Nardi, Valentina; Pulluqi, Olja; Abramson, Jeremy S; Dal Cin, Paola; Hasserjian, Robert P
2015-06-01
Bone marrow (BM) evaluation is an important part of lymphoma staging, which guides patient management. Although positive staging marrow is defined as morphologically identifiable disease, such samples often also include flow cytometric analysis and conventional karyotyping. Cytogenetic analysis is a labor-intensive and costly procedure and its utility in this setting is uncertain. We retrospectively reviewed pathological reports of 526 staging marrow specimens in which conventional karyotyping had been performed. All samples originated from a single institution from patients with previously untreated Hodgkin and non-Hodgkin lymphomas presenting in an extramedullary site. Cytogenetic analysis revealed clonal abnormalities in only eight marrow samples (1.5%), all of which were positive for lymphoma by morphologic evaluation. Flow cytometry showed a small clonal lymphoid population in three of the 443 morphologically negative marrow samples (0.7%). Conventional karyotyping is rarely positive in lymphoma staging marrow samples and, in our cohort, the BM karyotype did not contribute clinically relevant information in the vast majority of cases. Our findings suggest that karyotyping should not be performed routinely on BM samples taken to stage previously diagnosed extramedullary lymphomas unless there is pathological evidence of BM involvement by lymphoma. © 2015 Wiley Periodicals, Inc.
Postmortem bone marrow analysis in forensic science: study of 73 cases and review of the literature.
Tattoli, Lucia; Tsokos, Michael; Sautter, Julia; Anagnostopoulos, Joannis; Maselli, Eloisa; Ingravallo, Giuseppe; Delia, Mario; Solarino, Biagio
2014-01-01
In forensic sciences, bone marrow (BM) is an alternative matrix in postmortem toxicology because of its good resistance to autolysis and contaminations. Nevertheless, few studies have been focused on postmortem BM morphological changes after pathological stimuli. We examined 73 BM samples from forensic autopsies; causes of death were both natural and traumatic. BM samples were collected from the sternum by needle aspiration and biopsy; in selected cases, immunohistochemistry was performed. Few autolytic changes were found; BM cellularity decreased with increasing age and postmortem interval. Notable cell changes were detected in 45 cases (61.64%): neoplastic (n=4), and non-neoplastic BM findings (n=41), including multiorgan failure/sepsis (n=26), myelodisplastic-like conditions (n=11), and anaphylactic reactions (n=4). The results showed that BM cellularity supported circumstantial and autopsy findings, suggesting that BM samples could be a useful tool in forensic science applications. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
State-of-the-art of bone marrow analysis in forensic toxicology: a review.
Cartiser, Nathalie; Bévalot, Fabien; Fanton, Laurent; Gaillard, Yvan; Guitton, Jérôme
2011-03-01
Although blood is the reference medium in the field of forensic toxicology, alternative matrices are required in case of limited, unavailable or unusable blood samples. The present review investigated the suitability of bone marrow (BM) as an alternative matrix to characterize xenobiotic consumption and its influence on the occurrence of death. Basic data on BM physiology are reported in order to highlight the specificities of this matrix and their analytical and toxicokinetic consequences. A review of case reports, animal and human studies involving BM sample analysis focuses on the various parameters of interpretation of toxicological results: analytic limits, sampling location, pharmacokinetics, blood/BM concentration correlation, stability and postmortem redistribution. Tables summarizing the analytical conditions and quantification of 45 compounds from BM samples provide a useful tool for toxicologists. A specific section devoted to ethanol shows that, despite successful quantification, interpretation is highly dependent on postmortem interval. In conclusion, BM is an interesting alternative matrix, and further experimental data and validated assays are required to confirm its great potential relevance in forensic toxicology.
Tuljapurkar, Sonal R; McGuire, Timothy R; Brusnahan, Susan K; Jackson, John D; Garvin, Kevin L; Kessinger, Margaret A; Lane, Judy T; O' Kane, Barbara J; Sharp, John G
2011-01-01
Hematological deficiencies increase with aging, including anemias, reduced responses to hematopoietic stress and myelodysplasias. This investigation tested the hypothesis that increased bone marrow (BM) fat content in humans with age was associated with decreased numbers of side population (SP) hematopoietic stem cells, and this decrease correlated with changes in cytokine levels. BM was obtained from the femoral head and trochanteric region of the femur removed at surgery for total hip replacement (N = 100 subjects). In addition, BM from cadavers (N = 36), with no evidence of hip disease, was evaluated for fat content. Whole trabecular marrow samples were ground in a sterile mortar and pestle, and cellularity and lipid content determined. Marrow cells were stained with Hoechst dye and SP profiles were acquired. Plasma levels of insulin-like growth factor (IGF)-1, stromal-derived factor (SDF)-1 and interleukin (IL)-6 were measured using ELISA. Fat content in the BM of human subjects and cadavers increased with age. The numbers of SP stem cells in BM as well as plasma IGF-1 and SDF-1 levels decreased in correlation with increased BM fat. IL-6 had no relationship to changes in marrow fat. These data suggest that increased BM fat may be associated with a decreased number of SP stem cells and IGF-1 and SDF-1 levels with aging. These data further raise a more general question as to the role of adipose cells in the regulation of tissue stem cells. PMID:21923862
Tuljapurkar, Sonal R; McGuire, Timothy R; Brusnahan, Susan K; Jackson, John D; Garvin, Kevin L; Kessinger, Margaret A; Lane, Judy T; O' Kane, Barbara J; Sharp, John G
2011-11-01
Hematological deficiencies increase with aging, including anemias, reduced responses to hematopoietic stress and myelodysplasias. This investigation tested the hypothesis that increased bone marrow (BM) fat content in humans with age was associated with decreased numbers of side population (SP) hematopoietic stem cells, and this decrease correlated with changes in cytokine levels. BM was obtained from the femoral head and trochanteric region of the femur removed at surgery for total hip replacement (N = 100 subjects). In addition, BM from cadavers (N = 36), with no evidence of hip disease, was evaluated for fat content. Whole trabecular marrow samples were ground in a sterile mortar and pestle, and cellularity and lipid content determined. Marrow cells were stained with Hoechst dye and SP profiles were acquired. Plasma levels of insulin-like growth factor (IGF)-1, stromal-derived factor (SDF)-1 and interleukin (IL)-6 were measured using ELISA. Fat content in the BM of human subjects and cadavers increased with age. The numbers of SP stem cells in BM as well as plasma IGF-1 and SDF-1 levels decreased in correlation with increased BM fat. IL-6 had no relationship to changes in marrow fat. These data suggest that increased BM fat may be associated with a decreased number of SP stem cells and IGF-1 and SDF-1 levels with aging. These data further raise a more general question as to the role of adipose cells in the regulation of tissue stem cells. © 2011 The Authors. Journal of Anatomy © 2011 Anatomical Society of Great Britain and Ireland.
Automated processing of human bone marrow grafts for transplantation.
Zingsem, J; Zeiler, T; Zimmermanm, R; Weisbach, V; Mitschulat, H; Schmid, H; Beyer, J; Siegert, W; Eckstein, R
1993-01-01
Prior to purging or cryopreservation, we concentrated 21 bone marrow (BM) harvests using a modification of the 'grancollect-protocol' of the Fresenius AS 104 cell separator with the P1-Y set. Within 40-70 min, the initial marrow volume of 1,265 ml (+/- 537 ml) was processed two to three times. A mean of 47% (+/- 21%) of the initial mononuclear cells was recovered in a mean volume of 128 ml (+36 ml). The recovery of clonogenic cells, measured by CFU-GM assays, was 68% (+/- 47%). Red blood cells in the BM concentrates were reduced to 7% (+/- 4%) of the initial number. The procedure was efficient and yielded a BM cell fraction suitable for purging, cryopreservation and transplantation. At this time, 10 of the 21 patients whose BM was processed using this technique have been transplanted. Seven of these 10 patients have been grafted using the BM alone. Three of the 10 patients showed reduced cell viability and colony growth in the thawed BM samples, and therefore obtained BM and peripheral blood-derived stem cells. All transplanted patients showed an evaluable engraftment, achieving 1,000 granulocytes per microliter of peripheral blood in a mean of 18 days.
Rybka, Witold B.; Fontes, Paulo A.; Rao, Abdul S.; Winkelstein, Alan; Ricordi, Camillo; Ball, Edward D.; Starzl, Thomas E.
2010-01-01
While cadaveric vertebral bodies (VB) have long been proposed as a suitable source of bone marrow (BM) for transplantation (BMT), they have rarely been used for this purpose. We have infused VB BM immediately following whole organ (WO) transplantation to augment donor cell chimerism. We quantified the hematopoietic progenitor cell (HPC) content of VB BM as well as BM obtained from the iliac crests (IC) of normal allogeneic donors (ALLO) and from patients with malignancy undergoing autologous marrow harvest (AUTO). Patients undergoing WOIBM transplantation also had AUTO BM harvested in the event that subsequent lymphohematopoietic reconstitution was required. Twenty-four VB BM, 24 IC BM-ALLO, 31 IC AUTO, and 24 IC WO-AUTO were harvested. VB BM was tested 12 to 72 hr after procurement and infused after completion ofWO grafting. IC BM was tested and then used or cryopreserved immediately. HPC were quantified by clonal assay measuring CFU-GM, BFU-E, and CFU-GEMM, and by flow cytometry for CD34+ progenitor cells. On an average, 9 VB were processed during each harvest, and despite an extended processing time the number of viable nucleated cells obtained was significantly higher than that from IC. Furthermore, by HPC content, VB BM was equivalent to IC BM, which is routinely used for BMT. We conclude that VB BM is a clinically valuable source of BM for allogeneic transplantation. PMID:7701582
Battula, V. Lokesh; Chen, Ye; Cabreira, Maria da Graca; Ruvolo, Vivian; Wang, Zhiqiang; Ma, Wencai; Konoplev, Sergej; Shpall, Elizabeth; Lyons, Karen; Strunk, Dirk; Bueso-Ramos, Carlos; Davis, Richard Eric; Konopleva, Marina
2013-01-01
Mesenchymal stromal cells (MSCs) are a major component of the leukemia bone marrow (BM) microenvironment. Connective tissue growth factor (CTGF) is highly expressed in MSCs, but its role in the BM stroma is unknown. Therefore, we knocked down (KD) CTGF expression in human BM-derived MSCs by CTGF short hairpin RNA. CTGF KD MSCs exhibited fivefold lower proliferation compared with control MSCs and had markedly fewer S-phase cells. CTGF KD MSCs differentiated into adipocytes at a sixfold higher rate than controls in vitro and in vivo. To study the effect of CTGF on engraftment of leukemia cells into BM, an in vivo model of humanized extramedullary BM (EXM-BM) was developed in NOD/SCID/IL-2rgnull mice. Transplanted Nalm-6 or Molm-13 human leukemia cells engrafted at a threefold higher rate in adipocyte-rich CTGF KD MSC-derived EXM-BM than in control EXM-BM. Leptin was found to be highly expressed in CTGF KD EXM-BM and in BM samples of patients with acute myeloid and acute lymphoblastic leukemia, whereas it was not expressed in normal controls. Given the established role of the leptin receptor in leukemia cells, the data suggest an important role of CTGF in MSC differentiation into adipocytes and of leptin in homing and progression of leukemia. PMID:23741006
Heegaard, Erik D.; Petersen, Bodil Laub; Heilmann, Carsten J.; Hornsleth, Allan
2002-01-01
Parvovirus B19 (hereafter referred to as B19) exhibits a marked tropism to human bone marrow (BM), and infection may lead to erythema infectiosum, arthropathy, hydrops fetalis, and various hematologic disorders. Recently, a distinct parvovirus isolate termed V9 with an unknown clinical spectrum was discovered. In contrast to the many studies of B19 serology and viremia, valid information on the frequency of B19 or V9 DNA in the BM of healthy individuals is limited. To develop a reference value, paired BM and serum samples from healthy subjects were tested for the presence of B19 and V9 DNA and specific antibodies. Immunoglobulin M (IgM) was not found in any of the serum samples. The prevalence of IgG showed a gradual and steady increase from 37% in children aged 1 to 5 years to 87% in people aged >50 years. When 190 well-characterized subjects were examined, B19 DNA was detected in the BM of 4 individuals (2.1%; 95% confidence interval, 0.58 to 5.3%) while none of the paired serum samples showed evidence of circulating viral DNA. V9 DNA was not found in any of the BM or serum samples. The finding of B19 DNA probably indicated a primary infection in one 7-year-old individual and reinfection or reactivation of persistent infection in the remaining three persons, aged 47 to 58 years. Serving as a benchmark for future studies, these findings are useful when interpreting epidemiologic data, performing BM transplantation, or considering clinical implications of parvovirus infection. PMID:11880419
Heegaard, Erik D; Petersen, Bodil Laub; Heilmann, Carsten J; Hornsleth, Allan
2002-03-01
Parvovirus B19 (hereafter referred to as B19) exhibits a marked tropism to human bone marrow (BM), and infection may lead to erythema infectiosum, arthropathy, hydrops fetalis, and various hematologic disorders. Recently, a distinct parvovirus isolate termed V9 with an unknown clinical spectrum was discovered. In contrast to the many studies of B19 serology and viremia, valid information on the frequency of B19 or V9 DNA in the BM of healthy individuals is limited. To develop a reference value, paired BM and serum samples from healthy subjects were tested for the presence of B19 and V9 DNA and specific antibodies. Immunoglobulin M (IgM) was not found in any of the serum samples. The prevalence of IgG showed a gradual and steady increase from 37% in children aged 1 to 5 years to 87% in people aged >50 years. When 190 well-characterized subjects were examined, B19 DNA was detected in the BM of 4 individuals (2.1%; 95% confidence interval, 0.58 to 5.3%) while none of the paired serum samples showed evidence of circulating viral DNA. V9 DNA was not found in any of the BM or serum samples. The finding of B19 DNA probably indicated a primary infection in one 7-year-old individual and reinfection or reactivation of persistent infection in the remaining three persons, aged 47 to 58 years. Serving as a benchmark for future studies, these findings are useful when interpreting epidemiologic data, performing BM transplantation, or considering clinical implications of parvovirus infection.
Flow cytometry in the bone marrow evaluation of follicular and diffuse large B-cell lymphomas.
Palacio, C; Acebedo, G; Navarrete, M; Ruiz-Marcellán, C; Sanchez, C; Blanco, A; López, A
2001-09-01
Bone marrow biopsies are routinely performed in the staging of patients with lymphoma. Despite the lack of evidence for its usefulness, many institutions include flow cytometry (FC) of bone-marrow aspirates in an attempt to increase sensitivity and specificity. The aim of this study is to evaluate the usefulness of FC for the assessment of bone-marrow involvement by lymphoma in follicular (FL) and diffuse large B-cell lymphomas (DLBCL). Seventy-nine bone marrow biopsies from 65 patients diagnosed with FL or DLBCL were examined to compare histology and FC for the assessment of bone-marrow involvement by lymphoma. Bone marrow histology showed involvement (BM+) in 16 cases (20.3%), lack of infiltration (BM(-)) in 52 cases (65.8%) and undetermined or undiagnosed for involvement (BMu) in 11 cases (13.9%). FC was positive for involvement in 28 cases (35.4%) and negative in 51 cases (64.6%). 65 cases (95%) showed concordance between the results of morphology and FC (BM(+)/FC(+) or BM(-)/FC(-)). No BM(+)/FC(-) cases were observed. 3 cases showed discrepant results (BM(-)/FC(+)). In these 3 cases the molecular studies (PCR) demonstrated clonal rearrangement of the heavy immunoglobulin chain (IgH) and/or bcl2-IgH in agreement with the flow results. Among the 11 cases with BMu, all but 2 were FC(+) and concordance with the PCR results was seen in 9 cases (81.9%). We conclude that FC is just as sensitive or perhaps slightly more sensitive than histology in the detection of bone marrow involvement in FL and DLBCL. FC studies may be warranted in those cases in which the morphology is not diagnosed. The clinical relevance of the small clonal B-cell population in patients without histologic bone marrow involvement (BM(-)/FC(+) cases) remains an open question.
Autologous Pancreatic Islet Transplantation in Human Bone Marrow
Maffi, Paola; Balzano, Gianpaolo; Ponzoni, Maurilio; Nano, Rita; Sordi, Valeria; Melzi, Raffaella; Mercalli, Alessia; Scavini, Marina; Esposito, Antonio; Peccatori, Jacopo; Cantarelli, Elisa; Messina, Carlo; Bernardi, Massimo; Del Maschio, Alessandro; Staudacher, Carlo; Doglioni, Claudio; Ciceri, Fabio; Secchi, Antonio; Piemonti, Lorenzo
2013-01-01
The liver is the current site of choice for pancreatic islet transplantation, even though it is far from being ideal. We recently have shown in mice that the bone marrow (BM) may be a valid alternative to the liver, and here we report a pilot study to test feasibility and safety of BM as a site for islet transplantation in humans. Four patients who developed diabetes after total pancreatectomy were candidates for the autologous transplantation of pancreatic islet. Because the patients had contraindications for intraportal infusion, islets were infused in the BM. In all recipients, islets engrafted successfully as shown by measurable posttransplantation C-peptide levels and histopathological evidence of insulin-producing cells or molecular markers of endocrine tissue in BM biopsy samples analyzed during follow-up. Thus far, we have recorded no adverse events related to the infusion procedure or the presence of islets in the BM. Islet function was sustained for the maximum follow-up of 944 days. The encouraging results of this pilot study provide new perspectives in identifying alternative sites for islet infusion in patients with type 1 diabetes. Moreover, this is the first unequivocal example of successful engraftment of endocrine tissue in the BM in humans. PMID:23733196
Yáñez, Yania; Hervás, David; Grau, Elena; Oltra, Silvestre; Pérez, Gema; Palanca, Sarai; Bermúdez, Mar; Márquez, Catalina; Cañete, Adela; Castel, Victoria
2016-03-01
In metastatic neuroblastoma (NB) patients, accurate risk stratification and disease monitoring would reduce relapse probabilities. This study aims to evaluate the independent prognostic significance of detecting tyrosine hydroxylase (TH) and doublecortin (DCX) mRNAs by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) in peripheral blood (PB) and bone marrow (BM) samples from metastatic NB patients. RT-qPCR was performed on PB and BM samples from metastatic NB patients at diagnosis, post-induction therapy and at the end of treatment for TH and DCX mRNAs detection. High levels of TH and DCX mRNAs when detected in PB and BM at diagnosis independently predicted worse outcome in a cohort of 162 metastatic NB. In the subgroup of high-risk metastatic NB, TH mRNA detected in PB remained as independent predictor of EFS and OS at diagnosis. After the induction therapy, high levels of TH mRNA in PB and DCX mRNA in BM independently predicted poor EFS and OS. Furthermore TH mRNA when detected in BM predicted worse EFS. TH mRNA in PB samples at the end of treatment is an independent predictor of worse outcome. TH and DCX mRNAs levels in PB and BM assessed by RT-qPCR should be considered in new pre-treatment risk stratification strategies to reliable estimate outcome differences in metastatic NB patients. In those high-risk metastatic NB, TH and DCX mRNA quantification could be used for the assessment of response to treatment and for early detection of progressive disease or relapses.
During, Alexandrine
2017-09-15
In view of their key roles in the bone physiology (e.g., in the biomineralization process) and their potential implication in bone pathologies, an approach to study lipids in situ is needed. The aim of the present paper is to propose an original procedure to characterize lipids in both bone marrow (BM) and mineralized tissue (MT) compartments, taking into consideration sample preparation, lipid extraction and analytical issues, when using small sample size (≤ 0.5g of rat femurs). The potential contamination of the MT by marrow lipids and the poor accessibility of certain lipids from the MT - two major issues in bone handling - were taking care, respectively by performing two cleaning steps after BM removal and by adding a demineralization step to the overall lipid extraction protocol. For lipid analyses, a multi-one-dimensional HP-TLC method was developed to analyze the major neutral and polar lipids at once and showed an excellent resolution (for 15 standards) and a good precision (inter-day RSD<13%). When subjected to the entire "lipid extraction-HP-TLC" protocol, spike recoveries of the standards ranged between 76 and 122%. This HP-TLC method was suitable for lipid determination in both BM and MT [e.g., the MT had 5-times lesser lipids and a lower TG/phospholipid ratio than the BM (P <0.05)], and was quite reliable in term of lipid quantification. The demineralization step allowed to extract additional phosphatidylserine and esterified cholesterol from the MT, suggesting that these two species were associated to the mineralized matrix possibly in relation to their physiological role in the bone. Moreover, a reverse phase HPLC method for fatty acid determination as naphthacyl esters was set up to study fatty acids in bone samples and was used to validate the HP-TLC data. The fatty acid profile of the MT exhibited lower linoleic acid (18:2 n-6) and linolenic acid (18:3 n-3+n-6) levels and higher arachidonic acid (20:4 n-6) and docosahexaenoic acid (22:6 n-3) levels (P<0.05, compared to BM), suggesting that the MT is more metabolically active than the BM in term of long chain fatty acid production. In sum, the present work should contribute to facilitate future studies in the bone lipid field in view to understand better their implication in the marrow fat expansion-associated bone pathologies, such as osteoporosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Sorg, Nadine; Poppe, Carolin; Bunos, Milica; Wingenfeld, Eva; Hümmer, Christiane; Krämer, Ariane; Stock, Belinda; Seifried, Erhard; Bonig, Halvard
2015-06-01
Red blood cell (RBC) depletion is a standard technique for preparation of ABO-incompatible bone marrow transplants (BMTs). Density centrifugation or apheresis are used successfully at clinical scale. The advent of a bone marrow (BM) processing module for the Spectra Optia (Terumo BCT) provided the initiative to formally compare our standard technology, the COBE2991 (Ficoll, manual, "C") with the Spectra Optia BMP (apheresis, semiautomatic, "O"), the Sepax II NeatCell (Ficoll, automatic, "S"), the Miltenyi CliniMACS Prodigy density gradient separation system (Ficoll, automatic, "P"), and manual Ficoll ("M"). C and O handle larger product volumes than S, P, and M. Technologies were assessed for RBC depletion, target cell (mononuclear cells [MNCs] for buffy coats [BCs], CD34+ cells for BM) recovery, and cost/labor. BC pools were simultaneously purged with C, O, S, and P; five to 18 BM samples were sequentially processed with C, O, S, and M. Mean RBC removal with C was 97% (BCs) or 92% (BM). From both products, O removed 97%, and P, S, and M removed 99% of RBCs. MNC recovery from BC (98% C, 97% O, 65% P, 74% S) or CD34+ cell recovery from BM (92% C, 90% O, 67% S, 70% M) were best with C and O. Polymorphonuclear cells (PMNs) were depleted from BCs by P, S, and C, while O recovered 50% of PMNs. Time savings compared to C or M for all tested technologies are considerable. All methods are in principle suitable and can be selected based on sample volume, available technology, and desired product specifications beyond RBC depletion and MNC and/or CD34+ cell recovery. © 2015 AABB.
Enhanced adipogenic differentiation of bovine bone marrow-derived mesenchymal stem cells
USDA-ARS?s Scientific Manuscript database
Until now, the isolation and characterization of bovine bone marrow-derived mesenchymal stem cells (bBM-MSCs) have not been established, which prompted us to optimize the differentiation protocol for bBM-MSCs. In this study, bBM-MSCs were freshly isolated from three 6-month-old cattle and used for p...
Del Valle, Paulo Roberto; Milani, Cintia; Brentani, Maria Mitzi; Katayama, Maria Lucia Hirata; de Lyra, Eduardo Carneiro; Carraro, Dirce Maria; Brentani, Helena; Puga, Renato; Lima, Leandro A; Rozenchan, Patricia Bortman; Nunes, Bárbara Dos Santos; Góes, João Carlos Guedes Sampaio; Azevedo Koike Folgueira, Maria Aparecida
2014-09-01
Cancer-associated fibroblasts (CAF) influence tumor development at primary as well as in metastatic sites, but there have been no direct comparisons of the transcriptional profiles of stromal cells from different tumor sites. In this study, we used customized cDNA microarrays to compare the gene expression profile of stromal cells from primary tumor (CAF, n = 4), lymph node metastasis (N+, n = 3) and bone marrow (BM, n = 4) obtained from breast cancer patients. Biological validation was done in another 16 samples by RT-qPCR. Differences between CAF vs N+, CAF vs BM and N+ vs BM were represented by 20, 235 and 245 genes, respectively (SAM test, FDR < 0.01). Functional analysis revealed that genes related to development and morphogenesis were overrepresented. In a biological validation set, NOTCH2 was confirmed to be more expressed in N+ (vs CAF) and ADCY2, HECTD1, HNMT, LOX, MACF1, SLC1A3 and USP16 more expressed in BM (vs CAF). Only small differences were observed in the transcriptional profiles of fibroblasts from the primary tumor and lymph node of breast cancer patients, whereas greater differences were observed between bone marrow stromal cells and the other two sites. These differences may reflect the activities of distinct differentiation programs.
Del Valle, Paulo Roberto; Milani, Cintia; Brentani, Maria Mitzi; Katayama, Maria Lucia Hirata; de Lyra, Eduardo Carneiro; Carraro, Dirce Maria; Brentani, Helena; Puga, Renato; Lima, Leandro A.; Rozenchan, Patricia Bortman; Nunes, Bárbara dos Santos; Góes, João Carlos Guedes Sampaio; Azevedo Koike Folgueira, Maria Aparecida
2014-01-01
Cancer-associated fibroblasts (CAF) influence tumor development at primary as well as in metastatic sites, but there have been no direct comparisons of the transcriptional profiles of stromal cells from different tumor sites. In this study, we used customized cDNA microarrays to compare the gene expression profile of stromal cells from primary tumor (CAF, n = 4), lymph node metastasis (N+, n = 3) and bone marrow (BM, n = 4) obtained from breast cancer patients. Biological validation was done in another 16 samples by RT-qPCR. Differences between CAF vs N+, CAF vs BM and N+ vs BM were represented by 20, 235 and 245 genes, respectively (SAM test, FDR < 0.01). Functional analysis revealed that genes related to development and morphogenesis were overrepresented. In a biological validation set, NOTCH2 was confirmed to be more expressed in N+ (vs CAF) and ADCY2, HECTD1, HNMT, LOX, MACF1, SLC1A3 and USP16 more expressed in BM (vs CAF). Only small differences were observed in the transcriptional profiles of fibroblasts from the primary tumor and lymph node of breast cancer patients, whereas greater differences were observed between bone marrow stromal cells and the other two sites. These differences may reflect the activities of distinct differentiation programs. PMID:25249769
Deficiency of bone marrow beta3-integrin enhances non-functional neovascularization.
Watson, Alan R; Pitchford, Simon C; Reynolds, Louise E; Direkze, Natalie; Brittan, Mairi; Alison, Malcolm R; Rankin, Sara; Wright, Nicholas A; Hodivala-Dilke, Kairbaan M
2010-03-01
beta3-Integrin is a cell surface adhesion and signalling molecule important in the regulation of tumour angiogenesis. Mice with a global deficiency in beta3-integrin show increased pathological angiogenesis, most likely due to increased vascular endothelial growth factor receptor 2 expression on beta3-null endothelial cells. Here we transplanted beta3-null bone marrow (BM) into wild-type (WT) mice to dissect the role of BM beta3-integrin deficiency in pathological angiogenesis. Mice transplanted with beta3-null bone marrow show significantly enhanced angiogenesis in subcutaneous B16F0 melanoma and Lewis lung carcinoma (LLC) cell models and in B16F0 melanoma lung metastasis when compared with tumours grown in mice transplanted with WT bone marrow. The effect of bone marrow beta3-integrin deficiency was also assessed in the RIPTAg mouse model of pancreatic tumour growth. Again, angiogenesis in mice lacking BM beta3-integrin was enhanced. However, tumour weight between the groups was not significantly altered, suggesting that the enhanced blood vessel density in the mice transplanted with beta3-null bone marrow was not functional. Indeed, we demonstrate that in mice transplanted with beta3-null bone marrow a significant proportion of tumour blood vessels are non-functional when compared with tumour blood vessels in WT-transplanted controls. Furthermore, beta3-null-transplanted mice showed an increased angiogenic response to VEGF in vivo when compared with WT-transplanted animals. BM beta3-integrin deficiency affects the mobilization of progenitor cells to the peripheral circulation. We show that VEGF-induced mobilization of endothelial progenitor cells is enhanced in mice transplanted with beta3-null bone marrow when compared with WT-transplanted controls, suggesting a possible mechanism underlying the increased blood vessel density seen in beta3-null-transplanted mice. In conclusion, although BM beta3-integrin is not required for pathological angiogenesis, our studies demonstrate a role for BM beta3-integrin in VEGF-induced mobilization of bone marrow-derived cells to the peripheral circulation and for the functionality of those vessels in which BM-derived cells become incorporated.
ERIC Educational Resources Information Center
Mclaren, Patrick J.; Hyde, Melissa K.; White, Katherine M.
2012-01-01
Increasing the number of bone marrow (BM) donors is important to ensure sufficient diversity on BM registries to meet the needs of patients. This study used an experimental approach to test the hypothesis that providing information about the risks of BM donation to allay unsubstantiated fears would reduce male and female participants' perceptions…
Brückner, S; Tautenhahn, H-M; Winkler, S; Stock, P; Jonas, S; Dollinger, M; Christ, B
2013-06-01
Mesenchymal stem cells (MSC) isolated from bone marrow and differentiated into hepatocyte-like cells have increasingly gained attention for clinical cell therapy of liver diseases because of their high regenerative capacity. They are available from bone marrow aspirates of the os coxae after puncture of the crista iliaca or from bone marrow "surgical waste" gained from amputations or knee and hip operations. Thus, the aim of the study was to demonstrate whether these pBM-MSC (porcine bone marrow-derived mesenchymal stem cells) displayed mesenchymal features and hepatocyte differentiation potential. MSC were isolated either from crista iliaca punctures or after sampling and collagenase digestion of bone marrow from the os femoris. Mesenchymal features were assessed by flow cytometry for specific surface antigens and their ability to differentiate into at least 3 lineages. Functional properties, such as urea or glycogen synthesis and cytochrome P450 activity, as well as the cell morphology were examined during hepatocyte differentiation. pBM-MSC from both sources lacked the hematopoietic markers CD14 and CD45 but expressed the typical mesenchymal markers CD44, CD29, CD90, and CD105. Both cell types could differentiate into adipocyte, osteocyte, and hepatocyte lineages. After hepatocyte differentiation, CD105 expression decreased significantly and cells changed morphology from fibroblastoid into polygonal, displaying significantly increased glycogen storage, urea synthesis, and cytochrome activity. pBM-MSC from various sources were identical in respect to their mesenchymal features and their hepatocyte differentiation potential. Hence, long bones might be a particularly useful resource to isolate bone marrow mesenchymal stem cells for transplantation. Copyright © 2013 Elsevier Inc. All rights reserved.
Clinical utility of bone marrow flow cytometry in B-cell non-Hodgkin lymphomas (B-NHL).
Perea, G; Altés, A; Bellido, M; Aventín, A; Bordes, R; Ayats, R; Remacha, A F; Espinosa, I; Briones, J; Sierra, J; Nomdedéu, J F
2004-09-01
To determine the efficacy of flow cytometry (FC) in the assessment of bone marrow (BM) in B-cell non-Hodgkin lymphoma (B-NHL). FC is a common practice, but is far from being validated. Morphological analysis and FC immunophenotyping were performed on 421 samples. T-cell lymphomas, Hodgkin's disease, chronic lymphocytic leukaemia and hairy cell leukaemia were not included in the study. Clonality was assessed by the standard kappa/lambda/CD19 test. Aberrant immunophenotypes present in the B-cell subpopulation were also investigated. A double-step procedure was employed in all cases to increase the sensitivity of the FC procedure. Of 380 evaluable samples, 188 corresponded to follicular lymphoma (FL), 58 to diffuse large B-cell lymphoma (DLBCL), 57 to mantle cell lymphoma (MCL), seven to Burkitt's lymphoma and the remaining 70 samples to other low-grade lymphomas. Morphological marrow infiltration was found in 148 cases, and flow immunophenotyping identified 138 cases with BM involvement. A concordance between the two methods was detected in 298 cases (79%). There was a discordance in 82 cases (21%): morphology positive/FC negative in 46 cases and morphology negative/FC positive in 36 (61% of all cases with discordance were from FL). There was no difference in outcome when patients with discordances were compared with patients without discordances. Most samples showed concordance between morphological and FC results. FC identified BM involvement in the absence of morphological infiltration. Morphology/FC discordance seems to have no influence on the outcome of FL patients. Copyright 2004 Blackwell Publishing Limited
Na, Hye Young; Sohn, Moah; Ryu, Seul Hye; Choi, Wanho; In, Hyunju; Shin, Hyun Soo
2018-01-01
Bone marrow-derived dendritic cells (BM-DCs) are generated from bone marrow (BM) cells cultured with granulocyte macrophage-colony stimulating factor (GM-CSF) for a week. In this study we investigated the effect of duration on the BM culture with GM-CSF. Within several months, the cells in the BM culture gradually expressed homogeneous levels of CD11c and major histocompatibility complex II on surface, and they became unable to stimulate allogeneic naïve T cells in mixed lymphocyte reaction (MLR). In addition, when the BM culture were sustained for 32 wk or longer, the BM cells acquired ability to suppress the proliferation of allogeneic T cells in MLR as well as the response of ovalbumin-specific OT-I transgenic T cells in antigen-dependent manner. We found that, except for programmed death-ligand 1, most cell surface molecules were expressed lower in the BM cells cultured with GM-CSF for the extended duration. These results indicate that BM cells in the extended culture with GM-CSF undergo 2 distinct steps of functional change; first, they lose the immunostimulatory capacity; and next, they gain the immunosuppressive ability. PMID:29736292
Liu, Di; Qiu, Qianqian; Zhang, Xu; Dai, Manman; Qin, Jianru; Hao, Jianjong; Liao, Ming; Cao, Weisheng
2016-10-01
Subgroup J avian leukosis virus (ALV-J) is an oncogenic retrovirus known to induce tumor formation and immunosuppression in infected chickens. One of the organs susceptible to ALV-J is the bone marrow, from which specialized antigen-presenting cells named dendritic cells (BM-DCs) are derived. Notably, these cells possess the unique ability to induce primary immune responses. In the present study, a method of cultivating and purifying DCs from chicken bone marrow in vitro was established to investigate the effects of ALV-J infection on BM-DC differentiation or generation. The results indicated that ALV-J not only infects the chicken bone marrow mononuclear cells but also appears to inhibit the differentiation and maturation of BM-DCs and to trigger apoptosis. Moreover, substantial reductions in the mRNA expression of TLR1, TLR2, TLR3, MHCI, and MHCII and in cytokine production were detected in the surviving BM-DCs following ALV-J infection. These findings indicate that ALV-J infection disrupts the process of bone marrow mononuclear cell differentiation into BM-DCs likely via altered antigen presentation, resulting in a downstream immune response in affected chickens. Copyright © 2016 Elsevier B.V. All rights reserved.
El Missiry, Mohamed; Adnan Awad, Shady; Rajala, Hanna L; Al-Samadi, Ahmed; Ekblom, Marja; Markevän, Berit; Åstrand-Grundström, Ingbritt; Wold, Maren; Svedahl, Ellen Rabben; Juhl, Birgitte Ravn; Bjerrum, Ole Weis; Haulin, Inger; Porkka, Kimmo; Olsson-Strömberg, Ulla; Hjorth-Hansen, Henrik; Mustjoki, Satu
2016-05-01
Tyrosine kinase inhibitors (TKIs) used in the treatment of chronic myeloid leukaemia have been reported to induce immunomodulatory effects. We aimed to assess peripheral blood (PB) and bone marrow (BM) lymphocyte status at the diagnosis and during different TKI therapies and correlate it with treatment responses. BM and PB samples were acquired from 105 first-line TKI-treated patients. Relative number of BM lymphocytes was evaluated from MGG-stained BM aspirates, and immunophenotypic analyses were performed with multicolour flow cytometry. Early 3-month expansion of BM lymphocytes was found during all different TKIs (imatinib n = 71, 20 %; dasatinib n = 25, 21 %; nilotinib n = 9, 22 %; healthy controls n = 14, 12 %, p < 0.0001). Increased PB lymphocyte count was only observed during dasatinib therapy. The BM lymphocyte expansion was associated with early molecular response; patients with 3-month BCR-ABL1 <10 % showed higher lymphocyte counts than patients with BCR-ABL1 >10 % (23 vs. 17 %, p < 0.05). Detailed phenotypic analysis showed that BM lymphocyte expansion consisted of various lymphocyte subclasses, but especially the proportion of CD19+ B cells and CD3negCD16/56+ NK cells increased from diagnostic values. During dasatinib treatment, the lymphocyte balance in both BM and PB was shifted more to cytotoxic direction (increased CD8+CD57+ and CD8+HLA-DR+ cells, and low T regulatory cells), whereas no major immunophenotypic differences were observed between imatinib and nilotinib patients. Early BM lymphocytosis occurs with all current first-line TKIs and is associated with better treatment responses. PB and BM immunoprofile during dasatinib treatment markedly differs from both imatinib- and nilotinib-treated patients.
Effects of Iron Overload on the Bone Marrow Microenvironment in Mice
Zhao, Mingfeng; Li, Deguan; Chai, Xiao; Cao, Xiaoli; Meng, Juanxia; Chen, Jie; Xiao, Xia; Li, Qing; Mu, Juan; Shen, Jichun; Meng, Aimin
2015-01-01
Objective Using a mouse model, Iron Overload (IO) induced bone marrow microenvironment injury was investigated, focusing on the involvement of reactive oxygen species (ROS). Methods Mice were intraperitoneally injected with iron dextran (12.5, 25, or 50mg) every three days for two, four, and six week durations. Deferasirox(DFX)125mg/ml and N-acetyl-L-cysteine (NAC) 40mM were co-administered. Then, bone marrow derived mesenchymal stem cells (BM-MSCs) were isolated and assessed for proliferation and differentiation ability, as well as related gene changes. Immunohistochemical analysis assessed the expression of haematopoietic chemokines. Supporting functions of BM-MSCs were studied by co-culture system. Results In IO condition (25mg/ml for 4 weeks), BM-MSCs exhibited proliferation deficiencies and unbalanced osteogenic/adipogenic differentiation. The IO BM-MSCs showed a longer double time (2.07±0.14 days) than control (1.03±0.07 days) (P<0.05). The immunohistochemical analysis demonstrated that chemokine stromal cell-derived factor-1, stem cell factor -1, and vascular endothelial growth factor-1 expression were decreased. The co-cultured system demonstrated that bone marrow mononuclear cells (BMMNCs) co-cultured with IO BM-MSCs had decreased colony forming unit (CFU) count (p<0.01), which indicates IO could lead to decreased hematopoietic supporting functions of BM-MSCs. This effect was associated with elevated phosphatidylinositol 3 kinase (PI3K) and reduced of Forkhead box protein O3 (FOXO3) mRNA expression, which could induce the generation of ROS. Results also demonstrated that NAC or DFX treatment could partially attenuate cell injury and inhibit signaling pathway striggered by IO. Conclusion These results demonstrated that IO can impair the bone marrow microenvironment, including the quantity and quality of BM-MSCs. PMID:25774923
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iriyama, Chisako; Tomita, Akihiro, E-mail: atomita@med.nagoya-u.ac.jp; Hoshino, Hideaki
2012-03-23
Highlights: Black-Right-Pointing-Pointer Circulating DNAs (CDs) can be used to detect genetic/epigenetic abnormalities in MDS. Black-Right-Pointing-Pointer Epigenetic changes can be detected more sensitively when using plasma DNA than PBMNC. Black-Right-Pointing-Pointer Mutation ratio in CDs may reflect the ratio in stem cell population in bone marrow. Black-Right-Pointing-Pointer Using CDs can be a safer alternate strategy compared to bone marrow aspiration. -- Abstract: Myelodysplastic syndrome (MDS) is a hematopoietic stem cell disorder. Several genetic/epigenetic abnormalities are deeply associated with the pathogenesis of MDS. Although bone marrow (BM) aspiration is a common strategy to obtain MDS cells for evaluating their genetic/epigenetic abnormalities, BM aspirationmore » is difficult to perform repeatedly to obtain serial samples because of pain and safety concerns. Here, we report that circulating cell-free DNAs from plasma and serum of patients with MDS can be used to detect genetic/epigenetic abnormalities. The plasma DNA concentration was found to be relatively high in patients with higher blast cell counts in BM, and accumulation of DNA fragments from mono-/di-nucleosomes was confirmed. Using serial peripheral blood (PB) samples from patients treated with hypomethylating agents, global methylation analysis using bisulfite pyrosequencing was performed at the specific CpG sites of the LINE-1 promoter. The results confirmed a decrease of the methylation percentage after treatment with azacitidine (days 3-9) using DNAs from plasma, serum, and PB mono-nuclear cells (PBMNC). Plasma DNA tends to show more rapid change at days 3 and 6 compared with serum DNA and PBMNC. Furthermore, the TET2 gene mutation in DNAs from plasma, serum, and BM cells was quantitated by pyrosequencing analysis. The existence ratio of mutated genes in plasma and serum DNA showed almost equivalent level with that in the CD34+/38- stem cell population in BM. These data suggest that genetic/epigenetic analyses using PB circulating DNA can be a safer and painless alternative to using BM cells.« less
McGonigle, Terence A.; Dwyer, Amy R.; Greenland, Eloise L.; Scott, Naomi M.; Keane, Kevin N.; Newsholme, Philip; Goodridge, Helen S.; Zon, Leonard I.; Pixley, Fiona J.; Hart, Prue H.
2018-01-01
Monocytes/macrophages differentiating from bone marrow (BM) cells pulsed for 2 hours at 37°C with a stabilized derivative of prostaglandin E2, 16,16-dimethyl PGE2 (dmPGE2), migrated less efficiently toward a chemoattractant than monocytes/macrophages differentiated from BM cells pulsed with vehicle. To confirm that the effect on BM cells was long lasting and to replicate human BM transplantation, chimeric mice were established with donor BM cells pulsed for 2 hours with dmPGE2 before injection into marrow-ablated congenic recipient mice. After 12 weeks, when high levels (90%) of engraftment were obtained, regenerated BM-derived monocytes/macrophages differentiating in vitro or in vivo migrated inefficiently toward the chemokines colony-stimulating factor-1 (CSF-1) and chemokine (C-C motif) ligand 2 (CCL2) or thioglycollate, respectively. Our results reveal long-lasting changes to progenitor cells of monocytes/macrophages by a 2-hour dmPGE2 pulse that, in turn, limits the migration of their daughter cells to chemoattractants and inflammatory mediators. PMID:28822771
Fang, Dongdong; Hu, Shen; Liu, Younan; Quan, Vu-Hung; Seuntjens, Jan; Tran, Simon D
2015-11-03
In separate studies, an extract of soluble intracellular contents from whole bone marrow cells, named "Bone Marrow (BM) Soup", was reported to either improve cardiac or salivary functions post-myocardial infarction or irradiation (IR), respectively. However, the active components in BM Soup are unknown. To demonstrate that proteins were the active ingredients, we devised a method using proteinase K followed by heating to deactivate proteins and for safe injections into mice. BM Soup and "deactivated BM Soup" were injected into mice that had their salivary glands injured with 15Gy IR. Control mice received either injections of saline or were not IR. Results at week 8 post-IR showed the 'deactivated BM Soup' was no better than injections of saline, while injections of native BM Soup restored saliva flow, protected salivary cells and blood vessels from IR-damage. Protein arrays detected several angiogenesis-related factors (CD26, FGF, HGF, MMP-8, MMP-9, OPN, PF4, SDF-1) and cytokines (IL-1ra, IL-16) in BM Soup. In conclusion, the native proteins (but not the nucleic acids, lipids or carbohydrates) were the therapeutic ingredients in BM Soup for functional salivary restoration following IR. This molecular therapy approach has clinical potential because it is theoretically less tumorigenic and immunogenic than cell therapies.
Chen, Kevin G; Johnson, Kory R; McKay, Ronald D G; Robey, Pamela G
2018-01-01
Lineage commitment and differentiation of skeletal stem cells/bone marrow stromal cells (SSCs/BMSCs, often called bone marrow-derived "mesenchymal stem/stromal" cells) offer an important opportunity to study skeletal and hematopoietic diseases, and for tissue engineering and regenerative medicine. Currently, many studies in this field have relied on cell lineage tracing methods in mouse models, which have provided a significant advancement in our knowledge of skeletal and hematopoietic stem-cell niches in bone marrow (BM). However, there is a lack of agreement in numerous fundamental areas, including origins of various BM stem-cell niches, cell identities, and their physiological roles in the BM. In order to resolve these issues, we propose a new hypothesis of "paralogous" stem-cell niches (PSNs); that is, progressively altered parallel niches within an individual species throughout the life span of the organism. A putative PSN code seems to be plausible based on analysis of transcriptional signatures in two representative genes that encode Nes-GFP and leptin receptors, which are frequently used to monitor SSC lineage development in BM. Furthermore, we suggest a dynamic paralogous BM niche (PBMN) model that elucidates the coupling and uncoupling mechanisms between BM stem-cell niches and their zones of active regeneration during different developmental stages. Elucidation of these PBMNs would enable us to resolve the existing controversies, thus paving the way to achieving precision regenerative medicine and pharmaceutical applications based on these BM cell resources. Stem Cells 2018;36:11-21. © 2017 AlphaMed Press.
Han, Zhen-Xia; Shi, Qing; Wang, Da-Kun; Li, Dong; Lyu, Ming
2013-10-01
Bone marrow (BM) and umbilical cord (UC) are the major sources of mesenchymal stem cells for therapeutics. This study was aimed to compare the basic biologic characteristics of bone marrow-derived and umbilical cord derived-mesenchymal stem cells (BM-MSC and UC-MSC) and their immunosuppressive capability in vitro. The BM-MSC and UC-MSC were cultured and amplified under same culture condition. The growth kinetics, phenotypic characteristics and immunosuppressive effects of UC-MSC were compared with those of BM-MSC.Gene chip was used to compare the genes differentially expressed between UC-MSC and BM-MSC. The results showed that UC-MSC shared most of the characteristics of BM-MSC, including morphology and immunophenotype. UC-MSC could be ready expanded for 30 passages without visible changes. However, BM-MSC grew slowly, and the mean doubling time increased notably after passage 6. Both UC-MSC and BM-MSC could inhibit phytohemagglutinin-stimulated peripheral blood mononuclear cell proliferation, in which BM-MSC mediated more inhibitory effect. Compared with UC-MSC, BM-MSC expressed more genes associated with immune response. Meanwhile, the categories of up-regulated genes in UC-MSC were concentrated in organ development and growth. It is concluded that the higher proliferation capacity, low human leukocyte antigen-ABC expression and immunosuppression make UC-MSC an excellent alternative to BM-MSC for cell therapy. The differences between BM-MSC and UC-MSC gene expressions can be explained by their ontogeny and different microenvironment in origin tissue. These differences can affect their efficacy in different therapeutic applications.
Tadiotto, Elisa; Maines, Evelina; Degani, Daniela; Balter, Rita; Bordugo, Andrea; Cesaro, Simone
2018-04-01
Pearson syndrome (PS) is a rare mitochondrial disorder that usually presents with transfusion-dependent macrocytic anemia, exocrine pancreatic dysfunction, and lactic acidosis. Typical bone marrow (BM) features are vacuolization in hematopoietic progenitors, hypocellularity, and ringed sideroblasts. At the neonatal age, PS may have a variable clinical onset. Moreover, there is little information about BM features at this age and the timing of their presentation. We report a neonatal case of PS that presented with refractory anemia and atypical BM features. We reviewed the BM findings in neonatal-onset PS cases to stress the importance and limitations of BM evaluation at this age. © 2017 Wiley Periodicals, Inc.
Shaw, Bronwen E; Logan, Brent R; Kiefer, Deidre M; Chitphakdithai, Pintip; Pedersen, Tanya L; Abdel-Azim, Hisham; Abidi, Muneer H; Akpek, Gorgun; Diaz, Miguel A; Artz, Andrew S; Dandoy, Christopher; Gajewski, James L; Hematti, Peiman; Kamble, Rammurti T; Kasow, Kimberley A; Lazarus, Hillard M; Liesveld, Jane L; Majhail, Navneet S; O'Donnell, Paul V; Olsson, Richard F; Savani, Bipin N; Schears, Raquel M; Stroncek, David F; Switzer, Galen E; Williams, Eric P; Wingard, John R; Wirk, Baldeep M; Confer, Dennis L; Pulsipher, Michael A
2015-10-01
Previous studies have shown that risks of collection-related pain and symptoms are associated with sex, body mass index, and age in unrelated donors undergoing collection at National Marrow Donor Program centers. We hypothesized that other important factors (race, socioeconomic status [SES], and number of procedures at the collection center) might affect symptoms in donors. We assessed outcomes in 2726 bone marrow (BM) and 6768 peripheral blood stem cell (PBSC) donors collected between 2004 and 2009. Pain/symptoms are reported as maximum levels over mobilization and collection (PBSC) or within 2 days of collection (BM) and at 1 week after collection. For PBSC donors, race and center volumes were not associated with differences in pain/symptoms at any time. PBSC donors with high SES levels reported higher maximum symptom levels 1 week after donation (P = .017). For BM donors, black males reported significantly higher levels of pain (OR, 1.90; CI, 1.14 to 3.19; P = .015). No differences were noted by SES group. BM donors from low-volume centers reported more toxicity (OR, 2.09; CI, 1.26 to 3.46; P = .006). In conclusion, race and SES have a minimal effect on donation-associated symptoms. However, donors from centers performing ≤ 1 BM collection every 2 months have more symptoms after BM donation. Approaches should be developed by registries and low-volume centers to address this issue. Copyright © 2015 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Microbe-Induced Inflammatory Signals Triggering Acquired Bone Marrow Failure Syndromes.
Espinoza, J Luis; Kotecha, Ritesh; Nakao, Shinji
2017-01-01
Acquired bone marrow failure syndromes encompass a unique set of disorders characterized by a reduction in the effective production of mature cells by the bone marrow (BM). In the majority of cases, these syndromes are the result of the immune-mediated destruction of hematopoietic stem cells or their progenitors at various stages of differentiation. Microbial infection has also been associated with hematopoietic stem cell injury and may lead to associated transient or persistent BM failure, and recent evidence has highlighted the potential impact of commensal microbes and their metabolites on hematopoiesis. We summarize the interactions between microorganisms and the host immune system and emphasize how they may impact the development of acquired BM failure.
Microbe-Induced Inflammatory Signals Triggering Acquired Bone Marrow Failure Syndromes
Espinoza, J. Luis; Kotecha, Ritesh; Nakao, Shinji
2017-01-01
Acquired bone marrow failure syndromes encompass a unique set of disorders characterized by a reduction in the effective production of mature cells by the bone marrow (BM). In the majority of cases, these syndromes are the result of the immune-mediated destruction of hematopoietic stem cells or their progenitors at various stages of differentiation. Microbial infection has also been associated with hematopoietic stem cell injury and may lead to associated transient or persistent BM failure, and recent evidence has highlighted the potential impact of commensal microbes and their metabolites on hematopoiesis. We summarize the interactions between microorganisms and the host immune system and emphasize how they may impact the development of acquired BM failure. PMID:28286502
Chehelcheraghi, Farzaneh; Abbaszadeh, Abolfazl; Tavafi, Magid
2018-03-06
Skin flap procedures are employed in plastic surgery, but failure can lead to necrosis of the flap. Studies have used bone marrow mesenchymal stem cells (BM-MSCs) to improve flap viability. BM-MSCs and acellular amniotic membrane (AAM) have been introduced as alternatives. The objective of this study was to evaluate the effect of BM-MSCs and AAM on mast cells of random skin flaps (RSF) in rats. RSFs (80 × 30 mm) were created on 40 rats that were randomly assigned to one of four groups, including (I) AAM, (II) BM-MSCs, (III) BM-MSCs/AAM, and (IV) saline (control). Transplantation was carried out during the procedure (zero day). Flap necrosis was observed on day 7, and skin samples were collected from the transition line of the flap to evaluate the total number and types of mast cells. The development and the total number of mast cells were related to the development of capillaries. The results of one-way ANOVA indicated that there was no statistically significant difference between the mean numbers of mast cell types for different study groups. However, the difference between the total number of mast cells in the study groups was statistically significant (p = 0.001). The present study suggests that the use of AAM/BM-MSCs can improve the total number of mast cells and accelerate the growth of capillaries at the transient site in RSFs in rats.
The Role of Histone Demethylase Jmjd3 in Immune-Mediated Aplastic Anemia
2017-03-01
anemia (AA) is a condition of bone marrow failure (BMF) characterized by blood pancytopenia and BM hypoplasia. In most cases, AA is an immune-mediated...is a condition of bone marrow failure (BMF) characterized by blood pancytopenia and BM hypoplasia. In most cases, AA is an immune-mediated disorder...GVHD) 2.11. Bone marrow transplantation 2.12. NSG mice 2.13. xGVHD 2.14. Hematopoietic stem cells (HSCs) 3. ACCOMPLISHMENTS: The PI is
Fang, Dongdong; Hu, Shen; Liu, Younan; Quan, Vu-Hung; Seuntjens, Jan; Tran, Simon D.
2015-01-01
In separate studies, an extract of soluble intracellular contents from whole bone marrow cells, named “Bone Marrow (BM) Soup”, was reported to either improve cardiac or salivary functions post-myocardial infarction or irradiation (IR), respectively. However, the active components in BM Soup are unknown. To demonstrate that proteins were the active ingredients, we devised a method using proteinase K followed by heating to deactivate proteins and for safe injections into mice. BM Soup and “deactivated BM Soup” were injected into mice that had their salivary glands injured with 15Gy IR. Control mice received either injections of saline or were not IR. Results at week 8 post-IR showed the ‘deactivated BM Soup’ was no better than injections of saline, while injections of native BM Soup restored saliva flow, protected salivary cells and blood vessels from IR-damage. Protein arrays detected several angiogenesis-related factors (CD26, FGF, HGF, MMP-8, MMP-9, OPN, PF4, SDF-1) and cytokines (IL-1ra, IL-16) in BM Soup. In conclusion, the native proteins (but not the nucleic acids, lipids or carbohydrates) were the therapeutic ingredients in BM Soup for functional salivary restoration following IR. This molecular therapy approach has clinical potential because it is theoretically less tumorigenic and immunogenic than cell therapies. PMID:26526154
Immune cell contexture in the bone marrow tumor microenvironment impacts therapy response in CML.
Brück, Oscar; Blom, Sami; Dufva, Olli; Turkki, Riku; Chheda, Himanshu; Ribeiro, Antonio; Kovanen, Panu; Aittokallio, Tero; Koskenvesa, Perttu; Kallioniemi, Olli; Porkka, Kimmo; Pellinen, Teijo; Mustjoki, Satu
2018-06-20
Increasing evidence suggests that the immune system affects prognosis of chronic myeloid leukemia (CML), but the detailed immunological composition of the leukemia bone marrow (BM) microenvironment is unknown. We aimed to characterize the immune landscape of the CML BM and predict the current treatment goal of tyrosine kinase inhibitor (TKI) therapy, molecular remission 4.0 (MR4.0). Using multiplex immunohistochemistry (mIHC) and automated image analysis, we studied BM tissues of CML patients (n = 56) and controls (n = 14) with a total of 30 immunophenotype markers essential in cancer immunology. CML patients' CD4+ and CD8+ T-cells expressed higher levels of putative exhaustion markers PD1, TIM3, and CTLA4 when compared to control. PD1 expression was higher in BM compared to paired peripheral blood (PB) samples, and decreased during TKI therapy. By combining clinical parameters and immune profiles, low CD4+ T-cell proportion, high proportion of PD1+TIM3-CD8+ T cells, and high PB neutrophil count were most predictive of lower MR4.0 likelihood. Low CD4+ T-cell proportion and high PB neutrophil counts predicted MR4.0 also in a validation cohort (n = 52) analyzed with flow cytometry. In summary, the CML BM is characterized by immune suppression and immune biomarkers predicted MR4.0, thus warranting further testing of immunomodulatory drugs in CML treatment.
The Value of PET/CT in Detecting Bone Marrow Involvement in Patients With Follicular Lymphoma.
Perry, Chava; Lerman, Hedva; Joffe, Erel; Sarid, Nadav; Amit, Odelia; Avivi, Irit; Kesler, Mikhail; Ben-Ezra, Jonathan; Even-Sapir, Einat; Herishanu, Yair
2016-03-01
Follicular lymphoma (FL) is the 2nd most common type of lymphoma diagnosed in the Western World. Bone marrow (BM) involvement is an adverse prognostic factor in FL, routinely assessed by an arbitrary biopsy of the iliac crest. This study was aimed to investigate the role of positron emission tomography/computed tomography (PET/CT) in identifying BM involvement by FL. In this retrospective, single-center study we reviewed the records of consecutive patients with FL at diagnosis or relapse who underwent staging/restaging workup visual assessment of BM uptake was categorized as either normal, diffusely increased, or focally increased. Quantitative BM fluorine-18-fluro-deoxyglucose (FDG) uptake was measured using mean standardized uptake value (BM-SUVmean). The diagnosis of BM involvement was based on either BM histological findings or disappearance of increased uptake at end-treatment PET/CT in patients who responded to treatment. Sixty eight cases with FL were included. Sixteen (23.5%) had BM involvement, 13 (19.1%) had a biopsy proven involvement, and 3 (4.4%) had a negative BM biopsy, but increased medullary uptake that normalized post-treatment. BM FDG uptake in these patients was diffuse in 8 (50%) and focal in 8 (50%). Focal increased uptake was indicative of BM involvement; however, diffuse uptake was associated with 17 false positive cases (32.7%). Overall, visual assessment of BM involvement had a negative predictive value (NPV) of 100% and a positive predictive value (PPV) of 48.5%. On a quantitative assessment, BM-SUVmean was significantly higher in patients with BM involvement (SUVmean of 3.7 [1.7-6] vs 1.4 [0.4-2.65], P < 0.001). On receiver operator curve (ROC) analysis, BM-SUVmean > 2.7 had a PPV of 100% for BM involvement (sensitivity of 68%), while BM-SUVmean < 1.7 had an NPV of 100% (specificity of 73%). Visual assessment of PET/CT is appropriate for ruling out BM involvement by FL. Although focal increased uptake indicates marrow involvement, diffuse uptake is nonspecific. SUV measurement improves PET/CT diagnostic accuracy, identifying additional 19% of patients with BM involvement that would have been otherwise missed.
Otsu, M; Sugamura, K; Candotti, F
2000-09-20
Corrective gene transfer into hematopoietic stem cells (HSCs) is being investigated as therapy for X-linked severe combined immunodeficiency (XSCID) and it is hoped that selective advantage of gene-corrected HSCs will help in achieving full immune reconstitution after treatment. Lines of evidence from the results of allogeneic bone marrow transplantation in patients with XSCID support this hypothesis that, however, has not been rigorously tested in an experimental system. We studied the competition kinetics between normal and XSCID bone marrow (BM) cells using a murine bone marrow transplantation (BMT) model. For easy chimerism determination, we used genetic marking with retrovirus-mediated expression of the enhanced green fluorescent protein (EGFP). We found that XSCID BM cells were able to compete with normal BM cells for engraftment of myeloid lineages in a dose-dependent manner, whereas we observed selective repopulation of T, B, and NK cells deriving from normal BM cells. This was true despite the evidence of competitive engraftment of XSCID lineage marker-negative/c-Kit-positive (Lin-/c-Kit+) cells in the bone marrow of treated animals. From these results we extrapolate that genetic correction of XSCID HSCs will result in selective advantage of gene-corrected lymphoid lineages with consequent restoration of lymphocyte populations and high probability of clinical benefit.
Tumor Trp53 status and genotype affect the bone marrow microenvironment in acute myeloid leukemia
Jacamo, Rodrigo; Davis, R. Eric; Ling, Xiaoyang; Sonnylal, Sonali; Wang, Zhiqiang; Ma, Wencai; Zhang, Min; Ruvolo, Peter; Ruvolo, Vivian; Wang, Rui-Yu; McQueen, Teresa; Lowe, Scott; Zuber, Johannes; Kornblau, Steven M.; Konopleva, Marina; Andreeff, Michael
2017-01-01
The genetic heterogeneity of acute myeloid leukemia (AML) and the variable responses of individual patients to therapy suggest that different AML genotypes may influence the bone marrow (BM) microenvironment in different ways. We performed gene expression profiling of bone marrow mesenchymal stromal cells (BM-MSC) isolated from normal C57BL/6 mice or mice inoculated with syngeneic murine leukemia cells carrying different human AML genotypes, developed in mice with Trp53 wild-type or nullgenetic backgrounds. We identified a set of genes whose expression in BM-MSC was modulated by all four AML genotypes tested. In addition, there were sets of differentially-expressed genes in AML-exposed BM-MSC that were unique to the particular AML genotype or Trp53 status. Our findings support the hypothesis that leukemia cells alter the transcriptome of surrounding BM stromal cells, in both common and genotype-specific ways. These changes are likely to be advantageous to AML cells, affecting disease progression and response to chemotherapy, and suggest opportunities for stroma-targeting therapy, including those based on AML genotype. PMID:29137349
Afshar, Solmaz F; Zawaski, Janice A; Inoue, Taeko; Rendon, David A; Zieske, Arthur W; Punia, Jyotinder N; Sabek, Omaima M; Gaber, M Waleed
2017-07-01
The abscopal effect is the response to radiation at sites that are distant from the irradiated site of an organism, and it is thought to play a role in bone marrow (BM) recovery by initiating responses in the unirradiated bone marrow. Understanding the mechanism of this effect has applications in treating BM failure (BMF) and BM transplantation (BMT), and improving survival of nuclear disaster victims. Here, we investigated the use of multimodality imaging as a translational tool to longitudinally assess bone marrow recovery. We used positron emission tomography/computed tomography (PET/CT), magnetic resonance imaging (MRI) and optical imaging to quantify bone marrow activity, vascular response and marrow repopulation in fully and partially irradiated rodent models. We further measured the effects of radiation on serum cytokine levels, hematopoietic cell counts and histology. PET/CT imaging revealed a radiation-induced increase in proliferation in the shielded bone marrow (SBM) compared to exposed bone marrow (EBM) and sham controls. T 2 -weighted MRI showed radiation-induced hemorrhaging in the EBM and unirradiated SBM. In the EBM and SBM groups, we found alterations in serum cytokine and hormone levels and in hematopoietic cell population proportions, and histological evidence of osteoblast activation at the bone marrow interface. Importantly, we generated a BMT mouse model using fluorescent-labeled bone marrow donor cells and performed fluorescent imaging to reveal the migration of bone marrow cells from shielded to radioablated sites. Our study validates the use of multimodality imaging to monitor bone marrow recovery and provides evidence for the abscopal response in promoting bone marrow recovery after irradiation.
The skeletal cell-derived molecule sclerostin drives bone marrow adipogenesis.
Fairfield, Heather; Falank, Carolyne; Harris, Elizabeth; Demambro, Victoria; McDonald, Michelle; Pettitt, Jessica A; Mohanty, Sindhu T; Croucher, Peter; Kramer, Ina; Kneissel, Michaela; Rosen, Clifford J; Reagan, Michaela R
2018-02-01
The bone marrow niche is a dynamic and complex microenvironment that can both regulate, and be regulated by the bone matrix. Within the bone marrow (BM), mesenchymal stromal cell (MSC) precursors reside in a multi-potent state and retain the capacity to differentiate down osteoblastic, adipogenic, or chondrogenic lineages in response to numerous biochemical cues. These signals can be altered in various pathological states including, but not limited to, osteoporotic-induced fracture, systemic adiposity, and the presence of bone-homing cancers. Herein we provide evidence that signals from the bone matrix (osteocytes) determine marrow adiposity by regulating adipogenesis in the bone marrow. Specifically, we found that physiologically relevant levels of Sclerostin (SOST), which is a Wnt-inhibitory molecule secreted from bone matrix-embedded osteocytes, can induce adipogenesis in 3T3-L1 cells, mouse ear- and BM-derived MSCs, and human BM-derived MSCs. We demonstrate that the mechanism of SOST induction of adipogenesis is through inhibition of Wnt signaling in pre-adipocytes. We also demonstrate that a decrease of sclerostin in vivo, via both genetic and pharmaceutical methods, significantly decreases bone marrow adipose tissue (BMAT) formation. Overall, this work demonstrates a direct role for SOST in regulating fate determination of BM-adipocyte progenitors. This provides a novel mechanism for which BMAT is governed by the local bone microenvironment, which may prove relevant in the pathogenesis of certain diseases involving marrow adipose. Importantly, with anti-sclerostin therapy at the forefront of osteoporosis treatment and a greater recognition of the role of BMAT in disease, these data are likely to have important clinical implications. © 2017 Wiley Periodicals, Inc.
Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro.
Torisawa, Yu-suke; Spina, Catherine S; Mammoto, Tadanori; Mammoto, Akiko; Weaver, James C; Tat, Tracy; Collins, James J; Ingber, Donald E
2014-06-01
Current in vitro hematopoiesis models fail to demonstrate the cellular diversity and complex functions of living bone marrow; hence, most translational studies relevant to the hematologic system are conducted in live animals. Here we describe a method for fabricating 'bone marrow-on-a-chip' that permits culture of living marrow with a functional hematopoietic niche in vitro by first engineering new bone in vivo, removing it whole and perfusing it with culture medium in a microfluidic device. The engineered bone marrow (eBM) retains hematopoietic stem and progenitor cells in normal in vivo-like proportions for at least 1 week in culture. eBM models organ-level marrow toxicity responses and protective effects of radiation countermeasure drugs, whereas conventional bone marrow culture methods do not. This biomimetic microdevice offers a new approach for analysis of drug responses and toxicities in bone marrow as well as for study of hematopoiesis and hematologic diseases in vitro.
Nazari, Fatemeh; Parham, Abbas; Maleki, Adham Fani
2015-01-01
Quantitative real time reverse transcription PCR (qRT-PCR) is one of the most important techniques for gene-expression analysis in molecular based studies. Selecting a proper internal control gene for normalizing data is a crucial step in gene expression analysis via this method. The expression levels of reference genes should be remained constant among cells in different tissues. However, it seems that the location of cells in different tissues might influence their expression. The purpose of this study was to determine whether the source of mesenchymal stem cells (MSCs) has any effect on expression level of three common reference genes (GAPDH, β-actin and β2-microglobulin) in equine marrow- and adipose- derived undifferentiated MSCs and consequently their reliability for comparative qRT-PCR. Adipose tissue (AT) and bone marrow (BM) samples were harvested from 3 mares. MSCs were isolated and cultured until passage 3 (P3). Total RNA of P3 cells was extracted for cDNA synthesis. The generated cDNAs were analyzed by quantitative real-time PCR. The PCR reactions were ended with a melting curve analysis to verify the specificity of amplicon. The expression levels of GAPDH were significantly different between AT- and BM- derived MSCs (p < 0.05). Differences in expression level of β-actin (P < 0.001) and B2M (P < 0.006.) between MSCs derived from AT and BM were substantially higher than GAPDH. In addition, the fold change in expression levels of GAPDH, β-actin and B2M in AT-derived MSCs compared to BM-derived MSCs were 2.38, 6.76 and 7.76, respectively. This study demonstrated that GAPDH and especially β-actin and B2M express in different levels in equine AT- and BM- derived MSCs. Thus they cannot be considered as reliable reference genes for comparative quantitative gene expression analysis in MSCs derived from equine bone marrow and adipose tissue.
Notch signalling drives bone marrow stromal cell-mediated chemoresistance in acute myeloid leukemia
Kamga, Paul Takam; Bassi, Giulio; Cassaro, Adriana; Midolo, Martina; Di Trapani, Mariano; Gatti, Alessandro; Carusone, Roberta; Resci, Federica; Perbellini, Omar; Gottardi, Michele; Bonifacio, Massimiliano; Kamdje, Armel Hervé Nwabo; Ambrosetti, Achille; Krampera, Mauro
2016-01-01
Both preclinical and clinical investigations suggest that Notch signalling is critical for the development of many cancers and for their response to chemotherapy. We previously showed that Notch inhibition abrogates stromal-induced chemoresistance in lymphoid neoplasms. However, the role of Notch in acute myeloid leukemia (AML) and its contribution to the crosstalk between leukemia cells and bone marrow stromal cells remain controversial. Thus, we evaluated the role of the Notch pathway in the proliferation, survival and chemoresistance of AML cells in co-culture with bone marrow mesenchymal stromal cells expanded from both healthy donors (hBM-MSCs) and AML patients (hBM-MSCs*). As compared to hBM-MSCs, hBM-MSCs* showed higher level of Notch1, Jagged1 as well as the main Notch target gene HES1. Notably, hBM-MSCs* induced expression and activation of Notch signalling in AML cells, supporting AML proliferation and being more efficientin inducing AML chemoresistance than hBM-MSCs*. Pharmacological inhibition of Notch using combinations of Notch receptor-blocking antibodies or gamma-secretase inhibitors (GSIs), in presence of chemotherapeutic agents, significant lowered the supportive effect of hBM-MSCs and hBM-MSCs* towards AML cells, by activating apoptotic cascade and reducing protein level of STAT3, AKT and NF-κB. These results suggest that Notch signalling inhibition, by overcoming the stromal-mediated promotion of chemoresistance,may represent a potential therapeutic targetnot only for lymphoid neoplasms, but also for AML. PMID:26967055
Bai, L; Feuerer, M; Beckhove, P; Umansky, V; Schirrmacher, V
2002-02-01
Dendritic cells (DCs) currently used for vaccination in clinical studies to induce immunity against malignant cells are normally generated from peripheral blood-derived monocytes. Here we studied conditions for the generation of DCs from unseparated human bone marrow (BM) mononuclear cells and compared them functionally with DCs from blood. The two types of DCs, from bone marrow (BM-DC) and peripheral blood (BL-DC), were generated in parallel from the same normal healthy donors by culturing in serum-free X-VIVO 20 medium containing GM-CSF and IL-4, and then the phenotypes and functions were compared. BM-DC generation occurred in 14 days and involved proliferative expansion from CD34 stem cells and differentiation while BL-DC generation occurred in 7 days from CD14 monocytes and involved only differentiation. A 7- to 25-fold higher number of DCs could be obtained from BM than from blood. BM-DC had similar phenotypes as BL-DC. The capacity to stimulate MLR reactivity in allogeneic T lymphocytes was higher with BM-DC than that with BL-DC. Also, the capacity to stimulate autologous memory T cell responses to tetanus toxoid (TT) or tuberculin (PPD) was higher with BM-DC than with BL-DC. These results suggest that BM-DC as produced here may be a very economic and useful source of professional antigen-presenting cells for anti-tumor immunotherapeutic protocols.
Su, Feng; Zhang, Wentian; Liu, Jianfang
2015-01-01
It has been validated that c-kit positive (c-kit+) cells in infarcted myocardium are from bone marrow (BM). Given the recent study that in the heart, estrogen receptor alpha (ERα) is involved in adaptive mechanisms by supporting cardiomyocytes survival via post-infarct cardiac c-kit+ cells, we tested a novel hypothesis that membrane ERα (mERа) supports survival of BM c-kit+ cells and enhance protective paracrine function for cardiac repair. Our data showed that myocardial infarction (MI) leads to an increase in c-kit+ first in bone marrow and then specifically within the infarcted myocardium. Also up-regulated mERа in post-infarct BM c-kit+ cells was found in day 3 post MI. In vitro co-culture system, mERа+ enhances the beneficial effects of BM c-kit+ cells by increasing their viability and reducing apoptosis. Post-infarct c-kit+ mERа+ cells population expresses predominant ERα and holds self-renewal as well as cardiac differentiation potentials after MI. In vivo, BM c-kit+ cells reduced infarct size, fibrosis and improved cardiac function. In conclusion, BM c-kit+ mERа+ exerted significantly cardiac protection after MI. A potential important implication of this study is that the manipulation of BM c-kit+ stem cells with ERа-dependent fashion may be helpful in recovering functional performance after cardiac tissue injury. PMID:26191121
Gelatinous Marrow Transformation: A Series of 11 Cases from a Tertiary Care Centre in South India
Das, Sreeya; Mishra, Pritinanda; Kar, Rakhee; Basu, Debdatta
2014-01-01
Gelatinous marrow transformation (GMT) or serous atrophy of bone marrow (BM) is a rare disease characterised by focal marrow hypoplasia, fat atrophy, and accumulation of extracellular mucopolysaccharides abundant in hyaluronic acid. This study reviews 11 cases of GMT from South India. Clinical and haematological parameters, BM aspirate, and biopsies of all patients diagnosed with GMT over a period of 7 years were studied. GMT was diagnosed in BM biopsy based on characteristic morphological appearance and was confirmed by alcian blue positive staining pattern at pH levels of 2.5 and 0.5. Eleven patients were diagnosed with GMT. All were males within the age range of 15 to 50 years. The underlying clinical diagnosis was human immunodeficiency virus positivity in 5 cases, 2 with coexistent disseminated tuberculosis, 1 with cryptococcal meningitis, and 1 with oral candidiasis; disseminated tuberculosis in 1 case; pyrexia of unknown origin in 2 cases; Hodgkin’s lymphoma in 1 case; acute lymphoblastic lymphoma with maintenance chemotherapy in 1 case; and alcoholic pancreatitis in 1 case. BM aspirates showed gelatinous metachromatic seromucinous material in 3 cases. BM biopsies were hypocellular in 7 and normocellular in 4 cases and showed focal GMT in 5 and diffuse GMT in 6 cases. Reactive changes were seen in 4 cases and haemophagocytosis in addition to GMT in 1 case. GMT is a relatively uncommon condition and an indicator of severe illness. It should be differentiated from myelonecrosis, amyloidosis, and marrow oedema. A high index of suspicion is required to diagnose this condition. PMID:25035676
Gelatinous marrow transformation: a series of 11 cases from a tertiary care centre in South India.
Das, Sreeya; Mishra, Pritinanda; Kar, Rakhee; Basu, Debdatta
2014-06-01
Gelatinous marrow transformation (GMT) or serous atrophy of bone marrow (BM) is a rare disease characterised by focal marrow hypoplasia, fat atrophy, and accumulation of extracellular mucopolysaccharides abundant in hyaluronic acid. This study reviews 11 cases of GMT from South India. Clinical and haematological parameters, BM aspirate, and biopsies of all patients diagnosed with GMT over a period of 7 years were studied. GMT was diagnosed in BM biopsy based on characteristic morphological appearance and was confirmed by alcian blue positive staining pattern at pH levels of 2.5 and 0.5. Eleven patients were diagnosed with GMT. All were males within the age range of 15 to 50 years. The underlying clinical diagnosis was human immunodeficiency virus positivity in 5 cases, 2 with coexistent disseminated tuberculosis, 1 with cryptococcal meningitis, and 1 with oral candidiasis; disseminated tuberculosis in 1 case; pyrexia of unknown origin in 2 cases; Hodgkin's lymphoma in 1 case; acute lymphoblastic lymphoma with maintenance chemotherapy in 1 case; and alcoholic pancreatitis in 1 case. BM aspirates showed gelatinous metachromatic seromucinous material in 3 cases. BM biopsies were hypocellular in 7 and normocellular in 4 cases and showed focal GMT in 5 and diffuse GMT in 6 cases. Reactive changes were seen in 4 cases and haemophagocytosis in addition to GMT in 1 case. GMT is a relatively uncommon condition and an indicator of severe illness. It should be differentiated from myelonecrosis, amyloidosis, and marrow oedema. A high index of suspicion is required to diagnose this condition.
Burns, Linda J; Logan, Brent R; Chitphakdithai, Pintip; Miller, John P; Drexler, Rebecca; Spellman, Stephen; Switzer, Galen E; Wingard, John R; Anasetti, Claudio; Confer, Dennis L
2016-06-01
We report a comparison of time to recovery, side effects, and change in blood counts from baseline to after donation from unrelated donors who participated in the Blood and Marrow Transplant Clinical Trials Network phase III randomized, multicenter trial (0201) in which donor-recipient pairs were randomized to either peripheral blood stem cell (PBSC) or bone marrow (BM) donation. Of the entire cohort, 262 donated PBSC and 264 donated BM; 372 (71%) donors were from domestic and 154 (29%) were from international centers (145 German and 9 Canadian). PBSC donors recovered in less time, with a median time to recovery of 1 week compared with 2.3 weeks for BM donors. The number of donors reporting full recovery was significantly greater for donors of PBSC than of BM at 1, 2, and 3 weeks and 3 months after donation. Multivariate analysis showed that PBSC donors were more likely to recover at any time after donation compared with BM donors (hazard ratio, 2.08; 95% confidence interval [CI], 1.73 to 2.50; P < .001). Other characteristics that significantly increased the likelihood of complete recovery were being an international donor and donation in more recent years. Donors of BM were more likely to report grades 2 to 4 skeletal pain, body symptoms, and fatigue at 1 week after donation. In logistic regression analysis of domestic donors only in which toxicities at peri-collection time points (day 5 filgrastim for PBSC donors and day 2 after collection of BM donors) could be analyzed, no variable was significantly associated with grades 2 to 4 skeletal pain, including product donated (BM versus PBSC; odds ratio, 1.13; 95% CI, .74 to 1.74; P = .556). Blood counts were affected by product donated, with greater mean change from baseline to after donation for white blood cells, neutrophils, mononuclear cells, and platelets in PBSC donors whereas BM donors experienced a greater mean change in hemoglobin. This analysis provided an enhanced understanding of donor events as product donated was independent of physician bias or donor preference. Copyright © 2016 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Valencia, Jaris; Blanco, Belén; Yáñez, Rosa; Vázquez, Miriam; Herrero Sánchez, Carmen; Fernández-García, María; Rodríguez Serrano, Concepción; Pescador, David; Blanco, Juan F; Hernando-Rodríguez, Miriam; Sánchez-Guijo, Fermín; Lamana, María Luisa; Segovia, José Carlos; Vicente, Ángeles; Del Cañizo, Consuelo; Zapata, Agustín G
2016-10-01
The immunomodulatory properties of mesenchymal stromal cells (MSCs), together with their tissue regenerative potential, make them interesting candidates for clinical application. In the current study, we analyzed the in vitro immunomodulatory effects of MSCs derived from bone marrow (BM-MSCs) and from adipose tissue (AT-MSCs) obtained from the same donor on both innate and acquired immunity cells. BM-MSCs and AT-MSCs were expanded to fourth or fifth passage and co-cultured with T cells, monocytes or natural killer (NK) cells isolated from human peripheral blood and stimulated in vitro. The possible differing impact of MSCs obtained from distinct sources on phenotype, cell proliferation and differentiation, cytokine production and function of these immune cells was comparatively analyzed. BM-MSCs and AT-MSCs induced a similar decrease in NK-cell proliferation, cytokine secretion and expression of both activating receptors and cytotoxic molecules. However, only BM-MSCs significantly reduced NK-cell cytotoxic activity, although both MSC populations showed the same susceptibility to NK-cell-mediated lysis. AT-MSCs were more potent in inhibiting dendritic-cell (DC) differentiation than BM-MSC, but both MSC populations similarly reduced the ability of DCs to induce CD4(+) T-cell proliferation and cytokine production. BM-MSCs and AT-MSCs induced a similar decrease in T-cell proliferation and production of inflammatory cytokines after activation. AT-MSCs and BM-MSCs from the same donor had similar immunomodulatory capacity on both innate and acquired immunity cells. Thus, other variables, such as accessibility of samples or the frequency of MSCs in the tissue should be considered to select the source of MSC for cell therapy. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Rodriguez-Menocal, Luis; Shareef, Shahjahan; Salgado, Marcela; Shabbir, Arsalan; Van Badiavas, Evangelos
2015-03-13
Recent evidence has shown that bone marrow cells play critical roles during the inflammatory, proliferative and remodeling phases of cutaneous wound healing. Among the bone marrow cells delivered to wounds are stem cells, which can differentiate into multiple tissue-forming cell lineages to effect, healing. Gaining insight into which lineages are most important in accelerating wound healing would be quite valuable in designing therapeutic approaches for difficult to heal wounds. In this report we compared the effect of different bone marrow preparations on established in vitro wound healing assays. The preparations examined were whole bone marrow (WBM), whole bone marrow (long term initiating/hematopoietic based) cultured cells (BMC), and bone marrow derived mesenchymal stem cells (BM-MSC). We also applied these bone marrow preparations in two murine models of radiation induced delayed wound healing to determine which had a greater effect on healing. Angiogenesis assays demonstrated that tube formation was stimulated by both WBM and BMC, with WBM having the greatest effect. Scratch wound assays showed higher fibroblast migration at 24, 48, and 72 hours in presence of WBM as compared to BM-MSC. WBM also appeared to stimulate a greater healing response than BMC and BM-MSC in a radiation induced delayed wound healing animal model. These studies promise to help elucidate the role of stem cells during repair of chronic wounds and reveal which cells present in bone marrow might contribute most to the wound healing process.
Kroy, Daniela C; Hebing, Lisa; Sander, Leif E; Gassler, Nikolaus; Erschfeld, Stephanie; Sackett, Sara; Galm, Oliver; Trautwein, Christian; Streetz, Konrad L
2012-01-01
Bone marrow transplantation (BMT) is a complex process regulated by different cytokines and growth factors. The pleiotropic cytokine IL-6 (Interleukin-6) and related cytokines of the same family acting on the common signal transducer gp130 are known to play a key role in bone marrow (BM) engraftment. In contrast, the exact signalling events that control IL-6/gp130-driven haematopoietic stem cell development during BMT remain unresolved. Conditional gp130 knockout and knockin mice were used to delete gp130 expression (gp130(ΔMx)), or to selectively disrupt gp130-dependent Ras (gp130(ΔMxRas)) or STAT signalling (gp130(ΔMxSTAT)) in BM cells. BM derived from the respective strains was transplanted into irradiated wildtype hosts and repopulation of various haematopoietic lineages was monitored by flow cytometry. BM derived from gp130 deficient donor mice (gp130(ΔMx)) displayed a delayed engraftment, as evidenced by reduced total white blood cells (WBC), marked thrombocytopenia and anaemia in the early phase after BMT. Lineage analysis unravelled a restricted development of CD4(+) and CD8(+) T-cells, CD19(+) B-cells and CD11b(+) myeloid cells after transplantation of gp130-deficient BM grafts. To further delineate the two major gp130-induced signalling cascades, Ras-MAPK and STAT1/3-signalling respectively, we used gp130(ΔMxRas) and gp130(ΔMxSTAT) donor BM. BMT of gp130(ΔMxSTAT) cells significantly impaired engraftment of CD4(+), CD8(+), CD19(+) and CD11b(+) cells, whereas gp130(ΔMxRas) BM displayed a selective impairment in early thrombopoiesis. Importantly, gp130-STAT1/3 signalling deficiency in BM grafts severely impaired survival of transplanted mice, thus demonstrating a pivotal role for this pathway in BM graft survival and function. Our data unravel a vital function of IL-6/gp130-STAT1/3 signals for BM engraftment and haematopoiesis, as well as for host survival after transplantation. STAT1/3 and ras-dependent pathways thereby exert distinct functions on individual bone-marrow-lineages.
The risk of renal disease is increased in lambda myeloma with bone marrow amyloid deposits.
Kozlowski, Piotr; Montgomery, Scott; Befekadu, Rahel; Hahn-Strömberg, Victoria
2017-01-01
Light chain amyloidosis (AL) is a rare deposition disease and is present in 10-15% of patients with myeloma (MM). In contrast to symptomatic AL in MM, presence of bone marrow (BM) amyloid deposits (AD) in MM is not connected to kidney damage. Renal AD but not BM-AD occur mostly in MM with lambda paraprotein (lambda MM). We investigated amyloid presence in BM clots taken at diagnosis in 84 patients with symptomatic MM and compared disease characteristics in MM with kappa paraprotein (kappa MM)/lambda MM with and without BM-AD. Lambda MM with BM-AD was compared with kappa MM without BM-AD, kappa MM with BM-AD, and lambda MM without BM-AD: lambda MM with BM-AD patients had a significantly higher mean creatinine level (4.23 mg/dL vs 1.69, 1.14, and 1.28 mg/dL, respectively) and a higher proportion presented with severe kidney failure (6/11 [55%] vs 6/32 [19%], 1/22 [5%], and 3/19 [16%], respectively). Proteinuria was more common in lambda MM with BM-AD patients compared with kappa MM without BM-AD patients (8/11 [73%] vs 5/32 [16%], respectively). Kidney damage was more common in lambda MM with BM-AD indicating presence of renal AD.
Coronado-Cerda, Erika Evangelina; Franco-Molina, Moisés Armides; Mendoza-Gamboa, Edgar; Prado-García, Heriberto; Rivera-Morales, Lydia Guadalupe; Zapata-Benavides, Pablo; Rodríguez-Salazar, María del Carmen; Caballero-Hernandez, Diana; Tamez-Guerra, Reyes Silvestre; Rodríguez-Padilla, Cristina
2016-01-01
Chemotherapy treatments induce a number of side effects, such as leukopenia neutropenia, peripheral erythropenia, and thrombocytopenia, affecting the quality of life for cancer patients. 5-Fluorouracil (5-FU) is wieldy used as myeloablative model in mice. The bovine dialyzable leukocyte extract (bDLE) or IMMUNEPOTENT CRP® (ICRP) is an immunomodulatory compound that has antioxidants and anti-inflammatory effects. In order to investigate the chemoprotection effect of ICRP on bone marrow cells in 5-FU treated mice, total bone marrow (BM) cell count, bone marrow colony forming units-granulocyte/macrophage (CFU-GM), cell cycle, immunophenotypification, ROS/superoxide and Nrf2 by flow cytometry, and histological and hematological analyses were performed. Our results demonstrated that ICRP increased BM cell count and CFU-GM number, arrested BM cells in G0/G1 phase, increased the percentage of leukocyte, granulocytic, and erythroid populations, reduced ROS/superoxide formation and Nrf2 activation, and also improved hematological levels and weight gain in 5-FU treated mice. These results suggest that ICRP has a chemoprotective effect against 5-FU in BM cells that can be used in cancer patients. PMID:27191003
Bone marrow failure in childhood: central pathology review of a nationwide registry.
Ito, Masafumi
2017-01-01
Refractory cytopenia of childhood (RCC) was proposed as a provisional entity in the 2008 WHO classification of myelodysplastic syndromes (MDS). It is defined as a childhood MDS featuring persistent cytopenia without increase blasts in bone marrow (BM) or peripheral blood (PB). Because the majority of RCC cases feature hypocellularity and pancytopenia, it is quite challenging to differentiate RCC from acquired aplastic anemia (AA) and many kinds of inherited bone marrow failure syndromes (IBMFS). Diagnosis of RCC requires BM histology of characteristic features such as isolated erythroid islet with left shift, abnormal localization and micromegakaryocytes. The Japanese Society of Pediatric Hematology/Oncology has opened the central registry review system since 2009 to evaluate childhood cases of bone marrow failure (BMF). It has reviewed cytology and BM pathology of all registered BMF cases, which number more than 1,700. In the evaluation of BMF, BM pathology is important to assess the mechanism of hematopoiesis. Pathological dysplasia should be differentiated from cytological dysplasia. A central review system is important for rare diseases, such as pediatric BMF. Standardization of pathological diagnosis should be established upon consensus findings, descriptions, and diagnostic approaches. In this review, the pathology of pediatric BMF syndromes is summarized.
Pangrazzi, Luca; Naismith, Erin; Meryk, Andreas; Keller, Michael; Jenewein, Brigitte; Trieb, Klemens; Grubeck-Loebenstein, Beatrix
2017-01-01
Cytomegalovirus (CMV) has been described as a contributor to immunosenescence, thus exacerbating age-related diseases. In persons with latent CMV infection, the CD8+ T cell compartment is irreversibly changed, leading to the accumulation of highly differentiated virus-specific CD8+ T cells in the peripheral blood. The bone marrow (BM) has been shown to play a major role in the long-term survival of antigen-experienced T cells. Effector CD8+ T cells are preferentially maintained by the cytokine IL-15, the expression of which increases in old age. However, the impact of CMV on the phenotype of effector CD8+ T cells and on the production of T cell survival molecules in the BM is not yet known. We now show, using BM samples obtained from persons who underwent hip replacement surgery because of osteoarthrosis, that senescent CD8+ TEMRA cells with a bright expression of CD45RA and a high responsiveness to IL-15 accumulate in the BM of CMV-infected persons. A negative correlation was found between CMV antibody (Ab) titers in the serum and the expression of CD28 and IL-7Rα in CD8+ TEMRAbright cells. Increased IL-15 mRNA levels were observed in the BM of CMV+ compared to CMV− persons, being particularly high in old seropositive individuals. In summary, our results indicate that a BM environment rich in IL-15 may play an important role in the maintenance of highly differentiated CD8+ T cells generated after CMV infection. PMID:28674537
Local bone marrow renin-angiotensin system in primitive, definitive and neoplastic haematopoiesis.
Haznedaroglu, Ibrahim C; Beyazit, Yavuz
2013-03-01
The locally active ligand peptides, mediators, receptors and signalling pathways of the haematopoietic BM (bone marrow) autocrine/paracrine RAS (renin-angiotensin system) affect the essential steps of definitive blood cell production. Haematopoiesis, erythropoiesis, myelopoiesis, formation of monocytic and lymphocytic lineages, thrombopoiesis and other stromal cellular elements are regulated by the local BM RAS. The local BM RAS is present and active even in primitive embryonic haematopoiesis. ACE (angiotensin-converting enzyme) is expressed on the surface of the first endothelial and haematopoietic cells, forming the marrow cavity in the embryo. ACE marks early haematopoietic precursor cells and long-term blood-forming CD34(+) BM cells. The local autocrine tissue BM RAS may also be active in neoplastic haematopoiesis. Critical RAS mediators such as renin, ACE, AngII (angiotensin II) and angiotensinogen have been identified in leukaemic blast cells. The local tissue RAS influences tumour growth and metastases in an autocrine and paracrine fashion via the modulation of numerous carcinogenic events, such as angiogenesis, apoptosis, cellular proliferation, immune responses, cell signalling and extracellular matrix formation. The aim of the present review is to outline the known functions of the local BM RAS within the context of primitive, definitive and neoplastic haematopoiesis. Targeting the actions of local RAS molecules could represent a valuable therapeutic option for the management of neoplastic disorders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeshita, W.M.; Gushiken, V.O.; Ferreira-Duarte, A.P.
Pulmonary neutrophil infiltration produced by Staphylococcal enterotoxin A (SEA) airway exposure is accompanied by marked granulocyte accumulation in bone marrow (BM). Therefore, the aim of this study was to investigate the mechanisms of BM cell accumulation, and trafficking to circulating blood and lung tissue after SEA airway exposure. Male BALB/C mice were intranasally exposed to SEA (1 μg), and at 4, 12 and 24 h thereafter, BM, circulating blood, bronchoalveolar lavage (BAL) fluid and lung tissue were collected. Adhesion of BM granulocytes and flow cytometry for MAC-1, LFA1-α and VLA-4 and cytokine and/or chemokine levels were assayed after SEA-airway exposure.more » Prior exposure to SEA promoted a marked PMN influx to BAL and lung tissue, which was accompanied by increased counts of immature and/or mature neutrophils and eosinophils in BM, along with blood neutrophilia. Airway exposure to SEA enhanced BM neutrophil MAC-1 expression, and adhesion to VCAM-1 and/or ICAM-1-coated plates. Elevated levels of GM-CSF, G-CSF, INF-γ, TNF-α, KC/CXCL-1 and SDF-1α were detected in BM after SEA exposure. SEA exposure increased production of eosinopoietic cytokines (eotaxin and IL-5) and BM eosinophil VLA-4 expression, but it failed to affect eosinophil adhesion to VCAM-1 and ICAM-1. In conclusion, BM neutrophil accumulation after SEA exposure takes place by integrated action of cytokines and/or chemokines, enhancing the adhesive responses of BM neutrophils and its trafficking to lung tissues, leading to acute lung injury. BM eosinophil accumulation in SEA-induced acute lung injury may occur via increased eosinopoietic cytokines and VLA-4 expression. - Highlights: • Airway exposure to SEA causes acute lung inflammation. • SEA induces accumulation of bone marrow (BM) in immature and mature neutrophils. • SEA increases BM granulocyte or BM PMN adhesion to ICAM-1 and VCAM-1, and MAC-1 expression. • SEA induces BM elevations of CXCL-1, INF-γ, TNF-α, GM-CSF, G-CSF and SDF-1α. • Our results contribute to elucidating BM events during SEA-induced lung inflammation.« less
Xubo, Gong; Xingguo, Lu; Xianguo, Wu; Rongzhen, Xu; Xibin, Xiao; Lin, Wang; Lei, Zhu; Xiaohong, Zhang; Genbo, Xu; Xiaoying, Zhao
2009-10-01
To better realize the features of peripheral blood (PB), bone marrow (BM) aspirate and especially BM trephine biopsy in atypical chronic myeloid leukemia (aCML). We studied PB, BM smears in 35 cases of aCML and compared with 84 cases of chronic granulocytic leukemia chronic phase (CGL-CP), 39 cases of chronic myelomonocytic leukemia (CMML). In addition, we evaluated characteristics of BM trephine biopsies in 21 cases of aCML and compared with 68 cases of CGL-CP, 20 cases of CMML. All aCML patients presented with leukocytosis (median WBC 17.3 x 10(9)/L), 48% had moderate anemia, and 85% had thrombocytopenia. Values of monocytes, eosinophils, basophils, percentage of immature granulocytes and monocytes (0.63 +/- 0.41 x 10(9)/L, 0.18 +/- 0.16 x 10(9)/L, 0.09 +/-0.08 x 10(9)/L, 6.27 +/- 3.09%, and 2.46 +/- 1.75%, respectively) were useful in distinguishing aCML from CGL-CP and CMML groups. The BM smears showed that striking dysgranulopoieis (100%), dyserythropoiesis (48.6%), percentage of blasts, nucleated erythrocytes, monocytes, eosinophils, and basophils (2.45 +/- 2.06%, 7.76 +/- 2.89%, 1.30 +/- 1.21%, 1.47 +/- 1.60%, and 1.15 +/- 1.08%, respectively) were all important parameters for a diagnosis of aCML. On BM trephine sections, aCML was characterized as hypercellularity, a moderate degree of reticulin fibrosis (71.4%), lymphocytopenia (76.2%), plasmacytopenia (90.5%), abnormal localization of immature precursors (28.5%), and absence of eosinophilia, basophilia, monocytosis. Furthermore, BM imprints, immunohistochemical, and cytochemical staining findings provided important morphological reference to BM trephine sections and made the identification of nucleated cells more convenient. Besides the findings observed in PB and BM aspirate, features of BM trephine biopsy (including BM trephine section, BM imprint, immunohistochemical, and cytochemical staining) can also aid in the diagnosis of aCML.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elicin, Olgun; Callaway, Sharon; Prior, John O.
2014-12-01
Purpose: To quantify the relationship between bone marrow (BM) response to radiation and radiation dose by using {sup 18}F-labeled fluorodeoxyglucose positron emission tomography [{sup 18}F]FDG-PET standard uptake values (SUV) and to correlate these findings with hematological toxicity (HT) in cervical cancer (CC) patients treated with chemoradiation therapy (CRT). Methods and Materials: Seventeen women with a diagnosis of CC were treated with standard doses of CRT. All patients underwent pre- and post-therapy [{sup 18}F]FDG-PET/computed tomography (CT). Hemograms were obtained before and during treatment and 3 months after treatment and at last follow-up. Pelvic bone was autosegmented as total bone marrow (BM{sub TOT}).more » Active bone marrow (BM{sub ACT}) was contoured based on SUV greater than the mean SUV of BM{sub TOT}. The volumes (V) of each region receiving 10, 20, 30, and 40 Gy (V{sub 10}, V{sub 20}, V{sub 30}, and V{sub 40}, respectively) were calculated. Metabolic volume histograms and voxel SUV map response graphs were created. Relative changes in SUV before and after therapy were calculated by separating SUV voxels into radiation therapy dose ranges of 5 Gy. The relationships among SUV decrease, radiation dose, and HT were investigated using multiple regression models. Results: Mean relative pre-post-therapy SUV reductions in BM{sub TOT} and BM{sub ACT} were 27% and 38%, respectively. BM{sub ACT} volume was significantly reduced after treatment (from 651.5 to 231.6 cm{sup 3}, respectively; P<.0001). BM{sub ACT} V{sub 30} was significantly correlated with a reduction in BM{sub ACT} SUV (R{sup 2}, 0.14; P<.001). The reduction in BM{sub ACT} SUV significantly correlated with reduction in white blood cells (WBCs) at 3 months post-treatment (R{sup 2}, 0.27; P=.04) and at last follow-up (R{sup 2}, 0.25; P=.04). Different dosimetric parameters of BM{sub TOT} and BM{sub ACT} correlated with long-term hematological outcome. Conclusions: The volumes of BM{sub TOT} and BM{sub ACT} that are exposed to even relatively low doses of radiation are associated with a decrease in WBC counts following CRT. The loss in proliferative BM SUV uptake translates into low WBC nadirs after treatment. These results suggest the potential of intensity modulated radiation therapy to spare BM{sub TOT} to reduce long-term hematological toxicity.« less
Evaluation of blood and bone marrow in selected canine vector-borne diseases.
De Tommasi, Anna S; Otranto, Domenico; Furlanello, Tommaso; Tasca, Silvia; Cantacessi, Cinzia; Breitschwerdt, Edward B; Stanneck, Dorothee; Dantas-Torres, Filipe; Baneth, Gad; Capelli, Gioia; de Caprariis, Donato
2014-12-02
Bone marrow (BM) is a major hematopoietic organ that can harbour a variety of vector-borne pathogens; however, knowledge of BM pathological changes in dogs infected with vector-borne pathogens is limited. Thus, the aim of the present study was to assess the pathological changes in canine BM associated with natural infections by four vector-borne pathogens, as well as to determine the relationships between such changes and abnormalities of the peripheral blood. Cytological disorders and pathological changes of the BM of 83 dogs naturally-infected with one or more of four vector-borne pathogens (i.e., Anaplasma platys, Leishmania infantum, Babesia vogeli and Hepatozoon canis) were evaluated and compared with the corresponding hematological findings. Dysgranulopoiesis and dysmegakaryocytopoiesis were the most frequently observed BM abnormalities in infected dogs. Erythroid suppression, and lymphocytic, monocytic and macrophage hyperplasia were also observed. Interestingly, associations between suppression and hyperplasia of specific cell lines in the marrow and corresponding changes in numbers of circulating peripheral blood cells were not observed. Infections with one or more of the vector-borne pathogens examined in this study should be considered as differential diagnoses for secondary dysmyelopoiesis.
Engineering bone grafts with enhanced bone marrow and native scaffolds.
Hung, Ben P; Salter, Erin K; Temple, Josh; Mundinger, Gerhard S; Brown, Emile N; Brazio, Philip; Rodriguez, Eduardo D; Grayson, Warren L
2013-01-01
The translation of tissue engineering approaches to the clinic has been hampered by the inability to find suitable multipotent cell sources requiring minimal in vitro expansion. Enhanced bone marrow (eBM), which is obtained by reaming long bone medullary canals and isolating the solid marrow putty, has large quantities of stem cells and demonstrates significant potential to regenerate bone tissues. eBM, however, cannot impart immediate load-bearing mechanical integrity or maintain the gross anatomical structure to guide bone healing. Yet, its putty-like consistency creates a challenge for obtaining the uniform seeding necessary to effectively combine it with porous scaffolds. In this study, we examined the potential for combining eBM with mechanically strong, osteoinductive trabecular bone scaffolds for bone regeneration by creating channels into scaffolds for seeding the eBM. eBM was extracted from the femurs of adult Yorkshire pigs using a Synthes reamer-irrigator-aspirator device, analyzed histologically, and digested to extract cells and characterize their differentiation potential. To evaluate bone tissue formation, eBM was seeded into the channels in collagen-coated or noncoated scaffolds, cultured in osteogenic conditions for 4 weeks, harvested and assessed for tissue distribution and bone formation. Our data demonstrates that eBM is a heterogenous tissue containing multipotent cell populations. Furthermore, coating scaffolds with a collagen hydrogel significantly enhanced cellular migration, promoted uniform tissue development and increased bone mineral deposition. These findings suggest the potential for generating customized autologous bone grafts for treating critical-sized bone defects by combining a readily available eBM cell source with decellularized trabecular bone scaffolds. © 2013 S. Karger AG, Basel
Sayyed, Hayam G; Osama, Amany; Idriss, Naglaa K; Sabry, Dina; Abdelrhim, Azza S; Bakry, Rania
2016-01-01
Background and objective: Human umbilical cord blood (UCB) cells and bone marrow mesenchymal stem cells (BM-MSCs) have numerous advantages as grafts for cell transplantation. We hypothesized differing impacts of human UCB cells and rat BM-MSCs on reversal of hepatic injury and revival of liver function in carbon tetrachloride (CCl4)-induced liver fibrosis. Methods: Forty rats were divided into 4 groups; control group, CCl4 group, CCl4/CD34+ group and CCl4/BM-MSCs group. Blood samples were driven from rats at 4, 8 and 12 weeks to measure serum concentration of albumin and alanine aminotransferase (ALT). Quantitative expression of collagen Iα, TGF-β, α-SMA, albumin, MMP-2, MMP-9 and TNF-α were assessed by polymerase chain reaction. Histopathological examination of the liver tissue was performed. GFP labeled cells were detected in groups injected with stem cells. Results: Regarding liver function, CD34+ were more efficient than BM-MSCs in elevating albumin (P<0.05) and reducing ALT (P<0.05) concentrations. Concerning gene expression, CD34+ were more effective than BM-MSCs in reducing gene expressions of collagen Iα (P<0.01), TGF-β1 (P<0.01) and α-SMA (P<0.01). Both CD34+ and BM-MSCs have the same efficacy in reducing TNF-α (P<0.001 and P<0.01, respectively). Furthermore, CD34+ were more valuable than BM-MSCs in increasing gene expression of albumin (P<0.05) and MMP-9 (P<0.01). Conclusion: Taken together; human UCB CD34+ stem cells were more efficient in improvement of experimental liver injury than BM-MSCs. This study highlighted an important role of human UCB CD34+ stem cells in liver fibrosis therapy. PMID:27785340
Sun, Yu; Yao, Zhina; Lin, Peng; Hou, Xinguo; Chen, Li
2014-05-01
Using a microfluidic chip, we have investigated whether bone marrow mesenchymal stem cells (BM-MSCs) could ameliorate IL-1β/IFN-γ-induced dysfunction of INS-1 cells. BM-MSCs were obtained from diabetes mellitus patients and their cell surface antigen expression profiles were analyzed by flow cytometric. INS-1 cells were cocultured with BM-MSCs on a microfluidic chip with persistent perfusion of medium containing 1 ng/mL IL-1β and 2.5 U/mL IFN-γ for 72 h. BM-MSCs could partially rescue INS-1 cells from cytokine-induced dysfunction and ameliorate the expression of insulin and PDX-1 gene in INS-1 cells. Thus BM-MSCs can be viewed as a promising stem cell source to depress inflammatory factor-induced dysfunction of pancreatic β cells in diabetic patients. © 2014 International Federation for Cell Biology.
