present work. It is shown here that antlions and owlflies share a simple sex chromosome system XY/XX; a similar range of chromosome numbers, 2n = 14-26 and 2n = 18-22 respectively; and a peculiar distant pairing of sex chromosomes in male meiosis. Usually the karyotype is particularly stable within a genus but there are some exceptions in both families (in the genera Palpares and Libelloides respectively). The Myrmeleontidae and Ascalaphidae differ in their modal chromosome numbers. Most antlions exhibit 2n = 14 and 16, and Palparinae are the only subfamily characterized by higher numbers, 2n = 22, 24, and 26. The higher numbers, 2n = 20 and 22, are also found in owlflies. Since the Palparinae represent a basal phylogenetic lineage of the Myrmeleontidae, it is hypothesized that higher chromosome numbers are ancestral for antlions and were inherited from the common ancestor of Myrmeleontidae + Ascalaphidae. They were preserved in the Palparinae (Myrmeleontidae), but changed via chromosomal fusions toward lower numbers in other subfamilies.

  4. On Afromantispa and Mantispa (Insecta, Neuroptera, Mantispidae): elucidating generic boundaries

    PubMed Central

    Snyman, Louwtjie P.; Sole, Catherine L.; Ohl, Michael

    2015-01-01

    Abstract The genus Afromantispa Snyman & Ohl, 2012 was recently synonymised with Mantispa Illiger, 1798 by Monserrat (2014). Here morphological evidence is presented in support of restoring the genus Afromantispa stat. rev. to its previous status as a valid and morphologically distinct genus. Twelve new combinations (comb. n.) are proposed as species of Afromantispa including three new synonyms. PMID:26478700

  5. Prothoracic gland semiochemicals of green lacewings (neuroptera: chrysopidae)

    USDA-ARS?s Scientific Manuscript database

    Adult chrysopids have paired prothoracic glands (PG) that are thought to produce defensive secretions (allomones). We analyzed PG extracts of the following green lacewings from North and South America, Australia, and China: Ceraeochrysa cubana (Brazil); Chrysopa (= Co.) oculata, Co. nigricornis, Co....

  6. Revision of the green lacewing subgenus Ankylopteryx (Sencera) (Neuroptera, Chrysopidae)

    PubMed Central

    Breitkreuz, Laura C.V.; Winterton, Shaun L.; Engel, Michael S.

    2015-01-01

    Abstract The Australasian and Oriental green lacewing subgenus Ankylopteryx (Sencera) Navás (Chrysopinae: Ankylopterygini) is examined and its diversity and placement among other members of the tribe Ankylopterygini is discussed. After study of specimens spanning the full distribution and anatomical range of variation for the subgenus, all prior putative species, resulting in the sole valid species are newly synonymized, Ankylopteryx (Sencera) anomala (Brauer). Accordingly, the following new synonymies are established: Sencera scioneura Navás, syn. n., Sencera feae Navás, syn. n., and Sencera exquisita Nakahara, syn. n. [all under the name Ankylopteryx (Sencera) anomala]. A lectotype is newly designated for Ankylopteryx (Sencera) anomala so as to stabilize the application of the name. To support our hypotheses, the wing and general body coloration as well as the male genitalia are reviewed. We elaborate on the possibility of Ankylopteryx (Sencera) anomala being nothing more than an autapomorphic species of Ankylopteryx Brauer, as it was originally described. The species is not sufficiently distinct to warrant recognition as a separate subgenus within the group, and most certainly not as its own genus as has been advocated by past authors. Nonetheless, we do not for now go so far as to synonymize the subgenus until a more extensive phylogenetic analysis is undertaken with multiple representative species from across Ankylopteryx and other ankylopterygine genera. Lastly, we comment on the biology of Ankylopteryx (Sencera) anomala in terms of the attraction of males to methyl eugenol and on the widespread practice of splitting within Chrysopidae. PMID:26798287

  7. Chromosome numbers in antlions (Myrmeleontidae) and owlflies (Ascalaphidae) (Insecta, Neuroptera)

    PubMed Central

    Kuznetsova, Valentina G.; Khabiev, Gadzhimurad N.; Krivokhatsky, Victor A.

    2015-01-01

    Abstract A short review of main cytogenetic features of insects belonging to the sister neuropteran families Myrmeleontidae (antlions) and Ascalaphidae (owlflies) is presented, with a particular focus on their chromosome numbers and sex chromosome systems. Diploid male chromosome numbers are listed for 37 species, 21 genera from 9 subfamilies of the antlions as well as for seven species and five genera of the owlfly subfamily Ascalaphinae. The list includes data on five species whose karyotypes were studied in the present work. It is shown here that antlions and owlflies share a simple sex chromosome system XY/XX; a similar range of chromosome numbers, 2n = 14-26 and 2n = 18-22 respectively; and a peculiar distant pairing of sex chromosomes in male meiosis. Usually the karyotype is particularly stable within a genus but there are some exceptions in both families (in the genera Palpares and Libelloides respectively). The Myrmeleontidae and Ascalaphidae differ in their modal chromosome numbers. Most antlions exhibit 2n = 14 and 16, and Palparinae are the only subfamily characterized by higher numbers, 2n = 22, 24, and 26. The higher numbers, 2n = 20 and 22, are also found in owlflies. Since the Palparinae represent a basal phylogenetic lineage of the Myrmeleontidae, it is hypothesized that higher chromosome numbers are ancestral for antlions and were inherited from the common ancestor of Myrmeleontidae + Ascalaphidae. They were preserved in the Palparinae (Myrmeleontidae), but changed via chromosomal fusions toward lower numbers in other subfamilies. PMID:26807036

  8. Revision of the Neotropical green lacewing genus Ungla (Neuroptera, Chrysopidae)

    PubMed Central

    Tauber, Catherine A.; Sosa, Francisco; Albuquerque, Gilberto S.; Tauber, Maurice J.

    2017-01-01

    Abstract Here, Ungla Navás, 1914, a poorly known Neotropical genus is reviewed. Twenty-five valid species are recognized; seven of them are new to science: Ungla adamsi sp. n., U. elbergi sp. n., U. grandispiracula sp. n., U. mexicana sp. n., U. pennyi sp. n., U. quchapampa sp. n., U. stangei sp. n.; and five are transferred to Ungla from other genera: U. bolivari (Banks), U. chacranella (Banks), U. siderocephala (Navás), U. steinbachi (Navás), and U. banksi Tauber, new replacement name. In addition, ten new synonymies are identified. For each species, a full nomenclatural history, diagnosis, description or redescription with images, literature citations, and available information on the distribution and biology are provided. Name-bearing types were examined for each species, and images of most are included. Keys based on external features are provided for species identifications. As a result of this study, three generalizations appear: (1) The genital morphology of both males and females of Ungla species is very conserved. All species express a common structural pattern, the components of which vary only slightly among species. (2) Ungla species appear to fall into two geographically distinct groups: about one third (n=7) of the species are recorded from southern South America (specifically Argentina and Brazil) and the other approximately two thirds of the species (n=18) from more northern regions of Neotropical America [Andean and Caribbean regions, Central America, and southern Mexico (Chiapas)]. None of the species from either of the regions is known to overlap into the other region. (3) Available information on the immature stages and natural history of species in Ungla is meagre. PMID:28824280

  9. Mesozoic lacewings from China provide phylogenetic insight into evolution of the Kalligrammatidae (Neuroptera)

    PubMed Central

    2014-01-01

    Background The Kalligrammatidae are distinctive, large, conspicuous, lacewings found in Eurasia from the Middle Jurassic to mid Early Cretaceous. Because of incomplete and often inadequate fossil preservation, an absence of detailed morphology, unclear relationships, and unknown evolutionary trends, the Kalligrammatidae are poorly understood. Results We describe three new subfamilies, four new genera, twelve new species and four unassigned species from the late Middle Jurassic Jiulongshan and mid Early Cretaceous Yixian Formations of China. These kalligrammatid taxa exhibit diverse morphological characters, such as mandibulate mouthparts in one major clade and siphonate mouthparts in the remaining four major clades, the presence or absence of a variety of distinctive wing markings such as stripes, wing spots and eyespots, as well as multiple major wing shapes. Based on phylogenetic analyses, the Kalligrammatidae are divided into five principal clades: Kalligrammatinae Handlirsch, 1906, Kallihemerobiinae Ren & Engel, 2008, Meioneurinae subfam. nov., Oregrammatinae subfam. nov. and Sophogrammatinae subfam. nov., each of which is accorded subfamily-level status. Our results show significant morphological and evolutionary differentiation of the Kalligrammatidae family during a 40 million-year-interval of the mid Mesozoic. Conclusion A new phylogeny and classification of five subfamilies and their constituent genera is proposed for the Kalligrammatidae. These diverse, yet highly specialized taxa from northeastern China suggest that eastern Eurasia likely was an important diversification center for the Kalligrammatidae. Kalligrammatids possess an extraordinary morphological breadth and panoply of adaptations during the mid-Mesozoic that highlight our conclusion that their evolutionary biology is much more complex than heretofore realized. PMID:24912379

  10. Rediscovery of Nuvol umbrosus Navás (Neuroptera, Chrysopidae, Leucochrysini): a redescription and discussion

    PubMed Central

    Tauber, Catherine A.; Sosa, Francisco

    2015-01-01

    Abstract The monotypic leucochrysine genus Nuvol was previously known from three specimens of Nuvol umbrosus Navás, collected in the Atlantic Forest region of Brazil. For many years these specimens have been missing, and the genus has remained without a modern description. Here, the species is redescribed based on two newly discovered specimens (females) from the Amazonian region. The female terminalia are relatively simple, except for the subgenitale, which is enlarged, folded into two sections, and heavily sclerotized. Unique aspects of the wing venation and the unusual pattern of banding on the wings support the retention of Nuvol as a valid genus within the Leucochrysini. There are differences between the Amazonian specimens studied here and the earlier descriptions based on specimens from the Atlantic Forest. These differences may indicate the presence of two distinct, geographically separated species within the genus. However, largely because we do not know the sexes of the earlier specimens, we are treating the differences discovered in the two female specimens as expressions of intraspecific variation. PMID:26448710

  11. Nomenclatorial changes and redescriptions of three of Navás’ Leucochrysa (Nodita) species (Neuroptera, Chrysopidae)

    PubMed Central

    Catherine A., Tauber; Gilberto S., Albuquerque; Maurice J., Tauber

    2011-01-01

    Abstract Three species that Navás described – Leucochrysa (Nodita) azevedoi Navás, 1913, Leucochrysa (Nodita) camposi (Navás, 1933) and Leucochrysa (Nodita) morenoi (Navás, 1934) – have received recent taxonomic attention. All three have many similar external features; indeed Navás himself, as well as subsequent authors, have confused the species with each other. Here, (a) misidentifications are corrected; (b) a neotype of Leucochrysa azevedoi is designated; (c) Leucochrysa (Nodita) morenoi, previously synonymized with Leucochrysa (Nodita) camposi, is recognized as a valid species [Reinstated status] All three species are redescribed and illustrated, with special emphasis on the types. Leucochrysa (Nodita) azevedoi was found to be relatively common in agricultural areas along Brazil’s Atlantic coast. The two other species are known only from their type localities: Leucochrysa (Nodita) camposi – coastal Ecuador, and Leucochrysa (Nodita) morenoi – Quito, Ecuador. PMID:21594110

  12. Increased fitness and realized heritability in emamectin benzoate-resistant Chrysoperla carnea (Neuroptera: Chrysopidae).

    PubMed

    Mansoor, Muhammad Mudassir; Abbas, Naeem; Shad, Sarfraz Ali; Pathan, Attaullah Khan; Razaq, Muhammad

    2013-10-01

    The common green lacewing Chrysoperla carnea is a key biological control agent employed in integrated pest management (IPM) programs for managing various insect pests. A field collected population of C. carnea was selected for emamectin benzoate resistance in the laboratory and fitness costs and realized heritability were investigated. After five generations of selection with emamectin benzoate, C. carnea developed a 318-fold resistance to the insecticide. The resistant population had a relative fitness of 1.49, with substantially higher emergence rate of healthy adults, fecundity and hatchability and shorter larval duration, pupal duration, and development time compared to the susceptible population. Mean population growth rates; such as the intrinsic rate of natural population increase and biotic potential were higher for the emamectin benzoate selected population compared to the susceptible population. The realized heritability (h(2)) value of emamectin benzoate resistance was 0.34 in emamectin benzoate selected population of C. carnea. Chrysoperla species which show resistance to insecticides makes them compatible with those IPM systems where emamectin benzoate is employed.

  13. The larva of Tricholeon relictus Hölzel & Monserrat, 2002 a synanthropic antlion (Neuroptera, Myrmeleontidae).

    PubMed

    Acevedo, Fernando; Badano, Davide; Monserrat, Víctor J

    2014-07-11

    The larva of Tricholeon relictus, a Spanish endemic antlion of Afrotropical affinities, is described and illustrated for the first time also providing a comparison with the only other European member of the tribe Dendroleontini, Dendroleon pantherinus. The larva of this species is synanthropic but probably originally lived in cave-like habitats.

  14. Recent evolutionary history of Chrysoperla externa (Hagen 1861) (Neuroptera: Chrysopidae) in Brazil

    PubMed Central

    2017-01-01

    This work aimed to elucidate the distribution of Chrysoperla externa haplotypes and investigate whether it exhibits structure based on genetic composition as opposed to geographic location. The genetic diversity of C. externa, analyzed by AMOVA using the COI and 16S rRNA genes as mitochondrial markers, showed significant haplotype structure arising from genetic differences that was not associated with sampling location. This was reflected in the network grouping. Bayesian inference showed that haplotype distribution may have its origins in C. externa divergence into two distinct clades, which dispersed to various locations, and their subsequent diversification. The evolutionary history of C. externa may include multiple ancestral haplotypes differentiating within the same geographic area to generate the current broad genetic diversity, so that the earlier geographical history has been erased, and now we have highlighted its more recent genetic history. PMID:28510607

  15. Are the Pupae and Eggs of the Lacewing Ceraeochrysa cubana (Neuroptera: Chrysopidae) Tolerant to Insecticides?

    PubMed

    Rugno, Gabriel Rodrigo; Zanardi, Odimar Zanuzo; Yamamoto, Pedro Takao

    2015-12-01

    The tolerance of Ceraeochrysa cubana (Hagen) pupae and eggs to 11 insecticides was evaluated under laboratory conditions, based on lethal and sublethal effects. Eggs at three ages (≤24-h-old, 48- to 72-h-old, and 96- to 120-h-old) and pupae at ≤48-h-old were used. All the insecticides were considered harmless when applied at the pupal stage. Phosmet and pyriproxyfen insecticides were considered harmless to eggs irrespective of the age. Esfenvalerate was harmless to eggs at the ages of ≤24-h-old and 48- to 72-h-old. Imidacloprid SC and azadirachtin were harmless to eggs at ages of 48- to 72-h-old and 96- to 120-h-old, and thiamethoxam was only harmless to eggs at 96- to 120-h-old of age. In contrast, chlorpyrifos and malathion were harmful to eggs at the age of 96- to 120-h-old, and imidacloprid WG was slightly harmful to the three egg ages evaluated. Lambda-cyhalothrin + chlorantraniliprole and lambda-cyhalothrin + thiamethoxam were slightly and/or moderately harmful to all egg ages evaluated. Based on the life table parameters, the insecticides thiamethoxam, imidacloprid SC, phosmet, pyriproxyfen, and azadirachtin did not affect the net rate of reproduction (Ro) of C. cubana. Lambda-cyhalothrin + chlorantraniliprole decreased the Ro and increased the population doubling time (Td) independently of the egg ages evaluated. Therefore, the insecticides pyriproxyfen and phosmet are compatible with eggs of the predator C. cubana, but other insecticides should be evaluated under field conditions to verify their effects on the predator. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. “Pheromonal Investigations of Green Lacewings (Neuroptera: Chrysopidae: Chrysopa spp.) in the Field and Laboratory”

    USDA-ARS?s Scientific Manuscript database

    Field-collected male goldeneyed lacewings, Chrysopa oculata, release (1R,2S,5R,8R)-iridodial but, laboratory-reared C. oculata males did not produce iridodial, despite their healthy appearance and apparently normal fertility. Previous research showed that C. oculata males enter traps baited with iri...

  17. Larvae of five horticulturally important species of Chrysopodes (Neuroptera, Chrysopidae): shared generic features, descriptions and keys

    PubMed Central

    Silva, Patrícia S.; Tauber, Catherine A.; Albuquerque, Gilberto S.; Tauber, Maurice J.

    2013-01-01

    Abstract An expanded list of generic level larval characteristics is presented for Chrysopodes; it includes a reinterpretation of the mesothoracic and metathoracic structure and setation. Keys, descriptions and images of Semaphoront A (first instar) and Semaphoront B (second and third instars) are offered for identifying five species of Chrysopodes (Chrysopodes) that are commonly reported from horticultural habitats in the Neotropical region. PMID:23653514

  18. Suitability of Microtheca ochroloma (Coleoptera: Chrysomelidae) for the Development of the Predator Chrysoperla rufilabris (Neuroptera: Chrysopidae).

    PubMed

    Niño, Angie A; Cave, Ronald D

    2015-08-01

    Microtheca ochroloma Stål, the yellowmargined leaf beetle, is one of the most destructive pests of crucifer vegetables on organic farms. Larvae of the green lacewing Chrysoperla rufilabris Burmeister have been observed preying on M. ochroloma, but no studies have evaluated the suitability of M. ochroloma as prey for C. rufilabris or the efficacy of this predator as a biological control agent of the pest. This study quantified the killing rate, developmental time, and survivorship of C. rufilabris when offered eggs and larvae of M. ochroloma at 10, 15, 20, or 25°C. Mean number of prey killed daily increased from 8.4 eggs and 4.0 larvae at 15°C to 18.6 eggs and 10.2 larvae at 25°C. However, predator larvae killed 78% fewer total eggs at 25°C than at 15°C; total number of first-instar prey killed did not vary significantly with temperature. Mean developmental time of predator larvae decreased from 75.5 d at 15°C to 26.6 d at 25°C when they were fed eggs, whereas it decreased from 54.0 d at 15°C to 21.4 d at 25°C when they were fed larvae. Predator survivorship was reduced by 80% at 15°C and no larvae survived at 10°C. We conclude that C. rufilabris can complete development on a diet of eggs of M. ochroloma, but its effectiveness to control M. ochroloma populations will be lessened during cool months, from November to April, when crucifers are produced in Florida and the beetle is actively developing, reproducing, and causing crop damage.

  19. Iridodial: a powerful attractant for the green lacewing, Chrysopa septempunctata (Neuroptera: Chrysopidae)

    NASA Astrophysics Data System (ADS)

    Zhang, Qing-He; Sheng, Maoling; Chen, Guofa; Aldrich, Jeffrey R.; Chauhan, Kamlesh R.

    2006-09-01

    The lacewing Chrysopa septempunctata Wesmael is an important, common predator of several insects in China, Japan, Russia, and many parts of Europe. Our field trapping experiments in northeast China showed that males of this green lacewing are strongly attracted to the lacewing pheromone of Chrysopa oculata Say, (1 R,2 S,5 R,8 R)-iridodial. The induced plant volatile, methyl salicylate, was unattractive to C. septempunctata by itself at the concentration tested, but synergistic when combined with iridodial where the lacewing population was high. (1 R,4a S,7 S,7a R)-Nepetalactol and (4a S,7 S,7a R)-nepetalactone (aphid sex pheromone components) caught significantly more males of C. septempunctata than did blank control traps, but were inferior to iridodial dispensers, which remained strongly attractive to C. septempunctata males for at least 2.5 months. These results indicate that (1 R,2 S,5 R,8 R)-iridodial is a powerful attractant for C. septempunctata, and may have great potential for enhanced biological control of garden, agricultural, and forest insect pests.

