Sample records for marrow derived stem

  1. Can bone marrow differentiate into renal cells?

    PubMed

    Imai, Enyu; Ito, Takahito

    2002-10-01

    A considerable plasticity of adult stem cells has been confirmed in a wide variety of tissues. In particular, the pluripotency of bone marrow-derived stem cells may influence the regeneration of injured tissues and may provide novel avenues in regenerative medicine. Bone marrow contains at least hematopoietic and mesenchymal stem cells, and both can differentiate into a wide range of differentiated cells. Side population (SP) cells, which are originally defined in bone marrow cells by high efflux of DNA-binding dye, seem to be a new class of multipotent stem cells. Irrespective of the approach used to obtain stem cells, the fates of marrow-derived cells following bone marrow transplantation can be traced by labeling donor cells with green fluorescence protein or by identifying donor Y chromosome in female recipients. So far, bone marrow-derived cells have been reported to differentiate into renal cells, including mesangial cells, endothelial cells, podocytes, and tubular cells in the kidney, although controversy exists. Further studies are required to address this issue. Cell therapy will be promising when we learn to control stem cells such as bone marrow-derived stem cells, embryonic stem cells, and resident stem cells in the kidney. Identification of factors that support stem cells or promote their differentiation should provide a relevant step towards cell therapy.

  2. Cigarette Smoke Inhibits Recruitment of Bone-Marrow-Derived Stem cells to The Uterus

    PubMed Central

    Zhou, Yuping; Gan, Ye; Taylor, Hugh S.

    2011-01-01

    Cigarette smoking leads to female infertility and a decreased incidence of endometriosis. Bone marrow derived stem cells are recruited to uterine endometrium and endometriosis. The effect of cigarette smoking on stem cell recruitment to any organ is uncharacterized. We hypothesized that bone marrow-derived mesenchymal stem cell recruitment to the uterus and differentiation would be diminished by cigarette smoke. We used human mesenchymal stem cells (hMSC) in vitro and a mouse model of cigarette smoke exposure. After myeloablation female C57BL/6J received bone marrow cells from males. Mice were exposed to room air or smoke from unfiltered cigarettes. Immunofluorescence and Y-FISH was performed on uterine sections. In vitro hMSCs were treated with 8-Br-cAMP to induce endometrial cell differentiation with or without cigarette smoke extract (CSE) and decidualization assessed morphologically and by prolactin expression. After 4 weeks the total number of Y-chromosome cells in the uterus was reduced by 68% in the smoke exposed mice. Both leukocytes and bone marrow derived endometrial cells were reduced by 60% and 73%, respectively. Differentiation of bone marrow derived cell to endometrial epithelial cells was reduced by 84%. hMSC treated with CSE failed to show cytological characteristics of decidualization. mRNA levels of the decidualization marker prolactin were decreased by 90% in CSE treated cells. Smoking inhibits both recruitment of bone marrow derived stem cells to uterus and stem cell differentiation. Inhibition of stem cells recruitment may be a general mechanism by which smoking leads to long term organ damage through inability to repair or regenerate multiple tissues. PMID:20955787

  3. Enhancement of the repair of dog alveolar cleft by an autologous iliac bone, bone marrow-derived mesenchymal stem cell, and platelet-rich fibrin mixture.

    PubMed

    Yuanzheng, Chen; Yan, Gao; Ting, Li; Yanjie, Fu; Peng, Wu; Nan, Bai

    2015-05-01

    Autologous bone graft has been regarded as the criterion standard for the repair of alveolar cleft. However, the most prominent issue in alveolar cleft treatment is the high absorption rate of the bone graft. The authors' objective was to investigate the effects of an autologous iliac bone, bone marrow-derived mesenchymal stem cell, and platelet-rich fibrin mixture on the repair of dog alveolar cleft. Twenty beagle dogs with unilateral alveolar clefts created by surgery were divided randomly into four groups: group A underwent repair with an autologous iliac bone, bone marrow-derived mesenchymal stem cell, and platelet-rich fibrin mixture; group B underwent repair with autologous iliac bone and bone marrow-derived mesenchymal stem cells; group C underwent repair with autologous iliac bone and platelet-rich fibrin; and group D underwent repair with autologous iliac bone as the control. One day and 6 months after transplantation, the transplant volumes and bone mineral density were assessed by quantitative computed tomography. All of the transplants were harvested for hematoxylin and eosin staining 6 months later. Bone marrow-derived mesenchymal stem cells and platelet-rich fibrin transplants formed the greatest amounts of new bone among the four groups. The new bone formed an extensive union with the underlying maxilla in groups A, B, and C. Transplants with the bone marrow-derived mesenchymal stem cells, platelet-rich fibrin, and their mixture retained the majority of their initial volume, whereas the transplants in the control group showed the highest absorption rate. Bone mineral density of transplants with the bone marrow-derived mesenchymal stem cells, platelet-rich fibrin, and their mixture 6 months later was significantly higher than in the control group (p < 0.05), and was the highest in bone marrow-derived mesenchymal stem cells and platelet-rich fibrin mixed transplants. Hematoxylin and eosin staining showed that the structure of new bones formed the best in group A. Both bone marrow-derived mesenchymal stem cells and platelet-rich fibrin are capable of improving the repair of dog alveolar cleft, and the mixture of them is more potent than each one of them used singly for enhancing new bone regeneration.

  4. Mesenchymal stem cells induce dermal fibroblast responses to injury

    PubMed Central

    Smith, Andria N.; Willis, Elise; Chan, Vincent T.; Muffley, Lara A.; Isik, F. Frank; Gibran, Nicole S.; Hocking, Anne M.

    2009-01-01

    Although bone marrow-derived mesenchymal stem cells have been shown to promote repair when applied to cutaneous wounds, the mechanism for this response remains to be determined. The aim of this study was to determine the effects of paracrine signaling from mesenchymal stem cells on dermal fibroblast responses to injury including proliferation, migration and expression of genes important in wound repair. Dermal fibroblasts were co-cultured with bone marrow-derived mesenchymal stem cells grown in inserts, which allowed for paracrine interactions without direct cell contact. In this co-culture model, bone marrow-derived mesenchymal stem cells regulate dermal fibroblast proliferation, migration and gene expression. When co-cultured with mesenchymal stem cells, dermal fibroblasts show increased proliferation and accelerated migration in a scratch assay. A chemotaxis assay also demonstrated that dermal fibroblasts migrate towards bone marrow-derived mesenchymal stem cells. A PCR array was used to analyze the effect of mesenchymal stem cells on dermal fibroblast gene expression. In response to mesenchymal stem cells, dermal fibroblasts up-regulate integrin alpha 7 expression and down-regulate expression of ICAM1, VCAM1 and MMP11. These observations suggest that mesenchymal stem cells may provide an important early signal for dermal fibroblast responses to cutaneous injury. PMID:19666021

  5. Silk fibroin/chitosan thin film promotes osteogenic and adipogenic differentiation of rat bone marrow-derived mesenchymal stem cells.

    PubMed

    Li, Da-Wei; He, Jin; He, Feng-Li; Liu, Ya-Li; Liu, Yang-Yang; Ye, Ya-Jing; Deng, Xudong; Yin, Da-Chuan

    2018-04-01

    As a biodegradable polymer thin film, silk fibroin/chitosan composite film overcomes the defects of pure silk fibroin and chitosan films, respectively, and shows remarkable biocompatibility, appropriate hydrophilicity and mechanical properties. Silk fibroin/chitosan thin film can be used not only as metal implant coating for bone injury repair, but also as tissue engineering scaffold for skin, cornea, adipose, and other soft tissue injury repair. However, the biocompatibility of silk fibroin/chitosan thin film for mesenchymal stem cells, a kind of important seed cell of tissue engineering and regenerative medicine, is rarely reported. In this study, silk fibroin/chitosan film was prepared by solvent casting method, and the rat bone marrow-derived mesenchymal stem cells were cultured on the silk fibroin/chitosan thin film. Osteogenic and adipogenic differentiation of rat bone marrow-derived mesenchymal stem cells were induced, respectively. The proliferation ability, osteogenic and adipogenic differentiation abilities of rat bone marrow-derived mesenchymal stem cells were systematically compared between silk fibroin/chitosan thin film and polystyrene tissue culture plates. The results showed that silk fibroin/chitosan thin film not only provided a comparable environment for the growth and proliferation of rat bone marrow-derived mesenchymal stem cells but also promoted their osteogenic and adipogenic differentiation. This work provided information of rat bone marrow-derived mesenchymal stem cells behavior on silk fibroin/chitosan thin film and extended the application of silk fibroin/chitosan thin film. Based on the results, we suggested that the silk fibroin/chitosan thin film could be a promising material for tissue engineering of bone, cartilage, adipose, and skin.

  6. Skeletal tissue engineering using mesenchymal or embryonic stem cells: clinical and experimental data.

    PubMed

    Gamie, Zakareya; MacFarlane, Robert J; Tomkinson, Alicia; Moniakis, Alexandros; Tran, Gui Tong; Gamie, Yehya; Mantalaris, Athanasios; Tsiridis, Eleftherios

    2014-11-01

    Mesenchymal stem cells (MSCs) can be obtained from a wide variety of tissues for bone tissue engineering such as bone marrow, adipose, birth-associated, peripheral blood, periosteum, dental and muscle. MSCs from human fetal bone marrow and embryonic stem cells (ESCs) are also promising cell sources. In vitro, in vivo and clinical evidence was collected using MEDLINE® (1950 to January 2014), EMBASE (1980 to January 2014) and Google Scholar (1980 to January 2014) databases. Enhanced results have been found when combining bone marrow-derived mesenchymal stem cells (BMMSCs) with recently developed scaffolds such as glass ceramics and starch-based polymeric scaffolds. Preclinical studies investigating adipose tissue-derived stem cells and umbilical cord tissue-derived stem cells suggest that they are likely to become promising alternatives. Stem cells derived from periosteum and dental tissues such as the periodontal ligament have an osteogenic potential similar to BMMSCs. Stem cells from human fetal bone marrow have demonstrated superior proliferation and osteogenic differentiation than perinatal and postnatal tissues. Despite ethical concerns and potential for teratoma formation, developments have also been made for the use of ESCs in terms of culture and ideal scaffold.

  7. Mesenchymal stem cells induce dermal fibroblast responses to injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Andria N., E-mail: snosmith@u.washington.edu; Willis, Elise, E-mail: elise.willis@gmail.com; Chan, Vincent T.

    2010-01-01

    Although bone marrow-derived mesenchymal stem cells have been shown to promote repair when applied to cutaneous wounds, the mechanism for this response remains to be determined. The aim of this study was to determine the effects of paracrine signaling from mesenchymal stem cells on dermal fibroblast responses to injury including proliferation, migration and expression of genes important in wound repair. Dermal fibroblasts were co-cultured with bone marrow-derived mesenchymal stem cells grown in inserts, which allowed for paracrine interactions without direct cell contact. In this co-culture model, bone marrow-derived mesenchymal stem cells regulate dermal fibroblast proliferation, migration and gene expression. Whenmore » co-cultured with mesenchymal stem cells, dermal fibroblasts show increased proliferation and accelerated migration in a scratch assay. A chemotaxis assay also demonstrated that dermal fibroblasts migrate towards bone marrow-derived mesenchymal stem cells. A PCR array was used to analyze the effect of mesenchymal stem cells on dermal fibroblast gene expression. In response to mesenchymal stem cells, dermal fibroblasts up-regulate integrin alpha 7 expression and down-regulate expression of ICAM1, VCAM1 and MMP11. These observations suggest that mesenchymal stem cells may provide an important early signal for dermal fibroblast responses to cutaneous injury.« less

  8. Adult bone marrow-derived stem cells for organ regeneration and repair.

    PubMed

    Tögel, Florian; Westenfelder, Christof

    2007-12-01

    Stem cells have been recognized as a potential tool for the development of innovative therapeutic strategies. There are in general two types of stem cells, embryonic and adult stem cells. While embryonic stem cell therapy has been riddled with problems of allogeneic rejection and ethical concerns, adult stem cells have long been used in the treatment of hematological malignancies. With the recognition of additional, potentially therapeutic characteristics, bone marrow-derived stem cells have become a tool in regenerative medicine. The bone marrow is an ideal source of stem cells because it is easily accessible and harbors two types of stem cells. Hematopoietic stem cells give rise to all blood cell types and have been shown to exhibit plasticity, while multipotent marrow stromal cells are the source of osteocytes, chondrocytes, and fat cells and have been shown to support and generate a large number of different cell types. This review describes the general characteristics of these stem cell populations and their current and potential future applications in regenerative medicine. 2007 Wiley-Liss, Inc

  9. Transplantation of autologous bone marrow-derived mesenchymal stem cells for traumatic brain injury☆

    PubMed Central

    Jiang, Jindou; Bu, Xingyao; Liu, Meng; Cheng, Peixun

    2012-01-01

    Results from the present study demonstrated that transplantation of autologous bone marrow-derived mesenchymal stem cells into the lesion site in rat brain significantly ameliorated brain tissue pathological changes and brain edema, attenuated glial cell proliferation, and increased brain-derived neurotrophic factor expression. In addition, the number of cells double-labeled for 5-bromodeoxyuridine/glial fibrillary acidic protein and cells expressing nestin increased. Finally, blood vessels were newly generated, and the rats exhibited improved motor and cognitive functions. These results suggested that transplantation of autologous bone marrow-derived mesenchymal stem cells promoted brain remodeling and improved neurological functions following traumatic brain injury. PMID:25806058

  10. Translating stem cell research: challenges at the research frontier.

    PubMed

    Magnus, David

    2010-01-01

    This paper will address the translation of basic stem cell research into clinical research. While "stem cell" trials are sometimes used to describe established practices of bone marrow transplantation or transplantation of primary cells derived from bone marrow, for the purposes of this paper, I am primarily focusing on stem cell trials which are far less established, including use of hESC derived stem cells. The central ethical challenges in stem cell clinical trials arise in frontier research, not in standard, well-established areas of research.

  11. Novel daidzein analogs enhance osteogenic activity of bone marrow-derived mesenchymal stem cells and adipose-derived stromal/stem cells through estrogen receptor dependent and independent mechanisms

    USDA-ARS?s Scientific Manuscript database

    Osteoporosis is a disease characterized by low bone mineral density (BMD) and increased risk of fractures. Studies have demonstrated the use of phytoestrogens, or plant-derived estrogens, such as genistein anddaidzein, to effectively increase osteogenic activity of bone marrow-derived mesenchymal s...

  12. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomar, Geetanjali B.; Srivastava, Rupesh K.; Gupta, Navita

    2010-03-12

    Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation into multiple cell lineages. Presently, bone marrow is considered as a prime source of MSCs; however, there are some drawbacks and limitations in use of these MSCs for cell therapy. In this study, we demonstrate that human gingival tissue-derived MSCs have several advantages over bone marrow-derived MSCs. Gingival MSCs are easy to isolate, homogenous and proliferate faster than bone marrow MSCs without any growth factor. Importantly, gingival MSCs display stable morphology and do not loose MSC characteristic at higher passages. In addition, gingival MSCs maintain normal karyotype and telomerase activitymore » in long-term cultures, and are not tumorigenic. Thus, we reveal that human gingiva is a better source of MSCs than bone marrow, and large number of functionally competent clinical grade MSCs can be generated in short duration for cell therapy in regenerative medicine and tissue engineering.« less

  13. Characterization of insulin-producing cells derived from PDX-1-transfected neural stem cells.

    PubMed

    Wang, Hailan; Jiang, Zesheng; Li, Aihui; Gao, Yi

    2012-12-01

    Islet cell transplantation is a promising treatment strategy for type-1 diabetes. However, functional islet cells are hard to obtain for transplantation and are in short supply. Directing the differentiation of stem cells into insulin‑producing cells, which serve as islet cells, would overcome this shortage. Bone marrow contains hematopoietic stem cells and mesenchymal stem cells. The present study used bone marrow cells isolated from rats and neural stem cells (NSCs) that were derived from bone marrow cells in culture. Strong nestin staining was detected in NSCs, but not in bone marrow stromal cells (BMSCs). In vitro transfection of the pancreatic duodenal homeobox-1 (PDX-1) gene into NSCs generated insulin‑producing cells. Reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) analysis confirmed that PDX-1-transfected NSCs expressed insulin mRNA and released insulin protein. However, insulin release from PDX-1-transfected NSCs did not respond to the challenge of glucose and glucagon-like peptide-1. These results support the use of bone marrow-derived NSCs as a renewable source of insulin-producing cells for autologous transplantation to treat type-1 diabetes.

  14. Multipotent human stromal cells isolated from cord blood, term placenta and adult bone marrow show distinct differences in gene expression pattern

    PubMed Central

    Matigian, Nicholas; Brooke, Gary; Zaibak, Faten; Rossetti, Tony; Kollar, Katarina; Pelekanos, Rebecca; Heazlewood, Celena; Mackay-Sim, Alan; Wells, Christine A.; Atkinson, Kerry

    2014-01-01

    Multipotent mesenchymal stromal cells derived from human placenta (pMSCs), and unrestricted somatic stem cells (USSCs) derived from cord blood share many properties with human bone marrow-derived mesenchymal stromal cells (bmMSCs) and are currently in clinical trials for a wide range of clinical settings. Here we present gene expression profiles of human cord blood-derived unrestricted somatic stem cells (USSCs), human placental-derived mesenchymal stem cells (hpMSCs), and human bone marrow-derived mesenchymal stromal cells (bmMSCs), all derived from four different donors. The microarray data are available on the ArrayExpress database (www.ebi.ac.uk/arrayexpress) under accession number E-TABM-880. Additionally, the data has been integrated into a public portal, www.stemformatics.org. Our data provide a resource for understanding the differences in MSCs derived from different tissues. PMID:26484151

  15. Paracrine effects and heterogeneity of marrow-derived stem/progenitor cells: relevance for the treatment of respiratory diseases.

    PubMed

    Conese, Massimo; Carbone, Annalucia; Castellani, Stefano; Di Gioia, Sante

    2013-01-01

    Stem cell-based treatment may represent a hope for the treatment of acute lung injury and pulmonary fibrosis, and other chronic lung diseases, such as cystic fibrosis, asthma and chronic obstructive pulmonary disease (COPD). It is well established in preclinical models that bone marrow-derived stem and progenitor cells exert beneficial effects on inflammation, immune responses and repairing of damage in virtually all lung-borne diseases. While it was initially thought that the positive outcome was due to a direct engraftment of these cells into the lung as endothelial and epithelial cells, paracrine factors are now considered the main mechanism through which stem and progenitor cells exert their therapeutic effect. This knowledge has led to the clinical use of marrow cells in pulmonary hypertension with endothelial progenitor cells (EPCs) and in COPD with mesenchymal stromal (stem) cells (MSCs). Bone marrow-derived stem cells, including hematopoietic stem/progenitor cells, MSCs, EPCs and fibrocytes, encompass a wide array of cell subsets with different capacities of engraftment and injured tissue-regenerating potential. The characterization/isolation of the stem cell subpopulations represents a major challenge to improve the efficacy of transplantation protocols used in regenerative medicine and applied to lung disorders. Copyright © 2013 S. Karger AG, Basel.

  16. Enhanced adipogenic differentiation of bovine bone marrow-derived mesenchymal stem cells

    USDA-ARS?s Scientific Manuscript database

    Until now, the isolation and characterization of bovine bone marrow-derived mesenchymal stem cells (bBM-MSCs) have not been established, which prompted us to optimize the differentiation protocol for bBM-MSCs. In this study, bBM-MSCs were freshly isolated from three 6-month-old cattle and used for p...

  17. Hematopoietic Responses to Lipopolysaccharide in C57BL/10Sn and C57BL/10ScN Strain Mice

    DTIC Science & Technology

    1982-12-01

    Responses of endogenous (E-CFU) stem cells as well as bone marrow and spleen-derived exogenous (CFU-s) stem cells, granulocyte-macrophage (GM;-CFC... endogenous (E-CFU) stem cells as well as bone marrow and spleen-derived exogenous (CFU-s) stem cells, granulocyte-macrophage (GM-CFC) and macrophage (M...IOScN in comparison to the normal C57BL/1OSn strain mice, as measured by endogenous (E-CFU) and exogenous (CFU-s) stem cells and committed granulocyte

  18. Evaluation of hematopoietic potential generated by transplantation of muscle-derived stem cells in mice.

    PubMed

    Farace, Francoise; Prestoz, Laetitita; Badaoui, Sabrina; Guillier, Martine; Haond, Celine; Opolon, Paule; Thomas, Jean-Leon; Zalc, Bernard; Vainchenker, William; Turhan, Ali G

    2004-02-01

    Muscle tissue of adult mice has been shown to contain stem cells with hematopoietic repopulation ability in vivo. To determine the functional characteristics of stem cells giving rise to this hematopoietic activity, we have performed hematopoietic reconstitution experiments by the use of muscle versus marrow transplantation in lethally irradiated mice and followed the fate of transplanted cells by Y-chimerism using PCR and fluorescence in situ hybridization (FISH) analysis. We report here that transplantation of murine muscle generate a major hematopoietic chimerism at the level of CFU-C, CFU-S, and terminally-differentiated cells in three generations of lethally irradiated mice followed up to 1 year after transplantation. This potential is totally abolished when muscle grafts were performed by the use of muscle from previously irradiated mice. As compared to marrow transplantation, muscle transplants were able to generate similar potencies to give rise to myeloid, T, B, and natural killer (NK) cells. Interestingly, marrow stem cells that have been generated in primary and then in secondary recipients were able to contribute efficiently to myofibers in the muscle tissue of tertiary recipients. Altogether, our data demonstrate that muscle-derived stem cells present a major hematopoietic repopulating ability with evidence of self-replication in vivo. They are radiation-sensitive and similar to marrow-derived stem cells in terms of their ability to generate multilineage hematopoiesis. Finally, our data demonstrate that muscle-derived hematopoietic stem cells do not lose their ability to contribute to myofiber generation after at least two rounds of serial transplantation, suggesting a potential that is probably equivalent to that generated by marrow transplantation.

  19. Intra-discal injection of autologous, hypoxic cultured bone marrow-derived mesenchymal stem cells in five patients with chronic lower back pain: a long-term safety and feasibility study.

    PubMed

    Elabd, Christian; Centeno, Christopher J; Schultz, John R; Lutz, Gregory; Ichim, Thomas; Silva, Francisco J

    2016-09-01

    Chronic low back pain due to disc degeneration represents a major social and economic burden worldwide. The current standard of care is limited to symptomatic relief and no current approved therapy promotes disc regeneration. Bone marrow-derived mesenchymal stem cells (MSCs) are easily accessible and well characterized. These MSCs are multipotent and exhibit great tissue regenerative potential including bone, cartilage, and fibrous tissue regeneration. The use of this cell-based biologic for treating protruding disc herniation and/or intervertebral disc degeneration is a promising therapeutic strategy, due to their known regenerative, immuno-modulatory and anti-inflammatory properties. Five patients diagnosed with degenerative disc disease received an intra-discal injection of autologous, hypoxic cultured, bone marrow-derived mesenchymal stem cells (15.1-51.6 million cells) as part of a previous study. These patients were re-consented to participate in this study in order to assess long-term safety and feasibility of intra-discal injection of autologous, hypoxic cultured, bone marrow-derived mesenchymal stem cells 4-6 years post mesenchymal stem cell infusion. The follow-up study consisted of a physical examination, a low back MRI, and a quality of life questionnaire. Patients' lower back MRI showed absence of neoplasms or abnormalities surrounding the treated region. Based on the physical examination and the quality of life questionnaire, no adverse events were reported due to the procedure or to the stem cell treatment 4-6 years post autologous, hypoxic cultured mesenchymal stem cell infusion. All patients self-reported overall improvement, as well as improvement in strength, post stem cell treatment, and four out of five patients reported improvement in mobility. This early human clinical data suggests the safety and feasibility of the clinical use of hypoxic cultured bone marrow-derived mesenchymal stem cells for the treatment of lower back pain due to degenerative disc disorders and support further studies utilizing hypoxic cultured bone marrow-derived stem cells. The overall improvements reported are encouraging, but a larger double-blind, controlled, randomized clinical study with significant number of patients and implementation of validated endpoint measurements are next steps in order to demonstrate efficacy of this cell-based biologic.

  20. Integrated Immunotherapy for Breast Cancer

    DTIC Science & Technology

    2015-09-01

    patterns in these reconstructed co-cultured cancer cell /stromal cell 3D organoids (Figure 2). The role of mesenchymal stem cells in cancer Bone...marrow-derived mesenchymal stem cells (MSC) have been the subject of interest in solid tumor. Because of their ability to migrate to sites of inflammation...10 Figure 3. Characterization of ex-vivo expanded C57 B6 derived bone marrow mesenchymal stem cells . The cells are positive for CD44, CD140β

  1. Gene expression profile in mesenchymal stem cells derived from dental tissues and bone marrow

    PubMed Central

    Kim, Su-Hwan; Kim, Young-Sung; Lee, Su-Yeon; Kim, Kyoung-Hwa; Lee, Yong-Moo; Kim, Won-Kyung

    2011-01-01

    Purpose The aim of this study is to compare the gene expression profile in mesenchymal stem cells derived from dental tissues and bone marrow for characterization of dental stem cells. Methods We employed GeneChip analysis to the expression levels of approximately 32,321 kinds of transcripts in 5 samples of bone-marrow-derived mesenchymal stem cells (BMSCs) (n=1), periodontal ligament stem cells (PDLSCs) (n=2), and dental pulp stem cells (DPSCs) (n=2). Each cell was sorted by a FACS Vantage Sorter using immunocytochemical staining of the early mesenchymal stem cell surface marker STRO-1 before the microarray analysis. Results We identified 379 up-regulated and 133 down-regulated transcripts in BMSCs, 68 up-regulated and 64 down-regulated transcripts in PDLSCs, and 218 up-regulated and 231 down-regulated transcripts in DPSCs. In addition, anatomical structure development and anatomical structure morphogenesis gene ontology (GO) terms were over-represented in all three different mesenchymal stem cells and GO terms related to blood vessels, and neurons were over-represented only in DPSCs. Conclusions This study demonstrated the genome-wide gene expression patterns of STRO-1+ mesenchymal stem cells derived from dental tissues and bone marrow. The differences among the expression profiles of BMSCs, PDLSCs, and DPSCs were shown, and 999 candidate genes were found to be definitely up- or down-regulated. In addition, GOstat analyses of regulated gene products provided over-represented GO classes. These data provide a first step for discovering molecules key to the characteristics of dental stem cells. PMID:21954424

  2. Improved bone marrow stromal cell adhesion on micropatterned titanium surfaces.

    PubMed

    Iskandar, Maria E; Cipriano, Aaron F; Lock, Jaclyn; Gott, Shannon C; Rao, Masaru P; Liu, Huinan

    2012-01-01

    Implant longevity is desired for all bone replacements and fixatives. Titanium (Ti) implants fail due to lack of juxtaposed bone formation, resulting in implant loosening. Implant surface modifications have shown to affect the interactions between the implant and bone. In clinical applications, it is crucial to improve osseointegration and implant fixation at the implant and bone interface. Moreover, bone marrow derived cells play a significant role for implant and tissue integration. Therefore, the objective of this study is to investigate how surface micropatterning on Ti influences its interactions with bone marrow derived cells containing mesenchymal and hematopoietic stem cells. Bone marrow derived mesenchymal stem cells (BMSC) have the capability of differentiating into osteoblasts that contribute to bone growth, and therefore implant/bone integration. Hematopoietic stem cell derivatives are precursor cells that contribute to inflammatory response. By using all three cells naturally contained within bone marrow, we mimic the physiological environment to which an implant is exposed. Primary rat bone marrow derived cells were seeded onto Ti with surfaces composed of arrays of grooves of equal width and spacing ranging from 0.5 to 50 µm, fabricated using a novel plasma-based dry etching technique. Results demonstrated enhanced total cell adhesion on smaller micrometer-scale Ti patterns compared with larger micrometer-scale Ti patterns, after 24-hr culture. Further studies are needed to determine bone marrow derived cell proliferation and osteogenic differentiation potential on micropatterned Ti, and eventually nanopatterned Ti.

  3. Mesenchymal stromal cell derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells

    PubMed Central

    Wen, Sicheng; Dooner, Mark; Cheng, Yan; Papa, Elaine; Del Tatto, Michael; Pereira, Mandy; Deng, Yanhui; Goldberg, Laura; Aliotta, Jason; Chatterjee, Devasis; Stewart, Connor; Carpanetto, Andrea; Collino, Federica; Bruno, Stefania; Camussi, Giovanni; Quesenberry, Peter

    2016-01-01

    Mesenchymal stromal cells (MSC) have been shown to reverse radiation damage to marrow stem cells. We have evaluated the capacity of MSC-derived extracellular vesicles (MSC-EVs) to mitigate radiation injury to marrow stem cells at 4 hours to 7 days after irradiation. Significant restoration of marrow stem cell engraftment at 4, 24 and 168 hours post-irradiation by exposure to MSC-EVs was observed at 3 weeks to 9 months after transplant and further confirmed by secondary engraftment. Intravenous injection of MSC-EVs to 500cGy exposed mice led to partial recovery of peripheral blood counts and restoration of the engraftment of marrow. The murine hematopoietic cell line, FDC-P1 exposed to 500 cGy, showed reversal of growth inhibition, DNA damage and apoptosis on exposure to murine or human MSC-EVs. Both murine and human MSC-EVs reverse radiation damage to murine marrow cells and stimulate normal murine marrow stem cell/progenitors to proliferate. A preparation with both exosomes and microvesicles was found to be superior to either microvesicles or exosomes alone. Biologic activity was seen in freshly isolated vesicles and in vesicles stored for up to 6 months in 10% DMSO at −80°C. These studies indicate that MSC-EVs can reverse radiation damage to bone marrow stem cells. PMID:27150009

  4. Application of a novel sorting system for equine mesenchymal stem cells (MSCs)

    PubMed Central

    Radtke, Catherine L.; Nino-Fong, Rodolfo; Esparza Gonzalez, Blanca P.; McDuffee, Laurie A.

    2014-01-01

    The objective of this study was to validate non-equilibrium gravitational field-flow fractionation (GrFFF), an immunotag-less method of sorting mesenchymal stem cells (MSCs) into subpopulations, for use with MSCs derived from equine muscle tissue, periosteal tissue, bone marrow, and adipose tissue. Cells were collected from 6 young, adult horses, postmortem. Cells were isolated from left semitendinosus muscle tissue, periosteal tissue from the distomedial aspect of the right tibia, bone marrow aspirates from the fourth and fifth sternebrae, and left supragluteal subcutaneous adipose tissue. Aliquots of 800 × 103 MSCs from each tissue source were separated and injected into a ribbon-like capillary device by continuous flow (GrFFF proprietary system). Cells were sorted into 6 fractions and absorbencies [optical density (OD)] were read. Six fractions from each of the 6 aliquots were then combined to provide pooled fractions that had adequate cell numbers to seed at equal concentrations into assays. Equine muscle tissue-derived, periosteal tissue-derived, bone marrow-derived, and adipose tissue-derived mesenchymal stem cells were consistently sorted into 6 fractions that remained viable for use in further assays. Fraction 1 had more cuboidal morphology in culture when compared to the other fractions. Statistical analysis of the fraction absorbencies (OD) revealed a P-value of < 0.05 when fractions 2 and 3 were compared to fractions 1, 4, 5, and 6. It was concluded that non-equilibrium GrFFF is a valid method for sorting equine muscle tissue-derived, periosteal tissue-derived, bone marrow-derived, and adipose tissue-derived mesenchymal stem cells into subpopulations that remain viable, thus securing its potential for use in equine stem cell applications and veterinary medicine. PMID:25355998

  5. Secretome within the bone marrow microenvironment: A basis for mesenchymal stem cell treatment and role in cancer dormancy.

    PubMed

    Eltoukhy, Hussam S; Sinha, Garima; Moore, Caitlyn; Gergues, Marina; Rameshwar, Pranela

    2018-05-31

    The secretome produced by cells within the bone marrow is significant to homeostasis. The bone marrow, a well-studied organ, has multiple niches with distinct roles for supporting stem cell functions. Thus, an understanding of mediators involved in the regulation of stem cells could serve as a model for clinical problems and solutions such as tissue repair and regeneration. The exosome secretome of bone marrow stem cells is a developing area of research with respect to the regenerative potential by bone marrow cell, particularly the mesenchymal stem cells. The bone marrow niche regulates endogenous processes such as hematopoiesis but could also support the survival of tumors such as facilitating the cancer stem cells to exist in dormancy for decades. The bone marrow-derived secretome will be critical to future development of therapeutic strategies for oncologic diseases, in addition to regenerative medicine. This article discusses the importance for parallel studies to determine how the same secretome may compromise safety during the use of stem cells in regenerative medicine. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  6. The active principle region of Buyang Huanwu decoction induced differentiation of bone marrow-derived mesenchymal stem cells into neural-like cells

    PubMed Central

    Zheng, Jinghui; Wan, Yi; Chi, Jianhuai; Shen, Dekai; Wu, Tingting; Li, Weimin; Du, Pengcheng

    2012-01-01

    The present study induced in vitro-cultured passage 4 bone marrow-derived mesenchymal stem cells to differentiate into neural-like cells with a mixture of alkaloid, polysaccharide, aglycone, glycoside, essential oils, and effective components of Buyang Huanwu decoction (active principle region of decoction for invigorating yang for recuperation). After 28 days, nestin and neuron-specific enolase were expressed in the cytoplasm. Reverse transcription-PCR and western blot analyses showed that nestin and neuron-specific enolase mRNA and protein expression was greater in the active principle region group compared with the original formula group. Results demonstrated that the active principle region of Buyang Huanwu decoction induced greater differentiation of rat bone marrow-derived mesenchymal stem cells into neural-like cells in vitro than the original Buyang Huanwu decoction formula. PMID:25806066

  7. The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function

    PubMed Central

    Isern, Joan; García-García, Andrés; Martín, Ana M; Arranz, Lorena; Martín-Pérez, Daniel; Torroja, Carlos; Sánchez-Cabo, Fátima; Méndez-Ferrer, Simón

    2014-01-01

    Mesenchymal stem cells (MSCs) and osteolineage cells contribute to the hematopoietic stem cell (HSC) niche in the bone marrow of long bones. However, their developmental relationships remain unclear. In this study, we demonstrate that different MSC populations in the developing marrow of long bones have distinct functions. Proliferative mesoderm-derived nestin− MSCs participate in fetal skeletogenesis and lose MSC activity soon after birth. In contrast, quiescent neural crest-derived nestin+ cells preserve MSC activity, but do not generate fetal chondrocytes. Instead, they differentiate into HSC niche-forming MSCs, helping to establish the HSC niche by secreting Cxcl12. Perineural migration of these cells to the bone marrow requires the ErbB3 receptor. The neonatal Nestin-GFP+ Pdgfrα− cell population also contains Schwann cell precursors, but does not comprise mature Schwann cells. Thus, in the developing bone marrow HSC niche-forming MSCs share a common origin with sympathetic peripheral neurons and glial cells, and ontogenically distinct MSCs have non-overlapping functions in endochondrogenesis and HSC niche formation. DOI: http://dx.doi.org/10.7554/eLife.03696.001 PMID:25255216

  8. Mesenchymal Stem Cells From Bone Marrow, Adipose Tissue, and Lung Tissue Differentially Mitigate Lung and Distal Organ Damage in Experimental Acute Respiratory Distress Syndrome.

    PubMed

    Silva, Johnatas D; Lopes-Pacheco, Miquéias; Paz, Ana H R; Cruz, Fernanda F; Melo, Elga B; de Oliveira, Milena V; Xisto, Débora G; Capelozzi, Vera L; Morales, Marcelo M; Pelosi, Paolo; Cirne-Lima, Elizabeth; Rocco, Patricia R M

    2018-02-01

    Mesenchymal stem cells-based therapies have shown promising effects in experimental acute respiratory distress syndrome. Different mesenchymal stem cells sources may result in diverse effects in respiratory diseases; however, there is no information regarding the best source of mesenchymal stem cells to treat pulmonary acute respiratory distress syndrome. We tested the hypothesis that mesenchymal stem cells derived from bone marrow, adipose tissue, and lung tissue would lead to different beneficial effects on lung and distal organ damage in experimental pulmonary acute respiratory distress syndrome. Animal study and primary cell culture. Laboratory investigation. Seventy-five Wistar rats. Wistar rats received saline (control) or Escherichia coli lipopolysaccharide (acute respiratory distress syndrome) intratracheally. On day 2, acute respiratory distress syndrome animals were further randomized to receive saline or bone marrow, adipose tissue, or lung tissue mesenchymal stem cells (1 × 10 cells) IV. Lung mechanics, histology, and protein levels of inflammatory mediators and growth factors were analyzed 5 days after mesenchymal stem cells administration. RAW 264.7 cells (a macrophage cell line) were incubated with lipopolysaccharide followed by coculture or not with bone marrow, adipose tissue, and lung tissue mesenchymal stem cells (10 cells/mL medium). Regardless of mesenchymal stem cells source, cells administration improved lung function and reduced alveolar collapse, tissue cellularity, collagen, and elastic fiber content in lung tissue, as well as decreased apoptotic cell counts in liver. Bone marrow and adipose tissue mesenchymal stem cells administration also reduced levels of tumor necrosis factor-α, interleukin-1β, keratinocyte-derived chemokine, transforming growth factor-β, and vascular endothelial growth factor, as well as apoptotic cell counts in lung and kidney, while increasing expression of keratinocyte growth factor in lung tissue. Additionally, mesenchymal stem cells differently modulated the secretion of biomarkers by macrophages depending on their source. Mesenchymal stem cells from different sources led to variable responses in lungs and distal organs. Bone marrow and adipose tissue mesenchymal stem cells yielded greater beneficial effects than lung tissue mesenchymal stem cells. These findings may be regarded as promising in clinical trials.

  9. Stem Cell Therapy for Erectile Dysfunction.

    PubMed

    Matz, Ethan L; Terlecki, Ryan; Zhang, Yuanyuan; Jackson, John; Atala, Anthony

    2018-04-06

    The prevalence of erectile dysfunction (ED) is substantial and continues to rise. Current therapeutics for ED consist of oral medications, intracavernosal injections, vacuum erection devices, and penile implants. While such options may manage the disease state, none of these modalities, however, restore function. Stem cell therapy has been evaluated for erectile restoration in animal models. These cells have been derived from multiple tissues, have varied potential, and may function via local engraftment or paracrine signaling. Bone marrow-derived stem cells (BMSC) and adipose-derived stem cells (ASC) have both been used in these models with noteworthy effects. Herein, we will review the pathophysiology of ED, animal models, current and novel stem-cell based therapeutics, clinical trials and areas for future research. The relevant literature and contemporary data using keywords, "stem cells and erectile dysfunction" was reviewed. Examination of evidence supporting the association between erectile dysfunction and adipose derived stem cells, bone marrow derived stem cells, placental stem cells, urine stem cells and stem cell therapy respectively. Placental-derived stem cells and urine-derived stem cells possess many similar properties as BMSC and ASC, but the methods of acquisition are favorable. Human clinical trials have already demonstrated successful use of stem cells for improvement of erectile function. The future of stem cell research is constantly being evaluated, although, the evidence suggests a place for stem cells in erectile dysfunction therapeutics. Matz EL, Terlecki R, Zhang Y, et al. Stem Cell Therapy for Erectile Dysfunction. Sex Med Rev 2018;XX:XXX-XXX. Copyright © 2018 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  10. An abnormal bone marrow microenvironment contributes to hematopoietic dysfunction in Fanconi anemia.

    PubMed

    Zhou, Yuan; He, Yongzheng; Xing, Wen; Zhang, Peng; Shi, Hui; Chen, Shi; Shi, Jun; Bai, Jie; Rhodes, Steven D; Zhang, Fengqui; Yuan, Jin; Yang, Xianlin; Zhu, Xiaofan; Li, Yan; Hanenberg, Helmut; Xu, Mingjiang; Robertson, Kent A; Yuan, Weiping; Nalepa, Grzegorz; Cheng, Tao; Clapp, D Wade; Yang, Feng-Chun

    2017-06-01

    Fanconi anemia is a complex heterogeneous genetic disorder with a high incidence of bone marrow failure, clonal evolution to acute myeloid leukemia and mesenchymal-derived congenital anomalies. Increasing evidence in Fanconi anemia and other genetic disorders points towards an interdependence of skeletal and hematopoietic development, yet the impact of the marrow microenvironment in the pathogenesis of the bone marrow failure in Fanconi anemia remains unclear. Here we demonstrated that mice with double knockout of both Fancc and Fancg genes had decreased bone formation at least partially due to impaired osteoblast differentiation from mesenchymal stem/progenitor cells. Mesenchymal stem/progenitor cells from the double knockout mice showed impaired hematopoietic supportive activity. Mesenchymal stem/progenitor cells of patients with Fanconi anemia exhibited similar cellular deficits, including increased senescence, reduced proliferation, impaired osteoblast differentiation and defective hematopoietic stem/progenitor cell supportive activity. Collectively, these studies provide unique insights into the physiological significance of mesenchymal stem/progenitor cells in supporting the marrow microenvironment, which is potentially of broad relevance in hematopoietic stem cell transplantation. Copyright© Ferrata Storti Foundation.

  11. An abnormal bone marrow microenvironment contributes to hematopoietic dysfunction in Fanconi anemia

    PubMed Central

    Zhou, Yuan; He, Yongzheng; Xing, Wen; Zhang, Peng; Shi, Hui; Chen, Shi; Shi, Jun; Bai, Jie; Rhodes, Steven D.; Zhang, Fengqui; Yuan, Jin; Yang, Xianlin; Zhu, Xiaofan; Li, Yan; Hanenberg, Helmut; Xu, Mingjiang; Robertson, Kent A.; Yuan, Weiping; Nalepa, Grzegorz; Cheng, Tao; Clapp, D. Wade; Yang, Feng-Chun

    2017-01-01

    Fanconi anemia is a complex heterogeneous genetic disorder with a high incidence of bone marrow failure, clonal evolution to acute myeloid leukemia and mesenchymal-derived congenital anomalies. Increasing evidence in Fanconi anemia and other genetic disorders points towards an interdependence of skeletal and hematopoietic development, yet the impact of the marrow microenvironment in the pathogenesis of the bone marrow failure in Fanconi anemia remains unclear. Here we demonstrated that mice with double knockout of both Fancc and Fancg genes had decreased bone formation at least partially due to impaired osteoblast differentiation from mesenchymal stem/progenitor cells. Mesenchymal stem/progenitor cells from the double knockout mice showed impaired hematopoietic supportive activity. Mesenchymal stem/progenitor cells of patients with Fanconi anemia exhibited similar cellular deficits, including increased senescence, reduced proliferation, impaired osteoblast differentiation and defective hematopoietic stem/progenitor cell supportive activity. Collectively, these studies provide unique insights into the physiological significance of mesenchymal stem/progenitor cells in supporting the marrow microenvironment, which is potentially of broad relevance in hematopoietic stem cell transplantation. PMID:28341737

  12. The clinical use of regenerative therapy in COPD

    PubMed Central

    Lipsi, Roberto; Rogliani, Paola; Calzetta, Luigino; Segreti, Andrea; Cazzola, Mario

    2014-01-01

    Regenerative or stem cell therapy is an emerging field of treatment based on stimulation of endogenous resident stem cells or administration of exogenous stem cells to treat diseases or injury and to replace malfunctioning or damaged tissues. Current evidence suggests that in the lung, these cells may participate in tissue homeostasis and regeneration after injury. Animal and human studies have demonstrated that tissue-specific stem cells and bone marrow-derived cells contribute to lung tissue regeneration and protection, and thus administration of exogenous stem/progenitor cells or humoral factors responsible for the activation of endogenous stem/progenitor cells may be a potent next-generation therapy for chronic obstructive pulmonary disease. The use of bone marrow-derived stem cells could allow repairing and regenerate the damaged tissue present in chronic obstructive pulmonary disease by means of their engraftment into the lung. Another approach could be the stimulation of resident stem cells by means of humoral factors or photobiostimulation. PMID:25548520

  13. Bone marrow-derived SP cells can contribute to the respiratory tract of mice in vivo.

    PubMed

    Macpherson, Heather; Keir, Pamela; Webb, Sheila; Samuel, Kay; Boyle, Shelagh; Bickmore, Wendy; Forrester, Lesley; Dorin, Julia

    2005-06-01

    Recent work has indicated that adult bone marrow-derived cells have the ability to contribute to both the haematopoietic system and other organs. Haematopoietic reconstitution by whole bone marrow and selected but not fully characterised cell populations have resulted in reports indicating high-level repopulation of lung epithelia. The well-characterised cells from the side population have a robust ability for haematopoietic reconstitution. We have used freshly isolated side population cells derived from ROSA26 adult bone marrow and demonstrate that despite being unable to contribute to embryos following blastocyst injection, or air liquid interface cultures or denuded tracheal xenografts, they could contribute to the tracheal epithelium in vivo. Epithelial damage is reported to be important in encouraging the recruitment of marrow-derived stem cells into non-haematopoietic organs. Here we demonstrate that mice engrafted with side population cells have donor-derived cells present in the epithelial lining of the trachea following damage and repair. Donor-derived cells were found at a frequency of 0.83%. Widefield and confocal microscopy revealed donor cells that expressed cytokeratins, indicative of cells of an epithelial nature. These results imply that SP haematopoietic stem cells from the bone marrow do not have the ability to contribute to airway epithelia themselves but require factors present in vivo to allow them to acquire characteristics of this tissue.