Cytogenetic study is not essential in patients with aplastic anemia
Dutta, Atreyee; De, Rajib; Dolai, Tuphan K; Mitra, Pradip K; Halder, Ajanta
2017-01-01
Depending on contemporary treatment approach of aggressive immunosuppression, Aplastic Anemia (AA) is caused by immunological destruction of otherwise normal hematopoietic stem cells. The aim was to summarize the cytogenetic abnormalities in AA patients and the frequency of Fanconi Anemia (FA) in morphologically normal AA patients in eastern India. Ethical clearances were obtained from both institutions involved in this study. Out of 72800 patients attending the outpatient department, 520 pancytopenia patients were screened for AA after Bone marrow (BM) aspiration and biopsy. Samples were collected from 117 cases in 3 phases. 51 peripheral venous blood (PVB) samples in the first phase, 19 BM & PVB paired samples in the second phase and 47 BM samples in third phase were collected followed by leukocyte and/or BM stem cell culture. Next GTG banding and karyotyping were performed. PVB was collected from 63 (< 50 years) AA patients and stress cytogenetics was done to diagnose FA. In the first phase of the study, out of 51 PVB samples, 1 (1.96%) showed a unique chromosomal abnormality, i.e. 45,XY,rob(14:21)(p10:q10)[20]. In the second phase of study, among 19 BM & PVB paired samples, 1 (5.26%) showed abnormal karyotype i.e. 45,X,-Y[3]/46,XY[47]. In the third phase of the study, 47 BM samples showed normal karyotype. Only 6 (9.52%) cases were found positive for stress cytogenetics. A negligible percentage showing cytogenetic abnormality in such a considerable number of AA cases indicates that routine cytogenetic analysis of AA patient is not essential. A significant percentage was positive for stress cytogenetics; suggestive for FA, even the patients were morphologically normal. PMID:29181263
Chitphakdithai, Pintip; Logan, Brent R.; Shaw, Bronwen E.; Wingard, John R.; Lazarus, Hillard M.; Waller, Edmund K.; Seftel, Matthew; Stroncek, David F.; Lopez, Angela M.; Maharaj, Dipnarine; Hematti, Peiman; O'Donnell, Paul V.; Loren, Alison W.; Leitman, Susan F.; Anderlini, Paolo; Goldstein, Steven C.; Levine, John E.; Navarro, Willis H.; Miller, John P.; Confer, Dennis L.
2013-01-01
Although peripheral blood stem cells (PBSCs) have replaced bone marrow (BM) as the most common unrelated donor progenitor cell product collected, a direct comparison of concurrent PBSC versus BM donation experiences has not been performed. We report a prospective study of 2726 BM and 6768 PBSC donors who underwent collection from 2004 to 2009. Pain and toxicities were assessed at baseline, during G-CSF administration, on the day of collection, within 48 hours of donation, and weekly until full recovery. Peak levels of pain and toxicities did not differ between the 2 donation processes for most donors. Among obese donors, PBSC donors were at increased risk of grade 2 to 4 pain as well as grade 2 to 4 toxicities during the pericollection period. In contrast, BM donors were more likely to experience grade 2 to 4 toxicities at 1 week and pain at 1 week and 1 month after the procedure. BM donors experienced slower recovery, with 3% still not fully recovered at 24 weeks, whereas 100% of PBSC donors had recovered. Other factors associated with toxicity included obesity, increasing age, and female sex. In summary, this study provides extensive detail regarding individualized risk patterns of PBSC versus BM donation toxicity, suggesting donor profiles that can be targeted with interventions to minimize toxicity. PMID:23109243
Pulsipher, Michael A; Chitphakdithai, Pintip; Logan, Brent R; Shaw, Bronwen E; Wingard, John R; Lazarus, Hillard M; Waller, Edmund K; Seftel, Matthew; Stroncek, David F; Lopez, Angela M; Maharaj, Dipnarine; Hematti, Peiman; O'Donnell, Paul V; Loren, Alison W; Leitman, Susan F; Anderlini, Paolo; Goldstein, Steven C; Levine, John E; Navarro, Willis H; Miller, John P; Confer, Dennis L
2013-01-03
Although peripheral blood stem cells (PBSCs) have replaced bone marrow (BM) as the most common unrelated donor progenitor cell product collected, a direct comparison of concurrent PBSC versus BM donation experiences has not been performed. We report a prospective study of 2726 BM and 6768 PBSC donors who underwent collection from 2004 to 2009. Pain and toxicities were assessed at baseline, during G-CSF administration, on the day of collection, within 48 hours of donation, and weekly until full recovery. Peak levels of pain and toxicities did not differ between the 2 donation processes for most donors. Among obese donors, PBSC donors were at increased risk of grade 2 to 4 pain as well as grade 2 to 4 toxicities during the pericollection period. In contrast, BM donors were more likely to experience grade 2 to 4 toxicities at 1 week and pain at 1 week and 1 month after the procedure. BM donors experienced slower recovery, with 3% still not fully recovered at 24 weeks, whereas 100% of PBSC donors had recovered. Other factors associated with toxicity included obesity, increasing age, and female sex. In summary, this study provides extensive detail regarding individualized risk patterns of PBSC versus BM donation toxicity, suggesting donor profiles that can be targeted with interventions to minimize toxicity.
Bone marrow support of the heart in pressure overload is lost with aging.
Sopko, Nikolai A; Turturice, Benjamin A; Becker, Mitchell E; Brown, Chase R; Dong, Feng; Popović, Zoran B; Penn, Marc S
2010-12-21
Exogenous stem cell delivery is under investigation to prevent and treat cardiac dysfunction. It is less studied as to the extent endogenous bone marrow derived stem cells contribute to cardiac homeostais in response to stress and the affects of aging on this stress response. To determine the role of bone marrow (BM) derived stem cells on cardiac homeostasis in response to pressure overload (PO) and how this response is altered by aging. Young (8 weeks) and old (>40 weeks) C57/b6 mice underwent homo- and heterochronic BM transplantation prior to transverse aortic constriction (TAC). We found that older BM is associated with decreased cardiac function following TAC. This decreased function is associated with decrease in BM cell engraftment, increased myocyte apoptosis, decreased myocyte hypertrophy, increased myocardial fibrosis and decreased cardiac function. Additionally, there is a decrease in activation of resident cells within the heart in response to PO in old mice. Interestingly, these effects are not due to alterations in vascular density or inflammation in response to PO or differences in ex vivo stem cell migration between young and old mice. BM derived stem cells are activated in response to cardiac PO, and the recruitment of BM derived cells are involved in cardiac myocyte hypertrophy and maintenance of function in response to PO which is lost with aging.
Aliborzi, Ghaem; Vahdati, Akbar; Mehrabani, Davood; Hosseini, Seyed Ebrahim; Tamadon, Amin
2016-05-30
Mesenchymal stem cells (MSCs) from different sources have different characteristics. Moreover, MSCs are not isolated and characterized in Guinea pig for animal model of cell therapy. was the isolating of bone marrow MSCs (BM-MSCs) and adipose tissue MSCs (AT-MSCs) from Guinea pig and assessing their characteristics. In this study, bone marrow and adipose tissue were collected from three Guinea pigs and cultured and expanded through eight passages. BM-MSCs and AT-MSCs at passages 2, 5 and 8 were seeded in 24-well plates in triplicate. Cells were counted from each well 1~7 days after seeding to determine population doubling time (PDT) and cell growth curves. Cells of passage 3 were cultured in osteogenic and adipogenic differentiation media. BM-MSCs and AT-MSCs attached to the culture flask and displayed spindle-shaped morphology. Proliferation rate of AT-MSCs in the analyzed passages was more than BM-MSCs. The increase in the PDT of MSCs occurs with the increase in the number of passages. Moreover, after culture of BM-MSCs and AT-MSCs in differentiation media, the cells differentiated toward osteoblasts and adipocytes as verified by Alizarin Red staining and Oil Red O staining, respectively. BM-MSCs and AT-MSCs of Guinea pig could be valuable source of multipotent stem cells for use in experimental and preclinical studies in animal models.
Camorani, Simona; Hill, Billy Samuel; Fontanella, Raffaela; Greco, Adelaide; Gramanzini, Matteo; Auletta, Luigi; Gargiulo, Sara; Albanese, Sandra; Lucarelli, Enrico; Cerchia, Laura; Zannetti, Antonella
2017-01-01
Bone marrow-derived mesenchymal stem cells (BM-MSCs) are shown to participate in tumor progression by establishing a favorable tumor microenvironment (TME) that promote metastasis through a cytokine networks. However, the mechanism of homing and recruitment of BM-MSCs into tumors and their potential role in malignant tissue progression is poorly understood and controversial. Here we show that BM-MSCs increase aggressiveness of triple-negative breast cancer (TNBC) cell lines evaluated as capability to migrate, invade and acquire stemness markers. Importantly, we demonstrate that the treatment of BM-MSCs with a nuclease-resistant RNA aptamer against platelet-derived growth factor receptor β (PDGFRβ) causes the inhibition of receptor-dependent signaling pathways thus drastically hampering BM-MSC recruitment towards TNBC cell lines and BM-MSCs trans-differentiation into carcinoma-associated fibroblast (CAF)-like cells. Moreover, in vivo molecular imaging analysis demonstrated the aptamer ability to prevent BM-MSCs homing to TNBC xenografts. Collectively, our results indicate the anti-PDGFRβ aptamer as a novel therapeutic tool to interfere with BM-MSCs attraction to TNBC providing the rationale to further explore the aptamer in more complex pre-clinical settings. PMID:28912898
Bommannan, K; Sachdeva, M U S; Gupta, M; Bose, P; Kumar, N; Sharma, P; Naseem, S; Ahluwalia, J; Das, R; Varma, N
2016-10-01
A good bone marrow (BM) sample is essential in evaluating many hematologic disorders. An unsuccessful BM aspiration (BMA) procedure precludes a successful flow cytometric immunophenotyping (FCI) in most hematologic malignancies. Apart from FCI, most ancillary diagnostic techniques in hematology are less informative. We describe the feasibility of FCI in vortex-dislodged cell preparation obtained from unfixed trephine biopsy (TB) specimens. In pancytopenic patients and dry tap cases, routine diagnostic BMA and TB samples were complemented by additional trephine biopsies. These supplementary cores were immediately transferred into sterile tubes filled with phosphate-buffered saline, vortexed, and centrifuged. The cell pellet obtained was used for flow cytometric immunophenotyping. Of 7955 BMAs performed in 42 months, 34 dry tap cases were eligible for the study. Vortexing rendered a cell pellet in 94% of the cases (32 of 34), and FCI rendered a rapid diagnosis in 100% of the cases (32 of 32) where cell pellets were available. We describe an efficient procedure which could be effectively utilized in resource-limited centers and reduce the frequency of repeat BMA procedures. © 2016 John Wiley & Sons Ltd.
Moudra, Alena; Hubackova, Sona; Machalova, Veronika; Vancurova, Marketa; Bartek, Jiri; Reinis, Milan; Hodny, Zdenek; Jonasova, Anna
2016-01-01
ABSTRACT Myelodysplastic syndromes (MDS) represent a heterogeneous group of clonal stem cell disorders characterized by ineffective hematopoiesis frequently progressing into acute myeloid leukemia (AML), with emerging evidence implicating aberrant bone marrow (BM) microenvironment and inflammation-related changes. 5-azacytidine (5-AC) represents standard MDS treatment. Besides inhibiting DNA/RNA methylation, 5-AC has been shown to induce DNA damage and apoptosis in vitro. To provide insights into in vivo effects, we assessed the proinflammatory cytokines alterations during MDS progression, cytokine changes after 5-AC, and contribution of inflammatory comorbidities to the cytokine changes in MDS patients. We found that IL8, IP10/CXCL10, MCP1/CCL2 and IL27 were significantly elevated and IL12p70 decreased in BM of MDS low-risk, high-risk and AML patients compared to healthy donors. Repeated sampling of the high-risk MDS patients undergoing 5-AC therapy revealed that the levels of IL8, IL27 and MCP1 in BM plasma were progressively increasing in agreement with in vitro experiments using several cancer cell lines. Moreover, the presence of inflammatory diseases correlated with higher levels of IL8 and MCP1 in low-risk but not in high-risk MDS. Overall, all forms of MDS feature a deregulated proinflammatory cytokine landscape in the BM and such alterations are further augmented by therapy of MDS patients with 5-AC. PMID:27853634
Phadnis, Smruti M; Ghaskadbi, Surendra M; Hardikar, Anandwardhan A; Bhonde, Ramesh R
2009-01-01
Cellular microenvironment is known to play a critical role in the maintenance of human bone marrow-derived mesenchymal stem cells (BM-MSCs). It was uncertain whether BM-MSCs obtained from a 'diabetic milieu' (dBM-MSCs) offer the same regenerative potential as those obtained from healthy (non-diabetic) individuals (hBM-MSCs). To investigate the effect of diabetic microenvironment on human BM-MSCs, we isolated and characterized these cells from diabetic patients (dBM-MSCs). We found that dBM-MSCs expressed mesenchymal markers such as vimentin, smooth muscle actin, nestin, fibronectin, CD29, CD44, CD73, CD90, and CD105. These cells also exhibited multilineage differentiation potential, as evident from the generation of adipocytes, osteocytes, and chondrocytes when exposed to lineage specific differentiation media. Although the cells were similar to hBM-MSCs, 6% (3/54) of dBM-MSCs expressed proinsulin/C-peptide. Emanating from the diabetic microenvironmental milieu, we analyzed whether in vitro reprogramming could afford the maturation of the islet-like clusters (ICAs) derived from dBM-MSCs. Upon mimicking the diabetic hyperglycemic niche and the supplementation of fetal pancreatic extract, to differentiate dBM-MSCs into pancreatic lineage in vitro, we observed rapid differentiation and maturation of dBM-MSCs into islet-like cell aggregates. Thus, our study demonstrated that diabetic hyperglycemic microenvironmental milieu plays a major role in inducing the differentiation of human BM-MSCs in vivo and in vitro.
Gil-Sanchis, Claudia; Cervelló, Irene; Khurana, Satish; Faus, Amparo; Verfaillie, Catherine; Simón, Carlos
2015-06-01
To study the involvement of seven types of bone marrow-derived cells (BMDCs) in the endometrial regeneration in mice after total body irradiation. Prospective experimental animal study. University research laboratories. β-Actin-green fluorescent protein (GFP) transgenic C57BL/6-Tg (CAG-EGFP) and C57BL/6J female mice. The BMDCs were isolated from CAG-EGFP mice: unfractionated bone marrow cells, hematopoietic progenitor cells, endothelial progenitor cells (EPCs), and mesenchymal stem cells (MSCs). In addition three murine GFP(+) cell lines were used: mouse Oct4 negative BMDC multipotent adult progenitor cells (mOct4(-)BM-MAPCs), BMDC hypoblast-like stem cells (mOct4(+) BM-HypoSCs), and MSCs. All cell types were injected through the tail vein of 9 Gy-irradiated C57BL/6J female mice. Flow cytometry, cell culture, bone marrow transplantation assays, histologic evaluation, immunohistochemistry, proliferation, apoptosis, and statistical analysis. After 12 weeks, histologic analysis revealed that uteri of mice with mOct4(-)BM-MAPCs and MSC line were significantly smaller than uteri of mice with uncultured BMDCs or mOct4(+) BM-HypoSCs. The percentage of engrafted GFP(+) cells ranged from 0.13%-4.78%. Expression of Ki-67 was lower in all uteri from BMDCs treated mice than in the control, whereas TUNEL(+) cells were increased in the EPCs and mOct4(+)BM-HypoSCs groups. Low number of some BMDCs can be found in regenerating endometrium, including stromal, endotelial, and epithelial compartments. Freshly isolated MSCs and EPCs together with mOct4(+) BM-HypoSCs induced the greatest degree of regeneration, whereas culture isolated MSCs and mOct4(-)BM-MAPCs transplantation may have an inhibitory effect on endometrial regeneration. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Cunha, Mayara Caldas Ramos; Lima, Fabiana da Silva; Vinolo, Marco Aurélio Ramirez; Hastreiter, Araceli; Curi, Rui; Borelli, Primavera; Fock, Ricardo Ambrósio
2013-01-01
Protein malnutrition (PM) results in pathological changes that are associated with peripheral leukopenia, bone marrow (BM) hypoplasia and alterations in the BM microenvironment leading to hematopoietic failure; however, the mechanisms involved are poorly understood. In this context, the BM mesenchymal stem cells (MSCs) are cells intimately related to the formation of the BM microenvironment, and their differentiation into adipocytes is important because adipocytes are cells that have the capability to negatively modulate hematopoiesis. Two-month-old male Balb/c mice were subjected to protein-energy malnutrition with a low-protein diet containing 2% protein, whereas control animals were fed a diet containing 12% protein. The hematopoietic parameters and the expression of CD45 and CD117 positive cells in the BM were evaluated. MSCs were isolated from BM, and their capability to produce SCF, IL-3, G-CSF and GM-CSF were analyzed. The expression of PPAR-γ and C/EBP-α as well as the expression of PPAR-γ and SREBP mRNAs were evaluated in MSCs together with their capability to differentiate into adipocytes in vitro. The malnourished animals had anemia and leukopenia as well as spleen and bone marrow hypoplasia and a reduction in the expression of CD45 and CD117 positive cells from BM. The MSCs of the malnourished mice presented an increased capability to produce SCF and reduced production of G-CSF and GM-CSF. The MSCs from the malnourished animals showed increased expression of PPAR-γ protein and PPAR-γ mRNA associated with an increased capability to differentiate into adipocytes. The alterations found in the malnourished animals allowed us to conclude that malnutrition committed MSC differentiation leading to adipocyte decision and compromised their capacity for cytokine production, contributing to an impaired hematopoietic microenvironment and inducing the bone marrow failure commonly observed in protein malnutrition states. PMID:23516566
Sharma, Prashant; Pati, Hara Prasad; Mishra, Pravas Chandra; Dinda, Amit Kumar; Gupta, Ruchika; Sharma, Alok; Jacob, Tony George
2011-08-01
To explore the utility of bone marrow (BM) angiogenesis in differentiating primary myelofibrosis (PMF) from secondary myelofibrosis (MF). CD34 immunostaining was performed on BM biopsies from 21 PMFs, 23 non-PMF myeloproliferative neoplasms (MPN) with associated MF, 20 secondary MF samples, and 10 nonfibrotic controls. Microvessel density (MVD) and microvessel surface area (MSA), along with blood and BM findings were compared between the groups. The post-MPN MF cases included chronic myeloid leukemia-MF and polycythemia vera-MF. Etiologies of secondary MF were metastatic carcinomas, non-MPN hematologic malignancies, tuberculosis, autoimmune MF, and osteopetrosis. Megakaryocytic clustering was the most frequent and intrasinusoidal hematopoiesis the most specific feature of PMF. Higher reticulin grade, collagenization, and osteomyelosclerosis were commoner in PMF. MVD and MSA were significantly increased in fibrotic marrows regardless of etiology. Although mean MVD as well as MSA were highest in PMF, extensive overlaps among groups and marked heterogeneity in the secondary MF group rendered them of limited utility in the differential diagnosis. Enhanced angiogenesis is not entirely specific for PMF. Overlaps with secondary MF limits its differential diagnostic utility. Pathogenetically, our findings suggest that enhanced angiogenesis is a secondary paraneoplastic stromal response shared by various unrelated conditions.
Messina, Valeria; Valtieri, Mauro; Rubio, Mercedes; Falchi, Mario; Mancini, Francesca; Mayor, Alfredo; Alano, Pietro; Silvestrini, Francesco
2018-01-01
The gametocytes of Plasmodium falciparum, responsible for the transmission of this malaria parasite from humans to mosquitoes, accumulate and mature preferentially in the human bone marrow. In the 10 day long sexual development of P. falciparum, the immature gametocytes reach and localize in the extravascular compartment of this organ, in contact with several bone marrow stroma cell types, prior to traversing the endothelial lining and re-entering in circulation at maturity. To investigate the host parasite interplay underlying this still obscure process, we developed an in vitro tridimensional co-culture system in a Matrigel scaffold with P. falciparum gametocytes and self-assembling spheroids of human bone marrow mesenchymal cells (hBM-MSCs). Here we show that this co-culture system sustains the full maturation of the gametocytes and that the immature, but not the mature, gametocytes adhere to hBM-MSCs via trypsin-sensitive parasite ligands exposed on the erythrocyte surface. Analysis of a time course of gametocytogenesis in the co-culture system revealed that gametocyte maturation is accompanied by the parasite induced stimulation of hBM-MSCs to secrete a panel of 14 cytokines and growth factors, 13 of which have been described to play a role in angiogenesis. Functional in vitro assays on human bone marrow endothelial cells showed that supernatants from the gametocyte mesenchymal cell co-culture system enhance ability of endothelial cells to form vascular tubes. These results altogether suggest that the interplay between immature gametocytes and hBM-MSCs may induce functional and structural alterations in the endothelial lining of the human bone marrow hosting the P. falciparum transmission stages. PMID:29546035
[Regulatory effect of bone marrow mesenchymal stem cells on polarization of macrophages].
Hou, Y; Zhou, X; Cai, W L; Guo, C C; Han, Y
2017-04-20
Objective: To examine the regulatory effect of bone marrow mesenchymal stem cells (BM-MSCs) on the polarization of bone marrow-derived macrophages, and to provide a theoretical support for the application of mesenchymal stem cells in the treatment of liver fibrosis. Methods: MSCs and macrophages were first isolated from the bone marrow of mice. Macrophages were polarized to M1 macrophages with lipopolysaccharide (LPS) and interferon-γ (IFN-γ), and to M2 macrophages with interleukin-4 (IL-4). The macrophages were then co-cultured with BM-MSCs in a Transwell for 24 h, and changes in the percentages of M1 and M2 macrophages were examined using flow cytometry. The mRNA levels of the M1 macrophage-associated cytokines, tumor necrosis factor-α (TNF-α) and interleukin-23a (IL-23a), and M2 macrophage-associated molecules, arginase-1 (Arg-1) and CD163, were measured by real-time quantitative PCR. The two samples were compared using the t test, and P < 0.05 was considered as statistically significant. Results: Flow cytometry showed that the percentage of M1 macrophages was significantly lower in the (macrophage + LPS + IFN-γ + BM-MSC) co-culture group than in the (macrophage + LPS + IFN-γ) group (62.5% ± 4.6% vs 86.6% ± 6.9%, t = 5.034, P = 0.0073). In addition, the relative mRNA expression of TNF-α and IL-23a was also significantly reduced in the co-culture group compared with those in the macrophage control group as measured by RT-qPCR ( t = 11.57 and 10.57, respectively, P < 0.05). Compared with that in the macrophage control group, the percentage of M2 macrophages in the (macrophage+BM-MSC) co-culture group was significantly increased (89.5% ± 5.8% vs 70.1% ± 6.3%, t = 3.924, P = 0.0172), along with significantly elevated relative mRNA expression of Arg1 (14.35±1.05 vs 1.00±0.03, t = 21.96, P < 0.05) and CD163 (3.04 ± 0.27 vs 1.00 ± 0.03, t = 13.14, P < 0.05). Conclusion: BM-MSCs can inhibit LPS + IFN-γ-induced polarization to M1 macrophages and promote polarization to M2 macrophages through the release of paracrine factors.
Zhang, C; Chen, X-H; Zhang, X; Gao, L; Gao, L; Kong, P-Y; Peng, X-G; Sun, A-H; Gong, Y; Zeng, D-F; Wang, Q-Y
2010-06-01
Unmanipulated haploidentical/mismatched related transplantation with combined granulocyte-colony stimulating factor-mobilised peripheral blood stem cells (G-PBSCs) and granulocyte-colony stimulating factor-mobilised bone marrow (G-BM) has been developed as an alternative transplantation strategy for patients with haematologic malignancies. However, little information is available about the factors predicting the outcome of peripheral blood stem cell (PBSC) collection and bone marrow (BM) harvest in this transplantation. The effects of donor characteristics and procedure factors on CD34(+) cell yield were investigated. A total of 104 related healthy donors received granulocyte-colony stimulating factor (G-CSF) followed by PBSC collection and BM harvest. Male donors had significantly higher yields compared with female donors. In multiple regression analysis for peripheral blood collection, age and flow rate were negatively correlated with cell yield, whereas body mass index, pre-aphaeresis white blood cell (WBC) and circulating immature cell (CIC) counts were positively correlated with cell yields. For BM harvest, age was negatively correlated with cell yields, whereas pre-BM collection CIC counts were positively correlated with cell yield. All donors achieved the final product of >or=6 x10(6) kg(-1) recipient body weight. This transplantation strategy has been shown to be a feasible approach with acceptable outcomes in stem cell collection for patients who received HLA-haploidentical/mismatched transplantation with combined G-PBSCs and G-BM. In donors with multiple high-risk characteristics for poor aphaeresis CD34(+) cell yield, BM was an alternative source.
Zuna, Jan; Moericke, Anja; Arens, Mari; Koehler, Rolf; Panzer-Grümayer, Renate; Bartram, Claus R; Fischer, Susanna; Fronkova, Eva; Zaliova, Marketa; Schrauder, André; Stanulla, Martin; Zimmermann, Martin; Trka, Jan; Stary, Jan; Attarbaschi, Andishe; Mann, Georg; Schrappe, Martin; Cario, Gunnar
2016-06-01
Minimal residual disease (MRD) at the end of induction therapy is important for risk stratification of acute lymphoblastic leukaemia (ALL), but bone marrow (BM) aspiration is often postponed or must be repeated to fulfil qualitative and quantitative criteria for morphological assessment of haematological remission and/or MRD analysis. The impact of BM aspiration delay on measured MRD levels and resulting risk stratification is currently unknown. We analysed paired MRD data of 289 paediatric ALL patients requiring a repeat BM aspiration. MRD levels differed in 108 patients (37%) with a decrease in the majority (85/108). This would have resulted in different risk group allocation in 64 of 289 patients (23%) when applying the ALL-Berlin-Frankfurt-Münster 2000 criteria. MRD change was associated with the duration of delay; 40% of patients with delay ≥7 days had a shift to lower MRD levels compared to only 18% after a shorter delay. Patients MRD-positive at the original but MRD-negative at the repeat BM aspiration (n = 50) had a worse 5-year event-free survival than those already negative at first aspiration (n = 115) (86 ± 5% vs. 94 ± 2%; P = 0·024). We conclude that BM aspirations should be pursued as scheduled in the protocol because delayed MRD sampling at end of induction may result in false-low MRD load and distort MRD-based risk assessment. © 2016 John Wiley & Sons Ltd.
Sovalat, Hanna; Scrofani, Maurice; Eidenschenk, Antoinette; Pasquet, Stéphanie; Rimelen, Valérie; Hénon, Philippe
2011-04-01
Recently, we demonstrated that normal human bone marrow (hBM)-derived CD34(+) cells, released into the peripheral blood after granulocyte colony-stimulating factor mobilization, contain cell subpopulations committed along endothelial and cardiac differentiation pathways. These subpopulations could play a key role in the regeneration of post-ischemic myocardial lesion after their direct intracardiac delivery. We hypothesized that these relevant cells might be issued from very small embryonic-like stem cells deposited in the BM during ontogenesis and reside lifelong in the adult BM, and that they could be mobilized into peripheral blood by granulocyte colony-stimulating factor. Samples of normal hBM and leukapheresis products harvested from cancer patients after granulocyte colony-stimulating factor mobilization were analyzed and sorted by multiparameter flow cytometry strategy. Immunofluorescence and reverse transcription quantitative polymerase chain reaction assays were performed to analyze the expression of typical pluripotent stem cells markers. A population of CD34(+)/CD133(+)/CXCR4(+)/Lin(-) CD45(-) immature cells was first isolated from the hBM or from leukapheresis products. Among this population, very small (2-5 μm) cells expressing Oct-4, Nanog, and stage-specific embryonic antigen-4 at protein and messenger RNA levels were identified. Our study supports the hypothesis that very small embryonic-like stem cells constitute a "mobile" pool of primitive/pluripotent stem cells that could be released from the BM into the peripheral blood under the influence of various physiological or pathological stimuli. In order to fully support that hBM- and leukapheresis product-derived very small embryonic-like stem cells are actually pluripotent, we are currently testing their ability to differentiate in vitro into cells from all three germ layers. Copyright © 2011 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.
Meloni, Marco; Cesselli, Daniela; Caporali, Andrea; Mangialardi, Giuseppe; Avolio, Elisa; Reni, Carlotta; Fortunato, Orazio; Martini, Stefania; Madeddu, Paolo; Valgimigli, Marco; Nikolaev, Evgeni; Kaczmarek, Leszek; Angelini, Gianni D; Beltrami, Antonio P; Emanueli, Costanza
2015-12-01
Reparative response by bone marrow (BM)-derived progenitor cells (PCs) to ischemia is a multistep process that comprises the detachment from the BM endosteal niche through activation of osteoclasts and proteolytic enzymes (such as matrix metalloproteinases (MMPs)), mobilization to the circulation, and homing to the injured tissue. We previously showed that intramyocardial nerve growth factor gene transfer (NGF-GT) promotes cardiac repair following myocardial infarction (MI) in mice. Here, we investigate the impact of cardiac NGF-GT on postinfarction BM-derived PCs mobilization and homing at different time points after adenovirus-mediated NGF-GT in mice. Immunohistochemistry and flow cytometry newly illustrate the temporal profile of osteoclast and activation of MMP9, PCs expansion in the BM, and liberation/homing to the injured myocardium. NGF-GT amplified these responses and increased the BM levels of active osteoclasts and MMP9, which were not observed in MMP9-deficient mice. Taken together, our results suggest a novel role for NGF in BM-derived PCs mobilization/homing following MI.
Salem, Mohamed L.; El-Naggar, Sabry A.; Cole, David J.
2009-01-01
We have shown recently that cyclophosphamide (CTX) treatment induced a marked increase in the numbers of immature dendritic cells (DCs) in blood, coinciding with enhanced antigen-specific responses of the adoptively transferred CD8+ T cells. Because this DC expansion was preceded by DC proliferation in bone marrow (BM), we tested whether BM post CTX treatment can generate higher numbers of functional DCs. BM was harvested three days after treatment of C57BL/6 mice with PBS or CTX and cultured with GM-CSF/IL-4 in vitro. Compared with control, BM from CTX-treated mice showed faster generation and yielded higher numbers of DCs with superior activation in response to toll-like receptor (TLR) agonists. Vaccination with peptide-pulsed DCs generated from BM from CTX-treated mice induced comparable adjuvant effects to those induced by control DCs. Taken together, post CTX BM harbors higher numbers of DC precursors capable of differentiating into functional DCs, which be targeted to create host microenvironment riches in activated DCs upon treatment with TLR agonists. PMID:20036354
Muñiz, Carmen; Teodosio, Cristina; Mayado, Andrea; Amaral, Ana Teresa; Matarraz, Sergio; Bárcena, Paloma; Sanchez, Maria Luz; Alvarez-Twose, Iván; Diez-Campelo, María; García-Montero, Andrés C; Blanco, Juan F; Del Cañizo, Maria Consuelo; del Pino Montes, Javier; Orfao, Alberto
2015-09-07
Mesenchymal stem cells (MSCs) are multipotent cells capable of self-renewal and multilineage differentiation. Their multipotential capacity and immunomodulatory properties have led to an increasing interest in their biological properties and therapeutic applications. Currently, the definition of MSCs relies on a combination of phenotypic, morphological and functional characteristics which are typically evaluated upon in vitro expansion, a process that may ultimately lead to modulation of the immunophenotypic, functional and/or genetic features of these cells. Therefore, at present there is great interest in providing markers and phenotypes for direct in vivo and ex vivo identification and isolation of MSCs. Multiparameter flow cytometry immunophenotypic studies were performed on 65 bone marrow (BM) samples for characterization of CD13(high) CD105(+) CD45(-) cells. Isolation and expansion of these cells was performed in a subset of samples in parallel to the expansion of MSCs from mononuclear cells following currently established procedures. The protein expression profile of these cells was further assessed on (paired) primary and in vitro expanded BM MSCs, and their adipogenic, chondrogenic and osteogenic differentiation potential was also determined. Our results show that the CD13(high) CD105(+) CD45(-) immunophenotype defines a minor subset of cells that are systematically present ex vivo in normal/reactive BM (n = 65) and that display immunophenotypic features, plastic adherence ability, and osteogenic, adipogenic and chondrogenic differentiation capacities fully compatible with those of MSCs. In addition, we also show that in vitro expansion of these cells modulates their immunophenotypic characteristics, including changes in the expression of markers currently used for the definition of MSCs, such as CD105, CD146 and HLA-DR. BM MSCs can be identified ex vivo in normal/reactive BM, based on a robust CD13(high) CD105(+) and CD45(-) immunophenotypic profile. Furthermore, in vitro expansion of these cells is associated with significant changes in the immunophenotypic profile of MSCs.
Madlambayan, Gerard J.; Butler, Jason M.; Hosaka, Koji; Jorgensen, Marda; Fu, Dongtao; Guthrie, Steven M.; Shenoy, Anitha K.; Brank, Adam; Russell, Kathryn J.; Otero, Jaclyn; Siemann, Dietmar W.
2009-01-01
Adult bone marrow (BM) contributes to neovascularization in some but not all settings, and reasons for these discordant results have remained unexplored. We conducted novel comparative studies in which multiple neovascularization models were established in single mice to reduce variations in experimental methodology. In different combinations, BM contribution was detected in ischemic retinas and, to a lesser extent, Lewis lung carcinoma cells, whereas B16 melanomas showed little to no BM contribution. Using this spectrum of BM contribution, we demonstrate the necessity for site-specific expression of stromal-derived factor-1α (SDF-1α) and its mobilizing effects on BM. Blocking SDF-1α activity with neutralizing antibodies abrogated BM-derived neovascularization in lung cancer and retinopathy. Furthermore, secondary transplantation of single hematopoietic stem cells (HSCs) showed that HSCs are a long-term source of neovasculogenesis and that CD133+CXCR4+ myeloid progenitor cells directly participate in new blood vessel formation in response to SDF-1α. The varied BM contribution seen in different model systems is suggestive of redundant mechanisms governing postnatal neovasculogenesis and provides an explanation for contradictory results observed in the field. PMID:19717647
Ulum, Baris; Teker, Hikmet Taner; Sarikaya, Aysun; Balta, Gunay; Kuskonmaz, Baris; Uckan-Cetinkaya, Duygu; Aerts-Kaya, Fatima
2018-05-24
Bone marrow mesenchymal stem cells (BM-MSCs) are promising candidates for regenerative medicine purposes. The effect of obesity on the function of BM-MSCs is currently unknown. Here, we assessed how obesity affects the function of BM-MSCs and the role of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) therein. BM-MSCs were obtained from healthy donors with a normal (<25) or high (>30) body mass index (BMI). High-BMI BM-MSCs displayed severely impaired osteogenic and diminished adipogenic differentiation, decreased proliferation rates, increased senescence, and elevated expression of ER stress-related genes ATF4 and CHOP. Suppression of ER stress using tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyrate (4-PBA) resulted in partial recovery of osteogenic differentiation capacity, with a significant increase in the expression of ALPL and improvement in the UPR. These data indicate that BMI is important during the selection of BM-MSC donors for regenerative medicine purposes and that application of high-BMI BM-MSCs with TUDCA or 4-PBA may improve stem cell function. However, whether this improvement can be translated into an in vivo clinical advantage remains to be assessed. © 2018 Wiley Periodicals, Inc.
Couban, Stephen; Aljurf, Mahmoud; Lachance, Sylvie; Walker, Irwin; Toze, Cynthia; Rubinger, Morel; Lipton, Jeffrey H; Lee, Stephanie J; Szer, Jeff; Doocey, Richard; Lewis, Ian D; Huebsch, Lothar; Howson-Jan, Kang; Lalancette, Michel; Almohareb, Fahad; Chaudhri, Nadeem; Ivison, Sabine; Broady, Raewyn; Levings, Megan; Fairclough, Diane; Devins, Gerald; Szwajcer, David; Foley, Ronan; Smith, Clayton; Panzarella, Tony; Kerr, Holly; Kariminia, Amina; Schultz, Kirk R
2016-08-01
In adult hematopoietic cell transplantation (HCT), filgrastim-mobilized peripheral blood (G-PB) has largely replaced unstimulated marrow for allografting. Although the use of G-PB results in faster hematopoietic recovery, it is also associated with more chronic graft-versus-host disease (cGVHD). A potential alternative allograft is filgrastim-stimulated marrow (G-BM), which we hypothesized may be associated with prompt hematopoietic recovery but with less cGVHD. We conducted a phase 3, open-label, multicenter randomized trial of 230 adults with hematologic malignancies receiving allografts from siblings after myeloablative conditioning to compare G-PB with G-BM. The primary endpoint was time to treatment failure, defined as a composite of extensive cGVHD, relapse/disease progression, and death. With a median follow-up of 36 months (range, 9.6 to 48), comparing G-BM with G-PB, there was no difference between the 2 arms with respect to the primary outcome of this study (hazard ratio [HR], .91; 95% confidence interval [CI], .68 to 1.22; P = .52). However, the cumulative incidence of overall cGVHD was lower with G-BM (HR, .66; 95% CI, .46 to .95; P = .007) and there was no difference in the risk of relapse or progression (P = .35). The median times to neutrophil recovery (P = .0004) and platelet recovery (P = .012) were 3 days shorter for recipients allocated to G-PB compared with those allocated to G-BM, but there were no differences in secondary engraftment-related outcomes, such as time to first hospital discharge (P = .17). In addition, there were no graft failures in either arm. This trial demonstrates that, compared with G-PB, the use of G-BM allografts leads to a significantly lower rate of overall cGVHD without a loss of the graft-versus-tumor effect and comparable overall survival. Our findings suggest that further study of this type of allograft is warranted. Copyright © 2016 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Bertho, Jean Marc; Demarquay, Christelle; Mouiseddine, Moubarak; Douenat, Noémie; Stefani, Johanna; Prat, Marie; Paquet, François
2008-08-01
To define the ability of human bone marrow (BM) stromal cells to produce fms-like tyrosine kinase 3 (Flt3)-ligand (FL), and the effect of irradiation, tumour necrosis factor-alpha (TNFalpha) or tumour growth factor beta (TGFbeta) on FL production. Primary BM stromal cell cultures were irradiated at 2-10 Gy or were stimulated with TNFalpha or TGFbeta1. The presence of FL was tested in culture supernatants and in cell lysate. The presence of a membrane-bound form of FL and the level of gene expression were also tested. Primary BM stromal cells spontaneously released FL. This production was increased by TNFalpha but not by TGFbeta1 or by irradiation. Chemical induction of osteoblastic differentiation from BM stromal cells also induced an increase in FL release. Our results suggest that the observed increase in FL concentration after in vivo irradiation is an indirect effect. The possible implication of BM stromal cells in these mechanisms is discussed.
Role of bone marrow transplantation for correcting hemophilia A in mice
Follenzi, Antonia; Raut, Sanj; Merlin, Simone; Sarkar, Rita
2012-01-01
To better understand cellular basis of hemophilia, cell types capable of producing FVIII need to be identified. We determined whether bone marrow (BM)–derived cells would produce cells capable of synthesizing and releasing FVIII by transplanting healthy mouse BM into hemophilia A mice. To track donor-derived cells, we used genetic reporters. Use of multiple coagulation assays demonstrated whether FVIII produced by discrete cell populations would correct hemophilia A. We found that animals receiving healthy BM cells survived bleeding challenge with correction of hemophilia, although donor BM-derived hepatocytes or endothelial cells were extremely rare, and these cells did not account for therapeutic benefits. By contrast, donor BM-derived mononuclear and mesenchymal stromal cells were more abundant and expressed FVIII mRNA as well as FVIII protein. Moreover, injection of healthy mouse Kupffer cells (liver macrophage/mononuclear cells), which predominantly originate from BM, or of healthy BM-derived mesenchymal stromal cells, protected hemophilia A mice from bleeding challenge with appearance of FVIII in blood. Therefore, BM transplantation corrected hemophilia A through donor-derived mononuclear cells and mesenchymal stromal cells. These insights into FVIII synthesis and production in alternative cell types will advance studies of pathophysiological mechanisms and therapeutic development in hemophilia A. PMID:22368271
Amyloid in bone marrow smears in systemic light-chain amyloidosis.
Kimmich, Christoph; Schönland, Stefan; Kräker, Sandra; Andrulis, Mindaugas; Ho, Anthony D; Mayer, Gudrun; Dittrich, Tobias; Hundemer, Michael; Hegenbart, Ute
2017-03-01
We performed a prospective sensitivity analysis to detect amyloid in bone marrow (BM) smears stained with Congo red (CR) and according to Pappenheim of patients with systemic light-chain (AL) amyloidosis. Results were directly compared to routine BM histology and fat aspiration. We analysed 198 BM smears from patients with the diagnosis or suspicion of systemic AL amyloidosis. Ultimately, the diagnosis could be established for 168 patients. Amyloid was detected on BM smears with CR in 33% (56/168). All patients suspicious for amyloid on Pappenheim staining (n = 39) showed substantial amyloid infiltration on CR. No patient without systemic AL amyloidosis stained positive. Sensitivity for routine BM histology was 57% (74/129) and for fat aspiration 96% (134/140). Patients with amyloid on BM smears had significantly more hepatic (42 vs. 9%, p < .001), renal (78 vs. 43%, p < .001) and gastrointestinal involvement (40 vs. 22%, p < .01) and less commonly cardiac involvement (58 vs. 76%, p < .03) and consecutively no adverse prognosis. CR staining of BM smears cannot be recommended as a primary screening tool for systemic AL as its overall sensitivity is far inferior to BM histology and fat aspiration. However, we recommend using the technique when suspecting amyloid on Pappenheim staining to establish the diagnosis of systemic AL amyloidosis.
Lower risk for serious adverse events and no increased risk for cancer after PBSC vs BM donation
Pulsipher, Michael A.; Chitphakdithai, Pintip; Logan, Brent R.; Navarro, Willis H.; Levine, John E.; Miller, John P.; Shaw, Bronwen E.; O’Donnell, Paul V.; Majhail, Navneet S.; Confer, Dennis L.
2014-01-01
We compared serious early and late events experienced by 2726 bone marrow (BM) and 6768 peripheral blood stem cell (PBSC) donors who underwent collection of PBSC or BM between 2004 and 2009 as part of a prospective study through the National Marrow Donor Program. Standardized FDA definitions for serious adverse events (SAEs) were used, and all events were reviewed by an independent physician panel. BM donors had an increased risk for SAEs (2.38% for BM vs 0.56% for PBSC; odds ratio [OR], 4.13; P < .001), and women were twice as likely to experience an SAE (OR for men, 0.50; P = .005). Restricting the analysis to life-threatening, unexpected, or chronic/disabling events, BM donors maintained an increased risk for SAEs (0.99% for BM vs 0.31% for PBSC; OR, 3.20; P < .001). Notably, the incidence of cancer, autoimmune illness, and thrombosis after donation was similar in BM vs PBSC donors. In addition, cancer incidence in PBSC donors was less than that reported in the general population (Surveillance, Epidemiology, and End Results Program database). In conclusion, SAEs after donation are rare but more often occurred in BM donors and women. In addition, there was no evidence of increased risk for cancer, autoimmune illness, and stroke in donors receiving granulocyte colony-stimulating factor during this period of observation. PMID:24735965
Bone marrow adipocytes as negative regulators of the hematopoietic microenvironment
Naveiras, Olaia; Nardi, Valentina; Wenzel, Pamela L.; Fahey, Frederic; Daley, George Q.
2009-01-01
Osteoblasts and endothelium constitute functional niches that support hematopoietic stem cells (HSC) in mammalian bone marrow (BM) 1,2,3 . Adult BM also contains adipocytes, whose numbers correlate inversely with the hematopoietic activity of the marrow. Fatty infiltration of hematopoietic red marrow follows irradiation or chemotherapy and is a diagnostic feature in biopsies from patients with marrow aplasia 4. To explore whether adipocytes influence hematopoiesis or simply fill marrow space, we compared the hematopoietic activity of distinct regions of the mouse skeleton that differ in adiposity. By flow cytometry, colony forming activity, and competitive repopulation assay, HSCs and short-term progenitors are reduced in frequency in the adipocyte-rich vertebrae of the mouse tail relative to the adipocyte-free vertebrae of the thorax. In lipoatrophic A-ZIP/F1 “fatless” mice, which are genetically incapable of forming adipocytes8, and in mice treated with the PPARγ inhibitor Bisphenol-A-DiGlycidyl-Ether (BADGE), which inhibits adipogenesis9, post-irradiation marrow engraftment is accelerated relative to wild type or untreated mice. These data implicate adipocytes as predominantly negative regulators of the bone marrow microenvironment, and suggest that antagonizingmarrow adipogenesis may enhance hematopoietic recovery in clinical bone marrow transplantation. PMID:19516257
Bone marrow contributes to the population of pancreatic stellate cells in mice.
Watanabe, Takashi; Masamune, Atsushi; Kikuta, Kazuhiro; Hirota, Morihisa; Kume, Kiyoshi; Satoh, Kennichi; Shimosegawa, Tooru
2009-12-01
Activated pancreatic stellate cells (PSCs) play a pivotal role in the development of pancreatic fibrosis. The origin of activated PSCs has been thought to be transformation of quiescent PSCs residing locally in the pancreas. Recent studies have suggested that bone marrow (BM)-derived cells participate in regeneration processes in various organs. This study aimed to clarify the contribution of BM-derived cells to the population of PSCs in mice. We transplanted BM cells from male enhanced green fluorescent protein transgenic mice into female C57BL/6 mice after lethal irradiation. Eight weeks after BM transplantation, chronic pancreatitis was induced by administration of six intra-abdominal injections of cerulein (50 microg/kg body wt) at 1-h intervals, 3 days per week, for the total of 6 wk. BM-derived cells were tracked by green fluorescent protein expression and in situ hybridization for the Y-chromosome. Eight weeks after BM transplantation, BM-derived cells accounted for 8.7% of the desmin (a marker of PSCs)-positive cells in the pancreas. We could isolate BM-derived cells, which contained lipid droplets and expressed desmin. They could be transformed to myofibroblast-like cells by culture in vitro, further supporting that BM contributed to the population of quiescent PSCs. After induction of pancreatic fibrosis, BM-derived cells accounted for 20.2% of alpha-smooth muscle actin-positive activated PSCs. The contribution of BM-derived cells to pancreatic ductal cells (positive for cytokeratin-19) was rare and less than 1%. In conclusion, our results suggested that BM-derived cells contributed to the population of PSCs in mice.
Clough, Bret H; Zeitouni, Suzanne; Krause, Ulf; Chaput, Christopher D; Cross, Lauren M; Gaharwar, Akhilesh K; Gregory, Carl A
2018-04-01
Non-union defects of bone are a major problem in orthopedics, especially for patients with a low healing capacity. Fixation devices and osteoconductive materials are used to provide a stable environment for osteogenesis and an osteogenic component such as autologous human bone marrow (hBM) is then used, but robust bone formation is contingent on the healing capacity of the patients. A safe and rapid procedure for improvement of the osteoanabolic properties of hBM is, therefore, sought after in the field of orthopedics, especially if it can be performed within the temporal limitations of the surgical procedure, with minimal manipulation, and at point-of-care. One way to achieve this goal is to stimulate canonical Wingless (cWnt) signaling in bone marrow-resident human mesenchymal stem cells (hMSCs), the presumptive precursors of osteoblasts in bone marrow. Herein, we report that the effects of cWnt stimulation can be achieved by transient (1-2 hours) exposure of osteoprogenitors to the GSK3β-inhibitor (2'Z,3'E)-6-bromoindirubin-3'-oxime (BIO) at a concentration of 800 nM. Very-rapid-exposure-to-BIO (VRE-BIO) on either hMSCs or whole hBM resulted in the long-term establishment of an osteogenic phenotype associated with accelerated alkaline phosphatase activity and enhanced transcription of the master regulator of osteogenesis, Runx2. When VRE-BIO treated hBM was tested in a rat spinal fusion model, VRE-BIO caused the formation of a denser, stiffer, fusion mass as compared with vehicle treated hBM. Collectively, these data indicate that the VRE-BIO procedure may represent a rapid, safe, and point-of-care strategy for the osteogenic enhancement of autologous hBM for use in clinical orthopedic procedures. Stem Cells Translational Medicine 2018;7:342-353. © 2018 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Kumar, Rajat; Kimura, Fumihiko; Ahn, Kwang Woo; Hu, Zhen-Huan; Kuwatsuka, Yachiyo; Klein, John P; Pasquini, Marcelo; Miyamura, Koichi; Kato, Koji; Yoshimi, Ayami; Inamoto, Yoshihiro; Ichinohe, Tatsuo; Wood, William Allen; Wirk, Baldeep; Seftel, Matthew; Rowlings, Philip; Marks, David I; Schultz, Kirk R; Gupta, Vikas; Dedeken, Laurence; George, Biju; Cahn, Jean-Yves; Szer, Jeff; Lee, Jong Wook; Ho, Aloysius Y L; Fasth, Anders; Hahn, Theresa; Khera, Nandita; Dalal, Jignesh; Bonfim, Carmem; Aljurf, Mahmoud; Atsuta, Yoshiko; Saber, Wael
2016-05-01
Bone marrow (BM) is the preferred graft source for hematopoietic stem cell transplantation (HSCT) in severe aplastic anemia (SAA) compared with mobilized peripheral blood stem cells (PBSCs). We hypothesized that this recommendation may not apply to those regions where patients present later in their disease course, with heavier transfusion load and with higher graft failure rates. Patients with SAA who received HSCT from an HLA-matched sibling donor from 1995 to 2009 and reported to the Center for International Blood and Marrow Transplant Research or the Japan Society for Hematopoietic Cell Transplantation were analyzed. The study population was categorized by gross national income per capita and region/countries into 4 groups. Groups analyzed were high-income countries (HIC), which were further divided into United States-Canada (n = 486) and other HIC (n = 1264); upper middle income (UMIC) (n = 482); and combined lower-middle, low-income countries (LM-LIC) (n = 142). In multivariate analysis, overall survival (OS) was highest with BM as graft source in HIC compared with PBSCs in all countries or BM in UMIC or LM-LIC (P < .001). There was no significant difference in OS between BM and PBSCs in UMIC (P = .32) or LM-LIC (P = .23). In LM-LIC the 28-day neutrophil engraftment was higher with PBSCs compared with BM (97% versus 77%, P = .002). Chronic graft-versus-host disease was significantly higher with PBSCs in all groups. Whereas BM should definitely be the preferred graft source for HLA-matched sibling HSCT in SAA, PBSCs may be an acceptable alternative in countries with limited resources when treating patients at high risk of graft failure and infective complications. Copyright © 2016 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
2010-01-01
Introduction Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease primarily involving the synovium. Evidence in recent years has suggested that the bone marrow (BM) may be involved, and may even be the initiating site of the disease. Abnormalities in haemopoietic stem cells' (HSC) survival, proliferation and aging have been described in patients affected by RA and ascribed to abnormal support by the BM microenvironment. Mesenchymal stem cells (MSC) and their progeny constitute important components of the BM niche. In this study we test the hypothesis that the onset of inflammatory arthritis is associated with altered self-renewal and differentiation of bone marrow MSC, which alters the composition of the BM microenvironment. Methods We have used Balb/C Interleukin-1 receptor antagonist knock-out mice, which spontaneously develop RA-like disease in 100% of mice by 20 weeks of age to determine the number of mesenchymal progenitors and their differentiated progeny before, at the start and with progression of the disease. Results We showed a decrease in the number of mesenchymal progenitors with adipogenic potential and decreased bone marrow adipogenesis before disease onset. This is associated with a decrease in osteoclastogenesis. Moreover, at the onset of disease a significant increase in all mesenchymal progenitors is observed together with a block in their differentiation to osteoblasts. This is associated with accelerated bone loss. Conclusions Significant changes occur in the BM niche with the establishment and progression of RA-like disease. Those changes may be responsible for aspects of the disease, including the advance of osteoporosis. An understanding of the molecular mechanisms leading to those changes may lead to new strategies for therapeutic intervention. PMID:20649960
Mohanty, Sindhu T; Kottam, Lucksy; Gambardella, Alessandra; Nicklin, Martin J; Coulton, Les; Hughes, David; Wilson, Anthony G; Croucher, Peter I; Bellantuono, Ilaria
2010-01-01
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease primarily involving the synovium. Evidence in recent years has suggested that the bone marrow (BM) may be involved, and may even be the initiating site of the disease. Abnormalities in haemopoietic stem cells' (HSC) survival, proliferation and aging have been described in patients affected by RA and ascribed to abnormal support by the BM microenvironment. Mesenchymal stem cells (MSC) and their progeny constitute important components of the BM niche. In this study we test the hypothesis that the onset of inflammatory arthritis is associated with altered self-renewal and differentiation of bone marrow MSC, which alters the composition of the BM microenvironment. We have used Balb/C Interleukin-1 receptor antagonist knock-out mice, which spontaneously develop RA-like disease in 100% of mice by 20 weeks of age to determine the number of mesenchymal progenitors and their differentiated progeny before, at the start and with progression of the disease. We showed a decrease in the number of mesenchymal progenitors with adipogenic potential and decreased bone marrow adipogenesis before disease onset. This is associated with a decrease in osteoclastogenesis. Moreover, at the onset of disease a significant increase in all mesenchymal progenitors is observed together with a block in their differentiation to osteoblasts. This is associated with accelerated bone loss. Significant changes occur in the BM niche with the establishment and progression of RA-like disease. Those changes may be responsible for aspects of the disease, including the advance of osteoporosis. An understanding of the molecular mechanisms leading to those changes may lead to new strategies for therapeutic intervention.
Bone marrow necrosis related to paracoccidioidomycosis: the first eight cases identified at autopsy
Resende, Lucilene S R; Mendes, Rinaldo P; Bacchi, Maura M; Marques, Sílvio A; Barraviera, Benedito; Souza, Lenice R; Meira, Domingos A; Niéro-Melo, Lígia
2009-01-01
Aims: To report the first eight bone marrow necrosis (BMN) cases related to paracoccidioidomycosis (PCM) from patient autopsies with well-documented bone marrow (BM) histology and cytology. Methods and results: A retrospective evaluation was performed on BM specimens from eight autopsied patients from Botucatu University Hospital with PCM-related BMN. Relevant BMN literature was searched and analysed. Conclusions: All eight patients had acute PCM. Six had histological only (biopsies) and two cytological only (smears) specimens. Five biopsy specimens revealed severe and one mild coagulation patterned necrotic areas. Five had osteonecrosis. The cytological specimens also showed typical BMN patterns. Paracoccidioides brasiliensis yeast forms were visible within necrotic areas in all cases. PMID:19309401
Sassoli, Chiara; Vallone, Larissa; Tani, Alessia; Chellini, Flaminia; Nosi, Daniele; Zecchi-Orlandini, Sandra
2018-06-01
Satellite cell-mediated skeletal muscle repair/regeneration is compromised in cases of extended damage. Bone marrow mesenchymal stromal cells (BM-MSCs) hold promise for muscle healing but some criticisms hamper their clinical application, including the need to avoid animal serum contamination for expansion and the scarce survival after transplant. In this context, platelet-rich plasma (PRP) could offer advantages. Here, we compare the effects of PRP or standard culture media on C2C12 myoblast, satellite cell and BM-MSC viability, survival, proliferation and myogenic differentiation and evaluate PRP/BM-MSC combination effects in promoting myogenic differentiation. PRP induced an increase of mitochondrial activity and Ki67 expression comparable or even greater than that elicited by standard media and promoted AKT signaling activation in myoblasts and BM-MSCs and Notch-1 pathway activation in BM-MSCs. It stimulated MyoD, myogenin, α-sarcomeric actin and MMP-2 expression in myoblasts and satellite cell activation. Notably, PRP/BM-MSC combination was more effective than PRP alone. We found that BM-MSCs influenced myoblast responses through a paracrine activation of AKT signaling, contributing to shed light on BM-MSC action mechanisms. Our results suggest that PRP represents a good serum substitute for BM-MSC manipulation in vitro and could be beneficial towards transplanted cells in vivo. Moreover, it might influence muscle resident progenitors' fate, thus favoring the endogenous repair/regeneration mechanisms. Finally, within the limitations of an in vitro experimentation, this study provides an experimental background for considering the PRP/BM-MSC combination as a potential therapeutic tool for skeletal muscle damage, combining the beneficial effects of BM-MSCs and PRP on muscle tissue, while potentiating BM-MSC functionality.
Tran, Simon D.; Liu, Younan; Xia, Dengsheng; Maria, Ola M.; Khalili, Saeed; Wang, Renee Wan-Jou; Quan, Vu-Hung; Hu, Shen; Seuntjens, Jan
2013-01-01
Background There are reports that bone marrow cell (BM) transplants repaired irradiated salivary glands (SGs) and re-established saliva secretion. However, the mechanisms of action behind these reports have not been elucidated. Methods To test if a paracrine mechanism was the main effect behind this reported improvement in salivary organ function, whole BM cells were lysed and its soluble intracellular contents (termed as “BM Soup”) injected into mice with irradiation-injured SGs. The hypothesis was that BM Soup would protect salivary cells, increase tissue neovascularization, function, and regeneration. Two minor aims were also tested a) comparing two routes of delivering BM Soup, intravenous (I.V.) versus intra-glandular injections, and b) comparing the age of the BM Soup’s donors. The treatment-comparison group consisted of irradiated mice receiving injections of living whole BM cells. Control mice received irradiation and injections of saline or sham-irradiation. All mice were followed for 8 weeks post-irradiation. Results BM Soup restored salivary flow rates to normal levels, protected salivary acinar, ductal, myoepithelial, and progenitor cells, increased cell proliferation and blood vessels, and up-regulated expression of tissue remodeling/repair/regenerative genes (MMP2, CyclinD1, BMP7, EGF, NGF). BM Soup was as an efficient therapeutic agent as injections of live BM cells. Both intra-glandular or I.V. injections of BM Soup, and from both young and older mouse donors were as effective in repairing irradiated SGs. The intra-glandular route reduced injection frequency/dosage by four-fold. Conclusion BM Soup, which contains only the cell by-products, can be advantageously used to repair irradiation-damaged SGs rather than transplanting whole live BM cells which carry the risk of differentiating into unwanted/tumorigenic cell types in SGs. PMID:23637870
Tran, Simon D; Liu, Younan; Xia, Dengsheng; Maria, Ola M; Khalili, Saeed; Wang, Renee Wan-Jou; Quan, Vu-Hung; Hu, Shen; Seuntjens, Jan
2013-01-01
There are reports that bone marrow cell (BM) transplants repaired irradiated salivary glands (SGs) and re-established saliva secretion. However, the mechanisms of action behind these reports have not been elucidated. To test if a paracrine mechanism was the main effect behind this reported improvement in salivary organ function, whole BM cells were lysed and its soluble intracellular contents (termed as "BM Soup") injected into mice with irradiation-injured SGs. The hypothesis was that BM Soup would protect salivary cells, increase tissue neovascularization, function, and regeneration. Two minor aims were also tested a) comparing two routes of delivering BM Soup, intravenous (I.V.) versus intra-glandular injections, and b) comparing the age of the BM Soup's donors. The treatment-comparison group consisted of irradiated mice receiving injections of living whole BM cells. Control mice received irradiation and injections of saline or sham-irradiation. All mice were followed for 8 weeks post-irradiation. BM Soup restored salivary flow rates to normal levels, protected salivary acinar, ductal, myoepithelial, and progenitor cells, increased cell proliferation and blood vessels, and up-regulated expression of tissue remodeling/repair/regenerative genes (MMP2, CyclinD1, BMP7, EGF, NGF). BM Soup was as an efficient therapeutic agent as injections of live BM cells. Both intra-glandular or I.V. injections of BM Soup, and from both young and older mouse donors were as effective in repairing irradiated SGs. The intra-glandular route reduced injection frequency/dosage by four-fold. BM Soup, which contains only the cell by-products, can be advantageously used to repair irradiation-damaged SGs rather than transplanting whole live BM cells which carry the risk of differentiating into unwanted/tumorigenic cell types in SGs.
Hanson, Summer E; Kleinbeck, Kyle R; Cantu, David; Kim, Jaeyhup; Bentz, Michael L; Faucher, Lee D; Kao, W John; Hematti, Peiman
2016-02-01
Wound healing remains a major challenge in modern medicine. Bone marrow- (BM) and adipose tissue- (AT) derived mesenchymal stromal/stem cells (MSCs) are of great interest for tissue reconstruction due to their unique immunological properties and regenerative potential. The purpose of this study was to characterize BM and AT-MSCs and evaluate their effect when administered in a porcine wound model. MSCs were derived from male Göttingen Minipigs and characterized according to established criteria. Allogeneic BM- or AT-MSCs were administered intradermally (1 x 10(6) cells) into partial-thickness wounds created on female animals, and covered with Vaseline® gauze or fibrin in a randomized pattern. Animals were euthanized at 7, 10, 14 and 21 days. Tissues were analyzed visually for healing and by microscopic examination for epidermal development and remodelling. Polymerase chain reaction (PCR) was used to detect the presence of male DNA in the specimens. All wounds were healed by 14 days. MSC-injected wounds were associated with improved appearance and faster re-epithelialization compared to saline controls. Evaluation of rete ridge depth and architecture showed that MSC treatment promoted a faster rate of epidermal maturation. Male DNA was detected in all samples at days 7 and 10, suggesting the presence of MSCs. We showed the safety, feasibility and potential efficacy of local injection of allogeneic BM- and AT-MSCs for treatment of wounds in a preclinical model. Our data in this large animal model support the potential use of BM- and AT-MSC for treatment of cutaneous wounds through modulation of healing and epithelialization. Copyright © 2013 John Wiley & Sons, Ltd.
Wang, Yue-Chun; Zhang, Yuan
2008-06-25
Strong proliferative capacity and the ability to differentiate into the derivative cell types of three embryonic germ layers are the two important characteristics of embryonic stem cells. To study whether the mesenchymal stem cells from human fetal bone marrow (hfBM-MSCs) possess these embryonic stem cell-like biological characteristics, hfBM-MSCs were isolated from bone barrows and further purified according to the different adherence of different kinds of cells to the wall of culture flask. The cell cycle of hfBM-MSCs and MSC-specific surface markers such as CD29, CD44, etc were identified using flow cytometry. The expressions of human telomerase reverse transcriptase (hTERT), the embryonic stem cell-specific antigens, such as Oct4 and SSEA-4 were detected with immunocytochemistry at the protein level and were also tested by RT-PCR at the mRNA level. Then, hfBM-MSCs were induced to differentiate toward neuron cells, adipose cells, and islet B cells under certain conditions. It was found that 92.3% passage-4 hfBM-MSCs and 96.1% passage-5 hfBM-MSCs were at G(0)/G(1) phase respectively. hfBM-MSCs expressed CD44, CD106 and adhesion molecule CD29, but not antigens of hematopoietic cells CD34 and CD45, and almost not antigens related to graft-versus-host disease (GVHD), such as HLA-DR, CD40 and CD80. hfBM-MSCs expressed the embryonic stem cell-specific antigens such as Oct4, SSEA-4, and also hTERT. Exposure of these cells to various inductive agents resulted in morphological changes towards neuron-like cells, adipose-like cells, and islet B-like cells and they were tested to be positive for related characteristic markers. These results suggest that there are plenty of MSCs in human fetal bone marrow, and hfBM-MSCs possess the embryonic stem cell-like biological characteristics, moreover, they have a lower immunogenic nature. Thus, hfBM-MSCs provide an ideal source for tissue engineering and cellular therapeutics.
Shaw, Bronwen E.; Logan, Brent R.; Kiefer, Deidre M.; Chitphakdithai, Pintip; Pedersen, Tanya L.; Abdel-Azim, Hisham; Abidi, Muneer H.; Akpek, Gorgun; Diaz, Miguel A.; Artz, Andrew S.; Dandoy, Christopher; Gajewski, James L.; Hematti, Peiman; Kamble, Rammurti T.; Kasow, Kimberley A.; Lazarus, Hillard M.; Liesveld, Jane L.; Majhail, Navneet S.; O’Donnell, Paul V.; Olsson, Richard F.; Savani, Bipin N.; Schears, Raquel M.; Stroncek, David F.; Switzer, Galen E.; Williams, Eric P.; Wingard, John R.; Wirk, Baldeep M.; Confer, Dennis L.; Pulsipher, Michael A.
2015-01-01
Previous studies have shown that risks of collection-related pain and symptoms are associated with sex, body mass index (BMI), and age in unrelated donors undergoing collection at National Marrow Donor Program (NMDP) centers. We hypothesized that other important factors (race, socioeconomic status (SES), and number of procedures at the collection center) might affect symptoms in donors. We assessed outcomes in 2,726 bone marrow (BM) and 6,768 peripheral blood stem cell (PBSC) donors collected between 2004 and 2009. Pain/symptoms are reported as maximum levels over mobilization and collection (PBSC) or within 2 days of collection (BM) and at 1 week after collection. For PBSC donors, race and center volumes were not associated with differences in pain/symptoms at any time. PBSC donors with high SES levels reported higher maximum symptom levels 1 week post donation (p=0.017). For BM donors, black males reported significantly higher levels of pain (OR=1.90, CI=1.14-3.19, p=0.015). No differences were noted by SES groups. BM donors from low volume centers reported more toxicity (OR=2.09, CI=1.26-3.46, p=0.006). In conclusion, race and SES have a minimal effect on donation associated symptoms. However, donors from centers performing ≤1 BM collection every 2 months have more symptoms following BM donation. Approaches should be developed by registries and low volume centers to address this issue. PMID:26116089
Sarasúa, J González; López, S Pérez; Viejo, M Álvarez; Basterrechea, M Pérez; Rodríguez, A Fernández; Gutiérrez, A Ferrero; Gala, J García; Menéndez, Y Menéndez; Augusto, D Escudero; Arias, A Pérez; Hernández, J Otero
2011-01-01
Context Pressure ulcers are especially difficult to treat in patients with spinal cord injury (SCI) and recurrence rates are high. Prompted by encouraging results obtained using bone marrow stem cells to treat several diseases including chronic wounds, this study examines the use of autologous stem cells from bone marrow to promote the healing of pressure ulcers in patients with SCI. Objective To obtain preliminary data on the use of bone marrow mononuclear cells (BM-MNCs) to treat pressure ulcers in terms of clinical outcome, procedure safety, and treatment time. Participants Twenty-two patients with SCI (19 men, 3 women; mean age 56.41 years) with single type IV pressure ulcers of more than 4 months duration. Interventions By minimally invasive surgery, the ulcers were debrided and treated with BM-MNCs obtained by Ficoll density gradient separation of autologous bone marrow aspirates drawn from the iliac crest. Results In 19 patients (86.36%), the pressure ulcers treated with BM-MNCs had fully healed after a mean time of 21 days. The number of MNCs isolated was patient dependent, although similar clinical outcomes were observed in each case. Compared to conventional surgical treatment, mean intra-hospital stay was reduced from 85.16 to 43.06 days. Following treatment, 5 minutes of daily wound care was required per patient compared to 20 minutes for conventional surgery. During a mean follow-up of 19 months, none of the resolved ulcers recurred. Conclusions Our data indicate that cell therapy using autologous BM-MNCs could be an option to treat type IV pressure ulcers in patients with SCI, avoiding major surgical intervention. PMID:21756569
Pelagalli, Alessandra; Nardelli, Anna; Fontanella, Raffaela; Zannetti, Antonella
2016-07-11
The complex cross-talk between tumor cells and their surrounding stromal environment plays a key role in the pathogenesis of cancer. Among several cell types that constitute the tumor stroma, bone marrow-derived mesenchymal stem cells (BM-MSCs) selectively migrate toward the tumor microenvironment and contribute to the active formation of tumor-associated stroma. Therefore, here we elucidate the involvement of BM-MSCs to promote osteosarcoma (OS) and hepatocellular carcinoma (HCC) cells migration and invasion and deepening the role of specific pathways. We analyzed the function of aquaporin 1 (AQP1), a water channel known to promote metastasis and neoangiogenes. AQP1 protein levels were analyzed in OS (U2OS) and HCC (SNU-398) cells exposed to conditioned medium from BM-MSCs. Tumor cell migration and invasion in response to BM-MSC conditioned medium were evaluated through a wound healing assay and Boyden chamber, respectively. The results showed that the AQP1 level was increased in both tumor cell lines after treatment with BM-MSC conditioned medium. Moreover, BM-MSCs-mediated tumor cell migration and invasion were hampered after treatment with AQP1 inhibitor. These data suggest that the recruitment of human BM-MSCs into the tumor microenvironment might cause OS and HCC cell migration and invasion through involvement of AQP1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishino, Ruri; Minami, Kaori; Tanaka, Satowa
2013-10-11
Highlights: •FGF7 is downregulated in MED1-deficient mesenchymal cells. •FGF7 produced by mesenchymal stromal cells is a novel hematopoietic niche molecule. •FGF7 supports hematopoietic progenitor cells and niche-dependent leukemia cells. •FGF7 activates FGFR2IIIb of bone marrow stromal cells in an autocrine manner. •FGF7 indirectly acts on hematopoietic cells lacking FGFR2IIIb via stromal cells. -- Abstract: FGF1 and FGF2 support hematopoietic stem and progenitor cells (HSPCs) under stress conditions. In this study, we show that fibroblast growth factor (FGF7) may be a novel niche factor for HSPC support and leukemic growth. FGF7 expression was attenuated in mouse embryonic fibroblasts (MEFs) deficient formore » the MED1 subunit of the Mediator transcriptional coregulator complex. When normal mouse bone marrow (BM) cells were cocultured with Med1{sup +/+} MEFs or BM stromal cells in the presence of anti-FGF7 antibody, the growth of BM cells and the number of long-time culture-initiating cells (LTC-ICs) decreased significantly. Anti-FGF7 antibody also attenuated the proliferation and cobblestone formation of MB1 stromal cell-dependent myeloblastoma cells. The addition of recombinant FGF7 to the coculture of BM cells and Med1{sup −/−} MEFs increased BM cells and LTC-ICs. FGF7 and its cognate receptor, FGFR2IIIb, were undetectable in BM cells, but MEFs and BM stromal cells expressed both. FGF7 activated downstream targets of FGFR2IIIb in Med1{sup +/+} and Med1{sup −/−} MEFs and BM stromal cells. Taken together, we propose that FGF7 supports HSPCs and leukemia-initiating cells indirectly via FGFR2IIIb expressed on stromal cells.« less
Tencerova, Michaela; Figeac, Florence; Ditzel, Nicholas; Taipaleenmäki, Hanna; Nielsen, Tina Kamilla; Kassem, Moustapha
2018-06-01
Obesity represents a risk factor for development of insulin resistance and type 2 diabetes. In addition, it has been associated with increased adipocyte formation in the bone marrow (BM) along with increased risk for bone fragility fractures. However, little is known on the cellular mechanisms that link obesity, BM adiposity, and bone fragility. Thus, in an obesity intervention study in C57BL/6J mice fed with a high-fat diet (HFD) for 12 weeks, we investigated the molecular and cellular phenotype of bone marrow adipose tissue (BMAT), BM progenitor cells, and BM microenvironment in comparison to peripheral adipose tissue (AT). HFD decreased trabecular bone mass by 29%, cortical thickness by 5%, and increased BM adiposity by 184%. In contrast to peripheral AT, BMAT did not exhibit pro-inflammatory phenotype. BM progenitor cells isolated from HFD mice exhibited decreased mRNA levels of inflammatory genes (Tnfα, IL1β, Lcn2) and did not manifest an insulin resistant phenotype evidenced by normal levels of pAKT after insulin stimulation as well as normal levels of insulin signaling genes. In addition, BM progenitor cells manifested enhanced adipocyte differentiation in HFD condition. Thus, our data demonstrate that BMAT expansion in response to HFD exerts a deleterious effect on the skeleton. Continuous recruitment of progenitor cells to adipogenesis leads to progenitor cell exhaustion, decreased recruitment to osteoblastic cells, and decreased bone formation. In addition, the absence of insulin resistance and inflammation in the BM suggest that BMAT buffers extra energy in the form of triglycerides and thus plays a role in whole-body energy homeostasis. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals, Inc. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals, Inc.
Kamble, N M; Jawale, C V; Lee, J H
2016-10-01
Bacterial Ghost-based vaccine development has been applied to a variety of gram-negative bacteria. Developed Salmonella Enteritidis (S. Enteritidis) ghost are promising vaccine candidates because of their immunogenic and enhanced biosafety potential. In this study, we aimed to evaluate the immunostimulatory effect of a S. Enteritidis ghost vaccine on the maturation of chicken bone marrow-derived dendritic cells (chBM-DCs) in vitro The immature chBM-DCs were stimulated with S. Enteritidis ghost vaccine candidate. The vaccine efficiently stimulated maturation events in chBM-DCs, indicated by up-regulated expression of CD40, CD80, and MHC-II molecules. Immature BM-DCs responded to stimulation with S. Enteritidis ghost by increased expression of IL-6 and IL-12p40 cytokines. Also, S. Enteritidis ghost stimulated chBM-DCs induced the significant expression of IFN-γ and IL-2 in co-cultured autologous CD4+ T cells. In conclusion, our data suggest that S. Enteritidis ghost vaccine candidate is capable of activating and interacting with chBM-DCs. The results from current study may help for rational designing of Salmonella ghost based heterologous antigen delivery platforms to dendritic cells. © 2016 Poultry Science Association Inc.
Paiardini, Mirko; Cervasi, Barbara; Engram, Jessica C; Gordon, Shari N; Klatt, Nichole R; Muthukumar, Alagarraju; Else, James; Mittler, Robert S; Staprans, Silvija I; Sodora, Donald L; Silvestri, Guido
2009-01-15
Bone marrow (BM) is the key hematopoietic organ in mammals and is involved in the homeostatic proliferation of memory CD8(+) T cells. Here we expanded on our previous observation that BM is a preferential site for T-cell proliferation in simian immunodeficiency virus (SIV)-infected sooty mangabeys (SMs) that do not progress to AIDS despite high viremia. We found high levels of mature T-cell proliferation, involving both naive and memory cells, in healthy SMs and rhesus macaques (RMs). In addition, we observed in both species that lineage-specific, BM-based T-cell proliferation follows antibody-mediated in vivo CD4(+) or CD8(+) T-cell depletion, thus indicating a role for the BM in maintaining T-cell homeostasis under depleting circumstances. We also observed that, in SIV-infected SMs, but not RMs, the level of proliferation of BM-based CD4(+) T cells is higher than that of circulating CD4(+) T cells. Interestingly, limited BM-based CD4(+) T-cell proliferation was found in SIV-infected SMs with low CD4(+) T-cell counts, suggesting a regenerative failure in these animals. Collectively, these results indicate that BM is involved in maintaining T-cell homeostasis in primates and suggest a role for BM-based CD4(+) T-cell proliferation in determining the benign nature of natural SIV infection of SMs.
Chung, Kuei-Min; Hsu, Shu-Ching; Chu, Yue-Ru; Lin, Mei-Yao; Jiaang, Weir-Tong; Chen, Ruey-Hwa; Chen, Xin
2014-01-01
Background The ability of human bone marrow mesenchymal stem cells (BM-MSCs) to migrate and localize specifically to injured tissues is central in developing therapeutic strategies for tissue repair and regeneration. Fibroblast activation protein (FAP) is a cell surface serine protease expressed at sites of tissue remodeling during embryonic development. It is also expressed in BM-MSCs, but not in normal tissues or cells. The function of FAP in BM-MSCs is not known. Principal Findings We found that depletion of FAP proteins significantly inhibited the migration of BM-MSCs in a transwell chemotaxis assay. Such impaired migration ability of BM-MSCs could be rescued by re-expressing FAP in these cells. We then demonstrated that depletion of FAP activated intracellular RhoA GTPase. Consistently, inhibition of RhoA activity using a RhoA inhibitor rescued its migration ability. Inhibition of FAP activity with an FAP-specific inhibitor did not affect the activation of RhoA or the migration of BM-MSCs. Furthermore, the inflammatory cytokines interleukin-1beta (IL-1β) and transforming growth factor-beta (TGF-β) upregulated FAP expression, which coincided with better BM-MSC migration. Conclusions Our results indicate FAP plays an important role in the migration of BM-MSCs through modulation of RhoA GTPase activity. The peptidase activity of FAP is not essential for such migration. Cytokines IL-1β and TGF-β upregulate the expression level of FAP and thus enhance BM-MSC migration. PMID:24551161
Chung, Kuei-Min; Hsu, Shu-Ching; Chu, Yue-Ru; Lin, Mei-Yao; Jiaang, Weir-Tong; Chen, Ruey-Hwa; Chen, Xin
2014-01-01
The ability of human bone marrow mesenchymal stem cells (BM-MSCs) to migrate and localize specifically to injured tissues is central in developing therapeutic strategies for tissue repair and regeneration. Fibroblast activation protein (FAP) is a cell surface serine protease expressed at sites of tissue remodeling during embryonic development. It is also expressed in BM-MSCs, but not in normal tissues or cells. The function of FAP in BM-MSCs is not known. We found that depletion of FAP proteins significantly inhibited the migration of BM-MSCs in a transwell chemotaxis assay. Such impaired migration ability of BM-MSCs could be rescued by re-expressing FAP in these cells. We then demonstrated that depletion of FAP activated intracellular RhoA GTPase. Consistently, inhibition of RhoA activity using a RhoA inhibitor rescued its migration ability. Inhibition of FAP activity with an FAP-specific inhibitor did not affect the activation of RhoA or the migration of BM-MSCs. Furthermore, the inflammatory cytokines interleukin-1beta (IL-1β) and transforming growth factor-beta (TGF-β) upregulated FAP expression, which coincided with better BM-MSC migration. Our results indicate FAP plays an important role in the migration of BM-MSCs through modulation of RhoA GTPase activity. The peptidase activity of FAP is not essential for such migration. Cytokines IL-1β and TGF-β upregulate the expression level of FAP and thus enhance BM-MSC migration.
Chatterjee, Sumanta; Basak, Pratima; Das, Prosun; Das, Madhurima; Pereira, Jacintha Archana; Dutta, Ranjan Kumar; Chaklader, Malay; Chaudhuri, Samaresh; Law, Sujata
2010-01-01
Self-renewing Hematopoietic Stem Cells (HSCs) are responsible for reconstitution of all blood cell lineages. Sca-1 is the “stem cell antigen” marker used to identify the primitive murine HSC population, the expression of which decreases upon differentiation to other mature cell types. Sca-1+ HSCs maintain the bone marrow stem cell pool throughout the life. Aplastic anemia is a disease considered to involve primary stem cell deficiency and is characterized by severe pancytopenia and a decline in healthy blood cell generation system. Studies conducted in our laboratory revealed that the primitive Sca-1+ BM-HSCs (bone marrow hematopoietic stem cell) are significantly affected in experimental Aplastic animals pretreated with chemotherapeutic drugs (Busulfan and Cyclophosphamide) and there is increased Caspase-3 activity with consecutive high Annexin-V positivity leading to premature apoptosis in the bone marrow hematopoietic stem cell population in Aplastic condition. The Sca-1bright, that is, “more primitive” BM-HSC population was more affected than the “less primitive” BM-HSC Sca-1dim population. The decreased cell population and the receptor expression were directly associated with an empty and deranged marrow microenvironment, which is evident from scanning electron microscopy (SEM). The above experimental evidences hint toward the manipulation of receptor expression for the benefit of cytotherapy by primitive stem cell population in Aplastic anemia cases. PMID:21048851
Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET
Peinado, Héctor; Alečković, Maša; Lavotshkin, Simon; Matei, Irina; Costa-Silva, Bruno; Moreno-Bueno, Gema; Hergueta-Redondo, Marta; Williams, Caitlin; García-Santos, Guillermo; Nitadori-Hoshino, Ayuko; Hoffman, Caitlin; Badal, Karen; Garcia, Benjamin A.; Callahan, Margaret K.; Yuan, Jianda; Martins, Vilma R.; Skog, Johan; Kaplan, Rosandra N.; Brady, Mary S.; Wolchok, Jedd D.; Chapman, Paul B.; Kang, Yibin; Bromberg, Jacqueline; Lyden, David
2013-01-01
Tumor-derived exosomes are emerging mediators of tumorigenesis with tissue-specific addresses and messages. We explored the function of melanoma-derived exosomes in the formation of primary tumor and metastases in mouse and human subjects. Exosomes from highly metastatic melanoma increased the metastatic behavior of primary tumors by permanently “educating” bone marrow (BM) progenitors via the MET receptor. Melanoma-derived exosomes also induced vascular leakiness at pre-metastatic sites, and reprogrammed BM progenitors towards a c-Kit+Tie2+Met+ pro-vasculogenic phenotype. Reducing Met expression in exosomes diminished the pro-metastatic behavior of BM cells. Importantly, MET expression was elevated in circulating CD45−C-KITlow/+TIE2+ BM progenitors from metastatic melanoma subjects. RAB1a, RAB5b, RAB7, and RAB27a were highly expressed in melanoma cells and Rab27a RNA interference decreased exosome production, preventing BM education, tumor growth and metastasis. Finally, we identified an exosome-specific “melanoma signature” with prognostic and therapeutic potential, comprised of TYRP2, VLA-4, HSP70, an HSP90 isoform and the MET oncoprotein. PMID:22635005
Byun, Youngjoo; Park, Jongho; Hong, Soo Hyun; Han, Mi Hwa; Park, Suzie; Jung, Hyo-Il; Noh, Minsoo
2013-06-01
Adiponectin production during adipocyte differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs) can be used to evaluate the pharmacological activity of anti-diabetic drugs to improve insulin sensitivity. Monoamine oxidase (MAO) inhibitors such as phenelzine and pargyline inhibit adipogenesis in murine pre-adipocytes. In this study, however, we found that selective MAO-A inhibitors, moclobemide and Ro41-1049, and a selective MAO-B inhibitor, selegiline, promoted adiponectin production during adipocyte differentiation in hBM-MSCs, which suggested the anti-diabetic potential of these drugs. In contrast, non-selective MAO inhibitors, phenelzine and tranylcypromine, inhibited adipocyte differentiation of hBM-MSCs. Concomitant treatments of MAO-A and MAO-B selective inhibitors did not change the stimulatory effect on adiponectin production in hBM-MSCs. Taken together, the opposite effects of isotype-selective MAO inhibitors on adiponectin production during adipogenesis in hBM-MSCs may not be directly associated with the inhibitory effects of MAO, suggested that the structure of MAO inhibitors may contain a novel anti-diabetic pharmacophore. Copyright © 2013 Elsevier Ltd. All rights reserved.
Berget, Ellen; Helgeland, Lars; Liseth, Knut; Løkeland, Turid; Molven, Anders; Vintermyr, Olav Karsten
2014-01-01
Aims We aimed to evaluate the prognostic value of routine use of PCR amplification of immunoglobulin gene rearrangements in bone marrow (BM) staging in patients with follicular lymphoma (FL). Methods Clonal rearrangements were assessed by immunoglobulin heavy and light-chain gene rearrangement analysis in BM aspirates from 96 patients diagnosed with FL and related to morphological detection of BM involvement in biopsies. In 71 patients, results were also compared with concurrent flow cytometry analysis. Results BM involvement was detected by PCR in 34.4% (33/96) of patients. The presence of clonal rearrangements by PCR was associated with advanced clinical stage (I–III vs IV; p<0.001), high FL International Prognostic Index (FLIPI) score (0–1, 2 vs ≥3; p=0.003), and detection of BM involvement by morphology and flow cytometry analysis (p<0.001 for both). PCR-positive patients had a significantly poorer survival than PCR-negative patients (p=0.001, log-rank test). Thirteen patients positive by PCR but without morphologically detectable BM involvement, had significantly poorer survival than patients with negative morphology and negative PCR result (p=0.002). The poor survival associated with BM involvement by PCR was independent of the FLIPI score (p=0.007, Cox regression). BM involvement by morphology or flow cytometry did not show a significant impact on survival. Conclusions Our results showed that routine use of PCR-based clonality analysis significantly improved the prognostic impact of BM staging in patients with FL. BM involvement by PCR was also an independent adverse prognostic factor. PMID:25233852
Leite, Yulla Klinger de Carvalho; de Carvalho, Camila Ernanda Sousa; Feitosa, Matheus Levi Tajra; Alves, Michel Muálem de Moraes; Carvalho, Fernando Aécio de Amorim; Neto, Bartolomeu Cruz Viana; Miglino, Maria Angélica
2018-01-01
Background Tissue engineering has been shown to exhibit great potential for the creation of biomaterials capable of developing into functional tissues. Cellular expansion and integration depends on the quality and surface-determinant factors of the scaffold, which are required for successful biological implants. The objective of this research was to characterize and evaluate the in vitro characteristics of rabbit bone marrow mesenchymal stem cells (BM-MSCs) associated with a bacterial cellulose membrane (BCM). We assessed the adhesion, expansion, and integration of the biomaterial as well as its ability to induce macrophage activation. Finally, we evaluated the cytotoxicity and toxicity of the BCM. Methods Samples of rabbit bone marrow were collected. Mesenchymal stem cells were isolated from medullary aspirates to establish fibroblast colony-forming unit assay. Osteogenic, chondrogenic, and adipogenic differentiation was performed. Integration with the BCM was assessed by scanning electron microscopy at 1, 7, and 14 days. Cytotoxicity was assessed via the production of nitric oxide, and BCM toxicity was assessed with the MTT assay; phagocytic activity was also determined. Results The fibroblastoid colony-forming unit (CFU-F) assay showed cells with a fibroblastoid morphology organized into colonies, and distributed across the culture area surface. In the growth curve, two distinct phases, lag and log phase, were observed at 15 days. Multipotentiality of the cells was evident after induction of osteogenic, chondrogenic, and adipogenic lineages. Regarding the BM-MSCs’ bioelectrical integration with the BCM, BM-MSCs were anchored in the BCM in the first 24 h. On day 7 of culture, the cytoplasm was scattered, and on day 14, the cells were fully integrated with the biomaterial. We also observed significant macrophage activation; analysis of the MTT assay and the concentration of nitric oxide revealed no cytotoxicity of the biomaterial. Conclusion The BCM allowed the expansion and biointegration of bone marrow progenitor cells with a stable cytotoxic profile, thus presenting itself as a biomaterial with potential for tissue engineering. PMID:29736332
Nemoto, Yasuhiro; Kanai, Takanori; Takahara, Masahiro; Oshima, Shigeru; Nakamura, Tetsuya; Okamoto, Ryuichi; Tsuchiya, Kiichiro; Watanabe, Mamoru
2013-01-01
Objective Interleukin (IL)-7 is mainly produced in bone marrow (BM) that forms the niche for B cells. We previously demonstrated that BM also retains pathogenic memory CD4 T cells in murine models of inflammatory bowel disease (IBD). However, it remains unknown whether BM-derived IL-7 is sufficient for the development of IBD and which cells form the niche for colitogenic memory CD4 T cells in BM. Design To address these questions, we developed mice in which IL-7 expression was specific for BM, and identified colitis-associated IL-7-expressing mesenchymal stem cells (MSC) in the BM. Results IL-7–/–×RAG-1–/– mice injected with BM cells from IL-7+/+×RAG-1–/– mice, but not from IL-7–/–×RAG-1–/– mice, expressed IL-7 in BM, but not in their colon, and developed colitis when injected with CD4+CD45RBhigh T cells. Cultured BM MSC stably expressed a higher level of IL-7 than that of primary BM cells. IL-7-sufficient, but not IL-7-deficient, BM MSC supported upregulation of Bcl-2 in, and homeostatic proliferation of, colitogenic memory CD4 T cells in vitro. Notably, IL-7–/–×RAG-1–/– mice transplanted with IL-7-sufficient, but not IL-7-deficient, BM MSC expressed IL-7 in BM, but not in their colon, and developed colitis when transplanted with CD4+CD45RBhigh T cells. Conclusions We demonstrate for the first time that BM MSC are a major source of IL-7 and play a pathological role in IBD by forming the niche for colitogenic CD4 memory T cells in BM. PMID:23144054
Kirby, S; Walton, W; Smithies, O
2000-06-15
In a previous study, it was found that a truncated erythropoietin receptor transgene (tEpoR tg) enables multilineage hematopoietic progenitor amplification after treatment with erythropoietin (epo) in vitro and in vivo. This study used competitive bone marrow (BM) repopulation to show that tEpoR tg facilitates transplantation by hematopoietic stem cells (HSC). Individual multilineage colonies, committed myeloid progenitor colonies, and lymphoid colonies (pre-B colony-forming units) were grown from the marrow of animals 6 months after they received a 50/50 mixture of transgene and wild-type BM cells. In epo-treated recipients, the transgene-bearing cells significantly outcompeted the wild-type cells (84%-100% versus 16%-0%, respectively). In recipients treated with phosphate-buffered saline, the repopulation was minimally different from the donor mixture (49%-64% transgene versus 51%-36% wild-type). The epo-induced repopulation advantage is maintained in secondary transplants. In addition, neither accelerated HSC depletion nor uncontrollable proliferation occurred during epo-stimulated serial transplants of transgene-containing BM. Thus, the tEpoR tg functions in a benign fashion in HSC and allows for a significant and controllable repopulation advantage in vivo without excessive HSC depletion relative to wild-type BM. (Blood. 2000;95:3710-3715)
Burns, Linda J.; Logan, Brent R.; Chitphakdithai, Pintip; Miller, John P.; Drexler, Rebecca; Spellman, Stephen; Switzer, Galen E.; Wingard, John R.; Anasetti, Claudio; Confer, Dennis L.
2016-01-01
We report a comparison of time to recovery, side effects, and change in blood counts from baseline to post-donation of unrelated donors who participated in the Blood and Marrow Transplant Clinical Trials Network (BMT CTN) phase III randomized, multicenter trial (0201) in which donor/recipient pairs were randomized to either peripheral blood stem cell (PBSC) or bone marrow (BM) donation. Of the entire cohort, 262 donated PBSC and 264 donated BM; 372 (71%) donors were from domestic and 154 (29%) from international centers (145 German and 9 Canadian). PBSC donors recovered in less time with a median time to recovery of 1 week compared to 2.3 weeks for BM donors. The number of donors reporting full recovery was significantly greater for donors of PBSC than of BM at 1, 2, and 3 weeks and 3 months post-donation. Multivariate analysis showed that PBSC donors were more likely to recover at any time post donation compared to BM donors (HR 2.08 [95% CI 1.73–2.50], p<0.001). Other characteristics that significantly increased the likelihood of complete recovery were being an international donor and donation in more recent years. Donors of BM were more likely to report grade 2–4 skeletal pain, body symptoms and fatigue at 1 week post donation. In logistic regression analysis of domestic donors only in which toxicities at peri-collection time points (day 5 filgrastim for PBSC donors and day 2 post-collection of BM donors) could be analyzed, no variable was significantly associated with grade 2–4 skeletal pain, including product donated (BM vs PBSC, OR 1.13 [95% CI 0.74–1.74], p=0.556). Blood counts were impacted by product donated, with mean change from baseline to post-donation being greater for white blood cells, neutrophils, mononuclear cells and platelets in PBSC donors whereas BM donors experienced a greater mean change in hemoglobin. This analysis provided an enhanced understanding of donor events as product donated was independent of physician bias or donor preference. PMID:27013014
Chen, Ching-Yun; Tseng, Kuo-Yun; Lai, Yen-Liang; Chen, Yo-Shen; Lin, Feng-Huei; Lin, Shankung
2017-01-01
Many studies have indicated that loss of the osteoblastogenic potential in bone marrow mesenchymal stem cells (bmMSCs) is the major component in the etiology of the aging-related bone deficit. But how the bmMSCs lose osteogenic capability in aging is unclear. Using 2-dimentional cultures, we examined the dose response of human bmMSCs, isolated from adult and aged donors, to exogenous insulin-like growth factor 1 (IGF-1), a growth factor regulating bone formation. The data showed that the mitogenic activity and the osteoblastogenic potential of bmMSCs in response to IGF-1 were impaired with aging, whereas higher doses of IGF-1 increased the proliferation rate and osteogenic potential of aging bmMSCs. Subsequently, we seeded IGF-1-overexpressing aging bmMSCs into calcium-alginate scaffolds and incubated in a bioreactor with constant perfusion for varying time periods to examine the effect of IGF-1 overexpression to the bone-forming capability of aging bmMSCs. We found that IGF-1 overexpression in aging bmMSCs facilitated the formation of cell clusters in scaffolds, increased the cell survival inside the cell clusters, induced the expression of osteoblast markers, and enhanced the biomineralization of cell clusters. These results indicated that IGF-1 overexpression enhanced cells' osteogenic capability. Thus, our data suggest that the aging-related loss of osteogenic potential in bmMSCs can be attributed in part to the impairment in bmMSCs' IGF-1 signaling, and support possible application of IGF-1-overexpressing autologous bmMSCs in repairing bone defect of the elderly and in producing bone graft materials for repairing large scale bone injury in the elderly.
Fehm, Tanja; Banys, Malgorzata; Rack, Brigitte; Janni, Wolfgang; Marth, Christian; Blassl, Christina; Hartkopf, Andreas; Trope, Claes; Kimmig, Rainer; Krawczyk, Natalia; Wallwiener, Diethelm; Wimberger, Pauline; Kasimir-Bauer, Sabine
2013-06-01
Detection of disseminated tumor cells (DTCs) in the bone marrow (BM) of patients with breast cancer is associated with poor outcomes. Recent studies demonstrated that DTCs may serve as a prognostic factor in ovarian cancer. The aim of this 3-center study was to evaluate the impact of BM status on survival in a large cohort of patients with ovarian cancer. Four hundred ninety-five patients with primary ovarian cancer were included in this 3-center prospective study. Bone marrow aspirates were collected intraoperatively from the iliac crest. Disseminated tumor cells were identified by antibody staining and by cytomorphology. Clinical outcome was correlated with the presence of DTCs. Disseminated tumor cells were detected in 27% of all BM aspirates. The number of cytokeratin-positive cells ranged from 1 to 42 per 2 × 10⁶ mononuclear cells. Disseminated tumor cell status did correlate with histologic subtype but not with any of the other established clinicopathologic factors. The overall survival was significantly shorter among DTC-positive patients compared to DTC-negative patients (51 months; 95% confidence interval, 37-65 months vs 33 months; 95% confidence interval, 23-43 months; P = 0.023). In the multivariate analysis, BM status, International Federation of Gynecology and Obstetrics stage, nodal status, resection status, and age were independent predictors of reduced overall survival, whereas only BM status, International Federation of Gynecology and Obstetrics stage, and resection status independently predicted progression-free survival. Tumor cell dissemination into the BM is a common phenomenon in ovarian cancer. Disseminated tumor cell detection has the potential to become an important biomarker for prognostication and disease monitoring in patients with ovarian cancer.
Kumar, Rajat; Kimura, Fumihiko; Ahn, Kwang Woo; Hu, Zhen-Huan; Kuwatsuka, Yachiyo; Klein, John P.; Pasquini, Marcelo; Miyamura, Koichi; Kato, Koji; Yoshimi, Ayami; Inamoto, Yoshihiro; Ichinohe, Tatsuo; Wood, William Allen; Wirk, Baldeep; Seftel, Matthew; Rowlings, Philip; Marks, David I; Schultz, Kirk R.; Gupta, Vikas; Dedeken, Laurence; George, Biju; Cahn, Jean-Yves; Szer, Jeff; Lee, Jong Wook; Ho, Aloysius YL; Fasth, Anders; Hahn, Theresa; Khera, Nandita; Dalal, Jignesh; Bonfim, Carmem; Aljurf, Mahmoud; Atsuta, Yoshiko; Saber, Wael
2016-01-01
Bone marrow (BM) is the preferred graft source for hematopoietic stem cell transplantation (HSCT) in severe aplastic anemia (SAA) compared to mobilized peripheral blood stem cells (PBSC). We hypothesized that this recommendation may not apply to those regions where patients present later in their disease course, with heavier transfusion load and with higher graft failure rates. Patients with SAA who received HSCT from an HLA-matched sibling donor from 1995 to 2009 and reported to the Center for International Blood and Marrow Transplant Research or the Japan Society for Hematopoietic Cell Transplantation were analyzed. The study population was categorized by gross national income per capita (GNI) and region/countries into four groups. Groups analyzed were high income countries (HIC), which were further divided into US-Canada (N=486) and other HIC (N=1264), upper middle-income (UMIC) (N=482), and combined lower middle, low income countries (LM-LIC) (N=142). In multivariate analysis, overall survival (OS) was highest with BM as graft source in HIC compared to PBSC in all countries or BM in UMIC or LM-LIC (p<0.001). There was no significant difference in OS between BM and PBSC in UMIC (p=0.32) or LM-LIC (p=0.23). In LM-LIC the 28-day neutrophil engraftment was higher with PBSC compared to BM (97% vs. 77%, p<0.001). Chronic GVHD was significantly higher with PBSC in all groups. Whereas BM should definitely be the preferred graft source for HLA-matched sibling HSCT in SAA, PBSC may be an acceptable alternative in countries with limited resources when treating patients at high risk of graft failure and infective complications. PMID:26797402
Harizi, H; Juzan, M; Grosset, C; Rashedi, M; Gualde, N
2001-04-10
Given that preliminary work has indicated that prostaglandins can play a role in modulating dendritic cell (DC) functions, we addressed the prostaglandin E(2) (PGE(2)) biosynthetic capacity of mouse DC produced in vitro from bone marrow cells. We observed production of significant amounts of PGE(2), which was reduced by at least 80% when cells were incubated in the presence of indomethacin, a COX-1 preferential inhibitor. Indeed, when tested by Western blot analysis with specific COX-1 and COX-2 antibodies, only COX-1 expression could be detected in the bone marrow (BM)-DC. For lipopolysaccharide (LPS)-treated BM-DC, inhibition of PGE(2) production by indomethacin or by NS-398 (a COX-2-selective inhibitor) used alone was less potent. After LPS treatment of BM-DC, COX-1 and COX-2 expression was potent, and inhibition of PGE(2) synthesis needed the presence of both indomethacin and NS-398. We also observed that exogenous PGE(2) diminished the expression of MHC class II molecules by BM-DC and that prostaglandin and indomethacin had antagonistic effects on cell proliferation during the mixed lymphocyte reaction using BM-DC as stimulatory cells. This assessment of PGE(2) suggests that endogenous PGE(2) produced by DC might play a role as an immunomodulating factor during the immune response. This hypothesis is sustained by the fact that IL-12 production by BM-DC is modulated by exogenous PGE(2) as well as endogenous prostaglandin, since either the addition of exogenous PGE(2) or the presence of LPS (which increases endogenous PGE(2) synthesis) decreases IL-12 production, while NS-398 (which decreases LPS-induced PGE(2) synthesis) increases IL-12 synthesis. Copyright 2001 Academic Press.
Lee, Yong-Ung; Mahler, Nathan; Best, Cameron A; Tara, Shuhei; Sugiura, Tadahisa; Lee, Avione Y; Yi, Tai; Hibino, Narutoshi; Shinoka, Toshiharu; Breuer, Christopher
2016-03-01
We investigated the effect of cell seeding dose and incubation time on tissue-engineered vascular graft (TEVG) patency. Various doses of bone marrow-derived mononuclear cells (BM-MNCs) were seeded onto TEVGs, incubated for 0 or 12 h, and implanted in C57BL/6 mice. Different doses of human BM-MNCs were seeded onto TEVGs and measured for cell attachment. The incubation time showed no significant effect on TEVG patency. However, TEVG patency was significantly increased in a dose-dependent manner. In the human graft, more bone marrow used for seeding resulted in increased cell attachment in a dose-dependent manner. Increasing the BM-MNC dose and reducing incubation time is a viable strategy for improving the performance and utility of the graft.
Bone marrow mesenchymal stem cell response to nano-structured oxidized and turned titanium surfaces.
