Science.gov

Sample records for marmoset inferior colliculus

  1. Efferent pathways modulate hyperactivity in inferior colliculus.

    PubMed

    Mulders, Wilhelmina Henrica A M; Seluakumaran, Kumar; Robertson, Donald

    2010-07-14

    Animal models have demonstrated that mild hearing loss caused by acoustic trauma results in spontaneous hyperactivity in the central auditory pathways. This hyperactivity has been hypothesized to be involved in the generation of tinnitus, a phantom auditory sensation. We have recently shown that such hyperactivity, recorded in the inferior colliculus, is still dependent on cochlear neural output for some time after recovery (up to 6 weeks). We have now studied the capacity of an intrinsic efferent system, i.e., the olivocochlear system, to alter hyperactivity. This system is known to modulate cochlear neural output. Anesthetized guinea pigs were exposed to a loud sound and after 2 or 3 weeks of recovery, single-neuron recordings in inferior colliculus were made to confirm hyperactivity. Olivocochlear axons were electrically stimulated and effects on cochlear neural output and on highly spontaneous neurons in inferior colliculus were assessed. Olivocochlear stimulation suppressed spontaneous hyperactivity in the inferior colliculus. This result is in agreement with our earlier finding that hyperactivity can be modulated by altering cochlear neural output. Interestingly, the central suppression was generally much larger and longer lasting than reported previously for primary afferents. Blockade of the intracochlear effects of olivocochlear system activation eliminated some but not all of the effects observed on spontaneous activity, suggesting also a central component to the effects of stimulation. More research is needed to investigate whether these central effects of olivocochlear efferent stimulation are due to central intrinsic circuitry or to coactivation of central efferent collaterals to the cochlear nucleus.

  2. Auditory scene analysis following unilateral inferior colliculus infarct.

    PubMed

    Champoux, François; Paiement, Philippe; Vannasing, Phetsamone; Mercier, Claude; Gagné, Jean-Pierre; Lepore, Franco; Lassonde, Maryse

    2007-11-19

    Event-related potentials in the form of mismatch negativity were recorded to investigate auditory scene analysis capabilities in a person with a very circumscribed haemorrhagic lesion at the level of the right inferior colliculus. The results provide the first objective evidence that processing at the level of the inferior colliculus plays an important role in human auditory frequency discrimination. Moreover, the electrophysiological data suggest that following this unilateral lesion, the auditory pathways fail to reorganize efficiently.

  3. Inferior Colliculus Lesions Impair Eyeblink Conditioning in Rats

    ERIC Educational Resources Information Center

    Freeman, John H.; Halverson, Hunter E.; Hubbard, Erin M.

    2007-01-01

    The neural plasticity necessary for acquisition and retention of eyeblink conditioning has been localized to the cerebellum. However, the sources of sensory input to the cerebellum that are necessary for establishing learning-related plasticity have not been identified completely. The inferior colliculus may be a source of sensory input to the…

  4. Enhanced Modiolar Stimulation Effects in the Inferior Colliculus

    DTIC Science & Technology

    2007-11-02

    stimulation. Keywords: Cochlear Implant , Inferior Colliculus, Modiolar Stimulation I. INTRODUCTION Cochlear implants are used to provide hearing sensation...to the sensoneurally deaf. Bipolar electrical stimulation of a scala tympani cochlear implant produces a localized stimulus which has been measured...to diminish at about 9dB/octave [1]. Blamey et al. (1994) describes both a perceived low frequency shift by cochlear implant patients in response to

  5. Monopolar intracochlear pulse trains selectively activate the inferior colliculus.

    PubMed

    Schoenecker, Matthew C; Bonham, Ben H; Stakhovskaya, Olga A; Snyder, Russell L; Leake, Patricia A

    2012-10-01

    Previous cochlear implant studies using isolated electrical stimulus pulses in animal models have reported that intracochlear monopolar stimulus configurations elicit broad extents of neuronal activation within the central auditory system-much broader than the activation patterns produced by bipolar electrode pairs or acoustic tones. However, psychophysical and speech reception studies that use sustained pulse trains do not show clear performance differences for monopolar versus bipolar configurations. To test whether monopolar intracochlear stimulation can produce selective activation of the inferior colliculus, we measured activation widths along the tonotopic axis of the inferior colliculus for acoustic tones and 1,000-pulse/s electrical pulse trains in guinea pigs and cats. Electrical pulse trains were presented using an array of 6-12 stimulating electrodes distributed longitudinally on a space-filling silicone carrier positioned in the scala tympani of the cochlea. We found that for monopolar, bipolar, and acoustic stimuli, activation widths were significantly narrower for sustained responses than for the transient response to the stimulus onset. Furthermore, monopolar and bipolar stimuli elicited similar activation widths when compared at stimulus levels that produced similar peak spike rates. Surprisingly, we found that in guinea pigs, monopolar and bipolar stimuli produced narrower sustained activation than 60 dB sound pressure level acoustic tones when compared at stimulus levels that produced similar peak spike rates. Therefore, we conclude that intracochlear electrical stimulation using monopolar pulse trains can produce activation patterns that are at least as selective as bipolar or acoustic stimulation.

  6. Commissural functional topography of the inferior colliculus assessed in vitro

    PubMed Central

    Lee, Charles C.; Yanagawa, Yuchio; Imaizumi, Kazuo

    2015-01-01

    The inferior colliculus (IC) receives ascending and descending information from several convergent neural sources. As such, exploring the neural pathways that converge in the IC is crucial to uncovering their multi-varied roles in the integration of auditory and other sensory information. Among these convergent pathways, the IC commissural connections represent an important route for the integration of bilateral information in the auditory system. Here, we describe the preparation and validation of a novel in vitro slice preparation for examining the functional topography and synaptic properties of the commissural and intrinsic projections in the IC of the mouse. This preparation, in combination with modern genetic approaches in the mouse, enables the specific examination of these pathways, which potentially can reveal cell-type specific processing channels in the auditory midbrain. PMID:26319767

  7. Sensitivity of rat inferior colliculus neurons to frequency distributions

    PubMed Central

    Parthasarathy, Aravindakshan; Han, Emily X.; Bartlett, Edward L.

    2015-01-01

    Stimulus-specific adaptation refers to a neural response reduction to a repeated stimulus that does not generalize to other stimuli. However, stimulus-specific adaptation appears to be influenced by additional factors. For example, the statistical distribution of tone frequencies has recently been shown to dynamically alter stimulus-specific adaptation in human auditory cortex. The present study investigated whether statistical stimulus distributions also affect stimulus-specific adaptation at an earlier stage of the auditory hierarchy. Neural spiking activity and local field potentials were recorded from inferior colliculus neurons of rats while tones were presented in oddball sequences that formed two different statistical contexts. Each sequence consisted of a repeatedly presented tone (standard) and three rare deviants of different magnitudes (small, moderate, large spectral change). The critical manipulation was the relative probability with which large spectral changes occurred. In one context the probability was high (relative to all deviants), while it was low in the other context. We observed larger responses for deviants compared with standards, confirming previous reports of increased response adaptation for frequently presented tones. Importantly, the statistical context in which tones were presented strongly modulated stimulus-specific adaptation. Physically and probabilistically identical stimuli (moderate deviants) in the two statistical contexts elicited different response magnitudes consistent with neural gain changes and thus neural sensitivity adjustments induced by the spectral range of a stimulus distribution. The data show that already at the level of the inferior colliculus stimulus-specific adaptation is dynamically altered by the statistical context in which stimuli occur. PMID:26354316

  8. Neural correlates of context-dependent perceptual enhancement in the inferior colliculus

    PubMed Central

    Nelson, Paul C.; Young, Eric D.

    2010-01-01

    In certain situations, preceding auditory stimulation can actually result in heightened sensitivity to subsequent sounds. Many of these phenomena appear to be generated in the brain as reflections of central computations. One example is the robust perceptual enhancement (or “pop out”) of a probe signal within a broad-band sound whose onset time is delayed relative to the remainder of a mixture of tones. Here we show that the neural representation of such stimuli undergoes a dramatic transformation as the pathway is ascended, from an implicit and distributed peripheral code to explicitly facilitated single-neuron responses at the level of the inferior colliculus (IC) of two awake and passively listening female marmoset monkeys (callithrix jacchus). Many key features of the IC responses directly parallel psychophysical measures of enhancement, including the dependence on the width of a spectral notch surrounding the probe, the overall level of the complex, and the duration of the preceding sound (referred to as the conditioner). Neural detection thresholds for the probe with and without the conditioner were also in qualitative agreement with analogous psychoacoustic measures. Response characteristics during the conditioners were predictive of the enhancement or suppression of the ensuing probe response: build-up responses were associated with enhancement while adapting conditioner responses were more likely to result in suppression. These data can be largely explained by a phenomenological computational model using dynamic (adapting) inhibition as a necessary ingredient in the generation of neural enhancement. PMID:20463220

  9. Study of the inferior colliculus in patients with schizophrenia by magnetic resonance spectroscopy.

    PubMed

    Martinez-Granados, B; Martinez-Bisbal, M C; Sanjuan, J; Aguilar, E J; Marti-Bonmati, L; Molla, E; Celda, B

    2014-07-01

    INTRODUCTION. Previous studies have suggested morphometric and functional abnormalities in the inferior colliculus in patients with schizophrenia. Auditory hallucinations are one of the central symptoms in schizophrenia. In this complex and multidimensional event both attention and emotion are thought to play a key role. AIM. To study metabolic changes in the inferior colliculus, a nucleus integrated in the auditory pathway, in patients with schizophrenia and the possible relationship with auditory hallucinations. SUBJECTS AND METHODS. Magnetic resonance spectroscopic imaging studies were performed in 30 right-handed patients with chronic schizophrenia (19 of them with auditory hallucinations) and 28 controls. A magnetic resonance spectroscopic imaging 2D slice was acquired and the voxels representative of both inferior colliculi were selected. N-acetylaspartate (NAA), creatine (Cr) and choline (Cho) peak areas were measured. RESULTS. The patients with schizophrenia showed a NAA/Cr significant reduction in the right inferior colliculus compared to the control subjects. The metabolic data in the right inferior colliculus were correlated with emotional auditory hallucinations items. CONCLUSIONS. The contribution of the inferior colliculus on neural underpinnings of auditory hallucinations is particularly relevant for the right inferior colliculus and is centered on attention-emotional component of this symptom.

  10. Direction Selectivity Mediated by Adaptation in the Owl's Inferior Colliculus

    PubMed Central

    Peña, José Luis

    2013-01-01

    Motion direction is a crucial cue for predicting future states in natural scenes. In the auditory system, the mechanisms that confer direction selectivity to neurons are not well understood. Neither is it known whether sound motion is encoded independently of stationary sound location. Here we investigated these questions in neurons of the owl's external nucleus of the inferior colliculus, where auditory space is represented in a map. Using a high-density speaker array, we show that the preferred direction and the degree of direction selectivity can be predicted by response adaptation to sounds moving over asymmetric spatial receptive fields. At the population level, we found that preference for sounds moving toward frontal space increased with eccentricity in spatial tuning. This distribution was consistent with larger receptive-field asymmetry in neurons tuned to more peripheral auditory space. A model of suppression based on spatiotemporal summation predicted the observations. Thus, response adaptation and receptive-field shape can explain direction selectivity to acoustic motion and an orderly distribution of preferred direction. PMID:24305813

  11. Dopaminergic Input to the Inferior Colliculus in Mice

    PubMed Central

    Nevue, Alexander A.; Elde, Cameron J.; Perkel, David J.; Portfors, Christine V.

    2016-01-01

    The response of sensory neurons to stimuli can be modulated by a variety of factors including attention, emotion, behavioral context, and disorders involving neuromodulatory systems. For example, patients with Parkinson’s disease (PD) have disordered speech processing, suggesting that dopamine alters normal representation of these salient sounds. Understanding the mechanisms by which dopamine modulates auditory processing is thus an important goal. The principal auditory midbrain nucleus, the inferior colliculus (IC), is a likely location for dopaminergic modulation of auditory processing because it contains dopamine receptors and nerve terminals immunoreactive for tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis. However, the sources of dopaminergic input to the IC are unknown. In this study, we iontophoretically injected a retrograde tracer into the IC of mice and then stained the tissue for TH. We also immunostained for dopamine beta-hydroxylase (DBH), an enzyme critical for the conversion of dopamine to norepinephrine, to differentiate between dopaminergic and noradrenergic inputs. Retrogradely labeled neurons that were positive for TH were seen bilaterally, with strong ipsilateral dominance, in the subparafascicular thalamic nucleus (SPF). All retrogradely labeled neurons that we observed in other brain regions were TH-negative. Projections from the SPF were confirmed using an anterograde tracer, revealing TH-positive and DBH-negative anterogradely labeled fibers and terminals in the IC. While the functional role of this dopaminergic input to the IC is not yet known, it provides a potential mechanism for context dependent modulation of auditory processing. PMID:26834578

  12. Tinnitus-Related Changes in the Inferior Colliculus

    PubMed Central

    Berger, Joel I.; Coomber, Ben

    2015-01-01

    Tinnitus is highly complex, diverse, and difficult to treat, in part due to the fact that the underlying causes and mechanisms remain elusive. Tinnitus is generated within the auditory brain; however, consolidating our understanding of tinnitus pathophysiology is difficult due to the diversity of reported effects and the variety of implicated brain nuclei. Here, we focus on the inferior colliculus (IC), a midbrain structure that integrates the vast majority of ascending auditory information and projects via the thalamus to the auditory cortex. The IC is also a point of convergence for corticofugal input and input originating outside the auditory pathway. We review the evidence, from both studies with human subjects and from animal models, for the contribution the IC makes to tinnitus. Changes in the IC, caused by either noise exposure or drug administration, involve fundamental, heterogeneous alterations in the balance of excitation and inhibition. However, differences between hearing loss-induced pathology and tinnitus-related pathology are not well understood. Moreover, variability in tinnitus induction methodology has a significant impact on subsequent neural and behavioral changes, which could explain some of the seemingly contradictory data. Nonetheless, the IC is likely involved in the generation and persistence of tinnitus perception. PMID:25870582

  13. Responses of inferior colliculus neurons to double harmonic tones.

    PubMed

    Sinex, Donal G; Li, Hongzhe

    2007-12-01

    The auditory system can segregate sounds that overlap in time and frequency, if the sounds differ in acoustic properties such as fundamental frequency (f0). However, the neural mechanisms that underlie this ability are poorly understood. Responses of neurons in the inferior colliculus (IC) of the anesthetized chinchilla were measured. The stimuli were harmonic tones, presented alone (single harmonic tones) and in the presence of a second harmonic tone with a different f0 (double harmonic tones). Responses to single harmonic tones exhibited no stimulus-related temporal pattern, or in some cases, a simple envelope modulated at f0. Responses to double harmonic tones exhibited complex slowly modulated discharge patterns. The discharge pattern varied with the difference in f0 and with characteristic frequency. The discharge pattern also varied with the relative levels of the two tones; complex temporal patterns were observed when levels were equal, but as the level difference increased, the discharge pattern reverted to that associated with single harmonic tones. The results indicated that IC neurons convey information about simultaneous sounds in their temporal discharge patterns and that the patterns are produced by interactions between adjacent components in the spectrum. The representation is "low-resolution," in that it does not convey information about single resolved components from either individual sound.

  14. Multiple components of ipsilaterally evoked inhibition in the inferior colliculus.

    PubMed

    Klug, A; Bauer, E E; Pollak, G D

    1999-08-01

    The central nucleus of the inferior colliculus (ICc) receives a large number of convergent inputs that are both excitatory and inhibitory. Although excitatory inputs typically are evoked by stimulation of the contralateral ear, inhibitory inputs can be recruited by either ear. Here we evaluate ipsilaterally evoked inhibition in single ICc cells in awake Mexican free-tailed bats. The principal question we addressed concerns the degree to which ipsilateral inhibition at the ICc suppresses contralaterally evoked discharges and thus creates the excitatory-inhibitory (EI) properties of ICc neurons. To study ipsilaterally evoked inhibition, we iontophoretically applied excitatory neurotransmitters and visualized the ipsilateral inhibition as a gap in the carpet of background activity evoked by the transmitters. Ipsilateral inhibition was seen in 86% of ICc cells. The inhibition in most cells had both glycinergic and GABAergic components that could be blocked by the iontophoretic application of bicuculline and strychnine. In 80% of the cells that were inhibited, the ipsilateral inhibition and contralateral excitation were temporally coincident. In many of these cells, the ipsilateral inhibition suppressed contralateral discharges and thus generated the cell's EI property in the ICc. In other cells, the ipsilateral inhibition was coincident with the initial portion of the excitation, but the inhibition was only 2-4 ms in duration and suppressed only the first few contralaterally evoked discharges. The suppression was so slight that it often could not be detected as a decrease in the spike count generated by increasing ipsilateral intensities. Twenty percent of the cells that expressed inhibition, however, had inhibitory latencies that were longer than the excitatory latencies. In these neurons, the inhibition arrived too late to suppress most or any of the discharges. Finally, in the majority of cells, the ipsilateral inhibition persisted for tens of milliseconds beyond

  15. Information conveyed by inferior colliculus neurons about stimuli with aligned and misaligned sound localization cues

    PubMed Central

    Young, Eric D.

    2011-01-01

    Previous studies have demonstrated that single neurons in the central nucleus of the inferior colliculus (ICC) are sensitive to multiple sound localization cues. We investigated the hypothesis that ICC neurons are specialized to encode multiple sound localization cues that are aligned in space (as would naturally occur from a single broadband sound source). Sound localization cues including interaural time differences (ITDs), interaural level differences (ILDs), and spectral shapes (SSs) were measured in a marmoset monkey. Virtual space methods were used to generate stimuli with aligned and misaligned combinations of cues while recording in the ICC of the same monkey. Mutual information (MI) between spike rates and stimuli for aligned versus misaligned cues were compared. Neurons with best frequencies (BFs) less than ∼11 kHz mostly encoded information about a single sound localization cue, ITD or ILD depending on frequency, consistent with the dominance of ear acoustics by either ITD or ILD at those frequencies. Most neurons with BFs >11 kHz encoded information about multiple sound localization cues, usually ILD and SS, and were sensitive to their alignment. In some neurons MI between stimuli and spike responses was greater for aligned cues, while in others it was greater for misaligned cues. If SS cues were shifted to lower frequencies in the virtual space stimuli, a similar result was found for neurons with BFs <11 kHz, showing that the cue interaction reflects the spectra of the stimuli and not a specialization for representing SS cues. In general the results show that ICC neurons are sensitive to multiple localization cues if they are simultaneously present in the frequency response area of the neuron. However, the representation is diffuse in that there is not a specialization in the ICC for encoding aligned sound localization cues. PMID:21653729

  16. Inputs to combination-sensitive neurons of the inferior colliculus.

    PubMed

    Wenstrup, J J; Mittmann, D H; Grose, C D

    1999-07-12

    In the mustached bat, combination-sensitive neurons display integrative responses to combinations of acoustic elements in biosonar or social vocalizations. One type of combination-sensitive neuron responds to multiple harmonics of the frequency-modulated (FM) components in the sonar pulse and echo of the bat. These neurons, termed FM-FM neurons, are sensitive to the pulse-echo delay and may encode the distance of sonar targets. FM-FM neurons are common in high-frequency regions of the central nucleus of the inferior colliculus (ICC) and may be created there. If so, they must receive low-frequency inputs in addition to the expected high-frequency inputs. We placed single deposits of a tracer at FM-FM recording sites in the ICC and then analyzed retrograde labeling in the brainstem and midbrain. We were particularly interested in labeling patterns suggestive of low-frequency input to these FM-FM neurons. In most nuclei containing labeled cells, there was a single focus of labeling in regions thought to be responsive to high-frequency sounds. More complex labeling patterns were observed in three nuclei. In the anteroventral cochlear nucleus, labeling in the anterior and marginal cell divisions occurred in regions thought to respond to low-frequency sounds. This labeling comprised 6% of total brainstem labeled cells. Labeling in the intermediate nucleus of the lateral lemniscus and the magnocellular part of the ventral nucleus of the lateral lemniscus together comprised nearly 40% of all labeled cells. In both nuclei, multiple foci of labeling occurred. These different foci may represent groups of cells tuned to different frequency bands. Thus, one or more of these three nuclei may provide low-frequency input to high-frequency-sensitive cells in the ICC, creating FM-FM responses. We also examined whether ICC neurons responsive to lower frequencies project to high-frequency-sensitive ICC regions; only 0.15% of labeling originated from these lower frequency

  17. Colour and pattern selectivity of receptive fields in superior colliculus of marmoset monkeys

    PubMed Central

    Tailby, Chris; Cheong, Soon Keen; Pietersen, Alexander N; Solomon, Samuel G; Martin, Paul R

    2012-01-01

    The main subcortical visual targets of retinal output neurones (ganglion cells) are the parvocellular and magnocellular layers of the dorsal lateral geniculate nucleus (LGN) in the thalamus. In addition, a small and heterogeneous collection of ganglion cell axons projects to the koniocellular layers of the LGN, to the superior colliculus (SC), and to other subcortical targets. The functional (receptive field) properties and target specificity of these non-parvocellular, non-magnocellular populations remain poorly understood. It is known that one population of koniocellular layer cells in the LGN (blue-On cells) receives dominant functional input from short-wavelength sensitive (S or ‘blue’) cones. Here we asked whether SC neurones also receive S cone inputs. We made extracellular recordings from single neurones (n = 38) in the SC of anaesthetised marmoset monkeys. Responses to drifting and flashed gratings providing defined levels of cone contrast were measured. The SC receptive fields we recorded were often binocular, showed ‘complex cell’ like responses (On–Off responses), strong bandpass spatial frequency tuning, direction selectivity, and many showed strong and rapid habituation to repeatedly presented stimuli. We found no evidence for dominant S cone input to any SC neurone recorded. These data suggest that S cone signals may reach cortical pathways for colour vision exclusively through the koniocellular division of the lateral geniculate nucleus. PMID:22687612

  18. Responses from two firing patterns in inferior colliculus neurons to stimulation of the lateral lemniscus dorsal nucleus

    PubMed Central

    Li, Xiao-ting; Wang, Ning-yu; Wang, Yan-jun; Xu, Zhi-qing; Liu, Jin-feng; Bai, Yun-fei; Dai, Jin-sheng; Zhao, Jing-yi

    2016-01-01

    The γ-aminobutyric acid neurons (GABAergic neurons) in the inferior colliculus are classified into various patterns based on their intrinsic electrical properties to a constant current injection. Although this classification is associated with physiological function, the exact role for neurons with various firing patterns in acoustic processing remains poorly understood. In the present study, we analyzed characteristics of inferior colliculus neurons in vitro, and recorded responses to stimulation of the dorsal nucleus of the lateral lemniscus using the whole-cell patch clamp technique. Seven inferior colliculus neurons were tested and were classified into two firing patterns: sustained-regular (n = 4) and sustained-adapting firing patterns (n = 3). The majority of inferior colliculus neurons exhibited slight changes in response to stimulation and bicuculline. The responses of one neuron with a sustained-adapting firing pattern were suppressed after stimulation, but recovered to normal levels following application of the γ-aminobutyric acid receptor antagonist. One neuron with a sustained-regular pattern showed suppressed stimulation responses, which were not affected by bicuculline. Results suggest that GABAergic neurons in the inferior colliculus exhibit sustained-regular or sustained-adapting firing patterns. Additionally, GABAergic projections from the dorsal nucleus of the lateral lemniscus to the inferior colliculus are associated with sound localization. The different neuronal responses of various firing patterns suggest a role in sound localization. A better understanding of these mechanisms and functions will provide better clinical treatment paradigms for hearing deficiencies. PMID:27335563

  19. Regulation of self-renewing neural progenitors by FGF/ERK signaling controls formation of the inferior colliculus.

    PubMed

    Dee, Alexander; Li, Kairong; Heng, Xin; Guo, Qiuxia; Li, James Y H

    2016-10-15

    The embryonic tectum displays an anteroposterior gradient in development and produces the superior colliculus and inferior colliculus. Studies suggest that partition of the tectum is controlled by different strengths and durations of FGF signals originated from the so-called isthmic organizer at the mid/hindbrain junction; however, the underlying mechanism is unclear. We show that deleting Ptpn11, which links FGF with the ERK pathway, prevents inferior colliculus formation by depleting a previously uncharacterized stem cell zone. The stem-zone loss is attributed to shortening of S phase and acceleration of cell cycle exit and neurogenesis. Expression of a constitutively active Mek1 (Mek1(DD)), the known ERK activator, restores the tectal stem zone and the inferior colliculus without Ptpn11. By contrast, Mek1(DD) expression fails to rescue the tectal stem zone and the inferior colliculus in the absence of Fgf8 and the isthmic organizer, indicating that FGF and Mek1(DD) initiate qualitatively and/or quantitatively distinctive signaling. Together, our data show that the formation of the inferior colliculus relies on the provision of new cells from the tectal stem zone. Furthermore, distinctive ERK signaling mediates Fgf8 in the control of cell survival, tissue polarity and cytogenetic gradient during the development of the tectum.

  20. An Abnormal GABAergic System in the Inferior Colliculus Provides a Basis for Audiogenic Seizures in Genetically Epilepsy-Prone Rats

    PubMed Central

    Ribak, Charles E.

    2015-01-01

    In this review of neuroanatomical studies of the genetically epilepsy-prone rat (GEPR), three main topics will be covered. First, the number of GABAergic neurons and total neurons in the inferior colliculus of GEPRs will be compared to those of the non-epileptic Sprague-Dawley rat. Next, the number of small neurons in the inferior colliculus will be described in both developmental and genetic analyses of GEPRs and their backcrosses. Last, results from two types of studies on the propagation pathways for audiogenic seizures in GEPRs will be shown. Together, these studies demonstrate a unique GABAergic, small neuron defect in the inferior colliculus of GEPRs that may play a vital role in the initiation and spread of seizure activity during audiogenic seizures. PMID:25812940

  1. Spectral integration in the inferior colliculus: role of glycinergic inhibition in response facilitation.

    PubMed

    Wenstrup, J; Leroy, S A

    2001-02-01

    This study examined the contribution of glycinergic inhibition to the time-sensitive spectral integration performed by neurons in the inferior colliculus of the mustached bat (Pteronotus parnellii). These neurons are sometimes called combination-sensitive because they display facilitatory (or inhibitory) responses to the combination of distinct spectral elements in sonar or social vocalizations. Present in a wide range of vertebrates, their temporally and spectrally selective integration is thought to endow them with the ability to discriminate among social vocalizations or to analyze particular cues concerning sonar targets. The mechanisms that underlie these responses or the sites in the auditory system where they are created are not known. We examined combination-sensitive neurons that are facilitated by the presentation of two different harmonic elements of the bat's sonar call and echo. Responses of 24 single units were recorded before and during local application of strychnine, an antagonist of glycinergic inhibition. For each of the 24 units, strychnine application eliminated or greatly reduced temporally sensitive facilitation. There was no difference in this effect for neurons tuned to frequencies associated with the frequency-modulated or the constant-frequency sonar components. These results are unusual because glycine is considered to be an inhibitory neurotransmitter, but here it appears to be essential for the expression of combination-sensitive facilitation. The findings provide strong evidence that facilitatory combination-sensitive response properties present throughout the mustached bat's auditory midbrain, thalamus, and cortex originate through neural interactions in the inferior colliculus.

  2. Taurine acts as a glycine receptor agonist in slices of rat inferior colliculus.

    PubMed

    Xu, Han; Wang, Wei; Tang, Zheng-Quan; Xu, Tian-Le; Chen, Lin

    2006-10-01

    Taurine is an important endogenous amino acid for neural development and for many physiological functions, but little is known about its functional role in the central auditory system. We investigated in young rats (P10-P14) the effects of taurine on the neuronal responses and synaptic transmissions in the central nucleus of the inferior colliculus (ICC) with a brain slice preparation and with whole-cell patch-clamp recordings. Perfusion of taurine at 1mM reliably evoked a current across the membrane and decreased the input resistance in neurons of the ICC. Taurine also depressed the spontaneous and current-evoked firing of ICC neurons. All these effects were reversible after washout and could be blocked by 3 microM strychnine, an antagonist of glycine receptors, but not by 10 microM bicuculline, an antagonist of GABA(A) receptors. When the inhibitory receptors were not pharmacologically blocked, taurine reversibly reduced the postsynaptic currents/potentials evoked by electrically stimulating the commissure of the inferior colliculus or the ipsilateral lateral lemniscus. The results demonstrate that taurine reduces the neuronal excitability and depresses the synaptic transmission in the ICC by activating glycine-gated chloride channels. Our findings suggest that taurine acts as a ligand of glycine receptors in the ICC and can be involved in the information processing of the central auditory system similarly like the neurotransmitter glycine.

  3. Dopamine D2-Like Receptors Modulate Unconditioned Fear: Role of the Inferior Colliculus

    PubMed Central

    de Oliveira, Amanda Ribeiro; Colombo, Ana Caroline; Muthuraju, Sangu; Almada, Rafael Carvalho; Brandão, Marcus Lira

    2014-01-01

    Background A reduction of dopamine release or D2 receptor blockade in the terminal fields of the mesolimbic system clearly reduces conditioned fear. Injections of haloperidol, a preferential D2 receptor antagonist, into the inferior colliculus (IC) enhance the processing of unconditioned aversive information. However, a clear characterization of the interplay of D2 receptors in the mediation of unconditioned and conditioned fear is still lacking. Methods The present study investigated the effects of intra-IC injections of the D2 receptor-selective antagonist sulpiride on behavior in the elevated plus maze (EPM), auditory-evoked potentials (AEPs) to loud sounds recorded from the IC, fear-potentiated startle (FPS), and conditioned freezing. Results Intra-IC injections of sulpiride caused clear proaversive effects in the EPM and enhanced AEPs induced by loud auditory stimuli. Intra-IC sulpiride administration did not affect FPS or conditioned freezing. Conclusions Dopamine D2-like receptors of the inferior colliculus play a role in the modulation of unconditioned aversive information but not in the fear-potentiated startle response. PMID:25133693

  4. Microinfusion of nefazodone into the basolateral nucleus of the amygdala enhances defensive behavior induced by NMDA stimulation of the inferior colliculus.

    PubMed

    Maisonnette, S; Villela, C; Carotti, A P; Landeira-Fernandez, J

    2000-01-01

    The inferior colliculus is notably associated with defensive behavior. Electrical or pharmacological stimulation of the inferior colliculus induces aversive reactions such as running and jumping. Lesion of the basolateral nucleus of the amygdala decreases the threshold of aversive reactions induced by electrical stimulation of the inferior colliculus. The present work examined the influence of microinjections of nefazodone, a serotonin (5-HT(2)) antagonist, into the basolateral nucleus of amygdala on aversive reactions induced by N-methyl-D-aspartate (NMDA) microinjected into the inferior colliculus. Rats implanted with cannulae in the inferior colliculus and in the basolateral nucleus of the amygdala were submitted to the open-field test where defensive behaviors were observed. Results indicated that microinjection of nefazodone into the basolateral nucleus of the amygdala increases aversive responses induced by NMDA injections into the inferior colliculus. This result suggests that the inferior colliculus and the basolateral nucleus of the amygdala have a functional relationship on the neural circuitry of defensive behavior. Moreover, 5-HT(2) receptors located at the basolateral nucleus of the amygdala seem to play an inhibitory role on defensive behaviors induced by inferior colliculus stimulation.

  5. Temporal properties of inferior colliculus neurons to photonic stimulation in the cochlea

    PubMed Central

    Tan, Xiaodong; Young, Hunter; Matic, Agnella Izzo; Zirkle, Whitney; Rajguru, Suhrud; Richter, Claus-Peter

    2015-01-01

    Infrared neural stimulation (INS) may be beneficial in auditory prostheses because of its spatially selective activation of spiral ganglion neurons. However, the response properties of single auditory neurons to INS and the possible contributions of its optoacoustic effects are yet to be examined. In this study, the temporal properties of auditory neurons in the central nucleus of the inferior colliculus (ICC) of guinea pigs in response to INS were characterized. Spatial selectivity of INS was observed along the tonotopically organized ICC. Trains of laser pulses and trains of acoustic clicks were used to evoke single unit responses in ICC of normal hearing animals. In response to INS, ICC neurons showed lower limiting rates, longer latencies, and lower firing efficiencies. In deaf animals, ICC neurons could still be stimulated by INS while unresponsive to acoustic stimulation. The site and spatial selectivity of INS both likely shaped the temporal properties of ICC neurons. PMID:26311831

  6. GABAA-Mediated Inhibition Modulates Stimulus-Specific Adaptation in the Inferior Colliculus

    PubMed Central

    Pérez-González, David; Hernández, Olga; Covey, Ellen; Malmierca, Manuel S.

    2012-01-01

    The ability to detect novel sounds in a complex acoustic context is crucial for survival. Neurons from midbrain through cortical levels adapt to repetitive stimuli, while maintaining responsiveness to rare stimuli, a phenomenon called stimulus-specific adaptation (SSA). The site of origin and mechanism of SSA are currently unknown. We used microiontophoretic application of gabazine to examine the role of GABAA-mediated inhibition in SSA in the inferior colliculus, the midbrain center for auditory processing. We found that gabazine slowed down the process of adaptation to high probability stimuli but did not abolish it, with response magnitude and latency still depending on the probability of the stimulus. Blocking GABAA receptors increased the firing rate to high and low probability stimuli, but did not completely equalize the responses. Together, these findings suggest that GABAA-mediated inhibition acts as a gain control mechanism that enhances SSA by modifying the responsiveness of the neuron. PMID:22479591

  7. Interaural time sensitivity of high-frequency neurons in the inferior colliculus.

    PubMed

    Yin, T C; Kuwada, S; Sujaku, Y

    1984-11-01

    Recent psychoacoustic experiments have shown that interaural time differences provide adequate cues for lateralizing high-frequency sounds, provided the stimuli are complex and not pure tones. We present here physiological evidence in support of these findings. Neurons of high best frequency in the cat inferior colliculus respond to interaural phase differences of amplitude modulated waveforms, and this response depends upon preservation of phase information of the modulating signal. Interaural phase differences were introduced in two ways: by interaural delays of the entire waveform and by binaural beats in which there was an interaural frequency difference in the modulating waveform. Results obtained with these two methods are similar. Our results show that high-frequency cells can respond to interaural time differences of amplitude modulated signals and that they do so by a sensitivity to interaural phase differences of the modulating waveform.

  8. Auditory cortex controls sound-driven innate defense behaviour through corticofugal projections to inferior colliculus

    PubMed Central

    Xiong, Xiaorui R.; Liang, Feixue; Zingg, Brian; Ji, Xu-ying; Ibrahim, Leena A.; Tao, Huizhong W.; Zhang, Li I.

    2015-01-01

    Defense against environmental threats is essential for animal survival. However, the neural circuits responsible for transforming unconditioned sensory stimuli and generating defensive behaviours remain largely unclear. Here, we show that corticofugal neurons in the auditory cortex (ACx) targeting the inferior colliculus (IC) mediate an innate, sound-induced flight behaviour. Optogenetic activation of these neurons, or their projection terminals in the IC, is sufficient for initiating flight responses, while the inhibition of these projections reduces sound-induced flight responses. Corticocollicular axons monosynaptically innervate neurons in the cortex of the IC (ICx), and optogenetic activation of the projections from the ICx to the dorsal periaqueductal gray is sufficient for provoking flight behaviours. Our results suggest that ACx can both amplify innate acoustic-motor responses and directly drive flight behaviours in the absence of sound input through corticocollicular projections to ICx. Such corticofugal control may be a general feature of innate defense circuits across sensory modalities. PMID:26068082

  9. The ability of inferior colliculus neurons to signal differences in interaural delay

    PubMed Central

    Skottun, Bernt C.; Shackleton, Trevor M.; Arnott, Robert H.; Palmer, Alan R.

    2001-01-01

    Sound localization in humans depends largely on interaural time delay (ITD). The ability to discriminate differences in ITD is highly accurate. ITD discrimination (Δ ITD) thresholds, under some circumstances, are as low as 10–20 μs. It has been assumed that thresholds this low could only be obtained if the outputs from many neurons were combined. Here we use Receiver Operating Characteristic analysis to compute neuronal Δ ITD thresholds from 53 cells in the inferior colliculus in guinea pigs. The Δ ITD thresholds of single neurons range from several hundreds of μs down to 20–30 μs. The lowest single-cell thresholds are comparable to human thresholds determined with similar stimuli. This finding suggests that the highly accurate sound localization of human observers is consistent with the resolution of single cells and need not reflect the combined activity of many neurons. PMID:11707595

  10. Tonotopic and localized pathways from primary auditory cortex to the central nucleus of the inferior colliculus

    PubMed Central

    Markovitz, Craig D.; Tang, Tien T.; Lim, Hubert H.

    2013-01-01

    Descending projections from the cortex to subcortical structures are critical for auditory plasticity, including the ability for central neurons to adjust their frequency tuning to relevant and meaningful stimuli. We show that focal electrical stimulation of primary auditory cortex in guinea pigs produces excitatory responses in the central nucleus of the inferior colliculus (CNIC) with two tonotopic patterns: a narrow tuned pattern that is consistent with previous findings showing direct frequency-aligned projections; and a broad tuned pattern in which the auditory cortex can influence multiple frequency regions. Moreover, excitatory responses could be elicited in the caudomedial portion along the isofrequency laminae of the CNIC but not in the rostrolateral portion. This descending organization may underlie or contribute to the ability of the auditory cortex to induce changes in frequency tuning of subcortical neurons as shown extensively in previous studies. PMID:23641201

  11. Regional and laminar distribution of cortical neurons projecting to either superior or inferior colliculus in the hedgehog tenrec.

    PubMed

    Künzle, H

    1995-01-01

    Retrograde tracer substances were injected into either the inferior or the superior colliculus in the Madagascan hedgehog tenrec, Echinops telfairi (Insectivora), to reveal the laminar and regional distribution of corticotectal cells and to correlate the labeled areas with architectural data. The tenrecs, taken from our breeding colony, have one of the least differentiated cerebral cortices among mammals, and experimental investigations of such brains are important for the understanding of the evolution and intrinsic organization of the more highly differentiated cerebral cortex in other placental mammals. Following injections into the inferior colliculus, cortical neurons were labeled bilaterally, with an ipsilateral predominance. Most labeled cells were found in the caudolateral hemisphere, area 4 as defined by Rehkämper (1981); some were in the somatosensorimotor cortex, as defined in a previous study. The labeled neurons in area 4 were located in layers V and VI, forming two bands of cells separated from each other by a poorly labeled interspace. A further subdivision of this presumed auditory region could not be achieved. This entire area was also weakly labeled following tracer injections into the superior colliculus. The labeled cells, however, were restricted to layer V of the ipsilateral side. The most consistent sites of labeled cells following injections into the superior colliculus were found in layer V of the ipsilateral caudomedial hemisphere, Rehkämper's caudal area 3, and the transitional zone adjacent to the retrosplenial cortex. This area is small in comparison to the entire region that was found in this study to project to the superior colliculus. The superior colliculus also receives projections from the ipsilateral sensorimotor and cingulate cortices. The latter projections are particularly striking in comparison to other mammals because they originate from along the entire rostrocaudal extent of the cingulate/retrosplenial region.

  12. Identification of a Circadian Clock in the Inferior Colliculus and Its Dysregulation by Noise Exposure

    PubMed Central

    Park, Jung-sub; Cederroth, Christopher R.; Basinou, Vasiliki; Meltser, Inna; Lundkvist, Gabriella

    2016-01-01

    Circadian rhythms regulate bodily functions within 24 h and long-term disruptions in these rhythms can cause various diseases. Recently, the peripheral auditory organ, the cochlea, has been shown to contain a self-sustained circadian clock that regulates differential sensitivity to noise exposure throughout the day. Animals exposed to noise during the night are more vulnerable than when exposed during the day. However, whether other structures throughout the auditory pathway also possess a circadian clock remains unknown. Here, we focus on the inferior colliculus (IC), which plays an important role in noise-induced pathologies such as tinnitus, hyperacusis, and audiogenic seizures. Using PER2::LUC transgenic mice and real-time bioluminescence recordings, we revealed circadian oscillations of Period 2 protein in IC explants for up to 1 week. Clock genes (Cry1, Bmal1, Per1, Per2, Rev-erbα, and Dbp) displayed circadian molecular oscillations in the IC. Averaged expression levels of early-induced genes and clock genes during 24 h revealed differential responses to day or night noise exposure. Rev-erbα and Dbp genes were affected only by day noise exposure, whereas Per1 and Per2 were affected only by night noise exposure. However, the expression of Bdnf was affected by both day and night noise exposure, suggesting that plastic changes are unlikely to be involved in the differences in day or night noise sensitivity in the IC. These novel findings highlight the importance of circadian responses in the IC and emphasize the importance of circadian mechanisms for understanding central auditory function and disorders. SIGNIFICANCE STATEMENT Recent findings identified the presence of a circadian clock in the inner ear. Here, we present novel findings that neurons in the inferior colliculus (IC), a central auditory relay structure involved in sound processing, express a circadian clock as evidenced at both the mRNA and protein levels. Using a reporter mouse that expresses a

  13. Neural correlates of binaural masking level difference in the inferior colliculus of the barn owl (Tyto alba).

    PubMed

    Asadollahi, Ali; Endler, Frank; Nelken, Israel; Wagner, Hermann

    2010-08-01

    Humans and animals are able to detect signals in noisy environments. Detection improves when the noise and the signal have different interaural phase relationships. The resulting improvement in detection threshold is called the binaural masking level difference. We investigated neural mechanisms underlying the release from masking in the inferior colliculus of barn owls in low-frequency and high-frequency neurons. A tone (signal) was presented either with the same interaural time difference as the noise (masker) or at a 180 degrees phase shift as compared with the interaural time difference of the noise. The changes in firing rates induced by the addition of a signal of increasing level while masker level was kept constant was well predicted by the relative responses to the masker and signal alone. In many cases, the response at the highest signal levels was dominated by the response to the signal alone, in spite of a significant response to the masker at low signal levels, suggesting the presence of occlusion. Detection thresholds and binaural masking level differences were widely distributed. The amount of release from masking increased with increasing masker level. Narrowly tuned neurons in the central nucleus of the inferior colliculus had detection thresholds that were lower than or similar to those of broadly tuned neurons in the external nucleus of the inferior colliculus. Broadly tuned neurons exhibited higher masking level differences than narrowband neurons. These data suggest that detection has different spectral requirements from localization.

  14. A function for binaural integration in auditory grouping and segregation in the inferior colliculus.

    PubMed

    Nakamoto, Kyle T; Shackleton, Trevor M; Magezi, David A; Palmer, Alan R

    2015-03-15

    Responses of neurons to binaural, harmonic complex stimuli in urethane-anesthetized guinea pig inferior colliculus (IC) are reported. To assess the binaural integration of harmonicity cues for sound segregation and grouping, responses were measured to harmonic complexes with different fundamental frequencies presented to each ear. Simultaneously gated harmonic stimuli with fundamental frequencies of 125 Hz and 145 Hz were presented to the left and right ears, respectively, and recordings made from 96 neurons with characteristic frequencies >2 kHz in the central nucleus of the IC. Of these units, 70 responded continuously throughout the stimulus and were excited by the stimulus at the contralateral ear. The stimulus at the ipsilateral ear excited (EE: 14%; 10/70), inhibited (EI: 33%; 23/70), or had no significant effect (EO: 53%; 37/70), defined by the effect on firing rate. The neurons phase locked to the temporal envelope at each ear to varying degrees depending on signal level. Many of the cells (predominantly EO) were dominated by the response to the contralateral stimulus. Another group (predominantly EI) synchronized to the contralateral stimulus and were suppressed by the ipsilateral stimulus in a phasic manner. A third group synchronized to the stimuli at both ears (predominantly EE). Finally, a group only responded when the waveform peaks from each ear coincided. We conclude that these groups of neurons represent different "streams" of information but exhibit modifications of the response rather than encoding a feature of the stimulus, like pitch.

  15. Distinct neural firing mechanisms to tonal stimuli offset in the inferior colliculus of mice in vivo.

    PubMed

    Kasai, Masatoshi; Ono, Munenori; Ohmori, Harunori

    2012-07-01

    Offset neurons, which fire at the termination of sound, likely encode sound duration and serve to process temporal information. Offset neurons are found in most ascending auditory nuclei; however, the neural mechanisms that evoke offset responses are not well understood. In this study, we examined offset neural responses to tonal stimuli in the inferior colliculus (IC) in vivo with extracellular and intracellular recording techniques in mice. Based on peristimulus time histogram (PSTH) patterns, we classified extracellular offset responses into four types: Offset, Onset-Offset, Onset-Sustained-Offset and Inhibition-Offset types. Moreover, using in vivo whole-cell recording techniques, we found that offset responses were generated in most cells through the excitatory and inhibitory synaptic inputs. However, in a small number of cells, the offset responses were generated as a rebound to hyperpolarization during tonal stimulation. Many offset neurons fired robustly at a preferred duration of tonal stimulus, which corresponded with the timing of rich excitatory synaptic inputs. We concluded that most IC offset neurons encode the termination of the tone stimulus by responding to inherited ascending synaptic information, which is tuned to sound duration. The remainder generates offset spikes de novo through a post-inhibitory rebound mechanism.

  16. Differential Patterns of Inputs Create Functional Zones in Central Nucleus of Inferior Colliculus

    PubMed Central

    Loftus, William C.; Bishop, Deborah C.; Oliver, Douglas L.

    2010-01-01

    Distinct pathways carry monaural and binaural information from the lower auditory brainstem to the central nucleus of the inferior colliculus (ICC). Previous anatomical and physiological studies suggest that differential ascending inputs to regions of the ICC create functionally distinct zones. Here, we provide direct evidence of this relationship by combining recordings of single unit responses to sound in the ICC with focal, iontophoretic injections of the retrograde tracer Fluoro-gold (FG) at the physiologically characterized sites. Three main patterns of anatomical inputs were observed. One pattern was identified by inputs from the cochlear nucleus and ventral nucleus of the lateral lemniscus (VNLL) in isolation, and these injection sites were correlated with monaural responses. The second pattern had inputs only from the ipsilateral medial and lateral superior olive (MSO, LSO), and these sites were correlated with ITD-sensitive responses to low frequency (< 500 Hz). A third pattern had inputs from a variety of olivary and lemniscal sources, notably the contralateral lateral superior olive and dorsal nucleus of the lateral lemniscus. These were correlated with high-frequency ITD sensitivity to complex acoustic stimuli. These data support the notion of anatomical regions formed by specific patterns of anatomical inputs to the ICC. Such synaptic domains may represent functional zones in ICC. PMID:20926666

  17. Changes in the Response Properties of Inferior Colliculus Neurons Relating to Tinnitus

    PubMed Central

    Berger, Joel I.; Coomber, Ben; Wells, Tobias T.; Wallace, Mark N.; Palmer, Alan R.

    2014-01-01

    Tinnitus is often identified in animal models by using the gap prepulse inhibition of acoustic startle. Impaired gap detection following acoustic over-exposure (AOE) is thought to be caused by tinnitus “filling in” the gap, thus, reducing its salience. This presumably involves altered perception, and could conceivably be caused by changes at the level of the neocortex, i.e., cortical reorganization. Alternatively, reduced gap detection ability might reflect poorer temporal processing in the brainstem, caused by AOE; in which case, impaired gap detection would not be a reliable indicator of tinnitus. We tested the latter hypothesis by examining gap detection in inferior colliculus (IC) neurons following AOE. Seven of nine unilaterally noise-exposed guinea pigs exhibited behavioral evidence of tinnitus. In these tinnitus animals, neural gap detection thresholds (GDTs) in the IC significantly increased in response to broadband noise stimuli, but not to pure tones or narrow-band noise. In addition, when IC neurons were sub-divided according to temporal response profile (onset vs. sustained firing patterns), we found a significant increase in the proportion of onset-type responses after AOE. Importantly, however, GDTs were still considerably shorter than gap durations commonly used in objective behavioral tests for tinnitus. These data indicate that the neural changes observed in the IC are insufficient to explain deficits in behavioral gap detection that are commonly attributed to tinnitus. The subtle changes in IC neuron response profiles following AOE warrant further investigation. PMID:25346722

  18. Spread of cochlear excitation during stimulation with pulsed infrared radiation: Inferior colliculus measurements

    PubMed Central

    Richter, C.-P.; Rajguru, S.M.; Matic, A.I.; Moreno, E.L.; Fishman, A.J.; Robinson, A.M.; Suh, E.; Walsh, J.T.

    2012-01-01

    Infrared neural stimulation (INS) has received considerable attention over the last few years. It provides an alternative method to artificially stimulate neurons without electrical current or the introduction of exogenous chromophores. One of the primary benefits of INS could be the improved spatial selectivity when compared with electrical stimulation. In the present study, we have evaluated the spatial selectivity of INS in the acutely damaged cochlea of guinea pigs and compared it to stimulation with acoustic tone pips in normal hearing animals. The radiation was delivered via a 200 μm-diameter optical fiber, which was inserted through a cochleostomy into the scala tympani of the basal cochlear turn. The stimulated section along the cochlear spiral ganglion was estimated from the neural responses recorded from the central nucleus of the inferior colliculus (ICC). ICC responses were recorded in response to cochlear INS using a multichannel penetrating electrode array. Spatial tuning curves were constructed from the responses. For INS, approximately 55% of the activation profiles showed a single maximum, ~22% had two maxima, and ~13% had multiple maxima. The remaining 10% of the profiles occurred at the limits of the electrode array and could not be classified. The majority of ICC spatial tuning curves indicated that the spread of activation evoked by optical stimuli is comparable to that produced by acoustic pips. PMID:21828906

  19. Human inferior colliculus activity relates to individual differences in spoken language learning.

    PubMed

    Chandrasekaran, Bharath; Kraus, Nina; Wong, Patrick C M

    2012-03-01

    A challenge to learning words of a foreign language is encoding nonnative phonemes, a process typically attributed to cortical circuitry. Using multimodal imaging methods [functional magnetic resonance imaging-adaptation (fMRI-A) and auditory brain stem responses (ABR)], we examined the extent to which pretraining pitch encoding in the inferior colliculus (IC), a primary midbrain structure, related to individual variability in learning to successfully use nonnative pitch patterns to distinguish words in American English-speaking adults. fMRI-A indexed the efficiency of pitch representation localized to the IC, whereas ABR quantified midbrain pitch-related activity with millisecond precision. In line with neural "sharpening" models, we found that efficient IC pitch pattern representation (indexed by fMRI) related to superior neural representation of pitch patterns (indexed by ABR), and consequently more successful word learning following sound-to-meaning training. Our results establish a critical role for the IC in speech-sound representation, consistent with the established role for the IC in the representation of communication signals in other animal models.

  20. Spread of cochlear excitation during stimulation with pulsed infrared radiation: inferior colliculus measurements

    NASA Astrophysics Data System (ADS)

    Richter, C.-P.; Rajguru, S. M.; Matic, A. I.; Moreno, E. L.; Fishman, A. J.; Robinson, A. M.; Suh, E.; Walsh, J. T., Jr.

    2011-10-01

    Infrared neural stimulation (INS) has received considerable attention over the last few years. It provides an alternative method to artificially stimulate neurons without electrical current or the introduction of exogenous chromophores. One of the primary benefits of INS could be the improved spatial selectivity when compared with electrical stimulation. In the present study, we have evaluated the spatial selectivity of INS in the acutely damaged cochlea of guinea pigs and compared it to stimulation with acoustic tone pips in normal-hearing animals. The radiation was delivered via a 200 µm diameter optical fiber, which was inserted through a cochleostomy into the scala tympani of the basal cochlear turn. The stimulated section along the cochlear spiral ganglion was estimated from the neural responses recorded from the central nucleus of the inferior colliculus (ICC). ICC responses were recorded in response to cochlear INS using a multichannel penetrating electrode array. Spatial tuning curves (STCs) were constructed from the responses. For INS, approximately 55% of the activation profiles showed a single maximum, ~22% had two maxima and ~13% had multiple maxima. The remaining 10% of the profiles occurred at the limits of the electrode array and could not be classified. The majority of ICC STCs indicated that the spread of activation evoked by optical stimuli is comparable to that produced by acoustic tone pips.

  1. Activation of serotonin 3 receptors changes in vivo auditory responses in the mouse inferior colliculus

    PubMed Central

    Bohorquez, Alexander; Hurley, Laura M.

    2009-01-01

    Metabotropic serotonin receptors such as 5-HT1A and 5-HT1B receptors shape the level, selectivity, and timing of auditory responses in the inferior colliculus (IC). Less is known about the effects of ionotropic 5-HT3 receptors, which are cation channels that depolarize neurons. In the current study, the influence of the 5-HT3 receptor on auditory responses in vivo was explored by locally iontophoresing a 5-HT3 receptor agonist and antagonists onto single neurons recorded extracellularly in mice. Three main findings emerge from these experiments. First, activation of the 5-HT3 receptor can either facilitate or suppress auditory responses, but response suppressions are not consistent with 5-HT3 effects on presynaptic GABAergic neurons. Both response facilitations and suppressions are less pronounced in neurons with high precision in response latency, suggesting functional differences in the role of receptor activation for different classes of neuron. Finally, the effects of 5-HT3 activation vary across repetition rate within a subset of single neurons, suggesting that the influence of receptor activation sometimes varies with the level of activity. These findings contribute to the view of the 5-HT3 receptor as an important component of the serotonergic infrastructure in the IC, with effects that are complex and neuron- selective. PMID:19236912

  2. Periodotopy in the gerbil inferior colliculus: local clustering rather than a gradient map

    PubMed Central

    Schnupp, Jan W. H.; Garcia-Lazaro, Jose A.; Lesica, Nicholas A.

    2015-01-01

    Periodicities in sound waveforms are widespread, and shape important perceptual attributes of sound including rhythm and pitch. Previous studies have indicated that, in the inferior colliculus (IC), a key processing stage in the auditory midbrain, neurons tuned to different periodicities might be arranged along a periodotopic axis which runs approximately orthogonal to the tonotopic axis. Here we map out the topography of frequency and periodicity tuning in the IC of gerbils in unprecedented detail, using pure tones and different periodic sounds, including click trains, sinusoidally amplitude modulated (SAM) noise and iterated rippled noise. We found that while the tonotopic map exhibited a clear and highly reproducible gradient across all animals, periodotopic maps varied greatly across different types of periodic sound and from animal to animal. Furthermore, periodotopic gradients typically explained only about 10% of the variance in modulation tuning between recording sites. However, there was a strong local clustering of periodicity tuning at a spatial scale of ca. 0.5 mm, which also differed from animal to animal. PMID:26379508

  3. The serotonin releaser fenfluramine alters the auditory responses of inferior colliculus neurons

    PubMed Central

    Hall, Ian C.; Hurley, Laura M.

    2007-01-01

    Local direct application of the neuromodulator serotonin strongly influences auditory response properties of neurons in the inferior colliculus (IC), but endogenous stores of serotonin may be released in a distinct spatial or temporal pattern. To explore this issue, the serotonin releaser fenfluramine was iontophoretically applied to extracellularly recorded neurons in the IC of the Mexican free-tailed bat (Tadarida brasiliensis). Fenfluramine mimicked the effects of serotonin on spike count and first spike latency in most neurons, and its effects could be blocked by co-application of serotonin receptor antagonists, consistent with fenfluramine-evoked serotonin release. Responses to fenfluramine did not vary during single applications or across multiple applications, suggesting that fenfluramine did not deplete serotonin stores. A predicted gradient in the effects of fenfluramine with serotonin fiber density was not observed, but neurons with fenfluramine-evoked increases in latency occurred at relatively greater recording depths compared to other neurons with similar characteristic frequencies. These findings support the conclusion that there may be spatial differences in the effects of exogenous and endogenous sources of serotonin, but that other factors such as the identities and locations of serotonin receptors are also likely to play a role in determining the dynamics of serotonergic effects. PMID:17339086

  4. Decreased norepinephrine (NE) uptake in cerebral cortex and inferior colliculus of genetically epilepsy prone (GEP) rats

    SciTech Connect

    Browning, R.A.; Rigler-Daugherty, S.K.; Long, G.; Jobe, P.C.; Wade, D.R.

    1986-03-01

    GEP rats are characterized by an enhanced susceptibility to seizures caused by a variety of stimuli, most notably sound. Pharmacological treatments that reduce the synaptic concentration of NE increase seizure severity in GEP rats while elevations in NE have the opposite effect. GEP rats also display a widespread deficit in brain NE concentration suggesting that their increased seizure susceptibility is related to a deficit in noradrenergic transmission. The authors have compared the kinetics of /sup 3/H-NE uptake in the P/sub 2/ synaptosomal fraction isolated from the cerebral cortex of normal and GEP-rats. Although the apparent Kms were not significantly different (Normal +/- SEM:0.37 +/- 0.13..mu..M; GEP +/- SEM: 0.29 +/- 0.07..mu..M), the Vmax for GEP rats was 48% lower than that of normal rats (Normal +/- SEM: 474 +/- 45 fmole/mg/4min; GEP +/- SEM: 248 +/- 16 fmole/mg/4min). Because of the possible role of the inferior colliculus (IC) in the initiation of sound-induced seizures in GEP rats, the authors measured synaptosomal NE uptake in the IC using a NE concentration of 50 nM. The IC synaptosomal NE uptake was found to be 35% lower in GEP than in normal rats. These findings are consistent with the hypothesis that a deficit in noradrenergic transmission is related to the increased seizure susceptibility of GEP rats.

  5. Properties of echo delay-tuning receptive fields in the inferior colliculus of the mustached bat.

    PubMed

    Macías, Silvio; Mora, Emanuel C; Hechavarría, Julio C; Kössl, Manfred

    2012-04-01

    One role of the inferior colliculus (IC) in bats is to create neuronal delay-tuning, which is used for the estimation of target distance in the echolocating bat's auditory system. In this study, we describe response properties of IC delay-tuned neurons of the mustached bat (Pteronotus parnellii) and compare it with those of delay-tuned neurons of the auditory cortex (AC). We also address the question if frequency content of the stimulus (pure-tone (PT) or frequency-modulated (FM) pairs stimulation) affects combination-sensitive interaction in the same neuron. Sharpness and sensitivity of delay-tuned neurons in the IC are similar to those described in the AC. However, in contrast to cortical responses, in collicular neurons the delay at which the neurons show the maximum response does not change with changes in echo level. This tolerance to changes in the echo level seems to be a property of collicular delay-tuned neurons, which is modified along the ascending auditory pathway. In the IC we found neurons that showed a facilitated delay-tuned response when stimulated with FM components and did not show any delay-tuning with PT stimulation. This result suggests that not only is echo delay-tuning generated in the IC but also its FM-specificity observed in the cortex could be created to some extent in the IC and then topographically organized at higher levels.

  6. Negative temporal summation of the responses to pairs of tone bursts in albino mice inferior colliculus

    NASA Astrophysics Data System (ADS)

    Bibikov, Nikolay G.; Cai, Chen Qi; Jie, Tang

    2003-10-01

    The extracellular activities of single units in an inferior colliculus of narcotized albino mice have been studied. As a stimuli pairs of best frequency (BF) tone bursts with different duration have been used and forward masking has been studied. The test tone usually has a 40 ms duration at intensity 5 dB above threshold. The intensity and duration of the masker could be changed. It was shown that the forward masking essentially depends upon the duration of the first burst. In many cases, the negative temporal summation can be seen. The increase in the duration of first burst (or masker) leads to the decrease in the whole response. Moreover, the BF tone burst which did not evoke any spike response could inhibit the response to the second (test) tone in some cases. Therefore in many units the inhibitory threshold was lower than the excitatory threshold even at the best frequency. The local application of bicuculline through a multibarrel-electrode increased the pulse activity considerably. However, the effect of forward masking usually left even after an inhibitory antagonist (bicuculline) application. [Work supported by grants 39970251 from NSFC, T010360056 from the Foreign Expert Bureau of the State Council of China, and 02-04-3900 from RFBR-NSFC.

  7. Anatomical characterization of subcortical descending projections to the inferior colliculus in mouse.

    PubMed

    Patel, Mili B; Sons, Stacy; Yudintsev, Georgiy; Lesicko, Alexandria M H; Yang, Luye; Taha, Gehad A; Pierce, Scott M; Llano, Daniel A

    2017-03-01

    Descending projections from the thalamus and related structures to the midbrain are evolutionarily highly conserved. However, the basic organization of this auditory thalamotectal pathway has not yet been characterized. The purpose of this study was to obtain a better understanding of the anatomical and neurochemical features of this pathway. Analysis of the distributions of retrogradely labeled cells after focal injections of retrograde tracer into the inferior colliculus (IC) of the mouse revealed that most of the subcortical descending projections originated in the brachium of the IC and the paralaminar portions of the auditory thalamus. In addition, the vast majority of thalamotectal cells were found to be negative for the calcium-binding proteins calbindin, parvalbumin, or calretinin. Using two different strains of GAD-GFP mice, as well as immunostaining for GABA, we found that a subset of neurons in the brachium of the IC is GABAergic, suggesting that part of this descending pathway is inhibitory. Finally, dual retrograde injections into the IC and amygdala plus corpus striatum as well into the IC and auditory cortex did not reveal any double labeling. These data suggest that the thalamocollicular pathway comprises a unique population of thalamic neurons that do not contain typical calcium-binding proteins and do not project to other paralaminar thalamic forebrain targets, and that a previously undescribed descending GABAergic pathway emanates from the brachium of the IC. J. Comp. Neurol. 525:885-900, 2017. © 2016 Wiley Periodicals, Inc.

  8. Serotonin in the inferior colliculus fluctuates with behavioral state and environmental stimuli

    PubMed Central

    Hall, Ian C.; Rebec, George V.; Hurley, Laura M.

    2010-01-01

    SUMMARY Neuromodulation by serotonin (5-HT) could link behavioral state and environmental events with sensory processing. Within the auditory system, the presence of 5-HT alters the activity of neurons in the inferior colliculus (IC), but the conditions that influence 5-HT neurotransmission in this region of the brain are unknown. We used in vivo voltammetry to measure extracellular 5-HT in the IC of behaving mice to address this issue. Extracellular 5-HT increased with the recovery from anesthesia, suggesting that the neuromodulation of auditory processing is correlated with the level of behavioral arousal. Awake mice were further exposed to auditory (broadband noise), visual (light) or olfactory (2,5-dihydro-2,4,5-trimethylthiazoline, TMT) stimuli, presented with food or confined in a small arena. Only the auditory stimulus or restricted movement increased the concentration of extracellular 5-HT in the IC. Changes occurred within minutes of stimulus onset, with the auditory stimulus increasing extracellular 5-HT by an average of 5% and restricted movement increasing it by an average of 14%. These findings suggest that the neuromodulation of auditory processing by 5-HT is a dynamic process that is dependent on internal state and behavioral conditions. PMID:20228336

  9. Calcium Channel Dysfunction in Inferior Colliculus Neurons of the Genetically Epilepsy-Prone Rat

    PubMed Central

    N’Gouemo, Prosper; Faingold, Carl L.; Morad, Martin

    2008-01-01

    Summary Voltage-gated calcium (Ca2+) channels are thought to play an important role in epileptogenesis and seizure generation. Here, using the whole-cell configuration of patch-clamp techniques, we report on the modifications of biophysical and pharmacological properties of high threshold voltage-activated Ca2+ channel currents in inferior colliculus (IC) neurons of the genetically epilepsy-prone rats (GEPR-3s). Ca2+channel currents were measured by depolarizing pulses from a holding potential of −80 mV using barium (Ba2+) as the charge carrier. We found that the current density of high threshold voltage-activated Ca2+ channels was significantly larger in IC neurons of seizure-naive GEPR-3s compared to control Sprague-Dawley rats, and that seizure episodes further enhanced the current density in the GEPR-3s. The increased current density was reflected by both a −20 mV shifts in channel activation and a 25% increase in the non-inactivating fraction of channels in seizure-naive GEPR-3s. Such changes were reduced by seizure episodes in the GEPR-3s. Pharmacological analysis of the current density suggests that upregulation of L-, N- and R-type of Ca2+ channels may contribute to IC neuronal hyperexcitability that leads to seizure susceptibility in the GEPR-3s. PMID:19084544

  10. Ultrastructural characterization of GABAergic and excitatory synapses in the inferior colliculus.

    PubMed

    Nakamoto, Kyle T; Mellott, Jeffrey G; Killius, Jeanette; Storey-Workley, Megan E; Sowick, Colleen S; Schofield, Brett R

    2014-01-01

    In the inferior colliculus (IC) cells integrate inhibitory input from the brainstem and excitatory input from both the brainstem and auditory cortex. In order to understand how these inputs are integrated by IC cells identification of their synaptic arrangements is required. We used electron microscopy to characterize GABAergic synapses in the dorsal cortex, central nucleus, and lateral cortex of the IC (ICd, ICc, and IClc) of guinea pigs. Throughout the IC, GABAergic synapses are characterized by pleomorphic vesicles and symmetric junctions. Comparisons of GABAergic synapses with excitatory synapses revealed differences (in some IC subdivisions) between the distributions of these synapse types onto IC cells. For excitatory cells in the IClc and ICd GABAergic synapses are biased toward the somas and large dendrites, whereas the excitatory boutons are biased toward spines and small dendrites. This arrangement could allow for strong inhibitory gating of excitatory inputs. Such differences in synaptic distributions were not observed in the ICc, where the two classes of bouton have similar distributions along the dendrites of excitatory cells. Interactions between excitatory and GABAergic inputs on the dendrites of excitatory ICc cells may be more restricted (i.e., reflecting local dendritic processing) than in the other IC subdivisions. Comparisons across IC subdivisions revealed evidence for two classes of GABAergic boutons, a small GABAergic (SG) class that is present throughout the IC and a large GABAergic (LG) class that is almost completely restricted to the ICc. In the ICc, LG, and SG boutons differ in their targets. SG boutons contact excitatory dendritic shafts most often, but also contact excitatory spines and somas (excitatory and GABAergic). LG synapses make comparatively fewer contacts on excitatory shafts, and make comparatively more contacts on excitatory spines and on somas (excitatory and GABAergic). LG boutons likely have a lemniscal origin.

  11. Effect of background noise on neuronal coding of interaural level difference cues in rat inferior colliculus.

    PubMed

    Mokri, Yasamin; Worland, Kate; Ford, Mark; Rajan, Ramesh

    2015-07-01

    Humans can accurately localize sounds even in unfavourable signal-to-noise conditions. To investigate the neural mechanisms underlying this, we studied the effect of background wide-band noise on neural sensitivity to variations in interaural level difference (ILD), the predominant cue for sound localization in azimuth for high-frequency sounds, at the characteristic frequency of cells in rat inferior colliculus (IC). Binaural noise at high levels generally resulted in suppression of responses (55.8%), but at lower levels resulted in enhancement (34.8%) as well as suppression (30.3%). When recording conditions permitted, we then examined if any binaural noise effects were related to selective noise effects at each of the two ears, which we interpreted in light of well-known differences in input type (excitation and inhibition) from each ear shaping particular forms of ILD sensitivity in the IC. At high signal-to-noise ratios (SNR), in most ILD functions (41%), the effect of background noise appeared to be due to effects on inputs from both ears, while for a large percentage (35.8%) appeared to be accounted for by effects on excitatory input. However, as SNR decreased, change in excitation became the dominant contributor to the change due to binaural background noise (63.6%). These novel findings shed light on the IC neural mechanisms for sound localization in the presence of continuous background noise. They also suggest that some effects of background noise on encoding of sound location reported to be emergent in upstream auditory areas can also be observed at the level of the midbrain.

  12. Glutamatergic neurotransmission in the inferior colliculus influences intrastriatal haloperidol-induced catalepsy.

    PubMed

    Medeiros, P; Viana, M B; Barbosa-Silva, R C; Tonelli, L C; Melo-Thomas, L

    2014-07-15

    The inferior colliculus (IC) is an important midbrain relay station for the integration of descending and ascending auditory information. In addition, it has also been implicated in the processing of acoustic information of aversive nature, as well as in sensory-motor gating. There is evidence that glutamate-mediated mechanisms at the IC level influence haloperidol-induced catalepsy. The present study investigated the influence of glutamate-mediated mechanisms in the IC on catalepsy induced by intrastriatal microinjection of haloperidol (10 μg/0.5 μl). Male Wistar rats received bilateral intracollicular microinjections of the glutamate receptor agonist NMDA (10 or 20 nmol/0.5 μl), the NMDA receptor antagonists MK-801 (15 or 30 nmol/0.5 μl) or physiological saline (0.5 μl), followed by bilateral microinjections of haloperidol (10 μg/0.5 μl) or vehicle (0.5 μl) into the dorso-rostral or ventro-rostral striatum. The catalepsy test was performed positioning both forepaws of the rats on an elevated horizontal wooden bar and recording the time during which the animal remained in this position. The results showed that the administration of physiological saline in the IC followed by the microinjection of haloperidol in the dorso-rostral region of the striatum was not able to induce catalepsy. However, when the bilateral administration of NMDA into the IC was followed by microinjection of haloperidol into the dorso-rostral striatum, catalepsy was observed. The microinjection of haloperidol into the ventro-rostral striatum induced catalepsy, counteracted by previous administration of MK-801 into the IC. These findings suggest that glutamate-mediated mechanisms in the IC can influence the intrastriatal haloperidol-induced catalepsy and that the IC plays an important role as a sensorimotor interface.

  13. Convergent input from brainstem coincidence detectors onto delay-sensitive neurons in the inferior colliculus.

    PubMed

    McAlpine, D; Jiang, D; Shackleton, T M; Palmer, A R

    1998-08-01

    Responses of low-frequency neurons in the inferior colliculus (IC) of anesthetized guinea pigs were studied with binaural beats to assess their mean best interaural phase (BP) to a range of stimulating frequencies. Phase plots (stimulating frequency vs BP) were produced, from which measures of characteristic delay (CD) and characteristic phase (CP) for each neuron were obtained. The CD provides an estimate of the difference in travel time from each ear to coincidence-detector neurons in the brainstem. The CP indicates the mechanism underpinning the coincidence detector responses. A linear phase plot indicates a single, constant delay between the coincidence-detector inputs from the two ears. In more than half (54 of 90) of the neurons, the phase plot was not linear. We hypothesized that neurons with nonlinear phase plots received convergent input from brainstem coincidence detectors with different CDs. Presentation of a second tone with a fixed, unfavorable delay suppressed the response of one input, linearizing the phase plot and revealing other inputs to be relatively simple coincidence detectors. For some neurons with highly complex phase plots, the suppressor tone altered BP values, but did not resolve the nature of the inputs. For neurons with linear phase plots, the suppressor tone either completely abolished their responses or reduced their discharge rate with no change in BP. By selectively suppressing inputs with a second tone, we are able to reveal the nature of underlying binaural inputs to IC neurons, confirming the hypothesis that the complex phase plots of many IC neurons are a result of convergence from simple brainstem coincidence detectors.

  14. Altered voltage-gated calcium channels in rat inferior colliculus neurons contribute to alcohol withdrawal seizures.

    PubMed

    N'Gouemo, Prosper

    2015-08-01

    We have previously reported that enhanced susceptibility to alcohol withdrawal seizures (AWS) parallels the enhancement of the current density of high-threshold voltage-gated Ca(2+) (CaV) channels in rat inferior colliculus (IC) neurons. However, whether this increased current density is a cause or consequence of AWS is unclear. Here, I report changes in the current density of CaV channels in IC neurons during the course of alcohol withdrawal and the potential anticonvulsant effect of intra-IC infusions of L- and P-type CaV channel antagonists. Whole-cell currents were activated by depolarizing pulses using barium as the charge carrier. Currents and seizure susceptibility were evaluated in control animals 3h after alcohol intoxication, as well as 3h (before AWS), 24h (when AWS susceptibility is maximal), and 48h (when AWS susceptibility is no longer present) after alcohol withdrawal. Nifedipine, nimodipine (L-type antagonists) or ω-agatoxin TK (P-type antagonist) were infused intra-IC to probe the role of CaV channels in the pathogenesis of AWS. CaV current density and conductance in IC neurons were significantly increased 3 and 24h after alcohol withdrawal compared with the control group or the group tested 3h following ethanol intoxication. Blockade of L-type CaV channels within the IC completely suppressed AWS, and inhibition of P-type channels reduced AWS severity. These findings suggest that the enhancement of CaV currents in IC neurons occurs prior to AWS onset and that alterations in L- and P-type CaV channels in these neurons may underlie the pathogenesis of AWS.

  15. A Computational Model of Inferior Colliculus Responses to Amplitude Modulated Sounds in Young and Aged Rats

    PubMed Central

    Rabang, Cal F.; Parthasarathy, Aravindakshan; Venkataraman, Yamini; Fisher, Zachery L.; Gardner, Stephanie M.; Bartlett, Edward L.

    2012-01-01

    The inferior colliculus (IC) receives ascending excitatory and inhibitory inputs from multiple sources, but how these auditory inputs converge to generate IC spike patterns is poorly understood. Simulating patterns of in vivo spike train data from cellular and synaptic models creates a powerful framework to identify factors that contribute to changes in IC responses, such as those resulting in age-related loss of temporal processing. A conductance-based single neuron IC model was constructed, and its responses were compared to those observed during in vivo IC recordings in rats. IC spike patterns were evoked using amplitude-modulated tone or noise carriers at 20–40 dB above threshold and were classified as low-pass, band-pass, band-reject, all-pass, or complex based on their rate modulation transfer function tuning shape. Their temporal modulation transfer functions were also measured. These spike patterns provided experimental measures of rate, vector strength, and firing pattern for comparison with model outputs. Patterns of excitatory and inhibitory synaptic convergence to IC neurons were based on anatomical studies and generalized input tuning for modulation frequency. Responses of modeled ascending inputs were derived from experimental data from previous studies. Adapting and sustained IC intrinsic models were created, with adaptation created via calcium-activated potassium currents. Short-term synaptic plasticity was incorporated into the model in the form of synaptic depression, which was shown to have a substantial effect on the magnitude and time course of the IC response. The most commonly observed IC response sub-types were recreated and enabled dissociation of inherited response properties from those that were generated in IC. Furthermore, the model was used to make predictions about the consequences of reduction in inhibition for age-related loss of temporal processing due to a reduction in GABA seen anatomically with age. PMID:23129994

  16. Frequency tuning of synaptic inhibition underlying duration-tuned neurons in the mammalian inferior colliculus.

    PubMed

    Valdizón-Rodríguez, Roberto; Faure, Paul A

    2017-01-18

    Inhibition plays an important role in creating the temporal response properties of duration-tuned neurons (DTNs) in the mammalian inferior colliculus (IC). Neurophysiological and computational studies indicate that duration selectivity in the IC is created through the convergence of excitatory and inhibitory synaptic inputs offset in time. We used paired tone stimulation and extracellular recording to measure the frequency tuning of the inhibition acting on DTNs in the IC of the big brown bat (Eptesicus fuscus). We stimulated DTNs with pairs of tones differing in duration, onset time, and frequency. The onset time of a short, best duration (BD), probe tone set to the best excitatory frequency (BEF) was varied relative to the onset of a longer duration, non-excitatory (NE) tone whose frequency was varied. When the NE tone frequency was near or within the cell's excitatory bandwidth (eBW), BD tone evoked spikes were suppressed by an onset-evoked inhibition. The offset and duration of the suppression decreased as the NE tone frequency departed from the BEF. We measured the inhibitory frequency response area, best inhibitory frequency (BIF), and inhibitory bandwidth (iBW) of each cell. We found that the BIF closely matched the BEF, but the iBW was broader and usually overlapped the eBW measured from the same cell. These data suggest that temporal selectivity of midbrain DTNs is created and preserved by having cells receive an onset-evoked, constant-latency, broadband inhibition that largely overlaps the cell's excitatory receptive field. We conclude by discussing possible neural sources of the inhibition.

  17. Sounds and beyond: multisensory and other non-auditory signals in the inferior colliculus

    PubMed Central

    Gruters, Kurtis G.; Groh, Jennifer M.

    2012-01-01

    The inferior colliculus (IC) is a major processing center situated mid-way along both the ascending and descending auditory pathways of the brain stem. Although it is fundamentally an auditory area, the IC also receives anatomical input from non-auditory sources. Neurophysiological studies corroborate that non-auditory stimuli can modulate auditory processing in the IC and even elicit responses independent of coincident auditory stimulation. In this article, we review anatomical and physiological evidence for multisensory and other non-auditory processing in the IC. Specifically, the contributions of signals related to vision, eye movements and position, somatosensation, and behavioral context to neural activity in the IC will be described. These signals are potentially important for localizing sound sources, attending to salient stimuli, distinguishing environmental from self-generated sounds, and perceiving and generating communication sounds. They suggest that the IC should be thought of as a node in a highly interconnected sensory, motor, and cognitive network dedicated to synthesizing a higher-order auditory percept rather than simply reporting patterns of air pressure detected by the cochlea. We highlight some of the potential pitfalls that can arise from experimental manipulations that may disrupt the normal function of this network, such as the use of anesthesia or the severing of connections from cortical structures that project to the IC. Finally, we note that the presence of these signals in the IC has implications for our understanding not just of the IC but also of the multitude of other regions within and beyond the auditory system that are dependent on signals that pass through the IC. Whatever the IC “hears” would seem to be passed both “upward” to thalamus and thence to auditory cortex and beyond, as well as “downward” via centrifugal connections to earlier areas of the auditory pathway such as the cochlear nucleus. PMID:23248584

  18. Whole cell recordings of intrinsic properties and sound-evoked responses from the inferior colliculus.

    PubMed

    Xie, R; Gittelman, J X; Li, N; Pollak, G D

    2008-06-12

    Response features of inferior colliculus (IC) neurons to both current injections and tone bursts were studied with in vivo whole cell recordings in awake Mexican free-tailed bats. Of 160 cells recorded, 95% displayed one of three general types of discharge patterns in response to the injection of positive current: 1) sustained discharges; 2) adapting discharges; and 3) onset-bursting discharges. Sustained neurons were the most common type (N=78), followed by onset-bursting (N=57). The least common type was adapting (N=17). In 90 neurons the profiles of synaptic and discharge activity evoked by tones of different frequencies at 50 dB SPL were recorded. Three major tone-evoked response profiles were obtained; 1) neurons dominated by excitation (N=32) in which tones evoked excitatory post-synaptic potentials (EPSPs) or EPSPs with discharges over a range of frequencies with little or no evidence of inhibitory post-synaptic potentials (IPSPs) evoked by frequencies that flanked the excitation; 2) neurons that had an excitatory frequency region in which discharges were evoked that was flanked by frequencies that evoked predominantly IPSPs (N=26); 3) neurons in which all frequencies evoked IPSPs with little or no depolarizations (N=32). The question we asked is whether IC cells that express a particular profile of PSPs and discharges to acoustic stimulation also have the same current-evoked response profile. We show that, with one exception, the intrinsic features of an IC neuron are not correlated with the pattern of its synaptic innervation; the two features are unrelated in the majority of IC cells. The exception is a subtype of inhibitory dominated cell where most frequencies evoked IPSPs to both the onset and to the offset of the tone bursts. In those cells injected current steps always evoked an onset-bursting response.