  14. Advances in Bone Marrow Stem Cell Therapy for Retinal Dysfunction

    PubMed Central

    Park, Susanna S.; Moisseiev, Elad; Bauer, Gerhard; Anderson, Johnathon D.; Grant, Maria B.; Zam, Azhar; Zawadzki, Robert J.; Werner, John S.; Nolta, Jan A.

    2016-01-01

    The most common cause of untreatable vision loss is dysfunction of the retina. Conditions, such as age-related macular degeneration, diabetic retinopathy and glaucoma remain leading causes of untreatable blindness worldwide. Various stem cell approaches are being explored for treatment of retinal regeneration. The rationale for using bone marrow stem cells to treat retinal dysfunction is based on preclinical evidence showing that bone marrow stem cells can rescue degenerating and ischemic retina. These stem cells have primarily paracrine trophic effects although some cells can directly incorporate into damaged tissue. Since the paracrine trophic effects can have regenerative effects on multiple cells in the retina, the use of this cell therapy is not limited to a particular retinal condition. Autologous bone marrow-derived stem cells are being explored in early clinical trials as therapy for various retinal conditions. These bone marrow stem cells include mesenchymal stem cells, mononuclear cells and CD34+ cells. Autologous therapy requires no systemic immunosuppression or donor matching. Intravitreal delivery of CD34+ cells and mononuclear cells appears to be tolerated and is being explored since some of these cells can home into the damaged retina after intravitreal administration. The safety of intravitreal delivery of mesenchymal stem cells has not been well established. This review provides an update of the current evidence in support of the use of bone marrow stem cells as treatment for retinal dysfunction. The potential limitations and complications of using certain forms of bone marrow stem cells as therapy are discussed. Future directions of research include methods to optimize the therapeutic potential of these stem cells, non-cellular alternatives using extracellular vesicles, and in vivo high-resolution retinal imaging to detect cellular changes in the retina following cell therapy. PMID:27784628

  15. Hematopoietic stem cell transplantation in Europe 1998.

    PubMed

    Gratwohl, A; Passweg, J; Baldomero, H; Hermans, J; Urbano-Ispizua, A

    2000-01-01

    Transplantation of hematopoietic stem cells from blood or bone marrow has become accepted therapy for many diseases. Numbers of transplants have increased significantly and stem cell source, donor type and indications have changed during this decade. Information on these changes is essential for interpretation of current data, patient counseling and health care planning. Since 1990, members of the European Group for Blood and Marrow Transplantation and teams known to perform blood or marrow transplants have been invited annually to report their transplant numbers by indication, donor type and stem cell source. Data from these surveys have been used to present data for 1998, to assess current status and to give numbers of transplants per participating country, coefficients of variation between countries for individual indications and changes in indication, stem cell source and donor type over the past decade. In 1998, a total of 20 892 transplants were performed by 528 teams in 31 European countries. Of these transplants 18 400 were first transplants, 5308 (29%) were allogenic, and 13 092 (71%) were autologous. Of the autologous transplants, 809 (6%) were bone marrow derived, and 12 283 (94%) were from peripheral blood stems cells. Of the allogeneic transplants, 3372 (64%) were bone marrow derived, and 1936 (36%) were peripheral blood stem cell transplants. In 1990, the respective figures were 2137 allogeneic (50%) and 2097 (50%) autologous transplants, all exclusively bone marrow derived. Main indications in 1998 were leukemias with 6015 transplants (33%), 68% thereof allogeneic transplants; lymphomas with 7492 transplants (41%), 94% thereof autologous transplants; solid tumors with 4025 transplants (22%), 99% thereof autologous transplants; non-malignant disorders with 868 transplants (5%), 80% thereof allogeneic transplants. Absolute numbers of transplants per year did increase from 4234 in 1990 to 20 892 in 1998. Increase is higher for autologous, than for allogeneic transplants. There were differences in absolute or relative increase over time for individual indications. Transplant rates per number of inhabitants varied between countries, ranging from 0 to >500 total transplants per 10 million inhabitants with a clear correlation between number of teams and transplants per 10 million inhabitants (r=0.61, P<0.001). The least variation between countries was observed for acute leukemias, chronic myeloid leukemia and severe aplastic anemia in allogeneic transplants, for Hodgkin's disease and non-Hodgkin's lymphoma in autologous transplants. These data reflect the current status of blood and marrow transplantation in Europe. They show the continuing increase in utilization, highlight the change from bone marrow to blood as stem cell source and give an objective assessment on presence or absence of trends.

  16. Hematopoietic and mesenchymal stem cells for the treatment of chronic respiratory diseases: role of plasticity and heterogeneity.

    PubMed

    Conese, Massimo; Piro, Donatella; Carbone, Annalucia; Castellani, Stefano; Di Gioia, Sante

    2014-01-01

    Chronic lung diseases, such as cystic fibrosis (CF), asthma, and chronic obstructive pulmonary disease (COPD) are incurable and represent a very high social burden. Stem cell-based treatment may represent a hope for the cure of these diseases. In this paper, we revise the overall knowledge about the plasticity and engraftment of exogenous marrow-derived stem cells into the lung, as well as their usefulness in lung repair and therapy of chronic lung diseases. The lung is easily accessible and the pathophysiology of these diseases is characterized by injury, inflammation, and eventually by remodeling of the airways. Bone marrow-derived stem cells, including hematopoietic stem/progenitor cells (HSPCs) and mesenchymal stromal (stem) cells (MSCs), encompass a wide array of cell subsets with different capacities of engraftment and injured tissue regenerating potential. Proof-of-principle that marrow cells administered locally may engraft and give rise to specialized epithelial cells has been given, but the efficiency of this conversion is too limited to give a therapeutic effect. Besides the identification of plasticity mechanisms, the characterization/isolation of the stem cell subpopulations represents a major challenge to improving the efficacy of transplantation protocols used in regenerative medicine for lung diseases.

  17. Cardiac Progenitor Cells and Bone Marrow-Derived Very Small Embryonic-Like Stem Cells for Cardiac Repair After Myocardial Infarction

    PubMed Central

    Tang, Xian-Liang; Rokosh, D. Gregg; Guo, Yiru; Bolli, Roberto

    2010-01-01

    Heart failure after myocardial infarction (MI) continues to be the most prevalent cause of morbidity and mortality worldwide. Although pharmaceutical agents and interventional strategies have contributed greatly to therapy, new and superior treatment modalities are urgently needed given the overall disease burden. Stem cell-based therapy is potentially a promising strategy to lead to cardiac repair after MI. An array of cell types has been explored in this respect, including skeletal myoblasts, bone marrow (BM)-derived stem cells, embryonic stem cells, and more recently, cardiac progenitor cells (CPCs). Recently studies have obtained evidence that transplantation of CPCs or BM-derived very small embryonic-like stem cells can improve cardiac function and alleviate cardiac remodeling, supporting the potential therapeutic utility of these cells for cardiac repair. This report summarizes the current data from those studies and discusses the potential implication of these cells in developing clinically-relevant stem cell-based therapeutic strategies for cardiac regeneration. PMID:20081317

  18. Identification of resident and inflammatory bone marrow derived cells in the sclera by bone marrow and haematopoietic stem cell transplantation

    PubMed Central

    Hisatomi, Toshio; Sonoda, Koh‐hei; Ishikawa, Fumihiko; Qiao, Hong; Nakamura, Takahiro; Fukata, Mitsuhiro; Nakazawa, Toru; Noda, Kousuke; Miyahara, Shinsuke; Harada, Mine; Kinoshita, Shigeru; Hafezi‐Moghadam, Ali; Ishibashi, Tatsuro; Miller, Joan W

    2007-01-01

    Aims To characterise bone marrow derived cells in the sclera under normal and inflammatory conditions, we examined their differentiation after transplantation from two different sources, bone marrow and haematopoietic stem cells (HSC). Methods Bone marrow and HSC from green fluorescent protein (GFP) transgenic mice were transplanted into irradiated wild‐type mice. At 1 month after transplantation, mice were sacrificed and their sclera examined by histology, immunohistochemistry (CD11b, CD11c, CD45), and transmission and scanning electron microscopy. To investigate bone marrow derived cell recruitment under inflammatory conditions, experimental autoimmune uveitis (EAU) was induced in transplanted mice. Results GFP positive cells were distributed in the entire sclera and comprised 22.4 (2.8)% (bone marrow) and 28.4 (10.9)% (HSC) of the total cells in the limbal zone and 18.1 (6.7)% (bone marrow) and 26.3 (3.4)% (HSC) in the peripapillary zone. Immunohistochemistry showed that GFP (+) CD11c (+), GFP (+) CD11b (+) cells migrated in the sclera after bone marrow and HSC transplantation. Transmission and scanning electron microscopy revealed antigen presenting cells among the scleral fibroblasts. In EAU mice, vast infiltration of GFP (+) cells developed into the sclera. Conclusion We have provided direct and novel evidence for the migration of bone marrow and HSC cells into the sclera differentiating into macrophages and dendritic cells. Vast infiltration of bone marrow and HSC cells was found to be part of the inflammatory process in EAU. PMID:17035278

  19. Bone marrow support of the heart in pressure overload is lost with aging.

    PubMed

    Sopko, Nikolai A; Turturice, Benjamin A; Becker, Mitchell E; Brown, Chase R; Dong, Feng; Popović, Zoran B; Penn, Marc S

    2010-12-21

    Exogenous stem cell delivery is under investigation to prevent and treat cardiac dysfunction. It is less studied as to the extent endogenous bone marrow derived stem cells contribute to cardiac homeostais in response to stress and the affects of aging on this stress response. To determine the role of bone marrow (BM) derived stem cells on cardiac homeostasis in response to pressure overload (PO) and how this response is altered by aging. Young (8 weeks) and old (>40 weeks) C57/b6 mice underwent homo- and heterochronic BM transplantation prior to transverse aortic constriction (TAC). We found that older BM is associated with decreased cardiac function following TAC. This decreased function is associated with decrease in BM cell engraftment, increased myocyte apoptosis, decreased myocyte hypertrophy, increased myocardial fibrosis and decreased cardiac function. Additionally, there is a decrease in activation of resident cells within the heart in response to PO in old mice. Interestingly, these effects are not due to alterations in vascular density or inflammation in response to PO or differences in ex vivo stem cell migration between young and old mice. BM derived stem cells are activated in response to cardiac PO, and the recruitment of BM derived cells are involved in cardiac myocyte hypertrophy and maintenance of function in response to PO which is lost with aging.

  20. Potential for a pluripotent adult stem cell treatment for acute radiation sickness

    PubMed Central

    Rodgerson, Denis O; Reidenberg, Bruce E; Harris, Alan G; Pecora, Andrew L

    2012-01-01

    Accidental radiation exposure and the threat of deliberate radiation exposure have been in the news and are a public health concern. Experience with acute radiation sickness has been gathered from atomic blast survivors of Hiroshima and Nagasaki and from civilian nuclear accidents as well as experience gained during the development of radiation therapy for cancer. This paper reviews the medical treatment reports relevant to acute radiation sickness among the survivors of atomic weapons at Hiroshima and Nagasaki, among the victims of Chernobyl, and the two cases described so far from the Fukushima Dai-Ichi disaster. The data supporting the use of hematopoietic stem cell transplantation and the new efforts to expand stem cell populations ex vivo for infusion to treat bone marrow failure are reviewed. Hematopoietic stem cells derived from bone marrow or blood have a broad ability to repair and replace radiation induced damaged blood and immune cell production and may promote blood vessel formation and tissue repair. Additionally, a constituent of bone marrow-derived, adult pluripotent stem cells, very small embryonic like stem cells, are highly resistant to ionizing radiation and appear capable of regenerating radiation damaged tissue including skin, gut and lung. PMID:24520532

  1. Bone Marrow Stem Cells in Clinical Application: Harnessing Paracrine Roles and Niche Mechanisms

    NASA Astrophysics Data System (ADS)

    Backly, Rania M. El; Cancedda, Ranieri

    The being of any individual throughout life is a dynamic process relying on the capacity to retain processes of self-renewal and differentiation, both of which are hallmarks of stem cells. Although limited in the adult human organism, regeneration and repair do take place in virtue of the presence of adult stem cells. In the bone marrow, two major populations of stem cells govern the dynamic equilibrium of both hemopoiesis and skeletal homeostasis; the hematopoietic and the mesenchymal stem cells. Recent cell based clinical trials utilizing bone marrow-derived stem cells as therapeutic agents have revealed promising results, while others have failed to display as such. It is therefore imperative to strive to understand the mechanisms by which these cells function in vivo, how their properties can be maintained ex-vivo, and to explore further their recently highlighted immunomodulatory and trophic effects.

  2. Translational Control in Bone Marrow Failure

    DTIC Science & Technology

    2015-05-01

    HCLS1 associated protein X-1 (HAX1), cause hereditary forms of neutropenia . Previously, competing hypotheses have posited that mutant forms of...derived induced pluripotent stem cell (iPSC) model of ELANE-associated neutropenia . During the second year of this project, in order to facilitate...pathology. 3 2. KEY WORDS neutropenia bone marrow failure neutrophil elastase ELANE HAX1 alternate translation induced pluripotent stem cells (iPSC

  3. Differentiation of Mesenchymal Stem Cells Towards Nephrogenic Lineage and Their Enhanced Resistance to Oxygen Peroxide-induced Oxidative Stress.

    PubMed

    Tayyeb, Asima; Shahzad, Naveed; Ali, Gibran

    2017-07-01

    Mesenchymal stem cells (MSCs) have been publicized to ameliorate kidney injury both in vitro and in vivo. However, very less is known if MSCs can be differentiated towards renal lineages and their further application potential in kidney injuries. The present study developed a conditioning system of growth factors fibroblast growth factor 2, transforming growth factor-β2, and leukemia inhibitory factor for in vitro differentiation of MSCs isolated from different sources towards nephrogenic lineage. Less invasively isolated adipose-derived MSCs were also compared to bone marrow-derived MSCs for their differentiation potential to induce renal cell. Differentiated MSCs were further evaluated for their resistance to oxidative stress induced by oxygen peroxide. A combination of growth factors successfully induced differentiation of MSCs. Both types of differentiated cells showed significant expression of pronephrogenic markers (Wnt4, Wt1, and Pax2) and renal epithelial markers (Ecad and ZO1). In contrast, expression of mesenchymal stem cells marker Oct4 and Vim were downregulated. Furthermore, differentiated adipose-derived MSCs and bone marrow-derived MSCs showed enhanced and comparable resistance to oxygen peroxide-induced oxidative stress. Adipose-derived MSC provides a promising alternative to bone marrow-derived MSC as a source of autologous stem cells in human kidney injuries. In addition, differentiated MSCs with further in vivo investigations may serve as a cell source for tissue engineering or cell therapy in different renal ailments.

  4. Transplanted hematopoietic stem cells demonstrate impaired sarcoglycan expression after engraftment into cardiac and skeletal muscle.

    PubMed

    Lapidos, Karen A; Chen, Yiyin E; Earley, Judy U; Heydemann, Ahlke; Huber, Jill M; Chien, Marcia; Ma, Averil; McNally, Elizabeth M

    2004-12-01

    Pluripotent bone marrow-derived side population (BM-SP) stem cells have been shown to repopulate the hematopoietic system and to contribute to skeletal and cardiac muscle regeneration after transplantation. We tested BM-SP cells for their ability to regenerate heart and skeletal muscle using a model of cardiomyopathy and muscular dystrophy that lacks delta-sarcoglycan. The absence of delta-sarcoglycan produces microinfarcts in heart and skeletal muscle that should recruit regenerative stem cells. Additionally, sarcoglycan expression after transplantation should mark successful stem cell maturation into cardiac and skeletal muscle lineages. BM-SP cells from normal male mice were transplanted into female delta-sarcoglycan-null mice. We detected engraftment of donor-derived stem cells into skeletal muscle, with the majority of donor-derived cells incorporated within myofibers. In the heart, donor-derived nuclei were detected inside cardiomyocytes. Skeletal muscle myofibers containing donor-derived nuclei generally failed to express sarcoglycan, with only 2 sarcoglycan-positive fibers detected in the quadriceps muscle from all 14 mice analyzed. Moreover, all cardiomyocytes with donor-derived nuclei were sarcoglycan-negative. The absence of sarcoglycan expression in cardiomyocytes and skeletal myofibers after transplantation indicates impaired differentiation and/or maturation of bone marrow-derived stem cells. The inability of BM-SP cells to express this protein severely limits their utility for cardiac and skeletal muscle regeneration.

  5. Role of whole bone marrow, whole bone marrow cultured cells, and mesenchymal stem cells in chronic wound healing.

    PubMed

    Rodriguez-Menocal, Luis; Shareef, Shahjahan; Salgado, Marcela; Shabbir, Arsalan; Van Badiavas, Evangelos

    2015-03-13

    Recent evidence has shown that bone marrow cells play critical roles during the inflammatory, proliferative and remodeling phases of cutaneous wound healing. Among the bone marrow cells delivered to wounds are stem cells, which can differentiate into multiple tissue-forming cell lineages to effect, healing. Gaining insight into which lineages are most important in accelerating wound healing would be quite valuable in designing therapeutic approaches for difficult to heal wounds. In this report we compared the effect of different bone marrow preparations on established in vitro wound healing assays. The preparations examined were whole bone marrow (WBM), whole bone marrow (long term initiating/hematopoietic based) cultured cells (BMC), and bone marrow derived mesenchymal stem cells (BM-MSC). We also applied these bone marrow preparations in two murine models of radiation induced delayed wound healing to determine which had a greater effect on healing. Angiogenesis assays demonstrated that tube formation was stimulated by both WBM and BMC, with WBM having the greatest effect. Scratch wound assays showed higher fibroblast migration at 24, 48, and 72 hours in presence of WBM as compared to BM-MSC. WBM also appeared to stimulate a greater healing response than BMC and BM-MSC in a radiation induced delayed wound healing animal model. These studies promise to help elucidate the role of stem cells during repair of chronic wounds and reveal which cells present in bone marrow might contribute most to the wound healing process.

  6. Immortalized porcine mesenchymal cells derived from nasal mucosa, lungs, lymph nodes, spleen and bone marrow retain their stemness properties and trigger the expression of siglec-1 in co-cultured blood monocytic cells

    PubMed Central

    Garba, Abubakar; Desmarets, Lowiese M. B.; Acar, Delphine D.; Devriendt, Bert; Nauwynck, Hans J.

    2017-01-01

    Mesenchymal stromal cells have been isolated from different sources. They are multipotent cells capable of differentiating into many different cell types, including osteocytes, chondrocytes and adipocytes. They possess a therapeutic potential in the management of immune disorders and the repair of damaged tissues. Previous work in our laboratory showed an increase of the percentages of CD172a+, CD14+, CD163+, Siglec-1+, CD4+ and CD8+ hematopoietic cells, when co-cultured with immortalized mesenchymal cells derived from bone marrow. The present work aimed to demonstrate the stemness properties of SV40-immortalized mesenchymal cells derived from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow and their immunomodulatory effect on blood monocytes. Mesenchymal cells from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow were isolated and successfully immortalized using simian virus 40 large T antigen (SV40LT) and later, co-cultured with blood monocytes, in order to examine their differentiation stage (expression of Siglec-1). Flow cytometric analysis revealed that the five mesenchymal cell lines were positive for mesenchymal cell markers CD105, CD44, CD90 and CD29, but lacked the expression of myeloid cell markers CD16 and CD11b. Growth analysis of the cells demonstrated that bone marrow derived-mesenchymal cells proliferated faster compared with those derived from the other tissues. All five mesenchymal cell lines co-cultured with blood monocytes for 1, 2 and 7 days triggered the expression of siglec-1 in the monocytes. In contrast, no siglec-1+ cells were observed in monocyte cultures without mesenchymal cell lines. Mesenchymal cells isolated from nasal mucosa, lungs, spleen, lymph nodes and bone marrow were successfully immortalized and these cell lines retained their stemness properties and displayed immunomodulatory effects on blood monocytes. PMID:29036224

  7. Immortalized porcine mesenchymal cells derived from nasal mucosa, lungs, lymph nodes, spleen and bone marrow retain their stemness properties and trigger the expression of siglec-1 in co-cultured blood monocytic cells.

    PubMed

    Garba, Abubakar; Desmarets, Lowiese M B; Acar, Delphine D; Devriendt, Bert; Nauwynck, Hans J

    2017-01-01

    Mesenchymal stromal cells have been isolated from different sources. They are multipotent cells capable of differentiating into many different cell types, including osteocytes, chondrocytes and adipocytes. They possess a therapeutic potential in the management of immune disorders and the repair of damaged tissues. Previous work in our laboratory showed an increase of the percentages of CD172a+, CD14+, CD163+, Siglec-1+, CD4+ and CD8+ hematopoietic cells, when co-cultured with immortalized mesenchymal cells derived from bone marrow. The present work aimed to demonstrate the stemness properties of SV40-immortalized mesenchymal cells derived from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow and their immunomodulatory effect on blood monocytes. Mesenchymal cells from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow were isolated and successfully immortalized using simian virus 40 large T antigen (SV40LT) and later, co-cultured with blood monocytes, in order to examine their differentiation stage (expression of Siglec-1). Flow cytometric analysis revealed that the five mesenchymal cell lines were positive for mesenchymal cell markers CD105, CD44, CD90 and CD29, but lacked the expression of myeloid cell markers CD16 and CD11b. Growth analysis of the cells demonstrated that bone marrow derived-mesenchymal cells proliferated faster compared with those derived from the other tissues. All five mesenchymal cell lines co-cultured with blood monocytes for 1, 2 and 7 days triggered the expression of siglec-1 in the monocytes. In contrast, no siglec-1+ cells were observed in monocyte cultures without mesenchymal cell lines. Mesenchymal cells isolated from nasal mucosa, lungs, spleen, lymph nodes and bone marrow were successfully immortalized and these cell lines retained their stemness properties and displayed immunomodulatory effects on blood monocytes.

  8. Genetic response and morphologic characterization of chicken bone-marrow derived dendritic cells during infection with high and low pathogenic avian influenza viruses

    USDA-ARS?s Scientific Manuscript database

    Dendritic cells (DC) are professional antigen-presenting cells of the immune system that function to initiate primary immune responses. Progenitors of DCs are derived from haematopoietic stem cells in the bone marrow (BM) that migrate in non-lymphoid tissues to develop into immature DCs. Here, they ...

  9. The mechanical coupling of adult marrow stromal stem cells during cardiac regeneration assessed in a 2-D co-culture model

    PubMed Central

    Valarmathi, Mani T.; Fuseler, John W.; Goodwin, Richard L.; Davis, Jeffrey M.; Potts, Jay D.

    2011-01-01

    Postnatal cardiomyocytes undergo terminal differentiation and a restricted number of human cardiomyocytes retain the ability to divide and regenerate in response to ischemic injury. However, whether these neo-cardiomyocytes are derived from endogenous population of resident cardiac stem cells or from the exogenous double assurance population of resident bone marrow-derived stem cells that populate the damaged myocardium is unresolved and under intense investigation. The vital challenge is to ameliorate and/or regenerate the damaged myocardium. This can be achieved by stimulating proliferation of native quiescent cardiomyocytes and/or cardiac stem cell, or by recruiting exogenous autologous or allogeneic cells such as fetal or embryonic cardiomyocyte progenitors or bone marrow-derived stromal stem cells. The prerequisites are that these neo-cardiomyocytes must have the ability to integrate well within the native myocardium and must exhibit functional synchronization. Adult bone marrow stromal cells (BMSCs) have been shown to differentiate into cardiomyocyte-like cells both in vitro and in vivo. As a result, BMSCs may potentially play an essential role in cardiac repair and regeneration, but this concept requires further validation. In this report, we have provided compelling evidence that functioning cardiac tissue can be generated by the interaction of multipotent BMSCs with embryonic cardiac myocytes (ECMs) in two-dimensional (2-D) co-cultures. The differentiating BMSCs were induced to undergo cardiomyogenic differentiation pathway and were able to express unequivocal electromechanical coupling and functional synchronization with ECMs. Our 2-D co-culture system provides a useful in vitro model to elucidate various molecular mechanisms underpinning the integration and orderly maturation and differentiation of BMSCs into neo-cardiomyocytes during myocardial repair and regeneration. PMID:21288568

  10. Current status of stem cells in cardiac repair.

    PubMed

    Henning, Robert J

    2018-03-01

    One out of every two men and one out of every three women greater than the age of 40 will experience an acute myocardial infarction (AMI) at some time during their lifetime. As more patients survive their AMIs, the incidence of congestive heart failure (CHF) is increasing. 6 million people in the USA have ischemic cardiomyopathies and CHF. The search for new and innovative treatments for patients with AMI and CHF has led to investigations and use of human embryonic stem cells, cardiac stem/progenitor cells, bone marrow-derived mononuclear cells and mesenchymal stem cells for treatment of these heart conditions. This paper reviews current investigations with human embryonic, cardiac, bone marrow and mesenchymal stem cells, and also stem cell paracrine factors and exosomes.

  11. Comparative study of adipose-derived stem cells and bone marrow-derived stem cells in similar microenvironmental conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guneta, Vipra; Tan, Nguan Soon; KK Research Centre, KK Women's and Children Hospital, 100 Bukit Timah Road, Singapore 229899

    Mesenchymal stem cells (MSCs), which were first isolated from the bone marrow, are now being extracted from various other tissues in the body, including the adipose tissue. The current study presents systematic evidence of how the adipose tissue-derived stem cells (ASCs) and bone marrow-derived mesenchymal stem cells (Bm-MSCs) behave when cultured in specific pro-adipogenic microenvironments. The cells were first characterized and identified as MSCs in terms of their morphology, phenotypic expression, self-renewal capabilities and multi-lineage potential. Subsequently, the proliferation and gene expression profiles of the cell populations cultured on two-dimensional (2D) adipose tissue extracellular matrix (ECM)-coated tissue culture plastic (TCP)more » and in three-dimensional (3D) AlgiMatrix® microenvironments were analyzed. Overall, it was found that adipogenesis was triggered in both cell populations due to the presence of adipose tissue ECM. However, in 3D microenvironments, ASCs and Bm-MSCs were predisposed to the adipogenic and osteogenic lineages respectively. Overall, findings from this study will contribute to ongoing efforts in adipose tissue engineering as well as provide new insights into the role of the ECM and cues provided by the immediate microenvironment for stem cell differentiation. - Highlights: • Native adipose tissue ECM coated on 2D TCP triggers adipogenesis in both ASCs and Bm-MSCs. • A 3D microenvironment with similar stiffness to adipose tissue induces adipogenic differentiation of ASCs. • ASCs cultured in 3D alginate scaffolds exhibit predisposition to adipogenesis. • Bm-MSCs cultured in 3D alginate scaffolds exhibit predisposition to osteogenesis. • The native microenvironment of the cells affects their differentiation behaviour in vitro.« less

  12. Guided Cardiopoiesis Enhances Therapeutic Benefit of Bone Marrow Human Mesenchymal Stem Cells in Chronic Myocardial Infarction

    PubMed Central

    Behfar, Atta; Yamada, Satsuki; Crespo-Diaz, Ruben; Nesbitt, Jonathan J.; Rowe, Lois A.; Perez-Terzic, Carmen; Gaussin, Vinciane; Homsy, Christian; Bartunek, Jozef; Terzic, Andre

    2010-01-01

    Objective The goal of this study was to guide bone marrow-derived human mesenchymal stem cells (hMSC) into a cardiac progenitor phenotype, and assess therapeutic benefit in chronic myocardial infarction. Background Adult stem cells, delivered in their naïve state, demonstrate a limited benefit in patients with ischemic heart disease. Preemptive lineage pre-specification may optimize therapeutic outcome. Methods hMSC were harvested from a coronary artery disease patient cohort. A recombinant cocktail consisting of TGFβ1, BMP-4, Activin-A, retinoic acid, IGF-1, FGF-2, α-thrombin and IL-6 was formulated to engage hMSC into cardiopoiesis. Derived hMSC were injected into the myocardium of a nude infarcted murine model, and followed over 1-year for functional and structural end-points. Results While the majority of patient-derived hMSC in their native state demonstrated limited effect on ejection fraction, stem cells from rare individuals harbored a spontaneous capacity to improve contractile performance. This reparative cytotype was characterized by high expression of Nkx2.5, Tbx5, Mesp-1 and Mef2C, markers of cardiopoiesis. Recombinant cardiogenic cocktail guidance secured the cardiopoietic phenotype across the patient cohort. Compared to unguided counterparts, cardiopoietic hMSC delivered into infarcted myocardium achieved superior functional and structural benefit without adverse side effects. Engraftment into murine hearts was associated with increased human-specific nuclear, sarcomeric and gap junction content along with induction of myocardial cell cycle activity. Conclusions Guided cardiopoiesis thus enhances the therapeutic benefit of bone marrow-derived human mesenchymal stem cells in chronic ischemic cardiomyopathy. PMID:20723802

  13. Gene expression of runx2, Osterix, c-fos, DLX-3, DLX-5, and MSX-2 in dental follicle cells during osteogenic differentiation in vitro.

    PubMed

    Morsczeck, C

    2006-02-01

    Recently, osteogenic precursor cells were isolated from human dental follicles, which differentiate into cementoblast- or osteoblast- like cells under in vitro conditions. However, mechanisms for osteogenic differentiation are not known in detail. Dental follicle cell long-term cultures supplemented with dexamethasone or with insulin resulted in mineralized nodules, whereas no mineralization or alkaline phosphatase activity was detected in the control culture without an osteogenic stimulus. A real-time reverse-transcriptase polymerase chain reaction (PCR) analysis was developed to investigate gene expression during osteogenic differentiation in vitro. Expression of the alkaline phosphatase (ALP) gene was detected during differentiation in the control culture and was similar to that in cultures with dexamethasone and insulin. DLX-3, DLX-5, runx2, and MSX-2 are differentially expressed during osteogenic differentiation in bone marrow mesenchymal stem cells. In dental follicle cells, gene expression of runx2, DLX-5, and MSX-2 was unaffected during osteogenic differentiation in vitro. Osteogenic differentiation appeared to be independent of MSX-2 expression; the same was true of runx2 and DLX-5, which were protagonists of osteogenic differentiation and osteocalcin promoter activity in bone marrow mesenchymal stem cells. Like in bone marrow-derived stem cells, DLX-3 gene expression was increased in dental follicle cells during osteogenic differentiation but similar to control cultures. However, gene expression of osterix was not detected in dental follicle cells during osteogenic differentiation; this gene is expressed during osteogenic differentiation in bone marrow stem cells. These real-time PCR results display molecular mechanisms in dental follicle precursor cells during osteogenic differentiation that are different from those in bone marrow-derived mesenchymal stem cells.

  14. Endochondral ossification is required for haematopoietic stem-cell niche formation.

    PubMed

    Chan, Charles K F; Chen, Ching-Cheng; Luppen, Cynthia A; Kim, Jae-Beom; DeBoer, Anthony T; Wei, Kevin; Helms, Jill A; Kuo, Calvin J; Kraft, Daniel L; Weissman, Irving L

    2009-01-22

    Little is known about the formation of niches, local micro-environments required for stem-cell maintenance. Here we develop an in vivo assay for adult haematopoietic stem-cell (HSC) niche formation. With this assay, we identified a population of progenitor cells with surface markers CD45(-)Tie2(-)alpha(V)(+)CD105(+)Thy1.1(-) (CD105(+)Thy1(-)) that, when sorted from 15.5 days post-coitum fetal bones and transplanted under the adult mouse kidney capsule, could recruit host-derived blood vessels, produce donor-derived ectopic bones through a cartilage intermediate and generate a marrow cavity populated by host-derived long-term reconstituting HSC (LT-HSC). In contrast, CD45(-)Tie2(-)alpha(V)(+)CD105(+)Thy1(+) (CD105(+)Thy1(+)) fetal bone progenitors form bone that does not contain a marrow cavity. Suppressing expression of factors involved in endochondral ossification, such as osterix and vascular endothelial growth factor (VEGF), inhibited niche generation. CD105(+)Thy1(-) progenitor populations derived from regions of the fetal mandible or calvaria that do not undergo endochondral ossification formed only bone without marrow in our assay. Collectively, our data implicate endochondral ossification, bone formation that proceeds through a cartilage intermediate, as a requirement for adult HSC niche formation.

  15. Dynamic of distribution of human bone marrow-derived mesenchymal stem cells after transplantation into adult unconditioned mice.

    PubMed

    Allers, Carolina; Sierralta, Walter D; Neubauer, Sonia; Rivera, Francisco; Minguell, José J; Conget, Paulette A

    2004-08-27

    The use of mesenchymal stem cells (MSC) for cell therapy relies on their capacity to engraft and survive long-term in the appropriate target tissue(s). Animal models have demonstrated that the syngeneic or xenogeneic transplantation of MSC results in donor engraftment into the bone marrow and other tissues of conditioned recipients. However, there are no reliable data showing the fate of human MSC infused into conditioned or unconditioned adult recipients. In the present study, the authors investigated, by using imaging, polymerase chain reaction (PCR), and in situ hybridization, the biodistribution of human bone marrow-derived MSC after intravenous infusion into unconditioned adult nude mice. As assessed by imaging (gamma camera), PCR, and in situ hybridization analysis, the authors' results demonstrate the presence of human MSC in bone marrow, spleen, and mesenchymal tissues of recipient mice. These results suggest that human MSC transplantation into unconditioned recipients represents an option for providing cellular therapy and avoids the complications associated with drugs or radiation conditioning.

  16. High glucose induces bone marrow-derived mesenchymal stem cell senescence by upregulating autophagy.

    PubMed

    Chang, Tzu-Ching; Hsu, Min-Fen; Wu, Kenneth K

    2015-01-01

    Hyperglycemia was reported to cause bone marrow hematopoietic niche dysfunction, and high glucose (HG) in the cultured medium induces MSC senescence. The underlying mechanism is unclear. Here, we investigated the role of HG-induced autophagy in bone-marrow-derived mesenchymal stem cell (BMSC) senescence. HG (25 mM) increased expression of Beclin-1, Atg 5, 7 and 12, generation of LC3-II and autophagosome formation which was correlated with development of cell senescence. Pretreatment of HG-MSC with 3-methyladenine (3-MA) prevented senescence but increased apoptosis. N-acetylcysteine (NAC) was effective in abrogating HG-induced autophagy accompanied by prevention of senescence. Diphenyleneiodonium (DPI), an inhibitor of NADPH oxidase, blocked autophagy and senescence in a manner comparable to NAC. 3-MA, NAC and DPI inhibited HG-induced interleukin-6 production in BMSCs. These results suggest that hyperglycemia induces MSC senescence and local inflammation via a novel oxidant-mediated autophagy which contributes to bone marrow niche dysfunction and hematopoietic impairment.

  17. A fat option for the pig: Hepatocytic differentiated mesenchymal stem cells for translational research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brückner, Sandra, E-mail: sandra.brueckner@medizin.uni-leipzig.de; Tautenhahn, Hans-Michael, E-mail: hans-michael.tautenhahn@medizin.uni-leipzig.de; TRM, Translational Centre for Regenerative Medicine, Philipp-Rosenthal-Str. 55, Leipzig D-04103

    Study background: Extended liver resection is the only curative treatment option of liver cancer. Yet, the residual liver may not accomplish the high metabolic and regenerative capacity needed, which frequently leads to acute liver failure. Because of their anti-inflammatory and -apoptotic as well as pro-proliferative features, mesenchymal stem cells differentiated into hepatocyte-like cells might provide functional and regenerative compensation. Clinical translation of basic research requires pre-clinical approval in large animals. Therefore, we characterized porcine mesenchymal stem cells (MSC) from adipose tissue and bone marrow and their hepatocyte differentiation potential for future assessment of functional liver support after surgical intervention inmore » the pig model. Methods: Mesenchymal surface antigens and multi-lineage differentiation potential of porcine MSC isolated by collagenase digestion either from bone marrow or adipose tissue (subcutaneous/visceral) were assessed by flow cytometry. Morphology and functional properties (urea-, glycogen synthesis and cytochrome P450 activity) were determined during culture under differentiation conditions and compared with primary porcine hepatocytes. Results: MSC from porcine adipose tissue and from bone marrow express the typical mesenchymal markers CD44, CD29, CD90 and CD105 but not haematopoietic markers. MSC from both sources displayed differentiation into the osteogenic as well as adipogenic lineage. After hepatocyte differentiation, expression of CD105 decreased significantly and cells adopted the typical polygonal morphology of hepatocytes. Glycogen storage was comparable in adipose tissue- and bone marrow-derived cells. Urea synthesis was about 35% lower in visceral than in subcutaneous adipose tissue-derived MSC. Cytochrome P450 activity increased significantly during differentiation and was twice as high in hepatocyte-like cells generated from bone marrow as from adipose tissue. Conclusion: The hepatocyte differentiation of porcine adipose tissue-derived MSC was shown for the first time yielding hepatocyte-like cells with specific functions similar in bone marrow and subcutaneous adipose tissue-derived MSC. That makes them good pre-clinical candidates for supportive approaches after liver resection in the pig. - Highlights: • First time to show hepatocytic differentiation of porcine adipose tissue-derived MSC. • Hepatocytic-differentiated MSC display metabolic qualities of primary hepatocytes. • Metabolic potency varies between differentiated MSC from different tissues. • MSC are good candidates for pre-clinical evaluation of stem cell-based therapies.« less

  18. Adipose-derived mesenchymal stem cells and regenerative medicine.

    PubMed

    Konno, Masamitsu; Hamabe, Atsushi; Hasegawa, Shinichiro; Ogawa, Hisataka; Fukusumi, Takahito; Nishikawa, Shimpei; Ohta, Katsuya; Kano, Yoshihiro; Ozaki, Miyuki; Noguchi, Yuko; Sakai, Daisuke; Kudoh, Toshihiro; Kawamoto, Koichi; Eguchi, Hidetoshi; Satoh, Taroh; Tanemura, Masahiro; Nagano, Hiroaki; Doki, Yuichiro; Mori, Masaki; Ishii, Hideshi

    2013-04-01

    Adipose tissue-derived mesenchymal stem cells (ADSCs) are multipotent and can differentiate into various cell types, including osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Compared with the extraction of other stem cells such as bone marrow-derived mesenchymal stem cells (BMSCs), that of ADSCs requires minimally invasive techniques. In the field of regenerative medicine, the use of autologous cells is preferable to embryonic stem cells or induced pluripotent stem cells. Therefore, ADSCs are a useful resource for drug screening and regenerative medicine. Here we present the methods and mechanisms underlying the induction of multilineage cells from ADSCs. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  19. Stem cells in retinal regeneration: past, present and future.

    PubMed

    Ramsden, Conor M; Powner, Michael B; Carr, Amanda-Jayne F; Smart, Matthew J K; da Cruz, Lyndon; Coffey, Peter J

    2013-06-01

    Stem cell therapy for retinal disease is under way, and several clinical trials are currently recruiting. These trials use human embryonic, foetal and umbilical cord tissue-derived stem cells and bone marrow-derived stem cells to treat visual disorders such as age-related macular degeneration, Stargardt's disease and retinitis pigmentosa. Over a decade of analysing the developmental cues involved in retinal generation and stem cell biology, coupled with extensive surgical research, have yielded differing cellular approaches to tackle these retinopathies. Here, we review these various stem cell-based approaches for treating retinal diseases and discuss future directions and challenges for the field.

  20. Osteogenically differentiated mesenchymal stem cells and ceramics for bone tissue engineering.

    PubMed

    Ohgushi, Hajime

    2014-02-01

    In the human body, cells having self-renewal and multi-differentiation capabilities reside in many tissues and are called adult stem cells. In bone marrow tissue, two types of stem cells are well known: hematopoietic stem cells and mesenchymal stem cells (MSCs). Though the number of MSCs in bone marrow tissue is very low, it can be increased by in vitro culture of the marrow, and culture-expanded MSCs are available for various tissue regeneration. The culture-expanded MSCs can further differentiate into osteogenic cells such as bone forming osteoblasts by culturing the MSCs in an osteogenic medium. This paper discusses osteogenically differentiated MSCs derived from the bone marrow of patients. Importantly, the differentiation can be achieved on ceramic surfaces which demonstrate mineralized bone matrix formation as well as appearance of osteogenic cells. The cell/matrix/ceramic constructs could show immediate in vivo bone formation and are available for bone reconstruction surgery. Currently, MSCs are clinically available for the regeneration of various tissues due to their high proliferation/differentiation capabilities. However, the capabilities are still limited and thus technologies to improve or recover the inherent capabilities of MSCs are needed.

  1. Neural cells derived from adult bone marrow and umbilical cord blood.

    PubMed

    Sanchez-Ramos, Juan R

    2002-09-15

    Under experimental conditions, tissue-specific stem cells have been shown to give rise to cell lineages not normally found in the organ or tissue of residence. Neural stem cells from fetal brain have been shown to give rise to blood cell lines and conversely, bone marrow stromal cells have been reported to generate skeletal and cardiac muscle, oval hepatocytes, as well as glia and neuron-like cells. This article reviews studies in which cells from postnatal bone marrow or umbilical cord blood were induced to proliferate and differentiate into glia and neurons, cellular lineages that are not their normal destiny. The review encompasses in vitro and in vivo studies with focus on experimental variables, such as the source and characterization of cells, cell-tracking methods, and markers of neural differentiation. The existence of stem/progenitor cells with previously unappreciated proliferation and differentiation potential in postnatal bone marrow and in umbilical cord blood opens up the possibility of using stem cells found in these tissues to treat degenerative, post-traumatic and hereditary diseases of the central nervous system. Copyright 2002 Wiley-Liss, Inc.