Annunziata, Marco; Oliva, Adriana; Buosciolo, Antonietta; Giordano, Michele; Guida, Agostino; Guida, Luigi
2012-06-01
The aim of this study was to analyse the topographic features of a novel nano-structured oxidized titanium implant surface and to evaluate its effect on the response of human bone marrow mesenchymal stem cells (BM-MSC) compared with a traditional turned surface. The 10 × 10 × 1 mm turned (control) and oxidized (test) titanium samples (P.H.I. s.r.l.) were examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM) and characterized by height, spatial and hybrid roughness parameters at different dimensional ranges of analysis. Primary cultures of BM-MSC were seeded on titanium samples and cell morphology, adhesion, proliferation and osteogenic differentiation, in terms of alkaline phosphatase activity, osteocalcin synthesis and extracellular matrix mineralization, were evaluated. At SEM and AFM analyses turned samples were grooved, whereas oxidized surfaces showed a more complex micro- and nano-scaled texture, with higher values of roughness parameters. Cell adhesion and osteogenic parameters were greater on oxidized (P<0.05 at least) vs. turned surfaces, whereas the cell proliferation rate was similar on both samples. Although both control and test samples were in the range of average roughness proper of smooth surfaces, they exhibited significantly different topographic properties in terms of height, spatial and, mostly, of hybrid parameters. This different micro- and nano-structure resulted in an enhanced adhesion and differentiation of cells plated onto the oxidized surfaces. © 2011 John Wiley & Sons A/S.
Tormin, Ariane; Li, Ou; Brune, Jan Claas; Walsh, Stuart; Schütz, Birgit; Ehinger, Mats; Ditzel, Nicholas; Kassem, Moustapha
2011-01-01
Nonhematopoietic bone marrow mesenchymal stem cells (BM-MSCs) are of central importance for bone marrow stroma and the hematopoietic environment. However, the exact phenotype and anatomical distribution of specified MSC populations in the marrow are unknown. We characterized the phenotype of primary human BM-MSCs and found that all assayable colony-forming units-fibroblast (CFU-Fs) were highly and exclusively enriched not only in the lin−/CD271+/CD45−/CD146+ stem-cell fraction, but also in lin−/CD271+/CD45−/CD146−/low cells. Both populations, regardless of CD146 expression, shared a similar phenotype and genotype, gave rise to typical cultured stromal cells, and formed bone and hematopoietic stroma in vivo. Interestingly, CD146 was up-regulated in normoxia and down-regulated in hypoxia. This was correlated with in situ localization differences, with CD146 coexpressing reticular cells located in perivascular regions, whereas bone-lining MSCs expressed CD271 alone. In both regions, CD34+ hematopoietic stem/progenitor cells were located in close proximity to MSCs. These novel findings show that the expression of CD146 differentiates between perivascular versus endosteal localization of non-hematopoietic BM-MSC populations, which may be useful for the study of the hematopoietic environment. PMID:21415267
Wang, Xin; Ma, Feng-Xia; Lu, Shi-Hong; Chi, Ying; Chen, Fang; Li, Xue; Li, Juan-Juan; Du, Wen-Jing; Feng, Ying; Cui, Jun-Jie; Song, Bao-Quan; Han, Zhong-Chao
2014-06-01
This study was aimed to investigate the effects of rapamycin on biological function and autophagy of bone marrow mesenchymal stem cells (BM-MSC) from patients with aplastic anemia so as to provide experimental basis for the clinical treatment of aplastic anemia (AA) with rapamycin. BM-MSC were treated with different concentrations of rapamycin (0, 10, 50, 100 nmol/L) for 48 h, the expression of LC3B protein was detected by Western blot to observe the effect of rapamycin on cell autophagy; cell apoptosis and cell cycles were detected by flow cytometry; the proliferation of BM-MSC of AA patients was measured by cell counting kit-8; the adipogenic differentiation of BM-MSC were tested by oil red O staining after adipogenic induction for 2 weeks; the adipogenic related genes (LPL, CFD, PPARγ) were detected by real-time PCR. The results showed that the proliferation and adipogenesis of BM-MSC of AA patients were inhibited by rapamycin. Moreover, the autophagy and apoptosis of BM-MSC were increased by rapamycin in a dose-dependent way.Rapamycin arrested the BM-MSC in G0/G1 phase and prevented them into S phase (P < 0.05). It is concluded that rapamycin plays an critical role in inhibiting cell proliferation, cell cycles, and adipogenesis, these effects may be related with the autophagy activation and mTOR inhibition resulting from rapamycin.
Pietrovito, Laura; Leo, Angela; Gori, Valentina; Lulli, Matteo; Parri, Matteo; Becherucci, Valentina; Piccini, Luisa; Bambi, Franco; Taddei, Maria Letizia; Chiarugi, Paola
2018-05-01
There is growing evidence to suggest that bone marrow-derived mesenchymal stem cells (BM-MSCs) are key players in tumour stroma. Here, we investigated the cross-talk between BM-MSCs and osteosarcoma (OS) cells. We revealed a strong tropism of BM-MSCs towards these tumour cells and identified monocyte chemoattractant protein (MCP)-1, growth-regulated oncogene (GRO)-α and transforming growth factor (TGF)-β1 as pivotal factors for BM-MSC chemotaxis. Once in contact with OS cells, BM-MSCs trans-differentiate into cancer-associated fibroblasts, further increasing MCP-1, GRO-α, interleukin (IL)-6 and IL-8 levels in the tumour microenvironment. These cytokines promote mesenchymal to amoeboid transition (MAT), driven by activation of the small GTPase RhoA, in OS cells, as illustrated by the in vitro assay and live imaging. The outcome is a significant increase of aggressiveness in OS cells in terms of motility, invasiveness and transendothelial migration. In keeping with their enhanced transendothelial migration abilities, OS cells stimulated by BM-MSCs also sustain migration, invasion and formation of the in vitro capillary network of endothelial cells. Thus, BM-MSC recruitment to the OS site and the consequent cytokine-induced MAT are crucial events in OS malignancy. © 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.
Wang, Congrui; Wang, Huaibin; Lu, Ming; Li, Yonghai; Feng, Huigen; Yuan, Zhiqing
2013-01-01
Bone marrow-derived mesenchymal stem cells (bmMSCs) are the most important cell source for stem cell transplant therapy. The migration capacity of MSCs is one of the determinants of the efficiency of MSC-based transplant therapy. Our recent study has shown that low concentrations of oxidized low-density lipoprotein (ox-LDL) can stimulate proliferation of bmMSCs. In this study, we investigated the effects of ox-LDL on bmMSC migration and adhesion, as well as the related mechanisms. Our results show that transmigration rates of bmMSCs and cell-cell adhesion between bmMSCs and monocytes are significantly increased by treatments with ox-LDL in a dose- and time-dependent manner. Expressions of ICAM-1, PECAM-1, and VCAM-1 as well as the levels of intracellular Ca2+ are also markedly increased by ox-LDL in a dose-dependent manner. Cytoskeleton analysis shows that ox-LDL treatment benefits to spreading of bmMSCs and organization of F-actin fibers after being plated for 6 hours. More interestingly, treatments with ox-LDL also markedly increase expressions of LOX-1, MCP-1, and TGF-β; however, LOX-1 antibody and MCP-1 shRNA markedly inhibit ox-LDL-induced migration and adhesion of bmMSCs, which suggests that ox-LDL-induced bmMSC migration and adhesion are dependent on LOX-1 activation and MCP-1 expression. PMID:23956504
Sanchez, Ricardo; Ayala, Rosa; Alonso, Rafael Alberto; Martínez, María Pilar; Ribera, Jordi; García, Olga; Sanchez-Pina, José; Mercadal, Santiago; Montesinos, Pau; Martino, Rodrigo; Barba, Pere; González-Campos, José; Barrios, Manuel; Lavilla, Esperanza; Gil, Cristina; Bernal, Teresa; Escoda, Lourdes; Abella, Eugenia; Amigo, Ma Luz; Moreno, Ma José; Bravo, Pilar; Guàrdia, Ramón; Hernández-Rivas, Jesús-María; García-Guiñón, Antoni; Piernas, Sonia; Ribera, José-María; Martínez-López, Joaquín
2017-07-01
We investigated the frequency, predictors, and evolution of acute lymphoblastic leukemia (ALL) in patients with CNS relapse and introduced a novel method for studying BCR-ABL1 protein variants in cDNA from bone marrow (BM) and cerebrospinal fluid (CSF) blast cells. A total of 128 patients were analyzed in two PETHEMA clinical trials. All achieved complete remission after imatinib treatment. Of these, 30 (23%) experienced a relapse after achieving complete remission, and 13 (10%) had an isolated CNS relapse or combined CNS and BM relapses. We compared the characteristics of patients with and without CNS relapse and further analyzed CSF and BM samples from two of the 13 patients with CNS relapse. In both patients, classical sequencing analysis of the kinase domain of BCR-ABL1 from the cDNA of CSF blasts revealed the pathogenic variant p.L387M. We also performed ultra-deep next-generation sequencing (NGS) in three samples from one of the relapsed patients. We did not find the mutation in the BM sample, but we did find it in CSF blasts with 45% of reads at the time of relapse. These data demonstrate the feasibility of detecting BCR-ABL1 mutations in CSF blasts by NGS and highlight the importance of monitoring clonal evolution over time.
Li, Ou; Tormin, Ariane; Sundberg, Berit; Hyllner, Johan; Le Blanc, Katarina; Scheding, Stefan
2013-01-01
Mesenchymal stroma cells (MSCs) have a high potential for novel cell therapy approaches in clinical transplantation. Commonly used bone marrow-derived MSCs (BM-MSCs), however, have a restricted proliferative capacity and cultures are difficult to standardize. Recently developed human embryonic stem cell-derived mesenchymal stroma cells (hES-MSCs) might represent an alternative and unlimited source of hMSCs. We therefore compared human ES-cell-derived MSCs (hES-MP002.5 cells) to normal human bone marrow-derived MSCs (BM-MSCs). hES-MP002.5 cells had lower yet reasonable CFU-F capacity compared with BM-MSC (8±3 versus 29±13 CFU-F per 100 cells). Both cell types showed similar immunophenotypic properties, i.e. cells were positive for CD105, CD73, CD166, HLA-ABC, CD44, CD146, CD90, and negative for CD45, CD34, CD14, CD31, CD117, CD19, CD 271, SSEA-4 and HLA-DR. hES-MP002.5 cells, like BM-MSCs, could be differentiated into adipocytes, osteoblasts and chondrocytes in vitro. Neither hES-MP002.5 cells nor BM-MSCs homed to the bone marrow of immune-deficient NSG mice following intravenous transplantation, whereas intra-femoral transplantation into NSG mice resulted in engraftment for both cell types. In vitro long-term culture-initiating cell assays and in vivo co-transplantation experiments with cord blood CD34+ hematopoietic cells demonstrated furthermore that hES-MP002.5 cells, like BM-MSCs, possess potent stroma support function. In contrast to BM-MSCs, however, hES-MP002.5 cells showed no or only little activity in mixed lymphocyte cultures and phytohemagglutinin (PHA) lymphocyte stimulation assays. In summary, ES-cell derived MSCs might be an attractive unlimited source for stroma transplantation approaches without suppressing immune function. PMID:23383153
Sun, Zongyang; Tee, Boon Ching; Kennedy, Kelly S.; Kennedy, Patrick M.; Kim, Do-Gyoon; Mallery, Susan R.; Fields, Henry W.
2013-01-01
Purpose Bone regeneration through distraction osteogenesis (DO) is promising but remarkably slow. To accelerate it, autologous mesenchymal stem cells have been directly injected to the distraction site in a few recent studies. Compared to direct injection, a scaffold-based method can provide earlier cell delivery with potentially better controlled cell distribution and retention. This pilot project investigated a scaffold-based cell-delivery approach in a porcine mandibular DO model. Materials and Methods Eleven adolescent domestic pigs were used for two major sets of studies. The in-vitro set established methodologies to: aspirate bone marrow from the tibia; isolate, characterize and expand bone marrow-derived mesenchymal stem cells (BM-MSCs); enhance BM-MSC osteogenic differentiation using FGF-2; and confirm cell integration with a gelatin-based Gelfoam scaffold. The in-vivo set transplanted autologous stem cells into the mandibular distraction sites using Gelfoam scaffolds; completed a standard DO-course and assessed bone regeneration by macroscopic, radiographic and histological methods. Repeated-measure ANOVAs and t-tests were used for statistical analyses. Results From aspirated bone marrow, multi-potent, heterogeneous BM-MSCs purified from hematopoietic stem cell contamination were obtained. FGF-2 significantly enhanced pig BM-MSC osteogenic differentiation and proliferation, with 5 ng/ml determined as the optimal dosage. Pig BM-MSCs integrated readily with Gelfoam and maintained viability and proliferative ability. After integration with Gelfoam scaffolds, 2.4–5.8×107 autologous BM-MSCs (undifferentiated or differentiated) were transplanted to each experimental DO site. Among 8 evaluable DO sites included in the final analyses, the experimental DO sites demonstrated less interfragmentary mobility, more advanced gap obliteration, higher mineral content and faster mineral apposition than the control sites, and all transplanted scaffolds were completely degraded. Conclusion It is technically feasible and biologically sound to deliver autologous BM-MSCs to the distraction site immediately after osteotomy using a Gelfoam scaffold to enhance mandibular DO. PMID:24040314
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Andrew Y.; Golden, Daniel W.; Bazan, Jose G.
Purpose: Pelvic bone marrow (BM) constraints may offer a means to reduce the toxicity commonly associated with chemoradiation for anal cancer. We conducted a bi-institutional analysis of dose-volume metrics in a time-sensitive fashion to devise practical metrics to minimize hematologic toxicity. Methods and Materials: Fifty-six anal cancer patients from 2 institutions received definitive radiation therapy (median primary dose of 54 Gy) using intensity modulated radiation therapy (IMRT, n=49) or 3-dimensional (3D) conformal therapy (n=7) with concurrent 5-fluorouracil (5-FU) and mitomycin C. Weekly blood counts were retrospectively plotted to characterize the time course of cytopenias. Dose-volume parameters were correlated with blood countsmore » at a standardized time point to identify predictors of initial blood count nadirs. Results: Leukocytes, neutrophils, and platelets reached a nadir at week 3 of treatment. Smaller volumes of the pelvic BM correlated most strongly with lower week 3 blood counts, more so than age, sex, body mass index (BMI), or dose metrics. Patients who had ≥750 cc of pelvic BM spared from doses of ≥30 Gy had 0% grade 3+ leukopenia or neutropenia at week 3. Higher V40 Gy to the lower pelvic BM (LP V40) also correlated with cytopenia. Patients with an LP V40 >23% had higher rates of grade 3+ leukopenia (29% vs 4%, P=.02), grade 3+ neutropenia (33% vs 8%, P=.04), and grade 2+ thrombocytopenia (32% vs 7%, P=.04) at week 3. On multivariate analysis, pelvic BM volume and LP V40 remained associated with leukocyte count, and all marrow subsite volumes remained associated with neutrophil counts at week 3 (P<.1). Conclusions: Larger pelvic BM volumes correlate with less severe leukocyte and neutrophil nadirs, suggesting that larger total “marrow reserve” can mitigate cytopenias. Sparing a critical marrow reserve and limiting the V40 Gy to the lower pelvis may reduce the risk of hematologic toxicity.« less
Reichard, Kaaren K; Chen, Dong; Pardanani, Animesh; McClure, Rebecca F; Howard, Matthew T; Kurtin, Paul J; Wood, Adam J; Ketterling, Rhett P; King, Rebecca L; He, Rong; Morice, William G; Hanson, Curtis A
2015-09-01
Bone marrow (BM) biopsy specimens involved by systemic mastocytosis (SM) typically show multifocal, compact, dense aggregates of spindled mast cells (MCs). However, some cases lack aggregate formation and fulfill the World Health Organization 2008 criteria for SM, based on minor criteria. We identified 26 BM cases of KIT D816V-mutated, morphologically occult SM in the BM. All patients had some combination of allergic/MC activating symptoms. Peripheral blood counts were generally normal. BM aspirates showed 5% or less MCs, which were only occasionally spindled. BM biopsy specimens showed no morphologic classic MC lesions. Tryptase immunohistochemistry (IHC) demonstrated interstitial, individually distributed MCs (up to 5%) with prominent spindling, lacking aggregate formation. MCs coexpressed CD25 by IHC and/or flow cytometry. Spindled MCs constituted more than 25% of total MCs in all cases and more than 50% in 20 of 26 cases. Morphologically occult involvement of normal-appearing BM by SM will be missed without appropriate clinical suspicion and pathologic evaluation by tryptase and CD25 IHC and KIT D816V mutation analysis. On the basis of these findings, we propose a cost-effective, data-driven, evidence-based algorithmic approach to the workup of these cases. Copyright© by the American Society for Clinical Pathology.
Wang, D; Fløisand, Y; Myklebust, C V; Bürgler, S; Parente-Ribes, A; Hofgaard, P O; Bogen, B; Taskén, K; Tjønnfjord, G E; Schjesvold, F; Dalgaard, J; Tveita, A; Munthe, L A
2017-10-01
Multiple myeloma (MM) is a plasma cell malignancy where MM cell growth is supported by the bone marrow (BM) microenvironment with poorly defined cellular and molecular mechanisms. MM cells express CD40, a receptor known to activate autocrine secretion of cytokines and elicit proliferation. Activated T helper (Th) cells express CD40 ligand (CD40L) and BM Th cells are significantly increased in MM patients. We hypothesized that activated BM Th cells could support MM cell growth. We here found that activated autologous BM Th cells supported MM cell growth in a contact- and CD40L-dependent manner in vitro. MM cells had retained the ability to activate Th cells that reciprocated and stimulated MM cell proliferation. Autologous BM Th cells supported MM cell growth in xenografted mice and were found in close contact with MM cells. MM cells secreted chemokines that attracted Th cells, secretion was augmented by CD40-stimulation. Within 14 days of culture of whole BM aspirates in autologous serum, MM cells and Th cells mutually stimulated each other, and MM cells required Th cells for further expansion in vitro and in mice. The results suggest that Th cells may support the expansion of MM cells in patients.
Bone marrow T-cell percentage: A novel prognostic indicator in acute myeloid leukemia.
Ismail, Manar M; Abdulateef, Nahla A B
2017-04-01
Acute myeloid leukemia (AML) is an aggressive malignancy for which overall disease-free survival is less than 50%. Manipulation of the immune system is an interesting and promising therapy for AML patients. We aimed to characterize the immune system of AML patients, highlighting the clinical relevance of total bone marrow (BM) lymphocytes and subpopulations. Sixty-six new AML cases diagnosed according to WHO criteria from King Abdullah Medical City, KSA, from October 2012 to February 2015. Analysis of BM lymphocytes and subpopulations was done by flowcytometry. Significantly, high percentages of BM lymphocytes, T cells, and natural killer (NK) cells were detected in the group that achieved complete remission (P values = 0.004, <0.001, and <0.001, respectively). Overall survival (OS) was significantly prolonged in patients with high BM lymphocytes and T cells (P values = 0.047 and P 0.002, respectively). Multivariate analysis indicated that BM T-cell percentage and cytogenetics were independent prognostic factors predictive of OS (HR 4.7, P value = 0.011). BM T-cell percentage constitutes a novel host factor that can be used in combination with cytogenetics to better predict OS. Large-scale multicenter studies are recommended to clarify its role as a predictor of OS and leukemia-free survival.
Does selective beta-1 blockade provide bone marrow protection after trauma/hemorrhagic shock?
Pasupuleti, Latha V; Cook, Kristin M; Sifri, Ziad C; Kotamarti, Srinath; Calderon, Gabriel M; Alzate, Walter D; Livingston, David H; Mohr, Alicia M
2012-09-01
Previously, nonselective beta-blockade (BB) with propranolol demonstrated protection of the bone marrow (BM) after trauma and hemorrhagic shock (HS). Because selective beta-1 blockers are used commonly for their cardiac protection, the aim of this study was to more clearly define the role of specific beta adrenergic receptors in BM protection after trauma and HS. Male Sprague-Dawley rats underwent unilateral lung contusion (LC) followed by HS for 45 minutes. After resuscitation, animals were injected with a selective beta-blocker, atenolol (B1B), butoxamine (B2B), or SR59230A (B3B). Animals were killed at 3 hours or 7 days. Heart rate and blood pressure were measured throughout the study period. BM cellularity, growth of hematopoietic progenitor cells (HPCs) in BM, and hemoglobin levels (Hb) were assessed. Treatment with a B2B or B3B after LCHS restored both BM cellularity and BM HPC colony growth at 3 hours and 7 days. In contrast, treatment with a B1B had no effect on BM cellularity or HPC growth but did decrease heart effectively rate throughout the study. Treatment with a B3B after LCHS increased Hb as compared with LCHS alone. After trauma and HS, protection of BM for 7 days was seen with use of either a selective beta-2 or beta-3 blocker. Use of a selective beta-1 blocker was ineffective in protecting the BM despite a physiologic decrease in heart rate. Therefore, the protection of BM is via the beta-2 and beta-3 receptors and it is not via a direct cardiovascular effect. Published by Mosby, Inc.
Interleukin-17A increases leptin production in human bone marrow mesenchymal stem cells.
Noh, Minsoo
2012-03-01
Lineage commitment of human bone marrow mesenchymal stem cells (hBM-MSCs) to adipocytes or osteoblasts has been suggested as a model system to study the relationship between type II diabetes and abnormal bone metabolism. Leptin and IL-17A inhibit adipogenesis whereas they promote osteogenesis in MSCs. Due to pathophysiologic roles of IL-17A in human metabolic diseases and bone metabolism, it was evaluated whether IL-17A-dependent inverse regulation on adipogenesis and osteogenesis was related to endogenous leptin production in hBM-MSCs. In the analysis of adiponectin and leptin secretion profiles of hBM-MSCs in response to various combinations of differentiation inducing factors, it was found that dexamethasone, a common molecule used for both adipogenesis and osteogenesis, increased leptin production in hBM-MSCs. Importantly, the level of leptin production during osteogenesis in hBM-MSCs was higher than that during adipogenesis, implicating a significant leptin production in extra-adipose tissues. IL-17A increased leptin production in hBM-MSCs and also under the condition of osteogenesis. In spite of direct inhibition on adipogenesis, IL-17A up-regulated leptin production in hBM-MSC-derived adipocytes. Anti-leptin antibody treatment partially antagonized the IL-17A dependent inhibition of adipogenesis in hBM-MSCs, suggesting a role of leptin in mediating the inverse regulation of IL-17A on osteogenesis and adipogenesis in hBM-MSCs. Therefore, the IL-17A-induced leptin production may provide a key clue to understand a molecular mechanism on the lineage commitment of hBM-MSCs into adipocytes or osteoblasts. In addition, leptin production in extra-adipose tissues like MSCs and osteoblasts should be considered in future studies on leptin-associated human diseases. Copyright © 2011 Elsevier Inc. All rights reserved.
Fang, Dongdong; Shang, Sixia; Liu, Younan; Bakkar, Mohammed; Sumita, Yoshinori; Seuntjens, Jan; Tran, Simon D
2018-02-01
Injections of bone marrow (BM) cell extract, known as 'BM soup', were previously reported to mitigate ionizing radiation (IR) injury to salivary glands (SGs). However, the optimal starting time and frequency to maintain BM soup therapeutic efficacy remains unknown. This study tested the optimal starting time and frequency of BM soup injections in mice radiated with either a single dose or a fractionated dose. First, BM soup treatment was started at 1, 3 or 7 weeks post-IR; positive (non-IR) and negative (IR) control mice received injections of saline (vehicle control). Second, BM soup-treated mice received injections at different frequencies (1, 2, 3 and 5 weekly injections). Third, a 'fractionated-dose radiation' model to injure mouse SGs was developed (5 Gy × 5 days) and compared with the single high dose radiation model. All mice (n = 65) were followed for 16 weeks post-IR. The results showed that starting injections of BM soup between 1 and 3 weeks mitigated the effect of IR-induced injury to SGs and improved the restoration of salivary function. Although the therapeutic effect of BM soup lessens after 8 weeks, it can be sustained by increasing the frequency of weekly injections. Moreover, both single-dose and fractionated-dose radiation models are efficient and comparable in inducing SG injury and BM soup treatments are effective in restoring salivary function in both radiation models. In conclusion, starting injections of BM soup within 3 weeks post-radiation, with 5 weekly injections, maintains 90-100% of saliva flow in radiated mice. Copyright © 2017 John Wiley & Sons, Ltd.
Yan, Kevin; Ramirez, Ezequiel; Xie, Xian-Jin; Gu, Xuejun; Xi, Yin; Albuquerque, Kevin
The purpose of this study was to determine factors predictive for severe hematologic toxicity (HT) in cervical cancer patients with para-aortic lymph node metastasis treated with concurrent cisplatin chemoradiation to an extended field (EFCRT). Thirty-eight patients with cervical cancer and para-aortic lymph node metastasis who underwent EFCRT were analyzed. Active bone marrow was defined as the region within irradiated total bone marrow (BM TOT ) with a standard uptake value on 18 F-fluorodeoxyglucose positron emission tomography/computed tomography greater than the mean standard uptake value for BM TOT . Serial weekly blood counts from the beginning to the end of radiation treatment were evaluated for HT using Common Terminology Criteria for Adverse Events, version 4.0. Nineteen patients had grade 3 or higher hematologic toxicity (HT3+), not including lymphocyte toxicity. Obese patients (n = 12) were less likely to get HT3+ (P = .03) despite getting equivalent doses of chemotherapy. Volumes of BM TOT and active bone marrow receiving doses of 20, 30, and 45 Gy and body mass index significantly predicted HT3+. Patients who had HT3+ had prolonged treatment time (62 vs 53 days, P < .001). For patients receiving EFCRT, bone marrow irradiation parameters and patient body mass index were associated with HT3+. A simplified nomogram has been created to predict HT3+ in these patients, allowing the potential to explore bone marrow-sparing delivery techniques. Copyright © 2017 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
Saba, Nakhle S.; Valdez, Janet; Emson, Claire; Gatmaitan, Michelle; Tian, Xin; Hughes, Thomas E.; Sun, Clare; Arthur, Diane C.; Stetler-Stevenson, Maryalice; Yuan, Constance M.; Niemann, Carsten U.; Marti, Gerald E.; Aue, Georg; Soto, Susan; Farooqui, Mohammed Z.H.; Herman, Sarah E.M.; Chiorazzi, Nicholas; Wiestner, Adrian
2016-01-01
Chronic Lymphocytic Leukemia (CLL) is a progressive malignancy of mature B-cells that involves the peripheral blood (PB), lymph nodes (LNs) and bone marrow (BM). While the majority of CLL cells are in a resting state, small populations of proliferating cells exist; however, the anatomical site of active cell proliferation remains to be definitively determined. Based on findings that CLL cells in LNs have increased expression of B-cell activation genes, we tested the hypothesis that the fraction of “newly born” cells would be highest in the LNs. Using a deuterium oxide (2H) in vivo labeling method in which patients consumed deuterated (heavy) water (2H2O), we determined CLL cell kinetics in concurrently obtained samples from LN, PB, and BM. The LN was identified as the anatomical site harboring the largest fraction of newly born cells, compared to PB and BM. In fact, the calculated birth rate in the LN reached as high a 3.3% of the clone per day. Subdivision of the bulk CLL population by flow cytometry identified the subpopulation with the CXCR4dimCD5bright phenotype as containing the highest proportion of newly born cells within each compartment, including the LN, identifying this subclonal population as an important target for novel treatment approaches. PMID:28074063
Characterization of bone marrow mesenchymal stromal cells in aplastic anaemia.
Hamzic, Edita; Whiting, Karen; Gordon Smith, Edward; Pettengell, Ruth
2015-06-01
In aplastic anaemia (AA), haemopoietic activity is significantly reduced and generally attributed to failure of haemopoietic stem cells (HSC) within the bone marrow (BM). The regulation of haemopoiesis depends on the interaction between HSC and various cells of the BM microenvironment, including mesenchymal stromal cells (MSC). MSC involvement in the functional restriction of HSC in AA is largely unknown and therefore, the physical and functional properties of AA MSC were studied in vitro. MSC were characterized by their phenotype and ability to form adherent stromal layers. The functional properties of AA MSC were assessed through proliferative, clonogenic and cross-over culture assays. Results indicate that although AA MSC presented typical morphology and distinctive mesenchymal markers, stromal formation was reduced, with 50% of BM samples failing to produce adherent layers. Furthermore, their proliferative and clonogenic capacity was markedly decreased (P = 0·03 and P = 0·04 respectively) and the ability to sustain haemopoiesis was significantly reduced, as assessed by total cell proliferation (P = 0·032 and P = 0·019 at Week 5 and 6, respectively) and clonogenic potential of HSC (P = 0·02 at Week 6). It was concluded that the biological characteristics of AA MSC are different from those of control MSC and their in vitro haemopoiesis-supporting ability is significantly reduced. © 2015 John Wiley & Sons Ltd.
Nishio, Nobuhiro; Takahashi, Yoshiyuki; Ohashi, Haruhiko; Doisaki, Sayoko; Muramatsu, Hideki; Hama, Asahito; Shimada, Akira; Yagasaki, Hiroshi; Kojima, Seiji
2011-03-01
DC is an inherited bone marrow failure syndrome mainly characterized by nail dystrophy, abnormal skin pigmentation, and oral leukoplakia. Bone marrow failure is the most common cause of death in patients with DC. Because previous results of HSCT with a myeloablative regimen were disappointing, we used a reduced-intensity conditioning regimen for two patients with classic DC, and one patient with cryptic DC who harbored the TERT mutation. Graft sources included two mismatched-related bone marrow (BM) donors and one unrelated BM donor. Successful engraftment was achieved with few regimen-related toxicities in all patients. They were alive 10, 66, and 72 months after transplantation, respectively. Long-term follow-up is crucial to determine the late effects of our conditioning regimen. © 2010 John Wiley & Sons A/S.
Bone marrow adipocytes: a neglected target tissue for growth hormone.
Gevers, Evelien F; Loveridge, Nigel; Robinson, Iain C A F
2002-10-01
Bone marrow (BM) contains numerous adipocytes. These share a common precursor with osteoblasts and chondrocytes, but their function is unknown. It is unclear what regulates the differentiation of these three different cell types, though their subsequent metabolic activity is under hormonal regulation. GH and estrogen stimulate bone growth and mineralization, by direct effects on chondrocytes and osteoblasts. GH also stimulates lipolysis in subcutaneous and visceral adipocytes. However, adipocytes in BM have largely been ignored as potential targets for GH or estrogen action. We have addressed this by measuring BM adipocyte number, perimeter and area as well as bone area and osteoblast activity in GH-deficient dwarf (dw/dw), normal, or ovariectomized (Ovx) rats, with or without GH, IGF-1, PTH, or estrogen treatment or high fat feeding. Marrow adipocyte numbers were increased 5-fold (P < 0.001) in dw/dw rats, and cell size was also increased by 20%. These values returned toward normal in dw/dw rats given GH but not when given IGF-1. Cancellous bone area and osteoblast number were significantly (P < 0.005) lower in dw/dw rats, though alkaline phosphatase (ALP) activity in individual osteoblasts was unchanged. GH treatment increased % osteoblast covered bone surface without affecting individual cell ALP activity. Ovariectomy in normal or dw/dw rats had no affect on marrow adipocyte number nor size, although estrogen treatment in ovariectomized (Ovx) normal rats did increase adipocyte number. Ovx decreased tibial cancellous bone area in normal rats (64%; P < 0.05) and decreased osteoblast ALP-activity (P < 0.01) but did not affect the percentage of osteoblast-covered bone surface. Estrogen replacement reversed these changes. While treatment with PTH by continuous sc infusion decreased cancellous bone (P < 0.05) and high fat feeding increased the size of BM adipocytes (P < 0.01), they did not affect BM adipocyte number. These results suggest that GH has a specific action on BM adipocytes that is not simply due to altered bone or fat metabolism. We conclude that the marrow adipocyte lineage is an important and specific target for GH action. The inverse relationship between adipocyte number and osteoblast covered bone surface, together with the well-known effects of GH on epiphysial chondrocytes leads us to propose that GH plays two important roles on cells of all three lineages. During differentiation, it regulates the numbers of each cell type that are maintained from the common precursor lineage. Subsequently it has cell-specific effects on the metabolic activities of the differentiated cells. In the case of marrow adipocytes, GH-dependent lipolysis could provide an important hormonally regulated local high energy source in bone.
The Src-like adaptor protein regulates GM-CSFR signaling and monocytic dendritic cell maturation.
Liontos, Larissa M; Dissanayake, Dilan; Ohashi, Pamela S; Weiss, Arthur; Dragone, Leonard L; McGlade, C Jane
2011-02-15
GM-CSF is an important cytokine involved in myeloid differentiation and inflammatory processes. Signaling through the GM-CSFR also plays a critical role in the generation of monocyte-derived dendritic cells (DC). In this article, we report that the Src-like adaptor protein (SLAP) functions as a negative regulator of the GM-CSFR. In bone marrow-derived DC (BM-DC) lacking SLAP and the closely related SLAP2, downregulation of GM-CSFRβ is impaired, leading to enhanced phosphorylation of Jak2 and prolonged activation of Akt and Erk1/2 in response to GM-CSF stimulation. Compared with wild-type bone marrow, SLAP/SLAP2(-/-) bone marrow gave rise to similar numbers of CD11c(+) and CD11b(+) DC, but SLAP/SLAP2(-/-) BM-DC failed to acquire high levels of MHC class II, CD80, and CD86, indicating an impairment in maturation. Furthermore, MHC class II expression in SLAP/SLAP2(-/-) BM-DC was rescued by decreasing GM-CSF concentration, suggesting that enhanced GM-CSF signaling mediates the block in maturation. In addition, SLAP/SLAP2(-/-) BM-DC produced less IL-12 and TNF-α in response to LPS compared with controls and failed to stimulate T cells in an MLR. Ag-specific T cell activation assays showed that SLAP/SLAP2(-/-) BM-DC were less robust at inducing IFN-γ secretion by DO11.10 T cells. These results indicated that SLAP-mediated GM-CSFR regulation is important for the generation of functionally mature monocytic DC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fenxi; Stem Cell and Biotheraphy Technology Research Center, College of Lifescience and Technology, Xinxiang Medical University, Xinxiang 453003; Wang, Congrui
The bone marrow-derived mesenchymal stem cells (bmMSCs) have been widely used in cell transplant therapy, and the proliferative ability of bmMSCs is one of the determinants of the therapy efficiency. Lectin-like oxidized low density lipoprotein receptor-1 (LOX-1) as a transmembrane protein is responsible for binding, internalizing and degrading oxidized low density lipoprotein (ox-LDL). It has been identified that LOX-1 is expressed in endothelial cells, vascular smooth muscle cells, cardiomyocytes, fibroblasts and monocytes. In these cells, low concentration of ox-LDL (<40 μg/mL) stimulates their proliferation via LOX-1 activation. However, it is poor understood that whether LOX-1 is expressed in bmMSCs andmore » which role it plays. In this study, we investigated the status of LOX-1 expression in bmMSCs and its function on bmMSC proliferation. Our results showed that primary bmMSCs exhibiting a typical fibroblast-like morphology are positive for CD44 and CD90, but negative for CD34 and CD45. LOX-1 in both mRNA and protein levels is highly expressed in bmMSCs. Meanwhile, bmMSCs exhibit a strong potential to take up ox-LDL. Moreover, LOX-1 expression in bmMSCs is upregulated by ox-LDL with a dose- and time-dependent manner. Presence of ox-LDL also enhances the proliferation of bmMSCs. Knockdown of LOX-1 expression significantly inhibits ox-LDL-induced bmMSC proliferation. These findings indicate that LOX-1 plays a role in bmMSC proliferation. - Highlights: ► LOX-1 expresses in bmMSCs and mediates uptake of ox-LDL. ► Ox-LDL stimulates upregulation of LOX-1 in bmMSCs. ► Ox-LDL promotes bmMSC proliferation and expression of Mdm2, phosphor-Akt, phosphor-ERK1/2 and phosphor-NF-κB. ► LOX-1 siRNA inhibits ox-LDL-induced bmMSC proliferation and expression cell survival signals.« less
In vivo engineering of bone tissues with hematopoietic functions and mixed chimerism
Shih, Yu-Ru; Kang, Heemin; Rao, Vikram; Chiu, Yu-Jui; Kwon, Seong Keun; Varghese, Shyni
2017-01-01
Synthetic biomimetic matrices with osteoconductivity and osteoinductivity have been developed to regenerate bone tissues. However, whether such systems harbor donor marrow in vivo and support mixed chimerism remains unknown. We devised a strategy to engineer bone tissues with a functional bone marrow (BM) compartment in vivo by using a synthetic biomaterial with spatially differing cues. Specifically, we have developed a synthetic matrix recapitulating the dual-compartment structures by modular assembly of mineralized and nonmineralized macroporous structures. Our results show that these matrices incorporated with BM cells or BM flush transplanted into recipient mice matured into functional bone displaying the cardinal features of both skeletal and hematopoietic compartments similar to native bone tissue. The hematopoietic function of bone tissues was demonstrated by its support for a higher percentage of mixed chimerism compared with i.v. injection and donor hematopoietic cell mobilization in the circulation of nonirradiated recipients. Furthermore, hematopoietic cells sorted from the engineered bone tissues reconstituted the hematopoietic system when transplanted into lethally irradiated secondary recipients. Such engineered bone tissues could potentially be used as ectopic BM surrogates for treatment of nonmalignant BM diseases and as a tool to study hematopoiesis, donor–host cell dynamics, tumor tropism, and hematopoietic cell transplantation. PMID:28484009
Periodontal regeneration using engineered bone marrow mesenchymal stromal cells.
Yang, Yi; Rossi, Fabio M V; Putnins, Edward E
2010-11-01
Regeneration of lost periodontium is a challenge in that both hard (alveolar bone, cementum) and soft (periodontal ligament) connective tissues need to be restored to their original architecture. Bone marrow mesenchymal stromal cells (BM-MSCs) appear to be an attractive candidate for connective tissue regeneration. We hypothesized that BM-MSCs are able to sense biological cues from the local microenvironment and organize appropriately to contribute to the regeneration of both soft and hard periodontal connective tissues. To test this hypothesis, we transplanted GFP(+) rat BM-MSCs expanded ex vivo on microcarrier gelatin beads into a surgically created rat periodontal defect. After three weeks, evidence of regeneration of bone, cementum and periodontal ligament was observed in both transplanted and control animals. However, the animals that received BM-MSCs regenerated significantly greater new bone. In addition, the animals that had received the cells and beads transplant had significantly more appropriately orientated periodontal ligament fibers, indicative of functional restoration. Finally, donor-derived BM-MSCs were found integrated in newly formed bone, cementum and periodontal ligament, suggesting that they can directly contribute to the regeneration of cells of these tissues. Copyright © 2010 Elsevier Ltd. All rights reserved.
In vivo engineering of bone tissues with hematopoietic functions and mixed chimerism.
Shih, Yu-Ru; Kang, Heemin; Rao, Vikram; Chiu, Yu-Jui; Kwon, Seong Keun; Varghese, Shyni
2017-05-23
Synthetic biomimetic matrices with osteoconductivity and osteoinductivity have been developed to regenerate bone tissues. However, whether such systems harbor donor marrow in vivo and support mixed chimerism remains unknown. We devised a strategy to engineer bone tissues with a functional bone marrow (BM) compartment in vivo by using a synthetic biomaterial with spatially differing cues. Specifically, we have developed a synthetic matrix recapitulating the dual-compartment structures by modular assembly of mineralized and nonmineralized macroporous structures. Our results show that these matrices incorporated with BM cells or BM flush transplanted into recipient mice matured into functional bone displaying the cardinal features of both skeletal and hematopoietic compartments similar to native bone tissue. The hematopoietic function of bone tissues was demonstrated by its support for a higher percentage of mixed chimerism compared with i.v. injection and donor hematopoietic cell mobilization in the circulation of nonirradiated recipients. Furthermore, hematopoietic cells sorted from the engineered bone tissues reconstituted the hematopoietic system when transplanted into lethally irradiated secondary recipients. Such engineered bone tissues could potentially be used as ectopic BM surrogates for treatment of nonmalignant BM diseases and as a tool to study hematopoiesis, donor-host cell dynamics, tumor tropism, and hematopoietic cell transplantation.
Harizi, H; Gualde, N
2002-01-01
Eicosanoids have been shown to be potent immunoregulatory arachidonic acid (AA) metabolites. AA is the precursor of prostaglandin E(2) (PGE(2)) and leukotriene B(4) (LTB(4)) which are able to modulate both inflammation and the immune response. Dendritic cells process and present antigens to T lymphocytes. They are highly specialized antigen-presenting cells (APC) and usually considered as 'professional APC'. In the present paper, we report some data on the biosynthetic capacity of murine APC from the bone marrow (BM-DCs) to produce AA metabolites. Using an ELISA we have observed that BM-DCs spontaneously produce both PGE(2) and LTB(4) whose production increased in response to bacterial lipopolysaccharides (LPS). In addition we found that LTB(4) production was twice as high when both COX pathways were blocked with selective COX-inhibitors. We have also investigated the effect of PGE(2) and LTB(4) on the in vitro generation of the so-called BM-DCs. Exogenous PGE(2) and LTB(4) added to bone marrow cultures inhibit and promote, respectively, BM-DC generation. PGE(2) added to the maturing BM-DCs reduces their MHC class-II expression.
A Role for SHIP in Stem Cell Biology and Transplantation
Kerr, William G.
2008-01-01
Inositol phospholipid signaling pathways have begun to emerge as important players in stem cell biology and bone marrow transplantation [1–4]. The SH2-containing Inositol Phosphatase (SHIP) is among the enzymes that can modify endogenous mammalian phosphoinositides. SHIP encodes an isoform specific to pluripotent stem (PS) cells [5,6] plays a role in hematopoietic stem (HS) cell biology [7,8] and allogeneic bone marrow (BM) transplantation [1,2,9,10]. Here I discuss our current understanding of the cell and molecular pathways that SHIP regulates that influence PS/HS cell biology and BM transplantation. Genetic models of SHIP-deficiency indicate this enzyme is a potential molecular target to enhance both autologous and allogeneic BM transplantation. Thus, strategies to reversibly target SHIP expression and their potential application to stem cell therapies and allogeneic BMT are also discussed. PMID:18473876
Zanini, Cristina; Bruno, Stefania; Mandili, Giorgia; Baci, Denisa; Cerutti, Francesco; Cenacchi, Giovanna; Izzi, Leo; Camussi, Giovanni; Forni, Marco
2011-01-01
Background Regarding regenerative medicine for diabetes, accessible sources of Mesenchymal Stem Cells (MSCs) for induction of insular beta cell differentiation may be as important as mastering the differentiation process itself. Methodology/Principal Findings In the present work, stem cells from pancreatic islets (human islet-mesenchymal stem cells, HI-MSCs) and from human bone marrow (bone marrow mesenchymal stem cells, BM-MSCs) were cultured in custom-made serum-free medium, using suitable conditions in order to induce differentiation into Islet-like Cells (ILCs). HI-MSCs and BM-MSCs were positive for the MSC markers CD105, CD73, CD90, CD29. Following this induction, HI-MSC and BM-MSC formed evident islet-like structures in the culture flasks. To investigate functional modifications after induction to ILCs, ultrastructural analysis and immunofluorescence were performed. PDX1 (pancreatic duodenal homeobox gene-1), insulin, C peptide and Glut-2 were detected in HI-ILCs whereas BM-ILCs only expressed Glut-2 and insulin. Insulin was also detected in the culture medium following glucose stimulation, confirming an initial differentiation that resulted in glucose-sensitive endocrine secretion. In order to identify proteins that were modified following differentiation from basal MSC (HI-MSCs and BM-MSCs) to their HI-ILCs and BM-ILCs counterparts, proteomic analysis was performed. Three new proteins (APOA1, ATL2 and SODM) were present in both ILC types, while other detected proteins were verified to be unique to the single individual differentiated cells lines. Hierarchical analysis underscored the limited similarities between HI-MSCs and BM-MSCs after induction of differentiation, and the persistence of relevant differences related to cells of different origin. Conclusions/Significance Proteomic analysis highlighted differences in the MSCs according to site of origin, reflecting spontaneous differentiation and commitment. A more detailed understanding of protein assets may provide insights required to master the differentiation process of HI-MSCs to functional beta cells based only upon culture conditioning. These findings may open new strategies for the clinical use of BM-MSCs in diabetes. PMID:22194812
Liang, Yun; Bydder, Mark; Yashar, Catheryn M; Rose, Brent S; Cornell, Mariel; Hoh, Carl K; Lawson, Joshua D; Einck, John; Saenz, Cheryl; Fanta, Paul; Mundt, Arno J; Bydder, Graeme M; Mell, Loren K
2013-02-01
To test the hypothesis that intensity modulated radiation therapy (IMRT) can reduce radiation dose to functional bone marrow (BM) in patients with pelvic malignancies (phase IA) and estimate the clinical feasibility and acute toxicity associated with this technique (phase IB). We enrolled 31 subjects (19 with gynecologic cancer and 12 with anal cancer) in an institutional review board-approved prospective trial (6 in the pilot study, 10 in phase IA, and 15 in phase IB). The mean age was 52 years; 8 of 31 patients (26%) were men. Twenty-one subjects completed (18)F-fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) simulation and magnetic resonance imaging by use of quantitative IDEAL (IDEAL IQ; GE Healthcare, Waukesha, WI). The PET/CT and IDEAL IQ were registered, and BM subvolumes were segmented above the mean standardized uptake value and below the mean fat fraction within the pelvis and lumbar spine; their intersection was designated as functional BM for IMRT planning. Functional BM-sparing vs total BM-sparing IMRT plans were compared in 12 subjects; 10 were treated with functional BM-sparing pelvic IMRT per protocol. In gynecologic cancer patients, the mean functional BM V(10) (volume receiving ≥10 Gy) and V(20) (volume receiving ≥20 Gy) were 85% vs 94% (P<.0001) and 70% vs 82% (P<.0001), respectively, for functional BM-sparing IMRT vs total BM-sparing IMRT. In anal cancer patients, the corresponding values were 75% vs 77% (P=.06) and 62% vs 67% (P=.002), respectively. Of 10 subjects treated with functional BM-sparing pelvic IMRT, 3 (30%) had acute grade 3 hematologic toxicity or greater. IMRT can reduce dose to BM subregions identified by (18)F-fluorodeoxyglucose-PET/CT and IDEAL IQ. The efficacy of BM-sparing IMRT is being tested in a phase II trial. Copyright © 2013 Elsevier Inc. All rights reserved.
Mesenchymal Stem Cells Reverse Bone Marrow Dysfunction Following Injury and Stress
Gore, Amy V.; Bible, Letitia E.; Livingston, David H.; Mohr, Alicia M.; Sifri, Ziad C.
2015-01-01
Background Bone marrow (BM) dysfunction following experimental lung contusion (LC) resolves in 7 days, however, if followed by chronic stress (CS) following, BM dysfunction is persistent. Mesenchymal stem cells (MSC) have protective immunomodulatory effects. We hypothesize that MSC can protect the BM against the deleterious effect of CS following LC. Methods Male Sprague-Dawley rats (n=6–7/group) underwent LC or LC/CS ± MSC injection. CS consisted of a daily 2-hour period of restraint with repositioning and alarming every 30 minutes to prevent habituation. A single intravenous dose of 5 × 106 MSC was given within ten minutes following LC. Animals were sacrificed at day seven and peripheral blood (PB) and BM were collected. Flow cytometry was used to assess hematopoietic progenitor cells (HPCs) mobilized to PB. Plasma G-CSF levels were measured by ELISA. BM cellularity and growth of BM HPC colonies (CFU-E, BFU-E, CFU-GEMM) were also evaluated. Results As previously reported, the addition of CS to LC resulted in a 32% decrease in BM cellularity, significant decreases in CFU-GEMM, BFU-E, and CFU-E and marked increase in HPC in the PB as compared naïve animals. The addition of MSC to LC/CS resulted in a 22% increase in BM cellularity and significant increases in CFU-GEMM, BFU-E, and CFU-E cultured from the BM. MSCs additionally reduced plasma G-CSF, prevented prolonged mobilization of HPC to PB, and restored colony growth to naïve levels. Conclusion Chronic stress following LC results in persistent BM dysfunction manifested by a significant decrease in cellularity, HPC colony growth, and increased G-CSF levels and HPC mobilization to the PB at seven days following injury. The addition of a single dose of MSCs following acute traumatic injury reverses the deleterious effects of CS on BM function. Further study is warranted to better understand the mechanisms behind MSC-mediated protection of BM function in the setting of CS. PMID:26402534
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang Yun; Center for Advanced Radiotherapy Technologies, University of California, San Diego, La Jolla, California; Bydder, Mark
2013-02-01
Purpose: To test the hypothesis that intensity modulated radiation therapy (IMRT) can reduce radiation dose to functional bone marrow (BM) in patients with pelvic malignancies (phase IA) and estimate the clinical feasibility and acute toxicity associated with this technique (phase IB). Methods and Materials: We enrolled 31 subjects (19 with gynecologic cancer and 12 with anal cancer) in an institutional review board-approved prospective trial (6 in the pilot study, 10 in phase IA, and 15 in phase IB). The mean age was 52 years; 8 of 31 patients (26%) were men. Twenty-one subjects completed {sup 18}F-fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computedmore » tomography (CT) simulation and magnetic resonance imaging by use of quantitative IDEAL (IDEAL IQ; GE Healthcare, Waukesha, WI). The PET/CT and IDEAL IQ were registered, and BM subvolumes were segmented above the mean standardized uptake value and below the mean fat fraction within the pelvis and lumbar spine; their intersection was designated as functional BM for IMRT planning. Functional BM-sparing vs total BM-sparing IMRT plans were compared in 12 subjects; 10 were treated with functional BM-sparing pelvic IMRT per protocol. Results: In gynecologic cancer patients, the mean functional BM V{sub 10} (volume receiving {>=}10 Gy) and V{sub 20} (volume receiving {>=}20 Gy) were 85% vs 94% (P<.0001) and 70% vs 82% (P<.0001), respectively, for functional BM-sparing IMRT vs total BM-sparing IMRT. In anal cancer patients, the corresponding values were 75% vs 77% (P=.06) and 62% vs 67% (P=.002), respectively. Of 10 subjects treated with functional BM-sparing pelvic IMRT, 3 (30%) had acute grade 3 hematologic toxicity or greater. Conclusions: IMRT can reduce dose to BM subregions identified by {sup 18}F-fluorodeoxyglucose-PET/CT and IDEAL IQ. The efficacy of BM-sparing IMRT is being tested in a phase II trial.« less
Fu, Bin; Ok, Chi Young; Goswami, Maitrayee; Xei, Wei; Jaso, Jesse M; Muzzafar, Tariq; Bueso-Ramos, Carlos; Verstovsek, Srdan; Garcia-Manero, Guillermo; Medeiros, L Jeffrey; Wang, Sa A
2013-10-01
The presence of moderate to severe bone marrow (BM) fibrosis has been shown to be an adverse feature in patients with primary myelodysplastic syndromes (MDS). However, the clinical importance of BM fibrosis is not clear in therapy-related MDS. We retrieved all therapy-related MDS (t-MDS) cases (n = 266) diagnosed at our hospital over a 10-year period (2003-2012). Reticulin and trichrome stains were performed in cases in which BM fibrosis was suspected on initial evaluation of hematoxylin and eosin-stained slide. BM fibrosis was graded according to European consensus guidelines, and a score of MF2/MF3 was defined as moderate/severe fibrosis. Moderate/severe BM fibrosis was found in 47 (17%) patients. Compared to 219 patients with no/mild BM fibrosis, the patients with moderate/severe fibrosis presented with severer thrombocytopenia (p = 0.039) and higher numbers of circulating blasts (p = 0.051) but with similar degrees of anemia and neutropenia, transfusion requirements, and similar incidences of hepatosplenomegaly and constitutional symptoms. Histological examination revealed a comparable BM cellularity and BM blast percentage, but markedly increased megakaryocytes (p < 0.001) in the fibrotic group. Although the risk distribution of cytogenetic data was similar according to the New Comprehensive Cytogenetic Scoring criteria, -5 and -17 were more frequently observed in t-MDS with moderate/severe BM fibrosis (p = 0.031 and p = 0.043, respectively). With a median follow-up of 11.5 months, patients with moderate/severe BM fibrosis showed a similar risk of acute myeloid leukemia transformation and a comparable overall survival in univariate and multivariate analyses. Moderate/severe BM fibrosis in patients with t-MDS is associated with certain clinicopathological and genetic features. However, unlike the situation in patients with primary MDS, moderate/severe BM fibrosis does not add additional risk to patients with therapy-related MDS.
Rico, Laura; Herrera, Concha
2012-01-01
In November of 2011, the Committee for Advanced Therapies (CAT) of the European Medicines Agency (EMA) published two scientific recommendations regarding the classification of autologous bone marrow-derived mononuclear cells (BM-MNCs) and autologous bone marrow-derived CD133+ cells as advanced therapy medicinal products (ATMPs), specifically tissue-engineered products, when intended for regeneration in ischemic heart tissue on the basis that they are not used for the same essential function (hematological restoration) that they fulfill in the donor. In vitro and in vivo evidence demonstrates that bone marrow cells are physiologically involved in adult neovascularization and tissue repair, making their therapeutic use for these purposes a simple exploitation of their own essential functions. Therefore, from a scientific/legal point of view, nonsubstantially manipulated BM-MNCs and CD133+ cells are not an ATMP, because they have a physiological role in the processes of postnatal neovascularization and, when used therapeutically for vascular restoration in ischemic tissues, they are carrying out one of their essential physiological functions (the legal definition recognizes that cells can have several essential functions). The consequences of classifying BM-MNCs and CD133+ cells as medicinal products instead of cellular transplantation, like bone marrow transplantation, in terms of costs and time for these products to be introduced into clinical practice, make this an issue of crucial importance. Therefore, the recommendations of EMA/CAT could be reviewed in collaboration with scientific societies, in light of organizational and economic consequences as well as scientific knowledge recently acquired about the mechanisms of postnatal neovascularization and the function of bone marrow in the regeneration of remote tissues. PMID:23197819
Catalina, Purificación; Rodríguez, René; Melen, Gustavo J.; Bueno, Clara; Arriero, Mar; García-Sánchez, Félix; Lassaletta, Alvaro; García-Sanz, Ramón
2009-01-01
MLL-AF4 fusion is a hallmark genetic abnormality in infant B-acute lymphoblastic leukemia (B-ALL) known to arise in utero. The cellular origin of leukemic fusion genes during human development is difficult to ascertain. The bone marrow (BM) microenvironment plays an important role in the pathogenesis of several hematological malignances. BM mesenchymal stem cells (BM-MSC) from 38 children diagnosed with cytogenetically different acute leukemias were screened for leukemic fusion genes. Fusion genes were absent in BM-MSCs of childhood leukemias carrying TEL-AML1, BCR-ABL, AML1-ETO, MLL-AF9, MLL-AF10, MLL-ENL or hyperdiploidy. However, MLL-AF4 was detected and expressed in BM-MSCs from all cases of MLL-AF4+ B-ALL. Unlike leukemic blasts, MLL-AF4+ BM-MSCs did not display monoclonal Ig gene rearrangements. Endogenous or ectopic expression of MLL-AF4 exerted no effect on MSC culture homeostasis. These findings suggest that MSCs may be in part tumor-related, highlighting an unrecognized role of the BM milieu on the pathogenesis of MLL-AF4+ B-ALL. MLL-AF4 itself is not sufficient for MSC transformation and the expression of MLL-AF4 in MSCs is compatible with a mesenchymal phenotype, suggesting a differential impact in the hematopoietic system and mesenchyme. The absence of monoclonal rearrangements in MLL-AF4+ BM-MSCs precludes the possibility of cellular plasticity or de-differentiation of B-ALL blasts and suggests that MLL-AF4 might arise in a population of prehematopoietic precursors. PMID:19995953
Song, Miyeoun; Lee, Jae-Hyung; Bae, Jinhyun; Bu, Youngmin; Kim, Eun-Cheol
2017-06-09
We compared the therapeutic effects and mechanism of transplanted human dental pulp stem cells (hDPSCs) and human bone marrow-derived mesenchymal stem cells (hBM-MSCs) in a rat stroke model and an in vitro model of ischemia. Rats were intravenously injected with hDPSCs or hBM-MSCs 24 h after middle cerebral artery occlusion (MCAo), and both groups showed improved functional recovery and reduced infarct volume versus control rats, but the hDPSC group showed greater reduction in infarct volume than the hBM-MSC group. The positive area for the endothelial cell marker was greater in the lesion boundary areas in the hDPSC group than in the hBM-MSC group. Administration of hDPSCs to rats with stroke significantly decreased reactive gliosis, as evidenced by the attenuation of MCAo-induced GFAP+/nestin+ and GFAP+/Musashi-1+ cells, compared with hBM-MSCs. In vivo findings were confirmed by in vitro data illustrating that hDPSCs showed superior neuroprotective, migratory, and in vitro angiogenic effects in oxygen-glucose deprivation (OGD)-injured human astrocytes (hAs) versus hBM-MSCs. Comprehensive comparative bioinformatics analyses from hDPSC- and hBM-MSC-treated in vitro OGD-injured hAs were examined by RNA sequencing technology. In gene ontology and KEGG pathway analyses, significant pathways in the hDPSC-treated group were the MAPK and TGF-β signaling pathways. Thus, hDPSCs may be a better cell therapy source for ischemic stroke than hBM-MSCs.
Qu, Mengmeng; Yuan, Xu; Liu, Dan; Ma, Yuhong; Zhu, Jun; Cui, Jun; Yu, Mengxue; Li, Changyong; Guo, Deyin
2017-06-01
Mesenchymal stem cells (MSCs) have been used as therapeutic tools not only for their ability to differentiate toward different cells, but also for their unique immunomodulatory properties. However, it is still unknown how MSCs may affect immunity during hepatitis B virus (HBV) infection. This study was designed to explore the effect of bone marrow-derived MSCs (BM-MSCs) on hepatic natural killer (NK) cells in a mouse model of acute HBV infection. Mice were injected with 1 × 10 6 BM-MSCs, which stained with chloromethyl derivatives of fluorescein diacetate fluorescent probe, 24 h before hydrodynamic injection of viral DNA (pHBV1.3) through the tail vein. In vivo imaging system revealed that BM-MSCs were accumulated in the injured liver, and they attenuated immune-mediated liver injury during HBV infection, as shown by lower alanine aminotransferase levels, reduced proinflammatory cytokine production, and decreased inflammatory cell infiltration in the liver. Importantly, administration of BM-MSCs restrained the increased expression of natural-killer group 2, member D (NKG2D), an important receptor required for NK cell activation in the liver from HBV-infected mice. BM-MSCs also reduced NKG2D expression on NK cells and suppressed the cytotoxicity of NK cells in vitro. Furthermore, BM-MSC-derived transforming growth factor-β1 suppressed NKG2D expression on NK cells. As a consequence, BM-MSC treatment enhanced HBV gene expression and replication in vivo. These results demonstrate that adoptive transfer of BM-MSCs influences innate immunity and limits immune-mediated liver injury during acute HBV infection by suppressing NK cell activity. Meanwhile, the effect of BM-MSCs on prolonging virus clearance needs to be considered in the future.
Yan, Yu-Hui; Li, Shao-Heng; Gao, Zhong; Zou, Sa-Feng; Li, Hong-Yan; Tao, Zhen-Yu; Song, Jie; Yang, Jing-Xian
2016-12-01
Recently, the potential for neural stem cells (NSCs) to be used in the treatment of Alzheimer's disease (AD) has been reported; however, the therapeutic effects are modest by virtue of the low neural differentiation rate. In our study, we transfected bone marrow-derived NSCs (BM-NSCs) with Neurotrophin-3 (NT-3), a superactive neurotrophic factor that promotes neuronal survival, differentiation, and migration of neuronal cells, to investigate the effects of NT-3 gene overexpression on the proliferation and differentiation into cholinergic neuron of BM-NSCs in vitro and its possible molecular mechanism. BM-NSCs were generated from BM mesenchymal cells of adult C57BL/6 mice and cultured in vitro. After transfected with NT-3 gene, immunofluorescence and RT-PCR method were used to determine the ability of BM-NSCs on proliferation and differentiation into cholinergic neuron; Acetylcholine Assay Kit was used for acetylcholine (Ach). RT-PCR and WB analysis were used to characterize mRNA and protein level related to the Notch signaling pathway. We found that NT-3 can promote the proliferation and differentiation of BM-NSCs into cholinergic neurons and elevate the levels of acetylcholine (ACh) in the supernatant. Furthermore, NT-3 gene overexpression increase the expression of Hes1, decreased the expression of Mash1 and Ngn1 during proliferation of BM-NSCs. Whereas, the expression of Hes1 was down-regulated, and Mash1 and Ngn1 expression were up-regulated during differentiation of BM-NSCs. Our findings support the prospect of using NT-3-transduced BM-NSCs in developing therapies for AD due to their equivalent therapeutic potential as subventricular zone-derived NSCs (SVZ-NSCs), greater accessibility, and autogenous attributes. Copyright © 2016 Elsevier Inc. All rights reserved.
Gong, Eun Jeong; Ahn, Ji Yong; Jung, Hwoon-Yong; Jung, Kyoungwon; Cho, Charles J; Na, Hee Kyong; Jung, Kee Wook; Kim, Do Hoon; Lee, Jeong Hoon; Choi, Kee Don; Song, Ho June; Lee, Gin Hyug; Kim, Jin-Ho; Yoon, Dok Hyun
2016-08-01
Objective Bone marrow (BM) examination is recommended as part of the initial staging work-up in patients with gastric mucosa-associated lymphoid tissue (MALT) lymphoma. However, the clinical significance of BM involvement in gastric MALT lymphoma patients has not been evaluated. Materials and methods From November 1995 to September 2014, 496 subjects who were diagnosed with gastric MALT lymphoma and underwent BM examination were eligible to be included in this study. BM involvement was found in 33 patients (6.7%) by retrospective review, and after exclusions, the clinical outcomes of 28 patients with BM involvement and 412 patients without BM involvement were evaluated. Results When comparing the characteristics of patients, age (median 60 vs. 53 years, p = 0.007) and Helicobacter pylori infection rate (71.0% vs. 85.5%, p = 0.040) were different between patients with and without BM involvement, while the location, macroscopic findings, and depth of invasion were similar. The overall complete remission (CR) rate was 85.2% during a median follow-up period of 42 months (interquartile range, 23-66 months) and did not differ between the two groups (78.6 and 85.7%, p = 0.280). Eradication therapy was performed as the first-line treatment in 18 of the 28 patients (64.3%) with BM involvement, and CR was achieved in 13 patients (72.2%). Logistic regression analysis showed that age and location in the upper part of the stomach were factors related to remission failure. Conclusion Gastric MALT lymphoma has a favorable outcome, and eradication therapy can be justified in selected cases even with BM involvement, when these patients are closely monitored.
Huang, Sha; Lu, Gang; Wu, Yan; Jirigala, Enhe; Xu, Yongan; Ma, Kui; Fu, Xiaobing
2012-04-01
Bone-marrow-derived mesenchymal stem cells (BM-MSCs) can contribute to wound healing after skin injury. However, the role of BM-MSCs on repairing skin appendages in renewal tissues is incompletely explored. Moreover, most preclinical studies suggest that the therapeutic effects afforded by BM-MSCs transplantation are short-lived and relatively unstable. To assess whether engrafted bone-marrow-derived mesenchymal stem cells via a delivery system can participate in cutaneous wound healing and sweat-gland repair in mice. For safe and effective delivery of BM-MSCs to wounds, epidermal growth factor (EGF) microspheres were firstly developed to both support cells and maintain appropriate stimuli, then cell-seeded microspheres were incorporated with biomimetic scaffolds and thus fabricated an engineered skin construct with epithelial differentiation and proliferative potential. The applied efficacy was examined by implanting them into excisional wounds on both back and paws of hind legs in mice. After 3 weeks, BM-MSC-engineered skin (EGF loaded) treated wounds exhibited accelerated healing with increased re-epithelialization rates and less skin contraction. Furthermore, histological and immunofluorescence staining analysis revealed sweat glands-like structures became more apparent in BM-MSC-engineered skin (EGF loaded) treated wounds but the number of implanted BM-MSCs were decreased gradually in later phases of healing progression. Our study suggests that BM-MSCs delivered by this EGF microspheres-based engineered skin model may be a promising strategy to repair sweat glands and improve cutaneous wound healing after injury and success in this study might provide a potential benefit for BM-MSCs administration clinically. Copyright © 2012 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Zhang, Zengli; Yin, Shaomeng; Xue, Xian; Ji, Ji; Tong, Jian; Goltzman, David; Miao, Dengshun
2016-01-01
To determine whether the transplantation of bone marrow-derived mesenchymal stem cells (BM-MSCs) can improve the 1,25(OH)2D deficiency-induced rachitic phenotype, 2×106 BM-MSCs from wild-type mice or vehicle were transplanted by tail vein injection into mice deficient in 1,25(OH)2D due to targeted deletion of 1α(OH)ase (1α(OH)ase-/-). Our results show that 1α(OH)ase mRNA was expressed in the BM-MSCs derived from wild-type mice, and was detected in long bone, kidney and intestine from BM-MSC-transplanted 1α(OH)ase-/- recipients. Serum calcium, 1,25(OH)2D3 levels and body weight were significantly increased in BM-MSC-transplanted 1α(OH)ase-/- recipients compared to vehicle-treated 1α(OH)ase-/- mice. Skeletal mineralization improved in 1α(OH)ase-/- recipients as demonstrated by BMD measurement, micro-CT analysis and von Kossa staining of undecalcified sections. Expression levels of type I collagen, osteocalcin, bone sialoprotein and vitronectin and the size of calcified nodules were decreased in BM-MSC cultures from 1α(OH)ase-/- mice compared with those from wild-type mice, however, these parameters were increased in those from BM-MSCs-transplanted 1α(OH)ase-/- recipients compared with those from vehicle-treated 1α(OH)ase-/- mice. This study indicates that donor BM-MSCs cells can relocate to multiple tissues where they synthesize 1α(OH)ase and produce 1,25(OH)2D that contributes to the improvement of serum calcium and skeletal mineralization. Results from this study suggest that BM-MSC transplantation may provide a therapeutic approach to treatment of pseudovitamin D-deficiency rickets. PMID:27830022
Zhang, Zengli; Yin, Shaomeng; Xue, Xian; Ji, Ji; Tong, Jian; Goltzman, David; Miao, Dengshun
2016-01-01
To determine whether the transplantation of bone marrow-derived mesenchymal stem cells (BM-MSCs) can improve the 1,25(OH) 2 D deficiency-induced rachitic phenotype, 2×10 6 BM-MSCs from wild-type mice or vehicle were transplanted by tail vein injection into mice deficient in 1,25(OH) 2 D due to targeted deletion of 1α(OH)ase (1α(OH)ase -/- ). Our results show that 1α(OH)ase mRNA was expressed in the BM-MSCs derived from wild-type mice, and was detected in long bone, kidney and intestine from BM-MSC-transplanted 1α(OH)ase -/- recipients. Serum calcium, 1,25(OH) 2 D 3 levels and body weight were significantly increased in BM-MSC-transplanted 1α(OH)ase -/- recipients compared to vehicle-treated 1α(OH)ase -/- mice. Skeletal mineralization improved in 1α(OH)ase -/- recipients as demonstrated by BMD measurement, micro-CT analysis and von Kossa staining of undecalcified sections. Expression levels of type I collagen, osteocalcin, bone sialoprotein and vitronectin and the size of calcified nodules were decreased in BM-MSC cultures from 1α(OH)ase -/- mice compared with those from wild-type mice, however, these parameters were increased in those from BM-MSCs-transplanted 1α(OH)ase -/- recipients compared with those from vehicle-treated 1α(OH)ase -/- mice. This study indicates that donor BM-MSCs cells can relocate to multiple tissues where they synthesize 1α(OH)ase and produce 1,25(OH) 2 D that contributes to the improvement of serum calcium and skeletal mineralization. Results from this study suggest that BM-MSC transplantation may provide a therapeutic approach to treatment of pseudovitamin D-deficiency rickets.
Zhu, Haiyan; Kwak, Hyun-Jeong; Liu, Peng; Bajrami, Besnik; Xu, Yuanfu; Park, Shin-Young; Nombela-Arrieta, Cesar; Mondal, Subhanjan; Kambara, Hiroto; Yu, Hongbo; Chai, Li; Silberstein, Leslie E; Cheng, Tao; Luo, Hongbo R
2017-04-01
Both microbial infection and sterile inflammation augment bone marrow (BM) neutrophil production, but whether the induced accelerated granulopoiesis is mediated by a common pathway and the nature of such a pathway are poorly defined. We recently established that BM myeloid cell-derived reactive oxygen species (ROS) externally regulate myeloid progenitor proliferation and differentiation in bacteria-elicited emergency granulopoiesis. In this article, we show that BM ROS levels are also elevated during sterile inflammation. Similar to in microbial infection, ROS were mainly generated by the phagocytic NADPH oxidase in Gr1 + myeloid cells. The myeloid cells and their ROS were uniformly distributed in the BM when visualized by multiphoton intravital microscopy, and ROS production was both required and sufficient for sterile inflammation-elicited reactive granulopoiesis. Elevated granulopoiesis was mediated by ROS-induced phosphatase and tensin homolog oxidation and deactivation, leading to upregulated PtdIns(3,4,5)P3 signaling and increased progenitor cell proliferation. Collectively, these results demonstrate that, although infection-induced emergency granulopoiesis and sterile inflammation-elicited reactive granulopoiesis are triggered by different stimuli and are mediated by distinct upstream signals, the pathways converge to NADPH oxidase-dependent ROS production by BM myeloid cells. Thus, BM Gr1 + myeloid cells represent a key hematopoietic niche that supports accelerated granulopoiesis in infective and sterile inflammation. This niche may be an excellent target in various immune-mediated pathologies or immune reconstitution after BM transplantation. Copyright © 2017 by The American Association of Immunologists, Inc.
Zhu, Haiyan; Kwak, Hyun-Jeong; Liu, Peng; Bajrami, Besnik; Xu, Yuanfu; Park, Shin-Young; Nombela-Arrieta, Cesar; Mondal, Subhanjan; Kambara, Hiroto; Yu, Hongbo; Chai, Li; Silberstein, Leslie E.; Cheng, Tao; Luo, Hongbo R.
2017-01-01
Summary Both microbial infection and sterile inflammation augment bone marrow (BM) neutrophil production, but whether the induced accelerated granulopoiesis is mediated by a common pathway and the nature of such a pathway are poorly defined. We recently established that BM myeloid cell-derived reactive oxygen species (ROS) externally regulate myeloid progenitor proliferation and differentiation in bacteria-elicited emergency granulopoiesis. Here we show that BM ROS levels are also elevated during sterile inflammation. Similar to in microbial infection, ROS were mainly generated by the phagocytic NADPH oxidase in Gr1+ myeloid cells. The myeloid cells and their ROS were uniformly distributed in the BM when visualized by multi-photon intravital microscopy, and ROS production was both required and sufficient for sterile inflammation-elicited reactive granulopoiesis. Elevated granulopoiesis was mediated by ROS-induced PTEN oxidation and deactivation leading to upregulated PtdIns(3,4,5)P3 signaling and increased progenitor cell proliferation. Collectively, these results demonstrate that although infection-induced emergency granulopoiesis and sterile inflammation-elicited reactive granulopoiesis are triggered by different stimuli and are mediated by distinct upstream signals, the pathways converge to NADPH oxidase-dependent ROS production by BM myeloid cells. Thus, BM Gr1+ myeloid cells represent a key hematopoietic niche that supports accelerated granulopoiesis in both infective and sterile inflammation. This niche may be an excellent target in various immune-mediated pathologies or immune reconstitution after BM transplantation. PMID:28235862
Sakurai, T; Fujiwara, K
2001-01-01
1. In this study, we investigated the biological effects of trimethyl (carboxymethyl) arsonium zwitterion, namely arsenobetaine (AsBe), which is a major organic arsenic compound in marine animals using murine bone marrow (BM) cells and compared them with those of an inorganic arsenical, sodium arsenite, in vitro. 2. Sodium arsenite showed strong cytotoxicity in BM cells, and its IC(50) was 6 microM. In contrast, AsBe significantly enhanced the viability of BM cells in a dose-dependent manner during a 72-h incubation; about a twofold increase in the viability of cells compared with that of control cells cultured with the medium alone was observed with a microM level of AsBe. 3. In morphological investigations, AsBe enhanced the numbers of large mature adherent cells, especially granulocytes, during a 72-h BM culture. When BM cells were cultured together with AsBe and a low dose (1 u ml(-1)) of recombinant murine granulocyte/macrophage colony-stimulating factor (rMu GM-CSF), significant additive-like increasing effects were observed on the numbers of both granulocytes and macrophages originated from BM cells. However, AsBe did not cause proliferation of BM cells at all as determined by colony-forming assay using a gelatinous medium. 4. These findings demonstrate the unique and potent biological effects in mammalian cells of AsBe, a major organic arsenic compound in various marine animals which are ingested daily as seafood in many countries.
Yoon, Young-Sup; Park, Jong-Seon; Tkebuchava, Tengiz; Luedeman, Corinne; Losordo, Douglas W
2004-06-29
There has been a rapid increase in the number of clinical trials using unselected bone marrow (BM) cells or the mononuclear fraction of BM cells for treating ischemic heart diseases. Thus far, no significant deleterious effects or complications have been reported in any studies using BM-derived cells for treatment of various cardiac diseases. Seven-week-old female Fisher-344 rats underwent surgery to induce acute myocardial infarction and were randomized into 3 groups of 16 rats, each receiving intramyocardial injection of either 7x10(5) DiI-labeled total BM cells (TBMCs), the same number of DiI-labeled, clonally expanded BM multipotent stem cells, or the same volume of phosphate-buffered saline in the peri-infarct area. Echocardiography 2 weeks after cell transplantation indicated intramyocardial calcification in 4 of 14 surviving rats (28.5%) in the TBMC group. Histological examination with hematoxylin and eosin staining and von Kossa staining confirmed the presence of extensive intramyocardial calcification. Alkaline phosphatase staining revealed strong positivity surrounding the calcified area suggestive of ongoing osteogenic activity. Fluorescent microscopic examination revealed that acellular calcific areas were surrounded by DiI-labeled TBMCs, suggesting the direct involvement of transplanted TBMCs in myocardial calcification. In contrast, in hearts receiving equal volumes of saline or BM multipotent stem cells delivered in the same manner, there was no evidence of calcification. These results demonstrate that direct transplantation of unselected BM cells into the acutely infarcted myocardium may induce significant intramyocardial calcification.
Yusop, Norhayati; Battersby, Paul; Alraies, Amr; Moseley, Ryan
2018-01-01
Within bone, mesenchymal stromal cells (MSCs) exist within the bone marrow stroma (BM-MSC) and the endosteal niche, as cells lining compact bone (CB-MSCs). This study isolated and characterised heterogeneous MSC populations from each niche and subsequently investigated the effects of extensive cell expansion, analysing population doublings (PDs)/cellular senescence, colony-forming efficiencies (CFEs), MSC cell marker expression, and osteogenic/adipogenic differentiation. CB-MSCs and BM-MSCs demonstrated similar morphologies and PDs, reaching 100 PDs. Both populations exhibited consistent telomere lengths (12–17 kb), minimal senescence, and positive telomerase expression. CB-MSCs (PD15) had significantly lower CFEs than PD50. CB-MSCs and BM-MSCs both expressed MSC (CD73/CD90/CD105); embryonic (Nanog) and osteogenic markers (Runx2, osteocalcin) but no hematopoietic markers (CD45). CB-MSCs (PD15) strongly expressed Oct4 and p16INK4A. At early PDs, CB-MSCs possessed a strong osteogenic potency and low potency for adipogenesis, whilst BM-MSCs possessed greater overall bipotentiality for osteogenesis and adipogenesis. At PD50, CB-MSCs demonstrated reduced potency for both osteogenesis and adipogenesis, compared to BM-MSCs at equivalent PDs. This study demonstrates similarities in proliferative and mesenchymal cell characteristics between CB-MSCs and BM-MSCs, but contrasting multipotentiality. Such findings support further comparisons of human CB-MSCs and BM-MSCs, facilitating selection of optimal MSC populations for regenerative medicine purposes. PMID:29765418
Prevalence of cirrhosis in patients with thrombocytopenia who receive bone marrow biopsy.
Sheikh, Muhammad Y; Raoufi, Rahim; Atla, Pradeep R; Riaz, Muhammad; Oberer, Chad; Moffett, Michael J
2012-01-01
Thrombocytopenia is a common finding in patients with cirrhosis and may lead to unnecessary referral for bone marrow (BM) biopsy. To date, the prevalence of cirrhosis in patients with thrombocytopenia who receive BM biopsy is largely unknown. Between fiscal years 2006-2010, 744 patients (≥18 years) who underwent BM biopsies for thrombocytopenia at our hospital were identified retrospectively. 541 patients were excluded who had hematologic malignancies and received chemotherapy. Remaining 203 patients with predominant isolated thrombocytopenia were included in the study. Of 203 patients, 136 (67%) had a normal and 67 (33%) had an abnormal BM examination. Prevalence of cirrhosis in the study population was 35% (95% CI: 28.4-41.9). 51% patients with normal BM were found to have cirrhosis compared to 3% of patients with abnormal BM exam (P < 0.0001). Common causes of cirrhosis were nonalcoholic steatohepatitis (NASH) (47%), followed by alcohol and Hepatitis C virus infection. Idiopathic thrombocytopenia and myelodysplastic syndrome were most frequent causes of thrombocytopenia in patients without cirrhosis. Patients with NASH had higher body mass index (BMI) (33.4 vs. 25.8, P < 0.001) and lower MELD scores (11.1 vs. 16, P = 0.028) when compared to non-NASH patients with cirrhosis. Approximately, one third (35%) of patients with cirrhosis induced thrombocytopenia may undergo unwarranted BM biopsies. Clinical diagnosis of cirrhosis is still a challenge for many physicians, particularly with underlying NASH. We propose cirrhosis to be the prime cause of isolated thrombocytopenia.
Guida, Luigi; Annunziata, Marco; Rocci, Antonio; Contaldo, Maria; Rullo, Rosario; Oliva, Adriana
2010-11-01
The aim of the present study was to examine the behaviour of human bone marrow-derived mesenchymal stem cells (BM-MSC) to fluoride-modified grit-blasted (F-TiO) titanium surfaces compared with grit-blasted ones (TiO). Implant surfaces were analysed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). BM-MSC were isolated from healthy donors and grown on the implant surfaces. Cell adhesion and proliferation, type I collagen (Col I) synthesis, osteoblastic differentiation (in terms of alkaline phosphatase activity, osteocalcin synthesis and extracellular matrix mineralization) were assessed. Furthermore, the ability to affect the osteoblastic/osteoclastic balance in terms of osteoprotegerin (OPG) and activator of nuclear factor κ B ligand (RANKL) ratio was investigated. F-TiO surface showed higher S(a) values (P<0.05) and the presence of nano-scale structures at the AFM and SEM analysis. Comparable cell morphology and similar adhesion values on both surfaces were detected at early time, whereas higher proliferation values on F-TiO samples were observed at 7 and 10 days. Increased Col I and OPG levels for cells grown on F-TiO were found, whereas RANKL was not detectable in any of the conditioned media. BM-MSC showed a similar expression of early and late osteogenic markers on both TiO and F-TiO surfaces. The results of the present study show that the chemical and micro/nano-scale modifications induced by fluoride treatment of TiO-grit blasted surfaces stimulate the proliferation and the extracellular matrix synthesis by BM-MSC, as well as the increase of OPG synthesis, thus preventing osteoclast activation and differentiation. © 2010 John Wiley & Sons A/S.
Zhaleh, M; Azadbakht, M; Bidmeshki Pour, A
2017-01-01
Staurospurine induces apoptosis in cell line. Bone Marrow Mesenchymal stem cells Soup is a promising tool for cell proliferation via a variety of secreted factors. In this study, we examined the effects of BMSCs Soup on Staurospurine induced-cell death in MCF-7 and AGS cells. There were three Groups: Group I: no incubation with BM Soup; Group II: incubated with 24 h BM Soup; Group III: incubation with 48 h BM Soup. There were two treatments in each group. The treatments were 1μM Staurospurine (Treatment 1) and 0.0 μM Staurospurine (Treatment 2). The cells were cultured in culture medium containing 0.2 % BSA. We obtained the cell viability, cell death and NO concentration. Our results showed that BM soup administration for 48 hours protectsed against 1μM staurosporine concentration induced cell death and reduced cell toxicity in MCF-7 and AGS cells. Cell viability and cell toxicity assay showed that BM soup in time dependent manner increased cell viability (p < 0.05) and cell death assay showed that cell death in time dependent manner was decreased(p < 0.05). Our data showed that BM soup with increasing NO concentration reduced staurospurine induced cell death and cell cytotoxicity (p < 0.05). It's concluded that BMSCs soup suppressed staurospurine-induced cytotoxicity activity process in MCF-7 and AGS cells (Fig. 9, Ref. 79).
Taylor, David; Wilkison, Michelle; Voyich, Jovanka; Meissner, Nicole
2011-05-15
We recently demonstrated that lack of type I IFN signaling (IFNAR knockout) in lymphocyte-deficient mice (IFrag(-/-)) results in bone marrow (BM) failure after Pneumocystis lung infection, whereas lymphocyte-deficient mice with intact IFNAR (RAG(-/-)) had normal hematopoiesis. In the current work, we performed studies to define further the mechanisms involved in the induction of BM failure in this system. BM chimera experiments revealed that IFNAR expression was required on BM-derived but not stroma-derived cells to prevent BM failure. Signals elicited after day 7 postinfection appeared critical in determining BM cell fate. We observed caspase-8- and caspase-9-mediated apoptotic cell death, beginning with neutrophils. Death of myeloid precursors was associated with secondary oxidative stress, and decreasing colony-forming activity in BM cell cultures. Treatment with N-acetylcysteine could slow the progression of, but not prevent, BM failure. Type I IFN signaling has previously been shown to expand the neutrophil life span and regulate the expression of some antiapoptotic factors. Quantitative RT-PCR demonstrated reduced mRNA abundance for the antiapoptotic factors BCL-2, IAP2, MCL-1, and others in BM cells from IFrag(-/-) compared with that in BM cells from RAG(-/-) mice at day 7. mRNA and protein for the proapoptotic cytokine TNF-α was increased, whereas mRNA for the growth factors G-CSF and GM-CSF was reduced. In vivo anti-TNF-α treatment improved precursor cell survival and activity in culture. Thus, we propose that lack of type I IFN signaling results in decreased resistance to inflammation-induced proapoptotic stressors and impaired replenishment by precursors after systemic responses to Pneumocystis lung infection. Our finding may have implications in understanding mechanisms underlying regenerative BM depression/failure during complex immune deficiencies such as AIDS.
Misuno, Kaori; Khalili, Saeed; Huang, Junwei; Liu, Younan
2014-01-01
Background Bone marrow cell extract (termed as BM Soup) has been demonstrated to repair irradiated salivary glands (SGs) and restore saliva secretion in our previous study. In the present study, we aim to investigate if the function of damaged SGs in non-obese diabetic (NOD) mice can be restored by BM Soup treatment and the molecular alterations associated with the treatment. Methods Whole BM cells were lysed and soluble intracellular contents (“BM Soup”) were injected I.V. into NOD mice. Tandem mass tagging with 2-D liquid chromatography-mass spectrometry was used to quantify proteins in the submandibular glands (SMGs) between untreated and BM Soup-treated mice. Quantitative PCR was used to identify genes with altered expression in the treated mice. Results BM Soup restored salivary flow rates to normal levels and significantly reduced the focus scores of SMGs in NOD mice. More than 1800 proteins in SMG cells were quantified by the proteomic approach. Many SMG proteins involved in inflammation and apoptosis were found to be down-regulated whereas those involved in salivary gland biology and development/regeneration were up-regulated in the BM Soup-treated mice. qPCR analysis also revealed expression changes of growth factors and cytokines in the SMGs of the treated NOD mice. Conclusion BM Soup treatment is effective to restore the function of damaged SGs in NOD mice. Through gene/protein expression analysis, we have found that BM Soup treatment might effectuate via inhibiting apoptosis, focal adhesion and inflammation whereas promoting development, regeneration and differentiation of the SG cells in NOD mice. These findings provide important insights on the potential mechanisms underlying the BM Soup treatment for functional restoration of damaged SGs in NOD mice. Additional studies are needed to further confirm the identified target genes and their related signaling pathways that are responsible for the BM Soup treatment. PMID:24489858
Catena, Raúl; Bhattacharya, Nandita; Rayes, Tina El; Wang, Suming; Choi, Hyejin; Gao, Dingcheng; Ryu, Seongho; Joshi, Natasha; Bielenberg, Diane; Lee, Sharrell B.; Haukaas, Svein A.; Gravdal, Karsten; Halvorsen, Ole J.; Akslen, Lars A.; Watnick, Randolph S.; Mittal, Vivek
2013-01-01
Metastatic tumors have been shown to establish permissive microenvironments for metastases via recruitment of bone marrow (BM)- derived cells. Here, we show that metastasis-incompetent tumors are also capable of generating such microenvironments. However, in these situations the otherwise pro-metastatic Gr1+ myeloid cells create a metastasis-refractory microenvironment via the induction of thrombospondin-1 (Tsp-1) by tumor-secreted prosaposin. (BM)-specific genetic deletion of Tsp-1 abolished the inhibition of metastasis, which was restored by BM transplant from Tsp-1+ donors. We also developed a 5-amino acid peptide from prosaposin as a pharmacological inducer of Tsp-1 in Gr1+ BM cells, which dramatically suppresses metastasis. These results provide mechanistic insights into why certain tumors are deficient in metastatic potential and implicate recruited Gr1+ myeloid cells as the main source of Tsp-1. The results underscore the plasticity of Gr1+ cells, which, depending on the context, promote or inhibit metastasis, and suggest that the peptide could be a potential therapeutic agent against metastatic cancer. PMID:23633432
Kumar, B Mohana; Maeng, Geun-Ho; Lee, Yeon-Mi; Kim, Tae-Ho; Lee, Jeong-Hyeon; Jeon, Byeong-Gyun; Ock, Sun-A; Yoo, Jae-Gyu; Rho, Gyu-Jin
2012-10-01
The present study investigated the potential of minipig bone marrow-mesenchymal stem cells (BM-MSCs) to differentiate in vitro into neuron- and cardiomyocyte-like cells. Isolated BM-MSCs exhibited a fibroblast-like morphology, expressed CD29, CD44 and CD90, and differentiated into osteocytes, adipocytes and chondrocytes. Upon induction in two different neuronal specific media, most of BM-MSCs acquired the distinctive morphological features and positively stained for nestin, neurofilament-M (NF-M), neuronal nuclei (NeuN), β-tubulin, galactocerebroside (Gal-C) and glial fibrillary acidic protein (GFAP). Expression of nestin, GFAP and NF-M was further demonstrated by RT-PCR and RT-qPCR. Following cardiomyogenic induction, MSCs exhibited a stick-like morphology with extended cytoplasmic processes, and formed cluster-like structures. The expression of cardiac specific markers α-smooth muscle actin, cardiac troponin T, desmin and α-cardiac actin was positive for immunofluorescence staining, and further confirmed by RT-PCR and RT-qPCR. In conclusion, our results showed the in vitro differentiation ability of porcine BM-MSCs into neuron-like and cardiomyocyte-like cells. Copyright © 2011 Elsevier Ltd. All rights reserved.
Interaction of PRRS virus with bone marrow monocyte subsets.
Fernández-Caballero, Teresa; Álvarez, Belén; Alonso, Fernando; Revilla, Concepción; Martínez-Lobo, Javier; Prieto, Cinta; Ezquerra, Ángel; Domínguez, Javier
2018-06-01
PRRSV can replicate for months in lymphoid organs leading to persistent host infections. Porcine bone marrow comprises two major monocyte subsets, one of which expresses CD163 and CD169, two receptors involved in the entry of PRRSV in macrophages. In this study, we investigate the permissiveness of these subsets to PRRSV infection. PRRSV replicates efficiently in BM CD163 + monocytes reaching titers similar to those obtained in alveolar macrophages, but with a delayed kinetics. Infection of BM CD163 - monocytes was variable and yielded lower titers. This may be related with the capacity of BM CD163 - monocytes to differentiate into CD163 + CD169 + cells after culture in presence of M-CSF. Both subsets secreted IL-8 in response to virus but CD163 + cells tended to produce higher amounts. The infection of BM monocytes by PRRSV may contribute to persistence of the virus in this compartment and to hematological disorders found in infected animals such as the reduction in the number of peripheral blood monocytes. Copyright © 2018 Elsevier B.V. All rights reserved.
Xu, Y; Huang, S; Fu, X
2012-07-01
Hypertrophic scars result from abnormal healing of severe burns, and are characterized by loss of the original structure and function of the skin. Transplantation of autologous split skin is the preferred treatment after scar excision; however, there will be some unavoidable degree of contraction within the grafts. To our knowledge, it is very rare that bone marrow-derived mesenchymal stem cells (BM-MSCs) have been used for the treatment of skin-graft contraction. However, in our clinics, we found that during a 2-year follow-up analysis, areas treated with autologous BM-MSCs combined with transplantation of split skin were less likely to have contraction of the skin grafts than areas treated with skin grafts alone. This result indicates that BM-MSCs may be a potential and promising treatment to prevent contraction of skin grafts. © The Author(s). CED © 2012 British Association of Dermatologists.
Norozi, Fatemeh; Shahrabi, Saeid; Hajizamani, Saeideh; Saki, Najmaldin
2016-09-01
Platelet factor-4 (CXCL4/PF-4) is a member of CXC-chemokine family produced by megakaryocytic lineage and stored in platelet α-granules. Platelet stimulation by aggregating agents such as thrombin and ADP leads to CXCL4 secretion. CXCL4 plays several roles in coagulation, angiogenesis control, immune system modulation and spread of cancer. Megakaryocytes (Mks) are associated with the vascular niche in the bone marrow (BM) and are located in vicinity of BM sinusoids. Mk-derived CXCL4 is involved in several hematopoietic processes, including inhibition of megakaryopoiesis and maintenance of hematopoietic stem cell (HSC) quiescence. The major aim of this review article was to evaluate the role of CXCL4 in hematological malignancies, promotion of HSC quiescence as well as BM niche cells. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gbadamosi, Bolanle; Ezekwudo, Daniel; Nayak, Bhadresh; Yu, Zhou; Gjorgova-Gjeorgjievski, Sandra; Xie, Ming; Robert, Colvin; Jaiyesimi, Ishmael; Huben, Marianne
2018-01-01
Malignant melanoma is responsible for the majority of skin cancer deaths and is increasing in prevalence. Bone marrow (BM) involvement by melanoma is rare in the absence of widespread visceral disease. Here, we report the case of a 30-year-old female who presented to the hospital with back pain, low-grade fever, and easy bruising. She was found to be bicytopenic and in disseminated intravascular coagulopathy (DIC). Surprisingly, BM biopsy showed extensive involvement by metastatic malignant melanoma in the absence of visceral or brain metastasis. The unique presentation of this case and the challenge of management of a potentially treatable cancer in a critically ill patient are discussed, alongside a review of published cases of metastatic melanoma in the BM and an exploration of currently available treatment options. The excellent response of our patient to combined immune checkpoint inhibitors has yet to be paralleled in the available literature.
Kuzmina, Larisa A; Petinati, Nataliya A; Shipounova, Irina N; Sats, Natalia V; Bigildeev, Alexey E; Zezina, Ekaterina A; Popova, Maria D; Drize, Nina J; Parovichnikova, Elena N; Savchenko, Valery G
2016-04-01
Multipotent mesenchymal stromal cells (MSCs) are used for prophylaxis of acute graft-versus-host disease (aGvHD) after allogeneic hematopoietic cell transplantation (allo-HCT). Not all samples of MSC are efficient for aGvHD prevention. The suitability of MSCs for aGvHD prophylaxis was studied. MSCs were derived from the bone marrow (BM) of HCT donor and cultivated for no more than three passages. The characteristics of donor BM samples including colony-forming unit fibroblast (CFU-F) concentration, growth parameters of MSCs, and the relative expression levels (REL) of different genes were analyzed. MSCs were injected intravenously precisely at the moment of blood cell reconstitution. MSCs infusion induced a significant threefold decrease in aGvHD development and improved overall survival compared with the standard prophylaxis group. In ineffective MSC samples (9.4%), a significant decrease in total cell production and the REL of CSF1, FGFR1, and PDGFRB was observed. In all studied BM samples, the cumulative MSC production and CFU-F concentrations decreased with age. The expression levels of FGFR2, PPARG, and VEGF differed by age. A universal single indicator for the prediction of MSC eligibility for aGvHD prophylaxis was not identified. A multiparameter mathematical model for selecting MSC samples effective for the prevention of aGvHD was proposed. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Wild-type bone marrow transplant partially reverses neuroinflammation in progranulin-deficient mice.
Yang, Yue; Aloi, Macarena S; Cudaback, Eiron; Josephsen, Samuel R; Rice, Samantha J; Jorstad, Nikolas L; Keene, C Dirk; Montine, Thomas J
2014-11-01
Frontotemporal dementia (FTD) is a neurodegenerative disease with devastating changes in behavioral performance and social function. Mutations in the progranulin gene (GRN) are one of the most common causes of inherited FTD due to reduced progranulin expression or activity, including in brain where it is expressed primarily by neurons and microglia. Thus, efforts aimed at enhancing progranulin levels might be a promising therapeutic strategy. Bone marrow (BM)-derived cells are able to engraft in the brain and adopt a microglial phenotype under myeloablative irradiation conditioning. This ability makes BM-derived cells a potential cellular vehicle for transferring therapeutic molecules to the central nervous system. Here, we utilized BM cells from Grn(+/+) (wild type or wt) mice labeled with green fluorescence protein for delivery of progranulin to progranulin-deficient (Grn(-/-)) mice. Our results showed that wt bone marrow transplantation (BMT) partially reconstituted progranulin in the periphery and in cerebral cortex of Grn(-/-) mice. We demonstrated a pro-inflammatory effect in vivo and in ex vivo preparations of cerebral cortex of Grn(-/-) mice that was partially to fully reversed 5 months after BMT. Our findings suggest that BMT can be administered as a stem cell-based approach to prevent or to treat neurodegenerative diseases.
Smol, Thomas; Nibourel, Olivier; Marceau-Renaut, Alice; Celli-Lebras, Karine; Berthon, Céline; Quesnel, Bruno; Boissel, Nicolas; Terré, Christine; Thomas, Xavier; Castaigne, Sylvie; Dombret, Hervé; Preudhomme, Claude; Renneville, Aline
2015-12-01
EVI1 overexpression confers poor prognosis in acute myeloid leukemia (AML). Quantification of EVI1 expression has been mainly assessed by real-time quantitative PCR (RT-qPCR) based on relative quantification of EVI1-1D splice variant. In this study, we developed a RT-qPCR assay to perform quantification of EVI1 expression covering the different splice variants. A sequence localized in EVI1 exons 14 and 15 was cloned into plasmids that were used to establish RT-qPCR standard curves. Threshold values to define EVI1 overexpression were determined using 17 bone marrow (BM) and 31 peripheral blood (PB) control samples and were set at 1% in BM and 0.5% in PB. Samples from 64 AML patients overexpressing EVI1 included in the ALFA-0701 or -0702 trials were collected at diagnosis and during follow-up (n=152). Median EVI1 expression at AML diagnosis was 23.3% in BM and 3.6% in PB. EVI1 expression levels significantly decreased between diagnostic and post-induction samples, with an average variation from 21.6% to 3.56% in BM and from 4.0% to 0.22% in PB, but did not exceed 1 log10 reduction. Our study demonstrates that the magnitude of reduction in EVI1 expression levels between AML diagnosis and follow-up is not sufficient to allow sensitive detection of minimal residual disease. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nishi, N; Osawa, M; Ishikawa, R; Nishikawa, M; Tsumura, H; Inoue, H; Sudo, T
1995-09-01
It is known that treatment of mice with 5-fluorouracil (5-FU, 150 mg/kg) confers radioprotection. To investigate this effect, we performed bone marrow transplantation (BMT) using C57BL/6-Ly5 congenic mice treated with 5-FU five days prior to experiments. The mononuclear cells (MNC) in 5-FU-treated bone marrow (BM) were 10 times more radioprotective than those in untreated BM. Moreover, the number of BM MNC expressing c-kit on their surface from 5-FU-treated mice was markedly decreased relative to those from untreated controls. These results showed that the surface characteristics of cells that contributed to this radio-protective effect differ from those of stem cells as reported recently. BM MNC of mice treated with 5-FU were separated on the basis of expression of the lineage-specific antigens (Lin), c-kit, and Ly6A/E. When injected into lethally irradiated mice, 1,000 Lin+ and Lin-c-kit+Ly6A/E+ cells showed radioprotective effects such that 100% and 60% survived, respectively. Flow cytometric analysis 165 days after BMT showed that 88.8% and 65.1% of peripheral blood (PB) in mice transplanted with Lin+ and Lin-c-kit+Ly6A/E+ was derived from donor mice, respectively. After six months, donor-derived Lin-c-kit+Ly6A/E+ cells which showed radioprotective effects on a secondary irradiated host were detected from mice transplanted with Lin+ cells from 5-FU-treated mice. Taken together, these findings demonstrated that stem cells expressing Lin+ present in the BM of mice treated with 5-FU other than Lin-c-kit+Ly6A/E+ cells and these Lin+ cells play an important role in the recovery of myeloablative mice.
Wang, Lin; Zhang, Chi; Li, Chunyan; Weir, Michael D.; Wang, Ping; Reynolds, Mark A.; Zhao, Liang; Xu, Hockin H.K.
2017-01-01
Human induced pluripotent stem cell-derived mesenchymal stem cells (hiPSC-MSCs), dental pulp stem cells (hDPSCs) and bone marrow MSCs (hBMSCs) are exciting cell sources in regenerative medicine. However, there has been no report comparing hDPSCs, hBMSCs and hiPSC-MSCs for bone engineering in an injectable calcium phosphate cement (CPC) scaffold. The objectives of this study were to: (1) develop a novel injectable CPC containing hydrogel fibers encapsulating stem cells for bone engineering, and (2) compare cell viability, proliferation and osteogenic differentiation of hDPSCs, hiPSC-MSCs from bone marrow (BM-hiPSC-MSCs) and from foreskin (FS-hiPSC-MSCs), and hBMSCs in CPC for the first time. The results showed that the injection did not harm cell viability. The porosity of injectable CPC was 62%. All four types of cells proliferated and differentiated down the osteogenic lineage inside hydrogel fibers in CPC. hDPSCs, BM-hiPSC-MSCs, and hBMSCs exhibited high alkaline phosphatase, runt-related transcription factor, collagen I, and osteocalcin gene expressions. Cell-synthesized minerals increased with time (p < 0.05), with no significant difference among hDPSCs, BM-hiPSC-MSCs and hBMSCs (p > 0.1). Mineralization by hDPSCs, BM-hiPSC-MSCs, and hBMSCs inside CPC at 14 d was 14-fold that at 1 d. FS-hiPSC-MSCs were inferior in osteogenic differentiation compared to the other cells. In conclusion, hDPSCs, BM-hiPSC-MSCs and hBMSCs are similarly and highly promising for bone tissue engineering; however, FS-hiPSC-MSCs were relatively inferior in osteogenesis. The novel injectable CPC with cell-encapsulating hydrogel fibers may enhance bone regeneration in dental, craniofacial and orthopedic applications. PMID:27612810
Repair of segmental bone defects with bone marrow and BMP-2 adenovirus in the rabbit radius
NASA Astrophysics Data System (ADS)
Cheng, Lijia; Lu, Xiaofeng; Shi, Yujun; Li, Li; Xue, Jing; Zhang, Li; Xia, Jie; Wang, Yujia; Zhang, Xingdong; Bu, Hong
2012-12-01
Bone tissue engineering (BTE) is approached via implantation of autogenous mesenchymal stem cells (MSCs), marrow cells, or platelet-rich plasma, etc. To the contrary, gene therapy combining with the bone marrow (BM) has not been often reported. This study was performed to investigate whether a modified BTE method, that is, the BM and a recombinant human bone morphogenetic protein-2 adenovirus (Ad.hBMP-2) gene administering in hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) ceramics could accelerate the healing of segmental defects in the rabbit radius. In our study, ceramics were immersed in the adenovirus overnight, and half an hour before surgery, autologous BM aspirates were thoroughly mixed with the ceramics; at the same time, a 15-mm radius defect was introduced in the bilateral forelimbs of all animals, after that, this defect was filled with the following: (1) Ad.hBMP-2 + HA/β-TCP + autologous BM (group 1); (2) HA/β-TCP + Ad.hBMP-2 (group 2); (3) HA/β-TCP alone (group 3); (4) an empty defect as a control (group 4). Histological observation and μ-CT analyses were performed on the specimens at weeks 2, 4, 8, and 12, respectively. In group 1, new bone was observed at week 4 and BM appeared at week 12, in groups 2 and 3, new bone was observed at week 8 and it was more mature at week 12, in contrast, the defect was not bridged in group 4 at week 12. The new bone area percentage in group 1 was significantly higher than that in groups 2 and 3. Our study indicated that BM combined with hBMP-2 adenovirus and porous ceramics could significantly increase the amount of newly formed bone. And this modified BTE method thus might have potentials in future clinical application.
Clough, Bret H.; Zeitouni, Suzanne; Krause, Ulf; Chaput, Christopher D.; Cross, Lauren M.; Gaharwar, Akhilesh K.