  19. Serotonin differentially modulates responses to tones and frequency-modulated sweeps in the inferior colliculus.

    PubMed

    Hurley, L M; Pollak, G D

    1999-09-15

    Although almost all auditory brainstem nuclei receive serotonergic innervation, little is known about its effects on auditory neurons. We address this question by evaluating the effects of serotonin on sound-evoked activity of neurons in the inferior colliculus (IC) of Mexican free-tailed bats. Two types of auditory stimuli were used: tone bursts at the neuron's best frequency and frequency-modulated (FM) sweeps with a variety of spectral and temporal structures. There were two main findings. First, serotonin changed tone-evoked responses in 66% of the IC neurons sampled. Second, the influence of serotonin often depended on the type of signal presented. Although serotonin depressed tone-evoked responses in most neurons, its effects on responses to FM sweeps were evenly mixed between depression and facilitation. Thus in most cells serotonin had a different effect on tone-evoked responses than it did on FM-evoked responses. In some neurons serotonin depressed responses evoked by tone bursts but left the responses to FM sweeps unchanged, whereas in others serotonin had little or no effect on responses to tone bursts but substantially facilitated responses to FM sweeps. In addition, serotonin could differentially affect responses to various FM sweeps that differed in temporal or spectral structure. Previous studies have revealed that the efficacy of the serotonergic innervation is partially modulated by sensory stimuli and by behavioral states. Thus our results suggest that the population activity evoked by a particular sound is not simply a consequence of the hard wiring that connects the IC to lower and higher regions but rather is highly dynamic because of the functional reconfigurations induced by serotonin and almost certainly other neuromodulators as well.

  20. The representation of sound localization cues in the barn owl's inferior colliculus

    PubMed Central

    Singheiser, Martin; Gutfreund, Yoram; Wagner, Hermann

    2012-01-01

    The barn owl is a well-known model system for studying auditory processing and sound localization. This article reviews the morphological and functional organization, as well as the role of the underlying microcircuits, of the barn owl's inferior colliculus (IC). We focus on the processing of frequency and interaural time (ITD) and level differences (ILD). We first summarize the morphology of the sub-nuclei belonging to the IC and their differentiation by antero- and retrograde labeling and by staining with various antibodies. We then focus on the response properties of neurons in the three major sub-nuclei of IC [core of the central nucleus of the IC (ICCc), lateral shell of the central nucleus of the IC (ICCls), and the external nucleus of the IC (ICX)]. ICCc projects to ICCls, which in turn sends its information to ICX. The responses of neurons in ICCc are sensitive to changes in ITD but not to changes in ILD. The distribution of ITD sensitivity with frequency in ICCc can only partly be explained by optimal coding. We continue with the tuning properties of ICCls neurons, the first station in the midbrain where the ITD and ILD pathways merge after they have split at the level of the cochlear nucleus. The ICCc and ICCls share similar ITD and frequency tuning. By contrast, ICCls shows sigmoidal ILD tuning which is absent in ICCc. Both ICCc and ICCls project to the forebrain, and ICCls also projects to ICX, where space-specific neurons are found. Space-specific neurons exhibit side peak suppression in ITD tuning, bell-shaped ILD tuning, and are broadly tuned to frequency. These neurons respond only to restricted positions of auditory space and form a map of two-dimensional auditory space. Finally, we briefly review major IC features, including multiplication-like computations, correlates of echo suppression, plasticity, and adaptation. PMID:22798945

  1. Developmental PCB Exposure Increases Audiogenic Seizures and Decreases Glutamic Acid Decarboxylase in the Inferior Colliculus

    PubMed Central

    Bandara, Suren B.; Eubig, Paul A.; Sadowski, Renee N.; Schantz, Susan L.

    2016-01-01

    Previously, we observed that developmental polychlorinated biphenyl (PCB) exposure resulted in an increase in audiogenic seizures (AGSs) in rats. However, the rats were exposed to loud noise in adulthood, and were not tested for AGS until after 1 year of age, either of which could have interacted with early PCB exposure to increase AGS susceptibility. This study assessed susceptibility to AGS in young adult rats following developmental PCB exposure alone (without loud noise exposure) and investigated whether there was a decrease in GABA inhibitory neurotransmission in the inferior colliculus (IC) that could potentially explain this effect. Female Long-Evans rats were dosed orally with 0 or 6 mg/kg/day of an environmentally relevant PCB mixture from 28 days prior to breeding until the pups were weaned at postnatal day 21. One male-female pair from each litter was retained for the AGS study whilst another was retained for Western blot analysis of glutamic acid decarboxylase (GAD) and GABAAα1 receptor in the IC, the site in the auditory midbrain where AGS are initiated. There was a significant increase in the number and severity of AGSs in the PCB groups, with females somewhat more affected than males. GAD65 was decreased but there was no change in GAD67 or GABAAα1 in the IC indicating decreased inhibitory regulation in the PCB group. These results confirm that developmental PCB exposure alone is sufficient to increase susceptibility to AGS, and provide the first evidence for a possible mechanism of action at the level of the IC. PMID:26543103

  2. Excitatory and inhibitory projections in parallel pathways from the inferior colliculus to the auditory thalamus.

    PubMed

    Mellott, Jeffrey G; Foster, Nichole L; Ohl, Andrew P; Schofield, Brett R

    2014-01-01

    Individual subdivisions of the medial geniculate body (MG) receive a majority of their ascending inputs from 1 or 2 subdivisions of the inferior colliculus (IC). This establishes parallel pathways that provide a model for understanding auditory projections from the IC through the MG and on to auditory cortex. A striking discovery about the tectothalamic circuit was identification of a substantial GABAergic component. Whether GABAergic projections match the parallel pathway organization has not been examined. We asked whether the parallel pathway concept is reflected in guinea pig tectothalamic pathways and to what degree GABAergic cells contribute to each pathway. We deposited retrograde tracers into individual MG subdivisions (ventral, MGv; medial, MGm; dorsal, MGd; suprageniculate, MGsg) to label tectothalamic cells and used immunochemistry to identify GABAergic cells. The MGv receives most of its IC input (~75%) from the IC central nucleus (ICc); MGd and MGsg receive most of their input (~70%) from IC dorsal cortex (ICd); and MGm receives substantial input from both ICc (~40%) and IC lateral cortex (~40%). Each MG subdivision receives additional input (up to 32%) from non-dominant IC subdivisions, suggesting cross-talk between the pathways. The proportion of GABAergic cells in each pathway depended on the MG subdivision. GABAergic cells formed ~20% of IC inputs to MGv or MGm, ~11% of inputs to MGd, and 4% of inputs to MGsg. Thus, non-GABAergic (i.e., glutamatergic) cells are most numerous in each pathway with GABAergic cells contributing to different extents. Despite smaller numbers of GABAergic cells, their distributions across IC subdivisions mimicked the parallel pathways. Projections outside the dominant pathways suggest opportunities for excitatory and inhibitory crosstalk. The results demonstrate parallel tectothalamic pathways in guinea pigs and suggest numerous opportunities for excitatory and inhibitory interactions within and between pathways.

  3. Extracellular Molecular Markers and Soma Size of Inhibitory Neurons: Evidence for Four Subtypes of GABAergic Cells in the Inferior Colliculus

    PubMed Central

    Beebe, Nichole L.; Young, Jesse W.; Mellott, Jeffrey G.

    2016-01-01

    Inhibition plays an important role in shaping responses to stimuli throughout the CNS, including in the inferior colliculus (IC), a major hub in both ascending and descending auditory pathways. Subdividing GABAergic cells has furthered the understanding of inhibition in many brain areas, most notably in the cerebral cortex. Here, we seek the same understanding of subcortical inhibitory cell types by combining staining for two types of extracellular markers—perineuronal nets (PNs) and perisomatic rings of terminals expressing vesicular glutamate transporter 2 (VGLUT2) —to subdivide IC GABAergic cells in adult guinea pigs. We found four distinct groups of GABAergic cells in the IC: (1) those with both a PN and a VGLUT2 ring; (2) those with only a PN; (3) those with only a VGLUT2 ring; and (4) those with neither marker. In addition, these four GABAergic subtypes differ in their soma size and distribution among IC subdivisions. Functionally, the presence or absence of VGLUT2 rings indicates differences in inputs, whereas the presence or absence of PNs indicates different potential for plasticity and temporal processing. We conclude that these markers distinguish four GABAergic subtypes that almost certainly serve different roles in the processing of auditory stimuli within the IC. SIGNIFICANCE STATEMENT GABAergic inhibition plays a critical role throughout the brain. Identification of subclasses of GABAergic cells (up to 15 in the cerebral cortex) has furthered the understanding of GABAergic roles in circuit modulation. Inhibition is also prominent in the inferior colliculus, a subcortical hub in auditory pathways. Here, we use two extracellular markers to identify four distinct groups of GABAergic cells. Perineuronal nets and perisomatic rings of glutamatergic boutons are present in many subcortical areas and often are associated with inhibitory cells, but they have rarely been used to identify inhibitory subtypes. Our results further the understanding of

  4. The inferior colliculus of the mouse. A Nissl and Golgi study.

    PubMed

    Meininger, V; Pol, D; Derer, P

    1986-04-01

    Serial sections of cell- and fiber-stained and Golgi-impregnated material from adult mice were used to study the cytoarchitectonics, fiber and neuronal architecture of the inferior colliculus. The size of the cells, the pattern of dendritic branching, and the appearance of the neuropil were the features used to delineate the three main regions of the auditory tectum: the central mass of cells or central nucleus, the cortex, and the paracentral nuclei. The central nucleus contains two major cell types: the bipolar cells, which are the most abundant, and the multipolar cells. The dendrites of the bipolar cells are oriented in the same direction and the afferent axons of the lateral lemniscus run along them, contributing to form fibrodendritic strips: the laminae of the central nucleus. The orientation of these laminae differs in the various parts of the central nucleus and delineates four subdivisions. In these four subdivisions, the laminae maintain the same relative position throughout the anteroposterior axis of the central nucleus, but they stop abruptly at the periphery of the nucleus. The cortex surrounds the central nucleus dorsally and caudally. The lamination in four layers concentric to the surface, the increasing gradient of size from the periphery to the deep tissue, the existence of two major types of cells, stellate and pyramidal, permit this structure to be considered as a true cortex. The paracentral nuclei are scattered around the central nucleus. The commissural nucleus is composed of cells with a simple dendritic branching pattern perpendicular or parallel to the fibers of the intercollicular commissure. The dorsomedial and ventrolateral nuclei are characterized by the presence of large multipolar cells. The nucleus of the rostral pole, distinct from the anterior pole of the central nucleus, is composed of small and medium-sized multipolar cells. The lateral nucleus appears as an extension of the dorsal cortex with only two or three layers of cells

  5. Physiological correlates of the precedence effect and summing localization in the inferior colliculus of the cat.

    PubMed

    Yin, T C

    1994-09-01

    The precedence effect (PE) describes an illusion produced when two similar sounds are delivered in quick succession (interclick delays of 2-8 msec) from sound sources at different locations so that only a single sound is perceived. The localization of the perceived sound is dominated by the location of the leading sound. If the delays are very short (< 1-2 msec), summing localization occurs and a phantom source is perceived whose location is toward the leading sound. The purpose of these experiments was to look for physiological correlates of the precedence effect and summing localization by recording from single neurons in the inferior colliculus of the anesthetized cat. Click stimuli were delivered under two different situations: over headphones in dichotic experiments and through two speakers in an anechoic room in free-field studies. In the latter case the cat was placed midway between the speakers and a single click stimulus was delivered to each speaker with variable interclick delays (ICDs). Most cells, under both dichotic and free-field conditions, exhibited a form of the precedence effect in which the response to the lagging click was suppressed when ICDs were short. The suppression of the lagging click, or echo, was measured by recovery curves, which plotted the response of the lagging click as a function of ICD. There was considerable variability in the recovery curves from different cells: the ICDs at which the recovery reached 50%, which is a measure of the echo threshold for the cell, ranged from 1 to 100 msec with a median of 20 msec. Human psychophysical experiments report echo thresholds for clicks ranging from 2 to 8 msec. If we assume that absolute echo threshold is determined by the cells with shortest recovery curves, then the thresholds for single cells are in accord with the psychophysical results. The possible sites of generation of the echo suppression are also considered. Changes in the relative level of the leading and lagging clicks

  6. Anatomical differences in the human inferior colliculus relate to the perceived valence of musical consonance and dissonance.

    PubMed

    Fritz, Thomas Hans; Renders, Wiske; Müller, Karsten; Schmude, Paul; Leman, Marc; Turner, Robert; Villringer, Arno

    2013-10-01

    Helmholtz himself speculated about a role of the cochlea in the perception of musical dissonance. Here we indirectly investigated this issue, assessing the valence judgment of musical stimuli with variable consonance/dissonance and presented diotically (exactly the same dissonant signal was presented to both ears) or dichotically (a consonant signal was presented to each ear--both consonant signals were rhythmically identical but differed by a semitone in pitch). Differences in brain organisation underlying inter-subject differences in the percept of dichotically presented dissonance were determined with voxel-based morphometry. Behavioral results showed that diotic dissonant stimuli were perceived as more unpleasant than dichotically presented dissonance, indicating that interactions within the cochlea modulated the valence percept during dissonance. However, the behavioral data also suggested that the dissonance percept did not depend crucially on the cochlea, but also occurred as a result of binaural integration when listening to dichotic dissonance. These results also showed substantial between-participant variations in the valence response to dichotic dissonance. These differences were in a voxel-based morphometry analysis related to differences in gray matter density in the inferior colliculus, which strongly substantiated a key role of the inferior colliculus in consonance/dissonance representation in humans.

  7. Astrocytic Connexin Distributions and Rapid, Extensive Dye Transfer Via Gap Junctions in the Inferior Colliculus: Implications for [14C]Glucose Metabolite Trafficking

    PubMed Central

    Ball, Kelly K.; Gandhi, Gautam K.; Thrash, Jarrod; Cruz, Nancy F.; Dienel, Gerald A.

    2010-01-01

    The inferior colliculus has the highest rates of blood flow and metabolism in brain, and functional metabolic activity increases markedly in response to acoustic stimulation. However, brain imaging with [1- and 6-14C]glucose greatly underestimates focal metabolic activation that is readily detected with [14C]deoxyglucose, suggesting that labeled glucose metabolites are quickly dispersed and released from highly activated zones of the inferior colliculus. To evaluate the role of coupling of astrocytes via gap junctions in dispersal of molecules within the inferior colliculus, the present study assessed the distribution of connexin (Cx) proteins in the inferior colliculus and spreading of Lucifer yellow from single microinjected astrocytes in slices of adult rat brain. Immunoreactive Cx43, Cx30, and Cx26 were heterogeneously distributed; the patterns for Cx43 and Cx 30 differed and were similar to those of immunoreactive GFAP and S100β, respectively. Most Cx43 was phosphorylated in resting and acoustically stimulated rats. Dye spreading revealed an extensive syncytial network that included thousands of cells and perivasculature endfeet; with 8% Lucifer yellow VS and a 5-min diffusion duration, about 6,100 astrocytes (range 2,068–11,939) were labeled as far as 1–1.5 mm from the injected cell. The relative concentration of Lucifer yellow fell by 50% within 0.3–0.8 mm from the injected cell with a 5-min diffusion interval. Perivascular dye labeling was readily detectable and often exceeded dye levels in nearby neuropil. Thus, astrocytes have the capability to distribute intracellular molecules quickly from activated regions throughout the large, heterogeneous syncytial volume of the inferior colliculus, and rapid trafficking of labeled metabolites would degrade resolution of focal metabolic activation. PMID:17600824

  8. A novel relay nucleus between the inferior colliculus and the optic tectum in the chicken (Gallus gallus).

    PubMed

    Niederleitner, Bertram; Gutierrez-Ibanez, Cristian; Krabichler, Quirin; Weigel, Stefan; Luksch, Harald

    2017-02-15

    Processing multimodal sensory information is vital for behaving animals in many contexts. The barn owl, an auditory specialist, is a classic model for studying multisensory integration. In the barn owl, spatial auditory information is conveyed to the optic tectum (TeO) by a direct projection from the external nucleus of the inferior colliculus (ICX). In contrast, evidence of an integration of visual and auditory information in auditory generalist avian species is completely lacking. In particular, it is not known whether in auditory generalist species the ICX projects to the TeO at all. Here we use various retrograde and anterograde tracing techniques both in vivo and in vitro, intracellular fillings of neurons in vitro, and whole-cell patch recordings to characterize the connectivity between ICX and TeO in the chicken. We found that there is a direct projection from ICX to the TeO in the chicken, although this is small and only to the deeper layers (layers 13-15) of the TeO. However, we found a relay area interposed among the IC, the TeO, and the isthmic complex that receives strong synaptic input from the ICX and projects broadly upon the intermediate and deep layers of the TeO. This area is an external portion of the formatio reticularis lateralis (FRLx). In addition to the projection to the TeO, cells in FRLx send, via collaterals, descending projections through tectopontine-tectoreticular pathways. This newly described connection from the inferior colliculus to the TeO provides a solid basis for visual-auditory integration in an auditory generalist bird. J. Comp. Neurol. 525:513-534, 2017. © 2016 Wiley Periodicals, Inc.

  9. Development of neuronal types and laminar organization in the central nucleus of the inferior colliculus in the cat.

    PubMed

    González-Hernández, T H; Meyer, G; Ferres-Torres, R

    1989-01-01

    The development of neuronal morphology and laminar organization in the central nucleus of the inferior colliculus has been studied with the different Golgi methods in kittens and cats of 1 day-2 years of age. The different Golgi methods used allowed us to selectively visualize the axonal or dendritic component of the fibrodendritic laminae. The characteristic lamination of the central nucleus defined by the fiber system of the lateral lemniscus is already present at birth. The axonal component of the laminae is constituted by parallel condensations of varicose terminals, myelinated axons, and preterminal fibers, oriented from ventrolateral to dorsomedial. The laminae are smaller in the dorsolateral edge of the nucleus. Neurons are classified mainly on the basis of their dendritic trees and the axonal ramification patterns. Three main types are distinguished: spinous disk-shaped neurons, aspinous to sparsely spinous disk-shaped neurons, and large or giant multipolar neurons. Our results suggest that the basic structures of the central nucleus--neuronal types and lamination of the lemniscal fibers--are already established at birth. The different neuronal types can be distinguished from the first days of life according to the ramification pattern of dendritic and axonal arbors. The characteristics of the different cell types, such as the density and distribution of dendritic spines, and the presence of varicose dendritic branchlets, are recognizable from the second week. At the end of the first month, neurons display an adult-like morphology, although the density of dendritic spines is higher than in the adult. Our morphological data can be related to the development of response properties in the inferior colliculus.

  10. Deep brain stimulation of the inferior colliculus: a possible animal model to study paradoxical kinesia observed in some parkinsonian patients?

    PubMed

    Melo-Thomas, Liana; Thomas, Uwe

    2015-02-15

    The inferior colliculus (IC) plays an important role in the normal processing of the acoustic message and is also involved in the filtering of acoustic stimuli of aversive nature. The neural substrate of the IC can also influence haloperidol-induced catalepsy. Considering that (i) paradoxical kinesia, observed in some parkinsonian patients, seems to be dependent of their emotional state and (ii) deep brain stimulation (DBS) represents an alternative therapeutic route for the relief of parkinsonian symptoms, the present study investigated the consequence of DBS at the IC on the catalepsy induced by haloperidol in rats. Additionally, we investigated if DBS of the IC can elicit motor responses in anesthetized rats and whether DBS elicits distinct neural firing patterns of activity at the dorsal cortex (DCIC) or central nucleus (CNIC) of the IC. A significant reduction of the catalepsy response was seen in rats previously given haloperidol and receiving DBS at the IC. In addition, electrical stimulation to the ventral part of the CNIC induced immediate motor responses in anesthetized rats. The neuronal spontaneous activity was higher at the ventral part of the CNIC than the dorsal part. DBS to the ventral part but not to the dorsal part of the CNIC increased the spike rate at neurons a few hundred microns away from the stimulation site. It is possible that the IC plays a role in the sensorimotor gating activated by emotional stimuli, and that DBS at the IC can be a promising new animal model to study paradoxical kinesia in rats.

  11. Monaural Spectral Processing Differs between the Lateral Superior Olive and the Inferior Colliculus: Physiological Evidence for an Acoustic Chiasm

    PubMed Central

    Greene, Nathaniel T.; Lomakin, Oleg; Davis, Kevin A.

    2010-01-01

    Evidence suggests that the lateral superior olive (LSO) initiates an excitatory pathway specialized to process interaural level differences (ILDs), the primary cues used by mammals to localize high-frequency sounds in the horizontal plane. Type I units in the central nucleus of the inferior colliculus (ICC) of decerebrate cats exhibit monaural and binaural response properties qualitatively similar to those of LSO units, and are thus supposed to be the midbrain component of the ILD pathway. Studies have shown, however, that the responses of ICC cells do not often reflect simply the output of any single source of excitatory inputs. The goal of this study was to compare directly the monaural, spectral response properties of LSO and type I units measured in unanesthetized decerebrate cats. Compared to LSO units, type I units have narrower V-shaped excitatory tuning curves, higher spontaneous rates, lower maximum stimulus-evoked firing rates and more nonmonotonic rate-level curves for tones and noise. In addition, low frequency type I units have lower thresholds to tones than corresponding LSO units. Taken together, these results suggest that the excitatory ILD pathway from LSO to ICC is mostly a high-frequency channel, and that additional inputs transform LSO influences in the ICC. PMID:20600738

  12. Dichotic sound localization properties of duration-tuned neurons in the inferior colliculus of the big brown bat.

    PubMed

    Sayegh, Riziq; Aubie, Brandon; Faure, Paul A

    2014-01-01

    Electrophysiological studies on duration-tuned neurons (DTNs) from the mammalian auditory midbrain have typically evoked spiking responses from these cells using monaural or free-field acoustic stimulation focused on the contralateral ear, with fewer studies devoted to examining the electrophysiological properties of duration tuning using binaural stimulation. Because the inferior colliculus (IC) receives convergent inputs from lower brainstem auditory nuclei that process sounds from each ear, many midbrain neurons have responses shaped by binaural interactions and are selective to binaural cues important for sound localization. In this study, we used dichotic stimulation to vary interaural level difference (ILD) and interaural time difference (ITD) acoustic cues and explore the binaural interactions and response properties of DTNs and non-DTNs from the IC of the big brown bat (Eptesicus fuscus). Our results reveal that both DTNs and non-DTNs can have responses selective to binaural stimulation, with a majority of IC neurons showing some type of ILD selectivity, fewer cells showing ITD selectivity, and a number of neurons showing both ILD and ITD selectivity. This study provides the first demonstration that the temporally selective responses of DTNs from the vertebrate auditory midbrain can be selective to binaural cues used for sound localization in addition to having spiking responses that are selective for stimulus frequency, amplitude, and duration.

  13. Neurons in the inferior colliculus of the rat show stimulus-specific adaptation for frequency, but not for intensity

    PubMed Central

    Duque, Daniel; Wang, Xin; Nieto-Diego, Javier; Krumbholz, Katrin; Malmierca, Manuel S.

    2016-01-01

    Electrophysiological and psychophysical responses to a low-intensity probe sound tend to be suppressed by a preceding high-intensity adaptor sound. Nevertheless, rare low-intensity deviant sounds presented among frequent high-intensity standard sounds in an intensity oddball paradigm can elicit an electroencephalographic mismatch negativity (MMN) response. This has been taken to suggest that the MMN is a correlate of true change or “deviance” detection. A key question is where in the ascending auditory pathway true deviance sensitivity first emerges. Here, we addressed this question by measuring low-intensity deviant responses from single units in the inferior colliculus (IC) of anesthetized rats. If the IC exhibits true deviance sensitivity to intensity, IC neurons should show enhanced responses to low-intensity deviant sounds presented among high-intensity standards. Contrary to this prediction, deviant responses were only enhanced when the standards and deviants differed in frequency. The results could be explained with a model assuming that IC neurons integrate over multiple frequency-tuned channels and that adaptation occurs within each channel independently. We used an adaptation paradigm with multiple repeated adaptors to measure the tuning widths of these adaption channels in relation to the neurons’ overall tuning widths. PMID:27066835

  14. Wisteria Floribunda Agglutinin-Labeled Perineuronal Nets in the Mouse Inferior Colliculus, Thalamic Reticular Nucleus and Auditory Cortex

    PubMed Central

    Fader, Sarah M.; Imaizumi, Kazuo; Yanagawa, Yuchio; Lee, Charles C.

    2016-01-01

    Perineuronal nets (PNNs) are specialized extracellular matrix molecules that are associated with the closing of the critical period, among other functions. In the adult brain, PNNs surround specific types of neurons, however the expression of PNNs in the auditory system of the mouse, particularly at the level of the midbrain and forebrain, has not been fully described. In addition, the association of PNNs with excitatory and inhibitory cell types in these structures remains unknown. Therefore, we sought to investigate the expression of PNNs in the inferior colliculus (IC), thalamic reticular nucleus (TRN) and primary auditory cortex (A1) of the mouse brain by labeling with wisteria floribunda agglutinin (WFA). To aid in the identification of inhibitory neurons in these structures, we employed the vesicular GABA transporter (VGAT)-Venus transgenic mouse strain, which robustly expresses an enhanced yellow-fluorescent protein (Venus) natively in nearly all gamma-amino butyric acid (GABA)-ergic inhibitory neurons, thus enabling a rapid and unambiguous assessment of inhibitory neurons throughout the nervous system. Our results demonstrate that PNNs are expressed throughout the auditory midbrain and forebrain, but vary in their local distribution. PNNs are most dense in the TRN and least dense in A1. Furthermore, PNNs are preferentially associated with inhibitory neurons in A1 and the TRN, but not in the IC of the mouse. These data suggest regionally specific roles for PNNs in auditory information processing. PMID:27089371

  15. Dichotic sound localization properties of duration-tuned neurons in the inferior colliculus of the big brown bat

    PubMed Central

    Sayegh, Riziq; Aubie, Brandon; Faure, Paul A.

    2014-01-01

    Electrophysiological studies on duration-tuned neurons (DTNs) from the mammalian auditory midbrain have typically evoked spiking responses from these cells using monaural or free-field acoustic stimulation focused on the contralateral ear, with fewer studies devoted to examining the electrophysiological properties of duration tuning using binaural stimulation. Because the inferior colliculus (IC) receives convergent inputs from lower brainstem auditory nuclei that process sounds from each ear, many midbrain neurons have responses shaped by binaural interactions and are selective to binaural cues important for sound localization. In this study, we used dichotic stimulation to vary interaural level difference (ILD) and interaural time difference (ITD) acoustic cues and explore the binaural interactions and response properties of DTNs and non-DTNs from the IC of the big brown bat (Eptesicus fuscus). Our results reveal that both DTNs and non-DTNs can have responses selective to binaural stimulation, with a majority of IC neurons showing some type of ILD selectivity, fewer cells showing ITD selectivity, and a number of neurons showing both ILD and ITD selectivity. This study provides the first demonstration that the temporally selective responses of DTNs from the vertebrate auditory midbrain can be selective to binaural cues used for sound localization in addition to having spiking responses that are selective for stimulus frequency, amplitude, and duration. PMID:24959149

  16. Differences in synaptic and intrinsic properties result in topographic heterogeneity of temporal processing of neurons within the inferior colliculus.

    PubMed

    Yassin, Lina; Pecka, Michael; Kajopoulos, Jasmin; Gleiss, Helge; Li, Lu; Leibold, Christian; Felmy, Felix

    2016-11-01

    The identification and characterization of organization principals is essential for the understanding of neural function of brain areas. The inferior colliculus (IC) represents a midbrain nexus involved in numerous aspects of auditory processing. Likewise, neurons throughout the IC are tuned to a diverse range of specific stimulus features. Yet beyond a topographic arrangement of the cochlea-inherited frequency tuning, the functional organization of the IC is not well understood. Particularly, a common principle that links the diverse tuning characteristics is unknown. Here we used in vitro patch clamp recordings combined with laser-uncaging, and in vivo single cell recordings to study the spatial and functional organization principles of the central IC. We identified a topographic bias of ascending synaptic input timing that is balanced between inhibition and excitation and co-varies with in vivo first-spike latency. This bias was paralleled post-synaptically by differences in biophysical membrane properties and firing patterns, with integrating neurons predominantly found in the dorso-medial part, and coincidence-detector neurons biased to the ventro-lateral IC. Importantly, these cellular and network features translated into distinct temporal processing capabilities irrespectively of the neurons' characteristic frequency. Our data therefore imply that heterogeneity of synaptic inputs, intrinsic properties and temporal processing are functional principles that underlie the spatial organization of the central IC.

  17. Interactions between opioid-peptides-containing pathways and GABA(A)-receptors-mediated systems modulate panic-like-induced behaviors elicited by electric and chemical stimulation of the inferior colliculus.

    PubMed

    Calvo, Fabrício; Coimbra, Norberto Cysne

    2006-08-09

    Aiming to clarify the effect of interactive interconnections between the endogenous opioid peptides-neural links and GABAergic pathways on panic-like responses, in the present work, the effect of the peripheral and central administration of morphine or the non-specific opioid receptors antagonist naloxone was evaluated on the fear-induced responses (defensive attention, defensive immobility and escape behavior) elicited by electric and chemical stimulation of the inferior colliculus. Central microinjections of opioid drugs in the inferior colliculus were also performed followed by local administration of the GABA(A)-receptor antagonist bicuculline. The defensive behavior elicited by the blockade of GABAergic receptors in the inferior colliculus had been quantitatively analyzed, recording the number of crossing, jump, rotation and rearing, in each minute, during 30 min, in the open-field test. The opioid receptors stimulation with morphine decreased the defensive attention, the defensive immobility and escape behavior thresholds, and the non-specific opioid receptors blockade caused opposite effects, enhancing the defensive behavior thresholds. These effects were corroborated by either the stimulation or the inhibition of opioid receptors followed by the GABA(A) receptor blockade with bicuculline, microinjected into the inferior colliculus. There was a significant increase in the diverse fear-induced responses caused by bicuculline with the pretreatment of the inferior colliculus with morphine, and the opposite effect was recorded after the pretreatment of the inferior colliculus nuclei with naloxone followed by bicuculline local administration. These findings suggest an interaction between endogenous opioid-peptides-containing connections and GABA(A)-receptor-mediated system with direct influence on the organization of the panic-like or fear-induced responses elaborated in the inferior colliculus during critical emotional states.

  18. Postnatal development of layer III pyramidal cells in the primary visual, inferior temporal, and prefrontal cortices of the marmoset.

    PubMed

    Oga, Tomofumi; Aoi, Hirosato; Sasaki, Tetsuya; Fujita, Ichiro; Ichinohe, Noritaka

    2013-01-01

    Abnormalities in the processes of the generation and/or pruning of dendritic spines have been implicated in several mental disorders including autism and schizophrenia. We have chosen to examine the common marmoset (Callithrix jacchus) as a primate model to explore the processes. As a first step, we studied the postnatal development of basal dendritic trees and spines of layer-III pyramidal cells in the primary visual sensory cortex (V1), a visual association cortex (inferior temporal area, TE), and a prefrontal cortex (area 12, PFC). Basal dendrites in all three areas were longer in adulthood compared with those in the newborn. In particular, rapid dendritic growth occurred in both TE and PFC around the second postnatal month. This early growth spurt resulted in much larger dendritic arbors in TE and PFC than in V1. The density of the spines along the dendrites peaked at 3 months of age and declined afterwards in all three areas: the degree of spine pruning being greater in V1 than in TE and PFC. The estimates of the total numbers of spines in the basal dendrites of a single pyramidal cell were larger in TE and PFC than in V1 throughout development and peaked around 3 months after birth in all three areas. These developmental profiles of spines and dendrites will help in determining assay points for the screening of molecules involved in spinogenesis and pruning in the marmoset cortex.

  19. Dual sensitivity of inferior colliculus neurons to ITD in the envelopes of high-frequency sounds: experimental and modeling study

    PubMed Central

    Wang, Le; Devore, Sasha; Delgutte, Bertrand

    2013-01-01

    Human listeners are sensitive to interaural time differences (ITDs) in the envelopes of sounds, which can serve as a cue for sound localization. Many high-frequency neurons in the mammalian inferior colliculus (IC) are sensitive to envelope-ITDs of sinusoidally amplitude-modulated (SAM) sounds. Typically, envelope-ITD-sensitive IC neurons exhibit either peak-type sensitivity, discharging maximally at the same delay across frequencies, or trough-type sensitivity, discharging minimally at the same delay across frequencies, consistent with responses observed at the primary site of binaural interaction in the medial and lateral superior olives (MSO and LSO), respectively. However, some high-frequency IC neurons exhibit dual types of envelope-ITD sensitivity in their responses to SAM tones, that is, they exhibit peak-type sensitivity at some modulation frequencies and trough-type sensitivity at other frequencies. Here we show that high-frequency IC neurons in the unanesthetized rabbit can also exhibit dual types of envelope-ITD sensitivity in their responses to SAM noise. Such complex responses to SAM stimuli could be achieved by convergent inputs from MSO and LSO onto single IC neurons. We test this hypothesis by implementing a physiologically explicit, computational model of the binaural pathway. Specifically, we examined envelope-ITD sensitivity of a simple model IC neuron that receives convergent inputs from MSO and LSO model neurons. We show that dual envelope-ITD sensitivity emerges in the IC when convergent MSO and LSO inputs are differentially tuned for modulation frequency. PMID:24155013

  20. Topographic distribution, frequency, and intensity dependence of stimulus-specific adaptation in the inferior colliculus of the rat.

    PubMed

    Duque, Daniel; Pérez-González, David; Ayala, Yaneri A; Palmer, Alan R; Malmierca, Manuel S

    2012-12-05

    The ability to detect unexpected sounds within the environment is an important function of the auditory system, as a rapid response may be required for the organism to survive. Previous studies found a decreased response to repetitive stimuli (standard), but an increased response to rare or less frequent sounds (deviant) in individual neurons in the inferior colliculus (IC) and at higher levels. This phenomenon, known as stimulus-specific adaptation (SSA) has been suggested to underpin change detection. Currently, it is not known how SSA varies within a single neuron receptive field, i.e., it is unclear whether SSA is a unique property of the neuron or a feature that is frequency and/or intensity dependent. In the present experiments, we used the common SSA index (CSI) to quantify and compare the degree of SSA under different stimulation conditions in the IC of the rat. We calculated the CSI at different intensities and frequencies for each individual IC neuron to map the neuronal CSI within the receptive field. Our data show that high SSA is biased toward the high-frequency and low-intensity regions of the receptive field. We also find that SSA is better represented in the earliest portions of the response, and there is a positive correlation between the width of the frequency response area of the neuron and the maximum level of SSA. The present data suggest that SSA in the IC is not mediated by the intrinsic membrane properties of the neurons and instead might be related to an excitatory and/or inhibitory input segregation.

  1. Roles of inhibition in creating complex auditory responses in the inferior colliculus: facilitated combination-sensitive neurons.

    PubMed

    Nataraj, Kiran; Wenstrup, Jeffrey J

    2005-06-01

    We studied roles of inhibition on temporally sensitive facilitation in combination-sensitive neurons from the mustached bat's inferior colliculus (IC). In these integrative neurons, excitatory responses to best frequency (BF) tones are enhanced by much lower frequency signals presented in a specific temporal relationship. Most facilitated neurons (76%) showed inhibition at delays earlier than or later than the delays causing facilitation. The timing of inhibition at earlier delays was closely related to the best delay of facilitation, but the inhibition had little influence on the duration or strength of the facilitatory interaction. Local iontophoretic application of antagonists to receptors for glycine (strychnine, STRY) and gamma-aminobutyric acid (GABA) (bicuculline, BIC) showed that STRY abolished facilitation in 96% of tested units, but BIC eliminated facilitation in only 28%. This suggests that facilitatory interactions are created in IC and reveals a differential role for these neurotransmitters. The facilitation may be created by coincidence of a postinhibitory rebound excitation activated by the low-frequency signal with the BF-evoked excitation. Unlike facilitation, inhibition at earlier delays was not eliminated by application of antagonists, suggesting an origin in lower brain stem nuclei. However, inhibition at delays later than facilitation, like facilitation itself, appears to originate within IC and to be more dependent on glycinergic than GABAergic mechanisms. Facilitatory and inhibitory interactions displayed by these combination-sensitive neurons encode information within sonar echoes and social vocalizations. The results indicate that these complex response properties arise through a series of neural interactions in the auditory brain stem and midbrain.

  2. Limited segregation of different types of sound localization information among classes of units in the inferior colliculus.

    PubMed

    Chase, Steven M; Young, Eric D

    2005-08-17

    The auditory system uses three cues to decode sound location: interaural time differences (ITDs), interaural level differences (ILDs), and spectral notches (SNs). Initial processing of these cues is done in separate brainstem nuclei, with ITDs in the medial superior olive, ILDs in the lateral superior olive, and SNs in the dorsal cochlear nucleus. This work addresses the nature of the convergence of localization information in the central nucleus of the inferior colliculus (ICC). Ramachandran et al. (1999) argued that ICC neurons of types V, I, and O, respectively, receive their predominant inputs from ITD-, ILD-, and SN-sensitive brainstem nuclei, suggesting that these ICC response types should be differentially sensitive to localization cues. Here, single-unit responses to simultaneous manipulation of pairs of localization cues were recorded, and the mutual information between discharge rate and individual cues was quantified. Although rate responses to cue variation were generally consistent with those expected from the hypothesized anatomical connections, the differences in information were not as large as expected. Type I units provide the most information, especially about SNs in the physiologically useful range. Type I and O units provide information about ILDs, even at low frequencies at which actual ILDs are very small. ITD information is provided by a subset of all low-frequency neurons. Type V neurons provide information mainly about ITDs and the average binaural intensity. These results are the first to quantify the relative representation of cues in terms of information and suggest a variety of degrees of cue integration in the ICC.

  3. Glutamate receptor antagonism in inferior colliculus attenuates elevated startle response of high anxiety diazepam-withdrawn rats.

    PubMed

    Cabral, A; De Ross, J; Castilho, V M; Brandão, M L; Nobre, M J

    2009-07-07

    Rats segregated according to low (LA) or high (HA) anxiety levels have been used as an important tool in the study of fear and anxiety. Since the efficacy of an anxiolytic compound is a function of the animal's basal anxiety level, it is possible that chronic treatment with a benzodiazepine (Bzp) affects LA and HA animals differently. Based on these assumptions, this study aimed to provide some additional information on the influence of acute, chronic (18 days) and withdrawal effects (48 h) from diazepam (10 mg/kg), in rats with LA or HA levels, on startle response amplitude. For this purpose, the elevated plus-maze (EPM) test was used. In addition, the role of glutamate receptors of the central nucleus of the inferior colliculus (cIC), the most important mesencephalic tectum integrative structure of the auditory pathways and a brain region that is linked to the processing of auditory information of aversive nature, was also evaluated. Our results showed that, contrary to the results obtained in LA rats, long-term treatment with diazepam promoted anxiolytic and aversive effects in HA animals that were tested under chronic effects or withdrawal from this drug, respectively. In addition, since Bzp withdrawal may function as an unconditioned stressor, the negative affective states observed in HA rats could be a by-product of GABA-glutamate imbalance in brain systems that modulate unconditioned fear and anxiety behaviors, since the blockade of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and N-methyl-D-aspartate (NMDA) glutamate receptors in the cIC clearly reduced the aversion promoted by diazepam withdrawal.

  4. Adaptation and inhibition underlie responses to time-varying interaural phase cues in a model of inferior colliculus neurons.

    PubMed

    Borisyuk, Alla; Semple, Malcolm N; Rinzel, John

    2002-10-01

    A mathematical model was developed for exploring the sensitivity of low-frequency inferior colliculus (IC) neurons to interaural phase disparity (IPD). The formulation involves a firing-rate-type model that does not include spikes per se. The model IC neuron receives IPD-tuned excitatory and inhibitory inputs (viewed as the output of a collection of cells in the medial superior olive). The model cell possesses cellular properties of firing rate adaptation and postinhibitory rebound (PIR). The descriptions of these mechanisms are biophysically reasonable, but only semi-quantitative. We seek to explain within a minimal model the experimentally observed mismatch between responses to IPD stimuli delivered dynamically and those delivered statically (McAlpine et al. 2000; Spitzer and Semple 1993). The model reproduces many features of the responses to static IPD presentations, binaural beat, and partial range sweep stimuli. These features include differences in responses to a stimulus presented in static or dynamic context: sharper tuning and phase shifts in response to binaural beats, and hysteresis and "rise-from-nowhere" in response to partial range sweeps. Our results suggest that dynamic response features are due to the structure of inputs and the presence of firing rate adaptation and PIR mechanism in IC cells, but do not depend on a specific biophysical mechanism. We demonstrate how the model's various components contribute to shaping the observed phenomena. For example, adaptation, PIR, and transmission delay shape phase advances and delays in responses to binaural beats, adaptation and PIR shape hysteresis in different ranges of IPD, and tuned inhibition underlies asymmetry in dynamic tuning properties. We also suggest experiments to test our modeling predictions: in vitro simulation of the binaural beat (phase advance at low beat frequencies, its dependence on firing rate), in vivo partial range sweep experiments (dependence of the hysteresis curve on

  5. Neural Correlates and Mechanisms of Spatial Release From Masking: Single-Unit and Population Responses in the Inferior Colliculus

    PubMed Central

    Lane, Courtney C.; Delgutte, Bertrand

    2007-01-01

    Spatial release from masking (SRM), a factor in listening in noisy environments, is the improvement in auditory signal detection obtained when a signal is separated in space from a masker. To study the neural mechanisms of SRM, we recorded from single units in the inferior colliculus (IC) of barbiturate-anesthetized cats, focusing on low-frequency neurons sensitive to interaural time differences. The stimulus was a broadband chirp train with a 40-Hz repetition rate in continuous broadband noise, and the unit responses were measured for several signal and masker (virtual) locations. Masked thresholds (the lowest signal-to-noise ratio, SNR, for which the signal could be detected for 75% of the stimulus presentations) changed systematically with signal and masker location. Single-unit thresholds did not necessarily improve with signal and masker separation; instead, they tended to reflect the units’ azimuth preference. Both how the signal was detected (through a rate increase or decrease) and how the noise masked the signal response (suppressive or excitatory masking) changed with signal and masker azimuth, consistent with a cross-correlator model of binaural processing. However, additional processing, perhaps related to the signal’s amplitude modulation rate, appeared to influence the units’ responses. The population masked thresholds (the most sensitive unit’s threshold at each signal and masker location) did improve with signal and masker separation as a result of the variety of azimuth preferences in our unit sample. The population thresholds were similar to human behavioral thresholds in both SNR value and shape, indicating that these units may provide a neural substrate for low-frequency SRM. PMID:15857966

  6. Passive stimulation and behavioral training differentially transform temporal processing in the inferior colliculus and primary auditory cortex.

    PubMed

    Vollmer, Maike; Beitel, Ralph E; Schreiner, Christoph E; Leake, Patricia A

    2017-01-01

    In profoundly deaf cats, behavioral training with intracochlear electric stimulation (ICES) can improve temporal processing in the primary auditory cortex (AI). To investigate whether similar effects are manifest in the auditory midbrain, ICES was initiated in neonatally deafened cats either during development after short durations of deafness (8 wk of age) or in adulthood after long durations of deafness (≥3.5 yr). All of these animals received behaviorally meaningless, "passive" ICES. Some animals also received behavioral training with ICES. Two long-deaf cats received no ICES prior to acute electrophysiological recording. After several months of passive ICES and behavioral training, animals were anesthetized, and neuronal responses to pulse trains of increasing rates were recorded in the central (ICC) and external (ICX) nuclei of the inferior colliculus. Neuronal temporal response patterns (repetition rate coding, minimum latencies, response precision) were compared with results from recordings made in the AI of the same animals (Beitel RE, Vollmer M, Raggio MW, Schreiner CE. J Neurophysiol 106: 944-959, 2011; Vollmer M, Beitel RE. J Neurophysiol 106: 2423-2436, 2011). Passive ICES in long-deaf cats remediated severely degraded temporal processing in the ICC and had no effects in the ICX. In contrast to observations in the AI, behaviorally relevant ICES had no effects on temporal processing in the ICC or ICX, with the single exception of shorter latencies in the ICC in short-deaf cats. The results suggest that independent of deafness duration passive stimulation and behavioral training differentially transform temporal processing in auditory midbrain and cortex, and primary auditory cortex emerges as a pivotal site for behaviorally driven neuronal temporal plasticity in the deaf cat.

  7. Detection of interaural correlation by neurons in the superior olivary complex, inferior colliculus and auditory cortex of the unanesthetized rabbit.

    PubMed

    Coffey, Charles S; Ebert, Charles S; Marshall, Allen F; Skaggs, John D; Falk, Stephanie E; Crocker, William D; Pearson, James M; Fitzpatrick, Douglas C

    2006-11-01

    A critical binaural cue important for sound localization and detection of signals in noise is the interaural time difference (ITD), or difference in the time of arrival of sounds at each ear. The ITD can be determined by cross-correlating the sounds at the two ears and finding the ITD where the correlation is maximal. The amount of interaural correlation is affected by properties of spaces and can therefore be used to assess spatial attributes. To examine the neural basis for sensitivity to the overall level of the interaural correlation, we identified subcollicular neurons and neurons in the inferior colliculus (IC) and auditory cortex of unanesthetized rabbits that were sensitive to ITDs and examined their responses as the interaural correlation was varied. Neurons at each brain level could show linear or non-linear responses to changes in interaural correlation. The direction of the non-linearities in most neurons was to increase the slope of the response change for correlations near 1.0. The proportion of neurons with non-linear responses was similar in subcollicular and IC neurons but increased in the auditory cortex. Non-linear response functions to interaural correlation were not related to the type of response as determined by the tuning to ITDs across frequencies. The responses to interaural correlation were also not related to the frequency tuning of the neuron, unlike the responses to ITD, which broadens for neurons tuned to lower frequencies. The neural discriminibility of the ITD using frozen noise in the best neurons was similar to the behavioral acuity in humans at a reference correlation of 1.0. However, for other reference ITDs the neural discriminibility was more linear and generally better than the human discriminibility of the interaural correlation, suggesting that stimulus rather than neural variability is the basis for the decline in human performance at lower levels of interaural correlation.

  8. The neuronal structure of the inferior colliculus in the bank vole (Clethrionomys glareolus)--Golgi and Nissl studies.

    PubMed

    Najdzion, Janusz; Wasilewska, Barbara; Szteyn, Stanisław

    2002-01-01

    The inferior colliculus (IC) of the bank vole is made up of 3 nuclei: the external and pericentral nucleus, which are located on the outer border of the IC, and the central nucleus, which is the largest part of IC and shows a laminated structure. On the basis of various morphological criteria 5 types of neurons have been distinguished in the bank vole IC: 1. The rounded cells (perikarya 10-15 microm) with 2-4 primary dendritic trunks. The dendritic tree has a spindle-like shape. The axon emerges from the soma or from the proximal portion of a dendrite. 2. The fusiform neurons (17-20 microm) with 2 primary dendrites arising from both poles of the perikaryon. The dendritic tree has the same shape as the previous type. The axon originates from the proximal dendritic trunk. The rounded and fusiform cells constitute the main neuronal type. 3. The pear-shaped neurons (10-13 microm) with 2 main stems or rarely 1. The axon emerges from the perikaryon or seldom from the dendritic trunk. 4. The multipolar cells (18-23 microm), which have from 4 to 6 primary dendrites radiating in all directions. The dendritic tree has a spherical shape. The axon emerges either from the proximal stem or directly from the soma. 5. The triangular neurons (15-18 microm) with 3 primary dendritic trunks. The axon originates from the perikaryon. The triangular cells are the least numerous. All types of neurons in the bank vole IC bear spines and protrusions.

  9. Anatomical changes of the GABAergic system in the inferior colliculus of the genetically epilepsy-prone rat.

    PubMed

    Roberts, R C; Ribak, C E

    1986-09-01

    The number of GABAergic neurons as determined by GAD immunocytochemistry and total neurons as determined from Nissl preparations were counted and classified at the light microscopic level in the inferior colliculus (IC) of the genetically epilepsy prone rat (GEPR) and the non-epileptic Sprague-Dawley (SD) strain of rat. GAD-positive neurons are abundant in the IC and a significant increase in the number of GAD-positive neurons occurs in the GEPR as compared to the SD in all three subdivisions. However, the most pronounced difference occurs in the ventral lateral portion of the central nucleus, where there is a selective increase in the small (200%) and medium-sized (90%) GABAergic somata (10-15 microns in diameter and 15-25 microns in diameter, respectively). As determined from Nissl preparations an increase in total numbers of neurons also occurs. Thus, a 100% increase in the number of small neurons and a 30% increase in the number of medium-sized neurons occur in the adult GEPR as compared to the SD rat. A statistically significant increase in the numbers of small neurons also occurred in the IC of the young GEPR. At 4 days of age, a 55% increase in the number of small neurons was found, and at 10 days of age this increase was 105%. The numbers of the medium and large neurons were similar in the older group of rats. These data suggest that the increase in cell number observed in the adult GEPR is not compensatory to the seizure activity, but may either be genetically programmed or be a failure of cell death. Based on other studies of genetic models of epilepsy, we propose that the additional GABAergic neurons may disinhibit excitatory projection neurons in the IC.

  10. The dissimilar time course of temporary threshold shifts and reduction of inhibition in the inferior colliculus following intense sound exposure.

    PubMed

    Heeringa, A N; van Dijk, P

    2014-06-01

    Excessive noise exposure is known to produce an auditory threshold shift, which can be permanent or transient in nature. Recent studies showed that noise-induced temporary threshold shifts are associated with loss of synaptic connections to the inner hair cells and with cochlear nerve degeneration, which is reflected in a decreased amplitude of wave I of the auditory brainstem response (ABR). This suggests that, despite normal auditory thresholds, central auditory processing may be abnormal. We recorded changes in central auditory processing following a sound-induced temporary threshold shift. Anesthetized guinea pigs were exposed for 1 h to a pure tone of 11 kHz (124 dB sound pressure level). Hearing thresholds, amplitudes of ABR waves I and IV, and spontaneous and tone-evoked firing rates in the inferior colliculus (IC) were assessed immediately, one week, two weeks, and four weeks post exposure. Hearing thresholds were elevated immediately following overexposure, but recovered within one week. The amplitude of the ABR wave I was decreased in all sound-exposed animals for all test periods. In contrast, the ABR wave IV amplitude was only decreased immediately after overexposure and recovered within a week. The proportion of IC units that show inhibitory responses to pure tones decreased substantially up to two weeks after overexposure, especially when stimulated with high frequencies. The proportion of excitatory responses to low frequencies was increased. Spontaneous activity was unaffected by the overexposure. Despite rapid normalization of auditory thresholds, our results suggest an increased central gain following sound exposure and an abnormal balance between excitatory and inhibitory responses in the midbrain up to two weeks after overexposure. These findings may be associated with hyperacusis after a sound-induced temporary threshold shift.

  11. Tonotopic reorganization and spontaneous firing in inferior colliculus during both short and long recovery periods after noise overexposure

    PubMed Central

    2013-01-01

    Background Noise induced injury of the cochlea causes shifts in activation thresholds and changes of frequency response in the inferior colliculus (IC). Noise overexposure also induces pathological changes in the cochlea, and is highly correlated to hearing loss. However, the underlying mechanism has not been fully elucidated. In this study, we hypothesized that overexposure to noise induces substantial electrophysiological changes in the IC of guinea pigs. Results During the noise exposure experiment, the animals were undergoing a bilateral exposure to noise. Additionally, various techniques were employed including confocal microscopy for the detection of cochlea hair cells and single neuron recording for spontaneous firing activity measurement. There were alterations among three types of frequency response area (FRA) from sound pressure levels, including V-, M-, and N-types. Our results indicate that overexposure to noise generates different patterns in the FRAs. Following a short recovery (one day after the noise treatment), the percentage of V-type FRAs considerably decreased, whereas the percentage of M-types increased. This was often caused by a notch in the frequency response that occurred at 4 kHz (noise frequency). Following a long recovery from noise exposure (11–21 days), the percentage of V-types resumed to a normal level, but the portion of M-types remained high. Interestingly, the spontaneous firing in the IC was enhanced in both short and long recovery groups. Conclusion Our data suggest that noise overexposure changes the pattern of the FRAs and stimulates spontaneous firing in the IC in a unique way, which may likely relate to the mechanism of tinnitus. PMID:24320109

  12. Monaural and binaural response properties of neurons in the inferior colliculus of the rabbit: effects of sodium pentobarbital.

    PubMed

    Kuwada, S; Batra, R; Stanford, T R

    1989-02-01

    1. We studied the effects of sodium pentobarbital on 22 neurons in the inferior colliculus (IC) of the rabbit. We recorded changes in the sensitivity of these neurons to monaural stimulation and to ongoing interaural time differences (ITDs). Monaural stimuli were tone bursts at or near the neuron's best frequency. The ITD was varied by delivering tones that differed by 1 Hz to the two ears, resulting in a 1-Hz binaural beat. 2. We assessed a neuron's ITD sensitivity by calculating three measures from the responses to binaural beats: composite delay, characteristic delay (CD), and characteristic phase (CP). To obtain the composite delay, we first derived period histograms by averaging, showing the response at each stimulating frequency over one period of the beat frequency. Second, the period histograms were replotted as a function of their equivalent interaural delay and then averaged together to yield the composite delay curve. Last, we calculated the composite peak or trough delay by fitting a parabola to the peak or trough of this composite curve. The composite delay curve represents the average response to all frequencies within the neuron's responsive range, and the peak reflects the interaural delay that produces the maximum response. The CD and CP were estimated from a weighted fit of a regression line to the plot of the mean interaural phase of the response versus the stimulating frequency. The slope and phase intercept of this regression line yielded estimates of CD and CP, respectively. These two quantities are thought to reflect the mechanism of ITD sensitivity, which involves the convergence of phase-locked inputs on a binaural cell. The CD estimates the difference in the time required for the two inputs to travel from either ear to this cell, whereas the CP reflects the interaural phase difference of the inputs at this cell. 3. Injections of sodium pentobarbital at subsurgical dosages (less than 25 mg/kg) almost invariably altered the neuron's response

  13. Functional Microarchitecture of the Mouse Dorsal Inferior Colliculus Revealed through In Vivo Two-Photon Calcium Imaging

    PubMed Central

    Barnstedt, Oliver; Keating, Peter; Weissenberger, Yves

    2015-01-01

    The inferior colliculus (IC) is an obligatory relay for ascending auditory inputs from the brainstem and receives descending input from the auditory cortex. The IC comprises a central nucleus (CNIC), surrounded by several shell regions, but the internal organization of this midbrain nucleus remains incompletely understood. We used two-photon calcium imaging to study the functional microarchitecture of both neurons in the mouse dorsal IC and corticocollicular axons that terminate there. In contrast to previous electrophysiological studies, our approach revealed a clear functional distinction between the CNIC and the dorsal cortex of the IC (DCIC), suggesting that the mouse midbrain is more similar to that of other mammals than previously thought. We found that the DCIC comprises a thin sheet of neurons, sometimes extending barely 100 μm below the pial surface. The sound frequency representation in the DCIC approximated the mouse's full hearing range, whereas dorsal CNIC neurons almost exclusively preferred low frequencies. The response properties of neurons in these two regions were otherwise surprisingly similar, and the frequency tuning of DCIC neurons was only slightly broader than that of CNIC neurons. In several animals, frequency gradients were observed in the DCIC, and a comparable tonotopic arrangement was observed across the boutons of the corticocollicular axons, which form a dense mesh beneath the dorsal surface of the IC. Nevertheless, acoustically responsive corticocollicular boutons were sparse, produced unreliable responses, and were more broadly tuned than DCIC neurons, suggesting that they have a largely modulatory rather than driving influence on auditory midbrain neurons. SIGNIFICANCE STATEMENT Due to its genetic tractability, the mouse is fast becoming the most popular animal model for sensory neuroscience. Nevertheless, many aspects of its neural architecture are still poorly understood. Here, we image the dorsal auditory midbrain and its

  14. Binaural interaction in low-frequency neurons in inferior colliculus of the cat. III. Effects of changing frequency.

    PubMed

    Yin, T C; Kuwada, S

    1983-10-01

    The effects of changing stimulus frequency on the interaural phase sensitivity of neurons in the inferior colliculus (IC) were studied in barbiturate-anesthetized cats in order to reexamine the issue of characteristic delay (CD). Since the results obtained with the interaural delay and binaural beat stimuli are similar, we used the averaged interaural delay curves and binaural beat period histograms as comparable expressions of a neuron's interaural phase sensitivity. When the averaged interaural delay curves at different frequencies are plotted on a common time axis, for some cells the resulting superimposed delay curves show peaks or troughs that coincide at some CD. For most cells, though, this method of detecting a CD by visual inspection yields ambiguous and uncertain results. Composite curves, computed from the average of all the normalized superimposed delay curves, are also not helpful for showing CD. In order to provide a more objective means of analyzing the data, we plotted the mean interaural phase versus the stimulating frequency and computed the linear regression line, using the mean square error as a measure of linearity. The slope of the regression line is the CD for the neuron, and the phase intercept is referred to as the characteristic phase (CP). Cells that display a CD at the peak discharge have a CP = 0.0 cycles, while those that show a CD at the minimum discharge have a CP = 0.5. Cells that exhibit a CP at any value other than 0.0, 0.5, or 1.0 will have a CD at some relative amplitude other than the peak or trough. For cells that exhibit a CD at the peak or trough, results of the analysis procedure using the phase-frequency plot correspond to those obtained from visual inspection. For cells that do not show a common peak or trough, the analysis procedure not only specifies the location of the CD but also provides a statistical criterion of the linearity. From this analysis about 60% of the runs were identified as satisfying the criteria for

  15. The selective neurotoxin DSP-4 impairs the noradrenergic projections from the locus coeruleus to the inferior colliculus in rats

    PubMed Central

    Hormigo, Sebastián; Horta Júnior, José de Anchieta de Castro e; Gómez-Nieto, Ricardo; López, Dolores E.

    2012-01-01

    The inferior colliculus (IC) and the locus coeruleus (LC) are two midbrain nuclei that integrate multimodal information and play a major role in novelty detection to elicit an orienting response. Despite the reciprocal connections between these two structures, the projection pattern and target areas of the LC within the subdivisions of the rat IC are still unknown. Here, we used tract-tracing approaches combined with immunohistochemistry, densitometry, and confocal microscopy (CM) analysis to describe a projection from the LC to the IC. Biotinylated dextran amine (BDA) injections into the LC showed that the LC-IC projection is mainly ipsilateral (90%) and reaches, to a major extent, the dorsal and lateral part of the IC and the intercollicular commissure. Additionally, some LC fibers extend into the central nucleus of the IC. The neurochemical nature of this projection is noradrenergic, given that tyrosine hydroxylase (TH) and dopamine beta hydroxylase (DBH) colocalize with the BDA-labeled fibers from the LC. To determine the total field of the LC innervations in the IC, we destroyed the LC neurons and fibers using a highly selective neurotoxin, DSP-4, and then studied the distribution and density of TH- and DBH-immunolabeled axons in the IC. In the DSP-4 treated animals, the number of axonal fibers immunolabeled for TH and DBH were deeply decreased throughout the entire rostrocaudal extent of the IC and its subdivisions compared to controls. Our densitometry results showed that the IC receives up to 97% of its noradrenergic innervations from the LC neurons and only 3% from non-coeruleus neurons. Our results also indicate that TH immunoreactivity in the IC was less impaired than the immunoreactivity for DBH after DSP-4 administration. This is consistent with the existence of an important dopaminergic projection from the substantia nigra to the IC. In conclusion, our study demonstrates and quantifies the noradrenergic projection from the LC to the IC and its

  16. The selective neurotoxin DSP-4 impairs the noradrenergic projections from the locus coeruleus to the inferior colliculus in rats.

    PubMed

    Hormigo, Sebastián; Horta Júnior, José de Anchieta de Castro E; Gómez-Nieto, Ricardo; López, Dolores E

    2012-01-01

    The inferior colliculus (IC) and the locus coeruleus (LC) are two midbrain nuclei that integrate multimodal information and play a major role in novelty detection to elicit an orienting response. Despite the reciprocal connections between these two structures, the projection pattern and target areas of the LC within the subdivisions of the rat IC are still unknown. Here, we used tract-tracing approaches combined with immunohistochemistry, densitometry, and confocal microscopy (CM) analysis to describe a projection from the LC to the IC. Biotinylated dextran amine (BDA) injections into the LC showed that the LC-IC projection is mainly ipsilateral (90%) and reaches, to a major extent, the dorsal and lateral part of the IC and the intercollicular commissure. Additionally, some LC fibers extend into the central nucleus of the IC. The neurochemical nature of this projection is noradrenergic, given that tyrosine hydroxylase (TH) and dopamine beta hydroxylase (DBH) colocalize with the BDA-labeled fibers from the LC. To determine the total field of the LC innervations in the IC, we destroyed the LC neurons and fibers using a highly selective neurotoxin, DSP-4, and then studied the distribution and density of TH- and DBH-immunolabeled axons in the IC. In the DSP-4 treated animals, the number of axonal fibers immunolabeled for TH and DBH were deeply decreased throughout the entire rostrocaudal extent of the IC and its subdivisions compared to controls. Our densitometry results showed that the IC receives up to 97% of its noradrenergic innervations from the LC neurons and only 3% from non-coeruleus neurons. Our results also indicate that TH immunoreactivity in the IC was less impaired than the immunoreactivity for DBH after DSP-4 administration. This is consistent with the existence of an important dopaminergic projection from the substantia nigra to the IC. In conclusion, our study demonstrates and quantifies the noradrenergic projection from the LC to the IC and its

  17. The immediate effects of acoustic trauma on excitation and inhibition in the inferior colliculus: A Wiener-kernel analysis.

    PubMed

    Heeringa, Amarins Nieske; van Dijk, Pim

    2016-01-01

    Noise-induced tinnitus and hyperacusis are thought to correspond to a disrupted balance between excitation and inhibition in the central auditory system. Excitation and inhibition are often studied using pure tones; however, these responses do not reveal inhibition within the excitatory pass band. Therefore, we used a Wiener-kernel analysis, complemented with singular value decomposition (SVD), to investigate the immediate effects of acoustic trauma on excitation and inhibition in the inferior colliculus (IC). Neural responses were recorded from the IC of three anesthetized albino guinea pigs before and immediately after a one-hour bilateral exposure to an 11-kHz tone of 124 dB SPL. Neural activity was recorded during the presentation of a 1-h continuous 70 dB SPL Gaussian-noise stimulus. Spike trains were subjected to Wiener-kernel analysis in which the second-order kernel was decomposed into excitatory and inhibitory components using SVD. Hearing thresholds between 3 and 22 kHz were elevated (13-47 dB) immediately after acoustic trauma. The presence and frequency tuning of excitation and inhibition in units with a low characteristic frequency (CF; < 3 kHz) was not affected, inhibition disappeared whereas excitation was not affected in mid-CF units (3 < CF < 11 kHz), and both excitation and inhibition disappeared in high-CF units (CF > 11 kHz). This specific differentiation could not be identified by tone-evoked receptive-field analysis, in which inhibitory responses disappeared in all units, along with excitatory responses in high-CF units. This study is the first to apply Wiener-kernel analysis, complemented with SVD, to study the effects of acoustic trauma on spike trains derived from the IC. With this analysis, a reduction of inhibition and preservation of good response thresholds was shown in mid-CF units immediately after acoustic trauma. These neurons may mediate noise-induced tinnitus and/or hyperacusis. Moreover, an immediate profound high

  18. Aminoglycosides block the Kv3.1 potassium channel and reduce the ability of inferior colliculus neurons to fire at high frequencies.

    PubMed

    Liu, Si-Qiong J; Kaczmarek, Leonard K

    2005-03-01

    The Kv3.1 potassium channel is expressed at high levels in auditory nuclei and contributes to the ability of auditory neurons to fire at high frequencies. We have tested the effects of streptomycin, an agent that produces progressive hearing loss, on the firing properties of inferior colliculus neurons and on Kv3.1 currents in transfected cells. We found that in inferior colliculus neurons, intracellular streptomycin decreased the current density of a high threshold, noninactivating outward current and reduced the rate of repolarization of action potentials and the ability of these neurons to fire at high frequencies. Furthermore, potassium current in CHO cells transfected with the Kv3.1 gene was reduced by 50% when cells were cultured in the presence of streptomycin or when streptomycin was introduced intracellularly in the pipette solution. In the presence of intracellular streptomycin, the activation rate of Kv3.1 current increased and inhibition by extracellular TEA become voltage-dependent. The data indicate that streptomycin inhibits Kv3.1 currents by inducing a conformational change in the Kv3.1 channel. The hearing loss caused by aminoglycoside antibiotics may be partially mediated by their inhibition of Kv3.1 current in auditory neurons.

  19. CB1 cannabinoid receptor-mediated anandamide signaling mechanisms of the inferior colliculus modulate the haloperidol-induced catalepsy.

    PubMed

    Medeiros, P; de Freitas, R L; Silva, M O; Coimbra, N C; Melo-Thomas, L

    2016-11-19

    The inferior colliculus (IC), a midbrain structure that processes acoustic information of aversive nature, is distinguished from other auditory nuclei in the brainstem by its connections with structures of the motor system. Previous evidence relating the IC to motor behavior shows that glutamatergic and GABAergic mechanisms in the IC exert influence on systemic haloperidol-induced catalepsy. There is substantial evidence supporting a role played by the endocannabinoid system as a modulator of the glutamatergic neurotransmission, as well as the dopaminergic activity in the basal nuclei and therefore it may be considered as a potential pharmacological target for the treatment of movement disorders. The present study evaluated if the endocannabinoid system in the IC plays a role in the elaboration of systemic haloperidol-induced catalepsy. Male Wistar rats received intracollicular microinjection of either the endogenous cannabinoid anandamide (AEA) at different concentrations (5, 50 or 100pmol/0.2μl), the CB1 cannabinoid receptor antagonist AM251 at 50, 100 or 200pmol/0.2μl or vehicle, followed by intraperitoneal (IP) administration of either haloperidol at 0.5 or 1mg/kg or physiological saline. Systemic injection of haloperidol at both doses (0.5 or 1mg/kg, IP) produced a cataleptic state, compared to vehicle/physiological saline-treated group, lasting 30 and 50min after systemic administration of the dopaminergic receptors non-selective antagonist. The midbrain microinjection of AEA at 50pmol/0.2μl increased the latency for stepping down from the horizontal bar after systemic administration of haloperidol. Moreover, the intracollicular administration of AEA at 50pmol/0.2μl was able to increase the duration of catalepsy as compared to AEA at 100pmol/0.2-μl-treated group. Intracollicular pretreatment with AM251 at the intermediate concentration (100pmol/0.2μl) was able to decrease the duration of catalepsy after systemic administration of haloperidol. However

  20. Neuroanatomical and neuropharmacological study of opioid pathways in the mesencephalic tectum: effect of mu(1)- and kappa-opioid receptor blockade on escape behavior induced by electrical stimulation of the inferior colliculus.

    PubMed

    Osaki, M Y; Castellan-Baldan, L; Calvo, F; Carvalho, A D; Felippotti, T T; de Oliveira, R; Ubiali, W A; Paschoalin-Maurin, T; Elias-Filho, D H; Motta, V; da Silva, L A; Coimbra, N C

    2003-12-05

    Deep layers of the superior colliculus (DLSC), the dorsal and ventral periaqueductal gray matter (PAG), and inferior colliculus (IC) are midbrain structures involved in the generation of defensive behavior. beta-Endorphin and Leu-enkephalin are some neurotransmitters that may modulate such behavior in mammals. Light microscopy immunocytochemistry with streptavidin method was used for the localization of the putative cells of defensive behavior with antibodies for endogenous opioids in rat brainstem. Midbrain structures showed positive neurons to beta-endorphin and Leu-enkephalin in similar distributions in the experimental animals, but we also noted the presence of varicose fibers positive to endogenous opioids in the PAG. Neuroanatomical techniques showed varicose fibers from the central nucleus of the inferior colliculus to ventral aspects of the PAG, at more caudal levels. Naloxonazine and nor-binaltorphimine, competitive antagonists that block mu(1)- and kappa-opioid receptors, were then used in the present work to investigate the involvement of opioid peptide neural system in the control of the fear-induced reactions evoked by electrical stimulation of the neural substrates of the inferior colliculus. The fear-like responses were measured by electrical stimulation of the central nucleus of the inferior colliculus, eliciting the escape behavior, which is characterized by vigorous running and jumping. Central administration of opioid antagonists (2.5 microg/0.2 microl and 5.0 microg/0.2 microl) was performed in non-anesthetized animals (Rattus norvegicus), and the behavioral manifestations of fear were registered after 10 min, 2 h, and 24 h of the pretreatment. Naloxonazine caused an increase of the defensive threshold, as compared to control, suggesting an antiaversive effect of the antagonism on mu(1)-opioid receptor. This finding was corroborated with central administration of nor-binaltorphimine, which also induced a decrease of the fear-like responses

  1. Effects of Electrical Stimulation in the Inferior Colliculus on Frequency Discrimination by Rhesus Monkeys and Implications for the Auditory Midbrain Implant

    PubMed Central

    Ross, Deborah A.; Puñal, Vanessa M.; Agashe, Shruti; Dweck, Isaac; Mueller, Jerel; Grill, Warren M.; Wilson, Blake S.

    2016-01-01

    Understanding the relationship between the auditory selectivity of neurons and their contribution to perception is critical to the design of effective auditory brain prosthetics. These prosthetics seek to mimic natural activity patterns to achieve desired perceptual outcomes. We measured the contribution of inferior colliculus (IC) sites to perception using combined recording and electrical stimulation. Monkeys performed a frequency-based discrimination task, reporting whether a probe sound was higher or lower in frequency than a reference sound. Stimulation pulses were paired with the probe sound on 50% of trials (0.5–80 μA, 100–300 Hz, n = 172 IC locations in 3 rhesus monkeys). Electrical stimulation tended to bias the animals' judgments in a fashion that was coarsely but significantly correlated with the best frequency of the stimulation site compared with the reference frequency used in the task. Although there was considerable variability in the effects of stimulation (including impairments in performance and shifts in performance away from the direction predicted based on the site's response properties), the results indicate that stimulation of the IC can evoke percepts correlated with the frequency-tuning properties of the IC. Consistent with the implications of recent human studies, the main avenue for improvement for the auditory midbrain implant suggested by our findings is to increase the number and spatial extent of electrodes, to increase the size of the region that can be electrically activated, and to provide a greater range of evoked percepts. SIGNIFICANCE STATEMENT Patients with hearing loss stemming from causes that interrupt the auditory pathway after the cochlea need a brain prosthetic to restore hearing. Recently, prosthetic stimulation in the human inferior colliculus (IC) was evaluated in a clinical trial. Thus far, speech understanding was limited for the subjects and this limitation is thought to be partly due to challenges in

  2. Effects of pulse phase duration and location of stimulation within the inferior colliculus on auditory cortical evoked potentials in a guinea pig model.

    PubMed

    Neuheiser, Anke; Lenarz, Minoo; Reuter, Guenter; Calixto, Roger; Nolte, Ingo; Lenarz, Thomas; Lim, Hubert H

    2010-12-01

    The auditory midbrain implant (AMI), which consists of a single shank array designed for stimulation within the central nucleus of the inferior colliculus (ICC), has been developed for deaf patients who cannot benefit from a cochlear implant. Currently, performance levels in clinical trials for the AMI are far from those achieved by the cochlear implant and vary dramatically across patients, in part due to stimulation location effects. As an initial step towards improving the AMI, we investigated how stimulation of different regions along the isofrequency domain of the ICC as well as varying pulse phase durations and levels affected auditory cortical activity in anesthetized guinea pigs. This study was motivated by the need to determine in which region to implant the single shank array within a three-dimensional ICC structure and what stimulus parameters to use in patients. Our findings indicate that complex and unfavorable cortical activation properties are elicited by stimulation of caudal-dorsal ICC regions with the AMI array. Our results also confirm the existence of different functional regions along the isofrequency domain of the ICC (i.e., a caudal-dorsal and a rostral-ventral region), which has been traditionally unclassified. Based on our study as well as previous animal and human AMI findings, we may need to deliver more complex stimuli than currently used in the AMI patients to effectively activate the caudal ICC or ensure that the single shank AMI is only implanted into a rostral-ventral ICC region in future patients.

  3. Determining auditory-evoked activities from multiple cells in layer 1 of the dorsal cortex of the inferior colliculus of mice by in vivo calcium imaging.

    PubMed

    Ito, Tetsufumi; Hirose, Junichi; Murase, Kazuyuki; Ikeda, Hiroshi

    2014-11-24

    Layer 1 of the dorsal cortex of the inferior colliculus (DCIC) is distinguished from other layers by its cytoarchitecture and fiber connections. However, the information of the sound types represented in layer 1 of the DCIC remains unclear because placing electrodes on such thin structures is challenging. In this study, we utilized in vivo calcium imaging to assess auditory-evoked activities in multiple cells in layer 1 of DCIC and to characterize sound stimuli producing strong activity. Most cells examined showed strong responses to broad-band noise and low-frequency tone bursts of high sound intensity. In some cases, we successfully obtained frequency response areas, which are receptive fields to tone frequencies and intensities, and ~30% of these showed V-shape tunings. This is the first systematic study to record auditory responses of cells in layer 1 of DCIC. These results indicate that cells in this area are selective to tones with low frequency, implying the importance of such auditory information in the neural circuitry of layer 1 of DCIC.

  4. Early segregation of layered projections from the lateral superior olivary nucleus to the central nucleus of the inferior colliculus in the neonatal cat.

    PubMed

    Gabriele, Mark L; Shahmoradian, Sarah H; French, Christopher C; Henkel, Craig K; McHaffie, John G

    2007-10-10

    The central nucleus of the inferior colliculus (IC) is a laminated structure that receives multiple converging afferent projections. These projections terminate in a layered arrangement and are aligned with dendritic arbors of the predominant disc-shaped neurons, forming fibrodendritic laminae. Within this structural framework, inputs terminate in a precise manner, establishing a mosaic of partially overlapping domains that likely define functional compartments. Although several of these patterned inputs have been described in the adult, relatively little is known about their organization prior to hearing onset. The present study used the lipophilic carbocyanine dyes DiI and DiD to examine the ipsilateral and contralateral projections from the lateral superior olivary (LSO) nucleus to the IC in a developmental series of paraformaldehyde-fixed kitten tissue. By birth, the crossed and uncrossed projections had reached the IC and were distributed across the frequency axis of the central nucleus. At this earliest postnatal stage, projections already exhibited a characteristic banded arrangement similar to that described in the adult. The heaviest terminal fields of the two inputs were always complementary in nature, with the ipsilateral input appearing slightly denser. This early arrangement of interdigitating ipsilateral and contralateral LSO axonal bands that occupy adjacent sublayers supports the idea that the initial establishment of this highly organized mosaic of inputs that defines distinct synaptic domains within the IC occurs largely in the absence of auditory experience. Potential developmental mechanisms that may shape these highly ordered inputs prior to hearing onset are discussed.

  5. Antidromic activation reveals tonotopically organized projections from primary auditory cortex to the central nucleus of the inferior colliculus in guinea pig.

    PubMed

    Lim, Hubert H; Anderson, David J

    2007-02-01

    The inferior colliculus (IC) is highly modulated by descending projections from higher auditory and nonauditory centers. Traditionally, corticofugal fibers were believed to project mainly to the extralemniscal IC regions. However, there is some anatomical evidence suggesting that a substantial number of fibers from the primary auditory cortex (A1) project into the IC central nucleus (ICC) and appear to be tonotopically organized. In this study, we used antidromic stimulation combined with other electrophysiological techniques to further investigate the spatial organization of descending fibers from A1 to the ICC in ketamine-anesthetized guinea pigs. Based on our findings, corticofugal fibers originate predominantly from layer V of A1, are amply scattered throughout the ICC and only project to ICC neurons with a similar best frequency (BF). This strict tonotopic pattern suggests that these corticofugal projections are involved with modulating spectral features of sound. Along the isofrequency dimension of the ICC, there appears to be some differences in projection patterns that depend on BF region and possibly isofrequency location within A1 and may be indicative of different descending coding strategies. Furthermore, the success of the antidromic stimulation method in our study demonstrates that it can be used to investigate some of the functional properties associated with corticofugal projections to the ICC as well as to other regions (e.g., medial geniculate body, cochlear nucleus). Such a method can address some of the limitations with current anatomical techniques for studying the auditory corticofugal system.