  20. Electrophysiological and Behavioral Responses of Chrysopa phyllochroma (Neuroptera: Chrysopidae) to Plant Volatiles.

    PubMed

    Xu, Xiuxiu; Cai, Xiaoming; Bian, Lei; Luo, Zongxiu; Xin, Zhaojun; Chen, Zongmao

    2015-10-01

    The lacewing Chrysopa phyllochroma Waesmael is a polyphagous predator of many pests. Releasing lacewings is an important component of biological control programs, but it is difficult to establish populations on field crops. Electrophysiological and behavioral responses to 10 common plant volatiles were recorded to screen for lacewing-attracting compounds. Electroantennographic assays indicated that all of the tested compounds elicited responses from C. phyllochroma. Three green-leaf volatiles-(E)-2-hexenal, (Z)-3-hexenyl acetate, and (Z)-3-hexenol-produced the strongest responses. Weaker responses were observed to six terpenes-ocimene, linalool, (3E)-4,8-dimethyl-1,3,7-nonatriene, (E,E)-α-farnesene, limonene, and nerolidol-and to methyl salicylate. Using a Y-tube olfactometer, the behavioral assays of the eight most active compounds demonstrated that four-(Z)-3-hexenyl acetate, (Z)-3-hexenol, (3E)-4,8-dimethyl-1,3,7-nonatriene, and linalool-were significant attractants for C. phyllochroma at specific concentrations. Three common plant volatile compounds-(Z)-3-hexenyl acetate, (3E)-4,8-dimethyl-1,3,7-nonatriene, and linalool-were also found to significantly enhance female ovipositing, resulting in a concentration of eggs. These observations are important for lacewing release as a pest control measure because they suggest means for retaining individuals and establishing populations using common plant volatiles. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Utilisation of prey by antlion larvae (Neuroptera: Myrmeleontidae) in terms of energy and nutrients.

    PubMed

    De K Van Der Linde, T C.; Van Der Westhuizen, M C.; Van Zyl, A

    1997-07-01

    Prey utilisation at low prey densities was determined for third instar Cueta sp., Furgella intermedia (Markl) and Palpares annulatus (Stitz) larvae in terms of wet weight, dry weight, energy and nutrients. Prey utilisation was similar to other insects on a wet weight (42-47%), dry weight (46-49%), energetic (40-58%) and nutritive basis (62-79%). Lipids (33-36%) provided energetically the highest contribution of the nutrients ingested. The quantities of water, proteins, nucleic acids, lipids and carbohydrates extracted by the antlion larvae were in proportion to their availability in their prey, the Hodotermes mossambicus larvae. The quantities of nutrients extracted by the antlion larvae at low prey densities were not significantly influenced by the differences in mandible size, antlion body weight or the trapping method (building a pit or not) of the antlion species. It is proposed that a low metabolic rate and the accumulation of fat reserves, and not the extent of prey utilisation, enable P. annulatus larvae to tolerate a 123-d starvation period in which 22.3% of their body weight is lost.

  2. Oviposition response of green lacewings (Neuroptera: Chrysopidae) to aphids (Hemiptera: Aphididae) and potential attractants on pecan.

    PubMed

    Kunkel, Brian A; Cottrell, Ted E

    2007-06-01

    Pecan foliage is attacked by three species of aphids [Monellia caryella (Fitch), Melanocallis caryaefoliae (Davis), and Monelliopsis pecanis Bissell], resulting in damage that can reduce tree nut yield. In this study, we assayed the ovipositional response of the green lacewing Chrysoperla rufilabris (Burmeister) to M. caryella and M. caryaefoliae at high and low aphid densities and the development of C. rufilabris larvae when fed solely on each of the three pecan aphid species. During 2004 and 2005, combinations of attractants and food sprays were applied to pecan trees in an orchard to monitor green lacewing ovipositional response. We found that C. rufilabris laid more eggs on seedling trees infested with the M. caryella (at both high and low densities) than on seedlings infested with M. caryaefoliae. Development of C. rufilabris was unaffected by aphid species. At least one attractant/food spray treatment applied to trees in an orchard significantly increased green lacewing oviposition for three of the five treatment dates over both years. These results show that larvae of C. rufilabris will consume all aphid species attacking pecan, even though female ovipositional response can differ for aphid species. It is likely that combinations of attractants and food sprays can be used to enhance green lacewing populations in orchards.

  3. Specialized Learning in Antlions (Neuroptera: Myrmeleontidae), Pit-Digging Predators, Shortens Vulnerable Larval Stage

    PubMed Central

    Hollis, Karen L.; Cogswell, Heather; Snyder, Kenzie; Guillette, Lauren M.; Nowbahari, Elise

    2011-01-01

    Unique in the insect world for their extremely sedentary predatory behavior, pit-dwelling larval antlions dig pits, and then sit at the bottom and wait, sometimes for months, for prey to fall inside. This sedentary predation strategy, combined with their seemingly innate ability to detect approaching prey, make antlions unlikely candidates for learning. That is, although scientists have demonstrated that many species of insects possess the capacity to learn, each of these species, which together represent multiple families from every major insect order, utilizes this ability as a means of navigating the environment, using learned cues to guide an active search for food and hosts, or to avoid noxious events. Nonetheless, we demonstrate not only that sedentary antlions can learn, but also, more importantly, that learning provides an important fitness benefit, namely decreasing the time to pupate, a benefit not yet demonstrated in any other species. Compared to a control group in which an environmental cue was presented randomly vis-à-vis daily prey arrival, antlions given the opportunity to associate the cue with prey were able to make more efficient use of prey and pupate significantly sooner, thus shortening their long, highly vulnerable larval stage. Whereas “median survival time,” the point at which half of the animals in each group had pupated, was 46 days for antlions receiving the Learning treatment, that point never was reached in antlions receiving the Random treatment, even by the end of the experiment on Day 70. In addition, we demonstrate a novel manifestation of antlions' learned response to cues predicting prey arrival, behavior that does not match the typical “learning curve” but which is well-adapted to their sedentary predation strategy. Finally, we suggest that what has long appeared to be instinctive predatory behavior is likely to be highly modified and shaped by learning. PMID:21479229

  4. Mesozoic lacewings from China provide phylogenetic insight into evolution of the Kalligrammatidae (Neuroptera).

    PubMed

    Yang, Qiang; Wang, Yongjie; Labandeira, Conrad C; Shih, Chungkun; Ren, Dong

    2014-06-09

    The Kalligrammatidae are distinctive, large, conspicuous, lacewings found in Eurasia from the Middle Jurassic to mid Early Cretaceous. Because of incomplete and often inadequate fossil preservation, an absence of detailed morphology, unclear relationships, and unknown evolutionary trends, the Kalligrammatidae are poorly understood. We describe three new subfamilies, four new genera, twelve new species and four unassigned species from the late Middle Jurassic Jiulongshan and mid Early Cretaceous Yixian Formations of China. These kalligrammatid taxa exhibit diverse morphological characters, such as mandibulate mouthparts in one major clade and siphonate mouthparts in the remaining four major clades, the presence or absence of a variety of distinctive wing markings such as stripes, wing spots and eyespots, as well as multiple major wing shapes. Based on phylogenetic analyses, the Kalligrammatidae are divided into five principal clades: Kalligrammatinae Handlirsch, 1906, Kallihemerobiinae Ren & Engel, 2008, Meioneurinae subfam. nov., Oregrammatinae subfam. nov. and Sophogrammatinae subfam. nov., each of which is accorded subfamily-level status. Our results show significant morphological and evolutionary differentiation of the Kalligrammatidae family during a 40 million-year-interval of the mid Mesozoic. A new phylogeny and classification of five subfamilies and their constituent genera is proposed for the Kalligrammatidae. These diverse, yet highly specialized taxa from northeastern China suggest that eastern Eurasia likely was an important diversification center for the Kalligrammatidae. Kalligrammatids possess an extraordinary morphological breadth and panoply of adaptations during the mid-Mesozoic that highlight our conclusion that their evolutionary biology is much more complex than heretofore realized.

  5. Kymachrysa, a new genus of Nearctic Green Lacewings (Neuroptera, Chrysopidae, Chrysopini)

    PubMed Central

    Tauber, Catherine A.; Garland, J. Allan

    2014-01-01

    Abstract Two North American species of green lacewings have undergone a number of changes in their generic assignments and are currently classified as incertae sedis. Here we demonstrate that adults (both sexes) and larvae of these species share a set of features that distinguishes them from currently described genera. Thus, to promote nomenclatural stability in Chrysopidae, we describe Kymachrysa, a gen. n. that contains the two species – Kymachrysa intacta (Navás), comb. n. and Kymachrysa placita (Banks), comb. n.. Also, we present modifications for the current generic-level key, illustrations, as well as biological information for identifying the genus and its known species. PMID:25197213

  6. Revision of the genus Heterosmylus Krüger, 1913 from China (Neuroptera, Osmylidae)

    PubMed Central

    Dong, Min; Xu, Han; Wang, Yongjie; Jia, Chunfeng; Liu, Zhiqi

    2016-01-01

    Abstract A new species of osmylid (Heterosmylus processus sp. n.) is described and the other species in the genus from mainland China are redescribed. Heterosmylus zhamanus Yang, 1987, syn. n. is identified as a junior synonym of Heterosmylus yunnanus Yang, 1986. A key is provided to differentiate Palaearctic and Oriental species of Heterosmylus. PMID:28138278

  7. A review of the pleasing lacewing genus Dilar Rambur (Neuroptera, Dilaridae) from Southeast Asia.

    PubMed

    Zhang, Wei; Liu, Xingyue; Winterton, Shaun L; Aspöck, Horst; Aspöck, Ulrike

    2016-04-20

    The lacewing family Dilaridae (pleasing lacewings) is poorly known in Southeast Asia, currently with only five described species. In this paper, we provide a revision of the species of the genus Dilar Rambur, 1838 from Southeast Asia. Eleven species of Dilar are recorded in this region, with seven species herein described as new to science, i.e. Dilar abnormis Zhang, Liu & Winterton, sp. nov., Dilar lineatus Zhang, Liu & Winterton, sp. nov., Dilar loeinensis Zhang, Liu, Winterton, sp. nov., Dilar ohli Zhang, Liu, Aspöck & Aspöck, sp. nov., Dilar rotundatus Zhang, Liu & Winterton, sp. nov., Dilar sumatranus Zhang, Liu, Aspöck & Aspöck, sp. nov., and Dilar zimmermannae Zhang, Liu, Aspöck & Aspöck, sp. nov. Re-descriptions of Dilar grandis (Banks, 1931), and Dilar marmoratus (Banks, 1931) are also provided. Dilaridae are recorded in Indonesia (Sumatra), Myanmar, and northern Thailand for the first time. A key to the Dilar species from Southeast Asia is given.

  8. A new species of the genus Dilar Rambur (Neuroptera: Dilaridae) from Borneo

    Treesearch

    John D. Oswald; Nathan M. Schiff

    2001-01-01

    Dilar macleodi is described as a new species from lowland rainforest habitat in the Malaysian State of Sarawak on the island of Borneo. Diagnoses are provided to distinguish D. macleodi from the four other dilarid species that have been reported from the peninsula of Indochina or the Malay Archipelago.

  9. Action of neem oil (Azadirachta indica A. Juss) on cocoon spinning in Ceraeochrysa claveri (Neuroptera: Chrysopidae).

    PubMed

    Scudeler, Elton Luiz; Garcia, Ana Silvia Gimenes; Padovani, Carlos Roberto; Santos, Daniela Carvalho

    2013-11-01

    Neem oil is a biopesticide that disturbs the endocrine and neuroendocrine systems of pests and may interfere with molting, metamorphosis and cocoon spinning. The cocoon serves protective functions for the pupa during metamorphosis, and these functions are dependent on cocoon structure. To assess the changes in cocoon spinning caused by neem oil ingestion, Ceraeochrysa claveri larvae, a common polyphagous predator, were fed with neem oil throughout the larval period. When treated with neem oil, changes were observed on the outer and inner surfaces of the C. claveri cocoon, such as decreased wall thickness and impaired ability to attach to a substrate. These negative effects may reduce the effectiveness of the mechanical and protective functions of cocoons during pupation, which makes the specimen more vulnerable to natural enemies and environmental factors.

  10. Suitability of leguminous cover crop pollens as food source for the green lacewing Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae).

    PubMed

    Venzon, Madelaine; Rosado, Maria C; Euzébio, Denise E; Souza, Brígida; Schoereder, José H

    2006-01-01

    Diversification of crops with species that provide suitable pollen for predators may reduce pest population on crops by enhancing predator effectiveness. In this paper we evaluated the suitability of leguminous cover crop pollens to the predatory green lacewing Chrysoperla externa (Hagen). The predator is commonly found in coffee agroecosystems and the plant species tested were pigeon pea and sunn hemp, which are used in organic coffee systems. Newly emerged females and males of C. externa were reared on diets containing pollen of pigeon pea, sunn hemp, or castor bean, used as a control. The reproductive success of C. externa was evaluated when females fed the pollen species and when honey was added to the diets, to verify the predator need for an extra carbohydrate source. Similar intrinsic growth rates were found for females fed on pigeon pea pollen and on sunn hemp pollen but these rates increased significantly when honey was added to the diets. Females fed with pigeon pea pollen plus honey and with sunn hemp pollen plus honey had higher intrinsic growth rates than those fed with castor bean pollen plus honey. Females fed on castor bean pollen only or on honey only, did not oviposit. Leguminous pollen species were equally suitable for C. externa especially when they were complemented with honey. The results suggest that to successfully enhance predator effectiveness, organic coffee plantation should be diversified with plant providing pollen in combination with plant providing nectar.

  11. A revision and key to the genera of Afrotropical Mantispidae (Neuropterida, Neuroptera), with the description of a new genus

    PubMed Central

    Snyman, Louwtjie P.; Ohl, Michael; Mansell, Mervyn W.; Scholtz, Clarke H.

    2012-01-01

    Abstract The Afrotropical Mantispidae genera have previously been neglected and are poorly known. The genera are revised and redescribed. A new genus Afromantispa Snyman and Ohl is described with Afromantispa tenella comb. n.as type species. Perlamantispa (Handschin, 1960) is synonymised with Sagittalata Handschin, 1959. The new combinations within the genus include Sagittalata austroafrica comb. n., Sagittalata bequaerti comb. n., Sagittalata dorsalis comb. n., Sagittalata girardi comb. n., Sagittalata nubila comb. n., Sagittalata perla comb. n., Sagittalata pusilla comb. n., Sagittalata similata comb. n., Sagittalata royi comb. n., Sagittalata tincta comb. n. and Sagittalata vassei comb. n. An illustrated key to the genera Afromantispa gen. n., Sagittalata Handschin, 1959, Mantispa Illiger, 1798, Cercomantispa Handschin, 1959, Rectinerva Handschin, 1959, Nampista Navás, 1914, and Pseudoclimaciella Handschin, 1960 is provided. The wing venation of Mantispidae is redescribed. Similarities between the genera are discussed. Subsequent studies will focus on revising the taxonomic status of species, which are not dealt with in this study. PMID:22573953

  12. Effects of the chitin synthesis inhibitor buprofezin on survival and development of immatures of Chrysoperla rufilabris (Neuroptera: Chrysopidae).

    PubMed

    Liu, T X; Chen, T Y

    2000-04-01

    Effects of buprofezin (Applaud), a chitin synthesis inhibitor, on survival and development of eggs, three instars, and pupae of Chrysoperla rufilabris (Burmeister) were determined in the laboratory. Buprofezin at three tested concentrations (100, 500, and 1,000 mg [AI]/liter) did not affect the viability and development of eggs when the eggs were treated, or third instars and pupae when those stages were treated. Although the degree of effects by buprofezin on larvae varied with instar, buprofezin at the higher concentrations (500 and 1,000 mg [AI]/liter) reduced survival rates 17-47% and prolonged the overall development from first instars to adult emergence by 2 or 3 d when first instars were treated, indicating that the first instar is the most vulnerable stage. When second instars were treated, the survival of C. rufilabris from second instars to pupae was not significantly affected. However, the developmental time from second instar to adult emergence was longer in the treatments with the highest concentration (1,000 mg [AI]/liter) than that with the lowest concentration (100 mg [AI]/liter). The compatibility of buprofezin with natural enemies in integrated pest management programs is discussed.

  13. Two common and problematic leucochrysine species - Leucochrysa (Leucochrysa) varia (Schneider) and L. (L.) pretiosa (Banks) (Neuroptera, Chrysopidae): redescriptions and synonymies.

    PubMed

    Tauber, Catherine A; Sosa, Francisco; Albuquerque, Gilberto S

    2013-01-01

    We dedicate this article to the memory of Sergio de Freitas, FCAV-UNESP, Jaboticabal, São Paulo, Brazil (deceased, 2012). He was an active and enthusiastic Neuropterist and the cherished mentor and friend of Francisco Sosa. Leucochrysa McLachlan is the largest genus in the Chrysopidae, yet it has received relatively little taxonomic attention. We treat two problematic and common Leucochrysa species - Leucochrysa (Leucochrysa) varia (Schneider, 1851) and Leucochrysa (Leucochrysa) pretiosa (Banks, 1910). Both are highly variable in coloration and were described before the systematic importance of chrysopid genitalia was recognized. Recent studies show that these species occur within a large complex of cryptic species and that they have accumulated a number of taxonomic problems. We identify new synonymies for each of the species-for Leucochrysa (Leucochrysa) varia: Leucochrysa (Leucochrysa) ampla (Walker, 1853), Leucochrysa internata (Walker, 1853), and Leucochrysa (Leucochrysa) walkerina Navás, 1913; for Leucochrysa (Leucochrysa) pretiosa: Leucochrysa (Leucochrysa) erminea Banks, 1946. The synonymy of Leucochrysa delicata Navás, 1925 with Leucochrysa (Leucochrysa) pretiosa is stabilized by the designation of a neotype. The following species, which were previously synonymized with Leucochrysa (Leucochrysa) varia or Leucochrysa (Leucochrysa) pretiosa, are reinstated as valid: Leucochrysa (Leucochrysa) phaeocephala Navás, 1929, Leucochrysa (Leucochrysa) angrandi (Navás, 1911), and Leucochrysa (Leucochrysa) variata (Navás, 1913). To help stabilize Leucochrysa taxonomy, lectotypes are designated for Allochrysa pretiosa and Allochrysa variata. Finally, Leucochrysa vegana Navás, 1917 is considered a nomen dubium.

  14. Distribution and Biology of Mallada desjardinsi (Neuroptera: Chrysopidae) in India and Its Predatory Potential Against Aleurodicus dispersus (Hemiptera: Aleyrodidae).

    PubMed

    Boopathi, T; Singh, S B; Ravi, M; Manju, T

    2016-10-01

    In this study, we report the prevalence of Mallada desjardinsi (Navas) in seven geographical regions of India and provide the first report of its kind outlining the preying of all stages of the spiraling whitefly, Aleurodicus dispersus Russell, by M. desjardinsi Sampling was conducted in seven regions of two provinces in India, Bengaluru (Karnataka) and Tiruppur (Tamil Nadu), which demonstrated that M. desjardinsi populations were most dense at the former and least at the later. To the best of our knowledge, this is the first report of its kind outlining observations regarding the biology and feeding potential of M. desjardinsi on A. dispersus under laboratory conditions. It was observed that the second nymphal stadium of A. dispersus was most preferred prey for M. desjardinsi and the least preferred was the A. dispersus adult. It was also seen that the third stadium of M. desjardinsi consumed more A. dispersus individuals than any other life stages. The longevity of female and the total developmental period of M. desjardinsi were computed as 27.6 ± 1.69 and 24.1 ± 0.99 d, respectively. The average total number of eggs laid by the M. desjardinsi female was 211.1 ± 6.35 eggs. M. desjardinsi was observed to be extremely efficient in terms of prey searching and predatory potential with respect to A. dispersus The results of this study indicate strongly that M. desjardinsi has the potential to be used for the control of A. dispersus. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America.