2018-01-01
Abstract Non‐union defects of bone are a major problem in orthopedics, especially for patients with a low healing capacity. Fixation devices and osteoconductive materials are used to provide a stable environment for osteogenesis and an osteogenic component such as autologous human bone marrow (hBM) is then used, but robust bone formation is contingent on the healing capacity of the patients. A safe and rapid procedure for improvement of the osteoanabolic properties of hBM is, therefore, sought after in the field of orthopedics, especially if it can be performed within the temporal limitations of the surgical procedure, with minimal manipulation, and at point‐of‐care. One way to achieve this goal is to stimulate canonical Wingless (cWnt) signaling in bone marrow‐resident human mesenchymal stem cells (hMSCs), the presumptive precursors of osteoblasts in bone marrow. Herein, we report that the effects of cWnt stimulation can be achieved by transient (1–2 hours) exposure of osteoprogenitors to the GSK3β‐inhibitor (2′Z,3′E)‐6‐bromoindirubin‐3′‐oxime (BIO) at a concentration of 800 nM. Very‐rapid‐exposure‐to‐BIO (VRE‐BIO) on either hMSCs or whole hBM resulted in the long‐term establishment of an osteogenic phenotype associated with accelerated alkaline phosphatase activity and enhanced transcription of the master regulator of osteogenesis, Runx2. When VRE‐BIO treated hBM was tested in a rat spinal fusion model, VRE‐BIO caused the formation of a denser, stiffer, fusion mass as compared with vehicle treated hBM. Collectively, these data indicate that the VRE‐BIO procedure may represent a rapid, safe, and point‐of‐care strategy for the osteogenic enhancement of autologous hBM for use in clinical orthopedic procedures. stem cells translational medicine 2018;7:342–353 PMID:29405665
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smirnov, Sergey V.; Harbacheuski, Ryhor; Lewis-Antes, Anita
Mesenchymal stem cells (MSCs) in bone marrow (BM) regulate the differentiation and proliferation of adjacent hematopoietic precursor cells and contribute to the regeneration of mesenchymal tissues, including bone, cartilage, fat and connective tissue. BM is an important site for the pathogenesis of human cytomegalovirus (HCMV) where the virus establishes latency in hematopoietic progenitors and can transmit after reactivation to neighboring cells. Here we demonstrate that BM-MSCs are permissive to productive HCMV infection, and that HCMV alters the function of MSCs: (i) by changing the repertoire of cell surface molecules in BM-MSCs, HCMV modifies the pattern of interaction between BM-MSCs andmore » hematopoietic cells; (ii) HCMV infection of BM-MSCs undergoing adipogenic or osteogenic differentiation impaired the process of differentiation. Our results suggest that by altering BM-MSC biology, HCMV may contribute to the development of various diseases.« less
Gori, Jennifer L.; Butler, Jason M.; Kunar, Balvir; Poulos, Michael G.; Ginsberg, Michael; Nolan, Daniel J.; Norgaard, Zachary K.; Adair, Jennifer E.; Rafii, Shahin
2016-01-01
Abstract Successful expansion of bone marrow (BM) hematopoietic stem and progenitor cells (HSPCs) would benefit many HSPC transplantation and gene therapy/editing applications. However, current expansion technologies have been limited by a loss of multipotency and self‐renewal properties ex vivo. We hypothesized that an ex vivo vascular niche would provide prohematopoietic signals to expand HSPCs while maintaining multipotency and self‐renewal. To test this hypothesis, BM autologous CD34+ cells were expanded in endothelial cell (EC) coculture and transplanted in nonhuman primates. CD34+C38− HSPCs cocultured with ECs expanded up to 17‐fold, with a significant increase in hematopoietic colony‐forming activity compared with cells cultured with cytokines alone (colony‐forming unit‐granulocyte‐erythroid‐macrophage‐monocyte; p < .005). BM CD34+ cells that were transduced with green fluorescent protein lentivirus vector and expanded on ECs engrafted long term with multilineage polyclonal reconstitution. Gene marking was observed in granulocytes, lymphocytes, platelets, and erythrocytes. Whole transcriptome analysis indicated that EC coculture altered the expression profile of 75 genes in the BM CD34+ cells without impeding the long‐term engraftment potential. These findings show that an ex vivo vascular niche is an effective platform for expansion of adult BM HSPCs. Stem Cells Translational Medicine 2017;6:864–876 PMID:28297579
Exposure to hyperoxia in the neonatal period alters bone marrow function
USDA-ARS?s Scientific Manuscript database
Oxygen is often life saving in preterm infants, however, excessive exposure may lead to blood vessel and tissue injury in the lung and retina. Oxygen-treated neonates often exhibit bone marrow (BM) suppression requiring blood product transfusions. However, we do not know whether oxygen is directly t...
Sorjamaa, Anna; Kangasniemi, Marika; Sutinen, Meeri; Salo, Tuula; Liakka, Annikki; Lehenkari, Petri; Tapanainen, Juha S.; Vuolteenaho, Olli; Chen, Joseph C.; Lehtonen, Siri; Piltonen, Terhi T.
2017-01-01
Objective Intrinsic inflammatory characteristics play a pivotal role in stem cell recruitment and homing through migration where the subsequent change in niche has been shown to alter these characteristics. The bone marrow mesenchymal stem cells (bmMSCs) have been demonstrated to migrate to the endometrium contributing to the stem cell reservoir and regeneration of endometrial tissue. Thus, the aim of the present study was to compare the inflammation-driven migration and cytokine secretion profile of human bmMSCs to endometrial mesenchymal stem cells (eMSCs) and endometrial fibroblasts (eSFs). Materials and methods The bmMSCs were isolated from bone marrow aspirates through culturing, whereas eMSCs and eSFs were FACS-isolated. All cell types were tested for their surface marker, proliferation profiles and migration properties towards serum and inflammatory attractants. The cytokine/chemokine secretion profile of 35 targets was analysed in each cell type at basal level along with lipopolysaccharide (LPS)-induced state. Results Both stem cell types, bmMSCs and eMSCs, presented with similar stem cell surface marker profiles as well as possessed high proliferation and migration potential compared to eSFs. In multiplex assays, the secretion of 16 cytokine targets was detected and LPS stimulation expanded the cytokine secretion pattern by triggering the secretion of several targets. The bmMSCs exhibited higher cytokine secretion of vascular endothelial growth factor (VEGF)-A, stromal cell-derived factor-1 alpha (SDF)-1α, interleukin-1 receptor antagonist (IL-1RA), IL-6, interferon-gamma inducible protein (IP)-10, monocyte chemoattractant protein (MCP)-1, macrophage inflammatory protein (MIP)1α and RANTES compared to eMSCs and/or eSFs after stimulation with LPS. The basal IL-8 secretion was higher in both endometrial cell types compared to bmMSCs. Conclusion Our results highlight that similar to bmMSCs, the eMSCs possess high migration activity while the differentiation process towards stromal fibroblasts seemed to result in loss of stem cell surface markers, minimal migration activity and a subtler cytokine profile likely contributing to normal endometrial function. PMID:28419140
The role of the extracellular matrix in primary myelofibrosis
Leiva, O; Ng, S K; Chitalia, S; Balduini, A; Matsuura, S; Ravid, K
2017-01-01
Primary myelofibrosis (PMF) is a myeloproliferative neoplasm that arises from clonal proliferation of hematopoietic stem cells and leads to progressive bone marrow (BM) fibrosis. While cellular mutations involved in the development of PMF have been heavily investigated, noteworthy is the important role the extracellular matrix (ECM) plays in the progression of BM fibrosis. This review surveys ECM proteins contributors of PMF, and highlights how better understanding of the control of the ECM within the BM niche may lead to combined therapeutic options in PMF. PMID:28157219
A Comparison of Bone Marrow and Cord Blood Mesenchymal Stem Cells for Cartilage Self-Assembly.
White, Jamie L; Walker, Naomi J; Hu, Jerry C; Borjesson, Dori L; Athanasiou, Kyriacos A
2018-04-02
Joint injury is a common cause of premature retirement for the human and equine athlete alike. Implantation of engineered cartilage offers the potential to increase the success rate of surgical intervention and hasten recovery times. Mesenchymal stem cells (MSCs) are a particularly attractive cell source for cartilage engineering. While bone marrow-derived MSCs (BM-MSCs) have been most extensively characterized for musculoskeletal tissue engineering, studies suggest that cord blood MSCs (CB-MSCs) may elicit a more robust chondrogenic phenotype. The objective of this study was to determine a superior equine MSC source for cartilage engineering. MSCs derived from bone marrow or cord blood were stimulated to undergo chondrogenesis through aggregate redifferentiation and used to generate cartilage through the self-assembling process. The resulting neocartilage produced from either BM-MSCs or CB-MSCs was compared by measuring mechanical, biochemical, and histological properties. We found that while BM constructs possessed higher tensile properties and collagen content, CB constructs had superior compressive properties comparable to that of native tissue and higher GAG content. Moreover, CB constructs had alkaline phosphatase activity, collagen type X, and collagen type II on par with native tissue suggesting a more hyaline cartilage-like phenotype. In conclusion, while both BM-MSCs and CB-MSCs were able to form neocartilage, CB-MSCs resulted in tissue more closely resembling native equine articular cartilage as determined by a quantitative functionality index. Therefore, CB-MSCs are deemed a superior source for the purpose of articular cartilage self-assembly.
Beta-blockade prevents hematopoietic progenitor cell suppression after hemorrhagic shock.
Elhassan, Ihab O; Hannoush, Edward J; Sifri, Ziad C; Jones, Eyone; Alzate, Walter D; Rameshwar, Pranela; Livingston, David H; Mohr, Alicia M
2011-08-01
Severe injury is accompanied by sympathetic stimulation that induces bone marrow (BM) dysfunction by both suppression of hematopoietic progenitor cell (HPC) growth and loss of cells via HPC mobilization to the peripheral circulation and sites of injury. Previous work demonstrated that beta-blockade (BB) given prior to tissue injury both reduces HPC mobilization and restores HPC colony growth within the BM. This study examined the effect and timing of BB on BM function in a hemorrhagic shock (HS) model. Male Sprague-Dawley rats underwent HS via blood withdrawal, maintaining the mean arterial blood pressure at 30-40 mm Hg for 45 min, after which the extracted blood was reinfused. Propranolol (10 mg/kg) was given either prior to or immediately after HS. Blood pressure, heart rate, BM cellularity, and death were recorded. Bone marrow HPC growth was assessed by counting colony-forming unit-granulocyte-, erythrocyte-, monocyte-, megakaryocyte (CFU-GEMM), burst-forming unit-erythroid (BFU-E), and colony-forming unit-erythroid (CFU-E) cells. Administration of BB prior to injury restored HPC growth to that of naïve animals (CFU-GEMM 59 ± 11 vs. 61 ± 4, BFU-E 68 ± 9 vs. 73 ± 3, and CFU-E 81 ± 35 vs. 78 ± 14 colonies/plate). Beta-blockade given after HS increased the growth of CFU-GEMM, BFU-E, and CFU-E significantly and improved BM cellularity compared with HS alone. The mortality rate was not increased in the groups receiving BB. Administration of propranolol either prior to injury or immediately after resuscitation significantly reduced post-shock BM suppression. After HS, BB may improve BM cellularity by decreasing HPC mobilization. Therefore, the early use of BB post-injury may play an important role in attenuating the BM dysfunction accompanying HS.
Ejtehadifar, Mostafa; Halabian, Raheleh; Ghazavi, Ali; Khansarinejad, Behzad; Mosayebi, Ghasem; Imani Fooladi, Abbas Ali
2018-04-14
The growing resistance against conventional chemotherapy in acute myeloid leukemia (AML) is a noticeable clinical concern. Therefore, many researchers are looking for novel substances to overcome drug resistance in cancer. Staphylococcal enterotoxin B (SEB) is a superantigen (SAg) and a promising compound which has lethal effects on malignant cells. In this unprecedented study, SEB was used against U937 cells in a co-culture system in the presence of human bone marrow-mesenchymal stem cells (hBM-MSCs). The effects of hBM-MSCs on the proliferation and survival of U937 cell line with SEB was assessed using MTT assay and AnnexinV/PI flowcytometry, respectively. Moreover, the expression of IL-6, IL-10, TGF-β, and inhibitor of nuclear factor kappa-B kinase (IKKb) was evaluated by real-time PCR technique. The same experiments were also carried out using hBM-MSCs-conditioned medium (hBM-MSCs-CM). The results showed that SEB reduced the proliferation and survival of U937 cell line, but hBM-MSCs or hBM-MSCs-CM suppressed the effects of SEB. Furthermore, real-timePCR demonstrated that SEB could decrease the expression of IL-6, IL-10, and TGF-β in hBM-MSCs (P < .05), while the production of IKKb was increased in comparison with the control group. These findings help us to have a broader understanding ofthe usage of SEB in the treatment of haematological malignancies, especially if it is targeted against hBM-MSCs to disrupt their supportive effects on malignant cells. © 2018 John Wiley & Sons Australia, Ltd.
Wang, Zheng-Xu; Cao, Jun-Xia; Li, Duo; Zhang, Xiao-Yan; Liu, Jin-Long; Li, Jun-Li; Wang, Min; Liu, Yishan; Xu, Bei-Lei; Wang, Hai-Bo
2015-07-01
In this study, we investigate whether bone marrow mononuclear cells (BM-MNC) or peripheral blood mononuclear cells (PB-MNC) have therapeutic efficacy in type 2 diabetes (T2D). Search terms included stem cell, bone marrow cell, peripheral blood cell, umbilical cord blood and T2D in MEDLINE, the Cochrane Controlled Trials Register, EMBASE, the Wanfang Database, the China Science and Technology Periodical Database and China Journal Net. Fifteen trials met our inclusion criteria (n = 497). One group included 266 cases with BM-MNC therapy and the other group contained 231 cases with PB-MNC treatment. Glycosylated hemoglobin was decreased after BM-MNC or PB-MNC therapy compared with that before (12 months: P < 0.001; 6 months: P < 0.001; 3 months: P < 0.05). Fasting plasma glucose was reduced in BM-MNC therapy group compared with control after 12-month follow-up (P < 0.001) and after BM-MNC therapy compared with that before (9 months: P < 0.001) but was not obvious in other stages. Meanwhile, the analysis showed that C-peptide level increased after BM-MNC and PB-MNC therapy compared with the control therapy (12 months: P < 0.001) and with that before therapy (6 months: P < 0.05). Insulin requirement reduction was also observed in patients receiving BM-MNC therapy (3, 6, 9 and 12 months: P < 0.05). To a certain extent, BM-MNC or PB-MNC therapy for T2D demonstrated superiority of glycemic control, increased insulin biosynthesis and elevated insulin secretion from existing β-cells and might prevent islet cell loss. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Mesenchymal Stem Cells Reverse T/HS Induced Bone Marrow Dysfunction
Gore, Amy V.; Bible, Letitia E.; Livingston, David H.; Mohr, Alicia M.; Sifri, Ziad C.
2015-01-01
Intro Lung contusion (LC) followed by hemorrhagic shock (HS) causes persistent bone marrow (BM) dysfunction lasting up to seven days after injury. Mesenchymal stem cells (MSC) are multipotent cells that can hasten healing as well as exert protective immunomodulatory effects. We hypothesize that MSC can attenuate BM dysfunction following combined LCHS. Materials and Methods Male Sprague-Dawley (SD) rats (n=5-6/group) underwent LC+45 minutes of HS (MAP of 30-35). Allogeneic MSCs (5 × 106 cells) were injected IV following resuscitation. At seven days, BM was analyzed for cellularity and growth of hematopoetic progenitor cell (HPC) colonies (CFU-E, BFU-E, CFU-GEMM). Flow cytometry measured %HPCs in peripheral blood (PB); plasma G-CSF levels were measured via ELISA. Data was analyzed by one-way ANOVA followed by Tukey's multiple comparison test. Results As previously shown, at seven days, LCHS resulted in 22, 30, and 24% decreases in CFU-GEMM, BFU-E and CFU-E colony growth respectively vs. naïve. Treatment with MSCs returned all BM parameters to naïve levels. There was no difference in %HPCs in PB between groups, however, G-CSF remained elevated up to seven days following LCHS. MSCs returned G-CSF to naïve levels. Plasma from animals receiving MSCs was not suppressive to the BM. Conclusion One week following injury, the persistent BM dysfunction seen in animals undergoing LCHS is reversed by treatment with MSCs with an associated return of plasma G-CSF levels to normal. Plasma from animals undergoing LCHS+MSCs was not suppressive to BM cells in vitro. Treatment with MSCs following injury and shock reverses BM suppression and returns plasma G-CSF levels to normal. PMID:26193832
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Won-Jae; Hah, Young-Sool; Ock, Sun-A.
The in vitro differentiation and immunosuppressive capacity of mesenchymal stem cells (MSCs) derived from synovial fluid (SF-MSCs) and bone marrow extract (BM-MSCs) in an isogenic background of minipigs were comparatively analyzed in a collagen-induced arthritis (CIA) mouse model of rheumatoid arthritis (RA). The proliferation capacity and expression of pluripotent transcription factors (Oct3/4 and Sox2) were significantly (P<0.05) higher in SF-MSCs than in BM-MSCs. The differentiation capacity of SF-MSCs into adipocytes, osteocytes and neurocytes was significantly (P<0.05) lower than that of BM-MSCs, and the differentiation capacity of SF-MSCs into chondrocytes was significantly (P<0.05) higher than that of BM-MSCs. Systemic injection ofmore » BM- and SF-MSCs significantly (P<0.05) ameliorated the clinical symptoms of CIA mice, with SF-MSCs having significantly (P<0.05) higher clinical and histopathological recovery scores than BM-MSCs. Furthermore, the immunosuppressive properties of SF-MSCs in CIA mice were associated with increased levels of the anti-inflammatory cytokine interleukin (IL)-10, and decreased levels of the pro-inflammatory cytokine IL-1β and osteoclast-related sRANKL. In conclusion, SF-MSCs exhibited eminent pluripotency and differentiation capacity into chondrocytes, addition to substantial in vivo immunosuppressive capacity by elevating IL-10 and reducing IL-1β levels in CIA mice. - Highlights: • Immunosuppressive capacity of BM-, SM-, and SF-MSCs was evaluated in an RA model. • Proliferation, pluripotency and chondrogenic differentiation capacity were higher in SF-MSCs. • SF-MSCs exhibited improved therapeutic effects than BM-MSCs. • SF-MSCs may have applications as immunosuppressive therapy in autoimmune diseases.« less
Souza, Lucas E B; Almeida, Danilo C; Yaochite, Juliana N U; Covas, Dimas T; Fontes, Aparecida M
2016-07-15
The discovery that the regenerative properties of bone marrow multipotent mesenchymal stromal cells (BM-MSCs) could collaterally favor neoplastic progression has led to a great interest in the function of these cells in tumors. However, the effect of BM-MSCs on colonization, a rate-limiting step of the metastatic cascade, is unknown. In this study, we investigated the effect of BM-MSCs on metastatic outgrowth of B16-F10 melanoma cells. In in vitro experiments, direct co-culture assays demonstrated that BM-MSCs stimulated the proliferation of B16-F10 cells in a dose-dependent manner. For in vivo experiments, luciferase-expressing B16-F10 cells were injected through tail vein and mice were subsequently treated with four systemic injections of BM-MSCs. In vivo bioluminescent imaging during 16 days demonstrated that BM-MSCs enhanced the colonization of lungs by B16-F10 cells, which correlated with a 2-fold increase in the number of metastatic foci. Flow cytometry analysis of lungs demonstrated that although mice harboring B16-F10 metastases displayed more endothelial cells, CD4 T and CD8 T lymphocytes in the lungs in comparison to metastases-free mice, BM-MSCs did not alter the number of these cells. Interestingly, BM-MSCs inoculation resulted in a 2-fold increase in the number of CD11b(+) myeloid cells in the lungs of melanoma-bearing animals, a cell population previously described to organize "premetastatic niches" in experimental models. These findings indicate that BM-MSCs provide support to B16-F10 cells to overcome the constraints that limit metastatic outgrowth and that these effects might involve the interplay between BM-MSCs, CD11b(+) myeloid cells and tumor cells. Copyright © 2015 Elsevier Inc. All rights reserved.
Oh, Hyun-Mee; Yu, Cheng-Rong; Lee, YongJun; Chan, Chi-Chao; Maminishkis, Arvydas; Egwuagu, Charles E.
2011-01-01
Organ-specific autoimmune diseases are usually characterized by repeated cycles of remission and recurrent inflammation. However, where the autoreactive memory T-cells reside in-between episodes of recurrent inflammation is largely unknown. In this study, we have established a mouse model of chronic uveitis characterized by progressive photoreceptor-cell loss, retinal-degeneration, focal retinitis, retinal vasculitis, multifocal-choroiditis and choroidal neovascularization, providing for the first time a useful model for studying long-term pathological consequences of chronic inflammation of the neuroretina. We show that several months after inception of acute uveitis that autoreactive memory T-cells specific to retinal autoantigen, IRBP, relocated to bone marrow (BM). The IRBP-specific memory T-cells (IL-7RαHiLy6CHiCD4+) resided in BM in resting state but upon re-stimulation converted to IL-17-/IFN-γ-expressing effectors (IL-7RαLowLy6CLowCD4+) that mediated uveitis. We further show that T-cells from STAT3-deficient (CD4-STAT3KO) mice are defective in α4β1 and osteopontin expression; defects that correlated with inability of IRBP-specific memory CD4-STAT3KO T-cells to traffic into BM. We adoptively transferred uveitis to naïve mice using BM cells from WT mice with chronic uveitis but not BM cells from CD4-STAT3KO, providing direct evidence that memory T-cells that mediate uveitis reside in BM and that STAT3-dependent mechanism may be required for migration into and retention of memory T-cells in BM. Identifying BM as survival-niche for T-cells that cause uveitis, suggests that BM stromal cells that provide survival signals to autoreactive memory T-cells and STAT3-dependent mechanisms that mediate their relocation into BM, are attractive therapeutic targets that can be exploited to selectively deplete memory T-cells that drive chronic inflammation. PMID:21832158
Comparison of fibrin clots derived from peripheral blood and bone marrow.
Shoji, Takeshi; Nakasa, Tomoyuki; Yoshizuka, Masaaki; Yamasaki, Takuma; Yasunaga, Yuji; Adachi, Nobuo; Ochi, Mitsuo
2017-03-01
Autologous fibrin clots derived from peripheral blood (pb-fibrin clot) and bone marrow (bm-fibrin clot) are thought to be effective for tissue regeneration. However, there is no report detailing the amount of growth factors in pb-/bm-fibrin clot. In this study we evaluated the amount of growth factors in human pb-/bm-fibrin clot, and prove the validity of fibrin clot for clinical use. Human pb-/bm-fibrin clots were obtained during surgery. In the first experiment, enzyme-linked immunosorbent assay (ELISA) was performed for detecting the amount of vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), insulin-like growth factor-1 (IGF-1), fibroblast growth factor basic (bFGF), hepatocyte growth factor (HGF), transforming growth factor-beta (TGF-β), platelet derived-growth factors-AB (PDGF-AB), and stromal cell-derived factor-1 (SDF-1). In the second experiment, the efficacy of fibrin clot on the osteogenic differentiation and fibroblast proliferation was evaluated. Pb-/bm-fibrin clots were incubated in human osteoblast derived from mesenchymal stromal cells (MSCs) or human skin fibroblast. Alizarin red staining and real-time PCR (COL1A1, RUNX2) were performed for the detection of osteogenic potential. Cell-growth assay (WST-8) and real-time PCR (COL1A1) were also performed for the detection of the potential of fibroblast proliferation. ELISA analysis revealed that the amount of VEGF, HGF, bFGF, IGF-1, and SDF-1 of bm-fibrin clot group is higher than that of pb-fibrin clot group with statistical differences. Besides, we confirmed that bm-fibrin clot has much potential for the osteogenic differentiation and fibroblast proliferation. The positive outcomes confirm the efficacy of pb-/bm-fibrin clot, and bm-fibrin clot was proved to have much potential for tissue regeneration compared with pb-fibrin clot. The current study showed the potential of a strategy for regenerative medicine using bm-fibrin clot.
Misuno, Kaori; Tran, Simon D; Khalili, Saeed; Huang, Junwei; Liu, Younan; Hu, Shen
2014-01-01
Bone marrow cell extract (termed as BM Soup) has been demonstrated to repair irradiated salivary glands (SGs) and restore saliva secretion in our previous study. In the present study, we aim to investigate if the function of damaged SGs in non-obese diabetic (NOD) mice can be restored by BM Soup treatment and the molecular alterations associated with the treatment. Whole BM cells were lysed and soluble intracellular contents ("BM Soup") were injected I.V. into NOD mice. Tandem mass tagging with 2-D liquid chromatography-mass spectrometry was used to quantify proteins in the submandibular glands (SMGs) between untreated and BM Soup-treated mice. Quantitative PCR was used to identify genes with altered expression in the treated mice. restored salivary flow rates to normal levels and significantly reduced the focus scores of SMGs in NOD mice. More than 1800 proteins in SMG cells were quantified by the proteomic approach. Many SMG proteins involved in inflammation and apoptosis were found to be down-regulated whereas those involved in salivary gland biology and development/regeneration were up-regulated in the BM Soup-treated mice. qPCR analysis also revealed expression changes of growth factors and cytokines in the SMGs of the treated NOD mice. BM Soup treatment is effective to restore the function of damaged SGs in NOD mice. Through gene/protein expression analysis, we have found that BM Soup treatment might effectuate via inhibiting apoptosis, focal adhesion and inflammation whereas promoting development, regeneration and differentiation of the SG cells in NOD mice. These findings provide important insights on the potential mechanisms underlying the BM Soup treatment for functional restoration of damaged SGs in NOD mice. Additional studies are needed to further confirm the identified target genes and their related signaling pathways that are responsible for the BM Soup treatment.
Lu, Kang; Li, Hai-Yin; Yang, Kuang; Wu, Jun-Long; Cai, Xiao-Wei; Zhou, Yue; Li, Chang-Qing
2017-05-10
The stem cell-based therapies for intervertebral disc degeneration have been widely studied. However, the mechanisms of mesenchymal stem cells interacting with intervertebral disc cells, such as nucleus pulposus cells (NPCs), remain unknown. Exosomes as a vital paracrine mechanism in cell-cell communication have been highly focused on. The purpose of this study was to detect the role of exosomes derived from bone marrow mesenchymal stem cells (BM-MSCs) and NPCs in their interaction with corresponding cells. The exosomes secreted by BM-MSCs and NPCs were purified by differential centrifugation and identified by transmission electron microscope and immunoblot analysis of exosomal marker proteins. Fluorescence confocal microscopy was used to examine the uptake of exosomes by recipient cells. The effects of NPC exosomes on the migration and differentiation of BM-MSCs were determined by transwell migration assays and quantitative RT-PCR analysis of NPC phenotypic genes. Western blot analysis was performed to examine proteins such as aggrecan, sox-9, collagen II and hif-1α in the induced BM-MSCs. Proliferation and the gene expression profile of NPCs induced by BM-MSC exosomes were measured by Cell Counting Kit-8 and qRT-PCR analysis, respectively. Both the NPCs and BM-MSCs secreted exosomes, and these exosomes underwent uptake by the corresponding cells. NPC-derived exosomes promoted BM-MSC migration and induced BM-MSC differentiation to a nucleus pulposus-like phenotype. BM-MSC-derived exosomes promoted NPC proliferation and healthier extracellular matrix production in the degenerate NPCs. Our study indicates that the exosomes act as an important vehicle in information exchange between BM-MSCs and NPCs. Given a variety of functions and multiple advantages, exosomes alone or loaded with specific genes and drugs would be an appropriate option in a cell-free therapy strategy for intervertebral disc degeneration.
Matigian, Nicholas; Brooke, Gary; Zaibak, Faten; Rossetti, Tony; Kollar, Katarina; Pelekanos, Rebecca; Heazlewood, Celena; Mackay-Sim, Alan; Wells, Christine A.; Atkinson, Kerry
2014-01-01
Multipotent mesenchymal stromal cells derived from human placenta (pMSCs), and unrestricted somatic stem cells (USSCs) derived from cord blood share many properties with human bone marrow-derived mesenchymal stromal cells (bmMSCs) and are currently in clinical trials for a wide range of clinical settings. Here we present gene expression profiles of human cord blood-derived unrestricted somatic stem cells (USSCs), human placental-derived mesenchymal stem cells (hpMSCs), and human bone marrow-derived mesenchymal stromal cells (bmMSCs), all derived from four different donors. The microarray data are available on the ArrayExpress database (www.ebi.ac.uk/arrayexpress) under accession number E-TABM-880. Additionally, the data has been integrated into a public portal, www.stemformatics.org. Our data provide a resource for understanding the differences in MSCs derived from different tissues. PMID:26484151
Payer, Michael; Lohberger, Birgit; Strunk, Dirk; Reich, Karoline M; Acham, Stephan; Jakse, Norbert
2014-04-01
Aim of the pilot trial was to evaluate applicability and effects of directly autotransplanted tibial bone marrow (BM) aspirates on the incorporation of porous bovine bone mineral in a sinus lift model and on the osseointegration of dental implants. Six edentulous patients with bilaterally severely resorbed maxillae requiring sinus augmentation and implant treatment were included. During surgery, tibial BM was harvested and added to bone substitute material (Bio-Oss(®) ) at the randomly selected test site. At control sites, augmentation was performed with Bio-Oss(®) alone. The cellular content of each BM aspirate was checked for multipotency and surface antigen expression as quality control. Histomorphometric analysis of biopsies from the augmented sites after 3 and 6 months (during implantation) was used to evaluate effects on bone regeneration. Osseointegration of implants was evaluated with Periotest(®) and radiographic means. Multipotent cellular content in tibial BM aspirates was comparable to that in punctures from the iliac crest. No significant difference in amount of new bone formation and the integration of bone substitute particles was detected histomorphometrically. Periotest(®) values and radiographs showed successful osseointegration of inserted implants at all sites. Directly autotransplanted tibial BM aspirates did not show beneficial regenerative effects in the small study population (N = 6) of the present pilot trial. However, the proximal tibia proved to be a potential donor site for small quantities of BM. Future trials should clarify whether concentration of tibial BM aspirates could effect higher regenerative potency. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Palanichamy, Arumugam; Bauer, Jason W; Yalavarthi, Srilakshmi; Meednu, Nida; Barnard, Jennifer; Owen, Teresa; Cistrone, Christopher; Bird, Anna; Rabinovich, Alfred; Nevarez, Sarah; Knight, Jason S.; Dedrick, Russell; Rosenberg, Alexander; Wei, Chungwen; Rangel-Moreno, Javier; Liesveld, Jane; Sanz, Inaki; Baechler, Emily; Kaplan, Mariana J.; Anolik, Jennifer H
2014-01-01
Inappropriate activation of type I interferon (IFN) plays a key role in the pathogenesis of autoimmune disease, including systemic lupus erythematosus (SLE). Here we report the presence of IFN activation in SLE bone marrow (BM), as measured by an IFN gene signature, increased IFN regulated chemokines, and direct production of IFN by BM resident cells, associated with profound changes in B cell development. The majority of SLE patients had an IFN signature in the BM that was more pronounced than the paired peripheral blood (PB) and correlated with both higher autoantibodies and disease activity. Pronounced alterations in B cell development were noted in SLE in the presence of an IFN signature with a reduction in the fraction of pro/pre B cells suggesting an inhibition in early B cell development and an expansion of B cells at the transitional (T2) stage. These B cell changes strongly correlated with an increase in BAFF and APRIL expression in the IFN high BM. Furthermore, we found that BM neutrophils in SLE were prime producers of IFN-α and B cell factors. In NZM lupus-prone mice similar changes in B cell development were observed and mediated by IFN, given abrogation in NZM mice lacking type I IFN receptor. BM neutrophils were abundant, responsive to and producers of IFN, in close proximity to B cells. These results indicate that the BM is an important but previously unrecognized target organ in SLE with neutrophil mediated IFN activation and alterations in B cell ontogeny and selection. PMID:24379124
Zhu, Jie; Wang, Hong; Yang, Shuo; Guo, Liqiao; Li, Zhen; Wang, Wei; Wang, Suhan; Huang, Wenting; Wang, Liping; Yang, Tan; Ma, Qiang; Bi, Yongyi
2013-01-01
Benzene is an occupational toxicant and an environmental pollutant that potentially causes hematotoxicity and leukemia in exposed populations. Epidemiological studies suggest an association between an increased incidence of childhood leukemia and benzene exposure during the early stages of pregnancy. However, experimental evidence supporting the association is lacking at the present time. It is believed that benzene and its metabolites target hematopoietic stem cells (HSCs) to cause toxicity and cancer in the hematopoietic system. In the current study, we compared the effects of hydroquinone (HQ), a major metabolite of benzene in humans and animals, on mouse embryonic yolk sac hematopoietic stem cells (YS-HSCs) and adult bone marrow hematopoietic stem cells (BM-HSCs). YS-HSCs and BM-HSCs were isolated and enriched, and were exposed to HQ at increasing concentrations. HQ reduced the proliferation and the differentiation and colony formation, but increased the apoptosis of both YS-HSCs and BM-HSCs. However, the cytotoxic and apoptotic effects of HQ were more apparent and reduction of colony formation by HQ was more severe in YS-HSCs than in BM-HSCs. Differences in gene expression profiles were observed in HQ-treated YS-HSCs and BM-HSCs. Cyp4f18 was induced by HQ both in YS-HSCs and BM-HSCs, whereas DNA-PKcs was induced in BM-HSCs only. The results revealed differential effects of benzene metabolites on embryonic and adult HSCs. The study established an experimental system for comparison of the hematopoietic toxicity and leukemogenicity of benzene and metabolites during mouse embryonic development and adulthood. PMID:23940708
Recovery from radiation-induced bone marrow damage by HSP25 through Tie2 signaling.
Lee, Hae-June; Kwon, Hee-Chung; Chung, Hee-Yong; Lee, Yoon-Jin; Lee, Yun-Sil
2012-09-01
Whole-body radiation therapy can cause severe injury to the hematopoietic system, and therefore it is necessary to identify a novel strategy for overcoming this injury. Mice were irradiated with 4.5 Gy after heat shock protein 25 (HSP25) gene transfer using an adenoviral vector. Then, peripheral blood cell counts, histopathological analysis, and Western blotting on bone marrow (BM) cells were performed. The interaction of HSP25 with Tie2 was investigated with mouse OP9 and human BM-derived mesenchymal stem cells to determine the mechanism of HSP25 in the hematopoietic system. HSP25 transfer increased BM regeneration and reduced apoptosis following whole-body exposure to ionizing radiation (IR). The decrease in Tie2 protein expression that followed irradiation of the BM was blocked by HSP25 transfer, and Tie2-positive cells were more abundant among the BM cells of HSP25-transferred mice, even after IR exposure. Following systemic RNA interference of Tie2 before IR, HSP25-mediated radioprotective effects were partially blocked in both mice and cell line systems. Stability of Tie2 was increased by HSP25, a response mediated by the interaction of HSP25 with Tie2. IR-induced tyrosine phosphorylation of Tie2 was augmented by HSP25 overexpression; downstream events in the Tie2 signaling pathway, including phosphorylation of AKT and EKR1/2, were also activated. HSP25 protects against radiation-induced BM damage by interacting with and stabilizing Tie2. This may be a novel strategy for HSP25-mediated radioprotection in BM. Copyright © 2012 Elsevier Inc. All rights reserved.
McGonigle, Terence A; Keane, Kevin N; Ghaly, Simon; Carter, Kim W; Anderson, Denise; Scott, Naomi M; Goodridge, Helen S; Dwyer, Amy; Greenland, Eloise; Pixley, Fiona J; Newsholme, Philip; Hart, Prue H
2017-09-01
A systemic immunosuppression follows UV irradiation of the skin of humans and mice. In this study, dendritic cells (DCs) differentiating from the bone marrow (BM) of UV-irradiated mice had a reduced ability to migrate toward the chemokine (C-C motif) ligand 21. Fewer DCs also accumulated in the peritoneal cavity of UV-chimeric mice (ie, mice transplanted with BM from UV-irradiated mice) after injection of an inflammatory stimulus into that site. We hypothesized that different metabolic states underpin altered DC motility. Compared with DCs from the BM of nonirradiated mice, those from UV-irradiated mice produced more lactate, consumed more glucose, and had greater glycolytic flux in a bioenergetics stress test. Greater expression of 3-hydroxyanthranilate 3,4-dioxygenase was identified as a potential contributor to increased glycolysis. Inhibition of 3-hydroxyanthranilate 3,4-dioxygenase by 6-chloro-dl-tryptophan prevented both increased lactate production and reduced migration toward chemokine (C-C motif) ligand 21 by DCs differentiated from BM of UV-irradiated mice. UV-induced prostaglandin E 2 has been implicated as an intermediary in the effects of UV radiation on BM cells. DCs differentiating from BM cells pulsed in vitro for 2 hours with dimethyl prostaglandin E 2 were functionally similar to those from the BM of UV-irradiated mice. Reduced migration of DCs to lymph nodes associated with increased glycolytic flux may contribute to their reduced ability to initiate new immune responses in UV-irradiated mice. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Prevalence of Cirrhosis in Patients with Thrombocytopenia Who Receive Bone Marrow Biopsy
Sheikh, Muhammad Y.; Raoufi, Rahim; Atla, Pradeep R.; Riaz, Muhammad; Oberer, Chad; Moffett, Michael J.
2012-01-01
Background/Aim: Thrombocytopenia is a common finding in patients with cirrhosis and may lead to unnecessary referral for bone marrow (BM) biopsy. To date, the prevalence of cirrhosis in patients with thrombocytopenia who receive BM biopsy is largely unknown. Materials and Methods: Between fiscal years 2006-2010, 744 patients (≥18 years) who underwent BM biopsies for thrombocytopenia at our hospital were identified retrospectively. 541 patients were excluded who had hematologic malignancies and received chemotherapy. Remaining 203 patients with predominant isolated thrombocytopenia were included in the study. Results: Of 203 patients, 136 (67%) had a normal and 67 (33%) had an abnormal BM examination. Prevalence of cirrhosis in the study population was 35% (95% CI: 28.4-41.9). 51% patients with normal BM were found to have cirrhosis compared to 3% of patients with abnormal BM exam (P < 0.0001). Common causes of cirrhosis were nonalcoholic steatohepatitis (NASH) (47%), followed by alcohol and Hepatitis C virus infection. Idiopathic thrombocytopenia and myelodysplastic syndrome were most frequent causes of thrombocytopenia in patients without cirrhosis. Patients with NASH had higher body mass index (BMI) (33.4 vs. 25.8, P < 0.001) and lower MELD scores (11.1 vs. 16, P = 0.028) when compared to non-NASH patients with cirrhosis. Conclusion: Approximately, one third (35%) of patients with cirrhosis induced thrombocytopenia may undergo unwarranted BM biopsies. Clinical diagnosis of cirrhosis is still a challenge for many physicians, particularly with underlying NASH. We propose cirrhosis to be the prime cause of isolated thrombocytopenia. PMID:22824769
Beiske, K; Burchill, S A; Cheung, I Y; Hiyama, E; Seeger, R C; Cohn, S L; Pearson, A D J; Matthay, K K
2009-01-01
Disseminating disease is a predictive and prognostic indicator of poor outcome in children with neuroblastoma. Its accurate and sensitive assessment can facilitate optimal treatment decisions. The International Neuroblastoma Risk Group (INRG) Task Force has defined standardised methods for the determination of minimal disease (MD) by immunocytology (IC) and quantitative reverse transcriptase-polymerase chain reaction (QRT-PCR) using disialoganglioside GD2 and tyrosine hydroxylase mRNA respectively. The INRG standard operating procedures (SOPs) define methods for collecting, processing and evaluating bone marrow (BM), peripheral blood (PB) and peripheral blood stem cell harvest by IC and QRT-PCR. Sampling PB and BM is recommended at diagnosis, before and after myeloablative therapy and at the end of treatment. Peripheral blood stem cell products should be analysed at the time of harvest. Performing MD detection according to INRG SOPs will enable laboratories throughout the world to compare their results and thus facilitate quality-controlled multi-centre prospective trials to assess the clinical significance of MD and minimal residual disease in heterogeneous patient groups. PMID:19401690
Patton, William Nigel; Nivison-Smith, Ian; Bardy, Peter; Dodds, Anthony; Ma, David; Shaw, Peter John; Kwan, John; Wilcox, Leonie; Butler, Andrew; Carter, John M; Blacklock, Hilary; Szer, Jeffrey
2017-01-01
A previous study found that platelet recovery and mortality were worse in recipients of myeloablative bone marrow transplants where graft transit times were longer than 20 hours. This retrospective study of unrelated myeloablative allogeneic transplantation performed within Australia and New Zealand analyzed transplant outcomes according to graft transit times. Of 233 assessable cases, 76 grafts (33%) were sourced from bone marrow (BM) and 157 (67%) from peripheral blood. Grafts sourced from Australia and New Zealand (47% of total) were associated with a median transit time of 6 hours versus 32 hours for overseas sourced grafts (53% of total). Graft transit temperature was refrigerated in 85%, ambient in 6%, and unknown in 9% of cases, respectively. Graft transit times had no significant effect on neutrophil or platelet engraftment, treatment-related mortality, overall survival, and incidence of acute or chronic graft-versus-host disease. Separate analysis of BM grafts, although of reduced power, also showed no significant difference in either neutrophil or platelet engraftment or survival between short and longer transport times. This study gives reassurance that both peripheral blood stem cell and especially BM grafts subjected to long transit times and transported at refrigerated temperatures may not be associated with adverse recipient outcomes. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Chen-Woan, M.; Delaney, C.P.; Fournier, V.; Wakizaka, Y.; Murase, N.; Fung, J.; Starzl, T.E.; Demetris, A.J.
2010-01-01
Bone marrow (BM)-derived dendritic cells (DC) are the most potent known antigen (Ag) presenting cell in vivo and in vitro. Detailed analysis of their properties and mechanisms of action requires an ability to produce large numbers of DC. Although DC have been isolated from several rat tissues, including BM, the yield is uniformly low. We describe a simple method for the propagation of large numbers of DC from rat BM and document cell yield with the rat DC marker, OX-62. After depletion of plastic-adherent and Fc+ cells by panning on dishes coated with normal serum, residual BM cells were cultured in gelatin coated flasks using murine rGM-CSF supplemented medium. Prior to analysis, non-adherent cells were re-depleted of contaminating Fc+ cells. Propagation of DC was monitored by double staining for FACS analysis (major histocompatibility complex (MHC) class II+/OX-62+, OX-19−). Functional assay, morphological analysis and evaluation of homing patterns of cultured cells revealed typical DC characteristics. MHC class II and OX-62 antigen expression increased with time in culture and correlated with allostimulatory ability. DC yield increased until day 7, when 3.3 × 106 DC were obtained from an initial 3 × 108 unfractionated BM cells. Significant numbers of DC can be generated from rat BM using these simple methods. This should permit analysis and manipulation of rat DC functions in vivo and in vitro. PMID:7836778
Chenery, Alistair L; Antignano, Frann; Hughes, Michael R; Burrows, Kyle; McNagny, Kelly M; Zaph, Colby
2016-11-01
Proinflammatory cytokines produced during immune responses to infectious stimuli are well-characterized to have secondary effects on the function of hematopoietic progenitor cells in the BM. However, these effects on the BM are poorly characterized during chronic infection with intestinal helminth parasites. In this study, we use the Trichuris muris model of infection and show that Th1 cell-associated, but not acute Th2 cell-associated, responses to chronic T. muris infection cause a major, transient expansion of CD48 - CD150 - multipotent progenitor cells in the BM that is dependent on the presence of adaptive immune cells and IFN-γ signaling. Chronic T. muris infection also broadly stimulated proliferation of BM progenitor cells including CD48 - CD150 + hematopoietic stem cells. This shift in progenitor activity during chronic T. muris infection correlated with a functional increase in myeloid colony formation in vitro as well as neutrophilia in the BM and peripheral blood. In parallel, we observed an accumulation of CD4 + , CD8 + , and CD4 - CD8 - (double negative) T cells that expressed IFN-γ, displaying activated and central memory-type phenotypes in the bone marrow during chronic infection. Thus, these results demonstrate that Th1 cell-driven responses in the intestine during chronic helminth infection potently influence upstream hematopoietic processes in the BM via IFN-γ. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souza, Lucas E.B., E-mail: lucasebsouza@usp.br; Hemotherapy Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP; Almeida, Danilo C., E-mail: gudaalmeida@gmail.com
The discovery that the regenerative properties of bone marrow multipotent mesenchymal stromal cells (BM-MSCs) could collaterally favor neoplastic progression has led to a great interest in the function of these cells in tumors. However, the effect of BM-MSCs on colonization, a rate-limiting step of the metastatic cascade, is unknown. In this study, we investigated the effect of BM-MSCs on metastatic outgrowth of B16-F10 melanoma cells. In in vitro experiments, direct co-culture assays demonstrated that BM-MSCs stimulated the proliferation of B16-F10 cells in a dose-dependent manner. For in vivo experiments, luciferase-expressing B16-F10 cells were injected through tail vein and mice weremore » subsequently treated with four systemic injections of BM-MSCs. In vivo bioluminescent imaging during 16 days demonstrated that BM-MSCs enhanced the colonization of lungs by B16-F10 cells, which correlated with a 2-fold increase in the number of metastatic foci. Flow cytometry analysis of lungs demonstrated that although mice harboring B16-F10 metastases displayed more endothelial cells, CD4 T and CD8 T lymphocytes in the lungs in comparison to metastases-free mice, BM-MSCs did not alter the number of these cells. Interestingly, BM-MSCs inoculation resulted in a 2-fold increase in the number of CD11b{sup +} myeloid cells in the lungs of melanoma-bearing animals, a cell population previously described to organize “premetastatic niches” in experimental models. These findings indicate that BM-MSCs provide support to B16-F10 cells to overcome the constraints that limit metastatic outgrowth and that these effects might involve the interplay between BM-MSCs, CD11b{sup +} myeloid cells and tumor cells. - Highlights: • BM-MSCs enhanced B16-F10 proliferation in a dose-dependent manner in vitro. • BM-MSCs facilitated lung colonization by B16-F10 melanoma cells. • BM-MSCs administration did not alter the number of endothelial cells and T lymphocytes in the lungs. • BM-MSCs enhanced the recruitment of CD11b{sup +} myeloid cells during tumor colonization.« less
Mesenchymal stromal cell injection promotes vocal fold scar repair without long-term engraftment
BARTLETT, R.S.; GUILLE, J.T.; CHEN, X.; CHRISTENSEN, M.B.; WANG, S.F.; THIBEAULT, S.L.
2016-01-01
Background Regenerative medicine holds promise for restoring voice in patients with vocal fold scarring. As experimental treatments approach clinical translation, several considerations remain. Our objective was to evaluate efficacy and biocompatibility of four bone marrow mesenchymal stromal cell (BM-MSC) and tunable hyaluronic acid based hydrogel (HyStem-VF) treatments for vocal fold scar using clinically acceptable materials, a preclinical sample size and a dosing comparison. Methods Vocal folds of 84 rabbits were injured and injected with four treatment variations (BM-MSC, HyStem-VF, and BM-MSC in HyStem-VF at two concentrations) 6 weeks later. Efficacy was assessed with rheometry, real-time polymerase chain reaction (PCR) and histology at 2, 4 and 10 weeks following treatment. Lung, liver, kidney, spleen and vocal folds were screened for biocompatibility by a pathologist. Results and discussion Persistent inflammation was identified in all hydrogel-injected groups. The BM-MSC alone treatment appeared to be the most efficacious and safe, providing an early resolution of viscoelasticity, gene expression consistent with desirable extracellular matrix remodeling (less fibronectin, collagen 1α2, collagen 3, procollagen, transforming growth factor [TGF]β1, alpha smooth muscle actin, interleukin-1β, interleukin-17β and tumor necrosis factor [TNF] than injured controls) and minimal inflammation. Human beta actin expression in BM-MSC–treated vocal folds was minimal after 2 weeks, suggesting that paracrine signaling from the BM-MSCs may have facilitated tissue repair. PMID:27637759
Mesenchymal stromal cell injection promotes vocal fold scar repair without long-term engraftment.
Bartlett, R S; Guille, J T; Chen, X; Christensen, M B; Wang, S F; Thibeault, S L
2016-10-01
Regenerative medicine holds promise for restoring voice in patients with vocal fold scarring. As experimental treatments approach clinical translation, several considerations remain. Our objective was to evaluate efficacy and biocompatibility of four bone marrow mesenchymal stromal cell (BM-MSC) and tunable hyaluronic acid based hydrogel (HyStem-VF) treatments for vocal fold scar using clinically acceptable materials, a preclinical sample size and a dosing comparison. Vocal folds of 84 rabbits were injured and injected with four treatment variations (BM-MSC, HyStem-VF, and BM-MSC in HyStem-VF at two concentrations) 6 weeks later. Efficacy was assessed with rheometry, real-time polymerase chain reaction (RT-PCR) and histology at 2, 4 and 10 weeks following treatment. Lung, liver, kidney, spleen and vocal folds were screened for biocompatibility by a pathologist. Persistent inflammation was identified in all hydrogel-injected groups. The BM-MSC alone treatment appeared to be the most efficacious and safe, providing an early resolution of viscoelasticity, gene expression consistent with desirable extracellular matrix remodeling (less fibronectin, collagen 1α2, collagen 3, procollagen, transforming growth factor [TGF]β1, alpha smooth muscle actin, interleukin-1β, interleukin-17β and tumor necrosis factor [TNF] than injured controls) and minimal inflammation. Human beta actin expression in BM-MSC-treated vocal folds was minimal after 2 weeks, suggesting that paracrine signaling from the BM-MSCs may have facilitated tissue repair. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Lee, Eun Ju; Hwang, Injoo; Lee, Ji Yeon; Park, Jong Nam; Kim, Keun Cheon; Kim, Gi-Hwan; Kang, Chang-Mo; Kim, Irene; Lee, Seo-Yeon; Kim, Hyo-Soo
2018-03-07
Human embryonic stem cell-derived mesenchymal stem cells (hE-MSCs) have greater proliferative capacity than other human mesenchymal stem cells (hMSCs), suggesting that they may have wider applications in regenerative cellular therapy. In this study, to uncover the anti-senescence mechanism in hE-MSCs, we compared hE-MSCs with adult bone marrow (hBM-MSCs) and found that hepatocyte growth factor (HGF) was more abundantly expressed in hE-MSCs than in hBM-MSCs and that it induced the transcription of RAD51 and facilitated its SUMOylation at K70. RAD51 induction/modification by HGF not only increased telomere length but also increased mtDNA replication, leading to increased ATP generation. Moreover, HGF-treated hBM-MSCs showed significantly better therapeutic efficacy than naive hBM-MSCs. Together, the data suggest that the RAD51-mediated effects of HGF prevent hMSC senescence by promoting telomere lengthening and inducing mtDNA replication and function, which opens the prospect of developing novel therapies for liver disease. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
Wang, Lin; Zhang, Huajia; Rodriguez, Sonia; Cao, Liyun; Parish, Jonathan; Mumaw, Christen; Zollman, Amy; Kamocka, Gosia; Mu, Jian; Chen, Danny Z.; Srour, Edward F.; Chitteti, Brahmananda R.; HogenEsch, Harm; Tu, Xiaolin; Bellido, Teresita M.; Boswell, Scott; Manshouri, Taghi; Verstovsek, Srdan; Yoder, Mervin C.; Kapur, Reuben; Cardoso, Angelo A.; Carlesso, Nadia
2014-01-01
Summary MicroRNA (miR)-155 has been implicated in regulating inflammatory responses and tumorigenesis, but its precise role in linking inflammation and cancer has remained elusive. Here, we identify a connection between miR-155 and Notch signaling in this context. Loss of Notch signaling in the bone marrow (BM) niche alters hematopoietic homeostasis and leads to lethal myeloproliferative-like disease. Mechanistically, Notch signaling represses miR-155 expression by promoting binding of RBPJ to the miR-155 promoter. Loss of Notch/RBPJ-signaling upregulates miR-155 in BM endothelial cells, leading to miR-155-mediated targeting of the NF-κB inhibitor κB-Ras1, NF-κB activation and increased proinflammatory cytokine production. Deletion of miR-155 in the stroma of RBPJ-/- mice prevented the development of myeloproliferative-like disease and cytokine induction. Analysis of BM from patients carrying myeloproliferative neoplasia also revealed elevated expression of miR-155. Thus, the Notch/miR155/kB-Ras1/NF-kB axis regulates the inflammatory state of the BM niche and affects the development of myeloproliferative disorders. PMID:24996169
Kim-Wanner, Soo-Zin; Bug, Gesine; Steinmann, Juliane; Ajib, Salem; Sorg, Nadine; Poppe, Carolin; Bunos, Milica; Wingenfeld, Eva; Hümmer, Christiane; Luxembourg, Beate; Seifried, Erhard; Bonig, Halvard
2017-08-11
Red blood cell (RBC) depletion is a standard graft manipulation technique for ABO-incompatible bone marrow (BM) transplants. The BM processing module for Spectra Optia, "BMC", was previously introduced. We here report the largest series to date of routine quality data after performing 50 clinical-scale RBC-depletions. Fifty successive RBC-depletions from autologous (n = 5) and allogeneic (n = 45) BM transplants were performed with the Spectra Optia BMC apheresis suite. Product quality was assessed before and after processing for volume, RBC and leukocyte content; RBC-depletion and stem cell (CD34+ cells) recovery was calculated there from. Clinical engraftment data were collected from 26/45 allogeneic recipients. Median RBC removal was 98.2% (range 90.8-99.1%), median CD34+ cell recovery was 93.6%, minimum recovery being 72%, total product volume was reduced to 7.5% (range 4.7-23.0%). Products engrafted with expected probability and kinetics. Performance indicators were stable over time. Spectra Optia BMC is a robust and efficient technology for RBC-depletion and volume reduction of BM, providing near-complete RBC removal and excellent CD34+ cell recovery.
Smiljanovic, Biljana; Radzikowska, Anna; Kuca-Warnawin, Ewa; Kurowska, Weronika; Grün, Joachim R; Stuhlmüller, Bruno; Bonin, Marc; Schulte-Wrede, Ursula; Sörensen, Till; Kyogoku, Chieko; Bruns, Anne; Hermann, Sandra; Ohrndorf, Sarah; Aupperle, Karlfried; Backhaus, Marina; Burmester, Gerd R; Radbruch, Andreas; Grützkau, Andreas; Maslinski, Wlodzimierz; Häupl, Thomas
2018-02-01
Rheumatoid arthritis (RA) accompanies infiltration and activation of monocytes in inflamed joints. We investigated dominant alterations of RA monocytes in bone marrow (BM), blood and inflamed joints. CD14 + cells from BM and peripheral blood (PB) of patients with RA and osteoarthritis (OA) were profiled with GeneChip microarrays. Detailed functional analysis was performed with reference transcriptomes of BM precursors, monocyte blood subsets, monocyte activation and mobilisation. Cytometric profiling determined monocyte subsets of CD14 ++ CD16 - , CD14 ++ CD16 + and CD14 + CD16 + cells in BM, PB and synovial fluid (SF) and ELISAs quantified the release of activation markers into SF and serum. Investigation of genes differentially expressed between RA and OA monocytes with reference transcriptomes revealed gene patterns of early myeloid precursors in RA-BM and late myeloid precursors along with reduced terminal differentiation to CD14 + CD16 + monocytes in RA-PB. Patterns associated with tumor necrosis factor/lipopolysaccharide (TNF/LPS) stimulation were weak and more pronounced in RA-PB than RA-BM. Cytometric phenotyping of cells in BM, blood and SF disclosed differences related to monocyte subsets and confirmed the reduced frequency of terminally differentiated CD14 + CD16 + monocytes in RA-PB. Monocyte activation in SF was characterised by the predominance of CD14 ++ CD16 ++ CD163 + HLA-DR + cells and elevated concentrations of sCD14, sCD163 and S100P. Patterns of less mature and less differentiated RA-BM and RA-PB monocytes suggest increased turnover with accelerated monocytopoiesis, BM egress and migration into inflamed joints. Predominant activation in the joint indicates the action of local and primary stimuli, which may also promote adaptive immune triggering through monocytes, potentially leading to new diagnostic and therapeutic strategies. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Waller, Edmund K.; Logan, Brent R.; Harris, Wayne A.C.; Devine, Steven M.; Porter, David L.; Mineishi, Shin; McCarty, John M.; Gonzalez, Corina E.; Spitzer, Thomas R.; Krijanovski, Oleg I.; Linenberger, Michael L.; Woolfrey, Ann; Howard, Alan; Wu, Juan; Confer, Dennis L.; Anasetti, Claudio
2014-01-01
Purpose To characterize relationships between specific immune cell subsets in bone marrow (BM) or granulocyte colony-stimulating factor–mobilized peripheral blood (PB) stem cells collected from unrelated donors and clinical outcomes of patients undergoing transplantation in BMTCTN 0201. Patients and Methods Fresh aliquots of 161 BM and 147 PB stem-cell allografts from North American donors randomly assigned to donate BM or PB stem cells and numbers of transplanted cells were correlated with overall survival (OS), relapse, and graft-versus-host disease (GvHD). Results Patients with evaluable grafts were similar to all BMTCTN 0201 patients. The numbers of plasmacytoid dendritic cells (pDCs) and naïve T cells (Tns) in BM allografts were independently associated with OS in multivariable analyses including recipient and donor characteristics, such as human leukocyte antigen mismatch, age, and use of antithymocyte globulin. BM recipients of > median number of pDCs, naïve CD8+ T cells (CD8Tns), or naïve CD4+ T cells (CD4Tns) had better 3-year OS (pDCs, 56% v 35%; P = .025; CD8Tns, 56% v 37%; P = .012; CD4Tns, 55% v 37%; P = .009). Transplantation of more BM Tns was associated with less grade 3 to 4 acute GvHD but similar rates of relapse. Transplantation of more BM pDCs was associated with fewer deaths resulting from GvHD or from graft rejection. Analysis of PB grafts did not identify a donor cell subset significantly associated with OS, relapse, or GvHD. Conclusion Donor immune cells in BM but not PB stem-cell grafts were associated with survival after unrelated-donor allogeneic hematopoietic stem-cell transplantation. The biologic activity of donor immune cells in allogeneic transplantation varied between graft sources. Donor grafts with more BM-derived Tns and pDCs favorably regulated post-transplantation immunity in allogeneic hematopoietic stem-cell transplantation. PMID:24982459
Waller, Edmund K; Logan, Brent R; Harris, Wayne A C; Devine, Steven M; Porter, David L; Mineishi, Shin; McCarty, John M; Gonzalez, Corina E; Spitzer, Thomas R; Krijanovski, Oleg I; Linenberger, Michael L; Woolfrey, Ann; Howard, Alan; Wu, Juan; Confer, Dennis L; Anasetti, Claudio
2014-08-01
To characterize relationships between specific immune cell subsets in bone marrow (BM) or granulocyte colony-stimulating factor-mobilized peripheral blood (PB) stem cells collected from unrelated donors and clinical outcomes of patients undergoing transplantation in BMTCTN 0201. Fresh aliquots of 161 BM and 147 PB stem-cell allografts from North American donors randomly assigned to donate BM or PB stem cells and numbers of transplanted cells were correlated with overall survival (OS), relapse, and graft-versus-host disease (GvHD). Patients with evaluable grafts were similar to all BMTCTN 0201 patients. The numbers of plasmacytoid dendritic cells (pDCs) and naïve T cells (Tns) in BM allografts were independently associated with OS in multivariable analyses including recipient and donor characteristics, such as human leukocyte antigen mismatch, age, and use of antithymocyte globulin. BM recipients of > median number of pDCs, naïve CD8(+) T cells (CD8Tns), or naïve CD4(+) T cells (CD4Tns) had better 3-year OS (pDCs, 56% v 35%; P = .025; CD8Tns, 56% v 37%; P = .012; CD4Tns, 55% v 37%; P = .009). Transplantation of more BM Tns was associated with less grade 3 to 4 acute GvHD but similar rates of relapse. Transplantation of more BM pDCs was associated with fewer deaths resulting from GvHD or from graft rejection. Analysis of PB grafts did not identify a donor cell subset significantly associated with OS, relapse, or GvHD. Donor immune cells in BM but not PB stem-cell grafts were associated with survival after unrelated-donor allogeneic hematopoietic stem-cell transplantation. The biologic activity of donor immune cells in allogeneic transplantation varied between graft sources. Donor grafts with more BM-derived Tns and pDCs favorably regulated post-transplantation immunity in allogeneic hematopoietic stem-cell transplantation. © 2014 by American Society of Clinical Oncology.
Bashey, Asad; Zhang, Mei-Jie; McCurdy, Shannon R; St Martin, Andrew; Argall, Trevor; Anasetti, Claudio; Ciurea, Stefan O; Fasan, Omotayo; Gaballa, Sameh; Hamadani, Mehdi; Munshi, Pashna; Al Malki, Monzr M; Nakamura, Ryotaro; O'Donnell, Paul V; Perales, Miguel-Angel; Raj, Kavita; Romee, Rizwan; Rowley, Scott; Rocha, Vanderson; Salit, Rachel B; Solh, Melhem; Soiffer, Robert J; Fuchs, Ephraim Joseph; Eapen, Mary
2017-09-10
Purpose T-cell-replete HLA-haploidentical donor hematopoietic transplantation using post-transplant cyclophosphamide was originally described using bone marrow (BM). With increasing use of mobilized peripheral blood (PB), we compared transplant outcomes after PB and BM transplants. Patients and Methods A total of 681 patients with hematologic malignancy who underwent transplantation in the United States between 2009 and 2014 received BM (n = 481) or PB (n = 190) grafts. Cox regression models were built to examine differences in transplant outcomes by graft type, adjusting for patient, disease, and transplant characteristics. Results Hematopoietic recovery was similar after transplantation of BM and PB (28-day neutrophil recovery, 88% v 93%, P = .07; 100-day platelet recovery, 88% v 85%, P = .33). Risks of grade 2 to 4 acute (hazard ratio [HR], 0.45; P < .001) and chronic (HR, 0.35; P < .001) graft-versus-host disease were lower with transplantation of BM compared with PB. There were no significant differences in overall survival by graft type (HR, 0.99; P = .98), with rates of 54% and 57% at 2 years after transplantation of BM and PB, respectively. There were no differences in nonrelapse mortality risks (HR, 0.92; P = .74) but relapse risks were higher after transplantation of BM (HR, 1.49; P = .009). Additional exploration confirmed that the higher relapse risks after transplantation of BM were limited to patients with leukemia (HR, 1.73; P = .002) and not lymphoma (HR, 0.87; P = .64). Conclusion PB and BM grafts are suitable for haploidentical transplantation with the post-transplant cyclophosphamide approach but with differing patterns of treatment failure. Although, to our knowledge, this is the most comprehensive comparison, these findings must be validated in a randomized prospective comparison with adequate follow-up.
Muir, Peter; Hans, Eric C; Racette, Molly; Volstad, Nicola; Sample, Susannah J; Heaton, Caitlin; Holzman, Gerianne; Schaefer, Susan L; Bloom, Debra D; Bleedorn, Jason A; Hao, Zhengling; Amene, Ermias; Suresh, M; Hematti, Peiman
2016-01-01
Mid-substance rupture of the canine cranial cruciate ligament rupture (CR) and associated stifle osteoarthritis (OA) is an important veterinary health problem. CR causes stifle joint instability and contralateral CR often develops. The dog is an important model for human anterior cruciate ligament (ACL) rupture, where rupture of graft repair or the contralateral ACL is also common. This suggests that both genetic and environmental factors may increase ligament rupture risk. We investigated use of bone marrow-derived mesenchymal stem cells (BM-MSCs) to reduce systemic and stifle joint inflammatory responses in dogs with CR. Twelve dogs with unilateral CR and contralateral stable partial CR were enrolled prospectively. BM-MSCs were collected during surgical treatment of the unstable CR stifle and culture-expanded. BM-MSCs were subsequently injected at a dose of 2x106 BM-MSCs/kg intravenously and 5x106 BM-MSCs by intra-articular injection of the partial CR stifle. Blood (entry, 4 and 8 weeks) and stifle synovial fluid (entry and 8 weeks) were obtained after BM-MSC injection. No adverse events after BM-MSC treatment were detected. Circulating CD8+ T lymphocytes were lower after BM-MSC injection. Serum C-reactive protein (CRP) was decreased at 4 weeks and serum CXCL8 was increased at 8 weeks. Synovial CRP in the complete CR stifle was decreased at 8 weeks. Synovial IFNγ was also lower in both stifles after BM-MSC injection. Synovial/serum CRP ratio at diagnosis in the partial CR stifle was significantly correlated with development of a second CR. Systemic and intra-articular injection of autologous BM-MSCs in dogs with partial CR suppresses systemic and stifle joint inflammation, including CRP concentrations. Intra-articular injection of autologous BM-MSCs had profound effects on the correlation and conditional dependencies of cytokines using causal networks. Such treatment effects could ameliorate risk of a second CR by modifying the stifle joint inflammatory response associated with cranial cruciate ligament matrix degeneration or damage.
Muir, Peter; Hans, Eric C.; Racette, Molly; Volstad, Nicola; Sample, Susannah J.; Heaton, Caitlin; Holzman, Gerianne; Schaefer, Susan L.; Bloom, Debra D.; Bleedorn, Jason A.; Hao, Zhengling; Amene, Ermias; Suresh, M.; Hematti, Peiman
2016-01-01
Mid-substance rupture of the canine cranial cruciate ligament rupture (CR) and associated stifle osteoarthritis (OA) is an important veterinary health problem. CR causes stifle joint instability and contralateral CR often develops. The dog is an important model for human anterior cruciate ligament (ACL) rupture, where rupture of graft repair or the contralateral ACL is also common. This suggests that both genetic and environmental factors may increase ligament rupture risk. We investigated use of bone marrow-derived mesenchymal stem cells (BM-MSCs) to reduce systemic and stifle joint inflammatory responses in dogs with CR. Twelve dogs with unilateral CR and contralateral stable partial CR were enrolled prospectively. BM-MSCs were collected during surgical treatment of the unstable CR stifle and culture-expanded. BM-MSCs were subsequently injected at a dose of 2x106 BM-MSCs/kg intravenously and 5x106 BM-MSCs by intra-articular injection of the partial CR stifle. Blood (entry, 4 and 8 weeks) and stifle synovial fluid (entry and 8 weeks) were obtained after BM-MSC injection. No adverse events after BM-MSC treatment were detected. Circulating CD8+ T lymphocytes were lower after BM-MSC injection. Serum C-reactive protein (CRP) was decreased at 4 weeks and serum CXCL8 was increased at 8 weeks. Synovial CRP in the complete CR stifle was decreased at 8 weeks. Synovial IFNγ was also lower in both stifles after BM-MSC injection. Synovial/serum CRP ratio at diagnosis in the partial CR stifle was significantly correlated with development of a second CR. Systemic and intra-articular injection of autologous BM-MSCs in dogs with partial CR suppresses systemic and stifle joint inflammation, including CRP concentrations. Intra-articular injection of autologous BM-MSCs had profound effects on the correlation and conditional dependencies of cytokines using causal networks. Such treatment effects could ameliorate risk of a second CR by modifying the stifle joint inflammatory response associated with cranial cruciate ligament matrix degeneration or damage. PMID:27575050
Ahmadbeigi, Naser; Vasei, Mohammad; Gheisari, Yousof; Mortazavi, Yousef; Azadmanesh, Kayhan; Omidkhoda, Azadeh; Janzamin, Ehsan; Nardi, Nance Beyer
2013-01-01
Although the unique role of hematopoietic stem cell (HSC) niche in hematopoiesis has long been recognized, unsuccessful isolation of intact niche units limited their in vitro study, manipulation, and therapeutic application. Here, we isolated cell complexes based on size fractionation from mouse bone marrow (BM), characterized the derived cells, and transplanted them to irradiated mice. These cell complexes were the origin of both BM mesenchymal stem cells and various hematopoietic lineages when kept in appropriate culture conditions. They also had the potential of recruiting circulating HSC. Intraperitoneal transplantation of these structures into irradiated mice not only showed long-lasting hematopoietic multilineage reconstitution, but also could recover the stromal cells of BM. In conclusion, this study for the first time provides evidences on the feasibility and efficacy of transplantation of HSC in association with their native specialized microenvironment. As the molecular cross-talk between HSC and niche is crucial for their proper function, the proposed method could be considered as a novel hematopoietic transplantation strategy. PMID:23879861
Reich, Christine M; Raabe, Oksana; Wenisch, Sabine; Bridger, Philip S; Kramer, Martin; Arnhold, Stefan
2012-06-01
In the dog, mesenchymal stem cells (MSCs) have been shown to reside in the bone marrow (bone marrow-derived mesenchymal stem cells: BM-MSCs) as well as in the adipose tissue (adipose tissue-derived stem cells: ADSCs). Potential application fields for these multipotent MSCs in small animal practice are joint diseases as MSCs of both sources have shown to possess chondrogenic differentiation ability. However, it is not clear whether the chondrogenic differentiation potential of cells of these two distinct tissues is truly equal. Therefore, we compared MSCs of both origins in this study in terms of their chondrogenic differentiation ability and suitability for clinical application. BM-MSCs harvested from the femoral neck and ADSCs from intra-abdominal fat tissue were examined for their morphology, population doubling time (PDT) and CD90 surface antigen expression. RT-PCR served to assess expression of pluripotency marker Oct4 and early differentiation marker genes. Chondrogenic differentiation ability was compared and validated using histochemistry, transmission electron microscopy (TEM) and quantitative RT-PCR. Both cell populations presented a highly similar morphology and marker expression in an undifferentiated stage except that freshly isolated ADSCs demonstrated a significantly faster PDT than BM-MSCs. In contrast, BM-MSCs revealed a morphological superior cartilage formation by the production of a more abundant and structured hyaline matrix and higher expression of lineage specific genes under the applied standard differentiation protocol. However, further investigations are necessary in order to find out if chondrogenic differentiation can be improved in canine ADSCs using different protocols and/or supplements.
Gori, Jennifer L; Butler, Jason M; Kunar, Balvir; Poulos, Michael G; Ginsberg, Michael; Nolan, Daniel J; Norgaard, Zachary K; Adair, Jennifer E; Rafii, Shahin; Kiem, Hans-Peter
2017-03-01
Successful expansion of bone marrow (BM) hematopoietic stem and progenitor cells (HSPCs) would benefit many HSPC transplantation and gene therapy/editing applications. However, current expansion technologies have been limited by a loss of multipotency and self-renewal properties ex vivo. We hypothesized that an ex vivo vascular niche would provide prohematopoietic signals to expand HSPCs while maintaining multipotency and self-renewal. To test this hypothesis, BM autologous CD34 + cells were expanded in endothelial cell (EC) coculture and transplanted in nonhuman primates. CD34 + C38 - HSPCs cocultured with ECs expanded up to 17-fold, with a significant increase in hematopoietic colony-forming activity compared with cells cultured with cytokines alone (colony-forming unit-granulocyte-erythroid-macrophage-monocyte; p < .005). BM CD34 + cells that were transduced with green fluorescent protein lentivirus vector and expanded on ECs engrafted long term with multilineage polyclonal reconstitution. Gene marking was observed in granulocytes, lymphocytes, platelets, and erythrocytes. Whole transcriptome analysis indicated that EC coculture altered the expression profile of 75 genes in the BM CD34 + cells without impeding the long-term engraftment potential. These findings show that an ex vivo vascular niche is an effective platform for expansion of adult BM HSPCs. Stem Cells Translational Medicine 2017;6:864-876. © 2016 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Anthias, Chloe; Billen, Annelies; Arkwright, Rebecca; Szydlo, Richard M; Madrigal, J Alejandro; Shaw, Bronwen E
2016-05-01
Previous studies have demonstrated the importance of bone marrow (BM) harvest yield in determining transplant outcomes, but little is known regarding donor and procedure variables associated with achievement of an optimal yield. We hypothesized that donor demographics and variables relating to the procedure were likely to impact the yield (total nucleated cells [TNCs]/kg recipient weight) and quality (TNCs/mL) of the harvest. To test our hypothesis, BM harvests of 110 consecutive unrelated donors were evaluated. The relationship between donor or procedure characteristics and the BM harvest yield was examined. The relationship between donor and recipient weight significantly influenced the harvest yield; only 14% of BM harvests from donors who weighed less than their recipient achieved a TNC count of more than 4 × 10(8) /kg compared to 56% of harvests from donors heavier than their recipient (p = 0.001). Higher-volume harvests were significantly less likely to achieve an optimal yield than lower-volume harvests (32% vs. 78%; p = 0.007), and higher-volume harvests contained significantly fewer TNCs/mL, indicating peripheral blood contamination. BM harvest quality also varied significantly between collection centers adding to recent concerns regarding maintenance of BM harvest expertise within the transplant community. Since the relationship between donor and recipient weight has a critical influence yield, we recommend prioritizing this secondary donor characteristic when selecting from multiple well-matched donors. Given the declining number of requests for BM harvests, it is crucial that systems are developed to train operators and ensure expertise in this procedure is retained. © 2016 AABB.
Jeong, Juhyeon; Oh, Eun Ji; Yang, Woo Ick; Kim, Soo Jeong; Yoon, Sun Och
2017-06-01
The implications of infiltrating immune cells, especially T cells and macrophages, in the bone marrow (BM) microenvironment of patients with diffuse large B-cell lymphoma (DLBCL) have rarely been studied. We aimed to investigate the significance of infiltrating immune cells in the BM microenvironment as a prognostic factor for DLBCL patients. Using the initial pretreatment BM biopsy obtained from 198 DLBCL patients, we semiquantitatively evaluated CD3+ T cells, CD8+ T cells, and CD163+ macrophages that infiltrate into the paratrabecular and interstitial areas of BM by immunohistochemistry and analyzed their clinicopathological and prognostic implications. Levels of infiltrating CD3+ T cells, CD8+ T cells, and CD163+ macrophages were significantly higher in BM with DLBCL involvement (BMI-positive group) than in that without DLBCL involvement (BMI-negative group). Infiltration of CD8+ T cells significantly increased in cases with advanced Ann Arbor stage, elevated lactate dehydrogenase level, extranodal site involvement ≥2 sites, higher Eastern Cooperative Oncology Group performance status, and higher International Prognostic Index (IPI) risk. High levels of CD3+ T cells were significantly associated with age ≤60, and high levels of CD163+ macrophages were associated with advanced Ann Arbor stage and higher IPI risk. High infiltration of CD8+ T cells was significantly related to inferior overall and recurrence-free survival rate, even in the BMI-negative group. High infiltration of CD8+ T cells within the pretreatment BM was related to poor prognosis, and might be a useful prognostic factor of DLBCL patients. Therefore, evaluation of CD8+ T cells is helpful for predicting prognosis in initial pretreatment BM biopsy of DLBCL patients. Copyright © 2017 Elsevier Inc. All rights reserved.
Moirangthem, Ranjita Devi; Singh, Shweta; Adsul, Ashwini; Jalnapurkar, Sapana; Limaye, Lalita
2015-01-01
The bone marrow (BM) microenvironment or the hematopoietic stem cell (HSC) niche is normally hypoxic, which maintains HSC quiescence. Paradoxically, transplanted HSCs rapidly proliferate in this niche. Pretransplant myelosuppression results in a substantial rise in oxygen levels in the marrow microenvironment due to reduced cellularity and consequent low oxygen consumption. Therefore, it may be construed that the rapid proliferation of the engrafted HSCs in the BM niche is facilitated by the transiently elevated oxygen tension in this milieu during the “engraftment window.” To determine whether oxygen tension dominantly affects the regeneration of hematopoiesis in the BM niche, we created an “oxygen-independent hypoxic niche” by treating BM-derived mesenchymal stromal cells (BMSCs) with a hypoxia-mimetic compound, cobalt chloride (CoCl2) and cocultured them with BM-derived HSC-enriched cells under normoxic conditions (HSCs; CoCl2-cocultures). Cocultures with untreated BMSCs incubated under normoxia (control- cocultures) or hypoxia (1% O2; hypoxic-cocultures) were used as comparators. Biochemical analyses showed that though, both CoCl2 and hypoxia evoked comparable signals in the BMSCs, the regeneration of hematopoiesis in their respective cocultures was radically different. The CoCl2-BMSCs supported robust hematopoiesis, while the hypoxic-BMSCs exerted strong inhibition. The hematopoiesis-supportive ability of CoCl2-BMSCs was abrogated if the CoCl2-cocultures were incubated under hypoxia, demonstrating that the prevalent oxygen tension in the milieu dominantly affects the outcome of the HSC-BM niche interactions. Our data suggest that pharmacologically delaying the reestablishment of hypoxia in the BM may boost post-transplant regeneration of hematopoiesis. PMID:26107807
Yoon, Dong Suk; Choi, Yoorim; Jang, Yeonsue; Lee, Moses; Choi, Woo Jin; Kim, Sung-Hwan; Lee, Jin Woo
2014-12-01
SOX2 is crucial for the maintenance of the self-renewal capacity and multipotency of mesenchymal stem cells (MSCs); however, the mechanism by which SOX2 is regulated remains unclear. Here, we report that RNA interference of sirtuin 1 (SIRT1) in human bone marrow (BM)-derived MSCs leads to a decrease of SOX2 protein, resulting in the deterioration of the self-renewal and differentiation capacities of BM-MSCs. Using immunoprecipitation, we demonstrated direct binding between SIRT1 and SOX2 in HeLa cells overexpressing SOX2. We further discovered that the RNA interference of SIRT1 induces the acetylation, nuclear export, and ubiquitination of SOX2, leading to proteasomal degradation in BM-MSCs. SOX2 suppression by trichostatin A (TSA), a known histone deacetylase inhibitor, was reverted by treatment with resveratrol (0.1 and 1 µM), a known activator of SIRT1 in BM-MSCs. Furthermore, 0.1 and 1 µM resveratrol reduced TSA-mediated acetylation and ubiquitination of SOX2 in BM-MSCs. SIRT1 activation by resveratrol enhanced the colony-forming ability and differentiation potential to osteogenic and adipogenic lineages in a dose-dependent manner. However, the enhancement of self-renewal and multipotency by resveratrol was significantly decreased to basal levels by RNA interference of SOX2. These results strongly suggest that the SIRT1-SOX2 axis plays an important role in maintaining the self-renewal capability and multipotency of BM-MSCs. In conclusion, our findings provide evidence for positive SOX2 regulation by post-translational modification in BM-MSCs through the inhibition of nuclear export and subsequent ubiquitination, and demonstrate that SIRT1-mediated deacetylation contributes to maintaining SOX2 protein in the nucleus. © 2014 AlphaMed Press.
Brain-mediated dysregulation of the bone marrow activity in angiotensin II-induced hypertension.
Jun, Joo Yun; Zubcevic, Jasenka; Qi, Yanfei; Afzal, Aqeela; Carvajal, Jessica Marulanda; Thinschmidt, Jeffrey S; Grant, Maria B; Mocco, J; Raizada, Mohan K
2012-11-01
Oxidative stress in the brain is implicated in increased sympathetic drive, inflammatory status, and vascular dysfunctions, associated with development and establishment of hypertension. However, little is known about the mechanism of this impaired brain-vascular communication. Here, we tested the hypothesis that increased oxidative stress in the brain cardioregulatory areas, such as the paraventricular nucleus of the hypothalamus, is driven by mitochondrial reactive oxygen species and leads to increased inflammatory cells (ICs) and decreased/dysfunctional endothelial progenitor cells (EPCs), thereby compromising vasculature repair and accelerating hypertension. Chronic angiotensin II infusion resulted in elevated blood pressure and sympathetic vasomotor drive, decreased spontaneous baroreflex gain, and increased microglia activation in the paraventricular nucleus. This was associated with 46% decrease in bone marrow (BM)-derived EPCs and 250% increase in BM ICs, resulting in 5-fold decrease of EPC/IC ratio in the BM. Treatment with mitochondrial-targeted antioxidant, a scavenger of mitochondrial O(2)(-·), intracerebroventricularly but not subcutaneously attenuated angiotensin II-induced hypertension, decreased activation of microglia in the paraventricular nucleus, and normalized EPCs/ICs. This functional communication between the brain and BM was confirmed by retrograde neuronal labeling from the BM with green fluorescent protein-tagged pseudorabies virus. Administration of green fluorescent protein-tagged pseudorabies virus into the BM resulted in predominant labeling of paraventricular nucleus neurons within 3 days, with some fluorescence in the nucleus tractus solitarius, the rostral ventrolateral medulla, and subfornical organ. Taken together, these data demonstrate that inhibition of mitochondrial reactive oxygen species attenuates angiotensin II-induced hypertension and corrects the imbalance in EPCs/ICs in the BM. They suggest that an imbalance in vascular reparative and ICs may perpetuate vascular pathophysiology in this model of hypertension.
Garcia-Montero, Andres C; Jara-Acevedo, Maria; Alvarez-Twose, Ivan; Teodosio, Cristina; Sanchez-Muñoz, Laura; Muñiz, Carmen; Muñoz-Gonzalez, Javier I; Mayado, Andrea; Matito, Almudena; Caldas, Carolina; Morgado, Jose M; Escribano, Luis; Orfao, Alberto
2016-02-11
Multilineage involvement of bone marrow (BM) hematopoiesis by the somatic KIT D816V mutation is present in a subset of adult indolent systemic mastocytosis (ISM) patients in association with a poorer prognosis. Here, we investigated the potential involvement of BM mesenchymal stem cells (MSCs) from ISM patients by the KIT D816V mutation and its potential impact on disease progression and outcome. This mutation was investigated in highly purified BM MSCs and other BM cell populations from 83 ISM patients followed for a median of 116 months. KIT D816V-mutated MSCs were detected in 22 of 83 cases. All MSC-mutated patients had multilineage KIT mutation (100% vs 30%, P = .0001) and they more frequently showed involvement of lymphoid plus myeloid BM cells (59% vs 22%; P = .03) and a polyclonal pattern of inactivation of the X-chromosome of KIT-mutated BM mast cells (64% vs 0%; P = .01) vs other multilineage ISM cases. Moreover, presence of KIT-mutated MSCs was associated with more advanced disease features, a greater rate of disease progression (50% vs 17%; P = .04), and a shorter progression-free survival (P ≤ .003). Overall, these results support the notion that ISM patients with mutated MSCs may have acquired the KIT mutation in a common pluripotent progenitor cell, prior to differentiation into MSCs and hematopoietic precursor cells, before the X-chromosome inactivation process occurs. From a clinical point of view, acquisition of the KIT mutation in an earlier BM precursor cell confers a significantly greater risk for disease progression and a poorer outcome. © 2016 by The American Society of Hematology.
Expression of the pol gene of human endogenous retroviruses HERV-K and -W in leukemia patients.
Bergallo, Massimiliano; Montanari, Paola; Mareschi, Katia; Merlino, Chiara; Berger, Massimo; Bini, Ilaria; Daprà, Valentina; Galliano, Ilaria; Fagioli, Franca
2017-12-01
The human endogenous retroviruses (HERVs) are a family of endogenous retroviruses that integrated into the germ cell DNA of primates over 30 million years ago. HERV expression seems impaired in several diseases, ranging from autoimmune to neoplastic disorders. The purpose of this study was to evaluate the overall endogenous retroviral transcription profile in bone marrow (BM) samples. A total of 30 paediatric high-risk leukaemia patients (lymphoid and myeloid malignancies) were tested for HERVs virus gene expression. Our findings show that HERV-K expression was significantly higher in leukaemia patients when compared to healthy donors of a similar median age. We observed a significantly high expression of HERV-K in acute lymphoblastic leukemia (ALL) patients. In this study, we also found a relative overexpression of the endogenous retrovirus HERV-K in BM cells from the majority of leukemia samples analyzed, in particular in ALL. This overexpression might be related to lymphatic leukemogenesis and it warrants further investigations.
Phillips, G L; Davey, D D; Hale, G A; Marshall, K W; Munn, R K; Nath, R; Reece, D E; Van Zant, G
1999-10-01
We evaluated the ability of G-CSF to increase the number of hematopoietic stem cells obtained by "delayed" BM harvest for allogeneic transplantation. Five normal donors received G-CSF @ 10 mcg/kg/day x 5 followed by repeat PB and BM assays at day 6 and 16, and BM harvest at day 16. Stem cells were not increased in the BM at day 16. Five patients underwent BMT and engrafted at +10 to +19 days. While the tested strategy offers no intrinsic advantages, its potential cannot be evaluated fully without alternative timing and/or additional, "early acting" growth factors.
Codinach, Margarita; Blanco, Margarita; Ortega, Isabel; Lloret, Mireia; Reales, Laura; Coca, Maria Isabel; Torrents, Sílvia; Doral, Manel; Oliver-Vila, Irene; Requena-Montero, Miriam; Vives, Joaquim; Garcia-López, Joan
2016-09-01
Multipotent mesenchymal stromal cells (MSC) have achieved a notable prominence in the field of regenerative medicine, despite the lack of common standards in the production processes and suitable quality controls compatible with Good Manufacturing Practice (GMP). Herein we describe the design of a bioprocess for bone marrow (BM)-derived MSC isolation and expansion, its validation and production of 48 consecutive batches for clinical use. BM samples were collected from the iliac crest of patients for autologous therapy. Manufacturing procedures included: (i) isolation of nucleated cells (NC) by automated density-gradient centrifugation and plating; (ii) trypsinization and expansion of secondary cultures; and (iii) harvest and formulation of a suspension containing 40 ± 10 × 10(6) viable cells. Quality controls were defined as: (i) cell count and viability assessment; (ii) immunophenotype; and (iii) sterility tests, Mycoplasma detection, endotoxin test and Gram staining. A 3-week manufacturing bioprocess was first designed and then validated in 3 consecutive mock productions, prior to producing 48 batches of BM-MSC for clinical use. Validation included the assessment of MSC identity and genetic stability. Regarding production, 139.0 ± 17.8 mL of BM containing 2.53 ± 0.92 × 10(9) viable NC were used as starting material, yielding 38.8 ± 5.3 × 10(6) viable cells in the final product. Surface antigen expression was consistent with the expected phenotype for MSC, displaying high levels of CD73, CD90 and CD105, lack of expression of CD31 and CD45 and low levels of HLA-DR. Tests for sterility, Mycoplasma, Gram staining and endotoxin had negative results in all cases. Herein we demonstrated the establishment of a feasible, consistent and reproducible bioprocess for the production of safe BM-derived MSC for clinical use. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Ortega-Gómez, Almudena; Varela, Lourdes M; López, Sergio; Montserrat de la Paz, Sergio; Sánchez, Rosario; Muriana, Francisco J G; Bermúdez, Beatriz; Abia, Rocío
2017-09-01
Postprandial triglyceride-rich lipoproteins (TRLs) promote atherosclerosis. Recent research points the bone marrow (BM) as a primary site in atherosclerosis. We elucidated how the acute administration of monounsaturated fatty acids (MUFAs) MUFAs, omega-3 polyunsaturated fatty acids (PUFAs) PUFAs and saturated fatty acids (SFAs) affects human circulating and murine BM neutrophil lipid accumulation and functionality. Postprandial hypertriglyceridemia was induced in healthy subjects and Apoe -/- mice by the acute administration of dietary fats enriched in MUFAs, PUFAs, or SFAs. Postprandial hypertriglyceridemia increased apolipoprotein-B48 receptor (ApoB48R) transcriptional activity that was linearly correlated with intracellular triglycerides (TGs) TGs accumulation in human circulating and murine BM neutrophils. MUFA and omega-3 PUFAs attenuated ApoB48R gene expression and intracellular TG accumulation compared to SFAs. TRLs induced apoB48R-dependent TG accumulation in human neutrophils ex vivo. Murine BM neutrophils showed a decrease in surface L-selectin and an increase in TNF-α and IL-1β mRNA expressions only after SFAs administration. TRLs enriched in SFAs induced BM neutrophil degranulation ex vivo suggesting cell priming/activation. Postprandial TRLs disrupts the normal biology and function of circulating and BM neutrophils. MUFA- and omega-3 PUFA-rich dietary fats such as virgin olive oil or fish oil has the potential to prevent excessive neutrophil lipid accumulation and activation by targeting the fatty acid composition of TRLs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Qiao, Haowen; Zhou, Yu; Qin, Xingping; Cheng, Jing; He, Yun; Jiang, Yugang
2018-01-01
Bone marrow-derived mesenchymal stem cells (BMSCs) have blossomed into an effective approach with great potential for the treatment of liver fibrosis. The aim of this study was to investigate the underlying antifibrosis mechanisms by which the BMSC inhibit activated hepatic stellate cells (HSCs) in vivo and in vitro. To study the effect of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) on activated HSCs, we used HSCs and the coculture systems to evaluate the inhibition of activated HSCs from the aspects of the apoptosis of activated HSCs. In addition, activation of NADPH oxidase pathway and the changes in liver histopathology were tested by using the carbon tetrachloride- (CCl 4 -) induced liver fibrosis in mice. Introduction of hBM-MSCs significantly inhibited the proliferation of activated HSCs by inducing the apoptosis process of activated HSCs. The effect of hBM-MSCs reduced the signaling pathway of NADPH oxidase in activated HSCs. Besides, the signaling pathway of NADPH oxidase mediated hBM-MSC upregulation of the expression of the peroxisome proliferator-activated receptor γ and downregulation of the expression of α 1(I) collagen and alpha-smooth muscle actin ( α -SMA) in activated HSCs. Moreover, the hBM-MSC-induced decrease in the signaling pathway of NADPH oxidase was accompanied by the decrease of the activated HSC number and liver fibrosis in a mouse model of CCl 4 -induced liver fibrosis. The hBM-MSCs act as a promising drug source against liver fibrosis development with respect to hepatopathy as a therapeutic target.
Szulc-Dąbrowska, Lidia; Struzik, Justyna; Ostrowska, Agnieszka; Guzera, Maciej; Toka, Felix N; Bossowska-Nowicka, Magdalena; Gieryńska, Małgorzata M; Winnicka, Anna; Nowak, Zuzanna; Niemiałtowski, Marek G
2017-01-01
Ectromelia virus (ECTV) is an orthopoxvirus responsible for mousepox, a lethal disease of certain strains of mice that is similar to smallpox in humans, caused by variola virus (VARV). ECTV, similar to VARV, exhibits a narrow host range and has co-evolved with its natural host. Consequently, ECTV employs sophisticated and host-specific strategies to control the immune cells that are important for induction of antiviral immune response. In the present study we investigated the influence of ECTV infection on immune functions of murine GM-CSF-derived bone marrow cells (GM-BM), comprised of conventional dendritic cells (cDCs) and macrophages. Our results showed for the first time that ECTV is able to replicate productively in GM-BM and severely impaired their innate and adaptive immune functions. Infected GM-BM exhibited dramatic changes in morphology and increased apoptosis during the late stages of infection. Moreover, GM-BM cells were unable to uptake and process antigen, reach full maturity and mount a proinflammatory response. Inhibition of cytokine/chemokine response may result from the alteration of nuclear translocation of NF-κB, IRF3 and IRF7 transcription factors and down-regulation of many genes involved in TLR, RLR, NLR and type I IFN signaling pathways. Consequently, GM-BM show inability to stimulate proliferation of purified allogeneic CD4+ T cells in a primary mixed leukocyte reaction (MLR). Taken together, our data clearly indicate that ECTV induces immunosuppressive mechanisms in GM-BM leading to their functional paralysis, thus compromising their ability to initiate downstream T-cell activation events.
Choi, Yura; Park, Jeong-Eun; Jeong, Jong Seob; Park, Jung-Keug; Kim, Jongpil; Jeon, Songhee
2016-10-01
Mesenchymal stem cells (MSCs) have shown considerable promise as an adaptable cell source for use in tissue engineering and other therapeutic applications. The aims of this study were to develop methods to test the hypothesis that human MSCs could be differentiated using sound wave stimulation alone and to find the underlying mechanism. Human bone marrow (hBM)-MSCs were stimulated with sound waves (1 kHz, 81 dB) for 7 days and the expression of neural markers were analyzed. Sound waves induced neural differentiation of hBM-MSC at 1 kHz and 81 dB but not at 1 kHz and 100 dB. To determine the signaling pathways involved in the neural differentiation of hBM-MSCs by sound wave stimulation, we examined the Pyk2 and CREB phosphorylation. Sound wave induced an increase in the phosphorylation of Pyk2 and CREB at 45 min and 90 min, respectively, in hBM-MSCs. To find out the upstream activator of Pyk2, we examined the intracellular calcium source that was released by sound wave stimulation. When we used ryanodine as a ryanodine receptor antagonist, sound wave-induced calcium release was suppressed. Moreover, pre-treatment with a Pyk2 inhibitor, PF431396, prevented the phosphorylation of Pyk2 and suppressed sound wave-induced neural differentiation in hBM-MSCs. These results suggest that specific sound wave stimulation could be used as a neural differentiation inducer of hBM-MSCs.
Sini, Carla; Fiorino, Claudio; Perna, Lucia; Noris Chiorda, Barbara; Deantoni, Chiara Lucrezia; Bianchi, Marco; Sacco, Vincenzo; Briganti, Alberto; Montorsi, Francesco; Calandrino, Riccardo; Di Muzio, Nadia; Cozzarini, Cesare
2016-01-01
To prospectively identify clinical/dosimetric predictors of acute/late hematologic toxicity (HT) in chemo-naÏve patients treated with whole-pelvis radiotherapy (WPRT) for prostate cancer. Data of 121 patients treated with adjuvant/salvage WPRT were analyzed (static-field IMRT n=19; VMAT/Rapidarc n=57; Tomotherapy n=45). Pelvic bone marrow (BM) was delineated as ilium (IL), lumbosacral, lower and whole pelvis (WP), and the relative DVHs were calculated. HT was graded both according to CTCAE v4.03 and as variation in percentage relative to baseline. Logistic regression was used to analyze association between HT and clinical/DVHs factors. Significant differences (p<0.005) in the DVH of BM volumes between different techniques were found: Tomotherapy was associated with larger volumes receiving low doses (3-20 Gy) and smaller receiving 40-50 Gy. Lower baseline absolute values of WBC, neutrophils and lymphocytes (ALC) predicted acute/late HT (p ⩽ 0.001). Higher BM V40 was associated with higher risk of acute Grade3 (OR=1.018) or late Grade2 lymphopenia (OR=1.005). Two models predicting lymphopenia were developed, both including baseline ALC, and BM WP-V40 (AUC=0.73) and IL-V40+smoking (AUC=0.904) for acute/late respectively. Specific regions of pelvic BM predicting acute/late lymphopenia, a risk factor for viral infections, were identified. The 2-variable models including specific constraints to BM may help reduce HT. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Biohybrid cochlear implants in human neurosensory restoration.
Roemer, Ariane; Köhl, Ulrike; Majdani, Omid; Klöß, Stephan; Falk, Christine; Haumann, Sabine; Lenarz, Thomas; Kral, Andrej; Warnecke, Athanasia
2016-10-07
The success of cochlear implantation may be further improved by minimizing implantation trauma. The physical trauma of implantation and subsequent immunological sequelae can affect residual hearing and the viability of the spiral ganglion. An ideal electrode should therefore decrease post-implantation trauma and provide support to the residual spiral ganglion population. Combining a flexible electrode with cells producing and releasing protective factors could present a potential means to achieve this. Mononuclear cells obtained from bone marrow (BM-MNC) consist of mesenchymal and hematopoietic progenitor cells. They possess the innate capacity to induce repair of traumatized tissue and to modulate immunological reactions. Human bone marrow was obtained from the patients that received treatment with biohybrid electrodes. Autologous mononuclear cells were isolated from bone marrow (BM-MNC) by centrifugation using the Regenlab™ THT-centrifugation tubes. Isolated BM-MNC were characterised using flow cytometry. In addition, the release of cytokines was analysed and their biological effect tested on spiral ganglion neurons isolated from neonatal rats. Fibrin adhesive (Tisseal™) was used for the coating of silicone-based cochlear implant electrode arrays for human use in order to generate biohybrid electrodes. Toxicity of the fibrin adhesive and influence on insertion, as well on the cell coating, was investigated. Furthermore, biohybrid electrodes were implanted in three patients. Human BM-MNC release cytokines, chemokines, and growth factors that exert anti-inflammatory and neuroprotective effects. Using fibrin adhesive as a carrier for BM-MNC, a simple and effective cell coating procedure for cochlear implant electrodes was developed that can be utilised on-site in the operating room for the generation of biohybrid electrodes for intracochlear cell-based drug delivery. A safety study demonstrated the feasibility of autologous progenitor cell transplantation in humans as an adjuvant to cochlear implantation for neurosensory restoration. This is the first report of the use of autologous cell transplantation to the human inner ear. Due to the simplicity of this procedure, we hope to initiate its widespread utilization in various fields.
Zhang, Lingling; Fu, Jingjing; Sheng, Kangliang; Li, Ying; Song, Shanshan; Li, Peipei; Song, Shasha; Wang, Qingtong; Chen, Jingyu; Yu, Jianhua; Wei, Wei
2015-03-01
Tolerogenic dendritic cells (DCs) are well-known to show an immunosuppressive function. In this study we determine the therapeutic effects and potential mechanisms of transferred bone marrow (BM) CD11b(+)F4/80(+) DCs on collagen-induced arthritis (CIA) in mice. Murine BM CD11b(+)F4/80(+) DCs were generated under the stimulation of GM-CSF and IL-4, and the function of BM CD11b(+) F4/80(+) DCs was identified by measuring the levels of IL-10, TGF-beta and indoleamine 2,3-dioxygenase (IDO). BM CD11b(+)F4/80(+) DCs were transferred to CIA mice by intravenous injections. The histopathology of joint and spleen were evaluated. T lymphocyte proliferation, Treg and Th17 subsets were analyzed. The expressions of Foxp3, Helios and RORγt in T lymphocytes co-cultured with BM CD11b(+)F4/80(+) DCs were measured in vitro. We found that BM CD11b(+)F4/80(+) DCs induced by GM-CSF and IL-4 could express high levels of IL-10, TGF-beta and IDO. BM CD11b(+)F4/80(+) DCs significantly reduced the pathologic scores in joints and spleens, which correlated significantly with the reduced T lymphocyte proliferation and Th17 cell number, and with the increased Tregs number. In vitro, OVA-pulsed BM CD11b(+)F4/80(+) DCs promoted Treg cell expansion, enhanced IL-10 and CTLA-4 protein expression, augmented Foxp3 and Helios mRNA expression, and inhibited RORγt and IL-17 mRNA expression. Taken together, BM CD11b(+)F4/80(+) DCs are able to ameliorate the development and severity of CIA, at least partly by inducing Foxp3(+) Treg cell expansion and suppressing Th17 function. The BM CD11b(+)F4/80(+) DCs might have a promising immunotherapeutic potential for autoimmune arthritis. Copyright © 2015 Elsevier B.V. All rights reserved.
ECM microenvironment unlocks brown adipogenic potential of adult human bone marrow-derived MSCs.
Lee, Michelle H; Goralczyk, Anna G; Kriszt, Rókus; Ang, Xiu Min; Badowski, Cedric; Li, Ying; Summers, Scott A; Toh, Sue-Anne; Yassin, M Shabeer; Shabbir, Asim; Sheppard, Allan; Raghunath, Michael
2016-02-17
Key to realizing the diagnostic and therapeutic potential of human brown/brite adipocytes is the identification of a renewable, easily accessible and safe tissue source of progenitor cells, and an efficacious in vitro differentiation protocol. We show that macromolecular crowding (MMC) facilitates brown adipocyte differentiation in adult human bone marrow mesenchymal stem cells (bmMSCs), as evidenced by substantially upregulating uncoupling protein 1 (UCP1) and uncoupled respiration. Moreover, MMC also induced 'browning' in bmMSC-derived white adipocytes. Mechanistically, MMC creates a 3D extracellular matrix architecture enshrouding maturing adipocytes in a collagen IV cocoon that is engaged by paxillin-positive focal adhesions also at the apical side of cells, without contact to the stiff support structure. This leads to an enhanced matrix-cell signaling, reflected by increased phosphorylation of ATF2, a key transcription factor in UCP1 regulation. Thus, tuning the dimensionality of the microenvironment in vitro can unlock a strong brown potential dormant in bone marrow.