  6. Protein expression of small conductance calcium-activated potassium channels is altered in inferior colliculus neurons of the genetically epilepsy-prone rat

    PubMed Central

    N’Gouemo, Prosper; Yasuda, Robert P.; Faingold, Carl L.

    2009-01-01

    The genetically epilepsy-prone rat (GEPR) exhibits inherited predisposition to sound stimuli-induced generalized tonic-clonic seizures (audiogenic reflex seizures) and is a valid model to study the physiopathology of epilepsy. In this model, the inferior colliculus (IC) exhibits enhanced neuronal firing that is critical in the initiation of reflex audiogenic seizures. The mechanisms underlying IC neuronal hyperexcitability that leads to seizure susceptibility are not as yet fully understood. The present report shows that the levels of protein expression of SK1 and SK3 subtypes of the small conductance Ca2+-activated K+ channels were significantly decreased, while SK2 channel proteins were increased in IC neurons of seizure-naive GEPR-3s (SN-GEPR-3), as compared to control Sprague-Dawley rats. No significant change was found in the expression of BK channel proteins in IC neurons of SN-GEPR-3s. Single episode of reflex audiogenic seizures in the GEPR-3s did not significantly alter the protein expression of SK1-3 and BK channels in IC neurons compared to SN-GEPR-3s. Thus, downregulation of SK1 and SK3 channels and upregulation of SK2 channels provide direct evidence that these Ca2+-activated K+ channels play important roles in IC neuronal hyperexcitability that leads to inherited seizure susceptibility in the GEPR. PMID:19254702

  7. Organization and trade-off of spectro-temporal tuning properties of duration-tuned neurons in the mammalian inferior colliculus

    PubMed Central

    Morrison, James A.; Farzan, Faranak; Fremouw, Thane; Sayegh, Riziq; Covey, Ellen

    2014-01-01

    Neurons throughout the mammalian central auditory pathway respond selectively to stimulus frequency and amplitude, and some are also selective for stimulus duration. First found in the auditory midbrain or inferior colliculus (IC), these duration-tuned neurons (DTNs) provide a potential neural mechanism for encoding temporal features of sound. In this study, we investigated how having an additional neural response filter, one selective to the duration of an auditory stimulus, influences frequency tuning and neural organization by recording single-unit responses and measuring the dorsal-ventral position and spectral-temporal tuning properties of auditory DTNs from the IC of the awake big brown bat (Eptesicus fuscus). Like other IC neurons, DTNs were tonotopically organized and had either V-shaped, U-shaped, or O-shaped frequency tuning curves (excitatory frequency response areas). We hypothesized there would be an interaction between frequency and duration tuning in DTNs, as electrical engineering theory for resonant filters dictates a trade-off in spectral-temporal resolution: sharp tuning in the frequency domain results in poorer resolution in the time domain and vice versa. While the IC is a more complex signal analyzer than an electrical filter, a similar operational trade-off could exist in the responses of DTNs. Our data revealed two patterns of spectro-temporal sensitivity and spatial organization within the IC: DTNs with sharp frequency tuning and broad duration tuning were located in the dorsal IC, whereas cells with wide spectral tuning and narrow temporal tuning were found in the ventral IC. PMID:24572091

  8. Distinct effects of haloperidol in the mediation of conditioned fear in the mesolimbic system and processing of unconditioned aversive information in the inferior colliculus.

    PubMed

    Muthuraju, S; Nobre, M J; Saito, V M N; Brandao, M L

    2014-03-07

    Chemical and electrical stimulation of the inferior colliculus (IC) causes defensive behavior. Electrical stimulation of the IC at the escape threshold enhances dopamine (DA) release in the prefrontal cortex. Intra-ventral tegmental area injections of quinpirole at doses that act presynaptically reduce the release of DA in the terminal fields of the mesolimbic system and clearly reduce conditioned fear in several animal models of anxiety. However, little is known about the involvement of DA in the mediation of unconditioned fear, such as the reactivity to acute stressors. The present study investigated the neural substrates mediated by DA transmission associated with emotional changes triggered by the activation or inhibition of D2 receptors during conditioned and unconditioned fear. We examined the effects of systemic or local injections of the DA-receptor antagonist and agonist haloperidol and quinpirole, respectively, into the IC in rats subjected to fear-potentiated startle, a Pavlovian paradigm that uses loud sounds as the unconditioned stimulus and light previously paired with footshock as the conditioned stimulus. We also assessed auditory-evoked potentials (AEPs) recorded from electrodes implanted in the IC. Intraperitoneal haloperidol administration dose-dependently enhanced AEPs induced by loud tones and inhibited fear-potentiated startle. Intra-IC injections of quinpirole left AEPs unchanged, suggesting that an optimal level of postsynaptic D2 receptors in the IC may regulate the transmission of aversive information through the midbrain tectum. These findings provide evidence of opposing DA-mediated mechanisms in fear/anxiety processes that depend on the area under study. The activity of the neural substrates of conditioned fear was attenuated by haloperidol, whereas midbrain neural substrates of unconditioned fear were enhanced. Thus, DA appears to regulate unconditioned fear at the midbrain level, likely by reducing the sensory gating of aversive

  9. Atypical antipsychotic clozapine reversed deficit on prepulse inhibition of the acoustic startle reflex produced by microinjection of DOI into the inferior colliculus in rats.

    PubMed

    de Oliveira, Rodolpho Pereira; Nagaishi, Karen Yuriko; Barbosa Silva, Regina Cláudia

    2017-05-15

    Dysfunctions of the serotonergic system have been suggested to be important in the neurobiology of schizophrenia. Patients with schizophrenia exhibit deficits in an operational measure of sensorimotor gating: prepulse inhibition (PPI) of startle. PPI is the normal reduction in the startle response caused by a low intensity non-startling stimulus (prepulse) which is presented shortly before the startle stimulus (pulse). The hallucinogen 2,5-dimethoxy-4-iodoamphetamine (DOI), a 5-hydroxytryptamine(HT)2 receptor agonist disrupted PPI in rats. The inferior colliculus (IC) is a critical nucleus of the auditory pathway mediating acoustic PPI. The activation of the IC by the acoustic prepulse reduces startle magnitude. The present study investigated the role of serotonergic transmission in the IC on the expression of acoustic PPI. For that we investigated whether 5-HT2A receptor activation or blockade would affect this response. Unilateral microinjection of DOI (10μg/0.3μl) into the IC disrupted PPI, while microinjection of the 5-HT2A receptor antagonist ritanserin (4μg/0.3μl), into this structure did not alter PPI. We also examined the ability of the atypical antipsychotic clozapine (5.0mg/kg; I.P.) to reverse the disruption of PPI produced by unilateral microinjections of DOI into the IC of rats. Pretreatment with clozapine blocked DOI-induced disruption of PPI. Altogether, these results suggest that serotonin-mediated mechanisms of the IC are involved in the expression of PPI in rodents and that this response is sensitive to atypical antipsychotic clozapine.

  10. 5-HT1A and 5-HT1B receptors differentially modulate rate and timing of auditory responses in the mouse inferior colliculus

    PubMed Central

    Ramsey, Lissandra Castellan Baldan; Sinha, Shiva R.; Hurley, Laura M.

    2010-01-01

    Serotonin is a physiological signal that translates both internal and external information about behavioral context into changes in sensory processing through a diverse array of receptors. The details of this process, particularly how receptors interact to shape sensory encoding, are poorly understood. In the inferior colliculus, a midbrain auditory nucleus, serotonin (5-HT) 1A receptors have suppressive and 5-HT1B receptors have facilitatory effects on evoked responses of neurons. We explored how these two receptor classes interact by testing three hypotheses: that they 1) affect separate neuron populations, 2) affect different response properties, or 3) have different endogenous patterns of activation. The first two hypotheses were tested by iontophoretic application of 5-HT1A and 5-HT1B receptor agonists individually and together to neurons in vivo. 5-HT1A and 5-HT1B agonists affected overlapping populations of neurons. During co-application, 5-HT1A and 5-HT1B agonists influenced spike rate and frequency bandwidth additively, with each moderating the effect of the other. In contrast, although both agonists individually influenced latencies and interspike intervals, the 5-HT1A agonist dominated these measurements during co-application. The third hypothesis was tested by applying antagonists of the 5-HT1A and 5-HT1B receptors. Blocking 5-HT1B receptors was complementary to activation of the receptor, but blocking 5-HT1A receptors was not, suggesting the endogenous activation of additional receptor types. These results suggest that cooperative interactions between 5-HT1A and 5-HT1B receptors shape auditory encoding in the IC, and that the effects of neuromodulators within sensory systems may depend nonlinearly on the specific profile of receptors that are activated. PMID:20646059

  11. Increased responsiveness and failure of habituation in neurons of the external nucleus of inferior colliculus associated with audiogenic seizures of the genetically epilepsy-prone rat.

    PubMed

    Chakravarty, D N; Faingold, C L

    1996-10-01

    Initiation of audiogenic seizures (AGS) emanates from the inferior colliculus (IC) to other IC subnuclei in the genetically epilepsy-prone rat (GEPR). The external nucleus of IC (ICx) is a suggested site of convergence of the auditory output onto the sensorimotor integration network components for AGS in the brainstem. Neuronal firing was recorded from the ICx of the awake, freely moving GEPR and normal Sprague-Dawley rats using microwire electrodes in the present study. Auditory stimuli consisted of 12-kHz tones (100 ms, 5-ms rise-fall at rates of 1/4s, 1/2s, and 1/s). AGS incidence in the GEPR is highest at 12 kHz. In the GEPR, ICx neuronal responses to acoustic stimuli were significantly greater than those seen in normal rats. This increased ICx firing was observed at relatively high acoustic intensities (> 80 dB SPL), which are near the threshold for AGS induction. Repetition-induced response attenuation (habituation) is commonly observed in ICx neurons, which appears to be overcome in the GEPR during AGS initiation. Tonic, acoustically evoked ICx neuronal firing was observed just prior to wild running. ICx firing was suppressed during the tonic and postictal phases of AGS. Recovery of ICx responses occurred when the animal regained postural control. Abnormal, intense output has previously been observed in the GEPR IC central nucleus (ICc) neurons. The neuronal firing pattern changes observed in the ICx in the present study may result from this intense ICc output. Diminished efficacy of GABA, which has been observed in several regions of the GEPR brain, including the IC, in a number of previous studies, may be involved in the exaggerated ICx responses to acoustic stimuli in the GEPR. Participation of the ICx in the AGS neuronal network may be subserved by this acoustic hyperresponsiveness.

  12. Origins of Glutamatergic Terminals in the Inferior Colliculus Identified by Retrograde Transport and Expression of VGLUT1 and VGLUT2 Genes

    PubMed Central

    Ito, Tetsufumi; Oliver, Douglas L.

    2010-01-01

    Terminals containing vesicular glutamate transporter (VGLUT) 2 make dense axosomatic synapses on tectothalamic GABAergic neurons. These are one of the three types of glutamatergic synapses in the inferior colliculus (IC) identified by one of three combinations of transporter protein: VGLUT1 only, VGLUT2 only, or both VGLUT1 and 2. To identify the source(s) of these three classes of glutamatergic terminals, we employed the injection of Fluorogold (FG) into the IC and retrograde transport in combination with in situ hybridization for VGLUT1 and VGLUT2 mRNA. The distribution of FG-positive soma was consistent with previous reports. In the auditory cortex, all FG-positive cells expressed only VGLUT1. In the IC, the majority of FG-positive cells expressed only VGLUT2. In the intermediate nucleus of the lateral lemniscus, most FG-positive cells expressed VGLUT2, and a few FG-positive cells expressed both VGLUT1 and 2. In the superior olivary complex (SOC), the majority of FG-positive cells expressing VGLUT2 were in the lateral superior olive, medial superior olive, and some periolivary nuclei. Fewer FG-positive cells expressed VGLUT1&2. In the ventral cochlear nucleus, almost all FG-positive cells expressed VGLUT1&2. On the other hand in the dorsal cochlear nucleus, the vast majority of FG-positive cells expressed only VGLUT2. Our data suggest that (1) the most likely sources of VGLUT2 terminals in the IC are the intermediate nucleus of the lateral lemniscus, the dorsal cochlear nucleus, the medial and lateral superior olive, and the IC itself, (2) VGLUT1 terminals in the IC originate only in the ipsilateral auditory cortex, and (3) VGLUT1&2 terminals in IC originate mainly from the VCN with minor contributions from the SOC and the lateral lemniscal nuclei. PMID:21048892

  13. Computer-assisted 3-D reconstructions of Golgi-impregnated neurons in the cortical regions of the inferior colliculus of rat.

    PubMed

    Malmierca, Manuel S; Blackstad, Theodor W; Osen, Kirsten K

    2011-04-01

    The inferior colliculus (IC) is the main auditory nucleus in the midbrain. This auditory center is made of a central nucleus (CNIC) characterized by a distinct laminar organization that is surrounded by cortical regions. The neuronal types in the CNIC are well established but thus far, the neuronal composition and functional roles of the cortical regions are not fully appreciated. As dendritic architecture is critical for the synaptic integrative properties of neurons, a detailed analysis of the dendritic architecture of the neurons in the collicular cortical regions should shed light on our understanding of their roles in collicular function. In the present study, we have used the del Rio-Hortega Golgi procedure to impregnate individual neurons within the IC. Rat brains were embedded in resin and sectioned serially to allow quantitative 3-D analyses of single neurons or groups of neurons. Our results demonstrate that the cortical regions of the IC are made up of unique sets of neuronal types and that there is an interdigitation of dendrites at the cortical borders. This latter feature may have led to difficulty in delineating a sharp border between the CNIC and cortical regions in previous studies. The quantitative analysis further demonstrates that there are significant differences in many of the dendritic parameters tested when compared to the neurons from the CNIC. Moreover, we observed that the neuronal populations of the cortical regions vary from the laminar pattern of the CNIC and from each other. Since the main organizing principle of the CNIC is the laminar organization of 'flat' neurons, evidence that cortical IC regions lack flat neurons supports the subdivision schema presented here.

  14. Binaural interaction in low-frequency neurons in inferior colliculus of the cat. II. Effects of changing rate and direction of interaural phase.

    PubMed

    Yin, T C; Kuwada, S

    1983-10-01

    We used the binaural beat stimulus to study the interaural phase sensitivity of inferior colliculus (IC) neurons in the cat. The binaural beat, produced by delivering tones of slightly different frequencies to the two ears, generates continuous and graded changes in interaural phase. Over 90% of the cells that exhibit a sensitivity to changes in the interaural delay also show a sensitivity to interaural phase disparities with the binaural beat. Cells respond with a burst of impulses with each complete cycle of the beat frequency. The period histogram obtained by binning the poststimulus time histogram on the beat frequency gives a measure of the interaural phase sensitivity of the cell. In general, there is good correspondence in the shapes of the period histograms generated from binaural beats and the interaural phase curves derived from interaural delays and in the mean interaural phase angle calculated from them. The magnitude of the beat frequency determines the rate of change of interaural phase and the sign determines the direction of phase change. While most cells respond in a phase-locked manner up to beat frequencies of 10 Hz, there are some cells tht will phase lock up to 80 Hz. Beat frequency and mean interaural phase angle are linearly related for most cells. Most cells respond equally in the two directions of phase change and with different rates of change, at least up to 10 Hz. However, some IC cells exhibit marked sensitivity to the speed of phase change, either responding more vigorously at low beat frequencies or at high beat frequencies. In addition, other cells demonstrate a clear directional sensitivity. The cells that show sensitivity to the direction and speed of phase changes would be expected to demonstrate a sensitivity to moving sound sources in the free field. Changes in the mean interaural phase of the binaural beat period histograms are used to determine the effects of changes in average and interaural intensity on the phase sensitivity

  15. Interaural delay sensitivity and the classification of low best-frequency binaural responses in the inferior colliculus of the guinea pig.

    PubMed

    McAlpine, D; Jiang, D; Palmer, A R

    1996-08-01

    Monaural and binaural response properties of single units in the inferior colliculus (IC) of the guinea pig were investigated. Neurones were classified according to the effect of monaural stimulation of either ear alone and the effect of binaural stimulation. The majority (309/334) of IC units were excited (E) by stimulation of the contralateral ear, of which 41% (127/309) were also excited by monaural ipsilateral stimulation (EE), and the remainder (182/309) were unresponsive to monaural ipsilateral stimulation (EO). For units with best frequencies (BF) up to 3 kHz, similar proportions of EE and EO units were observed. Above 3 kHz, however, significantly more EO than EE units were observed. Units were also classified as either facilitated (F), suppressed (S), or unaffected (O) by binaural stimulation. More EO than EE units were suppressed or unaffected by binaural stimulation, and more EE than EO units were facilitated. There were more EO/S units above 1.5 kHz than below. Binaural beats were used to examine the interaural delay sensitivity of low-BF (BF < 1.5 kHz) units. The distributions of preferred interaural phases and, by extension, interaural delays, resembled those seen in other species, and those obtained using static interaural delays in the IC of the guinea pig. Units with best phase (BP) angles closer to zero generally showed binaural facilitation, whilst those with larger BPs generally showed binaural suppression. The classification of units based upon binaural stimulation with BF tones was consistent with their interaural-delay sensitivity. Characteristic delays (CD) were examined for 96 low-BF units. A clear relationship between BF and CD was observed. CDs of units with very low BFs (< 200 Hz) were long and positive, becoming progressively shorter as BF increased until, for units with BFs between 400 and 800 Hz, the majority of CDs were negative. Above 800 Hz, both positive and negative CDs were observed. A relationship between CD and characteristic

  16. Encoding of the amplitude modulation of pulsatile electrical stimulation in the feline cochlear nucleus by neurons in the inferior colliculus; effects of stimulus pulse rate

    NASA Astrophysics Data System (ADS)

    McCreery, Douglas; Han, Martin; Pikov, Victor; Yadav, Kamal; Pannu, Satinderpall

    2013-10-01

    Objectives. Persons without a functional auditory nerve cannot benefit from cochlear implants, but some hearing can be restored by an auditory brainstem implant (ABI) with stimulating electrodes implanted on the surface of the cochlear nucleus (CN). Most users benefit from their ABI, but speech recognition tends to be poorer than for users of cochlear implants. Psychophysical studies suggest that poor modulation detection may contribute to the limited performance of ABI users. In a cat model, we determined how the pulse rate of the electrical stimulus applied within or on the CN affects temporal and rate encoding of amplitude modulation (AM) by neurons in the central nucleus of the inferior colliculus (ICC). Approach. Stimulating microelectrodes were implanted chronically in and on the cats' CN, and multi-site recording microelectrodes were implanted chronically into the ICC. Encoding of AM pulse trains by neurons in the ICC was characterized as vector strength (VS), the synchrony of neural activity with the AM, and as the mean rate of neuronal action potentials (neuronal spike rate (NSR)). Main results. For intranuclear microstimulation, encoding of AM as VS was up to 3 dB greater when stimulus pulse rate was increased from 250 to 500 pps, but only for neuronal units with low best acoustic frequencies, and when the electrical stimulation was modulated at low frequencies (10-20 Hz). For stimulation on the surface of the CN, VS was similar at 250 and 500 pps, and the dynamic range of the VS was reduced for pulse rates greater than 250 pps. Modulation depth was encoded strongly as VS when the maximum stimulus amplitude was held constant across a range of modulation depth. This ‘constant maximum’ protocol allows enhancement of modulation depth while preserving overall dynamic range. However, modulation depth was not encoded as strongly as NSR. Significance. The findings have implications for improved sound processors for present and future ABIs. The performance of

  17. Inhibitory projections from the ventral nucleus of the lateral lemniscus and superior paraolivary nucleus create directional selectivity of frequency modulations in the inferior colliculus: a comparison of bats with other mammals.

    PubMed

    Pollak, George D; Gittelman, Joshua X; Li, Na; Xie, Ruili

    2011-03-01

    This review considers four auditory brainstem nuclear groups and shows how studies of both bats and other mammals have provided insights into their response properties and the impact of their convergence in the inferior colliculus (IC). The four groups are octopus cells in the cochlear nucleus, their connections with the ventral nucleus of the lateral lemniscus (VNLL) and the superior paraolivary nucleus (SPON), and the connections of the VNLL and SPON with the IC. The theme is that the response properties of neurons in the SPON and VNLL map closely onto the synaptic response features of a unique subpopulation of cells in the IC of bats whose inputs are dominated by inhibition. We propose that the convergence of VNLL and SPON inputs generates the tuning of these IC cells, their unique temporal responses to tones, and their directional selectivities for frequency modulated (FM) sweeps. Other IC neurons form directional properties in other ways, showing that selective response properties are formed in multiple ways. In the final section we discuss why multiple formations of common response properties could amplify differences in population activity patterns evoked by signals that have similar spectrotemporal features.

  18. The benzodiazepine midazolam acts on the expression of the defensive behavior, but not on the processing of aversive information, produced by exposure to the elevated plus maze and electrical stimulations applied to the inferior colliculus of rats.

    PubMed

    Saito, Viviane M; Brandão, Marcus L

    2015-01-01

    Electrical stimulation of midbrain tectum structures, particularly the dorsal periaqueductal gray (dPAG) and inferior colliculus (IC), produces defensive responses such as freezing and escape behavior. Freezing also results after termination of this stimulation (post-stimulation freezing; PSF). Whereas these responses are critically mediated by GABA in the dPAG, it is unclear how GABA-benzodiazepine mechanisms mediate the expression of fear (freezing and escape behaviors) and the processing of aversive information (PSF) produced by electrical stimulation of the IC. Since dorsal (ICd) and ventral regions (ICv) of the IC react differentially to aversive stimulation, we hypothesized that these regions might be sensitive to the action of benzodiazepine drugs when rats are submitted to animal models of anxiety: the elevated plus maze (EPM) and the IC electrical stimulation procedure. Midazolam (5, 10 or 20 nmol) was injected into the ICd or ICv of rats subjected to one of these tests. Intra-ICv, but not intra-ICd injections, of midazolam reduced the aversiveness of the IC electrical stimulation and decreased fear in the EPM, as assessed by its traditional and complementary measures. In contrast, the IC post-stimulation freezing remained unaltered with midazolam treatments. Thus, there is a clear pharmacological dissociation in the reactivity of dorsal and ventral regions of the IC to fear-provoking stimuli of the two animal models of anxiety used in this study. The present results support the proposal that benzodiazepine-mediated mechanisms are only involved in the output mechanisms of defensive behavior and not involved in the processing of ascending aversive information from the IC.

  19. Sources of subcortical projections to the superior colliculus in the cat.

    PubMed

    Edwards, S B; Ginsburgh, C L; Henkel, C K; Stein, B E

    1979-03-15

    A comprehensive search for subcortical projections to the cat superior colliculus was conducted using the retrograde horseradish peroxidase (HRP) method. Over 40 different subcortical structures project to the superior colliculus. The more notable among these are grouped under the following categories. Visual structures: ventral lateral geniculate nucleus, parabigeminal nucleus, pretectal area (nucleus of the optic tract, posterior pretectal nucleus, nuclei of the posterior commissure). Auditory structures: inferior colliculus (external and pericentral nuclei), dorsomedial periolivary nucleus, nuclei of the trapezoid body, ventral nucleus of the lateral lemniscus. Somatosensory structures: sensory trigeminal complex (all divisions, but mainly the gamma division of nucleus oralis), dorsal column nuclei (mostly cuneate nucleus), and the lateral cervical nucleus. Catecholamine nuclei: locus coeruleus, raphe dorsalis, and the parabrachial nuclei. Cerebellum: medial, interposed, and lateral nuclei, and the perihypoglossal nuclei. Reticular areas: zona incerta, substantia nigra, midbrain tegmentum, nucleus paragigantocellularis lateralis, and the hypothalamus. Evidence is presented that only the parabigeminal nucleus, the nucleus of the optic tract, and the posterior pretectal nucleus project to the superficial collicular layers (striatum griseum superficiale and stratum opticum), while all other afferents terminate in the deeper layers of the colliculus. Also presented is information concerning the rostrocaudal distribution of some of these afferent connections. These findings stress the multiplicity and diversity of inputs to the deeper collicular layers, and more specifically, identify multiple sources of the physiologically well-known representations of the somatic and auditory modalities in the colliculus.

  20. Experimental Autoimmune Encephalomyelitis in Marmosets.

    PubMed

    Jagessar, S Anwar; Dijkman, Karin; Dunham, Jordon; 't Hart, Bert A; Kap, Yolanda S

    2016-01-01

    Experimental autoimmune encephalomyelitis (EAE) in the common marmoset, a small-bodied Neotropical primate, is a well-known and validated animal model for multiple sclerosis (MS). This model can be used for exploratory research, i.e., investigating the pathogenic mechanisms involved in MS, and applied research, testing the efficacy of new potential drugs.In this chapter, we will describe a method to induce EAE in the marmoset. In addition, we will explain the most common immunological techniques involved in the marmoset EAE research, namely isolation of mononuclear cells (MNC) from peripheral blood and lymphoid tissue, assaying T cell proliferation by thymidine incorporation, MNC phenotyping by flow cytometry, antibody measurement by ELISA, generation of B cell lines and antigen-specific T cell lines, and assaying cytotoxic T cells.

  1. Encephalitogenicity of measles virus in marmosets.

    PubMed Central

    Albrecht, P; Lorenz, D; Klutch, M J

    1981-01-01

    Marmosets infected intracerebrally with the wild Edmonston strain of measles virus developed encephalitis, demonstrated histologically and by the fluorescent-antibody technique. The infection remained clinically silent over a 14-day observation period. Animals infected intracerebrally with the JM strain of wild measles virus had only mild encephalitic changes but died of the visceral form of measles infection. Marmosets inoculated with measles vaccine had no encephalitis and remained clinically well. Marmosets appear to be a sensitive indicator of the viscerotropic and neurotropic properties of measles virus. Images PMID:7309241

  2. Motor Functions of the Superior Colliculus

    PubMed Central

    Gandhi, Neeraj J.; Katnani, Husam A.

    2013-01-01

    The mammalian superior colliculus (SC) and its nonmammalian homolog, the optic tectum, constitute a major node in processing sensory information, incorporating cognitive factors, and issuing motor commands. The resulting action—to orient toward or away from a stimulus—can be accomplished as an integrated movement across oculomotor, cephalomotor, and skeletomotor effectors. The SC also participates in preserving fixation during intersaccadic intervals. This review highlights the repertoire of movements attributed to SC function and analyzes the significance of results obtained from causality-based experiments (microstimulation and inactivation). The mechanisms potentially used to decode the population activity in the SC into an appropriate movement command are also discussed. PMID:21456962

  3. Neurobehavioral Development of Common Marmoset Monkeys

    PubMed Central

    Schultz-Darken, Nancy; Braun, Katarina M.; Emborg, Marina E.

    2016-01-01

    Common marmoset (Callithrix jacchus) monkeys are a resource for biomedical research and their use is predicted to increase due to the suitability of this species for transgenic approaches. Identification of abnormal neurodevelopment due to genetic modification relies upon the comparison with validated patterns of normal behavior defined by unbiased methods. As scientists unfamiliar with nonhuman primate development are interested to apply genomic editing techniques in marmosets, it would be beneficial to the field that the investigators use validated methods of postnatal evaluation that are age and species appropriate. This review aims to analyze current available data on marmoset physical and behavioral postnatal development, describe the methods used and discuss next steps to better understand and evaluate marmoset normal and abnormal postnatal neurodevelopment PMID:26502294

  4. Superior colliculus and visual spatial attention.

    PubMed

    Krauzlis, Richard J; Lovejoy, Lee P; Zénon, Alexandre

    2013-07-08

    The superior colliculus (SC) has long been known to be part of the network of brain areas involved in spatial attention, but recent findings have dramatically refined our understanding of its functional role. The SC both implements the motor consequences of attention and plays a crucial role in the process of target selection that precedes movement. Moreover, even in the absence of overt orienting movements, SC activity is related to shifts of covert attention and is necessary for the normal control of spatial attention during perceptual judgments. The neuronal circuits that link the SC to spatial attention may include attention-related areas of the cerebral cortex, but recent results show that the SC's contribution involves mechanisms that operate independently of the established signatures of attention in visual cortex. These findings raise new issues and suggest novel possibilities for understanding the brain mechanisms that enable spatial attention.

  5. The role of GABAergic inhibition in shaping directional selectivity of bat inferior collicular neurons determined with temporally patterned pulse trains.

    PubMed

    Zhou, X M; Jen, P H-S

    2002-11-01

    This study examined the role of GABAergic inhibition in shaping directional selectivity of neurons in the inferior colliculus of the big brown bat, Eptesicus fuscus. When determined with temporally patterned pulse trains at different pulse repetition rates, 93 inferior colliculus neurons displayed three types of directional selectivity curves. A directionally selective curve always showed a maximum to a certain azimuthal angle (the best angle). A hemifield curve showed a maximum to a range of contralateral azimuthal angles. A non-directional curve did not show a maximum to any particular azimuthal angles. Directional selectivity curves of 42% neurons changed from hemifield or non-directional to directionally selective and the best angles of 16-21% neurons shifted toward the midline with increasing pulse repetition rate of pulse trains. Directional selectivity curves of most (74%) neurons that discharged impulses to each pulse of a pulse train also became sharper with increasing pulse repetition rate of pulse trains. Bicuculline application produced more pronounced broadening of directional selective curves of inferior colliculus neurons at higher than at lower pulse repetition rates. As a result, pulse repetition rate-dependent directional selectivity of inferior colliculus neurons was abolished. Possible mechanisms and biological significance of these findings are discussed.

  6. A Disynaptic Relay from Superior Colliculus to Dorsal Stream Visual Cortex in Macaque Monkey

    PubMed Central

    Lyon, David C.; Nassi, Jonathan J.; Callaway, Edward M.

    2010-01-01

    The superior colliculus (SC) is the first station in a subcortical relay of retinal information to extrastriate visual cortex. Ascending SC projections pass through pulvinar and LGN on their way to cortex, but it is not clear how many synapses are required to complete these circuits or which cortical areas are involved. To examine this relay directly, we injected transynaptic rabies virus into several extrastriate visual areas. We observed disynaptically labeled cells in superficial, retino-recipient SC layers from injections in dorsal stream areas MT and V3, but not the earliest extrastriate area, V2, nor ventral stream area V4. This robust SC-dorsal stream pathway is most likely relayed through the inferior pulvinar and can provide magnocellular-like sensory inputs necessary for motion perception and the computation of orienting movements. Furthermore, by circumventing primary visual cortex, this pathway may also underlie the remaining visual capacities associated with blindsight. PMID:20152132

  7. Marmosets: A Neuroscientific Model of Human Social Behavior.

    PubMed

    Miller, Cory T; Freiwald, Winrich A; Leopold, David A; Mitchell, Jude F; Silva, Afonso C; Wang, Xiaoqin

    2016-04-20

    The common marmoset (Callithrix jacchus) has garnered interest recently as a powerful model for the future of neuroscience research. Much of this excitement has centered on the species' reproductive biology and compatibility with gene editing techniques, which together have provided a path for transgenic marmosets to contribute to the study of disease as well as basic brain mechanisms. In step with technical advances is the need to establish experimental paradigms that optimally tap into the marmosets' behavioral and cognitive capacities. While conditioned task performance of a marmoset can compare unfavorably with rhesus monkey performance on conventional testing paradigms, marmosets' social behavior and cognition are more similar to that of humans. For example, marmosets are among only a handful of primates that, like humans, routinely pair bond and care cooperatively for their young. They are also notably pro-social and exhibit social cognitive abilities, such as imitation, that are rare outside of the Apes. In this Primer, we describe key facets of marmoset natural social behavior and demonstrate that emerging behavioral paradigms are well suited to isolate components of marmoset cognition that are highly relevant to humans. These approaches generally embrace natural behavior, which has been rare in conventional primate testing, and thus allow for a new consideration of neural mechanisms underlying primate social cognition and signaling. We anticipate that through parallel technical and paradigmatic advances, marmosets will become an essential model of human social behavior, including its dysfunction in neuropsychiatric disorders.

  8. Response of cat inferior colliculus neurons to binaural beat stimuli: possible mechanisms for sound localization.

    PubMed

    Kuwada, S; Yin, T C; Wickesberg, R E

    1979-11-02

    The interaural phase sensitivity of neurons was studied through the use of binaural beat stimuli. The response of most cells was phase-locked to the beat frequency, which provides a possible neural correlate to the human sensation of binaural beats. In addition, this stimulus allowed the direction and rate of interaural phase change to be varied. Some neurons in our sample responded selectively to manipulations of these two variables, which suggests a sensitivity to direction or speed of movement.

  9. A novel BK channel-targeted peptide suppresses sound evoked activity in the mouse inferior colliculus

    PubMed Central

    Scott, L. L.; Brecht, E. J.; Philpo, A.; Iyer, S.; Wu, N. S.; Mihic, S. J.; Aldrich, R. W.; Pierce, J.; Walton, J. P.

    2017-01-01

    Large conductance calcium-activated (BK) channels are broadly expressed in neurons and muscle where they modulate cellular activity. Decades of research support an interest in pharmaceutical applications for modulating BK channel function. Here we report a novel BK channel-targeted peptide with functional activity in vitro and in vivo. This 9-amino acid peptide, LS3, has a unique action, suppressing channel gating rather than blocking the pore of heterologously expressed human BK channels. With an IC50 in the high picomolar range, the apparent affinity is higher than known high affinity BK channel toxins. LS3 suppresses locomotor activity via a BK channel-specific mechanism in wild-type or BK channel-humanized Caenorhabditis elegans. Topical application on the dural surface of the auditory midbrain in mouse suppresses sound evoked neural activity, similar to a well-characterized pore blocker of the BK channel. Moreover, this novel ion channel-targeted peptide rapidly crosses the BBB after systemic delivery to modulate auditory processing. Thus, a potent BK channel peptide modulator is open to neurological applications, such as preventing audiogenic seizures that originate in the auditory midbrain. PMID:28195225

  10. Cryopreservation of ovaries from neonatal marmoset monkeys

    PubMed Central

    Motohashi, Hideyuki H.; Ishibashi, Hidetoshi

    2016-01-01

    The ovary of neonatal nonhuman primates contains the highest number of immature oocytes, but its cryopreservation has not yet been sufficiently investigated in all life stages. In the current study, we investigated cryodamage after vitrification/warming of neonatal ovaries from a nonhuman primate, the common marmoset (Callithrix jacchus). A Cryotop was used for cryopreservation of whole ovaries. The morphology of the vitrified/warmed ovaries was found to be equivalent to that of fresh ovaries. No significant difference in the number of oocytes retaining normal morphology per unit area in histological sections was found between the two groups. In an analysis of dispersed cells from the ovaries, however, the cell viability of the vitrified/warmed group tended to be decreased. The results of a comet assay showed no significant differences in DNA damage. These results show that cryopreservation of neonatal marmoset ovaries using vitrification may be useful as a storage system for whole ovaries. PMID:26876597

  11. Viral Vector-Based Dissection of Marmoset GFAP Promoter in Mouse and Marmoset Brains

    PubMed Central

    Takahashi, Nobutaka; Matsuzaki, Yasunori; Kishi, Shoji; Hirai, Hirokazu

    2016-01-01

    Adeno-associated virus (AAV) vectors are small in diameter, diffuse easily in the brain, and represent a highly efficient means by which to transfer a transgene to the brain of a large animal. A major demerit of AAV vectors is their limited accommodation capacity for transgenes. Thus, a compact promoter is useful when delivering large transgenes via AAV vectors. In the present study, we aimed to identify the shortest astrocyte-specific GFAP promoter region that could be used for AAV-vector-mediated transgene expression in the marmoset brain. The 2.0-kb promoter region upstream of the GFAP gene was cloned from the marmoset genome, and short promoters (1.6 kb, 1.4 kb, 0.6 kb, 0.3 kb and 0.2 kb) were obtained by progressively deleting the original 2.0-kb promoter from the 5’ end. The short promoters were screened in the mouse cerebellum in terms of their strength and astrocyte specificity. We found that the 0.3-kb promoter maintained 40% of the strength of the original 2.0-kb promoter, and approximately 90% of its astrocyte specificity. These properties were superior to those of the 1.4-kb, 0.6-kb (20% promoter strength) and 0.2-kb (70% astrocyte specificity) promoters. Then, we verified whether the 0.3-kb GFAP promoter retained astrocyte specificity in the marmoset cerebral cortex. Injection of viral vectors carrying the 0.3-kb marmoset GFAP promoter specifically transduced astrocytes in both the cerebral cortex and cerebellar cortex of the marmoset. These results suggest that the compact 0.3-kb promoter region serves as an astrocyte-specific promoter in the marmoset brain, which permits us to express a large gene by AAV vectors that have a limited accommodation capacity. PMID:27571575

  12. Active vision in marmosets: a model system for visual neuroscience.

    PubMed

    Mitchell, Jude F; Reynolds, John H; Miller, Cory T

    2014-01-22

    The common marmoset (Callithrix jacchus), a small-bodied New World primate, offers several advantages to complement vision research in larger primates. Studies in the anesthetized marmoset have detailed the anatomy and physiology of their visual system (Rosa et al., 2009) while studies of auditory and vocal processing have established their utility for awake and behaving neurophysiological investigations (Lu et al., 2001a,b; Eliades and Wang, 2008a,b; Osmanski and Wang, 2011; Remington et al., 2012). However, a critical unknown is whether marmosets can perform visual tasks under head restraint. This has been essential for studies in macaques, enabling both accurate eye tracking and head stabilization for neurophysiology. In one set of experiments we compared the free viewing behavior of head-fixed marmosets to that of macaques, and found that their saccadic behavior is comparable across a number of saccade metrics and that saccades target similar regions of interest including faces. In a second set of experiments we applied behavioral conditioning techniques to determine whether the marmoset could control fixation for liquid reward. Two marmosets could fixate a central point and ignore peripheral flashing stimuli, as needed for receptive field mapping. Both marmosets also performed an orientation discrimination task, exhibiting a saturating psychometric function with reliable performance and shorter reaction times for easier discriminations. These data suggest that the marmoset is a viable model for studies of active vision and its underlying neural mechanisms.

  13. Limiting parental feedback disrupts vocal development in marmoset monkeys

    PubMed Central

    Gultekin, Yasemin B.; Hage, Steffen R.

    2017-01-01

    Vocalizations of human infants undergo dramatic changes across the first year by becoming increasingly mature and speech-like. Human vocal development is partially dependent on learning by imitation through social feedback between infants and caregivers. Recent studies revealed similar developmental processes being influenced by parental feedback in marmoset monkeys for apparently innate vocalizations. Marmosets produce infant-specific vocalizations that disappear after the first postnatal months. However, it is yet unclear whether parental feedback is an obligate requirement for proper vocal development. Using quantitative measures to compare call parameters and vocal sequence structure we show that, in contrast to normally raised marmosets, marmosets that were separated from parents after the third postnatal month still produced infant-specific vocal behaviour at subadult stages. These findings suggest a significant role of social feedback on primate vocal development until the subadult stages and further show that marmoset monkeys are a compelling model system for early human vocal development. PMID:28090084

  14. Cortical projections to the superior colliculus in tree shrews (Tupaia belangeri)

    PubMed Central

    Baldwin, Mary K L; Wei, Haiyang; Reed, Jamie L; Bickford, Martha E; Petry, Heywood M; Kaas, Jon H

    2012-01-01

    The visuomotor functions of the superior colliculus depend not only on direct inputs from the retina, but also on inputs from neocortex. As mammals vary in the areal organization of neocortex, and in the organization of the number of visual and visuomotor areas, patterns of corticotectal projections vary. Primates in particular have a large number of visual areas projecting to the superior colliculus. As tree shrews are close relatives of primates, and they are also highly visual, we studied the distribution of cortical neurons projecting to the superior colliculus by injecting anatomical tracers into the colliculus. Since projections from visuotopically organized visual areas are expected to match the visuotopy of the superior colliculus, injections at different retinotopic locations in the superior colliculus provide information about the locations and organization of topographic areas in extrastriate cortex. Small injections in the superior colliculus labeled neurons in locations within areas 17 (V1) and 18 (V2) that are consistent with the known topography of these areas and the superior colliculus. In addition, the separate locations of clusters of labeled cells in temporal visual cortex provide evidence for five or more topographically organized areas. Injections that included deeper layers of the superior colliculus also labeled neurons in medial frontal cortex, likely in premotor cortex. Only occasional labeled neurons were observed in somatosensory or auditory cortex. Regardless of tracer injection location, we found that unlike primates, a substantial projection to the superior colliculus from posterior parietal cortex is not a characteristic of tree shrews. PMID:23124770

  15. Cortical projections to the superior colliculus in tree shrews (Tupaia belangeri).

    PubMed

    Baldwin, Mary K L; Wei, Haiyang; Reed, Jamie L; Bickford, Martha E; Petry, Heywood M; Kaas, Jon H

    2013-05-01

    The visuomotor functions of the superior colliculus depend not only on direct inputs from the retina, but also on inputs from neocortex. As mammals vary in the areal organization of neocortex, and in the organization of the number of visual and visuomotor areas, patterns of corticotectal projections vary. Primates in particular have a large number of visual areas projecting to the superior colliculus. As tree shrews are close relatives of primates, and they are also highly visual, we studied the distribution of cortical neurons projecting to the superior colliculus by injecting anatomical tracers into the colliculus. Since projections from visuotopically organized visual areas are expected to match the visuotopy of the superior colliculus, injections at different retinotopic locations in the superior colliculus provide information about the locations and organization of topographic areas in extrastriate cortex. Small injections in the superior colliculus labeled neurons in locations within areas 17 (V1) and 18 (V2) that are consistent with the known topography of these areas and the superior colliculus. In addition, the separate locations of clusters of labeled cells in temporal visual cortex provide evidence for five or more topographically organized areas. Injections that included deeper layers of the superior colliculus also labeled neurons in medial frontal cortex, likely in premotor cortex. Only occasional labeled neurons were observed in somatosensory or auditory cortex. Regardless of tracer injection location, we found that, unlike primates, a substantial projection to the superior colliculus from posterior parietal cortex is not a characteristic of tree shrews.

  16. Head Rotation Detection in Marmoset Monkeys

    NASA Astrophysics Data System (ADS)

    Simhadri, Sravanthi

    Head movement is known to have the benefit of improving the accuracy of sound localization for humans and animals. Marmoset is a small bodied New World monkey species and it has become an emerging model for studying the auditory functions. This thesis aims to detect the horizontal and vertical rotation of head movement in marmoset monkeys. Experiments were conducted in a sound-attenuated acoustic chamber. Head movement of marmoset monkey was studied under various auditory and visual stimulation conditions. With increasing complexity, these conditions are (1) idle, (2) sound-alone, (3) sound and visual signals, and (4) alert signal by opening and closing of the chamber door. All of these conditions were tested with either house light on or off. Infra-red camera with a frame rate of 90 Hz was used to capture of the head movement of monkeys. To assist the signal detection, two circular markers were attached to the top of monkey head. The data analysis used an image-based marker detection scheme. Images were processed using the Computation Vision Toolbox in Matlab. The markers and their positions were detected using blob detection techniques. Based on the frame-by-frame information of marker positions, the angular position, velocity and acceleration were extracted in horizontal and vertical planes. Adaptive Otsu Thresholding, Kalman filtering and bound setting for marker properties were used to overcome a number of challenges encountered during this analysis, such as finding image segmentation threshold, continuously tracking markers during large head movement, and false alarm detection. The results show that the blob detection method together with Kalman filtering yielded better performances than other image based techniques like optical flow and SURF features .The median of the maximal head turn in the horizontal plane was in the range of 20 to 70 degrees and the median of the maximal velocity in horizontal plane was in the range of a few hundreds of degrees per

  17. Electrophysiologic Responses in Hamster Superior Colliculus Evoked by Regenerating Retinal Axons

    NASA Astrophysics Data System (ADS)

    Keirstead, S. A.; Rasminsky, M.; Fukuda, Y.; Carter, D. A.; Aguayo, A. J.; Vidal-Sanz, M.

    1989-10-01

    Autologous peripheral nerve grafts were used to permit and direct the regrowth of retinal ganglion cell axons from the eye to the ipsilateral superior colliculus of adult hamsters in which the optic nerves had been transected within the orbit. Extracellular recordings in the superior colliculus 15 to 18 weeks after graft insertion revealed excitatory and inhibitory postsynaptic responses to visual stimulation. The finding of light-induced responses in neurons in the superficial layers of the superior colliculus close to the graft indicates that axons regenerating from axotomized retinal ganglion cells can establish electrophysiologically functional synapses with neurons in the superior colliculus of these adult mammals.

  18. Connections of the superior colliculus with the tegmentum and the cerebellum in the hedgehog tenrec.

    PubMed

    Künzle, H

    1997-06-01

    Different tracer substances were injected into the superior colliculus (CoS) in order to study its afferents and efferents with the meso-rhombencephalic tegmentum, the precerebellar nuclei and the cerebellum in the Madagascan hedgehog tenrec. The overall pattern of tectal connectivity in tenrec was similar to that in other mammals, as, e.g. the efferents to the contralateral paramedian reticular formation. Similarly the origin of the cerebello-tectal projection in mainly the lateral portions of the tenrec's cerebellar nuclear complex corresponded to the findings in species with little binocular overlap. In comparison to other mammals, however, the tenrec showed a consistent projection to the ipsilateral inferior olivary nucleus, in addition to the classical contralateral tecto-olivary projection. The tenrec's CoS also appeared to receive an unusually prominent monoaminergic input particularly from the substantia nigra, pars compacta. There was a reciprocal tecto-parabigeminal projection, a distinct nuclear aggregation of parabigeminal neurons, however, was difficult to identify. The dorsal lemniscal nucleus did not show perikaryal labeling in contrast to the paralemniscal region. Similar to the cat but unlike the rat there were a few neurons in the nucleus of the central acoustic tract. Unlike the cat, but similar to the rat there was a distinct, predominantly ipsilateral projection to the magnocellular reticular field known to project spinalward.

  19. Sound Localization Cues in the Marmoset Monkey

    PubMed Central

    Slee, Sean J.; Young, Eric D.

    2010-01-01

    The most important acoustic cues available to the brain for sound localization are produced by the interaction of sound with the animal's head and external ears. As a first step in understanding the relation between these cues and their neural representation in a vocal new-world primate, we measured head related transfer functions (HRTFs) across frequency for a wide range of sound locations in three anesthetized marmoset monkeys. The HRTF magnitude spectrum has a broad resonance peak at 6-12 kHz that coincides with the frequency range of the major call types of this species. A prominent first spectral notch (FN) in the HRTF magnitude above this resonance was observed at most source locations. The center frequency of the FN increased monotonically from ∼12-26 kHz with increases in elevation in the lateral field. In the frontal field FN frequency changed in a less orderly fashion with source position. From the HRTFs we derived interaural time (ITDs) and level differences (ILDs). ITDs and ILDs (below 12 kHz) varied as a function of azimuth between +/- 250 μs and +/-20 dB, respectively. A reflexive orienting behavioral paradigm was used to confirm that marmosets can orient to sound sources. PMID:19963054

  20. The use of glucocorticoids in marmoset wasting syndrome

    PubMed Central

    Otovic, Pete; Smith, Shanequa; Hutchinson, Eric

    2015-01-01

    Background Marmoset wasting syndrome (MWS) is one of the leading causes of morbidity and mortality in captive marmosets, and thus far no reliable treatment has been found. Glucocorticoids are used widely to treat inflammatory conditions of the GI tract such as human and feline inflammatory bowel disease, which, such as MWS, are histologically characterized by chronic lymphoplasmacytic inflammation in the intestines. Budesonide is a glucocorticoid with few reported side effects due to the majority of it being metabolized into inactive compounds by the liver before entering the systemic circulation. Method Eleven marmosets presented with antemortem signs consistent with MWS and were treated with oral prednisone or budesonide for 8 weeks. Results The marmosets in our study demonstrated a significant increase in both weight and albumin levels (relative to pre-treatment values) after glucocorticoid therapy. Conclusions Glucocorticoids are an effective therapy to ameliorate the clinical signs associated with MWS with minimal side effects. PMID:25614344

  1. Frequency discrimination in the common marmoset (Callithrix jacchus).

    PubMed

    Osmanski, Michael S; Song, Xindong; Guo, Yueqi; Wang, Xiaoqin

    2016-11-01

    The common marmoset (Callithrix jacchus) is a highly vocal New World primate species that has emerged in recent years as a promising model system for studies of auditory and vocal processing. Our recent studies have examined perceptual mechanisms related to the pitch of harmonic complex tones in this species. However, no previous psychoacoustic work has measured marmosets' frequency discrimination abilities for pure tones across a broad frequency range. Here we systematically examined frequency difference limens (FDLs), which measure the minimum discriminable frequency difference between two pure tones, in marmosets across most of their hearing range. Results show that marmosets' FDLs are comparable to other New World primates, with lowest values in the frequency range of ∼3.5-14 kHz. This region of lowest FDLs corresponds with the region of lowest hearing thresholds in this species measured in our previous study and also with the greatest concentration of spectral energy in the major types of marmoset vocalizations. These data suggest that frequency discrimination in the common marmoset may have evolved to match the hearing sensitivity and spectral characteristics of this species' vocalizations.

  2. The marmoset monkey as a model for visual neuroscience

    PubMed Central

    Mitchell, Jude F.; Leopold, David A.

    2015-01-01

    The common marmoset (Callithrix jacchus) has been valuable as a primate model in biomedical research. Interest in this species has grown recently, in part due to the successful demonstration of transgenic marmosets. Here we examine the prospects of the marmoset model for visual neuroscience research, adopting a comparative framework to place the marmoset within a broader evolutionary context. The marmoset’s small brain bears most of the organizational features of other primates, and its smooth surface offers practical advantages over the macaque for areal mapping, laminar electrode penetration, and two-photon and optical imaging. Behaviorally, marmosets are more limited at performing regimented psychophysical tasks, but do readily accept the head restraint that is necessary for accurate eye tracking and neurophysiology, and can perform simple discriminations. Their natural gaze behavior closely resembles that of other primates, with a tendency to focus on objects of social interest including faces. Their immaturity at birth and routine twinning also makes them ideal for the study of postnatal visual development. These experimental factors, together with the theoretical advantages inherent in comparing anatomy, physiology, and behavior across related species, make the marmoset an excellent model for visual neuroscience. PMID:25683292

  3. Anatomical and functional neuroimaging in awake, behaving marmosets.

    PubMed

    Silva, Afonso C

    2017-03-01

    The common marmoset (Callithrix jacchus) is a small New World monkey that has gained significant recent interest in neuroscience research, not only because of its compatibility with gene editing techniques, but also due to its tremendous versatility as an experimental animal model. Neuroimaging modalities, including anatomical (MRI) and functional magnetic resonance imaging (fMRI), complemented by two-photon laser scanning microscopy and electrophysiology, have been at the forefront of unraveling the anatomical and functional organization of the marmoset brain. High-resolution anatomical MRI of the marmoset brain can be obtained with remarkable cytoarchitectonic detail. Functional MRI of the marmoset brain has been used to study various sensory systems, including somatosensory, auditory, and visual pathways, while resting-state fMRI studies have unraveled functional brain networks that bear great correspondence to those previously described in humans. Two-photon laser scanning microscopy of the marmoset brain has enabled the simultaneous recording of neuronal activity from thousands of neurons with single cell spatial resolution. In this article, we aim to review the main results obtained by our group and by our colleagues in applying neuroimaging techniques to study the marmoset brain. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 373-389, 2017.

  4. Bone Disease in the Common Marmoset: Radiographic and Histological Findings.

    PubMed

    Olson, E J; Shaw, G C; Hutchinson, E K; Schultz-Darken, N; Bolton, I D; Parker, J B; Morrison, J M; Baxter, V K; Pate, K A Metcalf; Mankowski, J L; Carlson, C S

    2015-09-01

    The common marmoset (Callithrix jacchus) is a New World primate that is used in biomedical research due to its small size and relative ease of handling compared with larger primates. Although bone disease in common marmosets is well recognized, there are very few detailed descriptions in the literature that cover the range of lesions seen in these animals. For all animals used to model human disease, it is important to be aware of background lesions that may affect the interpretation of study findings. This retrospective study details bone diseases encountered in marmoset breeding colonies at 2 different institutions. Affected marmosets at Johns Hopkins University had lesions compatible with diagnoses of rickets, fibrous osteodystrophy and osteopenia. Affected marmosets at the Wisconsin National Primate Research Center exhibited severe lesions of osteoclastic bone resorption and remodeling that had an unusual distribution and were not easily categorized into a known disease entity. The purpose of this report is to document these naturally occurring skeletal lesions of common marmosets and suggest an approach to evaluating skeletal disease in prospective studies of these animals that will allow the most accurate diagnoses.

  5. Diencephalic connections of the superior colliculus in the hedgehog tenrec.

    PubMed

    Künzle, H

    1996-10-01

    Using different tracer substances the pathways connecting the superior colliculus with the diencephalon were studied in the Madagascan hedgehog tenrec (Echinops telfairi), a nocturnal insectivore with tiny eyes, a small and little differentiated superior colliculus and a visual cortex with no obvious fourth granular layer. The most prominent tecto-thalamic projection terminated in the ipsilateral dorsal lateral geniculate nucleus. The entire region receiving contralateral retinal afferents was labeled with variable density. In addition, there was a widespread, homogeneously distributed collicular input to the lateralis posterior-pulvinar complex and a distinct tectal projection to the suprageniculate nucleus. The latter projections were bilateral with a clear ipsilateral predominance. Among the intra- and paralaminar nuclei the centralis lateralis complex was most heavily labeled on both sides, followed by the nucleus centralis medialis. The paralamellar portion of the nucleus medialis dorsalis and the nucleus parafascicularis received sparse projections. A clear projection to the nucleus ventralis medialis could not be demonstrated but its presence was not entirely excluded either. There were also projections to medial thalamic nuclei, particularly the reuniens complex and the nucleus paraventricularis thalami. The main tecto-subthalamic target regions were the zona incerta, the dorsal hypothalamus and distinct subdivisons of the ventral lateral geniculate nucleus. These regions also gave rise to projections to the superior colliculus, as did the intergeniculate leaflet. The pathways oriented toward the visual or frontal cortex and the projections possibly involved in limbic and circadian mechanisms were compared with the connectivity patterns reported in mammals with more differentiated brains. Particular attention was given to the tenrec's prominent tecto-geniculate projection, the presumed W- or K-pathway directed toward the supragranular layers.

  6. Infanticide and cannibalism in wild common marmosets.

    PubMed

    Melo, L; Mendes Pontes, A R; Monteiro da Cruz, M A O

    2003-01-01

    Infanticide has been observed in many different species [1], including common marmosets [2-4], due to sexual selection, reproductive strategies or resource competition [3, 5, 6], which may ultimately lead to exploitation (cannibalism) [1, 7]. Wild callithrichids have a very flexible mating system, including monogamy, polygynandry, polyandry and polygyny [4, 8, 9], with Monteiro da Cruz [10] finding all these patterns within the same population. This results from the high degree of deforestation of their habitat [4], but non-monogamous groups cannot ensure successful rearing of infants, since helpers are crucial and should be present in high numbers [11]. In this study, we show for the first time that cannibalism can follow infanticide, and we hypothesise that it is a result of both competition for scarce resources and the need for animal protein, exacerbated by forest degradation.

  7. Vocalization Induced CFos Expression in Marmoset Cortex

    PubMed Central

    Miller, Cory T.; DiMauro, Audrey; Pistorio, Ashley; Hendry, Stewart; Wang, Xiaoqin

    2010-01-01

    All non-human primates communicate with conspecifics using vocalizations, a system involving both the production and perception of species-specific vocal signals. Much of the work on the neural basis of primate vocal communication in cortex has focused on the sensory processing of vocalizations, while relatively little data are available for vocal production. Earlier physiological studies in squirrel monkeys had shed doubts on the involvement of primate cortex in vocal behaviors. The aim of the present study was to identify areas of common marmoset (Callithrix jacchus) cortex that are potentially involved in vocal communication. In this study, we quantified cFos expression in three areas of marmoset cortex – frontal, temporal (auditory), and medial temporal – under various vocal conditions. Specifically, we examined cFos expression in these cortical areas during the sensory, motor (vocal production), and sensory–motor components of vocal communication. Our results showed an increase in cFos expression in ventrolateral prefrontal cortex as well as the medial and lateral belt areas of auditory cortex in the vocal perception condition. In contrast, subjects in the vocal production condition resulted in increased cFos expression only in dorsal premotor cortex. During the sensory–motor condition (antiphonal calling), subjects exhibited cFos expression in each of the above areas, as well as increased expression in perirhinal cortex. Overall, these results suggest that various cortical areas outside primary auditory cortex are involved in primate vocal communication. These findings pave the way for further physiological studies of the neural basis of primate vocal communication. PMID:21179582

  8. Marmosets as model species in neuroscience and evolutionary anthropology.

    PubMed

    Burkart, Judith M; Finkenwirth, Christa

    2015-04-01

    Marmosets are increasingly used as model species by both neuroscientists and evolutionary anthropologists, but with a different rationale for doing so. Whereas neuroscientists stress that marmosets share many cognitive traits with humans due to common descent, anthropologists stress those traits shared with marmosets - and callitrichid monkeys in general - due to convergent evolution, as a consequence of the cooperative breeding system that characterizes both humans and callitrichids. Similarities in socio-cognitive abilities due to convergence, rather than homology, raise the question whether these similarities also extend to the proximate regulatory mechanisms, which is particularly relevant for neuroscientific investigations. In this review, we first provide an overview of the convergent adaptations to cooperative breeding at the psychological and cognitive level in primates, which bear important implications for our understanding of human cognitive evolution. In the second part, we zoom in on two of these convergent adaptations, proactive prosociality and social learning, and compare their proximate regulation in marmosets and humans with regard to oxytocin and cognitive top down regulation. Our analysis suggests considerable similarity in these regulatory mechanisms presumably because the convergent traits emerged due to small motivational changes that define how pre-existing cognitive mechanisms are quantitatively combined. This finding reconciles the prima facie contradictory rationale for using marmosets as high priority model species in neuroscience and anthropology.

  9. Mobbing vocalizations as a coping response in the common marmoset.

    PubMed

    Cross, N; Rogers, L J

    2006-02-01

    Using a non-invasive method of sampling saliva followed by assay for cortisol levels, we found that common marmosets (Callithrix jacchus) show a decrease in cortisol levels after seeing a snake-model stimulus that reliably elicits mobbing (tsik) calls. In fact, there was a significant positive correlation between the number of tsik vocalizations made and the magnitude of the decrease in the cortisol concentrations. Furthermore, marmosets with higher levels of cortisol prior to being exposed to the stimulus produce more tsik calls than those with lower levels of cortisol. Subsequent experiments showed that, in response to 15 min of isolation with no visual or auditory contact with conspecifics (a traditional stressor), cortisol levels increased significantly. However, playback of the mobbing calls of a familiar conspecific to individual isolated marmosets not only prevented the rise in cortisol, but also actually caused a decrease in the levels of this hormone. This suggests that the mobbing calls serve to calm the marmoset after experiencing a stressful situation. This finding results in a greater understanding as to the role of physiological responses during communication in this species and could have implications for the welfare of marmosets in captivity.

  10. In vitro characterisation of dopamine receptors in the superior colliculus of the rat.

    PubMed

    Weller, M E; Rose, S; Jenner, P; Marsden, C D

    1987-04-01

    In membrane preparations of superior colliculus of the rat, the binding of [3H]spiperone (0.15 nM) was displaced by the incorporation of (+)-butaclamol, haloperidol, apomorphine and (+/-)-sulpiride, but not by (-)-butaclamol, prazosin, propranolol, ketanserin or cinanserin. The Ki values for the displacement of [3H]spiperone by (+/-)-sulpiride, (+)-butaclamol and haloperidol were similar in tissue preparations from superior colliculus and striatum. Equilibrium analysis of the specific binding of [3H]spiperone (0.03-1.0 nM), defined by 10(-5) M (+/-)-sulpiride, to membrane preparations of the superior colliculus, showed the interaction to be saturable and of high affinity. However, the Bmax was only approximately 10% of that found in preparations of striatum; the apparent dissociation constant (KD) was the same in both preparations of the superior colliculus and striatum. Uptake of [3H]dopamine into synaptosomal preparations of the superior colliculus was approximately 20% of that found in synaptosomes from the striatum. In preparations of striatum nomifensine, but not desipramine or fluoxetine, inhibited the uptake of [3H]dopamine. However, in preparations from the superior colliculus, nomifensine, desipramine and fluoxetine were without effect on the uptake of [3H]dopamine. Dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and 3-methoxytyramine (3-MT) were present in small concentrations in the superior colliculus. Homovanillic acid (HVA) was present in larger concentrations and the HVA plus DOPAC/dopamine ratios were greater in the superior colliculus than in the striatum. The superior colliculus contained only small amounts of noradrenaline but 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) were present in larger amounts.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Use of human methylation arrays for epigenome research in the common marmoset (Callithrix jacchus).

    PubMed

    Ueda, Junko; Murata, Yui; Bundo, Miki; Oh-Nishi, Arata; Kassai, Hidetoshi; Ikegame, Tempei; Zhao, Zhilei; Jinde, Seiichiro; Aiba, Atsu; Suhara, Tetsuya; Kasai, Kiyoto; Kato, Tadafumi; Iwamoto, Kazuya

    2017-02-17

    We examined the usefulness of commercially available DNA methylation arrays designed for the human genome (Illumina HumanMethylation450 and MethylationEPIC) for high-throughput epigenome analysis of the common marmoset, a nonhuman primate suitable for research on neuropsychiatric disorders. From among the probes on the methylation arrays, we selected those available for the common marmoset. DNA methylation data were obtained from genomic DNA extracted from the frontal cortex and blood samples of adult common marmosets as well as the frontal cortex of neonatal marmosets. About 10% of the probes on the arrays were estimated to be useful for DNA methylation assay in the common marmoset. Strong correlations existed between human and marmoset DNA methylation data. Illumina methylation arrays are useful for epigenome research using the common marmoset.

  12. Noninvasive genotyping of common marmoset (Callithrix jacchus) by fingernail PCR.

    PubMed

    Takabayashi, Shuji; Katoh, Hideki

    2015-07-01

    The common marmoset (Callithrix jacchus) is a New World primate that is a useful model for medical studies. In this study, we report a convenient, reliable, and noninvasive procedure to genotype a living common marmoset by using fingernails. This method was used to successfully genotype DNA by restriction fragment length polymorphism (RFLP) PCR without prior purification, by using the KOD FX PCR enzyme kit. Additionally, there is no sample contamination from hematopoietic chimera derived from fused placenta in utero. We compared chimeric levels between various tissues in females with male littermates using quantitative fluorescent (QF)-PCR to prepare a reliable DNA source for genetic analyses, such as genotyping, gene mapping, or genomic sequencing. The chimerism detected appeared to be restricted to lymphatic tissues, such as bone marrow, thymus, spleen, lymph nodes and blood cells. As a result, DNA from fingernails with the quick is the best DNA source for genetic research in living marmosets.

  13. Brain-mapping projects using the common marmoset.

    PubMed

    Okano, Hideyuki; Mitra, Partha

    2015-04-01

    Globally, there is an increasing interest in brain-mapping projects, including the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative project in the USA, the Human Brain Project (HBP) in Europe, and the Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS) project in Japan. These projects aim to map the structure and function of neuronal circuits to ultimately understand the vast complexity of the human brain. Brain/MINDS is focused on structural and functional mapping of the common marmoset (Callithrix jacchus) brain. This non-human primate has numerous advantages for brain mapping, including a well-developed frontal cortex and a compact brain size, as well as the availability of transgenic technologies. In the present review article, we discuss strategies for structural and functional mapping of the marmoset brain and the relation of the common marmoset to other animals models.

  14. Audience affects decision-making in a marmoset communication network.

    PubMed

    Toarmino, Camille R; Wong, Lauren; Miller, Cory T

    2017-01-01

    An audience can have a profound effect on the dynamics of communicative interactions. As a result, non-human primates often adjust their social decision-making strategies depending on the audience composition at a given time. Here we sought to test how the unique vocal behaviour of multiple audience members affected decisions to communicate. To address this issue, we developed a novel experimental paradigm in which common marmosets directly interacted with multiple 'virtual monkeys' (VMs), each of whom represented an individual marmoset with distinct vocal behaviour. This active social signalling paradigm provided subjects an opportunity to interact with and learn about the behaviour of each VM in the network and apply this knowledge in subsequent communicative decisions. We found that subjects' propensity to interact with particular VMs was determined by the behaviour of each VM in the audience and suggests that marmoset social decision-making strategies are highly adaptive to nuances of the immediate communication network.

  15. Inferior vestibular neuritis.

    PubMed

    Kim, Ji-Soo; Kim, Hyo Jung

    2012-08-01

    Vestibular neuritis (VN) mostly involves the superior portion of the vestibular nerve and labyrinth. This study aimed to describe the clinical features of VN involving the inferior vestibular labyrinth and its afferents only. Of the 703 patients with a diagnosis of VN or labyrinthitis at Seoul National University Bundang Hospital from 2004 to 2010, we retrospectively recruited 9 patients (6 women, age range 15-75) with a diagnosis of isolated inferior VN. Diagnosis of isolated inferior VN was based on torsional downbeating spontaneous nystagmus, abnormal head-impulse test (HIT) for the posterior semicircular canal (PC), and abnormal cervical vestibular-evoked myogenic potentials (VEMP) in the presence of normally functioning horizontal and anterior semicircular canals, as determined by normal HIT and bithermal caloric tests. All patients presented with acute vertigo with nausea, vomiting, and imbalance. Three patients also had tinnitus and hearing loss in the involved side. The rotation axis of torsional downbeating spontaneous nystagmus was best aligned with that of the involved PC. HIT was also positive only for the involved PC. Cervical VEMP was abnormal in seven patients, and ocular VEMP was normal in all four patients tested. Ocular torsion and subjective visual vertical tests were mostly within the normal range. Since isolated inferior VN lacks the typical findings of much more prevalent superior VN, it may be mistaken for a central vestibular disorder. Recognition of this rare disorder may help avoid unnecessary workups in patients with acute vestibulopathy.

  16. Superior colliculus inactivation alters the weighted integration of visual stimuli.

    PubMed

    Nummela, Samuel U; Krauzlis, Richard J

    2011-06-01

    The primate superior colliculus (SC) is important for the winner-take-all selection of targets for orienting movements. Such selection takes time, however, and the earliest motor responses typically are guided by a weighted vector average of the visual stimuli, before the winner-take-all selection of a single target. We tested whether SC activity plays a role in this initial stage of orienting by inactivating the SC in two macaques (Macaca mulatta) with local muscimol injections. After SC inactivation, initial orienting responses still followed a vector average, but the contribution of the visual stimulus inside the affected field was decreased, and the contribution of the stimulus outside the affected field was increased. These results demonstrate that the SC plays an important role in the weighted integration of visual signals for orienting, in addition to its role in the winner-take-all selection of the target.

  17. Marmoset monkeys evaluate third-party reciprocity

    PubMed Central

    Kawai, Nobuyuki; Yasue, Miyuki; Banno, Taku; Ichinohe, Noritaka

    2014-01-01

    Many non-human primates have been observed to reciprocate and to understand reciprocity in one-to-one social exchanges. A recent study demonstrated that capuchin monkeys are sensitive to both third-party reciprocity and violation of reciprocity; however, whether this sensitivity is a function of general intelligence, evidenced by their larger brain size relative to other primates, remains unclear. We hypothesized that highly pro-social primates, even with a relatively smaller brain, would be sensitive to others' reciprocity. Here, we show that common marmosets discriminated between human actors who reciprocated in social exchanges with others and those who did not. Monkeys accepted rewards less frequently from non-reciprocators than they did from reciprocators when the non-reciprocators had retained all food items, but they accepted rewards from both actors equally when they had observed reciprocal exchange between the actors. These results suggest that mechanisms to detect unfair reciprocity in third-party social exchanges do not require domain-general higher cognitive ability based on proportionally larger brains, but rather emerge from the cooperative and pro-social tendencies of species, and thereby suggest this ability evolved in multiple primate lineages. PMID:24850892

  18. Gongylonematiasis in the common marmoset (Callithrix jacchus).

    PubMed

    Brack, M

    1996-06-01

    Two cases of gongylonematiasis in common marmosets of two research facilities in Germany are reported. The helminthiasis was transmitted from colony A to colony B by one infected female and within colony B by cockroaches (Blatella germanica). Four of 40 cockroaches examined in colony B were infected with rhabditiform larvae. Clinical signs of disease in the infected animals consisted of intense itching and scratching of the edematous and slightly hyperemic perioral tissues. Histologically the adult helminths lodged predominantly in the mucous membranes of the upper and lower lips; they were less frequently present in the labial cutaneous parts or in the tongue and could not be seen in the esophageal wall, bronchi, or abdominal organs. The helminthic infection probably caused minor to moderate mixed inflammatory infiltrates of the periesophageal connective tissues and intense inflammation of the deep lingual muscular tissues. Lesions of the mucosal membranes of the lips and tongue had predominant accumulations of neutrophilic granulocytes, lymphocytes, and mostly degranulated mast cells with only a few eosinophilic granulocytes. In the cutaneous part of the lips multifocal microabscesses were considered to be secondary lesions from the intense scratching.

  19. Fatal measles infection in marmosets pathogenesis and prophylaxis.

    PubMed Central

    Albrecht, P; Lorenz, D; Klutch, M J; Vickers, J H; Ennis, F A

    1980-01-01

    Moustached marmosets (Saguinus mystax) were infected intranasally with either of two low-passaged, wildlike strains of measles virus, strain Edmonston or strain JM. The infection resulted in 25 and 100% mortality, respectively, 12 to 14 days after infection. Clinical signs, gross pathological findings, and histology lacked the characteristic features of measles in other primates. A deficient immune response and widespread gastroenterocolitis appeared to be the main causes for the fatal outcome. Fluorescent-antibody staining detected large amounts of measles antigen in lymphatic tissues, the gastrointestinal and respiratory tracts, the salivary glands, pancreas, liver, kidney, and other visceral tissues. Live attenuated or inactivated measles vaccine proved equally effective in preventing fatal measles in marmosets. Challenge with live virus of animals which were primed 1 year previously with inactivated alum-absorbed vaccine resulted in a precipitous response, with a 100- to 1,000-fold increase in antibody titers. This vigorous booster response suggests the existence of a primary deficiency in lymphocyte cooperation in marmosets, which upon adequate priming is followed by extensive clonal expansion and antibody synthesis. Marmosets appear to be the most susceptible primate species to measles infection. They are capable of distinguishing differences in virulence of virus strains with a level of sensitivity not available in other animals. Images Fig. 1 Fig. 2 Fig. 3 PMID:6769812

  20. Individual recognition during bouts of antiphonal calling in common marmosets.

    PubMed

    Miller, Cory T; Wren Thomas, A

    2012-05-01

    Many vocalizations are encoded with a diversity of acoustic information about the signal producer. Amongst this information content are social categories related to the identity of the caller that are important for determining if and how a signal receiver may interact with that individual. Here, we employed a novel playback method in common marmosets (Callithrix jacchus) to test individual recognition during bouts of antiphonal calling. These experiments utilized custom, interactive playback software that effectively engaged subjects in antiphonal calling using vocalizations produced by a single individual and presented 'probe' vocalization stimuli representing a different individual at specific points within bouts of calling. The aim here was to test whether marmosets would recognize that the probe stimulus was a phee call produced by a different individual. Data indicated that marmosets were able to detect the change in caller identity; subjects produced significantly fewer antiphonal call responses to probe than control stimuli and, in some conditions, exhibited a shorter latency to produce the vocal response. These data suggest that marmosets recognize the identity of the individual during bouts of antiphonal calling. Furthermore, these results provide a methodological foundation for implementing the probe playback procedure to examine a broader range of social categorization during vocal interactions.

  1. Strategies in Landmark Use by Children, Adults, and Marmoset Monkeys

    ERIC Educational Resources Information Center

    MacDonald, Suzanne E.; Spetch, Marcia L.; Kelly, Debbie M.; Cheng, Ken

    2004-01-01

    Common marmosets ("Callithrix jacchus jacchus"), human children, and human adults learned to find a goal that was located in the center of a square array of four identical landmarks. The location of the landmark array and corresponding goal varied across trials, so the task could not be solved without using the landmark array. In Experiment 1, a…

  2. Response variability of marmoset parvocellular neurons

    PubMed Central

    Victor, J D; Blessing, E M; Forte, J D; Buzás, P; Martin, P R

    2007-01-01

    This study concerns the properties of neurons carrying signals for colour vision in primates. We investigated the variability of responses of individual parvocellular lateral geniculate neurons of dichromatic and trichromatic marmosets to drifting sinusoidal luminance and chromatic gratings. Response variability was quantified by the cycle-to-cycle variation in Fourier components of the response. Averaged across the population, the variability at low contrasts was greater than predicted by a Poisson process, and at high contrasts the responses were approximately 40% more variable than responses at low contrasts. The contrast-dependent increase in variability was nevertheless below that expected from the increase in firing rate. Variability falls below the Poisson prediction at high contrast, and intrinsic variability of the spike train decreases as contrast increases. Thus, while deeply modulated responses in parvocellular cells have a larger absolute variability than weakly modulated ones, they have a more favourable signal: noise ratio than predicted by a Poisson process. Similar results were obtained from a small sample of magnocellular and koniocellular (‘blue-on’) neurons. For parvocellular neurons with pronounced colour opponency, chromatic responses were, on average, less variable (10–15%, p < 0.01) than luminance responses of equal magnitude. Conversely, non-opponent parvocellular neurons showed the opposite tendency. This is consistent with a supra-additive noise source prior to combination of cone signals. In summary, though variability of parvocellular neurons is largely independent of the way in which they combine cone signals, the noise characteristics of retinal circuitry may augment specialization of parvocellular neurons to signal luminance or chromatic contrast. PMID:17124265

  3. Sleep and Alertness Management IV: Effects of Alertness Enhancers Caffeine and Modafinil on Performance in Marmosets

    DTIC Science & Technology

    2007-03-01

    IV: Effects of F +31 15 284 39 91 Info-DenV@tno.nl alertness enhancers caffeine and modafinil on performance in marmosets Date March 2007 Author(s...modafinil op taakverrichting in marmosets 4Wfysieke aspecten centraal staan. Het Resultaten en conclusies onderzoek is uitdrukkelijk wiet gericht op de Beide...modafinil op taakverrichting in marmosets Cotc en * *aprifrai vermnoeidheid en taakverrichting uit te Onvoldoende rust kan vermoeidheid, stellen of te

  4. Differences in social and vocal behavior between left- and right-handed common marmosets (Callithrix jacchus).

    PubMed

    Gordon, Dianne J; Rogers, Lesley J

    2010-11-01

    Common marmosets (Callithrix jacchus) show either a left- or right-hand preference for reaching to pick up food and they retain the same preference throughout adult life. We compared the behavior of 10 right-handed and 10 left-handed marmosets, matched for age and sex. They were presented with live crickets both when alone and when in their social group. The marmosets captured more crickets and the latency to capture the first cricket was shorter when they were in a group than when they were alone. This effect of social facilitation was significantly greater for right- than left-handed individuals. The number of vocalizations (tsik, crackle, very brief whistle, cough, and phee) produced by the left- and right-handed marmosets differed significantly: right-handed marmosets produced an increased number of all of these calls when the crickets were presented, whereas left-handed marmosets did not show a change from pretesting levels. The right-handed marmosets also produced more tsik (mobbing) calls than left-handed marmosets when they were presented with a fear-inducing stimulus and performed more head cocking and parallax movements than the left-handed marmosets. Hence, hand preference is associated with differences in exploratory and social behavior, the latter including vocal communication.

  5. A case of nontraumatic gas gangrene in a common marmoset (Callithrix jacchus).

    PubMed

    Yasuda, Masahiko; Inoue, Takashi; Ueno, Masami; Morita, Hanako; Hayashimoto, Nobuhito; Kawai, Kenji; Itoh, Toshio

    2016-01-01

    The common marmoset is widely used in neuroscience and regenerative medicine research. However, information concerning common marmoset disorders, particularly infectious diseases, is scarce. Here, we report a case of a female common marmoset that died suddenly due to gas gangrene. The animal presented with gaseous abdominal distention at postmortem, and Clostridium perfringens type A was isolated from several tissues. Vacuoles, a Gram-positive bacteremia and intravascular hemolysis were observed microscopically in the muscles, liver and lungs. On the basis of these findings, we diagnosed nontraumatic gas gangrene caused by Clostridium perfringens type A in this common marmoset.

  6. Web-accessible digital brain atlas of the common marmoset (Callithrix jacchus).

    PubMed

    Tokuno, Hironobu; Tanaka, Ikuko; Umitsu, Yoshitomo; Akazawa, Toshikazu; Nakamura, Yasuhisa

    2009-05-01

    Here we describe a web-accessible digital brain atlas of the common marmoset (Callithrix jacchus) at http://marmoset-brain.org:2008. We prepared the histological sections of the marmoset brain using various staining techniques. For virtual microscopy, high-resolution digital images of sections were obtained with Aperio Scanscope. The digital images were then converted to Zoomify files (zoomable multiresolution image files). Thereby, we could provide the multiresolution images of the marmoset brains for fast interactive viewing on the web via the Internet. In addition, we describe an automated method to obtain drawings of Nissl-stained sections.