  15. Distribution and Biology of Mallada desjardinsi (Neuroptera: Chrysopidae) in India and Its Predatory Potential Against Aleurodicus dispersus (Hemiptera: Aleyrodidae)

    PubMed Central

    Boopathi, T.; Singh, S. B.; Ravi, M.; Manju, T.

    2016-01-01

    In this study, we report the prevalence of Mallada desjardinsi (Navas) in seven geographical regions of India and provide the first report of its kind outlining the preying of all stages of the spiraling whitefly, Aleurodicus dispersus Russell, by M. desjardinsi. Sampling was conducted in seven regions of two provinces in India, Bengaluru (Karnataka) and Tiruppur (Tamil Nadu), which demonstrated that M. desjardinsi populations were most dense at the former and least at the later. To the best of our knowledge, this is the first report of its kind outlining observations regarding the biology and feeding potential of M. desjardinsi on A. dispersus under laboratory conditions. It was observed that the second nymphal stadium of A. dispersus was most preferred prey for M. desjardinsi and the least preferred was the A. dispersus adult. It was also seen that the third stadium of M. desjardinsi consumed more A. dispersus individuals than any other life stages. The longevity of female and the total developmental period of M. desjardinsi were computed as 27.6 ± 1.69 and 24.1 ± 0.99 d, respectively. The average total number of eggs laid by the M. desjardinsi female was 211.1 ± 6.35 eggs. M. desjardinsi was observed to be extremely efficient in terms of prey searching and predatory potential with respect to A. dispersus. The results of this study indicate strongly that M. desjardinsi has the potential to be used for the control of A. dispersus. PMID:27417642

  16. First record of Osmylidae (Neuroptera) from Colombia and description of two new species of Isostenosmylus Krüger, 1913.

    PubMed

    Ardila-Camacho, Adrian; Noriega, Jorge Ari

    2014-06-30

    The family Osmylidae is recorded for the first time in Colombia, extending its known distribution range to the north of South America in the northern Andes. Two new species of the genus Isostenosmylus Krüger, 1913, I. contrerasi n. sp. and I. septemtrionalandinus n. sp. and one morphospecies distributed along the eastern cordillera in the departments of Cundinamarca, Huila, and Norte de Santander are described and illustrated. A key to species of the genus Isostenosmylus, as well as a list of South American species of Osmylidae is included.

  17. A new species of Lasiosmylus from the Early Cretaceous, China clarifies its genus-group placement in Ithonidae (Neuroptera)

    PubMed Central

    Zheng, Bingyu; Ren, Dong; Wang, Yongjie

    2016-01-01

    Abstract A new species, Lasiosmylus longus sp. n., is described from the Early Cretaceous Yixian Formation of Huangbanjigou Village, Liaoning Province, China. Based on the characters of the new species and nine new specimens of Lasiosmylus newi Ren & Guo, 1996, the generic diagnosis of Lasiosmylus is emended and the taxonomic position of Lasiosmylus Ren & Guo, 1996 is re-evaluated, and Lasiosmylus should be assigned to the ithonid genus-group. PMID:27917063

  18. Green lacewings (Neuroptera: Chrysopidae) associated with melon crop in Mossoró, Rio Grande do Norte State, Brazil.

    PubMed

    Bezerra, Carlos E S; Tavares, Patrícia K A; Macedo, Luciano P M; de Freitas, Sérgio; Araujo, Elton L

    2010-01-01

    A survey of the green lacewings associated with the melon agroecosystem was carried out with the aim of including lacewings into the integrated management program of melon pests. Three species of this predator were found: Ceraeochrysa cubana (Hagen), Chrysoperla externa (Hagen) and Chrysoperla genanigra Freitas. A key to these species is presented.

  19. Foraging on and consumption of two species of papaya pest mites, Tetranychus kanzawai and Panonychus citri (Acari: tetranychidae) by Mallada basalis (Neuroptera: Chrysopidae)

    USDA-ARS?s Scientific Manuscript database

    Tetranychus kanzawai Kishida and Panonychus citri (McGregor) are two major acarine pests of the principal papaya variety in Taiwan, and they often co-occur in the same papaya screenhouses. This study measured prey acceptability, foraging schedule, short-term consumption rate, and handling time of la...

  20. Taxonomic and distributional notes on Spongilla-flies (Neuroptera: Sisyridae) from Southeastern Brazil with first interactive key to the species of the country.

    PubMed

    Assmar, Alice Carvalho; Salles, Frederico Falcão

    2017-06-01

    Based on adults collected from Espírito Santo, Southeastern Brazil, we present the first reports of Sisyridae from the state, expanding the known distributional range of five species of Climacia McLachlan and Sisyra Burmeister. Adults were collected throughout two basins, Rio Doce and São Mateus, and its tributaries in the north of the state with Pennsylvania light trap. Two species are reported for the first time from Southeastern Brazil. Furthermore, we describe the male of Climacia basalis Banks and compare it with the male of its junior synonym, C. desordenata Monserrat. In addition, traditional and interactive keys are proposed for the identification of all the species of Sisyridae reported from Brazil.

  1. Topical toxicity of two acetonic fractions of Trichilia havanensis Jacq. and four insecticides to larvae and adults of Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae).

    PubMed

    Huerta, A; Medina, P; Smagghe, G; Castañera, P; Viñuela, E

    2003-01-01

    The toxicity of botanical origin compounds such as two acetonic fractions of the seed kernels of the Meliacea Trichilia havanensis Jacq with insecticide properties (azadirone (F12) and the mixture F18 [1,7+3,7-di-O-acethylhavanensin (4:1)], three insecticides commercially available (imidacloprid, natural pyrethrins+PBO, triflumuron) and phloxine B, were tested in the laboratory. Topical bioassays using third instar and newly emerged adults of the lacewing Chrysoperla carnea (Stephens) at the maximum field recommended rate in Spain for commercials and at 1,000 ppm of active ingredient for T. havanensis acetone fractions and phloxine-B, were carried out. Imidacloprid and triflumuron were very toxic to third instar larvae inhibiting adult emergence, being the rest of insecticides harmless. Fecundity and fertility were not affected by the non-toxic compounds. Concerning adults, only imidacloprid and natural pyrethrins killed them significantly 24 hours after treatment. Phloxine B, triflumuron and T. havanensis fractions were harmless and did not cause any effect on fecundity and fertility with the exception of triflumuron, which reduced considerably the egg hatch. It can be concluded that T. havanensis acetonic fractions and phloxine B were non-toxic to larvae and adults of C. carnea when treated topically, whereas triflumuron, natural pyrethrins and imidacloprid affected one or more of the evaluated parameters under our conditions.

  2. Toxicity and sublethal effects of six insecticides to last instar larvae and adults of the biocontrol agents Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) and Adalia bipunctata (L.) (Coleoptera: Coccinellidae).

    PubMed

    Garzón, A; Medina, P; Amor, F; Viñuela, E; Budia, F

    2015-08-01

    To further develop Integrated Pest Management (IPM) strategies against crop pests, it is important to evaluate the effects of insecticides on biological control agents. Therefore, we tested the toxicity and sublethal effects (fecundity and fertility) of flonicamid, flubendiamide, metaflumizone, spirotetramat, sulfoxaflor and deltamethrin on the natural enemies Chrysoperla carnea and Adalia bipunctata. The side effects of the active ingredients of the insecticides were evaluated with residual contact tests for the larvae and adults of these predators in the laboratory. Flonicamid, flubendiamide, metaflumizone and spirotetramat were innocuous to last instar larvae and adults of C. carnea and A. bipunctata. Sulfoxaflor was slightly toxic to adults of C. carnea and was highly toxic to the L4 larvae of A. bipunctata. For A. bipunctata, sulfoxaflor and deltamethrin were the most damaging compounds with a cumulative larval mortality of 100%. Deltamethrin was also the most toxic compound to larvae and adults of C. carnea. In accordance with the results obtained, the compounds flonicamid, flubendiamide, metaflumizone and spirotetramat might be incorporated into IPM programs in combination with these natural enemies for the control of particular greenhouse pests. Nevertheless, the use of sulfoxaflor and deltamethrin in IPM strategies should be taken into consideration when releasing either of these biological control agents, due to the toxic behavior observed under laboratory conditions. The need for developing sustainable approaches to combine the use of these insecticides and natural enemies within an IPM framework is discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Brazilian dustywings (Neuroptera: Coniopterygidae): new species of Incasemidalis Meinander, 1972 and Coniopteryx Curtis, 1834, checklist and key for the Brazilian species.

    PubMed

    Martins, Caleb C; Amorim, Dalton De Souza

    2016-02-19

    Two subfamilies and three genera of Coniopterygidae have been reported to date for Brazil, with a total of 44 of species. In this paper two new Brazilian species are described from the genera Coniopteryx Curtis, 1834 and Incasemidalis Meinander, 1972-C. (Scotoconiopteryx) letardii sp. n. and Incasemidalis brasiliensis sp. n. -increasing the number of reported genera for Brazil to four and the number of Brazilian species to 46. This is the first report of Incasemidalis for Brazil. Moreover, in the case of C. (C.) callangana Enderlein, 1906, C. (Scotoconiopteryx) flinti Meinander, 1975, C. (S.) tucumana Navás, 1930, Semidalis nimboiformis Monserrat, 1989 and S. normani Meinander, 1982 some additional characteristics are given to the original descriptions or earlier redescriptions, with new records increasing their known distribution. An updated checklist of the Coniopterygidae from Brazil is provided, as well as a key for the Brazilian species of the family.

  4. (1R,2S,5R,8R)-Iridodial and Z,E-nepetalactol: first long-range 4 chemical attractants for antlions (Neuroptera: Myrmeleontidae)

    USDA-ARS?s Scientific Manuscript database

    e synthetic green lacewing pheromone compound, (1R,2S,5R,8R)-iridodial, strongly attracted adult males and females of the North American antlion, Dendroleon speciosus Banks, and an aphid sex pheromone component, Z,E-nepetalactol, was weakly attractive to D. speciosus adults. Iridodial and Z,E-nepeta...

  5. Two common and problematic leucochrysine species – Leucochrysa (Leucochrysa) varia (Schneider) and L. (L.) pretiosa (Banks) (Neuroptera, Chrysopidae): redescriptions and synonymies

    PubMed Central

    Tauber, Catherine A.; Sosa, Francisco; Albuquerque, Gilberto S.

    2013-01-01

    Abstract We dedicate this article to the memory of Sergio de Freitas, FCAV-UNESP, Jaboticabal, São Paulo, Brazil (deceased, 2012). He was an active and enthusiastic Neuropterist and the cherished mentor and friend of Francisco Sosa. Leucochrysa McLachlan is the largest genus in the Chrysopidae, yet it has received relatively little taxonomic attention. We treat two problematic and common Leucochrysa species – Leucochrysa (Leucochrysa) varia (Schneider, 1851) and Leucochrysa (Leucochrysa) pretiosa (Banks, 1910). Both are highly variable in coloration and were described before the systematic importance of chrysopid genitalia was recognized. Recent studies show that these species occur within a large complex of cryptic species and that they have accumulated a number of taxonomic problems. We identify new synonymies for each of the species–for Leucochrysa (Leucochrysa) varia: Leucochrysa (Leucochrysa) ampla (Walker, 1853), Leucochrysa internata (Walker, 1853), and Leucochrysa (Leucochrysa) walkerina Navás, 1913; for Leucochrysa (Leucochrysa) pretiosa: Leucochrysa (Leucochrysa) erminea Banks, 1946. The synonymy of Leucochrysa delicata Navás, 1925 with Leucochrysa (Leucochrysa) pretiosa is stabilized by the designation of a neotype. The following species, which were previously synonymized with Leucochrysa (Leucochrysa) varia or Leucochrysa (Leucochrysa) pretiosa, are reinstated as valid: Leucochrysa (Leucochrysa) phaeocephala Navás, 1929, Leucochrysa (Leucochrysa) angrandi (Navás, 1911), and Leucochrysa (Leucochrysa) variata (Navás, 1913). To help stabilize Leucochrysa taxonomy, lectotypes are designated for Allochrysa pretiosa and Allochrysa variata. Finally, Leucochrysa vegana Navás, 1917 is considered a nomen dubium. PMID:23805050

  6. Revision of the genus Gryposmylus Krüger, 1913 (Neuroptera, Osmylidae) with a remarkable example of convergence in wing disruptive patterning

    PubMed Central

    Winterton, Shaun L.; Wang, Yongjie

    2016-01-01

    Abstract The charismatic lance lacewing genus Gryposmylus Krüger, 1913 (Osmylidae: Protosmylinae) from South East Asia is revised with a new species (Gryposmylus pennyi sp. n.) described from Malaysia. The genus is diagnosed and both species in the genus redescribed and figured. An extraordinary example of morphological convergence is presented, with disruptive camouflaging wing markings in Gryposmylus pennyi sp. n. being remarkably similar to the South American green lacewing Vieira leschenaulti Navás (Chrysopidae). PMID:27667953

  7. Ultrastructure and molecular characterization of the microsporidium, Nosema chrysoperlae sp. nov., from the green lacewing, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) used for biological pest control.

    PubMed

    Bjørnson, S; Steele, T; Hu, Q; Ellis, B; Saito, T

    2013-09-01

    Lacewing larvae are generalist predators that are commercially available for aphid control on a variety of crops in both Europe and North America. Although lacewings are known for their symbiotic association with yeasts and bacteria, there are few reports of microsporidia in these natural enemies. An undescribed microsporidium was found in Chrysoperla carnea (Stephens) during the routine examination of specimens that were obtained from a commercial insectary for biological pest control. The objective of this study was to describe the pathogen by means of ultrastructure, molecular characterization and tissue pathology. All stages of the microsporidium were diplokaryotic and developed in direct contact with the host cell cytoplasm. Merogony and sporogony were not observed. Mature spores measured 3.49±0.10×1.52±0.05μm and had an isofilar polar filament with 8-10 coils that were frequently arranged in a single row, although double rows were also observed. Spores contained a lamellar polaroplast and a relatively small and inconspicuous polar vacuole was observed in the posterior region of about half of the spores that were examined. Tubular structures, similar in appearance to those in Nosema granulosis were observed in both sporonts and in spores. A cluster of small tubules was also observed in the posterior region of some spores. Microsporidian spores were observed in cells of the proventriculus, diverticulum and in epithelial cells of the posterior midgut. The Malpighian tubules, ileum, and rectum were heavily infected. Spores were also observed in the fat body, peripheral region of the ganglia, within and between the flight muscles, and beneath the cuticle. Although the tissues adjacent to the ovaries were heavily infected, microsporidian spores were not observed within the developing eggs. Pathogen transmission was not studied directly because it was difficult to maintain microsporidia-infected C. carnea in the laboratory. The presence of microsporidian spores in the alimentary canal suggests that the pathogen is transmitted per os and horizontal transmission may occur when infected larvae or adults are cannibalized by uninfected larvae. Molecular analysis of the microsporidian genome showed that the pathogen described in this study was 99% similar to Nosema bombycis, N. furnacalis, N. granulosis and N. spodopterae. Based on information gained during this study, we propose that the microsporidium in C. carnea be given the name Nosema chrysoperlae sp. nov. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Post-exposure temperature influence on the toxicity of conventional and new chemistry insecticides to green lacewing Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae).

    PubMed

    Mansoor, Muhammad Mudassir; Afzal, Muhammad; Raza, Abu Bakar M; Akram, Zeeshan; Waqar, Adil; Afzal, Muhammad Babar Shahzad

    2015-05-01

    Chrysoperla carnea (Stephens) is an important biological control agent currently being used in many integrated pest management (IPM) programs to control insect pests. The effect of post-treatment temperature on insecticide toxicity of a spinosyn (spinosad), pyrethroid (lambda cyhalothrin), organophosphate (chlorpyrifos) and new chemistry (acetamiprid) to C. carnea larvae was investigated under laboratory conditions. Temperature coefficients of each insecticide tested were evaluated. From 20 to 40 °C, toxicity of lambda cyhalothrin and spinosad decreased by 2.15- and 1.87-fold while toxicity of acetamiprid and chlorpyrifos increased by 2.00 and 1.79-fold, respectively. The study demonstrates that pesticide effectiveness may vary according to environmental conditions. In cropping systems where multiple insecticide products are used, attention should be given to temperature variation as a key factor in making pest management strategies safer for biological control agents. Insecticides with a negative temperature coefficient may play a constructive role to conserve C. carnea populations.

  9. Post-exposure temperature influence on the toxicity of conventional and new chemistry insecticides to green lacewing Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae)

    PubMed Central

    Mansoor, Muhammad Mudassir; Afzal, Muhammad; Raza, Abu Bakar M.; Akram, Zeeshan; Waqar, Adil; Afzal, Muhammad Babar Shahzad

    2014-01-01

    Chrysoperla carnea (Stephens) is an important biological control agent currently being used in many integrated pest management (IPM) programs to control insect pests. The effect of post-treatment temperature on insecticide toxicity of a spinosyn (spinosad), pyrethroid (lambda cyhalothrin), organophosphate (chlorpyrifos) and new chemistry (acetamiprid) to C. carnea larvae was investigated under laboratory conditions. Temperature coefficients of each insecticide tested were evaluated. From 20 to 40 °C, toxicity of lambda cyhalothrin and spinosad decreased by 2.15- and 1.87-fold while toxicity of acetamiprid and chlorpyrifos increased by 2.00 and 1.79-fold, respectively. The study demonstrates that pesticide effectiveness may vary according to environmental conditions. In cropping systems where multiple insecticide products are used, attention should be given to temperature variation as a key factor in making pest management strategies safer for biological control agents. Insecticides with a negative temperature coefficient may play a constructive role to conserve C. carnea populations. PMID:25972753

  10. Development and Reproduction of Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) Fed on Myzus persicae (Sulzer) (Hemiptera: Aphididae) Vectoring Potato leafroll virus (PLRV).

    PubMed

    Garzón, A; Freire, B C; Carvalho, G A; Oliveira, R L; Medina, P; Budia, F

    2015-12-01

    The aim of this study was to evaluate the biological parameters of Chrysoperla externa (Hagen) while feeding on Myzus persicae (Sulzer) acting as a vector of potato leafroll virus (PLRV). In laboratory experiments, three different diets were offered ad libitum to C. externa during the larval period: M. persicae fed on PLRV-infected potato leaves, M. persicae fed on uninfected potato leaves, and eggs of the factitious prey Anagasta kuehniella (Zeller) as the control. The following parameters were studied: the developmental time and survival rate of the larval and pupal stages, the sex ratio, the proportion of fertile females, female fecundity and egg viability, and the survival curve of the first 30 days after adult emergence. PLRV-infected aphids influenced the C. externa larval developmental time and survival compared to PLRV-uninfected aphids and A. kuehniella eggs. The pupal developmental time of C. externa was shorter when fed on aphids compared to A. kuehniella eggs, but no differences were recorded between the PLRV-infected and uninfected aphid diets. Additionally, no differences were observed for pupal survival and reproduction. However, adult survival was affected by the prey type, as 75% of C. externa control adults remained alive at an age of 30 days compared to 51 and 54% for those fed on PLRV-uninfected and infected aphids, respectively.