Sharp, A; Kukulansky, T; Globerson, A
1990-12-01
Mechanisms underlying the age-related decrease in the developmental capacity of thymocyte progenitors from the bone marrow (BM) were analyzed, focussing on interaction of these cells with the thymic microenvironment. We employed the experimental model in which mixtures of young and old mouse BM cells, congenic for the Thy-1 marker, were seeded onto fetal thymus (FT) explains depleted of self lymphocytes and the levels of Thy-1+ cells developing from each of the two donor types were measured. When cells from young and old BM donors were seeded simultaneously, in saturating quantities, a higher level of T cells developed from the young donors. To find out whether there were originally more thymocyte progenitors in the young BM, we carried out the competitive colonization under limiting dilution conditions and found that the advantage of the young had diminished under these conditions, thus suggesting that the age-related changes could not be related solely to quantitative differences. We then incubated the FT sequentially with old donor cells for 24 h, followed by young for an additional 48 h and found that the advantage of the young progenitors was eliminated. We thus established that the initial stage of colonization of the FT was important in determining the outcome of the subsequent development. The kinetics of simultaneous competition within the FT, however, revealed that the advantage of the young BM-derived cells became significant only from day 7 in organ culture, thus suggesting that sequential divisions of these cells were at a higher level than those of the old. Recolonization of FT explants by young or old BM-derived thymocytes obtained from the first colonization of the FT stroma showed a reduced, but still significant advantage for the young BM-derived cells over the old. Thus, we concluded that the old BM thymocyte progenitors manifested a qualitative disadvantage which became apparent during competitive colonization of the FT.
de Mello, Cintia Xavier; Figueiredo, Fabiano Borges; Mendes Júnior, Artur Augusto Velho; Miranda, Luciana de Freitas Campos; de Oliveira, Raquel de Vasconcellos Carvalhaes; Madeira, Maria de Fátima
2016-07-06
Although direct examination methods are important for diagnosing leishmaniasis, such methods are often neglected because of their low sensitivity relative to other techniques. Our study aimed to evaluate the performance of bone marrow (BM) thick smears and cytocentrifugation tests as alternatives to direct examination for diagnosing canine visceral leishmaniasis (CVL). Ninety-two dogs exhibiting leishmaniasis seroreactivity were evaluated. The animals were euthanized; and healthy skin, spleen, popliteal lymph node, and BM puncture samples were cultured. BM cultures were used as the reference standard. Of the 92 dogs studied, 85.9% exhibited positive cultures, and Leishmania infantum (synonym Leishmania chagasi) was confirmed in all positive culture cases. The sensitivity rates for cytocentrifugation as well as thin and thick smears were 47.1%, 52.8%, and 77%, respectively. However, no association between the dogs' clinical status and culture or direct examination results was found. To our knowledge, this was the first study to use thick smears and cytocentrifugation for diagnosing CVL. Our results indicate that BM thick smears have a good sensitivity and their use reduces the time required to read slides. Therefore, thick smears can provide a rapid and safe alternative to parasitological confirmation of seroreactive dogs. © The American Society of Tropical Medicine and Hygiene.
USDA-ARS?s Scientific Manuscript database
Dendritic cells (DC) are professional antigen-presenting cells of the immune system that function to initiate primary immune responses. Progenitors of DCs are derived from haematopoietic stem cells in the bone marrow (BM) that migrate in non-lymphoid tissues to develop into immature DCs. Here, they ...
Mesenchymal Stem Cell Benefits Observed in Bone Marrow Failure and Acquired Aplastic Anemia
Gonzaga, Vivian Fonseca; Lisboa, Gustavo Sabino; Frare, Eduardo Osório
2017-01-01
Acquired aplastic anemia (AA) is a type of bone marrow failure (BMF) syndrome characterized by partial or total bone marrow (BM) destruction resulting in peripheral blood (PB) pancytopenia, which is the reduction in the number of red blood cells (RBC) and white blood cells (WBC), as well as platelets (PLT). The first-line treatment option of AA is given by hematopoietic stem cell (HSCs) transplant and/or immunosuppressive (IS) drug administration. Some patients did not respond to the treatment and remain pancytopenic following IS drugs. The studies are in progress to test the efficacy of adoptive cellular therapies as mesenchymal stem cells (MSCs), which confer low immunogenicity and are reliable allogeneic transplants in refractory severe aplastic anemia (SAA) cases. Moreover, bone marrow stromal cells (BMSC) constitute an essential component of the hematopoietic niche, responsible for stimulating and enhancing the proliferation of HSCs by secreting regulatory molecules and cytokines, providing stimulus to natural BM microenvironment for hematopoiesis. This review summarizes scientific evidences of the hematopoiesis improvements after MSC transplant, observed in acquired AA/BMF animal models as well as in patients with acquired AA. Additionally, we discuss the direct and indirect contribution of MSCs to the pathogenesis of acquired AA. PMID:29333168
Calcinotto, Arianna; Ponzoni, Maurilio; Ria, Roberto; Grioni, Matteo; Cattaneo, Elena; Villa, Isabella; Sabrina Bertilaccio, Maria Teresa; Chesi, Marta; Rubinacci, Alessandro; Tonon, Giovanni; Bergsagel, P Leif; Vacca, Angelo; Bellone, Matteo
2015-01-01
While multiple myeloma (MM) is almost invariably preceded by asymptomatic monoclonal gammopathy of undetermined significance (MGUS) and/or smoldering MM (SMM), the alterations of the bone marrow (BM) microenvironment that establish progression to symptomatic disease are circumstantial. Here we show that in Vk*MYC mice harboring oncogene-driven plasma cell proliferative disorder, disease appearance associated with substantial modifications of the BM microenvironment, including a progressive accumulation of both CD8+ and CD4+ T cells with a dominant T helper type 1 (Th1) response. Progression from asymptomatic to symptomatic MM was characterized by further BM accrual of T cells with reduced Th1 and persistently increased Th2 cytokine production, which associated with accumulation of CD206+Tie2+ macrophages, and increased pro-angiogenic cytokines and microvessel density (MVD). Notably, MVD was also increased at diagnosis in the BM of MGUS and SMM patients that subsequently progressed to MM when compared with MGUS and SMM that remained quiescent. These findings suggest a multistep pathogenic process in MM, in which the immune system may contribute to angiogenesis and disease progression. They also suggest initiating a large multicenter study to investigate MVD in asymptomatic patients as prognostic factor for the progression and outcome of this disease. PMID:26155424
Targeting Leukemia Stem Cells in the Bone Marrow Niche
Bornhäuser, Martin
2018-01-01
The bone marrow (BM) niche encompasses multiple cells of mesenchymal and hematopoietic origin and represents a unique microenvironment that is poised to maintain hematopoietic stem cells. In addition to its role as a primary lymphoid organ through the support of lymphoid development, the BM hosts various mature lymphoid cell types, including naïve T cells, memory T cells and plasma cells, as well as mature myeloid elements such as monocyte/macrophages and neutrophils, all of which are crucially important to control leukemia initiation and progression. The BM niche provides an attractive milieu for tumor cell colonization given its ability to provide signals which accelerate tumor cell proliferation and facilitate tumor cell survival. Cancer stem cells (CSCs) share phenotypic and functional features with normal counterparts from the tissue of origin of the tumor and can self-renew, differentiate and initiate tumor formation. CSCs possess a distinct immunological profile compared with the bulk population of tumor cells and have evolved complex strategies to suppress immune responses through multiple mechanisms, including the release of soluble factors and the over-expression of molecules implicated in cancer immune evasion. This chapter discusses the latest advancements in understanding of the immunological BM niche and highlights current and future immunotherapeutic strategies to target leukemia CSCs and overcome therapeutic resistance in the clinic. PMID:29466292
Allogeneic Transplantation: Peripheral Blood versus Bone Marrow
Bensinger, William I.
2013-01-01
Purpose of Review Peripheral Blood Stem Cells (PBSC) have been widely adopted as a source of stem cells for allogeneic transplantation although controversy remains regarding their role compared to the use of bone marrow (BM). Recent Findings Ten year follow-up has been reported from several large randomized trials and a recently completed trial using unrelated donor stem cells have been reported. In addition, two meta-analyses have been reported from the findings of a number of randomized studies. Several studies indicate that PBSC confer survival advantages over BM with matched sibling donors for most disease categories except where the risks of disease recurrence within the first year are low, but with the extra risk of more chronic GVHD. Using PBSC from unrelated donors does not appear to be more beneficial than BM, but with early follow-up. New strategies for rapid mobilization of PBSC from normal donors using plerixafor have been reported. Early studies suggest that filgrastim stimulated BM may confer some of the advantages of PBSC without the risks of chronic GVHD. Summary PBSC are a preferred source of stem cells for many types of allogeneic transplant where matched related donors are available. Whether the same benefits accrue from unrelated donors will require further follow-up. PMID:22185938
Ma, Kun; Titan, Ashley L.; Stafford, Melissa; Zheng, Chun hua; Levenston, Marc E.
2012-01-01
Fibrin and alginate hydrogels have been widely used to support chondrogenesis of bone marrow-derived mesenchymal stem cells (BM-MSCs) for articular cartilage and fibrocartilage tissue engineering, with distinct advantages and disadvantages to each material. Attempting to produce a gel scaffold exhibiting beneficial characteristics of both materials, we fabricated fibrin/alginate blended hydrogels at various blend ratios and evaluated the gel morphology, mechanical properties and their support for BM-MSC chondrogenesis. Results show that when the fibrin/alginate ratio decreased, the fibrin architecture transitioned from uniform to interconnected fibrous and finally to disconnected islands against an alginate background, with opposing trends in the alginate architecture. Fibrin maintained gel extensibility and promoted cell proliferation, while alginate improved the gel biostability and better supported glycosaminoglycan and collagen II production and chondrogenic gene expression. Blended gels had physical and biological characteristics intermediate between fibrin and alginate. Of the blends examined, FA 40:8 (40 mg/mL fibrinogen blended with 8 mg/mL alginate) was found to be the most appropriate group for future studies on tension-driven BM-MSC fibrochondrogenesis. As BM-MSC differentiation appeared to vary between fibrin and alginate regions of blended scaffolds, this study also highlighted the potential to develop spatially heterogeneous tissues through manipulating the heterogeneity of scaffold composition. PMID:22750738
Tsai, Pei-Jiun; Wang, Hwai-Shi; Lin, Chi-Hung; Weng, Zen-Chung; Chen, Tien-Hua; Shyu, Jia-Fwu
2014-01-01
We studied the process of trans-differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs) into insulin-producing cells. Streptozotocin (STZ)-induced diabetic rat model was used to study the effect of portal vein transplantation of these insulin-producing cells on blood sugar levels. The BM-MSCs were differentiated into insulin-producing cells under defined conditions. Real-time PCR, immunocytochemistry and glucose challenge were used to evaluate in vitro differentiation. Flow cytometry showed that hBM-MSCs were strongly positive for CD44, CD105 and CD73 and negative for hematopoietic markers CD34, CD38 and CD45. Differentiated cells expressed C-peptide as well as β-cells specific genes and hormones. Glucose stimulation increased C-peptide secretion in these cells. The insulin-producing, differentiated cells were transplanted into the portal vein of STZ-induced diabetic rats using a Port-A catheter. The insulin-producing cells were localized in the liver of the recipient rat and expressed human C-peptide. Blood glucose levels were reduced in diabetic rats transplanted with insulin-producing cells. We concluded that hBM-MSCs could be trans-differentiated into insulin-producing cells in vitro. Portal vein transplantation of insulin-producing cells alleviated hyperglycemia in diabetic rats.
Dubon, Maria Jose; Park, Ki-Sook
2016-04-01
Substance P (SP) is known to induce the mobilization of bone marrow-derived mesenchymal stem cells (BM-MSCs) and thus participates in wound repair. However, the cellular and molecular mechanisms responsible for the SP-mediated migration of BM-MSCs were not fully understood. In the present study, we studied the molecular mechanisms that mediate the migration of the BM-derived MSC-like cell line ST2 in response to SP. Using a migration assay and western blot analysis, we noted that SP induced the chemotactic migration of ST2 cells through the intrinsic activation of extracellular signal-regulated kinases (ERKs) and protein kinase B (Akt), the phosphorylated expression levels of which were increased. We noted that Src is involved in the SP-mediated migration of ST2 cells and that focal adhesion kinase (FAK) was activated in the ST2 cells following SP treatment. Membrane ruffling increased in the ST2 cells after SP treatment, as was clearly demonstrated by immunocytochemical analysis. Importantly, using a blocking antibody against N-cadherin (GC-4), we studied cell migration and noted that SP mediated the migration of the ST2 cells through N-cadherin. The present study thus advanced our understanding of the mechanisms through which SP induces BM-MSC migration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, Neil B.; Sidhu, Manpreet K.; Baby, Rekha
Purpose/Objective(s): To quantify ensuing bone marrow (BM) suppression during postoperative chemotherapy resulting from preoperative chemoradiation (CRT) therapy for rectal cancer. Methods and Materials: We retrospectively evaluated 35 patients treated with preoperative CRT followed by postoperative 5-Fluorouracil and oxaliplatin (OxF) chemotherapy for locally advanced rectal cancer. The pelvic bone marrow (PBM) was divided into ilium (IBM), lower pelvis (LPBM), and lumbosacrum (LSBM). Dose volume histograms (DVH) measured the mean doses and percentage of BM volume receiving between 5-40 Gy (i.e.: PBM-V5, LPBM-V5). The Wilcoxon signed rank tests evaluated the differences in absolute hematologic nadirs during neoadjuvant vs. adjuvant treatment. Logistic regressionsmore » evaluated the association between dosimetric parameters and ≥ grade 3 hematologic toxicity (HT3) and hematologic event (HE) defined as ≥ grade 2 HT and a dose reduction in OxF. Receiver Operator Characteristic (ROC) curves were constructed to determine optimal threshold values leading to HT3. Results: During OxF chemotherapy, 40.0% (n=14) and 48% (n=17) of rectal cancer patients experienced HT3 and HE, respectively. On multivariable logistic regression, increasing pelvic mean dose (PMD) and lower pelvis mean dose (LPMD) along with increasing PBM-V (25-40), LPBM-V25, and LPBM-V40 were significantly associated with HT3 and/or HE during postoperative chemotherapy. Exceeding ≥36.6 Gy to the PMD and ≥32.6 Gy to the LPMD strongly correlated with causing HT3 during postoperative chemotherapy. Conclusions: Neoadjuvant RT for rectal cancer has lasting effects on the pelvic BM, which are demonstrable during adjuvant OxF. Sparing of the BM during preoperative CRT can aid in reducing significant hematologic adverse events and aid in tolerance of postoperative chemotherapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guneta, Vipra; Tan, Nguan Soon; KK Research Centre, KK Women's and Children Hospital, 100 Bukit Timah Road, Singapore 229899
Mesenchymal stem cells (MSCs), which were first isolated from the bone marrow, are now being extracted from various other tissues in the body, including the adipose tissue. The current study presents systematic evidence of how the adipose tissue-derived stem cells (ASCs) and bone marrow-derived mesenchymal stem cells (Bm-MSCs) behave when cultured in specific pro-adipogenic microenvironments. The cells were first characterized and identified as MSCs in terms of their morphology, phenotypic expression, self-renewal capabilities and multi-lineage potential. Subsequently, the proliferation and gene expression profiles of the cell populations cultured on two-dimensional (2D) adipose tissue extracellular matrix (ECM)-coated tissue culture plastic (TCP)more » and in three-dimensional (3D) AlgiMatrix® microenvironments were analyzed. Overall, it was found that adipogenesis was triggered in both cell populations due to the presence of adipose tissue ECM. However, in 3D microenvironments, ASCs and Bm-MSCs were predisposed to the adipogenic and osteogenic lineages respectively. Overall, findings from this study will contribute to ongoing efforts in adipose tissue engineering as well as provide new insights into the role of the ECM and cues provided by the immediate microenvironment for stem cell differentiation. - Highlights: • Native adipose tissue ECM coated on 2D TCP triggers adipogenesis in both ASCs and Bm-MSCs. • A 3D microenvironment with similar stiffness to adipose tissue induces adipogenic differentiation of ASCs. • ASCs cultured in 3D alginate scaffolds exhibit predisposition to adipogenesis. • Bm-MSCs cultured in 3D alginate scaffolds exhibit predisposition to osteogenesis. • The native microenvironment of the cells affects their differentiation behaviour in vitro.« less
Newman, Neil B; Sidhu, Manpreet K; Baby, Rekha; Moss, Rebecca A; Nissenblatt, Michael J; Chen, Ting; Lu, Shou-En; Jabbour, Salma K
2016-04-01
To quantify ensuing bone marrow (BM) suppression during postoperative chemotherapy resulting from preoperative chemoradiation (CRT) therapy for rectal cancer. We retrospectively evaluated 35 patients treated with preoperative CRT followed by postoperative 5-Fluorouracil and oxaliplatin (OxF) chemotherapy for locally advanced rectal cancer. The pelvic bone marrow (PBM) was divided into ilium (IBM), lower pelvis (LPBM), and lumbosacrum (LSBM). Dose volume histograms (DVH) measured the mean doses and percentage of BM volume receiving between 5-40 Gy (i.e.: PBM-V5, LPBM-V5). The Wilcoxon signed rank tests evaluated the differences in absolute hematologic nadirs during neoadjuvant vs. adjuvant treatment. Logistic regressions evaluated the association between dosimetric parameters and ≥ grade 3 hematologic toxicity (HT3) and hematologic event (HE) defined as ≥ grade 2 HT and a dose reduction in OxF. Receiver Operator Characteristic (ROC) curves were constructed to determine optimal threshold values leading to HT3. During OxF chemotherapy, 40.0% (n=14) and 48% (n=17) of rectal cancer patients experienced HT3 and HE, respectively. On multivariable logistic regression, increasing pelvic mean dose (PMD) and lower pelvis mean dose (LPMD) along with increasing PBM-V (25-40), LPBM-V25, and LPBM-V40 were significantly associated with HT3 and/or HE during postoperative chemotherapy. Exceeding ≥36.6 Gy to the PMD and ≥32.6 Gy to the LPMD strongly correlated with causing HT3 during postoperative chemotherapy. Neoadjuvant RT for rectal cancer has lasting effects on the pelvic BM, which are demonstrable during adjuvant OxF. Sparing of the BM during preoperative CRT can aid in reducing significant hematologic adverse events and aid in tolerance of postoperative chemotherapy. Copyright © 2016 Elsevier Inc. All rights reserved.
Bakhshi, Tiki; Zabriskie, Ryan C; Bodie, Shamanique; Kidd, Shannon; Ramin, Susan; Paganessi, Laura A; Gregory, Stephanie A; Fung, Henry C; Christopherson, Kent W
2008-12-01
Hematopoietic stem cells (HSCs) are routinely obtained from marrow, mobilized peripheral blood, and umbilical cord blood. Mesenchymal stem cells (MSCs) are traditionally isolated from marrow. Bone marrow-derived MSCs (BM-MSCs) have previously demonstrated their ability to act as a feeder layer in support of ex vivo cord blood expansion. However, the use of BM-MSCs to support the growth, differentiation, and engraftment of cord blood may not be ideal for transplant purposes. Therefore, the potential of MSCs from a novel source, the Wharton's jelly of umbilical cords, to act as stromal support for the long-term culture of cord blood HSC was evaluated. Umbilical cord-derived MSCs (UC-MSCs) were cultured from the Wharton's jelly of umbilical cord segments. The UC-MSCs were then profiled for expression of 12 cell surface receptors and tested for their ability to support cord blood HSCs in a long-term culture-initiating cell (LTC-IC) assay. Upon culture, UC-MSCs express a defined set of cell surface markers (CD29, CD44, CD73, CD90, CD105, CD166, and HLA-A) and lack other markers (CD45, CD34, CD38, CD117, and HLA-DR) similar to BM-MSCs. Like BM-MSCs, UC-MSCs effectively support the growth of CD34+ cord blood cells in LTC-IC assays. These data suggest the potential therapeutic application of Wharton's jelly-derived UC-MSCs to provide stromal support structure for the long-term culture of cord blood HSCs as well as the possibility of cotransplantation of genetically identical, HLA-matched, or unmatched cord blood HSCs and UC-MSCs in the setting of HSC transplantation.
Chang, Jianhui; Wang, Yingying; Pathak, Rupak; Sridharan, Vijayalakshmi; Jones, Tamako; Mao, Xiao Wen; Nelson, Gregory; Boerma, Marjan; Hauer-Jensen, Martin; Zhou, Daohong; Shao, Lijian
2017-12-01
Exposure to proton irradiation during missions in deep space can lead to bone marrow injury. The acute effects of proton irradiation on hematopoietic stem and progenitor cells remain undefined and thus were investigated. We exposed male C57BL/6 mice to 0.5 and 1.0 Gy proton total body irradiation (proton-TBI, 150 MeV) and examined changes in peripheral blood cells and bone marrow (BM) progenitors and LSK cells 2 weeks after exposure. 1.0 Gy proton-TBI significantly reduced the numbers of peripheral blood cells compared to 0.5 Gy proton-TBI and unirradiated animals, while the numbers of peripheral blood cell counts were comparable between 0.5 Gy proton-TBI and unirradiated mice. The frequencies and numbers of LSK cells and CMPs in BM of 0.5 and 1.0 Gy irradiated mice were decreased in comparison to those of normal controls. LSK cells and CMPs and their progeny exhibited a radiation-induced impairment in clonogenic function. Exposure to 1.0 Gy increased cellular apoptosis but not the production of reactive oxygen species (ROS) in CMPs two weeks after irradiation. LSK cells from irradiated mice exhibited an increase in ROS production and apoptosis. Exposure to proton-TBI can induce acute damage to BM progenitors and LSK cells.
Aquino, Jorge B.; Malvicini, Mariana; Bolontrade, Marcela; Podhajcer, Osvaldo; Garcia, Mariana G.; Mazzolini, Guillermo
2014-01-01
Hepatocellular carcinoma (HCC) is the third cause of cancer-related death worldwide. Unfortunately, the incidence and mortality associated with HCC are increasing. Therefore, new therapeutic strategies are urgently needed and the use of mesenchymal stromal cells (MSCs) as carrier of therapeutic genes is emerging as a promising option. Different sources of MSCs are being studied for cell therapy and bone marrow-derived cells are the most extensively explored; however, birth associated-tissues represent a very promising source. The aim of this work was to compare the in vitro and in vivo migration capacity between bone marrow MSCs (BM-MSCs) and human umbilical cord perivascular cells (HUCPVCs) towards HCC. We observed that HUCPVCs presented higher in vitro and in vivo migration towards factors released by HCC. The expression of autocrine motility factor (AMF) receptor, genes related with the availability of the receptor on the cell surface (caveolin-1 and -2) and metalloproteinase 3, induced by the receptor activation and important for cell migration, was increased in HUCPVCs. The chemotactic response towards recombinant AMF was increased in HUCPVCs compared to BM-MSCs, and its inhibition in the conditioned medium from HCC induced higher decrease in HUCPVC migration than in BM-MSC. Our results indicate that HUCPVCs could be a useful cellular source to deliver therapeutic genes to HCC. PMID:25147818
Bayo, Juan; Fiore, Esteban; Aquino, Jorge B; Malvicini, Mariana; Rizzo, Manglio; Peixoto, Estanislao; Alaniz, Laura; Piccioni, Flavia; Bolontrade, Marcela; Podhajcer, Osvaldo; Garcia, Mariana G; Mazzolini, Guillermo
2014-01-01
Hepatocellular carcinoma (HCC) is the third cause of cancer-related death worldwide. Unfortunately, the incidence and mortality associated with HCC are increasing. Therefore, new therapeutic strategies are urgently needed and the use of mesenchymal stromal cells (MSCs) as carrier of therapeutic genes is emerging as a promising option. Different sources of MSCs are being studied for cell therapy and bone marrow-derived cells are the most extensively explored; however, birth associated-tissues represent a very promising source. The aim of this work was to compare the in vitro and in vivo migration capacity between bone marrow MSCs (BM-MSCs) and human umbilical cord perivascular cells (HUCPVCs) towards HCC. We observed that HUCPVCs presented higher in vitro and in vivo migration towards factors released by HCC. The expression of autocrine motility factor (AMF) receptor, genes related with the availability of the receptor on the cell surface (caveolin-1 and -2) and metalloproteinase 3, induced by the receptor activation and important for cell migration, was increased in HUCPVCs. The chemotactic response towards recombinant AMF was increased in HUCPVCs compared to BM-MSCs, and its inhibition in the conditioned medium from HCC induced higher decrease in HUCPVC migration than in BM-MSC. Our results indicate that HUCPVCs could be a useful cellular source to deliver therapeutic genes to HCC.
Chung, Brile; Min, Dullei; Joo, Lukas W; Krampf, Mark R; Huang, Jing; Yang, Yujun; Shashidhar, Sumana; Brown, Janice; Dudl, Eric P; Weinberg, Kenneth I
2011-01-01
The decreased ability of the thymus to generate T cells after bone marrow transplantation (BMT) is a clinically significant problem. Interleukin (IL)-7 and stem cell factor (SCF) induce proliferation, differentiation, and survival of thymocytes. Although previous studies have shown that administration of recombinant human IL-7 (rhIL-7) after murine and human BMT improves thymopoiesis and immune function, whether administration of SCF exerts similar effects is unclear. To evaluate independent or combinatorial effects of IL-7 and SCF in post-BMT thymopoiesis, bone marrow (BM)-derived mesenchymal stem cells transduced ex vivo with the rhIL-7 or murine SCF (mSCF) genes were cotransplanted with T cell-depleted BM cells into lethally irradiated mice. Although rhIL-7 and mSCF each improved immune reconstitution, the combination treatment had a significantly greater effect than either cytokine alone. Moreover, the combination treatment significantly increased donor-derived common lymphoid progenitors (CLPs) in BM, suggesting that transplanted CLPs expand more rapidly in response to IL-7 and SCF and may promote immune reconstitution. Our findings demonstrate that IL-7 and SCF might be therapeutically useful for enhancing de novo T cell development. Furthermore, combination therapy may allow the administration of lower doses of IL-7, thereby decreasing the likelihood of IL-7-mediated expansion of mature T cells. 2011. Published by Elsevier Inc.
Increased Bone Marrow Adiposity in a Context of Energy Deficit: The Tip of the Iceberg?
Ghali, Olfa; Al Rassy, Nathalie; Hardouin, Pierre; Chauveau, Christophe
2016-01-01
Elevated bone marrow adiposity (BMA) is defined as an increase in the proportion of the bone marrow (BM) cavity volume occupied by adipocytes. This can be caused by an increase in the size and/or number of adipocytes. BMA increases with age in a bone-site-specific manner. This increase may be linked to certain pathophysiological situations. Osteoporosis or compromised bone quality is frequently associated with high BMA. The involvement of BM adipocytes in bone loss may be due to commitment of mesenchymal stem cells to the adipogenic pathway rather than the osteogenic pathway. However, adipocytes may also act on their microenvironment by secreting factors with harmful effects for the bone health. Here, we review evidence that in a context of energy deficit (such as anorexia nervosa (AN) and restriction rodent models) bone alterations can occur in the absence of an increase in BMA. In severe cases, bone alterations are even associated with gelatinous BM transformation. The relationship between BMA and energy deficit and the potential regulators of this adiposity in this context are also discussed. On the basis of clinical studies and preliminary results on animal model, we propose that competition between differentiation into osteoblasts and differentiation into adipocytes might trigger bone loss at least in moderate-to-severe AN and in some calorie restriction models. Finally, some of the main questions resulting from this hypothesis are discussed. PMID:27695438
Xu, Zhifang; Ohtaki, Hirokazu; Watanabe, Jun; Miyamoto, Kazuyuki; Murai, Norimitsu; Sasaki, Shun; Matsumoto, Minako; Hashimoto, Hitoshi; Hiraizumi, Yutaka; Numazawa, Satoshi; Shioda, Seiji
2016-01-01
Pituitary adenylate cyclase-activating polypeptide (PACAP, encoded by adcyap1) plays an important role in ectodermal development. However, the involvement of PACAP in the development of other germ layers is still unclear. This study assessed the expression of a PACAP-specific receptor (PAC1) gene and protein in mouse bone marrow (BM). Cells strongly expressing PAC1+ were large in size, had oval nuclei, and merged with CD34+ cells, suggesting that the former were hematopoietic progenitor cells (HPCs). Compared with wild-type mice, adcyap1−/− mice exhibited lower multiple potential progenitor cell populations and cell frequency in the S-phase of the cell cycle. Exogenous PACAP38 significantly increased the numbers of colony forming unit-granulocyte/macrophage progenitor cells (CFU-GM) with two peaks in semi-solid culture. PACAP also increased the expression of cyclinD1 and Ki67 mRNAs. These increases were completely and partially inhibited by the PACAP receptor antagonists, PACAP6-38 and VIP6-28, respectively. Little or no adcyap1 was expressed in BM and the number of CFU-GM colonies was similar in adcyap1−/− and wild-type mice. However, PACAP mRNA and protein were expressed in paravertebral sympathetic ganglia, which innervate tibial BM, and in the sympathetic fibers of BM cavity. These results suggested that sympathetic nerve innervation may be responsible for PACAP-regulated hematopoiesis in BM, mainly via PAC1. PMID:26925806
Choi, Yun-Kyong; Lee, Dong Heon; Seo, Young-Kwon; Jung, Hyun; Park, Jung-Keug; Cho, Hyunjin
2014-10-01
Human bone marrow-derived mesenchymal stem cells (hBM-MSCs) have been investigated as a new cell-therapeutic solution due to their capacity that could differentiate into neural-like cells. Extremely low-frequency electromagnetic fields (ELF-EMFs) therapy has emerged as a novel technique, using mechanical stimulus to differentiate hBM-MSCs and significantly enhance neuronal differentiation to affect cellular and molecular reactions. Magnetic iron oxide (Fe3O4) nanoparticles (MNPs) have recently achieved widespread use for biomedical applications and polyethylene glycol (PEG)-labeled nanoparticles are used to increase their circulation time, aqueous solubility, biocompatibility, and nonspecific cellular uptake as well as to decrease immunogenicity. Many studies have used MNP-labeled cells for differentiation, but there have been no reports of MNP-labeled neural differentiation combined with EMFs. In this study, synthesized PEG-phospholipid encapsulated magnetite (Fe3O4) nanoparticles are used on hBM-MSCs to improve their intracellular uptake. The PEGylated nanoparticles were exposed to the cells under 50 Hz of EMFs to improve neural differentiation. First, we measured cell viability and intracellular iron content in hBM-MSCs after treatment with MNPs. Analysis was conducted by RT-PCR, and immunohistological analysis using neural cell type-specific genes and antibodies after exposure to 50 Hz electromagnetic fields. These results suggest that electromagnetic fields enhance neural differentiation in hBM-MSCs incorporated with MNPs and would be an effective method for differentiating neural cells.
Bárcia, R. N.; Santos, J. M.; Filipe, M.; Teixeira, M.; Martins, J. P.; Almeida, J.; Água-Doce, A.; Almeida, S. C. P.; Varela, A.; Pohl, S.; Dittmar, K. E. J.; Calado, S.; Simões, S. I.; Gaspar, M. M.; Cruz, M. E. M.; Lindenmaier, W.; Graça, L.; Cruz, H.; Cruz, P. E.
2015-01-01
MSCs derived from the umbilical cord tissue, termed UCX, were investigated for their immunomodulatory properties and compared to bone marrow-derived MSCs (BM-MSCs), the gold-standard in immunotherapy. Immunogenicity and immunosuppression were assessed by mixed lymphocyte reactions, suppression of lymphocyte proliferation and induction of regulatory T cells. Results showed that UCX were less immunogenic and showed higher immunosuppression activity than BM-MSCs. Further, UCX did not need prior activation or priming to exert their immunomodulatory effects. This was further corroborated in vivo in a model of acute inflammation. To elucidate the potency differences observed between UCX and BM-MSCs, gene expression related to immune modulation was analysed in both cell types. Several gene expression profile differences were found between UCX and BM-MSCs, namely decreased expression of HLA-DRA, HO-1, IGFBP1, 4 and 6, ILR1, IL6R and PTGES and increased expression of CD200, CD273, CD274, IL1B, IL-8, LIF and TGFB2. The latter were confirmed at the protein expression level. Overall, these results show that UCX seem to be naturally more potent immunosuppressors and less immunogenic than BM-MSCs. We propose that these differences may be due to increased levels of immunomodulatory surface proteins such as CD200, CD273, CD274 and cytokines such as IL1β, IL-8, LIF and TGFβ2. PMID:26064137
Hernández Vera, Rodrigo; Vilahur, Gemma; Ferrer-Lorente, Raquel; Peña, Esther; Badimon, Lina
2012-09-01
Patients with diabetes mellitus have an increased risk of suffering atherothrombotic syndromes and are prone to clustering cardiovascular risk factors. However, despite their dysregulated glucose metabolism, intensive glycemic control has proven insufficient to reduce thrombotic complications. Therefore, we aimed to elucidate the determinants of thrombosis in a model of type 2 diabetes mellitus with cardiovascular risk factors clustering. Intravital microscopy was used to analyze thrombosis in vivo in Zucker diabetic fatty rats (ZD) and lean normoglycemic controls. Bone marrow (BM) transplants were performed to test the contribution of each compartment (blood or vessel wall) to thrombogenicity. ZD showed significantly increased thrombosis compared with lean normoglycemic controls. BM transplants demonstrated the key contribution of the hematopoietic compartment to increased thrombogenicity. Indeed, lean normoglycemic controls transplanted with ZD-BM showed increased thrombosis with normal glucose levels, whereas ZD transplanted with lean normoglycemic controls-BM showed reduced thrombosis despite presenting hyperglycemia. Significant alterations in megakaryopoiesis and platelet-endoplasmic reticulum stress proteins, protein disulfide isomerase and 78-kDa glucose-regulated protein, were detected in ZD, and increased tissue factor procoagulant activity was detected in plasma and whole blood of ZD. Our results indicate that diabetes mellitus with cardiovascular risk factor clustering favors BM production of hyperreactive platelets with altered protein disulfide isomerase and 78-kDa glucose-regulated protein expression that can contribute to increase thrombotic risk independently of blood glucose levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Cheng-Cheng; Chen, Bing; Gu, Jian-Teng
Hepatopulmonary syndrome (HPS) is a complication of severe liver disease. It is characterized by an arterial oxygenation defect. Recent studies have demonstrated that pulmonary angiogenesis contributes to the abnormal gas exchange found in HPS. Additionally, mesenchymal stem cells (MSCs) are considered the stable source of VEGF-producing cells and have the potential to differentiate into multiple cell types. However, it has not been determined whether bone marrow mesenchymal stem cells (BM-MSCs) are mobilized and involved in the pulmonary angiogenesis in HPS. In this study, a CFU-F assay showed that the number of peripheral blood MSCs was increased in common bile ductmore » ligation (CBDL) rats; however, there was no significant difference found in the number of BM-MSCs. In vitro, CBDL rat serum induced the overexpression of CXCR4 and PCNA in BM-MSCs. Consistently, the directional migration as well as the proliferation ability of BM-MSCs were enhanced by CBDL rat serum, as determined by a transwell migration and MTT assays. Moreover, the secretion of VEGF by BM-MSCs increased after treatment with CBDL rat serum. We also found that the expression of phospho-Akt, phospho-ERK, and Nrf2 in BM-MSCs was significantly up-regulated by CBDL rat serum in a time dependent manner, and the blockage of the Akt/Nrf2 signalling pathway with an Akt Inhibitor or Nrf2 siRNA, instead of an ERK inhibitor, attenuated the migration, proliferation and paracrine capacity of BM-MSCs. In conclusion, these findings indicated that the number of MSCs increased in the peripheral blood of CBDL rats, and the Akt/Nrf2 pathway plays a vital role in promoting the angiogenic related functions of BM-MSCs, which could be a potent contributor to pulmonary angiogenesis in HPS. - Highlights: • Peripheral blood MSCs was increased in CBDL rats; however, the difference found for the number of BM-MSCs was not significant. • The directional migration, proliferation and ability to secrete VEGF of BM-MSCs were enhanced by CBDL rat serum. • The Akt/Nrf2 instead of ERK/Nrf2 pathway regulates the angiogenic related functions of BM-MSCs.« less
Smith, Roger Kenneth Whealands; Werling, Natalie Jayne; Dakin, Stephanie Georgina; Alam, Rafiqul; Goodship, Allen E.; Dudhia, Jayesh
2013-01-01
Tendon injuries are a common age-related degenerative condition where current treatment strategies fail to restore functionality and normal quality of life. This disease also occurs naturally in horses, with many similarities to human tendinopathy making it an ideal large animal model for human disease. Regenerative approaches are increasingly used to improve outcome involving mesenchymal stem cells (MSCs), supported by clinical data where injection of autologous bone marrow derived MSCs (BM-MSCs) suspended in marrow supernatant into injured tendons has halved the re-injury rate in racehorses. We hypothesized that stem cell therapy induces a matrix more closely resembling normal tendon than the fibrous scar tissue formed by natural repair. Twelve horses with career-ending naturally-occurring superficial digital flexor tendon injury were allocated randomly to treatment and control groups. 1X107 autologous BM-MSCs suspended in 2 ml of marrow supernatant were implanted into the damaged tendon of the treated group. The control group received the same volume of saline. Following a 6 month exercise programme horses were euthanized and tendons assessed for structural stiffness by non-destructive mechanical testing and for morphological and molecular composition. BM-MSC treated tendons exhibited statistically significant improvements in key parameters compared to saline-injected control tendons towards that of normal tendons and those in the contralateral limbs. Specifically, treated tendons had lower structural stiffness (p<0.05) although no significant difference in calculated modulus of elasticity, lower (improved) histological scoring of organisation (p<0.003) and crimp pattern (p<0.05), lower cellularity (p<0.007), DNA content (p<0.05), vascularity (p<0.03), water content (p<0.05), GAG content (p<0.05), and MMP-13 activity (p<0.02). Treatment with autologous MSCs in marrow supernatant therefore provides significant benefits compared to untreated tendon repair in enhancing normalisation of biomechanical, morphological, and compositional parameters. These data in natural disease, with no adverse findings, support the use of this treatment for human tendon injuries. PMID:24086616
Current state of biology and diagnosis of clonal mast cell diseases in adults.
Alvarez-Twose, I; Morgado, J M; Sánchez-Muñoz, L; García-Montero, A; Mollejo, M; Orfao, A; Escribano, L
2012-10-01
Mastocytosis comprises a heterogeneous group of disorders characterized by the presence of clonal mast cells (MC) in organs such as skin, bone marrow (BM), and gastrointestinal tract, among other tissues. The clonal nature of the disease can be established in most adult patients by the demonstration of activating KIT mutations in their BM MC. When highly sensitive techniques capable of identifying cells present at very low frequencies in a sample are applied, BM MC from virtually all systemic mastocytosis patients display unique immunophenotypical features, particularly the aberrant expression of CD25. By contrast, large, multifocal BM MC aggregates (the only World Health Organization major criterion for systemic mastocytosis) are absent in a significant proportion of patients fulfilling at least three minor criteria for systemic mastocytosis, particularly in subjects studied at early stages of the disease with very low MC burden. Moreover, recent molecular and immunophenotypical investigations of BM MC from patients with indolent systemic mastocytosis have revealed a close association of some biological features (e.g., multilineage involvement of hematopoiesis by the KIT mutation and an immature mast cell immunophenotype) with an increased risk for disease progression. These observations support the fact that, although the current consensus diagnostic criteria for systemic mastocytosis have been a major advance for the diagnosis and classification of the disease, rationale usage of the most sensitive diagnostic techniques available nowadays is needed to improve the diagnosis, refine the classification, and reach objective prognostic stratification of adult mastocytosis. © 2012 Blackwell Publishing Ltd.
Kaku, M; Kitami, M; Rosales Rocabado, J M; Ida, T; Akiba, Y; Uoshima, K
2017-08-01
The periodontal ligament (PDL) is a non-mineralized connective tissue that exists between the alveolar bone and root surface cementum and plays important roles in tooth function. The PDL harbors a remarkable reserve of multipotent stem cells, which maintain various types of cells. However, the sources of these stem cells, other than their developmental origin, are not well understood. To elucidate the recruitment of bone marrow (BM)-derived stem cells in the PDL, green fluorescent protein (GFP)-expressing BM-derived cells were transplanted into the femoral BM of immunodeficient rats, and the distribution and expression of stem cell markers in the PDL were analyzed in vivo. To evaluate the functional significance of BM-derived cells to the PDL, tooth replantation was performed and the expression of stromal cell-derived factor (SDF)-1, a critical chemotactic signal for mesenchymal stem cell recruitment, was analyzed. To confirm the SDF-1-dependency of BM-derived cell migration to the PDL, PDL-conditioned medium (CM) was prepared, and BM-derived cell migration was analyzed using a transwell culture system. Four weeks after cell transplantation, GFP-positive cells were detected in the PDL, and some of them were also positive for stem cell markers (i.e., CD29, SSEA4, and αSMA). Seven days after tooth replantation, the number of GFP- and SDF-1-positive cells significantly increased in PDL. Concurrently, the concentration of SDF-1 and the number of colony-forming units of fibroblasts in peripheral blood were increased. BM-derived cell migration increased in PDL-CM and was inhibited by an inhibitor of C-X-C chemokine receptor type 4 (CXCR4), an SDF-1 receptor. These results indicate that stem cells and their progeny in PDL are not only derived from their developmental origin but are also supplied from the BM via the blood as the need arises. Moreover, this BM-derived cell recruitment appears to be regulated, at least partially, by the SDF-1/CXCR4 axis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Fu, Jingjing; Zhang, Lingling; Song, Shanshan; Sheng, Kangliang; Li, Ying; Li, Peipei; Song, Shasha; Wang, Qingtong; Chu, Jianhong; Wei, Wei
2014-05-01
To explore the effect of bone marrow-derived CD11b(+)F4/80(+) immature dendritic cells (BM CD11b(+)F4/80(+)iDC) on the balance between pro-inflammatory and anti-inflammatory cytokines in DBA/1 mice with collagen-induced arthritis (CIA). BM CD11b(+)F4/80(+)iDC were induced with rmGM-CSF and rmIL-4, and were identified by the expressions of toll-like receptor 2 (TLR-2), indoleamine 2,3-deoxygenase (IDO), interleukin (IL)-10, transforming growth factor (TGF)-β1 and mixed leukocyte reaction (MLR). CIA was established in DBA/1 mice by immunization with type II collagen. CIA mice were injected intravenously with BM CD11b(+)F4/80(+)iDC three times after immunization. The effect of BM CD11b(+)F4/80(+)iDC on CIA was evaluated by the arthritis index, joint histopathology, body weight, thymus index, thymocytes proliferation, IL-1β, tumor necrosis factor (TNF)-α, IL-17, IL-10 and TGF-β1 levels. BM CD11b(+)F4/80(+)iDC induced with rmGM-CSF and rmIL-4 expressed high levels of TLR-2, IDO, IL-10 and TGF-β1. Infusion of BM CD11b(+)F4/80(+)iDC in CIA mice significantly reduced the arthritis index and pathological scores of joints, recovered the weight, decreased the thymus index and inhibited thymocyte proliferation. Levels of IL-1β, TNF-α and IL-17 were decreased in BM CD11b(+)F4/80(+)iDC-treated mice. BM CD11b(+)F4/80(+)iDC can be induced successfully with rmGM-CSF and rmIL-4. BM CD11b(+)F4/80(+)iDC treatment can ameliorate the development and severity of CIA by regulating the balance between pro-inflammatory cytokines and anti-inflammatory cytokines.
Allegra, Alessandro; Innao, Vanessa; Gerace, Demetrio; Allegra, Andrea Gaetano; Vaddinelli, Doriana; Bianco, Oriana; Musolino, Caterina
2018-07-01
In addition to its capacity to store lipids the adipose tissue is now identified as a real organ with both endocrine and metabolic roles. Preclinical results indicate that modifying adipose tissue and bone marrow adipose tissue (BMAT) could be a successful multiple myeloma (MM) therapy. BMAT interrelates with bone marrow cells and other immune cells, and may influence MM disease progression. The BM adipocytes may have a role in MM progression, bone homing, chemoresistance, and relapse, due to local endocrine, paracrine, or metabolic factors. BM adipocytes isolated from MM subjects have been shown to increase myeloma growth in vitro and may preserve cells from chemotherapy-induced apoptosis. By producing free fatty acids and emitting signaling molecules such as growth factors and adipokines, BM adipocytes are both an energy font and an endocrine signaling factory. This review should suggest future research approaches toward developing novel treatments to target MM by targeting BMAT and its products. Copyright © 2018 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.
Gopal, Kaliappan; Amirhamed, Haji Alizadeh; Kamarul, Tunku
2014-06-01
Mesenchymal stem cell (MSC)-based therapies represent a new option for treating damaged cartilage. However, the outcomes following its clinical application have seldom been previously compared. The present paper presents the systematic review of current literatures on MSC-based therapy for cartilage repair in clinical applications. Ovid, Scopus, PubMed, ISI Web of Knowledge and Google Scholar online databases were searched using several keywords, which include "cartilage" and "stem cells". Only studies using bone marrow-derived MSC (BM-MSC) to treat cartilage defects clinically were included in this review. The clinical outcomes were compared, and the quality of the tissue repair was analysed where possible. Of the 996 articles, only six (n = 6) clinical studies have described the use of BM-MSC in clinical applications. Two studies were cohort observational trials, three were case series, and one was a case report. In the two comparative trials, BM-MSCs produced superior repair to cartilage treatment without cells and have comparable outcomes to autologous chondrocyte implantation. The case series and case-control studies have demonstrated that use of BM-MSCs resulted in better short- to long-term clinical outcomes with minimal complications. In addition, histological analyses in two studies have resulted in good repair tissue formation at the damaged site, composed mainly of hyaline-like cartilage. Although results of the respective studies are highly indicative that BM-MSC-based therapy is superior, due to the differences in methods and selection criteria used, it was not possible to make direct comparison between the studies. In conclusion, published studies do suggest that BM-MSCs could provide superior cartilage repair. However, due to limited number of reports, more robust studies might be required before a definitive conclusion can be drawn.
Sheng, Lingling; Mao, Xiyuan; Yu, Qingxiong; Yu, Dong
2017-01-01
Bone marrow-derived mesenchymal stem cell (BM-MSC) transplantation has been demonstrated to be an effective way of augmenting angiogenesis of ischemic tissue. The low oxygen conditions in ischemic tissue directly affect the biological behavior of engrafted cells. However, to date, the mechanism through which hypoxia regulates self-renewal, differentiation and paracrine function of BM-MSCs remains unclear. Clarification of this mechanism would be beneficial to the use of stem cell-based therapy. The PI3K/AKT pathway has been extensively investigated for its role in cell proliferation, cell transformation, paracrine function and angiogenesis. The present study aimed to analyze the role of PI3K/AKT pathway in hypoxia-induced proliferation of BM-MSCs and their differentiation into endothelial cells in vitro by the application of LY294002, a PI3K/AKT pathway inhibitor, with cells cultured in normoxia serving as a control. The results showed that rat BM-MSCs at passage 3 and 4 displayed only few phenotypical differences in the expression of surface antigens as detected by flow cytometry. When compared with the cells treated in normoxia, the proliferation of BM-MSCs in hypoxia was promoted, a greater number of cells expressed CD31 and a higher expression of vascular endothelial growth factor was observed after culture in hypoxic conditions. However, by inhibiting with LY294002, these changes induced by hypoxia were partly inhibited. In conclusion, the present study showed that the PI3K/AKT pathway served an important role in hypoxia-enhanced in vitro proliferation of BM-MSCs and their differentiation into endothelial cells and paracrine vascular endothelial growth factor. PMID:28123468
Paula, Carine; Motta, Adriana; Schmitz, Carla; Nunes, Claudia P; Souza, Ana Paula; Bonorino, Cristina
2009-02-01
It is known that immune system functions decrease with age, and that adaptive immune responses, especially CD4+ T cell function, seem to be the main affected point in immunity with aging. Dendritic cells (DC) are the major antigen presenting cell (APC), and at least part of the defects observed in adaptive immunity of aged individuals could be due to diminished potential of bone marrow to generate new DC, or defects in DC function. In this study, we investigated if the ability of aged bone marrow (BM) to generate new DC in vitro, as well as aged BM-derived DC responses to lypopolysaccharide (LPS). Because DC are important tools in newly developing anti-tumor therapies, we also studied the ability of aged DC to phagocytose and present antigen from necrotic tumor cells. We found that aged BM generated fewer DC in vitro compared to young BM. While LPS-induced DC maturation is reduced in DC of aged mice, a high TNF-alpha production is observed in aged DC even without LPS stimulation. While phagocytosis of tumor cells is not affected by age, and DC derived from aged BM show a higher TNF-alpha production in response to phagocytosis, presentation of tumor antigens was decreased in aged DC. Because class II upregulation in response to phagocytosis was similar between aged and young DC, this could indicate an age associated processing defect in the exogenous pathway. These findings suggest that age of BM used to generate DC does not impair their phagocytic ability or TNF-alpha production, however leads to a decreased yield in mature DC, reduced response to LPS, and diminished antigen processing/presentation potential. Our results are relevant to optimization DC-based vaccine design for aged populations.
Li, Zhen; Wang, Chunhong; Zhu, Jie; Bai, YuE; Wang, Wei; Zhou, Yanfeng; Zhang, Shaozun; Liu, Xiangxiang; Zhou, Sheng; Huang, Wenting; Bi, Yongyi; Wang, Hong
2016-07-01
Epidemiological studies suggest that the increasing incidence of childhood leukemia may be due to maternal exposure to benzene, which is a known human carcinogen; however, the mechanisms involved remain unknown. Liver Kinase B1 (LKB1) acts as a regulator of cellular energy metabolism and functions to regulate hematopoietic stem cell (HSC) homeostasis. We hypothesize that LKB1 contributes to the deregulation of fetal or bone hematopoiesis caused by the benzene metabolite hydroquinone (HQ). To evaluate this hypothesis, we compared the effects of HQ on murine fetal liver hematopoietic stem cells (FL-HSCs) and bone marrow hematopoietic stem cells (BM-HSCs). FL-HSCs and BM-HSCs were isolated and enriched by a magnetic cell sorting system and exposed to various concentrations of HQ (0, 1.25, 2.5, 5, 10, 20, and 40 μM) for 24 h. We found that the inhibition of differentiation and growth, as well as the apoptosis rate of FL-HSCs, induced by HQ were consistent with the changes in BM-HSCs. Furthermore, G1 cell cycle arrest was observed in BM-HSCs and FL-HSCs in response to HQ. Importantly, FL-HSCs were more sensitive than BM-HSCs after exposure to HQ. The highest induction of LKB1 and adenosine monophosphate-activated protein kinase (AMPK) was observed with a much lower concentration of HQ in FL-HSCs than in BM-HSCs. LKB1 may play a critical role in apoptosis and cell cycle arrest of HQ-treated HSCs. This research has developed innovative ideas concerning benzene-induced hematopoietic toxicity or embryotoxicity, which can provide a new experimental evidence for preventing childhood leukemia. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 830-841, 2016. © 2014 Wiley Periodicals, Inc.
Kohli, Nupur; Wright, Karina T.; Sammons, Rachel L.; Jeys, Lee; Snow, Martyn
2015-01-01
Aim To compare the incorporation, growth, and chondrogenic potential of bone marrow (BM) and adipose tissue (AT) mesenchymal stem cells (MSCs) in scaffolds used for cartilage repair. Methods Human BM and AT MSCs were isolated, culture expanded, and characterised using standard protocols, then seeded into 2 different scaffolds, Chondro-Gide or Alpha Chondro Shield. Cell adhesion, incorporation, and viable cell growth were assessed microscopically and following calcein AM/ethidium homodimer (Live/Dead) staining. Cell-seeded scaffolds were treated with chondrogenic inducers for 28 days. Extracellular matrix deposition and soluble glycosaminoglycan (GAG) release into the culture medium was measured at day 28 by histology/immunohistochemistry and dimethylmethylene blue assay, respectively. Results A greater number of viable MSCs from either source adhered and incorporated into Chondro-Gide than into Alpha Chondro Shield. In both cell scaffolds, this incorporation represented less than 2% of the cells that were seeded. There was a marked proliferation of BM MSCs, but not AT MSCs, in Chondro-Gide. MSCs from both sources underwent chondrogenic differentiation following induction. However, cartilaginous extracellular matrix deposition was most marked in Chondro-Gide seeded with BM MSCs. Soluble GAG secretion increased in chondrogenic versus control conditions. There was no marked difference in GAG secretion by MSCs from either cell source. Conclusion Chondro-Gide and Alpha Chondro Shield were permissive to the incorporation and chondrogenic differentiation of human BM and AT MSCs. Chondro-Gide seeded with BM MSCs demonstrated the greatest increase in MSC number and deposition of a cartilaginous tissue. PMID:26425263
Vukasović, Andreja; Ivković, Alan; Jezek, Davor; Cerovecki, Ivan; Vnuk, Drazen; Kreszinger, Mario; Hudetz, Damir; Pećina, Marko
2011-01-01
Articular cartilage is an avascular and aneural tissue lacking lymph drainage, hence its inability of spontaneous repair following injury. Thus, it offers an interesting model for scientific research. A number of methods have been suggested to enhance cartilage repair, but none has yet produced significant success. The possible application of the aforementioned methods has brought about the necessity to evaluate their results. The objective of this study was to analyze results of a study of the effects of the use of TGF-beta gene transduced bone marrow clot on articular cartilage defects using ICRS visual histological assessment scale. The research was conducted on 28 skeletally mature sheep that were randomly assigned to four groups and surgically inflicted femoral chondral defects. The articular surfaces were then treated with TGF-beta1 gene transduced bone marrow clot (TGF group), GFP transduced bone marrow clot (GFP group), untransduced bone marrow clot (BM group) or left untreated (NC group). The analysis was performed by visual examination of cartilage samples and results were obtained using ICRS visual histological assessment scale. The results were subsequently subjected to statistical assessment using Kruskal-Wallis and Mann-Whitney tests. Kruskal-Wallis test yielded statistically significant difference with respect to cell distribution. Mann-Whitney test showed statistically significant difference between TGF and NC groups (P = 0.002), as well as between BM and NC groups (P = 0.002 with Bonferroni correction). Twenty-six of the twenty-eight samples were subjected to histologic and subsequent statistical analysis; two were discarded due to faulty histology technique. Our results indicated a level of certainty as to the positive effect of TGF-beta1 gene transduced bone marrow clot in restoration of articular cartilage defects. However, additional research is necessary in the field. One of the significant drawbacks on histologic assessment of cartilage samples were the errors in histologic preparation, for which some samples had to be discarded and significantly impaired the analytical quality of the others. Defects of structures surrounding the articular cartilage, e.g., subchondral bone or connective tissue, might also impair the quality of histologic analysis. Additional analyses, i.e. polarizing microscopy should be performed to determine the degree of integration of the newly formed tissue with the surrounding cartilage. The semiquantitative ICRS scale, although of great practical value, has limitations as to the objectivity of the assessment, taking into account the analytical ability of the evaluator, as well as the accuracy of semiquantitative analysis in comparison to the methods of quantitative analysis. Overall results of histologic analysis indicated that the application of TGF-beta1 gene transduced bone marrow clot could have measurable clinical effects on articular cartilage repair. The ICRS visual histological assessment scale is a valuable analytical method for cartilage repair evaluation. In this respect, further analyses of the method value would be of great importance.
Analysis of bone marrow plasma cells in patients with solitary bone plasmacytoma.
Bhaskar, Archana; Gupta, Ritu; Sharma, Atul; Kumar, Lalit; Jain, Paresh
Local radiotherapy is the treatment of choice for solitary bone plasmacytoma (SBP) and the role of adjuvant systemic chemotherapy in preventing progression to multiple myeloma (MM) is controversial. The purpose of this study was to examine the presence of systemic disease in the form of neoplastic plasma cells (PC) in bone marrow of patients with SBP. Flow cytometric immunophenotyping of PC was carried out on bone marrow aspirate of 7 patients using monoclonal antibodies: CD19 FITC, CD45 FITC, CD20 FITC, CD52 PE, CD117 PE, CD56 PE, CD38 PerCP-Cy5.5, CD138 APC, anti-kappa (κ) FITC and anti-lambda (λ) PE. The neoplastic as well as normal PC were identified in bone marrow aspirate of all the patients at the time of diagnosis; the neoplastic PC ranged from 0.1%to 0.7% of all BM cells and 33.5% to 89.7% of total BMPC. The κ:λ ratio was normal in all the samples ranging from 0.5% to 1.6%. The present work shows the presence of systemic disease in the form of neoplastic PC in bone marrow of patients with SBP. Prospective studies would be required to study if the levels of neoplastic PC in the bone marrow may help us identify patients who are likely to progress to overt MM and benefit from systemic chemotherapy.
Kim, Sang-Gyung; Bae, Sung Hwa; Kim, Seong-Mo; Lee, Ji-Hye; Kim, Min Ji; Jang, Hae-Bong
2014-01-01
Background The number of CD34+ cells in a peripheral blood stem cell collection is the key factor in predicting successful treatment of hematologic malignancies. Korean Red Ginseng (KRG) (Panax ginseng C.A. Meyer) is the most popular medicinal herb in Korea. The objective of this study was to determine the effect of KRG on hematopoietic colony formation. Methods Bone marrow (BM) samples were obtained from 8 human donors after acquiring informed consent. BM mononuclear cells (MNCs) were isolated, and CD34+ cells were sorted using magnetic beads. The sorted CD34+ cells were incubated with or without total extract of KRG (50 µg/mL, 100 µg/mL) or Ginsenoside Rg1 (100 µg/mL), and the hematopoietic colony assay was performed using methylcellulose semisolid medium. The CD34+ cell counts were measured by a single platform assay using flow cytometry. Results The numbers of human BM-MNCs and CD34+ cells obtained after purification were variable among donors (5.6×107 and 1.3-48×107 and 8.9×104 and 1.8-80×104, respectively). The cells expanded 1,944 times after incubation for 12 d. Total extract of KRG added to the hematopoietic stem cell (HSC)-specific medium increased CD34+ cell counts 3.6 times compared to 2.6 times when using HSC medium alone. Total numbers of hematopoietic colonies in KRG medium were more than those observed in conventional medium, especially that of erythroid colonies such as burst forming unit-erythroid. Conclusion Total extract of KRG facilitated CD34+ cell expansion and hematopoietic colony formation, especially of the erythroid lineage. PMID:25325037
Abdullahi, Abdikarim; Chen, Peter; Stanojcic, Mile; Sadri, Ali-Reza; Coburn, Natalie; Jeschke, Marc G
2017-01-01
The hypermetabolic stress response after burn contributes to multi-organ failure, sepsis, morbidity, and mortality. The cytokine interleukin 6 (IL-6) has been hypothesized to mediate not only white adipose tissue (WAT) browning in burns, but also other hypermetabolic conditions. In addition to its inflammatory effects, IL-6 also acts as a metabolic mediator that affects metabolic tissues. Therefore, we sought to uncover the origin of circulating IL-6 post burn injury that regulates WAT browning. WAT and sera samples were collected from both adult burn patients admitted to the Ross Tilley Burn Centre at Sunnybrook Hospital and mice subjected to a burn injury. Collected tissues were analyzed for browning markers and metabolic state via histology, gene expression, and resting energy expenditure. Increased WAT browning was observed in burn patients as well as mice subjected to burn injury. Circulating IL-6 levels were significantly elevated post burn injury in mice (<0.05) and in burn patients (<0.05), the latter of which was positively correlated with elevated REE. Genetic loss of whole body IL-6 in mice prevented burn-induced WAT browning. Transplanting IL-6 knockout (KO) mice with bone marrow (BM) from wild-type (WT) mice, recovered the browning phenotype in these mice, as evaluated by increased uncoupling protein 1 (UCP1) expression (<0.05). Conversely, transplanting irradiated WT mice with BM from IL-6 KO mice impaired burn induced browning with no significant expression of UCP1. Together, our findings implicate BM derived IL-6 as the source controlling browning of WAT post burn injury. Thus, targeting IL-6 is a promising target for hypermetabolism in burns.
Muhonen, Virpi; Narcisi, Roberto; Nystedt, Johanna; Korhonen, Matti; van Osch, Gerjo J V M; Kiviranta, Ilkka
2017-03-01
Recombinant human type II collagen (rhCII) hydrogel was tested as a xeno-free micro-environment for the chondrogenesis of human bone marrow-derived mesenchymal stromal cells (BM-MSCs). The rhCII hydrogels were seeded with BM-MSCs and cultured in a xeno-free chondro-inductive medium for 14, 28 and 84 days. High-density pellet cultures served as controls. The samples were subjected to biochemical, histological and gene expression analyses. Although the cells deposited glycosaminoglycans into the extracellular space significantly more slowly in the rhCII hydrogels compared to the high-density pellets, a similar potential of matrix deposition was reached by the end of the 84-day culture. At day 28 of culture, the gene expression level for cartilage marker genes (i.e. genes encoding for Sox9 transcription factor, Collagen type II and Aggrecan) were considerably lower in the rhCII hydrogels than in the high-density pellets, but at the end of the 84-day culture period, all the cartilage marker genes analysed were expressed at a similar level. Interestingly, the expression of the matrix metallopeptidases (MMP)-13, MMP-14 and MMP-8, i.e. extracellular collagen network-degrading enzymes, were transiently upregulated in the rhCII hydrogel, indicating active matrix reorganization. This study demonstrated that the rhCII hydrogel functions as a xeno-free platform for BM-MSC chondrogenesis, although the process is delayed. The reversible catabolic reaction evoked by the rhCII hydrogel might be beneficial in graft integration in vivo and pinpoints the need to further explore the use of hydrogels containing recombinant extracellular matrix (ECM) proteins to induce the chondrogenesis of MSCs. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, Brent S., E-mail: bsrose@lroc.harvard.edu; Jee, Kyung-Wook; Niemierko, Andrzej
Purpose: Irradiation of pelvic bone marrow (BM) has been correlated with hematologic toxicity (HT) in patients undergoing chemoradiation for anal cancer. We hypothesized that irradiation of hematologically active bone marrow (ABM) subregions defined by fluorodeoxyglucose (FDG) positron emission tomography (PET) is a principal cause of radiation-associated HT. Methods and Materials: The cohort included 45 patients with nonmetastatic anal cancer who underwent FDG-PET imaging prior to definitive chemoradiation with mitomycin-C and 5-fluorouracil. Total bone marrow (TBM) was defined as the external contour of the pelvic bones from the top of lumbar 5 (L5) to the bottom of the ischial tuberosity. Standardizedmore » uptake values (SUV) for all voxels within the TBM were quantified and normalized by comparison to normal liver SUV. Subvolumes of the TBM that exhibited the highest and lowest 50% of the SUVs were designated ABM{sub 50} and IBM{sub 50}, respectively. The primary endpoint was the absolute neutrophil count (ANC) nadir during or within 2 weeks of completion of treatment. Multivariate linear modeling was used to analyze the correlation between the equivalent uniform doses (EUD) with an a value of 0.5, 1 (equivalent to mean dose), 3, 7, and 12 to the BM structures and the ANC. Results: Mean ± SD ANC nadir was 0.77 × 10{sup 9}/L (±0.66 × 10{sup 9}/L). Grades 3 and 4 ANC toxicity occurred in 26.7% and 44.4% of patients, respectively. The EUD a parameter of 0.5 was optimal for all BM models indicating high radiation sensitivity. EUD of TBM and ABM{sub 50} and IBM{sub 50} were all significantly associated with ANC nadir. However, model performance for ABM{sub 50} was not superior to that of the TBM and IBM{sub 50} models. Conclusions: Irradiation of pelvic BM was associated with HT. However, FDG-PET–defined ABM models failed to improve model performance compared to the TBM model.« less
Nam, Hui Yin; Karunanithi, Puvanan; Loo, Wagner Cheng; Naveen, Sangeetha; Chen, Hui; Hussin, Paisal; Chan, Lucy; Kamarul, Tunku
2013-09-20
Treatment of chondral injuries remains a major issue despite the many advances made in cartilage repair techniques. Although it has been postulated that the use of marrow stimulation in combination with cell-based therapy may provide superior outcome, this has yet to be demonstrated. A pilot study was thus conducted to determine if bone marrow derived mesenchymal stromal cells (BM-MSCs) have modulatory effects on the repair outcomes of bone marrow stimulation (BMS) techniques. Two full-thickness chondral 5 mm diameter defects were created in tandem on the medial condyle of left stifle joints of 18 Boer caprine (N = 18). Goats were then divided equally into three groups. Simultaneously, bone marrow aspirates were taken from the iliac crests from the goats in Group 1 and were sent for BM-MSC isolation and expansion in vitro. Six weeks later, BMS surgery, which involves subchondral drilling at the defect sites, was performed. After two weeks, the knees in Group 1 were given autologous intra-articular BM-MSCs (N = 6). In Group 2, although BMS was performed there were no supplementations provided. In Group 3, no intervention was administered. The caprines were sacrificed after six months. Repairs were evaluated using macroscopic assessment through the International Cartilage Repair Society (ICRS) scoring, histologic grading by O'Driscoll score, biochemical assays for glycosaminoglycans (GAGs) and gene expressions for aggrecan, collagen II and Sox9. Histological and immunohistochemical analyses demonstrated hyaline-like cartilage regeneration in the transplanted sites particularly in Group 1. In contrast, tissues in Groups 2 and 3 demonstrated mainly fibrocartilage. The highest ICRS and O'Driscoll scorings was also observed in Group 1, while the lowest score was seen in Group 3. Similarly, the total GAG/total protein as well as chondrogenic gene levels were expressed in the same order, that is highest in Group 1 while the lowest in Group three. Significant differences between these 3 groups were observed (P <0.05). This study suggests that supplementing intra-articular injections of BM-MSCs following BMS knee surgery provides superior cartilage repair outcomes.
Arenillas, Leonor; Calvo, Xavier; Luño, Elisa; Senent, Leonor; Alonso, Esther; Ramos, Fernando; Ardanaz, María Teresa; Pedro, Carme; Tormo, Mar; Marco, Víctor; Montoro, Julia; Díez-Campelo, María; Brunet, Salut; Arrizabalaga, Beatriz; Xicoy, Blanca; Andreu, Rafael; Bonanad, Santiago; Jerez, Andrés; Nomdedeu, Benet; Ferrer, Ana; Sanz, Guillermo F; Florensa, Lourdes
2016-09-20
WHO classification of myeloid malignancies is based mainly on the percentage of bone marrow (BM) blasts. This is considered from total nucleated cells (TNCs), unless there is erythroid-hyperplasia (erythroblasts ≥ 50%), calculated from nonerythroid cells (NECs). In these instances, when BM blasts are ≥ 20%, the disorder is classified as erythroleukemia, and when BM blasts are < 20%, as myelodysplastic syndrome (MDS). In the latter, the percentage of blasts is considered from TNCs. We assessed the percentage of BM blasts from TNCs and NECs in 3,692 patients with MDS from the Grupo Español de Síndromes Mielodisplásicos, 465 patients with erythroid hyperplasia (MDS-E) and 3,227 patients without erythroid hyperplasia. We evaluated the relevance of both quantifications on classification and prognostication. By enumerating blasts systematically from NECs, 22% of patients with MDS-E and 12% with MDS from the whole series diagnosed within WHO categories with < 5% BM blasts, were reclassified into higher-risk categories and showed a poorer overall survival than did those who remained in initial categories (P = .006 and P = .001, respectively). Following WHO recommendations, refractory anemia with excess blasts (RAEB)-2 diagnosis is not possible in MDS-E, as patients with 10% to < 20% BM blasts from TNCs fulfill erythroleukemia criteria; however, by considering blasts from NECs, 72 patients were recoded as RAEB-2 and showed an inferior overall survival than did patients with RAEB-1 without erythroid hyperplasia. Recalculating the International Prognostic Scoring System by enumerating blasts from NECs in MDS-E and in the overall MDS population reclassified approximately 9% of lower-risk patients into higher-risk categories, which indicated the survival expected for higher-risk patients. Regardless of the presence of erythroid hyperplasia, calculating the percentage of BM blasts from NECs improves prognostic assessment of MDS. This fact should be considered in future WHO classification reviews. © 2016 by American Society of Clinical Oncology.
2014-01-01
Introduction Studies with mesenchymal stem cells (MSCs) are increasing due to their immunomodulatory, anti-inflammatory and tissue regenerative properties. However, there is still no agreement about the best source of equine MSCs for a bank for allogeneic therapy. The aim of this study was to evaluate the cell culture and immunophenotypic characteristics and differentiation potential of equine MSCs from bone marrow (BM-MSCs), adipose tissue (AT-MSCs) and umbilical cord (UC-MSCs) under identical in vitro conditions, to compare these sources for research or an allogeneic therapy cell bank. Methods The BM-MSCs, AT-MSCs and UC-MSCs were cultured and evaluated in vitro for their osteogenic, adipogenic and chondrogenic differentiation potential. Additionally, MSCs were assessed for CD105, CD44, CD34, CD90 and MHC-II markers by flow cytometry, and MHC-II was also assessed by immunocytochemistry. To interpret the flow cytometry results, statistical analysis was performed using ANOVA. Results The harvesting and culturing procedures of BM-MSCs, AT-MSCs and UC-MSCs were feasible, with an average cell growth until the third passage of 25 days for BM-MSCs, 15 days for AT-MSCs and 26 days for UC-MSCs. MSCs from all sources were able to differentiate into osteogenic (after 10 days for BM-MSCs and AT-MSCs and 15 days for UC-MSCs), adipogenic (after 8 days for BM-MSCs and AT-MSCs and 15 days for UC-MSCs) and chondrogenic (after 21 days for BM-MSCs, AT-MSCs and UC-MSCs) lineages. MSCs showed high expression of CD105, CD44 and CD90 and low or negative expression of CD34 and MHC-II. The MHC-II was not detected by immunocytochemistry techniques in any of the MSCs studied. Conclusions The BM, AT and UC are feasible sources for harvesting equine MSCs, and their immunophenotypic and multipotency characteristics attained minimal criteria for defining MSCs. Due to the low expression of MHC-II by MSCs, all of the sources could be used in clinical trials involving allogeneic therapy in horses. However, the BM-MSCs and AT-MSCs showed fastest ‘‘in vitro’’ differentiation and AT-MSCs showed highest cell growth until third passage. These findings suggest that BM and AT may be preferable for cell banking purposes. PMID:24559797
Chai, Xiao; Li, Deguan; Cao, Xiaoli; Zhang, Yuchen; Mu, Juan; Lu, Wenyi; Xiao, Xia; Li, Chengcheng; Meng, Juanxia; Chen, Jie; Li, Qing; Wang, Jishi; Meng, Aimin; Zhao, Mingfeng
2015-01-01
Iron overload, caused by hereditary hemochromatosis or repeated blood transfusions in some diseases, such as beta thalassemia, bone marrow failure and myelodysplastic syndrome, can significantly induce injured bone marrow (BM) function as well as parenchyma organ dysfunctions. However, the effect of iron overload and its mechanism remain elusive. In this study, we investigated the effects of iron overload on the hematopoietic stem and progenitor cells (HSPCs) from a mouse model. Our results showed that iron overload markedly decreased the ratio and clonogenic function of murine HSPCs by the elevation of reactive oxygen species (ROS). This finding is supported by the results of NAC or DFX treatment, which reduced ROS level by inhibiting NOX4 and p38MAPK and improved the long-term and multi-lineage engrafment of iron overload HSCs after transplantation. Therefore, all of these data demonstrate that iron overload injures the hematopoiesis of BM by enhancing ROS through NOX4 and p38MAPK. This will be helpful for the treatment of iron overload in patients with hematopoietic dysfunction. PMID:25970748
Belyaev, Nikolai N.; Biró, Judit; Langhorne, Jean; Potocnik, Alexandre J.
2013-01-01
Resolution of a variety of acute bacterial and parasitic infections critically relies on the stimulation of myelopoiesis leading in cases to extramedullary hematopoiesis. Here, we report the isolation of the earliest myeloid-restricted progenitors in acute infection with the rodent malaria parasite, Plasmodium chabaudi. The rapid disappearance of these infection-induced myeloid progenitors from the bone marrow (BM) equated with contraction of the functional myeloid potential in that organ. The loss of BM myelopoiesis was not affected by the complete genetic inactivation of toll-like receptor signaling. De-activation of IFN-γ signaling completely abrogated the contraction of BM myeloid progenitors. Radiation chimeras of Ifngr1-null and control BM revealed that IFN-γ signaling in an irradiation-resistant stromal compartment was crucial for the loss of early myeloid progenitors. Systemic IFN-γ triggered the secretion of C-C motif ligand chemokines CCL2 and CCL7 leading to the egress of early, myeloid-committed progenitors from the bone marrow mediated by their common receptor CCR2. The mobilization of myeloid progenitors initiated extramedullary myelopoiesis in the spleen in a CCR2-dependent manner resulting in augmented myelopoiesis during acute malaria. Consistent with the lack of splenic myelopoiesis in the absence of CCR2 we observed a significant persistence of parasitemia in malaria infected CCR2-deficient hosts. Our findings reveal how the activated immune system mobilizes early myeloid progenitors out of the BM thereby transiently establishing myelopoiesis in the spleen in order to contain and resolve the infection locally. PMID:23762028
Theunissen, Prisca M J; Sedek, Lukasz; De Haas, Valerie; Szczepanski, Tomasz; Van Der Sluijs, Alita; Mejstrikova, Ester; Nováková, Michaela; Kalina, Tomas; Lecrevisse, Quentin; Orfao, Alberto; Lankester, Arjan C; van Dongen, Jacques J M; Van Der Velden, Vincent H J
2017-07-01
Flow cytometric detection of minimal residual disease (MRD) in children with B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) requires immunophenotypic discrimination between residual leukaemic cells and B-cell precursors (BCPs) which regenerate during therapy intervals. In this study, EuroFlow-based 8-colour flow cytometry and innovative analysis tools were used to first characterize the immunophenotypic maturation of normal BCPs in bone marrow (BM) from healthy children, resulting in a continuous multiparametric pathway including transition stages. This pathway was subsequently used as a reference to characterize the immunophenotypic maturation of regenerating BCPs in BM from children treated for BCP-ALL. We identified pre-B-I cells that expressed low or dim CD34 levels, in contrast to the classical CD34 high pre-B-I cell immunophenotype. These CD34 -dim pre-B-I cells were relatively abundant in regenerating BM (11-85% within pre-B-I subset), while hardly present in healthy control BM (9-13% within pre-B-I subset; P = 0·0037). Furthermore, we showed that some of the BCP-ALL diagnosis immunophenotypes (23%) overlapped with CD34 -dim pre-B-I cells. Our results indicate that newly identified CD34 -dim pre-B-I cells can be mistaken for residual BCP-ALL cells, potentially resulting in false-positive MRD outcomes. Therefore, regenerating BM, in which CD34 -dim pre-B-I cells are relatively abundant, should be used as reference frame in flow cytometric MRD measurements. © 2017 John Wiley & Sons Ltd.
Moghadasali, Reza; Azarnia, Mahnaz; Hajinasrollah, Mostafa; Arghani, Hassan; Nassiri, Seyed Mahdi; Molazem, Mohammad; Vosough, Ahmad; Mohitmafi, Soroush; Najarasl, Mostafa; Ajdari, Zahra; Yazdi, Reza Salman; Bagheri, Mohsen; Ghanaati, Hossein; Rafiei, Behrooz; Gheisari, Yousof; Baharvand, Hossein; Aghdami, Nasser
2014-06-01
Clinically, acute kidney injury (AKI) is a potentially devastating condition for which no specific therapy improves efficacy of the repair process. Bone marrow mesenchymal stromal cells (BM-MSCs) are proven to be beneficial for the renal repair process after AKI in different experimental rodent models, but their efficacy in large animals and humans remains unknown. This study aims to assess the effect of autologous rhesus Macaque mulatta monkey BM-MSC transplantation in cisplatin-induced AKI. We chose a model of AKI induced by intravenous administration of 5 mg/kg cisplatin. BM-MSCs were transplanted through intra-arterial injection. The animals were followed for survival, biochemistry analysis and pathology. Transplantation of 5 × 10(6) cells/kg ameliorated renal function during the first week, as shown by significantly lower serum creatinine and urea values and higher urine creatinine and urea clearance without hyponatremia, hyperkalemia, proteinuria and polyuria up to 84 d compared with the vehicle and control groups. The superparamagnetic iron oxide nanoparticle-labeled cells were found in both the glomeruli and tubules. BM-MSCs markedly accelerated Foxp3+ T-regulatory cells in response to cisplatin-induced damage, as revealed by higher numbers of Foxp3+ cells within the tubuli of these monkeys compared with cisplatin-treated monkeys in the control and vehicle groups. These data demonstrate that BM-MSCs in this unique large-animal model of cisplatin-induced AKI exhibited recovery and protective properties. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Kellner, Joshua; Wierda, William; Shpall, Elizabeth; Keating, Michael; McNiece, Ian
2016-01-01
Leukemic cell lines have become important tools for studies of disease providing a monoclonal cell population that can be extensively expanded in vitro while preserving leukemic cellular characteristics. However, studies of chronic lymphocytic leukemia (CLL) have been impeded in part by the lack of continuous human cell lines. CLL cells have a high spontaneous apoptosis rate in vitro and exhibit minimal proliferation in xenograft models. Therefore, there is a need for development of primary CLL cell lines and we describe the isolation of such a line from the bone marrow of a CLL patient (17p deletion and TP53 mutation) which has been in long term culture for more than 12 months with continuous proliferation. The CLL cell line (termed MDA-BM5) which was generated in vitro with continuous co-culture on autologous stromal cells is CD19+CD5+ and shows an identical pattern of somatic hypermutation as determined in the patient's bone marrow (BM), confirming the origin of the cells from the original CLL clone. MDA-BM5 cells were readily transplantable in NOD/SCID gamma null mice (NSG) with disease developing in the BM, liver and spleen. BM cells from quaternary serial transplantation in NSG mice demonstrated the presence of CD19+CD5+ cells with Ig restricted to lambda which is consistent with the original patient cells. These studies describe a new CLL cell line from a patient with del(17p) that provides a unique model for in vitro and in vivo studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dubon, Maria Jose; Yu, Jinyeong; Choi, Sanghyuk; Park, Ki-Sook
2018-01-01
Transforming growth factor-beta (TGF-β) induces the migration and mobilization of bone marrow-derived mesenchymal stem cells (BM-MSCs) to maintain bone homeostasis during bone remodeling and facilitate the repair of peripheral tissues. Although many studies have reported the mechanisms through which TGF-β mediates the migration of various types of cells, including cancer cells, the intrinsic cellular mechanisms underlying cellular migration, and mobilization of BM-MSCs mediated by TGF-β are unclear. In this study, we showed that TGF-β activated noncanonical signaling molecules, such as Akt, extracellular signal-regulated kinase 1/2 (ERK1/2), focal adhesion kinase (FAK), and p38, via TGF-β type I receptor in human BM-MSCs and murine BM-MSC-like ST2 cells. Inhibition of Rac1 by NSC23766 and Src by PP2 resulted in impaired TGF-β-mediated migration. These results suggested that the Smad-independent, noncanonical signals activated by TGF-β were necessary for migration. We also showed that N-cadherin-dependent intercellular interactions were required for TGF-β-mediated migration using functional inhibition of N-cadherin with EDTA treatment and a neutralizing antibody (GC-4 antibody) or siRNA-mediated knockdown of N-cadherin. However, N-cadherin knockdown did not affect the global activation of noncanonical signals in response to TGF-β. Therefore, these results suggested that the migration of BM-MSCs in response to TGF-β was mediated through N-cadherin and noncanonical TGF-β signals. © 2017 Wiley Periodicals, Inc.
Varela, Ioanna; Karagiannidou, Angeliki; Oikonomakis, Vasilis; Tzetis, Maria; Tzanoudaki, Marianna; Siapati, Elena-Konstantina; Vassilopoulos, George; Graphakos, Stelios; Kanavakis, Emmanuel; Goussetis, Evgenios
2014-12-01
Synthetic modified mRNA molecules encoding pluripotency transcription factors have been used successfully in reprogramming human fibroblasts to induced pluripotent stem cells (iPSCs). We have applied this method on bone marrow-derived mesenchymal stromal cells (BM-MSCs) obtained from a patient with β-thalassemia (β-thal) with the aim to generate trangene-free β-thal-iPSCs. Transfection of 10(4) BM-MSCs by lipofection with mRNA encoding the reprogramming factors Oct4, Klf4, Sox2, cMyc, and Lin28 resulted in formation of five iPSC colonies, from which three were picked up and expanded in β-thal-iPSC lines. After 10 serial passages in vitro, β-thal-iPSCs maintain genetic stability as shown by array comparative genomic hybridization (aCGH) and are capable of forming embryoid bodies in vitro and teratomas in vivo. Their gene expression profile compared to human embryonic stem cells (ESCs) and BM-MSCs seems to be similar to that of ESCs, whereas it differs from the profile of the parental BM-MSCs. Differentiation cultures toward a hematopoietic lineage showed the generation of CD34(+) progenitors up to 10%, but with a decreased hematopoietic colony-forming capability. In conclusion, we report herein the generation of transgene-free β-thal-iPSCs that could be widely used for disease modeling and gene therapy applications. Moreover, it was demonstrated that the mRNA-based reprogramming method, used mainly in fibroblasts, is also suitable for reprogramming of human BM-MSCs.
Wild Type Bone Marrow Transplant Partially Reverses Neuroinflammation in Progranulin-Deficient Mice
Yang, Yue; Aloi, Macarena S.; Cudaback, Eiron; Josephsen, Samuel R.; Rice, Samantha J.; Jorstad, Nikolas L.; Keene, C. Dirk; Montine, Thomas J.
2014-01-01
Frontotemporal dementia (FTD) is a neurodegenerative disease with devastating changes in behavioral performance and social function. Mutations in the progranulin gene (GRN) are one of the most common causes of inherited FTD due to reduced progranulin expression or activity, including in brain where it is expressed primarily by neurons and microglia. Thus, efforts aimed at enhancing progranulin levels might be a promising therapeutic strategy. Bone marrow-derived cells are able to engraft in the brain and adopt a microglial phenotype under myeloablative irradiation conditioning. This ability makes bone marrow (BM)-derived cells a potential cellular vehicle for transferring therapeutic molecules to the central nervous system. Here, we utilized BM cells from Grn+/+ (wild type or wt) mice labeled with green fluorescence protein for delivery of progranulin to progranulin deficient (Grn−/−) mice. Our results showed that wt bone marrow transplantation (BMT) partially reconstituted progranulin in the periphery and in cerebral cortex of Grn−/− mice. We demonstrated a pro-inflammatory effect in vivo and in ex vivo preparations of cerebral cortex of Grn−/− mice that was partially to fully reversed five months after BMT. Our findings suggest that BMT can be administered as a stem cell-based approach to prevent or to treat neurodegenerative diseases. PMID:25199051
Hematopoietic progenitor migration to the adult thymus
Zlotoff, Daniel A.; Bhandoola, Avinash
2010-01-01
While most hematopoietic lineages develop in the bone marrow (BM), T cells uniquely complete their development in the specialized environment of the thymus. Hematopoietic stem cells with long-term self-renewal capacity are not present in the thymus. As a result, continuous T cell development requires that BM-derived progenitors be imported into the thymus throughout adult life. The process of thymic homing begins with the mobilization of progenitors out of the bone marrow, continues with their circulation in the bloodstream, and concludes with their settling in the thymus. This review will discuss each of these steps as they occur in the unirradiated and post-irradiation scenarios, focusing on the molecular mechanisms of regulation. Improved knowledge about these early steps in T cell generation may accelerate the development of new therapeutic options in patients with impaired T cell number or function. PMID:21251013
Yi, Zhi-gang; Cui, Lei; Gao, Chao; Jin, Mei; Zhang, Rui-dong; Li, Zhi-gang; Wu, Min-yuan
2011-03-01
To investigate the clinical value of clearance of leukemic cell during induction of remission therapy in children with precursor B cell acute lymphoblastic leukemia (BCP-ALL), and to assess the applicative value of different indexes. From April 2005 to April 2008, 206 children with de novo BCP-ALL were admitted. We firstly analyzed the effect of clearance of leukemic cells during induction of remission therapy on relapse-free survival (RFS). Four indexes were used to assess the clearance of leukemic cells including prednisone response on day 8 (d8-PR), percentage of lymphoblast in bone marrow on day 22 (d22-BM) and day 33 (d33-BM), and bone marrow (BM) minimal residual disease (MRD) detection on day 33 (d33-MRD). Then the sensitivity, specificity, positive predictive value and negative predictive value of the four indexes to assess their ability to predict relapse were analyzed. Finally, the consistency between two of the four indexes to explore the relationships among them were analyzed. There were significant differences between RFS of the sub-groups divided according to d8-PR, d22-BM, d33-BM, d33-MRD (P < 0.01); Cox proportional hazard model analysis showed that d33-MRD ≥ 10(-3) and positive BCR/ABL fusion gene were the independent prognostic factors. Sensitivity of d33-MRD was higher than that of morphology detection (d22-BM, d33-BM and d8-PR) in prediction of relapse, and positive predictive value of morphology detection was higher than that of d33-MRD. Sensitivity could be greatly increased by combination with clinical and biological characteristics. Consistency could not be found between d8-PR and d22-BM, d33-BM, d33-MRD, as well as between d22-BM, d33-BM, and d33-MRD. However, all cases of d22-BM, d33-BM M2/M3 were d33-MRD ≥ 10(-3), while the same phenomenon could not be found for patients with poor d8-PR. Clearance of leukemic cell during induction of remission therapy in children with BCP-ALL had important clinical value. Sensitivity of MRD detection after induction of remission therapy was higher than that of morphological analysis to predict relapse. Morphological analysis could only identify a few patients with very high risk of relapse and the sensitivity could be increased by combination with clinical biological characteristics. The simple prednisone response may contain some prognostic information that could not be covered by analysis of BM cells. It may be the best way to assess the clearance of leukemic cells to combine the prednisone response with MRD detection after induction of remission therapy.
Simson, Jacob A; Strehin, Iossif A; Allen, Brian W; Elisseeff, Jennifer H
2013-08-01
The weak intrinsic meniscus healing response and technical challenges associated with meniscus repair contribute to a high rate of repair failures and meniscectomies. Given this limited healing response, the development of biologically active adjuncts to meniscal repair may hold the key to improving meniscal repair success rates. This study demonstrates the development of a bone marrow (BM) adhesive that binds, stabilizes, and stimulates fusion at the interface of meniscus tissues. Hydrogels containing several chondroitin sulfate (CS) adhesive levels (30, 50, and 70 mg/mL) and BM levels (30%, 50%, and 70%) were formed to investigate the effects of these components on hydrogel mechanics, bovine meniscal fibrochondrocyte viability, proliferation, matrix production, and migration ability in vitro. The BM content positively and significantly affected fibrochondrocyte viability, proliferation, and migration, while the CS content positively and significantly affected adhesive strength (ranged from 60±17 kPa to 335±88 kPa) and matrix production. Selected material formulations were translated to a subcutaneous model of meniscal fusion using adhered bovine meniscus explants implanted in athymic rats and evaluated over a 3-month time course. Fusion of adhered meniscus occurred in only the material containing the highest BM content. The technology can serve to mechanically stabilize the tissue repair interface and stimulate tissue regeneration across the injury site.
Fiz, Francesco; Marini, Cecilia; Campi, Cristina; Massone, Anna Maria; Podestà, Marina; Bottoni, Gianluca; Piva, Roberta; Bongioanni, Francesca; Bacigalupo, Andrea; Piana, Michele; Sambuceti, Gianmario; Frassoni, Francesco
2015-06-25
Mechanisms of hematopoietic reconstitution after bone marrow (BM) transplantation remain largely unknown. We applied a computational quantification software application to hybrid 18F-fluorodeoxyglucose positron emission tomography (PET)/computed tomography (CT) images to assess activity and distribution of the hematopoietic system throughout the whole skeleton of recently transplanted patients. Thirty-four patients underwent PET/CT 30 days after either adult stem cell transplantation (allogeneic cell transplantation [ACT]; n = 18) or cord blood transplantation (CBT; n = 16). Our software automatically recognized compact bone volume and trabecular bone volume (IBV) in CT slices. Within IBV, coregistered PET data were extracted to identify the active BM (ABM) from the inactive tissue. Patients were compared with 34 matched controls chosen among a published normalcy database. Whole body ABM increased in ACT and CBT when compared with controls (12.4 ± 3 and 12.8 ± 6.8 vs 8.1 ± 2.6 mL/kg of ideal body weight [IBW], P < .001). In long bones, ABM increased three- and sixfold in CBT and ACT, respectively, compared with controls (0.9 ± 0.9 and 1.7 ± 2.5 vs 0.3 ± 0.3 mL/kg IBW, P < .01). These data document an unexpected distribution of transplanted BM into previously abandoned BM sites. © 2015 by The American Society of Hematology.
Kadkhoda, Z; Safarpour, A; Azmoodeh, F; Adibi, S; Khoshzaban, A; Bahrami, N
2016-01-01
Periodontitis is an important oral disease. Stem cell therapy has found its way in treatment of many diseases. To evaluate the regenerative potential of periodontal ligament-derived stem cells (PDLSCs) and osteoblast differentiated from PDLSC in comparison with bone marrow-derived mesenchymal stem cells (BM-MSCs) and pre-osteoblasts in calvarial defects. After proving the existence of surface markers by flow cytometry, BM-MSCs were differentiated into osteoblasts. 5 defects were made on rabbit calvaria. 3 of them were first covered with collagen membrane and then with BM-MSCs, PDLSCs, and pre-osteoblasts. The 4(th) defect was filled with collagen membrane and the 5(th) one was served as control. After 4 weeks, histological (quantitative) and histomorphological (qualitative) surveys were performed. Both cell lineages were positive for CD-90 cell marker, which was specifically related to stem cells. Alizarin red staining was done for showing mineral material. RT-PCR set up for the expression of Cbfa1 gene, BMP4 gene, and PGLAP gene, confirmed osteoblast differentiation. The findings indicated that although PDLSCs and pre-osteoblasts could be used for bone regeneration, the rate of regeneration in BM-MSCs-treated cavities was more significant (p<0.0001). The obtained results are probably attributable to the effective micro-environmental signals caused by different bone types and the rate of cell maturation.
Lapidos, Karen A; Chen, Yiyin E; Earley, Judy U; Heydemann, Ahlke; Huber, Jill M; Chien, Marcia; Ma, Averil; McNally, Elizabeth M
2004-12-01
Pluripotent bone marrow-derived side population (BM-SP) stem cells have been shown to repopulate the hematopoietic system and to contribute to skeletal and cardiac muscle regeneration after transplantation. We tested BM-SP cells for their ability to regenerate heart and skeletal muscle using a model of cardiomyopathy and muscular dystrophy that lacks delta-sarcoglycan. The absence of delta-sarcoglycan produces microinfarcts in heart and skeletal muscle that should recruit regenerative stem cells. Additionally, sarcoglycan expression after transplantation should mark successful stem cell maturation into cardiac and skeletal muscle lineages. BM-SP cells from normal male mice were transplanted into female delta-sarcoglycan-null mice. We detected engraftment of donor-derived stem cells into skeletal muscle, with the majority of donor-derived cells incorporated within myofibers. In the heart, donor-derived nuclei were detected inside cardiomyocytes. Skeletal muscle myofibers containing donor-derived nuclei generally failed to express sarcoglycan, with only 2 sarcoglycan-positive fibers detected in the quadriceps muscle from all 14 mice analyzed. Moreover, all cardiomyocytes with donor-derived nuclei were sarcoglycan-negative. The absence of sarcoglycan expression in cardiomyocytes and skeletal myofibers after transplantation indicates impaired differentiation and/or maturation of bone marrow-derived stem cells. The inability of BM-SP cells to express this protein severely limits their utility for cardiac and skeletal muscle regeneration.
Mehanna, Radwa A.; Nabil, Iman; Attia, Noha; Bary, Amany A.; Razek, Khalid A.; Ahmed, Tamer A. E.; Elsayed, Fatma
2015-01-01
Bone marrow-derived mesenchymal stem cells (BM-MSCs) represent a modern approach for management of chronic skin injuries. In this work, we describe BM-MSCs application versus their conditioned media (CM) when delivered topically admixed with fibrin glue to enhance the healing of chronic excisional wounds in rats. Fifty-two adult male rats were classified into four groups after induction of large-sized full-thickness skin wound: control group (CG), fibrin only group (FG), fibrin + MSCs group (FG + SCs), and fibrin + CM group (FG + CM). Healing wounds were evaluated functionally and microscopically. Eight days after injury, number of CD68+ macrophages infiltrating granulation tissue was considerably higher in the latter two groups. Although—later—none of the groups depicted a substantially different healing rate, the quality of regenerated skin was significantly boosted by the application of either BM-MSCs or their CM both (1) structurally as demonstrated by the obviously increased mean area percent of collagen fibers in Masson's trichrome-stained skin biopsies and (2) functionally as supported by the interestingly improved epidermal barrier as well as dermal tensile strength. Thus, we conclude that topically applied BM-MSCs and their CM—via fibrin vehicle—could effectively improve the quality of healed skin in chronic excisional wounds in rats, albeit without true acceleration of wound closure. PMID:26236740
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okano, Junko, E-mail: jokano@belle.shiga-med.ac.jp; Kojima, Hideto; Katagi, Miwako
Bone marrow-derived cells (BMDCs) can migrate into the various organs in the mice irradiated by ionizing radiation (IR). However, it may not be the case in the skin. While IR is used for bone marrow (BM) transplantation, studying with the epidermal sheets demonstrated that the BMDC recruitment is extraordinarily rare in epidermis in the mouse. Herein, using the chimera mice with BM from green fluorescent protein (GFP) transgenic mice, we simply examined if BMDCs migrate into any layers in the total skin, as opposed to the epidermal sheets, in response to IR. Interestingly, we identified the presence of GFP-positive (GFP{supmore » +}) cells in the epidermis-dermis junction in the total skin sections although the epidermal cell sheets failed to have any GFP cells. To examine a possibility that the cells in the junction could be mechanically dissociated during separating epidermal sheets, we then salvaged such dissociated cells and examined its characteristics. Surprisingly, some GFP{sup +} cells were found in the salvaged cells, indicating that these cells could be derived from BM. In addition, such BMDCs were also associated with inflammation in the junction. In conclusion, BMDCs can migrate to and reside in the epidermis-dermis junction after IR. - Highlights: • Bone marrow-derived cells (BMDCs) migrate in the epidermis due to ionizing radiation (IR). • BMDCs dissociate from the epidermis-dermis junction in preparing epidermal sheets. • The doses of IR determine the location and the number of migrating BMDCs in the skin.« less
Pasupuleti, Latha V; Cook, Kristin M; Sifri, Ziad C; Alzate, Walter D; Livingston, David H; Mohr, Alicia M
2014-04-01
Severe injury results in increased mobilization of hematopoietic progenitor cells (HPC) from the bone marrow (BM) to sites of injury, which may contribute to persistent BM dysfunction after trauma. Norepinephrine is a known inducer of HPC mobilization, and nonselective β-blockade with propranolol has been shown to decrease mobilization after trauma and hemorrhagic shock (HS). This study will determine the role of selective β-adrenergic receptor blockade in HPC mobilization in a combined model of lung contusion (LC) and HS. Male Sprague-Dawley rats were subjected to LC, followed by 45 minutes of HS. Animals were then randomized to receive atenolol (LCHS + β1B), butoxamine (LCHS + β2B), or SR59230A (LCHS + β3B) immediately after resuscitation and daily for 6 days. Control groups were composed of naive animals. BM cellularity, %HPCs in peripheral blood, and plasma granulocyte-colony stimulating factor levels were assessed at 3 hours and 7 days. Systemic plasma-mediated effects were evaluated in vitro by assessment of BM HPC growth. Injured lung tissue was graded histologically by a blinded reader. The use of β2B or β3B following LCHS restored BM cellularity and significantly decreased HPC mobilization. In contrast, β1B had no effect on HPC mobilization. Only β3B significantly reduced plasma G-CSF levels. When evaluating the plasma systemic effects, both β2B and β3B significantly improved BM HPC growth as compared with LCHS alone. The use of β2 and β3 blockade did not affect lung injury scores. Both β2 and β3 blockade can prevent excess HPC mobilization and BM dysfunction when given after trauma and HS, and the effects seem to be mediated systemically, without adverse effects on subsequent healing. Only treatment with β3 blockade reduced plasma G-CSF levels, suggesting different mechanisms for adrenergic-induced G-CSF release and mobilization of HPCs. This study adds to the evidence that therapeutic strategies that reduce the exaggerated sympathetic stimulation after severe injury are beneficial and reduce BM dysfunction.
2013-01-01
Introduction Multiple sclerosis (MS) is the most common inflammatory demyelinating disorder of the central nervous system (CNS). Minocycline ameliorates the clinical severity of MS and exhibits antiinflammatory, neuroprotective activities, and good tolerance for long-term use, whereas it is toxic to the CNS. Recently, the immunomodulation and neuroprotection capabilities of human bone marrow mesenchymal stem cells (hBM-MSCs) were shown in experimental autoimmune encephalomyelitis (EAE). In this study, we evaluated whether the combination of hBM-MSCs and a low-dose minocycline could produce beneficial effects in EAE mice. Methods The sensitivity of hBM-MSCs to minocycline was determined by an established cell-viability assay. Minocycline-treated hBM-MSCs were also characterized with flow cytometry by using MSC surface markers and analyzed for their multiple differentiation capacities. EAE was induced in C57BL/6 mice by using immunization with MOG35-55. Immunopathology assays were used to detect the inflammatory cells, demyelination, and neuroprotection. Interferon gamma (IFN-γ)/tumor necrosis factor alpha (TNF-α) and interleukin-4 (IL-4)/interleukin-10 (IL-10), the hallmark cytokines that direct Th1 and Th2 development, were detected with enzyme-linked immunosorbent assay (ELISA). terminal dUTP nick-end labeling (TUNEL) staining was performed to elucidate the cell apoptosis in the spinal cords of EAE mice. Results Minocycline did not affect the viability, surface phenotypes, or differentiation capacity of hBM-MSCs, while minocycline affected the viability of astrocytes at a high dose. In vivo efficacy experiments showed that combined treatment, compared to the use of minocycline or hBM-MSCs alone, resulted in a significant reduction in clinical scores, along with attenuation of inflammation, demyelination, and neurodegeneration. Moreover, the combined treatment with hBM-MSCs and minocycline enhanced the immunomodulatory effects, which suppressed proinflammatory cytokines (IFN-γ, TNF-α) and conversely increased anti-inflammatory cytokines (IL-4, IL-10). In addition, TUNEL staining also demonstrated a significant decrease of the number of apoptotic cells in the combined treatment compared with either treatment alone. Conclusions The combination of hBM-MSCs and minocycline provides a novel experimental protocol to enhance the therapeutic effects in MS. PMID:23826999
Morgado, José M; Perbellini, Omar; Johnson, Ryan C; Teodósio, Cristina; Matito, Almudena; Álvarez-Twose, Iván; Bonadonna, Patrizia; Zamò, Alberto; Jara-Acevedo, Maria; Mayado, Andrea; Garcia-Montero, Andrés; Mollejo, Manuela; George, Tracy I; Zanotti, Roberta; Orfao, Alberto; Escribano, Luis; Sánchez-Muñoz, Laura
2013-12-01
CD30 expression by bone marrow (BM) mast cells (MC) has been reported recently in systemic mastocytosis (SM) patients. The aim of this study was to investigate the potential diagnostic and prognostic value of CD30 expression in SM as assessed by multiparameter flow cytometry. A total of 163 consecutive BM samples corresponding to 142 SM patients and 21 non-mastocytosis cases were studied. CD30 was positive in most SM patients (80%), but in only one non-mastocytosis case (4.8%). When combined with CD25, CD30 contributed to an improved accuracy over that of CD25 alone (98% versus 93%) mainly because most (eight of nine) of the well-differentiated SM (WDSM), who lacked CD25, were CD30(+). Similar levels of expression of CD30 were observed among all different subgroups of SM except mast cell leukaemia; among indolent SM (ISM) patients, no significant association was observed between the levels of CD30 expression and other clinical and biological features of the disease. The increased expression of CD30 associated with absence of CD25 contributes to the diagnosis of WDSM and its distinction from other subtypes of SM. By contrast, CD30 expression did not contribute either to prognostic stratification of ISM or to the differential diagnosis between ISM and aggressive SM cases. © 2013 John Wiley & Sons Ltd.
Young endothelial cells revive aging blood.
Chang, Vivian Y; Termini, Christina M; Chute, John P
2017-11-01
The hematopoietic system declines with age, resulting in decreased hematopoietic stem cell (HSC) self-renewal capacity, myeloid skewing, and immune cell depletion. Aging of the hematopoietic system is associated with an increased incidence of myeloid malignancies and a decline in adaptive immunity. Therefore, strategies to rejuvenate the hematopoietic system have important clinical implications. In this issue of the JCI, Poulos and colleagues demonstrate that infusions of bone marrow (BM) endothelial cells (ECs) from young mice promoted HSC self-renewal and restored immune cell content in aged mice. Additionally, delivery of young BM ECs along with HSCs following total body irradiation improved HSC engraftment and enhanced survival. These results suggest an important role for BM endothelial cells (ECs) in regulating hematopoietic aging and support further research to identify the rejuvenating factors elaborated by BM ECs that restore HSC function and the immune repertoire in aged mice.
2007-04-01
media from BM cells provides an enhanced stimulation of LNCaP cell proliferation. Recent work (2) has indicated that leptin and other Figure 1...extracts: PPARg, C/EBPa, perilipin, FABP4, Glut4, and leptin . The response of these BM primary cultures was compared to differentiation of BMS2 cells... leptin -deficient) mice. In carrying out our prescribed experiments, another research program in the laboratory (gene effects on obesity in mice fed
Dysmegakaryocytopoiesis and maintaining platelet count in patients with plasma cell neoplasm.
Mair, Yasmin; Zheng, Yan; Cai, Donghong
2013-05-01
Dysmegakaryocytopoiesis in patients with the plasma cell neoplasm (PCN) is rarely discussed in the literature. The puzzling phenomenon, which PCN patients maintaining normal platelet count even when the marrow is mostly replaced by plasma cells, is hardly explored. This study was aimed to determine the frequency of dysmegakaryocytopoiesis in PCN and the relationships between bone marrow (BM) plasma cell percentage, plasma cell immunomarkers, the severity of dysmegakaryocytopoiesis, and peripheral blood platelet count in PCN. We randomly selected 16 cases of PCN, among which 4 were with monoclonal gammopathy of undetermined significance and 12 were with plasma cell myeloma. OUR STUDY SHOWED THAT: (1) Dysmegakaryocytopoiesis was present in all the selected cases of PCN and its severity was not correlated with the percentage of the plasma cells in BM; (2) almost all patients maintained normal platelet count even when BM was mostly replaced by plasma cells; (3) immunomarkers of the neoplastic plasma cells were not associated with dysmegakaryocytopoiesis or maintaining of platelet count. The possible mechanisms behind dysmegakaryocytopoiesis and maintaining of platelet count were also discussed. Despite the universal presence of dysmegakaryocytopoiesis in PCN, the platelet count is maintained at normal range.