  7. A case of nontraumatic gas gangrene in a common marmoset (Callithrix jacchus)

    PubMed Central

    YASUDA, Masahiko; INOUE, Takashi; UENO, Masami; MORITA, Hanako; HAYASHIMOTO, Nobuhito; KAWAI, Kenji; ITOH, Toshio

    2015-01-01

    The common marmoset is widely used in neuroscience and regenerative medicine research. However, information concerning common marmoset disorders, particularly infectious diseases, is scarce. Here, we report a case of a female common marmoset that died suddenly due to gas gangrene. The animal presented with gaseous abdominal distention at postmortem, and Clostridium perfringens type A was isolated from several tissues. Vacuoles, a Gram-positive bacteremia and intravascular hemolysis were observed microscopically in the muscles, liver and lungs. On the basis of these findings, we diagnosed nontraumatic gas gangrene caused by Clostridium perfringens type A in this common marmoset. PMID:26156080

  8. Isolated inferior mesenteric portal hypertension with giant inferior mesenteric vein and anomalous inferior mesenteric vein insertion

    PubMed Central

    Prasad, G. Raghavendra; Billa, Srikar; Bhandari, Pavaneel; Hussain, Aijaz

    2013-01-01

    Extrahepatic portal hypertension is not an uncommon disease in childhood, but isolated inferior mesenteric portal varices and lower gastrointestinal (GI) bleed have not been reported till date. A 4-year-old girl presented with lower GI bleed. Surgical exploration revealed extrahepatic portal vein obstruction with giant inferior mesenteric vein and colonic varices. Inferior mesenteric vein was joining the superior mesenteric vein. The child was treated successfully with inferior mesenteric – inferior vena caval anastomosis. The child was relieved of GI bleed during the follow-up. PMID:23798814

  9. Effect of Reversible Inactivation of Superior Colliculus on Head Movements

    PubMed Central

    Walton, Mark M. G.; Bechara, Bernard; Gandhi, Neeraj J.

    2013-01-01

    Because of limitations in the oculomotor range, many gaze shifts must be accomplished using coordinated movements of the eyes and head. Stimulation and recording data have implicated the primate superior colliculus (SC) in the control of these gaze shifts. The precise role of this structure in head movement control, however, is not known. The present study uses reversible inactivation to gain insight into the role of this structure in the control of head movements, including those that accompany gaze shifts and those that occur in the absence of a change in gaze. Forty-five lidocaine injections were made in two monkeys that had been trained on a series of behavioral tasks that dissociate movements of the eyes and head. Reversible inactivation resulted in clear impairments in the animals’ ability to perform gaze shifts, manifested by increased reaction times, lower peak velocities, and increased durations. In contrast, comparable effects were not found for head movements (with or without gaze shifts) with the exception of a very small increase in reaction times of head movements associated with gaze shifts. Eye-head coordination was clearly affected by the injections with gaze onset occurring relatively later with respect to head onset. Following the injections, the head contributed slightly more to the gaze shift. These results suggest that head movements (with and without gaze shifts) can be controlled by pathways that do not involve SC. PMID:18305088

  10. Optogenetic cholinergic modulation of the mouse superior colliculus in vivo

    PubMed Central

    Thompson, John A.; Felsen, Gidon

    2015-01-01

    The superior colliculus (SC) plays a critical role in orienting movements, in part by integrating modulatory influences on the sensorimotor transformations it performs. Many species exhibit a robust brain stem cholinergic projection to the intermediate and deep layers of the SC arising mainly from the pedunculopontine tegmental nucleus (PPTg), which may serve to modulate SC function. However, the physiological effects of this input have not been examined in vivo, preventing an understanding of its functional role. Given the data from slice experiments, cholinergic input may have a net excitatory effect on the SC. Alternatively, the input could have mixed effects, via activation of inhibitory neurons within or upstream of the SC. Distinguishing between these possibilities requires in vivo experiments in which endogenous cholinergic input is directly manipulated. Here we used anatomical and optogenetic techniques to identify and selectively activate brain stem cholinergic terminals entering the intermediate and deep layers of the awake mouse SC and recorded SC neuronal responses. We first quantified the pattern of the cholinergic input to the mouse SC, finding that it was predominantly localized to the intermediate and deep layers. We then found that optogenetic stimulation of cholinergic terminals in the SC significantly increased the activity of a subpopulation of SC neurons. Interestingly, cholinergic input had a broad range of effects on the magnitude and timing of SC responses, perhaps reflecting both monosynaptic and polysynaptic innervation. These findings begin to elucidate the functional role of this cholinergic projection in modulating the processing underlying sensorimotor transformations in the SC. PMID:26019317

  11. Modeling the Value of Strategic Actions in the Superior Colliculus

    PubMed Central

    Thevarajah, Dhushan; Webb, Ryan; Ferrall, Christopher; Dorris, Michael C.

    2009-01-01

    In learning models of strategic game play, an agent constructs a valuation (action value) over possible future choices as a function of past actions and rewards. Choices are then stochastic functions of these action values. Our goal is to uncover a neural signal that correlates with the action value posited by behavioral learning models. We measured activity from neurons in the superior colliculus (SC), a midbrain region involved in planning saccadic eye movements, while monkeys performed two saccade tasks. In the strategic task, monkeys competed against a computer in a saccade version of the mixed-strategy game ”matching-pennies”. In the instructed task, saccades were elicited through explicit instruction rather than free choices. In both tasks neuronal activity and behavior were shaped by past actions and rewards with more recent events exerting a larger influence. Further, SC activity predicted upcoming choices during the strategic task and upcoming reaction times during the instructed task. Finally, we found that neuronal activity in both tasks correlated with an established learning model, the Experience Weighted Attraction model of action valuation (Camerer and Ho, 1999). Collectively, our results provide evidence that action values hypothesized by learning models are represented in the motor planning regions of the brain in a manner that could be used to select strategic actions. PMID:20161807

  12. Interactions between the Midbrain Superior Colliculus and the Basal Ganglia

    PubMed Central

    Redgrave, Peter; Coizet, Veronique; Comoli, Eliane; McHaffie, John G.; Leriche, Mariana; Vautrelle, Nicolas; Hayes, Lauren M.; Overton, Paul

    2010-01-01

    An important component of the architecture of cortico-basal ganglia connections is the parallel, re-entrant looped projections that originate and return to specific regions of the cerebral cortex. However, such loops are unlikely to have been the first evolutionary example of a closed-loop architecture involving the basal ganglia. A phylogenetically older, series of subcortical loops can be shown to link the basal ganglia with many brainstem sensorimotor structures. While the characteristics of individual components of potential subcortical re-entrant loops have been documented, the full extent to which they represent functionally segregated parallel projecting channels remains to be determined. However, for one midbrain structure, the superior colliculus (SC), anatomical evidence for closed-loop connectivity with the basal ganglia is robust, and can serve as an example against which the loop hypothesis can be evaluated for other subcortical structures. Examination of ascending projections from the SC to the thalamus suggests there may be multiple functionally segregated systems. The SC also provides afferent signals to the other principal input nuclei of the basal ganglia, the dopaminergic neurones in substantia nigra and to the subthalamic nucleus. Recent electrophysiological investigations show that the afferent signals originating in the SC carry important information concerning the onset of biologically significant events to each of the basal ganglia input nuclei. Such signals are widely regarded as crucial for the proposed functions of selection and reinforcement learning with which the basal ganglia have so often been associated. PMID:20941324

  13. Neonatal cortical ablation disrupts multisensory development in superior colliculus

    PubMed Central

    Jiang, Wan; Jiang, Huai; Stein, Barry E.

    2006-01-01

    The ability of cat superior colliculus (SC) neurons to synthesize information from different senses depends on influences from two areas of the cortex: the anterior ectosylvian sulcus (AES) and the rostral lateral suprasylvian sulcus (rLS). Reversibly deactivating the inputs to the SC from either of these areas in normal adults severely compromises this ability and the SC-mediated behaviors that depend on it. In the present study we found that removal of these areas in neonatal animals precluded the normal development of multisensory SC processes. At maturity there was a substantial decrease in the incidence of multisensory neurons, and those multisensory neurons that did develop were highly abnormal. Their cross-modal receptive field register was severely compromised, as was their ability to integrate cross-modal stimuli. Apparently, despite the impressive plasticity of the neonatal brain, it cannot compensate for the early loss of these cortices. Surprisingly, however, neonatal removal of either AES or rLS had comparatively minor consequences on these properties. At maturity multisensory SC neurons were quite common: they developed the characteristic spatial register among their unisensory receptive fields and exhibited normal adult-like multisensory integration. These observations suggest that during early ontogeny, when the multisensory properties of SC neurons are being crafted, AES and rLS may have the ability to compensate for the loss of one another’s cortico-collicular influences so that normal multisensory processes can develop in the SC. PMID:16267111

  14. Subthreshold activation of the superior colliculus drives saccade motor learning.

    PubMed

    Soetedjo, Robijanto; Fuchs, Albert F; Kojima, Yoshiko

    2009-12-02

    How the brain learns and maintains accurate precision movements is currently unknown. At times throughout life, rapid gaze shifts (saccades) become inaccurate, but the brain makes gradual adjustments so they again stop on target. Previously, we showed that complex spikes (CSs) in Purkinje cells of the oculomotor cerebellum report the direction and amplitude by which saccades are in error. Anatomical studies indicate that this error signal could originate in the superior colliculus (SC). Here, we deliver subthreshold electrical stimulation of the SC after the saccade lands to signal an apparent error. The size of saccades in the same direction as the simulated error gradually increase; those in the opposite direction decrease. The electrically adapted saccades endure after stimulation is discontinued, exhibit an adaptation field, can undergo changes in direction, and depend on error timing. These electrically induced adaptations were virtually identical with those produced by the visually induced adaptations that we report here for comparable visual errors in the same monkeys. Therefore, our experiments reveal that an additional role for the SC in the generation of saccades is to provide a vector error signal that drives dysmetric saccades to adapt. Moreover, the characteristics of the electrically induced adaptation reflect those of error-related CS activity in the oculomotor cerebellum, suggesting that CS activity serves as the learning signal. We speculate that CS activity may serve as the error signal that drives other kinds of motor learning as well.

  15. Efferent connections of the orbitofrontal cortex in the marmoset (Saguinus oedipus).

    PubMed

    Leichnetz, G R; Astruc, J

    1975-02-07

    Unilateral partial ablations were made in the orbitofrontal cortex of 4 adult marmosets (Saguinus oedipus) and fiber degeneration was traced using the Nauta-Gygax and Fink-Heimer selective silver impregnation techniques. Corticocortical projections were found to the ipsilateral convexity and medial aspect of the frontal lobe and to the homologous orbitofrontal areas of the contralateral hemisphere. Fiber degeneration was followed through the uncinate fascicle to the temporal and insular cortices, and caudally into the rostrolateral entorhinal cortex. Other fibers joined the cingulum bundle and terminated throughout the cingulate cortex. Subcortical projections were observed to the lateral and basal amygdaloid nuclei, caudate head, ventrolateral putamen and ventral claustrum. The lateral preoptic and hypothalamic areas received a small number of fibers, as did the intralaminar and reticular thalamic nuclei. The dorsomedial nucleus of the thalamus was recipient of a large group of fibers which followed the ventral internal capsule and joined the inferior thalamic peduncle to terminate there. Preterminal debris appeared heaviest in the dorsomedial thalamic nucleus, pars magnocellularis (MDmc) in more caudal orbital lesions. A subthalamic projection to field H of Forel was observed. A small number of fibers terminated in the lateral midbrain tegmentum, but no appreciable fiber degeneration was observed more caudally than the midbrain. These results are compared in some areas to findings in the rhesus monkey. The possibility of a topical organization in the orbital cortical and thalamic projections is discussed.

  16. Do marmosets care to share? Oxytocin treatment reduces prosocial behavior toward strangers.

    PubMed

    Mustoe, Aaryn C; Cavanaugh, Jon; Harnisch, April M; Thompson, Breanna E; French, Jeffrey A

    2015-05-01

    Cooperatively-breeding and socially-monogamous primates, like marmosets and humans, exhibit high levels of social tolerance and prosociality toward others. Oxytocin (OXT) generally facilitates prosocial behavior, but there is growing recognition that OXT modulation of prosocial behavior is shaped by the context of social interactions and by other motivational states such as arousal or anxiety. To determine whether prosociality varies based on social context, we evaluated whether marmoset donors (Callithrix penicillata) preferentially rewarded pairmates versus opposite-sex strangers in a prosocial food-sharing task. To examine potential links among OXT, stress systems, and prosociality, we evaluated whether pretrial cortisol levels in marmosets altered the impact of OXT on prosocial responses. Marmosets exhibited spontaneous prosociality toward others, but they did so preferentially toward strangers compared to their pairmates. When donor marmosets were treated with marmoset-specific Pro(8)-OXT, they exhibited reduced prosociality toward strangers compared to marmosets treated with saline or consensus-mammalian Leu(8)-OXT. When pretrial cortisol levels were lower, marmosets exhibited higher prosociality toward strangers. These findings demonstrate that while marmosets show spontaneous prosocial responses toward others, they do so preferentially toward opposite-sex strangers. Cooperative breeding may be associated with the expression of prosociality, but the existence of a pair-bond between marmoset partners appears to be neither necessary nor sufficient for the expression of spontaneous prosocial responses. Furthermore, high prosociality toward strangers is significantly reduced in marmosets treated with Pro(8)-OXT, suggesting that OXT does not universally enhance prosociality, but, rather OXT modulation of prosocial behavior varies depending on social context.

  17. LANGUAGE DEVELOPMENT. The developmental dynamics of marmoset monkey vocal production.

    PubMed

    Takahashi, D Y; Fenley, A R; Teramoto, Y; Narayanan, D Z; Borjon, J I; Holmes, P; Ghazanfar, A A

    2015-08-14

    Human vocal development occurs through two parallel interactive processes that transform infant cries into more mature vocalizations, such as cooing sounds and babbling. First, natural categories of sounds change as the vocal apparatus matures. Second, parental vocal feedback sensitizes infants to certain features of those sounds, and the sounds are modified accordingly. Paradoxically, our closest living ancestors, nonhuman primates, are thought to undergo few or no production-related acoustic changes during development, and any such changes are thought to be impervious to social feedback. Using early and dense sampling, quantitative tracking of acoustic changes, and biomechanical modeling, we showed that vocalizations in infant marmoset monkeys undergo dramatic changes that cannot be solely attributed to simple consequences of growth. Using parental interaction experiments, we found that contingent parental feedback influences the rate of vocal development. These findings overturn decades-old ideas about primate vocalizations and show that marmoset monkeys are a compelling model system for early vocal development in humans.

  18. Use of the Common Marmoset to Study Burkholderia mallei Infection

    PubMed Central

    Harvey, Stephen B.; Mead, Daniel G.; Shaffer, Teresa L.; Estes, D. Mark; Michel, Frank; Quinn, Frederick D.; Hogan, Robert J.; Lafontaine, Eric R.

    2015-01-01

    Burkholderia mallei is a host-adapted bacterium that does not persist outside of its equine reservoir. The organism causes the zoonosis glanders, which is endemic in Asia, Africa, the Middle East and South America. Infection by B. mallei typically occurs via the respiratory or percutaneous route, and the most common manifestations are life-threatening pneumonia and bacteremia. Glanders is difficult to diagnose and requires prolonged antibiotic therapy with low success rates. There is no vaccine to protect against B. mallei and there is concern regarding its use as a biothreat agent. Thus, experiments were performed to establish a non-human primate model of intranasal infection to study the organism and develop countermeasures. Groups of marmosets (Callithrix jacchus) were inoculated intranasally with B. mallei strain ATCC 23344 and monitored for clinical signs of illness for up to 13 days. We discovered that 83% of marmosets inoculated with doses of 2.5 X 104 to 2.5 X 105 bacteria developed acute lethal infection within 3–4 days. Signs of disease were severe and included lethargy, inappetence, conjunctivitis, mucopurulent and hemorrhagic nasal discharges, and increased respiratory effort with abdominal lifts. Burkholderia mallei was cultured from the lungs, spleen and liver of these animals, and pathologic examination of tissues revealed lesions characteristic of glanders. Challenge experiments also revealed that 91% of animals infected with doses ranging from 25 to 2.5 X 103 bacteria exhibited mild non-specific signs of illness and were culture negative. One marmoset inoculated with 2.5 X 103 organisms developed moderate signs of disease and reached humane end-points 8 days post-infection. The liver and spleen of this animal were colonized with the agent and pathological analysis of tissues showed nasal, splenic and hepatic lesions. Taken together, these data indicate that the marmoset is a suitable model to study respiratory infection by B. mallei. PMID

  19. Novel monoclonal antibodies recognizing different subsets of lymphocytes from the common marmoset (Callithrix jacchus).

    PubMed

    Ito, Ryoji; Maekawa, Shin-ichiro; Kawai, Kenji; Suemizu, Hiroshi; Suzuki, Shuzo; Ishii, Hajime; Tanioka, Yoshikuni; Satake, Masanobu; Yagita, Hideo; Habu, Sonoko; Ito, Mamoru

    2008-12-22

    Callithrix jacchus, the common marmoset, is a small new world primate that is considered effective as an experimental animal model for various human diseases. In this study, we generated monoclonal antibodies (mAbs) against common marmoset lymphocytes for immunological studies on the common marmoset. We established five hybridoma clones, 6C9, 10D7, 6F10, 7A4 and 5A1, producing anti-marmoset mAbs against cell surface antigens on marmoset T and/or B lymphocytes. We confirmed that 6C9 and 10D7 antibodies recognized CD45 antigen, and 6F10 antibody recognized CD8 antigen by flow cytometry using marmoset cDNA transfectants. We also tested them for application of immunoprecipitation, Western blot analysis and immunohistochemistry. We found that immunohistochemistry using marmoset spleen sections could be applied with all established mAbs but immunoprecipitation and the Western blot analysis could be applied with 6F10 and 10D7 antibodies but not with the other three mAbs. These results show that these monoclonal antibodies are useful for advancing immunological research on the common marmoset.

  20. Generation of transgenic marmosets expressing genetically encoded calcium indicators

    PubMed Central

    Park, Jung Eun; Zhang, Xian Feng; Choi, Sang-Ho; Okahara, Junko; Sasaki, Erika; Silva, Afonso C.

    2016-01-01

    Chronic monitoring of neuronal activity in the living brain with optical imaging techniques became feasible owing to the continued development of genetically encoded calcium indicators (GECIs). Here we report for the first time the successful generation of transgenic marmosets (Callithrix jacchus), an important nonhuman primate model in neurophysiological research, which were engineered to express the green fluorescent protein (GFP)-based family of GECIs, GCaMP, under control of either the CMV or the hSyn promoter. High titer lentiviral vectors were produced, and injected into embryos collected from donor females. The infected embryos were then transferred to recipient females. Eight transgenic animals were born and shown to have stable and functional GCaMP expression in several different tissues. Germline transmission of the transgene was confirmed in embryos generated from two of the founder transgenic marmosets that reached sexual maturity. These embryos were implanted into six recipient females, three of which became pregnant and are in advanced stages of gestation. We believe these transgenic marmosets will be invaluable non-human primate models in neuroscience, allowing chronic in vivo monitoring of neural activity with functional confocal and multi-photon optical microscopy imaging of intracellular calcium dynamics. PMID:27725685

  1. Anatomy of adult female common marmoset (Callithrix jacchus) reproductive system.

    PubMed Central

    Cui, K H; Matthews, C D

    1994-01-01

    Better appreciation of the female reproductive anatomy of the common marmoset (Callithrix jacchus) should improve the prospects for nonsurgical embryo transfer in this model. Vaginal measurements were performed in 8 female adult marmoset monkeys. Four monkeys were measured at laparotomy for gross internal anatomy, and 1 monkey was analysed at autopsy. The vagina of the marmoset monkey was found to be divided into a lower and upper vagina with a marked vaginal isthmus between them. The mean lengths of the lower and upper vagina were 17 mm (34 mm in total vagina). The mean uterine size was 8.4 (length) x 10.0 (width) x 6.4 (thickness) mm, with the ovary measuring 5.3 x 4.3 x 3.8 mm. The mean length of the fallopian tube was 10.5 mm with a width of 1.5 mm. Nonsurgical embryo transfer in this model appears to be feasible, but the proportionally long vagina and short uterine cavity needs to be recognised. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7649784

  2. Metabolic Characterization of the Common Marmoset (Callithrix jacchus)

    PubMed Central

    Go, Young-Mi; Liang, Yongliang; Uppal, Karan; Soltow, Quinlyn A.; Promislow, Daniel E. L.; Wachtman, Lynn M.; Jones, Dean P.

    2015-01-01

    High-resolution metabolomics has created opportunity to integrate nutrition and metabolism into genetic studies to improve understanding of the diverse radiation of primate species. At present, however, there is very little information to help guide experimental design for study of wild populations. In a previous non-targeted metabolomics study of common marmosets (Callithrix jacchus), Rhesus macaques, humans, and four non-primate mammalian species, we found that essential amino acids (AA) and other central metabolites had interspecies variation similar to intraspecies variation while non-essential AA, environmental chemicals and catabolic waste products had greater interspecies variation. The present study was designed to test whether 55 plasma metabolites, including both nutritionally essential and non-essential metabolites and catabolic products, differ in concentration in common marmosets and humans. Significant differences were present for more than half of the metabolites analyzed and included AA, vitamins and central lipid metabolites, as well as for catabolic products of AA, nucleotides, energy metabolism and heme. Three environmental chemicals were present at low nanomolar concentrations but did not differ between species. Sex and age differences in marmosets were present for AA and nucleotide metabolism and warrant additional study. Overall, the results suggest that quantitative, targeted metabolomics can provide a useful complement to non-targeted metabolomics for studies of diet and environment interactions in primate evolution. PMID:26581102

  3. The spinal cord of the common marmoset (Callithrix jacchus).

    PubMed

    Watson, Charles; Sengul, Gulgun; Tanaka, Ikuko; Rusznak, Zoltan; Tokuno, Hironobu

    2015-04-01

    The marmoset spinal cord possesses all the characteristic features of a typical mammalian spinal cord, but with some interesting variation in the levels of origin of the limb nerves. In our study Nissl and ChAT sections of the each segment of the spinal cord in two marmosets (Ma5 and Ma8), we found that the spinal cord can be functionally and anatomically divided into six regions: the prebrachial region (C1 to C3); the brachial region (C4 to C8) - segments supplying the upper limb; the post-brachial region (T1 to L1) - containing the sympathetic outflow, and supplying the hypaxial muscles of the body wall; the crural region (L2 to L5) - segments supplying the lower limb; the postcrural region (L6) - containing the parasympathetic outflow; and the caudal region (L7 to Co4) - supplying the tail. In the rat, mouse, and rhesus monkey, the prebrachial region consists of segments C1 to C4 (with the phrenic nucleus located at the C4 segment), and the brachial region extends from C5 to T1 inclusive. The prefixing of the upper limb outflow in these two marmosets mirrors the finding in the literature that a large C4 contribution to the brachial plexus is common in humans.

  4. Metabolic Characterization of the Common Marmoset (Callithrix jacchus).

    PubMed

    Go, Young-Mi; Liang, Yongliang; Uppal, Karan; Soltow, Quinlyn A; Promislow, Daniel E L; Wachtman, Lynn M; Jones, Dean P

    2015-01-01

    High-resolution metabolomics has created opportunity to integrate nutrition and metabolism into genetic studies to improve understanding of the diverse radiation of primate species. At present, however, there is very little information to help guide experimental design for study of wild populations. In a previous non-targeted metabolomics study of common marmosets (Callithrix jacchus), Rhesus macaques, humans, and four non-primate mammalian species, we found that essential amino acids (AA) and other central metabolites had interspecies variation similar to intraspecies variation while non-essential AA, environmental chemicals and catabolic waste products had greater interspecies variation. The present study was designed to test whether 55 plasma metabolites, including both nutritionally essential and non-essential metabolites and catabolic products, differ in concentration in common marmosets and humans. Significant differences were present for more than half of the metabolites analyzed and included AA, vitamins and central lipid metabolites, as well as for catabolic products of AA, nucleotides, energy metabolism and heme. Three environmental chemicals were present at low nanomolar concentrations but did not differ between species. Sex and age differences in marmosets were present for AA and nucleotide metabolism and warrant additional study. Overall, the results suggest that quantitative, targeted metabolomics can provide a useful complement to non-targeted metabolomics for studies of diet and environment interactions in primate evolution.

  5. The cortical motor system of the marmoset monkey (Callithrix jacchus).

    PubMed

    Bakola, Sophia; Burman, Kathleen J; Rosa, Marcello G P

    2015-04-01

    Precise descriptions of the anatomical pathways that link different areas of the cerebral cortex are essential to the understanding of the sensorimotor and association processes that underlie human actions, and their impairment in pathological situations. Many years of research in macaque monkeys have critically shaped how we currently think about cortical motor function in humans. However, it is important to obtain additional understanding about the homologies between cortical areas in human and various non-human primates, and in particular how evolutionary changes in connectivity within specific neural circuits impact on the capacity for different behaviors. Current research has converged on the New World marmoset monkey as an important animal model for cortical function and dysfunction, emphasizing advantages unique to this species. However, the motor repertoire of the marmoset differs from that of the macaque in many ways, including the capacity for skilled use of the hands. Here, we review current knowledge about the cortical frontal areas in marmosets, which are key to the generation and control of motor behaviors, with focus on comparative analyses. We note significant parallels with the macaque monkey, as well as a few potentially important differences, which suggest future directions for work involving architectonic and functional analyses.

  6. Functional Connectivity Hubs and Networks in the Awake Marmoset Brain

    PubMed Central

    Belcher, Annabelle M.; Yen, Cecil Chern-Chyi; Notardonato, Lucia; Ross, Thomas J.; Volkow, Nora D.; Yang, Yihong; Stein, Elliot A.; Silva, Afonso C.; Tomasi, Dardo

    2016-01-01

    In combination with advances in analytical methods, resting-state fMRI is allowing unprecedented access to a better understanding of the network organization of the brain. Increasing evidence suggests that this architecture may incorporate highly functionally connected nodes, or “hubs”, and we have recently proposed local functional connectivity density (lFCD) mapping to identify highly-connected nodes in the human brain. Here, we imaged awake nonhuman primates to test whether, like the human brain, the marmoset brain contains FC hubs. Ten adult common marmosets (Callithrix jacchus) were acclimated to mild, comfortable restraint using individualized helmets. Following restraint training, resting BOLD data were acquired during eight consecutive 10 min scans for each subject. lFCD revealed prominent cortical and subcortical hubs of connectivity across the marmoset brain; specifically, in primary and secondary visual cortices (V1/V2), higher-order visual association areas (A19M/V6[DM]), posterior parietal and posterior cingulate areas (PGM and A23b/A31), thalamus, dorsal and ventral striatal areas (caudate, putamen, lateral septal nucleus, and anterior cingulate cortex (A24a). lFCD hubs were highly connected to widespread areas of the brain, and further revealed significant network-network interactions. These data provide a baseline platform for future investigations in a nonhuman primate model of the brain’s network topology. PMID:26973476

  7. Development of metabolic function biomarkers in the common marmoset, Callithrix jacchus.

    PubMed

    Ziegler, Toni E; Colman, Ricki J; Tardif, Suzette D; Sosa, Megan E; Wegner, Fredrick H; Wittwer, Daniel J; Shrestha, Hemanta

    2013-05-01

    Metabolic assessment of a non-human primate model of metabolic syndrome and obesity requires the necessary biomarkers specific to the species. While the rhesus monkey has a number of specific assays for assessing metabolic syndrome, the marmoset does not. Furthermore, the common marmoset (Callithrix jacchus) has a small blood volume that necessitates using a single blood volume for multiple analyses. The common marmoset holds a great potential as an alternative primate model for the study of human disease but assay methods need to be developed and validated for the biomarkers of metabolic syndrome. Here we report on the adaptation, development, and validation of commercially available immunoassays for common marmoset samples in small volumes. We have performed biological validations for insulin, adiponectin, leptin, and ghrelin to demonstrate the use of these biomarkers in examining metabolic syndrome and other related diseases in the common marmoset.

  8. Cloning and expression of a novel catechol-O-methyltransferase in common marmosets.

    PubMed

    Uehara, Shotaro; Uno, Yasuhiro; Inoue, Takashi; Sasaki, Erika; Yamazaki, Hiroshi

    2017-02-04

    Catechol-O-methyltransferase (COMT) catalyzes the O-methylation of endogenous catechol amines and estrogens and exogenous catechol-type of drugs. A Parkinson's disease model of common marmoset (Callithrix jacchus) has been widely used in preclinical studies to evaluate inhibitory potential of new drug candidates on marmoset COMT. Despite COMT inhibitors could potentiate the pharmacological action of levodopa on Parkinson's disease in animal models, marmoset COMT cDNA has not yet been identified and characterized. In this study, a cDNA highly homologous to human COMT was cloned from marmoset livers. This cDNA encoded 268 amino acids containing a transmembrane region and critical amino acid residues for catalytic function. The amino acid sequences of marmoset COMT shared high sequence identity (90%) with human COMT. COMT mRNA was expressed in all five tissues tested, including brain, lung, liver, kidney and small intestine, and was more abundant in marmoset liver and kidney. Membrane-bound COMT was immunochemically detected in livers and kidneys, whereas soluble COMT was detected in livers, similar to humans. These results indicated that the molecular characteristics of marmoset COMT were generally similar to the human ortholog.

  9. Cloning and expression of a novel catechol-O-methyltransferase in common marmosets

    PubMed Central

    UEHARA, Shotaro; UNO, Yasuhiro; INOUE, Takashi; SASAKI, Erika; YAMAZAKI, Hiroshi

    2016-01-01

    Catechol-O-methyltransferase (COMT) catalyzes the O-methylation of endogenous catechol amines and estrogens and exogenous catechol-type of drugs. A Parkinson’s disease model of common marmoset (Callithrix jacchus) has been widely used in preclinical studies to evaluate inhibitory potential of new drug candidates on marmoset COMT. Despite COMT inhibitors could potentiate the pharmacological action of levodopa on Parkinson’s disease in animal models, marmoset COMT cDNA has not yet been identified and characterized. In this study, a cDNA highly homologous to human COMT was cloned from marmoset livers. This cDNA encoded 268 amino acids containing a transmembrane region and critical amino acid residues for catalytic function. The amino acid sequences of marmoset COMT shared high sequence identity (90%) with human COMT. COMT mRNA was expressed in all five tissues tested, including brain, lung, liver, kidney and small intestine, and was more abundant in marmoset liver and kidney. Membrane-bound COMT was immunochemically detected in livers and kidneys, whereas soluble COMT was detected in livers, similar to humans. These results indicated that the molecular characteristics of marmoset COMT were generally similar to the human ortholog. PMID:27890888

  10. Anemia, myopathy, and pansteatitis in vitamin E-deficient captive marmosets (Callithrix spp.).

    PubMed

    Juan-Sallés, C; Prats, N; Resendes, A; Domingo, M; Hilton, D; Ruiz, J M; Garner, M M; Valls, X; Marco, A J

    2003-09-01

    Five young adult pet marmosets (Callithrix spp.) were presented with weight loss (5/5); fecal retention (3/5); diarrhea (2/5); impaired locomotion (3/5); anemia (4/4); hypoproteinemia or hypoalbuminemia (3/4); elevations of creatine phosphokinase, lactic dehydrogenase, and alanine aminotransferase (3/4); and renal failure with hypercholesterolemia (2/4). All anemic marmosets had low serum vitamin E levels. The anemia responded to vitamin E and selenium therapy in two marmosets. One of the five marmosets died before presentation, and two others died despite therapy. The two marmosets necropsied had degenerative myopathy, pyogranulomatous pansteatitis, and increased erythrophagocytosis and hemosiderosis. The striated muscle and adipose tissue of both marmosets were negative for coxsackievirus ribonucleic acid by in situ hybridization. These findings suggest that vitamin E deficiency may be involved in the development of anemia, myopathy, and steatitis in callitrichids; however, in some marmosets, underlying diseases such as chronic colitis may have influenced the development of anemia and impaired vitamin E status.

  11. A New Marmoset P450 4F12 Enzyme Expressed in Small Intestines and Livers Efficiently Metabolizes Antihistaminic Drug Ebastine.

    PubMed

    Uehara, Shotaro; Uno, Yasuhiro; Yuki, Yukako; Inoue, Takashi; Sasaki, Erika; Yamazaki, Hiroshi

    2016-06-01

    Common marmosets (Callithrix jacchus) are attracting attention as animal models in preclinical studies for drug development. However, cytochrome P450s (P450s), major drug-metabolizing enzymes, have not been fully identified and characterized in marmosets. In this study, based on the four novel P450 4F genes found on the marmoset genome, we successfully isolated P450 4F2, 4F3B, 4F11, and 4F12 cDNAs in marmoset livers. Deduced amino acid sequences of the four marmoset P450 4F forms exhibited high sequence identities (87%-93%) to the human and cynomolgus monkey P450 4F homologs. Marmoset P450 4F3B and 4F11 mRNAs were predominantly expressed in livers, whereas marmoset P450 4F2 and 4F12 mRNAs were highly expressed in small intestines and livers. Four marmoset P450 4F proteins heterologously expressed in Escherichia coli catalyzed the ω-hydroxylation of leukotriene B4 In addition, marmoset P450 4F12 effectively catalyzed the hydroxylation of antiallergy drug ebastine, a human P450 2J/4F probe substrate. Ebastine hydroxylation activities by small intestine and liver microsomes from marmosets and cynomolgus monkeys showed greatly higher values than those of humans. Ebastine hydroxylation activities by marmoset and cynomolgus monkey small intestine microsomes were inhibited (approximately 60%) by anti-P450 4F antibodies, unlike human small intestine microsomes, suggesting that contribution of P450 4F enzymes for ebastine hydroxylation in the small intestine might be different between marmosets/cynomolgus monkeys and humans. These results indicated that marmoset P450 4F2, 4F3B, 4F11, and 4F12 were expressed in livers and/or small intestines and were functional in the metabolism of endogenous and exogenous compounds, similar to those of cynomolgus monkeys and humans.

  12. An animal model that reflects human disease: the common marmoset (Callithrix jacchus).

    PubMed

    Carrion, Ricardo; Patterson, Jean L

    2012-06-01

    The common marmoset is a new world primate belonging to the Callitrichidae family weighing between 350 and 400 g. The marmoset has been shown to be an outstanding model for studying aging, reproduction, neuroscience, toxicology, and infectious disease. With regard to their susceptibility to infectious agents, they are exquisite NHP models for viral, protozoan and bacterial agents, as well as prions. The marmoset provides the advantages of a small animal model in high containment coupled with the immunological repertoire of a nonhuman primate and susceptibility to wild type, non-adapted viruses.

  13. Behavioral Effects of Low Doses of Cholinesterase Inhibitors in Robot- Tested Marmosets

    DTIC Science & Technology

    1989-10-01

    IJW hL l !2Y r GRANT NO.: DAMDI7-88-Z-8020 TITLE: Behavioral effects of low doses of cholinesterase inhibitors in robot-tested marmosets ...Behavioral effects of low doses of cholinesterase inhibitors in robot-tested marmosets 12Z. PERSONAL AUfl4R() Otto L. Wolt huts, Bap Groen. Raymond Vanwerech...mg/kg) and 20 min after i.m. physostigmine (0.02-0.08 mg/kg) in experimentally naive marmosets . The behavioral tasks in series 1 were hand-eye

  14. Effect of luminosity on color discrimination of dichromatic marmosets (Callithrix jacchus).

    PubMed

    Freitag, Fabio Batista; Pessoa, Daniel Marques Almeida

    2012-02-01

    Psychophysical data have shown that under mesopic conditions cones and rods can interact, improving color vision. Since electrophysiological data have suggested that rods of dichromatic marmosets appear to be active at higher luminance, we aimed to investigate the effect of different levels of sunlight on the foraging abilities of male dichromatic marmosets. Captive marmosets were observed under three different conditions, with respect to their performance in detecting colored food items against a green background. Compared to high and low light intensities, intermediate luminosities significantly increased detection of orange targets by male dichromats, an indication of rod intrusion.

  15. Mirror Neurons in a New World Monkey, Common Marmoset.

    PubMed

    Suzuki, Wataru; Banno, Taku; Miyakawa, Naohisa; Abe, Hiroshi; Goda, Naokazu; Ichinohe, Noritaka

    2015-01-01

    Mirror neurons respond when executing a motor act and when observing others' similar act. So far, mirror neurons have been found only in macaques, humans, and songbirds. To investigate the degree of phylogenetic specialization of mirror neurons during the course of their evolution, we determined whether mirror neurons with similar properties to macaques occur in a New World monkey, the common marmoset (Callithrix jacchus). The ventral premotor cortex (PMv), where mirror neurons have been reported in macaques, is difficult to identify in marmosets, since no sulcal landmarks exist in the frontal cortex. We addressed this problem using "in vivo" connection imaging methods. That is, we first identified cells responsive to others' grasping action in a clear landmark, the superior temporal sulcus (STS), under anesthesia, and injected fluorescent tracers into the region. By fluorescence stereomicroscopy, we identified clusters of labeled cells in the ventrolateral frontal cortex, which were confirmed to be within the ventrolateral frontal cortex including PMv after sacrifice. We next implanted electrodes into the ventrolateral frontal cortex and STS and recorded single/multi-units under an awake condition. As a result, we found neurons in the ventrolateral frontal cortex with characteristic "mirror" properties quite similar to those in macaques. This finding suggests that mirror neurons occur in a common ancestor of New and Old World monkeys and its common properties are preserved during the course of primate evolution.

  16. Common marmoset embryonic stem cell can differentiate into cardiomyocytes

    SciTech Connect

    Chen Hao; Hattori, Fumiyuki; Murata, Mitsushige; Li Weizhen; Yuasa, Shinsuke; Onizuka, Takeshi; Shimoji, Kenichiro; Ohno, Yohei; Sasaki, Erika; Kimura, Kensuke; Hakuno, Daihiko

    2008-05-09

    Common marmoset monkeys have recently attracted much attention as a primate research model, and are preferred to rhesus and cynomolgus monkeys due to their small bodies, easy handling and efficient breeding. We recently reported the establishment of common marmoset embryonic stem cell (CMESC) lines that could differentiate into three germ layers. Here, we report that our CMESC can also differentiate into cardiomyocytes and investigated their characteristics. After induction, FOG-2 was expressed, followed by GATA4 and Tbx20, then Nkx2.5 and Tbx5. Spontaneous beating could be detected at days 12-15. Immunofluorescent staining and ultrastructural analyses revealed that they possessed characteristics typical of functional cardiomyocytes. They showed sinus node-like action potentials, and the beating rate was augmented by isoproterenol stimulation. The BrdU incorporation assay revealed that CMESC-derived cardiomyocytes retained a high proliferative potential for up to 24 weeks. We believe that CMESC-derived cardiomyocytes will advance preclinical studies in cardiovascular regenerative medicine.

  17. Parturition Signaling by Visual Cues in Female Marmosets (Callithrix jacchus).

    PubMed

    Moreira, Laís Alves Antonio; de Oliveira, Danilo Gustavo Rodrigues; de Sousa, Maria Bernardete Cordeiro; Pessoa, Daniel Marques Almeida

    2015-01-01

    New World monkeys have polymorphic color vision, in which all males and some females are dichromats, while most females are trichromats. There is little consensus about which selective pressures fashioned primate color vision, although detection of food, mates and predators has been hypothesized. Behavioral evidence shows that males from different species of Neotropical primates seem to perceive the timing of female conception and gestation, although, no signals fulfilling this function have been identified. Therefore, we used visual models to test the hypothesis that female marmosets show chromatic and/or achromatic cues that may indicate the time of parturition for male and female conspecifics. By recording the reflectance spectra of female marmosets' (Callithrix jacchus) sexual skin, and running chromatic and achromatic discrimination models, we found that both variables fluctuate during the weeks that precede and succeed parturition, forming "U" and inverted "U" patterns for chromatic and achromatic contrast, respectively. We suggest that variation in skin chroma and luminance might be used by female helpers and dominant females to identify the timing of birth, while achromatic variations may be used as clues by potential fathers to identify pregnancy stage in females and prepare for paternal burdens as well as to detect oestrus in the early post-partum period.

  18. Auditory artificial grammar learning in macaque and marmoset monkeys.

    PubMed

    Wilson, Benjamin; Slater, Heather; Kikuchi, Yukiko; Milne, Alice E; Marslen-Wilson, William D; Smith, Kenny; Petkov, Christopher I

    2013-11-27

    Artificial grammars (AG) are designed to emulate aspects of the structure of language, and AG learning (AGL) paradigms can be used to study the extent of nonhuman animals' structure-learning capabilities. However, different AG structures have been used with nonhuman animals and are difficult to compare across studies and species. We developed a simple quantitative parameter space, which we used to summarize previous nonhuman animal AGL results. This was used to highlight an under-studied AG with a forward-branching structure, designed to model certain aspects of the nondeterministic nature of word transitions in natural language and animal song. We tested whether two monkey species could learn aspects of this auditory AG. After habituating the monkeys to the AG, analysis of video recordings showed that common marmosets (New World monkeys) differentiated between well formed, correct testing sequences and those violating the AG structure based primarily on simple learning strategies. By comparison, Rhesus macaques (Old World monkeys) showed evidence for deeper levels of AGL. A novel eye-tracking approach confirmed this result in the macaques and demonstrated evidence for more complex AGL. This study provides evidence for a previously unknown level of AGL complexity in Old World monkeys that seems less evident in New World monkeys, which are more distant evolutionary relatives to humans. The findings allow for the development of both marmosets and macaques as neurobiological model systems to study different aspects of AGL at the neuronal level.

  19. Micromelic Dysplasia-Like Syndrome in a Captive Colony of Common Marmosets (Callithrix jacchus)

    PubMed Central

    Bosseler, Leslie; Cornillie, Pieter; Saunders, Jimmy H; Bakker, Jaco; Langermans, Jan AM; Casteleyn, Christophe; Decostere, Annemie; Chiers, Koen

    2014-01-01

    Over several years, 0% to 5% of adolescent animals in a captive colony of common marmosets (Callithrix jacchus) showed severely bended arms and legs over several years. The animals showed no pain, discomfort, or altered behavior but were unable to stretch their distal limbs to their full extent. To characterize the lesion morphologically, the bones of 4 affected marmosets were compared macroscopically and radiographically with those of 6 unaffected animals. The deformities were characterized by mid- to distal diaphyseal bending and pronounced shortening of long bones. The morphology and density of other bones including the skull and vertebrae were unaffected. Although vitamin D values were low in a fifth affected marmoset during 10 to 16 mo of age, lesions associated with rickets were not observed. To our knowledge, this report is the first to describe a micromelic dysplasia-like syndrome comprising severe, idiopathic bending and shortening of long bones in a colony of marmosets. PMID:25402180

  20. Common marmoset as a new model animal for neuroscience research and genome editing technology.

    PubMed

    Kishi, Noriyuki; Sato, Kenya; Sasaki, Erika; Okano, Hideyuki

    2014-01-01

    The common marmoset (Callithrix jacchus) is a small New World primate; it originally comes from the Atlantic coastal forests in northeastern Brazil. It has been attracting much attention in the biomedical research field because of its size, availability, and unique biological characteristics. Its endocrinological and behavioral similarity to humans, comparative ease in handling, and high reproductive efficiency are very advantageous for neuroscience research. Recently, we developed transgenic common marmosets with germline transmission, and this technological breakthrough provides a potential paradigm shift by enabling researchers to investigate complex biological phenomena using genetically-modified non-human primates. In this review, we summarize recent progress in marmoset research, and also discuss a potential application of genome editing tools that should be useful toward the generation of knock-out/knock-in marmoset models.

  1. Simulation of the Inferior Mirage

    NASA Astrophysics Data System (ADS)

    Branca, Mario

    2010-09-01

    A mirage can occur when a continuous variation in the refractive index of the air causes light rays to follow a curved path. As a result, the image we see is displaced from the location of the object. If the image appears higher in the air than the object, it is called a "superior" mirage, while if it appears lower it is called an "inferior" mirage.2 The most common example of an inferior mirage is when, on a hot day, a stretch of dry road off in the distance appears to be wet (see Fig. 1). Many lab activities have been described that simulate the formation of superior mirages. In these demonstrations light beams curve downward as they pass through a nonuni-form fluid.3-6 Much less common are laboratory demonstrations of upward-curving light rays of the kind responsible for inferior mirages. This paper describes a simple version of such a demonstration.

  2. Molecular signatures to define spermatogenic cells in common marmoset (Callithrix jacchus).

    PubMed

    Lin, Zachary Yu-Ching; Imamura, Masanori; Sano, Chiaki; Nakajima, Ryusuke; Suzuki, Tomoko; Yamadera, Rie; Takehara, Yuji; Okano, Hirotaka James; Sasaki, Erika; Okano, Hideyuki

    2012-05-01

    Germ cell development is a fundamental process required to produce offspring. The developmental program of spermatogenesis has been assumed to be similar among mammals. However, recent studies have revealed differences in the molecular properties of primate germ cells compared with the well-characterized mouse germ cells. This may prevent simple application of rodent insights into higher primates. Therefore, thorough investigation of primate germ cells is necessary, as this may lead to the development of more appropriate animal models. The aim of this study is to define molecular signatures of spermatogenic cells in the common marmoset, Callithrix jacchus. Interestingly, NANOG, PRDM1, DPPA3 (STELLA), IFITM3, and ZP1 transcripts, but no POU5F1 (OCT4), were detected in adult marmoset testis. Conversely, mouse testis expressed Pou5f1 but not Nanog, Prdm1, Dppa3, Ifitm3, and Zp1. Other previously described mouse germ cell markers were conserved in marmoset and mouse testes. Intriguingly, marmoset spermatogenic cells underwent dynamic protein expression in a developmental stage-specific manner; DDX4 (VASA) protein was present in gonocytes, diminished in spermatogonial cells, and reexpressed in spermatocytes. To investigate epigenetic differences between adult marmoset and mice, DNA methylation analyses identified unique epigenetic profiles to marmoset and mice. Marmoset NANOG and POU5F1 promoters in spermatogenic cells exhibited a methylation status opposite to that in mice, while the DDX4 and LEFTY1 loci, as well as imprinted genes, displayed an evolutionarily conserved methylation pattern. Marmosets have great advantages as models for human reproductive biology and are also valuable as experimental nonhuman primates; thus, the current study provides an important platform for primate reproductive biology, including possible applications to humans.

  3. [The marmoset in biomedical research. Value of this primate model for cardiovascular studies].

    PubMed

    Michel, J B; Mahouy, G

    1990-03-01

    Because of its small size, low cost of maintenance, breeding capabilities in captivity, the marmoset, a New World monkey, appears well suited for clinical and fundamental investigations. The contribution of this laboratory animal in the main areas of biomedical research is succinctly described: viral oncology, infections diseases, immunology, reproduction, toxicology and teratology, odontology, behaviour and neuro-psychopathology. Emphasis is put upon the exceptional interest of the use of marmoset as a biological model in cardiovascular studies.

  4. The metabolism of S-carboxymethylcysteine in rodents, marmosets and humans.

    PubMed

    Waring, R H

    1978-05-01

    1. The metabolism of S-carboxymethylcysteine (Mucodyne) has been studied in the rat, rabbit, guinea-pig, marmoset and human. All species studied, except the rabbit, excrete large amounts of the parent compound. 2. Rabbits and humans give S-carboxymethylcysteine sulphoxide, rats form N-acetyl-S-carboxymethylcysteine while marmosets excrete methylmercapturic acid as other major metabolites. Traces of methylmercapturic acid sulphoxide, methylcysteine, methylcysteine sulphoxide and 3-(S-carboxymethylthio)lactic acid were also found.

  5. Plasma Metabolomics of Common Marmosets (Callithrix jacchus) to Evaluate Diet and Feeding Husbandry

    PubMed Central

    Banton, Sophia A; Soltow, Quinlyn A; Liu, Ken H; Uppal, Karan; Promislow, Daniel E L; Power, Michael L; Tardif, Suzette D; Wachtman, Lynn M; Jones, Dean P

    2016-01-01

    Common marmosets (Callithrix jacchus) are an important NHP model for the study of human aging and age-related diseases. However, the full potential of marmosets as a research model has not been realized due to a lack of evidence-based, standardized procedures for their captive management, especially regarding diet and feeding husbandry. In the present study, we conducted a high-resolution metabolomics analysis of plasma from marmosets from a 3-mo dietary crossover study to determine whether significant metabolic differences occur with a semisynthetic chemically defined (purified) diet as needed for controlled nutrition research. Marmosets were fed a standard, diverse-ingredient diet, followed by a semisynthetic purified diet, and then were switched back to the standard diet. The standard diet used in this analysis was specific to the animal facility, but it is similar in content to the diets currently used for other marmoset colonies. High-resolution metabolomics of plasma with liquid chromatography–mass spectrometry and bioinformatics was used to measure metabolic differences. The concentration of the essential amino acids methionine, leucine/isoleucine, lysine, and threonine were higher when marmosets were fed the purified diet. In contrast, phenylalanine concentrations were higher during exposure to the standard diet. In addition, metabolic pathway enrichment and analysis revealed differences among metabolites associated with dopamine metabolism and the carnitine shuttle. These results show that diet-associated differences in metabolism occur in marmosets and suggest that additional nutritional studies with detailed physiologic characterization are needed to optimize standard and purified diets for common marmosets. PMID:27025803

  6. Reunion behavior after social separation is associated with enhanced HPA recovery in young marmoset monkeys.

    PubMed

    Taylor, Jack H; Mustoe, Aaryn C; Hochfelder, Benjamin; French, Jeffrey A

    2015-07-01

    The relationships that offspring develop with caregivers can exert a powerful influence on behavior and physiology, including the hypothalamic-pituitary-adrenal (HPA) axis. In many mammalian species, offspring-caregiver relationships are largely limited to interactions with mother. Marmoset monkeys receive care in early life from multiple classes of caregivers in addition to the mother, including fathers and siblings. We evaluated whether affiliative social interactions with family members in marmosets were associated with differences in cortisol reactivity to a short-term social separation stressor, and whether these variations in affiliative interactions upon reunion predicted how well marmosets subsequently regulated HPA axis function after cessation of the stressor. Marmosets were separated from the family for 8h at three developmental time points (6-, 12-, and 18-months of age), and interactions of the separated marmoset with the family group were recorded during reunion. Urinary cortisol was measured prior to social separation, every 2h during the separation, and on the morning after separation. Heightened cortisol reactivity during social separation did not predict affiliative social behavior upon reunion but higher rates of grooming and play behavior predicted enhanced HPA regulation. Marmosets with higher rates of grooming and play with family members upon reunion had post-stress cortisol levels closer to preseparation baseline than marmosets with lower rates of affiliative reunion behavior. Combined with previous research showing the early programming effects of social interactions with caregivers, as well as the buffering effect of a close social partner during stress, the current study highlights the high degree of behavioral and HPA adaptability to social stressors across development in marmoset monkeys.

  7. Chronic multiscale imaging of neuronal activity in the awake common marmoset

    PubMed Central

    Yamada, Yoshiyuki; Matsumoto, Yoshifumi; Okahara, Norio; Mikoshiba, Katsuhiko

    2016-01-01

    We report a methodology to chronically record in vivo brain activity in the awake common marmoset. Over a month, stable imaging revealed macroscopic sensory maps in the somatosensory cortex and their underlying cellular activity with a high signal-to-noise ratio in the awake but not anesthetized state. This methodology is applicable to other brain regions, and will be useful for studying cortical activity and plasticity in marmosets during learning, development, and in neurological disorders. PMID:27786241

  8. Differential renal glomerular changes induced by 5/6 nephrectomization between common marmoset monkeys (Callithrix jacchus) and rats.

    PubMed

    Suzuki, Yui; Yamaguchi, Itaru; Onoda, Noriko; Saito, Takashi; Myojo, Kensuke; Imaizumi, Minami; Takada, Chie; Kimoto, Naoya; Takaba, Katsumi; Yamate, Jyoji

    2013-07-01

    We have been investigating the relevance and availability of 5/6 nephrectomized (Nx) common marmoset monkeys (Callithrix jacchus) as a chronic renal failure model. As a part of this investigation, renal glomerular changes in the Nx marmosets were histopathologically and immunohistochemically evaluated, and then compared with those in 5/6 Nx SD rats. In the Nx marmosets, the blood and urine parameters were elevated, excluding urine protein; histopathologically, enlargement of Bowman's capsule and atrophy of the glomeruli were observed in all animals, and other slight changes were also observed in 1 or 2 marmosets. There were no significant changes in the mesangial matrix injury score, vimentin and desmin positivity or the number of WT1 positive cells between the control and Nx marmoset groups. On the other hand, in the Nx rats, the blood and urine parameters were elevated; histopathologically, various changes were observed in the glomeruli, and the mesangial matrix injury score, vimentin and desmin positivity were increased, while the number of WT1 positive cells was decreased; these histopathological impacts on the renal glomerulus at 13 weeks after Nx in rats were more severe than that in the Nx marmosets. Because the glomerular basement membrane (GBM) was much thicker in the marmosets than in the rats in electron microscopy, the weaker pathological changes in the Nx marmosets might be due to the GBM thickness. This study showed for the first time glomerular lesions developed in the Nx marmosets, and the possible pathogenesis of the glomerular lesions was discussed.

  9. Association of efferent neurons to the compartmental architecture of the superior colliculus.

    PubMed Central

    Illing, R B

    1992-01-01

    The superior colliculus is a layered structure in the mammalian midbrain serving multimodal sensorimotor integration. Its intermediate layers are characterized by a compartmental architecture. These compartments are apparent through the clustering of terminals of major collicular afferents, which in many instances match the heterogeneous distribution of tissue components such as acetylcholinesterase, choline acetyltransferase, substance P, and parvalbumin. The present study was undertaken to determine whether efferent cells observe this compartmental architecture. It was found that subpopulations of both descending and ascending collicular efferents originate from perikarya situated in characteristic positions relative to the collicular compartments defined by elevated acetylcholinesterase activity and that their dendrites appear to be specifically coordinated with the heterogeneous environment. With the specific interlocking of afferent and efferent neurons through spatially distinguished neural networks, the compartmental architecture apparently constitutes an essential element for the determination of information flow in the superior colliculus. Images PMID:1438296

  10. Aerosolized Rift Valley Fever Virus Causes Fatal Encephalitis in African Green Monkeys and Common Marmosets

    PubMed Central

    Hartman, Amy L.; Powell, Diana S.; Bethel, Laura M.; Caroline, Amy L.; Schmid, Richard J.; Oury, Tim

    2013-01-01

    Rift Valley fever (RVF) is a veterinary and human disease in Africa and the Middle East. The causative agent, RVF virus (RVFV), can be naturally transmitted by mosquito, direct contact, or aerosol. We sought to develop a nonhuman primate (NHP) model of severe RVF in humans to better understand the pathogenesis of RVF and to use for evaluation of medical countermeasures. NHP from four different species were exposed to aerosols containing RVFV. Both cynomolgus and rhesus macaques developed mild fevers after inhalation of RVFV, but no other clinical signs were noted and no macaque succumbed to RVFV infection. In contrast, both marmosets and African green monkeys (AGM) proved susceptible to aerosolized RVF virus. Fever onset was earlier with the marmosets and had a biphasic pattern similar to what has been reported in humans. Beginning around day 8 to day 10 postexposure, clinical signs consistent with encephalitis were noted in both AGM and marmosets; animals of both species succumbed between days 9 and 11 postexposure. Marmosets were susceptible to lower doses of RVFV than AGM. Histological examination confirmed viral meningoencephalitis in both species. Hematological analyses indicated a drop in platelet counts in both AGM and marmosets suggestive of thrombosis, as well as leukocytosis that consisted mostly of granulocytes. Both AGM and marmosets would serve as useful models of aerosol infection with RVFV. PMID:24335307

  11. Purification and partial characterization of α1-proteinase inhibitor in the common marmoset (Callithrix jacchus)

    PubMed Central

    Parambeth, Joseph Cyrus; Suchodolski, Jan S.; Steiner, Jörg M.

    2015-01-01

    Fecal alpha1-proteinase inhibitor (α1-PI) concentration has been to diagnose enteric protein loss in dogs and cats. Chronic lymphocytic enteritis is commonly seen in the marmoset (C. jaccus) and is characterized by hypoalbuminemia. As a prelude to immunoassay development for detecting enteric protein loss, marmoset serum α1-PI was purified using immunoaffinity chromatography and ceramic hydroxyapatite chromatography. Partial characterization was performed by reducing gel electrophoresis and enzyme inhibitory assays. Protein identity was confirmed with peptide mass fingerprinting and N-terminal amino acid sequencing. Molecular mass, relative molecular mass, and isoelectric point for marmoset α1-PI were 54 kDa, 51677, and 4.8-5.4, respectively. Trypsin, chymotrypsin, and elastase inhibitory activity were observed. N-terminal amino acid sequence for marmoset α1-PI was EDPQGDAAQKMDTSHH. In conclusion, marmoset α1-PI was successfully purified from serum with an overall yield of 12% using a rapid and efficient method. Purified marmoset α1-PI has characteristics similar to those of α1-PI reported for other species. PMID:25745866

  12. A quantitative acoustic analysis of the vocal repertoire of the common marmoset (Callithrix jacchus).

    PubMed

    Agamaite, James A; Chang, Chia-Jung; Osmanski, Michael S; Wang, Xiaoqin

    2015-11-01

    The common marmoset (Callithrix jacchus), a highly vocal New World primate species, has emerged in recent years as a promising animal model for studying brain mechanisms underlying perception, vocal production, and cognition. The present study provides a quantitative acoustic analysis of a large number of vocalizations produced by marmosets in a social environment within a captive colony. Previous classifications of the marmoset vocal repertoire were mostly based on qualitative observations. In the present study a variety of vocalizations from individually identified marmosets were sampled and multiple acoustic features of each type of vocalization were measured. Results show that marmosets have a complex vocal repertoire in captivity that consists of multiple vocalization types, including both simple calls and compound calls composed of sequences of simple calls. A detailed quantification of the vocal repertoire of the marmoset can serve as a solid basis for studying the behavioral significance of their vocalizations and is essential for carrying out studies that investigate such properties as perceptual boundaries between call types and among individual callers as well as neural coding mechanisms for vocalizations. It can also serve as the basis for evaluating abnormal vocal behaviors resulting from diseases or genetic manipulations.

  13. Purification and partial characterization of α1-proteinase inhibitor in the common marmoset (Callithrix jacchus).

    PubMed

    Parambeth, Joseph Cyrus; Suchodolski, Jan S; Steiner, Jörg M

    2015-04-01

    Fecal alpha1-proteinase inhibitor (α1-PI) concentration has been to diagnose enteric protein loss in dogs and cats. Chronic lymphocytic enteritis is commonly seen in the marmoset (Callithrix jaccus) and is characterized by hypoalbuminemia. As a prelude to immunoassay development for detecting enteric protein loss, marmoset serum α1-PI was purified using immunoaffinity chromatography and ceramic hydroxyapatite chromatography. Partial characterization was performed by reducing gel electrophoresis and enzyme inhibitory assays. Protein identity was confirmed with peptide mass fingerprinting and N-terminal amino acid sequencing. Molecular mass, relative molecular mass, and isoelectric point for marmoset α1-PI were 54 kDa, 51,677, and 4.8-5.4, respectively. Trypsin, chymotrypsin, and elastase inhibitory activity were observed. N-terminal amino acid sequence for marmoset α1-PI was EDPQGDAAQKMDTSHH. In conclusion, marmoset α1-PI was successfully purified from serum with an overall yield of 12% using a rapid and efficient method. Purified marmoset α1-PI has characteristics similar to those of α1-PI reported for other species.

  14. Morphology and staining behavior of neutrophilic and eosinophilic granulocytes of the common marmoset (Callithrix jacchus).

    PubMed

    Bleyer, Martina; Curths, Christoph; Dahlmann, Franziska; Wichmann, Judy; Bauer, Natali; Moritz, Andreas; Braun, Armin; Knauf, Sascha; Kaup, Franz-Josef; Gruber-Dujardin, Eva

    2016-06-01

    Common marmosets (Callithrix jacchus) are frequently used as translational animal models for human diseases. However, a comparative study of cytological and histochemical detection methods as well as morphometric and ultrastructural characterization of neutrophils and eosinophils in this species is lacking. Blood samples of house dust mite sensitized and allergen challenged as well as lipopolysaccharide (LPS) challenged marmosets were analyzed with different cytological and histological staining methods. Furthermore, cell size and number of nuclear segments were compared between neutrophils and eosinophils. Electron microscopy was performed to characterize the ultrastructure of granulocytes. Of all applied cytological stains, three allowed differentiation of eosinophils and neutrophils and, thus, reliable quantification in blood smears: May-Grünwald-Giemsa stain, Congo Red and Naphthol AS-D Chloroacetate-Esterase. For histology, Hematoxylin-Eosin (H&E) could not demonstrate clear differences, whereas Sirius Red, Congo Red, and Naphthol AS-D Chloroacetate Esterase showed capable results for identification of eosinophils or neutrophils in lung tissue. Morphometry revealed that marmoset neutrophils have more nuclear segments and are slightly larger than eosinophils. Ultrastructurally, eosinophils presented with large homogeneous electron-dense granules without crystalloid cores, while neutrophils were characterized by heterogeneous granules of different size and density. Additionally, sombrero-like vesicles were detected in tissue eosinophils of atopic marmosets, indicative for hypersensitivity-related piecemeal degranulation. In conclusion, we provide a detailed overview of marmoset eosinophils and neutrophils, important for phenotypic characterization of marmoset models for human airway diseases.

  15. A quantitative acoustic analysis of the vocal repertoire of the common marmoset (Callithrix jacchus)

    PubMed Central

    Agamaite, James A.; Chang, Chia-Jung; Osmanski, Michael S.; Wang, Xiaoqin

    2015-01-01

    The common marmoset (Callithrix jacchus), a highly vocal New World primate species, has emerged in recent years as a promising animal model for studying brain mechanisms underlying perception, vocal production, and cognition. The present study provides a quantitative acoustic analysis of a large number of vocalizations produced by marmosets in a social environment within a captive colony. Previous classifications of the marmoset vocal repertoire were mostly based on qualitative observations. In the present study a variety of vocalizations from individually identified marmosets were sampled and multiple acoustic features of each type of vocalization were measured. Results show that marmosets have a complex vocal repertoire in captivity that consists of multiple vocalization types, including both simple calls and compound calls composed of sequences of simple calls. A detailed quantification of the vocal repertoire of the marmoset can serve as a solid basis for studying the behavioral significance of their vocalizations and is essential for carrying out studies that investigate such properties as perceptual boundaries between call types and among individual callers as well as neural coding mechanisms for vocalizations. It can also serve as the basis for evaluating abnormal vocal behaviors resulting from diseases or genetic manipulations. PMID:26627765

  16. The dopamine D1 receptor agonist SKF-82958 effectively increases eye blinking count in common marmosets.

    PubMed

    Kotani, Manato; Kiyoshi, Akihiko; Murai, Takeshi; Nakako, Tomokazu; Matsumoto, Kenji; Matsumoto, Atsushi; Ikejiri, Masaru; Ogi, Yuji; Ikeda, Kazuhito

    2016-03-01

    Eye blinking is a spontaneous behavior observed in all mammals, and has been used as a well-established clinical indicator for dopamine production in neuropsychiatric disorders, including Parkinson's disease and Tourette syndrome [1,2]. Pharmacological studies in humans and non-human primates have shown that dopamine agonists/antagonists increase/decrease eye blinking rate. Common marmosets (Callithrix jacchus) have recently attracted a great deal of attention as suitable experimental animals in the psychoneurological field due to their more developed prefrontal cortex than rodents, easy handling compare to other non-human primates, and requirement for small amounts of test drugs. In this study, we evaluated the effects of dopamine D1-4 receptors agonists on eye blinking in common marmosets. Our results show that the dopamine D1 receptor agonist SKF-82958 and the non-selective dopamine receptor agonist apomorphine significantly increased common marmosets eye blinking count, whereas the dopamine D2 agonist (+)-PHNO and the dopamine D3 receptor agonist (+)-PD-128907 produced somnolence in common marmosets resulting in a decrease in eye blinking count. The dopamine D4 receptor agonists PD-168077 and A-41297 had no effect on common marmosets' eye blinking count. Finally, the dopamine D1 receptor antagonist SCH 39166 completely blocked apomorphine-induced increase in eye blinking count. These results indicate that eye blinking in common marmosets may be a useful tool for in vivo screening of novel dopamine D1 receptor agonists as antipsychotics.

  17. Effects of constant daylight exposure during early development on marmoset psychosocial behavior.

    PubMed

    Senoo, Aya; Okuya, Teruhisa; Sugiura, Yasushi; Mimura, Koki; Honda, Yoshiko; Tanaka, Ikuko; Kodama, Tohru; Tokuno, Hironobu; Yui, Kunio; Nakamura, Shun; Usui, Setsuo; Koshiba, Mamiko

    2011-08-01

    Due to global industrialization, the light cycle is shifting to longer daytime. Mounting evidence indicates that social developmental disorders may correlate with longer periods of daytime in childhood. However, the exact mechanisms of this link remain unclear. To examine the impact of longer day-time on psychosocial development, we developed a novel non-human primate model, using the common marmoset (Callithrix jacchus) reared under constant daylight from birth. Marmosets were reared individually by human nursing under constant light (LL) during varying periods in juvenile development, and their behaviors were compared with those of normal day-night cycle (LD) marmosets by multivariate analysis based on principal component analysis (PCA). LL marmosets elicited egg-like calls (e-call) less in juvenile period, and displayed side-to-side shakes of the upper body with rapid head rotation through adulthood frequently. Based on the PCA, these behaviors were interpreted as 'alert' or 'hyperactive' states. Additionally, behavioral development of marmosets reared under constant dark (DD) was markedly different from both LD and LL marmosets, suggesting the fundamental importance of daylight-dependent neuronal and endocrine processes and entrainment by a constant 24-hour light/dark cycle on psychosocial behavior development.

  18. Laminar distribution and patchiness of cytochrome oxidase in mouse superior colliculus.

    PubMed

    Wiener, S I

    1986-02-08

    The cytochrome oxidase (CO), acetylcholinesterase (AChE), myelin, and Nissl stains were studied and compared to develop an anatomical system identifying the laminar architecture of the mouse superior colliculus. The CO and myelin stains are shown to define collicular laminae more distinctly than does the Nissl stain. The layer of large rostrocaudally coursing fiber bundles that has formerly been referred to in the rodent literature as stratum album intermediale (SAI; layer V) is renamed as a sublayer of the stratum griseum intermediale (SGI; layer IV) to conform with the nomenclature for the cat superior colliculus of Kaneseki and Sprague ('74, J. Comp. Neurol. 158:319-338). Patches of CO activity in layer IV (SGI) are shown that contain intensely stained, large, multipolar cell bodies. The CO patches do not correspond to those previously reported for AChE. The CO, myelin, and AChE stains all indicate the presence of a large lateral extension termed the flank of layer IV (SGI). In contrast to the classical lamination pattern of the superior colliculus, the flank has no overlying layer II (stratum griseum superficiale, SGS) or layer III (stratum opticum, SO).

  19. NKG2D functions as an activating receptor on natural killer cells in the common marmoset (Callithrix jacchus).

    PubMed

    Watanabe, Masamichi; Kudo, Yohei; Kawano, Mitsuko; Nakayama, Masafumi; Nakamura, Kyohei; Kameda, Mai; Ebara, Masamune; Sato, Takeki; Nakamura, Marina; Omine, Kaito; Kametani, Yoshie; Suzuki, Ryuji; Ogasawara, Kouetsu

    2014-11-01

    The natural killer group 2 membrane D (NKG2D) receptor is an NK-activating receptor that plays an important role in host defense against tumors and viral infections. Although the marmoset is an important and reliable animal model, especially for the study of human-specific viral infections, functional characterization of NKG2D on marmoset NK cells has not previously been conducted. In the present study, we investigated a subpopulation of marmoset NK cells that express NKG2D and exhibit cytolytic potential. On the basis of their CD16 and CD56 expression patterns, marmoset NK cells can be classified into three subpopulations: CD16(+) CD56(-), CD16(-) CD56(+) and CD16(-) CD56(-) cells. NKG2D expression on marmoset CD16(+) CD56(-) and CD16(-) CD56(+) splenocytes was confirmed using an NKG2D ligand composed of an MHC class I chain-related molecule A (MICA)-Fc fusion protein. When marmoset splenocytes were cultured with IL-2 for 4 days, NKG2D expression was retained on CD16(+) CD56(-) and CD16(-) CD56(+). In addition, CD16(+) CD56(+) cells within the marmoset NK population appeared which expressed NKG2D after IL-2 stimulation. IL-2-activated marmoset NK cells showed strong cytolytic activity against K562 target cells and target cells stably expressing MICA. Further, the cytolytic activity of marmoset splenocytes was significantly reduced after addition of MICA-Fc fusion protein. Thus, NKG2D functions as an activating receptor on marmoset NK cells that possesses cytotoxic potential, and phenotypic profiles of marmoset NK cell subpopulations are similar to those seen in humans.

  20. Histopathological characterization of renal tubular and interstitial changes in 5/6 nephrectomized marmoset monkeys (Callithrix jacchus).

    PubMed

    Suzuki, Yui; Yamaguchi, Itaru; Myojo, Kensuke; Kimoto, Naoya; Imaizumi, Minami; Takada, Chie; Sanada, Hiroko; Takaba, Katsumi; Yamate, Jyoji

    2015-01-01

    Common marmosets (Callithrix jacchus) have become a useful animal model, particularly for development of biopharmaceuticals. While various renal failure models have been established in rodents, there is currently no acceptable model in marmosets. We analyzed the damaged renal tubules and tubulointerstitial changes (inflammation and fibrosis) of 5/6 nephrectomized (Nx) common marmosets by histopathological/immunohistochemical methods, and compared these findings to those in 5/6 Nx SD rats. In Nx marmosets and rats sacrificed at 5 and 13 weeks after Nx, variously dilated and atrophied renal tubules were seen in the cortex in common; however, the epithelial proliferating activity was much less in Nx marmosets. Furthermore, the degrees of inflammation and fibrosis seen in the affected cortex were more severe and massive in Nx marmosets with time-dependent increase. Interestingly, inflammation in Nx marmosets, of which degree was less in Nx rats, consisted of a large number of CD3-positive T cells and CD20-positive B cells (occasionally forming follicles), and a few CD68-positive macrophages. Based on these findings, lymphocytes might contribute to the progressive renal lesions in Nx marmosets. Fibrotic areas in Nx marmosets comprised myofibroblasts expressing vimentin and α-smooth muscle actin (α-SMA), whereas along with vimentin and α-SMA expressions, desmin was expressed in myofibroblasts in Nx rats. This study shows that there are some differences in renal lesions induced by Nx between marmosets and rats, which would provide useful, base-line information for pharmacology and toxicology studies using Nx marmosets.

  1. Analysis of bipolar and amacrine populations in marmoset retina.

    PubMed

    Weltzien, Felix; Percival, Kumiko A; Martin, Paul R; Grünert, Ulrike

    2015-02-01

    About 15 parallel ganglion cell pathways transmit visual signals to the brain, but the interneuron (bipolar and amacrine) populations providing input to ganglion cells remain poorly understood in primate retina. We carried out a quantitative analysis of the inner nuclear layer in the retina of the marmoset (Callithrix jacchus). Vertical Vibratome sections along the horizontal meridian were processed with immunohistochemical markers. Image stacks were taken with a confocal microscope, and densities of cell populations were determined. The density of flat midget bipolar cells fell from 15,746 cells/mm(2) at 1 mm (8 deg) to 7,827 cells/mm(2) at 3 mm (25 deg). The rod bipolar cell density fell from 8,640 cells/mm(2) at 1 mm to 4,278 cells/mm(2) at 3 mm, but the ratio of the two bipolar cell types did not change with eccentricity. The amacrine cell density ranged from 30,000 cells/mm(2) at 8 deg to less than 15,000 cells/mm(2) at 25 deg, but throughout the retina, the ratio of glycinergic to γ-aminobutyric acid (GABA)ergic to amacrine cells remained relatively constant. The fractions of rod bipolar, cone bipolar, amacrine, Müller, and horizontal cells of all cells in the inner nuclear layer were comparable in central and peripheral retina. Marmosets had lower proportions of midget bipolar and rod bipolar in comparison with macaque. These differences were correlated with differences in rod and cone densities between the two species and did not reflect fundamental differences in the wiring between the two species.

  2. Metabolic Dysregulation in Hepacivirus Infection of Common Marmosets (Callithrix jacchus)

    PubMed Central

    Manickam, Cordelia; Wachtman, Lynn; Martinot, Amanda J.; Giavedoni, Luis D.; Reeves, R. Keith

    2017-01-01

    Chronic hepatitis C has been associated with metabolic syndrome that includes insulin resistance, hepatic steatosis and obesity. These metabolic aberrations are risk factors for disease severity and treatment outcome in infected patients. Experimental infection of marmosets with GBV-B serves as a tangible, small animal model for human HCV infection, and while virology and pathology are well described, a full investigation of clinical disease and the metabolic milieu is lacking. In this study six marmosets were infected intravenously with GBV-B and changes in hematologic, serum biochemical and plasma metabolic measures were investigated over the duration of infection. Infected animals exhibited signs of lymphocytopenia, but platelet and RBC counts were generally stable or even increased. Although most animals showed a transient decline in blood glucose, infection resulted in several fold increases in plasma insulin, glucagon and glucagon-like peptide 1 (GLP-1). All infected animals experienced transient weight loss within the first 28 days of infection, but also became hypertriglyceridemic and had up to 10-fold increases in adipocytokines such as resistin and plasminogen activator inhibitor 1 (PAI-1). In liver, moderate to severe cytoplasmic changes associated with steatotic changes was observed microscopically at 168 days post infection. Collectively, these results suggest that GBV-B infection is accompanied by hematologic, biochemical and metabolic abnormalities that could lead to obesity, diabetes, thrombosis and atherosclerosis, even after virus has been cleared. Our findings mirror those found in HCV patients, suggesting that metabolic syndrome could be conserved among hepaciviruses, and both mechanistic and interventional studies for treating HCV-induced metabolic complications could be evaluated in this animal model. PMID:28085952

  3. Temporal bone characterization and cochlear implant feasibility in the common marmoset (Callithrix jacchus).

    PubMed

    Johnson, Luke A; Della Santina, Charles C; Wang, Xiaoqin

    2012-08-01

    The marmoset (Callithrix jacchus) is a valuable non-human primate model for studying behavioral and neural mechanisms related to vocal communication. It is also well suited for investigating neural mechanisms related to cochlear implants. The purpose of this study was to characterize marmoset temporal bone anatomy and investigate the feasibility of implanting a multi-channel intracochlear electrode into the marmoset scala tympani. Micro computed tomography (microCT) was used to create high-resolution images of marmoset temporal bones. Cochlear fluid spaces, middle ear ossicles, semicircular canals and the surrounding temporal bone were reconstructed in three-dimensional space. Our results show that the marmoset cochlea is ∼16.5 mm in length and has ∼2.8 turns. The cross-sectional area of the scala tympani is greatest (∼0.8 mm(2)) at ∼1.75 mm from the base of the scala, reduces to ∼0.4 mm(2) at 5 mm from the base, and decreases at a constant rate for the remaining length. Interestingly, this length-area profile, when scaled 2.5 times, is similar to the scala tympani of the human cochlea. Given these dimensions, a compatible multi-channel implant electrode was identified. In a cadaveric specimen, this electrode was inserted ¾ turn into the scala tympani through a cochleostomy at ∼1 mm apical to the round window. The depth of the most apical electrode band was ∼8 mm. Our study provides detailed structural anatomy data for the middle and inner ear of the marmoset, and suggests the potential of the marmoset as a new non-human primate model for cochlear implant research.

  4. "What's wrong with my monkey?" Ethical perspectives on germline transgenesis in marmosets.

    PubMed

    Olsson, I Anna S; Sandøe, Peter

    2010-04-01

    The birth of the first transgenic primate to have inherited a transgene from its parents opens the possibility to set up transgenic marmoset colonies, as these monkeys are small and relatively easy to keep and breed in research facilities. The prospect of transgenic marmoset models of human disease, readily available in the way that transgenic laboratory mice are currently, prompts excitement in the scientific community; but the idea of monkeys being bred to carry diseases is also contentious. We structure an ethical analysis of the transgenic marmoset case around three questions: whether it is acceptable to use animals as models of human disease; whether it is acceptable to genetically modify animals; and whether these animals' being monkeys makes a difference. The analysis considers the prospect of transgenic marmoset studies coming to replace transgenic mouse studies and lesion studies in marmosets in some areas of research. The mainstream, broadly utilitarian view of animal research suggests that such a transition will not give rise to greater ethical problems than those presently faced. It can be argued that using marmosets rather than mice will not result in more animal suffering, and that the benefits of research will improve with a move to a species more similar in phylogenetic terms to humans. The biological and social proximity of monkeys and humans may also benefit the animals by making it easier for scientists and caretakers to recognize signs of suffering and increasing the human motivation to limit it. The animal welfare and research impacts of the transition to marmoset use will depend very much on the extent to which researchers take these issues seriously and seek to minimize animal harm and optimize human benefit.