  11. [Microhabitat selection by ant-lion larvae Myrmeleon brasiliensis (Návas) (Neuroptera: Myrmeleontidae), in a Forest Reserve, Aquidauana, State of Mato Grosso do Sul].

    PubMed

    Lima, Tatiane do N; Faria, Rogério R

    2007-01-01

    The relative abundance, density, distribution pattern and relation among pit diameter and larvae body size of Myrmeleon brasiliensis Návas were evaluated in two microhabitats: sheltered and exposed. The total of 282 pits were found in sheltered microhabitat and only 50 in the exposed. The density of M. brasiliensis was between one and 43 individuals per m(2). The distribution pattern of larvae tended from pooled to regular distribution as the density increased. In both microhabitats the larvae body size was positively correlated with pit diameter.

  12. Eggs of Mallada desjardinsi (Neuroptera: Chrysopidae) are protected by ants: the role of egg stalks in ant-tended aphid colonies.

    PubMed

    Hayashi, Masayuki; Nomura, Masashi

    2014-08-01

    In ant-aphid mutualisms, ants usually attack and exclude enemies of aphids. However, larvae of the green lacewing Mallada desjardinsi (Navas) prey on ant-tended aphids without being excluded by ants; these larvae protect themselves from ants by carrying aphid carcasses on their backs. Eggs of M. desjardinsi laid at the tips of stalks have also been observed in ant-tended aphid colonies in the field. Here, we examined whether the egg stalks of M. desjardinsi protect the eggs from ants and predators. When exposed to ants, almost all eggs with intact stalks were untouched, whereas 50-80% of eggs in which stalks had been severed at their bases were destroyed by ants. In contrast, most eggs were preyed upon by larvae of the lacewing Chrysoperla nipponensis (Okamoto), an intraguild predator of M. desjardinsi, regardless of whether their stalks had been severed. These findings suggest that egg stalks provide protection from ants but not from C. nipponensis larvae. To test whether M. desjardinsi eggs are protected from predators by aphid-tending ants, we introduced C. nipponensis larvae onto plants colonized by ant-tended aphids. A significantly greater number of eggs survived in the presence of ants because aphid-tending ants excluded larvae of C. nipponensis. This finding indicates that M. desjardinsi eggs are indirectly protected from predators by ants in ant-tended aphid colonies.

  13. A revision of the genus Solter Navás, 1912 for Maghreb and West Africa with descriptions of five new species (Neuroptera, Myrmeleontidae).

    PubMed

    Michel, Bruno

    2014-11-27

    The Solter species of the Maghrebian and sub-Saharan West African Regions are revised. Nine species are recorded, S. bouyeri nov. sp., S. dogon nov. sp., S. francoisi nov. sp., S. leopardalis nov. sp., S. liber Navás, S. lucretii nov. sp., S. naevipennis Navás, S. neglectus Navás stat. rev. and S. rothschildi Navás. A lectotype is designated for the last species. A tenth species, S. ardens (Navás), is classified as incertae sedis. Solter virgilii Navás is removed from the species present in the area covered by this study. The larva of S. leopardalis is described. All species are illustrated including habitus, morphological characters and male genitalia. An identification key is provided.

  14. Preference and Performance of Hippodamia convergens (Coleoptera: Coccinellidae) and Chrysoperla carnea (Neuroptera: Chrysopidae) on Brevicoryne brassicae, Lipaphis erysimi, and Myzus persicae (Hemiptera: Aphididae) from Winter-Adapted Canola.

    PubMed

    Jessie, W P; Giles, K L; Rebek, E J; Payton, M E; Jessie, C N; McCornack, B P

    2015-06-01

    In the southern plains of the United States, winter-adapted canola (Brassica napus L.) is a recently introduced annual oilseed crop that has rapidly increased in hectares during the past 10 yr. Winter canola fields are infested annually with populations of Brevicoryne brassicae (L.) and Lipaphis erysimi (Kaltenbach), and these Brassica specialists are known to sequester plant volatiles from host plants, producing a chemical defense system against predators. Myzus persicae (Sulzer) is also common in winter canola fields, but as a generalist herbivore, does not sequester plant compounds. These three aphid species are expected to affect predator survival and development in very different ways. We conducted laboratory studies to 1) determine whether Hippodamia convergens (Guérin-Méneville) and Chrysoperla carnea (Stephens) larvae demonstrate feeding preferences among winter canola aphids and 2) describe the suitability of these prey species. Predators demonstrated no significant preference among prey, and each aphid species was suitable for predator survival to the adult stage. However, prey species significantly affected development times and adult weights of each predator species. Overall, predator development was delayed and surviving adults weighed less when provided with L. erysimi or B. brassicae, which sequestered high levels of indole glucosinolates from their host plants. Our results indicate that although common winter canola aphids were suitable prey for H. convergens and C. carnea, qualitative differences in nutritional suitability exist between Brassica-specialist aphids and the generalist M. persicae. These differences appear to be influenced by levels of sequestered plant compounds that are toxic to aphid predators. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Effects of neem oil (Azadirachta indica A. Juss) on midgut cells of predatory larvae Ceraeochrysa claveri (Navás, 1911) (Neuroptera: Chrysopidae).

    PubMed

    Scudeler, Elton Luiz; dos Santos, Daniela Carvalho

    2013-01-01

    The effects of ingested neem oil, a botanical insecticide obtained from the seeds of the neem tree, Azadirachta indica, on the midgut cells of predatory larvae Ceraeochrysa claveri were analyzed. C. claveri were fed on eggs of Diatraea saccharalis treated with neem oil at a concentration of 0.5%, 1% and 2% during throughout the larval period. Light and electron microscopy showed severe damages in columnar cells, which had many cytoplasmic protrusions, clustering and ruptured of the microvilli, swollen cells, ruptured cells, dilatation and vesiculation of rough endoplasmic reticulum, development of smooth endoplasmic reticulum, enlargement of extracellular spaces of the basal labyrinth, intercellular spaces and necrosis. The indirect ingestion of neem oil with prey can result in severe alterations showing direct cytotoxic effects of neem oil on midgut cells of C. claveri larvae. Therefore, the safety of neem oil to non-target species as larvae of C. claveri was refuted, thus the notion that plants derived are safer to non-target species must be questioned in future ecotoxicological studies.

  16. Neem oil (Azadirachta indica A. Juss) affects the ultrastructure of the midgut muscle of Ceraeochrysa claveri (Navás, 1911) (Neuroptera: Chrysopidae).

    PubMed

    Scudeler, Elton Luiz; Garcia, Ana Silvia Gimenes; Pinheiro, Patricia Fernanda Felipe; Santos, Daniela Carvalho Dos

    2017-01-01

    Cytomorphological changes, by means of ultrastructural analyses, have been used to determine the effects of the biopesticide neem oil on the muscle fibers of the midgut of the predator Ceraeochrysa claveri. Insects, throughout the larval period, were fed eggs of Diatraea saccharalis treated with neem oil at a concentration of 0.5%, 1% or 2%. In the adult stage, the midgut was collected from female insects at two stages of adulthood (newly emerged and at the start of oviposition) and processed for ultrastructural analyses. In the newly emerged insects obtained from neem oil treatments, muscle fibers showed a reduction of myofilaments as well as swollen mitochondria and an accumulation of membranous structures. Muscular fibers responded to those cellular injuries with the initiation of detoxification mechanisms, in which acid phosphatase activity was observed in large vesicles located at the periphery of the muscle fiber. At the start of oviposition in the neem oil treated insects, muscle fibers exhibited signs of degeneration, containing vacant areas in which contractile myofilaments were reduced or completely absent, and an accumulation of myelin structures, a dilatation of cisternae of sarcoplasmic reticulum, and mitochondrial swelling and cristolysis were observed. Enzymatic activity for acid phosphatase was present in large vesicles, indicating that mechanisms of lytic activity during the cell injury were utilized but insufficient for recovery from all the cellular damage. The results indicate that the visceral muscle layer is also the target of action of neem oil, and the cytotoxic effects observed may compromise the function of that organ.

  17. Side Effects of Neem Oil on the Midgut Endocrine Cells of the Green Lacewing Ceraeochrysa claveri (Navás) (Neuroptera: Chrysopidae).

    PubMed

    Scudeler, E L; Santos, D C

    2014-04-01

    We described the ultrastructure of Ceraeochrysa claveri (Navás) midgut endocrine cells in larva, pupa, and adult, and evaluated the side effects of ingested neem oil, a botanical insecticide obtained from the seeds of the neem tree (Azadirachta indica), on these cells. During the larval period, C. claveri were fed (ad libitum) Diatraea saccharalis (F.) eggs treated with neem oil at concentrations of 0.5%, 1%, or 2%. Transmission electron microscopy showed that two subtypes of endocrine cells, namely granular and vesicular, occurred in the midgut epithelium during the three stages of the life cycle. Both cell types did not reach the midgut lumen and were positioned basally in the epithelium. The endocrine cells did not show extensive infoldings of the basal plasma membrane, and there were numerous secretory granules in the basal region of the cytoplasm. In the granular endocrine cells, the granules were completely filled with a dense matrix. In the vesicular endocrine cells, the main secretory products consisted of haloed vesicles. Ultrastructural examination indicated that only the granular endocrine cells exhibited signs of morphologic changes of cell injury present in all life cycle stages after the larvae were chronically exposed to neem oil by ingestion. The major cellular damage consisted of dilatation and vesiculation of the rough endoplasmic reticulum and the development of smooth endoplasmic reticulum and mitochondrial swelling. Our data suggest that cytotoxic effects on midgut endocrine cells can contribute to a generalized disruption of the physiological processes in this organ due to a general alteration of endocrine function.

  18. The case for developing a lacewing genetic model organism

    USDA-ARS?s Scientific Manuscript database

    Lacewings (Chrysopidae: Neuroptera) are a family of insect predators, also called aphidlions because of their voracious feeding on aphids. While lacewings have been popular with growers, gardeners, and biological control scientists, they have had little visibility in the world of genetics. Generalis...

  19. Lacewing as a Genetic Model Organism

    USDA-ARS?s Scientific Manuscript database

    Lacewings (Chrysopidae: Neuroptera) are a family of insect predators, also called aphidlions because of their voracious feeding on aphids. They are well recognized, commericalized beneficial insects, and are appreciated as generalist predators by both individual gardeners and commercial growers of f...

  20. Fossil and Living Conchostracan Distribution in Kansas-Oklahoma across a 2OO-Millon-Year Time Gap.

    PubMed

    Tasch, P; Zimmerman, J R

    1961-02-24

    Fifty-nine of 493 ponds sampled in the Wellington fossil conchostracan belt contained Cyzicus mexicanus (Claus). Persistent habitat preference and faunal association were also found for four orders of insects (Odonata, Ephemeroptera, Neuroptera, and Homoptera). Comparative limnology is detailed. Greater geographic fractionation of Permian conchostracan gene-pools is attributed to a more arid climate indicated by evaporites.

  1. Population Dynamics of Empoasca fabae (Hemiptera: Cicadellidae) in Central Iowa Alfalfa Fields.

    PubMed

    Weiser Erlandson, L A; Obrycki, J J

    2015-01-01

    Adults and nymphs of Empoasca fabae Harris (Hemiptera: Cicadellidae) and adults of predatory species in the families Coccinellidae, Anthocoridae, Nabidae, Chrysopidae, and Hemerobiidae were sampled in Iowa alfalfa fields from June to September in 1999 and 2000. The relationship between each predatory taxa and E. fabae was examined using regression analysis. In 2000, all predators were found to be positively correlated with the presence of E. fabae during all periods sampled and most likely contributed to mortality. Orius insidiosus (Say) (Hemiptera: Anthoridae) was the most numerous insect predatory species; population numbers ranged from 0 to 1 and 0.1 to 3.7 adults per 0.25 m(2) in 1999 and 2000, respectively. Partial life tables were constructed for E. fabae nymphs for two alfalfa-growing periods. Nymphs were grouped into three age intervals: first and second, third and fourth, and fifth instars. For the first alfalfa growing period examined, E. fabae nymphal mortality was 70% in 1999 and 49% in 2000. During the last growing period of each season (August-September), total nymphal mortality was relatively low (<25%). Adult E. fabae density ranged from 5.4 to 25.6 and 1.4-9.2 per 0.25 m(2) in 1999 and 2000, respectively. E. fabae population peaks were similar for each age interval in all growing periods. This study provides further information on the population dynamics of E. fabae and its relationship with select predatory species in Iowa alfalfa fields.

  2. Relative densities of natural enemy and pest insects within California hedgerows.

    PubMed

    Gareau, Tara L Pisani; Letourneau, Deborah K; Shennan, Carol

    2013-08-01

    Research on hedgerow design for supporting communities of natural enemies for biological control lags behind farmer innovation in California, where assemblages of perennial plant species have been used on crop field margins in the last decade. We compared natural enemy to pest ratios between fields with hedgerows and fields with weedy margins by sampling beneficial insects and key pests of vegetables on sticky cards. We used biweekly vacuum samples to measure the distribution of key insect taxa among native perennial plant species with respect to the timing and intensity of bloom. Sticky cards indicated a trend that field margins with hedgerows support a higher ratio of natural enemies to pests compared with weedy borders. Hedgerow plant species hosted different relative densities of a generally overlapping insect community, and the timing and intensity of bloom only explained a small proportion of the variation in insect abundance at plant species and among hedgerows, with the exception of Orius spp. on Achillea millefolium L. and Baccharis pilularis De Candolle. Indicator Species Analysis showed an affinity of parasitic wasps, especially in the super-family Chalcidoidea, for B. pilularis whether or not it was in flower. A. millefolium was attractive to predatory and herbivorous homopterans; Heteromeles arbutifolia (Lindley) Roemer and B. pilularis to Diabrotica undecimpunctata undecimpunctata Mannerheim; and Rhamnus californica Eschsch to Hemerobiidae. Perennial hedgerows can be designed through species selection to support particular beneficial insect taxa, but plant resources beyond floral availability may be critical in providing structural refuges, alternative prey, and other attractive qualities that are often overlooked.

  3. Early Morphological Specialization for Insect-Spider Associations in Mesozoic Lacewings.

    PubMed

    Liu, Xingyue; Zhang, Weiwei; Winterton, Shaun L; Breitkreuz, Laura C V; Engel, Michael S

    2016-06-20

    Insects exhibit a wide diversity of anatomical specializations in their adult and immature stages associated with particular aspects of their biology. The order Neuroptera (lacewings, antlions, and their relatives) are a moderately diverse lineage of principally predatory animals, at least in their immature stages, as all have a modified piercing-sucking mandible-maxillary complex that allows them to drain fluids from their prey. As such, the larvae of various groups have evolved unique anatomical and behavioral specializations for approaching and subduing their prey, particularly the green lacewings (Chrysopidae), where immatures are also adept at camouflage [1-4]. Here we report the discovery of a unique mode of life among mid-Cretaceous mesochrysopids, an early stem group to modern green lacewings [5-7] exhibiting a combination of morphological modifications in both adults and larvae unknown among living and fossil Neuroptera, even across winged insects. The new mesochrysopids exhibit a uniquely prolonged thorax, elongate legs, and dramatically reduced hind wings in adults, and larvae have extremely elongate, slender legs with pectinate pretarsal claws and lacking trumpet-shaped empodia. The peculiarities of the larvae include features principally found in spider-associated insect groups, implying that these lacewings were early specialists on web-spinning spiders, either as active predators or kleptoparasites. This reveals a dramatic and ancient degree of ecological refinement in a major lineage of insect predators, for a food resource otherwise not utilized by most lacewings.

  4. Population Dynamics of Empoasca fabae (Hemiptera: Cicadellidae) in Central Iowa Alfalfa Fields

    PubMed Central

    Weiser Erlandson, L. A.; Obrycki, J. J.

    2015-01-01

    Adults and nymphs of Empoasca fabae Harris (Hemiptera: Cicadellidae) and adults of predatory species in the families Coccinellidae, Anthocoridae, Nabidae, Chrysopidae, and Hemerobiidae were sampled in Iowa alfalfa fields from June to September in 1999 and 2000. The relationship between each predatory taxa and E. fabae was examined using regression analysis. In 2000, all predators were found to be positively correlated with the presence of E. fabae during all periods sampled and most likely contributed to mortality. Orius insidiosus (Say) (Hemiptera: Anthoridae) was the most numerous insect predatory species; population numbers ranged from 0 to 1 and 0.1 to 3.7 adults per 0.25 m2 in 1999 and 2000, respectively. Partial life tables were constructed for E. fabae nymphs for two alfalfa-growing periods. Nymphs were grouped into three age intervals: first and second, third and fourth, and fifth instars. For the first alfalfa growing period examined, E. fabae nymphal mortality was 70% in 1999 and 49% in 2000. During the last growing period of each season (August–September), total nymphal mortality was relatively low (<25%). Adult E. fabae density ranged from 5.4 to 25.6 and 1.4–9.2 per 0.25 m2 in 1999 and 2000, respectively. E. fabae population peaks were similar for each age interval in all growing periods. This study provides further information on the population dynamics of E. fabae and its relationship with select predatory species in Iowa alfalfa fields. PMID:26320260

  5. The impact of floral resources and omnivory on a four trophic level food web.

    PubMed

    Jonsson, M; Wratten, S D; Robinson, K A; Sam, S A

    2009-06-01

    Omnivory is common among arthropods, but little is known about how availability of plant resources and prey affects interactions between species operating at the third and fourth trophic level. We used laboratory and field cage experiments to investigate how the provision of flowers affects an omnivorous lacewing, Micromus tasmaniae (Hemerobiidae) and its parasitoid Anacharis zealandica (Figitidae). The adult lacewing is a true omnivore that feeds on both floral resources and aphids, whereas the parasitoid is a life-history omnivore, feeding on lacewing larvae in the larval stage and floral nectar as an adult. We showed that the effect of floral resources (buckwheat) on lacewing oviposition depends on prey (aphid) density, having a positive effect only at low prey density and that buckwheat substantially increases the longevity of the adult parasitoid. In field cages, we tested how provision of flowering buckwheat affects the dynamics of a four trophic level system, comprising parasitoids, lacewings, pea aphids and alfalfa. We found that provision of buckwheat decreased the density of lacewings in the first phase of the experiment when the density of aphids was high. This effect was probably caused by increased rate of parasitism by the parasitoid, which benefits from the presence of buckwheat. Towards the end of the experiment when the aphid populations had declined to low levels, the effect of buckwheat on lacewing density became positive, probably because lacewings were starving in the no-buckwheat treatment. Although presence of buckwheat flowers did not affect aphid populations in the field cages, these findings highlight the need to consider multitrophic interactions when proposing provision of floral resources as a technique for sustainable pest management.