Ko, Hyun-Ja; Kinkel, Sarah A; Hubert, François-Xavier; Nasa, Zeyad; Chan, James; Siatskas, Christopher; Hirubalan, Premila; Toh, Ban-Hock; Scott, Hamish S; Alderuccio, Frank
2010-12-01
The autoimmune regulator (AIRE) promotes "promiscuous" expression of tissue-restricted antigens (TRA) in thymic medullary epithelial cells to facilitate thymic deletion of autoreactive T-cells. Here, we show that AIRE-deficient mice showed an earlier development of myelin oligonucleotide glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE). To determine the outcome of ectopic Aire expression, we used a retroviral transduction system to over-express Aire in vitro, in cell lines and in bone marrow (BM). In the cell lines that included those of thymic medullary and dendritic cell origin, ectopically expressed Aire variably promoted expression of TRA including Mog and Ins2 (proII) autoantigens associated, respectively, with the autoimmune diseases multiple sclerosis and type 1 diabetes. BM chimeras generated from BM transduced with a retrovirus encoding Aire displayed elevated levels of Mog and Ins2 expression in thymus and spleen. Following induction of EAE with MOG(35-55), transplanted mice displayed significant delay in the onset of EAE compared with control mice. To our knowledge, this is the first example showing that in vivo ectopic expression of AIRE can modulate TRA expression and alter autoimmune disease development. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Transplantation of bone marrow derived cells promotes pancreatic islet repair in diabetic mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao Xiaodong; Song Lujun; Shen Kuntang
2008-06-20
The transplantation of bone marrow (BM) derived cells to initiate pancreatic regeneration is an attractive but as-yet unrealized strategy. Presently, BM derived cells from green fluorescent protein transgenic mice were transplanted into diabetic mice. Repair of diabetic islets was evidenced by reduction of hyperglycemia, increase in number of islets, and altered pancreatic histology. Cells in the pancreata of recipient mice co-expressed BrdU and insulin. Double staining revealed {beta} cells were in the process of proliferation. BrdU{sup +} insulin{sup -} PDX-1{sup +} cells, Ngn3{sup +} cells and insulin{sup +} glucagon{sup +} cells, which showed stem cells, were also found during {beta}-cellmore » regeneration. The majority of transplanted cells were mobilized to the islet and ductal regions. In recipient pancreas, transplanted cells simultaneously expressed CD34 but did not express insulin, PDX-1, Ngn3, Nkx2.2, Nkx6.1, Pax4, Pax6, and CD45. It is concluded that BM derived cells especially CD34{sup +} cells can promote repair of pancreatic islets. Moreover, both proliferation of {beta} cells and differentiation of pancreatic stem cells contribute to the regeneration of {beta} cells.« less
Thompson, Heather L; van Rooijen, Nico; McLelland, Bryce T; Manilay, Jennifer O
2016-01-01
Understanding how embryonic stem cells and their derivatives interact with the adult host immune system is critical to developing their therapeutic potential. Murine embryonic stem cell-derived hematopoietic progenitors (ESHPs) were generated via coculture with the bone marrow stromal cell line, OP9, and then transplanted into NOD.SCID.Common Gamma Chain (NSG) knockout mice, which lack B, T, and natural killer cells. Compared to control mice transplanted with adult lineage-negative bone marrow (Lin - BM) progenitors, ESHP-transplanted mice attained a low but significant level of donor hematopoietic chimerism. Based on our previous studies, we hypothesized that macrophages might contribute to the low engraftment of ESHPs in vivo . Enlarged spleens were observed in ESHP-transplanted mice and found to contain higher numbers of host F4/80 + macrophages compared to BM-transplanted controls. In vivo depletion of host macrophages using clodronate-loaded liposomes improved the ESHP-derived hematopoietic chimerism in the spleen but not in the BM. F4/80 + macrophages demonstrated a striking propensity to phagocytose ESHP targets in vitro . Taken together, these results suggest that macrophages are a barrier to both syngeneic and allogeneic ESHP engraftment in vivo .
Wu, Liangliang; Mo, Wenjian; Zhang, Yuping; Zhou, Ming; Li, Yumiao; Zhou, Ruiqing; Xu, Shiling; Pan, Shiyi; Deng, Hui; Mao, Ping; Wang, Shunqing
2017-07-01
Bone marrow (BM) niches, including the osteoblastic, vascular, and perivascular niches, are numerically impaired in patients with aplastic anemia (AA). It remains unclear whether these niches are numerically restored in AA patients after allogenic hematopoietic stem cell transplantation (allo-HSCT). To investigate changes in BM niches, we monitored 52 patients with AA who had undergone allo-HSCT and performed immunohistochemical studies of BM niches using antibodies against CD34, CD146, and osteopontin. After allo-HSCT, patients with AA exhibited a remarkable increase in the number of cellular elements in the BM niches, including the vascular and perivascular cells. However, no significant differences in endosteal cells were detected. We explored the cause of this restoration by analyzing the origin of BM mesenchymal stem cells (BM-MSCs) and the expression of cytokines in BM plasma. STR-PCR revealed that the BM-MSCs were derived from the host, not the donor. In addition, significantly elevated levels of vascular endothelial growth factor (VEGF) were found after allo-HSCT. Our data indicates that vascular and perivascular niches are numerically restored, but the endosteal niche remains numerically impaired in patients with AA after allo-HSCT, and that levels of VEGF, but not donor-derived BM-MSCs, may correlate with the restoration of BM niches.
Development of A Novel Murine Model of Combined Radiation and Peripheral Tissue Trauma Injuries
Antonic, Vlado; Jackson, Isabel L.; Ganga, Gurung; Shea-Donohue, Terez; Vujaskovic, Zeljko
2017-01-01
Detonation of a 10-kiloton nuclear bomb in an urban setting would result in >1 million casualties, the majority of which would present with combined injuries. Combined injuries, such as peripheral tissue trauma and radiation exposure, trigger inflammatory events that lead to multiple organ dysfunction (MOD) and death, with gastrointestinal (GI) and pulmonary involvement playing crucial roles. The objective of this study was to develop an animal model of combined injuries, peripheral tissue trauma (TBX animal model) combined with total body irradiation with 5% bone marrow shielding (TBI/BM5) to investigate if peripheral tissue trauma contributes to reduced survival. Male C57BL/6J mice were exposed to TBX10%, irradiation (TBI/BM5), or combined injuries (TBX10% + TBI/BM5). Experiments were conducted to evaluate mortality at day 7 after TBI/BM5. Serial euthanasia was performed at day 1, 3 and 6 or 7 after TBI/BM5 to evaluate the time course of pathophysiologic processes in combined injuries. Functional tests were performed to assess pulmonary function and GI motility. Postmortem samples of lungs and jejunum were collected to assess tissue damage. Results indicated higher lethality and shorter survival in the TBX10% +T BI/BM5 group than in the TBX10% or TBI/BM5 groups (day 1 vs. day 7 and 6, respectively). TBI/BM5 alone had no effects on the lungs but significantly impaired GI function at day 6. As expected, in the animals that received severe trauma (TBX10%), we observed impairment in lung function and delay in GI transit in the first 3 days, effects that decreased at later time points. Trauma combined with radiation (TBX10% + TBI/BM5) significantly augmented impairment of the lung and GI function in comparison to TBX10% and TBI/BM5 groups at 24 h. Histologic evaluation indicated that combined injuries caused greater tissue damage in the intestines in TBX10% + TBI/BM5 group when compared to other groups. We describe here the first combined tissue trauma/radiation injury model that will allow conduction of mechanistic studies to identify new therapeutic targets and serve as a platform for testing novel therapeutic interventions. PMID:28118112
Rendon, David A; Kotedia, Khushali; Afshar, Solmaz F; Punia, Jyotinder N; Sabek, Omaima M; Shirkey, Beverly A; Zawaski, Janice A; Gaber, M Waleed
2016-02-01
We present and test the use of multimodality imaging as a topological tool to map the amount of the body exposed to ionizing radiation and the location of exposure, which are important indicators of survival and recovery. To achieve our goal, PET/CT imaging with 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) was used to measure cellular proliferation in bone marrow (BM), whereas MRI using ultra-small superparamagnetic iron oxide (USPIO) particles provided noninvasive information on radiation-induced vascular damage. Animals were x-ray-irradiated at a dose of 7.5 Gy with 1 of 3 radiation schemes-whole-body irradiation, half-body shielding (HBS), or 1-leg shielding (1LS)-and imaged repeatedly. The spatial information from the CT scan was used to segment the region corresponding to BM from the PET scan using algorithms developed in-house, allowing for quantification of proliferating cells, and BM blood volume was estimated by measuring the changes in the T2 relaxation rates (ΔR2) collected from MR scans. (18)F-FLT PET/CT imaging differentiated irradiated from unirradiated BM regions. Two days after irradiation, proliferation of 1LS animals was significantly lower than sham (P = 0.0001, femurs; P < 0.0001, tibias) and returned to sham levels by day 10 (P = 0.6344, femurs; P = 0.3962, tibias). The degree of shielding affected proliferation recovery, showing an increase in the irradiated BM of the femurs, but not the tibias, of HBS animals when compared with 1LS (P = 0.0310, femurs; P = 0.5832, tibias). MRI of irradiated spines detected radiation-induced BM vascular damage, measured by the significant increase in ΔR2 2 d after whole-body irradiation (P = 0.0022) and HBS (P = 0.0003) with a decreasing trend of values, returning to levels close to baseline over 10 d. Our data were corroborated using γ-counting and histopathology. We demonstrated that (18)F-FLT PET/CT and USPIO MRI are valuable tools in mapping regional radiation exposure and the effects of radiation on BM. Analysis of the (18)F-FLT signal allowed for a clear demarcation of exposed BM regions and elucidated the kinetics of BM recovery, whereas USPIO MRI was used to assess vascular damage and recovery. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Vo, Kieuhoa T.; Edwards, Jeremy V.; Epling, C. Lorrie; Sinclair, Elizabeth; Hawkins, Douglas S.; Grier, Holcombe E.; Janeway, Katherine A.; Barnette, Phillip; McIlvaine, Elizabeth; Krailo, Mark D.; Barkauskas, Donald A.; Matthay, Katherine K.; Womer, Richard B.; Gorlick, Richard G.; Lessnick, Stephen L.; Mackall, Crystal L.; DuBois, Steven G.
2016-01-01
Purpose Flow cytometry and RT-PCR can detect occult Ewing sarcoma (ES) cells in the blood and bone marrow (BM). These techniques were used to evaluate the prognostic significance of micrometastatic disease in ES. Experimental Design Newly diagnosed patients with ES were enrolled on two prospective multi-center studies. In the flow cytometry cohort, patients were defined as “positive” for BM micrometastatic disease if their CD99+/CD45− values were above the upper limit in 22 control patients. In the PCR cohort, RT-PCR on blood or BM samples classified the patients as “positive” or “negative” for EWSR1/FLI1 translocations. The association between micrometastatic disease burden with clinical features and outcome was assessed. Co-expression of IGF-1R on detected tumor cells was performed in a subset of flow cytometry samples. Results The median total BM CD99+CD45− percent was 0.0012% (range 0–1.10%) in the flow cytometry cohort, with 14/109 (12.8%) of ES patients defined as “positive.” In the PCR cohort, 19.6% (44/225) patients were “positive” for any EWSR1/FLI1 translocation in blood or BM. There were no differences in baseline clinical features or event-free or overall survival between patients classified as “positive” vs. “negative” by either method. CD99+CD45− cells had significantly higher IGF-1R expression compared to CD45+ hematopoietic cells (mean geometric mean fluorescence intensity 982.7 vs. 190.9; p<0.001). Conclusion The detection of micrometastatic disease at initial diagnosis by flow cytometry or RT-PCR is not associated with outcome in newly diagnosed patients with ES. Flow cytometry provides a tool to characterize occult micrometastatic tumor cells for proteins of interest. PMID:26861456
Xie, Chenchen; Gao, Xiang; Luo, Yong; Pang, Yueshan; Li, Man
2016-10-01
Stromal cell-derived factor-1α(SDF-1α) plays a crucial role in regulating the mobilization, migration and homing of endothelial progenitor cells(EPCs). Electroacupuncture(EA), a modern version of Traditional Chinese Medicine, can improve neurological recovery and angiogenesis in cerebral ischemic area. This study aimed to investigate the effects of electroacupuncture(EA) on the mobilization and migration of bone marrow EPCs and neurological functional recovery in rats model after focal cerebral ischemia/reperfusion and the potentially involved mechanisms. Sprague-Dawley rats received filament occlusion of the right middle cerebral artery for 2h followed by reperfusion for 12h, 1d, 2d, 3d, 7d respectively. Rats were randomly divided into sham group, model group and EA group. After 2h of the reperfusion, EA was given at the "Baihui" (GV 20)/Siguan ("Hegu" (LI 4)/"Taichong" (LR 3)) acupoints in the EA group. Modified neurological severity score (mNSS) was used to assess the neurological functional recovery. EPCs number and SDF-1α level in bone marrow(BM) and peripheral blood(PB) were detected by using fluorescence-activated cell sorting (FACS) analysis and quantitative real time polymerase chain reaction (qRT-PCR) respectively. An mNSS test showed that EA treatment significantly improved the neurological functional outcome. EPCs number in PB and BM were obviously increased in the EA group. After cerebral ischemia, the SDF-1α level was decreased in BM while it was increased in PB, which implied a gradient of SDF-1α among BM and PB after ischemia. It suggested that the forming of SDF-1α concentration gradient can induce the mobilization and homing of EPCs. Eletroacupuncture as a treatment can accelerate and increase the forming of SDF-1α concentration gradient to further induce the mobilization of EPCs and angiogenesis in ischemic brain and improve the neurological function recovery. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Shayan; Feng, Wenli; Yang, Xiao
Highlights: • We study the impact of leukemic microenvironment on P2X family receptors in Mφs. • Bone marrow and spleen Mφs are studied in Notch1-induced mouse leukemia model. • Increased expression of P2X7R is found in Mφs during the development of leukemia. • Elevated P2X7R-mediated calcium response is found in Mφs at late stage of leukemia. • More apoptotic Mφs are found in bone marrow and spleen at late stage of leukemia. - Abstract: Nucleotides are important players in intercellular signaling communication network. P2X family receptors (P2XRs) are ATP-gated plasma membrane ion channels with diverse biological functions. Macrophages are importantmore » components in the microenvironment of hematopoiesis participating in both physiological and pathological processes. However, the role of P2XRs in macrophages in leukemia has not been established. Here we investigated expression pattern and functions of P2XRs in macrophages from bone marrow (BM) and spleen of Notch1-induced T-ALL mice. Real-time PCR showed that P2XRs except P2X5R were expressed in BM and spleen macrophages. Furthermore, with the development of leukemia, the expression of P2X7R increased in both BM and spleen macrophages whereas expression of P2X1R increased in spleen macrophages. Live cell imaging recoding the Ca{sup 2+} response demonstrated that P2X7R expressed in macrophages was functional. TUNEL and electron microscopy analysis found that apoptotic macrophages were frequently observed in BM and spleen at late stage of leukemia, which was partly contributed by the activation of overexpressed P2X7R. Our results suggested that the intercellular communication mediated by nucleotides might orchestrate in the pathological process of leukemia and could be a potential target for the treatment of leukemia.« less
Shi, Jun; Ge, Meili; Li, Xingxin; Shao, Yingqi; Yao, Jianfeng; Zheng, Yizhou
2014-01-01
Idiopathic aplastic anemia (AA) is an immune-mediated bone marrow failure syndrome. Immune abnormalities such as decreased lymphocyte counts, inverted CD4/CD8 T-cell ratio and increased IFN-γ-producing T cells have been found in AA. CD30, a surface protein belonging to the tumor necrosis factor receptor family and releasing from cell surface as a soluble form (sCD30) after activation, marks a subset of activated T cells secreting IFN-γ when exposed to allogeneic antigens. Our study found elevated BM plasma levels of sCD30 in patients with SAA, which were closely correlated with disease severity, including absolute lymphocyte count (ALC) and absolute netrophil count (ANC). We also noted that sCD30 levels were positively correlated with plasma IFN-γ levels and CD4/CD8 T-cell ratio in patients with SAA. In order to explain these phenomena, we stimulated T cells with alloantigen in vitro and found that CD30+ T cells were the major source of IFN-γ, and induced CD30+ T cells from patients with SAA produced significantly more IFN-γ than that from healthy individuals. In addition, increased proportion of CD8+ T cells in AA showed enhanced allogeneic response by the fact that they expressed more CD30 during allogeneic stimulation. sCD30 levels decreased in patients responded to immunosuppressive therapy. In conclusion, elevated BM plasma levels of sCD30 reflected the enhanced CD30+ T cell-mediated immune response in SAA. CD30 as a molecular marker that transiently expresses on IFN-γ-producing T cells, may participate in mediating bone marrow failure in AA, which also can facilitate our understanding of AA pathogenesis to identify new therapeutic targets. PMID:25383872
Quantification of Mesenchymal Stem Cells (MSCs) at sites of human prostate cancer.
Brennen, W Nathaniel; Chen, Shuangling; Denmeade, Samuel R; Isaacs, John T
2013-01-01
Circulating bone marrow-derived Mesenchymal Stem Cells (BM-MSCs) have an innate tropism for tumor tissue in response to the inflammatory microenvironment present in malignant lesions. The prostate is bombarded by numerous infectious and inflammatory insults over a lifetime. Chronic inflammation is associated with CXCL12, CCL5, and CCL2, which are highly overexpressed in prostate cancer. Among other cell types, these chemoattractant stimuli recruit BM-MSCs to the tumor. MSCs are minimally defined as plastic-adhering cells characterized by the expression of CD90, CD73, and CD105 in the absence of hematopoietic markers, which can differentiate into osteoblasts, chondrocytes, and adipocytes. MSCs are immunoprivileged and have been implicated in tumorigenesis through multiple mechanisms, including promoting proliferation, angiogenesis, and metastasis, in addition to the generation of an immunosuppressive microenvironment. We have demonstrated that MSCs represent 0.01-1.1% of the total cells present in core biopsies from primary human prostatectomies. Importantly, these analyses were performed on samples prior to expansion in tissue culture. MSCs in these prostatectomy samples are FAP-, CD90-, CD73-, and CD105-positive, and CD14-, CD20-, CD34-, CD45-, and HLA-DR-negative. Additionally, like BM-MSCs, these prostate cancer-derived stromal cells (PrCSCs) were shown to differentiate into osteoblasts, adipocytes and chondrocytes. In contrast to primary prostate cancer-derived epithelial cells, fluorescently-labeled PrCSCs and BM-MSCs were both shown to home to CWR22RH prostate cancer xenografts following IV injection. These studies demonstrate that not only are MSCs present in sites of prostate cancer where they may contribute to carcinogenesis, but these cells may also potentially be used to deliver cytotoxic or imaging agents for therapeutic and/or diagnostic purposes.
Yong, Kylie Su Mei; Ng, Justin Han Jia; Her, Zhisheng; Hey, Ying Ying; Tan, Sue Yee; Tan, Wilson Wei Sheng; Irac, Sergio Erdal; Liu, Min; Chan, Xue Ying; Gunawan, Merry; Foo, Randy Jee Hiang; Low, Dolyce Hong Wen; Mendenhall, Ian Hewitt; Chionh, Yok Teng; Dutertre, Charles-Antoine; Chen, Qingfeng; Wang, Lin-Fa
2018-03-16
Bats are an important animal model with long lifespans, low incidences of tumorigenesis and an ability to asymptomatically harbour pathogens. Currently, in vivo studies of bats are hampered due to their low reproduction rates. To overcome this, we transplanted bat cells from bone marrow (BM) and spleen into an immunodeficient mouse strain NOD-scid IL-2R -/- (NSG), and have successfully established stable, long-term reconstitution of bat immune cells in mice (bat-mice). Immune functionality of our bat-mouse model was demonstrated through generation of antigen-specific antibody response by bat cells following immunization. Post-engraftment of total bat BM cells and splenocytes, bat immune cells survived, expanded and repopulated the mouse without any observable clinical abnormalities. Utilizing bat's remarkable immunological functions, this novel model has a potential to be transformed into a powerful platform for basic and translational research.
Tumoral and Choroidal Vascularization
Jost, Maud; Maillard, Catherine; Lecomte, Julie; Lambert, Vincent; Tjwa, Marc; Blaise, Pierre; Alvarez Gonzalez, Maria-Luz; Bajou, Khalid; Blacher, Silvia; Motte, Patrick; Humblet, Chantal; Defresne, Marie Paule; Thiry, Marc; Frankenne, Francis; Gothot, André; Carmeliet, Peter; Rakic, Jean-Marie; Foidart, Jean-Michel; Noël, Agnès
2007-01-01
An adequate balance between serine proteases and their plasminogen activator inhibitor-1 (PAI-1) is critical for pathological angiogenesis. PAI-1 deficiency in mice is associated with impaired choroidal neovascularization (CNV) and tumoral angiogenesis. In the present work, we demonstrate unexpected differences in the contribution of bone marrow (BM)-derived cells in these two processes regulated by PAI-1. PAI-1−/− mice grafted with BM-derived from wild-type mice were able to support laser-induced CNV formation but not skin carcinoma vascularization. Engraftment of irradiated wild-type mice with PAI-1−/− BM prevented CNV formation, demonstrating the crucial role of PAI-1 delivered by BM-derived cells. In contrast, the transient infiltration of tumor transplants by local PAI-1-producing host cells rather than by BM cells was sufficient to rescue tumor growth and angiogenesis in PAI-1-deficient mice. These data identify PAI-1 as a molecular determinant of a local permissive soil for tumor angiogenesis. Altogether, the present study demonstrates that different cellular mechanisms contribute to PAI-1-regulated tumoral and CNV. PAI-1 contributes to BM-dependent choroidal vascularization and to BM-independent tumor growth and angiogenesis. PMID:17717143
Turnover of bone marrow-derived cells in the irradiated mouse cornea
Chinnery, Holly R; Humphries, Timothy; Clare, Adam; Dixon, Ariane E; Howes, Kristen; Moran, Caitlin B; Scott, Danielle; Zakrzewski, Marianna; Pearlman, Eric; McMenamin, Paul G
2008-01-01
In light of an increasing awareness of the presence of bone marrow (BM)-derived macrophages in the normal cornea and their uncertain role in corneal diseases, it is important that the turnover rate of these resident immune cells be established. The baseline density and distribution of macrophages in the corneal stroma was investigated in Cx3cr1gfp transgenic mice in which all monocyte-derived cells express enhanced green fluorescent protein (eGFP). To quantify turnover, BM-derived cells from transgenic eGFP mice were transplanted into whole-body irradiated wild-type recipients. Additionally, wild-type BM-derived cells were injected into irradiated Cx3cr1+/gfp recipients, creating reverse chimeras. At 2, 4 and 8 weeks post-reconstitution, the number of eGFP+ cells in each corneal whole mount was calculated using epifluorescence microscopy, immunofluorescence staining and confocal microscopy. The total density of myeloid-derived cells in the normal Cx3cr1+/gfp cornea was 366 cells/mm2. In BM chimeras 2 weeks post-reconstitution, 24% of the myeloid-derived cells had been replenished and were predominantly located in the anterior stroma. By 8 weeks post-reconstitution 75% of the myeloid-derived cells had been replaced and these cells were distributed uniformly throughout the stroma. All donor eGFP+ cells expressed low to moderate levels of CD45 and CD11b, with approximately 25% coexpressing major histocompatibility complex class II, a phenotype characteristic of previous descriptions of corneal stromal macrophages. In conclusion, 75% of the myeloid-derived cells in the mouse corneal stroma are replenished after 8 weeks. These data provide a strong basis for functional investigations of the role of resident stromal macrophages versus non-haematopoietic cells using BM chimeric mice in models of corneal inflammation. PMID:18540963
Lee, Chen-Chen; Wang, Chien-Neng; Lai, Yu-Ting; Kang, Jaw-Jou; Liao, Jiunn-Wang; Chiang, Bor-Luen; Chen, Hui-Chen; Cheng, Yu-Wen
2010-01-01
BACKGROUND AND PURPOSE Shikonin exhibits a wide range of anti-inflammatory actions. Here, we assessed its effects on maturation of murine bone marrow-derived dendritic cells (BM-DCs) and on allergic reactions in a murine model of asthma. EXPERIMENTAL APPROACH Cultured murine BM-DCs were used to investigate the effects of shikonin on expression of cell surface markers and their stimulation of T-cell proliferation and cytokine production. The therapeutic potential of shikonin was evaluated in a model of allergic airway disease. KEY RESULTS Shikonin dose-dependently inhibited expression of major histocompatibility complex class II, CD80, CD86, CCR7 and OX40L on BM-DCs, induced by a mixture of ovalbumin (OVA; 100 µg·mL−1) and thymic stromal lymphopoietin (TSLP; 20 ng·mL−1). Shikonin-treated BM-DCs were poor stimulators of CD4+ T lymphocyte and induced lower levels of interleukin (IL)-4, IL-5, IL-13 and tumour necrosis factor (TNF)-α release by responding T-cells. After intratracheal instillation of shikonin in OVA-immunized mice, OVA challenge induced lower IL-4, IL-5, IL-13, TNF-α and eotaxin release in bronchial alveolar lavage fluid, lower IL-4 and IL-5 production in lung cells and mediastinal lymph node cells and attenuated OVA-induced lung eosinophilia and airway hyperresponsiveness. CONCLUSION AND IMPLICATIONS Shikonin effectively suppressed OVA + TSLP-induced BM-DC maturation in vitro and inhibited allergic inflammation and airway hyperresponsiveness in a murine model of asthma, showing good potential as a treatment for allergic asthma. Also, our model provides a novel platform for screening drugs for allergic diseases. PMID:20735407
Pontikoglou, Charalampos; Kastrinaki, Maria-Christina; Klaus, Mirjam; Kalpadakis, Christina; Katonis, Pavlos; Alpantaki, Kalliopi; Pangalis, Gerassimos A; Papadaki, Helen A
2013-05-01
The bone marrow (BM) microenvironment has clearly been implicated in the pathogenesis of B-cell chronic lymphocytic leukemia (B-CLL). However, the potential involvement of BM stromal progenitors, the mesenchymal stem cells (MSCs), in the pathophysiology of the disease has not been extensively investigated. We expanded in vitro BM-MSCs from B-CLL patients (n=11) and healthy individuals (n=16) and comparatively assessed their reserves, proliferative potential, differentiation capacity, and immunoregulatory effects on T- and B-cells. We also evaluated the anti-apoptotic effect of patient-derived MSCs on leukemic cells and studied their cytogenetic characteristics in comparison to BM hematopoietic cells. B-CLL-derived BM MSCs exhibit a similar phenotype, differentiation potential, and ability to suppress T-cell proliferative responses as compared with MSCs from normal controls. Furthermore, they do not carry the cytogenetic abnormalities of the leukemic clone, and they exert a similar anti-apoptotic effect on leukemic cells and healthy donor-derived B-cells, as their normal counterparts. On the other hand, MSCs from B-CLL patients significantly promote normal B-cell proliferation and IgG production, in contrast to healthy-donor-derived MSCs. Furthermore, they have impaired reserves, defective cellular growth due to increased apoptotic cell death and exhibit aberrant production of stromal cell-derived factor 1, B-cell activating factor, a proliferation inducing ligand, and transforming growth factor β1, cytokines that are crucial for the survival/nourishing of the leukemic cells. We conclude that ex vivo expanded B-CLL-derived MSCs harbor intrinsic qualitative and quantitative abnormalities that may be implicated in disease development and/or progression.
Elswefy, Sahar E; Rashed, Laila A; Younis, Nahla N; Shaheen, Mohamed A; Ghanim, Amal MH
2016-01-01
Mesenchymal stem cells (MSCs) have attracted lots of attention for the treatment of acute liver failure and end-stage liver diseases. This study aimed at investigating the fundamental mechanism by which bone marrow-derived MSCs (BM-MSCs) induce liver regeneration of fibrotic liver in rats. Rats underwent bile duct ligation (BDL) surgery and four weeks later they were treated with either BM-MSCs (3 × 106 cells /rat, once, tail vein injection) or silymarin (100 mg/kg, daily, orally) for four weeks. Liver function tests and hepatic oxidative stress were determined. Hepatic injury and fibrosis were assessed by H and E, Sirus red staining and immunohistochemical expression of α-smooth muscle actin (α-SMA). Hepatocyte growth factor (HGF) and the gene expression of cytokeratin-19 (CK-19) and matrix metalloproteinase-2 (MMP-2) in liver tissue were determined. BDL induced cholestatic liver injury characterized by elevated ALT and AST activities, bilirubin and decreased albumin. The architecture damage was staged as Metavir score: F3, A3. Fibrosis increased around proliferating bile duct as indicated by sirus red staining and α-SMA immunostaining. Fibrogenesis was favored over fibrolysis and confirmed by decreased HGF with increased expression of CK-19, but decreased MMP-2 expression. BM-MSCs treatment restored deteriorated liver functions and restored the histological changes, resolved fibrosis by improving liver regenerative capabilities (P < 0.001), increases in HGF and MMP-2 mRNA and downregulating CK-19 mRNA. Sliymarin, however, induced similar but less prominent effects compared to BM-MSCs. In conclusion, liver regenerative capabilities can be stimulated by BM-MSCs via augmentation of HGF that subsequently up-regulate MMP-2 mRNA while downregulating CK-19 mRNA. PMID:26811102
Peng, Yan; Huang, Sha; Wu, Yan; Cheng, Biao; Nie, Xiaohu; Liu, Hongwei; Ma, Kui; Zhou, Jiping; Gao, Dongyun; Feng, Changjiang; Yang, Siming; Fu, Xiaobing
2013-12-15
Mesenchymal stem cells (MSCs) have been optimal targets in the development of cell based therapies, but their limited availability and high death rate after transplantation remains a concern in clinical applications. This study describes novel effects of platelet rich clot releasate (PRCR) on rat bone marrow-derived MSCs (BM-MSCs), with the former driving a gene program, which can reduce apoptosis and promote the regenerative function of the latter in hostile microenvironments through enhancement of paracrine/autocrine factors. By using reverse transcription-polymerase chain reaction, immunofluorescence and western blot analyses, we showed that PRCR preconditioning could alleviate the apoptosis of BM-MSCs under stress conditions induced by hydrogen peroxide (H2O2) and serum deprivation by enhancing expression of vascular endothelial growth factor and platelet-derived growth factor (PDGF) via stimulation of the platelet-derived growth factor receptor (PDGFR)/PI3K/AKT/NF-κB signaling pathways. Furthermore, the effects of PRCR preconditioned GFP-BM-MSCs subcutaneously transplanted into rats 6 h after wound surgery were examined by histological and other tests from days 0-22 after transplantation. Engraftment of the PRCR preconditioned BM-MSCs not only significantly attenuated apoptosis and wound size but also improved epithelization and blood vessel regeneration of skin via regulation of the wound microenvironment. Thus, preconditioning with PRCR, which reprograms BM-MSCs to tolerate hostile microenvironments and enhance regenerative function by increasing levels of paracrine factors through PDGFR-α/PI3K/AKT/NF-κB signaling pathways would be a safe method for boosting the effectiveness of transplantation therapy in the clinic.
Mohamed, Hoda E; Elswefy, Sahar E; Rashed, Laila A; Younis, Nahla N; Shaheen, Mohamed A; Ghanim, Amal M H
2016-03-01
Mesenchymal stem cells (MSCs) have attracted lots of attention for the treatment of acute liver failure and end-stage liver diseases. This study aimed at investigating the fundamental mechanism by which bone marrow-derived MSCs (BM-MSCs) induce liver regeneration of fibrotic liver in rats. Rats underwent bile duct ligation (BDL) surgery and four weeks later they were treated with either BM-MSCs (3 × 10(6) cells /rat, once, tail vein injection) or silymarin (100 mg/kg, daily, orally) for four weeks. Liver function tests and hepatic oxidative stress were determined. Hepatic injury and fibrosis were assessed by H and E, Sirus red staining and immunohistochemical expression of α-smooth muscle actin (α-SMA). Hepatocyte growth factor (HGF) and the gene expression of cytokeratin-19 (CK-19) and matrix metalloproteinase-2 (MMP-2) in liver tissue were determined. BDL induced cholestatic liver injury characterized by elevated ALT and AST activities, bilirubin and decreased albumin. The architecture damage was staged as Metavir score: F3, A3. Fibrosis increased around proliferating bile duct as indicated by sirus red staining and α-SMA immunostaining. Fibrogenesis was favored over fibrolysis and confirmed by decreased HGF with increased expression of CK-19, but decreased MMP-2 expression. BM-MSCs treatment restored deteriorated liver functions and restored the histological changes, resolved fibrosis by improving liver regenerative capabilities (P < 0.001), increases in HGF and MMP-2 mRNA and downregulating CK-19 mRNA. Sliymarin, however, induced similar but less prominent effects compared to BM-MSCs. In conclusion, liver regenerative capabilities can be stimulated by BM-MSCs via augmentation of HGF that subsequently up-regulate MMP-2 mRNA while downregulating CK-19 mRNA. © 2016 by the Society for Experimental Biology and Medicine.
Xiang, Bin; Zhu, Wenxian; Li, Yaling; Gao, Pei; Liang, Jianpeng; Liu, Di; Ding, Chan; Liao, Ming; Kang, Yinfeng; Ren, Tao
2018-06-01
Infection of chickens with virulent Newcastle disease virus (NDV) is associated with severe pathology and increased morbidity and mortality. The innate immune response contributes to the pathogenicity of NDV. As professional antigen-presenting cells, dendritic cells (DCs) play a unique role in innate immunity. However, the contribution of DCs to NDV infection has not been investigated in chickens. In this study, we selected two representative NDV strains, i.e., the velogenic NDV strain Chicken/Guangdong/GM/2014 (GM) and the lentogenic NDV strain La Sota, to investigate whether NDVs could infect LPS-activated chicken bone-derived marrow DCs (mature chicken BM-DCs). We compared the viral titres and innate immune responses in mature chicken BM-DCs following infection with those strains. Both NDV strains could infect mature chicken BM-DC, but the GM strain showed stronger replication capacity than the La Sota strain in mature chicken BM-DCs. Gene expression profiling showed that MDA5, LGP2, TLR3, TLR7, IFN-α, IFN-β, IFN-γ, IL-1β, IL-6, IL-18, IL-8, CCL5, IL-10, IL-12, MHC-I, and MHC-II levels were altered in mature DCs after infection with NDVs at all evaluated times postinfection. Notably, the GM strain triggered stronger innate immune responses than the La Sota strain in chicken BM-DCs. However, both strains were able to suppress the expression of some cytokines, such as IL-6 and IFN-α, in mature chicken DCs at 24 hpi. These data provide a foundation for further investigation of the role of chicken DCs in NDV infection.
Jakobsen, Rune B; Shahdadfar, Aboulghassem; Reinholt, Finn P; Brinchmann, Jan E
2010-10-01
Treatment of focal lesions of the articular cartilage of the knee using chondrocytes in a hyaluronic acid (HA) scaffold is already being investigated in clinical trials. An alternative may be to use mesenchymal stem cells (MSC). We have compared articular chondrocytes with MSC from human bone marrow (BM) and adipose tissue (AT), all cultured in HA scaffolds, for their ability to express genes and synthesize proteins associated with chondrogenesis. The cells were expanded in monolayer cultures. After seeding into the scaffold, the chondrocytes were maintained in medium, while the two MSC populations were given a chondrogenic differentiation medium. Chondrogenesis was assessed by real-time RT-PCR for chondrocyte-associated genes, by immunohistochemistry and by ELISA for collagens in the supernatant. Redifferentiation of the dedifferentiated chondrocytes in the HA scaffold was shown by a modest increase in type II collagen mRNA (COL2A1) and reduction in COL1A1. BM-MSC expressed 600-fold higher levels of COL2A1 than chondrocytes after 3 weeks in the scaffold. The levels of aggrecan (AGC1) and COL1A1 were similar for chondrocyte and BM-MSC scaffold cultures, while COL10A1 was higher in the BM-MSC. AT-MSC expressed levels of COL2A1 and COL1A1 similar to chondrocytes, but less AGC1 and COL10A1. Surprisingly, little collagen II protein was observed in the scaffold. Instead, collagen II was found in the culture medium. Chondrogenesis in HA scaffolds was more efficient using BM-MSC than AT-MSC or chondrocytes. Some of the secreted collagen II escaped entrapment in the extracellular space and was detected in the culture medium.
Matsumoto, Tomoyuki; Mifune, Yutaka; Kawamoto, Atsuhiko; Kuroda, Ryosuke; Shoji, Taro; Iwasaki, Hiroto; Suzuki, Takahiro; Oyamada, Akira; Horii, Miki; Yokoyama, Ayumi; Nishimura, Hiromi; Lee, Sang Yang; Miwa, Masahiko; Doita, Minoru; Kurosaka, Masahiro; Asahara, Takayuki
2008-04-01
We recently reported that systemic administration of peripheral blood (PB) CD34+ cells, an endothelial progenitor cell (EPC)-enriched population, contributed to fracture healing via vasculogenesis/angiogenesis. However, pathophysiological role of EPCs in fracture healing process has not been fully clarified. Therefore, we investigated the hypothesis whether mobilization and incorporation of bone marrow (BM)-derived EPCs may play a pivotal role in appropriate fracture healing. Serial examinations of Laser doppler perfusion imaging and histological capillary density revealed that neovascularization activity at the fracture site peaked at day 7 post-fracture, the early phase of endochondral ossifification. Fluorescence-activated cell sorting (FACS) analysis demonstrated that the frequency of BM cKit+Sca1+Lineage- (Lin-) cells and PB Sca1+Lin- cells, which are EPC-enriched fractions, significantly increased post-fracture. The Sca1+ EPC-derived vasuculogenesis at the fracture site was confirmed by double immunohistochemistry for CD31 and Sca1. BM transplantation from transgenic donors expressing LacZ transcriptionally regulated by endothelial cell-specific Tie-2 promoter into wild type also provided direct evidence that EPCs contributing to enhanced neovascularization at the fracture site were specifically derived from BM. Animal model of systemic administration of PB Sca1+Lin- Green Fluorescent Protein (GFP)+ cells further confirmed incorporation of the mobilized EPCs into the fracture site for fracture healing. These findings indicate that fracture may induce mobilization of EPCs from BM to PB and recruitment of the mobilized EPCs into fracture sites, thereby augment neovascularization during the process of bone healing. EPCs may play an essential role in fracture healing by promoting a favorable environment through neovascularization in damaged skeletal tissue. (c) 2008 Wiley-Liss, Inc.
Context- and Cell-Dependent Effects of Delta-Like 4 Targeting in the Bone Marrow Microenvironment
Remédio, Leonor; Carvalho, Tânia; Caiado, Francisco; Bastos-Carvalho, Ana; Martins, Diana; Duarte, António; Yagita, Hideo; Dias, Sergio
2012-01-01
Delta-like 4 (Dll4) is a ligand of the Notch pathway family which has been widely studied in the context of tumor angiogenesis, its blockade shown to result in non-productive angiogenesis and halted tumor growth. As Dll4 inhibitors enter the clinic, there is an emerging need to understand their side effects, namely the systemic consequences of Dll4:Notch blockade in tissues other than tumors. The present study focused on the effects of systemic anti-Dll4 targeting in the bone marrow (BM) microenvironment. Here we show that Dll4 blockade with monoclonal antibodies perturbs the BM vascular niche of sub-lethally irradiated mice, resulting in increased CD31+, VE-Cadherin+ and c-kit+ vessel density, and also increased megakaryocytes, whereas CD105+, VEGFR3+, SMA+ and lectin+ vessel density remained unaltered. We investigated also the expression of angiocrine genes upon Dll4 treatment in vivo, and demonstrate that IGFbp2, IGFbp3, Angpt2, Dll4, DHH and VEGF-A are upregulated, while FGF1 and CSF2 are reduced. In vitro treatment of endothelial cells with anti-Dll4 reduced Akt phosphorylation while maintaining similar levels of Erk 1/2 phosphorylation. Besides its effects in the BM vascular niche, anti-Dll4 treatment perturbed hematopoiesis, as evidenced by increased myeloid (CD11b+), decreased B (B220+) and T (CD3+) lymphoid BM content of treated mice, with a corresponding increase in myeloid circulating cells. Moreover, anti-Dll4 treatment also increased the number of CFU-M and -G colonies in methylcellulose assays, independently of Notch1. Finally, anti-Dll4 treatment of donor BM improved the hematopoietic recovery of lethally irradiated recipients in a transplant setting. Together, our data reveals the hematopoietic (BM) effects of systemic anti-Dll4 treatment result from qualitative vascular changes and also direct hematopoietic cell modulation, which may be favorable in a transplant setting. PMID:23285048
Kapacee, Zoher; Yeung, Ching-Yan Chloé; Lu, Yinhui; Crabtree, David; Holmes, David F; Kadler, Karl E
2010-10-01
Tendon-like tissue generated from stem cells in vitro has the potential to replace tendons and ligaments lost through injury and disease. However, thus far, no information has been available on the mechanism of tendon formation in vitro and how to accelerate the process. We show here that human mesenchymal stem cells (MSCs) and bone marrow-derived mononuclear cells (BM-MNCs) can generate tendon-like tissue in 7days mediated by transforming growth factor (TGF) β3. MSCs cultured in fixed-length fibrin gels spontaneously synthesized narrow-diameter collagen fibrils and exhibited fibripositors (actin-rich, collagen fibril-containing plasma membrane protrusions) identical to those that occur in embryonic tendon. In contrast, BM-MNCs did not synthesize tendon-like tissue under these conditions. We performed real-time PCR analysis of MSCs and BM-MNCs. MSCs upregulated genes encoding type I collagen, TGFβ3, and Smad2 at the time of maximum contraction of the tendon-like tissue (7days). Western blot analysis showed phosphorylation of Smad2 at maximum contraction. The TGFβ inhibitor SB-431542, blocked the phosphorylation of Smad2 and stopped the formation of tendon-like tissue. Quantitative PCR showed that BM-MNCs expressed very low levels of TGFβ3 compared to MSCs. Therefore we added exogenous TGFβ3 protein to BM-MNCs in fibrin gels, which resulted in phosphorylation of Smad2, synthesis of collagen fibrils, the appearance of fibripositors at the plasma membrane, and the formation of tendon-like tissue. In conclusion, MSCs that self-generate TGFβ signaling or the addition of TGFβ3 protein to BM-MNCs in fixed-length fibrin gels spontaneously make embryonic tendon-like tissue in vitro within 7days. Copyright © 2010 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.
Baker, Amelia H; Watt, James; Huang, Cassie K; Gerstenfeld, Louis C; Schlezinger, Jennifer J
2015-06-15
Organotins are members of the environmental obesogen class of contaminants because they activate peroxisome proliferator-activated receptor γ (PPARγ), the essential regulator of adipogenesis. Exposure to thiazolidinediones (PPARγ ligands used to treat type 2 diabetes) is associated with increased fractures. Diminished bone quality likely results from PPARγ's role in promoting adipogenesis while suppressing osteogenesis of bone marrow multipotent mesenchymal stromal cells (BM-MSC). We hypothesized that tributyltin (TBT) would be a potent modifier of BM-MSC differentiation and a negative regulator of bone formation. Organotins interact with both PPARγ and retinoid X receptors (RXR), suggesting that they activate multiple nuclear receptor pathways. To investigate the role of RXR in the actions of TBT, the effects of PPARγ (rosiglitazone) and RXR (bexarotene, LG100268) agonists were compared to the effects of TBT in BMS2 cells and primary mouse BM-MSC cultures. In BMS2 cells, TBT induced the expression of Fabp4, Abca1, and Tgm2 in an RXR-dependent manner. All agonists suppressed osteogenesis in primary mouse BM-MSC cultures, based on decreased alkaline phosphatase activity, mineralization, and expression of osteoblast-related genes. While rosiglitazone and TBT strongly activated adipogenesis, based on lipid accumulation and expression of adipocyte-related genes, the RXR agonists did not. Extending these analyses to other RXR heterodimers showed that TBT and the RXR agonists activated the liver X receptor pathway, whereas rosiglitazone did not. Application of either a PPARγ antagonist (T0070907) or an RXR antagonist (HX531) significantly reduced rosiglitazone-induced suppression of bone nodule formation. Only the RXR antagonist significantly reduced LG100268- and TBT-induced bone suppression. The RXR antagonist also inhibited LG100268- and TBT-induced expression of Abca1, an LXR target gene, in primary BM-MSC cultures. These results provide novel evidence that TBT activates multiple nuclear receptor pathways in BM-MSCs, activation of RXR is sufficient to suppress osteogenesis, and TBT suppresses osteogenesis largely through its direct interaction with RXR.
Tano, Nobuko; Kim, Ha Won; Ashraf, Muhammad
2011-01-01
The interaction between chemokine receptor type 4 (CXCR4) and its ligand, stromal cell-derived factor (SDF)-1, plays an important role in stem cell mobilization and migration in ischemic tissues. MicroRNAs (miRs) are key regulators of stem cell function and are involved in regulation of stem cell survival and differentiation to adopt different cell lineages. In this study, we show that ischemia inhibits the expression of miR-150 in BM-derived mononuclear cells (MNC) and activates its target Cxcr4 gene. Our results show that miR-150/CXCR4 cascade enhances MNC mobilization and migration. By using mouse acute myocardial infarction (MI) model, we found that MNCs in peripheral blood (PB) were increased significantly at day 5 after AMI as compared to control group and the number of CXCR4 positive MNCs both in bone marrow (BM) and PB was also markedly increased after MI. Analysis by microarray-based miRNA profiling and real-time PCR revealed that the expression of miR-150 which targets Cxcr4 gene as predicted was significantly downregulated in BM-MNCs after MI. Abrogation of miR-150 markedly increased CXCR4 protein expression suggesting its target gene. To show that miR-150 regulates MNC mobilization, knockdown of miR-150 in BM-MNCs by specific antisense inhibitor resulted in their higher migration ability in vitro as compared to scramble-transfected MNCs. Furthermore, in vivo BM transplantation of MNCs lacking miR-150 expression by lentiviral vector into the irradiated wild type mice resulted in the increased number of MNCs in PB after AMI as compared to control. In conclusion, this study demonstrates that ischemia mobilizes BM stem cells via miR-150/CXCR4 dependent mechanism and miR-150 may be a novel therapeutic target for stem cell migration to the ischemic tissue for neovascularization and repair. PMID:22039399
Local bone marrow renin-angiotensin system in the genesis of leukemia and other malignancies.
Haznedaroglu, I C; Malkan, U Y
2016-10-01
The existence of a local renin-angiotensin system (RAS) specific to the hematopoietic bone marrow (BM) microenvironment had been proposed two decades ago. Most of the RAS molecules including ACE, ACE2, AGT, AGTR1, AGTR2, AKR1C4, AKR1D1, ANPEP, ATP6AP2, CMA1, CPA3, CTSA, CTSD, CTSG, CYP11A1, CYP11B1, CYP11B2, CYP17A1, CYP21A2, DPP3, EGFR, ENPEP, GPER, HSD11B1, HSD11B2, IGF2R, KLK1, LNPEP, MAS1, MME, NR3C1, NR3C2, PREP, REN, RNPEP, and THOP1 are locally present in the BM microenvironment. Local BM RAS peptides control the hematopoietic niche, myelopoiesis, erythropoiesis, thrombopoiesis and the development of other cellular lineages. Local BM RAS is important in hematopoietic stem cell biology and microenvironment. Angiotensin II regulates the proliferation, differentiation, and engraftment of hematopoietic stem cells. Activation of Mas receptor or ACE2 promotes proliferation of CD34+ cells. BM contains a progenitor that expresses renin throughout development. Angiotensin II attenuates the migration and proliferation of CD34+ Cells and promotes the adhesion of both MNCs and CD34+ cells. Renin cells in hematopoietic organs are precursor B cells. The renin cell requires RBP-J to differentiate. Mutant renin-expressing hematopoietic precursors can cause leukemia. Deletion of RBP-J in the renin-expressing progenitors enriches the precursor B-cell gene programme. Mutant cells undergo a neoplastic transformation, and mice develop a highly penetrant B-cell leukemia with multi-organ infiltration and early death. Many biological conditions during the development and function of blood cells are mediated by RAS, such as apoptosis, cellular proliferation, intracellular signaling, mobilization, angiogenesis, and fibrosis. The aim of this paper is to review recent developments regarding the actions of local BM RAS in the genesis of leukemia and other malignancies molecules.
Ji, Zhiwei; Su, Jing; Wu, Dan; Peng, Huiming; Zhao, Weiling; Nlong Zhao, Brian; Zhou, Xiaobo
2017-01-31
Multiple myeloma is a malignant still incurable plasma cell disorder. This is due to refractory disease relapse, immune impairment, and development of multi-drug resistance. The growth of malignant plasma cells is dependent on the bone marrow (BM) microenvironment and evasion of the host's anti-tumor immune response. Hence, we hypothesized that targeting tumor-stromal cell interaction and endogenous immune system in BM will potentially improve the response of multiple myeloma (MM). Therefore, we proposed a computational simulation of the myeloma development in the complicated microenvironment which includes immune cell components and bone marrow stromal cells and predicted the effects of combined treatment with multi-drugs on myeloma cell growth. We constructed a hybrid multi-scale agent-based model (HABM) that combines an ODE system and Agent-based model (ABM). The ODEs was used for modeling the dynamic changes of intracellular signal transductions and ABM for modeling the cell-cell interactions between stromal cells, tumor, and immune components in the BM. This model simulated myeloma growth in the bone marrow microenvironment and revealed the important role of immune system in this process. The predicted outcomes were consistent with the experimental observations from previous studies. Moreover, we applied this model to predict the treatment effects of three key therapeutic drugs used for MM, and found that the combination of these three drugs potentially suppress the growth of myeloma cells and reactivate the immune response. In summary, the proposed model may serve as a novel computational platform for simulating the formation of MM and evaluating the treatment response of MM to multiple drugs.
Ogaeri, Takunori; Eto, Koji; Otsu, Makoto; Ema, Hideo; Nakauchi, Hiromitsu
2009-05-01
The Rho GTPase family members play essential roles in hematopoiesis. Of these, Rac1 is thought to be required for the appropriate spatial localization of hematopoietic stem and/or progenitor cells (HSPCs) within the bone marrow (BM), whereas Rac2 likely plays a role in BM retention of HSPCs. To elucidate the molecular mechanisms underlying Rac-mediated functions in hematopoietic stem cells (HSCs), we studied Wiskott-Aldrich syndrome protein family verprolin-homologous proteins (WAVEs), the specific effectors downstream of the Rac GTPases in actin polymerization. We here showed that CD34(-/low)c-Kit(+)Sca-1(+)lineage(-) HSCs (CD34(-)KSL HSCs) express WAVE2 but neither WAVE1 nor WAVE3. Because WAVE2 knockout mice are embryonic-lethal, we utilized HSCs in which the expression of WAVE2 was reduced by small interfering RNA. We found that knockdown (KD) of WAVE2 in HSCs affected neither in vitro colony formation nor cell proliferation but did impair in vivo long-term reconstitution. Interestingly, WAVE2 KD HSCs exhibited unaltered homing but showed poor BM repopulation detected as early as day 5 after transplantation. The mechanistic studies on WAVE2 KD HSCs revealed modest but significant impairment in both cobblestone-like area-forming on stromal layers and actin polymerization upon integrin ligation by fibronectin. These results suggested that WAVE2-mediated actin polymerization, potentially downstream of Rac1, plays an important role in intramarrow mobilization and proliferation of HSCs, which are believed to be crucial steps for long-term marrow reconstitution after transplantation.
Abu-Elmagd, Muhammad; Alghamdi, Mansour A.; Shamy, Magdy; Khoder, Mamdouh I.; Costa, Max; Assidi, Mourad; Kadam, Roaa; Alsehli, Haneen; Gari, Mamdooh; Pushparaj, Peter Natesan; Kalamegam, Gauthaman; Al-Qahtani, Mohammed H.
2017-01-01
Particulate matter (PM) contains heavy metals that affect various cellular functions and gene expression associated with a range of acute and chronic diseases in humans. However, the specific effects they exert on the stem cells remain unclear. Here, we report the effects of PM collected from the city of Jeddah on proliferation, cell death, related gene expression and systems of biological analysis in bone marrow mesenchymal stem cells (BM-MSCs), with the aim of understanding the underlying mechanisms. PM2.5 and PM10 were tested in vitro at various concentrations (15 to 300 µg/mL) and durations (24 to 72 h). PMs induced cellular stress including membrane damage, shrinkage and death. Lower concentrations of PM2.5 increased proliferation of BM-MSCs, while higher concentrations served to decrease it. PM10 decreased BM-MSCs proliferation in a concentration-dependent manner. The X-ray fluorescence spectrometric analysis showed that PM contains high levels of heavy metals. Ingenuity Pathway Analysis (IPA) and hierarchical clustering analyses demonstrated that heavy metals were associated with signaling pathways involving cell stress/death, cancer and chronic diseases. qRT-PCR results showed differential expression of the apoptosis genes (BCL2, BAX); inflammation associated genes (TNF-α and IL-6) and the cell cycle regulation gene (p53). We conclude that PM causes inflammation and cell death, and thereby predisposes to chronic debilitating diseases. PMID:28425934
Kvasnicka, Hans Michael; Orazi, Attilio; Thiele, Juergen; Barosi, Giovanni; Bueso-Ramos, Carlos E; Vannucchi, Alessandro M; Hasserjian, Robert P; Kiladjian, Jean-Jacques; Gianelli, Umberto; Silver, Richard; Mughal, Tariq I; Barbui, Tiziano
2017-10-01
The purpose of the study was to assess consensus and interobserver agreement among an international panel of six hematopathologists regarding characterization and reproducibility of bone marrow (BM) histologic features used to diagnose early stage myeloproliferative neoplasms, in particular differentiation of so-called masked/prodromal polycythemia vera (mPV) from JAK2-mutated essential thrombocythemia (ET). The six members of the hematopathology panel evaluated 98 BM specimens independently and in a blinded fashion without knowledge of clinical data. The specimens included 48 cases of mPV according to the originally published hemoglobin threshold values for this entity (male: 16.0-18.4 g/dL, female: 15.0-16.4 g/dL), 31 cases with overt PV according to the updated 2016 WHO criteria, and 19 control cases. The latter group included cases of JAK2-mutated ET, primary myelofibrosis, myelodysplastic syndrome, and various reactive conditions. Inter-rater agreement between the panelists was very high (overall agreement 92.6%, kappa 0.812), particularly with respect to separating mPV from ET. Virtually all cases of mPV were correctly classified as PV according to their BM morphology. In conclusion, a central blinded review of histology slides by six hematopathologists demonstrated that highly reproducible specific histological pattern characterize PV and confirmed the notion that there are no significant differences between mPV and overt PV in relation to BM morphology. © 2017 Wiley Periodicals, Inc.
Chao, Yu-Hua; Lin, Chiao-Wen; Pan, Hui-Hsien; Yang, Shun-Fa; Weng, Te-Fu; Peng, Ching-Tien; Wu, Kang-Hsi
2018-06-05
Although immune-mediated pathogenesis is considered an important aspect of severe aplastic anemia (SAA), its underlying mechanisms remain unclear. Mesenchymal stem cells (MSCs) are essential to the formation of specialized microenvironments in the bone marrow (BM), and MSC insufficiency can trigger the development of SAA. To find MSC alterations in the SAA BM, we compared BM MSCs from five children with SAA and five controls. Peripheral blood mononuclear cells (PBMCs) were cocultured with MSCs to evaluate the supportive effects of MSCs on hematopoiesis. Cytometric bead array immunoassay was used to determine cytokine excretion by MSCs. The immune functions of MSCs and their conditioned medium (CM) were evaluated by PBMC proliferation assays. SAA MSCs were characterized by a high percentage of cells in the abnormal sub-G1 phase of the cell cycle, which suggests an increased rate of apoptosis in SAA MSCs. In comparison with control MSCs, PBMCs cocultured with SAA MSCs displayed significantly reduced PBMC proliferation (P = 0.009). Aberrant cytokine profiles were secreted by SAA MSCs, with increased concentrations of interleukin-6, interferon-γ, tumor necrosis factor-α, and interleukin-1β in the CM. PBMC proliferation assays demonstrated additional immunosuppressive effects of SAA MSCs (P = 0.016) and their CM (P = 0.013). Our data revealed increased apoptosis and PBMC suppression of SAA MSCs. The alterations of MSCs may contribute to the formation of functionally abnormal microenvironments in SAA BM. © 2018 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aerts-Kaya, Fatima S.F.; Visser, Trudi P.; Arshad, Shazia
Purpose: 5-Androstene-3{beta},17{beta}-diol (5-AED) stimulates recovery of hematopoiesis after exposure to radiation. To elucidate its cellular targets, the effects of 5-AED alone and in combination with (pegylated) granulocyte colony-stimulating factor and thrombopoietin (TPO) on immature hematopoietic progenitor cells were evaluated following total body irradiation. Methods and Materials: BALB/c mice were exposed to radiation delivered as a single or as a fractionated dose, and recovery of bone marrow progenitors and peripheral blood parameters was assessed. Results: BALB/c mice treated with 5-AED displayed accelerated multilineage blood cell recovery and elevated bone marrow (BM) cellularity and numbers of progenitor cells. The spleen colony-forming unitmore » (CFU-S) assay, representing the life-saving short-term repopulating cells in BM of irradiated donor mice revealed that combined treatment with 5-AED plus TPO resulted in a 20.1-fold increase in CFU-S relative to that of placebo controls, and a 3.7 and 3.1-fold increase in comparison to 5-AED and TPO, whereas no effect was seen of Peg-G-CSF with or without 5-AED. Contrary to TPO, 5-AED also stimulated reconstitution of the more immature marrow repopulating (MRA) cells. Conclusions: 5-AED potently counteracts the hematopoietic effects of radiation-induced myelosuppression and promotes multilineage reconstitution by stimulating immature bone marrow cells in a pattern distinct from, but synergistic with TPO.« less
Dias, Lucinara Dadda; Casali, Karina Rabello; Ghem, Carine; da Silva, Melissa Kristocheck; Sausen, Grasiele; Palma, Patrícia Bonini; Covas, Dimas Tadeu; Kalil, Renato A K; Schaan, Beatriz D; Nardi, Nance Beyer; Markoski, Melissa Medeiros
2017-07-25
In an attempt to increase the therapeutic potential for myocardial regeneration, there is a quest for new cell sources and types for cell therapy protocols. The pathophysiology of heart diseases may affect cellular characteristics and therapeutic results. To study the proliferative and differentiation potential of mesenchymal stem cells (MSC), isolated from bone marrow (BM) of sternum, we made a comparative analysis between samples of patients with ischemic (IHD) or non-ischemic valvular (VHD) heart diseases. We included patients with IHD (n = 42) or VHD (n = 20), with average age of 60 years and no differences in cardiovascular risk factors. BM samples were collected (16.4 ± 6 mL) and submitted to centrifugation with Ficoll-Paque, yielding 4.5 ± 1.5 × 10 7 cells/mL. Morphology, immunophenotype and differentiation ability had proven that the cultivated sternal BM cells had MSC features. The colony forming unit-fibroblast (CFU-F) frequency was similar between groups (p = 0.510), but VHD samples showed positive correlation to plated cells vs. CFU-F number (r = 0.499, p = 0.049). The MSC culture was established in 29% of collected samples, achieved passage 9, without significant difference in expansion kinetics between groups (p > 0.05). Dyslipidemia and the use of statins was associated with culture establishment for IHD patients (p = 0.049 and p = 0.006, respectively). Together, these results show that the sternum bone can be used as a source for MSC isolation, and that ischemic or valvular diseases do not influence the cellular yield, culture establishment or in vitro growth kinetics.
Zwarthoed, Colette; El-Galaly, Tarec Cristoffer; Canepari, Maria; Ouvrier, Matthieu John; Viotti, Julien; Ettaiche, Marc; Viviani, Simonetta; Rigacci, Luigi; Trentin, Livio; Rusconi, Chiara; Luminari, Stefano; Cantonetti, Maria; Bolis, Silvia; Borra, Anna; Darcourt, Jacques; Salvi, Flavia; Subocz, Edyta; Tajer, Joanna; Kulikowski, Waldemar; Malkowski, Bogdan; Zaucha, Jan Maciej; Gallamini, Andrea
2017-08-01
PET/CT-ascertained bone marrow involvement (BMI) constitutes the single most important reason for upstaging by PET/CT in Hodgkin lymphoma (HL). However, BMI assessment in PET/CT can be challenging. This study analyzed the clinicopathologic correlations and prognostic meaning of different patterns of bone marrow (BM) 18 F-FDG uptake in HL. Methods: One hundred eighty newly diagnosed early unfavorable and advanced-stage HL patients, all scanned at baseline and after 2 adriamycin-bleomycin-vinblastine-dacarbazine (ABVD) courses with 18 F-FDG PET, enrolled in 2 international studies aimed at assessing the role of interim PET scanning in HL, were retrospectively included. Patients were treated with ABVD × 4-6 cycles and involved-field radiation when needed, and no treatment adaptation on interim PET scanning was allowed. Two masked reviewers independently reported the scans. Results: Thirty-eight patients (21.1%) had focal lesions (fPET + ), 10 of them with a single (unifocal) and 28 with multiple (multifocal) BM lesions. Fifty-three patients (29.4%) had pure strong (>liver) diffuse uptake (dPET + ) and 89 (48.4%) showed no or faint (≤liver) BM uptake (nPET + ). BM biopsy was positive in 6 of 38 patients (15.7%) for fPET + , in 1 of 53 (1.9%) for dPET + , and in 5 of 89 (5.6%) for nPET + dPET + was correlated with younger age, higher frequency of bulky disease, lower hemoglobin levels, higher leukocyte counts, and similar diffuse uptake in the spleen. Patients with pure dPET + had a 3-y progression-free survival identical to patients without any 18 F-FDG uptake (82.9% and 82.2%, respectively, P = 0.918). However, patients with fPET+ (either unifocal or multifocal) had a 3-y progression-free survival significantly inferior to patients with dPET+ and nPET+ (66.7% and 82.5%, respectively, P = 0.03). The κ values for interobserver agreement were 0.84 for focal uptake and 0.78 for diffuse uptake. Conclusion: We confirmed that 18 F-FDG PET scanning is a reliable tool for BMI assessment in HL, and BM biopsy is no longer needed for routine staging. Moreover, the interobserver agreement for BMI in this study proved excellent and only focal 18 F-FDG BM uptake should be considered as a harbinger of HL. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Tilstam, Pathricia V; Gijbels, Marion J; Habbeddine, Mohamed; Cudejko, Céline; Asare, Yaw; Theelen, Wendy; Zhou, Baixue; Döring, Yvonne; Drechsler, Maik; Pawig, Lukas; Simsekyilmaz, Sakine; Koenen, Rory R; de Winther, Menno P J; Lawrence, Toby; Bernhagen, Jürgen; Zernecke, Alma; Weber, Christian; Noels, Heidi
2014-01-01
The Ikkα kinase, a subunit of the NF-κB-activating IKK complex, has emerged as an important regulator of inflammatory gene expression. However, the role of Ikkα-mediated phosphorylation in haematopoiesis and atherogenesis remains unexplored. In this study, we investigated the effect of a bone marrow (BM)-specific activation-resistant Ikkα mutant knock-in on haematopoiesis and atherosclerosis in mice. Apolipoprotein E (Apoe)-deficient mice were transplanted with BM carrying an activation-resistant Ikkα gene (Ikkα(AA/AA)Apoe(-/-) ) or with Ikkα(+/+)Apoe(-/-) BM as control and were fed a high-cholesterol diet for 8 or 13 weeks. Interestingly, haematopoietic profiling by flow cytometry revealed a significant decrease in B-cells, regulatory T-cells and effector memory T-cells in Ikkα(AA/AA)Apoe(-/-) BM-chimeras, whereas the naive T-cell population was increased. Surprisingly, no differences were observed in the size, stage or cellular composition of atherosclerotic lesions in the aorta and aortic root of Ikkα(AA/AA)Apoe(-/-) vs Ikkα(+/+)Apoe(-/-) BM-transplanted mice, as shown by histological and immunofluorescent stainings. Necrotic core sizes, apoptosis, and intracellular lipid deposits in aortic root lesions were unaltered. In vitro, BM-derived macrophages from Ikkα(AA/AA)Apoe(-/-) vs Ikkα(+/+)Apoe(-/-) mice did not show significant differences in the uptake of oxidized low-density lipoproteins (oxLDL), and, with the exception of Il-12, the secretion of inflammatory proteins in conditions of Tnf-α or oxLDL stimulation was not significantly altered. Furthermore, serum levels of inflammatory proteins as measured with a cytokine bead array were comparable. Our data reveal an important and previously unrecognized role of haematopoietic Ikkα kinase activation in the homeostasis of B-cells and regulatory T-cells. However, transplantation of Ikkα(AA) mutant BM did not affect atherosclerosis in Apoe(-/-) mice. This suggests that the diverse functions of Ikkα in haematopoietic cells may counterbalance each other or may not be strong enough to influence atherogenesis, and reveals that targeting haematopoietic Ikkα kinase activity alone does not represent a therapeutic approach.
Porwit, A; Rajab, A
2015-05-01
Acute leukemia, myelodysplastic syndromes (MDS), myeloproliferative neoplasms and lymphomas are the most prevalent diagnoses in adults presenting with new onset cytopenia. Here, we describe two 10-color panels of surface markers (screening and comprehensive panel) applied at the Flow Cytometry Laboratory, University Health Network, Toronto, ON, Canada. A 10-color flow cytometry is applied using the stain-lyse-wash sample preparation method. In patients with <10% blasts and no clear involvement by hematological malignancy based on cytomorphological evaluation of bone marrow (BM) smear, the recently published one-tube 10-color 14-antibody screening panel is applied. This panel allows detection of major B- and T-cell abnormalities, enumeration of cells in blast region (CD45 dim), and gives insight into myeloid BM compartment, including calculation of four-parameter score for MDS-related abnormalities. In patients who present with ≥10 - <20% blasts in blood or BM smears, a comprehensive three-tube panel of surface markers is used up front. The analysis is focused on the detection of abnormal antigen expression patterns not seen in normal/reactive BM, according to the guidelines developed by International/European LeukemiaNet Working Group for Flow Cytometry in MDS. In patients with ≥20% blasts, an additional tube is added to allow the detection of cytoplasmic markers necessary to diagnose mixed phenotype acute leukemia. © 2015 John Wiley & Sons Ltd.
CD27-CD70 interactions in the pathogenesis of Waldenstrom macroglobulinemia.
Ho, Allen W; Hatjiharissi, Evdoxia; Ciccarelli, Bryan T; Branagan, Andrew R; Hunter, Zachary R; Leleu, Xavier; Tournilhac, Olivier; Xu, Lian; O'Connor, Kelly; Manning, Robert J; Santos, Daniel Ditzel; Chemaly, Mariana; Patterson, Christopher J; Soumerai, Jacob D; Munshi, Nikhil C; McEarchern, Julie A; Law, Che-Leung; Grewal, Iqbal S; Treon, Steven P
2008-12-01
Waldenström macroglobulinemia (WM) is a B-cell malignancy characterized by an IgM monoclonal gammopathy and bone marrow (BM) infiltration with lymphoplasmacytic cells (LPCs). Excess mast cells (MCs) are commonly present in WM, and provide growth and survival signals to LPCs through several TNF family ligands (CD40L, a proliferation-inducing ligand [APRIL], and B-lymphocyte stimulator factor [BLYS]). As part of these studies, we demonstrated that WM LPCs secrete soluble CD27 (sCD27), which is elevated in patients with WM (P < .001 vs healthy donors), and serves as a faithful marker of disease. Importantly, sCD27 stimulated expression of CD40L on 10 of 10 BM MC samples and APRIL on 4 of 10 BM MC samples obtained from patients with WM as well as on LAD2 MCs. Moreover, the SGN-70 humanized monoclonal antibody, which binds to CD70 (the receptor-ligand partner of CD27), abrogated sCD27 mediated up-regulation of CD40L and APRIL on WM MCs. Last, treatment of severe combined immunodeficiency-human (SCID-hu) mice with established WM using the SGN-70 antibody blocked disease progression in 12 of 12 mice, whereas disease progressed in all 5 untreated mice. The results of these studies demonstrate a functional role for sCD27 in WM pathogenesis, along with its utility as a surrogate marker of disease and a target in the treatment of WM.
Bone Marrow Aspirate Concentrate for Cartilage Defects of the Knee: From Bench to Bedside Evidence.
Cotter, Eric J; Wang, Kevin C; Yanke, Adam B; Chubinskaya, Susan
2018-04-01
Objective To critically evaluate the current basic science, translational, and clinical data regarding bone marrow aspirate concentrate (BMAC) in the setting of focal cartilage defects of the knee and describe clinical indications and future research questions surrounding the clinical utility of BMAC for treatment of these lesions. Design A literature search was performed using the PubMed and Ovid MEDLINE databases for studies in English (1980-2017) using keywords, including ["bone marrow aspirate" and "cartilage"], ["mesenchymal stem cells" and "cartilage"], and ["bone marrow aspirate" and "mesenchymal stem cells" and "orthopedics"]. A total of 1832 articles were reviewed by 2 independent authors and additional literature found through scanning references of cited articles. Results BMAC has demonstrated promising results in the clinical application for repair of chondral defects as an adjuvant procedure or as an independent management technique. A subcomponent of BMAC, bone marrow derived-mesenchymal stem cells (MSCs) possess the ability to differentiate into cells important for osteogenesis and chondrogenesis. Modulation of paracrine signaling is perhaps the most important function of BM-MSCs in this setting. In an effort to increase the cellular yield, authors have shown the ability to expand BM-MSCs in culture while maintaining phenotype. Conclusions Translational studies have demonstrated good clinical efficacy of BMAC both concomitant with cartilage restoration procedures, at defined time points after surgery, and as isolated injections. Early clinical data suggests BMAC may help stimulate a more robust hyaline cartilage repair tissue response. Numerous questions remain regarding BMAC usage, including cell source, cell expansion, optimal pathology, and injection timing and quantity.
MicroRNAs Involved in Asthma After Mesenchymal Stem Cells Treatment
Tang, Guan-Nan; Li, Cheng-Lin; Yao, Yin; Xu, Zhi-Bin; Deng, Meng-Xia; Wang, Shu-Yue; Sun, Yue-Qi; Shi, Jian-Bo
2016-01-01
Administration of human bone marrow-derived mesenchymal stem cells (BM-MSCs) significantly alleviates allergic airway inflammation. There are no studies that refer to the role of microRNAs (miRNAs) after the BM-MSCs treatment in airway allergic inflammation. We induced a mouse model of asthma and performed the transplantation of BM-MSCs. We analyzed aberrant miRNAs and key immune regulators using both miRNA and messenger RNA (mRNA) polymerase chain reaction (PCR) arrays. We identified that 296 miRNAs were differently expressed after the induction of asthma and/or the treatment of BM-MSCs, in which 14 miRNAs presented the reverse variation tendency between asthma induction and BM-MSCs transplantation. Mmu-miR-21a-3p, mmu-miR-449c-5p, and mmu-miR-496a-3p were further confirmed to be differently expressed with additional samples and quantitative real-time PCR. With an mRNA PCR array, we identified 19 genes to be involved in the allergy induction and the administration of BM-MSCs. Further target genes analysis revealed that mmu-miR-21a-3p was significantly correlated with the immune regulator activin A receptor, Type IIA (Acvr2a). Mmu-miR-21a-3p had opposite expression with Acvr2a after asthma and BM-MSCs treatment. Acvr2a had binding sites for miR-21a for both mice and human, suggesting that miR-21/Acvr2a axis is conserved between human and mice. Dual-luciferase reporter assay showed that mmu-miR-21a-3p negatively regulated the transcript of Acvr2a. In addition, has-miR-21a inhibitor significantly increased the expression of Acvr2a mRNA in BEAS-2B cells under lipopolysaccharide stimulation. Our results suggest that there were different miRNA and mRNA profiles after asthma induction and BM-MSCs treatment, and the miR-21/Acvr2a axis is an important mechanism for the induction of asthmatic inflammation. PMID:27106170
Tan, Q; Li, G P; Wang, Q S; Zheng, C H; Zhang, S Y
2017-07-25
Objective: To explore whether diabetes mellitus (DM) impairs functions of bone marrow-derived endothelial progenitor cells (BM-EPC) and circulating EPC. Methods: Diabetic model of rabbit was induced by Alloxan injection and the rabbits were then randomly divided into three groups: BM-EPC group, circulating EPC group, and DM group, with six rabbits in each group. Another 6 normal rabbits were enrolled as normal control group as well. 8 weeks later, BM-EPC and circulating EPC from diabetic and healthy rabbits were isolated and cultured. Colony number, proliferation, adhesion and tube formation function were detected. Exogenous diabetic BM-EPC and circulating EPC were analyzed for therapeutic efficacy in acute ischemia model of diabetic rabbits. Left ventricular (LV) function was assessed using Echocardiography. Capillary density and fibrosis area were evaluated by confocal laser scanning microscope (CLSM) and Masson-trichrome staining. The mRNA expression of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) was analyzed using real-time quantitive PCR. Results: Colony number, proliferation, adhesion and tube formation function of diabetic circulating EPC were significantly reduced compared with healthy rabbits. DM impaired tube-forming ability of BM-EPC, but did not influence colony number, proliferation and adhesion function. Compared with circulating EPC and control group, BM-EPC group had fewer fibrosis area (6.98%±0.94% vs 13.03%±2.97% and 15.84%±4.74%, both P =0.001), higher capillary density [(792±87) vs (528±71) and (372±77) vessels/mm(2,) both P <0.001], higher mRNA expression of VEGF (6.25±2.33 vs 2.19±1.01 and 1.55±0.52, both P <0.001) and bFGF (6.38±2.65 vs 1.24±0.76 and 1.18±0.82, both P <0.001), higher left ventricular ejection fraction (LVEF) (61%±4% vs 47%±5% and 50%±10%, both P <0.05). Conclusions: DM not only impaired functions of circulating EPC, but also influenced tube formation function of BM-EPC. Auto transplantation of BM-EPC may rescue the ischemic myocardium by neovascularization and paracrine effect in diabetic rabbits.
Tissue reservoirs of antiviral T cell immunity in persistent human CMV infection
Gordon, Claire L.; Thome, Joseph J.C.; Igarashi, Suzu
2017-01-01
T cell responses to viruses are initiated and maintained in tissue sites; however, knowledge of human antiviral T cells is largely derived from blood. Cytomegalovirus (CMV) persists in most humans, requires T cell immunity to control, yet tissue immune responses remain undefined. Here, we investigated human CMV-specific T cells, virus persistence and CMV-associated T cell homeostasis in blood, lymphoid, mucosal and secretory tissues of 44 CMV seropositive and 28 seronegative donors. CMV-specific T cells were maintained in distinct distribution patterns, highest in blood, bone marrow (BM), or lymph nodes (LN), with the frequency and function in blood distinct from tissues. CMV genomes were detected predominantly in lung and also in spleen, BM, blood and LN. High frequencies of activated CMV-specific T cells were found in blood and BM samples with low virus detection, whereas in lung, CMV-specific T cells were present along with detectable virus. In LNs, CMV-specific T cells exhibited quiescent phenotypes independent of virus. Overall, T cell differentiation was enhanced in sites of viral persistence with age. Together, our results suggest tissue T cell reservoirs for CMV control shaped by both viral and tissue-intrinsic factors, with global effects on homeostasis of tissue T cells over the lifespan. PMID:28130404
Tissue reservoirs of antiviral T cell immunity in persistent human CMV infection.
Gordon, Claire L; Miron, Michelle; Thome, Joseph J C; Matsuoka, Nobuhide; Weiner, Joshua; Rak, Michael A; Igarashi, Suzu; Granot, Tomer; Lerner, Harvey; Goodrum, Felicia; Farber, Donna L
2017-03-06
T cell responses to viruses are initiated and maintained in tissue sites; however, knowledge of human antiviral T cells is largely derived from blood. Cytomegalovirus (CMV) persists in most humans, requires T cell immunity to control, yet tissue immune responses remain undefined. Here, we investigated human CMV-specific T cells, virus persistence and CMV-associated T cell homeostasis in blood, lymphoid, mucosal and secretory tissues of 44 CMV seropositive and 28 seronegative donors. CMV-specific T cells were maintained in distinct distribution patterns, highest in blood, bone marrow (BM), or lymph nodes (LN), with the frequency and function in blood distinct from tissues. CMV genomes were detected predominantly in lung and also in spleen, BM, blood and LN. High frequencies of activated CMV-specific T cells were found in blood and BM samples with low virus detection, whereas in lung, CMV-specific T cells were present along with detectable virus. In LNs, CMV-specific T cells exhibited quiescent phenotypes independent of virus. Overall, T cell differentiation was enhanced in sites of viral persistence with age. Together, our results suggest tissue T cell reservoirs for CMV control shaped by both viral and tissue-intrinsic factors, with global effects on homeostasis of tissue T cells over the lifespan. @Gordon et al.
Leishmania Infection: Laboratory Diagnosing in the Absence of a “Gold Standard”
Rodríguez-Cortés, Alhelí; Ojeda, Ana; Francino, Olga; López-Fuertes, Laura; Timón, Marcos; Alberola, Jordi
2010-01-01
There is no gold standard for diagnosing leishmaniases. Our aim was to assess the operative validity of tests used in detecting Leishmania infection using samples from experimental infections, a reliable equivalent to the classic definition of gold standard. Without statistical differences, the highest sensitivity was achieved by protein A (ProtA), immunoglobulin (Ig)G2, indirect fluorescenece antibody test (IFAT), lymphocyte proliferation assay, quantitative real-time polymerase chain reaction of bone marrow (qPCR-BM), qPCR-Blood, and IgG; and the highest specificity by IgG1, IgM, IgA, qPCR-Blood, IgG, IgG2, and qPCR-BM. Maximum positive predictive value was obtained simultaneously by IgG2, qPCR-Blood, and IgG; and maximum negative predictive value by qPCR-BM. Best positive and negative likelihood ratios were obtained by IgG2. The test having the greatest, statistically significant, area under the receiver operating characteristics curve was IgG2 enzyme-linked immunosorbent assay (ELISA). Thus, according to the gold standard used, IFAT and qPCR are far from fulfilling the requirements to be considered gold standards, and the test showing the highest potential to detect Leishmania infection is Leishmania-specific ELISA IgG2. PMID:20134001
Leishmania infection: laboratory diagnosing in the absence of a "gold standard".
Rodríguez-Cortés, Alhelí; Ojeda, Ana; Francino, Olga; López-Fuertes, Laura; Timón, Marcos; Alberola, Jordi
2010-02-01
There is no gold standard for diagnosing leishmaniases. Our aim was to assess the operative validity of tests used in detecting Leishmania infection using samples from experimental infections, a reliable equivalent to the classic definition of gold standard. Without statistical differences, the highest sensitivity was achieved by protein A (ProtA), immunoglobulin (Ig)G2, indirect fluorescenece antibody test (IFAT), lymphocyte proliferation assay, quantitative real-time polymerase chain reaction of bone marrow (qPCR-BM), qPCR-Blood, and IgG; and the highest specificity by IgG1, IgM, IgA, qPCR-Blood, IgG, IgG2, and qPCR-BM. Maximum positive predictive value was obtained simultaneously by IgG2, qPCR-Blood, and IgG; and maximum negative predictive value by qPCR-BM. Best positive and negative likelihood ratios were obtained by IgG2. The test having the greatest, statistically significant, area under the receiver operating characteristics curve was IgG2 enzyme-linked immunosorbent assay (ELISA). Thus, according to the gold standard used, IFAT and qPCR are far from fulfilling the requirements to be considered gold standards, and the test showing the highest potential to detect Leishmania infection is Leishmania-specific ELISA IgG2.
Marcinek, J; Plank, L; Szépe, P; Balhárek, T
2008-07-01
Myelofibrosis (MF) may develop in all types of myeloproliferative disorders and its identification is of clinical relevance. Typical bone marrow (BM) morphology of patients with essential thrombocythemia (ET) shows either "normal" amount or "a slight increase" of reticulin fibers, but the published data differ in relation to the applied MF definition and ET diagnostic criterias. The aim of this study was to evaluate retrospectivelly MF in BM biopsies of 30 cases in which the diagnosis of ET was confirmed also clinically by local hematologists. In 7 of the patients not only primary but also sequential biopsy was available. The MF grade and extent were evaluated semiquantitativelly in archival slides stained by Gömöri silver impregnation. The analysis was based on the European clinicopathological criteria 2004 (ECP) defining a) normal bone marrow fibrosis (MF0), b) slight reticulin fibrosis (MF1), c) advanced reticulin and initial collagen fibrosis (MF2) and d) advanced collagen fibrosis (MF3). Generally, in majority of the biopsies MF0 (n = 6) or MF1 (n = 25, 18x focal and 7x diffuse) was found. More advanced MF2 was much less common as it was present in 6 biopsies (5x focal and 1x diffuse). In relation to the actual time of BM biopsy during course of the disease, the introductory biopsies done at the time of diagnosis (n = 18) showed 3x MF0, 14x MF1 and 1x MF2. The biopsies performed after a long time of patients observations (n = 12) showed 3x MF0, 7x MF1 and 2x MF2. In 5 of 7 sequential biopsies the progress of MF was evident, but 4 of these patients were treated by cytoreductive therapy. We conclude that the BM of patients with ET in initial phase shows either MF0 or focal slight increase of reticulin fibers (MF1). In addition, the long course of the disease and/or applied therapy may lead to more developed MF and more advanced MF stages (diffuse MF1 or MF2). Therefore their finding in the BM biopsies examined in the later phases of the disease should not exclude the diagnosis of ET.
Capoccia, Benjamin J.; Robson, Debra L.; Levac, Krysta D.; Maxwell, Dustin J.; Hohm, Sarah A.; Neelamkavil, Marian J.; Bell, Gillian I.; Xenocostas, Anargyros; Link, Daniel C.; Piwnica-Worms, David; Nolta, Jan A.
2009-01-01
The development of cell therapies to treat peripheral vascular disease has proven difficult because of the contribution of multiple cell types that coordinate revascularization. We characterized the vascular regenerative potential of transplanted human bone marrow (BM) cells purified by high aldehyde dehydrogenase (ALDHhi) activity, a progenitor cell function conserved between several lineages. BM ALDHhi cells were enriched for myelo-erythroid progenitors that produced multipotent hematopoietic reconstitution after transplantation and contained nonhematopoietic precursors that established colonies in mesenchymal-stromal and endothelial culture conditions. The regenerative capacity of human ALDHhi cells was assessed by intravenous transplantation into immune-deficient mice with limb ischemia induced by femoral artery ligation/transection. Compared with recipients injected with unpurified nucleated cells containing the equivalent of 2- to 4-fold more ALDHhi cells, mice transplanted with purified ALDHhi cells showed augmented recovery of perfusion and increased blood vessel density in ischemic limbs. ALDHhi cells transiently recruited to ischemic regions but did not significantly integrate into ischemic tissue, suggesting that transient ALDHhi cell engraftment stimulated endogenous revascularization. Thus, human BM ALDHhi cells represent a progenitor-enriched population of several cell lineages that improves perfusion in ischemic limbs after transplantation. These clinically relevant cells may prove useful in the treatment of critical ischemia in humans. PMID:19324906
Sats, Natalia; Risinskaya, Natalya; Sudarikov, Andrey; Dubniak, Daria; Kraizman, Alina
2018-01-01
Multipotent mesenchymal stromal cells (MSCs) participate in the formation of bone marrow niches for hematopoietic stem cells. Donor MSCs can serve as a source of recovery for niches in patients with graft failure (GF) after allogeneic bone marrow (BM) transplantation. Since only few MSCs reach the BM after intravenous injection, MSCs were implanted into the iliac spine. For 8 patients with GF after allo-BMT, another hematopoietic stem cell transplantation with simultaneous implantation of MSCs from their respective donors into cancellous bone was performed. BM was aspirated from the iliac crest of these patients at 1-2, 4-5, and 9 months after the intraosseous injection of donor MSCs. Patients' MSCs were cultivated, and chimerism was determined. In 6 out of 8 patients, donor hematopoiesis was restored. Donor cells (9.4 ± 3.3%) were detected among MSCs. Thus, implanted MSCs remain localized at the site of administration and do not lose the ability to proliferate. These results suggest that MSCs could participate in the restoration of niches for donor hematopoietic cells or have an immunomodulatory effect, preventing repeated rejection of the graft. Perhaps, intraosseous implantation of MSCs contributes to the success of the second transplantation of hematopoietic stem cells and patient survival. PMID:29760731
Petinati, Nataliya; Drize, Nina; Sats, Natalia; Risinskaya, Natalya; Sudarikov, Andrey; Drokov, Michail; Dubniak, Daria; Kraizman, Alina; Nareyko, Maria; Popova, Natalia; Firsova, Maya; Kuzmina, Larisa; Parovichnikova, Elena; Savchenko, Valeriy
2018-01-01
Multipotent mesenchymal stromal cells (MSCs) participate in the formation of bone marrow niches for hematopoietic stem cells. Donor MSCs can serve as a source of recovery for niches in patients with graft failure (GF) after allogeneic bone marrow (BM) transplantation. Since only few MSCs reach the BM after intravenous injection, MSCs were implanted into the iliac spine. For 8 patients with GF after allo-BMT, another hematopoietic stem cell transplantation with simultaneous implantation of MSCs from their respective donors into cancellous bone was performed. BM was aspirated from the iliac crest of these patients at 1-2, 4-5, and 9 months after the intraosseous injection of donor MSCs. Patients' MSCs were cultivated, and chimerism was determined. In 6 out of 8 patients, donor hematopoiesis was restored. Donor cells (9.4 ± 3.3%) were detected among MSCs. Thus, implanted MSCs remain localized at the site of administration and do not lose the ability to proliferate. These results suggest that MSCs could participate in the restoration of niches for donor hematopoietic cells or have an immunomodulatory effect, preventing repeated rejection of the graft. Perhaps, intraosseous implantation of MSCs contributes to the success of the second transplantation of hematopoietic stem cells and patient survival.
Evaluating effects of L-carnitine on human bone-marrow-derived mesenchymal stem cells.
Fujisawa, Koichi; Takami, Taro; Fukui, Yumi; Quintanilha, Luiz Fernando; Matsumoto, Toshihiko; Yamamoto, Naoki; Sakaida, Isao
2017-05-01
Mesenchymal stem cells (MSCs) are multipotent cells showing potential for use in regenerative medicine. Culture techniques that are more stable and methods for the more efficient production of MSCs with therapeutic efficacy are needed. We evaluate the effects of growing bone marrow (Bm)-derived MSCs in the presence of L-carnitine, which is believed to promote lipid metabolism and to suppress apoptosis. The presence of L-carnitine decreased the degree of drug-induced apoptosis and suppressed adipogenic differentiation. Metabolomic analysis by means of the exhaustive investigation of metabolic products showed that, in addition to increased β-oxidation and the expression of all carnitine derivatives other than deoxycarnitine (an intermediate in carnitine synthesis), polysaturated and polyunsaturated acids were down-regulated. An integrated analysis incorporating both serial analysis of gene expression and metabolomics revealed increases in cell survival, suggesting the utility of carnitine. The addition of carnitine elevated the oxygen consumption rate by BmMSCs that had been cultured for only a few generations and those that had become senescent following repeated replication indicating that mitochondrial activation occurred. Our exhaustive analysis of the effects of various carnitine metabolites thus suggests that the addition of L-carnitine to BmMSCs during expansion enables efficient cell production.
Xavier, Miguel; de Andrés, María C; Spencer, Daniel; Oreffo, Richard O C; Morgan, Hywel
2017-08-01
The capacity of bone and cartilage to regenerate can be attributed to skeletal stem cells (SSCs) that reside within the bone marrow (BM). Given SSCs are rare and lack specific surface markers, antibody-based sorting has failed to deliver the cell purity required for clinical translation. Microfluidics offers new methods of isolating cells based on biophysical features including, but not limited to, size, electrical properties and stiffness. Here we report the characterization of the dielectric properties of unexpanded SSCs using single-cell microfluidic impedance cytometry (MIC). Unexpanded SSCs had a mean size of 9.0 µm; larger than the majority of BM cells. During expansion, often used to purify and increase the number of SSCs, cell size and membrane capacitance increased significantly, highlighting the importance of characterizing unaltered SSCs. In addition, MIC was used to track the osteogenic differentiation of SSCs and showed an increased membrane capacitance with differentiation. The electrical properties of primary SSCs were indistinct from other BM cells precluding its use as an isolation method. However, the current studies indicate that cell size in combination with another biophysical parameter, such as stiffness, could be used to design label-free devices for sorting SSCs with significant clinical impact. © 2017 The Authors.
2017-01-01
The capacity of bone and cartilage to regenerate can be attributed to skeletal stem cells (SSCs) that reside within the bone marrow (BM). Given SSCs are rare and lack specific surface markers, antibody-based sorting has failed to deliver the cell purity required for clinical translation. Microfluidics offers new methods of isolating cells based on biophysical features including, but not limited to, size, electrical properties and stiffness. Here we report the characterization of the dielectric properties of unexpanded SSCs using single-cell microfluidic impedance cytometry (MIC). Unexpanded SSCs had a mean size of 9.0 µm; larger than the majority of BM cells. During expansion, often used to purify and increase the number of SSCs, cell size and membrane capacitance increased significantly, highlighting the importance of characterizing unaltered SSCs. In addition, MIC was used to track the osteogenic differentiation of SSCs and showed an increased membrane capacitance with differentiation. The electrical properties of primary SSCs were indistinct from other BM cells precluding its use as an isolation method. However, the current studies indicate that cell size in combination with another biophysical parameter, such as stiffness, could be used to design label-free devices for sorting SSCs with significant clinical impact. PMID:28835540
Radioprotective effect of orally administered beta-d-glucan derived from Saccharomyces cerevisiae.
Liu, Fang; Wang, Zhuanzi; Liu, Jia; Li, Wenjian
2018-04-21
The present study was to evaluate the in vivo radioprotective effect of oral administration of Saccharomyces cerevisiae-derived-beta-d-glucan (S. cerevisiae-BG) and to investigate the protective mechanism. The results demonstrated that oral pretreatment with 350 mg/kg S. cerevisiae-BG once daily for 14 consecutive days significantly increased the survival rate of mice from 6 Gy X-rays irradiation. At the 30th day after irradiation, cellularity and the percentage of hematopoietic stem/progenitor cells in bone marrow (BM) of surviving mice were increased by S. cerevisiae-BG. Further studies showed that S. cerevisiae-BG decreased BM cell DNA damage and improved BM cell cycle progress in irradiated mice. And the reactive oxygen species (ROS) levels in BM cells of irradiated mice were also decreased by S. cerevisiae-BG. These results indicated that oral S. cerevisiae-BG exhibited obviously radioprotective effect in mice and the protective effect may be attributed to the polysaccharide's hematopoiesis-modulating action and free radical scavenging property. S. cerevisiae-BG protects BM cells from radiation damage through scavenging BM cell ROS, mitigating BM cell DNA damage and improving cell cycle progress, and thus mitigated myelosuppression induced by irradiation and stimulated hematopoiesis, ultimately increased the survival of radiated mice. Copyright © 2018. Published by Elsevier B.V.
Paiardini, Mirko; Cervasi, Barbara; Engram, Jessica C.; Gordon, Shari N.; Klatt, Nichole R.; Muthukumar, Alagarraju; Else, James; Mittler, Robert S.; Staprans, Silvija I.; Sodora, Donald L.
2009-01-01
Bone marrow (BM) is the key hematopoietic organ in mammals and is involved in the homeostatic proliferation of memory CD8+ T cells. Here we expanded on our previous observation that BM is a preferential site for T-cell proliferation in simian immunodeficiency virus (SIV)–infected sooty mangabeys (SMs) that do not progress to AIDS despite high viremia. We found high levels of mature T-cell proliferation, involving both naive and memory cells, in healthy SMs and rhesus macaques (RMs). In addition, we observed in both species that lineage-specific, BM-based T-cell proliferation follows antibody-mediated in vivo CD4+ or CD8+ T-cell depletion, thus indicating a role for the BM in maintaining T-cell homeostasis under depleting circumstances. We also observed that, in SIV-infected SMs, but not RMs, the level of proliferation of BM-based CD4+ T cells is higher than that of circulating CD4+ T cells. Interestingly, limited BM-based CD4+ T-cell proliferation was found in SIV-infected SMs with low CD4+ T-cell counts, suggesting a regenerative failure in these animals. Collectively, these results indicate that BM is involved in maintaining T-cell homeostasis in primates and suggest a role for BM-based CD4+ T-cell proliferation in determining the benign nature of natural SIV infection of SMs. PMID:18832134
Signaling Interplay between Bone Marrow Adipose Tissue and Multiple Myeloma cells.
Falank, Carolyne; Fairfield, Heather; Reagan, Michaela R
2016-01-01
In the year 2000, Hanahan and Weinberg (1) defined the six Hallmarks of Cancer as: self-sufficiency in growth signals, evasion of apoptosis, insensitivity to antigrowth mechanisms, tissue invasion and metastasis, limitless replicative potential, and sustained angiogenesis. Eleven years later, two new Hallmarks were added to the list (avoiding immune destruction and reprograming energy metabolism) and two new tumor characteristics (tumor-promoting inflammation and genome instability and mutation) (2). In multiple myeloma (MM), a destructive cancer of the plasma cell that grows predominantly in the bone marrow (BM), it is clear that all these hallmarks and characteristics are in play, contributing to tumor initiation, drug resistance, disease progression, and relapse. Bone marrow adipose tissue (BMAT) is a newly recognized contributor to MM oncogenesis and disease progression, potentially affecting MM cell metabolism, immune action, inflammation, and influences on angiogenesis. In this review, we discuss the confirmed and hypothetical contributions of BMAT to MM development and disease progression. BMAT has been understudied due to technical challenges and a previous lack of appreciation for the endocrine function of this tissue. In this review, we define the dynamic, responsive, metabolically active BM adipocyte. We then describe how BMAT influences MM in terms of: lipids/metabolism, hypoxia/angiogenesis, paracrine or endocrine signaling, and bone disease. We then discuss the connection between BMAT and systemic inflammation and potential treatments to inhibit the feedback loops between BM adipocytes and MM cells that support MM progression. We aim for researchers to use this review to guide and help prioritize their experiments to develop better treatments or a cure for cancers, such as MM, that associate with and may depend on BMAT.
Signaling Interplay between Bone Marrow Adipose Tissue and Multiple Myeloma cells
Falank, Carolyne; Fairfield, Heather; Reagan, Michaela R.
2016-01-01
In the year 2000, Hanahan and Weinberg (1) defined the six Hallmarks of Cancer as: self-sufficiency in growth signals, evasion of apoptosis, insensitivity to antigrowth mechanisms, tissue invasion and metastasis, limitless replicative potential, and sustained angiogenesis. Eleven years later, two new Hallmarks were added to the list (avoiding immune destruction and reprograming energy metabolism) and two new tumor characteristics (tumor-promoting inflammation and genome instability and mutation) (2). In multiple myeloma (MM), a destructive cancer of the plasma cell that grows predominantly in the bone marrow (BM), it is clear that all these hallmarks and characteristics are in play, contributing to tumor initiation, drug resistance, disease progression, and relapse. Bone marrow adipose tissue (BMAT) is a newly recognized contributor to MM oncogenesis and disease progression, potentially affecting MM cell metabolism, immune action, inflammation, and influences on angiogenesis. In this review, we discuss the confirmed and hypothetical contributions of BMAT to MM development and disease progression. BMAT has been understudied due to technical challenges and a previous lack of appreciation for the endocrine function of this tissue. In this review, we define the dynamic, responsive, metabolically active BM adipocyte. We then describe how BMAT influences MM in terms of: lipids/metabolism, hypoxia/angiogenesis, paracrine or endocrine signaling, and bone disease. We then discuss the connection between BMAT and systemic inflammation and potential treatments to inhibit the feedback loops between BM adipocytes and MM cells that support MM progression. We aim for researchers to use this review to guide and help prioritize their experiments to develop better treatments or a cure for cancers, such as MM, that associate with and may depend on BMAT. PMID:27379019
Gunetti, Monica; Noghero, Alessio; Molla, Fabiola; Staszewsky, Lidia Irene; de Angelis, Noeleen; Soldo, Annarita; Russo, Ilaria; Errichiello, Edoardo; Frasson, Chiara; Rustichelli, Deborah; Ferrero, Ivana; Gualandris, Anna; Berger, Massimo; Geuna, Massimo; Scacciatella, Paolo; Basso, Giuseppe; Marra, Sebastiano; Bussolino, Federico; Latini, Roberto; Fagioli, Franca
2011-10-01
Bone marrow (BM)-derived cells appear to be a promising therapeutic source for the treatment of acute myocardial infarction (AMI). However, the quantity and quality of the cells to be used, along with the appropriate time of administration, still need to be defined. We thus investigated the use of BM CD34(+)-derived cells as cells suitable for a cell therapy protocol (CTP) in the treatment of experimental AMI. The need for a large number of cells was satisfied by the use of a previously established protocol allowing the expansion of human CD34(+) cells isolated from neonatal and adult hematopoietic tissues. We evaluated gene expression, endothelial differentiation potential and cytokine release by BM-derived cells during in vitro culture. Basal and expanded CD34(+) cells were used as a delivery product in a murine AMI model consisting of a coronary artery ligation (CAL). Cardiac function recovery was evaluated after injecting basal or expanded cells. Gene expression analysis of in vitro-expanded cells revealed that endothelial markers were up-regulated during culture. Moreover, expanded cells generated a CD14(+) subpopulation able to differentiate efficiently into VE-cadherin-expressing cells. In vivo, we observed a cardiac function recovery in mice sequentially treated with basal and expanded cells injected 4 h and 7 days after CAL, respectively. Our data suggest that combining basal and expanded BM-derived CD34(+) cells in a specific temporal pattern of administration might represent a promising strategy for a successful cell-based therapy.
Yamaguchi, Y
1998-01-01
Dendritic cells (DC) are specialized antigen-presenting cells involved in T cell-mediated immune responses. Differentiation and functional maturation of the DC are now known to be regulated by various cytokines, including TGF-beta1. The experiments of this study examined the effect of other cytokines, such as IL-4, IL-10 and IL-6, on the differentiation and maturation of bone marrow (BM)-derived DC (BM-DC) and epidermal Langerhans cells (LC). When IL-6 or IL-10 was added to cultures of BM cells in the presence of GM-CSF, both cytokines, as in the case of TGF-beta1, suppressed the maturation of DC in terms of the expression of adhesion and costimulatory molecules and T cell-stimulating activity. In contrast, IL-4 was not suppressive but rather supportive for the differentiation of DC. However, these suppressive cytokines hardly counteracted the maturation-inducing activity of TNF-alpha when added to cultures of immature DC. In addition, they appeared to block the overmaturation of DC, which is characterized by a loss of MHC class II molecules. Regarding LC maturation in epidermal cell cultures, IL-6 and IL-10 were inhibitory for the expression of CD86 and CD80 in a dose-dependent fashion. Unlike BM-DC, LC maturation was slightly enhanced by TGF-beta1. The protein antigen-presentation by LC to Th1 clone was not affected by IL-6, but slightly reduced by IL-10. These results suggest that each cytokine contributes to regulate the differentiation and maturation of DC at a different developmental stage.
Gabr, Hala; Rateb, Moshira Abdelhakiim; El Sissy, Maha Hamdi; Ahmed Seddiek, Hanan; Ali Abdelhameed Gouda, Sarah
2016-10-01
Chemotherapy targets rapidly dividing tissues in the body. It destroys the progenitor cells in gonads resulting in premature ovarian failure. Studies have suggested that bone marrow-derived stem cells can generate oocytes in chemotherapy treated female rats after transplantation. The present study aimed to assess mechanism of homing, the action of injected BM-MSCs on ovarian function after ovarian damage. Seventy two female albino rats were randomly allocated into Control and CTX group, The Experimental protocol was lasted for 12 weeks during which serum FSH and E2 were monitored twice at the end of the 2nd week (12 rats) and 8th week (6 rats). Stem cells identification and homing were evaluated by Flowcytometry and tagging of stem cells with iron oxide particles respectively. Also, histopathological examination was done to evaluate both degeneration (6 rats at 4th week) and regeneration (6 rats at 12th week) of ovarian tissue together with assessment of the levels of TNF-α in ovarian homogenate and IGF-I as a growth factor in ovarian tissue. Partial improvement of E2 and FSH levels as well as ovarian architecture. Elevation of ovarian TNF- α levels and of IGF-I immunohistochemical expressions in ovarian tissues of BM-MSCs injected rats were noticed following homing of BM- MSCs in the ovarian stroma in both control and chemotherapy groups. Injected BM- MSCs can home in the stroma of the injured ovaries. IGF-I and TNF- α may have a role in the attraction of stem cells in vivo. © 2016 Wiley Periodicals, Inc.