  5. Simulation of the Inferior Mirage

    ERIC Educational Resources Information Center

    Branca, Mario

    2010-01-01

    A mirage can occur when a continuous variation in the refractive index of the air causes light rays to follow a curved path. As a result, the image we see is displaced from the location of the object. If the image appears higher in the air than the object, it is called a "superior" mirage, while if it appears lower it is called an "inferior"…

  6. Vocalizations associated with anxiety and fear in the common marmoset (Callithrix jacchus).

    PubMed

    Kato, Yoko; Gokan, Hayato; Oh-Nishi, Arata; Suhara, Tetsuya; Watanabe, Shigeru; Minamimoto, Takafumi

    2014-12-15

    Vocalizations of common marmoset (Callithrix jacchus) were examined under experimental situations related to fear or anxiety. When marmosets were isolated in an unfamiliar environment, they frequently vocalized "tsik-egg" calls, which were the combination calls of 'tsik' followed by several 'egg'. Tsik-egg calls were also observed after treatment with the anxiogenic drug FG-7142 (20mg/kg, sc). In contrast, when marmosets were exposed to predatory stimuli as fear-evoking situations, they frequently vocalized tsik solo calls as well as tsik-egg calls. These results suggest that marmosets dissociate the vocalization of tsik-egg and tsik calls under conditions related to fear/anxiety; tsik-egg solo vocalizations were emitted under anxiety-related conditions (e.g., isolation and anxiogenic drug treatment), whereas a mixed vocalization of tsik-egg and tsik was emitted when confronted with fear-provoking stimuli (i.e., threatening predatory stimuli). Tsik-egg call with/without tsik can be used as a specific vocal index of fear/anxiety in marmosets, which allows us to understand the neural mechanism of negative emotions in primate.

  7. Measurement of absolute auditory thresholds in the common marmoset (Callithrix jacchus).

    PubMed

    Osmanski, Michael S; Wang, Xiaoqin

    2011-07-01

    The common marmoset is a small, arboreal, New World primate that has emerged as a promising non-human model system in auditory neuroscience. A complete understanding of the neuroethology of auditory processing in marmosets will include behavioral work examining how sounds are perceived by these animals. However, there have been few studies of the marmoset's hearing and perceptual abilities and the audiogram of this species has not been measured using modern psychophysical methods. The present experiment pairs psychophysics with an operant conditioning technique to examine perception of pure tone stimuli by marmosets using an active behavioral paradigm. Subjects were trained to lick at a feeding tube when they detected a sound. Correct responses provided access to a food reward. Pure tones of varying intensities were presented to subjects using the method of constant stimuli. Behavioral thresholds were calculated for each animal based on hit rate--threshold was defined by the tone intensity that the animal correctly identified 50% of the time. Results show that marmoset hearing is comparable to that of other New World monkeys, with a hearing range extending from about 125 Hz up to 36 kHz and a sensitivity peak around 7 kHz.

  8. Characterization of common marmoset (Callithrix jacchus) bone marrow-derived mesenchymal stem cells.

    PubMed

    Kanda, Akifumi; Sotomaru, Yusuke; Nobukiyo, Asako; Yamaoka, Emi; Hiyama, Eiso

    2013-01-01

    Mesenchymal stem cells (MSCs) could be useful for regenerative medicine because they can beharvested easily from the bone marrow of living donors and the cells can be differentiated into adipogenic, osteogenic, and chondrogenic lineages in vitro. To apply MSCs for the medical treatment of human diseases as regenerative medicine, detailed experimental characterization of the cells is required. Recently, a New World primate, the common marmoset (Callithrix jacchus), has been widely used as a new human disease model because of its ease of handling and breeding. Although common marmoset MSCs have been established and will be used in preclinical studies of regenerative medicine, the characteristics of these cells remain unclear. Aiming to characterize common marmoset MSCs further, we harvested common marmoset bone marrow-derived cells (cmBMDCs) from the femurs of newborn males. We revealed that the morphology of the cells was similar to common marmoset fibroblasts, and extracellular matrix components, such as gelatin and fibronectin, were effective for their proliferation and formation of colony-forming unit fibroblasts. Furthermore, we were able to differentiate cmBMDCs into adipocytes, osteocytes, and chondrocytes in vitro, and they expressed the MSCmarkers CD44, CD73, CD90, and CD105, but their expression decreased with increasing passage number. The data demonstrate that cmBMDCs exhibit characteristics of MSCs and thus it would be beneficial to use these cells in preclinical studies.

  9. Bioavailability and efficacy of levofloxacin against Francisella tularensis in the common marmoset (Callithrix jacchus).

    PubMed

    Nelson, Michelle; Lever, Mark S; Dean, Rachel E; Pearce, Peter C; Stevens, Daniel J; Simpson, Andrew J H

    2010-09-01

    Pharmacokinetic and efficacy studies with levofloxacin were performed in the common marmoset (Callithrix jacchus) model of inhalational tularemia. Plasma levofloxacin pharmacokinetics were determined in six animals in separate single-dose and multidose studies. Plasma drug concentrations were analyzed using liquid chromatography-tandem mass spectrometry-electrospray ionization. On day 7 of a twice-daily dosing regimen of 40 mg/kg, the levofloxacin half-life, maximum concentration, and area under the curve in marmoset plasma were 2.3 h, 20.9 microg/ml, and 81.4 microg/liter/h, respectively. An efficacy study was undertaken using eight treated and two untreated control animals. Marmosets were challenged with a mean of 1.5 x 10(2) CFU of Francisella tularensis by the airborne route. Treated animals were administered 16.5 mg/kg levofloxacin by mouth twice daily, based on the pharmacokinetic parameters, beginning 24 h after challenge. Control animals had a raised core body temperature by 57 h postchallenge and died from infection by day 5. All of the other animals survived, remained afebrile, and lacked overt clinical signs. No bacteria were recovered from the organs of these animals at postmortem after culling at day 24 postchallenge. In conclusion, postexposure prophylaxis with orally administered levofloxacin was efficacious against acute inhalational tularemia in the common marmoset. The marmoset appears to be an appropriate animal model for the evaluation of postexposure therapies.

  10. Characterization of two distinct early post-entry blocks to HIV-1 in common marmoset lymphocytes

    PubMed Central

    Pacheco, Beatriz; Menéndez-Arias, Luis; Sodroski, Joseph

    2016-01-01

    In nature, primate lentiviruses infect humans and several Old World monkeys and apes. However, to date, lentiviruses infecting New World monkeys have not been described. We studied the susceptibility of common marmoset cells to HIV-1 infection and observed the presence of post-entry blocks to the early phase of HIV-1 infection in peripheral blood lymphocytes (PBLs) and a B lymphocytic cell line (B-LCL). The blocks present in these cells are dominant and phenotypically different from each other. In PBLs, the block occurs at the level of reverse transcription, reducing the accumulation of early and late transcripts, similar to the block imposed by TRIM5α. However, we have found that marmoset TRIM5α does not block HIV-1. In contrast, the restriction factor present in B-LCLs blocks HIV-1 replication at a later step, after nuclear entry, and inhibits integration. Additionally, we have identified an HIV-1 capsid mutant, N74D, that is able to escape the restriction in the marmoset B-LCLs. Our results suggest that the factors responsible for the blocks present in marmoset PBLs and B-LCLs are different. We propose the existence of at least two new restriction factors able to block HIV-1 infection in marmoset lymphocytes. PMID:27876849

  11. Chronic supranigral infusion of BDNF in normal and MPTP-treated common marmosets.

    PubMed

    Pearce, R K; Costa, S; Jenner, P; Marsden, C D

    1999-01-01

    BDNF or vehicle were administered by unilateral supranigral infusion in normal and chronically lesioned MPTP-treated common marmosets (Callithrix jacchus) for four weeks and locomotor activity, disability and response to apomorphine were assessed with nigral TH, GFAP and GAD immunoreactivity and striatal [3H]mazindol autoradiography. Selective contraversive orientation and ipsilateral neglect evolved in MPTP-treated marmosets receiving BDNF with no significant difference in disability or locomotor activity when compared to the vehicle-infused group. Apomorphine produced an ipsiversive rotational bias in BDNF-treated animals. In normal animals infused with BDNF contralateral neglect, ipsiversive turning, postural instability and ataxia rapidly evolved. In MPTP-treated marmosets BDNF caused increased ipsilateral striatal [3H]mazindol binding with increased somatic size and staining intensity in GAD-immunoreactive cells and a 10-20% loss of nigral TH-immunoreactive cells with increased GFAP staining. In normal common marmosets, both vehicle and BDNF infusion decreased nigral TH-immunoreactivity. Chronic supranigral infusion of BDNF alters motor behaviour and spatial attention in MPTP-treated marmosets which may reflect altered function in residual nigral dopaminergic neurons and brainstem GABAergic neurons and in normal animals produces behavioural and histological signs of nigrostriatal hypofunction.

  12. In situ hybridization study of CYP2D mRNA in the common marmoset brain

    PubMed Central

    Shimamoto, Yoshinori; Niimi, Kimie; Kitamura, Hiroshi; Tsubakishita, Sae; Takahashi, Eiki

    2016-01-01

    The common marmoset is a non-human primate that has increasingly employed in the biomedical research including the fields of neuroscience and behavioral studies. Cytochrome P450 (CYP) 2D has been speculated to be involved in psycho-neurologic actions in the human brain. In the present study, to clarify the role of CYP2D in the marmoset brain, we investigated the expression patterns of CYP2D mRNA in the brain using in situ hybridization (ISH). In addition, to identify the gene location of CYP2D19, a well-studied CYP2D isoform in the common marmoset, a fluorescence in situ hybridization (FISH) study was performed. Consistent with findings for the human brain, CYP2D mRNA was localized in the neuronal cells of different brain regions; e.g., the cerebral cortex, hippocampus, substantia nigra, and cerebellum. FISH analysis showed that the CYP2D19 gene was located on chromosome 1q, which is homologous to human chromosome 22 on which the CYP2D6 gene exists. These results suggest that CYP2D in the marmoset brain may play the same role as human CYP2D6 in terms of brain actions, and that the CYP2D19 gene is conserved in a syntenic manner. Taken together, these findings suggest that the common marmoset is a useful model for studying psychiatric disorders related to CYP2D dysfunction in the brain. PMID:27356856

  13. Characterization of plasma thiol redox potential in a common marmoset model of aging.

    PubMed

    Roede, James R; Uppal, Karan; Liang, Yongliang; Promislow, Daniel E L; Wachtman, Lynn M; Jones, Dean P

    2013-01-01

    Due to its short lifespan, ease of use and age-related pathologies that mirror those observed in humans, the common marmoset (Callithrix jacchus) is poised to become a standard nonhuman primate model of aging. Blood and extracellular fluid possess two major thiol-dependent redox nodes involving cysteine (Cys), cystine (CySS), glutathione (GSH) and glutathione disulfide (GSSG). Alteration in these plasma redox nodes significantly affects cellular physiology, and oxidation of the plasma Cys/CySS redox potential (E hCySS) is associated with aging and disease risk in humans. The purpose of this study was to determine age-related changes in plasma redox metabolites and corresponding redox potentials (E h) to further validate the marmoset as a nonhuman primate model of aging. We measured plasma thiol redox states in marmosets and used existing human data with multivariate adaptive regression splines (MARS) to model the relationships between age and redox metabolites. A classification accuracy of 70.2% and an AUC of 0.703 were achieved using the MARS model built from the marmoset redox data to classify the human samples as young or old. These results show that common marmosets provide a useful model for thiol redox biology of aging.

  14. The Zona Incerta Regulates Communication between the Superior Colliculus and the Posteromedial Thalamus: Implications for Thalamic Interactions with the Dorsolateral Striatum

    PubMed Central

    Watson, Glenn D.R.; Smith, Jared B.

    2015-01-01

    There is uncertainty concerning the circuit connections by which the superior colliculus interacts with the basal ganglia. To address this issue, anterograde and retrograde tracers were placed, respectively, into the superior colliculus and globus pallidus of Sprague-Dawley rats. In this two-tracer experiment, the projections from the superior colliculus terminated densely in the ventral zona incerta (ZIv), but did not overlap the labeled neurons observed in the subthalamic nucleus. In cases in which anterograde and retrograde tracers were placed, respectively, in sensory-responsive sites in the superior colliculus and posteromedial (POm) thalamus, the labeled projections from superior colliculus innervated the ZIv regions that contained the labeled neurons that project to POm. We also confirmed this colliculo–incertal–POm pathway by depositing a mixture of retrograde and anterograde tracers at focal sites in ZIv to reveal retrogradely labeled neurons in superior colliculus and anterogradely labeled terminals in POm. When combined with retrograde tracer injections in POm, immunohistochemical processing proved that most ZIv projections to POm are GABAergic. Consistent with these findings, direct stimulation of superior colliculus evoked neuronal excitation in ZIv and caused inhibition of spontaneous activity in POm. Collectively, these results indicate that superior colliculus can activate the inhibitory projections from ZIv to the POm. This is significant because it suggests that the superior colliculus could suppress the interactions between POm and the dorsolateral striatum, presumably to halt ongoing behaviors so that more adaptive motor actions are selected in response to unexpected sensory events. SIGNIFICANCE STATEMENT By demonstrating that the zona incerta regulates communication between the superior colliculus and the posteromedial thalamus, we have uncovered a circuit that partly explains the behavioral changes that occur in response to unexpected

  15. Trypanosome infections in the marmoset (Saguinus geoffroyi) from the Panama Canal Zone.

    PubMed

    Sousa, O E; Dawson, G A

    1976-05-01

    From August 1973 through May 1974 a total of 148 marmosets (Saguinus geoffroyi) were examined for blood parasites. Parasites were detected in 93.2% of the monkeys. Direct examination of blood revealed 82.4% infected with trypanosomes; Trypanosoma cruzi was seen in 1.3% of the animals examined T. minasense in 52.7% and T. rangeli in 25%. However, the use of several diagnostic tests (direct microscopic examination, hemoculture, xenodiagnosis, and animal inoculation) in 15 marmosets revealed T. cruzi in 40%, T. rangeli in 93% and T. minasense in 87%. The high rate of infection among marmosets suggests that they are important natural hosts of T. cruzi and T. rangeli in the Panama Canal Zone.

  16. The marmoset as a model for the study of primate parental behavior.

    PubMed

    Saito, Atsuko

    2015-04-01

    Parental behavior is important for the development of mammalian offspring. Research on the mechanisms underlying parental behavior, however, has been largely restricted to rodent models. As a consequence, although research on parent-infant relationships has been conducted using macaque monkeys for more than half a century, little is known about the neural mechanisms and brain regions associated with such behaviors in primates. This article reviews parental behavior and its endocrinological mechanisms in marmosets and tamarins, both cooperative breeders in the callitrichid family, and compares these findings with studies of macaque monkeys. The paper examines the similarities and differences between marmosets and humans, and suggests the possibility that marmosets can be a model for future studies of the neural underpinnings and endocrinology underlying human parental behavior.

  17. Elucidating coding of taste qualities with the taste modifier miraculin in the common marmoset.

    PubMed

    Danilova, Vicktoria; Hellekant, Göran

    2006-01-30

    To investigate the relationships between the activity in different types of taste fibers and the gustatory behavior in marmosets, we used the taste modifier miraculin, which in humans adds a sweet taste quality to sour stimuli. In behavioral experiments, we measured marmosets' consumption of acids before and after tongue application of miraculin. In electrophysiological experiments responses of single taste fibers in chorda tympani and glossopharyngeal nerves were recorded before and after tongue application of miraculin. We found that after miraculin marmosets consumed acids more readily. Taste nerve recordings showed that after miraculin taste fibers which usually respond only to sweeteners, S fibers, became responsive to acids. These results further support our hypothesis that the activity in S fibers is translated into a hedonically positive behavioral response.

  18. An analysis of the association of gastroenteric lesions with chronic wasting syndrome of marmosets.

    PubMed

    Chalifoux, L V; Bronson, R T; Escajadillo, A; McKenna, S

    1982-09-01

    Retrospective pathology data from necropsies of 162 marmosets, Saguinus oedipus, were studied to determine the nature of chronic wasting syndrome, a poorly defined entity associated with a high mortality rate in many marmoset colonies. Paraffin sections of the gastroenteric organs of 116 of these marmosets were re-examined in detail; lesions were identified, quantitated, and analyzed with a method of multiple chi-square testing for possible associations between findings. Five distinct disease entities were identified: prosthenorchosis, amebiasis, paramyxovirus disease, sepsis, and chronic colitis. Lesions of several of these often occurred in the same monkey, and all but the first were associated with cachexia. Lesions of chronic colitis were crypt abscesses, mononuclear and polymorphonuclear infiltration of the lamina propria, epithelial cell atypia, karyorrhexis, and lymphoid hyperplasia. The cause of chronic colitis was not identified, nor was any explanation found for weight loss and increased susceptibility to disease.

  19. INTERDEPENDENT SUPERIORITY AND INFERIORITY FEELINGS

    PubMed Central

    Ingham, Harrington V.

    1949-01-01

    It is postulated that in neurotic persons who have unrealistic feelings of superiority and inferiority the two are interdependent. This is a departure from the concept of previous observers that either one or the other is primary and its opposite is overcompensation. The author postulates considerable parallelism, with equal importance for each. He submits that the neurotic person forms two logic-resistant compartments for the two opposed self-estimates and that treatment which makes inroads of logic upon one compartment, simultaneously does so upon the other. Two examples are briefly reported. The neurotic benefits sought in exaggeration of capability are the same as those sought in insistence upon inferiority: Presumption of superiority at once bids for approbation and delivers the subject from the need to prove himself worthy of it in dreaded competition; exaggeration of incapability baits sympathy and makes competition unnecessary because failure is conceded. Some of the characteristics of abnormal self-estimates that distinguish them from normal are: Preoccupation with self, resistance to logical explanation of personality problems, inconsistency in reasons for beliefs in adequacy on the one hand and inadequacy on the other, unreality, rationalization of faults, and difficulty and vacillation in the selection of adequate goals. PMID:15390573

  20. Colonization of collagen scaffolds by adipocytes derived from mesenchymal stem cells of the common marmoset monkey

    SciTech Connect

    Bernemann, Inga; Mueller, Thomas; Blasczyk, Rainer; Glasmacher, Birgit; Hofmann, Nicola

    2011-07-29

    Highlights: {yields} Marmoset bone marrow-derived MSCs differentiate in suspension into adipogenic, osteogenic and chondrogenic lineages. {yields} Marmoset MSCs integrate in collagen type I scaffolds and differentiate excellently into adipogenic cells. {yields} Common marmoset monkey is a suitable model for soft tissue engineering in human regenerative medicine. -- Abstract: In regenerative medicine, human cell replacement therapy offers great potential, especially by cell types differentiated from immunologically and ethically unproblematic mesenchymal stem cells (MSCs). In terms of an appropriate carrier material, collagen scaffolds with homogeneous pore size of 65 {mu}m were optimal for cell seeding and cultivating. However, before clinical application and transplantation of MSC-derived cells in scaffolds, the safety and efficiency, but also possible interference in differentiation due to the material must be preclinically tested. The common marmoset monkey (Callithrix jacchus) is a preferable non-human primate animal model for this aim due to its genetic and physiological similarities to the human. Marmoset bone marrow-derived MSCs were successfully isolated, cultured and differentiated in suspension into adipogenic, osteogenic and chondrogenic lineages by defined factors. The differentiation capability could be determined by FACS. Specific marker genes for all three cell types could be detected by RT-PCR. Furthermore, MSCs seeded on collagen I scaffolds differentiated in adipogenic lineage showed after 28 days of differentiation high cell viability and homogenous distribution on the material which was validated by calcein AM and EthD staining. As proof of adipogenic cells, the intracellular lipid vesicles in the cells were stained with Oil Red O. The generation of fat vacuoles was visibly extensive distinguishable and furthermore determined on the molecular level by expression of specific marker genes. The results of the study proved both the differential

  1. Comparative pathology of rhesus macaque and common marmoset animal models with Middle East respiratory syndrome coronavirus

    PubMed Central

    Yu, Pin; Xu, Yanfeng; Deng, Wei; Bao, Linlin; Huang, Lan; Xu, Yuhuan; Yao, Yanfeng; Qin, Chuan

    2017-01-01

    Middle East respiratory syndrome (MERS), which is caused by a newly discovered coronavirus (CoV), has recently emerged. It causes severe viral pneumonia and is associated with a high fatality rate. However, the pathogenesis, comparative pathology and inflammatory cell response of rhesus macaques and common marmosets experimentally infected with MERS-CoV are unknown. We describe the histopathological, immunohistochemical, and ultrastructural findings from rhesus macaque and common marmoset animal models of MERS-CoV infection. The main histopathological findings in the lungs of rhesus macaques and common marmosets were varying degrees of pulmonary lesions, including pneumonia, pulmonary oedema, haemorrhage, degeneration and necrosis of the pneumocytes and bronchial epithelial cells, and inflammatory cell infiltration. The characteristic inflammatory cells in the lungs of rhesus macaques and common marmosets were eosinophils and neutrophils, respectively. Based on these observations, the lungs of rhesus macaques and common marmosets appeared to develop chronic and acute pneumonia, respectively. MERS-CoV antigens and viral RNA were identified in type I and II pneumocytes, alveolar macrophages and bronchial epithelial cells, and ultrastructural observations showed that viral protein was found in type II pneumocytes and inflammatory cells in both species. Correspondingly, the entry receptor DDP4 was found in type I and II pneumocytes, bronchial epithelial cells, and alveolar macrophages. The rhesus macaque and common marmoset animal models of MERS-CoV can be used as a tool to mimic the oncome of MERS-CoV infections in humans. These models can help to provide a better understanding of the pathogenic process of this virus and to develop effective medications and prophylactic treatments. PMID:28234937

  2. Digestive efficiency mediated by serum calcium predicts bone mineral density in the common marmoset (Callithrix jacchus).

    PubMed

    Jarcho, Michael R; Power, Michael L; Layne-Colon, Donna G; Tardif, Suzette D

    2013-02-01

    Two health problems have plagued captive common marmoset (Callithrix jacchus) colonies for nearly as long as those colonies have existed: marmoset wasting syndrome and metabolic bone disease. While marmoset wasting syndrome is explicitly linked to nutrient malabsorption, we propose metabolic bone disease is also linked to nutrient malabsorption, although indirectly. If animals experience negative nutrient balance chronically, critical nutrients may be taken from mineral stores such as the skeleton, thus leaving those stores depleted. We indirectly tested this prediction through an initial investigation of digestive efficiency, as measured by apparent energy digestibility, and serum parameters known to play a part in metabolic bone mineral density of captive common marmoset monkeys. In our initial study on 12 clinically healthy animals, we found a wide range of digestive efficiencies, and subjects with lower digestive efficiency had lower serum vitamin D despite having higher food intakes. A second experiment on 23 subjects including several with suspected bone disease was undertaken to measure digestive and serum parameters, with the addition of a measure of bone mineral density by dual-energy X-ray absorptiometry (DEXA). Bone mineral density was positively associated with apparent digestibility of energy, vitamin D, and serum calcium. Further, digestive efficiency was found to predict bone mineral density when mediated by serum calcium. These data indicate that a poor ability to digest and absorb nutrients leads to calcium and vitamin D insufficiency. Vitamin D absorption may be particularly critical for indoor-housed animals, as opposed to animals in a more natural setting, because vitamin D that would otherwise be synthesized via exposure to sunlight must be absorbed from their diet. If malabsorption persists, metabolic bone disease is a possible consequence in common marmosets. These findings support our hypothesis that both wasting syndrome and metabolic bone

  3. Ocular wavefront aberrations in the common marmoset Callithrix jacchus: effects of age and refractive error.

    PubMed

    Coletta, Nancy J; Marcos, Susana; Troilo, David

    2010-11-23

    The common marmoset, Callithrix jacchus, is a primate model for emmetropization studies. The refractive development of the marmoset eye depends on visual experience, so knowledge of the optical quality of the eye is valuable. We report on the wavefront aberrations of the marmoset eye, measured with a clinical Hartmann-Shack aberrometer (COAS, AMO Wavefront Sciences). Aberrations were measured on both eyes of 23 marmosets whose ages ranged from 18 to 452 days. Twenty-one of the subjects were members of studies of emmetropization and accommodation, and two were untreated normal subjects. Eleven of the 21 experimental subjects had worn monocular diffusers and 10 had worn binocular spectacle lenses of equal power. Monocular deprivation or lens rearing began at about 45 days of age and ended at about 108 days of age. All refractions and aberration measures were performed while the eyes were cyclopleged; most aberration measures were made while subjects were awake, but some control measurements were performed under anesthesia. Wavefront error was expressed as a seventh-order Zernike polynomial expansion, using the Optical Society of America's naming convention. Aberrations in young marmosets decreased up to about 100 days of age, after which the higher-order RMS aberration leveled off to about 0.10 μm over a 3 mm diameter pupil. Higher-order aberrations were 1.8 times greater when the subjects were under general anesthesia than when they were awake. Young marmoset eyes were characterized by negative spherical aberration. Form-deprived eyes of the monocular deprivation animals had greater wavefront aberrations than their fellow untreated eyes, particularly for asymmetric aberrations in the odd-numbered Zernike orders. Both lens-treated and form-deprived eyes showed similar significant increases in Z3(-3) trefoil aberration, suggesting the increase in trefoil may be related to factors that do not involve visual feedback.

  4. The common marmoset: a new world primate species with limited Mhc class II variability.

    PubMed

    Antunes, S G; de Groot, N G; Brok, H; Doxiadis, G; Menezes, A A; Otting, N; Bontrop, R E

    1998-09-29

    The common marmoset (Callithrix jacchus) is a New World primate species that is highly susceptible to fatal infections caused by various strains of bacteria. We present here a first step in the molecular characterization of the common marmoset's Mhc class II genes by nucleotide sequence analysis of the polymorphic exon 2 segments. For this study, genetic material was obtained from animals bred in captivity as well as in the wild. The results demonstrate that the common marmoset has, like other primates, apparently functional Mhc-DR and -DQ regions, but the Mhc-DP region has been inactivated. At the -DR and -DQ loci, only a limited number of lineages were detected. On the basis of the number of alleles found, the -DQA and -B loci appear to be oligomorphic, whereas only a moderate degree of polymorphism was observed for two of three Mhc-DRB loci. The contact residues in the peptide-binding site of the Caja-DRB1*03 lineage members are highly conserved, whereas the -DRB*W16 lineage members show more divergence in that respect. The latter locus encodes five oligomorphic lineages whose members are not observed in any other primate species studied, suggesting rapid evolution, as illustrated by frequent exchange of polymorphic motifs. All common marmosets tested were found to share one monomorphic type of Caja-DRB*W12 allele probably encoded by a separate locus. Common marmosets apparently lack haplotype polymorphism because the number of Caja-DRB loci present per haplotype appears to be constant. Despite this, however, an unexpectedly high number of allelic combinations are observed at the haplotypic level, suggesting that Caja-DRB alleles are exchanged frequently between chromosomes by recombination, promoting an optimal distribution of limited Mhc polymorphisms among individuals of a given population. This peculiar genetic make up, in combination with the limited variability of the major histocompatability complex class II repertoire, may contribute to the common

  5. Inequity aversion strategies between marmosets are influenced by partner familiarity and sex but not oxytocin

    PubMed Central

    Mustoe, Aaryn C.; Harnisch, April M.; Hochfelder, Benjamin; Cavanaugh, Jon; French, Jeffrey A

    2016-01-01

    Cooperation among individuals depends, in large part, on a sense of fairness. Many cooperating non-human primates (NHPs) show inequity aversion, (i.e., negative responses to unequal outcomes), and these responses toward inequity likely evolved as a means to preserve the advantages of cooperative relationships. However, marmosets (Callithrix spp.) tend to show little or no inequity aversion, despite the high occurrence of prosociality and cooperative-breeding in callitrichid monkeys. Oxytocin [OXT] has been implicated in a wide variety of social processes, but little is known about whether OXT modulates inequity aversion toward others. We used a tray pulling task to evaluate whether marmosets would donate superior rewards to their long-term pairmate or an opposite-sex stranger following OXT, OXT antagonist, and saline treatments. We found that marmosets show inequity aversion, and this inequity aversion is socially- and sex-specific. Male marmosets show inequity aversion toward their pairmates but not strangers, and female marmosets do not show inequity aversion. OXT treatments did not significantly influence inequity aversion in marmosets. While OXT may modulate prosocial preferences, the motivations underlying cooperative relationships, such as inequity aversion, are multifaceted. More research is needed to evaluate the evolutionary origins, biological processes, and social contexts that influence complex phenotypes like inequity aversion. Inequity aversion can differ within species in important and distinct ways including between individuals who do and do not share a cooperative relationship. Overall, these findings support the view that inequity aversion is an important behavioural strategy for the maintenance of cooperative relationships. PMID:27019514

  6. Sex identification using the ZFX and ZFY genes in common marmosets (Callithrix jacchus).

    PubMed

    Takabayashi, Shuji; Katoh, Hideki

    2011-01-01

    We investigated sex determination via the ZFX and ZFY genes using PCR-RFLP in the common marmoset. We designed a novel primer set to detect ZFX and ZFY. A 483-bp band from the ZFX gene and a 471-bp band from the ZFY gene were amplified. Sequencing data of the products amplified from ZFX and ZFY showed the recognition sites of two restriction enzymes, DdeI and MseI, respectively. After digestion of the products using each enzyme, we found that the band patterns between females and males were different. PCR-based sex identification might provide a tool for further breeding studies and experimental embryological studies using marmosets.

  7. HIV-1 Adapts To Replicate in Cells Expressing Common Marmoset APOBEC3G and BST2

    PubMed Central

    Fernández-Oliva, Alberto; Finzi, Andrés; Haim, Hillel; Menéndez-Arias, Luis; Sodroski, Joseph

    2015-01-01

    ABSTRACT Previous studies have shown that a major block to HIV-1 replication in common marmosets operates at the level of viral entry and that this block can be overcome by adaptation of the virus in tissue-cultured cells. However, our current studies indicate that HIV-1 encounters additional postentry blocks in common marmoset peripheral blood mononuclear cells. Here, we show that the common marmoset APOBEC3G (A3G) and BST2 proteins block HIV-1 in cell cultures. Using a directed-evolution method that takes advantage of the natural ability of HIV-1 to mutate during replication, we have been able to overcome these blocks in tissue-cultured cells. In the adapted viruses, specific changes were observed in gag, vif, env, and nef. The contribution of these changes to virus replication in the presence of the A3G and BST2 restriction factors was studied. We found that certain amino acid changes in Vif and Env that arise during adaptation to marmoset A3G and BST2 allow the virus to replicate in the presence of these restriction factors. The changes in Vif reduce expression levels and encapsidation of marmoset APOBEC3G, while the changes in Env increase viral fitness and discretely favor cell-to-cell transmission of the virus, allowing viral escape from these restriction factors. IMPORTANCE HIV-1 can infect only humans and chimpanzees. The main reason for this narrow tropism is the presence in many species of dominant-acting factors, known as restriction factors, that block viral replication in a species-specific way. We have been exploring the blocks to HIV-1 in common marmosets, with the ultimate goal of developing a new animal model of HIV-1 infection in these monkeys. In this study, we observed that common marmoset APOBEC3G and BST2, two known restriction factors, are able to block HIV-1 in cell cultures. We have adapted HIV-1 to replicate in the presence of these restriction factors and have characterized the mechanisms of escape. These studies can help in the

  8. A combined histological and MRI brain atlas of the common marmoset monkey, Callithrix jacchus

    PubMed Central

    Newman, John D.; Kenkel, William M.; Aronoff, Emily C.; Bock, Nicholas A.; Zametkin, Molly R.; Silva, Afonso C.

    2009-01-01

    The common marmoset, Callithrix jacchus, is of growing importance for research in neuroscience and related fields. In the present work, we describe a combined histological and magnetic resonance imaging (MRI) atlas constructed from the brains of two adult female marmosets. Histological sections were processed from Nissl staining and digitized to produce an atlas in a large format that facilitates visualization of structures with significant detail. Naming of identifiable brain structures was performed utilizing current terminology. The histological sections and a simplified schematic atlas are available online at http://udn.nichd.nih.gov/brainatlas_home.html. PMID:19744521

  9. Parturition Signaling by Visual Cues in Female Marmosets (Callithrix jacchus)

    PubMed Central

    Moreira, Laís Alves Antonio; de Oliveira, Danilo Gustavo Rodrigues; de Sousa, Maria Bernardete Cordeiro; Pessoa, Daniel Marques Almeida

    2015-01-01

    New World monkeys have polymorphic color vision, in which all males and some females are dichromats, while most females are trichromats. There is little consensus about which selective pressures fashioned primate color vision, although detection of food, mates and predators has been hypothesized. Behavioral evidence shows that males from different species of Neotropical primates seem to perceive the timing of female conception and gestation, although, no signals fulfilling this function have been identified. Therefore, we used visual models to test the hypothesis that female marmosets show chromatic and/or achromatic cues that may indicate the time of parturition for male and female conspecifics. By recording the reflectance spectra of female marmosets’ (Callithrix jacchus) sexual skin, and running chromatic and achromatic discrimination models, we found that both variables fluctuate during the weeks that precede and succeed parturition, forming “U” and inverted “U” patterns for chromatic and achromatic contrast, respectively. We suggest that variation in skin chroma and luminance might be used by female helpers and dominant females to identify the timing of birth, while achromatic variations may be used as clues by potential fathers to identify pregnancy stage in females and prepare for paternal burdens as well as to detect oestrus in the early post-partum period. PMID:26047350

  10. An Epstein–Barr-related herpesvirus from marmoset lymphomas

    PubMed Central

    Cho, Young-Gyu; Ramer, Jan; Rivailler, Pierre; Quink, Carol; Garber, Richard L.; Beier, David R.; Wang, Fred

    2001-01-01

    Epstein–Barr virus (EBV) is implicated in the development of human B cell lymphomas and carcinomas. Although related oncogenic herpesviruses were believed to be endemic only in Old World primate species, we now find these viruses to be endemic in New World primates. We have isolated a transforming, EBV-related virus from spontaneous B cell lymphomas of common marmosets (Callithrix jacchus). Sequencing of two-thirds of the genome reveals considerable divergence from the genomes of EBV and Old World primate EBV-related viruses, including differences in genes important for virus-induced cell growth transformation and pathogenesis. DNA related to the C. jacchus herpesvirus is frequently detected in squirrel monkey peripheral blood lymphocytes, indicating that persistent infection with EBV-related viruses is prevalent in both New World primate families. Understanding how these more divergent EBV-related viruses achieve similar biologic outcomes in their natural host is likely to provide important insights into EBV infection, B cell growth transformation, and oncogenesis. PMID:11158621

  11. Arousal dynamics drive vocal production in marmoset monkeys.

    PubMed

    Borjon, Jeremy I; Takahashi, Daniel Y; Cervantes, Diego C; Ghazanfar, Asif A

    2016-08-01

    Vocal production is the result of interacting cognitive and autonomic processes. Despite claims that changes in one interoceptive state (arousal) govern primate vocalizations, we know very little about how it influences their likelihood and timing. In this study we investigated the role of arousal during naturally occurring vocal production in marmoset monkeys. Throughout each session, naturally occurring contact calls are produced more quickly, and with greater probability, during higher levels of arousal, as measured by heart rate. On average, we observed a steady increase in heart rate 23 s before the production of a call. Following call production, there is a sharp and steep cardiac deceleration lasting ∼8 s. The dynamics of cardiac fluctuations around a vocalization cannot be completely predicted by the animal's respiration or movement. Moreover, the timing of vocal production was tightly correlated to the phase of a 0.1-Hz autonomic nervous system rhythm known as the Mayer wave. Finally, a compilation of the state space of arousal dynamics during vocalization illustrated that perturbations to the resting state space increase the likelihood of a call occurring. Together, these data suggest that arousal dynamics are critical for spontaneous primate vocal production, not only as a robust predictor of the likelihood of vocal onset but also as scaffolding on which behavior can unfold.

  12. Modeling the Minimal Newborn's Intersubjective Mind: The Visuotopic-Somatotopic Alignment Hypothesis in the Superior Colliculus

    PubMed Central

    Pitti, Alexandre; Kuniyoshi, Yasuo; Quoy, Mathias; Gaussier, Philippe

    2013-01-01

    The question whether newborns possess inborn social skills is a long debate in developmental psychology. Fetal behavioral and anatomical observations show evidences for the control of eye movements and facial behaviors during the third trimester of pregnancy whereas specific sub-cortical areas, like the superior colliculus (SC) and the striatum appear to be functionally mature to support these behaviors. These observations suggest that the newborn is potentially mature for developing minimal social skills. In this manuscript, we propose that the mechanism of sensory alignment observed in SC is particularly important for enabling the social skills observed at birth such as facial preference and facial mimicry. In a computational simulation of the maturing superior colliculus connected to a simulated facial tissue of a fetus, we model how the incoming tactile information is used to direct visual attention toward faces. We suggest that the unisensory superficial visual layer (eye-centered) and the deep somatopic layer (face-centered) in SC are combined into an intermediate layer for visuo-tactile integration and that multimodal alignment in this third layer allows newborns to have a sensitivity to configuration of eyes and mouth. We show that the visual and tactile maps align through a Hebbian learning stage and and strengthen their synaptic links from each other into the intermediate layer. It results that the global network produces some emergent properties such as sensitivity toward the spatial configuration of face-like patterns and the detection of eyes and mouth movement. PMID:23922718

  13. Neuroanatomical approaches of the tectum-reticular pathways and immunohistochemical evidence for serotonin-positive perikarya on neuronal substrates of the superior colliculus and periaqueductal gray matter involved in the elaboration of the defensive behavior and fear-induced analgesia.

    PubMed

    Coimbra, N C; De Oliveira, R; Freitas, R L; Ribeiro, S J; Borelli, K G; Pacagnella, R C; Moreira, J E; da Silva, L A; Melo, L L; Lunardi, L O; Brandão, M L

    2006-01-01

    Deep layers of the superior colliculus, the dorsal periaqueductal gray matter and the inferior colliculus are midbrain structures involved in the generation of defensive behavior and fear-induced anti-nociception. Local injections of the GABA(A) antagonist bicuculline into these structures have been used to produce this defense reaction. Serotonin is thought to be the main neurotransmitter to modulate such defense reaction in mammals. This study is the first attempt to employ immunohistochemical techniques to locate serotonergic cells in the same midbrain sites from where defense reaction is evoked by chemical stimulation with bicuculline. The blockade of GABA(A) receptors in the neural substrates of the dorsal mesencephalon was followed by vigorous defensive reactions and increased nociceptive thresholds. Light microscopy immunocytochemistry with streptavidin method was used for the localization of the putative cells of defensive behavior with antibodies to serotonin in the rat's midbrain. Neurons positive to serotonin were found in the midbrain sites where defensive reactions were evoked by microinjection of bicuculline. Serotonin was localized to somata and projections of the neural networks of the mesencephalic tectum. Immunohistochemical studies showed that the sites in which neuronal perikarya positive to serotonin were identified in intermediate and deep layers of the superior colliculus, and in the dorsal and ventral columns of the periaqueductal gray matter are the same which were activated during the generation of defense behaviors, such as alertness, freezing, and escape reactions, induced by bicuculline. These findings support the contention that serotonin and GABAergic neurons may act in concert in the modulation of defense reaction in the midbrain tectum. Our neuroanatomical findings indicate a direct neural pathway connecting the dorsal midbrain and monoaminergic nuclei of the descending pain inhibitory system, with profuse synaptic terminals mainly

  14. Postnatal alterations of GABA receptor profiles in the rat superior colliculus.

    PubMed

    Clark, S E; Garret, M; Platt, B

    2001-01-01

    Midbrain sections taken from Sprague-Dawley rats of varying ages within the first four postnatal weeks were used to determine, immunocytochemically, putative changes of GABA(A) receptor beta2/3 subunits, GABA(B) receptor (R1a and R1b splice variants), and GABA(C) receptor rho1 subunit expression and distribution in the superficial, visual layers of the superior colliculus. Immunoreactivity for the GABA(A) receptor beta2/3 subunits was found in the superficial grey layer from birth. The labelling changed with age, with an overall continuous reduction in the number of cells labelled and a significant increase in the labelling intensity distribution (neuropil vs soma). Further analysis revealed an initial increase in the labelling intensity between postnatal days 0 and 7 in parallel with an overall reduction of labelled neurones. This was followed by a significant decrease in labelling intensity distribution between postnatal days 7 and 16, and a subsequent increase in intensity between postnatal days 16 and 28. The labelling profiles for GABA(B) receptors (R1a and R1b splice variants) and GABA(C) receptors (rho1 subunit) showed similar patterns. Both receptors could be found in the superficial layers of the superior colliculus from birth, and the intensity and distribution of labelling remained constant during the first postnatal month. However, the cell body count showed a significant decrease between postnatal days 7 and 16. These changes may be related to the time-point of eye opening, which occurred approximately two weeks after birth. For all three receptor types, the cell body count remained constant after postnatal day 16. By four weeks of age, there was no significant difference between the cell numbers obtained for the different receptors. Both GABA itself and neurofilament labelling were also obtained in the superficial superior colliculus at birth. Neurofilament, although found at birth, showed very little ordered arrangement until 16days after birth. When

  15. Serum albumin and body weight as biomarkers for the antemortem identification of bone and gastrointestinal disease in the common marmoset.

    PubMed

    Baxter, Victoria K; Shaw, Gillian C; Sotuyo, Nathaniel P; Carlson, Cathy S; Olson, Erik J; Zink, M Christine; Mankowski, Joseph L; Adams, Robert J; Hutchinson, Eric K; Metcalf Pate, Kelly A

    2013-01-01

    The increasing use of the common marmoset (Callithrix jacchus) in research makes it important to diagnose spontaneous disease that may confound experimental studies. Bone disease and gastrointestinal disease are two major causes of morbidity and mortality in captive marmosets, but currently no effective antemortem tests are available to identify affected animals prior to the terminal stage of disease. In this study we propose that bone disease and gastrointestinal disease are associated disease entities in marmosets and aim to establish the efficacy of several economical antemortem tests in identifying and predicting disease. Tissues from marmosets were examined to define affected animals and unaffected controls. Complete blood count, serum chemistry values, body weight, quantitative radiographs, and tissue-specific biochemical markers were evaluated as candidate biomarkers for disease. Bone and gastrointestinal disease were associated, with marmosets being over seven times more likely to have either concurrent bone and gastrointestinal disease or neither disease as opposed to lesions in only one organ system. When used in tandem, serum albumin <3.5 g/dL and body weight <325 g identified 100% of the marmosets affected with concurrent bone and gastrointestinal disease. Progressive body weight loss of 0.05% of peak body weight per day predicted which marmosets would develop disease prior to the terminal stage. Bone tissue-specific tests, such as quantitative analysis of radiographs and serum parathyroid hormone levels, were effective for distinguishing between marmosets with bone disease and those without. These results provide an avenue for making informed decisions regarding the removal of affected marmosets from studies in a timely manner, preserving the integrity of research results.

  16. Muscle contractile properties as an explanation of the higher mean power output in marmosets than humans during jumping.

    PubMed

    Plas, Rogier L C; Degens, Hans; Meijer, J Peter; de Wit, Gerard M J; Philippens, Ingrid H C H M; Bobbert, Maarten F; Jaspers, Richard T

    2015-07-01

    The muscle mass-specific mean power output (PMMS,mean) during push-off in jumping in marmosets (Callithrix jacchus) is more than twice that in humans. In the present study it was tested whether this is attributable to differences in muscle contractile properties. In biopsies of marmoset m. vastus lateralis (VL) and m. gastrocnemius medialis (GM) (N=4), fibre-type distribution was assessed using fluorescent immunohistochemistry. In single fibres from four marmoset and nine human VL biopsies, the force-velocity characteristics were determined. Marmoset VL contained almost exclusively fast muscle fibres (>99.0%), of which 63% were type IIB and 37% were hybrid fibres, fibres containing multiple myosin heavy chains. GM contained 9% type I fibres, 44% type IIB and 47% hybrid muscle fibres. The proportions of fast muscle fibres in marmoset VL and GM were substantially larger than those reported in the corresponding human muscles. The curvature of the force-velocity relationships of marmoset type IIB and hybrid fibres was substantially flatter than that of human type I, IIA, IIX and hybrid fibres, resulting in substantially higher muscle fibre mass-specific peak power (PFMS,peak). Muscle mass-specific peak power output (PMMS,peak) values of marmoset whole VL and GM, estimated from their fibre-type distributions and force-velocity characteristics, were more than twice the estimates for the corresponding human muscles. As the relative difference in estimated PMMS,peak between marmosets and humans is similar to that of PMMS,mean during push-off in jumping, it is likely that the difference in in vivo mechanical output between humans and marmosets is attributable to differences in muscle contractile properties.

  17. The common marmoset as a model for the study of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis.

    PubMed

    Kramer, J A; Grindley, J; Crowell, A M; Makaron, L; Kohli, R; Kirby, M; Mansfield, K G; Wachtman, L M

    2015-03-01

    Nonalcoholic fatty liver disease (NAFLD) is considered the hepatic manifestation of metabolic syndrome. The more clinically concerning form of the disease, nonalcoholic steatohepatitis (NASH), is characterized by steatosis, lobular inflammation, and ballooning degeneration. Here we describe a naturally occurring syndrome in the common marmoset that recapitulates the pathologic findings associated with NAFLD/NASH in humans. Hepatomegaly determined to result from NAFLD was observed in 33 of 183 marmosets. A comprehensive histopathologic assessment performed in 31 marmosets demonstrated that NAFLD was characterized by variably sized, Oil Red O staining cytoplasmic vacuoles and observed primarily in animals with evidence of obesity and insulin resistance. A subset of marmosets (16 of 31) also demonstrated evidence of NASH characterized by multifocal inflammation combined with ballooning hepatocellular degeneration. Marmosets with NASH demonstrated an increase in immunostaining with an antibody targeted against the human leukocyte antigens (HLA)-DP, HLA-DQ, and HLA-DR compared with marmosets without NASH (38.89 cells/10× field vs 12.05 cells/10× field, P = .05). In addition, marmosets with NASH demonstrated increased Ki-67 immunopositive cellular proliferation compared with those without (5.95 cells/10× field vs 1.53 cells/10× field, P = .0002). Finally, animals with NASH demonstrated significantly increased mean circulating serum iron levels (160.47 μg/dl, P = .008) and an increase in numbers of Prussian blue-positive Kupffer cells (9.28 cells/40× field, P = .005) relative to marmosets without NASH (97.75 μg/dl and 1.87 cells/40×, respectively). This study further characterizes the histopathology of NAFLD/NASH and suggests that the marmoset may be a valuable animal model with which to investigate the host and environmental factors contributing to the progression of NAFLD/ NASH.

  18. Shape recognition and inferior temporal neurons.

    PubMed Central

    Schwartz, E L; Desimone, R; Albright, T D; Gross, C G

    1983-01-01

    Inferior temporal cortex plays an important role in shape recognition. To study the shape selectivity of single inferior temporal neurons, we recorded their responses to a set of shapes systematically varying in boundary curvature. Many inferior temporal neurons were selective for stimuli of specific boundary curvature and maintained this selectivity over changes in stimulus size or position. The method of describing boundary curvature was that of Fourier descriptors. PMID:6577453

  19. Biomimetic race model of the loop between the superior colliculus and the basal ganglia: Subcortical selection of saccade targets.

    PubMed

    Thurat, Charles; N'Guyen, Steve; Girard, Benoît

    2015-07-01

    The superior colliculus, a laminar structure involved in the retinotopic mapping of the visual field, plays a cardinal role in several cortical and subcortical pathways of the saccadic system. Although the selection of saccade targets has long been thought to be mainly the product of cortical processes, a growing body of evidence hints at the implication of the superior colliculus in selection processes independent from cortical inputs, capable of producing saccades at latencies incompatible with the cortical pathways. This selection ability could be produced firstly by the lateral connections between the neurons of its maps, and secondly by its interactions with the midbrain basal ganglia, already renowned for their role in decision making. We propose a biomimetic population-coded race model of selection based on a dynamic tecto-basal loop that reproduces the observed ability of the superior colliculus to stochastically select between similar stimuli. Our model's selection accuracy depends on the discriminability of the target and the distractors. Our model also offers an explanation for the phenomenon of Remote Distractor Effect based on the lateral connectivity within the basal ganglia circuitry rather than on lateral inhibitions within the collicular maps. Finally, we propose a role for the intermediate layers of the superior colliculus, as stochastic integrators dynamically gated by the selective disinhibition of the basal ganglia channels that is consistent with the recorded activity profiles of these neurons.

  20. Development of novel mechanisms for housing, handling, and remote monitoring of common marmosets at animal biosafety level 3.

    PubMed

    Powell, Diana S; Walker, Reagan C; Heflin, Dennis T; Fisher, Dan; Kosky, Joseph B; Homer, Lesley C; Reed, Douglas S; Stefano-Cole, Kelly; Trichel, Anita M; Hartman, Amy L

    2014-07-01

    The use of common marmosets as an alternative non-human primate model for infectious disease research using BSL-3 viruses such as Rift Valley fever virus (RVFV) presents unique challenges with respect to housing, handling, and safety. Subject matter experts from veterinary care, animal husbandry, biosafety, engineering, and research were consulted to design a pilot experiment using marmosets infected with RVFV. This paper reviews the caging, handling, and safety-related adaptations and modifications that were required to humanely utilize marmosets as a model for high-hazard BSL-3 viral diseases.

  1. The common marmoset: An overview of its natural history, ecology and behavior.

    PubMed

    Schiel, Nicola; Souto, Antonio

    2017-03-01

    Callithrix jacchus are small-bodied Neotropical primates popularly known as common marmosets. They are endemic to Northeast Brazil and occur in contrasting environments such as the humid Atlantic Forest and the dry scrub forest of the Caatinga. Common marmosets live in social groups, usually containing only one breeding pair. These primates have a parental care system in which individuals help by providing assistance to the infants even when they are not related to them. Free-ranging groups use relatively small home ranges (0.5-5 hectares) and have an omnivorous diet. Because of the shape of their teeth, they actively gouge tree bark to extract and consume exudates. When foraging for live prey, they adjust their strategy according to the type of prey. The successful use of appropriate hunting strategies depends not only on age but also on prey type and seems to be mediated by learning and experience. Indeed, common marmosets have shown unexpected cognitive abilities, such as true imitation. All these aspects seem to have contributed to the ecological success of this species. Callithrix jacchus has been widely studied, especially in captivity; even so, a number of questions remain to be answered about its biology, ecology, and behavior, both in captivity and the wild. A richer understanding of marmosets' natural behavior and ecology can have a significant impact on shaping ongoing and future neuroscience research. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 244-262, 2017.

  2. Overview of the marmoset as a model in nonclinical development of pharmaceutical products.

    PubMed

    Orsi, Antonia; Rees, Daryl; Andreini, Isabella; Venturella, Silvana; Cinelli, Serena; Oberto, Germano

    2011-02-01

    Callithrix jacchus (common marmoset) is one of the more primitive non-human primate species and is used widely in fundamental biology, pharmacology and toxicology studies. Marmosets breed well in captivity with good reproductive efficiencies and their sexual maturity is reached within 18 months of age allowing for rapid expansion of colonies and early availability of sexually mature animals permitting an earlier assessment of product candidates in the adult. Their relatively small size allows a reduction in material requirements leading to a reduction in development time and cost. Fewer animals are also required due to their ability to be used in both pharmacology and toxicology (nonclinical) studies. These factors, alongside a better understanding of their optimal nutrient and welfare requirements over recent years, facilitate the generation of a more cohesive and robust dataset. With the growth of biotechnology-derived pharmaceuticals, non-human primate use has, by necessity, also increased; nevertheless, there is also a growing public call for minimizing their use. Utilizing, the more primitive marmoset species may provide the optimal compromise and once the scientific rationale has been carefully considered and their use justified, there are several advantages to using the marmoset as a model in nonclinical development of pharmaceutical products.

  3. Development of an acute model of inhalational melioidosis in the common marmoset (Callithrix jacchus).

    PubMed

    Nelson, Michelle; Dean, Rachel E; Salguero, Francisco J; Taylor, Christopher; Pearce, Peter C; Simpson, Andrew J H; Lever, Mark S

    2011-12-01

    Studies of inhalational melioidosis were undertaken in the common marmoset (Callithrix jacchus). Following exposure to an inhaled challenge with aerosolized Burkholderia pseudomallei, lethal infection was observed in marmosets challenged with doses below 10 cfu; a precise LD(50) determination was not possible. The model was further characterized using a target challenge dose of approximately 10(2) cfu. A separate pathogenesis time-course experiment was also conducted. All animals succumbed, between 27 and 78 h postchallenge. The challenge dose received and the time to the humane endpoint (1 °C below normal body temperature postfever) were correlated. The first indicator of disease was an increased core body temperature (T(c) ), at 22 h postchallenge. This coincided with bacteraemia and bacterial dissemination. Overt clinical signs were first observed 3-5 h later. A sharp decrease (typically within 3-6 h) in the T(c) was observed prior to humanely culling the animals in the lethality study. Pathology was noted in the lung, liver and spleen. Disease progression in the common marmoset appears to be consistent with human infection in terms of bacterial spread, pathology and physiology. The common marmoset can therefore be considered a suitable animal model for further studies of inhalational melioidosis.

  4. Population-averaged standard template brain atlas for the common marmoset (Callithrix jacchus).

    PubMed

    Hikishima, K; Quallo, M M; Komaki, Y; Yamada, M; Kawai, K; Momoshima, S; Okano, H J; Sasaki, E; Tamaoki, N; Lemon, R N; Iriki, A; Okano, H

    2011-02-14

    Advanced magnetic resonance (MR) neuroimaging analysis techniques based on voxel-wise statistics, such as voxel-based morphometry (VBM) and functional MRI, are widely applied to cognitive brain research in both human subjects and in non-human primates. Recent developments in imaging have enabled the evaluation of smaller animal models with sufficient spatial resolution. The common marmoset (Callithrix jacchus), a small New World primate species, has been widely used in neuroscience research, to which voxel-wise statistics could be extended with a species-specific brain template. Here, we report, for the first time, a tissue-segmented, population-averaged standard template of the common marmoset brain. This template was created by using anatomical T(1)-weighted images from 22 adult marmosets with a high-resolution isotropic voxel size of (0.2 mm)(3) at 7-Tesla and DARTEL algorithm in SPM8. Whole brain templates are available at International Neuroinformatics Japan Node website, http://brainatlas.brain.riken.jp/marmoset/.

  5. Life span of common marmoset (Callithrix jacchus) at CLEA Japan breeding colony.

    PubMed

    Nishijima, Kazutoshi; Saitoh, Ryoichi; Tanaka, Shin; Ohsato-Suzuki, Motoko; Ohno, Tamio; Kitajima, Shuji

    2012-08-01

    The life span and survival parameters of the common marmoset (Callithrix jacchus) in a breeding colony at CLEA Japan, Inc. were investigated. The average life span of male marmosets was 148.5 ± 6.1 (mean ± SE) months of age (M), which was significantly longer (P < 0.01) than that of females (111.7 ± 6.0 M). Additionally, the male population reached 25-, 50-, 75- and 90 %-mortality at an older age than the female population. However, the maximum life span in males (259.9 M) was shorter than in females (262.5 M). The survival of females shows a relatively continuous decline; however, the male marmosets show a slight decline in survival during the first 7-9 years and then a dramatic decrease and another slight decline after 14-16 year of age in survival, i.e., a lifespan curve similar to what is observed in colonies of aging rodents and humans. The sex-associated difference in life span was caused by reproductive burden on the females. The present study reported a longer than expected life span of the marmoset, and a long-lived animal can be a powerful model for senescence and longevity sciences.

  6. Marmoset: A programming project assignment framework to improve the feedback cycle for students, faculty and researchers

    NASA Astrophysics Data System (ADS)

    Spacco, Jaime W.

    We developed Marmoset, a system that improves the feedback cycle on programming assignments for students, faculty and researchers alike. Using automation, Marmoset substantially lowers the burden on faculty for grading programming assignments, allowing faculty to give students more rapid feedback on their assignments. To further improve the feedback cycle, Marmoset provides students with limited access to the results of the instructor's private test cases before the submission deadline using a novel token-based incentive system. This both encourages students to start their work early and to think critically about their work. Because students submit early, instructors can monitor all students' progress on test cases and identify where in projects students are having problems in order to update the project requirements in a timely fashion and make the best use of time in lectures, discussion sections, and office hours. To study in more detail the development process of students, Marmoset can be configured to transparently capture snapshots to a central repository every-time students save their files. These detailed development histories offer a unique, detailed perspective of each student's progress on a programming assignment, from the first line of code written and saved all the way through the final edit before the final submission. This type of data has proved extremely valuable for many uses, such as mining new bug patterns and evaluating existing bug-finding tools.

  7. Touchscreen assays of learning, response inhibition, and motivation in the marmoset (Callithrix jacchus).

    PubMed

    Kangas, Brian D; Bergman, Jack; Coyle, Joseph T

    2016-05-01

    Recent developments in precision gene editing have led to the emergence of the marmoset as an experimental subject of considerable interest and translational value. A better understanding of behavioral phenotypes of the common marmoset will inform the extent to which forthcoming transgenic mutants are cognitively intact. Therefore, additional information regarding their learning, inhibitory control, and motivational abilities is needed. The present studies used touchscreen-based repeated acquisition and discrimination reversal tasks to examine basic dimensions of learning and response inhibition. Marmosets were trained daily to respond to one of the two simultaneously presented novel stimuli. Subjects learned to discriminate the two stimuli (acquisition) and, subsequently, with the contingencies switched (reversal). In addition, progressive ratio performance was used to measure the effort expended to obtain a highly palatable reinforcer varying in magnitude and, thereby, provide an index of relative motivational value. Results indicate that rates of both acquisition and reversal of novel discriminations increased across successive sessions, but that rate of reversal learning remained slower than acquisition learning, i.e., more trials were needed for mastery. A positive correlation was observed between progressive ratio break point and reinforcement magnitude. These results closely replicate previous findings with squirrel monkeys, thus providing evidence of similarity in learning processes across nonhuman primate species. Moreover, these data provide key information about the normative phenotype of wild-type marmosets using three relevant behavioral endpoints.

  8. A simpler primate brain: the visual system of the marmoset monkey

    PubMed Central

    Solomon, Samuel G.; Rosa, Marcello G. P.

    2014-01-01

    Humans are diurnal primates with high visual acuity at the center of gaze. Although primates share many similarities in the organization of their visual centers with other mammals, and even other species of vertebrates, their visual pathways also show unique features, particularly with respect to the organization of the cerebral cortex. Therefore, in order to understand some aspects of human visual function, we need to study non-human primate brains. Which species is the most appropriate model? Macaque monkeys, the most widely used non-human primates, are not an optimal choice in many practical respects. For example, much of the macaque cerebral cortex is buried within sulci, and is therefore inaccessible to many imaging techniques, and the postnatal development and lifespan of macaques are prohibitively long for many studies of brain maturation, plasticity, and aging. In these and several other respects the marmoset, a small New World monkey, represents a more appropriate choice. Here we review the visual pathways of the marmoset, highlighting recent work that brings these advantages into focus, and identify where additional work needs to be done to link marmoset brain organization to that of macaques and humans. We will argue that the marmoset monkey provides a good subject for studies of a complex visual system, which will likely allow an important bridge linking experiments in animal models to humans. PMID:25152716

  9. Development of prolactin levels in marmoset males: from adult son to first-time father.

    PubMed

    Schradin, Carsten; Anzenberger, Gustl

    2004-12-01

    Previous studies have found a clear relationship between prolactin (prl) and paternal care in various vertebrate taxa. In New World monkeys, it has been demonstrated in several species that fathers have high prolactin levels even during periods without infant rearing. In this study, we followed the reproductive careers of common marmoset males as they transitioned from being an adult son within their native family to fathering their own offspring for the first time. Specifically, we examined the first experience of elevated prolactin levels in marmoset males. Additionally, we investigated the effects of the total number of experienced births as well as of age on prolactin levels. Our results show that common marmoset males did not experience an increase in prolactin secretion after pairing or shortly before birth of their first infants. However, prolactin levels rose more than twofold after the birth of their first infants and had lowered again 2.5 months after this event. We found no correlation between prolactin levels and the number of previous births experienced or age. Our study demonstrates that further work about a possible enhancing effect of prolactin on paternal care, by means of experimentally reducing hormonal levels, should be conducted in common marmosets using first-time fathers before males experience the first paternal increase in prolactin levels.

  10. A simpler primate brain: the visual system of the marmoset monkey.

    PubMed

    Solomon, Samuel G; Rosa, Marcello G P

    2014-01-01

    Humans are diurnal primates with high visual acuity at the center of gaze. Although primates share many similarities in the organization of their visual centers with other mammals, and even other species of vertebrates, their visual pathways also show unique features, particularly with respect to the organization of the cerebral cortex. Therefore, in order to understand some aspects of human visual function, we need to study non-human primate brains. Which species is the most appropriate model? Macaque monkeys, the most widely used non-human primates, are not an optimal choice in many practical respects. For example, much of the macaque cerebral cortex is buried within sulci, and is therefore inaccessible to many imaging techniques, and the postnatal development and lifespan of macaques are prohibitively long for many studies of brain maturation, plasticity, and aging. In these and several other respects the marmoset, a small New World monkey, represents a more appropriate choice. Here we review the visual pathways of the marmoset, highlighting recent work that brings these advantages into focus, and identify where additional work needs to be done to link marmoset brain organization to that of macaques and humans. We will argue that the marmoset monkey provides a good subject for studies of a complex visual system, which will likely allow an important bridge linking experiments in animal models to humans.

  11. Can vocal conditioning trigger a semiotic ratchet in marmosets?

    PubMed Central

    Turesson, Hjalmar K.; Ribeiro, Sidarta

    2015-01-01

    The complexity of human communication has often been taken as evidence that our language reflects a true evolutionary leap, bearing little resemblance to any other animal communication system. The putative uniqueness of the human language poses serious evolutionary and ethological challenges to a rational explanation of human communication. Here we review ethological, anatomical, molecular, and computational results across several species to set boundaries for these challenges. Results from animal behavior, cognitive psychology, neurobiology, and semiotics indicate that human language shares multiple features with other primate communication systems, such as specialized brain circuits for sensorimotor processing, the capability for indexical (pointing) and symbolic (referential) signaling, the importance of shared intentionality for associative learning, affective conditioning and parental scaffolding of vocal production. The most substantial differences lie in the higher human capacity for symbolic compositionality, fast vertical transmission of new symbols across generations, and irreversible accumulation of novel adaptive behaviors (cultural ratchet). We hypothesize that increasingly-complex vocal conditioning of an appropriate animal model may be sufficient to trigger a semiotic ratchet, evidenced by progressive sign complexification, as spontaneous contact calls become indexes, then symbols and finally arguments (strings of symbols). To test this hypothesis, we outline a series of conditioning experiments in the common marmoset (Callithrix jacchus). The experiments are designed to probe the limits of vocal communication in a prosocial, highly vocal primate 35 million years far from the human lineage, so as to shed light on the mechanisms of semiotic complexification and cultural transmission, and serve as a naturalistic behavioral setting for the investigation of language disorders. PMID:26500583

  12. Inferior vena caval masses identified by echocardiography

    NASA Technical Reports Server (NTRS)

    Sun, J. P.; Asher, C. R.; Xu, Y.; Huang, V.; Griffin, B. P.; Stewart, W. J.; Novick, A. C.; Thomas, J. D.

    1999-01-01

    The most common cause of an inferior vena caval mass is renal cell carcinoma that extends through the lumen, occurring in 47 of 62 patients (85%). Detection of an inferior vena caval mass affects the surgical approach requiring cardiopulmonary bypass for resection when the mass extends to the heart.

  13. Bilateral inferior petrosal sinus sampling.

    PubMed

    Zampetti, Benedetta; Grossrubatscher, Erika; Dalino Ciaramella, Paolo; Boccardi, Edoardo; Loli, Paola

    2016-07-01

    Simultaneous bilateral inferior petrosal sinus sampling (BIPSS) plays a crucial role in the diagnostic work-up of Cushing's syndrome. It is the most accurate procedure in the differential diagnosis of hypercortisolism of pituitary or ectopic origin, as compared with clinical, biochemical and imaging analyses, with a sensitivity and specificity of 88-100% and 67-100%, respectively. In the setting of hypercortisolemia, ACTH levels obtained from venous drainage of the pituitary are expected to be higher than the levels of peripheral blood, thus suggesting pituitary ACTH excess as the cause of hypercortisolism. Direct stimulation of the pituitary corticotroph with corticotrophin-releasing hormone enhances the sensitivity of the procedure. The procedure must be undertaken in the presence of hypercortisolemia, which suppresses both the basal and stimulated secretory activity of normal corticotrophic cells: ACTH measured in the sinus is, therefore, the result of the secretory activity of the tumor tissue. The poor accuracy in lateralization of BIPSS (positive predictive value of 50-70%) makes interpetrosal ACTH gradient alone not sufficient for the localization of the tumor. An accurate exploration of the gland is recommended if a tumor is not found in the predicted area. Despite the fact that BIPSS is an invasive procedure, the occurrence of adverse events is extremely rare, particularly if it is performed by experienced operators in referral centres.

  14. Bilateral inferior petrosal sinus sampling

    PubMed Central

    Grossrubatscher, Erika; Dalino Ciaramella, Paolo; Boccardi, Edoardo

    2016-01-01

    Simultaneous bilateral inferior petrosal sinus sampling (BIPSS) plays a crucial role in the diagnostic work-up of Cushing’s syndrome. It is the most accurate procedure in the differential diagnosis of hypercortisolism of pituitary or ectopic origin, as compared with clinical, biochemical and imaging analyses, with a sensitivity and specificity of 88–100% and 67–100%, respectively. In the setting of hypercortisolemia, ACTH levels obtained from venous drainage of the pituitary are expected to be higher than the levels of peripheral blood, thus suggesting pituitary ACTH excess as the cause of hypercortisolism. Direct stimulation of the pituitary corticotroph with corticotrophin-releasing hormone enhances the sensitivity of the procedure. The procedure must be undertaken in the presence of hypercortisolemia, which suppresses both the basal and stimulated secretory activity of normal corticotrophic cells: ACTH measured in the sinus is, therefore, the result of the secretory activity of the tumor tissue. The poor accuracy in lateralization of BIPSS (positive predictive value of 50–70%) makes interpetrosal ACTH gradient alone not sufficient for the localization of the tumor. An accurate exploration of the gland is recommended if a tumor is not found in the predicted area. Despite the fact that BIPSS is an invasive procedure, the occurrence of adverse events is extremely rare, particularly if it is performed by experienced operators in referral centres. PMID:27352844

  15. Survey and Experimental Infection of Enteropathogenic Escherichia coli in Common Marmosets (Callithrix jacchus)

    PubMed Central

    Hayashimoto, Nobuhito; Inoue, Takashi; Morita, Hanako; Yasuda, Masahiko; Ueno, Masami; Kawai, Kenji; Itoh, Toshio

    2016-01-01

    Common marmosets (Callithrix jacchus) are frequently used for biomedical research but can be afflicted with diarrhea—a serious and potentially lethal health problem. Enteropathogenic Escherichia coli (EPEC) is thought to be the causative pathogen of hemorrhagic typhlocolitis in common marmosets, but the actual incidence of the disease and the relationship between EPEC and hematochezia are unknown. This study investigated the prevalence of EPEC infection in common marmosets and the association between EPEC and hematochezia. A total of 230 stool or rectal swab samples were collected from 230 common marmosets (98 clinically healthy, 85 diarrhea, and 47 bloody stool samples) and tested by culture-based detection and PCR amplification of VT1, VT2, LT, ST, eae, and bfp genes. Healthy animals were divided into three groups (n = 4 each for high and low concentration groups and n = 2 as negative control), and those in the experimental groups were perorally inoculated with a 2-ml of suspension of EPEC R811 strain adjusted to 5 × 108 (high concentration) and 5 × 104 (low concentration) CFU/ ml. Two animals in each group were examined 3 and 14 days post-inoculation (DPI). EPEC was detected in 10 of 98 clinically healthy samples (10.2%), 17 of 85 diarrhea samples (20%), and all 47 bloody stool samples (100%), with a significant difference detected between presence of EPEC and sample status (P < 0.01). Acute hematochezia was observed in all animals of the high-concentration group but not in other groups at 1 or 2 DPI. A histopathological examination revealed the attachment of gram-negative bacilli to epithelial apical membranes and desquamated epithelial cells in the cecum of animals in the high-concentration group at 3 DPI. These findings suggest that EPEC is a causative agent of hemorrhagic typhlocolitis in common marmosets. PMID:27501144

  16. Birth of healthy offspring following ICSI in in vitro-matured common marmoset (Callithrix jacchus) oocytes.

    PubMed

    Takahashi, Tsukasa; Hanazawa, Kisaburo; Inoue, Takashi; Sato, Kenya; Sedohara, Ayako; Okahara, Junko; Suemizu, Hiroshi; Yagihashi, Chie; Yamamoto, Masafumi; Eto, Tomoo; Konno, Yusuke; Okano, Hideyuki; Suematsu, Makoto; Sasaki, Erika

    2014-01-01

    Intracytoplasmic sperm injection (ICSI), an important method used to treat male subfertility, is applied in the transgenic technology of sperm-mediated gene transfer. However, no study has described successful generation of offspring using ICSI in the common marmoset, a small non-human primate used as a model for biomedical translational research. In this study, we investigated blastocyst development and the subsequent live offspring stages of marmoset oocytes matured in vitro and fertilized by ICSI. To investigate the optimal timing of performing ICSI, corrected immature oocytes were matured in vitro and ICSI was performed at various time points (1-2 h, 2-4 h, 4-6 h, 6-8 h, and 8-10 h after extrusion of the first polar body (PB)). Matured oocytes were then divided randomly into two groups: one was used for in vitro fertilization (IVF) and the other for ICSI. To investigate in vivo development of embryos followed by ICSI, 6-cell- to 8-cell-stage embryos and blastocysts were nonsurgically transferred into recipient marmosets. Although no significant differences were observed in the fertilization rate of blastocysts among ICSI timing after the first PB extrusion, the blastocyst rate at 1-2 h was lowest among groups at 2-4 h, 4-6 h, 6-8 h, and 8-10 h. Comparing ICSI to IVF, the fertilization rates obtained in ICSI were higher than in IVF (p>0.05). No significant difference was noted in the cleaved blastocyst rate between ICSI and IVF. Following the transfer of 37 ICSI blastocysts, 4 of 20 recipients became pregnant, while with the transfer of 21 6-cell- to 8-cell-stage ICSI embryos, 3 of 8 recipients became pregnant. Four healthy offspring were produced and grew normally. These are the first marmoset offspring produced by ICSI, making it an effective fertilization method for marmosets.

  17. Birth of Healthy Offspring following ICSI in In Vitro-Matured Common Marmoset (Callithrix jacchus) Oocytes

    PubMed Central

    Takahashi, Tsukasa; Hanazawa, Kisaburo; Inoue, Takashi; Sato, Kenya; Sedohara, Ayako; Okahara, Junko; Suemizu, Hiroshi; Yagihashi, Chie; Yamamoto, Masafumi; Eto, Tomoo; Konno, Yusuke; Okano, Hideyuki; Suematsu, Makoto; Sasaki, Erika

    2014-01-01

    Intracytoplasmic sperm injection (ICSI), an important method used to treat male subfertility, is applied in the transgenic technology of sperm-mediated gene transfer. However, no study has described successful generation of offspring using ICSI in the common marmoset, a small non-human primate used as a model for biomedical translational research. In this study, we investigated blastocyst development and the subsequent live offspring stages of marmoset oocytes matured in vitro and fertilized by ICSI. To investigate the optimal timing of performing ICSI, corrected immature oocytes were matured in vitro and ICSI was performed at various time points (1–2 h, 2–4 h, 4–6 h, 6–8 h, and 8–10 h after extrusion of the first polar body (PB)). Matured oocytes were then divided randomly into two groups: one was used for in vitro fertilization (IVF) and the other for ICSI. To investigate in vivo development of embryos followed by ICSI, 6-cell- to 8-cell-stage embryos and blastocysts were nonsurgically transferred into recipient marmosets. Although no significant differences were observed in the fertilization rate of blastocysts among ICSI timing after the first PB extrusion, the blastocyst rate at 1–2 h was lowest among groups at 2–4 h, 4–6 h, 6–8 h, and 8–10 h. Comparing ICSI to IVF, the fertilization rates obtained in ICSI were higher than in IVF (p>0.05). No significant difference was noted in the cleaved blastocyst rate between ICSI and IVF. Following the transfer of 37 ICSI blastocysts, 4 of 20 recipients became pregnant, while with the transfer of 21 6-cell- to 8-cell-stage ICSI embryos, 3 of 8 recipients became pregnant. Four healthy offspring were produced and grew normally. These are the first marmoset offspring produced by ICSI, making it an effective fertilization method for marmosets. PMID:24751978

  18. Overview of models, methods, and reagents developed for translational autoimmunity research in the common marmoset (Callithrix jacchus).

    PubMed

    Jagessar, S Anwar; Vierboom, Michel; Blezer, Erwin L A; Bauer, Jan; Hart, Bert A 't; Kap, Yolanda S

    2013-01-01

    The common marmoset (Callithrix jacchus) is a small-bodied Neotropical primate and a useful preclinical animal model for translational research into autoimmune-mediated inflammatory diseases (AIMID), such as rheumatoid arthritis (RA) and multiple sclerosis (MS). The animal model for MS established in marmosets has proven their value for exploratory research into (etio) pathogenic mechanisms and for the evaluation of new therapies that cannot be tested in lower species because of their specificity for humans. Effective usage of the marmoset in preclinical immunological research has been hampered by the limited availability of blood for immunological studies and of reagents for profiling of cellular and humoral immune reactions. In this paper, we give a concise overview of the procedures and reagents that were developed over the years in our laboratory in marmoset models of the above-mentioned diseases.

  19. Sleep and Alertness Management II: Effects on Sleep Pattern and Sleep Quality in Marmosets (slaap- en alertheidsmanagement II: effecten op slaapritme en slaapkwaliteit in marmosetapen)

    DTIC Science & Technology

    2006-10-01

    II: Effects on F +31 15 284 39 91 sleep pattern and sleep quality in marmosets Info-DenV@tno.nf Date October 2006 Author(s) Dr I.l1.C.H.M. Philippens...5126 Summary In this study, the marmoset monkey model was validated using nocturnal electroencephalogram measurements for evaluating effects on sleep...the effects of the short acting hypnotic drugs temazepam, zolpidem and zaleplon on sleep were determined in the marmoset monkey. The results showed

  20. Distinct representation and distribution of visual information by specific cell types in mouse superficial superior colliculus.

    PubMed

    Gale, Samuel D; Murphy, Gabe J

    2014-10-01

    The superficial superior colliculus (sSC) occupies a critical node in the mammalian visual system; it is one of two major retinorecipient areas, receives visual cortical input, and innervates visual thalamocortical circuits. Nonetheless, the contribution of sSC neurons to downstream neural activity and visually guided behavior is unknown and frequently neglected. Here we identified the visual stimuli to which specific classes of sSC neurons respond, the downstream regions they target, and transgenic mice enabling class-specific manipulations. One class responds to small, slowly moving stimuli and projects exclusively to lateral posterior thalamus; another, comprising GABAergic neurons, responds to the sudden appearance or rapid movement of large stimuli and projects to multiple areas, including the lateral geniculate nucleus. A third class exhibits direction-selective responses and targets deeper SC layers. Together, our results show how specific sSC neurons represent and distribute diverse information and enable direct tests of their functional role.

  1. Deafferentation of the Superior Colliculus Abolishes Spatial Summation of Redundant Visual Signals

    PubMed Central

    van Koningsbruggen, Martijn; Koller, Kristin; Rafal, Robert D.

    2017-01-01

    Two visual signals appearing simultaneously are detected more rapidly than either signal appearing alone. Part of this redundant target effect (RTE) can be attributed to neural summation that has been proposed to occur in the superior colliculus (SC). We report direct evidence in two neurological patients for neural summation in the SC, and that it is mediated by afferent visual information transmitted through its brachium. The RTE was abolished in one patient with a hemorrhage involving the right posterior thalamus that damaged part of the SC and that disrupted its brachium; and in another patient in whom the SC appeared intact but deafferented due to traumatic avulsion of its brachium. In addition reaction time for unilateral targets in the contralesional field was slowed in both patients, providing the first evidence that visual afferents to the SC contribute to the efficiency of target detection. PMID:28286472

  2. Superior colliculus neurons encode a visual saliency map during free viewing of natural dynamic video

    PubMed Central

    White, Brian J.; Berg, David J.; Kan, Janis Y.; Marino, Robert A.; Itti, Laurent; Munoz, Douglas P.

    2017-01-01

    Models of visual attention postulate the existence of a saliency map whose function is to guide attention and gaze to the most conspicuous regions in a visual scene. Although cortical representations of saliency have been reported, there is mounting evidence for a subcortical saliency mechanism, which pre-dates the evolution of neocortex. Here, we conduct a strong test of the saliency hypothesis by comparing the output of a well-established computational saliency model with the activation of neurons in the primate superior colliculus (SC), a midbrain structure associated with attention and gaze, while monkeys watched video of natural scenes. We find that the activity of SC superficial visual-layer neurons (SCs), specifically, is well-predicted by the model. This saliency representation is unlikely to be inherited from fronto-parietal cortices, which do not project to SCs, but may be computed in SCs and relayed to other areas via tectothalamic pathways. PMID:28117340

  3. Optogenetic activation of superior colliculus neurons suppresses seizures originating in diverse brain networks

    PubMed Central

    Soper, Colin; Wicker, Evan; Kulick, Catherine V.; N’Gouemo, Prosper; Forcelli, Patrick A.