  2. Perivascular Mesenchymal Stem Cells From the Adult Human Brain Harbor No Instrinsic Neuroectodermal but High Mesodermal Differentiation Potential.

    PubMed

    Lojewski, Xenia; Srimasorn, Sumitra; Rauh, Juliane; Francke, Silvan; Wobus, Manja; Taylor, Verdon; Araúzo-Bravo, Marcos J; Hallmeyer-Elgner, Susanne; Kirsch, Matthias; Schwarz, Sigrid; Schwarz, Johannes; Storch, Alexander; Hermann, Andreas

    2015-10-01

    Brain perivascular cells have recently been identified as a novel mesodermal cell type in the human brain. These cells reside in the perivascular niche and were shown to have mesodermal and, to a lesser extent, tissue-specific differentiation potential. Mesenchymal stem cells (MSCs) are widely proposed for use in cell therapy in many neurological disorders; therefore, it is of importance to better understand the "intrinsic" MSC population of the human brain. We systematically characterized adult human brain-derived pericytes during in vitro expansion and differentiation and compared these cells with fetal and adult human brain-derived neural stem cells (NSCs) and adult human bone marrow-derived MSCs. We found that adult human brain pericytes, which can be isolated from the hippocampus and from subcortical white matter, are-in contrast to adult human NSCs-easily expandable in monolayer cultures and show many similarities to human bone marrow-derived MSCs both regarding both surface marker expression and after whole transcriptome profile. Human brain pericytes showed a negligible propensity for neuroectodermal differentiation under various differentiation conditions but efficiently generated mesodermal progeny. Consequently, human brain pericytes resemble bone marrow-derived MSCs and might be very interesting for possible autologous and endogenous stem cell-based treatment strategies and cell therapeutic approaches for treating neurological diseases. Perivascular mesenchymal stem cells (MSCs) recently gained significant interest because of their appearance in many tissues including the human brain. MSCs were often reported as being beneficial after transplantation in the central nervous system in different neurological diseases; therefore, adult brain perivascular cells derived from human neural tissue were systematically characterized concerning neural stem cell and MSC marker expression, transcriptomics, and mesodermal and inherent neuroectodermal differentiation potential in vitro and in vivo after in utero transplantation. This study showed the lack of an innate neuronal but high mesodermal differentiation potential. Because of their relationship to mesenchymal stem cells, these adult brain perivascular mesodermal cells are of great interest for possible autologous therapeutic use. ©AlphaMed Press.

  3. Mesenchymal Stem Cell Therapy for Nerve Regeneration and Immunomodulation after Composite Tissue Allotransplantation

    DTIC Science & Technology

    2012-02-01

    10-1-0927 TITLE: Mesenchymal Stem Cell Therapy for Nerve Regeneration and Immunomodulation after Composite Tissue Allotransplantation...immunosuppression. Bone Marrow Derived Mesenchymal stem cells (BM-MSCs) are pluripotent cells, capable of differentiation along multiple mesenchymal lineages into...As part of implemented transition from University of Pittsburgh to Johns Hopkins University, we optimized our mesenchymal stem cell (MSC) isolation

  4. Properties of skin stem cells and their potential clinical applications in modern dermatology.

    PubMed

    Niezgoda, Anna; Niezgoda, Piotr; Nowowiejska, Laura; Białecka, Agnieszka; Męcińska-Jundziłł, Kaja; Adamska, Urszula; Czajkowski, Rafał

    2017-06-01

    Stem cells play an important role in medical science, and scientists are investing large sums in order to perform sophisticated studies designed to establish potential clinical applications of stem cells. Growing experience has enabled researchers to determine the precise nature of stem cell division. Although the properties of this particular population of cells have been known and used for some time, mainly with regards to bone marrow-derived mesenchymal stem cell transplantation, we now face a significant challenge in implementing the practical use of skin-derived precursors, making it possible to avoid the necessity for patients to undergo invasive procedures in order to obtain stem cells from bone marrow. Multiple trials have so far been performed, bringing hope for the treatment of disorders previously considered untreatable. Patients suffering from a number of dermatological diseases, including malignant melanoma, systemic lupus erythematosus, vitiligo, alopecia or junctional epidermolysis bullosa, may benefit from treatment based on stem cells. The aim of this review is to summarize available data on stem cells and their potential applications in the treatment of dermatological disorders. The work described is based on data published up to the end of September 2016.

  5. Platelet-rich plasma derived growth factors contribute to stem cell differentiation in musculoskeletal regeneration

    NASA Astrophysics Data System (ADS)

    Qian, Yun; Han, Qixin; Chen, Wei; Song, Jialin; Zhao, Xiaotian; Ouyang, Yuanming; Yuan, Weien; Fan, Cunyi

    2017-10-01

    Stem cell treatment and platelet-rich plasma (PRP) therapy are two significant issues in regenerative medicine. Stem cells such as bone marrow mesenchymal stem cells, adipose-derived stem cells and periodontal ligament stem cells can be successfully applied in the field of tissue regeneration. PRP, a natural product isolated from whole blood, can secrete multiple growth factors (GFs) for regulating physiological activities. These GFs can stimulate proliferation and differentiation of different stem cells in injury models. Therefore, combination of both agents receives wide expectations in regenerative medicine, especially in bone, cartilage and tendon repair. In this review, we thoroughly discussed the interaction and underlying mechanisms of platelet-rich plasma derived growth factors with stem cells, and assessed their functions in cell differentiation for musculoskeletal regeneration.

  6. Platelet-Rich Plasma Derived Growth Factors Contribute to Stem Cell Differentiation in Musculoskeletal Regeneration.

    PubMed

    Qian, Yun; Han, Qixin; Chen, Wei; Song, Jialin; Zhao, Xiaotian; Ouyang, Yuanming; Yuan, Weien; Fan, Cunyi

    2017-01-01

    Stem cell treatment and platelet-rich plasma (PRP) therapy are two significant issues in regenerative medicine. Stem cells such as bone marrow mesenchymal stem cells, adipose-derived stem cells and periodontal ligament stem cells can be successfully applied in the field of tissue regeneration. PRP, a natural product isolated from whole blood, can secrete multiple growth factors (GFs) for regulating physiological activities. These GFs can stimulate proliferation and differentiation of different stem cells in injury models. Therefore, combination of both agents receives wide expectations in regenerative medicine, especially in bone, cartilage and tendon repair. In this review, we thoroughly discussed the interaction and underlying mechanisms of PRP derived GFs with stem cells, and assessed their functions in cell differentiation for musculoskeletal regeneration.

  7. Bone Marrow Adipose Tissue and Skeletal Health.

    PubMed

    Muruganandan, Shanmugam; Govindarajan, Rajgopal; Sinal, Christopher J

    2018-05-31

    To summarize and discuss recent progress and novel signaling mechanisms relevant to bone marrow adipocyte formation and its physiological/pathophysiological implications for bone remodeling. Skeletal remodeling is a coordinated process entailing removal of old bone and formation of new bone. Several bone loss disorders such as osteoporosis are commonly associated with increased bone marrow adipose tissue. Experimental and clinical evidence supports that a reduction in osteoblastogenesis from mesenchymal stem cells at the expense of adipogenesis, as well as the deleterious effects of adipocyte-derived signaling, contributes to the etiology of osteoporosis as well as bone loss associated with aging, diabetes mellitus, post-menopause, and chronic drug therapy. However, this view is challenged by findings indicating that, in some contexts, bone marrow adipose tissue may have a beneficial impact on skeletal health. Further research is needed to better define the role of marrow adipocytes in bone physiology/pathophysiology and to determine the therapeutic potential of manipulating mesenchymal stem cell differentiation.

  8. Marrow-derived mesenchymal stem cells: role in epithelial tumor cell determination.

    PubMed

    Fierro, Fernando A; Sierralta, Walter D; Epuñan, Maria J; Minguell, José J

    2004-01-01

    Marrow stroma represents an advantageous environment for development of micrometastatic cells. Within the cellular structure of marrow stroma, mesenchymal stem cells (MSC) have been postulated as an interacting target for disseminated cancer cells. The studies reported here were performed to gain more information on the interaction of the human breast cancer cell line MCF-7 with human bone marrow-derived MSC cells and to investigate whether this interaction affects tumor cell properties. The results showed that after co-culture with MSC, changes were detected in the morphology, proliferative capacity and aggregation pattern of MCF-7 cells, but these parameters were not affected after the co-culture of MSC cells with a non-tumorigenic breast epithelial cell line, MCF-10. Since the indirect culture of MCF-7 with MSC or its products also resulted in functional changes in the tumor cells, we evaluated whether these effects could be attributed to growth factors produced by MSC cells. It was found that VEGF and IL-6 mimic the effects produced by MSC or its products on the proliferation and aggregation properties of MCF-7, cells, respectively. Thus, it seems that after entry of disseminated tumor cells into the marrow space, their proliferative and morphogenetic organization patterns are modified after interaction with distinct stromal cells and/or with specific signals from the marrow microenvironment.

  9. The healing effect of bone marrow-derived stem cells in acute radiation syndrome.

    PubMed

    Mortazavi, Seyed Mohammad Javad; Shekoohi-Shooli, Fatemeh; Aghamir, Seyed Mahmood Reza; Mehrabani, Davood; Dehghanian, Amirreza; Zare, Shahrokh; Mosleh-Shirazi, Mohammad Amin

    2016-01-01

    To determine the effect of bone marrow-derived mesenchymal stem cells (BMSCs) on regeneration of bone marrow and intestinal tissue and survival rate in experimental mice with acute radiation syndrome (ARS). Forty mice were randomly divided into two equal groups of A receiving no BMSC transplantation and B receiving BMSCs. BMSCs were isolated from the bone marrow and cultured in DMEM media. Both groups were irradiated with 10 Gy (dose rate 0.28 Gy/ min) (60)CO during 35 minutes with a field size of 35×35 for all the body area. Twenty-four hours after γ irradiation, 150×10(3) cells of passage 5 in 150 µl medium were injected intravenously into the tail. Animals were euthanized one and two weeks after cell transplantation. They were evaluated histologically for any changes in bone marrow and intestinal tissues. The survival rate in mice were also determined. A significant increase for bone marrow cell count and survival rate were observed in group B in comparison to group A. Histological findings denoted to a healing in sample tissues. BMSCs could significantly reduce the side effects of ARS and increase the survival rate and healing in injured tissue. As such their transplantation may open a window in treatment of patients with ARS.

  10. Modeling Fanconi Anemia pathogenesis and therapeutics using integration-free patient-derived iPSCs

    PubMed Central

    Montserrat, Nuria; Tarantino, Carolina; Gu, Ying; Yi, Fei; Xu, Xiuling; Zhang, Weiqi; Ruiz, Sergio; Plongthongkum, Nongluk; Zhang, Kun; Masuda, Shigeo; Nivet, Emmanuel; Tsunekawa, Yuji; Soligalla, Rupa Devi; Goebl, April; Aizawa, Emi; Kim, Na Young; Kim, Jessica; Dubova, Ilir; Li, Ying; Ren, Ruotong; Benner, Chris; del Sol, Antonio; Bueren, Juan; Trujillo, Juan Pablo; Surralles, Jordi; Cappelli, Enrico; Dufour, Carlo; Esteban, Concepcion Rodriguez; Belmonte, Juan Carlos Izpisua

    2014-01-01

    Fanconi Anemia (FA) is a recessive disorder characterized by genomic instability, congenital abnormalities, cancer predisposition and bone marrow failure. However, the pathogenesis of FA is not fully understood partly due to the limitations of current disease models. Here, we derive integration-free induced pluripotent stem cells (iPSCs) from an FA patient without genetic complementation and report in situ gene correction in FA-iPSCs as well as the generation of isogenic FANCA deficient human embryonic stem cell (ESC) lines. FA cellular phenotypes are recapitulated in iPSCs/ESCs and their adult stem/progenitor cell derivatives. By using isogenic pathogenic mutation-free controls as well as cellular and genomic tools, our model serves to facilitate the discovery of novel disease features. We validate our model as a drug-screening platform by identifying several compounds that improve hematopoietic differentiation of FA-iPSCs. These compounds are also able to rescue the hematopoietic phenotype of FA-patient bone marrow cells. PMID:24999918

  11. Comparison of cellular responses of mesenchymal stem cells derived from bone marrow and synovium on combined silk scaffolds.

    PubMed

    Liu, Haifeng; Wei, Xing; Ding, Xili; Li, Xiaoming; Zhou, Gang; Li, Ping; Fan, Yubo

    2015-01-01

    As a brand new member in mesenchymal stem cells (MSCs) families, synovium-derived mesenchymal stem cells (SMSCs) have been increasingly regarded as a promising therapeutic cell species for musculoskeletal regeneration. However, there are few reports mentioning ligamentogenesis of SMSCs and especially null for their engineering use towards ligament regeneration. The aim of this study was to investigate and compare the cellular responses of MSCs derived from bone marrow and synovium on combined silk scaffolds that can be used to determine the cell source most appropriate for tissue-engineered ligament. Rabbit SMSCs and bone marrow-derived mesenchymal stem cells (BMSCs) were isolated and cultured in vitro for two weeks after seeding on the combined silk scaffolds. Samples were studied and compared for their cellular morphology, proliferation, collagen production, gene, and protein expression of ligament-related extracellular matrix (ECM) markers. In addition, the two cell types were transfected with green fluorescent protein to evaluate their fate after implantation in an intraarticular environment of the knee joint. After 14 days of culturing, SMSCs showed a significant increase in proliferation as compared with BMSCs. The transcript and protein expression levels of ligament-related ECM markers in SMSCs were significantly higher than those in BMSCs. Moreover, 6 weeks postoperatively, more viable cells were presented in SMSC-loaded constructs than in BMSC-loaded constructs. Therefore, based on the cellular response in vitro and in vivo, SMSCs may represent a more suitable cell source than BMSCs for further study and development of tissue-engineered ligament. © 2014 Wiley Periodicals, Inc.

  12. Concise Review: Conceptualizing Paralogous Stem-Cell Niches and Unfolding Bone Marrow Progenitor Cell Identities.

    PubMed

    Chen, Kevin G; Johnson, Kory R; McKay, Ronald D G; Robey, Pamela G

    2018-01-01

    Lineage commitment and differentiation of skeletal stem cells/bone marrow stromal cells (SSCs/BMSCs, often called bone marrow-derived "mesenchymal stem/stromal" cells) offer an important opportunity to study skeletal and hematopoietic diseases, and for tissue engineering and regenerative medicine. Currently, many studies in this field have relied on cell lineage tracing methods in mouse models, which have provided a significant advancement in our knowledge of skeletal and hematopoietic stem-cell niches in bone marrow (BM). However, there is a lack of agreement in numerous fundamental areas, including origins of various BM stem-cell niches, cell identities, and their physiological roles in the BM. In order to resolve these issues, we propose a new hypothesis of "paralogous" stem-cell niches (PSNs); that is, progressively altered parallel niches within an individual species throughout the life span of the organism. A putative PSN code seems to be plausible based on analysis of transcriptional signatures in two representative genes that encode Nes-GFP and leptin receptors, which are frequently used to monitor SSC lineage development in BM. Furthermore, we suggest a dynamic paralogous BM niche (PBMN) model that elucidates the coupling and uncoupling mechanisms between BM stem-cell niches and their zones of active regeneration during different developmental stages. Elucidation of these PBMNs would enable us to resolve the existing controversies, thus paving the way to achieving precision regenerative medicine and pharmaceutical applications based on these BM cell resources. Stem Cells 2018;36:11-21. © 2017 AlphaMed Press.

  13. VEGF induces neuroglial differentiation in bone marrow-derived stem cells and promotes microglia conversion following mobilization with GM-CSF.

    PubMed

    Avraham-Lubin, Bat-Chen R; Goldenberg-Cohen, Nitza; Sadikov, Tamilla; Askenasy, Nadir

    2012-12-01

    Evaluation of potential tropic effects of vascular endothelial growth factor (VEGF) on the incorporation and differentiation of bone-marrow-derived stem cells (BMSCs) in a murine model of anterior ischemic optic neuropathy (AION). In the first approach, small-sized subset of BMCs were isolated from GFP donors mice by counterflow centrifugal elutriation and depleted of hematopoietic lineages (Fr25lin(-)). These cells were injected into a peripheral vein (1 × 10(6) in 0.2 ml) or inoculated intravitreally (2 × 10(5)) to syngeneic mice, with or without intravitreal injection of 5 μg/2μL VEGF, simultaneously with AION induction. In a second approach, hematopoietic cells were substituted by myelablative transplant of syngeseic GFP + bone marrow cells. After 3 months, progenitors were mobilized with granulocyte-macrophage colony-stimulating factor (GM-CSF) followed by VEGF inoculation into the vitreous body and AION induction . Engraftment and phenotype were examined by immunohistochemistry and FISH at 4 and 24 weeks post-transplantation, and VEGF receptors were determined by real time PCR. VEGF had no quantitative effect on incorporation of elutriated cells in the injured retina, yet it induced early expression of neuroal markers in cells incorporated in the RGC layer and promoted durable gliosis, most prominent perivascular astrocytes. These effects were mediated by VEGF-R1/Flt-1, which is constitutively expresses in the elutriated fraction of stem cells. Mobilization with GM-CSF limited the differentiation of bone marrow progenitors to microglia, which was also fostered by VEGF. VEGF signaling mediated by Flt-1 induces early neural and sustained astrocytic differentiation of stem cells elutriated from adult bone-marrow, with significant contribution to stabilization retinal architecture following ischemic injury.

  14. Long Noncoding RNAs: New Players in the Osteogenic Differentiation of Bone Marrow- and Adipose-Derived Mesenchymal Stem Cells.

    PubMed

    Yang, Qiaolin; Jia, Lingfei; Li, Xiaobei; Guo, Runzhi; Huang, Yiping; Zheng, Yunfei; Li, Weiran

    2018-06-01

    Mesenchymal stem cells (MSCs) are an important population of multipotent stem cells that differentiate into multiple lineages and display great potential in bone regeneration and repair. Although the role of protein-coding genes in the osteogenic differentiation of MSCs has been extensively studied, the functions of noncoding RNAs in the osteogenic differentiation of MSCs are unclear. The recent application of next-generation sequencing to MSC transcriptomes has revealed that long noncoding RNAs (lncRNAs) are associated with the osteogenic differentiation of MSCs. LncRNAs are a class of non-coding transcripts of more than 200 nucleotides in length. Noncoding RNAs are thought to play a key role in osteoblast differentiation through various regulatory mechanisms including chromatin modification, transcription factor binding, competent endogenous mechanism, and other post-transcriptional mechanisms. Here, we review the roles of lncRNAs in the osteogenic differentiation of bone marrow- and adipose-derived stem cells and provide a theoretical foundation for future research.

  15. Hematopoietic Stem Cells in Neural-crest Derived Bone Marrow.

    PubMed

    Jiang, Nan; Chen, Mo; Yang, Guodong; Xiang, Lusai; He, Ling; Hei, Thomas K; Chotkowski, Gregory; Tarnow, Dennis P; Finkel, Myron; Ding, Lei; Zhou, Yanheng; Mao, Jeremy J

    2016-12-21

    Hematopoietic stem cells (HSCs) in the endosteum of mesoderm-derived appendicular bones have been extensively studied. Neural crest-derived bones differ from appendicular bones in developmental origin, mode of bone formation and pathological bone resorption. Whether neural crest-derived bones harbor HSCs is elusive. Here, we discovered HSC-like cells in postnatal murine mandible, and benchmarked them with donor-matched, mesoderm-derived femur/tibia HSCs, including clonogenic assay and long-term culture. Mandibular CD34 negative, LSK cells proliferated similarly to appendicular HSCs, and differentiated into all hematopoietic lineages. Mandibular HSCs showed a consistent deficiency in lymphoid differentiation, including significantly fewer CD229 + fractions, PreProB, ProB, PreB and B220 + slgM cells. Remarkably, mandibular HSCs reconstituted irradiated hematopoietic bone marrow in vivo, just as appendicular HSCs. Genomic profiling of osteoblasts from mandibular and femur/tibia bone marrow revealed deficiencies in several HSC niche regulators among mandibular osteoblasts including Cxcl12. Neural crest derived bone harbors HSCs that function similarly to appendicular HSCs but are deficient in the lymphoid lineage. Thus, lymphoid deficiency of mandibular HSCs may be accounted by putative niche regulating genes. HSCs in craniofacial bones have functional implications in homeostasis, osteoclastogenesis, immune functions, tumor metastasis and infections such as osteonecrosis of the jaw.

  16. STK-1, the human homolog of Flk-2/Flt-3, is selectively expressed in CD34+ human bone marrow cells and is involved in the proliferation of early progenitor/stem cells.

    PubMed Central

    Small, D; Levenstein, M; Kim, E; Carow, C; Amin, S; Rockwell, P; Witte, L; Burrow, C; Ratajczak, M Z; Gewirtz, A M

    1994-01-01

    We cloned the cDNA for stem cell tyrosine kinase 1 (STK-1), the human homolog of murine Flk-2/Flt-3, from a CD34+ hematopoietic stem cell-enriched library and investigated its expression in subsets of normal human bone marrow. The cDNA encodes a protein of 993 aa with 85% identity and 92% similarity to Flk-2/Flt-3. STK-1 is a member of the type III receptor tyrosine kinase family that includes KIT (steel factor receptor), FMS (colony-stimulating factor 1R), and platelet-derived growth factor receptor. STK-1 expression in human blood and marrow is restricted to CD34+ cells, a population greatly enriched for stem/progenitor cells. Anti-STK-1 antiserum recognizes polypeptides of 160 and 130 kDa in several STK-1-expressing cell lines and in 3T3 cells transfected with a STK-1 expression vector. Antisense oligonucleotides directed against STK-1 sequences inhibited hematopoietic colony formation, most strongly in long-term bone marrow cultures. These data suggest that STK-1 may function as a growth factor receptor on hematopoietic stem and/or progenitor cells. Images Fig. 2 Fig. 3 Fig. 4 PMID:7507245

  17. Stem Cell Ophthalmology Treatment Study (SCOTS): bone marrow-derived stem cells in the treatment of Leber's hereditary optic neuropathy

    PubMed Central

    Weiss, Jeffrey N.; Levy, Steven; Benes, Susan C.

    2016-01-01

    The Stem Cell Ophthalmology Treatment Study (SCOTS) is currently the largest-scale stem cell ophthalmology trial registered at ClinicalTrials.gov (identifier: NCT01920867). SCOTS utilizes autologous bone marrow-derived stem cells (BMSCs) to treat optic nerve and retinal diseases. Treatment approaches include a combination of retrobulbar, subtenon, intravitreal, intra-optic nerve, subretinal, and intravenous injection of autologous BMSCs according to the nature of the disease, the degree of visual loss, and any risk factors related to the treatments. Patients with Leber's hereditary optic neuropathy had visual acuity gains on the Early Treatment Diabetic Retinopathy Study (ETDRS) of up to 35 letters and Snellen acuity improvements from hand motion to 20/200 and from counting fingers to 20/100. Visual field improvements were noted. Macular and optic nerve head nerve fiber layer typically thickened. No serious complications were seen. The increases in visual acuity obtained in our study were encouraging and suggest that the use of autologous BMSCs as provided in SCOTS for ophthalmologic mitochondrial diseases including Leber's hereditary optic neuropathy may be a viable treatment option. PMID:27904503

  18. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow.

    PubMed

    Wynn, Robert F; Hart, Claire A; Corradi-Perini, Carla; O'Neill, Liam; Evans, Caroline A; Wraith, J Ed; Fairbairn, Leslie J; Bellantuono, Ilaria

    2004-11-01

    Homing of bone marrow stromal cells (MSCs) to bone and bone marrow after transplantation, important for the correction of conditions such as metabolic storage disorders, can occur but with poor efficiency. Substantial improvements in engraftment will be required in order to derive a clinical benefit from MSC transplantation. Chemokines are the most important factors controlling cellular migration. Stromal-derived factor-1 (SDF-1) has been shown to be critical in promoting the migration of cells to the bone marrow, via its specific receptor CXCR4. The aim of our study was to investigate CXCR4 expression on MSCs and its role in mediating migration to bone marrow. We show that CXCR4, although present at the surface of a small subset of MSCs, is important for mediating specific migration of these cells to bone marrow.

  19. Are hematopoietic stem cells involved in hepatocarcinogenesis?

    PubMed

    Facciorusso, Antonio; Antonino, Matteo; Del Prete, Valentina; Neve, Viviana; Scavo, Maria Principia; Barone, Michele

    2014-08-01

    THE LIVER HAS THREE CELL LINEAGES ABLE TO PROLIFERATE AFTER A HEPATIC INJURY: the mature hepatocyte, the ductular "bipolar" progenitor cell termed "oval cell" and the putative periductular stem cell. Hepatocytes can only produce other hepatocytes whereas ductular progenitor cells are considerate bipolar since they can give rise to biliary cells or hepatocytes. Periductular stem cells are rare in the liver, have a very long proliferation potential and may be multipotent, being this aspect still under investigation. They originate in the bone marrow since their progeny express genetic markers of donor hematopoietic cells after bone marrow transplantation. Since the liver is the hematopoietic organ of the fetus, it is possible that hematopoietic stem cells may reside in the liver of the adult. This assumption is proved by the finding that oval cells express hematopoietic markers like CD34, CD45, CD 109, Thy-1, c-kit, and others, which are also expressed by bone marrow-derived hematopoietic stem cells (BMSCs). Few and discordant studies have evaluated the role of BMSC in hepatocarcinogenesis so far and further studies in vitro and in vivo are warranted in order to definitively clarify such an issue.

  20. Changes in human bone marrow fat content associated with changes in hematopoietic stem cell numbers and cytokine levels with aging

    PubMed Central

    Tuljapurkar, Sonal R; McGuire, Timothy R; Brusnahan, Susan K; Jackson, John D; Garvin, Kevin L; Kessinger, Margaret A; Lane, Judy T; O' Kane, Barbara J; Sharp, John G

    2011-01-01

    Hematological deficiencies increase with aging, including anemias, reduced responses to hematopoietic stress and myelodysplasias. This investigation tested the hypothesis that increased bone marrow (BM) fat content in humans with age was associated with decreased numbers of side population (SP) hematopoietic stem cells, and this decrease correlated with changes in cytokine levels. BM was obtained from the femoral head and trochanteric region of the femur removed at surgery for total hip replacement (N = 100 subjects). In addition, BM from cadavers (N = 36), with no evidence of hip disease, was evaluated for fat content. Whole trabecular marrow samples were ground in a sterile mortar and pestle, and cellularity and lipid content determined. Marrow cells were stained with Hoechst dye and SP profiles were acquired. Plasma levels of insulin-like growth factor (IGF)-1, stromal-derived factor (SDF)-1 and interleukin (IL)-6 were measured using ELISA. Fat content in the BM of human subjects and cadavers increased with age. The numbers of SP stem cells in BM as well as plasma IGF-1 and SDF-1 levels decreased in correlation with increased BM fat. IL-6 had no relationship to changes in marrow fat. These data suggest that increased BM fat may be associated with a decreased number of SP stem cells and IGF-1 and SDF-1 levels with aging. These data further raise a more general question as to the role of adipose cells in the regulation of tissue stem cells. PMID:21923862

  1. Mobilization of Endogenous Bone Marrow Derived Endothelial Progenitor Cells and Therapeutic Potential of Parathyroid Hormone after Ischemic Stroke in Mice

    PubMed Central

    Wang, Li-Li; Chen, Dongdong; Lee, Jinhwan; Gu, Xiaohuan; Alaaeddine, Ghina; Li, Jimei; Wei, Ling; Yu, Shan Ping

    2014-01-01

    Stroke is a major neurovascular disorder threatening human life and health. Very limited clinical treatments are currently available for stroke patients. Stem cell transplantation has shown promising potential as a regenerative treatment after ischemic stroke. The present investigation explores a new concept of mobilizing endogenous stem cells/progenitor cells from the bone marrow using a parathyroid hormone (PTH) therapy after ischemic stroke in adult mice. PTH 1-34 (80 µg/kg, i.p.) was administered 1 hour after focal ischemia and then daily for 6 consecutive days. After 6 days of PTH treatment, there was a significant increase in bone marrow derived CD-34/Fetal liver kinase-1 (Flk-1) positive endothelial progenitor cells (EPCs) in the peripheral blood. PTH treatment significantly increased the expression of trophic/regenerative factors including VEGF, SDF-1, BDNF and Tie-1 in the brain peri-infarct region. Angiogenesis, assessed by co-labeled Glut-1 and BrdU vessels, was significantly increased in PTH-treated ischemic brain compared to vehicle controls. PTH treatment also promoted neuroblast migration from the subventricular zone (SVZ) and increased the number of newly formed neurons in the peri-infarct cortex. PTH-treated mice showed significantly better sensorimotor functional recovery compared to stroke controls. Our data suggests that PTH therapy improves endogenous repair mechanisms after ischemic stroke with functional benefits. Mobilizing endogenous bone marrow-derived stem cells/progenitor cells using PTH and other mobilizers appears an effective and feasible regenerative treatment after ischemic stroke. PMID:24503654

  2. Adult hippocampus derived soluble factors induce a neuronal-like phenotype in mesenchymal stem cells.

    PubMed

    Rivera, Francisco J; Sierralta, Walter D; Minguell, Jose J; Aigner, Ludwig

    2006-10-02

    Bone marrow-derived mesenchymal stem cells (MSCs) are not restricted in their differentiation fate to cells of the mesenchymal lineage. They acquire a neural phenotype in vitro and in vivo after transplantation in the central nervous system. Here we investigated whether soluble factors derived from different brain regions are sufficient to induce a neuronal phenotype in MSCs. We incubated bone marrow-derived MSCs in conditioned medium (CM) derived from adult hippocampus (HCM), cortex (CoCM) or cerebellum (CeCM) and analyzed the cellular morphology and the expression of neuronal and glial markers. In contrast to muscle derived conditioned medium, which served as control, conditioned medium derived from the different brain regions induced a neuronal morphology and the expression of the neuronal markers GAP-43 and neurofilaments in MSCs. Hippocampus derived conditioned medium had the strongest activity. It was independent of NGF or BDNF; and it was restricted to the neuronal differentiation fate, since no induction of the astroglial marker GFAP was observed. The work indicates that soluble factors present in the brain are sufficient to induce a neuronal phenotype in MSCs.

  3. Survival of irradiated recipient mice after transplantation of bone marrow from young, old and "early aging" mice.

    PubMed

    Guest, Ian; Ilic, Zoran; Scrable, Heidi; Sell, Stewart

    2015-12-01

    Bone marrow transplantation is used to examine survival, hematopoietic stem cell function and pathology in recipients of young and old wild type bone marrow derived stem cells (BMDSCs) as well as cells from p53-based models of premature aging. There is no difference in the long term survival of recipients of 8 week-old p53+/m donor cells compared to recipients of 8 week-old wild-type (WT) donor cells (70 weeks) or of recipients of 16-18 weeks-old donor cells from either p53+/m or WT mice. There is shorter survival in recipients of older versus younger WT donor bone marrow, but the difference is only significant when comparing 8 and 18 week-old donors. In the p44-based model, short term survival/engraftment is significantly reduced in recipients of 11 month-old p44 donor cells compared to 4 week-old p44 or wild type donor cells of either age; mid-life survival at 40 weeks is also significantly less in recipients of p44 cells. BMDSCs are readily detectable within recipient bone marrow, lymph node, intestinal villi and liver sinusoids, but not in epithelial derived cells. These results indicate that recipients of young BMDSCs may survive longer than recipients of old bone marrow, but the difference is marginal at best.

  4. Survival of irradiated recipient mice after transplantation of bone marrow from young, old and “early aging” mice

    PubMed Central

    Guest, Ian; Ilic, Zoran; Sell, Stewart

    2015-01-01

    Bone marrow transplantation is used to examine survival, hematopoietic stem cell function and pathology in recipients of young and old wild type bone marrow derived stem cells (BMDSCs) as well as cells from p53-based models of premature aging. There is no difference in the long term survival of recipients of 8 week-old p53+/m donor cells compared to recipients of 8 week-old wild-type (WT) donor cells (70 weeks) or of recipients of 16–18 weeks-old donor cells from either p53+/m or WT mice. There is shorter survival in recipients of older versus younger WT donor bone marrow, but the difference is only significant when comparing 8 and 18 week-old donors. In the p44-based model, short term survival/engraftment is significantly reduced in recipients of 11 month-old p44 donor cells compared to 4 week-old p44 or wild type donor cells of either age; mid-life survival at 40 weeks is also significantly less in recipients of p44 cells. BMDSCs are readily detectable within recipient bone marrow, lymph node, intestinal villi and liver sinusoids, but not in epithelial derived cells. These results indicate that recipients of young BMDSCs may survive longer than recipients of old bone marrow, but the difference is marginal at best. PMID:26796640

  5. Bone-marrow-derived mesenchymal stem cells inhibit gastric aspiration lung injury and inflammation in rats.

    PubMed

    Zhou, Jing; Jiang, Liyan; Long, Xuan; Fu, Cuiping; Wang, Xiangdong; Wu, Xiaodan; Liu, Zilong; Zhu, Fen; Shi, Jindong; Li, Shanqun

    2016-09-01

    Gastric aspiration lung injury is one of the most common clinical events. This study investigated the effects of bone-marrow-derived mesenchymal stem cells (BMSCs) on combined acid plus small non-acidified particle (CASP)-induced aspiration lung injury. Enhanced green fluorescent protein (EGFP(+) ) or EGFP(-) BMSCs or 15d-PGJ2 were injected via the tail vein into rats immediately after CASP-induced aspiration lung injury. Pathological changes in lung tissues, blood gas analysis, the wet/dry weight ratio (W/D) of the lung, levels of total proteins and number of total cells and neutrophils in bronchoalveolar lavage fluid (BALF) were determined. The cytokine levels were measured using ELISA. Protein expression was determined by Western blot. Bone-marrow-derived mesenchymal stem cells treatment significantly reduced alveolar oedema, exudation and lung inflammation; increased the arterial partial pressure of oxygen; and decreased the W/D of the lung, the levels of total proteins and the number of total cells and neutrophils in BALF in the rats with CASP-induced lung injury. Bone-marrow-derived mesenchymal stem cells treatment decreased the levels of tumour necrosis factor-α and Cytokine-induced neutrophil chemoattractant (CINC)-1 and the expression of p-p65 and increased the levels of interleukin-10 and 15d-PGJ2 and the expression of peroxisome proliferator-activated receptor (PPAR)-γ in the lung tissue in CASP-induced rats. Tumour necrosis factor-α stimulated BMSCs to secrete 15d-PGJ2 . A tracking experiment showed that EGFP(+) BMSCs were able to migrate to local lung tissues. Treatment with 15d-PGJ2 also significantly inhibited CASP-induced lung inflammation and the production of pro-inflammatory cytokines. Our results show that BMSCs can protect lung tissues from gastric aspiration injury and inhibit lung inflammation in rats. A beneficial effect might be achieved through BMSC-derived 15d-PGJ2 activation of the PPAR-γ receptor, reducing the production of proinflammatory cytokines. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  6. SIGNALING PATHWAYS ASSOCIATED WITH VX EXPOSURE IN MESENCHYMAL STEM CELLS

    DTIC Science & Technology

    2017-09-01

    organophosphate (OP) pesticides sustain significant changes in their ability to proliferate and differentiate. In the literature, OP compounds were shown...3 2.1 Human MSC Culture .........................................................................................3...Biological Center (ECBC) BioDefense Branch team members demonstrated that bone marrow-derived human mesenchymal stem cells (MSCs) that are exposed

  7. Generation of an iPS cell line from bone marrow derived mesenchymal stromal cells from an elderly patient.

    PubMed

    Megges, Matthias; Geissler, Sven; Duda, Georg N; Adjaye, James

    2015-11-01

    An induced pluripotent stem cell line was generated from primary human bone marrow derived mesenchymal stromal cells of a 74 year old donor using retroviruses harboring OCT4, SOX2, KLF4 and c-MYC in combination with the following inhibitors TGFβ receptor-SB 431542, MEK-PD325901, and p53-Pifithrin α. Pluripotency was confirmed both in vitro and in vivo. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Extracellular vesicles from bone marrow-derived mesenchymal stem cells protect against murine hepatic ischemia/reperfusion injury.

    PubMed

    Haga, Hiroaki; Yan, Irene K; Borrelli, David A; Matsuda, Akiko; Parasramka, Mansi; Shukla, Neha; Lee, David D; Patel, Tushar

    2017-06-01

    Hepatic ischemia/reperfusion injury (IRI) and associated inflammation contributes to liver dysfunction and complications after liver surgery and transplantation. Mesenchymal stem cells (MSCs) have been reported to reduce hepatic IRI because of their reparative immunomodulatory effects in injured tissues. Recent studies have highlighted beneficial effects of extracellular vesicles from mesenchymal stem cells (MSC-EV) on tissue injury. The effects of systemically administered mouse bone marrow-derived MSC-EV were evaluated in an experimental murine model of hepatic IRI induced by cross-clamping the hepatic artery and portal vein for 90 minutes followed by reperfusion for periods of up to 6 hours. Compared with controls, intravenous administration of MSC-EV 30 minutes prior to IRI dramatically reduced the extent of tissue necrosis, decreased caspase 3-positive and apoptotic cells, and reduced serum aminotransferase levels. MSC-EV increased hepatic messenger RNA (mRNA) expression of NACHT, LRR, and PYD domains-containing protein 12, and the chemokine (C-X-C motif) ligand 1, and reduced mRNA expression of several inflammatory cytokines such as interleukin 6 during IRI. MSC-EV increased cell viability and suppressed both oxidative injury and nuclear factor kappa B activity in murine hepatocytes in vitro. In conclusion, the administration of extracellular vesicles derived from bone marrow-derived MSCs may ameliorate hepatic IRI by reducing hepatic injury through modulation of the inflammatory response.Liver Transplantation 23 791-803 2017 AASLD. © 2017 by the American Association for the Study of Liver Diseases.

  9. Donor-Matched Comparison of Chondrogenic Potential of Equine Bone Marrow- and Synovial Fluid-Derived Mesenchymal Stem Cells: Implications for Cartilage Tissue Regeneration

    PubMed Central

    Zayed, Mohammed; Caniglia, Christopher; Misk, Nabil; Dhar, Madhu S.

    2017-01-01

    Mesenchymal stem cells (MSCs) have been demonstrated to be useful for cartilage tissue regeneration. Bone marrow (BM) and synovial fluid (SF) are promising sources for MSCs to be used in cartilage regeneration. In order to improve the clinical outcomes, it is recommended that prior to clinical use, the cellular properties and, specifically, their chondrogenic potential must be investigated. The purpose of this study is to compare and better understand the in vitro chondrogenic potential of equine bone marrow-derived mesenchymal stem cells (BMMSCs) and synovial fluid-derived mesenchymal stem cells (SFMSCs) populated from the same equine donor. BM- and SF-derived MSCs cultures were generated from five equine donors, and the MSCs were evaluated in vitro for their morphology, proliferation, trilineage differentiation, and immunophenotyping. Differences in their chondrogenic potentials were further evaluated quantitatively using glycosaminoglycan (GAG) content and via immunofluorescence of chondrogenic differentiation protein markers, SRY-type HMG box9, Aggrecan, and collagen II. The BMMSCs and SFMSCs were similar in cellular morphology, viability, and immunophenotype, but, varied in their chondrogenic potential, and expression of the key chondrogenic proteins. The SFMSCs exhibited a significant increase in GAG content compared to the BMMSCs (P < 0.0001) in three donors, suggesting increased levels of chondrogenesis. The expression of the key chondrogenic proteins correlated positively with the GAG content, suggesting that the differentiation process is dependent on the expression of the target proteins in these three donors. Our findings suggest that even though SFMSCs were hypothesized to be more chondrogenic relative to BMMSCs, there was considerable donor-to-donor variation in the primary cultures of MSCs which can significantly affect their downstream application. PMID:28149840

  10. Neuroprotective effects of intravitreally transplanted adipose tissue and bone marrow-derived mesenchymal stem cells in an experimental ocular hypertension model.

    PubMed

    Emre, Esra; Yüksel, Nurşen; Duruksu, Gökhan; Pirhan, Dilara; Subaşi, Cansu; Erman, Gülay; Karaöz, Erdal

    2015-05-01

    The purpose of this study was to investigate the neuroprotective effects of bone marrow bone marrow-derived and adipose tissue-derived mesenchymal stromal cells (MSCs) that were intravitreally transplanted in an experimental ocular hypertension (OHT) model. An OHT rat model was generated by means of intracameral injection of hyaluronic acid into the anterior chamber. MSCs labeled with green fluorescence protein were transplanted intravitreally 1 week after OHT induction. At the end of the second and fourth weeks, retinal ganglion cells were visualized with the use of a flat-mount retina method and were evaluated by means of immunofluorescence staining against green fluorescence protein, vimentin, CD105, and cytokines (interleukin [IL]-1Ra, prostaglandin E2 receptor, IL-6, transforming growth factor-β1, interferon-γ and tumor necrosis factor-α). The retinal ganglion cell numbers per area were significantly improved in stem cell-treated OHT groups compared with that in the non-treated OHT group (P < 0.05). The results of immunohistochemical analyses indicated that a limited number of stem cells had integrated into the ganglion cell layer and the inner nuclear layer. The number of cells expressing proinflammatory cytokines (interferon-γ and tumor necrosis factor-α) decreased in the MSC-transferred group compared with that in the OHT group after 4 weeks (P < 0.01). On the other hand, IL-1Ra and prostaglandin E2 receptor expressions were increased in the rat bone marrow-derived MSC group but were more significant in the rat adipose tissue-derived MSC group (P < 0.01). After intravitreal transplantation, MSCs showed a neuroprotective effect in the rat OHT model. Therefore, MSCs promise an alternative therapy approach for functional recovery in the treatment of glaucoma. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  11. Validation of osteogenic properties of Cytochalasin D by high-resolution RNA-sequencing in mesenchymal stem cells derived from bone marrow and adipose tissues.

    PubMed

    Samsonraj, Rebekah; Paradise, Christopher R; Dudakovic, Amel; Sen, Buer; Nair, Asha A; Dietz, Allan B; Deyle, David R; Cool, Simon M; Rubin, Janet; van Wijnen, Andre

    2018-06-08

    Differentiation of mesenchymal stromal/stem cells (MSCs) involves a series of molecular signals and gene transcription events required for attaining cell lineage commitment. Modulation of the actin cytoskeleton using cytochalasin D (CytoD) drives osteogenesis at early time points in bone marrow-derived MSCs, and also initiates a robust osteogenic differentiation program in adipose-derived MSCs. To understand the molecular basis for these pronounced effects on osteogenic differentiation, we investigated global changes in gene expression in CytoD-treated murine and human MSCs by high-resolution RNA-sequencing (RNA-seq) analysis. A three-way bioinformatic comparison between human adipose-derived, human bone marrow-derived and mouse bone marrow-derived MSCs revealed significant upregulation of genes linked to extracellular matrix organization, cell adhesion and bone metabolism. As anticipated, the activation of these differentiation related genes is accompanied by a downregulation of nuclear and cell cycle-related genes presumably reflecting cytostatic effects of CytoD. We also identified eight novel CytoD activated genes - VGLL4, ARHGAP24, KLHL24, RCBTB2, BDH2, SCARF2, ACAD10, HEPH - which are commonly upregulated across the two species and tissue sources of our MSC samples. We selected the Hippo-pathway related VGLL4 gene, which encodes the transcriptional co-factor Vestigial-like 4, for further study because this pathway is linked to osteogenesis. VGLL4 siRNA depletion reduces mineralization of adipose-derived MSCs during CytoD-induced osteogenic differentiation. Together, our RNA-seq analyses suggest that while the stimulatory effects of CytoD on osteogenesis are pleiotropic and depend on the biological state of the cell type, a small group of genes including VGLL4 may contribute to MSC commitment towards the bone lineage.