  6. Predators associated with the hemlock woolly adelgid (Hemiptera: Adelgidae) in the Pacific Northwest.

    PubMed

    Kohler, G R; Stiefel, V L; Wallin, K F; Ross, D W

    2008-04-01

    The hemlock woolly adelgid, Adelges tsugae Annand (Hemiptera: Adelgidae), is causing widespread mortality of eastern hemlock, Tsuga canadensis L. Carrière, in the eastern United States. In western North America, feeding by A. tsugae results in negligible damage to western hemlock, Tsuga heterophylla (Raf.) Sargent. Host tolerance and presence of endemic predators may be contributing to the relatively low levels of injury to T. heterophylla caused by A. tsugae. Field surveys of the predator community associated with A. tsugae infestations on 116 T. heterophylla at 16 sites in Oregon and Washington were conducted every 4-6 wk from March 2005 through November 2006. Fourteen uninfested T. heterophylla were also surveyed across 5 of the 16 sites. Each sample tree was assigned an A. tsugae population score ranging from 0 to 3. Predators collected from A. tsugae-infested T. heterophylla represent 55 species in 14 families, listed in order of abundance: Derodontidae, Chamaemyiidae, Hemerobiidae, Coccinellidae, Cantharidae, Reduviidae, Miridae, Syrphidae, Chrysopidae, Coniopterygidae, Staphylinidae, Anthocoridae, Nabidae, and Raphidiidae. Laricobius nigrinus Fender (Coleoptera: Derodontidae), Leucopis argenticollis Zetterstedt (Diptera: Chamaemyiidae), and Leucopis atrifacies (Aldrich) (Chamaemyiidae) were the most abundant predators; together comprising 59% of predator specimens recovered. Relationships among predators and A. tsugae were determined through community structure analysis. The abundances of Laricobius spp. larvae, L. nigrinus adults, Leucopis spp. larvae, and L. argenticollis adults were found to be positively correlated to A. tsugae population score. Predators were most abundant when the two generations of A. tsugae eggs were present. L. argenticollis and L. atrifacies were reared on A. tsugae in the laboratory, and host records show them to feed exclusively on Adelgidae.

  7. The mitochondrial genome of the ascalaphid owlfly Libelloides macaronius and comparative evolutionary mitochondriomics of neuropterid insects.

    PubMed

    Negrisolo, Enrico; Babbucci, Massimiliano; Patarnello, Tomaso

    2011-05-10

    The insect order Neuroptera encompasses more than 5,700 described species. To date, only three neuropteran mitochondrial genomes have been fully and one partly sequenced. Current knowledge on neuropteran mitochondrial genomes is limited, and new data are strongly required. In the present work, the mitochondrial genome of the ascalaphid owlfly Libelloides macaronius is described and compared with the known neuropterid mitochondrial genomes: Megaloptera, Neuroptera and Raphidioptera. These analyses are further extended to other endopterygotan orders. The mitochondrial genome of L. macaronius is a circular molecule 15,890 bp long. It includes the entire set of 37 genes usually present in animal mitochondrial genomes. The gene order of this newly sequenced genome is unique among Neuroptera and differs from the ancestral type of insects in the translocation of trnC. The L. macaronius genome shows the lowest A+T content (74.50%) among known neuropterid genomes. Protein-coding genes possess the typical mitochondrial start codons, except for cox1, which has an unusual ACG. Comparisons among endopterygotan mitochondrial genomes showed that A+T content and AT/GC-skews exhibit a broad range of variation among 84 analyzed taxa. Comparative analyses showed that neuropterid mitochondrial protein-coding genes experienced complex evolutionary histories, involving features ranging from codon usage to rate of substitution, that make them potential markers for population genetics/phylogenetics studies at different taxonomic ranks. The 22 tRNAs show variable substitution patterns in Neuropterida, with higher sequence conservation in genes located on the α strand. Inferred secondary structures for neuropterid rrnS and rrnL genes largely agree with those known for other insects. For the first time, a model is provided for domain I of an insect rrnL. The control region in Neuropterida, as in other insects, is fast-evolving genomic region, characterized by AT-rich motifs. The new genome

  8. Fluid-structure interaction of reticulated porous wings

    NASA Astrophysics Data System (ADS)

    Strong, Elizabeth; Jawed, Mohammad; Reis, Pedro

    Insects of the orders Neuroptera and Hymenoptera locomote via flapping flight with reticulated wings that have porous structures that confers them with remarkable lightweight characteristics. Yet these porous wings still perform as contiguous plates to provide the necessary aerodynamic lift and drag required for flight. Even though the fluid flow past the bulk of these insects may be in high Reynolds conditions, viscosity can dominate over inertia in the flow through the porous sub-features. Further considering the flexibility of these reticulated wings yields a highly nonlinear fluid-structure interaction problem. We perform a series of dynamically-scaled precision model experiments to gain physical insight into this system. Our experiments are complemented with computer simulations that combine the Discrete Elastic Rods method and a model for the fluid loading that takes into account the `leakiness' through the porous structure. Our results are anticipated to find applications in micro-air vehicle aerodynamics.

  9. The second genus and species of the extinct neuropteroid family Corydasialidae, from early Eocene McAbee, British Columbia, Canada: do they belong to Megaloptera?

    PubMed

    Archibald, S Bruce; Makarkin, Vladimir N

    2015-11-13

    Ypresioneura obscura gen. et sp. nov. from the early Eocene (Ypresian) McAbee locality (Canada, British Columbia) is described. It is assigned to the extinct neuropteroid family Corydasialidae, as the second known genus and species. The Corydasialidae was previously known only from late Eocene (Priabonian) Baltic amber. It was originally assigned to the Megaloptera, but the character states that support this conclusion are not strongly diagnostic. There is still doubt as to whether this family belongs to Megaloptera or to the Neuroptera. If this is a megalopteran (which we favor), it is the first specimen of the order from the insect-rich Okanagan Highlands series of Ypresian localities, which occur sporadically across the southern interior of British Columbia, Canada into north-central Washington, USA.

  10. Aboard a spider—a complex developmental strategy fossilized in amber

    NASA Astrophysics Data System (ADS)

    Ohl, Michael

    2011-05-01

    Mantid flies (Mantispidae) are an unusual group of lacewings (Neuroptera). Adults markedly resemble mantids in their general appearance and predatory behavior. The larvae of most mantispids exclusively prey on spider eggs, whereby the first instar larva is highly mobile and active and the other two larval stages immobile and maggot like. One of the larval strategies to pursue spider eggs is spider-boarding. Here, I report on the first record of a fossil mantispid larva. It was found in Middle Eocene Baltic amber, and it is the first record of Mantispidae from this deposit. The larva is attached to a clubionoid spider in a position typical for most mantispid larvae, and, thus, it is also the first fossil record of this complex larval behavior and development.

  11. [Trophic ecology and predation of the greater noctule bat (Nyctalus lasiopterus) in Russia].

    PubMed

    Smirnov, D G; Vekhnik, V P

    2013-01-01

    The trophic ecology of Nyctalus lasiopterus in the Samara Bend during 2008-2010 has been studied. It has been revealed that the main feeding stations for this species are old ecotonal black poplar stands and willow groves. N. lasiopterus keeps to opportunistic foraging by using easily accessible and properly sized food objects. Having analyzed 129 fecal samples, we singled out 10 categories of food objects belonging to six orders of insects. The representatives of Lepidoptera constitute the major part of the ration. Their abundance rates undergo asynchronous changes relative to each other. Homoptera and Neuroptera are found more rarely in the feces. Orthoptera and Diptera are extremely rare. Besides insects, bird feathers were found in 14 faecal samples of N. lasiopterus. They made up from 60 to 90% of the total fecal mass.

  12. New findings of twisted-wing parasites (Strepsiptera) in Alaska

    USGS Publications Warehouse

    Mcdermott, Molly

    2016-01-01

    Strepsipterans are a group of insects with a gruesome life history and an enigmatic evolutionary past. Called ‘twisted-wing parasites’, they are minute parasitoids with a very distinct morphology (Figure 1). Alternatively thought to be related to ichneumon wasps, Diptera (flies), Coleoptera (beetles), and even Neuroptera (net-winged insects) (Pohl and Beutel, 2013); the latest genetic and morphological data support the sister order relationship of Strepsiptera and Coleoptera (Niehuis et al., 2012). Strepsipterans are highly modified, males having two hind wings and halteres instead of front wings or elytra. Unlike most parasitoids, they develop inside active, living insects who are sexually sterilized but not killed until or after emergence (Kathirithamby et al., 2015).

  13. Rearing Chrysoperla externa Larvae on Artificial Diets.

    PubMed

    Bezerra, C E S; Amaral, B B; Souza, B

    2017-02-01

    We tested three artificial diets for rearing larvae of Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae), aiming at reducing the production costs of this predator. Two of the diets come from studies with other species of lacewings, and the third is a modification described in this paper. All diets were based on animal protein and were supplied to 2nd and 3rd instar larvae, whereas 1st instar larvae received eggs of Anagasta kuehniella (Zeller) (Lepidoptera: Pyralidae). We evaluated the preimaginal duration and survival, adult size, longevity and fecundity, egg hatchability, and predatory capacity of larvae produced. The performance of the diets was followed for seven generations. The diet we describe showed to be the best among the artificial diets tested. Our results show that C. externa can be successfully reared on artificial diets during second and third instars, reducing in 90% the dependency on eggs of A. kuehniella.

  14. An annotated list of aquatic insects of Fort Sill, Oklahoma, excluding diptera with notes on several new state records

    USGS Publications Warehouse

    Zuellig, R.E.; Kondratieff, B.C.; Schmidt, J.P.; Durfee, R.S.; Ruiter, D.E.; Prather, I.E.

    2006-01-01

    Qualitative collections of aquatic insects were made at Fort Sill, Lawton, Oklahoma, between 2002 and 2004. Ephemeroptera, Plecoptera, Trichoptera, Odonata, Coleoptera, aquatic Heteroptera, Neuroptera, and Megaloptera were targeted. Additional records are included from a survey that took place in 1999. More than 11,000 specimens from more than 290 collections were examined. Based on the current understanding of aquatic insect systematics, 276 taxa distributed over 8 orders, 46 families, and 141 genera were identified. Twenty-three of the 276 taxa, Plauditus texanus Wiersema, Tricorythodes allectus (Needham), Palmacorixa nana walleyi Hungerford, Climacia chapini Partin and Gurney, Oxyethira forcipata Mosely, Oxyethira janella Denning, Triaenodes helo Milne, Ylodes frontalis (Banks), Acilius fraternus Harris, Coptotomus loticus Hilsenhoff, Coptotomus venustus (Say), Desmopachria dispersa Crotch, Graphoderus liberus (Say), Hydrovatus pustulatus (Melsheimer), Hygrotus acaroides (LeConte), Liodessus flavicollis (LeConte), Uvarus texanus (Sharp), Gyrinus woodruffi Fall, Haliplus fasciatus Aube, Haliplus lewisii Crotch, Haliplus tortilipenis Brigham & Sanderson, Chaetarthria bicolor Sharp, Epimetopus costatus complex, and Hydrochus simplex LeConte are reported from Oklahoma for the first time. The three most diverse orders included Coleoptera (86 species), Odonata (67 species) and Trichoptera (59 species), and the remaining taxa were distributed among Heteroptera, (30 species), Ephemeroptera (21 species), Plecoptera (6 species), Megaloptera (4 species), and Neuroptera (3 species). Based on previous published records, many of the species collected during this study were expected to be found at Fort Sill; however, 276 taxa of aquatic insects identified from such a small geographic area is noteworthy, especially when considering local climatic conditions and the relatively small size of Fort Sill (38,300 ha). Despite agricultural practices in Oklahoma, the dust bowl days

  15. False Blister Beetles and the Expansion of Gymnosperm-Insect Pollination Modes before Angiosperm Dominance.

    PubMed

    Peris, David; Pérez-de la Fuente, Ricardo; Peñalver, Enrique; Delclòs, Xavier; Barrón, Eduardo; Labandeira, Conrad C

    2017-03-20

    During the mid-Cretaceous, angiosperms diversified from several nondiverse lineages to their current global domination [1], replacing earlier gymnosperm lineages [2]. Several hypotheses explain this extensive radiation [3], one of which involves proliferation of insect pollinator associations in the transition from gymnosperm to angiosperm dominance. However, most evidence supports gymnosperm-insect pollinator associations, buttressed by direct evidence of pollen on insect bodies, currently established for four groups: Thysanoptera (thrips), Neuroptera (lacewings), Diptera (flies), and now Coleoptera (beetles). Each group represents a distinctive pollination mode linked to a unique mouthpart type and feeding guild [4-9]. Extensive indirect evidence, based on specialized head and mouthpart morphology, is present for one of these pollinator types, the long-proboscid pollination mode [10], representing minimally ten family-level lineages of Neuroptera, Mecoptera (scorpionflies), and Diptera [8, 10, 11]. A recurring feature uniting these pollinator modes is host associations with ginkgoalean, cycad, conifer, and bennettitalean gymnosperms. Pollinator lineages bearing these pollination modes were categorized into four evolutionary cohorts during the 35-million-year-long angiosperm radiation, each defined by its host-plant associations (gymnosperm or angiosperm) and evolutionary pattern (extinction, continuation, or origination) during this interval [12]. Here, we provide the first direct evidence for one cohort, exemplified by the beetle Darwinylus marcosi, family Oedemeridae (false blister beetles), that had an earlier gymnosperm (most likely cycad) host association, later transitioning onto angiosperms [13]. This association constitutes one of four patterns explaining the plateau of family-level plant lineages generally and pollinating insects specifically during the mid-Cretaceous angiosperm radiation [12]. Published by Elsevier Ltd.

  16. The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology.

    PubMed

    Whiting, M F; Carpenter, J C; Wheeler, Q D; Wheeler, W C

    1997-03-01

    Phylogenetic relationships among the holometabolous insect orders were inferred from cladistic analysis of nucleotide sequences of 18S ribosomal DNA (rDNA) (85 exemplars) and 28S rDNA (52 exemplars) and morphological characters. Exemplar outgroup taxa were Collembola (1 sequence), Archaeognatha (1), Ephemerida (1), Odonata (2), Plecoptera (2), Blattodea (1), Mantodea (1), Dermaptera (1), Orthoptera (1), Phasmatodea (1), Embioptera (1), Psocoptera (1), Phthiraptera (1), Hemiptera (4), and Thysanoptera (1). Exemplar ingroup taxa were Coleoptera: Archostemata (1), Adephaga (2), and Polyphaga (7); Megaloptera (1); Raphidioptera (1); Neuroptera (sensu stricto = Planipennia): Mantispoidea (2), Hemerobioidea (2), and Myrmeleontoidea (2); Hymenoptera: Symphyta (4) and Apocrita (19); Trichoptera: Hydropsychoidea (1) and Limnephiloidea (2); Lepidoptera: Ditrysia (3); Siphonaptera: Pulicoidea (1) and Ceratophylloidea (2); Mecoptera: Meropeidae (1), Boreidae (1), Panorpidae (1), and Bittacidae (2); Diptera: Nematocera (1), Brachycera (2), and Cyclorrhapha (1); and Strepsiptera: Corioxenidae (1), Myrmecolacidae (1), Elenchidae (1), and Stylopidae (3). We analyzed approximately 1 kilobase of 18S rDNA, starting 398 nucleotides downstream of the 5' end, and approximately 400 bp of 28S rDNA in expansion segment D3. Multiple alignment of the 18S and 28S sequences resulted in 1,116 nucleotide positions with 24 insert regions and 398 positions with 14 insert regions, respectively. All Strepsiptera and Neuroptera have large insert regions in 18S and 28S. The secondary structure of 18S insert 23 is composed of long stems that are GC rich in the basal Strepsiptera and AT rich in the more derived Strepsiptera. A matrix of 176 morphological characters was analyzed for holometabolous orders. Incongruence length difference tests indicate that the 28S + morphological data sets are incongruent but that 28S + 18S, 18S + morphology, and 28S + 18S + morphology fail to reject the hypothesis of

  17. Escaping compound eye ancestry: the evolution of single-chamber eyes in holometabolous larvae.

    PubMed

    Buschbeck, Elke K

    2014-08-15

    Stemmata, the eyes of holometabolous insect larvae, have gained little attention, even though they exhibit remarkably different optical solutions, ranging from compound eyes with upright images, to sophisticated single-chamber eyes with inverted images. Such optical differences raise the question of how major transitions may have occurred. Stemmata evolved from compound eye ancestry, and optical differences are apparent even in some of the simplest systems that share strong cellular homology with adult ommatidia. The transition to sophisticated single-chamber eyes occurred many times independently, and in at least two different ways: through the fusion of many ommatidia [as in the sawfly (Hymenoptera)], and through the expansion of single ommatidia [as in tiger beetles (Coleoptera), antlions (Neuroptera) and dobsonflies (Megaloptera)]. Although ommatidia-like units frequently have multiple photoreceptor layers (tiers), sophisticated image-forming stemmata tend to only have one photoreceptor tier, presumably a consequence of the lens only being able to efficiently focus light on to one photoreceptor layer. An interesting exception is found in some diving beetles [Dytiscidae (Coleoptera)], in which two retinas receive sharp images from a bifocal lens. Taken together, stemmata represent a great model system to study an impressive set of optical solutions that evolved from a relatively simple ancestral organization.

  18. The evolutionary convergence of mid-Mesozoic lacewings and Cenozoic butterflies.

    PubMed

    Labandeira, Conrad C; Yang, Qiang; Santiago-Blay, Jorge A; Hotton, Carol L; Monteiro, Antónia; Wang, Yong-Jie; Goreva, Yulia; Shih, ChungKun; Siljeström, Sandra; Rose, Tim R; Dilcher, David L; Ren, Dong

    2016-02-10

    Mid-Mesozoic kalligrammatid lacewings (Neuroptera) entered the fossil record 165 million years ago (Ma) and disappeared 45 Ma later. Extant papilionoid butterflies (Lepidoptera) probably originated 80-70 Ma, long after kalligrammatids became extinct. Although poor preservation of kalligrammatid fossils previously prevented their detailed morphological and ecological characterization, we examine new, well-preserved, kalligrammatid fossils from Middle Jurassic and Early Cretaceous sites in northeastern China to unravel a surprising array of similar morphological and ecological features in these two, unrelated clades. We used polarized light and epifluorescence photography, SEM imaging, energy dispersive spectrometry and time-of-flight secondary ion mass spectrometry to examine kalligrammatid fossils and their environment. We mapped the evolution of specific traits onto a kalligrammatid phylogeny and discovered that these extinct lacewings convergently evolved wing eyespots that possibly contained melanin, and wing scales, elongate tubular proboscides, similar feeding styles, and seed-plant associations, similar to butterflies. Long-proboscid kalligrammatid lacewings lived in ecosystems with gymnosperm-insect relationships and likely accessed bennettitalean pollination drops and pollen. This system later was replaced by mid-Cretaceous angiosperms and their insect pollinators. © 2016 The Authors.