    2016-01-01

    Because sites of seizure origin may be unknown or multifocal, identifying targets from which activation can suppress seizures originating in diverse networks is essential. We evaluated the ability of optogenetic activation of the deep/intermediate layers of the superior colliculus (DLSC) to fill this role. Optogenetic activation of DLSC suppressed behavioral and electrographic seizures in the pentylenetetrazole (forebrain+brainstem seizures) and Area Tempestas (forebrain/complex partial seizures) models; this effect was specific to activation of DLSC, and not neighboring structures. DLSC activation likewise attenuated seizures evoked by gamma butyrolactone (thalamocortical/absence seizures), or acoustic stimulation of genetically epilepsy prone rates (brainstem seizures). Anticonvulsant effects were seen with stimulation frequencies as low as 5 Hz. Unlike previous applications of optogenetics for the control of seizures, activation of DLSC exerted broad-spectrum anticonvulsant actions, attenuating seizures originating in diverse and distal brain networks. These data indicate that DLSC is a promising target for optogenetic control of epilepsy. PMID:26721319

  4. Endogenous attention signals evoked by threshold contrast detection in human superior colliculus.

    PubMed

    Katyal, Sucharit; Ress, David

    2014-01-15

    Human superior colliculus (SC) responds in a retinotopically selective manner when attention is deployed on a high-contrast visual stimulus using a discrimination task. To further elucidate the role of SC in endogenous visual attention, high-resolution fMRI was used to demonstrate that SC also exhibits a retinotopically selective response for covert attention in the absence of significant visual stimulation using a threshold-contrast detection task. SC neurons have a laminar organization according to their function, with visually responsive neurons present in the superficial layers and visuomotor neurons in the intermediate layers. The results show that the response evoked by the threshold-contrast detection task is significantly deeper than the response evoked by the high-contrast speed discrimination task, reflecting a functional dissociation of the attentional enhancement of visuomotor and visual neurons, respectively. Such a functional dissociation of attention within SC laminae provides a subcortical basis for the oculomotor theory of attention.

  5. Superior colliculus neurons encode a visual saliency map during free viewing of natural dynamic video

    NASA Astrophysics Data System (ADS)

    White, Brian J.; Berg, David J.; Kan, Janis Y.; Marino, Robert A.; Itti, Laurent; Munoz, Douglas P.

    2017-01-01

    Models of visual attention postulate the existence of a saliency map whose function is to guide attention and gaze to the most conspicuous regions in a visual scene. Although cortical representations of saliency have been reported, there is mounting evidence for a subcortical saliency mechanism, which pre-dates the evolution of neocortex. Here, we conduct a strong test of the saliency hypothesis by comparing the output of a well-established computational saliency model with the activation of neurons in the primate superior colliculus (SC), a midbrain structure associated with attention and gaze, while monkeys watched video of natural scenes. We find that the activity of SC superficial visual-layer neurons (SCs), specifically, is well-predicted by the model. This saliency representation is unlikely to be inherited from fronto-parietal cortices, which do not project to SCs, but may be computed in SCs and relayed to other areas via tectothalamic pathways.

  6. THE INFLUENCE OF VIBRISSAL SOMATOSENSORY PROCESSING IN RAT SUPERIOR COLLICULUS ON PREY CAPTURE

    PubMed Central

    FAVARO, P. D. N.; GOUVÊA, T. S.; DE OLIVEIRA, S. R.; VAUTRELLE, N.; REDGRAVE, P.; COMOLI, E.

    2011-01-01

    The lateral part of intermediate layer of superior colliculus (SCl) is a critical substrate for successful predation by rats. Hunting-evoked expression of the activity marker Fos is concentrated in SCl while prey capture in rats with NMDA lesions in SCl is impaired. Particularly affected are rapid orienting and stereotyped sequences of actions associated with predation of fast moving prey. Such deficits are consistent with the view that the deep layers of SC are important for sensory guidance of movement. Although much of the relevant evidence involves visual control of movement, less is known about movement guidance by somatosensory input from vibrissae. Indeed, our impression is that prey contact with whiskers is a likely stimulus to trigger predation. Moreover, SCl receives whisker and orofacial somatosensory information directly from trigeminal complex, and indirectly from zona incerta, parvicelular reticular formation and somatosensory barrel cortex. To better understand sensory guidance of predation by vibrissal information we investigated prey capture by rats after whisker removal and the role of superior colliculus (SC) by comparing Fos expression after hunting with and without whiskers. Rats were allowed to hunt cockroaches, after which their whiskers were removed. Two days later they were allowed to hunt cockroaches again. Without whiskers the rats were less able to retain the cockroaches after capture and less able to pursue them in the event of the cockroach escaping. The predatory behaviour of rats with re-grown whiskers returned to normal. In parallel, Fos expression in SCl induced by predation was significantly reduced in whiskerless animals. We conclude that whiskers contribute to the efficiency of rat prey capture and that the loss of vibrissal input to SCl, as reflected by reduced Fos expression, could play a critical role in predatory deficits of whiskerless rats. PMID:21163336

  7. Simultaneous pharmacokinetics evaluation of human cytochrome P450 probes, caffeine, warfarin, omeprazole, metoprolol and midazolam, in common marmosets (Callithrix jacchus).

    PubMed

    Uehara, Shotaro; Inoue, Takashi; Utoh, Masahiro; Toda, Akiko; Shimizu, Makiko; Uno, Yasuhiro; Sasaki, Erika; Yamazaki, Hiroshi

    2016-01-01

    1. Pharmacokinetics of human cytochrome P450 probes (caffeine, racemic warfarin, omeprazole, metoprolol and midazolam) composite, after single intravenous and oral administrations at doses of 0.20 and 1.0 mg kg(-1), respectively, to four male common marmosets were investigated. 2. The plasma concentrations of caffeine and warfarin decreased slowly in a monophasic manner but those of omeprazole, metoprolol and midazolam decreased extensively after intravenous and oral administrations, in a manner that approximated those as reported for pharmacokinetics in humans. 3. Bioavailabilities were ∼100% for caffeine and warfarin, but <25% for omeprazole and metoprolol. Bioavailability of midazolam was 4% in marmosets, presumably because of contribution of marmoset P450 3A4 expressed in small intestine and liver, with a high catalytic efficiency for midazolam 1'-hydroxylation as evident in the recombinant system. 4. These results suggest that common marmosets, despite their rapid clearance of some human P450 probe substrates, could be an experimental model for humans and that marmoset P450s have functional characteristics that differ from those of human and/or cynomolgus monkey P450s in some aspects, indicating their importance in modeling in P450-dependent drug metabolism studies in marmosets and of further studies.

  8. Inferior alveolar nerve block: Alternative technique

    PubMed Central

    Thangavelu, K.; Kannan, R.; Kumar, N. Senthil

    2012-01-01

    Background: Inferior alveolar nerve block (IANB) is a technique of dental anesthesia, used to produce anesthesia of the mandibular teeth, gingivae of the mandible and lower lip. The conventional IANB is the most commonly used the nerve block technique for achieving local anesthesia for mandibular surgical procedures. In certain cases, however, this nerve block fails, even when performed by the most experienced clinician. Therefore, it would be advantageous to find an alternative simple technique. Aim and Objective: The objective of this study is to find an alternative inferior alveolar nerve block that has a higher success rate than other routine techniques. To this purpose, a simple painless inferior alveolar nerve block was designed to anesthetize the inferior alveolar nerve. Materials and Methods: This study was conducted in Oral surgery department of Vinayaka Mission's dental college Salem from May 2009 to May 2011. Five hundred patients between the age of 20 years and 65 years who required extraction of teeth in mandible were included in the study. Out of 500 patients 270 were males and 230 were females. The effectiveness of the IANB was evaluated by using a sharp dental explorer in the regions innervated by the inferior alveolar, lingual, and buccal nerves after 3, 5, and 7 min, respectively. Conclusion: This study concludes that inferior alveolar nerve block is an appropriate alternative nerve block to anesthetize inferior alveolar nerve due to its several advantages. PMID:25885503

  9. Origin and terminal distribution of the trigeminal projections to the inferior and superior colliculi in the lesser hedgehog tenrec.

    PubMed

    Künzle, H

    1998-01-01

    The trigemino-tectal projections were investigated with anterograde and retrograde tracing techniques in the Madagascan lesser hedgehog tenrec, Echinops telfairi. There were prominent contralateral projections to the inferior colliculus (CoI) and the superior colliculus (CoS), each showing its own characteristic pattern of terminations. While the projections to the CoI were confined consistently to a circumscribed region in its ventrolateral, external portion, the projections from particularly the rostral trigeminal subdivision to the CoS were distributed inhomogenously across almost the entire rostro-caudal and mediolateral extents. Comparing these data with the spino-tectal projections published previously, it demonstrates that the somatotopic organization of ascending tectal afferents is more distinct in the CoI than in the CoS. There were roughly twice as many trigeminal neurones projecting to the CoS than to the CoI. This difference might be due to the fact that the cells projecting to CoS were distributed extensively across the trigeminal nuclear complex (peak densities in the principal and interpolar subdivisions), while the neurones projecting to the CoI were largely confined to the interpolar and caudal trigeminal subdivisions. The latter cells were located adjacent to the spinal trigeminal tract; the neurones projecting to the CoS occupied preferentially the ventral trigeminal regions at rostral levels, while from the interpolar subdivision caudalward the labelled cells shifted dorsolaterally. In comparison to other mammals the trigeminal projection to the tenrec's CoI is unique. There is evidence for such a projection in other species too, but it is poorly documented, presumably due to technical reasons.

  10. [Inferior vestibular neuritis: diagnosis using VEMP].

    PubMed

    Walther, L E; Repik, I

    2012-02-01

    Vestibular evoked myogenic potentials (VEMP) are a new method to establish the functional status of the otolith organs. The sacculocollic reflex of the cervical VEMP to air conduction (AC) reflects predominantly saccular function due to saccular afferents to the inferior vestibular nerve. We describe a case of inferior vestibular neuritis as a rare differential diagnosis of vestibular neuritis. Clinical signs were a normal caloric response, unilaterally absent AC cVEMPs and bilaterally preserved ocular VEMPs (AC oVEMPs).

  11. Gestational cortisol and social play shape development of marmosets' HPA functioning and behavioral responses to stressors.

    PubMed

    Mustoe, Aaryn C; Taylor, Jack H; Birnie, Andrew K; Huffman, Michelle C; French, Jeffrey A

    2014-09-01

    Both gestational cortisol exposure (GCE) and variability in postnatal environments can shape the later-life behavioral and endocrine outcomes of the hypothalamic-pituitary-adrenal (HPA) axis. We examined the influence of GCE and social play on HPA functioning in developing marmosets. Maternal urinary cortisol samples were collected across pregnancy to determine GCE for 28 marmoset offspring (19 litters). We administered a social separation stressor to offspring at 6, 12, and 18 months of age, during which we collected urinary cortisol samples and behavioral observations. Increased GCE was associated with increased basal cortisol levels and cortisol reactivity, but the strength of this relationship decreased across age. Increased social play was associated with decreased basal cortisol levels and a marginally greater reduction in cortisol reactivity as offspring aged, regardless of offspring GCE. Thus, GCE is associated with HPA functioning, but socially enriching postnatal environments can alter the effects associated with increased fetal exposure to glucocorticoids.

  12. The Common Marmoset Genome Provides Insight into Primate Biology and Evolution

    PubMed Central

    2014-01-01

    A first analysis of the genome sequence of the common marmoset (Callithrix jacchus), assembled using traditional Sanger methods and Ensembl annotation, has permitted genomic comparison with apes and old world monkeys and the identification of specific molecular features that may contribute to the unique biology of this diminutive primate. The common marmoset has a rapid reproductive capacity partly due to prevalence of dizygotic twins. Remarkably, these twins share placental circulation and exchange hematopoietic stem cells in utero, resulting in adults that are hematopoietic chimeras. We observed positive selection or non-synonymous substitutions for genes encoding growth hormone/insulin-like growth factor (growth pathways), respiratory complex I (metabolic pathways), immunobiology, and proteases (reproductive and immunity pathways). In addition, both protein-coding and microRNA genes related to reproduction exhibit rapid sequence evolution. This New World monkey genome sequence enables significantly increased power for comparative analyses among available primate genomes and facilitates biomedical research application. PMID:25038751

  13. An alternative method of endotracheal intubation of common marmosets (Callithrix jacchus).

    PubMed

    Thomas, A A; Leach, M C; Flecknell, P A

    2012-01-01

    Endotracheal intubation was carried out in 11 common marmosets (Callithrix jacchus). A commercially available tilting stand and a Miller laryngoscope blade were used to visualize the larynx. Anaesthesia was induced with alphaxalone (10.6 ± 1.6 mg/kg intramuscularly, followed by 3.2 ± 1.2 mg/kg intravenously). The diameter of the proximal trachea easily fitted an endotracheal tube made from readily available material (a 12 G 'over the needle' catheter). Once the tip of the endotracheal tube was at the level of the vocal folds, the tube had to be gently rotated through a 180° angle in order to pass through the larynx into the trachea. Assessment of the dimensions of the larynx and trachea, and comparison with external anatomical features of the animals (n = 10) showed that the length of the trachea could be predicted by multiplying the craniosacral length of the marmoset by a factor of 0.42.

  14. The common marmoset as an indispensable animal model for immunotherapy development in multiple sclerosis.

    PubMed

    Kap, Yolanda S; Jagessar, S Anwar; Dunham, Jordon; 't Hart, Bert A

    2016-08-01

    New drugs often fail in the translation from the rodent experimental autoimmune encephalomyelitis (EAE) model to human multiple sclerosis (MS). Here, we present the marmoset EAE model as an indispensable model for translational research into MS. The genetic heterogeneity of this species and lifelong exposure to chronic latent infections and environmental pathogens create a human-like immune system. Unique to this model is the presence of the pathological hallmark of progressive MS, in particular cortical grey matter lesions. Another great possibility of this model is systemic and longitudinal immune profiling, whereas in humans and mice immune profiling is usually performed in a single compartment (i.e. blood or spleen, respectively). Overall, the marmoset model provides unique opportunities for systemic drug-effect profiling.

  15. Functional capabilities of marmoset T and B lymphocytes in primary in vitro antibody formation

    SciTech Connect

    Nickerson, D.A.; Gengozian, N.

    1981-01-15

    In vitro tests of T- and B-lymphocyte function of two marmoset species, Saguinus fuscicollis and Saguinus oedipus, were examined to explore the lower immune response profile previously reported for S. o. oedipus. Experiments with trinitrophenyl-lipopolysaccharide (TNP-LPS) revealed peripheral blood leukocytes (PBL) from both species capable of antibody formation. This response was both T cell and monocyte independent; indeed, removal of T cells led to an enhanced response, indicating a regulatory role for this cell in each species. Studies with the nonmitogenic form of TNP-LPS, trinitrophenyl-base-hydrolyzed-lipopolysaccharide, revealed that plaque-forming cells could be obtained from S. fuscicollis PBL while S. o. oedipus PBL were unresponsive. This report also demonstrates that hemopoietic chimerism, a feature common to all marmosets, has a negative influence on antibody-forming capabilities.

  16. CXCR4 homologues of gibbon ape, African green monkey, squirrel monkey, and cotton-top marmoset.

    PubMed

    Zubair, S; Metzenberg, S

    2000-08-10

    CXCR4 gene homologues were isolated from an ape (gibbon), an Old World monkey (African green monkey), and two New World monkeys (squirrel monkey and cotton-top marmoset), and their DNA sequences determined. The squirrel monkey and cotton-top marmoset CXCR4 sequences more closely resemble homologues from apes than Old World monkeys, a pattern not seen for the related chemokine receptor CCR5. The African green monkey CXCR4 gene is similar to its homologue in baboon, a pattern that has also been seen among CCR5 homologues. The gibbon CXCR4 contains the first polymorphisms recognized in ape homologues, the human and chimpanzee CXCR4 proteins being identical, and two of these three differences are also observed in one or more Old World monkey homologues. While 18 positions within CXCR4 are now known to be polymorphic in primates, 7 of these polymorphisms have been observed in multiple examples and 11 have been observed only once.

  17. Novel marmoset (Callithrix jacchus) model of human Herpesvirus 6A and 6B infections: immunologic, virologic and radiologic characterization.

    PubMed

    Leibovitch, Emily; Wohler, Jillian E; Cummings Macri, Sheila M; Motanic, Kelsey; Harberts, Erin; Gaitán, María I; Maggi, Pietro; Ellis, Mary; Westmoreland, Susan; Silva, Afonso; Reich, Daniel S; Jacobson, Steven

    2013-01-01

    Human Herpesvirus 6 (HHV-6) is a ubiquitous virus with an estimated seroprevalence of 95% in the adult population. HHV-6 is associated with several neurologic disorders, including multiple sclerosis, an inflammatory demyelinating disease affecting the CNS. Animal models of HHV-6 infection would help clarify its role in human disease but have been slow to develop because rodents lack CD46, the receptor for cellular entry. Therefore, we investigated the effects of HHV-6 infections in a non-human primate, the common marmoset Callithrix jacchus. We inoculated a total of 12 marmosets with HHV-6A and HHV-6B intravenously and HHV-6A intranasally. Animals were monitored for 25 weeks post-inoculation clinically, immunologically and by MRI. Marmosets inoculated with HHV-6A intravenously exhibited neurologic symptoms and generated virus-specific antibody responses, while those inoculated intravenously with HHV-6B were asymptomatic and generated comparatively lower antibody responses. Viral DNA was detected at a low frequency in paraffin-embedded CNS tissue of a subset of marmosets inoculated with HHV-6A and HHV-6B intravenously. When different routes of HHV-6A inoculation were compared, intravenous inoculation resulted in virus-specific antibody responses and infrequent detection of viral DNA in the periphery, while intranasal inoculation resulted in negligible virus-specific antibody responses and frequent detection of viral DNA in the periphery. Moreover, marmosets inoculated with HHV-6A intravenously exhibited neurologic symptoms, while marmosets inoculated with HHV-6A intranasally were asymptomatic. We demonstrate that a marmoset model of HHV-6 infection can serve to further define the contribution of this ubiquitous virus to human neurologic disorders.

  18. IgG+ platelets in the marmoset: their induction, maintenance, and survival

    SciTech Connect

    Gengozian, N.; McLaughlin, C.L.

    1980-06-01

    Immunization of marmosets with platelets from another species of marmoset leads to antibody formation to the donor platelets, deposition of IgG on the host's platelets, and thrombocytopenia. This disease closely resembles posttransfusion purpura of man, which may develop after one or two transfusions of whole blood. The mode of immunization in the marmoset was found to be important: intravenous (i.v.) inoculations were without effect, while intramuscular (i.m.) immunizations led to the disease. Intramuscular inoculations were characterized by formation of 7S antibodies, as measured by indirect immunofluorescent (IF) and complement-dependent platelet cytotoxicity (PC) tests; in contrast, i.v. immunizations, while leading to 7S antibodies by the IF test, yielded only 19S antibodies reactive in the PC assay. The titers were also consistently higher with i.m. immunizations. Antibody was not limited to the donor platelets, but auto- or host-type reactivity was also present; this antibody was in very low titer and could be found only when the animal was thrombocytopenic. A primary finding was the ability to maintain increased deposition of IgG on the host's platelets in the absence of thrombocytopenia by biweekly or monthly inoculations of the donor platelet antigen. The amount of IgG found on platelets of normal and immunized marmosets was comparable to that reported for normal humans and patients with cinical immune thrombocytopenia. Finally, platelet survival studies in animals with IgG+ platelets and normal platelet counts indicated a rapid turnover, suggesting operation of a compensatory mechanism to maintain platelet levels.

  19. The behavioral context of visual displays in common marmosets (Callithrix jacchus).

    PubMed

    de Boer, Raïssa A; Overduin-de Vries, Anne M; Louwerse, Annet L; Sterck, Elisabeth H M

    2013-11-01

    Communication is important in social species, and may occur with the use of visual, olfactory or auditory signals. However, visual communication may be hampered in species that are arboreal have elaborate facial coloring and live in small groups. The common marmoset fits these criteria and may have limited visual communication. Nonetheless, some (contradictive) propositions concerning visual displays in the common marmoset have been made, yet quantitative data are lacking. The aim of this study was to assign a behavioral context to different visual displays using pre-post-event-analyses. Focal observations were conducted on 16 captive adult and sub-adult marmosets in three different family groups. Based on behavioral elements with an unambiguous meaning, four different behavioral contexts were distinguished: aggression, fear, affiliation, and play behavior. Visual displays concerned behavior that included facial expressions, body postures, and pilo-erection of the fur. Visual displays related to aggression, fear, and play/affiliation were consistent with the literature. We propose that the visual display "pilo-erection tip of tail" is related to fear. Individuals receiving these fear signals showed a higher rate of affiliative behavior. This study indicates that several visual displays may provide cues or signals of particular social contexts. Since the three displays of fear elicited an affiliative response, they may communicate a request of anxiety reduction or signal an external referent. Concluding, common marmosets, despite being arboreal and living in small groups, use several visual displays to communicate with conspecifics and their facial coloration may not hamper, but actually promote the visibility of visual displays.

  20. Toward a nonhuman primate model of fetal programming: phenotypic plasticity of the common marmoset fetoplacental complex.

    PubMed

    Rutherford, Julienne N

    2012-11-01

    Nonhuman primates offer unique opportunities as animal models in the study of developmental programming and the role of the placenta in developmental processes. All primates share fundamental similarities in life history and reproductive biology. Thus, insights gleaned from studies of nonhuman primates have a higher degree of biological salience to human biology than do studies of rodents or agricultural animals. The common marmoset monkey is a small-bodied primate from South America that produces litters of dizygotic fetuses that share a single placental mass. This natural variation allows us to model different intrauterine conditions and associated fetoplacental phenotypes. The marmoset placenta is phenotypically plastic according to litter size. Triplet litters are characterized by low individual fetal weights and significantly more efficient placentas and attendant alterations to the microscopic architecture and endocrine function, thus modeling a nutrient restricted intrauterine environment. Consistent with this model, triplet neonates experience a higher risk of perinatal mortality and an increased likelihood of elevated adult weight. Recent evidence has shown that the intrauterine experience of females has an impact on their own pregnancy outcomes in adulthood: triplet females experience significantly greater pregnancy loss than do twin females. The marmoset monkey thus represents a potential powerful nonhuman primate model of multiple pregnancies, restrictive prenatal experiences, and differential reproductive outcomes in adulthood, which may have important implications for studying the impact of in vitro fertilization on adult reproductive health. It is still too early to determine exactly what developmental pathways lead to this disparity or what specific role the placenta plays; future work on this front will be critical to establish the marmoset as an important model of fetal programming of reproductive function in adulthood and across generations.

  1. Experimental Cross-Species Infection of Common Marmosets by Titi Monkey Adenovirus

    PubMed Central

    Chen, Eunice C.; Liu, Maria; Brasky, Kathleen M.; Lanford, Robert E.; Kelly, Kristi R.; Bales, Karen L.; Schnurr, David P.; Canfield, Don R.; Patterson, Jean L.; Chiu, Charles Y.

    2013-01-01

    Adenoviruses are DNA viruses that infect a number of vertebrate hosts and are associated with both sporadic and epidemic disease in humans. We previously identified a novel adenovirus, titi monkey adenovirus (TMAdV), as the cause of a fulminant pneumonia outbreak in a colony of titi monkeys (Callicebus cupreus) at a national primate center in 2009. Serological evidence of infection by TMAdV was also found in a human researcher at the facility and household family member, raising concerns for potential cross-species transmission of the virus. Here we present experimental evidence of cross-species TMAdV infection in common marmosets (Callithrix jacchus). Nasal inoculation of a cell cultured-adapted TMAdV strain into three marmosets produced an acute, mild respiratory illness characterized by low-grade fever, reduced activity, anorexia, and sneezing. An increase in virus-specific neutralization antibody titers accompanied the development of clinical signs. Although serially collected nasal swabs were positive for TMAdV for at least 8 days, all 3 infected marmosets spontaneously recovered by day 12 post-inoculation, and persistence of the virus in tissues could not be established. Thus, the pathogenesis of experimental inoculation of TMAdV in common marmosets resembled the mild, self-limiting respiratory infection typically seen in immunocompetent human hosts rather than the rapidly progressive, fatal pneumonia observed in 19 of 23 titi monkeys during the prior 2009 outbreak. These findings further establish the potential for adenovirus cross-species transmission and provide the basis for development of a monkey model useful for assessing the zoonotic potential of adenoviruses. PMID:23894316

  2. Anatomical description and morphometry of the skeleton of the common marmoset (Callithrix jacchus).

    PubMed

    Casteleyn, C; Bakker, J; Breugelmans, S; Kondova, I; Saunders, J; Langermans, J A M; Cornillie, P; Van den Broeck, W; Van Loo, D; Van Hoorebeke, L; Bosseler, L; Chiers, K; Decostere, A

    2012-04-01

    Callithrix jacchus (common marmoset) is regularly used in biomedical research, including for studies involving the skeleton. To support these studies, skeletons of healthy animals that had been euthanized for reasons not interfering with skeletal anatomy were prepared. The marmoset dental formula 2I-1C-3P-2M of each oral quadrant is atypical for New World monkeys which commonly possess a third molar. Seven cervical, 12-13 thoracic, 7-6 lumbar, 2-3 sacral and 26-29 caudal vertebrae are present, the thoracolumbar region always comprising 19 vertebrae. A sigmoid clavicle connects the scapula with the manubrium of the sternum. Depending on the number of thoracic vertebrae, 4-5 sternebrae are located between the manubrium and xiphoid process. Wide interosseous spaces separate the radius from the ulna, and the tibia from the fibula. A small sesamoid bone is inserted in the m. abductor digiti primi longus at the medial border of the carpus, a pair of ovoid sesamoid bones is located at the palmar/plantar sides of the trochleae of each metapodial bone, and round fabellae articulate with the proximal surfaces of the femoral condyles. Male marmosets possess a small penile bone. Both the front and hind feet have five digits. The hallux possesses a flat nail, whereas all other digits present curved claws. Interestingly, a central bone is present in both the carpus and tarsus. This study provides a description and detailed illustrations of the skeleton of the common marmoset as an anatomical guide for further biomedical research.

  3. Modeling Parkinson's disease in the common marmoset (Callithrix jacchus): overview of models, methods, and animal care.

    PubMed

    Yun, Jun-Won; Ahn, Jae-Bum; Kang, Byeong-Cheol

    2015-12-01

    The common marmoset (Callithrix jacchus) is a small-bodied, popular New World monkey and is used widely in reproductive biology, neuroscience, and drug development, due to its comparative ease of handling, high reproductive efficiency, and its unique behavioral characters. In this review, we discuss the marmoset models in Parkinson's disease (PD), which is a neurological movement disorder primarily resulting from a degeneration of dopaminergic neurons with clinical features of tremor, rigidity, postural instability, and akinesia. The most common PD models involve the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 6-hydroxydopamine to study the pathogenesis and to evaluate novel therapies. Following the systemic or local administration of these neurotoxins, the marmosets with very severe Parkinson's symptoms are recommended to be placed in an intensive care unit with artificial feeding to increase survival rate. All procedures with MPTP should be conducted in a special room with enclosed cages under negative-pressure by trained researchers with personal protection. Behavioral tests are conducted to provide an external measure of the brain pathology. Along with several biomarkers, including α-synuclein and DJ-1, non-invasive neuroimaging techniques such as positron emission tomography and magnetic resonance imaging are used to evaluate the functional changes associated with PD. With the recent growing interest in potential and novel therapies such as stem cell and gene therapy for PD in Korea, the marmoset can be considered as a suitable non-human primate model in PD research to bridge the gap between rodent studies and clinical applications.

  4. Modeling Parkinson's disease in the common marmoset (Callithrix jacchus): overview of models, methods, and animal care

    PubMed Central

    Yun, Jun-Won; Ahn, Jae-Bum

    2015-01-01

    The common marmoset (Callithrix jacchus) is a small-bodied, popular New World monkey and is used widely in reproductive biology, neuroscience, and drug development, due to its comparative ease of handling, high reproductive efficiency, and its unique behavioral characters. In this review, we discuss the marmoset models in Parkinson's disease (PD), which is a neurological movement disorder primarily resulting from a degeneration of dopaminergic neurons with clinical features of tremor, rigidity, postural instability, and akinesia. The most common PD models involve the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 6-hydroxydopamine to study the pathogenesis and to evaluate novel therapies. Following the systemic or local administration of these neurotoxins, the marmosets with very severe Parkinson's symptoms are recommended to be placed in an intensive care unit with artificial feeding to increase survival rate. All procedures with MPTP should be conducted in a special room with enclosed cages under negative-pressure by trained researchers with personal protection. Behavioral tests are conducted to provide an external measure of the brain pathology. Along with several biomarkers, including α-synuclein and DJ-1, non-invasive neuroimaging techniques such as positron emission tomography and magnetic resonance imaging are used to evaluate the functional changes associated with PD. With the recent growing interest in potential and novel therapies such as stem cell and gene therapy for PD in Korea, the marmoset can be considered as a suitable non-human primate model in PD research to bridge the gap between rodent studies and clinical applications. PMID:26755918

  5. A Model of the Superior Colliculus Predicts Fixation Locations during Scene Viewing and Visual Search.

    PubMed

    Adeli, Hossein; Vitu, Françoise; Zelinsky, Gregory J

    2017-02-08

    Modern computational models of attention predict fixations using saliency maps and target maps, which prioritize locations for fixation based on feature contrast and target goals, respectively. But whereas many such models are biologically plausible, none have looked to the oculomotor system for design constraints or parameter specification. Conversely, although most models of saccade programming are tightly coupled to underlying neurophysiology, none have been tested using real-world stimuli and tasks. We combined the strengths of these two approaches in MASC, a model of attention in the superior colliculus (SC) that captures known neurophysiological constraints on saccade programming. We show that MASC predicted the fixation locations of humans freely viewing naturalistic scenes and performing exemplar and categorical search tasks, a breadth achieved by no other existing model. Moreover, it did this as well or better than its more specialized state-of-the-art competitors. MASC's predictive success stems from its inclusion of high-level but core principles of SC organization: an over-representation of foveal information, size-invariant population codes, cascaded population averaging over distorted visual and motor maps, and competition between motor point images for saccade programming, all of which cause further modulation of priority (attention) after projection of saliency and target maps to the SC. Only by incorporating these organizing brain principles into our models can we fully understand the transformation of complex visual information into the saccade programs underlying movements of overt attention. With MASC, a theoretical footing now exists to generate and test computationally explicit predictions of behavioral and neural responses in visually complex real-world contexts.SIGNIFICANCE STATEMENT The superior colliculus (SC) performs a visual-to-motor transformation vital to overt attention, but existing SC models cannot predict saccades to visually

  6. A case report of spontaneous opening of congenitally fused labia in a female common marmoset (Callithrix jacchus) followed by pregnancy and birth of twins.

    PubMed

    Wedi, E; Nayudu, P L; Michelmann, H W

    2011-10-01

    A first case of spontaneous opening of congenitally fused labia (CFL phenotype) in a captive common marmoset followed by pregnancy and birth is presented here. The occurrence of this phenotype has been previously published in captive marmosets, but so far the etiology is unknown.

  7. Evidence of Tau Hyperphosphorylation and Dystrophic Microglia in the Common Marmoset

    PubMed Central

    Rodriguez-Callejas, Juan D.; Fuchs, Eberhard; Perez-Cruz, Claudia

    2016-01-01

    Common marmosets (Callithrix jacchus) have recently gained popularity in biomedical research as models of aging research. Basically, they confer advantages from other non-human primates due to their shorter lifespan with onset of appearance of aging at 8 years. Old marmosets present some markers linked to neurodegeneration in the brain such as amyloid beta (Aβ)1-42 and Aβ1-40. However, there are no studies exploring other cellular markers associated with neurodegenerative diseases in this non-human primate. Using immunohistochemistry, we analyzed brains of male adolescent, adult, old, and aged marmosets. We observed accumulation of Aβ1-40 and Aβ1-42 in the cortex of aged subjects. Tau hyperphosphorylation was already detected in the brain of adolescent animals and increased with aging in a more fibrillary form. Microglia activation was also observed in the aging process, while a dystrophic phenotype accumulates in aged subjects. Interestingly, dystrophic microglia contained hyperphosphorylated tau, but active microglia did not. These results support previous findings regarding microglia dysfunctionality in aging and neurodegenerative diseases as Alzheimer’s disease. Further studies should explore the functional consequences of these findings to position this non-human primate as animal model of aging and neurodegeneration. PMID:28066237

  8. Characterization of mammary epithelial stem/progenitor cells and their changes with aging in common marmosets

    PubMed Central

    Wu, Anqi; Dong, Qiaoxiang; Gao, Hui; Shi, Yuanshuo; Chen, Yuanhong; Zhang, Fuchuang; Bandyopadhyay, Abhik; Wang, Danhan; Gorena, Karla M.; Huang, Changjiang; Tardif, Suzette; Nathanielsz, Peter W.; Sun, Lu-Zhe

    2016-01-01

    Age is the number one risk factor for breast cancer, yet the underlying mechanisms are unexplored. Age-associated mammary stem cell (MaSC) dysfunction is thought to play an important role in breast cancer carcinogenesis. Non-human primates with their close phylogenetic relationship to humans provide a powerful model system to study the effects of aging on human MaSC. In particular, the common marmoset monkey (Callithrix jacchus) with a relatively short life span is an ideal model for aging research. In the present study, we characterized for the first time the mammary epithelial stem/progenitor cells in the common marmoset. The MaSC-enriched cells formed four major types of morphologically distinct colonies when cultured on plates pre-seeded with irradiated NIH3T3 fibroblasts, and were also capable of forming mammospheres in suspension culture and subsequent formation of 3D organoids in Matrigel culture. Most importantly, these 3D organoids were found to contain stem/progenitor cells that can undergo self-renewal and multi-lineage differentiation both in vitro and in vivo. We also observed a significant decrease of luminal-restricted progenitors with age. Our findings demonstrate that common marmoset mammary stem/progenitor cells can be isolated and quantified with established in vitro and in vivo assays used for mouse and human studies. PMID:27558284

  9. Behavioral and trait rating assessments of personality in common marmosets (Callithrix jacchus).

    PubMed

    Iwanicki, Suzanne; Lehmann, Julia

    2015-08-01

    The study of personality in animals is a rapidly growing scientific field and numerous species have been reported to show consistent personality profiles. Much animal personality research has focused on nonhuman primates, with the main emphasis being placed on Old World primates, particularly rhesus macaques and chimpanzees. So far, little work has been done on cooperatively breeding nonhuman primates and New World species. Here, we study personality in the cooperatively breeding common marmosets (Callithrix jacchus) to broaden the taxonomic range of such research and to widen the perspective of comparative personality research. We use behavioral data collection and observer trait ratings to assess marmoset personality dimensions. The resulting behavioral and rating-derived personality dimensions, when viewed in tandem, resemble the human five-factor model and include extraversion, agreeableness, neuroticism, openness, and conscientiousness. Correlations between the behavioral data and the observer trait-rated personality components suggest that the personality construct of common marmosets exhibits both convergent and discriminant validity. The finding of a distinct Conscientiousness component in this species extends previous knowledge in comparative personality psychology and warrants reconsideration of proposed taxonomic trait distributions.

  10. Home cage presentation of complex discrimination tasks to marmosets and rhesus monkeys.

    PubMed

    Crofts, H S; Muggleton, N G; Bowditch, A P; Pearce, P C; Nutt, D J; Scott, E A

    1999-07-01

    The study reported here demonstrates the feasibility of presenting cognitive tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB) to either marmosets or rhesus monkeys in their home cages. This location of testing offers opportunities for the measurement of additional indices, for example spontaneous behaviour (Prowse et al. 1995) and electrophysiology (Pearce et al. 1998) as well as facilitating repeated test presentation. Results from 12 marmosets and 4 rhesus monkeys which have completed several sequences of an eight-stage discrimination task involving simple discriminations, compound discriminations and reversals are reported. The paradigm developed has application in long-term studies. Tests from CANTAB have been used extensively in normal humans (Robbins et al. 1994) as well as a range of patient groups (Owen et al. 1992, Elliott et al. 1995) and to assess drug effects (Coull et al. 1996). Additionally some of these tests have been presented to marmosets (Roberts et al. 1988) to examine neuropsychological functioning. This comparative approach facilitates meaningful cross species comparison, particularly in the study of the effects of pharmacological intervention.

  11. High-field functional magnetic resonance imaging of vocalization processing in marmosets

    PubMed Central

    Sadagopan, Srivatsun; Temiz-Karayol, Nesibe Z.; Voss, Henning U.

    2015-01-01

    Vocalizations are behaviorally critical sounds, and this behavioral importance is reflected in the ascending auditory system, where conspecific vocalizations are increasingly over-represented at higher processing stages. Recent evidence suggests that, in macaques, this increasing selectivity for vocalizations might culminate in a cortical region that is densely populated by vocalization-preferring neurons. Such a region might be a critical node in the representation of vocal communication sounds, underlying the recognition of vocalization type, caller and social context. These results raise the questions of whether cortical specializations for vocalization processing exist in other species, their cortical location, and their relationship to the auditory processing hierarchy. To explore cortical specializations for vocalizations in another species, we performed high-field fMRI of the auditory cortex of a vocal New World primate, the common marmoset (Callithrix jacchus). Using a sparse imaging paradigm, we discovered a caudal-rostral gradient for the processing of conspecific vocalizations in marmoset auditory cortex, with regions of the anterior temporal lobe close to the temporal pole exhibiting the highest preference for vocalizations. These results demonstrate similar cortical specializations for vocalization processing in macaques and marmosets, suggesting that cortical specializations for vocal processing might have evolved before the lineages of these species diverged. PMID:26091254

  12. Metabolic consequences of long-term rapamycin exposure on common marmoset monkeys (Callithrix jacchus).

    PubMed

    Ross, Corinna; Salmon, Adam; Strong, Randy; Fernandez, Elizabeth; Javors, Marty; Richardson, Arlan; Tardif, Suzette

    2015-11-01

    Rapamycin has been shown to extend lifespan in rodent models, but the effects on metabolic health and function have been widely debated in both clinical and translational trials. Prior to rapamycin being used as a treatment to extend both lifespan and healthspan in the human population, it is vital to assess the side effects of the treatment on metabolic pathways in animal model systems, including a closely related non-human primate model. In this study, we found that long-term treatment of marmoset monkeys with orally-administered encapsulated rapamycin resulted in no overall effects on body weight and only a small decrease in fat mass over the first few months of treatment. Rapamycin treated subjects showed no overall changes in daily activity counts, blood lipids, or significant changes in glucose metabolism including oral glucose tolerance. Adipose tissue displayed no differences in gene expression of metabolic markers following treatment, while liver tissue exhibited suppressed G6Pase activity with increased PCK and GPI activity. Overall, the marmosets revealed only minor metabolic consequences of chronic treatment with rapamycin and this adds to the growing body of literature that suggests that chronic and/or intermittent rapamycin treatment results in improved health span and metabolic functioning. The marmosets offer an interesting alternative animal model for future intervention testing and translational modeling.

  13. Novel mastadenovirus infection and clinical disease in a pygmy marmoset (Callithrix [Cebuella] pygmaea).

    PubMed

    Gál, János; Hornyák, Ákos; Mándoki, Míra; Bakonyi, Tamás; Balka, Gyula; Szeredi, Levente; Marosán, Miklós; Ludányi, Tibor; Forgách, Petra; Sós, Endre; Demeter, Zoltán; Farkas, Szilvia L

    2013-12-27

    We describe the detection and successful isolation of a novel mastadenovirus from a pygmy marmoset (Callithrix [Cebuella] pygmaea) that died following an episode of severe respiratory signs. Pathologic/histopathologic examination revealed hydrothorax and catarrhal bronchopneumonia with pronounced desquamation of the bronchiolar epithelial cells, while in other airways a marked hyperplasia of the epithelial lining and numerous giant cells could be observed. We obtained partial sequence data from the adenoviral DNA-dependent DNA-polymerase gene of the isolated strain and analyses of this region showed the highest level of identity to the recently described bat adenoviruses (strains PPV1 and TJM) and the type 2 canine adenovirus. Similar results were gained by phylogenetic calculations indicating that this novel marmoset adenovirus is only distantly related to reference Old and New World primate adenoviruses and formed a monophyletic group with bat and canine adenoviruses and the equine adenovirus 1. Even though the source of the infection remained unknown, our results could imply the possibility of a cross-species transmission of the virus from an anonymous host to the pygmy marmoset.

  14. The olfactory bulb and the number of its glomeruli in the common marmoset (Callithrix jacchus).

    PubMed

    Moriya-Ito, Keiko; Tanaka, Ikuko; Umitsu, Yoshitomo; Ichikawa, Masumi; Tokuno, Hironobu

    2015-04-01

    The olfactory system has been well studied in mammals such as mice and rats. However, few studies have focused on characterizing this system in diurnal primates that rely on their sense of smell to a lesser extent due to their ecological environment. In the present study, we determined the histological organization of the olfactory bulb in the common marmoset (Callithrix jacchus). We then constructed 3-dimensional models of the glomeruli of the olfactory bulb, and estimated the number of glomeruli. Olfactory glomeruli are the functional units of olfactory processing, and have been investigated in detail using mice. There are approximately 1800 glomeruli in a mouse hemibulb, and olfactory sensory neurons expressing one selected olfactory receptor converge onto one or two glomeruli. Because mice have about 1000 olfactory receptor genes, it is proposed that the number of glomeruli in mammals is nearly double that of olfactory receptor genes. The common marmoset carries only about 400 intact olfactory receptor genes. The present study revealed that the number of glomeruli in a marmoset hemibulb was approximately 1500-1800. This result suggests that the number of glomeruli is not positively correlated with the number of intact olfactory receptor genes in mammals.

  15. Experimental endocrine manipulation by contraceptive regimen in the male marmoset (Callithrix jacchus).

    PubMed

    Wistuba, Joachim; Luetjens, C Marc; Ehmcke, Jens; Redmann, Klaus; Damm, Oliver S; Steinhoff, Antje; Sandhowe-Klaverkamp, Reinhild; Nieschlag, Eberhard; Simoni, Manuela; Schlatt, Stefan

    2013-04-01

    Marmosets are used as preclinical model in reproductive research. In contrast to other primates, they display short gestation times rendering this species valid for exploration of effects on fertility. However, their peculiar endocrine regulation differs from a those of macaques and humans. We subjected male marmosets to previously clinically tested hormonal regimens that are known to effectively suppress spermatogenesis. Beside a control group, seven groups (each n=6) were investigated for different periods of up to 42 months: regimen I, (four groups) received testosterone undecanoate (TU) and norethisterone enanthate (NETE); regimen II, (two groups) received TU and NETE followed by NETE only; and regimen III, (one group) received NETE only. Testicular volume, cell ploidy and histology, endocrine changes and fertility were monitored weekly. TU and NETE and initial TU and NETE treatment followed by NETE failed to suppress spermatogenesis and fertility. Testicular volumes dropped, although spermatogenesis was only mildly affected; however, testicular cellular composition remained stable. Serum testosterone dropped when NETE was given alone but the animals remained fertile. Compared with controls, no significant changes were observed in sperm motility and fertility. Administration of TU and NETE affected testicular function only mildly, indicating that the regulatory role of chorionic gonadotrophin and testosterone on spermatogenesis is obviously limited and testicular function is maintained, although the endocrine axis is affected by the treatment. In conclusion, marmosets showed a different response to regimens of male contraception from macaques or men and have to be considered as a problematic model for preclinical trials of male hormonal contraception.

  16. Comparative experimental subcutaneous glanders and melioidosis in the common marmoset (Callithrix jacchus).

    PubMed

    Nelson, Michelle; Salguero, Francisco J; Dean, Rachel E; Ngugi, Sarah A; Smither, Sophie J; Atkins, Timothy P; Lever, Mark S

    2014-12-01

    Glanders and melioidosis are caused by two distinct Burkholderia species and have generally been considered to have similar disease progression. While both of these pathogens are HHS/CDC Tier 1 agents, natural infection with both these pathogens is primarily through skin inoculation. The common marmoset (Callithrix jacchus) was used to compare disease following experimental subcutaneous challenge. Acute, lethal disease was observed in marmosets following challenge with between 26 and 1.2 × 10(8) cfu Burkholderia pseudomallei within 22-85 h. The reproducibility and progression of the disease were assessed following a challenge of 1 × 10(2) cfu of B. pseudomallei. Melioidosis was characterised by high levels of bacteraemia, focal microgranuloma progressing to non-necrotic multifocal solid lesions in the livers and spleens and multi-organ failure. Lethal disease was observed in 93% of animals challenged with Burkholderia mallei, occurring between 5 and 10.6 days. Following challenge with 1 × 10(2) cfu of B. mallei, glanders was characterised with lymphatic spread of the bacteria and non-necrotic, multifocal solid lesions progressing to a multifocal lesion with severe necrosis and pneumonia. The experimental results confirmed that the disease pathology and presentation is strikingly different between the two pathogens. The marmoset provides a model of the human syndrome for both diseases facilitating the development of medical countermeasures.

  17. Natural variation in gestational cortisol is associated with patterns of growth in marmoset monkeys (Callithrix geoffroyi).

    PubMed

    Mustoe, Aaryn C; Birnie, Andrew K; Korgan, Austin C; Santo, Jonathan B; French, Jeffrey A

    2012-02-01

    High levels of prenatal cortisol have been previously reported to retard fetal growth. Although cortisol plays a pivotal role in prenatal maturation, heightened exposure to cortisol can result in lower body weights at birth, which have been shown to be associated with adult diseases like hypertension and cardiovascular disease. This study examines the relationship between natural variation in gestational cortisol and fetal and postnatal growth in marmoset monkeys. Urinary samples obtained during the mother's gestation were analyzed for cortisol. Marmoset body mass index (BMI) was measured from birth through 540 days in 30- or 60-day intervals. Multi-level modeling was used to test if marmoset growth over time was predicted by changes in gestational cortisol controlling for time, sex, litter, and litter size. The results show that offspring exposed to intra-uterine environments with elevated levels of cortisol had lower linear BMI rates of change shortly after birth than did offspring exposed to lower levels of cortisol, but exhibited a higher curvilinear growth rate during adolescence. Average daily change in gestational cortisol during the first trimester had a stronger relationship with postnatal growth than change during the third trimester. Higher exposure to cortisol during gestation does alter developmental trajectories, however there appears to be a catch-up period during later post-natal growth. These observations contribute to a larger discussion about the relationship of maternal glucocorticoids on offspring development and the possibility of an earlier vulnerable developmental window.

  18. Differential endocrine responses to infant odors in common marmoset (Callithrix jacchus) fathers.

    PubMed

    Ziegler, Toni E; Peterson, Laura J; Sosa, Megan E; Barnard, Allison M

    2011-02-01

    Olfactory cues can exert priming effects on many mammalian species. Paternally experienced marmosets, Callithrix jacchus, exposed to direct isolated olfactory contact with their own infant's scent show rapid decreases in testosterone levels within 20 min, whereas paternally inexperienced males do not. The following study tests whether there is a differential steroid response to exposure of infant scent from dependent infants (own and novel) and independent infants (own and novel). We examined the serum levels of estradiol, estrone, testosterone, dihydrotestosterone (DHT), and combined estrogens and androgens in eight male marmosets 20 min after exposure to isolated infant scent. Testosterone and androgen levels combined were significantly lower with exposure to own infant scent than a novel infant scent when the infants were at a dependent age but not at an independent age. Estrogen levels elevated significantly in response to own infant scent when the infants were at a dependent age but not at an independent age. These results suggest that marmoset fathers are more responsive to priming cues from related infants and hormonal responses from fathers are greatest when the infant is at a dependent age.

  19. Retinal projections and neurochemical characterization of the pregeniculate nucleus of the common marmoset (Callithrix jacchus).

    PubMed

    Lima, Ruthnaldo R M; Pinato, Luciana; Nascimento, Rayane B S; Engelberth, Rovena Clara G J; Nascimento, Expedito S Junior; Cavalcante, Judney C; Britto, Luiz R G; Costa, Miriam S M O; Cavalcante, Jeferson S

    2012-05-01

    In mammals, the suprachiasmatic nucleus (SCN) and the intergeniculate leaflet (IGL) are the main components of the circadian timing system. The SCN is the site of the endogenous biological clock that generates rhythms and synchronizes them to environmental cues. The IGL is a key structure that modulates SCN activity and is responsible for the transmission of non-photic information to the SCN, thus participating in the integration between photic and non-photic stimuli. Both the SCN and IGL receive projections of retinal ganglion cells and the IGL is connected to the SCN through the geniculohypothalamic tract. Little is known about these structures in the primate brain and the pregeniculate nucleus (PGN) has been suggested to be the primate equivalent of the rodent IGL. The aim of this study was to characterize the PGN of a primate, the common marmoset (Callithrix jacchus), and to analyze its retinal afferents. Here, the marmoset PGN was found to be organized into three subsectors based on neuronal size, pattern of retinal projections, and the distribution of neuropeptide Y-, GAD-, serotonin-, enkephalin- and substance P-labeled terminals. This pattern indicates that the marmoset PGN is equivalent to the IGL. This detailed description contributes to the understanding of the circadian timing system in this primate species considering the importance of the IGL within the context of circadian regulation.

  20. Comparative experimental subcutaneous glanders and melioidosis in the common marmoset (Callithrix jacchus)

    PubMed Central

    Nelson, Michelle; Salguero, Francisco J; Dean, Rachel E; Ngugi, Sarah A; Smither, Sophie J; Atkins, Timothy P; Lever, Mark S

    2014-01-01

    Glanders and melioidosis are caused by two distinct Burkholderia species and have generally been considered to have similar disease progression. While both of these pathogens are HHS/CDC Tier 1 agents, natural infection with both these pathogens is primarily through skin inoculation. The common marmoset (Callithrix jacchus) was used to compare disease following experimental subcutaneous challenge. Acute, lethal disease was observed in marmosets following challenge with between 26 and 1.2 × 108 cfu Burkholderia pseudomallei within 22–85 h. The reproducibility and progression of the disease were assessed following a challenge of 1 × 102 cfu of B. pseudomallei. Melioidosis was characterised by high levels of bacteraemia, focal microgranuloma progressing to non-necrotic multifocal solid lesions in the livers and spleens and multi-organ failure. Lethal disease was observed in 93% of animals challenged with Burkholderia mallei, occurring between 5 and 10.6 days. Following challenge with 1 × 102 cfu of B. mallei, glanders was characterised with lymphatic spread of the bacteria and non-necrotic, multifocal solid lesions progressing to a multifocal lesion with severe necrosis and pneumonia. The experimental results confirmed that the disease pathology and presentation is strikingly different between the two pathogens. The marmoset provides a model of the human syndrome for both diseases facilitating the development of medical countermeasures. PMID:25477002

  1. Hawk calls elicit alarm and defensive reactions in captive Geoffroy's marmosets (Callithrix geoffroyi).

    PubMed

    Searcy, Yvonne M; Caine, Nancy G

    2003-01-01

    Most descriptions of callitrichid antipredator behavior have come from observations of visual encounters with predators, but there is also anecdotal evidence suggesting that callitrichids may use auditory cues associated with raptors for the early detection of potential danger. In the present study, Geoffroy's marmosets consistently reacted to the tape-recorded calls of a red-tailed hawk (Buteo jamaicensis) with high-intensity antipredator behaviors. Compared to the taped calls of a raven (Corvus corax) and the taped sound of a power drill, the hawk calls elicited more startle reactions, more alarm calls, longer freeze times, increased use of safe areas of their enclosure and greater disruption in ongoing behavior. Once in a relatively safe location in the enclosure, the marmosets visually monitored the site of origin of the calls for 10 min and minimized locomotion for 30 min, but resumed baseline levels of other activities that had been disrupted by the hawk calls. Marmosets may use the auditory cues associated with predators for early detection, and subsequent avoidance, of a potential predator in the vicinity.

  2. Natural variation in gestational cortisol is associated with patterns of growth in marmoset monkeys (Callithrix geoffroyi)

    PubMed Central

    Mustoe, Aaryn C.; Birnie, Andrew K.; Korgan, Austin C.; Santo, Jonathan B.; French, Jeffrey A.

    2012-01-01

    High levels of prenatal cortisol have been previously reported to retard fetal growth. Although cortisol plays a pivotal role in prenatal maturation, heightened exposure to cortisol can result in lower body weights at birth, which have been shown to be associated with adult diseases like hypertension and cardiovascular disease. This study examines the relationship between natural variation in gestational cortisol and fetal and postnatal growth in marmoset monkeys. Urinary samples obtained during the mother’s gestation were analyzed for cortisol. Marmoset body mass index (BMI) was measured from birth through 540 days in 30- or 60-day intervals. Multi-level modeling was used to test if marmoset growth over time was predicted by changes in gestational cortisol controlling for time, sex, litter, and litter size. The results show that offspring exposed to intra-uterine environments with elevated levels of cortisol had lower linear BMI rates of change shortly after birth than did offspring exposed to lower levels of cortisol, but exhibited a higher curvilinear growth rate during adolescence. Average daily change in gestational cortisol during the first trimester had a stronger relationship with postnatal growth than change during the third trimester. Higher exposure to cortisol during gestation does alter developmental trajectories, however there appears to be a catch-up period during later post-natal growth. These observations contribute to a larger discussion about the relationship of maternal glucocorticoids on offspring development and the possibility of an earlier vulnerable developmental window. PMID:22212825

  3. Resequencing of the common marmoset genome improves genome assemblies and gene-coding sequence analysis.

    PubMed

    Sato, Kengo; Kuroki, Yoko; Kumita, Wakako; Fujiyama, Asao; Toyoda, Atsushi; Kawai, Jun; Iriki, Atsushi; Sasaki, Erika; Okano, Hideyuki; Sakakibara, Yasubumi

    2015-11-20

    The first draft of the common marmoset (Callithrix jacchus) genome was published by the Marmoset Genome Sequencing and Analysis Consortium. The draft was based on whole-genome shotgun sequencing, and the current assembly version is Callithrix_jacches-3.2.1, but there still exist 187,214 undetermined gap regions and supercontigs and relatively short contigs that are unmapped to chromosomes in the draft genome. We performed resequencing and assembly of the genome of common marmoset by deep sequencing with high-throughput sequencing technology. Several different sequence runs using Illumina sequencing platforms were executed, and 181 Gbp of high-quality bases including mate-pairs with long insert lengths of 3, 8, 20, and 40 Kbp were obtained, that is, approximately 60× coverage. The resequencing significantly improved the MGSAC draft genome sequence. The N50 of the contigs, which is a statistical measure used to evaluate assembly quality, doubled. As a result, 51% of the contigs (total length: 299 Mbp) that were unmapped to chromosomes in the MGSAC draft were merged with chromosomal contigs, and the improved genome sequence helped to detect 5,288 new genes that are homologous to human cDNAs and the gaps in 5,187 transcripts of the Ensembl gene annotations were completely filled.

  4. Social mobbing calls in common marmosets (Callithrix jacchus): effects of experience and associated cortisol levels.

    PubMed

    Clara, Elena; Tommasi, Luca; Rogers, Lesley J

    2008-04-01

    We compared the mobbing response to model snakes of two groups of captive-born common marmosets (Callithrix jacchus) differing in genetic relatedness, age and past experience. Mobbing vocalisations (tsik calls), other mobbing behaviour and attention to the stimulus were recorded for 2 min. intervals pre-exposure, during exposure to various stimuli and post-exposure. Marmosets in one group were vocally reactive to all stimuli, although more so to one particular stimulus resembling rearing snakes and modified images of it, whereas the marmosets in a younger and genetically unrelated group attended to the stimuli but made very few mobbing calls. The parent stock of the first group had suffered stress in early life and had developed a phobic response to a specific stimulus, which they had transmitted to their offspring. A third group, matching the older group in age range but genetically unrelated, was also found to be unresponsive to the stimulus that elicited the strongest response in the first group. Cortisol levels in samples of hair were assayed and a significant negative correlation was found between the number of tsik calls made during presentation of the stimuli and the cortisol level, showing that mobbing behaviour/behavioural reactivity is associated with low levels of physiological stress.

  5. Marmoset induced pluripotent stem cells: Robust neural differentiation following pretreatment with dimethyl sulfoxide.

    PubMed

    Qiu, Zhifang; Mishra, Anuja; Li, Miao; Farnsworth, Steven L; Guerra, Bernadette; Lanford, Robert E; Hornsby, Peter J

    2015-07-01

    The marmoset is an important nonhuman primate model for regenerative medicine. For experimental autologous cell therapy based on induced pluripotent (iPS) cells in the marmoset, cells must be able to undergo robust and reliable directed differentiation that will not require customization for each specific iPS cell clone. When marmoset iPS cells were aggregated in a hanging drop format for 3 days, followed by exposure to dual SMAD inhibitors and retinoic acid in monolayer culture for 3 days, we found substantial variability in the response of different iPS cell clones. However, when clones were pretreated with 0.05-2% dimethyl sulfoxide (DMSO) for 24 hours, all clones showed a very similar maximal response to the directed differentiation scheme. Peak responses were observed at 0.5% DMSO in two clones and at 1% DMSO in a third clone. When patterns of gene expression were examined by microarray analysis, hierarchical clustering showed very similar responses in all 3 clones when they were pretreated with optimal DMSO concentrations. The change in phenotype following exposure to DMSO and the 6 day hanging drop/monolayer treatment was confirmed by immunocytochemistry. Analysis of DNA content in DMSO-exposed cells indicated that it is unlikely that DMSO acts by causing cells to exit from the cell cycle. This approach should be generally valuable in the directed neural differentiation of pluripotent cells for experimental cell therapy.

  6. Twinning and survivorship of captive common marmosets (Callithrix jacchus) and cotton-top tamarins (Saguinus oedipus).

    PubMed

    Ward, Joshua M; Buslov, Alexander M; Vallender, Eric J

    2014-01-01

    Here we present the results of a demographic analysis of 25 y (1985 to 2010) of common marmoset (Callithrix jacchus) and cotton-top tamarin (Saguinus oedipus) records from the New England Primate Research Center. Summaries of longevity and survivorship are analyzed by birth-type category (including singletons, twins, triplets, and quadruplets) and sex. In addition, a brief evolutionary review is presented. Surrogates of hematopoietic chimerism, twinning, and reproductive output are explored in a large number of animals to help decipher the potential effects of chimerism on life history in marmosets and tamarins. In addition to exploring chimerism through demographic data, multiple-birth frequency and survivorship are compared between species. New World primates can make ideal translational models for disease and behavioral research across multiple disciplines. A better understanding of their reproductive success and survivorship in captivity helps develop these nonhuman primate models, their role in aging research, and understanding of their behavioral ecology. This mission is likely to only increase in its importance to biomedical research due to both the sequencing of the marmoset genome and the growing demand for alternatives to Old World primate models.

  7. Hypoestrogenism does not mediate social suppression of cortisol in subordinate female marmosets.

    PubMed

    Saltzman, Wendy; Hogan, Brynn K; Allen, Amy J; Horman, Brian M; Abbott, David H

    2006-07-01

    Behaviorally subordinate female marmosets undergo social suppression of ovulation and hypoestrogenism, as well as chronic reductions in circulating basal cortisol concentrations. Because estrogen elevates hypothalamic-pituitary-adrenal axis activity and circulating glucocorticoid levels in other species, we tested the hypothesis that socially induced hypoestrogenism contributes to cortisol reductions in subordinate female marmosets. We characterized morning basal plasma cortisol levels, as well as cortisol responses to exogenous adrenocorticotropic hormone (ACTH; 0, 1, or 10 microg/kg), in seven anovulatory subordinate females and six ovariectomized, non-subordinate females under two conditions: during long-term treatment with estradiol (E2) and control. Circulating E2 and cortisol levels were compared to those of six dominant females undergoing ovulatory cycles. Basal cortisol concentrations in the control condition were significantly lower in subordinates than in both dominant and ovariectomized females. E2 treatment elevated circulating E2 levels of subordinate and ovariectomized females into the range seen in dominant females but did not increase either mean basal or ACTH-stimulated cortisol levels. To the contrary, E2 treatment caused a decline in basal cortisol levels over time, especially in ovariectomized animals. These results indicate that treatment with exogenous estrogen does not elevate circulating cortisol levels in previously hypoestrogenemic female marmosets and, correspondingly that socially induced hypoestrogenism does not diminish cortisol levels in subordinate females.

  8. Suppression of cortisol levels in subordinate female marmosets: reproductive and social contributions.

    PubMed

    Saltzman, W; Schultz-Darken, N J; Wegner, F H; Wittwer, D J; Abbott, D H

    1998-02-01

    Socially subordinate female common marmosets (Callithrix jacchus) have markedly lower plasma cortisol levels than dominant females. Subordinate females also undergo hypoestrogenemic anovulation, and estrogen can elevate glucocorticoid levels. Therefore, we previously hypothesized that this cortisol difference is mediated by rank-related differences in reproductive hormones, probably estradiol. To test this possibility, we characterized the effects of the ovarian cycle and ovariectomy on plasma cortisol concentrations. Beginning in the early follicular phase, basal blood samples were collected from seven cycling female marmosets daily for 16 days and at 2- to 3-day intervals for another 16 days. Samples were collected identically from seven anovulatory subordinate females and seven long-term ovariectomized females. Cortisol levels changed reliably across the ovarian cycle, with levels in the mid- to late follicular, peri-ovulatory, and early luteal phases higher than those in the remainder of the cycle. Cortisol levels of cycling females were significantly higher than those of subordinates at all parts of the cycle, but were significantly higher than those of ovariectomized females only during the midcycle elevation. Unexpectedly, subordinates had significantly lower cortisol levels than ovariectomized females, as well as higher estradiol and estrone levels and lower progesterone and luteinizing hormone (LH) levels. These results confirm that circulating cortisol concentrations are modulated by reproductive function in female marmosets but also indicate that low cortisol levels in subordinate females cannot be attributed simply to hypoestrogenemia. Instead, other factors, such as direct effects of social subordination or suppression of LH levels, contribute to suppression of cortisol in subordinates.

  9. Individual Differences in Gambling Proneness among Rats and Common Marmosets: An Automated Choice Task

    PubMed Central

    Manciocco, Arianna; Vitale, Augusto; Laviola, Giovanni

    2014-01-01

    Interest is rising for animal modeling of pathological gambling. Using the operant probabilistic-delivery task (PDT), gambling proneness can be evaluated in laboratory animals. Drawing a comparison with rats, this study evaluated the common marmoset (Callithrix jacchus) using a PDT. By nose- or hand-poking, subjects learnt to prefer a large (LLL, 5-6 pellets) over a small (SS, 1-2 pellets) reward and, subsequently, the probability of occurrence of large-reward delivery was decreased progressively to very low levels (from 100% to 17% and 14%). As probability decreased, subjects showed a great versus little shift in preference from LLL to SS reinforcer. Hence, two distinct subpopulations (“non-gambler” versus “gambler”) were differentiated within each species. A proof of the model validity comes from marmosets' reaction to reward-delivery omission. Namely, depending on individual temperament (“gambler” versus “non-gambler”), they showed either persistence (i.e., inadequate pokes towards LLL) or restlessness (i.e., inadequate pokes towards SS), respectively. In conclusion, the marmoset could be a suitable model for preclinical gambling studies. Implementation of the PDT to species other than rats may be relevant for determining its external validity/generalizability and improving its face/construct validity. PMID:24971360

  10. Representation of Glossy Material Surface in Ventral Superior Temporal Sulcal Area of Common Marmosets

    PubMed Central

    Miyakawa, Naohisa; Banno, Taku; Abe, Hiroshi; Tani, Toshiki; Suzuki, Wataru; Ichinohe, Noritaka

    2017-01-01

    The common marmoset (Callithrix jacchus) is one of the smallest species of primates, with high visual recognition abilities that allow them to judge the identity and quality of food and objects in their environment. To address the cortical processing of visual information related to material surface features in marmosets, we presented a set of stimuli that have identical three-dimensional shapes (bone, torus or amorphous) but different material appearances (ceramic, glass, fur, leather, metal, stone, wood, or matte) to anesthetized marmoset, and recorded multiunit activities from an area ventral to the superior temporal sulcus (STS) using multi-shanked, and depth resolved multi-electrode array. Out of 143 visually responsive multiunits recorded from four animals, 29% had significant main effect only of the material, 3% only of the shape and 43% of both the material and the shape. Furthermore, we found neuronal cluster(s), in which most cells: (1) showed a significant main effect in material appearance; (2) the best stimulus was a glossy material (glass or metal); and (3) had reduced response to the pixel-shuffled version of the glossy material images. The location of the gloss-selective area was in agreement with previous macaque studies, showing activation in the ventral bank of STS. Our results suggest that perception of gloss is an important ability preserved across wide range of primate species. PMID:28367117

  11. The Distinct Role of the Amygdala, Superior Colliculus and Pulvinar in Processing of Central and Peripheral Snakes

    PubMed Central

    Almeida, Inês; Soares, Sandra C.; Castelo-Branco, Miguel

    2015-01-01

    Introduction Visual processing of ecologically relevant stimuli involves a central bias for stimuli demanding detailed processing (e.g., faces), whereas peripheral object processing is based on coarse identification. Fast detection of animal shapes holding a significant phylogenetic value, such as snakes, may benefit from peripheral vision. The amygdala together with the pulvinar and the superior colliculus are implicated in an ongoing debate regarding their role in automatic and deliberate spatial processing of threat signals. Methods Here we tested twenty healthy participants in an fMRI task, and investigated the role of spatial demands (the main effect of central vs. peripheral vision) in the processing of fear-relevant ecological features. We controlled for stimulus dependence using true or false snakes; snake shapes or snake faces and for task constraints (implicit or explicit). The main idea justifying this double task is that amygdala and superior colliculus are involved in both automatic and controlled processes. Moreover the explicit/implicit instruction in the task with respect to emotion is not necessarily equivalent to explicit vs. implicit in the sense of endogenous vs. exogenous attention, or controlled vs. automatic processes. Results We found that stimulus-driven processing led to increased amygdala responses specifically to true snake shapes presented in the centre or in the peripheral left hemifield (right hemisphere). Importantly, the superior colliculus showed significantly biased and explicit central responses to snake-related stimuli. Moreover, the pulvinar, which also contains foveal representations, also showed strong central responses, extending the results of a recent single cell pulvinar study in monkeys. Similar hemispheric specialization was found across structures: increased amygdala responses occurred to true snake shapes presented to the right hemisphere, with this pattern being closely followed by the superior colliculus and the

  12. Hormonal and Behavioral Responses to Stress in Lactating and Non-lactating Female Common Marmosets (Callithrix jacchus)

    PubMed Central

    Saltzman, Wendy; Abbott, David H.

    2011-01-01

    In several mammalian species, hypothalamic-pituitary-adrenal (HPA) and behavioral responses to stressors are down-regulated in lactating females, possibly preventing stress-induced disruptions of maternal care. Experimental elevations of HPA axis hormones have been found to inhibit maternal behavior in lactating common marmoset monkeys (Callithrix jacchus), raising the question of whether lactating female marmosets also have blunted endogenous responses to stress. Therefore, we compared HPA and behavioral responses to standardized stressors in reproductively experienced female common marmosets that were undergoing ovulatory cycles and that either were (N=7) or were not lactating (N=8). Each marmoset underwent (1) a restraint stressor during the early follicular phase of the ovarian cycle (approximately 5 weeks postpartum for lactating females) and (2) exposure to a simulated hawk predator during the early to mid-luteal phase (approximately 7 weeks postpartum for lactating females). Lactating females were tested in the presence of one of their infants. Blood samples were collected before, during, and immediately after each test for determination of plasma adrenocorticotropic hormone (ACTH) and cortisol concentrations. Both stressors caused significant elevations in plasma ACTH and cortisol levels, and significant decreases in cortisol:ACTH ratios; however, lactating and non-lactating females showed no significant differences in their endocrine or behavioral responses to either stressor, or in baseline ACTH or cortisol levels. These findings suggest that in contrast to several other mammalian species, lactating female marmosets maintain full behavioral and HPA responsiveness to stress, at least in the presence of their infants. PMID:21600906

  13. Corticospinal Tract Tracing in the Marmoset with a Clinical Whole-Body 3T Scanner Using Manganese-Enhanced MRI

    PubMed Central

    Plas, Benjamin; Bolan, Faye; Boulanouar, Kader; Renaud, Luc; Darmana, Robert; Vaysse, Laurence; Vieu, Christophe; Loubinoux, Isabelle

    2015-01-01

    Manganese-enhanced MRI (MEMRI) has been described as a powerful tool to depict the architecture of neuronal circuits. In this study we investigated the potential use of in vivo MRI detection of manganese for tracing neuronal projections from the primary motor cortex (M1) in healthy marmosets (Callithrix Jacchus). We determined the optimal dose of manganese chloride (MnCl2) among 800, 400, 40 and 8nmol that led to manganese-induced hyperintensity furthest from the injection site, as specific to the corticospinal tract as possible, and that would not induce motor deficit. A commonly available 3T human clinical MRI scanner and human knee coil were used to follow hyperintensity in the corticospinal tract 24h after injection. A statistical parametric map of seven marmosets injected with the chosen dose, 8 nmol, showed the corticospinal tract and M1 connectivity with the basal ganglia, substantia nigra and thalamus. Safety was determined for the lowest dose that did not induce dexterity and grip strength deficit, and no behavioral effects could be seen in marmosets who received multiple injections of manganese one month apart. In conclusion, our study shows for the first time in marmosets, a reliable and reproducible way to perform longitudinal ME-MRI experiments to observe the integrity of the marmoset corticospinal tract on a clinical 3T MRI scanner. PMID:26398500

  14. Adult-like action potential properties and abundant GABAergic synaptic responses in amygdala neurons from newborn marmosets

    PubMed Central

    Yamada, Daisuke; Miyajima, Moeko; Ishibashi, Hidetoshi; Wada, Keiji; Seki, Kazuhiko; Sekiguchi, Masayuki

    2012-01-01

    The amygdala plays an important role in the processing of emotional events. This information processing is altered by development, but little is known about the development of electrophysiological properties of neurons in the amygdala. We studied the postnatal development of electrophysiological properties of neurons in the basolateral amygdala (BLA) of the common marmoset (Callithrix jacchus). Whole-cell patch-clamp recordings were obtained from BLA pyramidal neurons in brain slices prepared from developing and adult marmosets, and electrophysiological properties known to change during development in rats were analysed. Two passive electrical properties of the neuronal membrane – the input resistance (Rin) and the membrane time constant (τ) – significantly decreased with postnatal development. In contrast, the action potential only showed a slight decrease in duration during the first month of life, whereas the amplitude did not change after birth. Passive electrical properties and action potentials in neurons of 4-week-old marmosets were similar to those in neurons of 4-year-old marmosets. The development of the action potential duration was not correlated with the development of Rin or τ, whereas the development of Rin and τ was correlated with each other. Abundant spontaneous and noradrenaline-induced GABAergic currents were present immediately after birth and did not change during postnatal development. These results suggest that newborn infant marmoset BLA pyramidal neurons possess relatively mature action potentials and receive vigorous GABAergic synaptic inputs, and that they acquire adult-like electrophysiological properties by the fourth week of life. PMID:22966158

  15. Birth of common marmoset (Callithrix jacchus) offspring derived from in vitro-matured oocytes in chemically defined medium.

    PubMed

    Tomioka, I; Takahashi, T; Shimada, A; Yoshioka, K; Sasaki, E

    2012-10-15

    Optimization of oocyte culture conditions is a crucial aspect of reproductive biology and technology. In the present study, maturation of germinal vesicle-stage marmoset oocytes were evaluated in the following media: Waymouth medium, Waymouth medium containing porcine follicular fluid (pFF) (Waymouth-pFF medium), and porcine oocyte medium (POM). Oocytes cultured in Waymouth-pFF medium had higher maturation rates to the metaphase II stage than those cultured in Waymouth medium (36.1% vs. 24.8%, respectively, P < 0.05), indicating the suitability of this medium for culturing marmoset oocytes. Hence, maturation of marmoset oocytes cultured in POM was subsequently evaluated. The rate of maturation to the metaphase I stage was significantly higher and degradation rates were significantly lower in oocytes cultured in POM than those cultured in Waymouth medium. In addition, three offspring were successfully obtained after transfer of embryos matured in chemically defined medium. Therefore, we concluded that POM was suitable for marmoset oocyte culture. Furthermore, this was apparently the first report of marmoset offspring derived from oocytes cultured in chemically defined medium.

  16. Generating induced pluripotent stem cells from common marmoset (Callithrix jacchus) fetal liver cells using defined factors, including Lin28.

    PubMed

    Tomioka, Ikuo; Maeda, Takuji; Shimada, Hiroko; Kawai, Kenji; Okada, Yohei; Igarashi, Hiroshi; Oiwa, Ryo; Iwasaki, Tsuyoshi; Aoki, Mikio; Kimura, Toru; Shiozawa, Seiji; Shinohara, Haruka; Suemizu, Hiroshi; Sasaki, Erika; Okano, Hideyuki

    2010-09-01

    Although embryonic stem (ES) cell-like induced pluripotent stem (iPS) cells have potential therapeutic applications in humans, they are also useful for creating genetically modified human disease models in nonhuman primates. In this study, we generated common marmoset iPS cells from fetal liver cells via the retrovirus-mediated introduction of six human transcription factors: Oct-3/4, Sox2, Klf4, c-Myc, Nanog, and Lin28. Four to five weeks after introduction, several colonies resembling marmoset ES cells were observed and picked for further expansion in ES cell medium. Eight cell lines were established, and validation analyses of the marmoset iPS cells followed. We detected the expression of ES cell-specific surface markers. Reverse transcription-PCR showed that these iPS cells expressed endogenous Oct-3/4, Sox2, Klf4, c-Myc, Nanog and Lin28 genes, whereas all of the transgenes were silenced. Karyotype analysis showed that two of three iPS cell lines retained a normal karyotype after a 2-month culture. Both embryoid body and teratoma formation showed that marmoset iPS cells had the developmental potential to give rise to differentiated derivatives of all three primary germ layers. In summary, we generated marmoset iPS cells via the transduction of six transcription factors; this provides a powerful preclinical model for studies in regenerative medicine.

  17. Feeding habits of marmosets: A case study of bark anatomy and chemical composition of Anadenanthera peregrina gum.

    PubMed

    Francisco, Talitha Mayumi; Lopes-Mattos, Karina Lucas Barbosa; Picoli, Edgard Augusto de Toledo; Couto, Dayvid Rodrigues; Oliveira, Juraci Alves; Zanuncio, José Cola; Serrão, José Eduardo; de Oliveira Silva, Ita; Boere, Vanner

    2017-03-01

    Primates of the genus Callithrix often obtain exudates from plants of the family Fabaceae. This study characterizes the chemical composition of exudates, and the anatomy and hystochemistry of the secretory ducts in the bark of Anadenanthera peregrina (L.) Speg. var. peregrina (Fabaceae). Exudates from this tree species represent an important component of the diet of hybrid marmosets, Callithrix spp. (Primates: Cebidae). A. peregrina was selected as the focal study tree because it is the only gum tree species exploited by Callithrix groups present within five urban forest fragments in the municipality of Viçosa, Minas Gerais State, Brazil. Gum samples were obtained directly from gouges made by the marmosets, while bark samples were obtained from A. peregrina plants, whether or not they were damaged by the marmosets. Constitutive secretory ducts were present in the bark of ungouged A. peregrina, whereas, marmoset damage caused induced secretory duct formation and an increase in the size of these ducts. The gum produced in the gouges made by the marmosets and in ungouged plants reacted positively to tests for polysaccharides, pectin, mucilage, and proteins. The gum from the gouges exhibited high water (41.0%), carbohydrate (38.2%), protein (19.0%), and mineral (Ca 0.4% and K 0.3%) content. We argue that the relatively high calcium content of A. peregrina gum plays an important nutritional role in, balancing a diet that is otherwise rich in phosphorous and poor in calcium.

  18. Remote long-term registrations of sleep-wake rhythms, core body temperature and activity in marmoset monkeys.

    PubMed

    Hoffmann, Kerstin; Coolen, Alex; Schlumbohm, Christina; Meerlo, Peter; Fuchs, Eberhard

    2012-12-01

    Initial studies in the day active marmoset monkey (Callithrix jacchus) indicate that the sleep-wake cycle of these non-human primates resembles that of humans and therefore conceivably represent an appropriate model for human sleep. The methods currently employed for sleep studies in marmosets are limited. The objective of this study was to employ and validate the use of specific remote monitoring system technologies that enable accurate long-term recordings of sleep-wake rhythms and the closely related rhythms of core body temperature (CBT) and locomotor activity in unrestrained group-housed marmosets. Additionally, a pilot sleep deprivation (SD) study was performed to test the recording systems in an applied experimental setup. Our results show that marmosets typically exhibit a monophasic sleep pattern with cyclical alternations between NREM and REM sleep. CBT displays a pronounced daily rhythm and locomotor activity is primarily restricted to the light phase. SD caused an immediate increase in NREM sleep time and EEG slow-wave activity as well as a delayed REM sleep rebound that did not fully compensate for REM sleep that had been lost during SD. In conclusion, the combination of two innovative technical approaches allows for simultaneous measurements of CBT, sleep cycles and activity in multiple subjects. The employment of these systems represents a significant refinement in terms of animal welfare and will enable many future applications and longitudinal studies of circadian rhythms in marmosets.