  12. Chip-based comparison of the osteogenesis of human bone marrow- and adipose tissue-derived mesenchymal stem cells under mechanical stimulation.

    PubMed

    Park, Sang-Hyug; Sim, Woo Young; Min, Byoung-Hyun; Yang, Sang Sik; Khademhosseini, Ali; Kaplan, David L

    2012-01-01

    Adipose tissue-derived stem cells (ASCs) are considered as an attractive stem cell source for tissue engineering and regenerative medicine. We compared human bone marrow-derived mesenchymal stem cells (hMSCs) and hASCs under dynamic hydraulic compression to evaluate and compare osteogenic abilities. A novel micro cell chip integrated with microvalves and microscale cell culture chambers separated from an air-pressure chamber was developed using microfabrication technology. The microscale chip enables the culture of two types of stem cells concurrently, where each is loaded into cell culture chambers and dynamic compressive stimulation is applied to the cells uniformly. Dynamic hydraulic compression (1 Hz, 1 psi) increased the production of osteogenic matrix components (bone sialoprotein, oateopontin, type I collagen) and integrin (CD11b and CD31) expression from both stem cell sources. Alkaline phosphatase and Alrizarin red staining were evident in the stimulated hMSCs, while the stimulated hASCs did not show significant increases in staining under the same stimulation conditions. Upon application of mechanical stimulus to the two types of stem cells, integrin (β1) and osteogenic gene markers were upregulated from both cell types. In conclusion, stimulated hMSCs and hASCs showed increased osteogenic gene expression compared to non-stimulated groups. The hMSCs were more sensitive to mechanical stimulation and more effective towards osteogenic differentiation than the hASCs under these modes of mechanical stimulation.

  13. Chip-Based Comparison of the Osteogenesis of Human Bone Marrow- and Adipose Tissue-Derived Mesenchymal Stem Cells under Mechanical Stimulation

    PubMed Central

    Min, Byoung-Hyun; Yang, Sang Sik; Khademhosseini, Ali; Kaplan, David L.

    2012-01-01

    Adipose tissue-derived stem cells (ASCs) are considered as an attractive stem cell source for tissue engineering and regenerative medicine. We compared human bone marrow-derived mesenchymal stem cells (hMSCs) and hASCs under dynamic hydraulic compression to evaluate and compare osteogenic abilities. A novel micro cell chip integrated with microvalves and microscale cell culture chambers separated from an air-pressure chamber was developed using microfabrication technology. The microscale chip enables the culture of two types of stem cells concurrently, where each is loaded into cell culture chambers and dynamic compressive stimulation is applied to the cells uniformly. Dynamic hydraulic compression (1 Hz, 1 psi) increased the production of osteogenic matrix components (bone sialoprotein, oateopontin, type I collagen) and integrin (CD11b and CD31) expression from both stem cell sources. Alkaline phosphatase and Alrizarin red staining were evident in the stimulated hMSCs, while the stimulated hASCs did not show significant increases in staining under the same stimulation conditions. Upon application of mechanical stimulus to the two types of stem cells, integrin (β1) and osteogenic gene markers were upregulated from both cell types. In conclusion, stimulated hMSCs and hASCs showed increased osteogenic gene expression compared to non-stimulated groups. The hMSCs were more sensitive to mechanical stimulation and more effective towards osteogenic differentiation than the hASCs under these modes of mechanical stimulation. PMID:23029565

  14. Comparative study of human-induced pluripotent stem cells derived from bone marrow cells, hair keratinocytes, and skin fibroblasts.

    PubMed

    Streckfuss-Bömeke, Katrin; Wolf, Frieder; Azizian, Azadeh; Stauske, Michael; Tiburcy, Malte; Wagner, Stefan; Hübscher, Daniela; Dressel, Ralf; Chen, Simin; Jende, Jörg; Wulf, Gerald; Lorenz, Verena; Schön, Michael P; Maier, Lars S; Zimmermann, Wolfram H; Hasenfuss, Gerd; Guan, Kaomei

    2013-09-01

    Induced pluripotent stem cells (iPSCs) provide a unique opportunity for the generation of patient-specific cells for use in disease modelling, drug screening, and regenerative medicine. The aim of this study was to compare human-induced pluripotent stem cells (hiPSCs) derived from different somatic cell sources regarding their generation efficiency and cardiac differentiation potential, and functionalities of cardiomyocytes. We generated hiPSCs from hair keratinocytes, bone marrow mesenchymal stem cells (MSCs), and skin fibroblasts by using two different virus systems. We show that MSCs and fibroblasts are more easily reprogrammed than keratinocytes. This corresponds to higher methylation levels of minimal promoter regions of the OCT4 and NANOG genes in keratinocytes than in MSCs and fibroblasts. The success rate and reprogramming efficiency was significantly higher by using the STEMCCA system than the OSNL system. All analysed hiPSCs are pluripotent and show phenotypical characteristics similar to human embryonic stem cells. We studied the cardiac differentiation efficiency of generated hiPSC lines (n = 24) and found that MSC-derived hiPSCs exhibited a significantly higher efficiency to spontaneously differentiate into beating cardiomyocytes when compared with keratinocyte-, and fibroblast-derived hiPSCs. There was no significant difference in the functionalities of the cardiomyocytes derived from hiPSCs with different origins, showing the presence of pacemaker-, atrial-, ventricular- and Purkinje-like cardiomyocytes, and exhibiting rhythmic Ca2+ transients and Ca2+ sparks in hiPSC-derived cardiomyocytes. Furthermore, spontaneously and synchronously beating and force-developing engineered heart tissues were generated. Human-induced pluripotent stem cells can be reprogrammed from all three somatic cell types, but with different efficiency. All analysed iPSCs can differentiate into cardiomyocytes, and the functionalities of cardiomyocytes derived from different cell origins are similar. However, MSC-derived hiPSCs revealed a higher cardiac differentiation efficiency than keratinocyte- and fibroblast-derived hiPSCs.

  15. Isolation, culture and chondrogenic differentiation of canine adipose tissue- and bone marrow-derived mesenchymal stem cells--a comparative study.

    PubMed

    Reich, Christine M; Raabe, Oksana; Wenisch, Sabine; Bridger, Philip S; Kramer, Martin; Arnhold, Stefan

    2012-06-01

    In the dog, mesenchymal stem cells (MSCs) have been shown to reside in the bone marrow (bone marrow-derived mesenchymal stem cells: BM-MSCs) as well as in the adipose tissue (adipose tissue-derived stem cells: ADSCs). Potential application fields for these multipotent MSCs in small animal practice are joint diseases as MSCs of both sources have shown to possess chondrogenic differentiation ability. However, it is not clear whether the chondrogenic differentiation potential of cells of these two distinct tissues is truly equal. Therefore, we compared MSCs of both origins in this study in terms of their chondrogenic differentiation ability and suitability for clinical application. BM-MSCs harvested from the femoral neck and ADSCs from intra-abdominal fat tissue were examined for their morphology, population doubling time (PDT) and CD90 surface antigen expression. RT-PCR served to assess expression of pluripotency marker Oct4 and early differentiation marker genes. Chondrogenic differentiation ability was compared and validated using histochemistry, transmission electron microscopy (TEM) and quantitative RT-PCR. Both cell populations presented a highly similar morphology and marker expression in an undifferentiated stage except that freshly isolated ADSCs demonstrated a significantly faster PDT than BM-MSCs. In contrast, BM-MSCs revealed a morphological superior cartilage formation by the production of a more abundant and structured hyaline matrix and higher expression of lineage specific genes under the applied standard differentiation protocol. However, further investigations are necessary in order to find out if chondrogenic differentiation can be improved in canine ADSCs using different protocols and/or supplements.

  16. Investigating Cell Surface Markers on Normal Hematopoietic Stem Cells in Three Different Niche Conditions

    PubMed Central

    Garg, Swati; Madkaikar, Manisha

    2013-01-01

    Hematopoietic stem cells are of therapeutic interest to the clinicians and researchers due to their promising assistance in management of malignant and inherited hematological conditions. Evaluation of cell surface markers using multiparametric flow cytometry is a well adapted qualitative measure of cells in question for many years. An artillery of these markers has been studied in hematological malignancies and related disorders. However, their role and differential expression on normal hematopoietic stem cells from clinically available sources is not always described carefully. In the present study, we attempted to evaluate expression of CD44, CD90, CD96 and CD123 in three clinically available sources of normal HSCs (Hematopoietic stem cells). Sources of HSCs in the present study involved umbilical cord blood (UCB), normal bone marrow (NBM) and bone marrow from idiopathic thrombocytopenic purpura (ITP) patients (IBM). CD44 is an important homing receptor while CD90 is involved in maintaining stem cell quiescent. CD96 is known to be leukemia specific marker and CD123 is involved in stem cell differentiation and survival. We observed a significant difference in expression CD44, CD90 and CD123 on normal HSCs derived from umbilical cord and ITP marrow. CD96 was highly expressed on HSCs obtained from ITP marrow. Investigating expression of these markers on normal HSCs in different niches will be helpful in correlating their function with niche condition and delineating their ‘abnormal’ expression from the normal. PMID:24386557

  17. Investigating cell surface markers on normal hematopoietic stem cells in three different niche conditions.

    PubMed

    Garg, Swati; Madkaikar, Manisha; Ghosh, Kanjaksha

    2013-11-01

    Hematopoietic stem cells are of therapeutic interest to the clinicians and researchers due to their promising assistance in management of malignant and inherited hematological conditions. Evaluation of cell surface markers using multiparametric flow cytometry is a well adapted qualitative measure of cells in question for many years. An artillery of these markers has been studied in hematological malignancies and related disorders. However, their role and differential expression on normal hematopoietic stem cells from clinically available sources is not always described carefully. In the present study, we attempted to evaluate expression of CD44, CD90, CD96 and CD123 in three clinically available sources of normal HSCs (Hematopoietic stem cells). Sources of HSCs in the present study involved umbilical cord blood (UCB), normal bone marrow (NBM) and bone marrow from idiopathic thrombocytopenic purpura (ITP) patients (IBM). CD44 is an important homing receptor while CD90 is involved in maintaining stem cell quiescent. CD96 is known to be leukemia specific marker and CD123 is involved in stem cell differentiation and survival. We observed a significant difference in expression CD44, CD90 and CD123 on normal HSCs derived from umbilical cord and ITP marrow. CD96 was highly expressed on HSCs obtained from ITP marrow. Investigating expression of these markers on normal HSCs in different niches will be helpful in correlating their function with niche condition and delineating their 'abnormal' expression from the normal.

  18. Stem cells in nephrology: present status and future.

    PubMed

    Watorek, Ewa; Klinger, Marian

    2006-01-01

    Stem cell biology is currently developing rapidly because of the potential therapeutic utility of stem cells. The ability to acquire any desired phenotype raises hope for regenerative therapies. Manipulation of these cells is a potentially valuable tool; however, the mechanisms of stem cell differentiation and plasticity are currently beyond our control. In the field of nephrology, the presence of adult kidney stem cells has been debated. Renal adult stem cells may be descendants of some early kidney progenitors, or may be derived from bone marrow. Evidence of a hematopoietic stem-cell contribution to renal repair encourages the possibility of bone marrow or stem cell transplantation as a means of treating autoimmune glomerulopathies. The transplantation of fetal kidney tissue containing renal progenitors, which then develop into functional nephrons, is a step towards renal regeneration. According to recent reports, the development of functional nephrons from human mesenchymal stem cells in rodent whole-embryo culture is possible. Establishing in vitro self organs from autologous stem cells would be a promising therapeutic solution in light of the shortage of allogenic organs and the unresolved problem of chronic allograft rejection.

  19. F4/80+ Host Macrophages Are a Barrier to Murine Embryonic Stem Cell-Derived Hematopoietic Progenitor Engraftment In Vivo.

    PubMed

    Thompson, Heather L; van Rooijen, Nico; McLelland, Bryce T; Manilay, Jennifer O

    2016-01-01

    Understanding how embryonic stem cells and their derivatives interact with the adult host immune system is critical to developing their therapeutic potential. Murine embryonic stem cell-derived hematopoietic progenitors (ESHPs) were generated via coculture with the bone marrow stromal cell line, OP9, and then transplanted into NOD.SCID.Common Gamma Chain (NSG) knockout mice, which lack B, T, and natural killer cells. Compared to control mice transplanted with adult lineage-negative bone marrow (Lin - BM) progenitors, ESHP-transplanted mice attained a low but significant level of donor hematopoietic chimerism. Based on our previous studies, we hypothesized that macrophages might contribute to the low engraftment of ESHPs in vivo . Enlarged spleens were observed in ESHP-transplanted mice and found to contain higher numbers of host F4/80 + macrophages compared to BM-transplanted controls. In vivo depletion of host macrophages using clodronate-loaded liposomes improved the ESHP-derived hematopoietic chimerism in the spleen but not in the BM. F4/80 + macrophages demonstrated a striking propensity to phagocytose ESHP targets in vitro . Taken together, these results suggest that macrophages are a barrier to both syngeneic and allogeneic ESHP engraftment in vivo .

  20. Recruitment of bone marrow-derived cells to the periodontal ligament via the stromal cell-derived factor-1/C-X-C chemokine receptor type 4 axis.

    PubMed

    Kaku, M; Kitami, M; Rosales Rocabado, J M; Ida, T; Akiba, Y; Uoshima, K

    2017-08-01

    The periodontal ligament (PDL) is a non-mineralized connective tissue that exists between the alveolar bone and root surface cementum and plays important roles in tooth function. The PDL harbors a remarkable reserve of multipotent stem cells, which maintain various types of cells. However, the sources of these stem cells, other than their developmental origin, are not well understood. To elucidate the recruitment of bone marrow (BM)-derived stem cells in the PDL, green fluorescent protein (GFP)-expressing BM-derived cells were transplanted into the femoral BM of immunodeficient rats, and the distribution and expression of stem cell markers in the PDL were analyzed in vivo. To evaluate the functional significance of BM-derived cells to the PDL, tooth replantation was performed and the expression of stromal cell-derived factor (SDF)-1, a critical chemotactic signal for mesenchymal stem cell recruitment, was analyzed. To confirm the SDF-1-dependency of BM-derived cell migration to the PDL, PDL-conditioned medium (CM) was prepared, and BM-derived cell migration was analyzed using a transwell culture system. Four weeks after cell transplantation, GFP-positive cells were detected in the PDL, and some of them were also positive for stem cell markers (i.e., CD29, SSEA4, and αSMA). Seven days after tooth replantation, the number of GFP- and SDF-1-positive cells significantly increased in PDL. Concurrently, the concentration of SDF-1 and the number of colony-forming units of fibroblasts in peripheral blood were increased. BM-derived cell migration increased in PDL-CM and was inhibited by an inhibitor of C-X-C chemokine receptor type 4 (CXCR4), an SDF-1 receptor. These results indicate that stem cells and their progeny in PDL are not only derived from their developmental origin but are also supplied from the BM via the blood as the need arises. Moreover, this BM-derived cell recruitment appears to be regulated, at least partially, by the SDF-1/CXCR4 axis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Isolation and hepatocyte differentiation of mesenchymal stem cells from porcine bone marrow--"surgical waste" as a novel MSC source.

    PubMed

    Brückner, S; Tautenhahn, H-M; Winkler, S; Stock, P; Jonas, S; Dollinger, M; Christ, B

    2013-06-01

    Mesenchymal stem cells (MSC) isolated from bone marrow and differentiated into hepatocyte-like cells have increasingly gained attention for clinical cell therapy of liver diseases because of their high regenerative capacity. They are available from bone marrow aspirates of the os coxae after puncture of the crista iliaca or from bone marrow "surgical waste" gained from amputations or knee and hip operations. Thus, the aim of the study was to demonstrate whether these pBM-MSC (porcine bone marrow-derived mesenchymal stem cells) displayed mesenchymal features and hepatocyte differentiation potential. MSC were isolated either from crista iliaca punctures or after sampling and collagenase digestion of bone marrow from the os femoris. Mesenchymal features were assessed by flow cytometry for specific surface antigens and their ability to differentiate into at least 3 lineages. Functional properties, such as urea or glycogen synthesis and cytochrome P450 activity, as well as the cell morphology were examined during hepatocyte differentiation. pBM-MSC from both sources lacked the hematopoietic markers CD14 and CD45 but expressed the typical mesenchymal markers CD44, CD29, CD90, and CD105. Both cell types could differentiate into adipocyte, osteocyte, and hepatocyte lineages. After hepatocyte differentiation, CD105 expression decreased significantly and cells changed morphology from fibroblastoid into polygonal, displaying significantly increased glycogen storage, urea synthesis, and cytochrome activity. pBM-MSC from various sources were identical in respect to their mesenchymal features and their hepatocyte differentiation potential. Hence, long bones might be a particularly useful resource to isolate bone marrow mesenchymal stem cells for transplantation. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Changes in human bone marrow fat content associated with changes in hematopoietic stem cell numbers and cytokine levels with aging.

    PubMed

    Tuljapurkar, Sonal R; McGuire, Timothy R; Brusnahan, Susan K; Jackson, John D; Garvin, Kevin L; Kessinger, Margaret A; Lane, Judy T; O' Kane, Barbara J; Sharp, John G

    2011-11-01

    Hematological deficiencies increase with aging, including anemias, reduced responses to hematopoietic stress and myelodysplasias. This investigation tested the hypothesis that increased bone marrow (BM) fat content in humans with age was associated with decreased numbers of side population (SP) hematopoietic stem cells, and this decrease correlated with changes in cytokine levels. BM was obtained from the femoral head and trochanteric region of the femur removed at surgery for total hip replacement (N = 100 subjects). In addition, BM from cadavers (N = 36), with no evidence of hip disease, was evaluated for fat content. Whole trabecular marrow samples were ground in a sterile mortar and pestle, and cellularity and lipid content determined. Marrow cells were stained with Hoechst dye and SP profiles were acquired. Plasma levels of insulin-like growth factor (IGF)-1, stromal-derived factor (SDF)-1 and interleukin (IL)-6 were measured using ELISA. Fat content in the BM of human subjects and cadavers increased with age. The numbers of SP stem cells in BM as well as plasma IGF-1 and SDF-1 levels decreased in correlation with increased BM fat. IL-6 had no relationship to changes in marrow fat. These data suggest that increased BM fat may be associated with a decreased number of SP stem cells and IGF-1 and SDF-1 levels with aging. These data further raise a more general question as to the role of adipose cells in the regulation of tissue stem cells. © 2011 The Authors. Journal of Anatomy © 2011 Anatomical Society of Great Britain and Ireland.

  3. Are hematopoietic stem cells involved in hepatocarcinogenesis?

    PubMed Central

    Antonino, Matteo; Del Prete, Valentina; Neve, Viviana; Scavo, Maria Principia; Barone, Michele

    2014-01-01

    The liver has three cell lineages able to proliferate after a hepatic injury: the mature hepatocyte, the ductular “bipolar” progenitor cell termed “oval cell” and the putative periductular stem cell. Hepatocytes can only produce other hepatocytes whereas ductular progenitor cells are considerate bipolar since they can give rise to biliary cells or hepatocytes. Periductular stem cells are rare in the liver, have a very long proliferation potential and may be multipotent, being this aspect still under investigation. They originate in the bone marrow since their progeny express genetic markers of donor hematopoietic cells after bone marrow transplantation. Since the liver is the hematopoietic organ of the fetus, it is possible that hematopoietic stem cells may reside in the liver of the adult. This assumption is proved by the finding that oval cells express hematopoietic markers like CD34, CD45, CD 109, Thy-1, c-kit, and others, which are also expressed by bone marrow-derived hematopoietic stem cells (BMSCs). Few and discordant studies have evaluated the role of BMSC in hepatocarcinogenesis so far and further studies in vitro and in vivo are warranted in order to definitively clarify such an issue. PMID:25202697

  4. [Tolerance in transplantation: potential contribution of haematopoietic transplantation and cell therapy].

    PubMed

    Kleinclauss, François; Bittard, Hugues; Perruche, Sylvain; de Carvalho-Bittencourt, Marcello; Chalopin, Jean-Marc; Hervé, Patrick; Tiberghien, Pierre; Saas, Philippe

    2003-12-01

    The ultimate objective of organ transplantation is to obtain a state of tolerance, i.e. long-term acceptance of the graft without immunosuppressive therapy in order to limit the complications of these treatments (viral infections, tumours, etc.). The various immunological mechanisms allowing a state of tolerance will be described in this review. Among these various experimental strategies, combined bone marrow (or haematopoietic stem cell) transplantation and organ transplantation, made possible by the development of non-myeloablative or less intensive conditioning, appears to be one of the most promising lines of research. This approach leads to colonization of the recipient by donor cells. This state is described as "macro-chimerism" and achieves a real state of central tolerance in relation to an organ derived from the bone marrow donor. We have shown recently that intravenous injection of apoptotic cells in combination with allogeneic bone marrow cells increases the success rate of bone marrow transplantation. In a model of combined bone marrow/solid organ transplantation, these apoptotic cells induce tolerance limited to the donor's bone marrow cell antigens without inducing auto-immunization. We therefore propose a new approach to cell-based therapy (using the immunomodulating properties of apoptotic cells) to promote the success of haematopoietic stem cell transplantation. This approach can be particularly useful in combined haematopoietic stem cell and organ transplantation in order to induce a state of macro-chimerism.

  5. Cancer stemness and metastatic potential of the novel tumor cell line K3: an inner mutated cell of bone marrow-derived mesenchymal stem cells.

    PubMed

    Qian, Hui; Ding, Xiaoqing; Zhang, Jiao; Mao, Fei; Sun, Zixuan; Jia, Haoyuan; Yin, Lei; Wang, Mei; Zhang, Xu; Zhang, Bin; Yan, Yongmin; Zhu, Wei; Xu, Wenrong

    2017-06-13

    Mesenchymal stem cells (MSCs) transplantation has been used for therapeutic applications in various diseases. Here we report MSCs can malignantly transform in vivo. The novel neoplasm was found on the tail of female rat after injection with male rat bone marrow-derived MSCs (rBM-MSCs) and the new tumor cell line, K3, was isolated from the neoplasm. The K3 cells expressed surface antigens and pluripotent genes similar to those of rBM-MSCs and presented tumor cell features. Moreover, the K3 cells contained side population cells (SP) like cancer stem cells (CSCs), which might contribute to K3 heterogeneity and tumorigenic capacity. To investigate the metastatic potential of K3 cells, we established the nude mouse models of liver and lung metastases and isolated the corresponding metastatic cell lines K3-F4 and K3-B6. Both K3-F4 and K3-B6 cell lines with higher metastatic potential acquired more mesenchymal and stemness-related features. Epithelial-mesenchymal transition is a potential mechanism of K3-F4 and K3-B6 formation.

  6. [Preliminary establishment of transplanted human chronic myeloid leukemia model in nude mice].

    PubMed

    Li, Xian-Min; Ding, Xin; Zhang, Long-Zhen; Cen, Jian-Nong; Chen, Zi-Xing

    2011-12-01

    Chronic myeloid leukemia (CML) is a malignant clonal disease derived from hematopoietic stem cells. CML stem cells were thought to be the root which could lead disease development and ultimately rapid change. However, a stable animal model for studying the characteristics of CML stem cells is currently lacking. This study was aimed to establish a transplanted human CML nude-mice model to further explore the biological behavior of CML stem cells in vivo, and to enrich CML stem cells in nude mice by series transplantation. The 4 - 6 weeks old BALB/c nude mice pretreated by splenectomy (S), cytoxan intraperitoneal injection (C) and sublethal irradiation (I) were transplanted intravenously with (5 - 7) × 10(7) of bone marrow mononuclear cells from CML patients in chronic phase. Alternatively, 4 - 6 weeks old BALB/c nude mice pretreated by lethal irradiation were transplanted intravenously with 5 × 10(6) homologous bone marrow cells of BALB/c nude mice together with (5 - 7) × 10(7) of bone marrow mononuclear cells from CML patients in chronic phase simultaneously. The leukemic cells engrafted and infiltrated in organs and bone marrow of the mice were tracked by reverse transcription-polymerase chain reaction (RT-PCR), plastic-embedded biopsy and flow cytometry. The results of these two methods were compared. The results showed that human CML cells engrafted and infiltrating into the bone marrow of two nude mice pretreated with SCI could be detected. In spite of the low successful rate, results suggested the feasibility of this method by using BALB/c nude mice as a human CML animal model. In contrast, in nude mice pretreated by the lethal dose irradiation, CML cells in the bone marrow could not be found. It is concluded that human bone marrow CML cells can results in leukemia in nude mice pretreated by SCI. Thus this study provides a new strategy for establishment of CML animal models which deserves further elaboration.

  7. Identification of Regulatory Factors for Mesenchymal Stem Cell-Derived Salivary Epithelial Cells in a Co-Culture System

    PubMed Central

    Park, Yun-Jong; Koh, Jin; Gauna, Adrienne E.; Chen, Sixue; Cha, Seunghee

    2014-01-01

    Patients with Sjögren’s syndrome or head and neck cancer patients who have undergone radiation therapy suffer from severe dry mouth (xerostomia) due to salivary exocrine cell death. Regeneration of the salivary glands requires a better understanding of regulatory mechanisms by which stem cells differentiate into exocrine cells. In our study, bone marrow-derived mesenchymal stem cells were co-cultured with primary salivary epithelial cells from C57BL/6 mice. Co-cultured bone marrow-derived mesenchymal stem cells clearly resembled salivary epithelial cells, as confirmed by strong expression of salivary gland epithelial cell-specific markers, such as alpha-amylase, muscarinic type 3 receptor, aquaporin-5, and cytokeratin 19. To identify regulatory factors involved in this differentiation, transdifferentiated mesenchymal stem cells were analyzed temporarily by two-dimensional-gel-electrophoresis, which detected 58 protein spots (>1.5 fold change, p<0.05) that were further categorized into 12 temporal expression patterns. Of those proteins only induced in differentiated mesenchymal stem cells, ankryin-repeat-domain-containing-protein 56, high-mobility-group-protein 20B, and transcription factor E2a were selected as putative regulatory factors for mesenchymal stem cell transdifferentiation based on putative roles in salivary gland development. Induction of these molecules was confirmed by RT-PCR and western blotting on separate sets of co-cultured mesenchymal stem cells. In conclusion, our study is the first to identify differentially expressed proteins that are implicated in mesenchymal stem cell differentiation into salivary gland epithelial cells. Further investigation to elucidate regulatory roles of these three transcription factors in mesenchymal stem cell reprogramming will provide a critical foundation for a novel cell-based regenerative therapy for patients with xerostomia. PMID:25402494

  8. Neoplastic Bone Marrow Niche: Hematopoietic and Mesenchymal Stem Cells

    PubMed Central

    Saki, Najmaldin; Abroun, Saeid; Farshdousti Hagh, Majid; Asgharei, Farahnaz

    2011-01-01

    The neoplastic niche comprises complex interactions between multiple cell types and molecules requiring cell-cell signaling as well as local secretion. These niches are important for both the maintenance of cancer stem cells and the induction of neoplastic cells survival and proliferation. Each niche contains a population of tumor stem cells supported by a closely associated vascular bed comprising mesenchyme-derived cells and extracellular matrix. Targeting cancer stem cells and neoplastic niche may provide new therapies to eradicate tumors. Much progress has been very recently made in the understanding of the cellular and molecular interactions in the microenvironment of neoplastic niches. This review article provides an overview of the neoplastic niches in the bone marrow. In addition to highlighting recent advances in the field, we will also discuss components of the niche and their signaling pathways. PMID:23508881

  9. In utero transplantation of human bone marrow-derived multipotent mesenchymal stem cells in mice.

    PubMed

    Chou, Shiu-Huey; Kuo, Tom K; Liu, Ming; Lee, Oscar K

    2006-03-01

    Mesenchymal stem cells (MSCs) are multipotent cells that can be isolated from human bone marrow and possess the potential to differentiate into progenies of embryonic mesoderm. However, current evidence is based predominantly on in vitro experiments. We used a murine model of in utero transplantation (IUT) to study the engraftment capabilities of human MSCs. MSCs were obtained from bone marrow by negative immunoselection and limiting dilution, and were characterized by flow cytometry and by in vitro differentiation into osteoblasts, chondrocytes, and adipocytes. MSCs were transplanted into fetal mice at a gestational age of 14 days. Engraftment of human MSCs was determined by flow cytometry, polymerase chain reaction, and fluorescence in situ hybridization (FISH). MSCs engrafted into tissues originating from all three germ layers and persisted for up to 4 months or more after delivery, as evidenced by the expression of the human-specific beta-2 microglobulin gene and by FISH for donor-derived cells. Donor-derived CD45+ cells were detectable in the peripheral blood of recipients, suggesting the participation of MSCs in hematopoiesis at the fetal stage. This model can further serve to evaluate possible applications of MSCs. Copyright 2006 Orthopaedic Research Society.

  10. A novel rat fibrosarcoma cell line from transformed bone marrow-derived mesenchymal stem cells with maintained in vitro and in vivo stemness properties.

    PubMed

    Wang, Meng-Yu; Nestvold, Janne; Rekdal, Øystein; Kvalheim, Gunnar; Fodstad, Øystein

    2017-03-15

    Increasing evidence suggests a possible relationship between mesenchymal stem cells (MSCs) and sarcoma. MSCs are hypothesized to be the cells initiating sarcomagenesis, and cancer stem cells (CSCs) sharing features of MSCs have been identified in sarcomas. Here, we report on the characteristics of a bone marrow-derived rat mesenchymal stem cell line that spontaneously transformed in long-term culture. The rat transformed mesenchymal stem cells (rTMSCs) produced soft-tissue fibrosarcomas in immunocompromised mice and immunocompetent rats. In vitro, the rTMSCs displayed increased proliferation capacity compared to the untransformed cell line. The transformed MSCs maintained the mesenchymal phenotype by expression of the stem cell marker CD 90 and the lack of hematopoietic and endothelial markers. Cytogenetic analysis detected trisomy 6 in the rTMSCs. Side population (SP) isolation and tumorsphere cultivation of the transformed cells confirmed the presence of CSCs among the rTMSCs. Importantly, the rTMSCs retained their differentiation capacity towards osteogenic and adipogenic lineages. This transformed MSC-based cell line may be valuable in examining the balance in a mixed cell population between cancer stem cell properties and the ability to differentiate to specific non-transformed cell populations. Moreover, it may also be a useful tool to evaluate the efficacy of novel targeted immunotherapies in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Epigenetic Plasticity Drives Adipogenic and Osteogenic Differentiation of Marrow-derived Mesenchymal Stem Cells*

    PubMed Central

    Meyer, Mark B.; Benkusky, Nancy A.; Sen, Buer; Rubin, Janet; Pike, J. Wesley

    2016-01-01

    Terminal differentiation of multipotent stem cells is achieved through a coordinated cascade of activated transcription factors and epigenetic modifications that drive gene transcription responsible for unique cell fate. Within the mesenchymal lineage, factors such as RUNX2 and PPARγ are indispensable for osteogenesis and adipogenesis, respectively. We therefore investigated genomic binding of transcription factors and accompanying epigenetic modifications that occur during osteogenic and adipogenic differentiation of mouse bone marrow-derived mesenchymal stem cells (MSCs). As assessed by ChIP-sequencing and RNA-sequencing analyses, we found that genes vital for osteogenic identity were linked to RUNX2, C/EBPβ, retinoid X receptor, and vitamin D receptor binding sites, whereas adipocyte differentiation favored PPARγ, retinoid X receptor, C/EBPα, and C/EBPβ binding sites. Epigenetic marks were clear predictors of active differentiation loci as well as enhancer activities and selective gene expression. These marrow-derived MSCs displayed an epigenetic pattern that suggested a default preference for the osteogenic pathway; however, these patterns were rapidly altered near the Adipoq, Cidec, Fabp4, Lipe, Plin1, Pparg, and Cebpa genes during adipogenic differentiation. Surprisingly, we found that these cells also exhibited an epigenetic plasticity that enabled them to trans-differentiate from adipocytes to osteoblasts (and vice versa) after commitment, as assessed by staining, gene expression, and ChIP-quantitative PCR analysis. The osteogenic default pathway may be subverted during pathological conditions, leading to skeletal fragility and increased marrow adiposity during aging, estrogen deficiency, and skeletal unloading. Taken together, our data provide an increased mechanistic understanding of the epigenetic programs necessary for multipotent differentiation of MSCs that may prove beneficial in the development of therapeutic strategies. PMID:27402842

  12. Bone marrow-on-a-chip: Long-term culture of human haematopoietic stem cells in a three-dimensional microfluidic environment.

    PubMed

    Sieber, Stefan; Wirth, Lorenz; Cavak, Nino; Koenigsmark, Marielle; Marx, Uwe; Lauster, Roland; Rosowski, Mark

    2018-02-01

    Multipotent haematopoietic stem and progenitor cells (HSPCs) are the source for all blood cell types. The bone marrow stem cell niche in which the HSPCs are maintained is known to be vital for their maintenance. Unfortunately, to date, no in vitro model exists that accurately mimics the aspects of the bone marrow niche and simultaneously allows the long-term culture of HSPCs. In this study, a novel three-dimensional coculture model is presented, based on a hydroxyapatite coated zirconium oxide scaffold, comprising of human mesenchymal stromal cells (MSCs) and cord blood derived HSPCs, enabling successful HSPC culture for a time span of 28 days within the microfluidic multiorgan chip. The HSPCs were found to stay in their primitive state (CD34 + CD38 - ) and capable of granulocyte, erythrocyte, macrophage, megakaryocyte colony formation. Furthermore, a microenvironment was formed bearing molecular and structural similarity to the in vivo bone marrow niche containing extracellular matrix and signalling molecules known to play an important role in HSPC homeostasis. Here, a novel human in vitro bone marrow model is presented for the first time, capable of long-term culture of primitive HSPCs in a microfluidic environment. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Paracrine-Mediated Neuroprotection and Neuritogenesis of Axotomised Retinal Ganglion Cells by Human Dental Pulp Stem Cells: Comparison with Human Bone Marrow and Adipose-Derived Mesenchymal Stem Cells

    PubMed Central

    Mead, Ben; Logan, Ann; Berry, Martin

    2014-01-01

    We have investigated and compared the neurotrophic activity of human dental pulp stem cells (hDPSC), human bone marrow-derived mesenchymal stem cells (hBMSC) and human adipose-derived stem cells (hAMSC) on axotomised adult rat retinal ganglion cells (RGC) in vitro in order to evaluate their therapeutic potential for neurodegenerative conditions of RGC. Using the transwell system, RGC survival and length/number of neurites were quantified in coculture with stem cells in the presence or absence of specific Fc-receptor inhibitors to determine the role of NGF, BDNF, NT-3, VEGF, GDNF, PDGF-AA and PDGF-AB/BB in stem cell-mediated RGC neuroprotection and neuritogenesis. Conditioned media, collected from cultured hDPSC/hBMSC/hAMSC, were assayed for the secreted growth factors detailed above using ELISA. PCR array determined the hDPSC, hBMSC and hAMSC expression of genes encoding 84 growth factors and receptors. The results demonstrated that hDPSC promoted significantly more neuroprotection and neuritogenesis of axotomised RGC than either hBMSC or hAMSC, an effect that was neutralized after the addition of specific Fc-receptor inhibitors. hDPSC secreted greater levels of various growth factors including NGF, BDNF and VEGF compared with hBMSC/hAMSC. The PCR array confirmed these findings and identified VGF as a novel potentially therapeutic hDPSC-derived neurotrophic factor (NTF) with significant RGC neuroprotective properties after coculture with axotomised RGC. In conclusion, hDPSC promoted significant multi-factorial paracrine-mediated RGC survival and neurite outgrowth and may be considered a potent and advantageous cell therapy for retinal nerve repair. PMID:25290916

  14. Isolation, Characterization, and Transplantation of Bone Marrow-Derived Cell Components with Hematopoietic Stem Cell Niche Properties

    PubMed Central

    Ahmadbeigi, Naser; Vasei, Mohammad; Gheisari, Yousof; Mortazavi, Yousef; Azadmanesh, Kayhan; Omidkhoda, Azadeh; Janzamin, Ehsan; Nardi, Nance Beyer

    2013-01-01

    Although the unique role of hematopoietic stem cell (HSC) niche in hematopoiesis has long been recognized, unsuccessful isolation of intact niche units limited their in vitro study, manipulation, and therapeutic application. Here, we isolated cell complexes based on size fractionation from mouse bone marrow (BM), characterized the derived cells, and transplanted them to irradiated mice. These cell complexes were the origin of both BM mesenchymal stem cells and various hematopoietic lineages when kept in appropriate culture conditions. They also had the potential of recruiting circulating HSC. Intraperitoneal transplantation of these structures into irradiated mice not only showed long-lasting hematopoietic multilineage reconstitution, but also could recover the stromal cells of BM. In conclusion, this study for the first time provides evidences on the feasibility and efficacy of transplantation of HSC in association with their native specialized microenvironment. As the molecular cross-talk between HSC and niche is crucial for their proper function, the proposed method could be considered as a novel hematopoietic transplantation strategy. PMID:23879861

  15. Micro-/Nano- sized hydroxyapatite directs differentiation of rat bone marrow derived mesenchymal stem cells towards an osteoblast lineage

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Zhou, Gang; Zheng, Lisha; Liu, Haifeng; Niu, Xufeng; Fan, Yubo

    2012-03-01

    Regenerative medicine consisting of cells and materials provides a new way for the repair and regeneration of tissues and organs. Nano-biomaterials are highlighted due to their advantageous features compared with conventional micro-materials. The aim of this study is to investigate the effects of micro-/nano- sized hydroxyapatite (μ/n-HA) on the osteogenic differentiation of rat bone marrow derived mesenchymal stem cells (rBMSCs). μ/n-HA were prepared by a microwave synthesizer and precipitation method, respectively. Different sizes of μ/n-HA were characterized by IR, XRD, SEM, TEM and co-cultured with rBMSCs. It was shown that rBMSCs expressed higher levels of osteoblast-related markers by n-HA than μ-HA stimulation. The size of HA is an important factor for affecting the osteogenic differentiation of rBMSCs. This provides a new avenue for mechanistic studies of stem cell differentiation and a new approach to obtain more committed differentiated cells.

  16. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timper, Katharina; Seboek, Dalma; Eberhardt, Michael

    2006-03-24

    Mesenchymal stem cells (MSC) from mouse bone marrow were shown to adopt a pancreatic endocrine phenotype in vitro and to reverse diabetes in an animal model. MSC from human bone marrow and adipose tissue represent very similar cell populations with comparable phenotypes. Adipose tissue is abundant and easily accessible and could thus also harbor cells with the potential to differentiate in insulin producing cells. We isolated human adipose tissue-derived MSC from four healthy donors. During the proliferation period, the cells expressed the stem cell markers nestin, ABCG2, SCF, Thy-1 as well as the pancreatic endocrine transcription factor Isl-1. The cellsmore » were induced to differentiate into a pancreatic endocrine phenotype by defined culture conditions within 3 days. Using quantitative PCR a down-regulation of ABCG2 and up-regulation of pancreatic developmental transcription factors Isl-1, Ipf-1, and Ngn3 were observed together with induction of the islet hormones insulin, glucagon, and somatostatin.« less

  17. Regenerative Repair of Damaged Meniscus with Autologous Adipose Tissue-Derived Stem Cells

    PubMed Central

    Pak, Jaewoo; Lee, Jung Hun; Lee, Sang Hee

    2014-01-01

    Mesenchymal stem cells (MSCs) are defined as pluripotent cells found in numerous human tissues, including bone marrow and adipose tissue. Such MSCs, isolated from bone marrow and adipose tissue, have been shown to differentiate into bone and cartilage, along with other types of tissues. Therefore, MSCs represent a promising new therapy in regenerative medicine. The initial treatment of meniscus tear of the knee is managed conservatively with nonsteroidal anti-inflammatory drugs and physical therapy. When such conservative treatment fails, an arthroscopic resection of the meniscus is necessary. However, the major drawback of the meniscectomy is an early onset of osteoarthritis. Therefore, an effective and noninvasive treatment for patients with continuous knee pain due to damaged meniscus has been sought. Here, we present a review, highlighting the possible regenerative mechanisms of damaged meniscus with MSCs (especially adipose tissue-derived stem cells (ASCs)), along with a case of successful repair of torn meniscus with significant reduction of knee pain by percutaneous injection of autologous ASCs into an adult human knee. PMID:24592390

  18. In vitro analysis of equine, bone marrow-derived mesenchymal stem cells demonstrates differences within age- and gender-matched horses.

    PubMed

    Carter-Arnold, J L; Neilsen, N L; Amelse, L L; Odoi, A; Dhar, M S

    2014-09-01

    Stem cell therapies are used routinely in equine practice. Most published reports characterise stem cells derived from younger horses; however, middle-aged horses are often in athletic performance, and experience degenerative medical conditions. Thus, mesenchymal stem cells (MSCs) from this group should be investigated. To describe differences in in vitro adherence, proliferation and potential for differentiation of equine bone marrow-derived MSCs (equine BMMSCs) harvested from middle-aged (10-13 years old) female donors. Descriptive study of stem cell characteristics. Equine BMMSCs from 6 horses were cultured in vitro and evaluated for viability, proliferation, osteogenesis, chondrogenesis, adipogenesis, cluster-of-differentiation markers and gene expression. Equine BMMSCs from all 6 donors demonstrated fibroblastic, cellular morphology, adherence to plastic and expression of cluster-of-differentiation markers. They varied in their rate of proliferation and trilineage differentiation. The equine BMMSCs of one of 6 donors demonstrated a higher rate of proliferation, enhanced ability for cell passaging and a more robust in vitro differentiation. Comparatively, equine BMMSCs from 2 donors demonstrated a lower rate of proliferation and lack of osteogenic and chondrogenic differentiation. The results of this study confirm that donor-to-donor variation in equine BMMSCs exists and this variation can be documented using in vitro assays. Subjective assessment suggests that the rate of proliferation tends to correlate with differentiation potential. © 2013 EVJ Ltd.

  19. Histopathological Comparison between Bone Marrow- and Periodontium-derived Stem Cells for Bone Regeneration in Rabbit Calvaria.