  19. The evolutionary convergence of mid-Mesozoic lacewings and Cenozoic butterflies

    PubMed Central

    Labandeira, Conrad C.; Yang, Qiang; Santiago-Blay, Jorge A.; Hotton, Carol L.; Monteiro, Antónia; Wang, Yong-Jie; Goreva, Yulia; Shih, ChungKun; Siljeström, Sandra; Rose, Tim R.; Dilcher, David L.; Ren, Dong

    2016-01-01

    Mid-Mesozoic kalligrammatid lacewings (Neuroptera) entered the fossil record 165 million years ago (Ma) and disappeared 45 Ma later. Extant papilionoid butterflies (Lepidoptera) probably originated 80–70 Ma, long after kalligrammatids became extinct. Although poor preservation of kalligrammatid fossils previously prevented their detailed morphological and ecological characterization, we examine new, well-preserved, kalligrammatid fossils from Middle Jurassic and Early Cretaceous sites in northeastern China to unravel a surprising array of similar morphological and ecological features in these two, unrelated clades. We used polarized light and epifluorescence photography, SEM imaging, energy dispersive spectrometry and time-of-flight secondary ion mass spectrometry to examine kalligrammatid fossils and their environment. We mapped the evolution of specific traits onto a kalligrammatid phylogeny and discovered that these extinct lacewings convergently evolved wing eyespots that possibly contained melanin, and wing scales, elongate tubular proboscides, similar feeding styles, and seed–plant associations, similar to butterflies. Long-proboscid kalligrammatid lacewings lived in ecosystems with gymnosperm–insect relationships and likely accessed bennettitalean pollination drops and pollen. This system later was replaced by mid-Cretaceous angiosperms and their insect pollinators. PMID:26842570

  20. Evaluation of native plant flower characteristics for conservation biological control of Prays oleae.

    PubMed

    Nave, A; Gonçalves, F; Crespí, A L; Campos, M; Torres, L

    2016-04-01

    Several studies have shown that manipulating flowering weeds within an agroecosystem can have an important role in pest control by natural enemies, by providing them nectar and pollen, which are significant sources of nutrition for adults. The aim of this study was to assess if the olive moth, Prays oleae (Bernard, 1788) (Lepidoptera: Praydidae), and five of its main natural enemies, the parasitoid species Chelonus elaeaphilus Silvestri (Hymenoptera: Braconidae), Apanteles xanthostigma (Haliday) (Hymenoptera: Braconidae), Ageniaspis fuscicollis (Dalman) (Hymenoptera: Encyrtidae) and Elasmus flabellatus (Fonscolombe) (Hymenoptera: Eulophidae), as well as the predator Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae), can theoretically access the nectar from 21 flowering weeds that naturally occur in olive groves. Thus, the architecture of the flowers as well as the mouthpart structure and/or the head and thorax width of the pest and its enemies were analyzed. The results suggested that all beneficial insects were able to reach nectar of the plant species from Apiaceae family, i.e. Conopodium majus (Gouan) Loret, Daucus carota L. and Foeniculum vulgare Mill., as well as Asparagus acutifolius L., Echium plantagineum L., Capsella bursa-pastoris (L.) Medik., Raphanus raphanistrum L., Lonicera hispanica Boiss. et Reut., Silene gallica L., Spergula arvensis L., Hypericum perforatum L., Calamintha baetica Boiss. et Reut, Malva neglecta Wallr. and Linaria saxatilis (L.) Chaz. P. oleae was not able to access nectar from five plant species, namely: Andryala integrifolia L., Chondrilla juncea L., Dittrichia viscosa (L.) Greuter, Sonchus asper (L.) Hill and Lavandula stoechas L.

  1. Extremely miniaturised and highly complex: the thoracic morphology of the first instar larva of Mengenilla chobauti (Insecta, Strepsiptera).

    PubMed

    Osswald, Judith; Pohl, Hans; Beutel, Rolf Georg

    2010-07-01

    Thoracic structures of the extremely small first instar larva of the strepsipteran species Mengenilla chobauti (ca. 200 microm) were examined, described and reconstructed 3-dimensionally. The focus is on the skeletomuscular system. The characters were compared to conditions found in other insect larvae of very small (Ptiliidae) or large (Dytiscus) size (both Coleoptera) and features of "triungulin" larvae, first instar larvae of Rhipiphoridae, Meloidae (both Coleoptera), and Mantispidae (Neuroptera). The specific lifestyle and the extreme degree of miniaturisation result in numerous thoracic modifications. Many sclerites of the exo- and endoskeleton are reduced. Cervical sclerites, pleural ridges, furcae and spinae are absent. Most of the longitudinal muscles are connected within the thorax, and a pair of ventral longitudinal muscles is present in the pleural region of the meso- and metathorax. This results in a high intersegmental flexibility. Due to the size reduction and the correlated shift of the brain to the thorax, with 94 identified muscles the thoracic musculature appears highly compact. Compared to larger larvae the number of both the individual muscles and the muscle bundles are distinctly reduced. The thorax of the first instar larvae displays many additional strepsipteran autapomorphies. At least partly due to the highly specialised condition, potential synapomorphies with other groups were not found.

  2. Identifying the predator complex of Homalodisca vitripennis (Hemiptera: Cicadellidae): a comparative study of the efficacy of an ELISA and PCR gut content assay.

    PubMed

    Fournier, Valerie; Hagler, James; Daane, Kent; de León, Jesse; Groves, Russell

    2008-10-01

    A growing number of ecologists are using molecular gut content assays to qualitatively measure predation. The two most popular gut content assays are immunoassays employing pest-specific monoclonal antibodies (mAb) and polymerase chain reaction (PCR) assays employing pest-specific DNA. Here, we present results from the first study to simultaneously use both methods to identify predators of the glassy winged sharpshooter (GWSS), Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae). A total of 1,229 arthropod predators, representing 30 taxa, were collected from urban landscapes in central California and assayed first by means of enzyme-linked immunosorbent assay (ELISA) using a GWSS egg-specific mAb and then by PCR using a GWSS-specific DNA marker that amplifies a 197-base pair fragment of its cytochrome oxidase gene (subunit I). The gut content analyses revealed that GWSS remains were present in 15.5% of the predators examined, with 18% of the spiders and 11% of the insect predators testing positive. Common spider predators included members of the Salticidae, Clubionidae, Anyphaenidae, Miturgidae, and Corinnidae families. Common insect predators included lacewings (Neuroptera: Chrysopidae), praying mantis (Mantodea: Mantidae), ants (Hymenoptera: Formicidae), assassin bugs (Hemiptera: Reduviidae), and damsel bugs (Hemiptera: Nabidae). Comparison of the two assays indicated that they were not equally effective at detecting GWSS remains in predator guts. The advantages of combining the attributes of both types of assays to more precisely assess field predation and the pros and cons of each assay for mass-screening predators are discussed.

  3. Trophic interactions between two herbivorous insects, Galerucella calmariensis and Myzus lythri, feeding on purple loosestrife, Lythrum salicaria, and two insect predators, Harmonia axyridis and Chrysoperla carnea.

    PubMed

    Matos, Bethzayda; Obrycki, John J

    2007-01-01

    The effects of two herbivorous insects, Galerucella calmariensis Duftschmid and Myzus lythri L. (Coleoptera: Chrysomelidae), feeding on purple loosestrife, Lythrum salicaria L. (Myrtiflorae: Lythraceae), were measured in the presence of two insect predators, Harmonia axyridis Pallas (Coleoptera: Coccinellidae) and Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). A greenhouse cage experiment examined the direct effects of these predators on these herbivores, and indirect effects of predation on aboveground biomass, defoliation, number of leaves, and internode length. Eight treatment combinations with G. calmariensis, M. lythri, H. axyridis and C. carnea were applied to caged L. salicaria. The experiment ended when G. calmariensis adults were observed, 11 to 13 days after release of first instar G. calmariensis. G. calmariensis larvae alone removed significant amounts of leaf tissue and reduced the number of L. salicaria leaves. Predators did not reduce levels of defoliation by G. calmariensis. C. carnea had no effect on G. calmariensis survival, but H. axyridis reduced G. calmariensis survival in the presence of M. lythri. Both predators reduced the survival of M. lythri. This short duration greenhouse study did not demonstrate that predator-prey interactions altered herbivore effects on L. salicaria.

  4. Rates and patterns of molecular evolution in freshwater versus terrestrial insects.

    PubMed

    Mitterboeck, T Fatima; Fu, Jinzhong; Adamowicz, Sarah J

    2016-11-01

    Insect lineages have crossed between terrestrial and aquatic habitats many times, for both immature and adult life stages. We explore patterns in molecular evolutionary rates between 42 sister pairs of related terrestrial and freshwater insect clades using publicly available protein-coding DNA sequence data from the orders Coleoptera, Diptera, Lepidoptera, Hemiptera, Mecoptera, Trichoptera, and Neuroptera. We furthermore test for habitat-associated convergent molecular evolution in the cytochrome c oxidase subunit I (COI) gene in general and at a particular amino acid site previously reported to exhibit habitat-linked convergence within an aquatic beetle group. While ratios of nonsynonymous-to-synonymous substitutions across available loci were higher in terrestrial than freshwater-associated taxa in 26 of 42 lineage pairs, a stronger trend was observed (20 of 31, pbinomial = 0.15, pWilcoxon = 0.017) when examining only terrestrial-aquatic pairs including fully aquatic taxa. We did not observe any widespread changes at particular amino acid sites in COI associated with habitat shifts, although there may be general differences in selection regime linked to habitat.

  5. The green lacewing, Chrysoperla carnea: preference between lettuce aphids, Nasonovia ribisnigri, and Western flower thrips, Frankliniella occidentalis.

    PubMed

    Shrestha, Govinda; Enkegaard, Annie

    2013-01-01

    This study investigated the prey preference of 3(rd) instar green lacewing, Chrysoperla carnea Stephens (Neuroptera: Chrysopidae), between western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), and lettuce aphids, Nasonovia ribisnigri (Mosley) (Hemiptera: Aphididae) in laboratory experiments at 25 ± 1° C and 70 ± 5% RH with five prey ratios (10 aphids:80 thrips, 25 aphids:65 thrips, 45 aphids:45 thrips, 65 aphids:25 thrips, and 80 aphids:10 thrips). Third instar C. carnea larvae readily preyed upon both thrips and aphids, with thrips mortality varying between 40 and 90%, and aphid mortality between 52 and 98%. Chrysoperla carnea had a significant preference for N. ribisnigri at two ratios (10 aphids:80 thrips, 65 aphids:25 thrips), but no preference for either prey at the other ratios. There was no significant linear relationship between preference index and prey ratio, but a significant intercept of the linear regression indicated an overall preference of C. carnea for aphids with a value of 0.651 ± 0.054. The possible implications of these findings for control of N. ribisnigri and F. occidentalis by C. carnea are discussed.

  6. Ancient pinnate leaf mimesis among lacewings

    PubMed Central

    Wang, Yongjie; Liu, Zhiqi; Wang, Xin; Shih, Chungkun; Zhao, Yunyun; Engel, Michael S.; Ren, Dong

    2010-01-01

    Insects have evolved diverse methods of predator avoidance, many of which implicate complex adaptations of their wings (e.g., Phylliidae, Nymphalidae, Notodontidae). Among these, angiosperm leaf mimicry is one of the most dramatic, although the historical origins of such modifications are unclear owing to a dearth of paleontological records. Here, we report evidence of pinnate leaf mimesis in two lacewings (Neuroptera): Bellinympha filicifolia Y. Wang, Ren, Liu & Engel gen. et sp. nov. and Bellinympha dancei Y. Wang, Ren, Shih & Engel, sp. nov., from the Middle Jurassic, representing a 165-million-year-old specialization between insects and contemporaneous gymnosperms of the Cycadales or Bennettitales. Furthermore, such lacewings demonstrate a preangiosperm origin for leaf mimesis, revealing a lost evolutionary scenario of interactions between insects and gymnosperms. The current fossil record suggests that this enigmatic lineage became extinct during the Early Cretaceous, apparently closely correlated with the decline of Cycadales and Bennettitales at that time, and perhaps owing to the changing floral environment resulted from the rise of flowering plants. PMID:20805491

  7. Chemical defense against predation in an insect egg.

    PubMed

    Eisner, T; Eisner, M; Rossini, C; Iyengar, V K; Roach, B L; Benedikt, E; Meinwald, J

    2000-02-15

    The larva of the green lacewing (Ceraeochrysa cubana) (Neuroptera, Chrysopidae) is a natural predator of eggs of Utetheisa ornatrix (Lepidoptera, Arctiidae), a moth that sequesters pyrrolizidine alkaloids from its larval foodplant (Fabaceae, Crotalaria spp.). Utetheisa eggs are ordinarily endowed with the alkaloid. Alkaloid-free Utetheisa eggs, produced experimentally, are pierced by the larva with its sharp tubular jaws and sucked out. Alkaloid-laden eggs, in contrast, are rejected. When attacking an Utetheisa egg cluster (numbering on average 20 eggs), the larva subjects it to an inspection process. It prods and/or pierces a small number of eggs (on average two to three) and, if these contain alkaloid, it passes "negative judgement" on the remainder of the cluster and turns away. Such generalization on the part of the larva makes sense, because the eggs within clusters differ little in alkaloid content. There is, however, considerable between-cluster variation in egg alkaloid content, so clusters in nature can be expected to range widely in palatability. To check each cluster for acceptability must therefore be adaptive for the larva, just as it must be adaptive for Utetheisa to lay its eggs in large clusters and to apportion alkaloid evenly among eggs of a cluster.

  8. Assessment of fennel aphids (Hemiptera: Aphididae) and their predators in fennel intercropped with cotton with colored fibers.

    PubMed

    Ramalho, F S; Fernandes, F S; Nascimento, A R B; Nascimento Júnior, J L; Malaquias, J B; Silva, C A D

    2012-02-01

    The fennel aphid, Hyadaphis foeniculi (Passerini) (Hemiptera: Aphididae) is a major pest of fennel, Foeniculum vulgare Miller in northeast region of Brazil. We hypothesize that intercropping can be used as an alternative pest management strategy to reduce aphid yield loss in fennel. Thus, we investigated the severity of fennel plant damage in relation to infestation by the fennel aphid and predation by Cycloneda sanguinea (L.) (Coleoptera: Coccinellidae) (spotless lady beetle), green lacewing, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae), and Scymnus spp. (Coleoptera: Coccinellidae) in sole fennel plots and plots of fennel intercropped with cotton with colored fibers. The fennel aphid populations in nontreated plots were significantly larger in sole fennel plots than in intercropped plots. The highest densities of C. sanguinea, green lacewings and Scymnus spp., associated with the suppression of fennel aphid populations was found in fennel in the intercropping systems. Fennel aphids reduced the fennel seed yield by 80% in the sole fennel plots compared with approximately 30% for all intercropping systems. The results obtained in this research are of practical significance for designing appropriate strategies for fennel aphid control in fennel-cotton intercropping systems. In summary, intercropping fennel with cotton with colored fibers apparently promoted biocontrol of fennel aphid in fennel.

  9. An Unlikely Silk: The Composite Material of Green Lacewing Cocoons

    SciTech Connect

    Weisman, Sarah; Trueman, Holly E.; Mudie, Stephen T.; Church, Jeffrey S.; Sutherland, Tara D.; Haritos, Victoria S.

    2009-01-15

    Spiders routinely produce multiple types of silk; however, common wisdom has held that insect species produce one type of silk each. This work reports that the green lacewing (Mallada signata, Neuroptera) produces two distinct classes of silk. We identified and sequenced the gene that encodes the major protein component of the larval lacewing cocoon silk and demonstrated that it is unrelated to the adult lacewing egg-stalk silk. The cocoon silk protein is 49 kDa in size and is alanine rich (>40%), and it contains an {alpha}-helical secondary structure. The final instar lacewing larvae spin protein fibers of {approx}2 {mu}m diameter to construct a loosely woven cocoon. In a second stage of cocoon construction, the insects lay down an inner wall of lipids that uses the fibers as a scaffold. We propose that the silk protein fibers provide the mechanical strength of the composite lacewing cocoon whereas the lipid layer provides a barrier to water loss during pupation.

  10. The Green Lacewing, Chrysoperla carnea: Preference between Lettuce Aphids, Nasonovia ribisnigri, and Western Flower Thrips, Frankliniella occidentalis

    PubMed Central

    Shrestha, Govinda; Enkegaard, Annie

    2013-01-01

    This study investigated the prey preference of 3rd instar green lacewing, Chrysoperla carnea Stephens (Neuroptera: Chrysopidae), between western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), and lettuce aphids, Nasonovia ribisnigri (Mosley) (Hemiptera: Aphididae) in laboratory experiments at 25 ± 1° C and 70 ± 5% RH with five prey ratios (10 aphids:80 thrips, 25 aphids:65 thrips, 45 aphids:45 thrips, 65 aphids:25 thrips, and 80 aphids:10 thrips). Third instar C. carnea larvae readily preyed upon both thrips and aphids, with thrips mortality varying between 40 and 90%, and aphid mortality between 52 and 98%. Chrysoperla carnea had a significant preference for N. ribisnigri at two ratios (10 aphids:80 thrips, 65 aphids:25 thrips), but no preference for either prey at the other ratios. There was no significant linear relationship between preference index and prey ratio, but a significant intercept of the linear regression indicated an overall preference of C. carnea for aphids with a value of 0.651 ± 0.054. The possible implications of these findings for control of N. ribisnigri and F. occidentalis by C. carnea are discussed. PMID:24205864

  11. Attractive toxic sugar baits: control of mosquitoes with the low-risk active ingredient dinotefuran and potential impacts on nontarget organisms in Morocco.

    PubMed

    Khallaayoune, Khalid; Qualls, Whitney A; Revay, Edita E; Allan, Sandra A; Arheart, Kristopher L; Kravchenko, Vasiliy D; Xue, Rui-De; Schlein, Yosef; Beier, John C; Müller, Günter C

    2013-10-01

    We evaluated the efficacy of attractive toxic sugar baits (ATSB) in the laboratory and field with the low-risk active ingredient dinotefuran against mosquito populations. Preliminary laboratory assays indicated that dinotefuran in solution with the sugar baits was ingested and resulted in high mortality of female Culex quinquefasciatus Say and Aedes aegypti Linnaeus. Field studies demonstrated >70% reduction of mosquito populations at 3 wk post-ATSB application. Nontarget feeding of seven insect orders-Hymenoptera, Lepidoptera, Coleoptera, Diptera, Hemiptera, Orthoptera, and Neuroptera-was evaluated in the field after application of attractive sugar baits (ASB) on vegetation by dissecting the guts and searching for food dye with a dissecting microscope. Nontargets were found stained with ASB 0.9% of the time when the application was applied on green nonflowering vegetation. Only two families were significantly impacted by the ASB application: Culicidae (mosquitoes) and Chironomidae (nonbiting midges) of the order Diptera. Pollinators of the other insect orders were not significantly impacted. No mortality was observed in the laboratory studies with predatory nontargets, wolf spiders or ground beetles, after feeding for 3 d on mosquitoes engorged on ATSB applied to vegetation. Overall, this novel control strategy had little impact on nontarget organisms, including pollinators and beneficial insects, and was effective at controlling mosquito populations, further supporting the development of ATSB for commercial use.

  12. Selectivity of pesticides used in integrated apple production to the lacewing, Chrysoperla externa.

    PubMed

    Moura, Alexandre Pinho; Carvalho, Geraldo Andrade; Moscardini, Valéria Fonseca; Lasmar, Olinto; Rezende, Denise Tourino; Marques, Márcio Candeias

    2010-01-01

    This research aimed to assess the toxicity of the pesticides abamectin 18 CE (0.02 g a.i. L-1), carbaryl 480 SC (1.73 g a.i. L-1), sulfur 800 GrDA (4.8 g a.i. L-1), fenitrothion 500 CE (0.75 g a.i. L-1), methidathion 400 CE (0.4 g a.i. L-1), and trichlorfon 500 SC (1.5 g a.i. L-1) as applied in integrated apple production in Brazil on the survival, oviposition capacity, and egg viability of the lacewing, Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) from Bento Gonçalves and Vacaria, Rio Grande do Sul State, Brazil. An attempt was made to study morphological changes caused by some of these chemicals, by means of ultrastructural analysis, using a scanning electronic microscope. Carbaryl, fenitrothion, and methidathion caused 100% adult mortality for both populations, avoiding evaluation of pesticides' effects on predator reproductive parameters. Abamectin and sulfur also affected the survival of these individuals with mortality rates of 10% and 6.7%, respectively, for adults from Bento Gonçalves, and were harmless to those from Vacaria at the end of evaluation. Trichlorfon was also harmless to adults from both populations. No compound reduced oviposition capacity. C. externa from Vacaria presented higher reproductive potential than those from Bento Gonçalves. In relation to egg viability, sulfur was the most damaging compound to both populations of C. externa. Ultrastructural analyses showed morphological changes in the micropyle and the chorion of eggs laid by C. externa treated with either abamectin or sulfur. The treatment may have influenced the fertilization of C. externa eggs and embryonic development. Sulfur was responsible for malformations in the end region of the abdomen and genitals of treated females. When applied to adults, abamectin, sulfur, and trichlorfon were harmless, while carbaryl, fenitrothion, and methidathion were harmful, according to the IOBC classification.