  19. Temporo-nasal asymmetry in multisensory integration mediated by the Superior Colliculus.

    PubMed

    Bertini, Caterina; Leo, Fabrizio; Làdavas, Elisabetta

    2008-11-25

    Temporo-nasal asymmetry in visual responses has been observed in many behavioural studies. These observations have typically been attributed to the anatomical asymmetry of fibres projecting to the Superior Colliculus (SC), even though this attribution is debated. The present study investigates temporo-nasal asymmetry in multisensory integration, and, by exploiting the absence of S-cone input to the SC, measures a behavioural response dependent strictly on the activity of the SC itself. We used a redundant signal paradigm for simple reaction times, with visual stimuli (red or purple) presented in either the temporal or the nasal hemifield. Participants responded more quickly to concurrent audio-visual (AV) stimuli than to either an auditory or a visual stimulus alone, an established phenomenon known as the Redundant Target Effect (RTE). The nature of this effect was dependent on the colour of the visual stimuli, suggesting its modulation by collicular circuits. When spatially-coincident audio-visual stimuli were visible to the SC (i.e. red stimuli), the RTE depended on a neural coactivation mechanism, suggesting an integration of multisensory information. When using stimuli invisible to the SC (i.e. purple stimuli), the RTE depended only on a simple statistical facilitation effect, in which the two sensory stimuli were processed by independent channels. Finally, we demonstrate that the multisensory integration effect was stronger for stimuli presented to the temporal hemifield than to the nasal hemifield. Taken together, these findings suggested that multisensory stimulation can be differentially effective depending on specific stimulus parameters.

  20. An integrative role for the superior colliculus in selecting targets for movements.

    PubMed

    Wolf, Andrew B; Lintz, Mario J; Costabile, Jamie D; Thompson, John A; Stubblefield, Elizabeth A; Felsen, Gidon

    2015-10-01

    A fundamental goal of systems neuroscience is to understand the neural mechanisms underlying decision making. The midbrain superior colliculus (SC) is known to be central to the selection of one among many potential spatial targets for movements, which represents an important form of decision making that is tractable to rigorous experimental investigation. In this review, we first discuss data from mammalian models-including primates, cats, and rodents-that inform our understanding of how neural activity in the SC underlies the selection of targets for movements. We then examine the anatomy and physiology of inputs to the SC from three key regions that are themselves implicated in motor decisions-the basal ganglia, parabrachial region, and neocortex-and discuss how they may influence SC activity related to target selection. Finally, we discuss the potential for methodological advances to further our understanding of the neural bases of target selection. Our overarching goal is to synthesize what is known about how the SC and its inputs act together to mediate the selection of targets for movements, to highlight open questions about this process, and to spur future studies addressing these questions.

  1. Superior Colliculus Responses to Attended, Unattended, and Remembered Saccade Targets during Smooth Pursuit Eye Movements

    PubMed Central

    Dash, Suryadeep; Nazari, Sina Alipour; Yan, Xiaogang; Wang, Hongying; Crawford, J. Douglas

    2016-01-01

    In realistic environments, keeping track of multiple visual targets during eye movements likely involves an interaction between vision, top-down spatial attention, memory, and self-motion information. Recently we found that the superior colliculus (SC) visual memory response is attention-sensitive and continuously updated relative to gaze direction. In that study, animals were trained to remember the location of a saccade target across an intervening smooth pursuit (SP) eye movement (Dash et al., 2015). Here, we modified this paradigm to directly compare the properties of visual and memory updating responses to attended and unattended targets. Our analysis shows that during SP, active SC visual vs. memory updating responses share similar gaze-centered spatio-temporal profiles (suggesting a common mechanism), but updating was weaker by ~25%, delayed by ~55 ms, and far more dependent on attention. Further, during SP the sum of passive visual responses (to distracter stimuli) and memory updating responses (to saccade targets) closely resembled the responses for active attentional tracking of visible saccade targets. These results suggest that SP updating signals provide a damped, delayed estimate of attended location that contributes to the gaze-centered tracking of both remembered and visible saccade targets. PMID:27147987

  2. Activity in the human superior colliculus relating to endogenous saccade preparation and execution

    PubMed Central

    Furlan, Michele; Smith, Andrew T.

    2015-01-01

    In recent years a small number of studies have applied functional imaging techniques to investigate visual responses in the human superior colliculus (SC), but few have investigated its oculomotor functions. Here, in two experiments, we examined activity associated with endogenous saccade preparation. We used 3-T fMRI to record the hemodynamic activity in the SC while participants were either preparing or executing saccadic eye movements. Our results showed that not only executing a saccade (as previously shown) but also preparing a saccade produced an increase in the SC hemodynamic activity. The saccade-related activity was observed in the contralateral and to a lesser extent the ipsilateral SC. A second experiment further examined the contralateral mapping of saccade-related activity with a larger range of saccade amplitudes. Increased activity was again observed in both the contralateral and ipsilateral SC that was evident for large as well as small saccades. This suggests that the ipsilateral component of the increase in BOLD is not due simply to small-amplitude saccades producing bilateral activity in the foveal fixation zone. These studies provide the first evidence of presaccadic preparatory activity in the human SC and reveal that fMRI can detect activity consistent with that of buildup neurons found in the deeper layers of the SC in studies of nonhuman primates. PMID:26041830

  3. BDNF injected into the superior colliculus reduces developmental retinal ganglion cell death.

    PubMed

    Ma, Y T; Hsieh, T; Forbes, M E; Johnson, J E; Frost, D O

    1998-03-15

    The role of neurotrophins as survival factors for developing CNS neurons, including retinal ganglion cells (RGCs), is uncertain. Null mutations for brain-derived neurotrophic factor (BDNF) or neurotrophin 4 (NT4), individually or together, are without apparent effect on the number of RGCs that survive beyond the period of normal, developmental RGC death. This contrasts with the BDNF dependence of RGCs in vitro and the effectiveness of BDNF in reducing RGC loss after axotomy. To investigate the effect of target-derived neurotrophins on the survival of developing RGCs, we injected BDNF into the superior colliculus (SC) of neonatal hamsters. At the age when the rate of developmental RGC death is greatest, BDNF produces, 20 hr after injection, a 13-15-fold reduction in the rate of RGC pyknosis compared with the rates in vehicle-injected and untreated hamsters. There is no effect 8 hr after injection. Electrochemiluminescence immunoassay measurements of BDNF protein in the retinae and SC of normal and BDNF-treated hamsters demonstrate that the time course of BDNF transport to RGCs supports a role for target-derived BDNF in promoting RGC survival. The effectiveness of pharmacological doses of BDNF in reducing developmental RGC death may be useful in further studies of the mechanisms of stabilization and elimination of immature central neurons.

  4. A hard-wired priority map in the superior colliculus shaped by asymmetric inhibitory circuitry

    PubMed Central

    Bayguinov, Peter O.; Ghitani, Nima; Jackson, Meyer B.

    2015-01-01

    The mammalian superior colliculus (SC) is a laminar midbrain structure that translates visual signals into commands to shift the focus of attention and gaze. The SC plays an integral role in selecting targets and ultimately generating rapid eye movements to those targets. In all mammals studied to date, neurons in the SC are arranged topographically such that the location of visual stimuli and the endpoints of orienting movements form organized maps in superficial and deeper layers, respectively. The organization of these maps is thought to underlie attentional priority by assessing which regions of the visual field contain behaviorally relevant information. Using voltage imaging and patch-clamp recordings in parasagittal SC slices from the rat, we found the synaptic circuitry of the visuosensory map in the SC imposes a strong bias. Voltage imaging of responses to electrical stimulation revealed more spread in the caudal direction than the rostral direction. Pharmacological experiments demonstrated that this asymmetry arises from GABAA receptor activation rostral to the site of stimulation. Patch-clamp recordings confirmed this rostrally directed inhibitory circuit and showed that it is contained within the visuosensory layers of the SC. Stimulation of two sites showed that initial stimulation of a caudal site can take priority over subsequent stimulation of a rostral site. Taken together, our data indicate that the circuitry of the visuosensory SC is hard-wired to give higher priority to more peripheral targets, and this property is conferred by a uniquely structured, dedicated inhibitory circuit. PMID:25995346

  5. Neural activity profiles of the neocortex and superior colliculus after bimodal sensory stimulation.

    PubMed

    Zangenehpour, S; Chaudhuri, A

    2001-10-01

    Current efforts at functional mapping of multisensory neurons are hampered by the need for both cellular-level resolution and the separate visualization of activity by different sensory cues. We have used a recently developed technique that exploits the differential time course of zif268 mRNA versus protein induction in neurons after sensory stimulation. Adult male rats were visually and acoustically deprived and then exposed to one of the following stimulation sequences: (i) no sensory stimulation; (ii) 2 h visual stimulation followed by 30 min auditory stimulation; (iii) 2 h auditory stimulation followed 30 min of visual stimulation; and (iv) 2 h compound visual and auditory stimulation. The neocortex and superior colliculus (SC) were then processed for fluorescent immunocytochemistry and in situ hybridization for staining of Zif268 protein and mRNA products. We have found that activity patterns in primary visual and auditory cortices were in accord with the sequence of the compound stimulus. We also show that SC superficial layers contained a pool of exclusively unimodal neurons, similar to that of visual cortex. Activity patterns of deep SC layers contained multimodal neurons with varying degrees of visual and auditory convergence. The deep SC layers also showed that auditory processing was largely carried out by a small, bimodal group of neurons whereas visual processing was coordinated by both a large unimodal and a small bimodal pool of neurons.

  6. Activity in the human superior colliculus relating to endogenous saccade preparation and execution.

    PubMed

    Furlan, Michele; Smith, Andrew T; Walker, Robin

    2015-08-01

    In recent years a small number of studies have applied functional imaging techniques to investigate visual responses in the human superior colliculus (SC), but few have investigated its oculomotor functions. Here, in two experiments, we examined activity associated with endogenous saccade preparation. We used 3-T fMRI to record the hemodynamic activity in the SC while participants were either preparing or executing saccadic eye movements. Our results showed that not only executing a saccade (as previously shown) but also preparing a saccade produced an increase in the SC hemodynamic activity. The saccade-related activity was observed in the contralateral and to a lesser extent the ipsilateral SC. A second experiment further examined the contralateral mapping of saccade-related activity with a larger range of saccade amplitudes. Increased activity was again observed in both the contralateral and ipsilateral SC that was evident for large as well as small saccades. This suggests that the ipsilateral component of the increase in BOLD is not due simply to small-amplitude saccades producing bilateral activity in the foveal fixation zone. These studies provide the first evidence of presaccadic preparatory activity in the human SC and reveal that fMRI can detect activity consistent with that of buildup neurons found in the deeper layers of the SC in studies of nonhuman primates.

  7. An integrative role for the superior colliculus in selecting targets for movements

    PubMed Central

    Wolf, Andrew B.; Lintz, Mario J.; Costabile, Jamie D.; Thompson, John A.

    2015-01-01

    A fundamental goal of systems neuroscience is to understand the neural mechanisms underlying decision making. The midbrain superior colliculus (SC) is known to be central to the selection of one among many potential spatial targets for movements, which represents an important form of decision making that is tractable to rigorous experimental investigation. In this review, we first discuss data from mammalian models—including primates, cats, and rodents—that inform our understanding of how neural activity in the SC underlies the selection of targets for movements. We then examine the anatomy and physiology of inputs to the SC from three key regions that are themselves implicated in motor decisions—the basal ganglia, parabrachial region, and neocortex—and discuss how they may influence SC activity related to target selection. Finally, we discuss the potential for methodological advances to further our understanding of the neural bases of target selection. Our overarching goal is to synthesize what is known about how the SC and its inputs act together to mediate the selection of targets for movements, to highlight open questions about this process, and to spur future studies addressing these questions. PMID:26203103

  8. Lateralization Technique and Inferior Alveolar Nerve Transposition

    PubMed Central

    Sanches, Marco Antonio; Ramalho, Gabriel Cardoso; Manzi, Marcello Roberto

    2016-01-01

    Bone resorption of the posterior mandible can result in diminished bone edge and, therefore, the installation of implants in these regions becomes a challenge, especially in the presence of the mandibular canal and its contents, the inferior alveolar nerve. Several treatment alternatives are suggested: the use of short implants, guided bone regeneration, appositional bone grafting, distraction osteogenesis, inclined implants tangential to the mandibular canal, and the lateralization of the inferior alveolar nerve. The aim was to elucidate the success rate of implants in the lateralization technique and in inferior alveolar nerve transposition and to determine the most effective sensory test. We conclude that the success rate is linked to the possibility of installing implants with long bicortical anchor which favors primary stability and biomechanics. PMID:27433360

  9. Inferior Vena Cava Filters for Recurrent Thrombosis

    PubMed Central

    Patel, Salil H.; Patel, Rima

    2007-01-01

    Inferior vena cava filters are often used as alternatives to anticoagulant therapy for the prevention of pulmonary embolism. Many of the clinical data that support the use of these devices stem from relatively limited retrospective studies. The dual purpose of this review is to examine the incidence of thrombotic complications associated with inferior vena cava filters and to discuss the role of anticoagulant therapy concurrent with filter placement. Device-associated morbidity and overall efficacy can be considered only in the context of rates of vena cava thrombosis, insertion-site thrombosis, recurrent deep venous thrombosis, and recurrent pulmonary embolism. PMID:17622366

  10. Striatal and extrastriatal dopamine release in the common marmoset brain measured by positron emission tomography and [(18)F]fallypride.

    PubMed

    Ota, Miho; Ogawa, Shintaro; Kato, Koichi; Masuda, Chiaki; Kunugi, Hiroshi

    2015-12-01

    Previous studies have demonstrated that patients with schizophrenia show greater sensitivity to psychostimulants than healthy subjects. Sensitization to psychostimulants and resultant alteration of dopaminergic neurotransmission in rodents has been suggested as a useful model of schizophrenia. This study sought to examine the use of methylphenidate as a psychostimulant to induce dopamine release and that of [(18)F]fallypride as a radioligand to quantify the release in a primate model of schizophrenia. Four common marmosets were scanned by positron emission tomography twice, before and after methylphenidate challenge, to evaluate dopamine release. Four other marmosets were sensitized by repeated methamphetamine (MAP) administration. Then, they were scanned twice, before and after methylphenidate challenge, to evaluate whether MAP-sensitization induced greater sensitivity to methylphenidate. We revealed a main effect of the methylphenidate challenge but not the MAP pretreatment on the striatal binding potential. These results suggest that methylphenidate-induced striatal dopamine release in the common marmoset could be evaluated by [(18)F]fallypride.

  11. Monocular inhibition reveals temporal and spatial changes in gene expression in the primary visual cortex of marmoset

    PubMed Central

    Nakagami, Yuki; Watakabe, Akiya; Yamamori, Tetsuo

    2013-01-01

    We investigated the time course of the expression of several activity-dependent genes evoked by visual inputs in the primary visual cortex (V1) in adult marmosets. In order to examine the rapid time course of activity-dependent gene expression, marmosets were first monocularly inactivated by tetrodotoxin (TTX), kept in darkness for two days, and then exposed to various length of light stimulation. Activity-dependent genes including HTR1B, HTR2A, whose activity-dependency were previously reported by us, and well-known immediate early genes (IEGs), c-FOS, ZIF268, and ARC, were examined by in situ hybridization. Using this system, first, we demonstrated the ocular dominance type of gene expression pattern in V1 under this condition. IEGs were expressed in columnar patterns throughout layers II–VI of all the tested monocular marmosets. Second, we showed the regulation of HTR1B and HTR2A expressions by retinal spontaneous activity, because HTR1B and HTR2A mRNA expressions sustained a certain level regardless of visual stimulation and were inhibited by a blockade of the retinal activity with TTX. Third, IEGs dynamically changed its laminar distribution from half an hour to several hours upon a stimulus onset with the unique time course for each gene. The expression patterns of these genes were different in neurons of each layer as well. These results suggest that the regulation of each neuron in the primary visual cortex of marmosets is subjected to different regulation upon the change of activities from retina. It should be related to a highly differentiated laminar structure of marmoset visual systems, reflecting the functions of the activity-dependent gene expression in marmoset V1. PMID:23576954

  12. Monocular inhibition reveals temporal and spatial changes in gene expression in the primary visual cortex of marmoset.

    PubMed

    Nakagami, Yuki; Watakabe, Akiya; Yamamori, Tetsuo

    2013-01-01

    We investigated the time course of the expression of several activity-dependent genes evoked by visual inputs in the primary visual cortex (V1) in adult marmosets. In order to examine the rapid time course of activity-dependent gene expression, marmosets were first monocularly inactivated by tetrodotoxin (TTX), kept in darkness for two days, and then exposed to various length of light stimulation. Activity-dependent genes including HTR1B, HTR2A, whose activity-dependency were previously reported by us, and well-known immediate early genes (IEGs), c-FOS, ZIF268, and ARC, were examined by in situ hybridization. Using this system, first, we demonstrated the ocular dominance type of gene expression pattern in V1 under this condition. IEGs were expressed in columnar patterns throughout layers II-VI of all the tested monocular marmosets. Second, we showed the regulation of HTR1B and HTR2A expressions by retinal spontaneous activity, because HTR1B and HTR2A mRNA expressions sustained a certain level regardless of visual stimulation and were inhibited by a blockade of the retinal activity with TTX. Third, IEGs dynamically changed its laminar distribution from half an hour to several hours upon a stimulus onset with the unique time course for each gene. The expression patterns of these genes were different in neurons of each layer as well. These results suggest that the regulation of each neuron in the primary visual cortex of marmosets is subjected to different regulation upon the change of activities from retina. It should be related to a highly differentiated laminar structure of marmoset visual systems, reflecting the functions of the activity-dependent gene expression in marmoset V1.

  13. The role of harmonic resolvability in pitch perception in a vocal nonhuman primate, the common marmoset (Callithrix jacchus).

    PubMed

    Osmanski, Michael S; Song, Xindong; Wang, Xiaoqin

    2013-05-22

    Pitch is one of the most fundamental percepts in the auditory system and can be extracted using either spectral or temporal information in an acoustic signal. Although pitch perception has been extensively studied in human subjects, it is far less clear how nonhuman primates perceive pitch. We have addressed this question in a series of behavioral studies in which marmosets, a vocal nonhuman primate species, were trained to discriminate complex harmonic tones differing in either spectral (fundamental frequency [f0]) or temporal envelope (repetition rate) cues. We found that marmosets used temporal envelope information to discriminate pitch for acoustic stimuli with higher-order harmonics and lower f0 values and spectral information for acoustic stimuli with lower-order harmonics and higher f0 values. We further measured frequency resolution in marmosets using a psychophysical task in which pure tone thresholds were measured as a function of notched noise masker bandwidth. Results show that only the first four harmonics are resolved at low f0 values and up to 16 harmonics are resolved at higher f0 values. Resolvability in marmosets is different from that in humans, where the first five to nine harmonics are consistently resolved across most f0 values, and is likely the result of a smaller marmoset cochlea. In sum, these results show that marmosets use two mechanisms to extract pitch (harmonic templates [spectral] for resolved harmonics, and envelope extraction [temporal] for unresolved harmonics) and that species differences in stimulus resolvability need to be taken into account when investigating and comparing mechanisms of pitch perception across animals.

  14. Social isolation affects partner-directed social behavior and cortisol during pair formation in marmosets, Callithrix geoffroyi

    PubMed Central

    Smith, Adam S.; Birnie, Andrew K.; French, Jeffrey A.

    2011-01-01

    Pair-bonded relationships form during periods of close spatial proximity and high sociosexual contact. Like other monogamous species, marmosets form new social pairs after emigration or ejection from their natal group resulting in periods of social isolation. Thus, pair formation often occurs following a period of social instability and a concomitant elevation in stress physiology. Research is needed to assess the effects that prolonged social isolation has on the behavioral and cortisol response to the formation of a new social pair. We examined the sociosexual behavior and cortisol during the first 90-days of cohabitation in male and female Geoffroy's tufted-ear marmosets (Callithrix geoffroyi) paired either directly from their natal group (Natal-P) or after a prolonged period of social isolation (ISO-P). Social isolation prior to pairing seemed to influence cortisol levels, social contact, and grooming behavior; however, sexual behavior was not affected. Cortisol levels were transiently elevated in all paired marmosets compared to natal-housed marmosets. However, ISO-P marmosets had higher cortisol levels throughout the observed pairing period compared to Natal-P marmoset. This suggests that the social instability of pair formation may lead to a transient increase in hypothalamic-pituitary-adrenal (HPA) axis activity while isolation results in a prolonged HPA axis dysregulation. In addition, female social contact behavior was associated with higher cortisol levels at the onset of pairing; however, this was not observed in males. Thus, isolation-induced social contact with a new social partner may be enhanced by HPA axis activation, or a moderating factor. PMID:21712050

  15. Activity in the superior colliculus reflects dynamic interactions between voluntary and involuntary influences on orienting behaviour.

    PubMed

    Bell, Andrew H; Munoz, Douglas P

    2008-10-01

    Performance in a behavioural task can be influenced by both bottom-up and top-down processes such as stimulus modality and prior probability. Here, we exploited differences in behavioural strategy to explore the role of the intermediate and deep layers of the superior colliculus (dSC) in covert orienting. Two monkeys were trained on a predictive cued-saccade task in which the cue predicted the target's upcoming location with 80% validity. When the delay between cue and target onset was 250 ms, both monkeys showed faster responses to the uncued (Invalid) location. This was associated with a reduced target-aligned response in the dSC on Valid trials for both monkeys and is consistent with a bottom-up (i.e. involuntary) bias. When the delay was increased to 650 ms, one monkey continued to show faster responses to the Invalid location whereas the other monkey showed faster responses to the Valid location, consistent with a top-down (i.e. voluntary) bias. This latter behaviour was correlated with an increase in activity in dSC neurons preceding target onset that was absent in the other monkey. Thus, using the information provided by the cue shifted the emphasis towards top-down processing, while ignoring this information allowed bottom-up processing to continue to dominate. Regardless of the selected strategy, however, neurons in the dSC consistently reflected the current bias between the two processes, emphasizing its role in both the bottom-up and top-down control of orienting behaviour.

  16. Shared and distinct retinal input to the mouse superior colliculus and dorsal lateral geniculate nucleus

    PubMed Central

    Ellis, Erika M.; Gauvain, Gregory; Sivyer, Benjamin

    2016-01-01

    The mammalian retina conveys the vast majority of information about visual stimuli to two brain regions: the dorsal lateral geniculate nucleus (dLGN) and the superior colliculus (SC). The degree to which retinal ganglion cells (RGCs) send similar or distinct information to the two areas remains unclear despite the important constraints that different patterns of RGC input place on downstream visual processing. To resolve this ambiguity, we injected a glycoprotein-deficient rabies virus coding for the expression of a fluorescent protein into the dLGN or SC; rabies virus labeled a smaller fraction of RGCs than lipophilic dyes such as DiI but, crucially, did not label RGC axons of passage. Approximately 80% of the RGCs infected by rabies virus injected into the dLGN were colabeled with DiI injected into the SC, suggesting that many dLGN-projecting RGCs also project to the SC. However, functional characterization of RGCs revealed that the SC receives input from several classes of RGCs that largely avoid the dLGN, in particular RGCs in which 1) sustained changes in light intensity elicit transient changes in firing rate and/or 2) a small range of stimulus sizes or temporal fluctuations in light intensity elicit robust activity. Taken together, our results illustrate several unexpected asymmetries in the information that the mouse retina conveys to two major downstream targets and suggest that differences in the output of dLGN and SC neurons reflect, at least in part, differences in the functional properties of RGCs that innervate the SC but not the dLGN. PMID:27169509

  17. The superior colliculus is sensitive to gestalt-like stimulus configuration in hemispherectomy patients.

    PubMed

    Georgy, Loraine; Celeghin, Alessia; Marzi, Carlo A; Tamietto, Marco; Ptito, Alain

    2016-08-01

    Patients with cortical blindness following a lesion to the primary visual cortex (V1) may retain nonconscious visual abilities (blindsight). One intriguing, though largely unexplored question, is whether nonconscious vision in the blind hemifield of hemianopic patients can be sensitive to higher-order perceptual organization, and which V1-independent structure underlies such effect. To answer this question, we tested two rare hemianopic patients who had undergone hemispherectomy, and in whom the only post-chiasmatic visual structure left intact in the same side of the otherwise damaged hemisphere was the superior colliculus (SC). By using a variant of the redundant target effect (RTE), we presented single dots, patterns composed by the same dots organized in quadruple gestalt-like configurations, or patterns of four dots arranged in random configurations, either singly to the intact visual hemifield or bilaterally to both hemifields. As reported in a number of prior studies on blindsight patients, we found that bilateral stimulation yielded faster reaction times (RTs) than single stimulation of the intact field for all conditions (i.e., there was an implicit RTE). In addition to this effect, both patients showed a further speeding up of RTs when the gestalt-like, but not the random shape, quadruple patterns were projected to their blind hemifield during bilateral stimulation. Because other retino-recipient subcortical and cortical structures in the damaged hemisphere are absent, the SC on the lesioned side seems solely responsible for such an effect. The present results provide initial support to the notion that nonconscious vision might be sensitive to perceptual organization and stimulus configuration through the pivotal contribution of the SC, which can enhance the processing of gestalt-like or structured stimuli over meaningless or randomly assembled ones and translate them into facilitatory motor outputs.

  18. Organization of calbindin D28K-immunoreactive neurons in the dog superior colliculus.

    PubMed

    Lee, Jea-Young; Choi, Jae-Sik; Ye, Eun-Ah; Kim, Hye-Hyun; Jeon, Chang-Jin

    2007-11-01

    We localized calbindin D28K-immunoreactive (IR) neurons in the superior colliculus (SC) of the dog and studied the distribution and effect of enucleation on the distribution of this protein. We also compared this labeling to that of GABA. Calbindin D28K was localized with antibody immunocytochemistry. Calbindin D28K-IR neurons formed three laminar tiers in the SC, one within the lower superficial gray layer (SGL), the second within the upper intermediate gray layers (IGL), and the third within the deep gray layer (DGL). The third tier was not very distinctive when compared with the other two tiers. Calbindin D28K-IR neurons in the SC varied dramatically in morphology and size, and included round/oval, vertical fusiform, stellate, pyriform, and horizontal neurons. Neurons with varicose dendrite were also labeled in the IGL. Enucleation appeared to have no effect on the distribution of calbindin D28K-IR neurons in the contralateral SC. Two-color immunofluorescence revealed that a small percentage (11.20%) of calbindin D28K-IR neurons co-localized with GABA. The current results demonstrate that the patterned distribution of calbindin D28K-IR neurons in the intermediate and deep SC is comparable with other animals, but that the distribution of this protein in the superficial SC is strikingly different from that in previously studied animals. The results also suggest that retinal projection may not control the activity of the expression of calbindin D28K in the dog SC. These results will not only provide valuable knowledge of the basic neurochemical architecture of the dog visual system, but also provide clues for the understanding of the similarities and differences among species.

  19. Novel Models of Visual Topographic Map Alignment in the Superior Colliculus

    PubMed Central

    El-Ghazawi, Tarek A.; Triplett, Jason W.

    2016-01-01

    The establishment of precise neuronal connectivity during development is critical for sensing the external environment and informing appropriate behavioral responses. In the visual system, many connections are organized topographically, which preserves the spatial order of the visual scene. The superior colliculus (SC) is a midbrain nucleus that integrates visual inputs from the retina and primary visual cortex (V1) to regulate goal-directed eye movements. In the SC, topographically organized inputs from the retina and V1 must be aligned to facilitate integration. Previously, we showed that retinal input instructs the alignment of V1 inputs in the SC in a manner dependent on spontaneous neuronal activity; however, the mechanism of activity-dependent instruction remains unclear. To begin to address this gap, we developed two novel computational models of visual map alignment in the SC that incorporate distinct activity-dependent components. First, a Correlational Model assumes that V1 inputs achieve alignment with established retinal inputs through simple correlative firing mechanisms. A second Integrational Model assumes that V1 inputs contribute to the firing of SC neurons during alignment. Both models accurately replicate in vivo findings in wild type, transgenic and combination mutant mouse models, suggesting either activity-dependent mechanism is plausible. In silico experiments reveal distinct behaviors in response to weakening retinal drive, providing insight into the nature of the system governing map alignment depending on the activity-dependent strategy utilized. Overall, we describe novel computational frameworks of visual map alignment that accurately model many aspects of the in vivo process and propose experiments to test them. PMID:28027309

  20. Molecular features distinguish ten neuronal types in the mouse superficial superior colliculus.

    PubMed

    Byun, Haewon; Kwon, Soohyun; Ahn, Hee-Jeong; Liu, Hong; Forrest, Douglas; Demb, Jonathan B; Kim, In-Jung

    2016-08-01

    The superior colliculus (SC) is a midbrain center involved in controlling head and eye movements in response to inputs from multiple sensory modalities. Visual inputs arise from both the retina and visual cortex and converge onto the superficial layer of the SC (sSC). Neurons in the sSC send information to deeper layers of the SC and to thalamic nuclei that modulate visually guided behaviors. Presently, our understanding of sSC neurons is impeded by a lack of molecular markers that define specific cell types. To better understand the identity and organization of sSC neurons, we took a systematic approach to investigate gene expression within four molecular families: transcription factors, cell adhesion molecules, neuropeptides, and calcium binding proteins. Our analysis revealed 12 molecules with distinct expression patterns in mouse sSC: cadherin 7, contactin 3, netrin G2, cadherin 6, protocadherin 20, retinoid-related orphan receptor β, brain-specific homeobox/POU domain protein 3b, Ets variant gene 1, substance P, somatostatin, vasoactive intestinal polypeptide, and parvalbumin. Double labeling experiments, by either in situ hybridization or immunostaining, demonstrated that the 12 molecular markers collectively define 10 different sSC neuronal types. The characteristic positions of these cell types divide the sSC into four distinct layers. The 12 markers identified here will serve as valuable tools to examine molecular mechanisms that regulate development of sSC neuronal types. These markers could also be used to examine the connections between specific cell types that form retinocollicular, corticocollicular, or colliculothalamic pathways. J. Comp. Neurol. 524:2300-2321, 2016. © 2016 Wiley Periodicals, Inc.

  1. Development of the first marmoset-specific DNA microarray (EUMAMA): a new genetic tool for large-scale expression profiling in a non-human primate

    PubMed Central

    Datson, Nicole A; Morsink, Maarten C; Atanasova, Srebrena; Armstrong, Victor W; Zischler, Hans; Schlumbohm, Christina; Dutilh, Bas E; Huynen, Martijn A; Waegele, Brigitte; Ruepp, Andreas; de Kloet, E Ronald; Fuchs, Eberhard

    2007-01-01

    Background The common marmoset monkey (Callithrix jacchus), a small non-endangered New World primate native to eastern Brazil, is becoming increasingly used as a non-human primate model in biomedical research, drug development and safety assessment. In contrast to the growing interest for the marmoset as an animal model, the molecular tools for genetic analysis are extremely limited. Results Here we report the development of the first marmoset-specific oligonucleotide microarray (EUMAMA) containing probe sets targeting 1541 different marmoset transcripts expressed in hippocampus. These 1541 transcripts represent a wide variety of different functional gene classes. Hybridisation of the marmoset microarray with labelled RNA from hippocampus, cortex and a panel of 7 different peripheral tissues resulted in high detection rates of 85% in the neuronal tissues and on average 70% in the non-neuronal tissues. The expression profiles of the 2 neuronal tissues, hippocampus and cortex, were highly similar, as indicated by a correlation coefficient of 0.96. Several transcripts with a tissue-specific pattern of expression were identified. Besides the marmoset microarray we have generated 3215 ESTs derived from marmoset hippocampus, which have been annotated and submitted to GenBank [GenBank: EF214838 – EF215447, EH380242 – EH382846]. Conclusion We have generated the first marmoset-specific DNA microarray and demonstrated its use to characterise large-scale gene expression profiles of hippocampus but also of other neuronal and non-neuronal tissues. In addition, we have generated a large collection of ESTs of marmoset origin, which are now available in the public domain. These new tools will facilitate molecular genetic research into this non-human primate animal model. PMID:17592630

  2. Comparison of marmoset and human FSH using synthetic peptides of the β-subunit L2 loop region and anti-peptide antibodies.

    PubMed

    Kutteyil, Susha S; Kulkarni, Bhalchandra J; Mojidra, Rahul; Joseph, Shaini; Pathak, Bhakti R; Mahale, Smita D

    2016-06-01

    Follicle stimulating hormone (FSH) is a glycoprotein hormone required for female and male gametogenesis in vertebrates. Common marmoset (Callithrix jacchus) is a New World primate monkey, used as animal model in biomedical research. Observations like, requirement of extremely high dose of human FSH in marmosets for superovulation compared to other primates and generation of antibodies in marmoset against human FSH after repeated superovulation cycles, point towards the possibility that FSH-FSH receptor (FSHR) interaction in marmosets might be different than in the humans. In this study we attempted to understand some of these structural differences using FSH peptides and anti-peptide antibody approach. Based on sequence alignment, in silico modeling and docking studies, L2 loop of FSH β-subunit (L2β) was found to be different between marmoset and human. Hence, peptides corresponding to region 32-50 of marmoset and human L2β loop were synthesized, purified and characterized. The peptides displayed dissimilarity in terms of molecular mass, predicted isoelectric point, predicted charge and in the ability to inhibit hormone-receptor interaction. Polyclonal antibodies generated against both the peptides were found to exhibit specific binding for the corresponding peptide and parent FSH in ELISA and Western blotting respectively and exhibited negligible reactivity to cross-species peptide and FSH in ELISA. The anti-peptide antibody against marmoset FSH was also able to detect native FSH in marmoset plasma samples and pituitary sections. In summary, the L2β loop of marmoset and human FSH has distinct receptor interaction ability and immunoreactivity indicating possibility of subtle conformational and biochemical differences between the two regions which may affect the FSH-FSHR interaction in these two primates. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  3. Marmoset cytochrome P450 2D8 in livers and small intestines metabolizes typical human P450 2D6 substrates, metoprolol, bufuralol and dextromethorphan.

    PubMed

    Uehara, Shotaro; Uno, Yasuhiro; Hagihira, Yuya; Murayama, Norie; Shimizu, Makiko; Inoue, Takashi; Sasaki, Erika; Yamazaki, Hiroshi

    2015-01-01

    1. Although the New World non-human primate, the common marmoset (Callithrix jacchus), is a potentially useful animal model, comprehensive understanding of drug metabolizing enzymes is insufficient. 2. A cDNA encoding a novel cytochrome P450 (P450) 2D8 was identified in marmosets. The amino acid sequence deduced from P450 2D8 cDNA showed a high sequence identity (83-86%) with other primate P450 2Ds. Phylogenetic analysis showed that marmoset P450 2D8 was closely clustered with human P450 2D6, unlike P450 2Ds of miniature pig, dog, rabbit, guinea pig, mouse or rat. 3. Marmoset P450 2D8 mRNA was predominantly expressed in the liver and small intestine among the tissues types analyzed, whereas marmoset P450 2D6 mRNA was expressed predominantly in the liver where P450 2D protein was detected by immunoblotting. 4. By metabolic assays using marmoset P450 2D8 protein heterologously expressed in Escherichia coli, although P450 2D8 exhibits lower catalytic efficiency compared to marmoset and human P450 2D6 enzymes, P450 2D8 mediated O-demethylations of metoprolol and dextromethorphan and bufuralol 1'-hydroxylation. 5. These results suggest that marmoset P450 2D8 (also expressed in the extrahepatic tissues) has potential roles in drug metabolism in a similar manner to those of human and marmoset P450 2D6.

  4. Sustained performance by common marmosets in a delayed matching to position task with variable stimulus presentations.

    PubMed

    Yamazaki, Yumiko; Saiki, Masakado; Inada, Masayuki; Watanabe, Shigeru; Iriki, Atsushi

    2016-01-15

    Working memory is used to solve various cognitive problems by maintaining information for some time and then by refreshing this information after certain purposes are achieved. In the present study, we explored the ability of common marmosets to perform a delayed matching to position (DMTP) task in a controlled environment using operant conditioning. The DMTP task requires the subjects to respond to the sample stimulus and to select one of two comparison stimuli with a position matching that of the sample stimulus after a programmed delay period. Positional arrangement of the sample and comparison stimuli, which were quasi-randomly determined in each trial, was employed to prevent the subjects from using any strategies based on their own body positions or orientations. The delay intervals between presentations of the sample and comparison stimuli were fixed at 0.5 and 1s in the initial phases and were then varied between 5 intervals per delay set (e.g., 0.5, 1, 2, 4, and 8s) intermixed in a session. The longest delay interval within a set was gradually increased after the marmosets achieved the criterion of each task. The subjects were successfully trained in the procedure and showed accurate performance even following delays of more than 100 s. The response times in the trials suggested that they used different strategies depending on the delay interval length. Thus, the present study shows the robust ability of common marmosets in a task requiring positional memory, which is related to their foraging strategy observed in the wild.

  5. Inhibition of Maternal Behaviour by Central Infusion of Corticotrophin-releasing Hormone in Marmoset Monkeys

    PubMed Central

    Saltzman, Wendy; Boettcher, Carissa A.; Post, Jennifer L.; Abbott, David H.

    2011-01-01

    Stress can inhibit maternal behaviour and increase rates of child abuse in humans and other animals; however, the neuroendocrine mechanisms are not known. To determine whether corticotrophin-releasing hormone (CRH) plays a role in stress-induced disruption of maternal behaviour in primates, we characterised the effects of acute intracerebroventricular (ICV) infusions of CRH on maternal and abusive behaviour in common marmoset monkeys (Callithrix jacchus). Nulliparous females were implanted with indwelling ICV guide cannulae prior to conception. Between 18 and 58 days after the birth of her first infants, each female underwent a series of ICV infusions of human CRH (0, 2, 8, and 25 μg) in 8 μl artificial cerebrospinal fluid. In the 70 minutes following infusion, marmosets were tested with one of their infants, first in their home cage and subsequently in an unfamiliar cage in which the infant was confined in a transparent box on the cage floor. In the home cage, the highest dose of CRH significantly reduced the amount of time that mothers spent carrying their infants, as compared to vehicle alone, but did not reliably affect aggression toward the infant or other behaviours. In the confined-infant test, the highest dose of CRH significantly reduced the amount of time that mothers spent on the cage floor, increased mothers’ vocalization rates, and tended to reduce their activity levels and time spent in proximity to their infant. 25 μg CRH also elicited significant elevations in plasma ACTH and cortisol concentrations, as compared to vehicle. These results indicate that ICV-administered CRH reduces maternal behaviour in marmoset mothers, in both familiar and unfamiliar environments, but does not increase infant abuse. PMID:21554432

  6. Multiple vaccine and pyridostigmine bromide interactions in the common marmoset Callithrix jacchus: immunological and endocrinological effects.

    PubMed

    Hornby, Rebecca J; Pearce, Peter C; Bowditch, Andrew P; Scott, Leah; Griffiths, Gareth D

    2006-12-05

    Following active service during the 1990/1991 Gulf Conflict, a number of UK and US veterans presented with a diverse range of symptoms, collectively known as Gulf Veterans Illnesses (GVI). The administration of vaccines and/or the pretreatment against possible nerve agent poisoning, pyridostigmine bromide (PB), given to Armed Forces personnel during the Gulf Conflict has been implicated as a possible factor in the aetiology of these illnesses. The possibility that adverse health effects may result from the administration of these vaccines (anthrax, pertussis, plague, yellow fever, polio, typhoid, tetanus, hepatitis B, meningococcal meningitis and cholera) and/or PB, have been investigated over an eighteen month period, in a non-human primate model, the common marmoset. This study reports immunological indices, including leukocyte phenotypes, intracellular cytokines IFN-gamma and IL-4 and antibody responses against vaccine antigens. Using human isotyping reagents previously shown to cross react with marmoset immunoglobulins (ibid) it was shown that marmosets responded strongly against anthrax PA and pertussis and weakly against killed whole cell plague, cholera and typhoid. At the end of the study the immune response to a previously unseen T-cell dependent antigen, keyhole limpet haemocyanin (KLH), was examined in order to determine whether immune function had been compromised by the compounds administered. Statistically equivalent, robust antibody responses were measured against KLH in all treatment groups indicating that the immune system had not been compromised by any of the treatments. In addition, urinary cortisol was measured at key points throughout the study as an index of physiological stress which may have been induced by the treatments. There were no effects of treatment on urinary cortisol secretion. With respect to the other immunological indices measured, there were no statistical differences between the treatment groups during the period of the study.

  7. Germ cell dynamics in the testis of the postnatal common marmoset monkey (Callithrix jacchus).

    PubMed

    Albert, S; Ehmcke, J; Wistuba, J; Eildermann, K; Behr, R; Schlatt, S; Gromoll, J

    2010-11-01

    The seminiferous epithelium in the nonhuman primate Callithrix jacchus is similarly organized to man. This monkey has therefore been used as a preclinical model for spermatogenesis and testicular stem cell physiology. However, little is known about the developmental dynamics of germ cells in the postnatal primate testis. In this study, we analyzed testes of newborn, 8-week-old, and adult marmosets employing immunohistochemistry using pluripotent stem cell and germ cell markers DDX4 (VASA), POU5F1 (OCT3/4), and TFAP2C (AP-2γ). Stereological and morphometric techniques were applied for quantitative analysis of germ cell populations and testicular histological changes. Quantitative RT-PCR (qRT-PCR) of testicular mRNA was applied using 16 marker genes establishing the corresponding profiles during postnatal testicular development. Testis size increased during the first 8 weeks of life with the main driver being longitudinal outgrowth of seminiferous cords. The number of DDX4-positive cells per testis doubled between birth and 8 weeks of age whereas TFAP2C- and POU5F1-positive cells remained unchanged. This increase in DDX4-expressing cells indicates dynamic growth of the differentiated A-spermatogonial population. The presence of cells expressing POU5F1 and TFAP2C after 8 weeks reveals the persistence of less differentiated germ cells. The mRNA and protein profiles determined by qRT-PCR and western blot in newborn, 8-week-old, and adult marmosets corroborated the immunohistochemical findings. In conclusion, we demonstrated the presence of distinct spermatogonial subpopulations in the primate testis exhibiting different dynamics during early testicular development. Our study demonstrates the suitability of the marmoset testis as a model for human testicular development.

  8. Non-invasive blood pressure measurement: values, problems and applicability in the common marmoset (Callithrix jacchus).

    PubMed

    Mietsch, M; Einspanier, A

    2015-07-01

    The common marmoset (Callithrix jacchus, C. j.) is an established primate model in biomedical research and for human-related diseases. Monitoring of cardiovascular parameters including blood pressure (BP) is important for the health surveillance of these experimental animals and the quantification of diseases or pharmaceutical substances influencing BP. Measurement guidelines for C. j. do not exist yet; therefore, the present study was carried out to establish a practicable protocol based on recommendations of the American College of Veterinary Internal Medicine (ACVIM). Furthermore, BP data of 49 marmosets (13.8-202.4 months of age) were obtained via high-definition oscillometry to further knowledge of physiological parameters and gender-related differences in this primate. The thighs proved to be the most suitable measurement localization, since systolic values were less variable (left 4.03 ± 2.90%, right 5.96 ± 2.77%) compared with the tail (12.7 ± 6.96%). BP values were similar in the morning and in the afternoon (P > 0.05). Data were highly reproducible within and between several sessions on three consecutive days (P > 0.05) as well as over the course of 20 months (P > 0.05). Furthermore, the measurement time for females was significantly shorter than for males (5:14 ± 1:59 min versus 6:50 ± 1:58 min, P = 0.007). Measurement recommendations for the common marmoset were successfully established. Standardized values enabled a reliable comparison of BP parameters, e.g. for cardiovascular, toxicological or metabolic research.

  9. Cortical connections of auditory cortex in marmoset monkeys: lateral belt and parabelt regions.

    PubMed

    de la Mothe, Lisa A; Blumell, Suzanne; Kajikawa, Yoshinao; Hackett, Troy A

    2012-05-01

    The current working model of primate auditory cortex is constructed from a number of studies of both new and old world monkeys. It includes three levels of processing. A primary level, the core region, is surrounded both medially and laterally by a secondary belt region. A third level of processing, the parabelt region, is located lateral to the belt. The marmoset monkey (Callithrix jacchus jacchus) has become an important model system to study auditory processing, but its anatomical organization has not been fully established. In previous studies, we focused on the architecture and connections of the core and medial belt areas (de la Mothe et al., 2006a, J Comp Neurol 496:27-71; de la Mothe et al., 2006b, J Comp Neurol 496:72-96). In this study, the corticocortical connections of the lateral belt and parabelt were examined in the marmoset. Tracers were injected into both rostral and caudal portions of the lateral belt and parabelt. Both regions revealed topographic connections along the rostrocaudal axis, where caudal areas of injection had stronger connections with caudal areas, and rostral areas of injection with rostral areas. The lateral belt had strong connections with the core, belt, and parabelt, whereas the parabelt had strong connections with the belt but not the core. Label in the core from injections in the parabelt was significantly reduced or absent, consistent with the idea that the parabelt relies mainly on the belt for its cortical input. In addition, the present and previous studies indicate hierarchical principles of anatomical organization in the marmoset that are consistent with those observed in other primates.

  10. Inhibition of maternal behaviour by central infusion of corticotrophin-releasing hormone in marmoset monkeys.

    PubMed

    Saltzman, W; Boettcher, C A; Post, J L; Abbott, D H

    2011-11-01

    Stress can inhibit maternal behaviour and increase rates of child abuse in humans and other animals; however, the neuroendocrine mechanisms are not known. To determine whether corticotrophin-releasing hormone (CRH) plays a role in stress-induced disruption of maternal behaviour in primates, we characterised the effects of acute i.c.v. infusions of CRH on maternal and abusive behaviour in common marmoset monkeys (Callithrix jacchus). Nulliparous females were implanted with indwelling i.c.v. guide cannulae before conception. Between 18 and 58 days after the birth of her first infants, each female underwent a series of i.c.v. infusions of human CRH (0, 2, 8 and 25 μg) in 8 μl of artificial cerebrospinal fluid. In the 70 min after infusion, marmosets were tested with one of their infants, first in their home cage and, subsequently, in an unfamiliar cage in which the infant was confined in a transparent box on the cage floor. In the home cage, the highest dose of CRH significantly reduced the amount of time that mothers spent carrying their infants, as compared to vehicle alone, although it did not reliably affect aggression toward the infant or other behaviours. In the confined-infant test, the highest dose of CRH significantly reduced the amount of time that mothers spent on the cage floor, increased mothers' vocalisation rates, and tended to reduce their activity levels and time spent in proximity to their infant. Twenty-five micrograms of CRH also elicited significant elevations in plasma adrenocorticotrophic hormone and cortisol concentrations compared to vehicle. These results indicate that i.c.v.-administered CRH reduces maternal behaviour in marmoset mothers, in both familiar and unfamiliar environments, but does not increase infant abuse.

  11. Gene expression ontogeny of spermatogenesis in the marmoset uncovers primate characteristics during testicular development.

    PubMed

    Lin, Zachary Yu-Ching; Hirano, Takamasa; Shibata, Shinsuke; Seki, Naomi M; Kitajima, Ryunosuke; Sedohara, Ayako; Siomi, Mikiko C; Sasaki, Erika; Siomi, Haruhiko; Imamura, Masanori; Okano, Hideyuki

    2015-04-01

    Mammalian spermatogenesis has been investigated extensively in rodents and a strictly controlled developmental process has been defined at cellular and molecular levels. In comparison, primate spermatogenesis has been far less well characterized. However, important differences between primate and rodent spermatogenesis are emerging so it is not always accurate to extrapolate findings in rodents to primate systems. Here, we performed an extensive immunofluorescence study of spermatogenesis in neonatal, juvenile, and adult testes in the common marmoset (Callithrix jacchus) to determine primate-specific patterns of gene expression that underpin primate germ cell development. Initially we characterized adult spermatogonia into two main classes; mitotically active C-KIT(+)Ki67(+) cells and mitotically quiescent SALL4(+)PLZF(+)LIN28(+)DPPA4(+) cells. We then explored the expression of a set of markers, including PIWIL1/MARWI, VASA, DAZL, CLGN, RanBPM, SYCP1 and HAPRIN, during germ cell differentiation from early spermatocytes through round and elongating spermatids, and a clear program of gene expression changes was determined as development proceeded. We then examined the juvenile marmoset testis. Markers of gonocytes demonstrated two populations; one that migrates to the basal membrane where they form the SALL4(+) or C-KIT(+) spermatogonia, and another that remains in the lumen of the seminiferous tubule. This later population, historically identified as pre-spermatogonia, expressed meiotic and apoptotic markers and were eliminated because they appear to have failed to correctly migrate. Our findings provide the first platform of gene expression dynamics in adult and developing germ cells of the common marmoset. Although we have characterized a limited number of genes, these results will facilitate primate spermatogenesis research and understanding of human reproduction.

  12. Testing efficacy of administration of the antiaging drug rapamycin in a nonhuman primate, the common marmoset.

    PubMed

    Tardif, Suzette; Ross, Corinna; Bergman, Phillip; Fernandez, Elizabeth; Javors, Marty; Salmon, Adam; Spross, Jennifer; Strong, Randy; Richardson, Arlan

    2015-05-01

    This report is the first description of dosing procedures, pharmacokinetics, biochemical action, and general tolerability of the antiaging drug rapamycin in the common marmoset, a small and short-lived monkey. Eudragit-encapsulated rapamycin was given orally to trained marmosets in a short-term (3 weeks) and a long-term (14 months) study. Circulating trough rapamycin levels (mean = 5.2 ng/mL; 1.93-10.73 ng/mL) achieved at roughly 1.0 mg/kg/day was comparable to those reported in studies of rodents and within the therapeutic range for humans. Long-term treated animals (6/8) indicated a reduction in mammalian target of rapamycin complex 1 signaling as noted by a decrease in the phospho rpS6 to total rpS6 ratio after 2 weeks of treatment. All long-term treated subjects had detectable concentrations of rapamycin in liver (4.7-19.9 pg/mg) and adipose tissue (2.2-32.8 pg/mg) with reduced mammalian target of rapamycin signaling in these tissues. There was no evidence of clinical anemia, fibrotic lung changes, or mouth ulcers. The observed death rate in the long-term study was as expected given the animals' ages. The ability to rapidly and reliably dose socially housed marmosets with an oral form of rapamycin that is well tolerated and that demonstrates a suppression of the mammalian target of rapamycin pathway leads us to conclude that this species offers a viable model for rapamycin testing to establish safety and efficacy for long-term antiaging intervention.

  13. Oxytocin is associated with infant-care behavior and motivation in cooperatively breeding marmoset monkeys.

    PubMed

    Finkenwirth, Christa; Martins, Eloisa; Deschner, Tobias; Burkart, Judith M

    2016-04-01

    The neurohormone oxytocin (OT) is positively involved in the regulation of parenting and social bonding in mammals, and may thus also be important for the mediation of alloparental care. In cooperatively breeding marmosets, infants are raised in teamwork by parents and adult and sub-adult non-reproductive helpers (usually older siblings). Despite high intrinsic motivation, which may be mediated by hormonal priming, not all individuals are always equally able to contribute to infant-care due to competition among care-takers. Among the various care-taking behaviors, proactive food sharing may reflect motivational levels best, since it can be performed ad libitum by several individuals even if competition among surplus care-takers constrains access to infants. Our aim was to study the link between urinary OT levels and care-taking behaviors in group-living marmosets, while taking affiliation with other adults and infant age into account. Over eight reproductive cycles, 26 individuals were monitored for urinary baseline OT, care-taking behaviors (baby-licking, -grooming, -carrying, and proactive food sharing), and adult-directed affiliation. Mean OT levels were generally highest in female breeders and OT increased significantly in all individuals after birth. During early infancy, high urinary OT levels were associated with increased infant-licking but low levels of adult-affiliation, and during late infancy, with increased proactive food sharing. Our results show that, in marmoset parents and alloparents, OT is positively involved in the regulation of care-taking, thereby reflecting the changing needs during infant development. This particularly included behaviors that are more likely to reflect intrinsic care motivation, suggesting a positive link between OT and motivational regulation of infant-care.

  14. Fetal sulcation and gyrification in common marmosets (Callithrix jacchus) obtained by ex vivo magnetic resonance imaging.

    PubMed

    Sawada, K; Hikishima, K; Murayama, A Y; Okano, H J; Sasaki, E; Okano, H

    2014-01-17

    The present study characterized fetal sulcation patterns and gyrification in the cerebrum of the New World monkey group, common marmosets, using a 3D T2-weighted high-resolution anatomical magnetic resonance imaging (MRI) sequence from the fixed brain at 7-tesla ex vivo. Fetal sulcation in the marmoset cerebrum began to indent the lateral fissure and hippocampal sulcus in gestational week (GW) 12, and then the following sulci emerged: the callosal and calcarine sulci on GW 15; the superior temporal sulcus on GW 17; and the circular and occipitotemporal sulci on GW 18. The degree of cortical convolution was evaluated quantitatively based on 2D MRI slices by the gyrification index (GI) and based on 3D MRI data by sulcation index (SI). Both the mean GI and SI increased from GW 16, and were closely correlated with the cortical volume and the cortical surface area during fetal periods (their correlation coefficients marked more than 0.95). After birth, both the mean GI and SI decreased slightly by 2years of age, whereas the cortical volume and surface area continuously increased. Notably, histological analysis showed that the outer subventricular zone (oSVZ) in non-sulcal regions was thicker than that in the presumptive calcarine sulcal region on GW 13, preceding the infolding of the calcarine sulcus. The present results showed definite sulcal infolding on the cerebral cortical surface of the marmosets, with similar pattern and sequence of their emergences to other higher-order primates such as macaques and humans. Differential expansion of the oSVZ may be involved in gyral convolution and sulcal infolding in the developing cerebrum.

  15. New insights into centromere organization and evolution from the white-cheeked gibbon and marmoset.

    PubMed

    Cellamare, A; Catacchio, C R; Alkan, C; Giannuzzi, G; Antonacci, F; Cardone, M F; Della Valle, G; Malig, M; Rocchi, M; Eichler, E E; Ventura, M

    2009-08-01

    The evolutionary history of alpha-satellite DNA, the major component of primate centromeres, is hardly defined because of the difficulty in its sequence assembly and its rapid evolution when compared with most genomic sequences. By using several approaches, we have cloned, sequenced, and characterized alpha-satellite sequences from two species representing critical nodes in the primate phylogeny: the white-cheeked gibbon, a lesser ape, and marmoset, a New World monkey. Sequence analyses demonstrate that white-cheeked gibbon and marmoset alpha-satellite sequences are formed by units of approximately 171 and approximately 342 bp, respectively, and they both lack the high-order structure found in humans and great apes. Fluorescent in situ hybridization characterization shows a broad dispersal of alpha-satellite in the white-cheeked gibbon genome including centromeric, telomeric, and chromosomal interstitial localizations. On the other hand, centromeres in marmoset appear organized in highly divergent dimers roughly of 342 bp that show a similarity between monomers much lower than previously reported dimers, thus representing an ancient dimeric structure. All these data shed light on the evolution of the centromeric sequences in Primates. Our results suggest radical differences in the structure, organization, and evolution of alpha-satellite DNA among different primate species, supporting the notion that 1) all the centromeric sequence in Primates evolved by genomic amplification, unequal crossover, and sequence homogenization using a 171 bp monomer as the basic seeding unit and 2) centromeric function is linked to relatively short repeated elements, more than higher-order structure. Moreover, our data indicate that complex higher-order repeat structures are a peculiarity of the hominid lineage, showing the more complex organization in humans.

  16. New Insights into Centromere Organization and Evolution from the White-Cheeked Gibbon and Marmoset

    PubMed Central

    Cellamare, A.; Catacchio, C.R.; Alkan, C.; Giannuzzi, G.; Antonacci, F.; Cardone, M.F.; Della Valle, G.; Malig, M.; Rocchi, M.; Eichler, E.E.

    2009-01-01

    The evolutionary history of α-satellite DNA, the major component of primate centromeres, is hardly defined because of the difficulty in its sequence assembly and its rapid evolution when compared with most genomic sequences. By using several approaches, we have cloned, sequenced, and characterized α-satellite sequences from two species representing critical nodes in the primate phylogeny: the white-cheeked gibbon, a lesser ape, and marmoset, a New World monkey. Sequence analyses demonstrate that white-cheeked gibbon and marmoset α-satellite sequences are formed by units of ∼171 and ∼342 bp, respectively, and they both lack the high-order structure found in humans and great apes. Fluorescent in situ hybridization characterization shows a broad dispersal of α-satellite in the white-cheeked gibbon genome including centromeric, telomeric, and chromosomal interstitial localizations. On the other hand, centromeres in marmoset appear organized in highly divergent dimers roughly of 342 bp that show a similarity between monomers much lower than previously reported dimers, thus representing an ancient dimeric structure. All these data shed light on the evolution of the centromeric sequences in Primates. Our results suggest radical differences in the structure, organization, and evolution of α-satellite DNA among different primate species, supporting the notion that 1) all the centromeric sequence in Primates evolved by genomic amplification, unequal crossover, and sequence homogenization using a 171 bp monomer as the basic seeding unit and 2) centromeric function is linked to relatively short repeated elements, more than higher-order structure. Moreover, our data indicate that complex higher-order repeat structures are a peculiarity of the hominid lineage, showing the more complex organization in humans. PMID:19429672

  17. The effect of habitat acoustics on common marmoset vocal signal transmission.

    PubMed

    Morrill, Ryan J; Thomas, A Wren; Schiel, Nicola; Souto, Antonio; Miller, Cory T

    2013-09-01

    Noisy acoustic environments present several challenges for the evolution of acoustic communication systems. Among the most significant is the need to limit degradation of spectro-temporal signal structure in order to maintain communicative efficacy. This can be achieved by selecting for several potentially complementary processes. Selection can act on behavioral mechanisms permitting signalers to control the timing and occurrence of signal production to avoid acoustic interference. Likewise, the signal itself may be the target of selection, biasing the evolution of its structure to comprise acoustic features that avoid interference from ambient noise or degrade minimally in the habitat. Here, we address the latter topic for common marmoset (Callithrix jacchus) long-distance contact vocalizations, known as phee calls. Our aim was to test whether this vocalization is specifically adapted for transmission in a species-typical forest habitat, the Atlantic forests of northeastern Brazil. We combined seasonal analyses of ambient habitat acoustics with experiments in which pure tones, clicks, and vocalizations were broadcast and rerecorded at different distances to characterize signal degradation in the habitat. Ambient sound was analyzed from intervals throughout the day and over rainy and dry seasons, showing temporal regularities across varied timescales. Broadcast experiment results indicated that the tone and click stimuli showed the typically inverse relationship between frequency and signaling efficacy. Although marmoset phee calls degraded over distance with marked predictability compared with artificial sounds, they did not otherwise appear to be specially designed for increased transmission efficacy or minimal interference in this habitat. We discuss these data in the context of other similar studies and evidence of potential behavioral mechanisms for avoiding acoustic interference in order to maintain effective vocal communication in common marmosets.

  18. Circadian activity rhythm in pre-pubertal and pubertal marmosets (Callithrix jacchus) living in family groups.

    PubMed

    Melo, Paula R; Gonçalves, Bruno S B; Menezes, Alexandre A L; Azevedo, Carolina V M

    2016-03-01

    In marmosets, a phase advance was observed in activity onset in pubertal animals living in captivity under semi-natural conditions which had stronger correlation with the times of sunrise over the course of the year than the age of the animal. In order to evaluate the effect of puberty on the circadian activity rhythm in male and female marmosets living in family groups in controlled lighting conditions, the activity of 5 dyads of twins (4 ♀/♂ and 1 ♂/♂) and their respective parents was continuously monitored by actiwatches between the 4th and 12th months of age. The families were kept under LD 12:12 h with constant humidity and temperature. The onset of puberty was identified by monitoring fecal steroids. Juveniles showed higher totals of daily activity and differences in the daily distribution of activity in relation to parents, in which the bimodal profile was characterized by higher levels in evening activity in relation to morning activity. Regarding the phase, the activity onset and offset, occurred later in relation to parents. After entering puberty, the activity onset and offset occurred later and there was an increase in total daily activity. On the other hand, when assessing the effect of sex, only females showed a delay in the activity offset and an increase in total daily activity. Therefore, the circadian activity rhythm in marmosets has peculiar characteristics in the juvenile stage in relation to the total of daily activity, the onset and offset of the active phase, and the distribution of activity during this phase. Besides, the entering puberty was associated with a phase delay and increase on total daily activity, with differences between sexes, possibly due to hormonal influences and/or social modulation on rhythm.

  19. Sleep and Alertness Management III: Effects of a Nap and Hypnotics on Performance During the Late Evening, Night and Early Morning in Marmosets

    DTIC Science & Technology

    2006-11-01

    hypnotics on performance Info-DenV@tno.nl during the late evening, night and early morning in marmosets Date November 2006 Author(s) Dr. I.H.C.I.M...so-called post-nap hangovers. In this study, the marmoset monkey model was validated as a model for testing the effects of drugs on performance during...evening, night and early morning missions was tested. It was proven that the homeostasis in marmoset monkeys after sleep deprivation is similar to the

  20. Aggression and flight behaviour of the marmoset monkey Callithrix jacchus: an ethogram for brain stimulation studies.

    PubMed

    Lipp, H P

    1978-01-01

    The aggressive and flight behaviour of the common marmoset monkey (Callithrix jacchus) is described and split into behavioural units, allowing analysis of agonistic behaviour evoked by electrical stimulation of the hypothalamus. The social context of the described units is also considered. C. jacchus shows clearly recognizable behavioural patterns. Free-born animals are very timid and show typical flight reactions. Within aggressive behaviour, two types of aggression can be distinguished: very violent attacks causing severe injuries, often accompanied by particular threat displays and observed during dominance and territorial encounters, and, on the other hand, relatively harmless short attacks, together with a noisy vocalization, for defensive purposes or keeping group members at a distance.

  1. Prospects for genetically modified non-human primate models, including the common marmoset.

    PubMed

    Sasaki, Erika

    2015-04-01

    Genetically modified mice have contributed much to studies in the life sciences. In some research fields, however, mouse models are insufficient for analyzing the molecular mechanisms of pathology or as disease models. Often, genetically modified non-human primate (NHP) models are desired, as they are more similar to human physiology, morphology, and anatomy. Recent progress in studies of the reproductive biology in NHPs has enabled the introduction of exogenous genes into NHP genomes or the alteration of endogenous NHP genes. This review summarizes recent progress in the production of genetically modified NHPs, including the common marmoset, and future perspectives for realizing genetically modified NHP models for use in life sciences research.

  2. The common marmoset: A new world primate species with limited Mhc class II variability

    PubMed Central

    Antunes, Susana G.; de Groot, Natasja G.; Brok, Herbert; Doxiadis, Gaby; Menezes, Alexandre A. L.; Otting, Nel; Bontrop, Ronald E.

    1998-01-01

    The common marmoset (Callithrix jacchus) is a New World primate species that is highly susceptible to fatal infections caused by various strains of bacteria. We present here a first step in the molecular characterization of the common marmoset’s Mhc class II genes by nucleotide sequence analysis of the polymorphic exon 2 segments. For this study, genetic material was obtained from animals bred in captivity as well as in the wild. The results demonstrate that the common marmoset has, like other primates, apparently functional Mhc-DR and -DQ regions, but the Mhc-DP region has been inactivated. At the -DR and -DQ loci, only a limited number of lineages were detected. On the basis of the number of alleles found, the -DQA and -B loci appear to be oligomorphic, whereas only a moderate degree of polymorphism was observed for two of three Mhc-DRB loci. The contact residues in the peptide-binding site of the Caja-DRB1*03 lineage members are highly conserved, whereas the -DRB*W16 lineage members show more divergence in that respect. The latter locus encodes five oligomorphic lineages whose members are not observed in any other primate species studied, suggesting rapid evolution, as illustrated by frequent exchange of polymorphic motifs. All common marmosets tested were found to share one monomorphic type of Caja-DRB*W12 allele probably encoded by a separate locus. Common marmosets apparently lack haplotype polymorphism because the number of Caja-DRB loci present per haplotype appears to be constant. Despite this, however, an unexpectedly high number of allelic combinations are observed at the haplotypic level, suggesting that Caja-DRB alleles are exchanged frequently between chromosomes by recombination, promoting an optimal distribution of limited Mhc polymorphisms among individuals of a given population. This peculiar genetic make up, in combination with the limited variability of the major histocompatability complex class II repertoire, may contribute to the common

  3. Congenital malformation of the vaginal orifice, imperforate vagina, in the common marmoset (Callithrix jacchus).

    PubMed

    Niimi, Kimie; Oguchi, Ayaka; Nishio, Kenji; Okano, Yasushi; Takahashi, Eiki

    2015-03-01

    The following is a report on a congenital vaginal malformation, imperforate vagina, in the common marmoset (Callithrix jacchus). This anomaly was observed for the first time in an adult female in our research colony. There was no uterine and vaginal aplasia or atresia in her grossly normal genital tract. The plasma progesterone concentration suggested that the ovarian cycle had ceased. However, this may not be related to a functional anomaly, but rather to suppressed ovulation resulting from subordination to cagemates considering the various stages of follicular development observed.

  4. Leiomyosarcoma arising from the inferior mesenteric vein

    PubMed Central

    Clemente, Gennaro; Sarno, Gerardo; Barbaro, Brunella; Nuzzo, Gennaro

    2009-01-01

    Leyomiosarcomas arising from the portal/mesenteric venous system are very rare tumours, and only a few cases have been reported in the global literature. As the other leyomiosarcomas of vascular origin, they are associated with a poor prognosis. The present report describes the case of a 66-year-old woman with a leyomiosarcoma of the inferior mesenteric vein, unexpectedly found during a CT scan performed for another indication. A brief review of the literature is also given. The patient underwent radical surgical excision and enjoys a good health, without radiological signs of recurrence, 24 months after surgery. In this case, an early incidental diagnosis determined an early treatment and, probably, a favourable prognosis. This is the second case of leyomiosarcoma of the inferior mesenteric vein reported in the literature. PMID:21686492

  5. Leiomyosarcoma of the Inferior Vena Cava

    PubMed Central

    Sadri, Ben Abid; Amine, Attaoui Mohamed; Zeineb, Mzoughi; Nizar, Miloudi; Lassad, Gharbi; Khalfallah, Mohamed Tahar

    2013-01-01

    Vascular leiomyosarcoma (LMS) are unique. The inferior vena cava (IVC) is the most affected organ (about 38% cases). We report the observation of a 50-year old woman who consulted for right upper quadrant pain. Imaging studies revealed a retroperitoneal mass that mimic a LMS of the IVC. The patient was operated. A resection of the IVC along with the tumor was performed without reconstruction. The management of LMS is surgical and depends upon the location and tumor characteristics. PMID:24765501

  6. New mechanism that accounts for position sensitivity of saccades evoked in response to stimulation of superior colliculus.

    PubMed

    Moschovakis, A K; Dalezios, Y; Petit, J; Grantyn, A A

    1998-12-01

    New mechanism that accounts for position sensitivity of saccades evoked in response to stimulation of superior colliculus. J. Neurophysiol. 80: 3373-3379, 1998. Electrical stimulation of the feline superior colliculus (SC) is known to evoke saccades whose size depends on the site stimulated (the "characteristic vector" of evoked saccades) and the initial position of the eyes. Similar stimuli were recently shown to produce slow drifts that are presumably caused by relatively direct projections of the SC onto extraocular motoneurons. Both slow and fast evoked eye movements are similarly affected by the initial position of the eyes, despite their dissimilar metrics, kinematics, and anatomic substrates. We tested the hypothesis that the position sensitivity of evoked saccades is due to the superposition of largely position-invariant saccades and position-dependent slow drifts. We show that such a mechanism can account for the fact that the position sensitivity of evoked saccades increases together with the size of their characteristic vector. Consistent with it, the position sensitivity of saccades drops considerably when the contribution of slow drifts is minimal as, for example, when there is no overlap between evoked saccades and short-duration trains of high-frequency stimuli.

  7. Quantitative atlas of blood-brain barrier transporters, receptors, and tight junction proteins in rats and common marmoset.

    PubMed

    Hoshi, Yutaro; Uchida, Yasuo; Tachikawa, Masanori; Inoue, Takashi; Ohtsuki, Sumio; Terasaki, Tetsuya

    2013-09-01

    The purpose of this study was to determine the protein amounts of blood-brain barrier (BBB) permeability-related transporters, receptors, and tight junction proteins in Sprague Dawley and Wistar rats and common marmoset, and also to investigate inter-species and inter-strain differences across rodents and primates. Quantification of target proteins in isolated brain capillaries was conducted by liquid chromatography-tandem mass spectrometry-based quantitative targeted absolute proteomics, with in silico peptide selection. Most target proteins showed inter-rodent, inter-primate species, and inter-rat strain differences of less than 2-fold. Comparison of rat and human BBB showed that P-glycoprotein, multidrug resistance-associated protein 4, monocarboxylate transporter 1, l-type amino acid transporter, and organic anion transporter 3 exhibited differences of more than two-fold in protein abundance, whereas the amounts of breast cancer resistance protein, glucose transporter 1, and insulin receptor were similar in rat and human. In contrast, the differences between marmoset and human BBB were less than 2-fold for almost all measured proteins. Thus, the molecular basis of BBB functions may be similar in marmoset and human, whereas that of rats shows significant differences. The marmoset may be a good model to access in vivo human BBB permeability characteristics, as an alternative to rat and macaque monkey.

  8. An assessment of common marmoset (Callithrix jacchus) γ9(+) T cells and their response to phosphoantigen in vitro.

    PubMed

    Rowland, Caroline A; Laws, Thomas R; Oyston, Petra C F

    2012-12-01

    γ9δ2 T cells are a primate-specific γδ T cell subtype that expand and become activated during infection, responding directly to phosphoantigens which are by-products of essential metabolic pathways in both bacteria and mammals. Analogues of natural phosphoantigens have been developed as potential immunotherapeutics for treatment of tumours and infectious diseases. Several non-human primate models have been used in preclinical studies, however, little is known about marmoset γ9δ2 T cell responses. We identified γ9(+) T cells in various tissues in the marmoset and determined that these cells respond to phosphoantigen in a similar manner to human γ9δ2 T cells in vitro. Both human γ9δ2 T cells and marmoset γ9(+) T cells were able to reduce growth of the intracellular bacterium Burkholderia pseudomallei in vitro following expansion with phosphoantigen. This suggests that the marmoset is an appropriate model for examining the immunotherapeutic potential of compounds which target γ9δ2 T cells.

  9. Effect of the size of zona pellucida opening on hatching in the common marmoset monkey (Callithrix jacchus) embryo.

    PubMed

    Ishibashi, Hidetoshi; Motohashi, Hideyuki H; Kumon, Mami; Yamamoto, Kazuhiro; Okada, Hironori; Okada, Takashi; Seki, Kazuhiko

    2013-11-01

    The use of the common marmoset monkey in biomedical research has increased recently, and further attention has been devoted to this model after the successful production of transgenic marmosets. To extend genetic engineering approaches to widespread biomedical research fields, efficient prolonged in vitro culturing of embryo development is necessary. We aimed to evaluate the effects of the size of the zona pellucida opening on promoting the hatching process in the marmoset embryo. Piezo-microdrilling of a 6-μm opening in eight embryos resulted in four partially hatched embryos and one hatched embryo after 5 days of culture. Piezo-microdrilling a 20-μm opening in 11 embryos resulted in nine partial hatchings and no hatched embryos. Piezo-scraping an 80-μm opening in six embryos resulted in no partially hatched embryos and five hatched embryos. These results suggest that an 80-μm opening, rather than 6-μm or 20-μm openings, is suitable to complete the hatching process in the marmoset embryo.

  10. Antibodies directed against human liver specific membrane lipoprotein (LSP) in marmosets experimentally infected with the hepatitis A virus.

    PubMed Central

    Jensen, D M; Peterson, D A; Wolfe, L G; Hurley, T; Payne, J A; Ogden, J

    1984-01-01

    Autoantibodies directed against liver plasma membrane antigens have recently been described in patients with acute viral hepatitis, type A (AVH-A). To further investigate this phenomenon, the antibody against one such liver membrane antigen, liver specific membrane lipoprotein (LSP), was assayed in six marmosets orally inoculated with hepatitis A virus (HAV). Using a sensitive radioimmunoassay technique, anti-human LSP antibodies were detected in five of six animals. Two peaks of 125I-HLSP binding were observed: a minor peak at 20 days post-inoculation (dpi) in two animals, and a major peak at 38-45 dpi in five animals. There was no correlation between 125I-HLSP binding and liver histology score, ALT level, IgG concentration, anti-HAV P/N ratio, or E rosette lymphocyte count. A statistically significant correlation was observed, however, between 125I-HLSP binding and IgM anti-HAV antibody P/N ratios. 125I-HLSP binding was blocked by both marmoset and human LSP, but not by a marmoset kidney protein prepared in an identical manner. In summary, marmosets infected with HAV are a suitable animal model for the further investigation of anti-LSP autoantibody formation in AVH-A. PMID:6705267

  11. Immediate, but no delayed, behavioral response to a snake model by captive black tufted-ear marmosets.

    PubMed

    Cagni, Priscila; Sampaio, Ana Cristhina; Ribeiro, Natália B; Barros, Marilia

    2011-07-01

    Whether callitrichids are naturally capable of detecting and responding to predators - or if such skills are learned - remains a controversial issue, with results differing in terms of species, predator and encounter conditions. Therefore, the behavioral response of naïve adult captive black tufted-ear marmosets (Callithrix penicillata) was assessed before, during, 0 and 4 h after a 5-min encounter with a snake and flower model. Using a two-phase cross-over design, marmosets (n = 16) were submitted to one trial for each stimulus, divided into four 5-min intervals: pre-exposure, exposure and post-exposure observations held 0 and 4h later. The snake exposure increased the number of gazes made towards the stimulus and the time cage-mates spent close to each other, as well as induced tsik-tsik alarm/mobbing calls, while inhibiting foraging and decreasing the time spent near the snake's location. After the snake was removed, all changes were immediately reversed. Mobbing was not observed. The flower stimulus only increased direct gazes and time spent in proximity during its presentation. All marmosets were captive-born and snake-naïve yet had recently been confronted with a cat stimulus in a previous experiment. Thus, previous experiences with snakes may be required for marmosets to fully develop appropriate immediate and long-term responses.

  12. An Observational Investigation of Behavioral Contagion in Common Marmosets (Callithrix jacchus): Indications for Contagious Scent-Marking

    PubMed Central

    Massen, Jorg J. M.; Šlipogor, Vedrana; Gallup, Andrew C.

    2016-01-01

    Behavioral contagion is suggested to promote group coordination that may facilitate activity transitions, increased vigilance, and state matching. Apart from contagious yawning, however, very little attention has been given to this phenomenon, and studies on contagious yawning in primates have so far only focused on Old World monkeys and apes. Here we studied behavioral contagion in common marmosets, a species for which group coordination and vigilance are paramount. In particular, we investigated the contagiousness of yawning, stretching, scratching, tongue protrusion, gnawing, and scent-marking. We coded these behaviors from 14 adult marmosets, from two different social groups. During testing sessions, animals were separated into groups of four individuals for 20-min observation periods, across three distinct diurnal time points (morning, midday, and afternoon) to test for circadian patterns. We observed almost no yawning (0.12 yawns/h) and very little stretching behavior. For all other behaviors, which were more common, we found several temporal and inter-individual differences (i.e., sex, age, dominance status) predictive of these responses. Moreover, we found that gnawing and scent-marking, which almost always co-occurred as a fixed-action pattern, were highly temporally clustered within observation sessions. We discuss the relative absence of yawning in marmosets as well as the possible function of contagious scent-marking, and provide suggestions for future research into the proximate and ultimate functions of these behaviors in marmosets. PMID:27563294

  13. Neuronal MHC Class I Molecules are Involved in Excitatory Synaptic Transmission at the Hippocampal Mossy Fiber Synapses of Marmoset Monkeys

    PubMed Central

    Zhang, Mingyue; Schlumbohm, Christina; Mätz-Rensing, Kerstin; Uchanska-Ziegler, Barbara; Flügge, Gabriele; Zhang, Weiqi; Walter, Lutz; Fuchs, Eberhard

    2010-01-01

    Several recent studies suggested a role for neuronal major histocompatibility complex class I (MHCI) molecules in certain forms of synaptic plasticity in the hippocampus of rodents. Here, we report for the first time on the expression pattern and functional properties of MHCI molecules in the hippocampus of a nonhuman primate, the common marmoset monkey (Callithrix jacchus). We detected a presynaptic, mossy fiber-specific localization of MHCI proteins within the marmoset hippocampus. MHCI molecules were present in the large, VGlut1-positive, mossy fiber terminals, which provide input to CA3 pyramidal neurons. Furthermore, whole-cell recordings of CA3 pyramidal neurons in acute hippocampal slices of the common marmoset demonstrated that application of antibodies which specifically block MHCI proteins caused a significant decrease in the frequency, and a transient increase in the amplitude, of spontaneous excitatory postsynaptic currents (sEPSCs) in CA3 pyramidal neurons. These findings add to previous studies on neuronal MHCI molecules by describing their expression and localization in the primate hippocampus and by implicating them in plasticity-related processes at the mossy fiber–CA3 synapses. In addition, our results suggest significant interspecies differences in the localization of neuronal MHCI molecules in the hippocampus of mice and marmosets, as well as in their potential function in these species. Electronic supplementary material The online version of this article (doi:10.1007/s10571-010-9510-3) contains supplementary material, which is available to authorized users. PMID:20232136

  14. EphA4 is associated with multiple cell types in the marmoset primary visual cortex throughout the lifespan.

    PubMed

    Goldshmit, Yona; Homman-Ludiye, Jihane; Bourne, James A

    2014-05-01

    Ephs form the largest family of receptor tyrosine kinases. They interact with the membrane-bound ligands - ephrins - to control crucial aspects of brain development. EphA4 is the most prominent member of the family in terms of versatility and ability to bind most ephrin ligands. EphA4 regulates brain development by modulating neuronal migration and connectivity. In the present study, we address the involvement of EphA4 in patterning the primary visual cortex (V1) of the marmoset monkey by characterizing the cellular expression profile of EphA4 from late embryonic stages to adulthood. We identified continuous expression on neurons in the cortical plate and mature neocortical layers, similar to that described in the mouse, excluding a role for EphA4 in the formation of borders between visual areas in the marmoset neocortex. In addition to neurons, we also report expression of EphA4 on glial populations, including radial glia and astrocytes. In contrast to what is seen in the mouse, EphA4 expression on astrocytes persists in the adult marmoset V1, including around blood vessels and in the white matter. Robust expression by glial populations, which retain neurogenic properties in the postnatal marmoset, indicates that EphA4 may have acquired additional roles during evolution, with important implications for the benefits of EphA4-blocking therapies following brain injury.