    PubMed

    Kadkhoda, Z; Safarpour, A; Azmoodeh, F; Adibi, S; Khoshzaban, A; Bahrami, N

    2016-01-01

    Periodontitis is an important oral disease. Stem cell therapy has found its way in treatment of many diseases. To evaluate the regenerative potential of periodontal ligament-derived stem cells (PDLSCs) and osteoblast differentiated from PDLSC in comparison with bone marrow-derived mesenchymal stem cells (BM-MSCs) and pre-osteoblasts in calvarial defects. After proving the existence of surface markers by flow cytometry, BM-MSCs were differentiated into osteoblasts. 5 defects were made on rabbit calvaria. 3 of them were first covered with collagen membrane and then with BM-MSCs, PDLSCs, and pre-osteoblasts. The 4(th) defect was filled with collagen membrane and the 5(th) one was served as control. After 4 weeks, histological (quantitative) and histomorphological (qualitative) surveys were performed. Both cell lineages were positive for CD-90 cell marker, which was specifically related to stem cells. Alizarin red staining was done for showing mineral material. RT-PCR set up for the expression of Cbfa1 gene, BMP4 gene, and PGLAP gene, confirmed osteoblast differentiation. The findings indicated that although PDLSCs and pre-osteoblasts could be used for bone regeneration, the rate of regeneration in BM-MSCs-treated cavities was more significant (p<0.0001). The obtained results are probably attributable to the effective micro-environmental signals caused by different bone types and the rate of cell maturation.

  20. β3-Adrenergic Regulation of EPC Features Through Manipulation of the Bone Marrow MSC Niche.

    PubMed

    Vafaei, Rana; Nassiri, Seyed Mahdi; Siavashi, Vahid

    2017-12-01

    Mesenchymal stem cells (MSCs) reside in a specific niche in the bone marrow, however, biological features of this niche are still not fully understood. Given the interactions of MSCs with endothelial cells in different tissues, bone marrow MSC niche may influence the biological features of endothelial progenitor cells (EPCs). To understand the role of the sympathetic nervous system in regulation of the MSC niche, we examined whether the manipulation of the MSC niche via β3-adrenergic signals will affect EPC features. A selective β3 agonist (BRL37344) or a β3 antagonist (SR59230A) was administered in mice for 2 weeks to determine the potential effects of these regimens on the population of CD133 + stem cells in the bone marrow. Then, bone marrow-derived MSCs and EPCs were harvested and expanded from the mice to examine the effect of changes in the MSC niche on EPC features. Improved MSC colony forming potency with increased bone marrow stromal cell-derived factor 1 (SDF-1) (also known as C-X-C motif chemokine 12 [CXCL12]) expression was shown as a result of intensification of the bone marrow adrenergic signals through BRL37344 injection. On the other hand, the blockage of these signals limited the expression level of SDF-1 and resulted in bone marrow enrichment of CD133 + cells. Manipulation of the MSC niche and decreased SDF-1 expression via SR59230A injection also prompted EPCs to form more colonies with augmented proliferation and differentiation capacity. Overall, our results indicate that the β3-adrenergic signals regulate the MSC niche, thereby resulting in modulation of EPC biological features. J. Cell. Biochem. 118: 4753-4761, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Mesenchymal Stem Cell-Derived Factors Restore Function to Human Frataxin-Deficient Cells.

    PubMed

    Kemp, Kevin; Dey, Rimi; Cook, Amelia; Scolding, Neil; Wilkins, Alastair

    2017-08-01

    Friedreich's ataxia is an inherited neurological disorder characterised by mitochondrial dysfunction and increased susceptibility to oxidative stress. At present, no therapy has been shown to reduce disease progression. Strategies being trialled to treat Friedreich's ataxia include drugs that improve mitochondrial function and reduce oxidative injury. In addition, stem cells have been investigated as a potential therapeutic approach. We have used siRNA-induced knockdown of frataxin in SH-SY5Y cells as an in vitro cellular model for Friedreich's ataxia. Knockdown of frataxin protein expression to levels detected in patients with the disorder was achieved, leading to decreased cellular viability, increased susceptibility to hydrogen peroxide-induced oxidative stress, dysregulation of key anti-oxidant molecules and deficiencies in both cell proliferation and differentiation. Bone marrow stem cells are being investigated extensively as potential treatments for a wide range of neurological disorders, including Friedreich's ataxia. The potential neuroprotective effects of bone marrow-derived mesenchymal stem cells were therefore studied using our frataxin-deficient cell model. Soluble factors secreted by mesenchymal stem cells protected against cellular changes induced by frataxin deficiency, leading to restoration in frataxin levels and anti-oxidant defences, improved survival against oxidative stress and stimulated both cell proliferation and differentiation down the Schwann cell lineage. The demonstration that mesenchymal stem cell-derived factors can restore cellular homeostasis and function to frataxin-deficient cells further suggests that they may have potential therapeutic benefits for patients with Friedreich's ataxia.

  2. Crosstalk between bone marrow-derived mesenchymal stem cells and regulatory T cells through a glucocorticoid-induced leucine zipper/developmental endothelial locus-1-dependent mechanism.

    PubMed

    Yang, Nianlan; Baban, Babak; Isales, Carlos M; Shi, Xing-Ming

    2015-09-01

    Bone marrow is a reservoir for regulatory T (T(reg)) cells, but how T(reg) cells are regulated in that environment remains poorly understood. We show that expression of glucocorticoid (GC)-induced leucine zipper (GILZ) in bone marrow mesenchymal lineage cells or bone marrow-derived mesenchymal stem cells (BMSCs) increases the production of T(reg) cells via a mechanism involving the up-regulation of developmental endothelial locus-1 (Del-1), an endogenous leukocyte-endothelial adhesion inhibitor. We found that the expression of Del-1 is increased ∼4-fold in the bone tissues of GILZ transgenic (Tg) mice, and this increase is coupled with a significant increase in the production of IL-10 (2.80 vs. 0.83) and decrease in the production of IL-6 (0.80 vs. 2.33) and IL-12 (0.25 vs. 1.67). We also show that GILZ-expressing BMSCs present antigen in a way that favors T(reg) cells. These results indicate that GILZ plays a critical role mediating the crosstalk between BMSCs and T(reg) in the bone marrow microenvironment. These data, together with our previous findings that overexpression of GILZ in BMSCs antagonizes TNF-α-elicited inflammatory responses, suggest that GILZ plays important roles in bone-immune cell communication and BMSC immune suppressive functions. © FASEB.

  3. HORSE SPECIES SYMPOSIUM: Use of mesenchymal stem cells in fracture repair in horses.

    PubMed

    Govoni, K E

    2015-03-01

    Equine bone fractures are often catastrophic, potentially fatal, and costly to repair. Traditional methods of healing fractures have limited success, long recovery periods, and a high rate of reinjury. Current research in the equine industry has demonstrated that stem cell therapy is a promising novel therapy to improve fracture healing and reduce the incidence of reinjury; however, reports of success in horses have been variable and limited. Stem cells can be derived from embryonic, fetal, and adult tissue. Based on the ease of collection, opportunity for autologous cells, and proven success in other models, adipose- or bone marrow-derived mesenchymal stem cells (MSC) are often used in equine therapies. Methods for isolation, proliferation, and differentiation of MSC are well established in rodent and human models but are not well characterized in horses. There is recent evidence that equine bone marrow MSC are able to proliferate in culture for several passages in the presence of autologous and fetal bovine serum, which is important for expansion of cells. Mesenchymal stem cells have the capacity to differentiate into osteoblasts, the bone forming cells, and this complex process is regulated by a number of transcription factors including runt-related transcription factor 2 (Runx2) and osterix (Osx). However, it has not been well established if equine MSC are regulated in a similar manner. The data presented in this review support the view that equine bone marrow MSC are regulated by the same transcription factors that control the differentiation of rodent and human MSC into osteoblasts. Although stem cell therapy is promising in equine bone repair, additional research is needed to identify optimal methods for reintroduction and potential manipulations to improve their ability to form new bone.

  4. Adipose-Derived Stem Cells for Tissue Engineering and Regenerative Medicine Applications

    PubMed Central

    Dai, Ru; Wang, Zongjie; Samanipour, Roya; Koo, Kyo-in; Kim, Keekyoung

    2016-01-01

    Adipose-derived stem cells (ASCs) are a mesenchymal stem cell source with properties of self-renewal and multipotential differentiation. Compared to bone marrow-derived stem cells (BMSCs), ASCs can be derived from more sources and are harvested more easily. Three-dimensional (3D) tissue engineering scaffolds are better able to mimic the in vivo cellular microenvironment, which benefits the localization, attachment, proliferation, and differentiation of ASCs. Therefore, tissue-engineered ASCs are recognized as an attractive substitute for tissue and organ transplantation. In this paper, we review the characteristics of ASCs, as well as the biomaterials and tissue engineering methods used to proliferate and differentiate ASCs in a 3D environment. Clinical applications of tissue-engineered ASCs are also discussed to reveal the potential and feasibility of using tissue-engineered ASCs in regenerative medicine. PMID:27057174

  5. The Fate of Intrapleurally Injected Bone Marrow-Derived Stem Cells in Mice with Pleural Mesothelioma

    DTIC Science & Technology

    2012-12-01

    hepatocytes by the intrahepatic delivery of clonal human mesenchymal stem cells in fetal sheep . Hepatology, 46: 1935-1945, 2007. 4. Jongsma, J., van...Mice with Pleural Mesothelioma 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-11-1-0574 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jonathan M

  6. Role of a Burr Hole and Calvarial Bone Marrow-Derived Stem Cells in the Ischemic Rat Brain: A Possible Mechanism for the Efficacy of Multiple Burr Hole Surgery in Moyamoya Disease.

    PubMed

    Nam, Taek-Kyun; Park, Seung-Won; Park, Yong-Sook; Kwon, Jeong-Taik; Min, Byung-Kook; Hwang, Sung-Nam

    2015-09-01

    This study investigates the role of a burr hole and calvarial bone marrow-derived stem cells (BMSCs) in a transient ischemic brain injury model in the rat and postulates a possible mechanism for the efficacy of multiple cranial burr hole (MCBH) surgery in moyamoya disease (MMD). Twenty Sprague-Dawley rats (250 g, male) were divided into four groups : normal control group (n=5), burr hole group (n=5), ischemia group (n=5), and ischemia+burr hole group (n=5). Focal ischemia was induced by the transient middle cerebral artery occlusion (MCAO). At one week after the ischemic injury, a 2 mm-sized cranial burr hole with small cortical incision was made on the ipsilateral (left) parietal area. Bromodeoxyuridine (BrdU, 50 mg/kg) was injected intraperitoneally, 2 times a day for 6 days after the burr hole trephination. At one week after the burr hole trephination, brains were harvested. Immunohistochemical stainings for BrdU, CD34, VEGF, and Doublecortin and Nestin were done. In the ischemia+burr hole group, BrdU (+), CD34 (+), and Doublecortin (+) cells were found in the cortical incision site below the burr hole. A number of cells with Nestin (+) or VEGF (+) were found in the cerebral parenchyma around the cortical incision site. In the other groups, BrdU (+), CD34 (+), Doublecortin (+), and Nestin (+) cells were not detected in the corresponding area. These findings suggest that BrdU (+) and CD34 (+) cells are bone marrow-derived stem cells, which may be derived from the calvarial bone marrow through the burr hole. The existence of CD34 (+) and VEGF (+) cells indicates increased angiogenesis, while the existence of Doublecortin (+), Nestin (+) cells indicates increased neurogenesis. Based on these findings, the BMSCs through burr holes seem to play an important role for the therapeutic effect of the MCBH surgery in MMD.

  7. The role of sialomucin CD164 (MGC-24v or endolyn) in prostate cancer metastasis

    PubMed Central

    Havens, AM; Jung, Y; Sun, YX; Wang, J; Shah, RB; Bühring, HJ; Pienta, KJ; Taichman, RS

    2006-01-01

    Background The chemokine stromal derived factor-1 (SDF-1 or CXCL12) and its receptor CXCR4 have been demonstrated to be crucial for the homing of stem cells and prostate cancers to the marrow. While screening prostate cancers for CXCL12-responsive adhesion molecules, we identified CD164 (MGC-24) as a potential regulator of homing. CD164 is known to function as a receptor that regulates stem cell localization to the bone marrow. Results Using prostate cancer cell lines, it was demonstrated that CXCL12 induced both the expression of CD164 mRNA and protein. Functional studies demonstrated that blocking CD164 on prostate cancer cell lines reduced the ability of these cells to adhere to human bone marrow endothelial cells, and invade into extracellular matrices. Human tissue microarrays stained for CD164 demonstrated a positive correlation with prostate-specific antigen levels, while its expression was negatively correlated with the expression of androgen receptor. Conclusion Our findings suggest that CD164 may participate in the localization of prostate cancer cells to the marrow and is further evidence that tumor metastasis and hematopoietic stem cell trafficking may involve similar processes. PMID:16859559

  8. Human Adipose-derived Stem Cells Ameliorate Cigarette Smoke-induced Murine Myelosuppression via TSG-6

    PubMed Central

    Xie, Jie; Broxmeyer, Hal E.; Feng, Dongni; Schweitzer, Kelly S.; Yi, Ru; Cook, Todd G.; Chitteti, Brahmananda R.; Barwinska, Daria; Traktuev, Dmitry O.; Van Demark, Mary J.; Justice, Matthew J.; Ou, Xuan; Srour, Edward F.; Prockop, Darwin J.; Petrache, Irina; March, Keith L.

    2015-01-01

    Objective Bone marrow-derived hematopoietic stem and progenitor cells (HSC/HPC) are critical to homeostasis and tissue repair. The aims of this study were to delineate the myelotoxicity of cigarette smoking (CS) in a murine model, to explore human adipose-derived stem cells (hASC) as a novel approach to mitigate this toxicity, and to identify key mediating factors for ASC activities. Methods C57BL/6 mice were exposed to CS with or without i.v. injection of regular or siRNA-transfected hASC. For in vitro experiments, cigarette smoke extract (CSE) was used to mimic the toxicity of CS exposure. Analysis of bone marrow hematopoietic progenitor cells (HPC) were performed both by flow cytometry and colony forming unit assays. Results In this study, we demonstrate that as few as three days of CS exposure result in marked cycling arrest and diminished clonogenic capacity of HPC, followed by depletion of phenotypically-defined HSC/HPC. Intravenous injection of hASC substantially ameliorated both acute and chronic CS-induced myelosuppression. This effect was specifically dependent on the anti-inflammatory factor TSG-6, which is induced from xenografted hASC, primarily located in the lung and capable of responding to host inflammatory signals. Gene expression analysis within bone marrow HSC/HPC revealed several specific signaling molecules altered by CS and normalized by hASC. Conclusion Our results suggest that systemic administration of hASC or TSG-6 may be novel approaches to reverse cigarette smoking-induced myelosuppression. PMID:25329668

  9. Development of a rapid culture method to induce adipocyte differentiation of human bone marrow-derived mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ninomiya, Yuichi; Sugahara-Yamashita, Yzumi; Nakachi, Yutaka

    2010-04-02

    Human mesenchymal stem cells (hMSCs) derived from bone marrow are multipotent stem cells that can regenerate mesenchymal tissues such as adipose, bone or muscle. It is thought that hMSCs can be utilized as a cell resource for tissue engineering and as human models to study cell differentiation mechanisms, such as adipogenesis, osteoblastogenesis and so on. Since it takes 2-3 weeks for hMSCs to differentiate into adipocytes using conventional culture methods, the development of methods to induce faster differentiation into adipocytes is required. In this study we optimized the culture conditions for adipocyte induction to achieve a shorter cultivation time formore » the induction of adipocyte differentiation in bone marrow-derived hMSCs. Briefly, we used a cocktail of dexamethasone, insulin, methylisobutylxanthine (DIM) plus a peroxisome proliferator-activated receptor {gamma} agonist, rosiglitazone (DIMRo) as a new adipogenic differentiation medium. We successfully shortened the period of cultivation to 7-8 days from 2-3 weeks. We also found that rosiglitazone alone was unable to induce adipocyte differentiation from hMSCs in vitro. However, rosiglitazone appears to enhance hMSC adipogenesis in the presence of other hormones and/or compounds, such as DIM. Furthermore, the inhibitory activity of TGF-{beta}1 on adipogenesis could be investigated using DIMRo-treated hMSCs. We conclude that our rapid new culture method is very useful in measuring the effect of molecules that affect adipogenesis in hMSCs.« less

  10. Further insights into the characterization of equine adipose tissue-derived mesenchymal stem cells.

    PubMed

    Raabe, Oksana; Shell, Katja; Würtz, Antonia; Reich, Christine Maria; Wenisch, Sabine; Arnhold, Stefan

    2011-08-01

    Adipose tissue-derived stem cells (ADSCs) represent a promising subpopulation of adult stem cells for tissue engineering applications in veterinary medicine. In this study we focused on the morphological and molecular biological properties of the ADSCs. The expression of stem cell markers Oct4, Nanog and the surface markers CD90 and CD105 were detected using RT-PCR. ADSCs showed a proliferative potential and were capable of adipogenic and osteogenic differentiation. Expression of Alkaline phosphatase (AP), phosphoprotein (SPP1), Runx2 and osteocalcin (OC) mRNA were positive in osteogenic lineages and peroxisome proliferator activated receptor (Pparγ2) mRNA was positive in adipogenic lineages. ADSCs show stem cell and surface marker profiles and differentiation characteristics that are similar to but distinct from other adult stem cells, such as bone marrow-derived mesenchymal stem cells (BM-MSCs). The availability of an easily accessible and reproducible cell source may greatly facilitate the development of stem cell based tissue engineering and therapies for regenerative equine medicine.

  11. Manipulation of immune system via immortal bone marrow stem cells.

    PubMed

    Ruedl, Christiane; Khameneh, Hanif Javanmard; Karjalainen, Klaus

    2008-09-01

    Extensive amplification of hematopoietic stem cells (HSCs) and their multipotent primitive progenitors (MPPs) in culture would greatly benefit not only clinical transplantation but also provide a potential tool to manipulate all cellular lineages derived from these cells for gene therapy and experimental purposes. Here, we demonstrate that mouse bone marrow cultures containing cells engineered to over-express NUP98-HOXB4 fusion protein support self-renewal of physiologically normal HSC and MPP for several weeks leading practically to their unlimited expansion. This allows time consuming and cumulative in vitro experimental manipulations without sacrificing their ability to differentiate in vivo or in vitro to any hematopoietic lineage.

  12. New perspectives in human stem cell therapeutic research.

    PubMed

    Trounson, Alan

    2009-06-11

    Human stem cells are in evaluation in clinical stem cell trials, primarily as autologous bone marrow studies, autologous and allogenic mesenchymal stem cell trials, and some allogenic neural stem cell transplantation projects. Safety and efficacy are being addressed for a number of disease state applications. There is considerable data supporting safety of bone marrow and mesenchymal stem cell transplants but the efficacy data are variable and of mixed benefit. Mechanisms of action of many of these cells are unknown and this raises the concern of unpredictable results in the future. Nevertheless there is considerable optimism that immune suppression and anti-inflammatory properties of mesenchymal stem cells will be of benefit for many conditions such as graft versus host disease, solid organ transplants and pulmonary fibrosis. Where bone marrow and mesenchymal stem cells are being studied for heart disease, stroke and other neurodegenerative disorders, again progress is mixed and mostly without significant benefit. However, correction of multiple sclerosis, at least in the short term is encouraging. Clinical trials on the use of embryonic stem cell derivatives for spinal injury and macular degeneration are beginning and a raft of other clinical trials can be expected soon, for example, the use of neural stem cells for killing inoperable glioma and embryonic stem cells for regenerating beta islet cells for diabetes. The change in attitude to embryonic stem cell research with the incoming Obama administration heralds a new co-operative environment for study and evaluation of stem cell therapies. The Californian stem cell initiative (California Institute for Regenerative Medicine) has engendered global collaboration for this new medicine that will now also be supported by the US Federal Government. The active participation of governments, academia, biotechnology, pharmaceutical companies, and private investment is a powerful consortium for advances in health.

  13. Mesenchymal stem cells from the Wharton's jelly of umbilical cord segments provide stromal support for the maintenance of cord blood hematopoietic stem cells during long-term ex vivo culture.

    PubMed

    Bakhshi, Tiki; Zabriskie, Ryan C; Bodie, Shamanique; Kidd, Shannon; Ramin, Susan; Paganessi, Laura A; Gregory, Stephanie A; Fung, Henry C; Christopherson, Kent W

    2008-12-01

    Hematopoietic stem cells (HSCs) are routinely obtained from marrow, mobilized peripheral blood, and umbilical cord blood. Mesenchymal stem cells (MSCs) are traditionally isolated from marrow. Bone marrow-derived MSCs (BM-MSCs) have previously demonstrated their ability to act as a feeder layer in support of ex vivo cord blood expansion. However, the use of BM-MSCs to support the growth, differentiation, and engraftment of cord blood may not be ideal for transplant purposes. Therefore, the potential of MSCs from a novel source, the Wharton's jelly of umbilical cords, to act as stromal support for the long-term culture of cord blood HSC was evaluated. Umbilical cord-derived MSCs (UC-MSCs) were cultured from the Wharton's jelly of umbilical cord segments. The UC-MSCs were then profiled for expression of 12 cell surface receptors and tested for their ability to support cord blood HSCs in a long-term culture-initiating cell (LTC-IC) assay. Upon culture, UC-MSCs express a defined set of cell surface markers (CD29, CD44, CD73, CD90, CD105, CD166, and HLA-A) and lack other markers (CD45, CD34, CD38, CD117, and HLA-DR) similar to BM-MSCs. Like BM-MSCs, UC-MSCs effectively support the growth of CD34+ cord blood cells in LTC-IC assays. These data suggest the potential therapeutic application of Wharton's jelly-derived UC-MSCs to provide stromal support structure for the long-term culture of cord blood HSCs as well as the possibility of cotransplantation of genetically identical, HLA-matched, or unmatched cord blood HSCs and UC-MSCs in the setting of HSC transplantation.

  14. Comparison of allogeneic platelet lysate and fetal bovine serum for in vitro expansion of equine bone marrow-derived mesenchymal stem cells.

    PubMed

    Seo, Jong-pil; Tsuzuki, Nao; Haneda, Shingo; Yamada, Kazutaka; Furuoka, Hidefumi; Tabata, Yasuhiko; Sasaki, Naoki

    2013-10-01

    Mesenchymal stem cells (MSCs) are promising candidates for cell-based therapy and tissue engineering approaches. Fetal bovine serum (FBS) is commonly used for in vitro MSC expansion; however, the use of FBS may be associated with ethical, scientific, and safety issues. This study aimed to compare the ability of allogeneic platelet lysate (PL) and FBS to cause equine bone marrow-derived MSC expansion. MSCs were isolated from bone marrow aspirate in media supplemented with either PL or FBS, and cell proliferation properties and characteristics were examined. There were no significant differences in MSC yield, colony-forming unit-fibroblast (CFU-F) assay, and population doubling time between PL and FBS cultures. In addition, both PL-MSCs and FBS-MSCs showed similar results in term of ALP staining, osteogenic differentiation, and RT-PCR, although there were subtle differences in morphology, growth pattern, and adhesive properties. These results suggest that PL is a suitable alternative to FBS for use in equine MSC expansion, without the problems related to FBS use. Published by Elsevier India Pvt Ltd.

  15. Review of Preclinical and Clinical Studies of Bone Marrow-Derived Cell Therapies for Intracerebral Hemorrhage

    PubMed Central

    de Carvalho, Felipe Gonçalves; de Freitas, Gabriel Rodriguez

    2016-01-01

    Stroke is the second leading cause of mortality worldwide, causing millions of deaths annually, and is also a major cause of disability-adjusted life years. Hemorrhagic stroke accounts for approximately 10 to 27% of all cases and has a fatality rate of about 50% in the first 30 days, with limited treatment possibilities. In the past two decades, the therapeutic potential of bone marrow-derived cells (particularly mesenchymal stem cells and mononuclear cells) has been intensively investigated in preclinical models of different neurological diseases, including models of intracerebral hemorrhage and subarachnoid hemorrhage. More recently, clinical studies, most of them small, unblinded, and nonrandomized, have suggested that the therapy with bone marrow-derived cells is safe and feasible in patients with ischemic or hemorrhagic stroke. This review discusses the available evidence on the use of bone marrow-derived cells to treat hemorrhagic strokes. Distinctive properties of animal studies are analyzed, including study design, cell dose, administration route, therapeutic time window, and possible mechanisms of action. Furthermore, clinical trials are also reviewed and discussed, with the objective of improving future studies in the field. PMID:27698671

  16. Bone Marrow-derived Mesenchymal Stem Cells (MSCs) as a Selective Delivery Vehicle for a PSA-Activated Protoxin for Advanced Prostate Cancer

    DTIC Science & Technology

    2014-04-01

    other groups are seeking to develop MSCs as vectors to deliver prostate - specific antigen (PSA)-activated prodrugs (Denmeade et al. 2003) and protoxins...Denmeade SR, Jakobsen CM, Janssen S, Khan SR, Garrett ES, Lilja H, Christensen SB & Isaacs JT 2003 Prostate - specific antigen -activated thapsigargin...cells derived from benign prostatic hyperplasia specimens possess stem cell like property. Prostate 67 1265–1276. (doi:10.1002/ pros .20599) Lin G, Yang R

  17. Bone marrow-derived mesenchymal stem cells propagate immunosuppressive/anti-inflammatory macrophages in cell-to-cell contact-independent and -dependent manners under hypoxic culture.

    PubMed

    Takizawa, Naoki; Okubo, Naoto; Kamo, Masaharu; Chosa, Naoyuki; Mikami, Toshinari; Suzuki, Keita; Yokota, Seiji; Ibi, Miho; Ohtsuka, Masato; Taira, Masayuki; Yaegashi, Takashi; Ishisaki, Akira; Kyakumoto, Seiko

    2017-09-15

    Immunosuppressive/anti-inflammatory macrophage (Mφ), M2-Mφ that expressed the typical M2-Mφs marker, CD206, and anti-inflammatory cytokine, interleukin (IL)-10, is beneficial and expected tool for the cytotherapy against inflammatory diseases. Here, we demonstrated that bone marrow-derived lineage-positive (Lin+) blood cells proliferated and differentiated into M2-Mφs by cooperation with the bone marrow-derived mesenchymal stem cells (MSCs) under hypoxic condition: MSCs not only promoted proliferation of undifferentiated M2-Mφs, pre-M2-Mφs, in the Lin+ fraction via a proliferative effect of the MSCs-secreted macrophage colony-stimulating factor, but also promoted M2-Mφ polarization of the pre-M2-Mφs through cell-to-cell contact with the pre-M2-Mφs. Intriguingly, an inhibitor for intercellular adhesion molecule (ICAM)-1 receptor/lymphocyte function-associated antigen (LFA)-1, Rwj50271, partially suppressed expression of CD206 in the Lin+ blood cells but an inhibitor for VCAM-1 receptor/VLA-4, BIO5192, did not, suggesting that the cell-to-cell adhesion through LFA-1 on pre-M2-Mφs and ICAM-1 on MSCs was supposed to promoted the M2-Mφ polarization. Thus, the co-culture system consisting of bone marrow-derived Lin+ blood cells and MSCs under hypoxic condition was a beneficial supplier of a number of M2-Mφs, which could be clinically applicable to inflammatory diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Stem cells and female reproduction.

    PubMed

    Du, Hongling; Taylor, Hugh S

    2009-02-01

    Several recent findings in stem cell biology have resulted in new opportunities for the treatment of reproductive disease. Endometrial regeneration can be driven by bone marrow derived stem cells. This finding has potential implications for the treatment of uterine disorders. It also supports a new theory for the etiology of endometriosis. The ovaries have been shown to contain stem cells that form oocytes in adults and can be cultured in vitro to develop mature oocytes. Stem cells from the fetus have been demonstrated to lead to microchimerism in the mother and implicated in several maternal diseases. Additionally the placenta may be another source of hematopoietic stem cell. Finally endometrial derived stem cells have been demonstrated to differentiate into non-reproductive tissues. While we are just beginning to understand stem cells and many key questions remain, the potential advantages of stem cells in reproductive biology and medicine are apparent.

  19. Bone marrow transplant

    MedlinePlus

    Transplant - bone marrow; Stem cell transplant; Hematopoietic stem cell transplant; Reduced intensity nonmyeloablative transplant; Mini transplant; Allogenic bone marrow transplant; Autologous bone marrow transplant; Umbilical ...

  20. I.V. infusion of brain-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat.

    PubMed

    Nomura, T; Honmou, O; Harada, K; Houkin, K; Hamada, H; Kocsis, J D

    2005-01-01

    I.V. delivery of mesenchymal stem cells prepared from adult bone marrow reduces infarction size and ameliorates functional deficits in rat cerebral ischemia models. Administration of the brain-derived neurotrophic factor to the infarction site has also been demonstrated to be neuroprotective. To test the hypothesis that brain-derived neurotrophic factor contributes to the therapeutic benefits of mesenchymal stem cell delivery, we compared the efficacy of systemic delivery of human mesenchymal stem cells and human mesenchymal stem cells transfected with a fiber-mutant F/RGD adenovirus vector with a brain-derived neurotrophic factor gene (brain-derived neurotrophic factor-human mesenchymal stem cells). A permanent middle cerebral artery occlusion was induced by intraluminal vascular occlusion with a microfilament. Human mesenchymal stem cells and brain-derived neurotrophic factor-human mesenchymal stem cells were i.v. injected into the rats 6 h after middle cerebral artery occlusion. Lesion size was assessed at 6 h, 1, 3 and 7 days using MR imaging, and histological methods. Functional outcome was assessed using the treadmill stress test. Both human mesenchymal stem cells and brain-derived neurotrophic factor-human mesenchymal stem cells reduced lesion volume and elicited functional improvement compared with the control sham group, but the effect was greater in the brain-derived neurotrophic factor-human mesenchymal stem cell group. ELISA analysis of the infarcted hemisphere revealed an increase in brain-derived neurotrophic factor in the human mesenchymal stem cell groups, but a greater increase in the brain-derived neurotrophic factor-human mesenchymal stem cell group. These data support the hypothesis that brain-derived neurotrophic factor contributes to neuroprotection in cerebral ischemia and cellular delivery of brain-derived neurotrophic factor can be achieved by i.v. delivery of human mesenchymal stem cells.

  1. Paracrine Engineering of Human Explant-Derived Cardiac Stem Cells to Over-Express Stromal-Cell Derived Factor 1α Enhances Myocardial Repair.

    PubMed

    Tilokee, Everad L; Latham, Nicholas; Jackson, Robyn; Mayfield, Audrey E; Ye, Bin; Mount, Seth; Lam, Buu-Khanh; Suuronen, Erik J; Ruel, Marc; Stewart, Duncan J; Davis, Darryl R

    2016-07-01

    First generation cardiac stem cell products provide indirect cardiac repair but variably produce key cardioprotective cytokines, such as stromal-cell derived factor 1α, which opens the prospect of maximizing up-front paracrine-mediated repair. The mesenchymal subpopulation within explant derived human cardiac stem cells underwent lentiviral mediated gene transfer of stromal-cell derived factor 1α. Unlike previous unsuccessful attempts to increase efficacy by boosting the paracrine signature of cardiac stem cells, cytokine profiling revealed that stromal-cell derived factor 1α over-expression prevented lv-mediated "loss of cytokines" through autocrine stimulation of CXCR4+ cardiac stem cells. Stromal-cell derived factor 1α enhanced angiogenesis and stem cell recruitment while priming cardiac stem cells to readily adopt a cardiac identity. As compared to injection with unmodified cardiac stem cells, transplant of stromal-cell derived factor 1α enhanced cells into immunodeficient mice improved myocardial function and angiogenesis while reducing scarring. Increases in myocardial stromal-cell derived factor 1α content paralleled reductions in myocyte apoptosis but did not influence long-term engraftment or the fate of transplanted cells. Transplantation of stromal-cell derived factor 1α transduced cardiac stem cells increased the generation of new myocytes, recruitment of bone marrow cells, new myocyte/vessel formation and the salvage of reversibly damaged myocardium to enhance cardiac repair after experimental infarction. Stem Cells 2016;34:1826-1835. © 2016 AlphaMed Press.

  2. Inhibition of Bone Marrow-Derived Mesenchymal Stem Cells Homing Towards Triple-Negative Breast Cancer Microenvironment Using an Anti-PDGFRβ Aptamer

    PubMed Central

    Camorani, Simona; Hill, Billy Samuel; Fontanella, Raffaela; Greco, Adelaide; Gramanzini, Matteo; Auletta, Luigi; Gargiulo, Sara; Albanese, Sandra; Lucarelli, Enrico; Cerchia, Laura; Zannetti, Antonella

    2017-01-01

    Bone marrow-derived mesenchymal stem cells (BM-MSCs) are shown to participate in tumor progression by establishing a favorable tumor microenvironment (TME) that promote metastasis through a cytokine networks. However, the mechanism of homing and recruitment of BM-MSCs into tumors and their potential role in malignant tissue progression is poorly understood and controversial. Here we show that BM-MSCs increase aggressiveness of triple-negative breast cancer (TNBC) cell lines evaluated as capability to migrate, invade and acquire stemness markers. Importantly, we demonstrate that the treatment of BM-MSCs with a nuclease-resistant RNA aptamer against platelet-derived growth factor receptor β (PDGFRβ) causes the inhibition of receptor-dependent signaling pathways thus drastically hampering BM-MSC recruitment towards TNBC cell lines and BM-MSCs trans-differentiation into carcinoma-associated fibroblast (CAF)-like cells. Moreover, in vivo molecular imaging analysis demonstrated the aptamer ability to prevent BM-MSCs homing to TNBC xenografts. Collectively, our results indicate the anti-PDGFRβ aptamer as a novel therapeutic tool to interfere with BM-MSCs attraction to TNBC providing the rationale to further explore the aptamer in more complex pre-clinical settings. PMID:28912898

  3. Sources of adult mesenchymal stem cells for ligament and tendon tissue engineering.

    PubMed

    Dhinsa, Baljinder S; Mahapatra, Anant N; Khan, Wasim S

    2015-01-01

    Tendon and ligament injuries are common, and repair slowly with reduced biomechanical properties. With increasing financial demands on the health service and patients to recover from tendon and ligament injuries faster, and with less morbidity, health professionals are exploring new treatment options. Tissue engineering may provide the answer, with its unlimited source of natural cells that in the correct environment may improve repair and regeneration of tendon and ligament tissue. Mesenchymal stem cells have demonstrated the ability to self renew and have multilineage differentiation potential. The use of bone marrow-derived mesenchymal stem cells has been reported, however significant in vitro culture expansion is required due to the low yield of cells, which has financial implications. Harvesting of bone marrow cells also has associated morbidity. Several studies have looked at alternative sources for mesenchymal stem cells. Reports in literature from animal studies have been encouraging, however further work is required. This review assesses the potential sources of mesenchymal stem cells for tissue engineering in tendons and ligaments.

  4. Adult bone marrow-derived stem cells for the lung: implications for pediatric lung diseases.

    PubMed

    van Haaften, Timothy; Thébaud, Bernard

    2006-04-01

    Bronchopulmonary dysplasia (BPD) and cystic fibrosis (CF) are two common serious chronic respiratory disorders without specific treatments affecting children. BPD is characterized by an arrest in alveolar growth in premature infants requiring respiratory support. CF is the most common fatal inherited genetic disorder characterized by abnormally thick mucus secretions, recurrent infection and ultimately lung destruction. One commonality between these two diseases is the promise of utilizing stem cells therapeutically. Indeed, the use of exogenous cells to supplement the natural repair mechanisms or the possibility of genetic manipulation in vitro before administration are appealing therapeutic options for these diseases. Increasing attention has been focused on the use of adult bone marrow-derived stem cells (BMSC) to regenerate damaged organs such as the heart, the brain, and the liver. However, due to the lung's complexity as well as the low rate of cellular turnover within the lung, progress has been slower in this area compared with the skin or liver. Initial work suggests that BMSC can engraft and differentiate into a variety of lung cells, but these findings have been challenged recently. This article critically reviews the current advances on the therapeutic use of stem cells for lung regeneration.

  5. Alkylating chemotherapeutic agents cyclophosphamide and melphalan cause functional injury to human bone marrow-derived mesenchymal stem cells.

    PubMed

    Kemp, Kevin; Morse, Ruth; Sanders, Kelly; Hows, Jill; Donaldson, Craig

    2011-07-01

    The adverse effects of melphalan and cyclophosphamide on hematopoietic stem cells are well-known; however, the effects on the mesenchymal stem cells (MSCs) residing in the bone marrow are less well characterised. Examining the effects of chemotherapeutic agents on patient MSCs in vivo is difficult due to variability in patients and differences in the drug combinations used, both of which could have implications on MSC function. As drugs are not commonly used as single agents during high-dose chemotherapy (HDC) regimens, there is a lack of data comparing the short- or long-term effects these drugs have on patients post treatment. To help address these problems, the effects of the alkylating chemotherapeutic agents cyclophosphamide and melphalan on human bone marrow MSCs were evaluated in vitro. Within this study, the exposure of MSCs to the chemotherapeutic agents cyclophosphamide or melphalan had strong negative effects on MSC expansion and CD44 expression. In addition, changes were seen in the ability of MSCs to support hematopoietic cell migration and repopulation. These observations therefore highlight potential disadvantages in the use of autologous MSCs in chemotherapeutically pre-treated patients for future therapeutic strategies. Furthermore, this study suggests that if the damage caused by chemotherapeutic agents to marrow MSCs is substantial, it would be logical to use cultured allogeneic MSCs therapeutically to assist or repair the marrow microenvironment after HDC.

  6. Removing the cells from adult bone marrow derived stem cell therapy does not eliminate cardioprotection.

    PubMed

    Yasin, Mohammed

    2013-04-01

    The debate as to whether adult stem cell therapy is regenerative or not continues. The non-regenerative benefits of adult bone marrow-derived stem cell therapy were investigated by testing whether the supernatant derived from unfractionated bone marrow mononuclear cells might be cardioprotective in an animal model of myocardial ischaemia-reperfusion injury. Regional myocardial reperfusion injury was acquired by 25 min reversible left anterior descending coronary artery (LAD) occlusion followed by 2 h reperfusion, in anaesthetized Wistar male rats. Unfractionated bone marrow mononuclear cells (BMMNC) isolated from sibling Wistar male rat whole bone marrow were phenotyped by fluorescence activated cell sorting flowcytometry for the haematopoietic stem cell surface markers c-kit, CD34, CD45 and CD133. Animals subjected to regional myocardial reperfusion injury received either 10 million BMMNC or BMMNC supernatant (BMS); both were collected in 0.5 ml phosphate-buffered saline and delivered by intravenous bolus at the onset of reperfusion. The left ventricular region distal to the LAD occlusion point was excised for measurement of myocardial infarct size and proteomic analysis, which was used to identify whether there were any differences in myocardial proteins associated with intravenous injection of either BMMNC or BMS. BMMNC were phenotyped to be c-kit(+) (7 ± 1%), CD34(+) (7 ± 1%), CD45(+) (54 ± 6%), CD133(+) (15 ± 1%). The supernatant reduced myocardial infarct size (BMS 34 ± 2%, n = 15 vs control 57 ± 2%, n = 7, P < 0.0001), which was comparable to the reduction in infarct size afforded by the injection of cells (BMMNC 33 ± 3% vs control 57 ± 2%, n = 10, P < 0.0001). Proteomics of hearts treated with either BMS or BMMNC demonstrated higher expression of (i) anti-apoptotic signal transduction protein: 14-3-3-epsilon (1.5-fold); (ii) anti-oxidants: peroxiredoxin-6 (2.1-fold); (iii) heat shock proteins: alpha B-crystallin (1.7-fold), heat shock protein 72 (2.8-fold), tumour necrosis factor receptor-1 associated protein (2.3-fold), ischaemia responsive protein-94 (1.6-fold); (iv) glycolytic protein: glyceraldehyde-3-phosphate dehydrogenase (2.3-fold); (v) mitochondrial respiratory proteins: mitochondrial aconitase (4.7-fold), voltage-dependent anion-selective channel protein-1 (VDAC-1) (2.7-fold). Regional myocardial reperfusion injury can be attenuated by intravenous administration of either BMMNC or BMS at the onset of reperfusion, which suggests adult stem cells mediate non-regenerative cardioprotection.

  7. The effects of dynamic compression on the development of cartilage grafts engineered using bone marrow and infrapatellar fat pad derived stem cells.

    PubMed

    Luo, Lu; Thorpe, Stephen D; Buckley, Conor T; Kelly, Daniel J

    2015-09-21

    Bioreactors that subject cell seeded scaffolds or hydrogels to biophysical stimulation have been used to improve the functionality of tissue engineered cartilage and to explore how such constructs might respond to the application of joint specific mechanical loading. Whether a particular cell type responds appropriately to physiological levels of biophysical stimulation could be considered a key determinant of its suitability for cartilage tissue engineering applications. The objective of this study was to determine the effects of dynamic compression on chondrogenesis of stem cells isolated from different tissue sources. Porcine bone marrow (BM) and infrapatellar fat pad (FP) derived stem cells were encapsulated in agarose hydrogels and cultured in a chondrogenic medium in free swelling (FS) conditions for 21 d, after which samples were subjected to dynamic compression (DC) of 10% strain (1 Hz, 1 h d(-1)) for a further 21 d. Both BM derived stem cells (BMSCs) and FP derived stem cells (FPSCs) were capable of generating cartilaginous tissues with near native levels of sulfated glycosaminoglycan (sGAG) content, although the spatial development of the engineered grafts strongly depended on the stem cell source. The mechanical properties of cartilage grafts generated from both stem cell sources also approached that observed in skeletally immature animals. Depending on the stem cell source and the donor, the application of DC either enhanced or had no significant effect on the functional development of cartilaginous grafts engineered using either BMSCs or FPSCs. BMSC seeded constructs subjected to DC stained less intensely for collagen type I. Furthermore, histological and micro-computed tomography analysis showed mineral deposition within BMSC seeded constructs was suppressed by the application of DC. Therefore, while the application of DC in vitro may only lead to modest improvements in the mechanical functionality of cartilaginous grafts, it may play an important role in the development of phenotypically stable constructs.

  8. HOX and TALE signatures specify human stromal stem cell populations from different sources.

    PubMed

    Picchi, Jacopo; Trombi, Luisa; Spugnesi, Laura; Barachini, Serena; Maroni, Giorgia; Brodano, Giovanni Barbanti; Boriani, Stefano; Valtieri, Mauro; Petrini, Mario; Magli, Maria Cristina

    2013-04-01

    Human stromal stem cell populations reside in different tissues and anatomical sites, however a critical question related to their efficient use in regenerative medicine is whether they exhibit equivalent biological properties. Here, we compared cellular and molecular characteristics of stromal stem cells derived from the bone marrow, at different body sites (iliac crest, sternum, and vertebrae) and other tissues (dental pulp and colon). In particular, we investigated whether homeobox genes of the HOX and TALE subfamilies might provide suitable markers to identify distinct stromal cell populations, as HOX proteins control cell positional identity and, together with their co-factors TALE, are involved in orchestrating differentiation of adult tissues. Our results show that stromal populations from different sources, although immunophenotypically similar, display distinct HOX and TALE signatures, as well as different growth and differentiation abilities. Stromal stem cells from different tissues are characterized by specific HOX profiles, differing in the number and type of active genes, as well as in their level of expression. Conversely, bone marrow-derived cell populations can be essentially distinguished for the expression levels of specific HOX members, strongly suggesting that quantitative differences in HOX activity may be crucial. Taken together, our data indicate that the HOX and TALE profiles provide positional, embryological and hierarchical identity of human stromal stem cells. Furthermore, our data suggest that cell populations derived from different body sites may not represent equivalent cell sources for cell-based therapeutical strategies for regeneration and repair of specific tissues. Copyright © 2012 Wiley Periodicals, Inc.