Eve, David J; Steiner, George; Mahendrasah, Ajay; Sanberg, Paul R; Kurien, Crupa; Thomson, Avery; Borlongan, Cesar V; Garbuzova-Davis, Svitlana
2018-02-13
Blood-spinal cord barrier (BSCB) alterations, including capillary rupture, have been demonstrated in animal models of amyotrophic lateral sclerosis (ALS) and ALS patients. To date, treatment to restore BSCB in ALS is underexplored. Here, we evaluated whether intravenous transplantation of human bone marrow CD34 + (hBM34 + ) cells into symptomatic ALS mice leads to restoration of capillary integrity in the spinal cord as determined by detection of microhemorrhages. Three different doses of hBM34 + cells (5 × 10 4 , 5 × 10 5 or 1 × 10 6 ) or media were intravenously injected into symptomatic G93A SOD1 mice at 13 weeks of age. Microhemorrhages were determined in the cervical and lumbar spinal cords of mice at 4 weeks post-treatment, as revealed by Perls' Prussian blue staining for ferric iron. Numerous microhemorrhages were observed in the gray and white matter of the spinal cords in media-treated mice, with a greater number of capillary ruptures within the ventral horn of both segments. In cell-treated mice, microhemorrhage numbers in the cervical and lumbar spinal cords were inversely related to administered cell doses. In particular, the pervasive microvascular ruptures determined in the spinal cords in late symptomatic ALS mice were significantly decreased by the highest cell dose, suggestive of BSCB repair by grafted hBM34 + cells. The study results provide translational outcomes supporting transplantation of hBM34 + cells at an optimal dose as a potential therapeutic strategy for BSCB repair in ALS patients.
de Andrade, Ana Valéria Gouveia; Riewaldt, Julia; Wehner, Rebekka; Schmitz, Marc; Odendahl, Marcus; Bornhäuser, Martin; Tonn, Torsten
2014-01-01
Mesenchymal stromal cells (MSCs) are promising candidates for the treatment of graft-versus-host and autoimmune diseases. Here, by virtue of their immunosuppressive effects, they are discussed to exhibit inhibitory actions on various immune effector cells, including T lymphocytes that promote the underlying pathology. While it becomes apparent that MSCs exhibit their therapeutic effect in a transient manner, they are usually transplanted from third party donors into heavily immunocompromised patients. However, little is known about potential late complications of persisting third party MSCs in these patients. We therefore analysed the effect of gamma irradiation on the potency and proliferation of MSCs to elucidate an irradiation dose, which would allow inhibition of MSC proliferation while at the same time preserving their immunosuppressive function. Bone marrow-derived MSCs (BM-MSCs) were gamma-irradiated at increasing doses of 5, 10 and 30 Gy and subsequently assessed by colony formation unit (CFU)-assay, Annexin V-staining and in a mixed lymphocyte reaction, to assess colony growth, apoptosis and the immunosuppressive capacity, respectively. Complete loss of proliferative capacity measured by colony formation was observed after irradiation with a dose equal to or greater than 10 Gy. No significant decrease of viable cells was detected, as compared to non-irradiated BM-MSCs. Notably, irradiated BM-MSCs remained highly immunosuppressive in vitro for at least 5 days after irradiation. Gamma irradiation does not impair the immunosuppressive capacity of BM-MSCs in vitro and thus might increase the safety of MSC-based cell products in clinical applications. PMID:24655362
Biologic properties of endothelial progenitor cells and their potential for cell therapy.
Young, Pampee P; Vaughan, Douglas E; Hatzopoulos, Antonis K
2007-01-01
Recent studies indicate that portions of ischemic and tumor neovasculature are derived by neovasculogenesis, whereby bone marrow (BM)-derived circulating endothelial progenitor cells (EPCs) home to sites of regenerative or malignant growth and contribute to blood vessel formation. Recent data from animal models suggest that a variety of cell types, including unfractionated BM mononuclear cells and those obtained by ex vivo expansion of human peripheral blood or enriched progenitors, can function as EPCs to promote tissue vasculogenesis, regeneration, and repair when introduced in vivo. The promising preclinical results have led to several human clinical trials using BM as a potential source of EPCs in cardiac repair as well as ongoing basic research on using EPCs in tissue engineering or as cell therapy to target tumor growth.
Tang, Xian-Liang; Rokosh, D. Gregg; Guo, Yiru; Bolli, Roberto
2010-01-01
Heart failure after myocardial infarction (MI) continues to be the most prevalent cause of morbidity and mortality worldwide. Although pharmaceutical agents and interventional strategies have contributed greatly to therapy, new and superior treatment modalities are urgently needed given the overall disease burden. Stem cell-based therapy is potentially a promising strategy to lead to cardiac repair after MI. An array of cell types has been explored in this respect, including skeletal myoblasts, bone marrow (BM)-derived stem cells, embryonic stem cells, and more recently, cardiac progenitor cells (CPCs). Recently studies have obtained evidence that transplantation of CPCs or BM-derived very small embryonic-like stem cells can improve cardiac function and alleviate cardiac remodeling, supporting the potential therapeutic utility of these cells for cardiac repair. This report summarizes the current data from those studies and discusses the potential implication of these cells in developing clinically-relevant stem cell-based therapeutic strategies for cardiac regeneration. PMID:20081317
Kurdi, Lina Abdul-Fattah; Aljeddani, Fatimah Aliyan
2016-09-01
This study was carried out to investigate the ability of Propolis to ameliorate the adverse cytogenetic effects of Dacarbazine on bone marrow cells. In this experimental in vivo study, 18 mice were used, divided into four groups: control group; Propolis-treated group (treated with 50mg/kg Propolis); and Dacarbazine-treated group (treated with 3.5mg/kg Dacarbazine). The fourth, fifth, and sixth were treated with Dacarbazine and Propolis as pre 2h, post 2h, and concomitant treatment. After five days, the Bone Marrow (BM) samples were obtained for cytogenetic investigation. The in vivo studies revealed that Dacarbazine induced an abnormalities in polychromatic erythrocytes cells (PECs) as increase of cell with micronuclei, while the dual treatment accompanied with improvement of this abnormalities. It could be concluded that there are protective effects of Propolis against the adverse effects of Dacarbazine. It could be recommended to use Propolis as an adjuvant with chemotherapeutic agents.
Smith, Christopher A; Board, Tim N; Rooney, Paul; Eagle, Mark J; Richardson, Stephen M; Hoyland, Judith A
2017-01-01
To improve the safe use of allograft bone, decellularization techniques may be utilized to produce acellular scaffolds. Such scaffolds should retain their innate biological and biomechanical capacity and support mesenchymal stem cell (MSC) osteogenic differentiation. However, as allograft bone is derived from a wide age-range, this study aimed to determine whether donor age impacts on the ability an osteoinductive, acellular scaffold produced from human bone to promote the osteogenic differentiation of bone marrow MSCs (BM-MSC). BM-MSCs from young and old donors were seeded on acellular bone cubes from young and old donors undergoing osteoarthritis related hip surgery. All combinations resulted in increased osteogenic gene expression, and alkaline phosphatase (ALP) enzyme activity, however BM-MSCs cultured on old donor bone displayed the largest increases. BM-MSCs cultured in old donor bone conditioned media also displayed higher osteogenic gene expression and ALP activity than those exposed to young donor bone conditioned media. ELISA and Luminex analysis of conditioned media demonstrated similar levels of bioactive factors between age groups; however, IGF binding protein 1 (IGFBP1) concentration was significantly higher in young donor samples. Additionally, structural analysis of old donor bone indicated an increased porosity compared to young donor bone. These results demonstrate the ability of a decellularized scaffold produced from young and old donors to support osteogenic differentiation of cells from young and old donors. Significantly, the older donor bone produced greater osteogenic differentiation which may be related to reduced IGFBP1 bioavailability and increased porosity, potentially explaining the excellent clinical results seen with the use of allograft from aged donors.
Recognition of unusual presentation of natural killer cell leukemia.
Gardiner, C M; Reen, D J; O'Meara, A
1995-10-01
Expansion of the natural killer (NK) subset of lymphocytes represents a rare leukemia phenotype with variations in clinical presentation, morphology, surface phenotype, and effector function. This paper reports on a 5-year-old male patient who had an unusual presentation of an NK cell leukemia that was initially diagnosed as neuroblastoma. A bone marrow (BM) aspirate showed clumps of undifferentiated cells with the following phenotype: CD56bright+, CD33dim+, CD45-, CD2-, CD19-, CD16-, and CD57-. Cytochemistry was noncontributory. The patient, having failed to respond to conventional neuroblastoma chemotherapy, was subsequently diagnosed as having NK cell leukemia based on functional in vitro assays. The patient responded to acute lymphoblastic leukemia (ALL) chemotherapy but relapsed 4 weeks into treatment and eventually died 25 weeks after initial presentation. The cell surface phenotype observed is consistent with a rare NK cell subset, the biology of which has not been well defined. Freshly isolated BM cells killed K562 cells in a conventional 51Cr-release assay. Both interleukin-2 (IL-2) and interferon-alpha (IFN-alpha) induced LAK activity against the Daudi cell line. IL-2 induced proliferation of the leukemic cells. TNF-alpha, IFN-gamma, IL-6, IL-1ra, and TGF-beta levels were assessed and found to be concentrated in BM, in contrast to plasma samples. TNF-alpha was present at a high concentration in BM (150.9 pg/ml), probably a reflection of the associated disease pathology of severe bone pain and pyrexia. In summary, this paper details clinical and laboratory investigations of a leukemia of a rare NK cell subset.
Role of stromal cell-mediated Notch signaling in CLL resistance to chemotherapy.
Nwabo Kamdje, A H; Bassi, G; Pacelli, L; Malpeli, G; Amati, E; Nichele, I; Pizzolo, G; Krampera, M
2012-05-01
Stromal cells are essential components of the bone marrow (BM) microenvironment that regulate and support the survival of different tumors, including chronic lymphocytic leukemia (CLL). In this study, we investigated the role of Notch signaling in the promotion of survival and chemoresistance of human CLL cells in coculture with human BM-mesenchymal stromal cells (hBM-MSCs) of both autologous and allogeneic origin. The presence of BM-MSCs rescued CLL cells from apoptosis both spontaneously and following induction with various drugs, including Fludarabine, Cyclophosphamide, Bendamustine, Prednisone and Hydrocortisone. The treatment with a combination of anti-Notch-1, Notch-2 and Notch-4 antibodies or γ-secretase inhibitor XII (GSI XII) reverted this protective effect by day 3, even in presence of the above-mentioned drugs. Overall, our findings show that stromal cell-mediated Notch-1, Notch-2 and Notch-4 signaling has a role in CLL survival and resistance to chemotherapy. Therefore, its blocking could be an additional tool to overcome drug resistance and improve the therapeutic strategies for CLL.
Endothelial-specific inhibition of NF-κB enhances functional haematopoiesis.
Poulos, Michael G; Ramalingam, Pradeep; Gutkin, Michael C; Kleppe, Maria; Ginsberg, Michael; Crowley, Michael J P; Elemento, Olivier; Levine, Ross L; Rafii, Shahin; Kitajewski, Jan; Greenblatt, Matthew B; Shim, Jae-Hyuck; Butler, Jason M
2016-12-21
Haematopoietic stem cells (HSCs) reside in distinct niches within the bone marrow (BM) microenvironment, comprised of endothelial cells (ECs) and tightly associated perivascular constituents that regulate haematopoiesis through the expression of paracrine factors. Here we report that the canonical NF-κB pathway in the BM vascular niche is a critical signalling axis that regulates HSC function at steady state and following myelosuppressive insult, in which inhibition of EC NF-κB promotes improved HSC function and pan-haematopoietic recovery. Mice expressing an endothelial-specific dominant negative IκBα cassette under the Tie2 promoter display a marked increase in HSC activity and self-renewal, while promoting the accelerated recovery of haematopoiesis following myelosuppression, in part through protection of the BM microenvironment following radiation and chemotherapeutic-induced insult. Moreover, transplantation of NF-κB-inhibited BM ECs enhanced haematopoietic recovery and protected mice from pancytopenia-induced death. These findings pave the way for development of niche-specific cellular approaches for the treatment of haematological disorders requiring myelosuppressive regimens.
Endothelial-specific inhibition of NF-κB enhances functional haematopoiesis
Poulos, Michael G.; Ramalingam, Pradeep; Gutkin, Michael C.; Kleppe, Maria; Ginsberg, Michael; Crowley, Michael J. P.; Elemento, Olivier; Levine, Ross L.; Rafii, Shahin; Kitajewski, Jan; Greenblatt, Matthew B.; Shim, Jae-Hyuck; Butler, Jason M.
2016-01-01
Haematopoietic stem cells (HSCs) reside in distinct niches within the bone marrow (BM) microenvironment, comprised of endothelial cells (ECs) and tightly associated perivascular constituents that regulate haematopoiesis through the expression of paracrine factors. Here we report that the canonical NF-κB pathway in the BM vascular niche is a critical signalling axis that regulates HSC function at steady state and following myelosuppressive insult, in which inhibition of EC NF-κB promotes improved HSC function and pan-haematopoietic recovery. Mice expressing an endothelial-specific dominant negative IκBα cassette under the Tie2 promoter display a marked increase in HSC activity and self-renewal, while promoting the accelerated recovery of haematopoiesis following myelosuppression, in part through protection of the BM microenvironment following radiation and chemotherapeutic-induced insult. Moreover, transplantation of NF-κB-inhibited BM ECs enhanced haematopoietic recovery and protected mice from pancytopenia-induced death. These findings pave the way for development of niche-specific cellular approaches for the treatment of haematological disorders requiring myelosuppressive regimens. PMID:28000664
Keegan, Alissa; Charest, Karry; Schmidt, Ryan; Briggs, Debra; Deangelo, Daniel J; Li, Betty; Morgan, Elizabeth A; Pozdnyakova, Olga
2018-03-27
To evaluate peripheral blood (PB) for minimal residual disease (MRD) assessment in adults with acute lymphoblastic leukaemia (ALL). We analysed 76 matched bone marrow (BM) aspirate and PB specimens independently for the presence of ALL MRD by six-colour flow cytometry (FC). The overall rate of BM MRD-positivity was 24% (18/76) and PB was also MRD-positive in 22% (4/18) of BM-positive cases. We identified two cases with evidence of leukaemic cells in PB at the time of the extramedullary relapse that were interpreted as MRD-negative in BM. The use of PB MRD as a non-invasive method for monitoring of systemic relapse may have added clinical and diagnostic value in patients with high risk of extramedullary disease. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Koobatian, Maxwell T; Liang, Mao-Shih; Swartz, Daniel D; Andreadis, Stelios T
2015-04-01
We examined the effects of senescence on the proliferation and leiomyogenic differentiation potential of mesenchymal stem cells (MSCs) isolated from bone marrow (BM-MSCs) or hair follicles (HF-MSCs). To this end, we compared ovine HF-MSCs and BM-MSCs in terms of their proliferation and differentiation potential to the smooth muscle cell lineage. We discovered that HF-MSCs are less susceptible to culture senescence compared with BM-MSCs. We hypothesized that application of mechanical forces may enhance the contractility and mechanical properties of vascular constructs prepared from senescent MSCs. Interestingly, HF-MSCs and BM-MSCs responded differently to changes in the mechanical microenvironment, suggesting that despite phenotypic similarities, MSCs from different anatomic locations may activate different pathways in response to the same microenvironmental factors. In turn, this may also suggest that cell-based tissue regeneration approaches may need to be tailored to the stem cell origin, donor age, and culture time for optimal results.
Pascutti, Maria Fernanda; Erkelens, Martje N.; Nolte, Martijn A.
2016-01-01
The ability of the bone marrow (BM) to generate copious amounts of blood cells required on a daily basis depends on a highly orchestrated process of proliferation and differentiation of hematopoietic stem and progenitor cells (HSPCs). This process can be rapidly adapted under stress conditions, such as infections, to meet the specific cellular needs of the immune response and the ensuing physiological changes. This requires a tight regulation in order to prevent either hematopoietic failure or transformation. Although adaptation to bacterial infections or systemic inflammation has been studied and reviewed in depth, specific alterations of hematopoiesis to viral infections have received less attention so far. Viruses constantly pose a significant health risk and demand an adequate, balanced response from our immune system, which also affects the BM. In fact, both the virus itself and the ensuing immune response can have a tremendous impact on the hematopoietic process. On one hand, this can be beneficial: it helps to boost the cellular response of the body to resolve the viral infection. But on the other hand, when the virus and the resulting antiviral response persist, the inflammatory feedback to the hematopoietic system will become chronic, which can be detrimental for a balanced BM output. Chronic viral infections frequently have clinical manifestations at the level of blood cell formation, and we summarize which viruses can lead to BM pathologies, like aplastic anemia, pancytopenia, hemophagocytic lymphohistiocytosis, lymphoproliferative disorders, and malignancies. Regarding the underlying mechanisms, we address specific effects of acute and chronic viral infections on blood cell production. As such, we distinguish four different levels in which this can occur: (1) direct viral infection of HSPCs, (2) viral recognition by HSPCs, (3) indirect effects on HSPCs by inflammatory mediators, and (4) the role of the BM microenvironment on hematopoiesis upon virus infection. In conclusion, this review provides a comprehensive overview on how viral infections can affect the formation of new blood cells, aiming to advance our understanding of the underlying cellular and molecular mechanisms to improve the treatment of BM failure in patients. PMID:27695457
Lynch, Patrick J; Thompson, Elaine E; McGinnis, Kathleen; Rovira Gonzalez, Yazmin I; Lo Surdo, Jessica; Bauer, Steven R; Hursh, Deborah A
2015-07-01
Bone marrow-derived multipotent stromal cells (BM-MSCs) display a broad range of therapeutically valuable properties, including the capacity to form skeletal tissues and dampen immune system responses. However, to use BM-MSCs in a clinical setting, amplification is required, which may introduce epigenetic changes that affect biological properties. Here we used chromatin immunoprecipitation to compare post-translationally modified histones at a subset of gene promoters associated with developmental and environmental plasticity in BM-MSCs from multiple donors following culture expansion. At many locations, we observed localization of both transcriptionally permissive (H3K4me3) and repressive (H3K27me3) histone modifications. These chromatin signatures were consistent among BM-MSCs from multiple donors. Since promoter activity depends on the relative levels of H3K4me3 and H3K27me3, we examined the ratio of H3K4me3 to H3K27me3 (K4/K27) at promoters during culture expansion. The H3K4me3 to H3K27me3 ratios were maintained at most assayed promoters over time. The exception was the adipose-tissue specific promoter for the PPAR-γ2 isoform of PPAR-γ, which is a critical positive regulator of adipogenesis. At PPAR-γ2, we observed a change in K4/K27 levels favoring the repressed chromatin state during culture. This change correlated with diminished promoter activity in late passage cells exposed to adipogenic stimuli. In contrast to BM-MSCs and osteoblasts, lineage-restricted preadipocytes exhibited levels of H3K4me3 and H3K27me3 that favored the permissive chromatin state at PPAR-γ2. These results demonstrate that locus-specific changes in H3K4me3 and H3K27me3 levels can occur during BM-MSC culture that may affect their properties. Stem Cells 2015;33:2169-2181. © 2015 AlphaMed Press.
Pascutti, Maria Fernanda; Erkelens, Martje N; Nolte, Martijn A
2016-01-01
The ability of the bone marrow (BM) to generate copious amounts of blood cells required on a daily basis depends on a highly orchestrated process of proliferation and differentiation of hematopoietic stem and progenitor cells (HSPCs). This process can be rapidly adapted under stress conditions, such as infections, to meet the specific cellular needs of the immune response and the ensuing physiological changes. This requires a tight regulation in order to prevent either hematopoietic failure or transformation. Although adaptation to bacterial infections or systemic inflammation has been studied and reviewed in depth, specific alterations of hematopoiesis to viral infections have received less attention so far. Viruses constantly pose a significant health risk and demand an adequate, balanced response from our immune system, which also affects the BM. In fact, both the virus itself and the ensuing immune response can have a tremendous impact on the hematopoietic process. On one hand, this can be beneficial: it helps to boost the cellular response of the body to resolve the viral infection. But on the other hand, when the virus and the resulting antiviral response persist, the inflammatory feedback to the hematopoietic system will become chronic, which can be detrimental for a balanced BM output. Chronic viral infections frequently have clinical manifestations at the level of blood cell formation, and we summarize which viruses can lead to BM pathologies, like aplastic anemia, pancytopenia, hemophagocytic lymphohistiocytosis, lymphoproliferative disorders, and malignancies. Regarding the underlying mechanisms, we address specific effects of acute and chronic viral infections on blood cell production. As such, we distinguish four different levels in which this can occur: (1) direct viral infection of HSPCs, (2) viral recognition by HSPCs, (3) indirect effects on HSPCs by inflammatory mediators, and (4) the role of the BM microenvironment on hematopoiesis upon virus infection. In conclusion, this review provides a comprehensive overview on how viral infections can affect the formation of new blood cells, aiming to advance our understanding of the underlying cellular and molecular mechanisms to improve the treatment of BM failure in patients.
Bernardi, Martina; Albiero, Elena; Alghisi, Alberta; Chieregato, Katia; Lievore, Chiara; Madeo, Domenico; Rodeghiero, Francesco; Astori, Giuseppe
2013-08-01
A medium supplemented with fetal bovine serum (FBS) is of common use for the expansion of human mesenchymal stromal cells (MSCs). However, its use is discouraged by regulatory authorities because of the risk of zoonoses and immune reactions. Human platelet lysate (PL) obtained by freezing/thawing disruption of platelets has been proposed as a possible substitute of FBS. The process is time-consuming and not well standardized. A new method for obtaining PL that is based on the use of ultrasound is proposed. Platelet sonication was performed by submerging platelet-containing plastic bags in an ultrasonic bath. To evaluate platelet lysis we measured platelet-derived growth factor-AB release. PL efficiency was tested by expanding bone marrow (BM)-MSCs, measuring population doubling time, differentiation capacity and immunogenic properties. Safety was evaluated by karyotyping expanded cells. After 30 minutes of sonication, 74% of platelet derived growth factor-AB was released. PL enhanced BM-MSC proliferation rate compared with FBS. The mean cumulative population doubling (cPD) of cells growth in PL at 10%, 7.5% and 5% was better compared with cPD obtained with 10% FBS. PD time (hours) of MSCs with PL obtained by sonication was shorter than for cPD with PL obtained by freezing/thawing (18.9 versus 17.4, P < 0.01). BM mononucleated cells expressed MSC markers and were able to differentiate into adipogenic, osteogenic and chondrogenic lineages. When BM-MSCs and T cells were co-cultured in close contact, immunosuppressive activity of BM-MSCs was maintained. Cell karyotype showed no genetic alterations. The proposed method for the production of PL by sonication could be a safe, efficient and fast substitute of FBS, without the potential risks of FBS. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Dunphy, C H; Polski, J M; Evans, H L; Gardner, L J
2001-08-01
Immunophenotyping of bone marrow (BM) specimens with acute myelogenous leukemia (AML) may be performed by flow cytometric (FC) or immunohistochemical (IH) techniques. Some markers (CD34, CD15, and CD117) are available for both techniques. Myeloperoxidase (MPO) analysis may be performed by enzyme cytochemical (EC) or IH techniques. To determine the reliability of these markers and MPO by these techniques, we designed a study to compare the results of analyses of these markers and MPO by FC (CD34, CD15, and CD117), EC (MPO), and IH (CD34, CD15, CD117, and MPO) techniques. Twenty-nine AMLs formed the basis of the study. These AMLs all had been immunophenotyped previously by FC analysis; 27 also had had EC analysis performed. Of the AMLs, 29 had BM core biopsies and 26 had BM clots that could be evaluated. The paraffin blocks of the 29 BM core biopsies and 26 BM clots were stained for CD34, CD117, MPO, and CD15. These results were compared with results by FC analysis (CD34, CD15, and CD117) and EC analysis (MPO). Immunodetection of CD34 expression in AML had a similar sensitivity by FC and IH techniques. Immunodetection of CD15 and CD117 had a higher sensitivity by FC analysis than by IH analysis. Detection of MPO by IH analysis was more sensitive than by EC analysis. There was no correlation of French-American-British (FAB) subtype of AML with CD34 or CD117 expression. Expression of CD15 was associated with AMLs with a monocytic component. Myeloperoxidase reactivity by IH analysis was observed in AMLs originally FAB subtyped as M0. CD34 can be equally detected by FC and IH techniques. CD15 and CD117 are better detected by FC analysis and MPO is better detected by IH analysis.
Linard, Christine; Brachet, Michel; Strup-Perrot, Carine; L'homme, Bruno; Busson, Elodie; Squiban, Claire; Holler, Valerie; Bonneau, Michel; Lataillade, Jean-Jacques; Bey, Eric; Benderitter, Marc
2018-05-18
Cutaneous radiation syndrome has severe long-term health consequences. Because it causes an unpredictable course of inflammatory waves, conventional surgical treatment is ineffective and often leads to a fibronecrotic process. Data about the long-term stability of healed wounds, with neither inflammation nor resumption of fibrosis, are lacking. In this study, we investigated the effect of injections of local autologous bone marrow-derived mesenchymal stromal cells (BM-MSCs), combined with plastic surgery for skin necrosis, in a large-animal model. Three months after irradiation overexposure to the rump, minipigs were divided into three groups: one group treated by simple excision of the necrotic tissue, the second by vascularized-flap surgery, and the third by vascularized-flap surgery and local autologous BM-MSC injections. Three additional injections of the BM-MSCs were performed weekly for 3 weeks. The quality of cutaneous wound healing was examined 1 year post-treatment. The necrotic tissue excision induced a pathologic scar characterized by myofibroblasts, excessive collagen-1 deposits, and inadequate vascular density. The vascularized-flap surgery alone was accompanied by inadequate production of extracellular matrix (ECM) proteins (decorin, fibronectin); the low col1/col3 ratio, associated with persistent inflammatory nodules, and the loss of vascularization both attested to continued immaturity of the ECM. BM-MSC therapy combined with vascularized-flap surgery provided mature wound healing characterized by a col1/col3 ratio and decorin and fibronectin expression that were all similar to that of nonirradiated skin, with no inflammation, and vascular stability. In this preclinical model, vascularized flap surgery successfully and lastingly remodeled irradiated skin only when combined with BM-MSC therapy. Stem Cells Translational Medicine 2018. © 2018 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
GORANTLA, VIJAY S.; SCHNEEBERGER, STEFAN; MOORE, LINDA R.; DONNENBERG, VERA S.; ZIMMERLIN, LUDOVIC; ANDREW LEE, W. P.; DONNENBERG, ALBERT D.
2014-01-01
Background aims Donor-derived vertebral bone marrow (BM) has been proposed to promote chimerism in solid organ transplantation with cadaveric organs. Reports of successful weaning from immunosuppression in patients receiving directed donor transplants in combination with donor BM or blood cells and novel peri-transplant immunosuppression has renewed interest in implementing similar protocols with cadaveric organs. Methods We performed six pre-clinical full-scale separations to adapt vertebral BM preparations to a good manufacturing practice (GMP) environment. Vertebral bodies L4–T8 were transported to a class 10 000 clean room, cleaned of soft tissue, divided and crushed in a prototype bone grinder. Bone fragments were irrigated with medium containing saline, albumin, DNAse and gentamicin, and strained through stainless steel sieves. Additional cells were eluted after two rounds of agitation using a prototype BM tumbler. Results The majority of recovered cells (70.9 ± 14.1%, mean ± SD) were eluted directly from the crushed bone, whereas 22.3% and 5.9% were eluted after the first and second rounds of tumbling, respectively. Cells were pooled and filtered (500, 200 μm) using a BM collection kit. Larger lumbar vertebrae yielded about 1.6 times the cells of thoracic vertebrae. The average product yielded 5.2 ± 1.2×1010 total cells, 6.2 ± 2.2×108 of which were CD45+ CD34+. Viability was 96.6 ± 1.9% and 99.1 ± 0.8%, respectively. Multicolor flow cytometry revealed distinct populations of CD34+ CD90+ CD117 dim hematopoietic stem cells (15.5 ± 7.5% of the CD34 + cells) and CD45− CD73+ CD105+ mesenchymal stromal cells (0.04 ± 0.04% of the total cells). Conclusions This procedure can be used to prepare clinical-grade cells suitable for use in human allotransplantation in a GMP environment. PMID:21905958
Sürder, Daniel; Manka, Robert; Moccetti, Tiziano; Lo Cicero, Viviana; Emmert, Maximilian Y; Klersy, Catherine; Soncin, Sabrina; Turchetto, Lucia; Radrizzani, Marina; Zuber, Michel; Windecker, Stephan; Moschovitis, Aris; Bühler, Ines; Kozerke, Sebastian; Erne, Paul; Lüscher, Thomas F; Corti, Roberto
2016-07-22
Intracoronary delivery of autologous bone marrow-derived mononuclear cells (BM-MNC) may improve remodeling of the left ventricle (LV) after acute myocardial infarction (AMI). To demonstrate long-term efficacy of BM-MNC treatment after AMI. In a multicenter study, we randomized 200 patients with large AMI in a 1:1:1 pattern into an open-labeled control and 2 BM-MNC treatment groups. In the BM-MNC groups, cells were either administered 5 to 7 days (early) or 3 to 4 weeks (late) after AMI. Cardiac magnetic resonance imaging was performed at baseline and after 12 months. The current analysis investigates the change from baseline to 12 months in global LV ejection fraction, LV volumes, scar size, and N-terminal pro-brain natriuretic peptide values comparing the 2 treatment groups with control in a linear regression model. Besides the complete case analysis, multiple imputation analysis was performed to address for missing data. Furthermore, the long-term clinical event rate was computed. The absolute change in LV ejection fraction from baseline to 12 months was -1.9±9.8% for control (mean±SD), -0.9±10.5% for the early treatment group, and -0.7±10.1% for the late treatment group. The difference between the groups was not significant, both for complete case analysis and multiple imputation analysis. A combined clinical end point occurred equally in all the groups. Overall, 1-year mortality was low (2.25%). Among patients with AMI and LV dysfunction, treatment with BM-MNC either 5 to 7 days or 3 to 4 weeks after AMI did not improve LV function at 12 months, compared with control. The results are limited by an important drop out rate. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00355186. © 2016 American Heart Association, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugino, Noriko; Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507; Miura, Yasuo, E-mail: ym58f5@kuhp.kyoto-u.ac.jp
Bone marrow (BM) microenvironment has a crucial role in supporting hematopoiesis. Here, by using a microarray analysis, we demonstrate that human BM mesenchymal stromal/stem cells (MSCs) in an early osteoinductive stage (e-MSCs) are characterized by unique hematopoiesis-associated gene expression with an enhanced hematopoiesis-supportive ability. In comparison to BM-MSCs without osteoinductive treatment, gene expression in e-MSCs was significantly altered in terms of their cell adhesion- and chemotaxis-related profiles, as identified with Gene Ontology and Gene Set Enrichment Analysis. Noteworthy, expression of the hematopoiesis-associated molecules CXCL12 and vascular cell adhesion molecule 1 was remarkably decreased in e-MSCs. e-MSCs supported an enhanced expansionmore » of CD34{sup +} hematopoietic stem and progenitor cells, and generation of myeloid lineage cells in vitro. In addition, short-term osteoinductive treatment favored in vivo hematopoietic recovery in lethally irradiated mice that underwent BM transplantation. e-MSCs exhibited the absence of decreased stemness-associated gene expression, increased osteogenesis-associated gene expression, and apparent mineralization, thus maintaining the ability to differentiate into adipogenic cells. Our findings demonstrate the unique biological characteristics of e-MSCs as hematopoiesis-regulatory stromal cells at differentiation stage between MSCs and osteoprogenitor cells and have significant implications in developing new strategy for using pharmacological osteoinductive treatment to support hematopoiesis in hematopoietic stem and progenitor cell transplantation. - Highlights: • Human BM-MSCs in an early osteoinductive stage (e-MSCs) support hematopoiesis. • Adhesion- and chemotaxis-associated gene signatures are altered in e-MSCs. • Expression of CXCL12 and VCAM1 is remarkably decreased in e-MSCs. • e-MSCs are at differentiation stage between MSCs and osteoprogenitor cells. • Osteoinductive treatment favors hematopoietic recovery after BMT in mice.« less
Dabrowska, Sylwia; Del Fattore, Andrea; Karnas, Elzbieta; Frontczak-Baniewicz, Malgorzata; Kozlowska, Hanna; Muraca, Maurizio; Janowski, Miroslaw; Lukomska, Barbara
2018-01-01
Mesenchymal stem cells have been shown therapeutic in various neurological disorders. Recent studies support the notion that the predominant mechanism by which MSCs act is through the release of extracellular vesicles (EVs). EVs seem to have similar therapeutic activity as their cellular counterparts and may represent an interesting alternative standalone therapy for various diseases. The aim of the study was to optimize the method of EV imaging to better understand therapeutic effects mediated by EVs. The fluorescent lipophilic stain PKH26 and superparamagnetic iron oxide nanoparticles conjugated with rhodamine (Molday ION Rhodamine B™) were used for the labeling of vesicles in human bone marrow MSCs (hBM-MSCs). The entire cycle from intracellular vesicles to EVs followed by their uptake by hBM-MSCs has been studied. The identity of vesicles has been proven by antibodies against: anti-CD9, -CD63, and -CD81 (tetraspanins). NanoSight particle tracking analysis (NTA), high-resolution flow cytometric analysis, transmission electron microscopy (TEM), ELYRA PS.1 super-resolution microscopy, and magnetic resonance imaging (MRI) were used for the characterization of vesicles. The PKH26 and Molday ION were exclusively localized in intracellular vesicles positively stained for EV markers: CD9, CD63, and CD81. The isolated EVs represent heterogeneous population of various sizes as confirmed by NTA. The TEM and MRI were capable to show successful labeling of EVs using ION. Co-culture of EVs with hBM-MSCs revealed their uptake by cells in vitro, as visualized by the co-localization of PKH26 or Molday ION with tetraspanins inside hBM-MSCs. PKH26 and Molday ION seem to be biocompatible with EVs, and the labeling did not interfere with the capability of EVs to re-enter hBM-MSCs during co-culture in vitro. Magnetic properties of IONs provide an additional advantage for the imaging of EV using TEM and MRI.
Qian, J; Ramroop, K; McLeod, A; Bandari, P; Livingston, D H; Harrison, J S; Rameshwar, P
2001-10-15
The bone marrow (BM), which is the major site of immune cell development in the adult, responds to different stimuli such as inflammation and hemorrhagic shock. Substance P (SP) is the major peptide encoded by the immune/hemopoietic modulator gene, preprotachykinin-1 (PPT-I). Differential gene expression using a microarray showed that SP reduced hypoxia-inducible factor-1alpha (HIF-1alpha) mRNA levels in BM stroma. Because long-term hypoxia induced the expression of PPT-I in BM mononuclear cells, we used timeline studies to determine whether PPT-I is central to the biologic responses of BM stroma subjected to 30-min hypoxia (pO(2) = 35 mm Hg) followed by reoxygenation. HIF-1alpha mRNA and protein levels were increased up to 12 h. At this time, beta-PPT-I mRNA was detected with the release of SP at 16 h. SP release correlated with down-regulation of HIF-1alpha to baseline. A direct role for SP in HIF-1alpha expression was demonstrated as follows: 1) transient knockout of beta-PPT-I showed an increase in HIF-1alpha expression up to 48 h of reoxygenation; and 2) HIF-1alpha expression remained baseline during reoxygenation when stroma was subjected to hypoxia in the presence of SP. Reoxygenation activated the PPT-I promoter with concomitant nuclear translocation of HIF-1alpha that can bind to the respective consensus sequences within the PPT-I promoter. SP reversed active caspase-3, an indicator of apoptosis and erythropoiesis, to homeostasis level after reoxygenation of hypoxic stroma. The results show that during reoxgenation the PPT-I gene acts as a negative regulator on the expression of HIF-1alpha and active caspase-3 in BM stroma subjected to reoxygenation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xue-Feng; Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850; Department of Respiration, Qinghai Provincial People's Hospital, Xining
MicroRNA-486 (miR-486) was first identified from human fetal liver cDNA library and validated as a regulator of hematopoiesis. Its roles in regulating the biological function of bone marrow-derived mesnechymal stem cells (BM-MSCs) under hypoxia have not been explored yet. In this study, we demonstrated that exposure to hypoxia upregulates miR-486 expression in BM-MSCs. Lentivirus-mediated overexpression of miR-486 resulted in increase of hepatocyte growth factor (HGF) and vascular endothelial growth factor(VEGF) in both mRNA and protein levels. MiR-486 expression also promotes proliferation and reduces apoptosis of BM-MSCs. Whereas MiR-486 knockdown downregulated the secretion of HGF and VEGF and induced apoptosis ofmore » BM-MSCs. Furthermore, PTEN-PI3K/AKT signaling was validated to be involved in changes of BM-MSC biological functions regulated by miR-486. These results suggested that MiR-486 mediated the hypoxia-induced angiogenic activity and promoted the proliferation and survival of BM-MSCs through regulating PTEN-PI3K/AKT signaling. These findings might provide a novel understanding of effective therapeutic strategy for hypoxic-ischemic diseases. - Highlights: • miR-486 is a hypoxia-induced miRNA. • miR-486 regulates the secretion of HGF and VEGF, promotes proliferation, and inhibits apoptosis of BM-MSCs. • miR-486 enhances PI3K/AKT activity signaling by targeting PTEN molecule.« less
Ross, Ewan A; Flores-Langarica, Adriana; Bobat, Saeeda; Coughlan, Ruth E; Marshall, Jennifer L; Hitchcock, Jessica R; Cook, Charlotte N; Carvalho-Gaspar, Manuela M; Mitchell, Andrea M; Clarke, Mary; Garcia, Paloma; Cobbold, Mark; Mitchell, Tim J; Henderson, Ian R; Jones, Nick D; Anderson, Graham; Buckley, Christopher D; Cunningham, Adam F
2014-01-01
The generation of immune cells from BM precursors is a carefully regulated process. This is essential to limit the potential for oncogenesis and autoimmunity yet protect against infection. How infection modulates this is unclear. Salmonella can colonize systemic sites including the BM and spleen. This resolving infection has multiple IFN-γ-mediated acute and chronic effects on BM progenitors, and during the first week of infection IFN-γ is produced by myeloid, NK, NKT, CD4+ T cells, and some lineage-negative cells. After infection, the phenotype of BM progenitors rapidly but reversibly alters, with a peak ∼30-fold increase in Sca-1hi progenitors and a corresponding loss of Sca-1lo/int subsets. Most strikingly, the capacity of donor Sca-1hi cells to reconstitute an irradiated host is reduced; the longer donor mice are exposed to infection, and Sca-1hic-kitint cells have an increased potential to generate B1a-like cells. Thus, Salmonella can have a prolonged influence on BM progenitor functionality not directly related to bacterial persistence. These results reflect changes observed in leucopoiesis during aging and suggest that BM functionality can be modulated by life-long, periodic exposure to infection. Better understanding of this process could offer novel therapeutic opportunities to modulate BM functionality and promote healthy aging. PMID:24825601
Schroeter, Marco R; Stein, Susanne; Heida, Nana-Maria; Leifheit-Nestler, Maren; Cheng, I-Fen; Gogiraju, Rajinikanth; Christiansen, Hans; Maier, Lars S; Shah, Ajay M; Hasenfuss, Gerd; Konstantinides, Stavros; Schäfer, Katrin
2012-01-01
Bone marrow (BM) progenitors participate in new vessel formation and endothelial repair. The leptin receptor (ObR) is expressed on hematopoietic cells; however, the effects of leptin on BM progenitor cells and their angiogenic potential are unknown. In the present study, we show that the short-term administration of leptin (over five consecutive days) into wild-type mice increased the number of circulating, BM-derived sca-1(+), flk-1(+) vascular progenitors, 95 ± 1.7% of which also expressed ObR. Ex vivo stimulation of BM cells with leptin enhanced the expression of NADPH oxidase isoform 2 (NOX2), and the leptin-induced increase in reactive oxygen species production, matrix metalloproteinase-9 (MMP9) expression and circulating soluble KitL levels was absent in mice lacking NOX2. Furthermore, intraperitoneal injections of leptin improved perfusion and increased the number of BM-derived, CD31-positive endothelial cells in ischaemic hindlimbs after femoral artery ligation. The effects of leptin on the mobilization of sca-1(+), flk-1(+) cells and neovascularization were abolished in mice transplanted with BM from ObR-deficient and in NOX2(-/-) mice. Our findings suggest that the angiogenic effects of leptin involve sca-1(+), flk-1(+) vascular progenitor cells mobilized from the BM in response to ObR-mediated activation of NOX2, increased MMP9 expression, and sKitL release.
Wagner, Wolfgang; Feldmann, Robert E; Seckinger, Anja; Maurer, Martin H; Wein, Frederik; Blake, Jonathon; Krause, Ulf; Kalenka, Armin; Bürgers, Heinrich F; Saffrich, Rainer; Wuchter, Patrick; Kuschinsky, Wolfgang; Ho, Anthony D
2006-04-01
Mesenchymal stem cells (MSC) raise high hopes in clinical applications. However, the lack of common standards and a precise definition of MSC preparations remains a major obstacle in research and application of MSC. Whereas surface antigen markers have failed to precisely define this population, a combination of proteomic data and microarray data provides a new dimension for the definition of MSC preparations. In our continuing effort to characterize MSC, we have analyzed the differential transcriptome and proteome expression profiles of MSC preparations isolated from human bone marrow under two different expansion media (BM-MSC-M1 and BM-MSC-M2). In proteomics, 136 protein spots were unambiguously identified by MALDI-TOF-MS and corresponding cDNA spots were selected on our "Human Transcriptome cDNA Microarray." Combination of datasets revealed a correlation in differential gene expression and protein expression of BM-MSC-M1 vs BM-MSC-M2. Genes involved in metabolism were more highly expressed in BM-MSC-M1, whereas genes involved in development, morphogenesis, extracellular matrix, and differentiation were more highly expressed in BM-MSC-M2. Interchanging culture conditions for 8 days revealed that differential expression was retained in several genes whereas it was altered in others. Our results have provided evidence that homogeneous BM-MSC preparations can reproducibly be isolated under standardized conditions, whereas culture conditions exert a prominent impact on transcriptome, proteome, and cellular organization of BM-MSC.
Lynch, Maureen E; Chiou, Aaron E; Lee, Min Joon; Marcott, Stephen C; Polamraju, Praveen V; Lee, Yeonkyung; Fischbach, Claudia
2016-08-01
Dynamic mechanical loading is a strong anabolic signal in the skeleton, increasing osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BM-MSCs) and increasing the bone-forming activity of osteoblasts, but its role in bone metastatic cancer is relatively unknown. In this study, we integrated a hydroxyapatite-containing three-dimensional (3D) scaffold platform with controlled mechanical stimulation to investigate the effects of cyclic compression on the interplay between breast cancer cells and BM-MSCs as it pertains to bone metastasis. BM-MSCs cultured within mineral-containing 3D poly(lactide-co-glycolide) (PLG) scaffolds differentiated into mature osteoblasts, and exposure to tumor-derived soluble factors promoted this process. When BM-MSCs undergoing osteogenic differentiation were exposed to conditioned media collected from mechanically loaded breast cancer cells, their gene expression of osteopontin was increased. This was further enhanced when mechanical compression was simultaneously applied to BM-MSCs, leading to more uniformly deposited osteopontin within scaffold pores. These results suggest that mechanical loading of 3D scaffold-based culture models may be utilized to evaluate the role of physiologically relevant physical cues on bone metastatic breast cancer. Furthermore, our data imply that cyclic mechanical stimuli within the bone microenvironment modulate interactions between tumor cells and BM-MSCs that are relevant to bone metastasis.
Balseanu, Adrian Tudor; Buga, Ana-Maria; Catalin, Bogdan; Wagner, Daniel-Christoph; Boltze, Johannes; Zagrean, Ana-Maria; Reymann, Klaus; Schaebitz, Wolf; Popa-Wagner, Aurel
2014-01-01
Attractive therapeutic strategies to enhance post-stroke recovery of aged brains include methods of cellular therapy that can enhance the endogenous restorative mechanisms of the injured brain. Since stroke afflicts mostly the elderly, it is highly desirable to test the efficacy of cell therapy in the microenvironment of aged brains that is generally refractory to regeneration. In particular, stem cells from the bone marrow allow an autologous transplantation approach that can be translated in the near future to the clinical practice. Such a bone marrow-derived therapy includes the grafting of stem cells as well as the delayed induction of endogenous stem cell mobilization and homing by the stem cell mobilizer granulocyte colony-stimulating factor (G-CSF). We tested the hypothesis that grafting of bone marrow-derived pre-differentiated mesenchymal cells (BM-MSCs) in G-CSF-treated animals improves the long-term functional outcome in aged rodents. To this end, G-CSF alone (50 μg/kg) or in combination with a single dose (106 cells) of rat BM MSCs was administered intravenously to Sprague-Dawley rats at 6 h after transient occlusion (90 min) of the middle cerebral artery. Infarct volume was measured by magnetic resonance imaging at 3 and 48 days post-stroke and additionally by immunhistochemistry at day 56. Functional recovery was tested during the entire post-stroke survival period of 56 days. Daily treatment for post-stroke aged rats with G-CSF led to a robust and consistent improvement of neurological function after 28 days. The combination therapy also led to robust angiogenesis in the formerly infarct core and beyond in the “islet of regeneration.” However, G-CSF + BM MSCs may not impact at all on the spatial reference-memory task or infarct volume and therefore did not further improve the post-stroke recovery. We suggest that in a real clinical practice involving older post-stroke patients, successful regenerative therapies would have to be carried out for a much longer time. PMID:25002846
Stern-Straeter, Jens; Bonaterra, Gabriel Alejandro; Juritz, Stephanie; Birk, Richard; Goessler, Ulrich Reinhart; Bieback, Karen; Bugert, Peter; Schultz, Johannes; Hörmann, Karl; Kinscherf, Ralf; Faber, Anne
2014-01-01
The creation of functional muscles/muscle tissue from human stem cells is a major goal of skeletal muscle tissue engineering. Mesenchymal stem cells (MSCs) from fat/adipose tissue (AT-MSCs), as well as bone marrow (BM-MSCs) have been shown to bear myogenic potential, which makes them candidate stem cells for skeletal muscle tissue engineering applications. The aim of this study was to analyse the myogenic differentiation potential of human AT-MSCs and BM-MSCs cultured in six different cell culture media containing different mixtures of growth factors. The following cell culture media were used in our experiments: mesenchymal stem cell growth medium (MSCGM)™ as growth medium, MSCGM + 5-azacytidine (5-Aza), skeletal muscle myoblast cell growth medium (SkGM)-2 BulletKit™, and 5, 30 and 50% conditioned cell culture media, i.e., supernatant of human satellite cell cultures after three days in cell culture mixed with MSCGM. Following the incubation of human AT-MSCs or BM-MSCs for 0, 4, 8, 11, 16 or 21 days with each of the cell culture media, cell proliferation was measured using the alamarBlue® assay. Myogenic differentiation was evaluated by quantitative gene expression analyses, using quantitative RT-PCR (qRT-PCR) and immunocytochemical staining (ICC), using well-defined skeletal markers, such as desmin (DES), myogenic factor 5 (MYF5), myosin, heavy chain 8, skeletal muscle, perinatal (MYH8), myosin, heavy chain 1, skeletal muscle, adult (MYH1) and skeletal muscle actin-α1 (ACTA1). The highest proliferation rates were observed in the AT-MSCs and BM-MSCs cultured with SkGM-2 BulletKit medium. The average proliferation rate was higher in the AT-MSCs than in the BM-MSCs, taking all six culture media into account. qRT-PCR revealed the expression levels of the myogenic markers, ACTA1, MYH1 and MYH8, in the AT-MSC cell cultures, but not in the BM-MSC cultures. The muscle-specific intermediate filament, DES, was only detected (by ICC) in the AT-MSCs, but not in the BM-MSCs. The strongest DES expression was observed using the 30% conditioned cell culture medium. The detection of myogenic markers using different cell culture media as stimuli was only achieved in the AT-MSCs, but not in the BM-MSCs. The strongest myogenic differentiation, in terms of the markers examined, was induced by the 30% conditioned cell culture medium.
[Bone marrow mesenchymal stem cells in Sprague-Dawley rat model of osteoarthritis].
Cui, Y P; Cao, Y P; Liu, H; Yang, X; Meng, Z C; Wang, R
2015-04-18
To investigate the efficacy of single time intra-articular different concentration of allogeneic bone marrow mesenchymal stem cells (BM-MSCs) injection in the treatment of Sprague-Dawley (SD) rat model of osteoarthritis (OA). In the study, 32 SD rats were equally randomized into 4 groups: control group, high concentration group (1×10(7)/mL BM-MSCs), low concentration group (5×10(6)/mL BM-MSCs) and high vs. low concentration group. The two knees of each rat were set up to a pair. The induction of OA was performed surgically randomly at one side in model group, and bilaterally in the other groups, which were through anterior cruciate ligament transaction (ACLT) and medial meniscus excising. After the operation, the SD rats were allowed free movement. Four weeks later, different concentrations of allogeneic BM-MSCs isolated from the SD rats, expanded in vitro and suspended in phosphate buffered solution (PBS) were delivered in the articular cavity of both knees; PBS was used as the control. After injection, we excised the femoral nerve and sciatic nerve to disuse the low limb. The cartilage histological sections of knees were scored by Mankin scoring system to assess the severity of the pathology. mRNA of collagen II was detected by real time polymerase chain reaction (RT-PCR). eGFP was detected by fluorescence microscope. Assessments were carried out 4 weeks after the operation in model group, and 3 weeks after injection in the other groups. Mankin scores of the BM-MSCs side and control side were 6.60±0.40 vs. 10.00±0.32 in low concentration group (P<0.05), and 5.40±0.51 vs. 9.60 ±0.51 in high concentration group (P<0.05). Mankin scores of high vs. low concentration group were 6.40±0.51 vs. 7.60±0.75 (P>0.05). mRNA expression of collagen II of the BM-MSCs side in low concentration group was 106%±1% in contrast to the control side. As in high concentration group it was 108%±1%, and 102%±1% in high vs. low concentration group. Labeled BM-MSCs were detected unexpectedly in the synovial membrane but not in cartilage tissue three weeks from injection. BM-MSCs could promote cartilage repair and inhibit OA progression through a trophic mechanism. There was no difference between the two concentrations.
Xie, Minghao; Qin, Huabo; Luo, Qianxin; He, Xiaosheng; He, Xiaowen; Lan, Ping; Lian, Lei
2017-01-01
Mesenchymal stromal cells (MSCs) have been used in the treatment of Crohn's disease (CD) because of the immunomodulatory ability. The aim of this study was to investigate the therapeutic effect of adipose-derived MSCs (AD-MSCs) and to compare the therapeutic effect of AD-MSCs with that of bone marrow MSCs (BM-MSCs) in a murine model of CD. Murine colitis model of CD was created by trinitrobenzene sulfonic acid (TNBS). Twelve hours after treatment with TNBS, the mouse model was injected with MSCs intraperitoneally. Real-time polymerase chain reaction and immunohistochemistry staining were used to measure the expression levels of inflammatory cytokines in colonic tissues to investigate the therapeutic effect of AD-MSCs. The ten-day survival was recorded after infusion of MSCs. Intraperitoneal injection of MSCs alleviated the clinical and histopathologic severity of intestinal inflammation, and improved the survival of the TNBS-induced mouse model of CD. AD-MSCs could effectively increase the expression of interleukin-10 and reduce the secretion of pro-inflammatory cytokines including tumor necrosis factor-α, interleukin-12, and vascular endothelial growth factor. The mucosal injury was repaired by AD-MSCs. These effects were comparable between AD-MSCs and BM-MSCs. The therapeutic effect appears similar between AD-MSCs and BM-MSCs in treating CD. AD-MSCs may be a potential alternative of cell-based therapy for CD.
Inhibition of the TGF-β receptor I kinase promotes hematopoiesis in MDS
Zhou, Li; Nguyen, Aaron N.; Sohal, Davendra; Ying Ma, Jing; Pahanish, Perry; Gundabolu, Krishna; Hayman, Josh; Chubak, Adam; Mo, Yongkai; Bhagat, Tushar D.; Das, Bhaskar; Kapoun, Ann M.; Navas, Tony A.; Parmar, Simrit; Kambhampati, Suman; Pellagatti, Andrea; Braunchweig, Ira; Zhang, Ying; Wickrema, Amittha; Medicherla, Satyanarayana; Boultwood, Jacqueline; Platanias, Leonidas C.; Higgins, Linda S.; List, Alan F.; Bitzer, Markus
2008-01-01
MDS is characterized by ineffective hematopoiesis that leads to peripheral cytopenias. Development of effective treatments has been impeded by limited insight into pathogenic pathways governing dysplastic growth of hematopoietic progenitors. We demonstrate that smad2, a downstream mediator of transforming growth factor–β (TGF-β) receptor I kinase (TBRI) activation, is constitutively activated in MDS bone marrow (BM) precursors and is overexpressed in gene expression profiles of MDS CD34+ cells, providing direct evidence of overactivation of TGF-β pathway in this disease. Suppression of the TGF-β signaling by lentiviral shRNA-mediated down-regulation of TBRI leads to in vitro enhancement of hematopoiesis in MDS progenitors. Pharmacologic inhibition of TBRI (alk5) kinase by a small molecule inhibitor, SD-208, inhibits smad2 activation in hematopoietic progenitors, suppresses TGF-β–mediated gene activation in BM stromal cells, and reverses TGF-β–mediated cell-cycle arrest in BM CD34+ cells. Furthermore, SD-208 treatment alleviates anemia and stimulates hematopoiesis in vivo in a novel murine model of bone marrow failure generated by constitutive hepatic expression of TGF-β1. Moreover, in vitro pharmacologic inhibition of TBRI kinase leads to enhancement of hematopoiesis in varied morphologic MDS subtypes. These data directly implicate TGF-β signaling in the pathobiology of ineffective hematopoiesis and identify TBRI as a potential therapeutic target in low-risk MDS. PMID:18474728
Garcia-Gomez, Antonio; Las Rivas, Javier De; Ocio, Enrique M.; Díaz-Rodríguez, Elena; Montero, Juan C.; Martín, Montserrat; Blanco, Juan F.; Sanchez-Guijo, Fermín M.; Pandiella, Atanasio; San Miguel, Jesús F.; Garayoa, Mercedes
2014-01-01
Despite evidence about the implication of the bone marrow (BM) stromal microenvironment in multiple myeloma (MM) cell growth and survival, little is known about the effects of myelomatous cells on BM stromal cells. Mesenchymal stromal cells (MSCs) from healthy donors (dMSCs) or myeloma patients (pMSCs) were co-cultured with the myeloma cell line MM.1S, and the transcriptomic profile of MSCs induced by this interaction was analyzed. Deregulated genes after co-culture common to both d/pMSCs revealed functional involvement in tumor microenvironment cross-talk, myeloma growth induction and drug resistance, angiogenesis and signals for osteoclast activation and osteoblast inhibition. Additional genes induced by co-culture were exclusively deregulated in pMSCs and predominantly associated to RNA processing, the ubiquitine-proteasome pathway, cell cycle regulation, cellular stress and non-canonical Wnt signaling. The upregulated expression of five genes after co-culture (CXCL1, CXCL5 and CXCL6 in d/pMSCs, and Neuregulin 3 and Norrie disease protein exclusively in pMSCs) was confirmed, and functional in vitro assays revealed putative roles in MM pathophysiology. The transcriptomic profile of pMSCs co-cultured with myeloma cells may better reflect that of MSCs in the BM of myeloma patients, and provides new molecular insights to the contribution of these cells to MM pathophysiology and to myeloma bone disease. PMID:25268740
Li, Da-Wei; Lei, Xiaohua; He, Feng-Li; He, Jin; Liu, Ya-Li; Ye, Ya-Jing; Deng, Xudong; Duan, Enkui; Yin, Da-Chuan
2017-12-01
The physical and chemical properties of the scaffold are known to play important roles in three-dimensional (3D) cell culture, which always determine the cellular fate or the results of implantation. To control these properties becomes necessary for meeting the requirements of a variety of tissue engineering applications. In this study, a series of silk fibroin/chitosan (SF/CS) scaffolds with tunable properties were prepared using freeze-drying method, and the rat bone marrow-derived mesenchymal stem cells (BM-MSCs) were seeded in these scaffolds to evaluate their availability of use in tissue engineering. The 3D structure, mechanical properties and degradation ability of SF/CS scaffold can be tuned by changing the total concentration of the precursor solution and the blending ratio between SF and CS. BM-MSCs cultured in the SF/CS scaffold exhibited excellent proliferation and multiple morphologies. The induction of osteogenic and adipogenic differentiation of BM-MSCs were successful in this scaffold when cultured in vitro. Subcutaneous implantation of the SF/CS scaffolds did not cause any inflammatory response within four weeks, which revealed good compatibility. Moreover, the implanted scaffold allowed host cells to invade, adhere, grow and form new blood vessels. With these excellent performance, SF/CS scaffold has great potential in preparing implants for tissue engineering applications. Copyright © 2017. Published by Elsevier B.V.
Previously we found that dendritic cells (DC) were sensitive functional bioindicators of ambient PM (APM) exposure mediating Th2-allergic inflammation in the draining lymph nodes. Here, the ability of bone-marrow-derived DC (DC) and putative BM-derived basophils (Ba) to present a...
Jacome, Ariana; Navarro, Susana; Río, Paula; Yañez, Rosa M; González-Murillo, Africa; Lozano, M Luz; Lamana, Maria Luisa; Sevilla, Julian; Olive, Teresa; Diaz-Heredia, Cristina; Badell, Isabel; Estella, Jesus; Madero, Luis; Guenechea, Guillermo; Casado, José; Segovia, Jose C; Bueren, Juan A
2009-06-01
Previous clinical trials based on the genetic correction of purified CD34(+) cells with gamma-retroviral vectors have demonstrated clinical efficacy in different monogenic diseases, including X-linked severe combined immunodeficiency, adenosine deaminase deficient severe combined immunodeficiency and chronic granulomatous disease. Similar protocols, however, failed to engraft Fanconi anemia (FA) patients with genetically corrected cells. In this study, we first aimed to correlate the hematological status of 27 FA patients with CD34(+) cell values determined in their bone marrow (BM). Strikingly, no correlation between these parameters was observed, although good correlations were obtained when numbers of colony-forming cells (CFCs) were considered. Based on these results, and because purified FA CD34(+) cells might have suboptimal repopulating properties, we investigated the possibility of genetically correcting unselected BM samples from FA patients. Our data show that the lentiviral transduction of unselected FA BM cells mediates an efficient phenotypic correction of hematopoietic progenitor cells and also of CD34(-) mesenchymal stromal cells (MSCs), with a reported role in hematopoietic engraftment. Our results suggest that gene therapy protocols appropriate for the treatment of different monogenic diseases may not be adequate for stem cell diseases like FA. We propose a new approach for the gene therapy of FA based on the rapid transduction of unselected hematopoietic grafts with lentiviral vectors (LVs).
Jacome, Ariana; Navarro, Susana; Río, Paula; Yañez, Rosa M; González-Murillo, Africa; Luz Lozano, M; Lamana, Maria Luisa; Sevilla, Julian; Olive, Teresa; Diaz-Heredia, Cristina; Badell, Isabel; Estella, Jesus; Madero, Luis; Guenechea, Guillermo; Casado, José; Segovia, Jose C; Bueren, Juan A
2009-01-01
Previous clinical trials based on the genetic correction of purified CD34+ cells with γ-retroviral vectors have demonstrated clinical efficacy in different monogenic diseases, including X-linked severe combined immunodeficiency, adenosine deaminase deficient severe combined immunodeficiency and chronic granulomatous disease. Similar protocols, however, failed to engraft Fanconi anemia (FA) patients with genetically corrected cells. In this study, we first aimed to correlate the hematological status of 27 FA patients with CD34+ cell values determined in their bone marrow (BM). Strikingly, no correlation between these parameters was observed, although good correlations were obtained when numbers of colony-forming cells (CFCs) were considered. Based on these results, and because purified FA CD34+ cells might have suboptimal repopulating properties, we investigated the possibility of genetically correcting unselected BM samples from FA patients. Our data show that the lentiviral transduction of unselected FA BM cells mediates an efficient phenotypic correction of hematopoietic progenitor cells and also of CD34− mesenchymal stromal cells (MSCs), with a reported role in hematopoietic engraftment. Our results suggest that gene therapy protocols appropriate for the treatment of different monogenic diseases may not be adequate for stem cell diseases like FA. We propose a new approach for the gene therapy of FA based on the rapid transduction of unselected hematopoietic grafts with lentiviral vectors (LVs). PMID:19277017
Mazharian, Alexandra; Watson, Steve P.; Séverin, Sonia
2009-01-01
Objective Megakaryopoiesis and platelet formation is a multistep process through which hematopoietic progenitor cells develop into mature megakaryocytes (MKs) and form proplatelets. The present study investigates the regulation of different steps of megakaryopoiesis (i.e., differentiation, migration, and proplatelet formation) by extracellar signal-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) in two models of primary murine MKs derived from bone marrow (BM) cells and fetal liver (FL) cells. Materials and Methods A preparation of MKs was generated from BM obtained from femora and tibiae of C57BL6 mice. FL-derived MKs were obtained from the liver of mouse fetuses aged 13 to 15 days. Results For both cell populations, activation of MEK-ERK1/2 pathway by thrombopoietin was found to have a critical role in MK differentiation, regulating polyploidy and surface expression of CD34, GPIIb, and GPIb. The MEK-ERK1/2 pathway plays a major role in migration of BM-derived MKs toward a stromal-cell−derived factor 1α (SDF1α) gradient, whereas unexpectedly, FL-derived cells fail to migrate in response to the chemokine due to negligible expression of its receptor, CXCR4. The MEK-ERK1/2 pathway also plays a critical role in the generation of proplatelets. In contrast, p38MAPK pathway was not involved in any of these processes. Conclusion This report demonstrates a critical role of MEK-ERK1/2 pathway in MK differentiation, motility, and proplatelet formation. This study highlights several differences between BM- and FL-derived MKs, which are discussed. PMID:19619605
Park, Susanna S.; Bauer, Gerhard; Abedi, Mehrdad; Pontow, Suzanne; Panorgias, Athanasios; Jonnal, Ravi; Zawadzki, Robert J.; Werner, John S.; Nolta, Jan
2015-01-01
Purpose. Because human bone marrow (BM) CD34+ stem cells home into damaged tissue and may play an important role in tissue repair, this pilot clinical trial explored the safety and feasibility of intravitreal autologous CD34+ BM cells as potential therapy for ischemic or degenerative retinal conditions. Methods. This prospective study enrolled six subjects (six eyes) with irreversible vision loss from retinal vascular occlusion, hereditary or nonexudative age-related macular degeneration, or retinitis pigmentosa. CD34+ cells were isolated under Good Manufacturing Practice conditions from the mononuclear cellular fraction of the BM aspirate using a CliniMACs magnetic cell sorter. After intravitreal CD34+ cell injection, serial ophthalmic examinations, microperimetry/perimetry, fluorescein angiography, electroretinography (ERG), optical coherence tomography (OCT), and adaptive optics OCT were performed during the 6-month follow-up. Results. A mean of 3.4 million (range, 1–7 million) CD34+ cells were isolated and injected per eye. The therapy was well tolerated with no intraocular inflammation or hyperproliferation. Best-corrected visual acuity and full-field ERG showed no worsening after 6 months. Clinical examination also showed no worsening during follow-up except among age-related macular degeneration subjects in whom mild progression of geographic atrophy was noted in both the study eye and contralateral eye at 6-month follow-up, concurrent with some possible decline on multifocal ERG and microperimetry. Cellular in vivo imaging using adaptive optics OCT showed changes suggestive of new cellular incorporation into the macula of the hereditary macular degeneration study eye. Conclusions. Intravitreal autologous BM CD34+ cell therapy appears feasible and well tolerated in eyes with ischemic or degenerative retinal conditions and merits further exploration. (ClinicalTrials.gov number, NCT01736059.) PMID:25491299
In vitro Culture of Naïve Human Bone Marrow Mesenchymal Stem Cells: A Stemness Based Approach
Pal, Bidisha; Das, Bikul
2017-01-01
Human bone marrow derived mesenchymal stem cells (BM-MSCs) resides in their niches in close proximity to hematopoietic stem cells (HSCs). These naïve MSCs have tremendous potential in regenerative therapeutics, and may also be exploited by cancer and infectious disease agents. Hence, it is important to study the physiological and pathological roles of naïve MSC. However, our knowledge of naïve MSCs is limited by lack of appropriate isolation and in vitro culture methods. Established culture methods use serum rich media, and serial passaging for retrospective isolation of MSCs. These primed MSCs may not reflect the true physiological and pathological roles of naive MSCs (Figure 1). Therefore, there is a strong need for direct isolation and in vitro culture of naïve MSCs to study their stemness (self-renewal and undifferentiated state) and developmental ontogeny. We have taken a niche-based approach on stemness to better maintain naïve MSCs in vitro. In this approach, stemness is broadly divided as niche dependent (extrinsic), niche independent (intrinsic) and niche modulatory (altruistic or competitive). Using this approach, we were able to maintain naïve CD271+/CD133+ BM-MSCs for 2 weeks. Furthermore, this in vitro culture system helped us to identify naïve MSCs as a protective niche site for Mycobacterium tuberculosis, the causative organism of pulmonary tuberculosis. In this review, we discuss the in vitro culture of primed vs. naïve human BM derived MSCs with a special focus on how a stemness based approach could facilitate the study of naïve BM-MSCs. PMID:28884113
Yang, Mo; Li, Karen; Ng, Pak Cheung; Chuen, Carmen Ka Yee; Lau, Tze Kin; Cheng, Yuan Shan; Liu, Yuan Sheng; Li, Chi Kong; Yuen, Patrick Man Pan; James, Anthony Edward; Lee, Shuk Man; Fok, Tai Fai
2007-07-01
Serotonin is a monoamine neurotransmitter that has multiple extraneuronal functions. We previously reported that serotonin exerted mitogenic stimulation on megakaryocytopoiesis mediated by 5-hydroxytryptamine (5-HT)2 receptors. In this study, we investigated effects of serotonin on ex vivo expansion of human cord blood CD34+ cells, bone marrow (BM) stromal cell colony-forming unit-fibroblast (CFU-F) formation, and antiapoptosis of megakaryoblastic M-07e cells. Our results showed that serotonin at 200 nM significantly enhanced the expansion of CD34+ cells to early stem/progenitors (CD34+ cells, colony-forming unit-mixed [CFU-GEMM]) and multilineage committed progenitors (burst-forming unit/colony-forming unit-erythroid [BFU/CFU-E], colony-forming unit-granulocyte macrophage, colony-forming unit-megakaryocyte, CD61+ CD41+ cells). Serotonin also increased nonobese diabetic/severe combined immunodeficient repopulating cells in the expansion culture in terms of human CD45+, CD33+, CD14+ cells, BFU/CFU-E, and CFU-GEMM engraftment in BM of animals 6 weeks post-transplantation. Serotonin alone or in addition to fibroblast growth factor, platelet-derived growth factor, or vascular endothelial growth factor stimulated BM CFU-F formation. In M-07e cells, serotonin exerted antiapoptotic effects (annexin V, caspase-3, and propidium iodide staining) and reduced mitochondria membrane potential damage. The addition of ketanserin, a competitive antagonist of 5-HT2 receptor, nullified the antiapoptotic effects of serotonin. Our data suggest the involvement of serotonin in promoting hematopoietic stem cells and the BM microenvironment. Serotonin could be developed for clinical ex vivo expansion of hematopoietic stem cells for transplantation. Disclosure of potential conflicts of interest is found at the end of this article.
Jakubikova, Jana; Cholujova, Danka; Hideshima, Teru; Gronesova, Paulina; Soltysova, Andrea; Harada, Takeshi; Joo, Jungnam; Kong, Sun-Young; Szalat, Raphael E.; Richardson, Paul G.; Munshi, Nikhil C.; Dorfman, David M.; Anderson, Kenneth C.
2016-01-01
Specific niches within the tumor bone marrow (BM) microenvironment afford a sanctuary for multiple myeloma (MM) clones due to stromal cell-tumor cell interactions, which confer survival advantage and drug resistance. Defining the sequelae of tumor cell interactions within the MM niches on an individualized basis may provide the rationale for personalized therapies. To mimic the MM niche, we here describe a new 3D co-culture ex-vivo model in which primary MM patient BM cells are co-cultured with mesenchymal stem cells (MSC) in a hydrogel 3D system. In the 3D model, MSC with conserved phenotype (CD73+CD90+CD105+) formed compact clusters with active fibrous connections, and retained lineage differentiation capacity. Extracellular matrix molecules, integrins, and niche related molecules including N-cadherin and CXCL12 are expressed in 3D MSC model. Furthermore, activation of osteogenesis (MMP13, SPP1, ADAMTS4, and MGP genes) and osteoblastogenic differentiation was confirmed in 3D MSC model. Co-culture of patient-derived BM mononuclear cells with either autologous or allogeneic MSC in 3D model increased proliferation of MM cells, CXCR4 expression, and SP cells. We carried out immune profiling to show that distribution of immune cell subsets was similar in 3D and 2D MSC model systems. Importantly, resistance to novel agents (IMiDs, bortezomib, carfilzomib) and conventional agents (doxorubicin, dexamethasone, melphalan) was observed in 3D MSC system, reflective of clinical resistance. This 3D MSC model may therefore allow for studies of MM pathogenesis and drug resistance within the BM niche. Importantly, ongoing prospective trials are evaluating its utility to inform personalized targeted and immune therapy in MM. PMID:27764795
Vinardell, T; Buckley, C T; Thorpe, S D; Kelly, D J
2011-10-01
The objective of this study was to determine the functional properties of cartilaginous tissues generated by porcine MSCs isolated from different tissue sources, and to compare these properties to those derived from chondrocytes (CCs). MSCs were isolated from bone marrow (BM) and infrapatellar fat pad (FP), while CCs were harvested from the articular surface of the femoro-patellar joint. Culture-expanded CCs and MSCs were encapsulated in agarose hydrogels and cultured in the presence of TGFβ3. Samples were analysed biomechanically, biochemically and histologically at days 0, 21 and 42. After 42 days in free swelling culture, mean GAG content was 1.50% w/w in CC-seeded constructs, compared to 0.95% w/w in FP- and 0.43% w/w in BM-seeded constructs. Total collagen accumulation was highest in FP constructs. DNA content increased with time for all the groups. The mechanical functionality of cartilaginous tissues engineered using CCs was superior to that generated from either source of MSCs. Differences were also observed in the spatial distribution of matrix components in tissues engineered using CCs and MSCs, which appears to have a strong influence on the apparent mechanical properties of the constructs. Therefore, while functional cartilaginous tissues can be engineered using MSCs isolated from different sources, the spatial composition of these tissues is unlike that generated using chondrocytes, suggesting that MSCs and chondrocytes respond differently to the regulatory factors present within developing cartilaginous constructs. Copyright © 2010 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noticewala, Sonal S.; Li, Nan; Williamson, Casey W.
Purpose: To quantify longitudinal changes in active bone marrow (ABM) distributions within unirradiated (extrapelvic) and irradiated (pelvic) bone marrow (BM) in cervical cancer patients treated with concurrent chemoradiation therapy (CRT). Methods and Materials: We sampled 39 cervical cancer patients treated with CRT, of whom 25 were treated with concurrent cisplatin (40 mg/m{sup 2}) and 14 were treated with cisplatin (40 mg/m{sup 2}) plus gemcitabine (50-125 mg/m{sup 2}) (C/G). Patients underwent {sup 18}F-fluorodeoxyglucose positron emission tomographic/computed tomographic imaging at baseline and 1.5 to 6.0 months after treatment. ABM was defined as the subvolume of bone with standardized uptake value (SUV) above the mean SUV ofmore » the total bone. The primary aim was to measure the compensatory response, defined as the change in the log of the ratio of extrapelvic versus pelvic ABM percentage from baseline to after treatment. We also quantified the change in the proportion of ABM and mean SUV in pelvic and extrapelvic BM using a 2-sided paired t test. Results: We observed a significant increase in the overall extrapelvic compensatory response after CRT (0.381; 95% confidence interval [CI]: 0.312, 0.449) and separately in patients treated with cisplatin (0.429; 95% CI: 0.340, 0.517) and C/G (0.294; 95% CI: 0.186, 0.402). We observed a trend toward higher compensatory response in patients treated with cisplatin compared with C/G (P=.057). Pelvic ABM percentage was reduced after CRT both in patients receiving cisplatin (P<.001) and in those receiving C/G (P<.001), whereas extrapelvic ABM percentage was increased in patients receiving cisplatin (P<.001) and C/G (P<.001). The mean SUV in pelvic structures was lower after CRT with both cisplatin (P<.001) and C/G (P<.001). The mean SUV appeared lower in extrapelvic structures after CRT in patients treated with C/G (P=.076) but not with cisplatin (P=.942). We also observed that older age and more intense chemotherapy regimens were correlated with a decreased compensatory response on multivariable analysis. In patients treated with C/G, mean pelvic bone marrow dose was found to be negatively correlated with the compensatory response. Conclusion: Patients have differing subacute compensatory responses after CRT, owing to variable recovery in unirradiated marrow. Intensive chemotherapy regimens appear to decrease the extrapelvic compensatory response, which may lead to increased hematologic toxicity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xingbing, E-mail: wangxingbing91@hotmail.com; Cheng, Qiansong; Li, Lailing
Bone marrow derived-mesenchymal stromal cells (BM-MSCs) are multipotent, nonhematopoietic progenitors in a hematopoietic microenvironment and indispensable for regulating hematopoiesis. Several studies have reported that toll-like receptors (TLRs) are expressed in mesenchymal stromal cells (MSCs) to modulate their biological functions. In this study, we investigated the possible role(s) of TLRs in mediating the hematopoiesis-supporting role of human BM-MSCs. Human BM-MSCs were analyzed for mRNA expression of TLR1-10 by reverse transcription-polymerase chain reaction. TLR1-6, but not TLR7-10 were expressed by BM-MSCs. The protein expression of TLR2 and TLR4 was also confirmed by flow cytometry. We further explored the role of TLR2 andmore » TLR4 in mediating the capacity of BM-MSCs to support the proliferation and differentiation of CD34{sup +} hematopoietic stem/progenitor cells obtained from cord blood. BM-MSCs increased proliferation of CD34{sup +} cells and promoted the differentiation towards the myeloid lineage 7 or 14 days after co-culture, as well as colony formation by those cells and the production of interleukin 1 (IL-1), IL-8, IL-11, stem cell factor (SCF), granulocyte colony-stimulating factor (CSF), macrophage CSF and granulocyte-macrophage CSF, if MSCs had been stimulated with TLR2 agonist (PAM{sub 3}CSK{sub 4}) or TLR4 agonist (LPS). Interestingly, although these effects were elevated in a different degree, a synergistic effect was not observed in BM-MSCs co-stimulated with PAM{sub 3}CSK{sub 4} and LPS. Together, our findings suggest that TLR2 and TLR4 signaling may indirectly regulate hematopoiesis by modulating BM-MSCs' functions. The increased hematopoietic proliferation and differentiation could be mediated, at least in part, by augmented hematopoiesis-related cytokine production of BM-MSCs.« less
Alvarez-Twose, Iván; González de Olano, David; Sánchez-Muñoz, Laura; Matito, Almudena; Esteban-López, Maria I; Vega, Arantza; Mateo, Maria Belén; Alonso Díaz de Durana, Maria D; de la Hoz, Belén; Del Pozo Gil, Maria D; Caballero, Teresa; Rosado, Ana; Sánchez Matas, Isabel; Teodósio, Cristina; Jara-Acevedo, María; Mollejo, Manuela; García-Montero, Andrés; Orfao, Alberto; Escribano, Luis
2010-06-01
Systemic mast cell activation disorders (MCADs) are characterized by severe and systemic mast cell (MC) mediators-related symptoms frequently associated with increased serum baseline tryptase (sBt). To analyze the clinical, biological, and molecular characteristics of adult patients presenting with systemic MC activation symptoms/anaphylaxis in the absence of skin mastocytosis who showed clonal (c) versus nonclonal (nc) MCs and to provide indication criteria for bone marrow (BM) studies. Eighty-three patients were studied. Patients showing clonal BM MCs were grouped into indolent systemic mastocytosis without skin lesions (ISMs(-); n = 48) and other c-MCADs (n = 3)-both with CD25(++) BM MCs and either positive mast/stem cell growth factor receptor gene (KIT) mutation or clonal human androgen receptor assay (HUMARA) tests-and nc-MCAD (CD25-negative BM MCs in the absence of KIT mutation; n = 32) and compared for their clinical, biological, and molecular characteristics. Most clonal patients (48/51; 94%) met the World Health Organization criteria for systemic mastocytosis and were classified as ISMs(-), whereas the other 3 c-MCAD and all nc-MCAD patients did not. In addition, although both patients with ISMs(-) and patients with nc-MCAD presented with idiopathic and allergen-induced anaphylaxis, the former showed a higher frequency of men, cardiovascular symptoms, and insect bite as a trigger, together with greater sBt. Based on a multivariate analysis, a highly efficient model to predict clonality before BM sampling was built that includes male sex (P = .01), presyncopal and/or syncopal episodes (P = .009) in the absence of urticaria and angioedema (P = .003), and sBt >25 microg/L (P = .006) as independent predictive factors. Patients with c-MCAD and ISMs(-) display unique clinical and laboratory features different from nc-MCAD patients. A significant percentage of c-MCAD patients can be considered as true ISMs(-) diagnosed at early phases of the disease. Copyright (c) 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Golan, Karin; Kollet, Orit; Lapidot, Tsvee
2013-01-01
Hematopoietic stem cells (HSCs) are mostly retained in a quiescent non-motile mode in their bone marrow (BM) niches, shifting to a migratory cycling and differentiating state to replenish the blood with mature leukocytes on demand. The balance between the major chemo-attractants CXCL12, predominantly in the BM, and S1P, mainly in the blood, dynamically regulates HSC recruitment to the circulation versus their retention in the BM. During alarm situations, stress-signals induce a decrease in CXCL12 levels in the BM, while S1P levels are rapidly and transiently increased in the circulation, thus favoring mobilization of stem cells as part of host defense and repair mechanisms. Myeloid cytokines, including G-CSF, up-regulate S1P signaling in the BM via the PI3K pathway. Induced CXCL12 secretion from stromal cells via reactive oxygen species (ROS) generation and increased S1P1 expression and ROS signaling in HSCs, all facilitate mobilization. Bone turnover is also modulated by both CXCL12 and S1P, regulating the dynamic BM stromal microenvironment, osteoclasts and stem cell niches which all functionally express CXCL12 and S1P receptors. Overall, CXCL12 and S1P levels in the BM and circulation are synchronized to mutually control HSC motility, leukocyte production and osteoclast/osteoblast bone turnover during homeostasis and stress situations. PMID:24276423
Sánchez-Abarca, Luis Ignacio; Rosón-Burgo, Beatriz; Redondo, Alba; Rico, Ana; Preciado, Silvia; Ortega, Rebeca; Rodríguez, Concepción; Muntión, Sandra; Hernández-Hernández, Ángel; De Las Rivas, Javier; González, Marcos; González Porras, José Ramón; del Cañizo, Consuelo; Sánchez-Guijo, Fermín
2017-01-01
There is evidence of continuous bidirectional cross-talk between malignant cells and bone marrow-derived mesenchymal stromal cells (BM-MSC), which favors the emergence and progression of myeloproliferative neoplastic (MPN) diseases. In the current work we have compared the function and gene expression profile of BM-MSC from healthy donors (HD-MSC) and patients with MPN (JAK2V617F), showing no differences in the morphology, proliferation and differentiation capacity between both groups. However, BM-MSC from MPN expressed higher mean fluorescence intensity (MIF) of CD73, CD44 and CD90, whereas CD105 was lower when compared to controls. Gene expression profile of BM-MSC showed a total of 169 genes that were differentially expressed in BM-MSC from MPN patients compared to HD-MSC. In addition, we studied the ability of BM-MSC to support the growth and survival of hematopoietic stem/progenitor cells (HSPC), showing a significant increase in the number of CFU-GM colonies when MPN-HSPC were co-cultured with MPN-MSC. Furthermore, MPN-MSC showed alteration in the expression of genes associated to the maintenance of hematopoiesis, with an overexpression of SPP1 and NF-kB, and a downregulation of ANGPT1 and THPO. Our results suggest that BM-MSC from JAK2+ patients differ from their normal counterparts and favor the maintenance of malignant clonal hematopoietic cells. PMID:28796790
Myeloid Conditioning with c-kit-Targeted CAR-T Cells Enables Donor Stem Cell Engraftment.
Arai, Yasuyuki; Choi, Uimook; Corsino, Cristina I; Koontz, Sherry M; Tajima, Masaki; Sweeney, Colin L; Black, Mary A; Feldman, Steven A; Dinauer, Mary C; Malech, Harry L
2018-05-02
We report a novel approach to bone marrow (BM) conditioning using c-kit-targeted chimeric antigen receptor T (c-kit CAR-T) cells in mice. Previous reports using anti-c-kit or anti-CD45 antibody linked to a toxin such as saporin have been promising. We developed a distinctly different approach using c-kit CAR-T cells. Initial studies demonstrated in vitro killing of hematopoietic stem cells by c-kit CAR-T cells but poor expansion in vivo and poor migration of CAR-T cells into BM. Pre-treatment of recipient mice with low-dose cyclophosphamide (125 mg/kg) together with CXCR4 transduction in the CAR-T cells enhanced trafficking to and expansion in BM (<1%-13.1%). This resulted in significant depletion of the BM c-kit + population (9.0%-0.1%). Because congenic Thy1.1 CAR-T cells were used in the Thy1.2-recipient mice, anti-Thy1.1 antibody could be used to deplete CAR-T cells in vivo before donor BM transplant. This achieved 20%-40% multilineage engraftment. We applied this conditioning to achieve an average of 28% correction of chronic granulomatous disease mice by wild-type BM transplant. Our findings provide a proof of concept that c-kit CAR-T cells can achieve effective BM conditioning without chemo-/radiotherapy. Our work also demonstrates that co-expression of a trafficking receptor can enhance targeting of CAR-T cells to a designated tissue. Published by Elsevier Inc.
Wasnik, Samiksha; Kantipudi, Suma; Kirkland, Mark A.; Pande, Gopal
2016-01-01
The extracellular microenvironment in bone marrow (BM) is known to regulate the growth and differentiation of hematopoietic stem and progenitor cells (HSPC). We have developed cell-free matrices from a BM stromal cell line (HS-5), which can be used as substrates either in native form or as tissue engineered coatings, for the enhanced ex vivo expansion of umbilical cord blood (UCB) derived HSPC. The physicochemical properties (surface roughness, thickness, and uniformity) of native and spin coated acellular matrices (ACM) were studied using scanning and atomic force microscopy (SEM and AFM). Lineage-specific expansion of HSPC, grown on these substrates, was evaluated by immunophenotypic (flow cytometry) and functional (colony forming) assays. Our results show that the most efficient expansion of lineage-specific HSPC occurred on spin coated ACM. Our method provides an improved protocol for ex vivo HSPC expansion and it offers a system to study the in vivo roles of specific molecules in the hematopoietic niche that influence HSPC expansion. PMID:26981135
Aljitawi, Omar S.; Li, Dandan; Xiao, Yinghua; Zhang, Da; Ramachandran, Karthik; Stehno-Bittel, Lisa; Van Veldhuizen, Peter; Lin, Tara L.; Kambhampati, Suman; Garimella, Rama
2014-01-01
The disparate responses of leukemia cells to chemotherapy in vivo, compared to in vitro, is partly related to the interactions of leukemic cells and the 3 dimensional (3D) bone marrow stromal microenvironment. We investigated the effects of chemotherapy agents on leukemic cell lines co-cultured with human bone marrow mesenchymal stem cell (hu-BM-MSC) in 3D. Comparison was made to leukemic cells treated in suspension, or grown on a hu-BM-MSC monolayer (2D conditions). We demonstrated that leukemic cells cultured in 3D were more resistant to drug-induced apoptosis compared to cells cultured in 2D or in suspension. We also demonstrated significant differences in leukemic cell response to chemotherapy using different leukemic cell lines cultured in 3D. We suggest that the differential responses to chemotherapy in 3D may be related to the expression of N-cadherin in the co-culture system. This unique model provides an opportunity to study leukemic cell responses to chemotherapy in 3D. PMID:23566162
Miwa, Hiroyuki; Era, Takumi
2018-01-29
Mesenchymal stem cells (MSCs) are somatic stem cells that can be derived from adult bone marrow (BM) and white adipose tissue (WAT), and that display multipotency and self-renewal capacity. Although MSCs are essential for tissue formation and have already been used in clinical therapy, the origins and markers of these cells remain unknown. In this study, we first investigated the developmental process of MSCs in mouse embryos using the gene encoding platelet-derived growth factor receptor α ( Pdgfra ) as a marker. We then traced cells expressing Pdgfra and other genes (brachyury, Sox1 and Pmx1 ) in various mutant mouse embryos until the adult stage. This tracing of MSC origins and destinies indicates that embryonic MSCs emerge in waves and that almost all adult BM MSCs and WAT MSCs originate from mesoderm and embryonic Pdgfrα-positive cells. Furthermore, we demonstrate that adult Pdgfrα-positive cells are involved in some pathological conditions. © 2018. Published by The Company of Biologists Ltd.
Smith, Christopher A.; Board, Tim N.; Rooney, Paul; Eagle, Mark J.; Richardson, Stephen M.
2017-01-01
To improve the safe use of allograft bone, decellularization techniques may be utilized to produce acellular scaffolds. Such scaffolds should retain their innate biological and biomechanical capacity and support mesenchymal stem cell (MSC) osteogenic differentiation. However, as allograft bone is derived from a wide age-range, this study aimed to determine whether donor age impacts on the ability an osteoinductive, acellular scaffold produced from human bone to promote the osteogenic differentiation of bone marrow MSCs (BM-MSC). BM-MSCs from young and old donors were seeded on acellular bone cubes from young and old donors undergoing osteoarthritis related hip surgery. All combinations resulted in increased osteogenic gene expression, and alkaline phosphatase (ALP) enzyme activity, however BM-MSCs cultured on old donor bone displayed the largest increases. BM-MSCs cultured in old donor bone conditioned media also displayed higher osteogenic gene expression and ALP activity than those exposed to young donor bone conditioned media. ELISA and Luminex analysis of conditioned media demonstrated similar levels of bioactive factors between age groups; however, IGF binding protein 1 (IGFBP1) concentration was significantly higher in young donor samples. Additionally, structural analysis of old donor bone indicated an increased porosity compared to young donor bone. These results demonstrate the ability of a decellularized scaffold produced from young and old donors to support osteogenic differentiation of cells from young and old donors. Significantly, the older donor bone produced greater osteogenic differentiation which may be related to reduced IGFBP1 bioavailability and increased porosity, potentially explaining the excellent clinical results seen with the use of allograft from aged donors. PMID:28505164
Effect of developmental stage of HSC and recipient on transplant outcomes
Arora, Natasha; Wenzel, Pamela L.; McKinney-Freeman, Shannon L.; Ross, Samantha J.; Kim, Peter G.; Chou, Stephanie S.; Yoshimoto, Momoko; Yoder, Mervin C.; Daley, George Q.
2014-01-01
Summary The first hematopoietic stem cells (HSCs) that engraft irradiated adult mice arise in the aortagonad-mesonephros (AGM) on embryonic day 11.5 (E11.5). However, at this stage there is a discrepancy between the apparent frequency of HSCs suggested by imaging and their rarity when measured by limiting dilution transplant. We have attempted to reconcile this difference using neonatal recipients, which are more permissive for embryonic HSC engraftment. We found that embryonic HSCs from E9.5 and E10.5 preferentially engrafted neonates, whereas developmentally mature, definitive HSCs from E14.5 fetal liver (FL) or adult bone marrow (BM) more robustly engrafted adults. Neonatal engraftment was enhanced after treating adult BM-derived HSCs with interferon. Adult BM-derived HSCs preferentially homed to the liver in neonatal mice yet showed balanced homing to the liver and spleen in adults. These findings emphasize the functional differences between nascent and mature definitive HSCs. PMID:24914562
Schrobback, Karsten; Klein, Travis Jacob
2015-01-01
Appropriate selection of scaffold architecture is a key challenge in cartilage tissue engineering. Gap junction-mediated intercellular contacts play important roles in precartilage condensation of mesenchymal cells. However, scaffold architecture could potentially restrict cell–cell communication and differentiation. This is particularly important when choosing the appropriate culture platform as well as scaffold-based strategy for clinical translation, that is, hydrogel or microtissues, for investigating differentiation of chondroprogenitor cells in cartilage tissue engineering. We, therefore, studied the influence of gap junction-mediated cell–cell communication on chondrogenesis of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and articular chondrocytes. Expanded human chondrocytes and BM-MSCs were either (re-) differentiated in micromass cell pellets or encapsulated as isolated cells in alginate hydrogels. Samples were treated with and without the gap junction inhibitor 18-α glycyrrhetinic acid (18αGCA). DNA and glycosaminoglycan (GAG) content and gene expression levels (collagen I/II/X, aggrecan, and connexin 43) were quantified at various time points. Protein localization was determined using immunofluorescence, and adenosine-5′-triphosphate (ATP) was measured in conditioned media. While GAG/DNA was higher in alginate compared with pellets for chondrocytes, there were no differences in chondrogenic gene expression between culture models. Gap junction blocking reduced collagen II and extracellular ATP in all chondrocyte cultures and in BM-MSC hydrogels. However, differentiation capacity was not abolished completely by 18αGCA. Connexin 43 levels were high throughout chondrocyte cultures and peaked only later during BM-MSC differentiation, consistent with the delayed response of BM-MSCs to 18αGCA. Alginate hydrogels and microtissues are equally suited culture platforms for the chondrogenic (re-)differentiation of expanded human articular chondrocytes and BM-MSCs. Therefore, reducing direct cell–cell contacts does not affect in vitro chondrogenesis. However, blocking gap junctions compromises cell differentiation, pointing to a prominent role for hemichannel function in this process. Therefore, scaffold design strategies that promote an increasing distance between single chondroprogenitor cells do not restrict their differentiation potential in tissue-engineered constructs. PMID:25693425
Schrobback, Karsten; Klein, Travis Jacob; Woodfield, Tim B F
2015-06-01
Appropriate selection of scaffold architecture is a key challenge in cartilage tissue engineering. Gap junction-mediated intercellular contacts play important roles in precartilage condensation of mesenchymal cells. However, scaffold architecture could potentially restrict cell-cell communication and differentiation. This is particularly important when choosing the appropriate culture platform as well as scaffold-based strategy for clinical translation, that is, hydrogel or microtissues, for investigating differentiation of chondroprogenitor cells in cartilage tissue engineering. We, therefore, studied the influence of gap junction-mediated cell-cell communication on chondrogenesis of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and articular chondrocytes. Expanded human chondrocytes and BM-MSCs were either (re-) differentiated in micromass cell pellets or encapsulated as isolated cells in alginate hydrogels. Samples were treated with and without the gap junction inhibitor 18-α glycyrrhetinic acid (18αGCA). DNA and glycosaminoglycan (GAG) content and gene expression levels (collagen I/II/X, aggrecan, and connexin 43) were quantified at various time points. Protein localization was determined using immunofluorescence, and adenosine-5'-triphosphate (ATP) was measured in conditioned media. While GAG/DNA was higher in alginate compared with pellets for chondrocytes, there were no differences in chondrogenic gene expression between culture models. Gap junction blocking reduced collagen II and extracellular ATP in all chondrocyte cultures and in BM-MSC hydrogels. However, differentiation capacity was not abolished completely by 18αGCA. Connexin 43 levels were high throughout chondrocyte cultures and peaked only later during BM-MSC differentiation, consistent with the delayed response of BM-MSCs to 18αGCA. Alginate hydrogels and microtissues are equally suited culture platforms for the chondrogenic (re-)differentiation of expanded human articular chondrocytes and BM-MSCs. Therefore, reducing direct cell-cell contacts does not affect in vitro chondrogenesis. However, blocking gap junctions compromises cell differentiation, pointing to a prominent role for hemichannel function in this process. Therefore, scaffold design strategies that promote an increasing distance between single chondroprogenitor cells do not restrict their differentiation potential in tissue-engineered constructs.
Lynch, Maureen E.; Chiou, Aaron E.; Lee, Min Joon; Marcott, Stephen C.; Polamraju, Praveen V.; Lee, Yeonkyung
2016-01-01
Dynamic mechanical loading is a strong anabolic signal in the skeleton, increasing osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BM-MSCs) and increasing the bone-forming activity of osteoblasts, but its role in bone metastatic cancer is relatively unknown. In this study, we integrated a hydroxyapatite-containing three-dimensional (3D) scaffold platform with controlled mechanical stimulation to investigate the effects of cyclic compression on the interplay between breast cancer cells and BM-MSCs as it pertains to bone metastasis. BM-MSCs cultured within mineral-containing 3D poly(lactide-co-glycolide) (PLG) scaffolds differentiated into mature osteoblasts, and exposure to tumor-derived soluble factors promoted this process. When BM-MSCs undergoing osteogenic differentiation were exposed to conditioned media collected from mechanically loaded breast cancer cells, their gene expression of osteopontin was increased. This was further enhanced when mechanical compression was simultaneously applied to BM-MSCs, leading to more uniformly deposited osteopontin within scaffold pores. These results suggest that mechanical loading of 3D scaffold-based culture models may be utilized to evaluate the role of physiologically relevant physical cues on bone metastatic breast cancer. Furthermore, our data imply that cyclic mechanical stimuli within the bone microenvironment modulate interactions between tumor cells and BM-MSCs that are relevant to bone metastasis. PMID:27401765
Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells.
Deuse, Tobias; Stubbendorff, Mandy; Tang-Quan, Karis; Phillips, Neil; Kay, Mark A; Eiermann, Thomas; Phan, Thang T; Volk, Hans-Dieter; Reichenspurner, Hermann; Robbins, Robert C; Schrepfer, Sonja
2011-01-01
We here present an immunologic head-to-head comparison between human umbilical cord lining mesenchymal stem cells (clMSCs) and adult bone marrow MSCs (bmMSCs) from patients >65 years of age. clMSCs had significantly lower HLA class I expression, higher production of tolerogenic TGF-β and IL-10, and showed significantly faster proliferation. In vitro activation of allogeneic lymphocytes and xenogeneic in vivo immune activation was significantly stronger with bmMSCs, whereas immune recognition of clMSCs was significantly weaker. Thus, bmMSCs were more quickly rejected in immunocompetent mice. IFN-γ at 25 ng/ml increased both immunogenicity by upregulation of HLA class I/ HLA-DR expression and tolerogenicity by increasing intracellular HLA-G and surface HLA-E expression, augmenting TGF-β and IL-10 release, and inducing indoleamine 2,3-dioxygenase (IDO) expression. Higher concentrations of IFN-γ (>50 ng/ml) further enhanced the immunosuppressive phenotype of clMSCs, more strongly downregulating HLA-DR expression and further increasing IDO production (at 500 ng/ml). The net functional immunosuppressive efficacy of MSCs was tested in mixed lymphocyte cultures. Although both clMSCs and bmMSCs significantly reduced in vitro immune activation, clMSCs were significantly more effective than bmMSCs. The veto function of both MSC lines was enhanced in escalating IFN-γ environments. In conclusion, clMSCs show a more beneficial immunogeneic profile and stronger overall immunosuppressive potential than aged bmMSCs.
Regulation of long-term repopulating hematopoietic stem cells by EPCR/PAR1 signaling
Gur-Cohen, Shiri; Kollet, Orit; Graf, Claudine; Esmon, Charles T.; Ruf, Wolfram; Lapidot, Tsvee
2016-01-01
The common developmental origin of endothelial and hematopoietic cells is manifested by coexpression of several cell surface receptors. Adult murine bone marrow (BM) long-term repopulating hematopoietic stem cells (LT-HSCs), endowed with the highest repopulation and self-renewal potential, express endothelial protein C receptor (EPCR), which is used as a marker to isolate them. EPCR/PAR1 signaling in endothelial cells has anticoagulant and anti-inflammatory roles, while thrombin/PAR1 signaling induces coagulation and inflammation. Recent studies define two new PAR1-mediated signaling cascades that regulate EPCR+ LT-HSC BM retention and egress. EPCR/PAR1 signaling facilitates LT-HSC BM repopulation, retention, survival, and chemotherapy resistance by restricting nitric oxide (NO) production, maintaining NOlow LT-HSC BM retention with increased VLA4 expression, affinity, and adhesion. Conversely, acute stress and clinical mobilization upregulate thrombin generation and activate different PAR1 signaling which overcomes BM EPCR+ LT-HSC retention, inducing their recruitment to the bloodstream. Thrombin/PAR1 signaling induces NO generation, TACE-mediated EPCR shedding, and upregulation of CXCR4 and PAR1, leading to CXCL12-mediated stem and progenitor cell mobilization. This review discusses new roles for factors traditionally viewed as coagulation related, which independently act in the BM to regulate PAR1 signaling in bone- and blood-forming progenitor cells, navigating their fate by controlling NO production. PMID:26928241
Zhang, Xiaoling; Shang, Xun; Guo, Fukun; Murphy, Kim; Kirby, Michelle; Kelly, Patrick; Reeves, Lilith; Smith, Franklin O.; Williams, David A.
2008-01-01
Previous studies showed that Fanconi anemia (FA) murine stem cells have defective reconstitution after bone marrow (BM) transplantation. The mechanism underlying this defect is not known. Here, we report defective homing of FA patient BM progenitors transplanted into mouse models. Using cells from patients carrying mutations in FA complementation group A (FA-A), we show that when transplanted into nonobese diabetic/severe combined immunodeficiency (NOD/SCID) recipient mice, FA-A BM cells exhibited impaired homing activity. FA-A cells also showed defects in both cell-cell and cell-matrix adhesion. Complementation of FA-A deficiency by reexpression of FANCA readily restored adhesion of FA-A cells. A significant decrease in the activity of the Rho GTPase Cdc42 was found associated with these defective functions in patient-derived cells, and expression of a constitutively active Cdc42 mutant was able to rescue the adhesion defect of FA-A cells. These results provide the first evidence that FA proteins influence human BM progenitor homing and adhesion via the small GTPase Cdc42-regulated signaling pathway. PMID:18565850
No strict requirement for eosinophils for bone marrow plasma cell survival.
Bortnick, Alexandra; Chernova, Irene; Spencer, Sean P; Allman, David
2018-02-14
Lasting antibody responses are maintained by long-lived plasma cells, which are thought to lodge in the BM in specialized survival niches. Eosinophils have been reported to function as a critical component of the BM survival niche where they are thought to provide pro-survival signals to nearby plasma cells. Recent study shows that many BM plasma cells are recently generated and chiefly short-lived cells, raising the possibility that rare plasma cell-eosinophil interactions are a rate-limiting step needed to establish lasting humoral immunity. To address these issues, we examined the impact of eosinophil depletion on short- and long-lived BM plasma cells in the context of antibody responses induced by both T-cell dependent and T-cell independent antigens. Surprisingly, our results failed to support a role for eosinophils in either plasma cell generation or survival. These studies included examination of plasma cell frequencies in mice lacking eosinophils either after antibody-mediated depletion, or due to mutation of the GATA1 locus. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rebelatto, Carmen K; Aguiar, Alessandra M; Senegaglia, Alexandra C; Aita, Carlos M; Hansen, Paula; Barchiki, Fabiane; Kuligovski, Crisciele; Olandoski, Márcia; Moutinho, José A; Dallagiovanna, Bruno; Goldenberg, Samuel; Brofman, Paulo S; Nakao, Lia S; Correa, Alejandro
2009-01-16
Mesenchymal stem cells (MSCs) have received special attention for cardiomyoplasty because several studies have shown that they differentiate into cardiomyocytes both in vitro and in vivo. Nitric oxide (NO) is a free radical signaling molecule that regulates several differentiation processes including cardiomyogenesis. Here, we report an investigation of the effects of two NO agents (SNAP and DEA/NO), able to activate both cGMP-dependent and -independent pathways, on the cardiomyogenic potential of bone marrow-derived mesenchymal stem cells (BM-MSCs) and adipose tissue-derived stem cells (ADSCs). The cells were isolated, cultured and treated with NO agents. Cardiac- and muscle-specific gene expression was analyzed by indirect immunofluorescence, flow cytometry, RT-PCR and real-time PCR. We found that untreated (control) ADSCs and BM-MSCs expressed some muscle markers and NO-derived intermediates induce an increased expression of some cardiac function genes in BM-MSCs and ADSCs. Moreover, NO agents considerably increased the pro-angiogenic potential mostly of BM-MSCs as determined by VEGF mRNA levels.
Role of stromal cell-mediated Notch signaling in CLL resistance to chemotherapy
Kamdje, A H Nwabo; Bassi, G; Pacelli, L; Malpeli, G; Amati, E; Nichele, I; Pizzolo, G; Krampera, M
2012-01-01
Stromal cells are essential components of the bone marrow (BM) microenvironment that regulate and support the survival of different tumors, including chronic lymphocytic leukemia (CLL). In this study, we investigated the role of Notch signaling in the promotion of survival and chemoresistance of human CLL cells in coculture with human BM-mesenchymal stromal cells (hBM-MSCs) of both autologous and allogeneic origin. The presence of BM-MSCs rescued CLL cells from apoptosis both spontaneously and following induction with various drugs, including Fludarabine, Cyclophosphamide, Bendamustine, Prednisone and Hydrocortisone. The treatment with a combination of anti-Notch-1, Notch-2 and Notch-4 antibodies or γ-secretase inhibitor XII (GSI XII) reverted this protective effect by day 3, even in presence of the above-mentioned drugs. Overall, our findings show that stromal cell-mediated Notch-1, Notch-2 and Notch-4 signaling has a role in CLL survival and resistance to chemotherapy. Therefore, its blocking could be an additional tool to overcome drug resistance and improve the therapeutic strategies for CLL. PMID:22829975
Vasculogenesis and Diabetic Erectile Dysfunction: How Relevant Is Glycemic Control?