  13. Selectivity of Pesticides used in Integrated Apple Production to the Lacewing, Chrysoperla externa

    PubMed Central

    Moura, Alexandre Pinho; Carvalho, Geraldo Andrade; Moscardini, Valéria Fonseca; Lasmar, Olinto; Rezende, Denise Tourino; Marques, Márcio Candeias

    2010-01-01

    This research aimed to assess the toxicity of the pesticides abamectin 18 CE (0.02 g a.i. L-1), carbaryl 480 SC (1.73 g a.i. L-1), sulfur 800 GrDA (4.8 g a.i. L-1), fenitrothion 500 CE (0.75 g a.i. L-1), methidathion 400 CE (0.4 g a.i. L-1), and trichlorfon 500 SC (1.5 g a.i. L-1) as applied in integrated apple production in Brazil on the survival, oviposition capacity, and egg viability of the lacewing, Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) from Bento Gonçalves and Vacaria, Rio Grande do Sul State, Brazil. An attempt was made to study morphological changes caused by some of these chemicals, by means of ultrastructural analysis, using a scanning electronic microscope. Carbaryl, fenitrothion, and methidathion caused 100% adult mortality for both populations, avoiding evaluation of pesticides' effects on predator reproductive parameters. Abamectin and sulfur also affected the survival of these individuals with mortality rates of 10% and 6.7%, respectively, for adults from Bento Gonçalves, and were harmless to those from Vacaria at the end of evaluation. Trichlorfon was also harmless to adults from both populations. No compound reduced oviposition capacity. C. externa from Vacaria presented higher reproductive potential than those from Bento Gonçalves. In relation to egg viability, sulfur was the most damaging compound to both populations of C. externa. Ultrastructural analyses showed morphological changes in the micropyle and the chorion of eggs laid by C. externa treated with either abamectin or sulfur. The treatment may have influenced the fertilization of C. externa eggs and embryonic development. Sulfur was responsible for malformations in the end region of the abdomen and genitals of treated females. When applied to adults, abamectin, sulfur, and trichlorfon were harmless, while carbaryl, fenitrothion, and methidathion were harmful, according to the IOBC classification. PMID:20879916

  14. Effect of plant nutrition on aphid size, prey consumption, and life history characteristics of green lacewing.

    PubMed

    Aqueel, Muhammad A; Collins, Catherine M; Raza, Abu-bakar M; Ahmad, Shahbaz; Tariq, Muhammad; Leather, Simon R

    2014-02-01

    Plant quality can directly and indirectly affect the third trophic level. The predation by all the instars of green lacewing, Chrysoperla carnea (S.) (Neuroptera: Chrysopidae) on the cereal aphids, Rhopalosiphum padi (L.), and Sitobion avenae (F.) at varying nitrogen fertilizer levels was calculated under laboratory conditions. Wheat plants were grown on four nitrogen fertilizer levels and aphids were fed on these plants and subsequently offered as food to the C. carnea. Aphid densities of 10, 30, and 90 were offered to first, second, and third instar larvae of green lacewing. Increased nitrogen application improved nitrogen contents of the plants and also the body weight of cereal aphids feeding on them. Aphid consumption by green lacewings was reduced with the increase in nitrogen content in the host plants of aphids. Predation of both aphid species by first, second, and third instars larvae of C. carnea was highest on aphids reared on plants with the lowest rate of fertilization, suggesting a compensatory consumption to overcome reduced biomass (lower aphid size). Total biomass devoured by C. carnea on all nitrogen fertilizer treatments was not statistically different. Additionally, the heavier host prey influenced by the plant nutrition had an effect on the life history characteristics of green lacewings. The larval duration, pupal weight, pupal duration, fecundity, and male and female longevity were significantly affected by the level of nitrogen fertilization to the aphid's host plants, except for pupal duration when fed on S. avenae. This study showed that quantity of prey supplied to the larvae affects the prey consumption and thereafter the life history characteristics of green lacewings. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  15. An evolutionary analysis of flightin reveals a conserved motif unique and widespread in Pancrustacea.

    PubMed

    Soto-Adames, Felipe N; Alvarez-Ortiz, Pedro; Vigoreaux, Jim O

    2014-01-01

    Flightin is a thick filament protein that in Drosophila melanogaster is uniquely expressed in the asynchronous, indirect flight muscles (IFM). Flightin is required for the structure and function of the IFM and is indispensable for flight in Drosophila. Given the importance of flight acquisition in the evolutionary history of insects, here we study the phylogeny and distribution of flightin. Flightin was identified in 69 species of hexapods in classes Collembola (springtails), Protura, Diplura, and insect orders Thysanura (silverfish), Dictyoptera (roaches), Orthoptera (grasshoppers), Pthiraptera (lice), Hemiptera (true bugs), Coleoptera (beetles), Neuroptera (green lacewing), Hymenoptera (bees, ants, and wasps), Lepidoptera (moths), and Diptera (flies and mosquitoes). Flightin was also found in 14 species of crustaceans in orders Anostraca (water flea), Cladocera (brine shrimp), Isopoda (pill bugs), Amphipoda (scuds, sideswimmers), and Decapoda (lobsters, crabs, and shrimps). Flightin was not identified in representatives of chelicerates, myriapods, or any species outside Pancrustacea (Tetraconata, sensu Dohle). Alignment of amino acid sequences revealed a conserved region of 52 amino acids, referred herein as WYR, that is bound by strictly conserved tryptophan (W) and arginine (R) and an intervening sequence with a high content of tyrosines (Y). This motif has no homologs in GenBank or PROSITE and is unique to flightin and paraflightin, a putative flightin paralog identified in decapods. A third motif of unclear affinities to pancrustacean WYR was observed in chelicerates. Phylogenetic analysis of amino acid sequences of the conserved motif suggests that paraflightin originated before the divergence of amphipods, isopods, and decapods. We conclude that flightin originated de novo in the ancestor of Pancrustacea > 500 MYA, well before the divergence of insects (~400 MYA) and the origin of flight (~325 MYA), and that its IFM-specific function in Drosophila is a more

  16. Identification of semiochemicals released by cotton, Gossypium hirsutum, upon infestation by the cotton aphid, Aphis gossypii.

    PubMed

    Hegde, Mahabaleshwar; Oliveira, Janser N; da Costa, Joao G; Bleicher, Ervino; Santana, Antonio E G; Bruce, Toby J A; Caulfield, John; Dewhirst, Sarah Y; Woodcock, Christine M; Pickett, John A; Birkett, Michael A

    2011-07-01

    The cotton aphid, Aphis gossypii (Homoptera: Aphididae), is increasing in importance as a pest worldwide since the introduction of Bt-cotton, which controls lepidopteran but not homopteran pests. The chemical ecology of interactions between cotton, Gossypium hirsutum (Malvaceae), A. gossypii, and the predatory lacewing Chrysoperla lucasina (Neuroptera: Chrysopidae), was investigated with a view to providing new pest management strategies. Behavioral tests using a four-arm (Pettersson) olfactometer showed that alate A. gossypii spent significantly more time in the presence of odor from uninfested cotton seedlings compared to clean air, but significantly less time in the presence of odor from A. gossypii infested plants. A. gossypii also spent significantly more time in the presence of headspace samples of volatile organic compounds (VOCs) obtained from uninfested cotton seedlings, but significantly less time with those from A. gossypii infested plants. VOCs from uninfested and A. gossypii infested cotton seedlings were analyzed by gas chromatography (GC) and coupled GC-mass spectrometry (GC-MS), leading to the identification of (Z)-3-hexenyl acetate, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), methyl salicylate, and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT), which were produced in larger amounts from A. gossypii infested plants compared to uninfested plants. In behavioral tests, A. gossypii spent significantly more time in the control (solvent) arms when presented with a synthetic blend of these four compounds, with and without the presence of VOCs from uninfested cotton. Coupled GC-electroantennogram (EAG) recordings with the lacewing C. lucasina showed significant antennal responses to VOCs from A. gossypii infested cotton, suggesting they have a role in indirect defense and indicating a likely behavioral role for these compounds for the predator as well as the aphid.

  17. Seasonal variation in the populations of Polyphagotarsonemus latus and Tetranychus bastosi in physic nut (Jatropha curcas) plantations.

    PubMed

    Rosado, Jander F; Picanço, Marcelo C; Sarmento, Renato A; da Silva, Ricardo Siqueira; Pedro-Neto, Marçal; Carvalho, Marcos Alberto; Erasmo, Eduardo A L; Silva, Laila Cristina Rezende

    2015-07-01

    Studies on the seasonal variation of agricultural pest species are important for the establishment of integrated pest control programs. The seasonality of pest attacks on crops is affected by biotic and abiotic factors, for example, climate and natural enemies. Besides that, characteristics of the host plant, crop management, location and the pests' bioecology also affect this seasonality. The mites Polyphagotarsonemus latus (Prostigmata: Tarsonemidae) and Tetranychus bastosi (Prostigmata: Tetranychidae) are the most important pests in the cultivation of physic nut, Jatropha curcas (Euphorbiaceae). All parts of J. curcas can be used for a wide range of purposes. In addition many researchers have studied its potential for use as neat oil, as transesterified oil (biodiesel), or as a blend with diesel. However studies about physic nut pests have been little known. The objective of this study was to assess the seasonal variation of P. latus and T. bastosi in physic nut. This study was conducted at three sites in the state of Tocantins, Brazil. We monitored climatic elements and the densities of the two mite species and of their natural enemies for a period of 2 years. Attack by P. latus occurred during rainy seasons, when the photoperiod was short and the physic nut had new leaves. In contrast, attack by T. bastosi occurred during warmer seasons with longer photoperiods and stronger winds. Populations of both mites and their natural enemies were greater in sites with greater plant diversity adjacent to the plantations. The predators found in association with P. latus and T. bastosi were Euseius concordis (Acari: Phytoseiidae), spiders, Stethorus sp. (Coleoptera: Coccinellidae) and Chrysoperla sp. (Neuroptera: Chrysopidae).

  18. Side-effects of glyphosate on the life parameters of Eriopis connexa (Coleoptera: Coccinelidae) in Argentina.

    PubMed

    Mirande, L; Haramboure, M; Smagghe, G; Piñeda, S; Schneider, M I

    2010-01-01

    In Argentina, transgenic soybean crop (Roundup Ready, RR) has undergone a major expansion over the last 15 years, with the consequent increase of glyphosate applications, a broad-spectrum and post emergence herbicide. Soybean crops are inhabited by several arthropods. Eriopis connexa Germar (Coleoptera: Coccinelidae) is a predator associated to soybean soft-bodies pest and have a Neotropical distribution. Nowadays, it is being considered a potentially biological control agent in South America. The objectives of this work were to evaluate the side-effects of glyphosate on larvae (third instar) and adults of this predator. Commercial compound and the maximum registered concentrations for field use were employed: GlifoGlex 48 (48% glyphosate, 192 mg a.i./litre, Gleba Argentina S.A.). The exposure was by ingestion through the treated prey (Rophalosiphum padi) or by drinking treated water during 48 h for treatment of the adult. The herbicide solutions were prepared using distilled water as solvent. The bioassays were carried out in the laboratory under controlled conditions: 23 +/- 0.5 degrees C, 75 +/- 5% RH and 16:8 (L:D) of photoperiod. Development time, weight of pupae, adult emergence, pre-oviposition period, fecundity and fertility were evaluated as endpoints. Larvae from glyphosate treatment molted earlier than controls. In addition, the weight of pupae, longevity, fecundity and fertility were drastically reduced in treated organisms. The reductions were more drastic when the treatments were performed at the third larval stage than as adult. The reproduction capacity of the predator was the most affected parameter and could be related to a hormonal disruption by glyphosate in the treated organisms. This work can confirm the deleterious effects of this herbicide on beneficial organisms. Also, it agrees with prior studies carried out on other predators associated to soybean pest, such as Chrysoperla externa (Neuroptera: Chrysopidae) and Alpaida veniliae (Araneae

  19. Speciation is not necessarily easier in species with sexually monomorphic mating signals.

    PubMed

    Noh, S; Henry, C S

    2015-11-01

    Should we have different expectations regarding the likelihood and pace of speciation by sexual selection when considering species with sexually monomorphic mating signals? Two conditions that can facilitate rapid species divergence are Felsenstein's one-allele mechanism and a genetic architecture that includes a genetic association between signal and preference loci. In sexually monomorphic species, the former can manifest in the form of mate choice based on phenotype matching. The latter can be promoted by selection acting upon genetic loci for divergent signals and preferences expressed simultaneously in each individual, rather than acting separately on signal loci in males and preference loci in females. Both sexes in the Chrysoperla carnea group of green lacewings (Insecta, Neuroptera, Chrysopidae) produce sexually monomorphic species-specific mating signals. We hybridized the two species C. agilis and C. carnea to test for evidence of these speciation-facilitating conditions. Hybrid signals were more complex than the parents and we observed a dominant influence of C. carnea. We found a dominant influence of C. agilis on preferences in the form of hybrid discrimination against C. carnea. Preferences in hybrids followed patterns predicting preference loci that determine mate choice rather than a one-allele mechanism. The genetic association between signal and preference we detected in the segregating hybrid crosses indicates that speciation in these species with sexually monomorphic mating signals can have occurred rapidly. However, we need additional evidence to determine whether such genetic associations form more readily in sexually monomorphic species compared to dimorphic species and consequently facilitate speciation.

  20. Is the Multicolored Asian Ladybeetle, Harmonia axyridis, the Most Abundant Natural Enemy to Aphids in Agroecosystems?

    PubMed Central

    Vandereycken, Axel; Durieux, Delphine; Joie, Emilie; Sloggett, John J.; Haubruge, Eric; Verheggen, François J.

    2013-01-01

    The multicolored Asian ladybeetle, Harmonia axyridis Pallas (Coleoptera: Coccinellidae), was introduced into Western Europe in the late 1990s. Since the late 2000s, this species has been commonly considered one of the most abundant aphid predators in most Western European countries. In spite of the large amount of research on H. axyridis, information concerning its relative abundance in agroecosystems is lacking. This study aims to evaluate the abundance of H. axyridis within the aphidophage community in four crops situated in southern Belgium: wheat, Triticum aestivum L. (Poales: Poaceae), corn, Zea mays, potato, Solanum tuberosum (Solanales: Solanaceae), and broad bean Vicia faba (Fabales: Fabaceae). In order to assess the species diversity, the collected data were analyzed by considering (1) the species richness and (2) the evenness according to the Shannon diversity index. Eleven aphidophages were observed in every inventoried agroecosystem, including five abundant species: three coccinellids, the seven-spotted ladybug, Coccinella septempunctata L. (Coleoptera: Coccinellidae), the 14-spotted Ladybird, Propylea quatuordecimpunctata, and H. axyridis; one hoverfly, the marmalade hoverfly, Episyrphus balteatus De Geer (Diptera: Syrphidae); and one lacewing, the common green lacewing, Chrysoperla carnea Stephens sensu lato (= s.l.) (Neuroptera: Chrysopidae). Harmonia axyridis has been observed to thrive, breed, and reproduce on the four studied crops. Harmonia axyridis is the most abundant predator of aphids in corn followed by C. septempunctata, which is the main aphid predator observed in the three other inventoried crops. In wheat and potato fields, H. axyridis occurs in low numbers compared to other aphidophage. These observations suggest that H. axyridis could be considered an invasive species of agrosystems, and that potato and wheat may intermittently act as refuges for other aphidophages vulnerable to intraguild predation by this invader. Harmonia axyridis

  1. The movement of proteins across the insect and tick digestive system.

    PubMed

    Jeffers, Laura A; Michael Roe, R

    2008-02-01

    The movement of intact proteins across the digestive system was shown in a number of different blood-feeding and non-blood-feeding insects in the orders Blattaria, Coleoptera, Diptera, Hemiptera, Lepidoptera, Orthoptera, Neuroptera and Siphonaptera, as well as in two tick families Ixodidae and Argasidae. Protein movement was observed for both normal dietary and xenobiotic proteins, which suggest that the mechanism for transfer is not substrate specific. The number of studies on the mechanism of movement is limited. The research so far suggests that movement can occur by either a transcellular or an intercellular pathway in the ventriculus with most of the research describing the former. Transfer is by continuous diffusion with no evidence of pinocytosis or vesicular transport common in mammalian systems. Proteins can move across the digestive system without modification of their primary or multimeric structure and with retention of their functional characteristics. Accumulation in the hemolymph is the result of the protein degradation rate in the gut and hemolymph and transfer rate across the digestive system and can be highly variable depending on species. Research on the development of delivery systems to enhance protein movement across the insect digestive system is in its infancy. The approaches so far considered with some success include the use of lipophilic-polyethylene glycol (PEG) polymers, the development of fusion proteins with lectins, reduced gut protease activity and the development of amphiphilic peptidic analogs. Additional research on understanding the basic mechanisms of protein delivery across the insect digestive system, the importance of structure activity in this transfer and the development of technology to improve movement across the gut could be highly significant to the future of protein and nucleic acid-based insecticide development as well as traditional chemical insecticidal technologies.

  2. Resistance of green lacewing, Chrysoperla carnea Stephens to nitenpyram: Cross-resistance patterns, mechanism, stability, and realized heritability.

    PubMed

    Mansoor, Muhammad Mudassir; Raza, Abu Bakar Muhammad; Abbas, Naeem; Aqueel, Muhammad Anjum; Afzal, Muhammad

    2017-01-01

    The green lacewing, Chrysoperla carnea Stephens (Neuroptera: Chrysopidae) is a major generalist predator employed in integrated pest management (IPM) plans for pest control on many crops. Nitenpyram, a neonicotinoid insecticide has widely been used against the sucking pests of cotton in Pakistan. Therefore, a field green lacewing strain was exposed to nitenpyram for five generations to investigate resistance evolution, cross-resistance pattern, stability, realized heritability, and mechanisms of resistance. Before starting the selection with nitenpyram, a field collected strain showed 22.08-, 23.09-, 484.69- and 602.90-fold resistance to nitenpyram, buprofezin, spinosad and acetamiprid, respectively compared with the Susceptible strain. After continuous selection for five generations (G1-G5) with nitenpyram in the laboratory, the Field strain (Niten-SEL) developed a resistance ratio of 423.95 at G6. The Niten-SEL strain at G6 showed no cross-resistance to buprofezin and acetamiprid and negative cross-resistance to spinosad compared with the Field strain (G1). For resistance stability, the Niten-SEL strain was left unexposed to any insecticide for four generations (G6-G9) and bioassay results at G10 showed that resistance to nitenpyram, buprofezin and spinosad was stable, while resistance to acetamiprid was unstable. The realized heritability values were 0.97, 0.16, 0.03, and -0.16 to nitenpyram, buprofezin, acetamiprid and spinosad, respectively, after five generations of selection. Moreover, the enzyme inhibitors (PBO or DEF) significantly decreased the nitenpyram resistance in the resistant strain, suggesting that resistance was due to microsomal oxidases and esterases. These results are very helpful for integration of green lacewings in IPM programs.

  3. IPM-compatibility of foliar insecticides for citrus: Indices derived from toxicity to beneficial insects from four orders

    PubMed Central

    Michaud, J.P.; Grant, A.K.