  9. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Askari, Arman T.; Unzek, Samuel; Popovic, Zoran B.; Goldman, Corey K.; Forudi, Farhad; Kiedrowski, Matthew; Rovner, Aleksandr; Ellis, Stephen G.; Thomas, James D.; DiCorleto, Paul E.; hide

    2003-01-01

    BACKGROUND: Myocardial regeneration via stem-cell mobilisation at the time of myocardial infarction is known to occur, although the mechanism for stem-cell homing to infarcted tissue subsequently and whether this approach can be used for treatment of ischaemic cardiomyopathy are unknown. We investigated these issues in a Lewis rat model (ligation of the left anterior descending artery) of ischaemic cardiomyopathy. METHODS: We studied the effects of stem-cell mobilisation by use of granulocyte colony-stimulating factor (filgrastim) with or without transplantation of syngeneic cells. Shortening fraction and myocardial strain by tissue doppler imaging were quantified by echocardiography. FINDINGS: Stem-cell mobilisation with filgrastim alone did not lead to engraftment of bone-marrow-derived cells. Stromal-cell-derived factor 1 (SDF-1), required for stem-cell homing to bone marrow, was upregulated immediately after myocardial infarction and downregulated within 7 days. 8 weeks after myocardial infarction, transplantation into the peri-infarct zone of syngeneic cardiac fibroblasts stably transfected to express SDF-1 induced homing of CD117-positive stem cells to injured myocardium after filgrastim administration (control vs SDF-1-expressing cardiac fibroblasts mean 7.2 [SD 3.4] vs 33.2 [6.0] cells/mm2, n=4 per group, p<0.02) resulting in greater left-ventricular mass (1.24 [0.29] vs 1.57 [0.27] g) and better cardiac function (shortening fraction 9.2 [4.9] vs 17.2 [4.2]%, n=8 per group, p<0.05). INTERPRETATION: These findings show that SDF-1 is sufficient to induce therapeutic stem-cell homing to injured myocardium and suggest a strategy for directed stem-cell engraftment into injured tissues. Our findings also indicate that therapeutic strategies focused on stem-cell mobilisation for regeneration of myocardial tissue must be initiated within days of myocardial infarction unless signalling for stem-cell homing is re-established.

  10. Autologous transplantation of bone marrow-derived mesenchymal stem cells: a promising therapeutic strategy for prevention of skin-graft contraction.

    PubMed

    Xu, Y; Huang, S; Fu, X

    2012-07-01

    Hypertrophic scars result from abnormal healing of severe burns, and are characterized by loss of the original structure and function of the skin. Transplantation of autologous split skin is the preferred treatment after scar excision; however, there will be some unavoidable degree of contraction within the grafts. To our knowledge, it is very rare that bone marrow-derived mesenchymal stem cells (BM-MSCs) have been used for the treatment of skin-graft contraction. However, in our clinics, we found that during a 2-year follow-up analysis, areas treated with autologous BM-MSCs combined with transplantation of split skin were less likely to have contraction of the skin grafts than areas treated with skin grafts alone. This result indicates that BM-MSCs may be a potential and promising treatment to prevent contraction of skin grafts. © The Author(s). CED © 2012 British Association of Dermatologists.

  11. Fibrin glue as the cell-delivery vehicle for mesenchymal stromal cells in regenerative medicine.

    PubMed

    Wu, Xiuwen; Ren, Jianan; Li, Jieshou

    2012-05-01

    The use of tissue-engineering techniques such as stem-cell therapy to renew injured tissues is a promising strategy in regenerative medicine. As a cell-delivery vehicle, fibrin glues (FG) facilitate cell attachment, growth and differentiation and, ultimately, tissue formation and organization by its three-dimensional structure. Numerous studies have provided evidence that stromal cells derived from bone marrow (bone marrow stromal cells; BMSC) and adipose tissue (adipose-derived stromal cells; ADSC) contain a population of adult multipotent mesenchymal stromal cells (MSC) and endothelial progenitor cells that can differentiate into several lineages. By combining MSC with FG, the implantation could take advantage of the mutual benefits. Researchers and physicians have pinned their hopes on stem cells for developing novel approaches in regenerative medicine. This review focuses on the therapeutic potential of MSC with FG in bone defect reconstruction, cartilage and tendon injury repair, ligament, heart and nerve regeneration, and, furthermore, wound healing.

  12. Expansion of donor-derived hematopoietic stem cells with PIGA mutation associated with late graft failure after allogeneic stem cell transplantation.

    PubMed

    Mochizuki, Kanako; Sugimori, Chiharu; Qi, Zhirong; Lu, Xuzhang; Takami, Akiyoshi; Ishiyama, Ken; Kondo, Yukio; Yamazaki, Hirohito; Okumura, Hirokazu; Nakao, Shinji

    2008-09-01

    A small population of CD55(-)CD59(-) blood cells was detected in a patient who developed donor-type late graft failure after allogeneic stem cell transplantation (SCT) for treatment of aplastic anemia (AA). Chimerism and PIGA gene analyses showed the paroxysmal nocturnal hemoglobinuria (PNH)-type granulocytes to be of a donor-derived stem cell with a thymine insertion in PIGA exon 2. A sensitive mutation-specific polymerase chain reaction (PCR)-based analysis detected the mutation exclusively in DNA derived from the donor bone marrow (BM) cells. The patient responded to immunosuppressive therapy and achieved transfusion independence. The small population of PNH-type cells was undetectable in any of the 50 SCT recipients showing stable engraftment. The de novo development of donor cell-derived AA with a small population of PNH-type cells in this patient supports the concept that glycosyl phosphatidylinositol-anchored protein-deficient stem cells have a survival advantage in the setting of immune-mediated BM injury.

  13. Adipogenic Differentiation of Mesenchymal Stem Cells Alters Their Immunomodulatory Properties in a Tissue-Specific Manner.

    PubMed

    Munir, Hafsa; Ward, Lewis S C; Sheriff, Lozan; Kemble, Samuel; Nayar, Saba; Barone, Francesca; Nash, Gerard B; McGettrick, Helen M

    2017-06-01

    Chronic inflammation is associated with formation of ectopic fat deposits that might represent damage-induced aberrant mesenchymal stem cell (MSC) differentiation. Such deposits are associated with increased levels of inflammatory infiltrate and poor prognosis. Here we tested the hypothesis that differentiation from MSC to adipocytes in inflamed tissue might contribute to chronicity through loss of immunomodulatory function. We assessed the effects of adipogenic differentiation of MSC isolated from bone marrow or adipose tissue on their capacity to regulate neutrophil recruitment by endothelial cells and compared the differentiated cells to primary adipocytes from adipose tissue. Bone marrow derived MSC were immunosuppressive, inhibiting neutrophil recruitment to TNFα-treated endothelial cells (EC), but MSC-derived adipocytes were no longer able to suppress neutrophil adhesion. Changes in IL-6 and TGFβ1 signalling appeared critical for the loss of the immunosuppressive phenotype. In contrast, native stromal cells, adipocytes derived from them, and mature adipocytes from adipose tissue were all immunoprotective. Thus disruption of normal tissue stroma homeostasis, as occurs in chronic inflammatory diseases, might drive "abnormal" adipogenesis which adversely influences the behavior of MSC and contributes to pathogenic recruitment of leukocytes. Interestingly, stromal cells programmed in native fat tissue retain an immunoprotective phenotype. Stem Cells 2017;35:1636-1646. © 2017 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  14. Bone marrow mesenchymal stem cells from patients with aplastic anemia maintain functional and immune properties and do not contribute to the pathogenesis of the disease.

    PubMed

    Bueno, Clara; Roldan, Mar; Anguita, Eduardo; Romero-Moya, Damia; Martín-Antonio, Beatriz; Rosu-Myles, Michael; del Cañizo, Consuelo; Campos, Francisco; García, Regina; Gómez-Casares, Maite; Fuster, Jose Luis; Jurado, Manuel; Delgado, Mario; Menendez, Pablo

    2014-07-01

    Aplastic anemia is a life-threatening bone marrow failure disorder characterized by peripheral pancytopenia and marrow hypoplasia. The majority of cases of aplastic anemia remain idiopathic, although hematopoietic stem cell deficiency and impaired immune responses are hallmarks underlying the bone marrow failure in this condition. Mesenchymal stem/stromal cells constitute an essential component of the bone marrow hematopoietic microenvironment because of their immunomodulatory properties and their ability to support hematopoiesis, and they have been involved in the pathogenesis of several hematologic malignancies. We investigated whether bone marrow mesenchymal stem cells contribute, directly or indirectly, to the pathogenesis of aplastic anemia. We found that mesenchymal stem cell cultures can be established from the bone marrow of aplastic anemia patients and display the same phenotype and differentiation potential as their counterparts from normal bone marrow. Mesenchymal stem cells from aplastic anemia patients support the in vitro homeostasis and the in vivo repopulating function of CD34(+) cells, and maintain their immunosuppressive and anti-inflammatory properties. These data demonstrate that bone marrow mesenchymal stem cells from patients with aplastic anemia do not have impaired functional and immunological properties, suggesting that they do not contribute to the pathogenesis of the disease. Copyright© Ferrata Storti Foundation.

  15. Combined effects of interleukin-7 and stem cell factor administration on lymphopoiesis after murine bone marrow transplantation.

    PubMed

    Chung, Brile; Min, Dullei; Joo, Lukas W; Krampf, Mark R; Huang, Jing; Yang, Yujun; Shashidhar, Sumana; Brown, Janice; Dudl, Eric P; Weinberg, Kenneth I

    2011-01-01

    The decreased ability of the thymus to generate T cells after bone marrow transplantation (BMT) is a clinically significant problem. Interleukin (IL)-7 and stem cell factor (SCF) induce proliferation, differentiation, and survival of thymocytes. Although previous studies have shown that administration of recombinant human IL-7 (rhIL-7) after murine and human BMT improves thymopoiesis and immune function, whether administration of SCF exerts similar effects is unclear. To evaluate independent or combinatorial effects of IL-7 and SCF in post-BMT thymopoiesis, bone marrow (BM)-derived mesenchymal stem cells transduced ex vivo with the rhIL-7 or murine SCF (mSCF) genes were cotransplanted with T cell-depleted BM cells into lethally irradiated mice. Although rhIL-7 and mSCF each improved immune reconstitution, the combination treatment had a significantly greater effect than either cytokine alone. Moreover, the combination treatment significantly increased donor-derived common lymphoid progenitors (CLPs) in BM, suggesting that transplanted CLPs expand more rapidly in response to IL-7 and SCF and may promote immune reconstitution. Our findings demonstrate that IL-7 and SCF might be therapeutically useful for enhancing de novo T cell development. Furthermore, combination therapy may allow the administration of lower doses of IL-7, thereby decreasing the likelihood of IL-7-mediated expansion of mature T cells. 2011. Published by Elsevier Inc.

  16. Human bone marrow harbors cells with neural crest-associated characteristics like human adipose and dermis tissues

    PubMed Central

    Coste, Cécile; Neirinckx, Virginie; Sharma, Anil; Agirman, Gulistan; Rogister, Bernard; Foguenne, Jacques; Lallemend, François

    2017-01-01

    Adult neural crest stem-derived cells (NCSC) are of extraordinary high plasticity and promising candidates for use in regenerative medicine. Several locations such as skin, adipose tissue, dental pulp or bone marrow have been described in rodent, as sources of NCSC. However, very little information is available concerning their correspondence in human tissues, and more precisely for human bone marrow. The main objective of this study was therefore to characterize NCSC from adult human bone marrow. In this purpose, we compared human bone marrow stromal cells to human adipose tissue and dermis, already described for containing NCSC. We performed comparative analyses in terms of gene and protein expression as well as functional characterizations. It appeared that human bone marrow, similarly to adipose tissue and dermis, contains NESTIN+ / SOX9+ / TWIST+ / SLUG+ / P75NTR+ / BRN3A+/ MSI1+/ SNAIL1+ cells and were able to differentiate into melanocytes, Schwann cells and neurons. Moreover, when injected into chicken embryos, all those cells were able to migrate and follow endogenous neural crest migration pathways. Altogether, the phenotypic characterization and migration abilities strongly suggest the presence of neural crest-derived cells in human adult bone marrow. PMID:28683107

  17. Converging roads: evidence for an adult hemangioblast.

    PubMed

    Bailey, Alexis S; Fleming, William H

    2003-11-01

    Classical studies of the developing embryo first suggested the existence of the hemangioblast, a precursor cell with the potential to differentiate into both blood and blood vessels. Several lines of investigation demonstrated that many of the genes activated during early hematopoietic development are also expressed in the vascular endothelium. Gene-targeting studies using embryonic stem cells have identified Flk-1, SCL, and Runx-1 as important regulatory molecules that specify both hematopoietic and vascular outcomes. Although it was anticipated that the hemangioblast would be present only during the earliest stages of vascular development in the yolk sac, accumulating evidence now indicates that hematopoietic cells with hemangioblast activity persist into adulthood. In the adult, bone marrow-derived, circulating endothelial progenitors contribute to postnatal neovascularization and enhance vascular repair following ischemic injury. Highly purified populations of hematopoietic stem cells from humans and mice can differentiate into both blood cells and vascular tissue at the single cell level. These recent findings suggest that bone marrow-derived hematopoietic stem cells or their progeny may contribute to the maintenance and repair of both the hematopoietic and the vascular systems during adult life.

  18. Sonic hedgehog protein promotes proliferation and chondrogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro.

    PubMed

    Warzecha, Jörg; Göttig, Stephan; Brüning, Christian; Lindhorst, Elmar; Arabmothlagh, Mohammad; Kurth, Andreas

    2006-10-01

    Sonic hedgehog (Shh) protein is known to be an important signaling protein in early embryonic development. Also, Shh is involved in the induction of early cartilaginous differentiation of mesenchymal cells in the limb and in the spine. The impact of Shh on adult stem cells, human bone marrow-derived mesenchymal stem cells (MSCs), was tested. The MSCs were treated either with recombinant Sonic hedgehog protein (r-Shh) or with transforming growth factor-beta 1 (TGF-beta(1)) as a positive control in vitro for 3 weeks. The effects on cartilaginous differentiation and proliferation were assayed. MSCs when treated with either Shh or TGF-beta(1) showed expression of cartilage markers aggrecan, Sox9, CEP-68, and collagen type II and X within 3 weeks. Only r-Shh-treated cells showed a very strong cell proliferation and much higher BrdU incorporation in cell assay systems. These are the first data that indicate an important role of Shh for the induction of cartilage production by MSCs in vitro.

  19. Tracing the destiny of mesenchymal stem cells from embryo to adult bone marrow and white adipose tissue via Pdgfrα expression.

    PubMed

    Miwa, Hiroyuki; Era, Takumi

    2018-01-29

    Mesenchymal stem cells (MSCs) are somatic stem cells that can be derived from adult bone marrow (BM) and white adipose tissue (WAT), and that display multipotency and self-renewal capacity. Although MSCs are essential for tissue formation and have already been used in clinical therapy, the origins and markers of these cells remain unknown. In this study, we first investigated the developmental process of MSCs in mouse embryos using the gene encoding platelet-derived growth factor receptor α ( Pdgfra ) as a marker. We then traced cells expressing Pdgfra and other genes (brachyury, Sox1 and Pmx1 ) in various mutant mouse embryos until the adult stage. This tracing of MSC origins and destinies indicates that embryonic MSCs emerge in waves and that almost all adult BM MSCs and WAT MSCs originate from mesoderm and embryonic Pdgfrα-positive cells. Furthermore, we demonstrate that adult Pdgfrα-positive cells are involved in some pathological conditions. © 2018. Published by The Company of Biologists Ltd.

  20. Transplantation of mesenchymal stem cells improves type 1 diabetes mellitus.

    PubMed

    Li, Lisha; Li, Furong; Gao, Feng; Yang, Yali; Liu, Yuanyuan; Guo, Pingping; Li, Yulin

    2016-05-01

    Bone-marrow-derived stem cells can regenerate pancreatic tissue in a model of type 1 diabetes mellitus. Mesenchymal stem cells (MSCs) form the main part of bone marrow. We show that the intrapancreatic transplantation of MSCs elevates serum insulin and C-peptide, while decreasing blood glucose. MSCs engrafted into the damaged rat pancreas become distributed into the blood vessels, acini, ducts, and islets. Renascent islets, islet-like clusters, and a small number of MSCs expressing insulin protein have been observed in the pancreas of diabetic rats. Intrapancreatic transplantation of MSCs triggers a series of molecular and cellular events, including differentiation towards the pancreas directly and the provision of a niche to start endogenous pancreatic regeneration, which ameliorates hypoinsulinemia and hyperglycemia caused by streptozotocin. These data establish the many roles of MSCs in the restoration of the function of an injured organ.

  1. The effect of hydrostatic pressure on staurosporine-induced neural differentiation in mouse bone marrow‑derived mesenchymal stem cells.

    PubMed

    Javanmard, F; Azadbakht, M; Pourmoradi, M

    2016-01-01

    In this study, the role of hydrostatic pressure on staurosporine-induced neural differentiation in mouse bone marrow mesenchymal stem cells were investigated. The cells were cultured in treatment medium containing 100 nM of staurosporine for 4 hours; then the cells were affected by hydrostatic pressure (0, 25,50, 100 mmHg). The percentage of cell viability by trypan blue staining and the percentage of cell death by Hoechst/PI differential staining were assessed. We obtained the total neurite length. Expression of β-tubulin III and GFAP (Glial fibrillary acidic protein) proteins were also analyzed by immunocytochemistry. The percentage of cell viability in treatments decreased relative to the increase in hydrostatic pressure and time (p Keywords: bone marrow mesenchymal stem cell, hydrostatic pressure, immunocytochemistry, neural differentiation, neurite length, cell differentiation.

  2. Bone marrow derived stem cell therapy for type 2 diabetes mellitus.

    PubMed

    Wehbe, Tarek; Chahine, Nassim Abi; Sissi, Salam; Abou-Joaude, Isabelle; Chalhoub, Louis

    2016-01-01

    In this study, 6 patients with type 2 diabetes (T2D) underwent autologous bone marrow mononuclear stem cell (BM-MNSC) infusion into the celiac and superior mesenteric arteries without pretreatment with any myeloablative or immune-suppressive therapy. Five of 6 (83%) showed normalization of their fasting glucose and the glycosylated hemoglobin (HbA1C) with significant reduction of their medication requirements. The HbA1C dropped on average 2.2 points. The three patients with diabetic complications showed improvement or stabilization and most patients reported improved energy and stamina. The durations of response varied between 6 months and 2 years. No patients had any significant adverse effects.

  3. A novel role for bioactive lipids in stem cell mobilization during cardiac ischemia

    PubMed Central

    Nagareddy, Prabhakara R.; Asfour, Ahmed; Klyachkin, Yuri M.; Abdel-Latif, Ahmed

    2014-01-01

    Despite major advances in pharmacological and reperfusion therapies, regenerating and/or replacing the infarcted myocardial tissue is an enormous challenge and therefore ischemic heart disease (IHD) remains a major cause of mortality and morbidity worldwide. Adult bone marrow is home for a variety of hematopoietic and non-hematopoietic stem cells including a small subset of primitive cells that carry a promising regenerative potential. It is now well established that myocardial ischemia (MI) induces mobilization of bone marrow-derived cells including differentiated lineage as well as undifferentiated stem cells. While the numbers of stem cells carrying pluripotent features among the mobilized stem cells is small, their regenerative capacity appears immense. Therapies aimed at selective mobilization of these pluripotent stem cells during myocardial ischemia have a promising potential to regenerate the injured myocardium. Emerging evidence suggest that bioactive sphingolipids such as sphingosine-1 phosphate and ceramide-1 phosphate hold a great promise in selective mobilization of pluripotent stem cells to the infarcted region during MI. This review highlights the recent advances in the mechanisms of stem cell mobilization and provides newer evidence in support of bioactive lipids as potential therapeutic agents in the treatment of ischemic heart disease. PMID:24318213

  4. O-GlcNAc Modification of the runt-Related Transcription Factor 2 (Runx2) Links Osteogenesis and Nutrient Metabolism in Bone Marrow Mesenchymal Stem Cells*

    PubMed Central

    Nagel, Alexis K.; Ball, Lauren E.

    2014-01-01

    Runx2 is the master switch controlling osteoblast differentiation and formation of the mineralized skeleton. The post-translational modification of Runx2 by phosphorylation, ubiquitinylation, and acetylation modulates its activity, stability, and interactions with transcriptional co-regulators and chromatin remodeling proteins downstream of osteogenic signals. Characterization of Runx2 by electron transfer dissociation tandem mass spectrometry revealed sites of O-linked N-acetylglucosamine (O-GlcNAc) modification, a nutrient-responsive post-translational modification that modulates the action of numerous transcriptional effectors. O-GlcNAc modification occurs in close proximity to phosphorylated residues and novel sites of arginine methylation within regions known to regulate Runx2 transactivation. An interaction between Runx2 and the O-GlcNAcylated, O-GlcNAc transferase enzyme was also detected. Pharmacological inhibition of O-GlcNAcase (OGA), the enzyme responsible for the removal of O-GlcNAc from Ser/Thr residues, enhanced basal (39.9%) and BMP2/7-induced (43.3%) Runx2 transcriptional activity in MC3T3-E1 pre-osteoblasts. In bone marrow-derived mesenchymal stem cells differentiated for 6 days in osteogenic media, inhibition of OGA resulted in elevated expression (24.3%) and activity (65.8%) of alkaline phosphatase (ALP) an early marker of bone formation and a transcriptional target of Runx2. Osteogenic differentiation of bone marrow-derived mesenchymal stem cells in the presence of BMP2/7 for 8 days culminated in decreased OGA activity (39.0%) and an increase in the abundance of O-GlcNAcylated Runx2, as compared with unstimulated cells. Furthermore, BMP2/7-induced ALP activity was enhanced by 35.6% in bone marrow-derived mesenchymal stem cells differentiated in the presence of the OGA inhibitor, demonstrating that direct or BMP2/7-induced inhibition of OGA is associated with increased ALP activity. Altogether, these findings link O-GlcNAc cycling to the Runx2-dependent regulation of the early ALP marker under osteoblast differentiation conditions. PMID:25187572

  5. Lower Oncogenic Potential of Human Mesenchymal Stem Cells Derived from Cord Blood Compared to Induced Pluripotent Stem Cells

    PubMed Central

    Foroutan, T.; Najmi, M.; Kazemi, N.; Hasanlou, M.; Pedram, A.

    2015-01-01

    Background: In regenerative medicine, use of each of the mesenchymal stem cells derived from bone marrow, cord blood, and adipose tissue, has several cons and pros. Mesenchymal stem cells derived from cord blood have been considered the best source for precursor transplantation. Direct reprogramming of a somatic cell into induced pluripotent stem cells by over-expression of 6 transcription factors Oct4, Sox2, Klf4, lin28, Nanog, and c-Myc has great potential for regenerative medicine, eliminating the ethical issues of embryonic stem cells and the rejection problems of using non-autologous cells. Objective: To compare reprogramming and pluripotent markers OCT4, Sox-2, c-Myc, Klf4, Nanog, and lin28 in mesenchymal stem cells derived from cord blood and induced pluripotent stem cells. Methods: We analyzed the expression level of OCT4, Sox-2, c-Myc, Klf4, Nanog and lin28 genes in human mesenchymal stem cells derived from cord blood and induced pluripotent stem cells by cell culture and RT-PCR. Results: The expression level of pluripotent genes OCT4 and Sox-2, Nanog and lin28 in mesenchymal stem cells derived from cord blood were significantly higher than those in induced pluripotent stem cells. In contrast to OCT-4A and Sox-2, Nanog and lin28, the expression level of oncogenic factors c-Myc and Klf4 were significantly higher in induced pluripotent stem cells than in mesenchymal stem cells derived from cord blood. Conclusion: It could be concluded that mesenchymal stem cells derived from human cord blood have lower oncogenic potential compared to induced pluripotent stem cells. PMID:26306155

  6. [Basic biological characteristics of mesenchymal stem cells derived from bone marrow and human umbilical cord].

    PubMed

    Han, Zhen-Xia; Shi, Qing; Wang, Da-Kun; Li, Dong; Lyu, Ming

    2013-10-01

    Bone marrow (BM) and umbilical cord (UC) are the major sources of mesenchymal stem cells for therapeutics. This study was aimed to compare the basic biologic characteristics of bone marrow-derived and umbilical cord derived-mesenchymal stem cells (BM-MSC and UC-MSC) and their immunosuppressive capability in vitro. The BM-MSC and UC-MSC were cultured and amplified under same culture condition. The growth kinetics, phenotypic characteristics and immunosuppressive effects of UC-MSC were compared with those of BM-MSC.Gene chip was used to compare the genes differentially expressed between UC-MSC and BM-MSC. The results showed that UC-MSC shared most of the characteristics of BM-MSC, including morphology and immunophenotype. UC-MSC could be ready expanded for 30 passages without visible changes. However, BM-MSC grew slowly, and the mean doubling time increased notably after passage 6. Both UC-MSC and BM-MSC could inhibit phytohemagglutinin-stimulated peripheral blood mononuclear cell proliferation, in which BM-MSC mediated more inhibitory effect. Compared with UC-MSC, BM-MSC expressed more genes associated with immune response. Meanwhile, the categories of up-regulated genes in UC-MSC were concentrated in organ development and growth. It is concluded that the higher proliferation capacity, low human leukocyte antigen-ABC expression and immunosuppression make UC-MSC an excellent alternative to BM-MSC for cell therapy. The differences between BM-MSC and UC-MSC gene expressions can be explained by their ontogeny and different microenvironment in origin tissue. These differences can affect their efficacy in different therapeutic applications.

  7. Tissue Engineering Strategies for Promoting Vascularized Bone Regeneration

    PubMed Central

    Almubarak, Sarah; Nethercott, Hubert; Freeberg, Marie; Beaudon, Caroline; Jha, Amit; Jackson, Wesley; Marcucio, Ralph; Miclau, Theodore; Healy, Kevin; Bahney, Chelsea

    2016-01-01

    This review focuses on current tissue engineering strategies for promoting vascularized bone regeneration. We review the role of angiogenic growth factors in promoting vascularized bone regeneration and discuss the different therapeutic strategies for controlled/sustained growth factor delivery. Next, we address the therapeutic uses of stem cells in vascularized bone regeneration. Specifically, this review addresses the concept of co-culture using osteogenic and vasculogenic stem cells, and how adipose derived stem cells compare to bone marrow derived mesenchymal stem cells in the promotion of angiogenesis. We conclude this review with a discussion of a novel approach to bone regeneration through a cartilage intermediate, and discuss why it has the potential to be more effective than traditional bone grafting methods. PMID:26608518

  8. Stimulation of angiogenesis, neurogenesis and regeneration by side population cells from dental pulp.

    PubMed

    Ishizaka, Ryo; Hayashi, Yuki; Iohara, Koichiro; Sugiyama, Masahiko; Murakami, Masashi; Yamamoto, Tsubasa; Fukuta, Osamu; Nakashima, Misako

    2013-03-01

    Mesenchymal stem cells (MSCs) have been used for cell therapy in various experimental disease models. However, the regenerative potential of MSCs from different tissue sources and the influence of the tissue niche have not been investigated. In this study, we compared the regenerative potential of dental pulp, bone marrow and adipose tissue-derived CD31(-) side population (SP) cells isolated from an individual porcine source. Pulp CD31(-) SP cells expressed the highest levels of angiogenic/neurotrophic factors and had the highest migration activity. Conditioned medium from pulp CD31(-) SP cells produced potent anti-apoptotic activity and neurite outgrowth, compared to those from bone marrow and adipose CD31(-) SP cells. Transplantation of pulp CD31(-) SP cells in a mouse hindlimb ischemia model produced higher blood flow and capillary density than transplantation of bone marrow and adipose CD31(-) SP cells. Motor function recovery and infarct size reduction were greater with pulp CD31(-) SP cells. Pulp CD31(-) SP cells induced maximal angiogenesis, neurogenesis and pulp regeneration in ectopic transplantation models compared to other tissue sources. These results demonstrate that pulp stem cells have higher angiogenic, neurogenic and regenerative potential and may therefore be superior to bone marrow and adipose stem cells for cell therapy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Comparison of Uncultured Marrow Mononuclear Cells and Culture-Expanded Mesenchymal Stem Cells in 3D Collagen-Chitosan Microbeads for Orthopedic Tissue Engineering

    PubMed Central

    Wise, Joel K.; Alford, Andrea I.; Goldstein, Steven A.

    2014-01-01

    Stem cell-based therapies have shown promise in enhancing repair of bone and cartilage. Marrow-derived mesenchymal stem cells (MSC) are typically expanded in vitro to increase cell number, but this process is lengthy, costly, and there is a risk of contamination and altered cellular properties. Potential advantages of using fresh uncultured bone marrow mononuclear cells (BMMC) include heterotypic cell and paracrine interactions between MSC and other marrow-derived cells including hematopoietic, endothelial, and other progenitor cells. In the present study, we compared the osteogenic and chondrogenic potential of freshly isolated BMMC to that of cultured-expanded MSC, when encapsulated in three-dimensional (3D) collagen-chitosan microbeads. The effect of low and high oxygen tension on cell function and differentiation into orthopedic lineages was also examined. Freshly isolated rat BMMC (25×106 cells/mL, containing an estimated 5×104 MSC/mL) or purified and culture-expanded rat bone marrow-derived MSC (2×105 cells/mL) were added to a 65–35 wt% collagen-chitosan hydrogel mixture and fabricated into 3D microbeads by emulsification and thermal gelation. Microbeads were cultured in control MSC growth media in either 20% O2 (normoxia) or 5% O2 (hypoxia) for an initial 3 days, and then in control, osteogenic, or chondrogenic media for an additional 21 days. Microbead preparations were evaluated for viability, total DNA content, calcium deposition, and osteocalcin and sulfated glycosaminoglycan expression, and they were examined histologically. Hypoxia enhanced initial progenitor cell survival in fresh BMMC-microbeads, but it did not enhance osteogenic potential. Fresh uncultured BMMC-microbeads showed a similar degree of osteogenesis as culture-expanded MSC-microbeads, even though they initially contained only 1/10th the number of MSC. Chondrogenic differentiation was not strongly supported in any of the microbead formulations. This study demonstrates the microbead-based approach to culturing and delivering cells for tissue regeneration, and suggests that fresh BMMC may be an alternative to using culture-expanded MSC for bone tissue engineering. PMID:23879621

  10. Comparison of uncultured marrow mononuclear cells and culture-expanded mesenchymal stem cells in 3D collagen-chitosan microbeads for orthopedic tissue engineering.

    PubMed

    Wise, Joel K; Alford, Andrea I; Goldstein, Steven A; Stegemann, Jan P

    2014-01-01

    Stem cell-based therapies have shown promise in enhancing repair of bone and cartilage. Marrow-derived mesenchymal stem cells (MSC) are typically expanded in vitro to increase cell number, but this process is lengthy, costly, and there is a risk of contamination and altered cellular properties. Potential advantages of using fresh uncultured bone marrow mononuclear cells (BMMC) include heterotypic cell and paracrine interactions between MSC and other marrow-derived cells including hematopoietic, endothelial, and other progenitor cells. In the present study, we compared the osteogenic and chondrogenic potential of freshly isolated BMMC to that of cultured-expanded MSC, when encapsulated in three-dimensional (3D) collagen-chitosan microbeads. The effect of low and high oxygen tension on cell function and differentiation into orthopedic lineages was also examined. Freshly isolated rat BMMC (25 × 10(6) cells/mL, containing an estimated 5 × 10(4) MSC/mL) or purified and culture-expanded rat bone marrow-derived MSC (2 × 10(5) cells/mL) were added to a 65-35 wt% collagen-chitosan hydrogel mixture and fabricated into 3D microbeads by emulsification and thermal gelation. Microbeads were cultured in control MSC growth media in either 20% O2 (normoxia) or 5% O2 (hypoxia) for an initial 3 days, and then in control, osteogenic, or chondrogenic media for an additional 21 days. Microbead preparations were evaluated for viability, total DNA content, calcium deposition, and osteocalcin and sulfated glycosaminoglycan expression, and they were examined histologically. Hypoxia enhanced initial progenitor cell survival in fresh BMMC-microbeads, but it did not enhance osteogenic potential. Fresh uncultured BMMC-microbeads showed a similar degree of osteogenesis as culture-expanded MSC-microbeads, even though they initially contained only 1/10th the number of MSC. Chondrogenic differentiation was not strongly supported in any of the microbead formulations. This study demonstrates the microbead-based approach to culturing and delivering cells for tissue regeneration, and suggests that fresh BMMC may be an alternative to using culture-expanded MSC for bone tissue engineering.

  11. Complementarity of SOMAscan to LC-MS/MS and RNA-seq for quantitative profiling of human embryonic and mesenchymal stem cells.

    PubMed

    Billing, Anja M; Ben Hamidane, Hisham; Bhagwat, Aditya M; Cotton, Richard J; Dib, Shaima S; Kumar, Pankaj; Hayat, Shahina; Goswami, Neha; Suhre, Karsten; Rafii, Arash; Graumann, Johannes

    2017-01-06

    Dynamic range limitations are challenging to proteomics, particularly in clinical samples. Affinity proteomics partially overcomes this, yet suffers from dependence on reagent quality. SOMAscan, an aptamer-based platform for over 1000 proteins, avoids that issue using nucleic acid binders. Targets include low expressed proteins not easily accessible by other approaches. Here we report on the potential of SOMAscan for the study of differently sourced mesenchymal stem cells (MSC) in comparison to LC-MS/MS and RNA sequencing. While targeting fewer analytes, SOMAscan displays high precision and dynamic range coverage, allowing quantification of proteins not measured by the other platforms. Expression between cell types (ESC and MSC) was compared across techniques and uncovered the expected large differences. Sourcing was investigated by comparing subtypes: bone marrow-derived, standard in clinical studies, and ESC-derived MSC, thought to hold similar potential but devoid of inter-donor variability and proliferating faster in vitro. We confirmed subtype-equivalency, as well as vesicle and extracellular matrix related processes in MSC. In contrast, the proliferative nature of ESC was captured less by SOMAscan, where nuclear proteins are underrepresented. The complementary of SOMAscan allowed the comprehensive exploration of CD markers and signaling molecules, not readily accessible otherwise and offering unprecedented potential in subtype characterization. Mesenchymal stem cells (MSC) represent promising stem cell-derived therapeutics as indicated by their application in >500 clinical trials currently registered with the NIH. Tissue-derived MSC require invasive harvesting and imply donor-to-donor differences, to which embryonic stem cell (ESC)-derived MSC may provide an alternative and thus warrant thorough characterization. In continuation of our previous study where we compared in depth embryonic stem cells (ESC) and MSC from two sources (bone marrow and ESC-derived), we included the aptamer-based SOMAscan assay, complementing LC-MS/MS and RNA-seq data. Furthermore, SOMAscan, a targeted proteomics platform developed for analyzing clinical samples, has been benchmarked against established analytical platforms (LC-MS/MS and RNA-seq) using stem cell comparisons as a model. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Regeneration of articular cartilage by adipose tissue derived mesenchymal stem cells: perspectives from stem cell biology and molecular medicine.

    PubMed

    Wu, Ling; Cai, Xiaoxiao; Zhang, Shu; Karperien, Marcel; Lin, Yunfeng

    2013-05-01

    Adipose-derived stem cells (ASCs) have been discovered for more than a decade. Due to the large numbers of cells that can be harvested with relatively little donor morbidity, they are considered to be an attractive alternative to bone marrow derived mesenchymal stem cells. Consequently, isolation and differentiation of ASCs draw great attention in the research of tissue engineering and regenerative medicine. Cartilage defects cause big therapeutic problems because of their low self-repair capacity. Application of ASCs in cartilage regeneration gives hope to treat cartilage defects with autologous stem cells. In recent years, a lot of studies have been performed to test the possibility of using ASCs to re-construct damaged cartilage tissue. In this article, we have reviewed the most up-to-date articles utilizing ASCs for cartilage regeneration in basic and translational research. Our topic covers differentiation of adipose tissue derived mesenchymal stem cells into chondrocytes, increased cartilage formation by co-culture of ASCs with chondrocytes and enhancing chondrogenic differentiation of ASCs by gene manipulation. Copyright © 2012 Wiley Periodicals, Inc.

  13. Characterization and Classification of Mesenchymal Stem Cells in Several Species Using Surface Markers for Cell Therapy Purposes.

    PubMed

    Ghaneialvar, Hori; Soltani, Leila; Rahmani, Hamid Reza; Lotfi, Abbas Sahebghadam; Soleimani, Masoud

    2018-01-01

    Mesenchymal stem cells are multipotent cells capable of replicating as undifferentiated cells, and have the potential of differentiating into mesenchymal tissue lineages such as osteocytes, adipocytes and chondrocytes. Such lineages can then be used in cell therapy. The aim of present study was to characterize bone marrow derived mesenchymal stem cells in four different species, including: sheep, goat, human and mouse. Human bone-marrow mesenchymal stem cells were purchased, those of sheep and goat were isolated from fetal bone marrow, and those of mouse were collected by washing bone cavity of femur and tibia with DMEM/F12. Using flow-cytometry, they were characterized by CD surface antigens. Furthermore, cells of third passage were examined for their osteogenic and adipogenic differentiation potential by oil red and alizarin red staining respectively. According to the results, CD markers studied in the four groups of mesenchymal stem cells showed a different expression. Goat and sheep expressed CD44 and CD166, and weakly expressed CD34, CD45, CD105 and CD90. Similarly, human and mouse mesenchymal cells expressed CD44, CD166, CD105 and CD90 whereas the expression of CD34 and CD45 was negative. In conclusion, although all mesenchymal stem cells display plastic adherence and tri-lineage differentiation, not all express the same panel of surface antigens described for human mesenchymal stem cells. Additional panel of CD markers are necessary to characterize regenerative potential and possible application of these stem cells in regenerative medicine and implantology.

  14. Blood and Bone Marrow Donation

    MedlinePlus

    ... who's waiting for a stem cell transplant. Risks Bone marrow donation The most serious risk associated with ... or her health insurance. What you can expect Bone marrow donation Collecting stem cells from bone marrow ...

  15. Following damage, the majority of bone marrow-derived airway cells express an epithelial marker.

    PubMed

    MacPherson, Heather; Keir, Pamela A; Edwards, Carol J; Webb, Sheila; Dorin, Julia R

    2006-12-19

    Adult-derived bone marrow stem cells are capable of reconstituting the haematopoietic system. However there is ongoing debate in the literature as to whether bone marrow derived cells have the ability to populate other tissues and express tissue specific markers. The airway has been an organ of major interest and was one of the first where this was demonstrated. We have previously demonstrated that the mouse airway can be repopulated by side population bone marrow transplanted cells. Here we investigate the frequency and phenotypic nature of these bone marrow derived cells. Female mice were engrafted with male whole bone marrow or side population (SP) cells and subjected to detergent-induced damage after 3 months. Donor cells were identified by Y chromosome fluorescence in situ hybridisation and their phenotype was assessed by immunohistochemistry on the same sections. Slides were visualised by a combination of widefield and deconvolved microscopy and whole cells were analysed on cytospin preparations. The frequencies of engraftment of male cells in the airway of mice that show this (9/10), range from 1.0-1.6% with whole marrow and 0.6-1.5% with SP cells. Undamaged controls have only between 0.1 and 0.2% male cells in the trachea. By widefield microscopy analysis we find 60.2% (53/88) of male donor derived cells express cytokeratins as a marker of epithelial cells. These results were reinforced using deconvolved microscopy and scored by two independent investigators. In addition cytospin analysis of cells dissociated from the damaged trachea of engrafted mice also reveals donor derived Y chromosome positive cells that are immunopositive for cytokeratin. Using cytokeratin and the universal haematopoietic marker CD45 immunohistochemistry, we find the donor derived cells fall into four phenotypic classes. We do not detect cytokeratin positive cells in whole bone marrow using cytokeratin immunostaining and we do not detect any cytokeratin mRNA in SP or bone marrow samples by RT-PCR. The appearance of bone marrow derived cells in the tracheal epithelium is enriched by detergent-induced tissue damage and the majority of these cells express an epithelial marker. The cytokeratin positive donor derived cells in the tracheal epithelium are not present in the injected donor cells and must have acquired this novel phenotype in vivo.

  16. Following damage, the majority of bone marrow-derived airway cells express an epithelial marker

    PubMed Central

    MacPherson, Heather; Keir, Pamela A; Edwards, Carol J; Webb, Sheila; Dorin, Julia R

    2006-01-01

    Background Adult-derived bone marrow stem cells are capable of reconstituting the haematopoietic system. However there is ongoing debate in the literature as to whether bone marrow derived cells have the ability to populate other tissues and express tissue specific markers. The airway has been an organ of major interest and was one of the first where this was demonstrated. We have previously demonstrated that the mouse airway can be repopulated by side population bone marrow transplanted cells. Here we investigate the frequency and phenotypic nature of these bone marrow derived cells. Methods Female mice were engrafted with male whole bone marrow or side population (SP) cells and subjected to detergent-induced damage after 3 months. Donor cells were identified by Y chromosome fluorescence in situ hybridisation and their phenotype was assessed by immunohistochemistry on the same sections. Slides were visualised by a combination of widefield and deconvolved microscopy and whole cells were analysed on cytospin preparations. Results The frequencies of engraftment of male cells in the airway of mice that show this (9/10), range from 1.0 – 1.6% with whole marrow and 0.6 – 1.5% with SP cells. Undamaged controls have only between 0.1 and 0.2% male cells in the trachea. By widefield microscopy analysis we find 60.2% (53/88) of male donor derived cells express cytokeratins as a marker of epithelial cells. These results were reinforced using deconvolved microscopy and scored by two independent investigators. In addition cytospin analysis of cells dissociated from the damaged trachea of engrafted mice also reveals donor derived Y chromosome positive cells that are immunopositive for cytokeratin. Using cytokeratin and the universal haematopoietic marker CD45 immunohistochemistry, we find the donor derived cells fall into four phenotypic classes. We do not detect cytokeratin positive cells in whole bone marrow using cytokeratin immunostaining and we do not detect any cytokeratin mRNA in SP or bone marrow samples by RT-PCR. Conclusion The appearance of bone marrow derived cells in the tracheal epithelium is enriched by detergent-induced tissue damage and the majority of these cells express an epithelial marker. The cytokeratin positive donor derived cells in the tracheal epithelium are not present in the injected donor cells and must have acquired this novel phenotype in vivo. PMID:17177981

  17. Bone Marrow Diseases

    MedlinePlus

    Bone marrow is the spongy tissue inside some of your bones, such as your hip and thigh bones. It contains stem cells. The stem cells can ... the platelets that help with blood clotting. With bone marrow disease, there are problems with the stem ...