Castela, Angela; Gomes, Pedro; Silvestre, Ricardo; Guardão, Luísa; Leite, Liliana; Chilro, Rui; Rodrigues, Ilda; Vendeira, Pedro; Virag, Ronald; Costa, Carla
2017-01-01
Erectile dysfunction (ED) is a complication of diabetes, condition responsible for causing endothelial dysfunction (EDys) and hampering repair mechanisms. However, scarce information is available linking vasculogenesis mediated by Endothelial Progenitor Cells (EPCs) and diabetes-associated ED. Furthermore, it remains to be elucidated if glycemic control plays a role on EPCs functions, EPCs modulators, and penile vascular health. We evaluated the effects of diabetes and insulin therapy on bone marrow (BM) and circulating EPCs, testosterone, and systemic/penile Stromal Derived Factor-1 alpha (SDF-1α) expression. Male Wistar rats were divided into groups: age-matched controls, 8-weeks streptozotocin-induced type 1 diabetics, and insulin-treated 8-weeks diabetics. EPCs were identified by flow cytometry for CD34/CD133/VEGFR2/CXCR4 antigens. Systemic SDF-1α and testosterone levels were evaluated by ELISA. Penile SDF-1α protein expression was assessed, in experimental and human diabetic cavernosal samples, by immunohistochemical techniques. Diabetic animals presented a reduction of BM-derived EPCs and an increase in putative circulating endothelial cells (CECs) sloughed from vessels wall. These alterations were rescued by insulin therapy. In addition, glycemic control promoted an increase in systemic testosterone and SDF-1α levels, which were significantly decreased in animals with diabetes. SDF-1α protein expression was reduced in experimental and human cavernosal diabetic samples, an effect prevented by insulin in treated animals. Insulin administration rescued the effects of diabetes on BM function, CECs levels, testosterone, and plasmatic/penile SDF-1α protein expression. This emphasizes the importance of glycemic control in the prevention of diabetes-induced systemic and penile EDys, by the amelioration of endothelial damage, and increase in protective pathways. J. Cell. Biochem. 118: 82-91, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Immune reconstitution in patients with Fanconi anemia after allogeneic bone marrow transplantation.
Perlingeiro Beltrame, Miriam; Malvezzi, Mariester; Bonfim, Carmem; Covas, Dimas Tadeu; Orfao, Alberto; Pasquini, Ricardo
2014-07-01
Fanconi anemia is an autosomal recessive or X-linked genetic disorder characterized by bone marrow (BM) failure/aplasia. Failure of hematopoiesis results in depletion of the BM stem cell reservoir, which leads to severe anemia, neutropenia and thrombocytopenia, frequently requiring therapeutic interventions, including hematopoietic stem cell transplantation (HSCT). Successful BM transplantation (BMT) requires reconstitution of normal immunity. In the present study, we performed a detailed analysis of the distribution of peripheral blood subsets of T, B and natural killer (NK) lymphocytes in 23 patients with Fanconi anemia before and after BMT on days +30, +60, +100, +180, +270 and +360. In parallel, we evaluated the effect of related versus unrelated donor marrow as well as the presence of graft-versus-host disease (GVHD). After transplantation, we found different kinetics of recovery for the distinct major subsets of lymphocytes. NK cells were the first to recover, followed by cytotoxic CD8(+) T cells and B cells, and finally CD4(+) helper T cells. Early lymphocyte recovery was at the expense of memory cells, potentially derived from the graft, whereas recent thymic emigrant (CD31(+) CD45RA(+)) and naive CD4(+) or CD8(+) T cells rose only at 6 months after HSCT, in the presence of immunosuppressive GVHD prophylactic agents. Only slight differences were observed in the early recovery of cytotoxic CD8(+) T cells among those cases receiving a graft from a related donor versus an unrelated donor. Patients with GVHD displayed a markedly delayed recovery of NK cells and B cells as well as of regulatory T cells and both early thymic emigrant and total CD4(+) T cells. Our results support the utility of post-transplant monitoring of a peripheral blood lymphocyte subset for improved follow-up of patients with Fanconi anemia undergoing BMT. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Gastens, Martin H; Goltry, Kristin; Prohaska, Wolfgang; Tschöpe, Diethelm; Stratmann, Bernd; Lammers, Dirk; Kirana, Stanley; Götting, Christian; Kleesiek, Knut
2007-01-01
Ex vivo expansion is being used to increase the number of stem and progenitor cells for autologous cell therapy. Initiation of pivotal clinical trials testing the efficacy of these cells for tissue repair has been hampered by the challenge of assuring safe and high-quality cell production. A strategy is described here for clinical-scale expansion of bone marrow (BM)-derived stem cells within a mixed cell population in a completely closed process from cell collection through postculture processing using sterile connectable devices. Human BM mononuclear cells (BMMNC) were isolated, cultured for 12 days, and washed postharvest using either standard open procedures in laminar flow hoods or using automated closed systems. Conditions for these studies were similar to long-term BM cultures in which hematopoietic and stromal components are cultured together. Expansion of marrow-derived stem and progenitor cells was then assessed. Cell yield, number of colony forming units (CFU), phenotype, stability, and multilineage differentiation capacity were compared from the single pass perfusion bioreactor and standard flask cultures. Purification of BMMNC using a closed Ficoll gradient process led to depletion of 98% erythrocytes and 87% granulocytes, compared to 100% and 70%, respectively, for manual processing. After closed system culture, mesenchymal progenitors, measured as CD105+CD166+CD14-CD45- and fibroblastic CFU, expanded 317- and 364-fold, respectively, while CD34+ hematopoietic progenitors were depleted 10-fold compared to starting BMMNC. Cultured cells exhibited multilineage differentiation by displaying adipogenic, osteogenic, and endothelial characteristics in vitro. No significant difference was observed between manual and bioreactor cultures. Automated culture and washing of the cell product resulted in 181 x 10(6) total cells that were viable and contained fibroblastic CFU for at least 24 h of storage. A combination of closed, automated technologies enabled production of good manufacturing practice (GMP)-compliant cell therapeutics, ready for use within a clinical setting, with minimal risk of microbial contamination.
Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue?
Hardouin, Pierre; Rharass, Tareck; Lucas, Stéphanie
2016-01-01
Bone marrow adipose tissue (BMAT) emerges as a distinct fat depot whose importance has been proved in the bone-fat interaction. Indeed, it is well recognized that adipokines and free fatty acids released by adipocytes can directly or indirectly interfere with cells of bone remodeling or hematopoiesis. In pathological states, such as osteoporosis, each of adipose tissues - subcutaneous white adipose tissue (WAT), visceral WAT, brown adipose tissue (BAT), and BMAT - is differently associated with bone mineral density (BMD) variations. However, compared with the other fat depots, BMAT displays striking features that makes it a substantial actor in bone alterations. BMAT quantity is well associated with BMD loss in aging, menopause, and other metabolic conditions, such as anorexia nervosa. Consequently, BMAT is sensed as a relevant marker of a compromised bone integrity. However, analyses of BMAT development in metabolic diseases (obesity and diabetes) are scarce and should be, thus, more systematically addressed to better apprehend the bone modifications in that pathophysiological contexts. Moreover, bone marrow (BM) adipogenesis occurs throughout the whole life at different rates. Following an ordered spatiotemporal expansion, BMAT has turned to be a heterogeneous fat depot whose adipocytes diverge in their phenotype and their response to stimuli according to their location in bone and BM. In vitro, in vivo, and clinical studies point to a detrimental role of BM adipocytes (BMAs) throughout the release of paracrine factors that modulate osteoblast and/or osteoclast formation and function. However, the anatomical dissemination and the difficulties to access BMAs still hamper our understanding of the relative contribution of BMAT secretions compared with those of peripheral adipose tissues. A further characterization of the phenotype and the functional regulation of BMAs are ever more required. Based on currently available data and comparison with other fat tissues, this review addresses the originality of the BMAT with regard to its development, anatomy, metabolic properties, and response to physiological cues.
Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue?
Hardouin, Pierre; Rharass, Tareck; Lucas, Stéphanie
2016-01-01
Bone marrow adipose tissue (BMAT) emerges as a distinct fat depot whose importance has been proved in the bone–fat interaction. Indeed, it is well recognized that adipokines and free fatty acids released by adipocytes can directly or indirectly interfere with cells of bone remodeling or hematopoiesis. In pathological states, such as osteoporosis, each of adipose tissues – subcutaneous white adipose tissue (WAT), visceral WAT, brown adipose tissue (BAT), and BMAT – is differently associated with bone mineral density (BMD) variations. However, compared with the other fat depots, BMAT displays striking features that makes it a substantial actor in bone alterations. BMAT quantity is well associated with BMD loss in aging, menopause, and other metabolic conditions, such as anorexia nervosa. Consequently, BMAT is sensed as a relevant marker of a compromised bone integrity. However, analyses of BMAT development in metabolic diseases (obesity and diabetes) are scarce and should be, thus, more systematically addressed to better apprehend the bone modifications in that pathophysiological contexts. Moreover, bone marrow (BM) adipogenesis occurs throughout the whole life at different rates. Following an ordered spatiotemporal expansion, BMAT has turned to be a heterogeneous fat depot whose adipocytes diverge in their phenotype and their response to stimuli according to their location in bone and BM. In vitro, in vivo, and clinical studies point to a detrimental role of BM adipocytes (BMAs) throughout the release of paracrine factors that modulate osteoblast and/or osteoclast formation and function. However, the anatomical dissemination and the difficulties to access BMAs still hamper our understanding of the relative contribution of BMAT secretions compared with those of peripheral adipose tissues. A further characterization of the phenotype and the functional regulation of BMAs are ever more required. Based on currently available data and comparison with other fat tissues, this review addresses the originality of the BMAT with regard to its development, anatomy, metabolic properties, and response to physiological cues. PMID:27445987
Rauh, Juliane; Jacobi, Angela; Stiehler, Maik
2015-02-01
The principles of tissue engineering (TE) are widely used for bone regeneration concepts. Three-dimensional (3D) cultivation of autologous human mesenchymal stromal cells (MSCs) on porous scaffolds is the basic prerequisite to generate newly formed bone tissue. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is a specific and sensitive analytical tool for the measurement of mRNA-levels in cells or tissues. For an accurate quantification of gene expression levels, stably expressed reference genes (RGs) are essential to obtain reliable results. Since the 3D environment can affect a cell's morphology, proliferation, and gene expression profile compared with two-dimensional (2D) cultivation, there is a need to identify robust RGs for the quantification of gene expression. So far, this issue has not been adequately investigated. The aim of this study was to identify the most stably expressed RGs for gene expression analysis of 3D-cultivated human bone marrow-derived MSCs (BM-MSCs). For this, we analyzed the gene expression levels of n=31 RGs in 3D-cultivated human BM-MSCs from six different donors compared with conventional 2D cultivation using qRT-PCR. MSCs isolated from bone marrow aspirates were cultivated on human cancellous bone cube scaffolds for 14 days. Osteogenic differentiation was assessed by cell-specific alkaline phosphatase (ALP) activity and expression of osteogenic marker genes. Expression levels of potential reference and target genes were quantified using commercially available TaqMan(®) assays. mRNA expression stability of RGs was determined by calculating the coefficient of variation (CV) and using the algorithms of geNorm and NormFinder. Using both algorithms, we identified TATA box binding protein (TBP), transferrin receptor (p90, CD71) (TFRC), and hypoxanthine phosphoribosyltransferase 1 (HPRT1) as the most stably expressed RGs in 3D-cultivated BM-MSCs. Notably, genes that are routinely used as RGs, for example, beta actin (ACTB) and ribosomal protein L37a (RPL37A), were among the least stable genes. We recommend the combined use of TBP, TFRC, and HPRT1 for the accurate and robust normalization of qRT-PCR data of 3D-cultivated human BM-MSCs.
Rauh, Juliane; Jacobi, Angela
2015-01-01
The principles of tissue engineering (TE) are widely used for bone regeneration concepts. Three-dimensional (3D) cultivation of autologous human mesenchymal stromal cells (MSCs) on porous scaffolds is the basic prerequisite to generate newly formed bone tissue. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is a specific and sensitive analytical tool for the measurement of mRNA-levels in cells or tissues. For an accurate quantification of gene expression levels, stably expressed reference genes (RGs) are essential to obtain reliable results. Since the 3D environment can affect a cell's morphology, proliferation, and gene expression profile compared with two-dimensional (2D) cultivation, there is a need to identify robust RGs for the quantification of gene expression. So far, this issue has not been adequately investigated. The aim of this study was to identify the most stably expressed RGs for gene expression analysis of 3D-cultivated human bone marrow-derived MSCs (BM-MSCs). For this, we analyzed the gene expression levels of n=31 RGs in 3D-cultivated human BM-MSCs from six different donors compared with conventional 2D cultivation using qRT-PCR. MSCs isolated from bone marrow aspirates were cultivated on human cancellous bone cube scaffolds for 14 days. Osteogenic differentiation was assessed by cell-specific alkaline phosphatase (ALP) activity and expression of osteogenic marker genes. Expression levels of potential reference and target genes were quantified using commercially available TaqMan® assays. mRNA expression stability of RGs was determined by calculating the coefficient of variation (CV) and using the algorithms of geNorm and NormFinder. Using both algorithms, we identified TATA box binding protein (TBP), transferrin receptor (p90, CD71) (TFRC), and hypoxanthine phosphoribosyltransferase 1 (HPRT1) as the most stably expressed RGs in 3D-cultivated BM-MSCs. Notably, genes that are routinely used as RGs, for example, beta actin (ACTB) and ribosomal protein L37a (RPL37A), were among the least stable genes. We recommend the combined use of TBP, TFRC, and HPRT1 for the accurate and robust normalization of qRT-PCR data of 3D-cultivated human BM-MSCs. PMID:25000821
Jeong, Sin-Gu; Cho, Goang-Won
2015-05-15
Cellular senescence is characterized by functional decline induced by cumulative damage to DNA, proteins, lipids, and carbohydrates. Previous studies have reported that replicative senescence is caused by excessive amounts of reactive oxygen species (ROS) produced as a result of aerobic energy metabolism. In this study, we established human bone marrow mesenchymal stromal cells (hBM-MSCs) in replicative senescence after culture over a long term to investigate the relationship between ROS levels and stem cell potential and to determine whether differentiation potential can be restored by antioxidant treatment. Intracellular ROS levels were increased in hBM-MSCs; this was accompanied by a decrease in the expression of the antioxidant enzymes catalase and superoxide dismutase (SOD)1 and 2 and of phosphorylated forkhead box O1 (p-FOXO1) as well as an increase in the expression of p53 and p16, along with a reduction in differentiation potential. When the antioxidant ascorbic acid was used to eliminate excess ROS, the levels of antioxidant enzymes (catalase, SOD1 and 2, p-FOXO1, and p53) were partly restored. Moreover, differentiation into adipocytes and osteocytes was higher in hBM-MSCs treated with ascorbic acid than in the untreated control cells. These results suggest that the decline in differentiation potential caused by increased endogenous ROS production during in vitro expansion can be reversed by treatment with antioxidants such as ascorbic acid. Copyright © 2015 Elsevier Inc. All rights reserved.
Gabr, Mahmoud M; Zakaria, Mahmoud M; Refaie, Ayman F; Abdel-Rahman, Engy A; Reda, Asmaa M; Ali, Sameh S; Khater, Sherry M; Ashamallah, Sylvia A; Ismail, Amani M; Ismail, Hossam El-Din A; El-Badri, Nagwa; Ghoneim, Mohamed A
2017-01-01
The aim of this study is to compare human bone marrow-derived mesenchymal stem cells (BM-MSCs) and adipose tissue-derived mesenchymal stem cells (AT-MSCs), for their differentiation potentials to form insulin-producing cells. BM-MSCs were obtained during elective orthotopic surgery and AT-MSCs from fatty aspirates during elective cosmetics procedures. Following their expansion, cells were characterized by phenotyping, trilineage differentiation ability, and basal gene expression of pluripotency genes and for their metabolic characteristics. Cells were differentiated according to a Trichostatin-A based protocol. The differentiated cells were evaluated by immunocytochemistry staining for insulin and c-peptide. In addition the expression of relevant pancreatic endocrine genes was determined. The release of insulin and c-peptide in response to a glucose challenge was also quantitated. There were some differences in basal gene expression and metabolic characteristics. After differentiation the proportion of the resulting insulin-producing cells (IPCs), was comparable among both cell sources. Again, there were no differences neither in the levels of gene expression nor in the amounts of insulin and c-peptide release as a function of glucose challenge. The properties, availability, and abundance of AT-MSCs render them well-suited for applications in regenerative medicine. Conclusion . BM-MSCs and AT-MSCs are comparable regarding their differential potential to form IPCs. The availability and properties of AT-MSCs render them well-suited for applications in regenerative medicine.
Frolova, Olga; Samudio, Ismael; Benito, Juliana Maria; Jacamo, Rodrigo; Kornblau, Steven M.; Markovic, Ana; Schober, Wendy; Lu, Hongbo; Qiu, Yi Hua; Buglio, Daniela; McQueen, Teresa; Pierce, Sherry; Shpall, Elizabeth; Konoplev, Sergej; Thomas, Deborah; Kantarjian, Hagop; Lock, Richard; Andreeff, Michael; Konopleva, Marina
2012-01-01
Overcoming resistance to chemotherapy is the main therapeutic challenge in the treatment of acute lymphocytic leukemia (ALL). Interactions between leukemia cells and the microenvironment promote leukemia cell survival and confer resistance to chemotherapy. Hypoxia is an integral component of bone marrow (BM) microenvironment. Hypoxia-inducible factor-1α (HIF-1), a key regulator of the cellular response to hypoxia, regulates cell growth and metabolic adaptation to hypoxia. HIF-1α expression, analyzed by Reverse Phase Protein Arrays in 92 specimens from newly diagnosed patients with pre-B-ALL, had a negative prognostic impact on survival (p = 0.0025). Inhibition of HIF-1α expression by locked mRNA antagonist (LNA) promoted chemosensitivity under hypoxic conditions, while pharmacological or genetic stabilization of HIF-1α under normoxia inhibited cell growth and reduced apoptosis induction by chemotherapeutic agents. Co-culture of pre-B ALL or REH cells with BM-derived mesenchymal stem cells (MSC) under hypoxia resulted in further induction of HIF-1α protein and acquisition of the glycolytic phenotype, in part via stroma-induced AKT/mTOR signaling. mTOR blockade with everolimus reduced HIF-1α expression, diminished glucose uptake and glycolytic rate and partially restored the chemosensitivity of ALL cells under hypoxia/stroma co-cultures. Hence, mTOR inhibition or blockade of HIF-1α-mediated signaling may play an important role in chemosensitization of ALL cells under hypoxic conditions of the BM microenvironment. PMID:22785211
Tari, Kaveh; Atashi, Amir; Kaviani, Saied; AkhavanRahnama, Mahshid; Anbarlou, Azadeh; Mossahebi-Mohammadi, Majid
2017-01-01
Hepatocyte Growth Factor (HGF) plays a pivotal role in hematopoiesis, motility, growth and mobilization of hematopoietic stem/progenitor cells (HSPCs). HGF mainly is produced by bone marrow mesenchymal stem cells (BM-MSCs). MSCs express erythropoietin (EPO) receptor. In this study, we aimed to assess the effect of EPO on HGF secretion in BM-MSCs. The BM-MSCs treated with EPO (4 IU/ml) for 6, 24 and 48 h. HGF gene expression and protein level were assessed using quantitative real time PCR (qRT-PCR) and Enzyme-linked immunosorbant Assay. In order to show the effect of secreted HGF on migration of HSPCs, hematopoietic stem cells (HSCs) were isolated from cord blood and evaluated using transwell migration assay. We observed a significant increase in level of HGF in cell supernatant after 48 h compared to control group (P < 0.05). Also, qRT-PCR results demonstrated a significant elevation in HGF expression level after 24 and 48 h treatment with EPO compared to control group (P < 0.05). Finally, migration assay results showed a significant increase in migration of HSCs in treated group after 48 h. Our data indicated that EPO may play an important role in stem cell mobilization through up regulating HGF in MSCs and inducing migration of HSCs. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.
Abdel-Rahman, Engy A.; Reda, Asmaa M.; Ashamallah, Sylvia A.; Ismail, Amani M.; Ismail, Hossam El-Din A.; El-Badri, Nagwa
2017-01-01
The aim of this study is to compare human bone marrow-derived mesenchymal stem cells (BM-MSCs) and adipose tissue-derived mesenchymal stem cells (AT-MSCs), for their differentiation potentials to form insulin-producing cells. BM-MSCs were obtained during elective orthotopic surgery and AT-MSCs from fatty aspirates during elective cosmetics procedures. Following their expansion, cells were characterized by phenotyping, trilineage differentiation ability, and basal gene expression of pluripotency genes and for their metabolic characteristics. Cells were differentiated according to a Trichostatin-A based protocol. The differentiated cells were evaluated by immunocytochemistry staining for insulin and c-peptide. In addition the expression of relevant pancreatic endocrine genes was determined. The release of insulin and c-peptide in response to a glucose challenge was also quantitated. There were some differences in basal gene expression and metabolic characteristics. After differentiation the proportion of the resulting insulin-producing cells (IPCs), was comparable among both cell sources. Again, there were no differences neither in the levels of gene expression nor in the amounts of insulin and c-peptide release as a function of glucose challenge. The properties, availability, and abundance of AT-MSCs render them well-suited for applications in regenerative medicine. Conclusion. BM-MSCs and AT-MSCs are comparable regarding their differential potential to form IPCs. The availability and properties of AT-MSCs render them well-suited for applications in regenerative medicine. PMID:28584815
Yassine, Kalbaza Ahmed; Mokhtar, Benchohra; Houari, Hemida; Karim, Amara; Mohamed, Melizi
2017-01-01
Aim: Finding an ideal bone substitute to treat large bone defects, delayed union and nonunions remain a challenge for orthopedic surgeons and researchers. Several studies have been conducted on bone regeneration; each has its own advantages and disadvantages. The aim of this study was to evaluate the effect of a combination of hydroxyapatite (HA) powder with autologous bone marrow (BM) aspirate on the repair of segmental radial defect in a rabbit model. Materials and Methods: A total of 36 male and adult New Zealand rabbit with a mean weight of 2.25 kg were used in this study. Approximately, 5 mm defect was created in the mid-shaft of the radius to be filled with HA powder in the control group “HA” (n=18) and with a combination of HA powder and autologous BM aspirate in the test group “HA+BM” (n=18). Animals were observed daily for healing by inspection of the surgical site, and six rabbits of each group were sacrificed at 30, 60, and 90 post-operative days to perform a radiographic evaluation of defect site. Results: Obtained results revealed a better and more rapid bone regeneration in the test group: Since the defect was rapidly and completely filled with mature bone tissue after 90 days. Conclusion: Based on these findings, we could infer that adding a BM aspirate to HA is responsible of a better regeneration process leading to a complete filling of the defect. PMID:28831217
Berry, Nadine Kaye; Bain, Nicole L; Enjeti, Anoop K; Rowlings, Philip
2014-01-01
Aim To evaluate the role of whole genome comparative genomic hybridisation microarray (array-CGH) in detecting genomic imbalances as compared to conventional karyotype (GTG-analysis) or myeloma specific fluorescence in situ hybridisation (FISH) panel in a diagnostic setting for plasma cell dyscrasia (PCD). Methods A myeloma-specific interphase FISH (i-FISH) panel was carried out on CD138 PC-enriched bone marrow (BM) from 20 patients having BM biopsies for evaluation of PCD. Whole genome array-CGH was performed on reference (control) and neoplastic (test patient) genomic DNA extracted from CD138 PC-enriched BM and analysed. Results Comparison of techniques demonstrated a much higher detection rate of genomic imbalances using array-CGH. Genomic imbalances were detected in 1, 19 and 20 patients using GTG-analysis, i-FISH and array-CGH, respectively. Genomic rearrangements were detected in one patient using GTG-analysis and seven patients using i-FISH, while none were detected using array-CGH. I-FISH was the most sensitive method for detecting gene rearrangements and GTG-analysis was the least sensitive method overall. All copy number aberrations observed in GTG-analysis were detected using array-CGH and i-FISH. Conclusions We show that array-CGH performed on CD138-enriched PCs significantly improves the detection of clinically relevant and possibly novel genomic abnormalities in PCD, and thus could be considered as a standard diagnostic technique in combination with IGH rearrangement i-FISH. PMID:23969274
Berry, Nadine Kaye; Bain, Nicole L; Enjeti, Anoop K; Rowlings, Philip
2014-01-01
To evaluate the role of whole genome comparative genomic hybridisation microarray (array-CGH) in detecting genomic imbalances as compared to conventional karyotype (GTG-analysis) or myeloma specific fluorescence in situ hybridisation (FISH) panel in a diagnostic setting for plasma cell dyscrasia (PCD). A myeloma-specific interphase FISH (i-FISH) panel was carried out on CD138 PC-enriched bone marrow (BM) from 20 patients having BM biopsies for evaluation of PCD. Whole genome array-CGH was performed on reference (control) and neoplastic (test patient) genomic DNA extracted from CD138 PC-enriched BM and analysed. Comparison of techniques demonstrated a much higher detection rate of genomic imbalances using array-CGH. Genomic imbalances were detected in 1, 19 and 20 patients using GTG-analysis, i-FISH and array-CGH, respectively. Genomic rearrangements were detected in one patient using GTG-analysis and seven patients using i-FISH, while none were detected using array-CGH. I-FISH was the most sensitive method for detecting gene rearrangements and GTG-analysis was the least sensitive method overall. All copy number aberrations observed in GTG-analysis were detected using array-CGH and i-FISH. We show that array-CGH performed on CD138-enriched PCs significantly improves the detection of clinically relevant and possibly novel genomic abnormalities in PCD, and thus could be considered as a standard diagnostic technique in combination with IGH rearrangement i-FISH.
Du, Erxia; McAllister, Patrick; Venna, Venugopal Reddy; Xiao, Liping
2017-04-01
Ketamine has been used safely in clinics for decades for analgesia and anesthesia. It is increasingly popular in clinical practice due to its new uses and importance for emergency procedures. It is known that ketamine is sequestered in the bone marrow and the major receptors for ketamine, noncompetitive N-methyl-d-aspartate receptors (NMDARs), are expressed in osteoclasts (OCs) and osteoblasts. However, the impact of ketamine on OCs or osteoblasts is unknown. In this study, we investigated the effects of ketamine on osteoclastogenesis and regulation of NMDARs expression in vitro. Bone marrows (BMs) or bone marrow macrophages (BMMs) were cultured in the presence of macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-B ligand (RANKL) with or without ketamine for up to 6 days. OC formation peaked at day 5. On day 5 of culture, ketamine inhibited OC formation from both BM and BMM cultures at clinically relevant concentrations (3-200 µM). Ketamine inhibited RANKL-induced expression of nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) in BMM cultures. Inhibition of ketamine on RANKL-induced osteoclastogenesis is associated with down-regulation of NMDARs. In addition, ketamine significantly inhibited the M-CSF induced migration of BMMs, inhibited cell fusion and significantly increased mature OC apoptosis. We conclude that clinically relevant concentrations of ketamine inhibit OC formation in both BM and BMM cultures in vitro through inhibiting migration and fusion process and enhancing mature OC apoptosis. It is likely that ketamine regulates osteoclastogenesis, at least in part, via its effects on NMDAR expression. J. Cell. Biochem. 118: 914-923, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Central Tolerance to Tissue-specific Antigens Mediated by Direct and Indirect Antigen Presentation
Gallegos, Alena M.; Bevan, Michael J.
2004-01-01
Intrathymic expression of tissue-specific antigens (TSAs) by medullary thymic epithelial cells (Mtecs) leads to deletion of autoreactive T cells. However, because Mtecs are known to be poor antigen-presenting cells (APCs) for tolerance to ubiquitous antigens, and very few Mtecs express a given TSA, it was unclear if central tolerance to TSA was induced directly by Mtec antigen presentation or indirectly by thymic bone marrow (BM)-derived cells via cross-presentation. We show that professional BM-derived APCs acquire TSAs from Mtecs and delete autoreactive CD8 and CD4 T cells. Although direct antigen presentation by Mtecs did not delete the CD4 T cell population tested in this study, Mtec presentation efficiently deleted both monoclonal and polyclonal populations of CD8 T cells. For developing CD8 T cells, deletion by BM-derived APC and by Mtec presentation occurred abruptly at the transitional, CD4high CD8low TCRintermediate stage, presumably as the cells transit from the cortex to the medulla. These studies reveal a cooperative relationship between Mtecs and BM-derived cells in thymic elimination of autoreactive T cells. Although Mtecs synthesize TSAs and delete a subset of autoreactive T cells, BM-derived cells extend the range of clonal deletion by cross-presenting antigen captured from Mtecs. PMID:15492126
The lung is a site of platelet biogenesis and a reservoir for hematopoietic progenitors
Lefrançais, Emma; Ortiz-Muñoz, Guadalupe; Caudrillier, Axelle; Mallavia, Beñat; Liu, Fengchun; Sayah, David M.; Thornton, Emily E.; Headley, Mark B.; David, Tovo; Coughlin, Shaun R.; Krummel, Matthew F.; Leavitt, Andrew D.; Passegué, Emmanuelle; Looney, Mark R.
2017-01-01
Platelets are critical for hemostasis, thrombosis, and inflammatory responses1,2, yet the events leading to mature platelet production remain incompletely understood3. The bone marrow (BM) is proposed to be a major site of platelet production although indirect evidence points towards a potential pulmonary contribution to platelet biogenesis4-7. By directly imaging the lung microcirculation in mice8, we discovered that a large number of megakaryocytes (MKs) circulate through the lungs where they dynamically release platelets. MKs releasing platelets in the lung are of extrapulmonary origin, such as the BM, where we observed large MKs migrating out of the BM space. The lung contribution to platelet biogenesis is substantial with approximately 50% of total platelet production or 10 million platelets per hour. Furthermore, we identified populations of mature and immature MKs along with hematopoietic progenitors that reside in the extravascular spaces of the lung. Under conditions of thrombocytopenia and relative stem cell deficiency in the BM9, these progenitors can migrate out of the lung, repopulate the BM, completely reconstitute blood platelet counts, and contribute to multiple hematopoietic lineages. These results position the lung as a primary site of terminal platelet production and an organ with considerable hematopoietic potential. PMID:28329764
McBride, Jeffrey D; Rodriguez-Menocal, Luis; Guzman, Wellington; Candanedo, Ambar; Garcia-Contreras, Marta; Badiavas, Evangelos V
2017-10-01
Wnts are secreted glycoproteins that regulate stem cell self-renewal, differentiation, and cell-to-cell communication during embryonic development and in adult tissues. Bone marrow mesenchymal stem cells (BM-MSCs) have been shown to stimulate dermis repair and regeneration; however, it is unclear how BM-MSCs may modulate downstream Wnt signaling. While recent reports implicate that Wnt ligands and Wnt messenger RNAs (such as Wnt4) exist within the interior compartment of exosomes, it has been debated whether or not Wnts exist on the exterior surface of exosomes to travel in the extracellular space. To help answer this question, we utilized flow cytometry of magnetic beads coated with anti-CD63 antibodies and found, for the first time, that Wnt3a protein is detectable exteriorly on CD63 + exosomes derived from BM-MSCs over-secreting Wnt3a into serum-free conditioned media (Wnt3a CM). Our data suggest that CD63 + exosomes significantly help transport exterior Wnt3a signal to recipient cells to promote fibroblast and endothelial functions. During purification of exosomes, we unexpectedly found that use of ultracentrifugation alone significantly decreased the ability to detect exteriorly bound Wnt3a on CD63 + exosomes, however, polyethylene glycol (PEG)-mediated exosome-enrichment before exosome-purification (with ultracentrifugation into a sucrose cushion) resulted in exosomes more likely to retain exterior Wnt3a detectability and downstream Wnt/beta-catenin activity. Our findings indicate the important role that purification methods may have on stem cell-derived Wnt-exosome activity in downstream assays. The ability for BM-MSC Wnt3a CM and exosomes to stimulate dermal fibroblast proliferation and migration, and endothelial angiogenesis in vitro, was significantly decreased after CD63 + -exosome depletion or knockdown of Wnt coreceptor LRP6 in recipient cells, suggesting both are required for optimal Wnt-exosome activity in our system. Thus, BM-MSC-derived CD63 + exosomes are a significant carrier of exterior Wnt3a within high Wnt environments, resulting in downstream fibroblast proliferation, migration, and angiogenesis in vitro.
2014-01-01
Background Bone marrow mesenchymal stem cells (BM-MSCs) are capable of differentiating into endothelial cells in vitro and acquire major characteristics of mature endothelial-like expression of vWF and CD31. SFAs and lipid oxidation products have been linked with postprandial endothelial dysfunction. Consumption of SFAs impairs arterial endothelial function, while a Mediterranean-type MUFA-diet has a beneficial effect on endothelial function by producing a decrease in levels of vWF, TFPI and PAI-1. Stearoyl-CoA desaturase 1 (SCD1), which converts SFA to MUFA, is involved in the cellular biosynthesis of MUFAs from SFA substrates. High expression of SCD1 is corresponded with low rates of fatty acid oxidation, therefore it might reduce inflammatory responses and be beneficial for the growth of induced endothelial cells. Overexpression of SCD1 in BM-MSCs might increase the growth of induced endothelial cells. The goal of this research is to study the relationship between overexpression of SCD1 and the expression of induced endothelial cells in BM-MSCs in vitro. Methods The gene SCD1 was integrated into a lentiviral vector, and then 293 T cells were transfected by the connected product to produce a packaged virus. BM-MSCs were infected by the packaged virus. Cell culture and endothelial induction were performed. Fluorescent quantitative PCR of CD31, vWF and VE-cad was performed after 1 week and 2 weeks to test the growth of induced endothelial cells. Results The mRNA amount of CD31, vWF and VE-cad of the SCD1 overexpressed group was statistically higher than that of the empty vector (EV) group and that of the normal group after 1 week and 2 weeks, respectively (p < 0.05). Immunocytochemical staining of CD31 or vWF was detected by visualizing red color. Conclusions This study suggested that overexpression of SCD1 in BM-MSCs could increase the expression of induced endothelial cells in vitro. PMID:24650127
NOS2 deficiency has no influence on the radiosensitivity of the hematopoietic system.
Li, Chengcheng; Luo, Yi; Shao, Lijian; Meng, Aimin; Zhou, Daohong
2018-01-01
Previous studies have shown that inhibition of inducible NO synthase (NOS2 or iNOS) with an inhibitor can selectively protect several normal tissues against radiation during radiotherapy. However, the role of NOS2 in ionizing radiation (IR)-induced bone marrow (BM) suppression is unknown and thus was investigated in the present study using NOS2 - / - and wild-type mice 14 days after they were exposed to a sublethal dose of total body irradiation (TBI). The effects of different doses of IR (1, 2 and 4 Gy) on the apoptosis and colony-forming ability of bone marrow cells from wild-type (WT) and NOS2 - / - mice were investigated in vitro. In addition, we exposed NOS2 - / - mice and WT mice to 6-Gy TBI or sham irradiation. They were euthanized 14 days after TBI for analysis of peripheral blood cell counts and bone marrow cellularity. Colony-forming unit-granulocyte and macrophage, burst-forming unit-erythroid and CFU-granulocyte, erythroid, macrophage in bone marrow cells from the mice were determined to evaluate the function of hematopoietic progenitor cells (HPCs), and the ability of hematopoietic stem cells (HSCs) to self-renew was analysed by the cobblestone area forming cell assay. The cell cycling of HPCs and HSCs were measured by flow cytometry. Exposure to 2 and 4 Gy IR induced bone marrow cell apoptosis and inhibited the proliferation of HPCs in vitro. However, there was no difference between the cells from WT mice and NOS2 - / - mice in response to IR exposure in vitro. Exposure of WT mice and NOS2 - / - mice to 6 Gy TBI decreased the white blood cell, red blood cell, and platelet counts in the peripheral blood and bone marrow mononuclear cells, and reduced the colony-forming ability of HPCs (P < 0.05), damaged the clonogenic function of HSCs. However, these changes were not significantly different in WT and NOS2 - / - mice. These data suggest that IR induces BM suppression in a NOS2-independent manner.
Kol, Amir; Wood, Joshua A; Carrade Holt, Danielle D; Gillette, Jessica A; Bohannon-Worsley, Laurie K; Puchalski, Sarah M; Walker, Naomi J; Clark, Kaitlin C; Watson, Johanna L; Borjesson, Dori L
2015-04-15
Intravenous (IV) injection of mesenchymal stem cells (MSCs) is used to treat systemic human diseases and disorders but is not routinely used in equine therapy. In horses, MSCs are isolated primarily from adipose tissue (AT) or bone marrow (BM) and used for treatment of orthopedic injuries through one or more local injections. The objective of this study was to determine the safety and lymphocyte response to multiple allogeneic IV injections of either AT-derived MSCs (AT-MSCs) or BM-derived MSCs (BM-MSCs) to healthy horses. We injected three doses of 25 × 10(6) allogeneic MSCs from either AT or BM (a total of 75 × 10(6) MSCs per horse) into five and five, respectively, healthy horses. Horses were followed up for 35 days after the first MSC infusion. We evaluated host inflammatory and immune response, including total leukocyte numbers, serum cytokine concentration, and splenic lymphocyte subsets. Repeated injection of allogeneic AT-MSCs or BM-MSCs did not elicit any clinical adverse effects. Repeated BM-MSC injection resulted in increased blood CD8(+) T-cell numbers. Multiple BM-MSC injections also increased splenic regulatory T cell numbers compared with AT-MSC-injected horses but not controls. These data demonstrate that multiple IV injections of allogeneic MSCs are well tolerated by healthy horses. No clinical signs or clinico-pathologic measurements of organ toxicity or systemic inflammatory response were recorded. Increased numbers of circulating CD8(+) T cells after multiple IV injections of allogeneic BM-MSCs may indicate a mild allo-antigen-directed cytotoxic response. Safety and efficacy of allogeneic MSC IV infusions in sick horses remain to be determined.
Lian, Gewei; Wang, Chengyan; Teng, Chunbo; Zhang, Cong; Du, Liying; Zhong, Qian; Miao, Chenglin; Ding, Mingxiao; Deng, Hongkui
2006-03-01
Whether bone marrow (BM) hematopoietic stem/progenitor cells can directly differentiate into nonhematopoietic cells remains controversial. The aim of this study is to further investigate the potentiality of BM hematopoietic progenitor cells to convert into hepatocytes in vitro. Different subsets of BM cells from C57/BL6 mice were isolated using markers of hematopoietic stem cells by magnetic cell sorting and by flow cytometry. These cells were induced to transdifferentiate to hepatocytes in vitro in the presence of various cytokines or of hepatocytes (or tissue) from damaged liver, which have been reported to stimulate the conversion. Hepatic gene markers in freshly isolated or cultured BM cells were determined by reverse transcriptase polymerase chain reaction and immunofluorescence. Freshly isolated hematopoietic progenitor cells (HPC) expressed a low level of messenger RNAs of hepatic cell-specific markers including albumin and alpha-fetoprotein (AFP), but did not significantly upregulate expression of these markers, even in the presence of cytokines or cocultured hepatocytes (or tissue). HPCs induced in vitro did not express the message of alpha-anti-trypsin-a mature hepatocyte marker. At protein level, the specific staining of AFP was not detected in the HPCs, either freshly isolated or in vitro induced. Albumin protein was detected in freshly isolated albumin mRNA-positive and -negative BM cell subpopulations. Albumin-stained BM cells disappeared after being induced for 5 days, but restained if mouse serum was supplemented in medium for a 24-hour extended culture, suggesting that albumin was absorbed by BM cells instead of de novo expression. HPCs expressed mRNAs of hepatic cell markers, but could not efficiently convert into hepatocytes in vitro under our experimental conditions. Our observation raises a cautionary note in determining whether in vitro transdifferentiation of BM cells to hepatocytes can actually take place.
Aguiñiga-Sánchez, Itzen; Soto-Hernández, Marcos; Cadena-Iñiguez, Jorge; Ruíz-Posadas, Lucero del Mar; Cadena-Zamudio, Jorge David; González-Ugarte, Ana Karen; Steider, Benny Weiss; Santiago-Osorio, Edelmiro
2015-01-01
The antiproliferative potential of a crude extract from the chayote hybrid H-837-07-GISeM® and its potential for apoptosis induction were assessed in leukaemic cell lines and normal mouse bone marrow mononuclear cells (BM-MNCs). The extract strongly inhibited the proliferation of the P388, J774, and WEHI-3 cell lines (with an IC50 below 1.3 μg·mL(-1)), reduced cell viability, and induced apoptotic body production, phosphatidylserine translocation, and DNA fragmentation. However, the extract had no effect on BM-MNCs. We postulate that these properties make the extract a good candidate for an anti-tumour agent for clinical use.
Gutierrez, Dario A; Hasty, Alyssa H
2012-03-01
The adipokine leptin is primarily produced by white adipose tissue (AT) and is a potent monocyte/macrophage chemoattractant in vitro. The long form of the leptin receptor (LepR) is required for monocyte/macrophage chemotaxis towards leptin. In this study, we examined the effects of haematopoietic LepR as well as LepR with C-C chemokine receptor 2 (CCR2) deficiency (double knockout (DKO)) on macrophage recruitment to AT after two different periods of high fat diet (HFD) feeding. Briefly, 8-week-old C57BL/6 mice were transplanted with bone marrow (BM) from Lepr(+/+), Lepr(-/-) or DKO donors (groups named BM-Lepr(+/+), BM-Lepr(-/-) and BM-DKO respectively), and were placed on an HFD for 6 or 12 weeks. At the end of the study, macrophage infiltration and the inflammatory state of AT were evaluated by real-time RT-PCR, histology and flow cytometry. In addition, glucose and insulin tolerance were assessed at both time points. Our results showed no differences in macrophage accumulation or AT inflammatory state between the BM-Lepr(+/+) and BM-Lepr(-/-) mice after 6 or 12 weeks of HFD feeding; any effects observed in the BM-DKO were attributed to the haematopoietic deficiency of CCR2. In addition, no changes in glucose or insulin tolerance were observed between groups after either period of HFD feeding. Our findings suggest that although leptin is a potent chemoattractant in vitro, haematopoietic LepR deficiency does not affect macrophage accumulation in AT in early to moderate stages of diet-induced obesity.
Almeida-Porada, Graca; Rodman, Christopher; Kuhlman, Bradford; ...
2018-04-26
The stem cell compartment of the hematopoietic system constitutes one of the most radiosensitive tissues of the body and leukemias represent one of the most frequent radiogenic cancers with short latency periods. As such, leukemias may pose a particular threat to astronauts during prolonged space missions. Control of hematopoiesis is tightly governed by a specialized bone marrow (BM) microenvironment/niche. As such, any environmental insult that damages cells of this niche would be expected to produce pronounced effects on the types and functionality of hematopoietic/immune cells generated. We recently reported that direct exposure of human HSC to simulated SEP and GCRmore » radiation dramatically altered the differentiative potential of these cells, and that simulated GCR exposures can directly induce DNA damage and mutations within human HSC, which led to leukemic transformation when these cells repopulated murine recipients. In the present study, we performed the first in depth examination to define changes that occur in mesenchymal stem cells (MSC) present in the human BM niche following exposure to accelerated protons and iron ions, and assess the impact these changes have upon human hematopoiesis. Here, our data thus provides compelling evidence that simulated SEP/GCR exposures can also contribute to defective hematopoiesis/immunity through so-called “biological bystander effects” by damaging the stromal cells that comprise the human marrow microenvironment, thereby altering their ability to support normal hematopoiesis.« less
de la Puente, Pilar; Muz, Barbara; Gilson, Rebecca C; Azab, Feda; Luderer, Micah; King, Justin; Achilefu, Samuel; Vij, Ravi; Azab, Abdel Kareem
2016-01-01
Purpose Multiple myeloma (MM) is the second most prevalent hematological malignancy and it remains incurable despite the introduction of several novel drugs. The discrepancy between preclinical and clinical outcomes can be attributed to the failure of classic two-dimensional (2D) culture models to accurately recapitulate the complex biology of MM and drug responses observed in patients. Experimental design We developed 3D tissue engineered bone marrow (3DTEBM) cultures derived from the BM supernatant of MM patients to incorporate different BM components including MM cells, stromal cells, and endothelial cells. Distribution and growth were analyzed by confocal imaging, and cell proliferation of cell lines and primary MM cells was tested by flow cytometry. Oxygen and drug gradients were evaluated by immunohistochemistry and flow cytometry, and drug resistance was studied by flow cytometry. Results 3DTEBM cultures allowed proliferation of MM cells, recapitulated their interaction with the microenvironment, recreated 3D aspects observed in the bone marrow niche (such as oxygen and drug gradients), and induced drug resistance in MM cells more than 2D or commercial 3D tissue culture systems. Conclusions 3DTEBM cultures not only provide a better model for investigating the pathophysiology of MM, but also serve as a tool for drug development and screening in MM. In the future, we will use the 3DTEBM cultures for developing personalized therapeutic strategies for individual MM patients. PMID:26402156
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almeida-Porada, Graca; Rodman, Christopher; Kuhlman, Bradford
The stem cell compartment of the hematopoietic system constitutes one of the most radiosensitive tissues of the body and leukemias represent one of the most frequent radiogenic cancers with short latency periods. As such, leukemias may pose a particular threat to astronauts during prolonged space missions. Control of hematopoiesis is tightly governed by a specialized bone marrow (BM) microenvironment/niche. As such, any environmental insult that damages cells of this niche would be expected to produce pronounced effects on the types and functionality of hematopoietic/immune cells generated. We recently reported that direct exposure of human HSC to simulated SEP and GCRmore » radiation dramatically altered the differentiative potential of these cells, and that simulated GCR exposures can directly induce DNA damage and mutations within human HSC, which led to leukemic transformation when these cells repopulated murine recipients. In the present study, we performed the first in depth examination to define changes that occur in mesenchymal stem cells (MSC) present in the human BM niche following exposure to accelerated protons and iron ions, and assess the impact these changes have upon human hematopoiesis. Here, our data thus provides compelling evidence that simulated SEP/GCR exposures can also contribute to defective hematopoiesis/immunity through so-called “biological bystander effects” by damaging the stromal cells that comprise the human marrow microenvironment, thereby altering their ability to support normal hematopoiesis.« less
Almeida-Porada, Graça; Rodman, Christopher; Kuhlman, Bradford; Brudvik, Egil; Moon, John; George, Sunil; Guida, Peter; Sajuthi, Satria P; Langefeld, Carl D; Walker, Stephen J; Wilson, Paul F; Porada, Christopher D
2018-04-26
The stem cell compartment of the hematopoietic system constitutes one of the most radiosensitive tissues of the body and leukemias represent one of the most frequent radiogenic cancers with short latency periods. As such, leukemias may pose a particular threat to astronauts during prolonged space missions. Control of hematopoiesis is tightly governed by a specialized bone marrow (BM) microenvironment/niche. As such, any environmental insult that damages cells of this niche would be expected to produce pronounced effects on the types and functionality of hematopoietic/immune cells generated. We recently reported that direct exposure of human hematopoietic stem cells (HSC) to simulated solar energetic particle (SEP) and galactic cosmic ray (GCR) radiation dramatically altered the differentiative potential of these cells, and that simulated GCR exposures can directly induce DNA damage and mutations within human HSC, which led to leukemic transformation when these cells repopulated murine recipients. In this study, we performed the first in-depth examination to define changes that occur in mesenchymal stem cells present in the human BM niche following exposure to accelerated protons and iron ions and assess the impact these changes have upon human hematopoiesis. Our data provide compelling evidence that simulated SEP/GCR exposures can also contribute to defective hematopoiesis/immunity through so-called "biological bystander effects" by damaging the stromal cells that comprise the human marrow microenvironment, thereby altering their ability to support normal hematopoiesis.
Liu, Hao; Li, Wei; Ge, Xiyuan; Jia, Shengnan; Li, Binbin
2016-12-01
Puerarin is a phytoestrogen that shows osteogenic effects. Meanwhile, zinc stimulates bone formation and inhibits bone resorption. The study aims to investigate the effects of coadministration of puerarin (low dose) and zinc on bone formation in ovariectomized rats. Co-administration or use alone of puerarin (low dose) and/or zinc were gavaged in OVX rats. The estrogen-like effects were detected by the uterus weight, the histologic observation and the IGF-1 protein expression. The osteogenic effects were determined by bone histomorphometric and mechanical parameters, osteogenic and adipogenic blood markers, and so on. The results showed that oral administration of puerarin (low dose) plus zinc didn't significantly increase uterus weight. The glandular epithelial of endometrium had no proliferation and no protein expression of IGF-1. Moreover, co-administration attenuated bone loss and biomechanical decrease more than single use of puerarin or zinc (p<0.05). Next, combined administration of puerarin and zinc promoted the serological level of osteocalcin, bone marrow stromal cell (BMSC) proliferation, and the expression of alkaline phosphatase (ALP), and suppressed the serological level of adiponectin and adiposity in bone marrow (BM). In conclusion, co-administrated puerarin (low dose) and zinc can partially reverse OVX-induced bone loss and suppress the adiposity of BM in rats, which shed light on the potential use of puerarin and zinc in the treatment of osteoporosis. Copyright © 2016 Elsevier Inc. All rights reserved.
Cortisol inhibits mTOR signaling in avascular necrosis of the femoral head.
Liao, Yun; Su, Rui; Zhang, Ping; Yuan, Bo; Li, Ling
2017-10-18
ANFH is a major health problem, to which long lasting and definitive treatments are lacking. The aim of this study is to study RNA alterations attributed to cortisol-induced ANFH. Rat models were stratified into three groups: in vitro group (n = 20) for molecular biological assays, control group (n = 3), and ANFH group induced using lipopolysaccharide and dexamethasone (n = 3). Bone marrow-derived endothelial progenitor cells (BM-EPCs) were extracted from the rats. An RNA expression array was performed on BM-EPCs, and enriched genes were subject to pathway analysis. In vitro studies following findings of array results were also performed using the isolated BM-EPCs. Significant alterations in mammalian target of rapamycin (mTOR) and HIF signaling pathways were identified in BM-EPCs of ANFH. By applying cortisol and dexamethasone to BM-EPCs, significant changes in mTOR and HIF elements were identified. The alteration of HIF pathways appeared to be downstream of mTOR signaling. Glucocorticoid receptor (GR) expression was related to glucocorticoid-dependent mRNA expression of mTOR/HIF genes. mTOR-dependent angiogenesis but not anabolism was the target of GR in ANFH. Inhibition of mTOR signaling also induced apoptosis of BM-EPCs via CHOP-dependent DR5 induction in response to GR stimulation. Decreased mTOR signaling in response to GR stimulation leading to downregulated HIF pathway as well as increased apoptosis could be the pathophysiology.
Liotta, Francesco; Annunziato, Francesco; Castellani, Sergio; Boddi, Maria; Alterini, Brunetto; Castellini, Giovanni; Mazzanti, Benedetta; Cosmi, Lorenzo; Acquafresca, Manlio; Bartalesi, Filippo; Dilaghi, Beatrice; Dorigo, Walter; Graziani, Gabriele; Bartolozzi, Benedetta; Bellandi, Guido; Carli, Giulia; Bartoloni, Alessandro; Fargion, Aaron; Fassio, Filippo; Fontanari, Paolo; Landini, Giancarlo; Lucente, Eleonora A M; Michelagnoli, Stefano; Orsi Battaglini, Carolina; Panigada, Grazia; Pigozzi, Clara; Querci, Valentina; Santarlasci, Veronica; Parronchi, Paola; Troisi, Nicola; Baggiore, Cristiana; Romagnani, Paola; Mannucci, Edoardo; Saccardi, Riccardo; Pratesi, Carlo; Gensini, Gianfranco; Romagnani, Sergio; Maggi, Enrico
2018-05-25
The therapeutic efficacy of bone marrow mononuclear cells (BM-MNC) autotransplantation in critical limb ischemia (CLI) has been reported. Variable proportions of circulating monocytes express low levels of CD34 (CD14 + CD34 low cells) and behave in vitro as endothelial progenitor cells (EPCs). The aim of the present randomized clinical trial was to compare the safety and therapeutic effects of enriched circulating EPCs (ECEPCs) with BM-MNC administration.Methods and Results:ECEPCs (obtained from non-mobilized peripheral blood by immunomagnetic selection of CD14 + and CD34 + cells) or BM-MNC were injected into the gastrocnemius of the affected limb in 23 and 17 patients, respectively. After a mean of 25.2±18.6-month follow-up, both groups showed significant and progressive improvement in muscle perfusion (primary endpoint), rest pain, consumption of analgesics, pain-free walking distance, wound healing, quality of life, ankle-brachial index, toe-brachial index, and transcutaneous PO 2 . In ECEPC-treated patients, there was a positive correlation between injected CD14 + CD34 low cell counts and the increase in muscle perfusion. The safety profile was comparable between the ECEPC and BM-MNC treatment arms. In both groups, the number of deaths and major amputations was lower compared with eligible untreated patients and historical reference patients. This study supports previous trials showing the efficacy of BM-MNC autotransplantation in CLI patients and demonstrates comparable therapeutic efficacy between BM-MNC and EPEPCs.
Matsuda, Akira; Kawabata, Hiroshi; Tohyama, Kaoru; Maeda, Tomoya; Araseki, Kayano; Hata, Tomoko; Suzuki, Takahiro; Kayano, Hidekazu; Shimbo, Kei; Usuki, Kensuke; Chiba, Shigeru; Ishikawa, Takayuki; Arima, Nobuyoshi; Nohgawa, Masaharu; Ohta, Akiko; Miyazaki, Yasushi; Nakao, Sinnji; Ozawa, Keiya; Arai, Shunya; Kurokawa, Mineo; Mitani, Kinuko; Takaori-Kondo, Akifumi
2018-06-07
The diagnosis of myelodysplastic syndromes (MDS) is based on morphology and cytogenetics. However, limited information is currently available on the interobserver concordance of the assessment of dysplastic lineages (<10% or ≥10% in bone marrow (BM)). The revised International Prognostic Scoring System (IPSS-R) described a new threshold (2%) for BM blasts. However, the interobserver concordance of the categories (0-≤2% and >2-<5%) has limited data. The purpose of the present study was to investigate the assessment of dysplastic lineages and IPSS-R reproducibility. Our study was divided into two Steps. In each Step, the microscopic examinations were performed separately by two morphologists. Regarding the category of BM blasts ≤2% and >2-<5%, interobserver agreement was more than 'moderate' in all pairs (kappa test: 0.43-0.90). Regarding dysgranulopoiesis (dysG) and dyserythropoiesis (dysE) in BM, interobserver agreement was more than 'moderate' in all pairs (kappa test, dysG: 0.45-0.96, dysE: 0.45-0.81). Regarding the category of dysmegakaryopoiesis (dysMgk) in BM, interobserver agreement was more than moderate in 4 out of 5 pairs (kappa test: 0.58-1.00), and was fair for one pair (kappa test: 0.37). We consider that high interobserver concordance may be possible for the BM blast cell count (≤2% or >2-<5%) and dysplasia (<10% or ≥10%) of each lineage. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kim, Tae-Eon; Kim, Chang Gun; Kim, Jin Soo; Jin, Songwan; Yoon, Sik; Bae, Hae-Rahn; Kim, Jeong-Hwa; Jeong, Young Hun; Kwak, Jong-Young
2016-01-01
An artificial three-dimensional (3D) culture system that mimics the tumor microenvironment in vitro is an essential tool for investigating the cross-talk between immune and cancer cells in tumors. In this study, we developed a 3D culture system using an electrospun poly(ε-caprolactone) (PCL) nanofibrous scaffold (NFS). A hybrid NFS containing an uninterrupted network of nano- and submicron-scale fibers (400 nm to 2 µm) was generated by deposition onto a stainless steel mesh instead of an aluminum plate. The hybrid NFS contained multiplanar pores in a 3D structure. Surface-seeded mouse CT26 colon cancer cells and bone marrow-derived dendritic cells (BM-DCs) were able to infiltrate the hybrid NFS within several hours. BM-DCs cultured on PCL nanofibers showed a baseline inactive form, and lipopolysaccharide (LPS)-activated BM-DCs showed increased expression of CD86 and major histocompatibility complex Class II. Actin and phosphorylated FAK were enriched where unstimulated and LPS-stimulated BM-DCs contacted the fibers in the 3D hybrid NFS. When BM-DCs were cocultured with mitoxantrone-treated CT26 cells in a 3D hybrid NFS, BM-DCs sprouted cytoplasm to, migrated to, synapsed with, and engulfed mitoxantrone-treated CT26 cancer cells, which were similar to the naturally occurring cross-talk between these two types of cells. The 3D hybrid NFS developed here provides a 3D structure for coculture of cancer and immune cells. PMID:27042051
Kim, Tae-Eon; Kim, Chang Gun; Kim, Jin Soo; Jin, Songwan; Yoon, Sik; Bae, Hae-Rahn; Kim, Jeong-Hwa; Jeong, Young Hun; Kwak, Jong-Young
2016-01-01
An artificial three-dimensional (3D) culture system that mimics the tumor microenvironment in vitro is an essential tool for investigating the cross-talk between immune and cancer cells in tumors. In this study, we developed a 3D culture system using an electrospun poly(ε-caprolactone) (PCL) nanofibrous scaffold (NFS). A hybrid NFS containing an uninterrupted network of nano- and submicron-scale fibers (400 nm to 2 µm) was generated by deposition onto a stainless steel mesh instead of an aluminum plate. The hybrid NFS contained multiplanar pores in a 3D structure. Surface-seeded mouse CT26 colon cancer cells and bone marrow-derived dendritic cells (BM-DCs) were able to infiltrate the hybrid NFS within several hours. BM-DCs cultured on PCL nanofibers showed a baseline inactive form, and lipopolysaccharide (LPS)-activated BM-DCs showed increased expression of CD86 and major histocompatibility complex Class II. Actin and phosphorylated FAK were enriched where unstimulated and LPS-stimulated BM-DCs contacted the fibers in the 3D hybrid NFS. When BM-DCs were cocultured with mitoxantrone-treated CT26 cells in a 3D hybrid NFS, BM-DCs sprouted cytoplasm to, migrated to, synapsed with, and engulfed mitoxantrone-treated CT26 cancer cells, which were similar to the naturally occurring cross-talk between these two types of cells. The 3D hybrid NFS developed here provides a 3D structure for coculture of cancer and immune cells.
Castro-Manrreza, Marta E.; Mayani, Hector; Monroy-García, Alberto; Flores-Figueroa, Eugenia; Chávez-Rueda, Karina; Legorreta-Haquet, Victoria; Santiago-Osorio, Edelmiro
2014-01-01
Bone marrow-mesenchymal stromal cells (BM-MSCs) have immunosuppressive properties and have been used in cell therapies as immune regulators for the treatment of graft-versus-host disease. We have previously characterized several biological properties of MSCs from placenta (PL) and umbilical cord blood (UCB), and compared them to those of BM—the gold standard. In the present study, we have compared MSCs from BM, UCB, and PL in terms of their immunosuppressive properties against lymphoid cell populations enriched for CD3+ T cells. Our results confirm the immunosuppressive potential of BM-MSCs, and demonstrate that MSCs from UCB and, to a lesser extent PL, also have immunosuppressive potential. In contrast to PL-MSCs, BM-MSCs and UCB-MSCs significantly inhibited the proliferation of both CD4+ and CD8+ activated T cells in a cell–cell contact-dependent manner. Such a reduced proliferation in cell cocultures correlated with upregulation of programmed death ligand 1 on MSCs and cytotoxic T lymphocyte-associated Ag-4 (CTLA-4) on T cells, and increased production of interferon-γ, interleukin-10, and prostaglandin E2. Importantly, and in contrast to PL-MSCs, both BM-MSCs and UCB-MSCs favored the generation of T-cell subsets displaying a regulatory phenotype CD4+CD25+CTLA-4+. Our results indicate that, besides BM-MSCs, UCB-MSCs might be a potent and reliable candidate for future therapeutic applications. PMID:24428376
Oura, Tetsu; Ko, Dicken S C; Boskovic, Svjetlan; O'Neil, John J; Chipashvili, Vaja; Koulmanda, Maria; Hotta, Kiyohiko; Kawai, Kento; Nadazdin, Ognjenka; Smith, R Neal; Cosimi, A B; Kawai, Tatsuo
2016-01-01
We have previously reported successful induction of transient mixed chimerism and long-term acceptance of renal allografts in MHC mismatched nonhuman primates. In this study, we attempted to extend this tolerance induction approach to islet allografts. A total of eight recipients underwent MHC mismatched combined islet and bone marrow (BM) transplantation after induction of diabetes by streptozotocin. Three recipients were treated after a nonmyeloablative conditioning regimen that included low-dose total body and thymic irradiation, horse Atgam (ATG), six doses of anti-CD154 monoclonal antibody (mAb), and a 1-month course of cyclosporine (CyA) (Islet A). In Islet B, anti-CD8 mAb was administered in place of CyA. In Islet C, two recipients were treated with Islet B, but without ATG. The results were compared with previously reported results of eight cynomolgus monkeys that received combined kidney and BM transplantation (Kidney A) following the same conditioning regimen used in Islet A. The majority of kidney/BM recipients achieved long-term renal allograft survival after induction of transient chimerism. However, prolonged islet survival was not achieved in similarly conditioned islet/BM recipients (Islet A), despite induction of comparable levels of chimerism. In order to rule out islet allograft loss due to CyA toxicity, three recipients were treated with anti-CD8 mAb in place of CyA. Although these recipients developed significantly superior mixed chimerism and more prolonged islet allograft survival (61, 103, and 113 days), islet function was lost soon after the disappearance of chimerism. In Islet C recipients, neither prolonged chimerism nor islet survival was observed (30 and 40 days). Significant improvement of mixed chimerism induction and islet allograft survival were achieved with a CyA-free regimen that included anti-CD8 mAb. However, unlike the kidney allograft, islet allograft tolerance was not induced with transient chimerism. Induction of more durable mixed chimerism may be necessary for induction of islet allograft tolerance.
Park, Keiichi; Amano, Hideki; Ito, Yoshiya; Mastui, Yoshio; Kamata, Mariko; Yamazaki, Yasuharu; Takeda, Akira; Shibuya, Masabumi; Majima, Masataka
2018-06-01
Vascular endothelial growth factor (VEGF)-A facilitates wound healing. VEGF-A binds to VEGF receptor 1 (VEGFR1) and VEGFR2 and induces wound healing through the receptor's tyrosine kinase (TK) domain. During blood flow recovery and lung regeneration, expression of VEGFR1 is elevated. However, the precise mechanism of wound healing, especially granulation formation on VEGFR1, is not well understood. We hypothesized that VEGFR1-TK signaling induces wound healing by promoting granulation tissue formation. A surgical sponge implantation model was made by implanting a sponge disk into dorsal subcutaneous tissue of mice. Granulation formation was estimated from the weight of the sponge and the granulation area from the immunohistochemical analysis of collagen I. The expression of fibroblast markers was estimated from the expression of transforming growth factor-beta (TGF-β) and cellular fibroblast growth factor-2 (FGF-2) using real-time PCR (polymerase chain reaction) and from the immunohistochemical analysis of S100A4. VEGFR1 TK knockout (TK -/- ) mice exhibited suppressed granulation tissue formation compared to that in wild-type (WT) mice. Expression of FGF-2, TGF-β, and VEGF-A was significantly suppressed in VEGFR1 TK -/- mice, and the accumulation of VEGFR1 + cells in granulation tissue was reduced in VEGFR1 TK -/- mice compared to that in WT mice. The numbers of VEGFR1 + cells and S100A4 + cells derived from bone marrow (BM) were higher in WT mice transplanted with green fluorescent protein (GFP) transgenic WT BM than in VEGFR1 TK -/- mice transplanted with GFP transgenic VEGFR1 TK -/- BM. These results indicated that VEGFR1-TK signaling induced the accumulation of BM-derived VEGFR1 + cells expressing F4/80 and S100A4 and contributed to granulation formation around the surgically implanted sponge area in a mouse model.
Holz, Lauren E; Benseler, Volker; Vo, Michelle; McGuffog, Claire; Van Rooijen, Nico; McCaughan, Geoffrey W; Bowen, David G; Bertolino, Patrick
2012-10-01
The occurrence of primary CD8 T cell activation within the liver, unique among the non-lymphoid organs, is now well accepted. However, the outcome of intrahepatic T cell activation remains controversial. We have previously reported that activation initiated by hepatocytes results in a tolerogenic phenotype characterized by low expression of CD25 and IL-2, poor cytotoxic T lymphocyte (CTL) function, and excessive expression of the pro-apoptotic protein Bim. To investigate whether this phenotype was due to activation in the absence of co-stimulation, we generated bone marrow (bm) radiation chimeras in which adoptively transferred naïve transgenic CD8 T cells were activated in the presence of co-stimulation by liver bm-derived cells. Despite expressing pro-inflammatory cytokines, high levels of CD25 and CD54, donor T cells activated by liver bm-derived cells did not produce detectable IL-2 and displayed poor CTL function, suggesting incomplete acquisition of effector function. Simultaneously, these cells expressed high levels of Bim and died by neglect. Transfer of Bim-deficient T cells resulted in increased T cell numbers. These results imply that expression of CD25 and CD54 is co-stimulation dependent and distinguishes T cell activated by hepatocytes and liver bm-derived cells. In contrast, low expression of IL-2, poor CTL function and excess Bim production represent a more universal phenotype defining T cells undergoing primary activation by both types of hepatic antigen presenting cells (APC). These results have important implications for transplantation, in which all liver antigen presenting cells contribute to activation of T cells specific for the allograft. Copyright © 2012 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Branly, Thomas; Bertoni, Lélia; Contentin, Romain; Rakic, Rodolphe; Gomez-Leduc, Tangni; Desancé, Mélanie; Hervieu, Magalie; Legendre, Florence; Jacquet, Sandrine; Audigié, Fabrice; Denoix, Jean-Marie; Demoor, Magali; Galéra, Philippe
2017-10-01
Articular cartilage presents a poor capacity for self-repair. Its structure-function are frequently disrupted or damaged upon physical trauma or osteoarthritis in humans. Similar musculoskeletal disorders also affect horses and are the leading cause of poor performance or early retirement of sport- and racehorses. To develop a therapeutic solution for horses, we tested the autologous chondrocyte implantation technique developed on human bone marrow (BM) mesenchymal stem cells (MSCs) on horse BM-MSCs. This technique involves BM-MSC chondrogenesis using a combinatory approach based on the association of 3D-culture in collagen sponges, under hypoxia in the presence of chondrogenic factors (BMP-2 + TGF-β 1 ) and siRNA to knockdown collagen I and HtrA1. Horse BM-MSCs were characterized before being cultured in chondrogenic conditions to find the best combination to enhance, stabilize, the chondrocyte phenotype. Our results show a very high proliferation of MSCs and these cells satisfy the criteria defining stem cells (pluripotency-surface markers expression). The combination of BMP-2 + TGF-β 1 strongly induces the chondrogenic differentiation of MSCs and prevents HtrA1 expression. siRNAs targeting Col1a1 and Htra1 were functionally validated. Ultimately, the combined use of specific culture conditions defined here with specific growth factors and a Col1a1 siRNAs (50 nM) association leads to the in vitro synthesis of a hyaline-type neocartilage whose chondrocytes present an optimal phenotypic index similar to that of healthy, differentiated chondrocytes. Our results lead the way to setting up pre-clinical trials in horses to better understand the reaction of neocartilage substitute and to carry out a proof-of-concept of this therapeutic strategy on a large animal model.
Origins and Properties of Dental, Thymic, and Bone Marrow Mesenchymal Cells and Their Stem Cells
Komada, Yukiya; Yamane, Toshiyuki; Kadota, Daiji; Isono, Kana; Takakura, Nobuyuki; Hayashi, Shin-Ichi; Yamazaki, Hidetoshi
2012-01-01
Mesenchymal cells arise from the neural crest (NC) or mesoderm. However, it is difficult to distinguish NC-derived cells from mesoderm-derived cells. Using double-transgenic mouse systems encoding P0-Cre, Wnt1-Cre, Mesp1-Cre, and Rosa26EYFP, which enabled us to trace NC-derived or mesoderm-derived cells as YFP-expressing cells, we demonstrated for the first time that both NC-derived (P0- or Wnt1-labeled) and mesoderm-derived (Mesp1-labeled) cells contribute to the development of dental, thymic, and bone marrow (BM) mesenchyme from the fetal stage to the adult stage. Irrespective of the tissues involved, NC-derived and mesoderm-derived cells contributed mainly to perivascular cells and endothelial cells, respectively. Dental and thymic mesenchyme were composed of either NC-derived or mesoderm-derived cells, whereas half of the BM mesenchyme was composed of cells that were not derived from the NC or mesoderm. However, a colony-forming unit-fibroblast (CFU-F) assay indicated that CFU-Fs in the dental pulp, thymus, and BM were composed of NC-derived and mesoderm-derived cells. Secondary CFU-F assays were used to estimate the self-renewal potential, which showed that CFU-Fs in the teeth, thymus, and BM were entirely NC-derived cells, entirely mesoderm-derived cells, and mostly NC-derived cells, respectively. Colony formation was inhibited drastically by the addition of anti-platelet–derived growth factor receptor-β antibody, regardless of the tissue and its origin. Furthermore, dental mesenchyme expressed genes encoding critical hematopoietic factors, such as interleukin-7, stem cell factor, and cysteine-X-cysteine (CXC) chemokine ligand 12, which supports the differentiation of B lymphocytes and osteoclasts. Therefore, the mesenchymal stem cells found in these tissues had different origins, but similar properties in each organ. PMID:23185234
Bakhshi, Tiki; Zabriskie, Ryan C.; Bodie, Shamanique; Kidd, Shannon; Ramin, Susan; Paganessi, Laura A.; Gregory, Stephanie A.; Fung, Henry C.; Christopherson, Kent W.
2012-01-01
BACKGROUND Hematopoietic stem cells (HSCs) are routinely obtained from marrow, mobilized peripheral blood, and umbilical cord blood. Mesenchymal stem cells (MSCs) are traditionally isolated from marrow. Bone marrow–derived MSCs (BM-MSCs) have previously demonstrated their ability to act as a feeder layer in support of ex vivo cord blood expansion. However, the use of BM-MSCs to support the growth, differentiation, and engraftment of cord blood may not be ideal for transplant purposes. Therefore, the potential of MSCs from a novel source, the Wharton’s jelly of umbilical cords, to act as stromal support for the long-term culture of cord blood HSC was evaluated. STUDY DESIGN AND METHODS Umbilical cord–derived MSCs (UC-MSCs) were cultured from the Wharton’s jelly of umbilical cord segments. The UC-MSCs were then profiled for expression of 12 cell surface receptors and tested for their ability to support cord blood HSCs in a long-term culture-initiating cell (LTC-IC) assay. RESULTS Upon culture, UC-MSCs express a defined set of cell surface markers (CD29, CD44, CD73, CD90, CD105, CD166, and HLA-A) and lack other markers (CD45, CD34, CD38, CD117, and HLA-DR) similar to BM-MSCs. Like BM-MSCs, UC-MSCs effectively support the growth of CD34+ cord blood cells in LTC-IC assays. CONCLUSION These data suggest the potential therapeutic application of Wharton’s jelly–derived UC-MSCs to provide stromal support structure for the long-term culture of cord blood HSCs as well as the possibility of cotransplantation of genetically identical, HLA-matched, or unmatched cord blood HSCs and UC-MSCs in the setting of HSC transplantation. PMID:18798803
Analysis of GD2/GM2 synthase mRNA as a biomarker for small cell lung cancer.
Chen, Lin-Chi; Brown, Andrew B; Cheung, Irene Y; Cheung, Nai-Kong V; Kris, Mark G; Krug, Lee M
2010-02-01
GD2/GM2 synthase is a key enzyme in the synthesis of GD2 and GM2 gangliosides found on the surface of neuroblastoma and small cell lung carcinoma (SCLC) cells. In neuroblastoma, persistent levels of GD2/GM2 synthase RNA in bone marrow (BM) following therapy portend poorer progression-free and overall survival. We conducted this study to determine if GD2/GM2 synthase RNA could be detected in SCLC cell lines and human tissues, and whether mRNA transcript levels corresponded with disease status. Initially, a pilot study enrolled patients with SCLC to determine the rate of GD2 expression at various points in the patients' disease course. Peripheral blood (PB), bone marrow and tumor tissues were used to measure GD2/GM2 synthase levels. In addition, SCLC cell lines were analyzed for GD2/GM2 synthase expression. Based on data from that initial analysis, a prospective trial was developed enrolling patients with newly diagnosed SCLC and following them serially. GD2/GM2 synthase transcript was determined by a sensitive quantitative reverse transcription-PCR (qRT-PCR) assay and normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Six SCLC cell lines were assayed for expression of GD2/GM2 synthase, and high expression was detected in all. GD2/GM2 synthase transcript levels were obtained from tumor tissue, BM, or PB of 29 patients in the pilot study. 6/10 (60%) tumor tissues or BM samples were positive (median 332.7 units; range 13-2323 units); 8/19 (42%) untreated patients were GD2/GM2 synthase positive in their PB prior to beginning therapy (median 10.2; range 5.1-32.2); 3/4 (75%) patients who were first tested when they developed recurrent disease were positive in their PB (median 16.1; range 8.5-19.9). The fourth patient had an initial value of 2.0 (negative), which increased to 8.4 (positive) within 1 month without treatment. Seven of 12 patients with baseline positive GD2/GM2 synthase values had post-treatment levels measured, all of which were =5 or showed a >50% decrease following successful treatment. Patients in the prospective trial demonstrated lower rates of positivity, with only 3/26 (12%) patients exhibiting detectable transcript levels in the peripheral blood prior to treatment. All 3 of these patients had their transcript levels fall below 5 after treatment. 11/26 patients had baseline levels of zero. Bone marrow was drawn at baseline on 7 patients in the prospective trial and 3 (43%) had transcript levels above 5 (range 0.65-27.43 units). There was no correlation between elevated levels in the BM and elevated levels in the PB. Although initial studies demonstrated that GD2/GM2 synthase transcripts were measurable in the peripheral blood of SCLC patients at diagnosis and declined with successful treatment, in a separate prospective study, these results could not be confirmed. Thus, GD2/GM2 is not a reliable biomarker in SCLC. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
2012-02-01
10-1-0927 TITLE: Mesenchymal Stem Cell Therapy for Nerve Regeneration and Immunomodulation after Composite Tissue Allotransplantation...immunosuppression. Bone Marrow Derived Mesenchymal stem cells (BM-MSCs) are pluripotent cells, capable of differentiation along multiple mesenchymal lineages into...As part of implemented transition from University of Pittsburgh to Johns Hopkins University, we optimized our mesenchymal stem cell (MSC) isolation
Generation of high-yield insulin producing cells from human bone marrow mesenchymal stem cells.
Jafarian, Arefeh; Taghikhani, Mohammad; Abroun, Saeid; Pourpak, Zahra; Allahverdi, Amir; Soleimani, Masoud
2014-07-01
Allogenic islet transplantation is a most efficient approach for treatment of diabetes mellitus. However, the scarcity of islets and long term need for an immunosuppressant limits its application. Recently, cell replacement therapies that generate of unlimited sources of β cells have been developed to overcome these limitations. In this study we have described a stage specific differentiation protocol for the generation of insulin producing islet-like clusters from human bone marrow mesenchymal stem cells (hBM-MSCs). This specific stepwise protocol induced differentiation of hMSCs into definitive endoderm, pancreatic endoderm and pancreatic endocrine cells that expressed of sox17, foxa2, pdx1, ngn3, nkx2.2, insulin, glucagon, somatostatin, pancreatic polypeptide, and glut2 transcripts respectively. In addition, immunocytochemical analysis confirmed protein expression of the above mentioned genes. Western blot analysis discriminated insulin from proinsulin in the final differentiated cells. In derived insulin producing cells (IPCs), secreted insulin and C-peptide was in a glucose dependent manner. We have developed a protocol that generates effective high-yield human IPCs from hBM-MSCs in vitro. These finding suggest that functional IPCs generated by this procedure can be used as a cell-based approach for insulin dependent diabetes mellitus.
Qian, Hui; Ding, Xiaoqing; Zhang, Jiao; Mao, Fei; Sun, Zixuan; Jia, Haoyuan; Yin, Lei; Wang, Mei; Zhang, Xu; Zhang, Bin; Yan, Yongmin; Zhu, Wei; Xu, Wenrong
2017-06-13
Mesenchymal stem cells (MSCs) transplantation has been used for therapeutic applications in various diseases. Here we report MSCs can malignantly transform in vivo. The novel neoplasm was found on the tail of female rat after injection with male rat bone marrow-derived MSCs (rBM-MSCs) and the new tumor cell line, K3, was isolated from the neoplasm. The K3 cells expressed surface antigens and pluripotent genes similar to those of rBM-MSCs and presented tumor cell features. Moreover, the K3 cells contained side population cells (SP) like cancer stem cells (CSCs), which might contribute to K3 heterogeneity and tumorigenic capacity. To investigate the metastatic potential of K3 cells, we established the nude mouse models of liver and lung metastases and isolated the corresponding metastatic cell lines K3-F4 and K3-B6. Both K3-F4 and K3-B6 cell lines with higher metastatic potential acquired more mesenchymal and stemness-related features. Epithelial-mesenchymal transition is a potential mechanism of K3-F4 and K3-B6 formation.
Multiple prethymic defects underlie age-related loss of T progenitor competence
Zediak, Valerie P.; Maillard, Ivan
2007-01-01
Aging in mice and humans is characterized by declining T-lymphocyte production in the thymus, yet it is unclear whether aging impacts the T-lineage potential of hematopoietic progenitors. Although alterations in the lymphoid progenitor content of aged mouse bone marrow (BM) have been described, irradiation-reconstitution experiments have failed to reveal defects in T-lineage potential of BM hematopoietic progenitors or purified hematopoietic stem cells (HSCs) from aged mice. Here, we assessed T-progenitor potential in unmanipulated recipient mice without conditioning irradiation. T-progenitor potential was reduced in aged BM compared with young BM, and this reduction was apparent at the earliest stages of intrathymic differentiation. Further, enriched populations of aged HSCs or multipotent progenitors (MPPs) gave rise to fewer T-lineage cells than their young counterparts. Whereas the T-precursor frequency within the MPP pool was unchanged, there was a 4-fold decline in T-precursor frequency within the HSC pool. In addition, among the T-competent HSC clones, there were fewer highly proliferative clones in the aged HSC pool than in the young HSC pool. These results identify T-compromised aged HSCs and define the nature and cellular sites of prethymic, age-related defects in T-lineage differentiation potential. PMID:17456721
Frenz, Theresa; Graalmann, Lukas; Detje, Claudia N; Döring, Marius; Grabski, Elena; Scheu, Stefanie; Kalinke, Ulrich
2014-09-01
Upon treatment with vesicular stomatitis virus (VSV) particles, plasmacytoid dendritic cells (pDC) are triggered to mount substantial type I IFN responses, whereas myeloid DC (mDC) are only minor producers. Interestingly, bone marrow-derived (BM-)mDC were more vulnerable to infection with enhanced GFP (eGFP)-expressing VSV (VSVeGFP) than BM-pDC. BM-pDC stimulated with wild-type VSV mounted TLR-dependent IFN responses that were independent of RIG-I-like helicase (RLH) signaling. In contrast, in BM-pDC the VSV variant M2 induced particularly high IFN responses triggered in a TLR- and RLH-dependent manner, whereas BM-mDC stimulation was solely RLH-dependent. Importantly, VSVeGFP treatment of BM-pDC derived from IFN-β yellow fluorescent protein (YFP) reporter mice (messenger of IFN-β) resulted in YFP(+) and eGFP(+) single-positive cells, whereas among messenger of IFN-β-BM-mDC most YFP(+) cells were also eGFP(+). This observation indicated that unlike mDC, direct virus infection was not required to trigger IFN responses of pDC. VSV-infected BM-mDC triggered BM-pDC to mount significantly higher IFN responses than free virus particles. Stimulation with infected cells enhanced the percentages of pDC subsets expressing either IFN-β(+) or IFN-α6(+) plus IFN-β(+). Irrespective of whether stimulated with free virus or infected cells, IFN induction was dependent on autophagy of pDC, whereas autophagy of the infected mDC was dispensable. Collectively, these results indicated that productive VSV infection was needed to trigger IFN responses of mDC, but not of pDC, and that IFN responses were primarily induced by virus-infected cells that stimulated pDC in a TLR-dependent manner. Copyright © 2014 by The American Association of Immunologists, Inc.
Kumar, Manoj; Bhoi, Sanjeev; Mohanty, Sujata; Kamal, Vineet Kumar; Rao, D. N.; Mishra, Pravas; Galwankar, Sagar
2016-01-01
Background: Hemorrhagic shock (HS) is the major leading cause of death after trauma. Up to 50% of early deaths are due to massive hemorrhage. Excessive release of pro-inflammatory cytokine and hypercatecholamine induces hematopoietic progenitor cells (HPCs) apoptosis, leading to multiorgan failure and death. However, still, result remains elusive for hematopoietic stem cells (HSCs) behavior in trauma HS (T/HS). Objectives: Therefore, our aim was to evaluate the in vitro HSCs behavior with or without recombinant human erythropoietin (rhEPO), recombinant human granulocyte macrophage-colony-stimulating factor (rhGM-CSF), recombinant human interleukin-3 (rhIL-3) alone, and combination with rhEPO + rhGM-CSF + rhIL-3 (EG3) in T/HS patients. Methodology: Bone marrow (BM) aspirates (n = 14) were collected from T/HS patients, those survived on day 3. BM cells were cultured for HPCs: Colony-forming unit-erythroid (CFU-E), burst-forming unit-erythroid (BFU-E), and colony-forming unit-granulocyte, monocyte/macrophage colonies growth. HPCs were counted with or without rhEPO, rhGM-CSF, rhIL-3 alone, and combination with EG3 in T/HS patients. Results: BM HSCs growth significantly suppressed in T/HS when compared with control group (P < 0.05). In addition, CFU-E and BFU-E colony growth were increased with additional growth factor (AGF) (rhEPO, rhGM-CSF, and rhIL-3) as compared to baseline (without AGF) (P < 0.05). Conclusion: Suppressed HPCs may be reactivated by addition of erythropoietin, GM-CSF, IL-3 alone and with combination in T/HS. PMID:27722113
Wang, Jun-Jie; Liu, Yu-Liang; Sun, Yuan-Chao; Ge, Wei; Wang, Yong-Yong; Dyce, Paul W.; Hou, Rong; Shen, Wei
2015-01-01
It has been widely known that the giant panda (Ailuropoda melanoleuca) is one of the most endangered species in the world. An optimized platform for maintaining the proliferation of giant panda mesenchymal stem cells (MSCs) is very necessary for current giant panda protection strategies. Basic fibroblast growth factor (bFGF), a member of the FGF family, is widely considered as a growth factor and differentiation inducer within the stem cell research field. However, the role of bFGF on promoting the proliferation of MSCs derived from giant panda bone marrow (BM) has not been reported. In this study, we aimed to investigate the role of bFGF on the proliferation of BM-MSCs derived from giant panda. MSCs were cultured for cell proliferation analysis at 24, 48 and 72 hrs following the addition of bFGF. With increasing concentrations of bFGF, cell numbers gradually increased. This was further demonstrated by performing 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) cell proliferation assay, 5-Bromo-2-deoxyUridine (BrdU) labeling and cell cycle testing. Furthermore, the percentage of MSCs that were OCT4 positive increased slightly following treatment with 5 ng/ml bFGF. Moreover, we demonstrated that the extracellular signal-regulated kinase (ERK) signaling pathway may play an important role in the proliferation of panda MSCs stimulated by bFGF. In conclusion, this study suggests that giant panda BM-MSCs have a high proliferative capacity with the addition of 5 ng/ml bFGF in vitro. PMID:26375397
Characteristics of mesenchymal stem cells isolated from bone marrow of giant panda.
Liu, Yuliang; Liu, Yang; Yie, Shangmian; Lan, Jingchao; Pi, Jinkui; Zhang, Zhihe; Huang, He; Cai, Zhigang; Zhang, Ming; Cai, Kailai; Wang, Hairui; Hou, Rong
2013-09-01
In present study, we report on bone marrow (BM) mesenchymal stem cells (MSCs) that are isolated from giant pandas. Cells were collected from the BM of two stillborn giant pandas. The cells were cultured and expanded in 10% fetal bovine serum medium. Cell morphology was observed under an inverted microscopy, and the proliferation potential of the cells was evaluated by counting cell numbers for eight consecutive days. Differentiation potentials of the cells were determined by using a variety of differentiation protocols for osteocytes, adipocytes, neuron cells, and cardiomyocytes. Meanwhile, the specific gene expressions for MSCs or differentiated cells were analyzed by RT-PCR. The isolated cells exhibited a fibroblast-like morphology; expressed mesenchymal specific markers such as cluster of differentiation 73 (CD73), SRY (sex determining region Y)-box 2 (SOX-2), guanine nucleotide-binding protein-like 3 (GNL3), and stem cell factor receptor (SCFR); and could be differentiated into osteocytes and adipocytes that were characterized by Alizarin Red and Oil Red O staining. Under appropriate induction conditions, these cells were also able to differentiate into neuroglial-like or myocardial-like cells that expressed specific myocardial markers such as GATA transcription factors 4 (GATA-4), cardiac troponin T (cTnT), and myosin heavy chain 7B (MYH7B), or neural specific markers such as Nestin and glial fibrillary acidic protein (GFAP). This study demonstrated stem cells recovery and growth from giant pandas. The findings suggest that cells isolated from the BM of giant pandas have a high proliferative capacity and multiple differentiation potential in vitro which might aid conservation efforts.
Chua, Hui Lin; Plett, P Artur; Sampson, Carol H; Joshi, Mandar; Tabbey, Rebeka; Katz, Barry P; MacVittie, Thomas J; Orschell, Christie M
2012-10-01
Residual bone marrow damage (RBMD) persists for years following exposure to radiation and is believed to be due to decreased self-renewal potential of radiation-damaged hematopoietic stem cells (HSC). Current literature has examined primarily sublethal doses of radiation and time points within a few months of exposure. In this study, the authors examined RBMD in mice surviving lethal doses of total body ionizing irradiation (TBI) in a murine model of the Hematopoietic Syndrome of the Acute Radiation Syndrome (H-ARS). Survivors were analyzed at various time points up to 19 mo post-TBI for hematopoietic function. The competitive bone marrow (BM) repopulating potential of 150 purified c-Kit+ Sca-1+ lineage- CD150+ cells (KSLCD150+) remained severely deficient throughout the study compared to KSLCD150+ cells from non-TBI age-matched controls. The minimal engraftment from these TBI HSCs is predominantly myeloid, with minimal production of lymphocytes both in vitro and in vivo. All classes of blood cells as well as BM cellularity were significantly decreased in TBI mice, especially at later time points as mice aged. Primitive BM hematopoietic cells (KSLCD150+) displayed significantly increased cell cycling in TBI mice at all time points, which may be a physiological attempt to maintain HSC numbers in the post-irradiation state. Taken together, these data suggest that the increased cycling among primitive hematopoietic cells in survivors of lethal radiation may contribute to long-term HSC exhaustion and subsequent RBMD, exacerbated by the added insult of aging at later time points.
Tenogenesis of bone marrow-, adipose-, and tendon-derived stem cells in a dynamic bioreactor.
Youngstrom, Daniel W; LaDow, Jade E; Barrett, Jennifer G
2016-11-01
Tendons are frequently damaged and fail to regenerate, leading to pain, loss of function, and reduced quality of life. Mesenchymal stem cells (MSCs) possess clinically useful tissue-regenerative properties and have been exploited for use in tendon tissue engineering and cell therapy. However, MSCs exhibit phenotypic heterogeneity based on the donor tissue used, and the efficacy of cell-based treatment modalities may be improved by optimizing cell source based on relative differentiation capacity. Equine MSCs were isolated from bone marrow (BM), adipose (AD), and tendon (TN), expanded in monolayer prior to seeding on decellularized tendon scaffolds (DTS), and cell-laden constructs were placed in a bioreactor designed to mimic the biophysical environment of the tendon. It was hypothesized that TN MSCs would differentiate toward a tendon cell phenotype better than BM and AD MSCs in response to a conditioning period involving cyclic mechanical stimulation for 1 hour per day at 3% strain and 0.33 Hz. All cell types integrated into DTS adopted an elongated morphology similar to tenocytes, expressed tendon marker genes, and improved tissue mechanical properties after 11 days. TN MSCs expressed the greatest levels of scleraxis, collagen type-I, and cartilage oligomeric matrix protein. Major histocompatibility class-II protein mRNA expression was not detected in any of the MSC types, suggesting low immunogenicity for allogeneic transplantation. The results suggest that TN MSCs are the ideal cell type for regenerative medicine therapies for tendinopathies, exhibiting the most mature tendon-like phenotype in vitro. When TN MSCs are unavailable, BM or AD MSCs may serve as robust alternatives.
Wang, Jun-Jie; Liu, Yu-Liang; Sun, Yuan-Chao; Ge, Wei; Wang, Yong-Yong; Dyce, Paul W; Hou, Rong; Shen, Wei
2015-01-01
It has been widely known that the giant panda (Ailuropoda melanoleuca) is one of the most endangered species in the world. An optimized platform for maintaining the proliferation of giant panda mesenchymal stem cells (MSCs) is very necessary for current giant panda protection strategies. Basic fibroblast growth factor (bFGF), a member of the FGF family, is widely considered as a growth factor and differentiation inducer within the stem cell research field. However, the role of bFGF on promoting the proliferation of MSCs derived from giant panda bone marrow (BM) has not been reported. In this study, we aimed to investigate the role of bFGF on the proliferation of BM-MSCs derived from giant panda. MSCs were cultured for cell proliferation analysis at 24, 48 and 72 hrs following the addition of bFGF. With increasing concentrations of bFGF, cell numbers gradually increased. This was further demonstrated by performing 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) cell proliferation assay, 5-Bromo-2-deoxyUridine (BrdU) labeling and cell cycle testing. Furthermore, the percentage of MSCs that were OCT4 positive increased slightly following treatment with 5 ng/ml bFGF. Moreover, we demonstrated that the extracellular signal-regulated kinase (ERK) signaling pathway may play an important role in the proliferation of panda MSCs stimulated by bFGF. In conclusion, this study suggests that giant panda BM-MSCs have a high proliferative capacity with the addition of 5 ng/ml bFGF in vitro.
HaDuong, Josephine H; Blavier, Laurence; Baniwal, Sanjeev K; Frenkel, Baruch; Malvar, Jemily; Punj, Vasu; Sposto, Richard; DeClerck, Yves A
2015-08-15
The potential role of osteoblasts in bone and bone marrow (BM) metastases in neuroblastoma (NBL) remains unclear. In this study, we examined the effect of NBL cells on the osteoblastic differentiation of BM-derived mesenchymal stromal cells (BMMSC). We show that the presence of NBL cells enhanced the osteoblastic differentiation of BMMSC driven by bone morphogenetic protein (BMP)-4, in the absence of any effect on NBL cell proliferation. Expression profiles of BMMSC driven toward osteoblastic differentiation revealed an increase in vascular endothelial growth factor A (Vegfa) expression in the presence of NBL cells. We demonstrated that NBL cells increased BMMSC-derived VEGFA mRNA and protein and that this was enhanced by BMP-4. However, in similar conditions, neither the addition of an mVEGFA blocking antibody nor exogenous recombinant (r) mVEGFA affected osteoblastic differentiation. In contrast, siRNA- mediated knock-down of VEGFA in BMMSC prevented osteoblastic differentiation in BMP-4-treated cocultures, an effect that was not reversed in the presence of rmVEGFA. An analysis of murine bones injected with hNBL cells revealed an increase of mVEGFA producing cells near tumor cells concomitantly with an increase in Vegfa and Runx2 mRNA. This coincided with an increase in osteoclasts, in Rankl/Opg mRNA ratio and with the formation of osteolytic lesions. Thus NBL cells promote osteoblastogenesis in the BM by increasing VEGFA expression in BMMSC. Our study provides a new insight into the role of VEGFA in NBL metastases by pointing to the role of stroma-derived intracrine VEGFA in osteoblastogenesis. © 2015 UICC.
Wohleb, Eric S; Powell, Nicole D; Godbout, Jonathan P; Sheridan, John F
2013-08-21
Social stress is associated with altered immunity and higher incidence of anxiety-related disorders. Repeated social defeat (RSD) is a murine stressor that primes peripheral myeloid cells, activates microglia, and induces anxiety-like behavior. Here we show that RSD-induced anxiety-like behavior corresponded with an exposure-dependent increase in circulating monocytes (CD11b(+)/SSC(lo)/Ly6C(hi)) and brain macrophages (CD11b(+)/SSC(lo)/CD45(hi)). Moreover, RSD-induced anxiety-like behavior corresponded with brain region-dependent cytokine and chemokine responses involved with myeloid cell recruitment. Next, LysM-GFP(+) and GFP(+) bone marrow (BM)-chimeric mice were used to determine the neuroanatomical distribution of peripheral myeloid cells recruited to the brain during RSD. LysM-GFP(+) mice showed that RSD increased recruitment of GFP(+) macrophages to the brain and increased their presence within the perivascular space (PVS). In addition, RSD promoted recruitment of GFP(+) macrophages into the PVS and parenchyma of the prefrontal cortex, amygdala, and hippocampus of GFP(+) BM-chimeric mice. Furthermore, mice deficient in chemokine receptors associated with monocyte trafficking [chemokine receptor-2 knockout (CCR2(KO)) or fractalkine receptor knockout (CX3CR1(KO))] failed to recruit macrophages to the brain and did not develop anxiety-like behavior following RSD. Last, RSD-induced macrophage trafficking was prevented in BM-chimeric mice generated with CCR2(KO) or CX3CR1(KO) donor cells. These findings indicate that monocyte recruitment to the brain in response to social stress represents a novel cellular mechanism that contributes to the development of anxiety.
Wohleb, Eric S.; Powell, Nicole D.
2013-01-01
Social stress is associated with altered immunity and higher incidence of anxiety-related disorders. Repeated social defeat (RSD) is a murine stressor that primes peripheral myeloid cells, activates microglia, and induces anxiety-like behavior. Here we show that RSD-induced anxiety-like behavior corresponded with an exposure-dependent increase in circulating monocytes (CD11b+/SSClo/Ly6Chi) and brain macrophages (CD11b+/SSClo/CD45hi). Moreover, RSD-induced anxiety-like behavior corresponded with brain region-dependent cytokine and chemokine responses involved with myeloid cell recruitment. Next, LysM-GFP+ and GFP+ bone marrow (BM)-chimeric mice were used to determine the neuroanatomical distribution of peripheral myeloid cells recruited to the brain during RSD. LysM-GFP+ mice showed that RSD increased recruitment of GFP+ macrophages to the brain and increased their presence within the perivascular space (PVS). In addition, RSD promoted recruitment of GFP+ macrophages into the PVS and parenchyma of the prefrontal cortex, amygdala, and hippocampus of GFP+ BM-chimeric mice. Furthermore, mice deficient in chemokine receptors associated with monocyte trafficking [chemokine receptor-2 knockout (CCR2KO) or fractalkine receptor knockout (CX3CR1KO)] failed to recruit macrophages to the brain and did not develop anxiety-like behavior following RSD. Last, RSD-induced macrophage trafficking was prevented in BM-chimeric mice generated with CCR2KO or CX3CR1KO donor cells. These findings indicate that monocyte recruitment to the brain in response to social stress represents a novel cellular mechanism that contributes to the development of anxiety. PMID:23966702
Engineering cord blood to improve engraftment after cord blood transplant
Dave, Hema; Bollard, Catherine M.; Shpall, Elizabeth J.
2017-01-01
Umbilical cord blood transplant (CBT) has traditionally been associated with slower engraftment of neutrophils, delayed immune reconstitution and consequently higher risk of infections as compared with peripheral blood progenitor cell (PBPC) or bone marrow (BM) transplants. This is primarily due to low numbers of total nucleated cells (TNCs) and the naive nature of CB immune cells. The use of double unit CB transplant (DCBT) increases the total cell dose in the graft, but it still does not produce as rapid engraftment as seen with PBPC or even BM transplants. Herein, we discuss strategies to improve engraftment after CBT. We describe methods of (I) expansion of CB graft ex vivo to increase the total cell dose; and (II) enhancement of BM homing capability of CB progenitor cells; (III) ex vivo expansion of CB derived T cells for improving T cell function against viruses, tumors and protection from graft versus host disease (GVHD). With these novel approaches, engraftment after CBT is now reaching levels comparable to that of other graft types. PMID:28607915
Effects of Pulsed 2.856 GHz Microwave Exposure on BM-MSCs Isolated from C57BL/6 Mice
Wang, Changzhen; Wang, Xiaoyan; Zhou, Hongmei; Dong, Guofu; Guan, Xue; Wang, Lifeng; Xu, Xinping; Wang, Shuiming; Chen, Peng; Peng, Ruiyun; Hu, Xiangjun
2015-01-01
The increasing use of microwave devices over recent years has meant the bioeffects of microwave exposure have been widely investigated and reported. However the exact biological fate of bone marrow MSCs (BM-MSCs) after microwave radiation remains unknown. In this study, the potential cytotoxicity on MSC proliferation, apoptosis, cell cycle, and in vitro differentiation were assayed following 2.856 GHz microwave exposure at a specific absorption rate (SAR) of 4 W/kg. Importantly, our findings indicated no significant changes in cell viability, cell division and apoptosis after microwave treatment. Furthermore, we detected no significant effects on the differentiation ability of these cells in vitro, with the exception of reduction in mRNA expression levels of osteopontin (OPN) and osteocalcin (OCN). These findings suggest that microwave treatment at a SAR of 4 W/kg has undefined adverse effects on BM-MSCs. However, the reduced-expression of proteins related to osteogenic differentiation suggests that microwave can the influence at the mRNA expression genetic level. PMID:25658708
Additive effect of mesenchymal stem cells and defibrotide in an arterial rat thrombosis model.
Dilli, Dilek; Kılıç, Emine; Yumuşak, Nihat; Beken, Serdar; Uçkan Çetinkaya, Duygu; Karabulut, Ramazan; Zenciroğlu, Ayşegu L
2017-06-01
In this study, we aimed to investigate the additive effect of mesenchymal stem cells (MSC) and defibrotide (DFT) in a rat model of femoral arterial thrombosis. Thirty Sprague Dawley rats were included. An arterial thrombosis model by ferric chloride (FeCl3) was developed in the left femoral artery. The rats were equally assigned to 5 groups: Group 1-Sham-operated (without arterial injury); Group 2-Phosphate buffered saline (PBS) injected; Group 3-MSC; Group 4-DFT; Group 5-MSC + DFT. All had two intraperitoneal injections of 0.5 ml: the 1st injection was 4 h after the procedure and the 2nd one 48 h after the 1st injection. The rats were sacrificed 7 days after the 2nd injection. Although the use of human bone marrow-derived (hBM) hBM-MSC or DFT alone enabled partial resolution of the thrombus, combining them resulted in near-complete resolution. Neovascularization was two-fold better in hBM-MSC + DFT treated rats (11.6 ± 2.4 channels) compared with the hBM-MSC (3.8 ± 2.7 channels) and DFT groups (5.5 ± 1.8 channels) (P < 0.0001 and P= 0.002, respectively). The combined use of hBM-MSC and DFT in a rat model of arterial thrombosis showed additive effect resulting in near-complete resolution of the thrombus.
Kato, Jiro; Kamiya, Hideki; Himeno, Tatsuhito; Shibata, Taiga; Kondo, Masaki; Okawa, Tetsuji; Fujiya, Atsushi; Fukami, Ayako; Uenishi, Eita; Seino, Yusuke; Tsunekawa, Shin; Hamada, Yoji; Naruse, Keiko; Oiso, Yutaka; Nakamura, Jiro
2014-01-01
Although the initial healing stage involves a re-epithelialization in humans, diabetic foot ulceration (DFU) has been investigated using rodent models with wounds on the thigh skin, in which a wound contraction is initiated. In this study, we established a rodent model of DFU on the plantar skin and evaluated the therapeutic efficacy of bone-marrow-derived mesenchymal stem cells (BM-MSCs) in this model. The wounds made on the hind paws or thighs of streptozotocin induced diabetic or control rats were treated with BM-MSCs. Expression levels of phosphorylated focal adhesion kinase (pFAK), matrix metaroprotease (MMP)-2, EGF, and IGF-1, were evaluated in human keratinocytes, which were cultured in conditioned media of BM-MSCs (MSC-CM) with high glucose levels. Re-epithelialization initiated the healing process on the plantar, but not on the thigh, skin. The therapy utilizing BM-MSCs ameliorated the delayed healing in diabetic rats. In the keratinocytes cultured with MSC-CM, the decreased pFAK levels in the high glucose condition were restored, and the MMP2, EGF, and IGF-1 levels increased. Our study established a novel rat DFU model. The impaired healing process in diabetic rats was ameliorated by transplantation of BM-MSCs. This amelioration might be accounted for by the modification of keratinocyte functions. Copyright © 2014 Elsevier Inc. All rights reserved.