    2003-01-01

    A series of compounds representing four major pesticide groups were tested for toxicity to beneficial insects representing four different insect orders: Coleoptera (Coccinellidae), Hemiptera (Anthocoridae), Hymenoptera (Aphelinidae), and Neuroptera (Chrysopidae). These materials included organophosphates (methidathion, esfenvalerate and phosmet), carbamates (carbofuran, methomyl and carbaryl), pyrethroids (bifenthrin, fenpropathrin, zeta-cypermethrin, cyfluthrin and permethrin) and the oxadiazine indoxacarb. Toxicity to coccinellid and lacewing species was assessed by treating 1st instar larvae with the recommended field rate of commercial products, and two 10 fold dilutions of these materials, in topical spray applications. Adult Aphytis melinus Debach and 2nd instar Orius insidiosus (Say) were exposed to leaf residues of the same concentrations for 24 h. ANOVA performed on composite survival indices derived from these data resolved significant differences among materials with respect to their overall toxicity to beneficial insects. Cyfluthrin, fenpropathrin and zeta-cypermethrin all increased the developmental time of the lacewing and one or more coccinellid species for larvae that survived topical applications. Bifenthrin increased developmental time for two coccinellid species and decreased it in a third. Indoxacarb (Avaunt® WG, DuPont Corp.) ranked highest overall for safety to beneficial insects, largely because of its low dermal toxicity to all species tested. Zeta-cypermethrin (Super Fury®, FMC Corporation) received the second best safety rating, largely because of its low toxicity as a leaf residue to A. melinus and O. insidiosus. Phosmet (Imidan® 70W, Gowan Co.) and methidathion (Supracide® 25W, Gowan Co.) ranked high for safety to coccinellid species, but compounds currently recommended for use in citrus such as fenpropathrin (Danitol® 2.4EC, Sumimoto Chem. Co.) and carbaryl (Sevin® XLR EC, Rhone Poulenc Ag. Co.) ranked very low for IPM

  4. A Nightmare for Males? A Maternally Transmitted Male-Killing Bacterium and Strong Female Bias in a Green Lacewing Population

    PubMed Central

    Hayashi, Masayuki; Watanabe, Masaya; Yukuhiro, Fumiko; Nomura, Masashi

    2016-01-01

    For maternally transmitted microbes, a female-biased host sex ratio is of reproductive advantage. Here we found a strong female bias in a field population of the green lacewing, Mallada desjardinsi (Insecta; Neuroptera). This bias was attributed to the predominance of individuals harboring a maternally inherited male-killing bacterium that was phylogenetically closely related to the plant-pathogenic Spiroplasma phoeniceum and Spiroplasma kunkelii. Among 35 laboratory-reared broods produced by wild-caught females, 21 broods (60%)—all infected with Spiroplasma—consisted of only females (940 individuals). Among 14 broods consisting of both males and females (516 and 635 individuals, respectively), 4 broods were doubly infected with Spiroplasma and Rickettsia, 6 broods were singly infected with Rickettsia, and 3 broods were uninfected (remaining one brood was unknown). Mortality during embryonic and larval development was prominent in all-female broods but not in normal sex ratio broods. Following antibiotic treatment on all-female broods, mortality was significantly reduced and the sex ratio was restored to 1:1. Strong expression and high prevalence of this male-killer is remarkable considering its low density (~10−5–10−4 cells per host mitochondrial gene copy based on quantitative PCR). In addition, a bacterium closely related to Rickettsia bellii was present in 25 of 34 broods (73.5%), irrespective of the sex ratio, with the infection density comparable to other cases of endosymbiosis (~10−2–10−1 cells per mitochondrial gene copy). Higher density of Rickettsia than Spiroplasma was also demonstrated by electron microscopy which visualized both Spiroplasma-like cells and Rickettsia-like cells inside and outside the ovarian cells. PMID:27304213

  5. NEW INSIGHTS OF SIDE-EFFECTS OF TAU-FLUVALINATE ON BIOLOGICAL AGENTS AND POLLINATORS.

    PubMed

    Sterk, G M K M; Kolokytha, P D

    2015-01-01

    A high number of side-effects trials were developed and carried out on beneficial insects and mites by the 'Side-effects on beneficial organisms' IOBC working group and subsequently published in the IOBC bulletins over a number of years. In general, these tests were mainly carried out under laboratory and/or semi-field conditions following the very worst case scenario applications, leading to an IOBC classification of 3 (moderately toxic) and 4 (harmful) for many of the tested compounds However, feedback from applications under practical conditions, often indicated that the published results were far from realism for a number of compounds. Due to the fact that some of these active ingredients are still regularly used, or even growing in importance, a number of them were tested on many beneficial arthropods and pollinators and the upcoming results were compared with the registered IOBC data. Among these compounds, Tau-fluvalinate (Mavrik), a widely used synthetic pyrethroid against aphids, caterpillars and beetles in a large number of crops, was tested in the facilities of IPM Impact. While this compound was often considered as being very toxic for all beneficial organisms, slightly toxicity was shown on adults of Aphidius colemani (Hymenoptera: Aphidiidae), and larvae of Chrysoperla carnea (Neuroptera: Chrysopidae) and Anthocoris nemoralis (Heteroptera: Anthocoridae). However, the moderately toxicity or toxicity appeared on adults of Trichogramma brassicae (Hymenoptera: Trichogrammatidae) as well as larvae of Adalia bipunctata (Coleoptera: Coccinellidae) and Episyrphus balteatus (Diptera: Syrphidae), was moderated by short persistence of less than 3 days. Concerning large earth bumblebee, Bombus terrestris (Hymenoptera: Apidae), the compound was characterized as completely safe, even when being sprayed in the full flight phase of the bumblebees. This indicates that for a high number of pollinator species and some of the most important beneficial insects, tau

  6. Future rainfall patterns will reduce arthropod abundance in model arable agroecosystems with different soil types

    NASA Astrophysics Data System (ADS)

    Zaller, Johann; Simmer, Laura; Tabi Tataw, James; Formayer, Herbert; Hösch, Johannes; Baumgarten, Andreas

    2013-04-01

    Climate change scenarios for eastern Austria predict a seasonal shift in precipitation patterns with fewer but heavier rainfall events and longer drought periods during the growing season and more precipitation during winter. This is expected to alter arthropods living in natural and agricultural ecosystems with consequences for several ecosystem functions and services. In order to better understand the effects of future rainfall patterns on aboveground arthropods inhabiting an agroecosystem, we conducted an experiment where we simulated rainfall patterns in model arable systems with three different soil types. Experiments were conducted in winter wheat cultivated in a lysimeter facility near Vienna, Austria, where three different soil types (calcaric phaeozem, calcic chernozem and gleyic phaeozem) were subjected to long-term current vs. predicted rainfall patterns according to regionalized climate change projections for 2071-2100. Aboveground arthropods were assessed by suction sampling in April, May and June 2012. We found significant differences in mean total arthropod abundances between the sampling dates with 20 ± 2 m-2, 90 ± 20 m-2 and 289 ± 54 m-2 in April, May and June, respectively. Across all three sampling dates, future rainfall patterns significantly reduced the abundance of Araneae (-43%), Auchenorrhyncha (-39%), Coleoptera (-48%), Carabidae (-41%), Chrysomelidae (-64%), Collembola (-58%), Diptera (-75%) and Neuroptera (-73%). Generally, different soil types had no effect on the abundance of arthropods. The diversity of arthropod communities was unaffected by rainfall patterns or soil types. Correlation analyses of arthropod abundances with crop biomass, weed density and abundance suggest that rainfall effects indirectly affected arthropods via changes on crops and weeds. In conclusion, these results show that future rainfall patterns will have detrimental effects on the abundance of a variety of aboveground arthropods in winter wheat with potential

  7. Is the multicolored Asian ladybeetle, Harmonia axyridis, the most abundant natural enemy to aphids in agroecosystems?

    PubMed

    Vandereycken, Axel; Durieux, Delphine; Joie, Emilie; Sloggett, John J; Haubruge, Eric; Verheggen, François J

    2013-01-01

    The multicolored Asian ladybeetle, Harmonia axyridis Pallas (Coleoptera: Coccinellidae), was introduced into Western Europe in the late 1990s. Since the late 2000s, this species has been commonly considered one of the most abundant aphid predators in most Western European countries. In spite of the large amount of research on H. axyridis, information concerning its relative abundance in agroecosystems is lacking. This study aims to evaluate the abundance of H. axyridis within the aphidophage community in four crops situated in southern Belgium: wheat, Triticum aestivum L. (Poales: Poaceae), corn, Zea mays, potato, Solanum tuberosum (Solanales: Solanaceae), and broad bean Vicia faba (Fabales: Fabaceae). In order to assess the species diversity, the collected data were analyzed by considering (1) the species richness and (2) the evenness according to the Shannon diversity index. Eleven aphidophages were observed in every inventoried agroecosystem, including five abundant species: three coccinellids, the seven-spotted ladybug, Coccinella septempunctata L. (Coleoptera: Coccinellidae), the 14-spotted Ladybird, Propylea quatuordecimpunctata, and H. axyridis; one hoverfly, the marmalade hoverfly, Episyrphus balteatus De Geer (Diptera: Syrphidae); and one lacewing, the common green lacewing, Chrysoperla carnea Stephens sensu lato (= s.l.) (Neuroptera: Chrysopidae). Harmonia axyridis has been observed to thrive, breed, and reproduce on the four studied crops. Harmonia axyridis is the most abundant predator of aphids in corn followed by C. septempunctata, which is the main aphid predator observed in the three other inventoried crops. In wheat and potato fields, H. axyridis occurs in low numbers compared to other aphidophage. These observations suggest that H. axyridis could be considered an invasive species of agrosystems, and that potato and wheat may intermittently act as refuges for other aphidophages vulnerable to intraguild predation by this invader. Harmonia axyridis

  8. Methyl salicylate attracts natural enemies and reduces populations of soybean aphids (Hemiptera: Aphididae) in soybean agroecosystems.

    PubMed

    Mallinger, Rachel E; Hogg, David B; Gratton, Claudio

    2011-02-01

    Methyl salicylate, an herbivore-induced plant volatile, has been shown to attract natural enemies and affect herbivore behavior. In this study, methyl salicylate was examined for its attractiveness to natural enemies of the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), and for its direct effects on soybean aphid population growth rates. Methyl salicylate lures were deployed in plots within organic soybean [Glycine max (L.) Merr.] fields. Sticky card traps adjacent to and 1.5 m from the lure measured the relative abundance of natural enemies, and soybean aphid populations were monitored within treated and untreated plots. In addition, exclusion cage studies were conducted to determine methyl salicylate's effect on soybean aphid population growth rates in the absence of natural enemies. Significantly greater numbers of syrphid flies (Diptera: Syrphidae) and green lacewings (Neuroptera: Chrysopidae) were caught on traps adjacent to the methyl salicylate lure, but no differences in abundance were found at traps 1.5 m from the lure. Furthermore, abundance of soybean aphids was significantly lower in methyl salicylate-treated plots. In exclusion cage studies, soybean aphid numbers were significantly reduced on treated soybean plants when all plants were open to natural enemies. When plants were caged, however, soybean aphid numbers and population growth rates did not differ between treated and untreated plants suggesting no effect of methyl salicylate on soybean aphid reproduction and implicating the role of natural enemies in depressing aphid populations. Although aphid populations were reduced locally around methyl salicylate lures, larger scale studies are needed to assess the technology at the whole-field scale.

  9. Inventory and assessment of foliar natural enemies of the soybean aphid (Hemiptera: Aphididae) in South Dakota.

    PubMed

    Hesler, Louis S

    2014-06-01

    Soybean aphid (Aphis glycines Matsumura) (Hemiptera: Aphididae) is a major pest of soybean in northern production regions of North America, and insecticides have been the primary management approach while alternative methods are developed. Knowledge of arthropod natural enemies and their impact on soybean aphid is critical for developing biological control as a management tool. Soybean is a major field crop in South Dakota, but information about its natural enemies and their impact on soybean aphid is lacking. Thus, this study was conducted in field plots in eastern South Dakota during July and August of 2004 and 2005 to characterize foliar-dwelling, arthropod natural enemies of soybean aphid, and it used exclusion techniques to determine impact of natural enemies and ants (Hymenoptera: Formicidae) on soybean aphid densities. In open field plots, weekly soybean aphid densities reached a plateau of several hundred aphids per plant in 2004, and peaked at roughly 400 aphids per plant in 2005. Despite these densities, a relatively high frequency of aphid-infested plants lacked arthropod natural enemies. Lady beetles (Coleoptera: Coccinellidae) were most abundant, peaking at 90 and 52% of all natural enemies sampled in respective years, and Harmonia axyridis Pallas was the most abundant lady beetle. Green lacewings (Neuroptera: Chrysopidae) were abundant in 2005, due mainly to large numbers of their eggs. Abundances of arachnids and coccinellid larvae correlated with soybean aphid densities each year, and chrysopid egg abundance was correlated with aphid density in 2005. Three-week cage treatments of artificially infested soybean plants in 2004 showed that noncaged plants had fewer soybean aphids than caged plants, but abundance of soybean aphid did not differ among open cages and ones that provided partial or total exclusion of natural enemies. In 2005, plants within open cages had fewer soybean aphids than those within cages that excluded natural enemies, and aphid

  10. Shallot Aphids, Myzus ascalonicus, in Strawberry: Biocontrol Potential of Three Predators and Three Parasitoids

    PubMed Central

    Enkegaard, Annie; Sigsgaard, Lene; Kristensen, Kristian

    2013-01-01

    The parasitization capacity of 3 parasitoids and the predation capacity of 3 predators towards the shallot aphid, Myzus ascalonicus Doncaster (Homoptera: Aphididae), on strawberry, Fragaria x ananassa Duchesne (Rosales: Rosaceae) cv. Honeoye, were examined in laboratory experiments. In Petri dish assays, both Aphidius colemani Viereck (Hymenoptera: Aphidiidae) and A. ervi Haliday readily stung shallot aphids, with no significant difference in stinging frequency between the two species. A. ervi induced a significantly higher mortality (79.0 ± 7.2%) in terms of stung aphids compared with A. colemani (55.3 ± 4.1%); however, only a minor fraction (2.7 ± 1.8% and 7.1 ± 3.1%, respectively) of the killed aphids resulted in formation of mummies, presumably due to a physiological response to parasitism. The low percentage of mummification precludes the use of either Aphidius species in anything but inundative biocontrol. In similar set-ups, Aphelinus abdominalis (Dalman) (Hymenoptera: Aphelinidae) killed almost half (49.6 ± 5.3%) of the exposed aphids through host feeding. In addition, 23.2 ± 7.3% of non-host-fed aphids developed into mummified aphids, and 38.1 ± 13.2% of non-host-fed aphids died from other parasitoid-induced causes. However, the host feeding rate was reduced to only 1.2 ± 0.8%, and no significant parasitization mortality was observed on strawberry plants, suggesting that host plants interfered with A. abdominalis activity. This parasitoid does not, therefore, seem to be suited to either inoculative or inundative biocontrol of shallot aphids in strawberry. The three predators studied were the green lacewing, Chrysoperla carnea Steph. (Neuroptera: Chrysopidae), the two-spotted lady beetle, Adalia bipunctata L. (Coleoptera: Coccinellidae), and the gall midge Aphidoletes aphidimyza (Rondani) (Diptera: Cecidomyiidae). Third instars of all 3 predators readily preyed upon the shallot aphid in Petri dish set-ups with significant differences in daily

  11. Shallot aphids, Myzus ascalonicus, in strawberry: biocontrol potential of three predators and three parasitoids.

    PubMed

    Enkegaard, Annie; Sigsgaard, Lene; Kristensen, Kristian

    2013-01-01

    The parasitization capacity of 3 parasitoids and the predation capacity of 3 predators towards the shallot aphid, Myzus ascalonicus Doncaster (Homoptera: Aphididae), on strawberry, Fragaria x ananassa Duchesne (Rosales: Rosaceae) cv. Honeoye, were examined in laboratory experiments. In Petri dish assays, both Aphidius colemani Viereck (Hymenoptera: Aphidiidae) and A. ervi Haliday readily stung shallot aphids, with no significant difference in stinging frequency between the two species. A. ervi induced a significantly higher mortality (79.0 ± 7.2%) in terms of stung aphids compared with A. colemani (55.3 ± 4.1%); however, only a minor fraction (2.7 ± 1.8% and 7.1 ± 3.1%, respectively) of the killed aphids resulted in formation of mummies, presumably due to a physiological response to parasitism. The low percentage of mummification precludes the use of either Aphidius species in anything but inundative biocontrol. In similar set-ups, Aphelinus abdominalis (Dalman) (Hymenoptera: Aphelinidae) killed almost half (49.6 ± 5.3%) of the exposed aphids through host feeding. In addition, 23.2 ± 7.3% of non-host-fed aphids developed into mummified aphids, and 38.1 ± 13.2% of non-host-fed aphids died from other parasitoid-induced causes. However, the host feeding rate was reduced to only 1.2 ± 0.8%, and no significant parasitization mortality was observed on strawberry plants, suggesting that host plants interfered with A. abdominalis activity. This parasitoid does not, therefore, seem to be suited to either inoculative or inundative biocontrol of shallot aphids in strawberry. The three predators studied were the green lacewing, Chrysoperla carnea Steph. (Neuroptera: Chrysopidae), the two-spotted lady beetle, Adalia bipunctata L. (Coleoptera: Coccinellidae), and the gall midge Aphidoletes aphidimyza (Rondani) (Diptera: Cecidomyiidae). Third instars of all 3 predators readily preyed upon the shallot aphid in Petri dish set-ups with significant differences in daily

  12. An assessment of arthropod prey resources at Nakula Natural Area Reserve, a potential site of reintroduction for Kiwikiu (Pseudonestor xanthophrys) and Maui `Alauahio (Parareomyza montana).

    USGS Publications Warehouse

    Banko, Paul C.; Peck, Robert W.; Cappadonna, Justin; Steele, Claire; Leonard, David L.; Mounce, Hanna L.; Becker, Dusti; Swinnerton, Kirsty

    2015-01-01

    ), which comprised 90% of all prey items for 50 adult birds and 98% of all prey for two nestlings. Caterpillars were also the most important prey for Maui ‘alauahio (43% for 104 adult birds) although spiders (Araneae, 16%), beetles (12%) and true bugs, planthoppers and psyllids (Hemiptera; 12%) were also important. Caterpillars were generally the most abundant type of arthropod in the foliage of koa and ‘ōhi‘a, although spiders, beetles and hemipterans were also common. Total arthropod biomass and caterpillar biomass at Nakula was as great, or greater, than that observed at Hanawi and Waikamoi per unit of foliage of both koa and ‘ōhi‘a. Spiders generally dominated the bark fauna on both koa and ‘ōhi‘a at all sites although isopods (Isopoda), millipedes (Myriapoda: Millipeda) and lacewings (Neuroptera) were also abundant at Waikamoi and Hanawi. Total arthropod biomass on bark, as well as the biomass of several individual taxa, was significantly lower at Nakula than the other sites. Our measurement of the density of beetle exit holes in dead koa branches found no difference between Nakula and Waikamoi. Finally, no difference existed in the abundance of arthropods (primarily caterpillars and moth pupae) within ‘ākala stems among sites. With the exception of bark surfaces, our results suggest that the arthropod prey base for birds on primary foraging substrates at Nakula is similar to that found at two sites within the current range of kiwikiu and Maui ‘alauahio. However, our results should be viewed with caution because they are limited to the scale of individual branch, tree, or ‘ākala stem. To complete the assessment, our results should be scaled up to the landscape level by determining the density of each substrate within each site. Key arthropod prey of kiwikiu and Maui ‘alauahio are available at Nakula and, as habitat restoration continues, food abundance should increase to the point at which populations of these birds can be supported.