  15. Hormonal Stimulation and Paternal Experience Influence Responsiveness to Infant Distress Vocalizations by Adult Male Common Marmosets, Callithrix jacchus

    PubMed Central

    Ziegler, Toni E.; Sousa, Megan E.

    2015-01-01

    Parental experience and hormones play a large role in the common marmoset (Callitrhix jacchus) father’s care of their offspring. We tested the effect of exogenous estradiol or testosterone on the responsiveness of common marmosets to respond to infant distress vocalizations and whether males who haven’t become fathers yet (paired males) would have increased responsiveness to infant distress calls with either steroid or whether parental experience is the most important component for the onset of paternal care. Sixteen male marmosets (8 fathers, 8 paired males) received a vehicle, low dose or high dose of estradiol and additional 16 males were tested with testosterone at three doses for their response either to a vocal control or a recording of an infant distress call for 10 minutes. Without steroid stimulation fathers were significantly more likely to respond to the infant distress stimulus than paired males. Low dose estradiol stimulation resulted in a significant increase in father’s behavioral response toward the infant distress stimulus but not in paired males. Fathers also showed a significant increase in infant responsiveness from the vehicle dose to the estradiol low dose treatment, but not to the estradiol high dose treatment. Testosterone treatment did not show significant differences between infant responsiveness at either dose and between fathers and paired males. We suggest that neither steroid is involved in the onset of paternal care behaviors in the marmoset but that estradiol may be involved in facilitating paternal motivation in experienced fathers. PMID:26497409

  16. Non-inferiority trials: are they inferior? A systematic review of reporting in major medical journals

    PubMed Central

    Morris, Tim P; Fielding, Katherine; Carpenter, James R; Phillips, Patrick P J

    2016-01-01

    Objective To assess the adequacy of reporting of non-inferiority trials alongside the consistency and utility of current recommended analyses and guidelines. Design Review of randomised clinical trials that used a non-inferiority design published between January 2010 and May 2015 in medical journals that had an impact factor >10 (JAMA Internal Medicine, Archives Internal Medicine, PLOS Medicine, Annals of Internal Medicine, BMJ, JAMA, Lancet and New England Journal of Medicine). Data sources Ovid (MEDLINE). Methods We searched for non-inferiority trials and assessed the following: choice of non-inferiority margin and justification of margin; power and significance level for sample size; patient population used and how this was defined; any missing data methods used and assumptions declared and any sensitivity analyses used. Results A total of 168 trial publications were included. Most trials concluded non-inferiority (132; 79%). The non-inferiority margin was reported for 98% (164), but less than half reported any justification for the margin (77; 46%). While most chose two different analyses (91; 54%) the most common being intention-to-treat (ITT) or modified ITT and per-protocol, a large number of articles only chose to conduct and report one analysis (65; 39%), most commonly the ITT analysis. There was lack of clarity or inconsistency between the type I error rate and corresponding CIs for 73 (43%) articles. Missing data were rarely considered with (99; 59%) not declaring whether imputation techniques were used. Conclusions Reporting and conduct of non-inferiority trials is inconsistent and does not follow the recommendations in available statistical guidelines, which are not wholly consistent themselves. Authors should clearly describe the methods used and provide clear descriptions of and justifications for their design and primary analysis. Failure to do this risks misleading conclusions being drawn, with consequent effects on clinical practice. PMID:27855102

  17. Disruption of Fixation Reveals Latent Sensorimotor Processes in the Superior Colliculus

    PubMed Central

    Gandhi, Neeraj J.

    2016-01-01

    Executive control of voluntary movements is a hallmark of the mammalian brain. In the gaze-control network, this function is thought to be mediated by a critical balance between neurons responsible for generating movements and those responsible for fixating or suppressing movements, but the nature of this balance between the relevant elements—saccade-generating and fixation-related neurons—remains unclear. Specifically, it has been debated whether the two functions are necessarily coupled (i.e., push-and-pull) or independently controlled. Here we show that behavioral perturbation of ongoing fixation with the trigeminal blink reflex in monkeys (Macaca mulatta) alters the effective balance between fixation and saccade-generating neurons in the superior colliculus (SC) and can lead to premature gaze shifts reminiscent of compromised inhibitory control. The shift in balance is primarily driven by an increase in the activity of visuomovement neurons in the caudal SC, and the extent to which fixation-related neurons in the rostral SC play a role seems to be linked to the animal's propensity to make microsaccades. The perturbation also reveals a hitherto unknown feature of sensorimotor integration: the presence of a hidden visual response in canonical movement neurons. These findings offer new insights into the latent functional interactions, or lack thereof, between components of the gaze-control network, suggesting that the perturbation technique used here may prove to be a useful tool for probing the neural mechanisms of movement generation in executive function and dysfunction. SIGNIFICANCE STATEMENT Eye movements are an integral part of how we explore the environment. Although we know a great deal about where sensorimotor transformations leading to saccadic eye movements are implemented in the brain, less is known about the functional interactions between neurons that maintain gaze fixation and neurons that program saccades. In this study, we used a novel

  18. Linking express saccade occurance to stimulus properties and sensorimotor integration in the superior colliculus.

    PubMed

    Marino, Robert A; Levy, Ron; Munoz, Douglas P

    2015-08-01

    Express saccades represent the fastest possible eye movements to visual targets with reaction times that approach minimum sensory-motor conduction delays. Previous work in monkeys has identified two specific neural signals in the superior colliculus (SC: a midbrain sensorimotor integration structure involved in gaze control) that are required to execute express saccades: 1) previsual activity consisting of a low-frequency increase in action potentials in sensory-motor neurons immediately before the arrival of a visual response; and 2) a transient visual-sensory response consisting of a high-frequency burst of action potentials in visually responsive neurons resulting from the appearance of a visual target stimulus. To better understand how these two neural signals interact to produce express saccades, we manipulated the arrival time and magnitude of visual responses in the SC by altering target luminance and we examined the corresponding influences on SC activity and express saccade generation. We recorded from saccade neurons with visual-, motor-, and previsual-related activity in the SC of monkeys performing the gap saccade task while target luminance was systematically varied between 0.001 and 42.5 cd/m(2) against a black background (∼0.0001 cd/m(2)). Our results demonstrated that 1) express saccade latencies were linked directly to the arrival time in the SC of visual responses produced by abruptly appearing visual stimuli; 2) express saccades were generated toward both dim and bright targets whenever sufficient previsual activity was present; and 3) target luminance altered the likelihood of producing an express saccade. When an express saccade was generated, visuomotor neurons increased their activity immediately before the arrival of the visual response in the SC and saccade initiation. Furthermore, the visual and motor responses of visuomotor neurons merged into a single burst of action potentials, while the visual response of visual-only neurons was

  19. Population Coding of Facial Information in the Monkey Superior Colliculus and Pulvinar

    PubMed Central

    Nguyen, Minh N.; Nishimaru, Hiroshi; Matsumoto, Jumpei; Van Le, Quan; Hori, Etsuro; Maior, Rafael S.; Tomaz, Carlos; Ono, Taketoshi; Nishijo, Hisao

    2016-01-01

    The superior colliculus (SC) and pulvinar are thought to function as a subcortical visual pathway that bypasses the striate cortex and detects fundamental facial information. We previously investigated neuronal responses in the SC and pulvinar of monkeys during a delayed nonmatching-to-sample task, in which the monkeys were required to discriminate among 35 facial photos of five models and other categories of visual stimuli, and reported that population coding by multiple SC and pulvinar neurons well discriminated facial photos from other categories of stimuli (Nguyen et al., 2013, 2014). However, it remains unknown whether population coding could represent multiple types of facial information including facial identity, gender, facial orientation, and gaze direction. In the present study, to investigate population coding of multiple types of facial information by the SC and pulvinar neurons, we reanalyzed the same neuronal responses in the SC and pulvinar; the responses of 112 neurons in the SC and 68 neurons in the pulvinar in serial 50-ms epochs after stimulus onset were reanalyzed with multidimensional scaling (MDS). The results indicated that population coding by neurons in both the SC and pulvinar classified some aspects of facial information, such as face orientation, gender, and identity, of the facial photos in the second epoch (50–100 ms after stimulus onset). The Euclidean distances between all the pairs of stimuli in the MDS spaces in the SC were significantly correlated with those in the pulvinar, which suggested that the SC and pulvinar function as a unit. However, in contrast with the known population coding of face neurons in the temporal cortex, the facial information coding in the SC and pulvinar was coarse and insufficient. In these subcortical areas, identity discrimination was face orientation-dependent and the left and right profiles were not discriminated. Furthermore, gaze direction information was not extracted in the SC and pulvinar

  20. The transcriptomes of novel marmoset monkey embryonic stem cell lines reflect distinct genomic features

    PubMed Central

    Debowski, Katharina; Drummer, Charis; Lentes, Jana; Cors, Maren; Dressel, Ralf; Lingner, Thomas; Salinas-Riester, Gabriela; Fuchs, Sigrid; Sasaki, Erika; Behr, Rüdiger

    2016-01-01

    Embryonic stem cells (ESCs) are useful for the study of embryonic development. However, since research on naturally conceived human embryos is limited, non-human primate (NHP) embryos and NHP ESCs represent an excellent alternative to the corresponding human entities. Though, ESC lines derived from naturally conceived NHP embryos are still very rare. Here, we report the generation and characterization of four novel ESC lines derived from natural preimplantation embryos of the common marmoset monkey (Callithrix jacchus). For the first time we document derivation of NHP ESCs derived from morula stages. We show that quantitative chromosome-wise transcriptome analyses precisely reflect trisomies present in both morula-derived ESC lines. We also demonstrate that the female ESC lines exhibit different states of X-inactivation which is impressively reflected by the abundance of the lncRNA X inactive-specific transcript (XIST). The novel marmoset ESC lines will promote basic primate embryo and ESC studies as well as preclinical testing of ESC-based regenerative approaches in NHP. PMID:27385131

  1. Strongly bonded family members in common marmosets show synchronized fluctuations in oxytocin.

    PubMed

    Finkenwirth, Christa; van Schaik, Carel; Ziegler, Toni E; Burkart, Judith M

    2015-11-01

    Oxytocin is a key regulator of social bonding and is positively linked to affiliation and prosocial behavior in several mammal species. In chimpanzees, this link is dyad-specific as affiliative interactions only elicit high oxytocin release if they involve strongly bonded individuals. These studies involved isolated dyads and sampling events. Little is known about the role of oxytocin in affiliation and social bonding, and about potential long-term patterns of bonding-related and dyad-specific oxytocin effects within highly affiliative and cooperative social groups. Our aim was to investigate whether bonding-related oxytocin signatures linked to dyadic affiliation are present in family groups of cooperatively breeding marmoset monkeys (Callithrix jacchus) that show high levels of cohesion and cooperation. In 30 dyads from four family groups and one pair, we measured urinary baseline oxytocin over six weeks and analyzed the link to bond strength (mean dyadic affiliation). Strongly bonded dyads showed synchronized longitudinal fluctuations of oxytocin, indicating that dyad-specific oxytocin effects can also be traced in the group context and in an interdependent species. We discuss these results in light of the potential function of differentiated relationships between marmoset dyads other than the breeding pair, and the role of oxytocin as a mediator for social bonding.

  2. Lassa virus infection in experimentally infected marmosets: liver pathology and immunophenotypic alterations in target tissues.

    PubMed

    Carrion, Ricardo; Brasky, Kathleen; Mansfield, Keith; Johnson, Curtis; Gonzales, Monica; Ticer, Anysha; Lukashevich, Igor; Tardif, Suzette; Patterson, Jean

    2007-06-01

    Lassa virus causes thousands of deaths annually in western Africa and is considered a potential biological weapon. In an attempt to develop a small nonhuman primate model of Lassa fever, common marmosets were subcutaneously inoculated with Lassa virus strain Josiah. This inoculation resulted in a systemic disease with clinical and morphological features mirroring those in fatal human Lassa infection: fever, weight loss, high viremia and viral RNA load in tissues, elevated liver enzymes, and severe morbidity between days 15 and 20. The most prominent histopathology findings included multifocal hepatic necrosis with mild inflammation and hepatocyte proliferation, lymphoid depletion, and interstitial nephritis. Cellular aggregates in regions of hepatocellular necrosis were largely composed of HAM56-positive macrophages, devoid of CD3-positive and CD20-positive cells, and characterized by marked reductions in the intensity of HLA-DP, DQ, DR staining. A marked reduction in the major histocompatibility complex class II expression was also observed in the lymph nodes. Immunophenotypic alterations in spleen included reductions in overall numbers of CD20-positive and CD3-positive cells and the disruption of lymphoid follicular architecture. These findings identify the common marmoset as an appropriate model of human Lassa fever and present the first experimental evidence that replication of Lassa virus in tissues is associated with alterations that would be expected to impair adaptive immunity.

  3. The complete mitochondrial genome of white-tufted-ear marmoset, Callithrix jacchus (Primates: Callitrichinae).

    PubMed

    Wang, Wei; Liu, Jing-Yu; Wang, Hai-Feng; Yang, Ming-Ying; Liu, Qi-Ying; Ding, Ming-Xia

    2016-05-01

    The white-tufted-ear marmoset (Callithrix jacchus) is a New World primate that inhabits the coastal rainforests of eastern Brazil. In the present work, we report the complete mitochondrial genome sequence of white-tufted-ear marmoset for the first time. The total length of this mitogenome is 16,499 bp long, containing 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and 1 non-coding region (D-loop region). The gene organization and arrangement is identical to typical vertebrates. The overall base composition is 32.75% of A, 26.95% of T, 26.91% C, and 13.39% G, with a slight A + T bias of 59.7%. All the genes are encoded on H-strand, except for the ND6 subunit gene and 8 tRNA genes. The complete mitochondrial genome sequence reported here will be useful for comparative genomics studies in primates.

  4. Even simple forms of social learning rely on intention attribution in marmoset monkeys (Callithrix jacchus).

    PubMed

    Burkart, Judith; Kupferberg, Aleksandra; Glasauer, Stefan; van Schaik, Carel

    2012-05-01

    Intention attribution guides the cognitively most demanding forms of social learning, such as imitation, thereby scaffolding cumulative cultural evolution. However, it is not thought to be necessary for more basic forms of social learning. Here we present evidence that in marmoset monkeys (Callithrix jacchus) even most basic forms of social learning such as enhancement depend on intention attribution. Marmosets perceived the behavior of a conspecific and a conspecific-like robot, but not that of a moving black box, as goal directed. Their subsequent choice behavior was shaped by social facilitation and stimulus enhancement, that is, by very simple forms of social learning, but only when exposed to the conspecific and robot, which they previously had perceived as intentional agents. We discuss the implications of this finding for contemporary debates about social learning, including emulation learning and ghost control studies, the necessity of goal-directed copying for cumulative cultural evolution, and the limits of current classification systems of social learning for the evolution of social and asocial learning.

  5. Germ-line chimerism and paternal care in marmosets (Callithrix kuhlii).

    PubMed

    Ross, C N; French, J A; Ortí, G

    2007-04-10

    The formation of viable genetic chimeras in mammals through the transfer of cells between siblings in utero is rare. Using microsatellite DNA markers, we show here that chimerism in marmoset (Callithrix kuhlii) twins is not limited to blood-derived hematopoietic tissues as was previously described. All somatic tissue types sampled were found to be chimeric. Notably, chimerism was demonstrated to be present in germ-line tissues, an event never before documented as naturally occurring in a primate. In fact, we found that chimeric marmosets often transmit sibling alleles acquired in utero to their own offspring. Thus, an individual that contributes gametes to an offspring is not necessarily the genetic parent of that offspring. The presence of somatic and germ-line chimerism may have influenced the evolution of the extensive paternal and alloparental care system of this taxon. Although the exact mechanisms of sociobiological change associated with chimerism have not been fully explored, we show here that chimerism alters relatedness between twins and may alter the perceived relatedness between family members, thus influencing the allocation of parental care. Consistent with this prediction, we found a significant correlation between paternal care effort and the presence of epithelial chimerism, with males carrying chimeric infants more often than nonchimeric infants. Therefore, we propose that the presence of placental chorionic fusion and the exchange of cell lines between embryos may represent a unique adaptation affecting the evolution of cooperative care in this group of primates.

  6. Memory, transmission and persistence of alternative foraging techniques in wild common marmosets

    PubMed Central

    Gunhold, Tina; Massen, Jorg J.M.; Schiel, Nicola; Souto, Antonio; Bugnyar, Thomas

    2014-01-01

    Experimental studies on traditions in animals have focused almost entirely on the initial transmission phase in captive populations. We conducted an open diffusion field experiment with 13 groups of wild common marmosets, Callithrix jacchus. Seven groups contained individuals that were already familiar with the task (‘push or pull’ box) and thus served as potential models for naïve individuals. Additionally, in four groups one individual was trained for one of the two possible techniques and in two control groups no skilled individuals were present. First, we investigated whether experienced individuals would remember how to solve the task even after 2 years without exposure and whether they would still prefer their learned technique. Second, we tested whether naïve individuals would learn socially from their skilled family members and, more importantly, whether they would use the same technique. Third, we conducted several test blocks to see whether the individual and/or group behaviour would persist over time. Our results show that wild common marmosets were able to memorize, learn socially and maintain preferences of foraging techniques. This field experiment thus reveals a promising approach to studying social learning in the wild and provides the basis for long-term studies on tradition formation. PMID:24910466

  7. Common marmosets show social plasticity and group-level similarity in personality

    PubMed Central

    Koski, Sonja E.; Burkart, Judith M.

    2015-01-01

    The social environment influences animal personality on evolutionary and immediate time scales. However, studies of animal personality rarely assess the effects of the social environment, particularly in species that live in stable groups with individualized relationships. We assessed personality experimentally in 17 individuals of the common marmoset, living in four groups. We found their personality to be considerably modified by the social environment. Marmosets exhibited relatively high plasticity in their behaviour, and showed ‘group-personality’, i.e. group-level similarity in the personality traits. In exploratory behaviour this was maintained only in the social environment but not when individuals were tested alone, suggesting that exploration tendency is subjected to social facilitation. Boldness, in contrast, showed higher consistency across the social and solitary conditions, and the group-level similarity in trait scores was sustained also outside of the immediate social environment. The ‘group-personality’ was not due to genetic relatedness, supporting that it was produced by social effects. We hypothesize that ‘group-personality’ may be adaptive for highly cooperative animals through facilitating cooperation among individuals with similar behavioural tendency. PMID:25743581

  8. Large-scale brain networks in the awake, truly resting marmoset monkey.

    PubMed

    Belcher, Annabelle M; Yen, Cecil C; Stepp, Haley; Gu, Hong; Lu, Hanbing; Yang, Yihong; Silva, Afonso C; Stein, Elliot A

    2013-10-16

    Resting-state functional MRI is a powerful tool that is increasingly used as a noninvasive method for investigating whole-brain circuitry and holds great potential as a possible diagnostic for disease. Despite this potential, few resting-state studies have used animal models (of which nonhuman primates represent our best opportunity of understanding complex human neuropsychiatric disease), and no work has characterized networks in awake, truly resting animals. Here we present results from a small New World monkey that allows for the characterization of resting-state networks in the awake state. Six adult common marmosets (Callithrix jacchus) were acclimated to light, comfortable restraint using individualized helmets. Following behavioral training, resting BOLD data were acquired during eight consecutive 10 min scans for each conscious subject. Group independent component analysis revealed 12 brain networks that overlap substantially with known anatomically constrained circuits seen in the awake human. Specifically, we found eight sensory and "lower-order" networks (four visual, two somatomotor, one cerebellar, and one caudate-putamen network), and four "higher-order" association networks (one default mode-like network, one orbitofrontal, one frontopolar, and one network resembling the human salience network). In addition to their functional relevance, these network patterns bear great correspondence to those previously described in awake humans. This first-of-its-kind report in an awake New World nonhuman primate provides a platform for mechanistic neurobiological examination for existing disease models established in the marmoset.

  9. Common marmosets show social plasticity and group-level similarity in personality.

    PubMed

    Koski, Sonja E; Burkart, Judith M

    2015-03-06

    The social environment influences animal personality on evolutionary and immediate time scales. However, studies of animal personality rarely assess the effects of the social environment, particularly in species that live in stable groups with individualized relationships. We assessed personality experimentally in 17 individuals of the common marmoset, living in four groups. We found their personality to be considerably modified by the social environment. Marmosets exhibited relatively high plasticity in their behaviour, and showed 'group-personality', i.e. group-level similarity in the personality traits. In exploratory behaviour this was maintained only in the social environment but not when individuals were tested alone, suggesting that exploration tendency is subjected to social facilitation. Boldness, in contrast, showed higher consistency across the social and solitary conditions, and the group-level similarity in trait scores was sustained also outside of the immediate social environment. The 'group-personality' was not due to genetic relatedness, supporting that it was produced by social effects. We hypothesize that 'group-personality' may be adaptive for highly cooperative animals through facilitating cooperation among individuals with similar behavioural tendency.

  10. Custom Fit 3D-Printed Brain Holders for Comparison of Histology with MRI in Marmosets

    PubMed Central

    Guy, Joseph R.; Sati, Pascal; Leibovitch, Emily; Jacobson, Steven; Silva, Afonso C.; Reich, Daniel S.

    2015-01-01

    Background MRI has the advantage of sampling large areas of tissue and locating areas of interest in 3D space in both living and ex vivo systems, whereas histology has the ability to examine thin slices of ex vivo tissue with high detail and specificity. Although both are valuable tools, it is currently difficult to make high-precision comparisons between MRI and histology due to large differences inherent to the techniques. A method combining the advantages would be an asset to understanding the pathological correlates of MRI. New Method 3D-printed brain holders were used to maintain marmoset brains in the same orientation during acquisition of ex vivo MRI and pathologic cutting of the tissue. Results The results of maintaining this same orientation show that sub-millimeter, discrete neuropathological features in marmoset brain consistently share size, shape, and location between histology and ex vivo MRI, which facilitates comparison with serial imaging acquired in vivo. Comparison with Existing Methods Existing methods use computational approaches sensitive to data input in order to warp histologic images to match large-scale features on MRI, but the new method requires no warping of images, due to a preregistration accomplished in the technique, and is insensitive to data formatting and artifacts in both MRI and histology. Conclusions The simple method of using 3D-printed brain holders to match brain orientation during pathologic sectioning and MRI acquisition enables rapid and precise comparison of small features seen on MRI to their underlying histology. PMID:26365332

  11. Metabolome-wide association study of phenylalanine in plasma of common marmosets

    PubMed Central

    Go, Young-Mi; Walker, Douglas I.; Soltow, Quinlyn A.; Uppal, Karan; Wachtman, Lynn M.; Strobel, Fredrick H.; Pennell, Kurt; Promislow, Daniel E. L.; Jones, Dean P.

    2014-01-01

    Little systematic knowledge exists concerning the impacts of cumulative lifelong exposure, termed the exposome, on requirements for nutrients. Phenylalanine (Phe) is an essential dietary amino acid with an aromatic ring structure similar to endogenous metabolites, dietary compounds and environmental agents. Excess plasma Phe in genetic disease or nutritional deficiency of Phe has adverse health consequences. In principle, structurally similar chemicals interfering with Phe utilization could alter Phe requirement at an individual level. As a strategy to identify components of the exposome that could interfere with Phe utilization, we tested for metabolites correlating with Phe concentration in plasma of a non-human primate species, common marmosets (Callithrix jacchus). The results of tests for more than 5000 chemical features detected by high-resolution metabolomics showed 17 positive correlations with Phe metabolites and other amino acids. Positive and negative correlations were also observed for 33 other chemicals, which included matches to endogenous metabolites and dietary, microbial and environmental chemicals in database searches. Chemical similarity analysis showed many of the matches had high structural similarity to Phe. Together, the results show that chemicals in marmoset plasma could impact Phe utilization. Such chemicals could contribute to early lifecycle developmental disorders when neurological development is vulnerable to Phe levels. PMID:25526869

  12. Influence of seasonality on circadian motor activity rhythm in common marmosets during puberty.

    PubMed

    Melo, Paula R; Belísio, Aline S; Menezes, Alexandre A L; Azevedo, Carolina V M

    2010-08-01

    The effect of puberty on circadian rhythmicity in nonhuman primates has been little studied, even though it has been demonstrated that puberty-related changes in circadian activity rhythm occur in a number of species, including humans. To characterize the motor activity rhythm during puberty in common marmosets (Callithrix jacchus), six animals was continuously monitored by actimeters between their 5th and 12th months of age. The animals were housed with their families in outdoor cages under seminatural conditions. Onset of puberty was determined from fecal estrogen and progesterone levels in females and androgen levels in males. The spectral power of the circadian component stabilized later in the last two animals to enter puberty. The bimodal characteristic of the active phase in this species became progressively more apparent over the course of the months in which the mean temperature was highest, irrespective of the animal's age. Although the onset of activity advanced after entry into puberty, this parameter showed a strong correlation with sunrise, indicating that seasonality influences this variable. Neither age nor climatic factors included in the regression model influenced the differences in phase angles between sunrise and onset of activity, and between sunset and offset of activity. Total activity was the only parameter influenced by age in the regression model, showing an increase after entry into puberty. Despite the evidence of pubertal influence on both the circadian component and total activity, under seminatural conditions seasonal factors may have a more important effect on motor activity rhythm in common marmosets.

  13. Treatment with CRH-1 antagonist antalarmin reduces behavioral and endocrine responses to social stressors in marmosets (Callithrix kuhlii).

    PubMed

    French, Jeffrey A; Fite, Jeffrey E; Jensen, Heather; Oparowski, Katie; Rukstalis, Michael R; Fix, Holly; Jones, Brenda; Maxwell, Heather; Pacer, Molly; Power, Michael L; Schulkin, Jay

    2007-08-01

    Corticotropin-releasing hormone (CRH) has multiple roles in coordinating the behavioral and endocrine responses to a host of environmental challenges, including social stressors. In the present study we evaluated the role of CRH in mediating responses to a moderate social stressor in Wied's black tufted-eared marmosets (Callithrix kuhlii). Male and female marmosets (n=14) were administered antalarmin (a selective CRH-1 receptor antagonist; 50 microg/kg, p.o.) or vehicle in a blind, counterbalanced, crossover design. One hr after treatment, marmosets were separated from long-term pairmates and then housed alone in a novel enclosure for 7 hr. Behavior was recorded during separation and upon reunion with the partner, and urine samples for cortisol assay collected before, during, and after the intervention. Separation from partners elevated urinary cortisol concentrations over baseline for both conditions, but antalarmin treatment reduced the magnitude of the elevation. Antalarmin also lowered rates of behavioral patterns associated with arousal (alarm and "e-e" vocalizations, object manipulate/chew), but had no effect on contact calls, locomotory activity or alertness. Although most patterns of social behavior upon reunion with the partner were not affected by antalarmin, antalarmin-treated marmosets displayed more sexual behavior (mounts and copulations) upon reunion. These data indicate that antagonism of the CRH-1 receptor acts to reduce the magnitude of both endocrine and behavioral responses to a moderate social stressor without causing any overall reduction in alertness or general activity. This supports the hypothesis that CRH, acting through its type 1 receptor, is involved in coordinating the responses to anxiety-producing events. These results further suggest that the marmoset is a useful model for exploration of the role of CRH in mediating the behavioral and neuroendocrine responses to psychosocial stressors, particularly in the context of heterosexual

  14. Quality of maternal and paternal care predicts later stress reactivity in the cooperatively-breeding marmoset (Callithrix geoffroyi).

    PubMed

    Birnie, Andrew K; Taylor, Jack H; Cavanaugh, Jon; French, Jeffrey A

    2013-12-01

    Variation in the early postnatal social environment can have lasting effects on hypothalamic-pituitary-adrenal (HPA) axis stress responses. Both rats and macaque monkeys subjected to low quality or abusive maternal care during the early postnatal period have more pronounced HPA responses to environmental stressors throughout development and into adulthood compared to animals reared in higher quality early maternal environments. However, little is known about the relative contributions to HPA stress response styles in developing offspring in species in which offspring care is routinely provided by group members other than the mother, such as in cooperatively breeding mammals. Marmoset monkeys exhibit cooperative offspring rearing, with fathers and older siblings providing care in addition to that provided by the mother. We evaluated the effects of early maternal, paternal, and older sibling care on HPA responses to social separation across development in captive white-faced marmoset offspring (Callithrix geoffroyi). We monitored offspring care by mothers, fathers, and older siblings in marmosets for the first 60 days of life. Later in development, each marmoset experienced three standardized social separation/novelty exposure stressors at 6, 12, and 18 months of age. During separation, we collected urine samples and analyzed them via enzyme immunoassay for cortisol levels. Infants that received higher rates of rejections from the entire family group showed higher cortisol responses to social separation. This relationship was found when mothers, fathers, and older siblings, were analyzed separately as well. No differences in cortisol responses were found between offspring that received high and low rates of carrying or high and low rates of licking and grooming by any group member. In the cooperatively breeding marmoset, early social cues from multiple classes of caregivers may influence HPA stress responses throughout the lifespan.

  15. The Effect of Anesthesia on Blood Pressure Measured Noninvasively by Using the Tail-Cuff Method in Marmosets (Callithrix jacchus)

    PubMed Central

    Ansel, Tobin V; Nour, Ann K; Benavente-Perez, Alexandra

    2016-01-01

    In this study, we evaluated the validity of measuring blood pressure (BP) noninvasively in marmosets by using the tail-cuff method. The number of measurements needed for a valid reading was calculated by plotting the average SD of 5 consecutive readings in 10 naïve marmosets; the SD for both systolic and diastolic BP readings plateaued after 4 readings. To evaluate how anesthesia (alphaxalone, 15 mg/kg IM) affected BP in marmosets, we measured 4 animals every minute for 60 min after injection. The average length of anesthesia was 47.3 ± 13.2 min. The variability in the systolic and diastolic BP was the smallest at 10 to 30 min after injection (systolic SD, 6.29 mm Hg; diastolic SD, 5.27 mm Hg) and almost doubled at 30 to 60 min after injection (systolic SD, 13.5 mm Hg; diastolic SD, 12.3 mm Hg). The within- and between-session repeatability and reproducibility were calculated by measuring 12 marmosets twice at the same time of day (±1 h) 1 wk apart. The coefficients of repeatability and reproducibility were 1.98% and 14.5% for systolic BP and 3.37% and 16.2% for diastolic BP, respectively. Our results indicate that using the volumetric tail-cuff method to measure BP noninvasively in anesthetized marmosets is safe and feasible. The measures are least variable within 10 to 30 min after the injection of anesthetic, and variability increases slightly between sessions. PMID:27657716

  16. Development of a compact and general-purpose experimental apparatus with a touch-sensitive screen for use in evaluating cognitive functions in common marmosets.

    PubMed

    Takemoto, Atsushi; Izumi, Akihiro; Miwa, Miki; Nakamura, Katsuki

    2011-07-15

    Common marmosets have been used extensively in biomedical research and the recent advent of techniques to generate transgenic marmosets has accelerated the use of this model. New methods that efficiently assess the degree of cognitive function in common marmosets are needed in order to establish their suitability as non-human primate models of higher brain function disorders. Here, we have developed a new apparatus suitable for testing the cognitive functions of common marmosets. Utilizing a mini laptop PC with a touch-sensitive screen as the main component, the apparatus is small and lightweight and can be easily attached to the home cages. The ease of designing and testing new paradigms with the flexible software is another advantage of this system. We have tested visual discrimination and its reversal tasks using this apparatus and confirmed its efficacy.

  17. Molecular Cloning, Tissue Distribution, and Functional Characterization of Marmoset Cytochrome P450 1A1, 1A2, and 1B1.

    PubMed

    Uehara, Shotaro; Uno, Yasuhiro; Inoue, Takashi; Sasaki, Erika; Yamazaki, Hiroshi

    2016-01-01

    The common marmoset (Callithrix jacchus), a New World monkey, has potential to be an animal model for drug metabolism studies. In this study, we identified and characterized cytochrome P450 (P450) 1A1 and 1B1 in addition to the known P450 1A2 in marmosets. Marmoset P450 1A1 and 1B1 cDNA contained open reading frames encoding 512 and 543 amino acids, respectively, with high sequence identities (90%-93%) to other primate P450 1A1s and 1B1s. A phylogenetic tree based on amino acid sequences showed close evolutionary relationships among marmoset, macaque, and human P450 1A and 1B enzymes. By mRNA quantification and immunoblot analyses in five marmoset tissues, P450 1A1 was mainly expressed in lungs and small intestines, and P450 1A2 was expressed predominantly in livers. In contrast, P450 1B1 was expressed in all tissues tested. Marmoset P450 1A1, 1A2, and 1B1 heterologously expressed in Escherichia coli catalyzed 7-ethoxyresorufin O-deethylation, 7-ethoxycoumarin O-deethylation, and phenacetin O-deethylation, similar to those of humans and cynomolgus monkeys. Notably, marmoset P450 1A1 and 1A2 more efficiently catalyzed 7-ethoxyresorufin O-deethylation than those of the human homologs, but were comparable to those of the cynomolgus monkey homologs. Additionally, marmoset P450 1B1 preferentially catalyzed estradiol 4-hydroxylation; however, rat P450 1B1 more favorably catalyzed estradiol 2-hydroxylation, indicating that the estradiol hydroxylation specificity of marmoset P450 1B1 was similar to those of human and cynomolgus monkey P450 1B1. These results indicated that marmoset P450 1A and 1B enzymes had functional characteristics similar to those of humans and cynomolgus monkeys, suggesting that P450 1A and 1B-dependent metabolism was similar among marmosets, cynomolgus monkeys, and humans.

  18. Novel Marmoset Cytochrome P450 2C19 in Livers Efficiently Metabolizes Human P450 2C9 and 2C19 Substrates, S-Warfarin, Tolbutamide, Flurbiprofen, and Omeprazole.

    PubMed

    Uehara, Shotaro; Uno, Yasuhiro; Inoue, Takashi; Kawano, Mirai; Shimizu, Makiko; Toda, Akiko; Utoh, Masahiro; Sasaki, Erika; Yamazaki, Hiroshi

    2015-10-01

    The common marmoset (Callithrix jacchus), a small New World monkey, has the potential for use in human drug development due to its evolutionary closeness to humans. Four novel cDNAs, encoding cytochrome P450 (P450) 2C18, 2C19, 2C58, and 2C76, were cloned from marmoset livers to characterize P450 2C molecular properties, including previously reported P450 2C8. The deduced amino acid sequence showed high sequence identities (>86%) with those of human P450 2Cs, except for marmoset P450 2C76, which has a low sequence identity (∼70%) with any human P450 2Cs. Phylogenetic analysis showed that marmoset P450 2Cs were more closely clustered with those of humans and macaques than other species investigated. Quantitative polymerase chain reaction analysis showed that all of the marmoset P450 2C mRNAs were predominantly expressed in liver as opposed to the other tissues tested. Marmoset P450 2C proteins were detected in liver by immunoblotting using antibodies against human P450 2Cs. Among marmoset P450 2Cs heterologously expressed in Escherichia coli, marmoset P450 2C19 efficiently catalyzed human P450 2C substrates, S-warfarin, diclofenac, tolbutamide, flurbiprofen, and omeprazole. Marmoset P450 2C19 had high Vmax and low Km values for S-warfarin 7-hydroxylation that were comparable to those in human liver microsomes, indicating warfarin stereoselectivity similar to findings in humans. Faster in vivo S-warfarin clearance than R-warfarin after intravenous administration of racemic warfarin (0.2 mg/kg) to marmosets was consistent with the in vitro kinetic parameters. These results indicated that marmoset P450 2C enzymes had functional characteristics similar to those of humans, and that P450 2C-dependent metabolic properties are likewise similar between marmosets and humans.

  19. Molecular Cloning of Ghrelin and Characteristics of Ghrelin-Producing Cells in the Gastrointestinal Tract of the Common Marmoset (Callithrix jacchus).

    PubMed

    Takemi, Shota; Sakata, Ichiro; Apu, Auvijit Saha; Tsukahara, Shinji; Yahashi, Satowa; Katsuura, Goro; Iwashige, Fumihiro; Akune, Atsushi; Inui, Akio; Sakai, Takafumi

    2016-10-01

    Ghrelin was first isolated from human and rat as an endogenous ligand for the growth hormone secretagogue receptor (GHS-R). In the present study, we determined the ghrelin cDNA sequence of the common marmoset (Callithrix jacchus), a small-bodied New World monkey, and investigated the distribution of ghrelin-producing cells in the gastrointestinal tract and localization profiles with somatostatin-producing cells. The marmoset ghrelin cDNA coding region was 354 base pairs, and showed high homology to that in human, rhesus monkey, and mouse. Marmoset ghrelin consists of 28 amino acids, and the N-terminal region is highly conserved as found in other mammalian species. Marmoset preproghrelin and mature ghrelin have 86.3% and 92.9% homology, respectively, to their human counterparts. Quantitative RT-PCR analysis showed that marmoset ghrelin mRNA is highly expressed in the stomach, but it is not detected in other tissues of the gastrointestinal tract. In addition, a large number of ghrelin mRNA-expressing cells and ghrelin-immunopositive cells were detected in the mucosal layer of the stomach, but not in the myenteric plexus. Moreover, all the ghrelin cells examined in the stomach were observed to be closed-type. Double staining showed that somatostatin-immunopositive cells were not co-localized with ghrelin-producing cells; however, a subset of somatostatin-immunopositive cells is directly adjacent to ghrelin-immunopositive cells. These findings suggest that the distribution of ghrelin cells in marmoset differs from that in rodents, and thus the marmoset may be a more useful model for the translational study of ghrelin in primates. In conclusion, we have clarified the expression and cell distribution of ghrelin in marmoset, which may represent a useful model in translational study.

  20. Fatal attack on black-tufted-ear marmosets (Callithrix penicillata) by a Boa constrictor: a simultaneous assault on two juvenile monkeys.

    PubMed

    Teixeira, Danilo Simonini; dos Santos, Edmilson; Leal, Silvana Gomes; de Jesus, Andrea Karla; Vargas, Waldemir Paixão; Dutra, Irapuan; Barros, Marilia

    2016-01-01

    Here we report the first witnessed attack on a marmoset by a constrictor snake. The incident occurred mid-morning in a gallery forest within an altered landscape of the Cerrado region of central Brazil and refers to a fatal attack by a Boa constrictor on two juvenile black-tufted-ear marmosets (Callithrix penicillata) simultaneously. The snake captured both individuals at a height of ~ 4 m while a group of eight marmosets traveled through the subcanopy. The actual strike was not seen. After 2 min, the boa fell to the ground with both marmosets in its coils and proceeded to kill one animal at a time through constriction. Two adult marmosets immediately descended to where the snake held its victims on the ground and attacked it. The snake showed no apparent reaction, and after ~ 1-2 min, the adults rejoined the remaining group members that were mobbing and vocalizing from 5 to 6 m above. The group left the scene ~ 7 min after the onset of the attack and was not seen again. The snake loosened its coils 10 min after its initial strike, left the two carcasses on the ground and stayed behind a nearby tree. Thus, we are not sure if the victims were in fact ingested. This report confirms that marmosets are vulnerable to boid snakes and capable of highly organized and cooperative antipredation behavior. It also suggests that snakes pose a greater threat to callitrichids than previously thought.

  1. Decompression of inferior alveolar nerve: case report.

    PubMed

    Marques, Tiago Miguel Santos; Gomes, Joana Marques

    2011-01-01

    Paresthesia as a result of mechanical trauma is one of the most frequent sensory disturbances of the inferior alveolar nerve. This case report describes surgical treatment for paresthesia caused by a compressive phenomenon within the mandibular canal. The cause of the compression, a broken instrument left in the patient's mouth during previous endodontic therapy, was identified during routine radiography and computed tomography. Once the foreign object was removed by surgery, the paresthesia resolved quickly. This case highlights the potential for an iatrogenic mechanical cause of paresthesia.

  2. Foveal cone density shows a rapid postnatal maturation in the marmoset monkey

    PubMed Central

    SPRINGER, ALAN D.; TROILO, DAVID; POSSIN, DANIEL; HENDRICKSON, ANITA E.

    2015-01-01

    The spatial and temporal pattern of cone packing during marmoset foveal development was explored to understand the variables involved in creating a high acuity area. Retinal ages were between fetal day (Fd) 125 and 6 years. Cone density was determined in wholemounts using a new hexagonal quantification method. Wholemounts were labeled immunocytochemically with rod markers to identify reliably the foveal center. Cones were counted in small windows and density was expressed as cones × 103/mm2 (K). Two weeks before birth (Fd 125–130), cone density had a flat distribution of 20–30 K across the central retina encompassing the fovea. Density began to rise at postnatal day 1 (Pd 1) around, but not in, the foveal center and reached a parafoveal peak of 45–55 K by Pd 10. Between Pd 10 and 33, there was an inversion such that cone density at the foveal center rose rapidly, reaching 283 K by 3 months and 600 K by 5.4 months. Peak foveal density then diminished to 440 K at 6 months and older. Counts done in sections showed the same pattern of low foveal density up to Pd 1, a rapid rise from Pd 30 to 90, followed by a small decrease into adulthood. Increasing foveal cone density was accompanied by 1) a reduction in the amount of Müller cell cytoplasm surrounding each cone, 2) increased stacking of foveal cone nuclei into a mound 6–10 deep, and 3) a progressive narrowing of the rod-free zone surrounding the fovea. Retaining foveal cones in a monolayer precludes final foveal cone densities above 60 K. However, high foveal adult cone density (300 K) can be achieved by having cone nuclei stack into columns and without reducing their nuclear diameter. Marmosets reach adult peak cone density by 3–6 months postnatal, while macaques and humans take much longer. Early weaning and an arboreal environment may require rapid postnatal maturation of the marmoset fovea. PMID:22192504

  3. Marmosets treated with oxytocin are more socially attractive to their long-term mate

    PubMed Central

    Cavanaugh, Jon; Huffman, Michelle C.; Harnisch, April M.; French, Jeffrey A.

    2015-01-01

    Adult male-female bonds are partly characterized by initiating and maintaining close proximity with a social partner, as well as engaging in high levels of affiliative and sociosexual behavior. Oxytocin (OXT), a neuromodulatory nonapeptide, plays a critical role in the facilitation of social bonding and prosocial behavior toward a social partner (Feldman, 2012). However, less attention has been given to whether augmentation of OXT levels in an individual alters others’ perceptions and behavior toward an OXT-treated social partner. We examined social dynamics in well-established male-female pairs of marmoset monkeys (Callithrix jacchus) in which one member of the pair was administered an intranasal OXT agonist, an OXT antagonist (OXTA), or saline. OXT treatment did not alter the expression of affiliative toward an untreated partner. However, OXT did significantly influence the expression of proximity and grooming behavior with a treated partner, as a function of OXT treatment and sex. Female interest in initiating and maintaining proximity with a pair-mate was altered by OXT treatment. Untreated female marmosets departed from their saline-treated partner more frequently than they approached them, as indicated by a low proximity index score. However, when males received an intranasal OXT agonist they had a significantly increased proximity index score relative to saline, indicating that their untreated partner approached them more often than they departed from them). Saline-treated females initiated and received equivalent levels of grooming behavior. However, when female marmosets were treated with an OXT agonist their untreated partner groomed them proportionately more often, for a greater total duration, and for more time per bout, than they initiated grooming behavior. These results suggest that intranasal OXT altered male and female marmosets’ stimulus properties in such a way as to increase the amount of grooming behavior that females received from their

  4. Increased functional connectivity between superior colliculus and brain regions implicated in bodily self-consciousness during the rubber hand illusion.

    PubMed

    Olivé, Isadora; Tempelmann, Claus; Berthoz, Alain; Heinze, Hans-Joachim

    2015-02-01

    Bodily self-consciousness refers to bodily processes operating at personal, peripersonal, and extrapersonal spatial dimensions. Although the neural underpinnings of representations of personal and peripersonal space associated with bodily self-consciousness were thoroughly investigated, relatively few is known about the neural underpinnings of representations of extrapersonal space relevant for bodily self-consciousness. In the search to unravel brain structures generating a representation of the extrapersonal space relevant for bodily self-consciousness, we developed a functional magnetic resonance imaging (fMRI) study to investigate the implication of the superior colliculus (SC) in bodily illusions, and more specifically in the rubber hand illusion (RHi), which constitutes an established paradigm to study the neural underpinnings of bodily self-consciousness. We observed activation of the colliculus ipsilateral to the manipulated hand associated with eliciting of RHi. A generalized form of context-dependent psychophysiological interaction analysis unravelled increased illusion-dependent functional connectivity between the SC and some of the main brain areas previously involved in bodily self-consciousness: right temporoparietal junction (rTPJ), bilateral ventral premotor cortex (vPM), and bilateral postcentral gyrus. We hypothesize that the collicular map of the extrapersonal space interacts with maps of the peripersonal and personal space generated at rTPJ, vPM and the postcentral gyrus, producing a unified representation of space that is relevant for bodily self-consciousness. We suggest that processes of multisensory integration of bodily-related sensory inputs located in this unified representation of space constitute one main factor underpinning emergence of bodily self-consciousness.

  5. Human speech- and reading-related genes display partially overlapping expression patterns in the marmoset brain.

    PubMed

    Kato, Masaki; Okanoya, Kazuo; Koike, Taku; Sasaki, Erika; Okano, Hideyuki; Watanabe, Shigeru; Iriki, Atsushi

    2014-06-01

    Language is a characteristic feature of human communication. Several familial language impairments have been identified, and candidate genes for language impairments already isolated. Studies comparing expression patterns of these genes in human brain are necessary to further understanding of these genes. However, it is difficult to examine gene expression in human brain. In this study, we used a non-human primate (common marmoset; Callithrix jacchus) as a biological model of the human brain to investigate expression patterns of human speech- and reading-related genes. Expression patterns of speech disorder- (FoxP2, FoxP1, CNTNAP2, and CMIP) and dyslexia- (ROBO1, DCDC2, and KIAA0319) related genes were analyzed. We found the genes displayed overlapping expression patterns in the ocular, auditory, and motor systems. Our results enhance understanding of the molecular mechanisms underlying language impairments.

  6. Grooming as a reward? Social function of grooming between females in cooperatively breeding marmosets

    PubMed Central

    LAZARO-PEREA, CRISTINA; DE FÁTIMA ARRUDA, MARIA; SNOWDON, CHARLES T.

    2006-01-01

    Classical models of grooming predict that subordinate primates will direct grooming towards dominants to receive coalitionary support from them. In contrast, recent reviews suggest that grooming asymmetries can change with social system and ecological conditions and should reflect asymmetries in services provided by different members of the dyad. We studied grooming patterns between females in six wild groups of common marmosets, Callithrix jacchus, to investigate the relation between social structure and grooming between females in a cooperatively breeding species. We observed grooming frequently and consistently in all study groups. Breeding females groomed nonbreeding females more than vice versa, and grooming between breeding and nonbreeding females was not related to agonistic behaviour. Our results provide some support to the hypothesis that grooming asymmetries are related to differences in services provided by different group members. We suggest that, in cooperatively breeding systems, breeding females may use grooming as an incentive for helper females to stay in the group. PMID:17237884

  7. Thyroid follicular adenoma with accumulation of collagen type IV in a common marmoset (Callithrix jacchus).

    PubMed

    Kawasako, K; Doi, T; Kanno, T; Wako, Y; Hamamura, M; Tsuchitani, M

    2014-01-01

    A thyroid tumour was identified in a 10-year-old male common marmoset (Callithrix jacchus). The tumour was encapsulated by fibrous connective tissue and compressed the adjacent normal thyroid. The tumour was composed of variably sized and irregularly shaped thyroid follicles lined by a single layer of columnar epithelial cells. Eosinophilic material at the base of the neoplastic cells stained black with periodic acid-methenamine silver and red with periodic acid-Schiff. Immunohistochemistry confirmed that this eosinophilic material was collagen type IV. Ultrastructurally, highly dense and amorphous material was observed at the base of the neoplastic cells. Small vesicles in the basolateral cytoplasm of the neoplastic cells contained similar material to that at the base of the cells. The tumour was diagnosed as a thyroid follicular adenoma with accumulation of collagen type IV. This is the first description of an endocrine tumour with accumulation of collagen type IV in animals.

  8. Natural and Anthropogenic Hybridization in Two Species of Eastern Brazilian Marmosets (Callithrix jacchus and C. penicillata)

    PubMed Central

    Malukiewicz, Joanna; Boere, Vanner; Fuzessy, Lisieux F.; Grativol, Adriana D.; de Oliveira e Silva, Ita; Pereira, Luiz C. M.; Ruiz-Miranda, Carlos R.; Valença, Yuri M.; Stone, Anne C.

    2015-01-01

    Animal hybridization is well documented, but evolutionary outcomes and conservation priorities often differ for natural and anthropogenic hybrids. Among primates, an order with many endangered species, the two contexts can be hard to disentangle from one another, which carries important conservation implications. Callithrix marmosets give us a unique glimpse of genetic hybridization effects under distinct natural and human-induced contexts. Here, we use a 44 autosomal microsatellite marker panel to examine genome-wide admixture levels and introgression at a natural C. jacchus and C. penicillata species border along the São Francisco River in NE Brazil and in an area of Rio de Janeiro state where humans introduced these species exotically. Additionally, we describe for the first time autosomal genetic diversity in wild C. penicillata and expand previous C. jacchus genetic data. We characterize admixture within the natural zone as bimodal where hybrid ancestry is biased toward one parental species or the other. We also show evidence that São Francisco River islands are gateways for bidirectional gene flow across the species border. In the anthropogenic zone, marmosets essentially form a hybrid swarm with intermediate levels of admixture, likely from the absence of strong physical barriers to interspecific breeding. Our data show that while hybridization can occur naturally, the presence of physical, even if leaky, barriers to hybridization is important for maintaining species genetic integrity. Thus, we suggest further study of hybridization under different contexts to set well informed conservation guidelines for hybrid populations that often fit somewhere between “natural” and “man-made.” PMID:26061111

  9. A dimensional approach to modeling symptoms of neuropsychiatric disorders in the marmoset monkey.

    PubMed

    Oikonomidis, Lydia; Santangelo, Andrea M; Shiba, Yoshiro; Clarke, F Hannah; Robbins, Trevor W; Roberts, Angela C

    2017-03-01

    Some patients suffering from the same neuropsychiatric disorder may have no overlapping symptoms whilst others may share symptoms common to other distinct disorders. Therefore, the Research Domain Criteria initiative recognises the need for better characterisation of the individual symptoms on which to focus symptom-based treatment strategies. Many of the disorders involve dysfunction within the prefrontal cortex (PFC) and so the marmoset, due to their highly developed PFC and small size, is an ideal species for studying the neurobiological basis of the behavioural dimensions that underlie these symptoms.Here we focus on a battery of tests that address dysfunction spanning the cognitive (cognitive inflexibility and working memory), negative valence (fear generalisation and negative bias) and positive valence (anhedonia) systems pertinent for understanding disorders such as ADHD, Schizophrenia, Anxiety, Depression and OCD. Parsing the separable prefrontal and striatal circuits and identifying the selective neurochemical modulation (serotonin vs dopamine) that underlie cognitive dysfunction have revealed counterparts in the clinical domain. Aspects of the negative valence system have been explored both at individual- (trait anxiety and genetic variation in serotonin transporter) and circuit-based levels enabling the understanding of generalisation processes, negative biases and differential responsiveness to SSRIs. Within the positive valence system, the combination of cardiovascular and behavioural measures provides a framework for understanding motivational, anticipatory and consummatory aspects of anhedonia and their neurobiological mechanisms. Together, the direct comparison of experimental findings in marmosets with clinical studies is proving an excellent translational model to address the behavioural dimensions and neurobiology of neuropsychiatric symptoms. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 328-353, 2017.

  10. Natural and Anthropogenic Hybridization in Two Species of Eastern Brazilian Marmosets (Callithrix jacchus and C. penicillata).

    PubMed

    Malukiewicz, Joanna; Boere, Vanner; Fuzessy, Lisieux F; Grativol, Adriana D; de Oliveira E Silva, Ita; Pereira, Luiz C M; Ruiz-Miranda, Carlos R; Valença, Yuri M; Stone, Anne C

    2015-01-01

    Animal hybridization is well documented, but evolutionary outcomes and conservation priorities often differ for natural and anthropogenic hybrids. Among primates, an order with many endangered species, the two contexts can be hard to disentangle from one another, which carries important conservation implications. Callithrix marmosets give us a unique glimpse of genetic hybridization effects under distinct natural and human-induced contexts. Here, we use a 44 autosomal microsatellite marker panel to examine genome-wide admixture levels and introgression at a natural C. jacchus and C. penicillata species border along the São Francisco River in NE Brazil and in an area of Rio de Janeiro state where humans introduced these species exotically. Additionally, we describe for the first time autosomal genetic diversity in wild C. penicillata and expand previous C. jacchus genetic data. We characterize admixture within the natural zone as bimodal where hybrid ancestry is biased toward one parental species or the other. We also show evidence that São Francisco River islands are gateways for bidirectional gene flow across the species border. In the anthropogenic zone, marmosets essentially form a hybrid swarm with intermediate levels of admixture, likely from the absence of strong physical barriers to interspecific breeding. Our data show that while hybridization can occur naturally, the presence of physical, even if leaky, barriers to hybridization is important for maintaining species genetic integrity. Thus, we suggest further study of hybridization under different contexts to set well informed conservation guidelines for hybrid populations that often fit somewhere between "natural" and "man-made."

  11. Developmental Origins of Pregnancy Loss in the Adult Female Common Marmoset Monkey (Callithrix jacchus)

    PubMed Central

    Rutherford, Julienne N.; deMartelly, Victoria A.; Layne Colon, Donna G.; Ross, Corinna N.; Tardif, Suzette D.

    2014-01-01

    Background The impact of the intrauterine environment on the developmental programming of adult female reproductive success is still poorly understood and potentially underestimated. Litter size variation in a nonhuman primate, the common marmoset monkey (Callithrix jacchus), allows us to model the effects of varying intrauterine environments (e.g. nutrient restriction, exposure to male womb-mates) on the risk of losing fetuses in adulthood. Our previous work has characterized the fetuses of triplet pregnancies as experiencing intrauterine nutritional restriction. Methodology/Principal Findings We used over a decade of demographic data from the Southwest National Primate Research Center common marmoset colony. We evaluated differences between twin and triplet females in the number of pregnancies they produce and the proportion of those pregnancies that ended in fetal loss. We found that triplet females produced the same number of total offspring as twin females, but lost offspring during pregnancy at a significantly higher rate than did twins (38% vs. 13%, p = 0.02). Regardless of their own birth weight or the sex ratio of the litter the experienced as fetuses, triplet females lost more fetuses than did twins. Females with a male littermate experienced a significant increase in the proportion of stillbirths. Conclusions/Significance These striking findings anchor pregnancy loss in the mother’s own fetal environment and development, underscoring a "Womb to Womb" view of the lifecourse and the intergenerational consequences of development. This has important translational implications for understanding the large proportion of human stillbirths that are unexplained. Our findings provide strong evidence that a full understanding of mammalian life history and reproductive biology requires a developmental foundation. PMID:24871614

  12. Reversal learning in gonadectomized marmosets with and without hormone replacement: are males more sensitive to punishment?

    PubMed

    LaClair, Matthew; Lacreuse, Agnès

    2016-05-01

    This study examined sex differences in executive function in middle-aged gonadectomized marmosets (Callithrix jacchus) with or without hormonal replacement. We tested ten castrated male (mean age 5.5 years) marmosets treated with testosterone cypionate (T, n = 5) or vehicle (n = 5) on Reversal Learning, which contributes to cognitive flexibility, and the Delayed Response task, measuring working memory. Their performance was compared to that of 11 ovariectomized females (mean age = 3.7 years) treated with Silastic capsules filled with 17-β estradiol (E2, n = 6) or empty capsules (n = 5), previously tested on the same tasks (Lacreuse et al. in J Neuroendocrinol 26:296-309, 2014. doi: 10.1111/jne.12147). Behavioral observations were conducted daily. Females exhibited more locomotor behaviors than males. Males and females did not differ in the number of trials taken to reach criterion on the reversals, but males had significantly longer response latencies, regardless of hormone replacement. They also had a greater number of refusals than females. Additionally, both control and T-treated males, but not females, had slower responses on incorrect trials, suggesting that males were making errors due to distraction, lack of motivation or uncertainty. Furthermore, although both males and females had slower responding following an incorrect compared to a correct trial, the sex difference in response latencies was disproportionally large following an incorrect trial. No sex difference was found in the Delayed Response task. Overall, slower response latencies in males than females during Reversal Learning, especially during and following an incorrect trial, may reflect greater sensitivity to punishment (omission of reward) and greater performance monitoring in males, compared to females. Because these differences occurred in gonadectomized animals and regardless of hormone replacement, they may be organized early in life.

  13. Body weight-associated differences in ovarian morphology in captive common marmoset (Callithrix jacchus).

    PubMed

    Scheerer-Bernhard, J U; Tkachenko, O Y; Heistermann, M; Gründker, C; Nayudu, P L

    2015-06-01

    In captivity, Callithrix jacchus (common marmoset) is on average heavier than their wild-living counterparts, and has a tendency to produce triplet litters rather than the normal twins. To provide initial basic information about possible weight-related differences among the ovaries, a morphometric study of follicular phase ovaries from 48 young adult marmosets has been carried out. Nearly 90% of these ovaries were found to contain some degree of luteal tissue composed of large and/or small cells. The luteal structures, follicles of all stages, and stroma were subjected to morphometric analysis, and these results were compared with body weight, circulating triglyceride, androstenedione, and total estrogens. Where only large luteal cells were present, the median body weight was the highest (only this group included animals over 500 g) compared with mixed, or only small luteal cells, or absence of luteal cells. Furthermore, in this group plasma triglycerides were significantly higher compared to other groups, suggesting possible role of triglycerides in promoting luteinisation. Plasma androstenedione was also a critical discriminating factor, and was elevated where large luteal cells were present even as a mixture with small cells suggesting the large luteal cells to be the likely major ovarian source of this hormone and its metabolites. Additionally, the ovaries with large luteal cells compared to those containing only small or no luteal cells, had lower primordial follicle reserve associated with high levels of atresia and luteinisation among growing non-ovulatory follicles, indicating an accelerated activation, but at the same time a suboptimal environment for follicular growth.

  14. Minimally invasive transabdominal collection of preimplantation embryos from the common marmoset monkey (Callithrix jacchus).

    PubMed

    Hanazawa, K; Mueller, T; Becker, T; Heistermann, M; Behr, R; Sasaki, E

    2012-09-01

    A novel, minimally invasive, transabdominal embryo collection method (transabdominal method) was developed as an alternative to a standard abdominal incision for embryo collection in the common marmoset. The abdominal incision method was used for 304 flushes using 36 female animals, whereas the transabdominal method was used for 488 flushes using 48 females; successful embryo collection rates were 48.0% and 48.4% (P > 0.05), respectively. These techniques were successfully duplicated at another institute (German Primate Center, DPZ). At that institution, successful embryo collection rates were 88.9% and 77.8% for the abdominal incision and transabdominal methods, respectively (P > 0.05), whereas the average numbers of preimplantation embryos obtained per flush were (mean ± SD) 1.91 ± 0.35 and 1.71 ± 0.14 (P > 0.05). The transabdominal method reduced animal stress, did not require incisional wound healing, and enabled successive embryo recoveries to be done much sooner. More embryos in early developmental stages (zygotes/morulae) were recovered using the transabdominal method (76.1%) than the abdominal incision method (52.6%, P < 0.01). In contrast, recovery of arrested or abnormal embryos was not significantly different between these two methods (9.8% and 8.3%). To verify developmental ability of embryos recovered by the transabdominal method, transfer of 28 normal embryos to 14 surrogate mothers yielded a nidation rate of 57%. Five females sustained term pregnancies and eight neonates were born. This novel transabdominal method will facilitate progress in marmoset developmental biology and embryology.

  15. Differential virulence and disease progression following Mycobacterium tuberculosis complex infection of the common marmoset (Callithrix jacchus).

    PubMed

    Via, Laura E; Weiner, Danielle M; Schimel, Daniel; Lin, Philana Ling; Dayao, Emmanuel; Tankersley, Sarah L; Cai, Ying; Coleman, M Teresa; Tomko, Jaime; Paripati, Praveen; Orandle, Marlene; Kastenmayer, Robin J; Tartakovsky, Michael; Rosenthal, Alexander; Portevin, Damien; Eum, Seok Yong; Lahouar, Saher; Gagneux, Sebastien; Young, Douglas B; Flynn, Joanne L; Barry, Clifton E

    2013-08-01

    Existing small-animal models of tuberculosis (TB) rarely develop cavitary disease, limiting their value for assessing the biology and dynamics of this highly important feature of human disease. To develop a smaller primate model with pathology similar to that seen in humans, we experimentally infected the common marmoset (Callithrix jacchus) with diverse strains of Mycobacterium tuberculosis of various pathogenic potentials. These included recent isolates of the modern Beijing lineage, the Euro-American X lineage, and M. africanum. All three strains produced fulminant disease in this animal with a spectrum of progression rates and clinical sequelae that could be monitored in real time using 2-deoxy-2-[(18)F]fluoro-d-glucose (FDG) positron emission tomography (PET)/computed tomography (CT). Lesion pathology at sacrifice revealed the entire spectrum of lesions observed in human TB patients. The three strains produced different rates of progression to disease, various extents of extrapulmonary dissemination, and various degrees of cavitation. The majority of live births in this species are twins, and comparison of results from siblings with different infecting strains allowed us to establish that the infection was highly reproducible and that the differential virulence of strains was not simply host variation. Quantitative assessment of disease burden by FDG-PET/CT provided an accurate reflection of the pathology findings at necropsy. These results suggest that the marmoset offers an attractive small-animal model of human disease that recapitulates both the complex pathology and spectrum of disease observed in humans infected with various M. tuberculosis strain clades.

  16. Distribution of catecholamine and indoleamine neurons in the brain of the common marmoset (Callithrix jacchus).

    PubMed Central

    Schofield, S P; Dixson, A F

    1982-01-01

    The distribution of monoamine neurons in the brains of ten common marmosets (Callithrix jacchus) was examined by means of the Falck-Hillarp formaldehyde histofluorescence technique. Large populations of catecholamine and indoleamine neurons were found throughout the brain stem. Catecholamine cell bodies corresponded essentially to th noradrenaline and dopamine groups defined as A1-A7 and A8-A14, respectively. In contrast to Old World primate species, however, the noradrenaline cell populations (particularly the pontine coeruleal A6 group) were less numerous. Ascending catecholamine fibre pathways were not observed within the medulla or pons, although numerous axons were found near the mesodiencephalic border. These were fine and smooth in appearance in contrast to those of other species and this finding may represent a significant morphological difference. The catecholamine terminal innervation of the diencephalon was modest in the marmoset and was less dense than in other primates. In contrast, limbic areas and the striatum contained very large numbers of terminals. Indoleamine cell bodies, equivalent to the serotonin groups defined as B1-B9, were also observed. The most rostral cell populations (B7-9) were large. In addition, pontine and medullary indoleamine neurons extended laterally through the tegmentum as noted in other primates, such that they often adjacent to catecholamine neurons. A prominent bundle of indoleamine axons was observed in the mesencephalon and corresponded to a fibre pathway seen in rodents and other primates. No terminal varicosities were noted. Images Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 PMID:6804424

  17. Long-Term Fidelity of Foraging Techniques in Common Marmosets (Callithrix jacchus)

    PubMed Central

    GUNHOLD, TINA; RANGE, FRIEDERIKE; HUBER, LUDWIG; BUGNYAR, THOMAS

    2015-01-01

    The formation of behavioral traditions has been considered as one of the main building blocks of culture. Numerous studies on social learning in different animal species provide evidence for their capability of successful transmission of information. However, questions concerning the memory and maintenance of this information have received comparably little attention. After the innovation and initial spread of a novel behavior, the behavior should stabilize and be maintained over time. Otherwise, the behavioral pattern might collapse and no tradition formation would be possible. The aim of this study was to investigate long-term preferences in a two-action manipulation task in common marmosets (Callithrix jacchus). Three captive family groups (23 individuals in total) were trained on one of two possible techniques to open a wooden box and gain access to a food reward, by either pulling or pushing a flap door. The training phase took place in a family group setting, while the test phase was conducted individually. Although the subjects could experience the alternative technique during the test sessions, the majority preferentially used the technique learned in the group setting. Moreover, the subjects were re-tested six times over a period of more than four years, in order to examine the fidelity of their preferences. The longest break without exposure the task lasted for 3.5 years. In all tests, the marmosets showed a similar preference as in the first test block shortly after the training. To our knowledge, this is the first lab study that experimentally demonstrates memory and fidelity of experimentally seeded information in a manipulation task over a time period of several years, supporting the assumption that socially learned foraging techniques can lead to relatively stable behavioral traditions. PMID:25231356

  18. Postnatal development of quantitative morphological parameters in the lateral geniculate nucleus of the marmoset monkey.

    PubMed

    Fritschy, J M; Garey, L J

    1986-12-01

    Quantitative morphological parameters were studied in the lateral geniculate nucleus (LGN) of the marmoset monkey (Callithrix jacchus) during development, using a series of 14 animals, at ages from birth to adulthood. They include the volume of the LGN and of its layers and interlaminar zones, their neuronal content expressed as numerical density and total number, and the density and number of glial cells in the nucleus as a whole. The volume of the LGN increases rapidly after birth, reaches a maximum at 6 months of age, and then decreases to its adult value of about 11 mm3. Neuronal density follows a reciprocal curve, reaching an adult value of about 41,000 neurons/mm3, so that the total number of about 440,000 neurons per LGN remains constant throughout life although large interindividual variations, especially in juveniles, do not allow unequivocal statements about total neuronal number to be made. Parvocellular layers occupy most of the geniculate volume, and contain about 74% of its neurons in the adult. We found no difference in their development pattern compared with the magnocellular component. The 'superficial' layers and interlaminar zones contain more than 15% of the geniculate neurons, and they could therefore play an important functional role in the primary visual pathway of New World primates. The number of glial cells nearly triples during the first 6 weeks and stabilizes around 800,000 in the LGN of one hemisphere. As the same brains were used as in a previous study on the area 17 of the marmoset (Dev. Brain Res., 29 (1986) 173-188) direct comparisons of the development of cortex and thalamus can be made. Their development is parallel in time, and in both cases the adult values for volume, neuronal density and glial numbers are reached several months postnatally.

  19. The serotonin 5-HT₁A receptor agonist tandospirone improves executive function in common marmosets.

    PubMed

    Baba, Satoko; Murai, Takeshi; Nakako, Tomokazu; Enomoto, Takeshi; Ono, Michiko; Shimizu, Isao; Ikeda, Kazuhito

    2015-01-01

    Previous pilot clinical studies have shown that the serotonin 5-HT1A receptor agonist tandospirone has beneficial effect on cognitive deficits associated with schizophrenia. In the present study, we evaluated the cognitive efficacy of tandospirone, given alone or in combination with the antipsychotic blonanserin, risperidone or haloperidol, on executive function in marmosets using the object retrieval with detour (ORD) task. Treatment with tandospirone alone at 20 and 40 mg/kg increased the number of correct responses in the difficult trial, while risperidone (0.3mg/kg) and haloperidol (0.3mg/kg) decreased the number of correct responses in this trial. On the other hand, blonanserin (0.1-0.3mg/kg), an atypical antipsychotic highly selective for dopamine D2/D3 and serotonin 5-HT2A receptors, did not affect the number of correct responses in both the easy and difficult trials. Co-treatment with tandospirone (20mg/kg) and risperidone (0.1-0.3mg/kg) or haloperidol (0.1-0.3mg/kg) did not improve animals' performance in the difficult trial. However, co-treatment with tandospirone and blonanserin (0.1-0.3mg/kg) increased the number of correct responses in the difficult trial. In addition, treatment with the dopamine D1 receptor agonist SKF-81297 at 1mg/kg increased marmosets correct responses in the difficult trial. These results suggest that tandospirone is a promising candidate for the treatment of cognitive deficits associated with schizophrenia and that adjunctive treatment with tandospirone and blonanserin is more appropriate for cognitive deficits than combination therapy with tandospirone and risperidone or haloperidol. The results of this study also indicate that the putative mechanism of action of tandospirone might be related to enhancement of dopamine neurotransmission via activation of the 5-HT1A receptor.

  20. Susceptibility of Marmosets (Callithrix jacchus) to Monkeypox Virus: A Low Dose Prospective Model for Monkeypox and Smallpox Disease.

    PubMed

    Mucker, Eric M; Chapman, Jennifer; Huzella, Louis M; Huggins, John W; Shamblin, Joshua; Robinson, Camenzind G; Hensley, Lisa E

    2015-01-01

    Although current nonhuman primate models of monkeypox and smallpox diseases provide some insight into disease pathogenesis, they require a high titer inoculum, use an unnatural route of infection, and/or do not accurately represent the entire disease course. This is a concern when developing smallpox and/or monkeypox countermeasures or trying to understand host pathogen relationships. In our studies, we altered half of the test system by using a New World nonhuman primate host, the common marmoset. Based on dose finding studies, we found that marmosets are susceptible to monkeypox virus infection, produce a high viremia, and have pathological features consistent with smallpox and monkeypox in humans. The low dose (48 plaque forming units) required to elicit a uniformly lethal disease and the extended incubation (preclinical signs) are unique features among nonhuman primate models utilizing monkeypox virus. The uniform lethality, hemorrhagic rash, high viremia, decrease in platelets, pathology, and abbreviated acute phase are reflective of early-type hemorrhagic smallpox.

  1. Patterns of relaxin and steroids in the reproductive cycle of the common marmoset (Callithrix jacchus): effects of prostaglandin F2 alpha on relaxin and progesterone secretion during pregnancy.

    PubMed

    Steinetz, B G; Randolph, C; Mahoney, C J

    1995-10-01

    We measured the concentrations of relaxin (Rlx), progesterone, and estradiol-17 beta in serum samples obtained twice or three times weekly from marmosets during the estrous cycle and pregnancy. The cyclic patterns and concentrations of progesterone and estradiol-17 beta were similar to those reported by previous investigators. Rlx was not detected in individual serum samples ( < 0.62-1.25 ng/ml) obtained from nonpregnant marmosets. However, pooling of luteal serum from all animals permitted assay of much larger volumes of serum (0.4 ml vs. 0.1 ml), and a concentration of about 1 ng/ml was detected. Rlx was first detected in serum in the second or third week of the 21-wk marmoset pregnancy, rose to a peak during Weeks 10-14, and then declined slowly as the time of parturition approached. The pattern of Rlx was unlike that observed during pregnancy in Old World monkeys, chimpanzees, or women, and resembled, instead, that seen in rodents, carnivores, and equids. Progesterone and estradiol-17 beta likewise increased throughout pregnancy, and their patterns were similar to those previously described for marmosets by other investigators. The concentrations of the steroids and Rlx in serum of pregnant marmosets was 10-fold or more higher than those found in Old World monkeys, baboons, chimpanzees, or women. Spontaneous abortions in two of the marmosets were accompanied by precipitous falls in serum levels of progesterone, estradiol-17 beta, and Rlx. Following s.c. injection of the luteolytic agent prostaglandin F2 alpha (PGF2 alpha) into two marmosets at midpregnancy, serum progesterone and Rlx fell to low levels. These animals received a progestin, 17 alpha-ethyl-19-nortesterone, to preclude abortion. Serum progesterone rose again, but serum Rlx remained low for the duration of pregnancy.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Validation of non-fluorescent methods to reliably detect acrosomal and plasma membrane integrity of common marmoset (Callithrix jacchus) sperm.

    PubMed

    Valle, R R; Valle, C M R; Nichi, M; Muniz, J A P C; Nayudu, P L; Guimarães, M A B V

    2008-07-01

    Simple, rapid and stable sperm evaluation methods which have been optimized for common marmoset (Callithrix jacchus) are critical for studies involving collection and evaluation of sperm in the field. This is particularly important for new species groups such as Callitrichidae where the sperm have been little studied. Of this family, C. jacchus is the best known, and has been chosen as a model species for other members of the genus Callithrix. The fundamental evaluation parameters for sperm of any species are viability and acrosomal status. Semen samples were collected by penile vibratory stimulation. To evaluate sperm plasma membrane integrity, Eosin-Nigrosin was tested here for the common marmoset sperm to be used under field conditions. Further, a non-fluorescent stain for acrosome, the "Simple" stain, developed for domestic and wild cats, was tested on common marmoset sperm. This was compared with a fluorescent staining, Fluorescein isothiocyanate-Pisum sativum agglutinin (FITC-PSA), routinely used and validated for common marmoset at the German Primate Centre to evaluate acrosomal integrity. Results obtained with the "Simple" stain showed a marked differentiation between sperm with intact and non-intact acrosome both with and without ionophore treatment and closely correlated with results obtained with FITC-PSA. Temperature had no effect on the results with the "Simple" stain and the complete processing is simple enough to be carried out under field conditions. These findings indicated that the "Simple" stain and Eosin-Nigrosin provide rapid and accurate results for C. jacchus sperm and that those methods can be reliably used as field tools for sperm evaluation for this species.

  3. The long-term impact of infant rearing background on the affective state of adult common marmosets (Callithrix jacchus)

    PubMed Central

    Ash, Hayley; Buchanan-Smith, Hannah M.

    2016-01-01

    Early life environment, including temporary family separation, can have a major influence on affective state. Using a battery of tests, the current study compared the performance of adult common marmosets (Callithrix jacchus), reared as infants under 3 different conditions: family-reared twins, family-reared animals from triplet litters where only 2 remain (2stays) and supplementary fed triplets. No significant differences were found in latency to approach and obtain food from a human or a novel object between rearing conditions, suggesting no effect on neophobia. There were no differences in cognitive bias task acquisition time, or proportion of responses to each ambiguous probe. Very minor differences were found in response to the probes, with only supplementary fed marmosets making fewer responses to the middle probe, compared to the probe nearest the rewarded stimuli. Similarly, in a test for anhedonia, no difference was found between rearing conditions in consumption of milkshake at different concentrations. There was just one very small difference in reward motivation, with only supplementary fed triplets demonstrating a lack of preference for milkshake over water at the lowest concentration. This consistent pattern of results suggests that the supplementary feeding of large litters of marmosets at this facility did not have a major effect on welfare, and is unlikely to influence performance in reward-related scientific tasks. Therefore, while family separation is not recommended, this particular practice should be used if it is necessary, such as to reduce infant mortality. Regular positive interactions with humans are also encouraged, to reduce fear and improve welfare of marmosets kept in captivity. PMID:26912940

  4. Behavioral strategies and hormonal profiles of dominant and subordinate common marmoset (Callithrix jacchus) females in wild monogamous groups.

    PubMed

    Sousa, Maria Bernardete Cordeiro; Albuquerque, Ana Claudia Sales da Rocha; Albuquerque, Fabiola da Silva; Araujo, Arrilton; Yamamoto, Maria Emilia; Arruda, Maria de Fatima

    2005-09-01

    New insights into the mating systems of common marmosets suggest that they are mainly monogamous, although polygyny and polyandry occasionally occur. Long-term monitoring of wild common marmosets has shown that some reports of polygynous groups (i.e., groups that contain more than one reproducing female) in fact indicate an unbalanced reproductive output associated with extragroup copulation. In this study we describe the behavioral and hormonal profiles of common marmoset (Callithrix jacchus) females living in three wild monogamous groups (Q, PBf, and T), varying from five to 11 individuals, at Nísia Floresta field station, RN, Brazil. The mating system of the groups was previously characterized in terms of affiliative, sexual, and mate-guarding behaviors. Behavioral data were collected once a week, and fecal samples were collected at least twice a week for 10-16 months, depending on the group. A preferential allogrooming relationship was recorded between dominant males and females. Under field conditions the reproductive inhibition of subordinate females appears to be more behavioral than hormonal, since subordinate females of the three groups ovulated and two conceived during the study. In these cases, the subordinate and dominant females reproduced 1 month apart, and infanticide (one case confirmed and one suspected) appeared to be part of the reproductive strategy of dominant females. Following the infanticide, ovarian inhibition (group T) or emigration and return to the natal group (group PBf) were observed. In the third group (Q) the subordinate female showed hormonal profiles compatible with pregnancy, but no infants were seen. These findings reflect the different alternatives that wild subordinate common marmoset females use to reproduce.

  5. mRNA expression profile of serotonin receptor subtypes and distribution of serotonergic terminations in marmoset brain

    PubMed Central

    Shukla, Rammohan; Watakabe, Akiya; Yamamori, Tetsuo

    2014-01-01

    To better understand serotonin function in the primate brain, we examined the mRNA expression patterns of all the 13 members of the serotonin receptor (5HTR) family, by in situ hybridization (ISH) and the distribution of serotonergic terminations by serotonin transporter (SERT) protein immunohistochemical analysis. Ten of the 13 5HTRs showed significant mRNA expressions in the marmoset brain. Our study shows several new features of the organization of serotonergic systems in the marmoset brain. (1) The thalamus expressed only a limited number of receptor subtypes compared with the cortex, hippocampus, and other subcortical regions. (2) In the cortex, there are l