  18. Morphological, molecular and functional differences of adult bone marrow- and adipose-derived stem cells isolated from rats of different ages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantovani, Cristina; Department of Integrative Medical Biology and Surgical and Perioperative Science, Umea University, Umea; Department of Surgical and Perioperative Science, Umea University, Umea

    2012-10-01

    Adult mesenchymal stem cells have self-renewal and multiple differentiation potentials, and play important roles in regenerative medicine. However, their use may be limited by senescence or age of the donor, leading to changes in stem cell functionality. We investigated morphological, molecular and functional differences between bone marrow-derived (MSC) and adipose-derived (ASC) stem cells isolated from neonatal, young and old rats compared to Schwann cells from the same animals. Immunocytochemistry, RT-PCR, proliferation assays, western blotting and transmission electron microscopy were used to investigate expression of senescence markers. Undifferentiated and differentiated ASC and MSC from animals of different ages expressed Notch-2 atmore » similar levels; protein-38 and protein-53 were present in all groups of cells with a trend towards increased levels in cells from older animals compared to those from neonatal and young rats. Following co-culture with adult neuronal cells, dMSC and dASC from animals of all ages elicited robust neurite outgrowth. Mitotracker{sup Registered-Sign} staining was consistent with ultrastructural changes seen in the mitochondria of cells from old rats, indicative of senescence. In conclusion, this study showed that although the cells from aged animals expressed markers of senescence, aged MSC and ASC differentiated into SC-like cells still retain potential to support axon regeneration. -- Highlights: Black-Right-Pointing-Pointer Aged MSC and ASC differentiated into Schwann-like cells support axon regeneration. Black-Right-Pointing-Pointer p53 expression does not appreciably influence the biology of Schwann or stem cells. Black-Right-Pointing-Pointer Notch 2 expression was similar in cells derived from animals of different ages. Black-Right-Pointing-Pointer Proliferation rates of dMSC varied little over time or with animal age.« less

  19. Clonal analysis of synovial fluid stem cells to characterize and identify stable mesenchymal stromal cell/mesenchymal progenitor cell phenotypes in a porcine model: a cell source with enhanced commitment to the chondrogenic lineage.

    PubMed

    Ando, Wataru; Kutcher, Josh J; Krawetz, Roman; Sen, Arindom; Nakamura, Norimasa; Frank, Cyril B; Hart, David A

    2014-06-01

    Previous studies have demonstrated that porcine synovial membrane stem cells can adhere to a cartilage defect in vivo through the use of a tissue-engineered construct approach. To optimize this model, we wanted to compare effectiveness of tissue sources to determine whether porcine synovial fluid, synovial membrane, bone marrow and skin sources replicate our understanding of synovial fluid mesenchymal stromal cells or mesenchymal progenitor cells from humans both at the population level and the single-cell level. Synovial fluid clones were subsequently isolated and characterized to identify cells with a highly characterized optimal phenotype. The chondrogenic, osteogenic and adipogenic potentials were assessed in vitro for skin, bone marrow, adipose, synovial fluid and synovial membrane-derived stem cells. Synovial fluid cells then underwent limiting dilution analysis to isolate single clonal populations. These clonal populations were assessed for proliferative and differentiation potential by use of standardized protocols. Porcine-derived cells demonstrated the same relationship between cell sources as that demonstrated previously for humans, suggesting that the pig may be an ideal preclinical animal model. Synovial fluid cells demonstrated the highest chondrogenic potential that was further characterized, demonstrating the existence of a unique clonal phenotype with enhanced chondrogenic potential. Porcine stem cells demonstrate characteristics similar to those in human-derived mesenchymal stromal cells from the same sources. Synovial fluid-derived stem cells contain an inherent phenotype that may be optimal for cartilage repair. This must be more fully investigated for future use in the in vivo tissue-engineered construct approach in this physiologically relevant preclinical porcine model. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  20. A novel rat fibrosarcoma cell line from transformed bone marrow-derived mesenchymal stem cells with maintained in vitro and in vivo stemness properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Meng-Yu; Nestvold, Janne, E-mail: j.m.nestvold@medisin.uio.no; Rekdal, Øystein

    Increasing evidence suggests a possible relationship between mesenchymal stem cells (MSCs) and sarcoma. MSCs are hypothesized to be the cells initiating sarcomagenesis, and cancer stem cells (CSCs) sharing features of MSCs have been identified in sarcomas. Here, we report on the characteristics of a bone marrow-derived rat mesenchymal stem cell line that spontaneously transformed in long-term culture. The rat transformed mesenchymal stem cells (rTMSCs) produced soft-tissue fibrosarcomas in immunocompromised mice and immunocompetent rats. In vitro, the rTMSCs displayed increased proliferation capacity compared to the untransformed cell line. The transformed MSCs maintained the mesenchymal phenotype by expression of the stem cellmore » marker CD 90 and the lack of hematopoietic and endothelial markers. Cytogenetic analysis detected trisomy 6 in the rTMSCs. Side population (SP) isolation and tumorsphere cultivation of the transformed cells confirmed the presence of CSCs among the rTMSCs. Importantly, the rTMSCs retained their differentiation capacity towards osteogenic and adipogenic lineages. This transformed MSC-based cell line may be valuable in examining the balance in a mixed cell population between cancer stem cell properties and the ability to differentiate to specific non-transformed cell populations. Moreover, it may also be a useful tool to evaluate the efficacy of novel targeted immunotherapies in vivo. - Highlights: • Spontaneously transformed rat MSCs (rTMSCs) share characteristics with normal MSCs. • rTMSCs possess a side population, enriched with tumorigenic cells. • rTMSCs model fibrosarcoma in vivo.« less

  1. Combination of low-energy shock-wave therapy and bone marrow mesenchymal stem cell transplantation to improve the erectile function of diabetic rats

    PubMed Central

    Shan, Hai-Tao; Zhang, Hai-Bo; Chen, Wen-Tao; Chen, Feng-Zhi; Wang, Tao; Luo, Jin-Tai; Yue, Min; Lin, Ji-Hong; Wei, An-Yang

    2017-01-01

    Stem cell transplantation and low-energy shock-wave therapy (LESWT) have emerged as potential and effective treatment protocols for diabetic erectile dysfunction. During the tracking of transplanted stem cells in diabetic erectile dysfunction models, the number of visible stem cells was rather low and decreased quickly. LESWT could recruit endogenous stem cells to the cavernous body and improve the microenvironment in diabetic cavernous tissue. Thus, we deduced that LESWT might benefit transplanted stem cell survival and improve the effects of stem cell transplantation. In this research, 42 streptozotocin-induced diabetic rats were randomized into four groups: the diabetic group (n = 6), the LESWT group (n = 6), the bone marrow-derived mesenchymal stem cell (BMSC) transplantation group (n = 15), and the combination of LESWT and BMSC transplantation group (n = 15). One and three days after BMSC transplantation, three rats were randomly chosen to observe the survival numbers of BMSCs in the cavernous body. Four weeks after BMSC transplantation, the following parameters were assessed: the surviving number of transplanted BMSCs in the cavernous tissue, erectile function, real-time polymerase chain reaction, and penile immunohistochemical assessment. Our research found that LESWT favored the survival of transplanted BMSCs in the cavernous body, which might be related to increased stromal cell-derived factor-1 expression and the enhancement of angiogenesis in the diabetic cavernous tissue. The combination of LESWT and BMSC transplantation could improve the erectile function of diabetic erectile function rats more effectively than LESWT or BMSC transplantation performed alone. PMID:27427555

  2. Combination of low-energy shock-wave therapy and bone marrow mesenchymal stem cell transplantation to improve the erectile function of diabetic rats.

    PubMed

    Shan, Hai-Tao; Zhang, Hai-Bo; Chen, Wen-Tao; Chen, Feng-Zhi; Wang, Tao; Luo, Jin-Tai; Yue, Min; Lin, Ji-Hong; Wei, An-Yang

    2017-01-01

    Stem cell transplantation and low-energy shock-wave therapy (LESWT) have emerged as potential and effective treatment protocols for diabetic erectile dysfunction. During the tracking of transplanted stem cells in diabetic erectile dysfunction models, the number of visible stem cells was rather low and decreased quickly. LESWT could recruit endogenous stem cells to the cavernous body and improve the microenvironment in diabetic cavernous tissue. Thus, we deduced that LESWT might benefit transplanted stem cell survival and improve the effects of stem cell transplantation. In this research, 42 streptozotocin-induced diabetic rats were randomized into four groups: the diabetic group (n = 6), the LESWT group (n = 6), the bone marrow-derived mesenchymal stem cell (BMSC) transplantation group (n = 15), and the combination of LESWT and BMSC transplantation group (n = 15). One and three days after BMSC transplantation, three rats were randomly chosen to observe the survival numbers of BMSCs in the cavernous body. Four weeks after BMSC transplantation, the following parameters were assessed: the surviving number of transplanted BMSCs in the cavernous tissue, erectile function, real-time polymerase chain reaction, and penile immunohistochemical assessment. Our research found that LESWT favored the survival of transplanted BMSCs in the cavernous body, which might be related to increased stromal cell-derived factor-1 expression and the enhancement of angiogenesis in the diabetic cavernous tissue. The combination of LESWT and BMSC transplantation could improve the erectile function of diabetic erectile function rats more effectively than LESWT or BMSC transplantation performed alone.

  3. Hepatic differentiation capability of rat bone marrow-derived mesenchymal stem cells and hematopoietic stem cells.

    PubMed

    Shu, Sai-Nan; Wei, Lai; Wang, Jiang-Hua; Zhan, Yu-Tao; Chen, Hong-Song; Wang, Yu

    2004-10-01

    To investigate the different effects of mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) on hepatic differentiation. MSCs from rat bone marrow were isolated and cultured by standard methods. HSCs from rat bone marrow were isolated and purified by magnetic activated cell sorting. Both cell subsets were induced. Morphology, RT-PCR and immunocytochemistry were used to identify the hepatic differentiation grade. MSCs exhibited round in shape after differentiation, instead of fibroblast-like morphology before differentiation. Albumin mRNA and protein were expressed positively in MSCs, without detection of alpha-fetoprotein (AFP). HSCs were polygonal in shape after differentiation. The expression of albumin signal decreased and AFP signal increased. The expression of CK18 was continuous in MSCs and HSCs both before and after induction. Both MSCs and HSCs have hepatic differentiation capabilities. However, their capabilities are not the same. MSCs can differentiate into mature hepatocyte-like cells, never expressing early hepatic specific genes, while Thy-1.1(+) cells are inclined to differentiate into hepatic stem cell-like cells, with an increasing AFP expression and a decreasing albumin signal. CK18 mRNA is positive in Thy-1.1(+) cells and MSCs, negative in Thy-1.1(-) cells. It seems that CK18 has some relationship with Thy-1.1 antigen, and CK18 may be a predictive marker of hepatic differentiation capability.

  4. Rapid Selection of Mesenchymal Stem and Progenitor Cells in Primary Prostate Stromal Cultures

    PubMed Central

    Brennen, W. Nathaniel; Kisteman, L. Nelleke; Isaacs, John T.

    2016-01-01

    BACKGROUND Carcinoma-associated fibroblasts (CAFs) are a dominant component of the tumor microenvironment with pro-tumorigenic properties. Despite this knowledge, their physiologic origins remain poorly understood. Mesenchymal stem cells (MSCs) can be recruited from the bone marrow to areas of tissue damage and inflammation, including prostate cancer. MSCs can generate and have many overlapping properties with CAFs in preclinical models. METHODS Multiparameter flow cytometry and multipotent differentiation assays used to define MSCs in primary prostate stromal cultures derived from young (>25 yrs) organ donors and prostate cancer patients compared with bone marrow-derived stromal cultures. Population doubling times, population doublings, cell size, and differentiation potential determined under multiple culture conditions, including normoxia, hypoxia, and a variety of media. TGF-β measured by ELISA. RESULTS MSCs and stromal progenitors are not only present in normal and malignant prostate tissue, but are quickly selected for in primary stromal cultures derived from these tissues; becoming the dominant population within just a few passages. Growth potential inversely associated with TGF-β concentrations. All conditions generated populations with an average cell diameter >15 μm. All cultures tested had the ability to undergo osteogenic and chondrogenic differentiation, but unlike bone marrow-derived MSCs, primary stromal cultures derived from normal prostate tissue lack adipogenic differentiation potential. In contrast, a subset of stromal cultures derived from prostate cancer patients retain the ability to differentiate into adipocytes; a property that is significantly suppressed under hypoxic conditions in both bone marrow- and prostate-derived MSCs. CONCLUSIONS Primary prostate stromal cultures are highly enriched in cells with an MSC or stromal progenitor phenotype. The use of primary cultures such as these to study CAFs raises interesting implications when considering their overlapping properties. The lack of adipogenesis in stromal cultures derived from normal prostates suggests they have a lineage-restricted progenitor phenotype. The retention of adipogenic differentiation in cultures from a subset of prostate cancer patients suggests the active recruitment of less committed progenitors or MSCs from the bone marrow as a function of disease progression. This recruitment can potentially be exploited for prognostic purposes or a cell-based platform for the systemic delivery of cytotoxic agents to sites of prostate cancer. PMID:26732992

  5. Rapid selection of mesenchymal stem and progenitor cells in primary prostate stromal cultures.

    PubMed

    Brennen, W Nathaniel; Kisteman, L Nelleke; Isaacs, John T

    2016-05-01

    Carcinoma-associated fibroblasts (CAFs) are a dominant component of the tumor microenvironment with pro-tumorigenic properties. Despite this knowledge, their physiologic origins remain poorly understood. Mesenchymal stem cells (MSCs) can be recruited from the bone marrow to areas of tissue damage and inflammation, including prostate cancer. MSCs can generate and have many overlapping properties with CAFs in preclinical models. Multiparameter flow cytometry and multipotent differentiation assays used to define MSCs in primary prostate stromal cultures derived from young (<25 yrs) organ donors and prostate cancer patients compared with bone marrow-derived stromal cultures. Population doubling times, population doublings, cell size, and differentiation potential determined under multiple culture conditions, including normoxia, hypoxia, and a variety of media. TGF-β measured by ELISA. MSCs and stromal progenitors are not only present in normal and malignant prostate tissue, but are quickly selected for in primary stromal cultures derived from these tissues; becoming the dominant population within just a few passages. Growth potential inversely associated with TGF-β concentrations. All conditions generated populations with an average cell diameter >15 µm. All cultures tested had the ability to undergo osteogenic and chondrogenic differentiation, but unlike bone marrow-derived MSCs, primary stromal cultures derived from normal prostate tissue lack adipogenic differentiation potential. In contrast, a subset of stromal cultures derived from prostate cancer patients retain the ability to differentiate into adipocytes; a property that is significantly suppressed under hypoxic conditions in both bone marrow- and prostate-derived MSCs. Primary prostate stromal cultures are highly enriched in cells with an MSC or stromal progenitor phenotype. The use of primary cultures such as these to study CAFs raises interesting implications when considering their overlapping properties. The lack of adipogenesis in stromal cultures derived from normal prostates suggests they have a lineage-restricted progenitor phenotype. The retention of adipogenic differentiation in cultures from a subset of prostate cancer patients suggests the active recruitment of less committed progenitors or MSCs from the bone marrow as a function of disease progression. This recruitment can potentially be exploited for prognostic purposes or a cell-based platform for the systemic delivery of cytotoxic agents to sites of prostate cancer. © 2016 Wiley Periodicals, Inc.

  6. An Autologous Bone Marrow Mesenchymal Stem Cell–Derived Extracellular Matrix Scaffold Applied with Bone Marrow Stimulation for Cartilage Repair

    PubMed Central

    Tang, Cheng; Jin, Chengzhe; Du, Xiaotao; Yan, Chao; Min, Byoung-Hyun; Xu, Yan

    2014-01-01

    Purpose: It is well known that implanting a bioactive scaffold into a cartilage defect site can enhance cartilage repair after bone marrow stimulation (BMS). However, most of the current scaffolds are derived from xenogenous tissue and/or artificial polymers. The implantation of these scaffolds adds risks of pathogen transmission, undesirable inflammation, and other immunological reactions, as well as ethical issues in clinical practice. The current study was undertaken to evaluate the effectiveness of implanting autologous bone marrow mesenchymal stem cell–derived extracellular matrix (aBMSC-dECM) scaffolds after BMS for cartilage repair. Methods: Full osteochondral defects were performed on the trochlear groove of both knees in 24 rabbits. One group underwent BMS only in the right knee (the BMS group), and the other group was treated by implantation of the aBMSC-dECM scaffold after BMS in the left knee (the aBMSC-dECM scaffold group). Results: Better repair of cartilage defects was observed in the aBMSC-dECM scaffold group than in the BMS group according to gross observation, histological assessments, immunohistochemistry, and chemical assay. The glycosaminoglycan and DNA content, the distribution of proteoglycan, and the distribution and arrangement of type II and I collagen fibers in the repaired tissue in the aBMSC-dECM scaffold group at 12 weeks after surgery were similar to that surrounding normal hyaline cartilage. Conclusions: Implanting aBMSC-dECM scaffolds can enhance the therapeutic effect of BMS on articular cartilage repair, and this combination treatment is a potential method for successful articular cartilage repair. PMID:24666429

  7. Comparison of Tumor- and Bone Marrow-Derived Mesenchymal Stromal/Stem Cells from Patients with High-Grade Osteosarcoma

    PubMed Central

    Le Nail, Louis-Romée; Brennan, Meadhbh; Rosset, Philippe; Piloquet, Philippe; Pichon, Olivier; Le Caignec, Cédric; Crenn, Vincent; Layrolle, Pierre; Hérault, Olivier; De Pinieux, Gonzague

    2018-01-01

    Osteosarcoma (OS) is suspected to originate from dysfunctional mesenchymal stromal/stem cells (MSC). We sought to identify OS-derived cells (OSDC) with potential cancer stem cell (CSC) properties by comparing OSDC to MSC derived from bone marrow of patients. This study included in vitro characterization with sphere forming assays, differentiation assays, cytogenetic analysis, and in vivo investigations of their tumorigenicity and tumor supportive capacities. Primary cell lines were isolated from nine high-grade OS samples. All primary cell lines demonstrated stromal cell characteristics. Compared to MSC, OSDC presented a higher ability to form sphere clones, indicating a potential CSC phenotype, and were more efficient at differentiation towards osteoblasts. None of the OSDC displayed the complex chromosome rearrangements typical of high grade OS and none of them induced tumors in immunodeficient mice. However, two OSDC demonstrated focused genomic abnormalities. Three out of seven, and six out of seven OSDC showed a supportive role on local tumor development, and on metastatic progression to the lungs, respectively, when co-injected with OS cells in nude mice. The observation of OS-associated stromal cells with rare genetic abnormalities and with the capacity to sustain tumor progression may have implications for future tumor treatments. PMID:29494553

  8. Beneficial Effects of Autologous Bone Marrow-Derived Mesenchymal Stem Cells in Naturally Occurring Tendinopathy

    PubMed Central

    Smith, Roger Kenneth Whealands; Werling, Natalie Jayne; Dakin, Stephanie Georgina; Alam, Rafiqul; Goodship, Allen E.; Dudhia, Jayesh

    2013-01-01

    Tendon injuries are a common age-related degenerative condition where current treatment strategies fail to restore functionality and normal quality of life. This disease also occurs naturally in horses, with many similarities to human tendinopathy making it an ideal large animal model for human disease. Regenerative approaches are increasingly used to improve outcome involving mesenchymal stem cells (MSCs), supported by clinical data where injection of autologous bone marrow derived MSCs (BM-MSCs) suspended in marrow supernatant into injured tendons has halved the re-injury rate in racehorses. We hypothesized that stem cell therapy induces a matrix more closely resembling normal tendon than the fibrous scar tissue formed by natural repair. Twelve horses with career-ending naturally-occurring superficial digital flexor tendon injury were allocated randomly to treatment and control groups. 1X107 autologous BM-MSCs suspended in 2 ml of marrow supernatant were implanted into the damaged tendon of the treated group. The control group received the same volume of saline. Following a 6 month exercise programme horses were euthanized and tendons assessed for structural stiffness by non-destructive mechanical testing and for morphological and molecular composition. BM-MSC treated tendons exhibited statistically significant improvements in key parameters compared to saline-injected control tendons towards that of normal tendons and those in the contralateral limbs. Specifically, treated tendons had lower structural stiffness (p<0.05) although no significant difference in calculated modulus of elasticity, lower (improved) histological scoring of organisation (p<0.003) and crimp pattern (p<0.05), lower cellularity (p<0.007), DNA content (p<0.05), vascularity (p<0.03), water content (p<0.05), GAG content (p<0.05), and MMP-13 activity (p<0.02). Treatment with autologous MSCs in marrow supernatant therefore provides significant benefits compared to untreated tendon repair in enhancing normalisation of biomechanical, morphological, and compositional parameters. These data in natural disease, with no adverse findings, support the use of this treatment for human tendon injuries. PMID:24086616

  9. Hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELM alpha) recruits bone marrow-derived cells to the murine pulmonary vasculature.

    PubMed

    Angelini, Daniel J; Su, Qingning; Kolosova, Irina A; Fan, Chunling; Skinner, John T; Yamaji-Kegan, Kazuyo; Collector, Michael; Sharkis, Saul J; Johns, Roger A

    2010-06-22

    Pulmonary hypertension (PH) is a disease of multiple etiologies with several common pathological features, including inflammation and pulmonary vascular remodeling. Recent evidence has suggested a potential role for the recruitment of bone marrow-derived (BMD) progenitor cells to this remodeling process. We recently demonstrated that hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELM alpha) is chemotactic to murine bone marrow cells in vitro and involved in pulmonary vascular remodeling in vivo. We used a mouse bone marrow transplant model in which lethally irradiated mice were rescued with bone marrow transplanted from green fluorescent protein (GFP)(+) transgenic mice to determine the role of HIMF in recruiting BMD cells to the lung vasculature during PH development. Exposure to chronic hypoxia and pulmonary gene transfer of HIMF were used to induce PH. Both models resulted in markedly increased numbers of BMD cells in and around the pulmonary vasculature; in several neomuscularized small (approximately 20 microm) capillary-like vessels, an entirely new medial wall was made up of these cells. We found these GFP(+) BMD cells to be positive for stem cell antigen-1 and c-kit, but negative for CD31 and CD34. Several of the GFP(+) cells that localized to the pulmonary vasculature were alpha-smooth muscle actin(+) and localized to the media layer of the vessels. This finding suggests that these cells are of mesenchymal origin and differentiate toward myofibroblast and vascular smooth muscle. Structural location in the media of small vessels suggests a functional role in the lung vasculature. To examine a potential mechanism for HIMF-dependent recruitment of mesenchymal stem cells to the pulmonary vasculature, we performed a cell migration assay using cultured human mesenchymal stem cells (HMSCs). The addition of recombinant HIMF induced migration of HMSCs in a phosphoinosotide-3-kinase-dependent manner. These results demonstrate HIMF-dependent recruitment of BMD mesenchymal-like cells to the remodeling pulmonary vasculature.

  10. Stem Cell Therapy in Bladder Dysfunction: Where Are We? And Where Do We Have to Go?

    PubMed Central

    Lee, Sang-Rae; Song, Yun Seob; Lee, Hong Jun

    2013-01-01

    To date, stem cell therapy for the bladder has been conducted mainly on an experimental basis in the areas of bladder dysfunction. The therapeutic efficacy of stem cells was originally thought to be derived from their ability to differentiate into various cell types. Studies about stem cell therapy for bladder dysfunction have been limited to an experimental basis and have been less focused than bladder regeneration. Bladder dysfunction was listed in MESH as “urinary bladder neck obstruction”, “urinary bladder, overactive”, and “urinary bladder, neurogenic”. Using those keywords, several articles were searched and studied. The bladder dysfunction model includes bladder outlet obstruction, cryoinjured, diabetes, ischemia, and spinal cord injury. Adipose derived stem cells (ADSCs), bone marrow stem cells (BMSCs), and skeletal muscle derived stem cells (SkMSCs) are used for transplantation to treat bladder dysfunction. The main mechanisms of stem cells to reconstitute or restore bladder dysfunction are migration, differentiation, and paracrine effects. The aim of this study is to review the stem cell therapy for bladder dysfunction and to provide the status of stem cell therapy for bladder dysfunction. PMID:24151627

  11. Multimodal Approaches for Regenerative Stroke Therapies: Combination of Granulocyte Colony-Stimulating Factor with Bone Marrow Mesenchymal Stem Cells is Not Superior to G-CSF Alone

    PubMed Central

    Balseanu, Adrian Tudor; Buga, Ana-Maria; Catalin, Bogdan; Wagner, Daniel-Christoph; Boltze, Johannes; Zagrean, Ana-Maria; Reymann, Klaus; Schaebitz, Wolf; Popa-Wagner, Aurel

    2014-01-01

    Attractive therapeutic strategies to enhance post-stroke recovery of aged brains include methods of cellular therapy that can enhance the endogenous restorative mechanisms of the injured brain. Since stroke afflicts mostly the elderly, it is highly desirable to test the efficacy of cell therapy in the microenvironment of aged brains that is generally refractory to regeneration. In particular, stem cells from the bone marrow allow an autologous transplantation approach that can be translated in the near future to the clinical practice. Such a bone marrow-derived therapy includes the grafting of stem cells as well as the delayed induction of endogenous stem cell mobilization and homing by the stem cell mobilizer granulocyte colony-stimulating factor (G-CSF). We tested the hypothesis that grafting of bone marrow-derived pre-differentiated mesenchymal cells (BM-MSCs) in G-CSF-treated animals improves the long-term functional outcome in aged rodents. To this end, G-CSF alone (50 μg/kg) or in combination with a single dose (106 cells) of rat BM MSCs was administered intravenously to Sprague-Dawley rats at 6 h after transient occlusion (90 min) of the middle cerebral artery. Infarct volume was measured by magnetic resonance imaging at 3 and 48 days post-stroke and additionally by immunhistochemistry at day 56. Functional recovery was tested during the entire post-stroke survival period of 56 days. Daily treatment for post-stroke aged rats with G-CSF led to a robust and consistent improvement of neurological function after 28 days. The combination therapy also led to robust angiogenesis in the formerly infarct core and beyond in the “islet of regeneration.” However, G-CSF + BM MSCs may not impact at all on the spatial reference-memory task or infarct volume and therefore did not further improve the post-stroke recovery. We suggest that in a real clinical practice involving older post-stroke patients, successful regenerative therapies would have to be carried out for a much longer time. PMID:25002846

  12. Efficient generation of induced pluripotent stem cells from human bone marrow mesenchymal stem cells.

    PubMed

    Yulin, X; Lizhen, L; Lifei, Z; Shan, F; Ru, L; Kaimin, H; Huang, H

    2012-01-01

    Ectopic expression of defined sets of genetic factors can reprogramme somatic cells to induced pluripotent stem cells (iPSCs) that closely resemble embryonic stem cells. However, the low reprogramming efficiency is a significant handicap for mechanistic studies and potential clinical application. In this study, we used human bone marrow-derived mesenchymal stem cells (hBMMSCs) as target cells for reprogramming and investigated efficient iPSC generation from hBMMSCs using the compounds of p53 siRNA, valproic acid (VPA) and vitamin C (Vc) with four transcription factors OCT4, SOX2, KLF4, and c-MYC (compound induction system). The synergetic mechanism of the compounds was studied. Our results showed that the compound induction system could efficiently reprogramme hBMMSCs to iPSCs. hBMMSC-derived iPSC populations expressed pluripotent markers and had multi-potential to differentiate into three germ layer-derived cells. p53 siRNA, VPA and Vc had a synergetic effect on cell reprogramming and the combinatorial use of these substances greatly improved the efficiency of iPSC generation by suppressing the expression of p53, decreasing cell apoptosis, up-regulating the expression of the pluripotent gene OCT4 and modifying the cell cycle. Therefore, our study highlights a straightforward method for improving the speed and efficiency of iPSC generation and provides versatile tools for investigating early developmental processes such as haemopoiesis and relevant diseases. In addition, this study provides a paradigm for the combinatorial use of genetic factors and molecules to improve the efficiency of iPSC generation.

  13. Isolation, identification and multipotential differentiation of mouse adipose tissue-derived stem cells.

    PubMed

    Taha, Masoumeh Fakhr; Hedayati, Vahideh

    2010-08-01

    Bone marrow and adipose tissue have provided two suitable sources of mesenchymal stem cells. Although previous studies have confirmed close similarities between bone marrow-derived stem cells (BM-MSCs) and adipose tissue-derived stem cells (ADSCs), the molecular phenotype of ADSCs is still poorly identified. In the present study, mouse ADSCs were isolated from the inguinal fat pad of 12-14 weeks old mice. Freshly isolated and three passaged ADSCs were analyzed for the expression of OCT4, Sca-1, c-kit and CD34 by RT-PCR. Three passaged ADSCs were analyzed by flow cytometry for the presence of CD11b, CD45, CD31, CD29 and CD44. Moreover, cardiogenic, adipogenic and neurogenic differentiation of ADSCs were induced in vitro. Freshly isolated ADSCs showed the expression of OCT4, Sca-1, c-kit and CD34, and two days cultured ADSCs were positively immunostained with anti-OCT4 monoclonal antibody. After three passages, the expression of OCT4, c-kit and CD34 eliminated, while the expression of Sca-1 showed a striking enhancement. These cells were identified positive for CD29 and CD44 markers, and they showed the lack of CD45 and CD31 expression. Three passaged ADSCs were differentiated to adipocyte-, cardiomyocyte- and neuron-like cells that were identified based on the positive staining with Sudan black, anti-cardiac troponin I antibody and anti-map-2 antibody, respectively. In conclusion, adipose tissue contains a stem cell population that seems to be a good multipotential cell candidate for the future cell replacement therapy. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Bone marrow transplant - discharge

    MedlinePlus

    Transplant - bone marrow - discharge; Stem cell transplant - discharge; Hematopoietic stem cell transplant - discharge; Reduced intensity; Non-myeloablative transplant - discharge; Mini transplant - discharge; Allogenic bone marrow transplant - discharge; ...

  15. Influence of bone marrow-derived mesenchymal stem cells pre-implantation differentiation approach on periodontal regeneration in vivo.

    PubMed

    Cai, Xinjie; Yang, Fang; Yan, Xiangzhen; Yang, Wanxun; Yu, Na; Oortgiesen, Daniel A W; Wang, Yining; Jansen, John A; Walboomers, X Frank

    2015-04-01

    The implantation of bone marrow-derived mesenchymal stem cells (MSCs) has previously been shown successful to achieve periodontal regeneration. However, the preferred pre-implantation differentiation strategy (e.g. maintenance of stemness, osteogenic or chondrogenic induction) to obtain optimal periodontal regeneration is still unknown. This in vivo study explored which differentiation approach is most suitable for periodontal regeneration. Mesenchymal stem cells were obtained from Fischer rats and seeded onto poly(lactic-co-glycolic acid)/poly(ɛ-caprolactone) electrospun scaffolds, and then pre-cultured under different in vitro conditions: (i) retention of multilineage differentiation potential; (ii) osteogenic differentiation approach; and (iii) chondrogenic differentiation approach. Subsequently, the cell-scaffold constructs were implanted into experimental periodontal defects of Fischer rats, with empty scaffolds as controls. After 6 weeks of implantation, histomorphometrical analyses were applied to evaluate the regenerated periodontal tissues. The chondrogenic differentiation approach showed regeneration of alveolar bone and ligament tissues. The retention of multilineage differentiation potential supported only ligament regeneration, while the osteogenic differentiation approach boosted alveolar bone regeneration. Chondrogenic differentiation of MSCs before implantation is a useful strategy for regeneration of alveolar bone and periodontal ligament, in the currently used rat model. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Treatment of AVN Using Autologous BM Stem Cells and Activated Platelet-Derived Growth Factor Concentrates.

    PubMed

    Nandeesh, Nagaraj H; Janardhan, Kiranmayee; Subramanian, Vignesh; Ashtekar, Abhishek Bhushan; Srikruthi, Nandagiri; Koka, Prasad S; Deb, Kaushik

    Avascular Necrosis (AVN) of hip is a devastating condition seen in younger individuals. It is the ischemic death of the constituents of the bone cartilage of the hip. The femoral head (FH) is the most common site for AVN. It results from interruption of the normal blood flow to the FH that fits into the hip socket. Earlier studies using autologous bone marrow stem cell concentrate injections have shown encouraging results with average success rates. The current study was designed to improve significantly the cartilage regeneration and clinical outcome. Total of 48 patients underwent autologous bone marrow stem cell and activated platelet-rich plasma derived growth factor concentrate (PRP-GFC) therapy for early and advanced stages AVN of femoral head in a single multi-specialty center. The total treatment was divided into three phases. In the phase I, all the clinical diagnostic measurements such as magnetic resonance imaging (MRI), computed tomography (CT) etc. with respect to the AVN patients and bone marrow aspiration from posterior iliac spine from the patients were carried out. In the phase II, isolation of stem cells and preparation from the patients were performed. Subsequently, in phase III, the stem cells and PRP- GFCs were transplanted in the enrolled patients. Ninety three percent of the enrolled AVN patients showed marked enhancement in the hip bone joint space (more than 3mm) after combined stem cells and PRP-GFC treatment as evidenced by comparison of the pre- and post-treatment MRI data thus indicative of regeneration of cartilage. The treated patients showed significant improvement in their motor function, cartilage regrowth (3 to 10mm), and high satisfaction in the two-year follow-up. Combination of stem cell and PRP-GFC therapy has shown promising cartilage regeneration in 45 out of 48 patients of AVN. This study clearly demonstrates the safety and efficacy of this treatment. Larger numbers of patients need to be evaluated to better understand the efficacy of the combined stem cell and PRP-GFC therapy on AVN patients.

  17. Transplantation of neurotrophin-3-transfected bone marrow mesenchymal stem cells for the repair of spinal cord injury.

    PubMed

    Dong, Yuzhen; Yang, Libin; Yang, Lin; Zhao, Hongxing; Zhang, Chao; Wu, Dapeng

    2014-08-15

    Bone marrow mesenchymal stem cell transplantation has been shown to be therapeutic in the repair of spinal cord injury. However, the low survival rate of transplanted bone marrow mesenchymal stem cells in vivo remains a problem. Neurotrophin-3 promotes motor neuron survival and it is hypothesized that its transfection can enhance the therapeutic effect. We show that in vitro transfection of neurotrophin-3 gene increases the number of bone marrow mesenchymal stem cells in the region of spinal cord injury. These results indicate that neurotrophin-3 can promote the survival of bone marrow mesenchymal stem cells transplanted into the region of spinal cord injury and potentially enhance the therapeutic effect in the repair of spinal cord injury.

  18. Osteopontin attenuates aging-associated phenotypes of hematopoietic stem cells.

    PubMed

    Guidi, Novella; Sacma, Mehmet; Ständker, Ludger; Soller, Karin; Marka, Gina; Eiwen, Karina; Weiss, Johannes M; Kirchhoff, Frank; Weil, Tanja; Cancelas, Jose A; Florian, Maria Carolina; Geiger, Hartmut

    2017-04-03

    Upon aging, hematopoietic stem cells (HSCs) undergo changes in function and structure, including skewing to myeloid lineages, lower reconstitution potential and loss of protein polarity. While stem cell intrinsic mechanisms are known to contribute to HSC aging, little is known on whether age-related changes in the bone marrow niche regulate HSC aging. Upon aging, the expression of osteopontin (OPN) in the murine bone marrow stroma is reduced. Exposure of young HSCs to an OPN knockout niche results in a decrease in engraftment, an increase in long-term HSC frequency and loss of stem cell polarity. Exposure of aged HSCs to thrombin-cleaved OPN attenuates aging of old HSCs, resulting in increased engraftment, decreased HSC frequency, increased stem cell polarity and a restored balance of lymphoid and myeloid cells in peripheral blood. Thus, our data suggest a critical role for reduced stroma-derived OPN for HSC aging and identify thrombin-cleaved OPN as a novel niche informed therapeutic approach for ameliorating HSC phenotypes associated with aging. © 2017 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  19. Characterization of bone marrow-derived mesenchymal stem cells in aging.

    PubMed

    Baker, Natasha; Boyette, Lisa B; Tuan, Rocky S

    2015-01-01

    Adult mesenchymal stem cells are a resource for autologous and allogeneic cell therapies for immune-modulation and regenerative medicine. However, patients most in need of such therapies are often of advanced age. Therefore, the effects of the aged milieu on these cells and their intrinsic aging in vivo are important considerations. Furthermore, these cells may require expansion in vitro before use as well as for future research. Their aging in vitro is thus also an important consideration. Here, we focus on bone marrow mesenchymal stem cells (BMSCs), which are unique compared to other stem cells due to their support of hematopoietic cells in addition to contributing to bone formation. BMSCs may be sensitive to age-related diseases and could perpetuate degenerative diseases in which bone remodeling is a contributory factor. Here, we review (1) the characterization of BMSCs, (2) the characterization of in vivo-aged BMSCs, (3) the characterization of in vitro-aged BMSCs, and (4) potential approaches to optimize the performance of aged BMSCs. This article is part of a Special Issue entitled "Stem Cells and Bone". Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Bone marrow derived stem cells in joint and bone diseases: a concise review.

    PubMed

    Marmotti, Antonio; de Girolamo, Laura; Bonasia, Davide Edoardo; Bruzzone, Matteo; Mattia, Silvia; Rossi, Roberto; Montaruli, Angela; Dettoni, Federico; Castoldi, Filippo; Peretti, Giuseppe

    2014-09-01

    Stem cells have huge applications in the field of tissue engineering and regenerative medicine. Their use is currently not restricted to the life-threatening diseases but also extended to disorders involving the structural tissues, which may not jeopardize the patients' life, but certainly influence their quality of life. In fact, a particularly popular line of research is represented by the regeneration of bone and cartilage tissues to treat various orthopaedic disorders. Most of these pioneering research lines that aim to create new treatments for diseases that currently have limited therapies are still in the bench of the researchers. However, in recent years, several clinical trials have been started with satisfactory and encouraging results. This article aims to review the concept of stem cells and their characterization in terms of site of residence, differentiation potential and therapeutic prospective. In fact, while only the bone marrow was initially considered as a "reservoir" of this cell population, later, adipose tissue and muscle tissue have provided a considerable amount of cells available for multiple differentiation. In reality, recently, the so-called "stem cell niche" was identified as the perivascular space, recognizing these cells as almost ubiquitous. In the field of bone and joint diseases, their potential to differentiate into multiple cell lines makes their application ideally immediate through three main modalities: (1) cells selected by withdrawal from bone marrow, subsequent culture in the laboratory, and ultimately transplant at the site of injury; (2) bone marrow aspirate, concentrated and directly implanted into the injury site; (3) systemic mobilization of stem cells and other bone marrow precursors by the use of growth factors. The use of this cell population in joint and bone disease will be addressed and discussed, analysing both the clinical outcomes but also the basic research background, which has justified their use for the treatment of bone, cartilage and meniscus tissues.

  1. Regeneration of hyaline-like cartilage in situ with SOX9 stimulation of bone marrow-derived mesenchymal stem cells.

    PubMed

    Zhang, Xiaowei; Wu, Shili; Naccarato, Ty; Prakash-Damani, Manan; Chou, Yuan; Chu, Cong-Qiu; Zhu, Yong

    2017-01-01

    Microfracture, a common procedure for treatment of cartilage injury, induces fibrocartilage repair by recruiting bone marrow derived mesenchymal stem cells (MSC) to the site of cartilage injury. However, fibrocartilage is inferior biomechanically to hyaline cartilage. SRY-type high-mobility group box-9 (SOX9) is a master regulator of chondrogenesis by promoting proliferation and differentiation of MSC into chondrocytes. In this study we aimed to test the therapeutic potential of cell penetrating recombinant SOX9 protein in regeneration of hyaline cartilage in situ at the site of cartilage injury. We generated a recombinant SOX9 protein which was fused with super positively charged green fluorescence protein (GFP) (scSOX9) to facilitate cell penetration. scSOX9 was able to induce chondrogenesis of bone marrow derived MSC in vitro. In a rabbit cartilage injury model, scSOX9 in combination with microfracture significantly improved quality of repaired cartilage as shown by macroscopic appearance. Histological analysis revealed that the reparative tissue induced by microfracture with scSOX9 had features of hyaline cartilage; and collagen type II to type I ratio was similar to that in normal cartilage. This short term in vivo study demonstrated that when administered at the site of microfracture, scSOX9 was able to induce reparative tissue with features of hyaline cartilage.

  2. Regeneration of hyaline-like cartilage in situ with SOX9 stimulation of bone marrow-derived mesenchymal stem cells

    PubMed Central

    Naccarato, Ty; Prakash-Damani, Manan; Chou, Yuan; Zhu, Yong

    2017-01-01

    Microfracture, a common procedure for treatment of cartilage injury, induces fibrocartilage repair by recruiting bone marrow derived mesenchymal stem cells (MSC) to the site of cartilage injury. However, fibrocartilage is inferior biomechanically to hyaline cartilage. SRY-type high-mobility group box-9 (SOX9) is a master regulator of chondrogenesis by promoting proliferation and differentiation of MSC into chondrocytes. In this study we aimed to test the therapeutic potential of cell penetrating recombinant SOX9 protein in regeneration of hyaline cartilage in situ at the site of cartilage injury. We generated a recombinant SOX9 protein which was fused with super positively charged green fluorescence protein (GFP) (scSOX9) to facilitate cell penetration. scSOX9 was able to induce chondrogenesis of bone marrow derived MSC in vitro. In a rabbit cartilage injury model, scSOX9 in combination with microfracture significantly improved quality of repaired cartilage as shown by macroscopic appearance. Histological analysis revealed that the reparative tissue induced by microfracture with scSOX9 had features of hyaline cartilage; and collagen type II to type I ratio was similar to that in normal cartilage. This short term in vivo study demonstrated that when administered at the site of microfracture, scSOX9 was able to induce reparative tissue with features of hyaline cartilage. PMID:28666028

  3. Good manufacturing practice-compliant expansion of marrow-derived stem and progenitor cells for cell therapy.

    PubMed

    Gastens, Martin H; Goltry, Kristin; Prohaska, Wolfgang; Tschöpe, Diethelm; Stratmann, Bernd; Lammers, Dirk; Kirana, Stanley; Götting, Christian; Kleesiek, Knut

    2007-01-01

    Ex vivo expansion is being used to increase the number of stem and progenitor cells for autologous cell therapy. Initiation of pivotal clinical trials testing the efficacy of these cells for tissue repair has been hampered by the challenge of assuring safe and high-quality cell production. A strategy is described here for clinical-scale expansion of bone marrow (BM)-derived stem cells within a mixed cell population in a completely closed process from cell collection through postculture processing using sterile connectable devices. Human BM mononuclear cells (BMMNC) were isolated, cultured for 12 days, and washed postharvest using either standard open procedures in laminar flow hoods or using automated closed systems. Conditions for these studies were similar to long-term BM cultures in which hematopoietic and stromal components are cultured together. Expansion of marrow-derived stem and progenitor cells was then assessed. Cell yield, number of colony forming units (CFU), phenotype, stability, and multilineage differentiation capacity were compared from the single pass perfusion bioreactor and standard flask cultures. Purification of BMMNC using a closed Ficoll gradient process led to depletion of 98% erythrocytes and 87% granulocytes, compared to 100% and 70%, respectively, for manual processing. After closed system culture, mesenchymal progenitors, measured as CD105+CD166+CD14-CD45- and fibroblastic CFU, expanded 317- and 364-fold, respectively, while CD34+ hematopoietic progenitors were depleted 10-fold compared to starting BMMNC. Cultured cells exhibited multilineage differentiation by displaying adipogenic, osteogenic, and endothelial characteristics in vitro. No significant difference was observed between manual and bioreactor cultures. Automated culture and washing of the cell product resulted in 181 x 10(6) total cells that were viable and contained fibroblastic CFU for at least 24 h of storage. A combination of closed, automated technologies enabled production of good manufacturing practice (GMP)-compliant cell therapeutics, ready for use within a clinical setting, with minimal risk of microbial contamination.

  4. GAPDH, β-actin and β2-microglobulin, as three common reference genes, are not reliable for gene expression studies in equine adipose- and marrow-derived mesenchymal stem cells.

    PubMed

    Nazari, Fatemeh; Parham, Abbas; Maleki, Adham Fani

    2015-01-01

    Quantitative real time reverse transcription PCR (qRT-PCR) is one of the most important techniques for gene-expression analysis in molecular based studies. Selecting a proper internal control gene for normalizing data is a crucial step in gene expression analysis via this method. The expression levels of reference genes should be remained constant among cells in different tissues. However, it seems that the location of cells in different tissues might influence their expression. The purpose of this study was to determine whether the source of mesenchymal stem cells (MSCs) has any effect on expression level of three common reference genes (GAPDH, β-actin and β2-microglobulin) in equine marrow- and adipose- derived undifferentiated MSCs and consequently their reliability for comparative qRT-PCR. Adipose tissue (AT) and bone marrow (BM) samples were harvested from 3 mares. MSCs were isolated and cultured until passage 3 (P3). Total RNA of P3 cells was extracted for cDNA synthesis. The generated cDNAs were analyzed by quantitative real-time PCR. The PCR reactions were ended with a melting curve analysis to verify the specificity of amplicon. The expression levels of GAPDH were significantly different between AT- and BM- derived MSCs (p < 0.05). Differences in expression level of β-actin (P < 0.001) and B2M (P < 0.006.) between MSCs derived from AT and BM were substantially higher than GAPDH. In addition, the fold change in expression levels of GAPDH, β-actin and B2M in AT-derived MSCs compared to BM-derived MSCs were 2.38, 6.76 and 7.76, respectively. This study demonstrated that GAPDH and especially β-actin and B2M express in different levels in equine AT- and BM- derived MSCs. Thus they cannot be considered as reliable reference genes for comparative quantitative gene expression analysis in MSCs derived from equine bone marrow and adipose tissue.

  5. Transplantation of bone marrow derived cells promotes pancreatic islet repair in diabetic mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao Xiaodong; Song Lujun; Shen Kuntang

    2008-06-20

    The transplantation of bone marrow (BM) derived cells to initiate pancreatic regeneration is an attractive but as-yet unrealized strategy. Presently, BM derived cells from green fluorescent protein transgenic mice were transplanted into diabetic mice. Repair of diabetic islets was evidenced by reduction of hyperglycemia, increase in number of islets, and altered pancreatic histology. Cells in the pancreata of recipient mice co-expressed BrdU and insulin. Double staining revealed {beta} cells were in the process of proliferation. BrdU{sup +} insulin{sup -} PDX-1{sup +} cells, Ngn3{sup +} cells and insulin{sup +} glucagon{sup +} cells, which showed stem cells, were also found during {beta}-cellmore » regeneration. The majority of transplanted cells were mobilized to the islet and ductal regions. In recipient pancreas, transplanted cells simultaneously expressed CD34 but did not express insulin, PDX-1, Ngn3, Nkx2.2, Nkx6.1, Pax4, Pax6, and CD45. It is concluded that BM derived cells especially CD34{sup +} cells can promote repair of pancreatic islets. Moreover, both proliferation of {beta} cells and differentiation of pancreatic stem cells contribute to the regeneration of {beta} cells.« less

  6. Human adipose stem cell and ASC-derived cardiac progenitor cellular therapy improves outcomes in a murine model of myocardial infarction

    PubMed Central

    Davy, Philip MC; Lye, Kevin D; Mathews, Juanita; Owens, Jesse B; Chow, Alice Y; Wong, Livingston; Moisyadi, Stefan; Allsopp, Richard C

    2015-01-01

    Background Adipose tissue is an abundant and potent source of adult stem cells for transplant therapy. In this study, we present our findings on the potential application of adipose-derived stem cells (ASCs) as well as induced cardiac-like progenitors (iCPs) derived from ASCs for the treatment of myocardial infarction. Methods and results Human bone marrow (BM)-derived stem cells, ASCs, and iCPs generated from ASCs using three defined cardiac lineage transcription factors were assessed in an immune-compromised mouse myocardial infarction model. Analysis of iCP prior to transplant confirmed changes in gene and protein expression consistent with a cardiac phenotype. Endpoint analysis was performed 1 month posttransplant. Significantly increased endpoint fractional shortening, as well as reduction in the infarct area at risk, was observed in recipients of iCPs as compared to the other recipient cohorts. Both recipients of iCPs and ASCs presented higher myocardial capillary densities than either recipients of BM-derived stem cells or the control cohort. Furthermore, mice receiving iCPs had a significantly higher cardiac retention of transplanted cells than all other groups. Conclusion Overall, iCPs generated from ASCs outperform BM-derived stem cells and ASCs in facilitating recovery from induced myocardial infarction in mice. PMID:26604802

  7. Role of mesenchymal stem cells versus angiotensin converting enzyme inhibitor in kidney repair.

    PubMed

    Ahmed, Hanaa H; Toson, Elshahat A; El-Mezayen, Hatem A; Rashed, Laila A; Elsherbiny, Eslam S

    2017-07-01

    The current study sought to clarify the role of bone marrow derived mesenchymal stem cells (BM-MSCs) and adipose tissue derived mesenchymal stem cells (AD-MSCs) in repressing nephropathy in the experimental model. Moreover, the aim of this work was extended to compare between stem cells role and angiotensin converting enzyme inhibitor in kidney repair. Isolation and preparation of MSCs culture, flow cytometry using CD34, CD44 and CD105 cell surface markers, biochemical analyses for determination of serum creatinine, urea, transforming growth factor β (TGF-β), cystatin C (CYS-C) and urinary N-Acetyl-ß-D-Glucosaminidase (UNAG), and histopathological investigation of kidney tissue sections were performed. The results of the present study revealed that single intravenous infusion of MSCs either derived from bone marrow or adipose tissue was able to enhance renal reparative processes through significantly decreased serum creatinine, urea, TGF-β and CYS-C levels as well as UNAG level and significantly increase glomerular filtration rate. Additionally, the histopathological investigations of kidney tissues showed that MSCs have significant regenerative effects as evidenced by the decrease in focal inflammatory cells infiltration, focal interstitial nephritis and congested glomeruli as well as degenerated tubules. The current data provided distinct evidence about the favourable impact of AD-MSCs and BM-MSCs in attenuation of cyclosporine-induced nephropathy in rats through their ability to promote functional and structural kidney repair via transdifferentiation. © 2016 Asian Pacific Society of Nephrology.

  8. Enhanced neuro-therapeutic potential of Wharton's Jelly-derived mesenchymal stem cells in comparison with bone marrow mesenchymal stem cells culture.

    PubMed

    Drela, Katarzyna; Lech, Wioletta; Figiel-Dabrowska, Anna; Zychowicz, Marzena; Mikula, Michał; Sarnowska, Anna; Domanska-Janik, Krystyna

    2016-04-01

    Substantial inconsistencies in mesenchymal stem (stromal) cell (MSC) therapy reported in early translational and clinical studies may indicate need for selection of the proper cell population for any particular therapeutic purpose. In the present study we have examined stromal stem cells derived either from umbilical cord Wharton's Jelly (WJ-MSC) or bone marrow (BM-MSC) of adult, healthy donors. The cells characterized in accordance with the International Society for Cellular Therapy (ISCT) indications as well as other phenotypic and functional parameters have been compared under strictly controlled culture conditions. WJ-MSC, in comparison with BM-MSC, exhibited a higher proliferation rate, a greater expansion capability being additionally stimulated under low-oxygen atmosphere, enhanced neurotrophic factors gene expression and spontaneous tendency toward a neural lineage differentiation commitment confirmed by protein and gene marker induction. Our data suggest that WJ-MSC may represent an example of immature-type "pre-MSC," where a substantial cellular component is embryonic-like, pluripotent derivatives with the default neural-like differentiation. These cells may contribute in different extents to nearly all classical MSC populations adversely correlated with the age of cell donors. Our data suggest that neuro-epithelial markers, like nestin, stage specific embryonic antigens-4 or α-smooth muscle actin expressions, may serve as useful indicators of MSC culture neuro-regeneration-associated potency. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  9. Origins and Properties of Dental, Thymic, and Bone Marrow Mesenchymal Cells and Their Stem Cells

    PubMed Central

    Komada, Yukiya; Yamane, Toshiyuki; Kadota, Daiji; Isono, Kana; Takakura, Nobuyuki; Hayashi, Shin-Ichi; Yamazaki, Hidetoshi

    2012-01-01

    Mesenchymal cells arise from the neural crest (NC) or mesoderm. However, it is difficult to distinguish NC-derived cells from mesoderm-derived cells. Using double-transgenic mouse systems encoding P0-Cre, Wnt1-Cre, Mesp1-Cre, and Rosa26EYFP, which enabled us to trace NC-derived or mesoderm-derived cells as YFP-expressing cells, we demonstrated for the first time that both NC-derived (P0- or Wnt1-labeled) and mesoderm-derived (Mesp1-labeled) cells contribute to the development of dental, thymic, and bone marrow (BM) mesenchyme from the fetal stage to the adult stage. Irrespective of the tissues involved, NC-derived and mesoderm-derived cells contributed mainly to perivascular cells and endothelial cells, respectively. Dental and thymic mesenchyme were composed of either NC-derived or mesoderm-derived cells, whereas half of the BM mesenchyme was composed of cells that were not derived from the NC or mesoderm. However, a colony-forming unit-fibroblast (CFU-F) assay indicated that CFU-Fs in the dental pulp, thymus, and BM were composed of NC-derived and mesoderm-derived cells. Secondary CFU-F assays were used to estimate the self-renewal potential, which showed that CFU-Fs in the teeth, thymus, and BM were entirely NC-derived cells, entirely mesoderm-derived cells, and mostly NC-derived cells, respectively. Colony formation was inhibited drastically by the addition of anti-platelet–derived growth factor receptor-β antibody, regardless of the tissue and its origin. Furthermore, dental mesenchyme expressed genes encoding critical hematopoietic factors, such as interleukin-7, stem cell factor, and cysteine-X-cysteine (CXC) chemokine ligand 12, which supports the differentiation of B lymphocytes and osteoclasts. Therefore, the mesenchymal stem cells found in these tissues had different origins, but similar properties in each organ. PMID:23185234

  10. Osteoblastic differentiation of human stem cells derived from bone marrow and periodontal ligament under the effect of enamel matrix derivative and transforming growth factor-beta.

    PubMed

    Houshmand, Behzad; Behnia, Hossein; Khoshzaban, Ahad; Morad, Golnaz; Behrouzi, Gholamreza; Dashti, Seyedeh Ghazaleh; Khojasteh, Arash

    2013-01-01

    To increase the understanding of the applicability of biomaterials and growth factors in enhancing stem cell-based bone regeneration modalities, this study evaluated the effects of enamel matrix derivative (EMD) and recombinant human transforming growth factor-beta (rhTGF-β) on osteoblastic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) as well as human periodontal ligament stem cells (hPDLSCs). hBMSCs and hPDLSCs were obtained, and identification of stem cell surface markers was performed according to the criteria of the International Society for Cellular Therapy. Each group of stem cells was separately treated with a serial dilution of EMD (10, 50, and 100 μg/mL) or rhTGF-β (10 ng/mL). Osteoblastic differentiation was examined through in vitro matrix mineralization by alizarin red staining, and mRNA expression of osteopontin and osteonectin was determined by quantitative reverse-transcriptase polymerase chain reaction. hPDLSCs were further assessed for osteocalcin mRNA expression. Stem cells cultured in osteogenic medium were employed as a standard positive control group. In none of the experimental groups were bone-related mRNAs detected subsequent to treatment with EMD for 5, 10, and 15 days. Alizarin red staining on day 21 was negative in EMD-treated BMSC and PDLSC cultures. In rhTGF-β-supplemented BMSC culture, expression of osteonectin mRNA was demonstrated on day 15, which was statistically comparable to the positive control group. Nevertheless, extracellular matrix mineralization was inhibited in both groups of stem cells. Within the limitations of this study, it could be concluded that EMD with a concentration of 10, 50, or 100 μg/mL has no appreciable effect on osteoblastic differentiation of BMSCs and PDLSCs. Application of rhTGF-β increased osteonectin mRNA expression in BMSCs. This finding corroborates the hypothesis that TGF-β might be involved in early osteoblastic maturation.

  11. Insight into the Role of Long Non-coding RNAs During Osteogenesis in Mesenchymal Stem Cells.

    PubMed

    Huo, Sibei; Zhou, Yachuan; He, Xinyu; Wan, Mian; Du, Wei; Xu, Xin; Ye, Ling; Zhou, Xuedong; Zheng, Liwei

    2018-01-01

    Long non-coding RNAs (LncRNAs) are non-protein coding transcripts longer than 200 nucleotides in length. Instead of being "transcriptional noise", lncRNAs are emerging as a key modulator in various biological processes and disease development. Mesenchymal stem cells can be isolated from various adult tissues, such as bone marrow and dental tissues. The differentiation processes into multiple lineages, such as osteogenic differentiation, are precisely orchestrated by molecular signals in both genetic and epigenetic ways. Recently, several lines of evidence suggested the role of lncRNAs participating in cell differentiation through the regulation of gene transcriptions. And the involvement of lncRNAs may be associated with initiation and progression of mesenchymal stem cell-related diseases. We aimed at addressing the role of lncRNAs in the regulation of osteogenesis of mesenchymal stem cells derived from bone marrow and dental tissues, and discussing the potential utility of lncRNAs as biomarkers and therapeutic targets for mesenchymal stem cell-related diseases. Numerous lncRNAs were differentially expressed during osteogenesis or odontogenesis of mesenchymal stem cells, and some of them were confirmed to be able to regulate the differentiation processes through the modifications of chromatin, transcriptional and post-transcriptional processes. LncRNAs were also associated with some diseases related with pathologic differentiation of mesenchymal stem cells. LncRNAs involve in the osteogenic differentiation of bone marrow and dental tissuederived mesenchymal stem cells, and they could become promising therapeutic targets and prognosis parameters. However, the mechanisms of the role of lncRNAs are still enigmatic and require further investigation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. [Clinical significance of autologous transplantation with hematopoietic stem cells in leukemia and solid tumors].

    PubMed

    Hinterberger, W; Adler, V; Bauer, K; Haberhauer, G; Habertheuer, K H; Höniger, S; Huber, K; Kier, P; Kittel, E; Ruckser, R

    1995-01-01

    Autologous Transplantation of hematopoietic tissue with frozen hematopoietic stem cells is increasingly used for leukemias and lymphomas, but also for some solid tumors. In the past, autotransplants have been performed with bone marrow as the source of hematopoietic stem cells. Circulating, blood derived hematopoietic stem cells, however, allow safe engraftment of all cell lines after supralethal chemo-radiotherapy. This survey describes the role of autologous stem cell transplantation in disorders that are currently in the center of clinical and scientific interest. This estimation is based on the proportion of protocols dealing with, and centering on, autologous stem cell transplantation in the context of treatment for leukemias and solid tumors ("Oncodisc", "PDQ").

  13. 78 FR 76507 - Revised Medical Criteria for Evaluating Cancer (Malignant Neoplastic Diseases)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-17

    ... blast (immature) cells in the peripheral blood or bone marrow is 10 percent or greater. We propose this... evaluate cancer treatment by bone marrow or stem cell transplantation, including transplantation using stem... evaluate cancers treated with bone marrow or stem cell transplantation, including transplantation using...

  14. Bone marrow–derived stem cells preserve cone vision in retinitis pigmentosa

    PubMed Central

    Smith, Lois E.H.

    2004-01-01

    Retinitis pigmentosa is a heritable group of blinding diseases resulting from loss of photoreceptors, primarily rods and secondarily cones, that mediate central vision. Loss of retinal vasculature is a presumed metabolic consequence of photoreceptor degeneration. A new study shows that autologous bone marrow–derived lineage-negative hematopoietic stem cells, which incorporate into the degenerating blood vessels in two murine models of retinitis pigmentosa, rd1 and rd10, prevent cone loss. The use of autologous bone marrow might avoid problems with rejection while preserving central cone vision in a wide variety of genetically disparate retinal degenerative diseases. PMID:15372096

  15. Matrix directed adipogenesis and neurogenesis of mesenchymal stem cells derived from adipose tissue and bone marrow.

    PubMed

    Lee, Junmin; Abdeen, Amr A; Tang, Xin; Saif, Taher A; Kilian, Kristopher A

    2016-09-15

    Mesenchymal stem cells (MSCs) can differentiate into multiple lineages through guidance from the biophysical and biochemical properties of the extracellular matrix. In this work we conduct a combinatorial study of matrix properties that influence adipogenesis and neurogenesis including: adhesion proteins, stiffness, and cell geometry, for mesenchymal stem cells derived from adipose tissue (AT-MSCs) and bone marrow (BM-MSCs). We uncover distinct differences in integrin expression, the magnitude of traction stress, and lineage specification to adipocytes and neuron-like cells between cell sources. In the absence of media supplements, adipogenesis in AT-MSCs is not significantly influenced by matrix properties, while the converse is true in BM-MSCs. Both cell types show changes in the expression of neurogenesis markers as matrix cues are varied. When cultured on laminin conjugated microislands of the same adhesive area, BM-MSCs display elevated adipogenesis markers, while AT-MSCs display elevated neurogenesis markers; integrin analysis suggests neurogenesis in AT-MSCs is guided by adhesion through integrin αvβ3. Overall, the properties of the extracellular matrix guides MSC adhesion and lineage specification to different degrees and outcomes, in spite of their similarities in general characteristics. This work will help guide the selection of MSCs and matrix components for applications where high fidelity of differentiation outcome is desired. Mesenchymal stem cells (MSCs) are an attractive cell type for stem cell therapies; however, in order for these cells to be useful in medicine, we need to understand how they respond to the physical and chemical environments of tissue. Here, we explore how two promising sources of MSCs-those derived from bone marrow and from adipose tissue-respond to the compliance and composition of tissue using model extracellular matrices. Our results demonstrate a source-specific propensity to undergo adipogenesis and neurogenesis, and uncover a role for adhesion, and the degree of traction force exerted on the substrate in guiding these lineage outcomes. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Cytohesin 1 regulates homing and engraftment of human hematopoietic stem and progenitor cells.

    PubMed

    Rak, Justyna; Foster, Katie; Potrzebowska, Katarzyna; Talkhoncheh, Mehrnaz Safaee; Miharada, Natsumi; Komorowska, Karolina; Torngren, Therese; Kvist, Anders; Borg, Åke; Svensson, Lena; Bonnet, Dominique; Larsson, Jonas

    2017-02-23

    Adhesion is a key component of hematopoietic stem cell regulation mediating homing and retention to the niche in the bone marrow. Here, using an RNA interference screen, we identify cytohesin 1 (CYTH1) as a critical mediator of adhesive properties in primary human cord blood-derived hematopoietic stem and progenitor cells (HSPCs). Knockdown of CYTH1 disrupted adhesion of HSPCs to primary human mesenchymal stroma cells. Attachment to fibronectin and ICAM1, 2 integrin ligands, was severely impaired, and CYTH1-deficient cells showed a reduced integrin β1 activation response, suggesting that CYTH1 mediates integrin-dependent functions. Transplantation of CYTH1-knockdown cells to immunodeficient mice resulted in significantly lower long-term engraftment levels, associated with a reduced capacity of the transplanted cells to home to the bone marrow. Intravital microscopy showed that CYTH1 deficiency profoundly affects HSPC mobility and localization within the marrow space and thereby impairs proper lodgment into the niche. Thus, CYTH1 is a novel major regulator of adhesion and engraftment in human HSPCs through mechanisms that, at least in part, involve the activation of integrins. © 2017 by The American Society of Hematology.

  17. Frequent mechanical stress suppresses proliferation of mesenchymal stem cells from human bone marrow without loss of multipotency

    NASA Astrophysics Data System (ADS)

    Frank, Viktoria; Kaufmann, Stefan; Wright, Rebecca; Horn, Patrick; Yoshikawa, Hiroshi Y.; Wuchter, Patrick; Madsen, Jeppe; Lewis, Andrew L.; Armes, Steven P.; Ho, Anthony D.; Tanaka, Motomu

    2016-04-01

    Mounting evidence indicated that human mesenchymal stem cells (hMSCs) are responsive not only to biochemical but also to physical cues, such as substrate topography and stiffness. To simulate the dynamic structures of extracellular environments of the marrow in vivo, we designed a novel surrogate substrate for marrow derived hMSCs based on physically cross-linked hydrogels whose elasticity can be adopted dynamically by chemical stimuli. Under frequent mechanical stress, hMSCs grown on our hydrogel substrates maintain the expression of STRO-1 over 20 d, irrespective of the substrate elasticity. On exposure to the corresponding induction media, these cultured hMSCs can undergo adipogenesis and osteogenesis without requiring cell transfer onto other substrates. Moreover, we demonstrated that our surrogate substrate suppresses the proliferation of hMSCs by up to 90% without any loss of multiple lineage potential by changing the substrate elasticity every 2nd days. Such “dynamic in vitro niche” can be used not only for a better understanding of the role of dynamic mechanical stresses on the fate of hMSCs but also for the synchronized differentiation of adult stem cells to a specific lineage.

  18. Transplantation of bone marrow-derived mesenchymal stem cells expressing elastin alleviates pelvic floor dysfunction.

    PubMed

    Jin, Minfei; Chen, Ying; Zhou, Yun; Mei, Yan; Liu, Wei; Pan, Chenhao; Hua, Xiaolin

    2016-04-05

    Pelvic floor dysfunction (PFD) is a group of clinical conditions including stress urinary incontinence (SUI) and pelvic organ prolapse (POP). The abnormality of collagen and elastin metabolism in pelvic connective tissues is implicated in SUI and POP. To reconstitute the connective tissues with normal distribution of collagen and elastin, we transduced elastin to bone marrow-derived mesenchymal stem cells (BMSC). Elastin-expressing BMSCs were then differentiated to fibroblasts using bFGF, which produced collagen and elastin. To achieve the sustained release of bFGF, we formulated bFGF in poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NP). In an in vitro cell culture system of 7 days, when no additional bFGF was administrated, the initial PLGA-loaded bFGF NP induced prolonged production of collagen and elastin from elastin-expressing BMSCs. In vivo, co-injection of PLGA-loaded bFGF NP and elastin-expressing BMSCs into the PFD rats significantly improved the outcome of urodynamic tests. Together, these results provided an efficient model of connective tissue engineering using BMSC and injectable PLGA-loaded growth factors. Our results provided the first instance of a multidisciplinary approach, combining both stem cell and nanoparticle technologies, for the treatment of PFD.

  19. [Differentiation of bone marrow derived from mesenchymal stem cells into cardiomyocyte-like cells induced by co-culture with rat myocardial cells].

    PubMed

    Zhang, Rong-Li; Jiang, Er-Lie; Wang, Mei; Zhou, Zheng; Zhai, Wen-Jing; Zhai, Wei-Hua; Wang, Hua; Wang, Zhi-Yong; Bao, Yu-Shi; DU, Hong; Han, Ming-Zhe

    2008-10-01

    The study was purposed to investigate the differentiation ability of mesenchymal stem cells (MSCs) into myocardial cells in vitro. Rat bone marrow-derived MSCs were labeled and co-cultured with neonatal rat cardiomyocytes (CM) for 5 - 7 days. The expression of cell surface antigens was detected by flow cytometry, and the expression of muscle-specific marker myosin and troponin T in labeled cells was detected by immunofluorescence. The results showed that in vitro cultured MSCs expressed CD90, CD44, CD105, CD54, not expressed CD34, CD45, CD31. After co-cultured with neonatal rat CM, labeled MSCs differentiated into cardiomyocyte-like cells expressing myosin and troponin T. It is concluded that MSCs can differentiate into cardiomyocyte-like cells when co-cultured with neonatal myocardial cells in vitro. In co-culture of two kind of cells in ratio of four to one showed obvious efficacy differentiating MSCs into CMs.

  20. Alterations of the bone marrow stromal microenvironment in adult patients with acute myeloid and lymphoblastic leukemias before and after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Shipounova, Irina N; Petinati, Nataliya A; Bigildeev, Alexey E; Drize, Nina J; Sorokina, Tamara V; Kuzmina, Larisa A; Parovichnikova, Elena N; Savchenko, Valeri G

    2017-02-01

    Bone marrow (BM) derived adult multipotent mesenchymal stromal cells (MMSCs) and fibroblast colony-forming units (CFU-Fs) of 20 patients with acute myeloid leukemia (AML) and 15 patients with acute lymphoblastic leukemia (ALL) before and during 1 year after receiving allogeneic hematopoietic stem cell transplantation (allo-HSCT) were studied. The growth characteristics of MMSCs of all patients before allo-HSCT were not altered; however, relative expression level (REL) of some genes in MMSCs, but not in CFU-Fs, from AML and ALL patients significantly changed. After allo-HSCT, CFU-F concentration and MMSC production were significantly decreased for 1 year; REL of several genes in MMSCs and CFU-F-derived colonies were also significantly downregulated. Thus, chemotherapy that was used for induction of remission did not impair the function of stromal precursors, but gene expression levels were altered. Allo-HSCT conditioning regimens significantly damaged MMSCs and CFU-Fs, and the effect lasted for at least 1 year.

  1. Retrovirally mediated correction of bone marrow-derived mesenchymal stem cells from patients with mucopolysaccharidosis type I.

    PubMed

    Baxter, Melissa A; Wynn, Robert F; Deakin, Jonathan A; Bellantuono, Ilaria; Edington, Kirsten G; Cooper, Alan; Besley, Guy T N; Church, Heather J; Wraith, J Ed; Carr, Trevor F; Fairbairn, Leslie J

    2002-03-01

    We have investigated the utility of bone marrow-derived mesenchymal stem cells (MSCs) as targets for gene therapy of the autosomal recessive disorder mucopolysaccharidosis type IH (MPS-IH, Hurler syndrome). Cultures of MSCs were initially exposed to a green fluorescent protein-expressing retrovirus. Green fluorescent protein-positive cells maintained their proliferative and differentiation capacity. Next we used a vector encoding alpha-L-iduronidase (IDUA), the enzyme that is defective in MPS-IH. Following transduction, MPS-IH MSCs expressed high levels of IDUA and secreted supernormal levels of this enzyme into the extracellular medium. Exogenous IDUA expression led to a normalization of glycosaminoglycan storage in MPS-IH cells, as evidenced by a dramatic decrease in the amount of (35)SO(4) sequestered within the heparan sulfate and dermatan sulfate compartments of these cells. Finally, gene-modified MSCs were able to cross-correct the enzyme defect in untransduced MPS-IH fibroblasts via protein transfer.

  2. Osteoblasts Protect AML Cells from SDF-1-Induced Apoptosis

    PubMed Central

    Kremer, Kimberly N.; Dudakovic, Amel; McGee-Lawrence, Meghan E.; Philips, Rachael L.; Hess, Allan D.; Smith, B. Douglas; van Wijnen, Andre J.; Karp, Judith E.; Kaufmann, Scott H.; Westendorf, Jennifer J.; Hedin, Karen E.

    2014-01-01

    The bone marrow provides a protective environment for acute myeloid leukemia (AML) cells that often allows leukemic stem cells to survive standard chemotherapeutic regimens. Targeting these leukemic stem cells within the bone marrow is critical for preventing relapse. We recently demonstrated that SDF-1, a chemokine abundant in the bone marrow, induces apoptosis in AML cell lines and in patient samples expressing high levels of its receptor, CXCR4. Here we show that a subset of osteoblast lineage cells within the bone marrow can protect AML cells from undergoing apoptosis in response to the SDF-1 naturally present in that location. In co-culture systems, osteoblasts at various stages of differentiation protected AML cell lines and patient isolates from SDF-1-induced apoptosis. The differentiation of the osteoblast cell lines, MC3T3 and W-20-17, mediated this protection via a cell contact-independent mechanism. In contrast, bone marrow-derived mesenchymal cells, the precursors of osteoblasts, induced apoptosis in AML cells via a CXCR4-dependent mechanism and failed to protect AML cells from exogenously added SDF-1. These results indicate that osteoblasts in the process of differentiation potently inhibit the SDF-1-driven apoptotic pathway of CXCR4-expressing AML cells residing in the bone marrow. Drugs targeting this protective mechanism could potentially provide a new approach to treating AML by enhancing the SDF-1-induced apoptosis of AML cells residing within the bone marrow microenvironment. PMID:24851270

  3. Artificial Extracellular Matrices with Oversulfated Glycosaminoglycan Derivatives Promote the Differentiation of Osteoblast-Precursor Cells and Premature Osteoblasts

    PubMed Central

    Hempel, Ute; Preissler, Carolin; Möller, Stephanie; Becher, Jana; Rauner, Martina; Hofbauer, Lorenz C.; Dieter, Peter

    2014-01-01

    Sulfated glycosaminoglycans (GAG) are components of the bone marrow stem cell niche and to a minor extent of mature bone tissue with important functions in regulating stem cell lineage commitment and differentiation. We anticipated that artificial extracellular matrices (aECM) composed of collagen I and synthetically oversulfated GAG derivatives affect preferentially the differentiation of osteoblast-precursor cells and early osteoblasts. A set of gradually sulfated chondroitin sulfate and hyaluronan derivatives was used for the preparation of aECM. All these matrices were analysed with human bone marrow stromal cells to identify the most potent aECM and to determine the influence of the degree and position of sulfate groups and the kind of disaccharide units on the osteogenic differentiation. Oversulfated GAG derivatives with a sulfate group at the C-6 position of the N-acetylglycosamine revealed the most pronounced proosteogenic effect as determined by tissue nonspecific alkaline phosphatase activity and calcium deposition. A subset of the aECM was further analysed with different primary osteoblasts and cell lines reflecting different maturation stages to test whether the effect of sulfated GAG derivatives depends on the maturation status of the cells. It was shown that the proosteogenic effect of aECM was most prominent in early osteoblasts. PMID:24864267

  4. Isolation and characterization of mesenchymal progenitors derived from the bone marrow of goats native from northeastern Brazil.

    PubMed

    Silva Filho, Osmar Ferreira da; Argôlo Neto, Napoleão Martins; Carvalho, Maria Acelina Martins de; Carvalho, Yulla Klinger de; Diniz, Anaemilia das Neves; Moura, Laécio da Silva; Ambrósio, Carlos Eduardo; Monteiro, Janaína Munuera; Almeida, Hatawa Melo de; Miglino, Maria Angélica; Alves, Jacyara de Jesus Rosa Pereira; Macedo, Kássio Vieira; Rocha, Andressa Rego da; Feitosa, Matheus Levi Tajra; Alves, Flávio Ribeiro

    2014-08-01

    To characterize bone marrow progenitors cells grown in vitro, using native goats from northeastern Brazil as animal model. Ten northeastern Brazil native goats of both genders were used from the Piauí Federal University Agricultural Science Center's (UFPI) - Goat Farming Sector. Bone marrow aspirates where taken from the tibial ridge and seeded on culture plates for isolation, expansion and Flow Cytometry (expression markers - Oct-3/4, PCNA, Ck-Pan, Vimentina, Nanog). Progenitor cells showed colonies characterized by the presence of cell pellets with fibroblastoid morphology. Cell confluence was taken after 14 days culture and the non-adherent mononuclear cell progressive reduction. After the first passage, 94.36% cell viability was observed, starting from 4.6 x 106 cell/mL initially seeded. Cells that went through flow cytometry showed positive expression for Oct-3/4, PCNA, Ck-Pan, Vimentina, and Nanog. Bone marrow progenitor isolated of native goats from northeastern Brazil showed expression markers also seen in embryonic stem cells (Oct-3/4, Nanog), markers of cell proliferation (PCNA) and markers for mesenchymal cells (Vimentina and Ck-pan), which associated to morphological and culture growth features, suggest the existence of a mesenchymal stem cell (MSC) population in the goat bone marrow stromal cells studied.

  5. Role of thrombopoietin in mast cell differentiation.

    PubMed

    Migliaccio, Anna Rita; Rana, Rosa Alba; Vannucchi, Alessandro M; Manzoli, Francesco A

    2007-06-01

    Mast cells are important elements of the body response to foreign antigens, being those represented either by small molecules (allergic response) or harbored by foreign microorganisms (response to parasite infection). These cells derive from hematopoietic stem/progenitor cells present in the marrow. However, in contrast with most of the other hematopoietic lineages, mast cells do not differentiate in the marrow but in highly vascularized extramedullary sites, such as the skin or the gut. Mast cell differentiation in the marrow is activated as part of the body response to parasites. We will review here the mast cell differentiation pathway and what is known of its major intrinsic and extrinsic control mechanisms. It will also be described that thrombopoietin, the ligand for the Mpl receptor, in addition to its pivotal rule in the control of thrombocytopoiesis and of hematopoietic stem/progenitor cell proliferation, exerts a regulatory function in mast cell differentiation. Some of the possible implications of this newly described biological activity of thrombopoietin will be discussed.

  6. In vitro Culture of Naïve Human Bone Marrow Mesenchymal Stem Cells: A Stemness Based Approach

    PubMed Central

    Pal, Bidisha; Das, Bikul

    2017-01-01

    Human bone marrow derived mesenchymal stem cells (BM-MSCs) resides in their niches in close proximity to hematopoietic stem cells (HSCs). These naïve MSCs have tremendous potential in regenerative therapeutics, and may also be exploited by cancer and infectious disease agents. Hence, it is important to study the physiological and pathological roles of naïve MSC. However, our knowledge of naïve MSCs is limited by lack of appropriate isolation and in vitro culture methods. Established culture methods use serum rich media, and serial passaging for retrospective isolation of MSCs. These primed MSCs may not reflect the true physiological and pathological roles of naive MSCs (Figure 1). Therefore, there is a strong need for direct isolation and in vitro culture of naïve MSCs to study their stemness (self-renewal and undifferentiated state) and developmental ontogeny. We have taken a niche-based approach on stemness to better maintain naïve MSCs in vitro. In this approach, stemness is broadly divided as niche dependent (extrinsic), niche independent (intrinsic) and niche modulatory (altruistic or competitive). Using this approach, we were able to maintain naïve CD271+/CD133+ BM-MSCs for 2 weeks. Furthermore, this in vitro culture system helped us to identify naïve MSCs as a protective niche site for Mycobacterium tuberculosis, the causative organism of pulmonary tuberculosis. In this review, we discuss the in vitro culture of primed vs. naïve human BM derived MSCs with a special focus on how a stemness based approach could facilitate the study of naïve BM-MSCs. PMID:28884113

  7. Graft-versus-host disease

    MedlinePlus

    GVHD; Bone marrow transplant - graft-versus-host disease; Stem cell transplant - graft-versus-host disease; Allogeneic transplant - ... GVHD may occur after a bone marrow, or stem cell, transplant in which someone receives bone marrow ...

  8. Potential benefits of allogeneic bone marrow mesenchymal stem cells for wound healing

    PubMed Central

    Badiavas, Alexander R.; Badiavas, Evangelos V.

    2011-01-01

    Introduction It is becoming increasingly evident that select adult stem cells have the capacity to participate in repair and regeneration of damaged and/or diseased tissues. Mesenchymal stem cells have been among the most studied adult stem cells for the treatment of a variety of conditions including wound healing. Areas covered Mesenchymal stem cell features potentially beneficial to cutaneous wound healing applications are reviewed. Expert opinion Given their potential for in vitro expansion and immune modulatory effects, both autologous and allogeneic mesenchymal stem cells appear to be well suited as wound healing therapies. Allogeneic mesenchymal stem cells derived from young healthy donors could have particular advantage over autologous sources where age and systemic disease can be significant factors. PMID:21854302

  9. [Proliferative capacity of mesenchymal stem cells from human fetal bone marrow and their ability to differentiate into the derivative cell types of three embryonic germ layers].

    PubMed

    Wang, Yue-Chun; Zhang, Yuan

    2008-06-25

    Strong proliferative capacity and the ability to differentiate into the derivative cell types of three embryonic germ layers are the two important characteristics of embryonic stem cells. To study whether the mesenchymal stem cells from human fetal bone marrow (hfBM-MSCs) possess these embryonic stem cell-like biological characteristics, hfBM-MSCs were isolated from bone barrows and further purified according to the different adherence of different kinds of cells to the wall of culture flask. The cell cycle of hfBM-MSCs and MSC-specific surface markers such as CD29, CD44, etc were identified using flow cytometry. The expressions of human telomerase reverse transcriptase (hTERT), the embryonic stem cell-specific antigens, such as Oct4 and SSEA-4 were detected with immunocytochemistry at the protein level and were also tested by RT-PCR at the mRNA level. Then, hfBM-MSCs were induced to differentiate toward neuron cells, adipose cells, and islet B cells under certain conditions. It was found that 92.3% passage-4 hfBM-MSCs and 96.1% passage-5 hfBM-MSCs were at G(0)/G(1) phase respectively. hfBM-MSCs expressed CD44, CD106 and adhesion molecule CD29, but not antigens of hematopoietic cells CD34 and CD45, and almost not antigens related to graft-versus-host disease (GVHD), such as HLA-DR, CD40 and CD80. hfBM-MSCs expressed the embryonic stem cell-specific antigens such as Oct4, SSEA-4, and also hTERT. Exposure of these cells to various inductive agents resulted in morphological changes towards neuron-like cells, adipose-like cells, and islet B-like cells and they were tested to be positive for related characteristic markers. These results suggest that there are plenty of MSCs in human fetal bone marrow, and hfBM-MSCs possess the embryonic stem cell-like biological characteristics, moreover, they have a lower immunogenic nature. Thus, hfBM-MSCs provide an ideal source for tissue engineering and cellular therapeutics.

  10. Evaluation of stem cell reserve using serial bone marrow transplantation and competitive repopulation in a murine model of chronic hemolytic anemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maggio-Price, L.; Wolf, N.S.; Priestley, G.V.

    1988-09-01

    Serial transplantation and competitive repopulation were used to evaluate any loss of self-replicative capacity of bone marrow stem cells in a mouse model with increased and persistent hemopoietic demands. Congenic marrows from old control and from young and old mice with hereditary spherocytic anemia (sphha/sphha) were serially transplanted at 35-day intervals into normal irradiated recipients. Old anemic marrow failed or reverted to recipient karyotype at a mean of 3.5 transplants, and young anemic marrow reverted at a mean of 4.0 transplants, whereas controls did so at a mean of 5.0 transplants. In a competitive assay in which a mixture ofmore » anemic and control marrow was transplanted, the anemic marrow persisted to 10 months following transplantation; anemic marrow repopulation was greater if anemic marrow sex matched with the host. It is possible that lifelong stress of severe anemia decreases stem cell reserve in the anemic sphha/sphha mouse marrow. However, marginal differences in serial transplantation number and the maintenance of anemic marrow in a competition assay would suggest that marrow stem cells, under prolonged stress, are capable of exhibiting good repopulating and self-replicating abilities.« less

  11. Bone Marrow Aspirate Concentrate for Cartilage Defects of the Knee: From Bench to Bedside Evidence.

    PubMed

    Cotter, Eric J; Wang, Kevin C; Yanke, Adam B; Chubinskaya, Susan

    2018-04-01

    Objective To critically evaluate the current basic science, translational, and clinical data regarding bone marrow aspirate concentrate (BMAC) in the setting of focal cartilage defects of the knee and describe clinical indications and future research questions surrounding the clinical utility of BMAC for treatment of these lesions. Design A literature search was performed using the PubMed and Ovid MEDLINE databases for studies in English (1980-2017) using keywords, including ["bone marrow aspirate" and "cartilage"], ["mesenchymal stem cells" and "cartilage"], and ["bone marrow aspirate" and "mesenchymal stem cells" and "orthopedics"]. A total of 1832 articles were reviewed by 2 independent authors and additional literature found through scanning references of cited articles. Results BMAC has demonstrated promising results in the clinical application for repair of chondral defects as an adjuvant procedure or as an independent management technique. A subcomponent of BMAC, bone marrow derived-mesenchymal stem cells (MSCs) possess the ability to differentiate into cells important for osteogenesis and chondrogenesis. Modulation of paracrine signaling is perhaps the most important function of BM-MSCs in this setting. In an effort to increase the cellular yield, authors have shown the ability to expand BM-MSCs in culture while maintaining phenotype. Conclusions Translational studies have demonstrated good clinical efficacy of BMAC both concomitant with cartilage restoration procedures, at defined time points after surgery, and as isolated injections. Early clinical data suggests BMAC may help stimulate a more robust hyaline cartilage repair tissue response. Numerous questions remain regarding BMAC usage, including cell source, cell expansion, optimal pathology, and injection timing and quantity.

  12. Bone Marrow-Derived Mesenchymal Stem Cell Therapy as a Candidate Disease-Modifying Strategy in Parkinson's Disease and Multiple System Atrophy

    PubMed Central

    Park, Hyun Jung

    2009-01-01

    Parkinson's disease (PD) and multiple system atrophy (MSA) are neurodegenerative diseases representative of α-synucleinopathies characterized pathologically by α-synuclein-abundant Lewy bodies and glial cytoplasmic inclusions, respectively. Embryonic stem cells, fetal mesencephalic neurons, and neural stem cells have been introduced as restorative strategies in PD animals and patients, but ethical and immunological problems as well as the serious side effects of tumorigenesis and disabling dyskinesia have limited clinical application of these stem cells. Meanwhile, cell therapy using mesenchymal stem cells (MSCs) is attractive clinically because these cells are free from ethical and immunological problems. MSCs are present in adult bone marrow and represent <0.01% of all nucleated bone marrow cells. MSCs are themselves capable of multipotency, differentiating under appropriate conditions into chondrocytes, skeletal myocytes, and neurons. According to recent studies, the neuroprotective effect of MSCs is mediated by their ability to produce various trophic factors that contribute to functional recovery, neuronal cell survival, and stimulation of endogenous regeneration and by immunoregulatory properties that not only inhibit nearly all cells participating in the immune response cell-cell-contact-dependent mechanism, but also release various soluble factors associated with immunosuppressive activity. However, the use of MSCs as neuroprotectives in PD and MSA has seldom been studied. Here we comprehensively review recent advances in the therapeutic roles of MSCs in PD and MSA, especially focusing on their neuroprotective properties and use in disease-modifying therapeutic strategies. PMID:19513327

  13. Reconciling the effects of inflammatory cytokines on mesenchymal cell osteogenic differentiation

    PubMed Central

    Deshpande, Sagar; James, Aaron W.; Blough, Jordan; Donneys, Alexis; Wang, Stewart C.; Cederna, Paul S.; Buchman, Steven R.; Levi, Benjamin

    2015-01-01

    Therapies using mesenchymal stem cells are a popular current avenue for development and utilization, especially in the fields of de novo tissue engineering (Sanchez-Ramos J, Song S, Cardozo-Pelaez F, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 2000;164:247.) or tissue regeneration after physical injury (Kitoh H, Kitakoji T, Tsuchiya H, et al. Transplantation of marrow-derived mesenchymal stem cells and platelet-rich plasma during distraction osteogenesis—a preliminary result of three cases. Bone 2004;35:892; Shumakov VI, Onishchenko NA, Rasulov MF, Krasheninnikov ME, Zaidenov VA. Mesenchymal bone marrow stem cells more effectively stimulate regeneration of deep burn wounds than embryonic fibroblasts. Bull Exp Biol Med 2003;136:192; Bruder SP, Fink DJ, Caplan AI. Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem 1994;56:283.). The osteogenic potential of these cells is of particular interest, given their recent usage for the closure of critical-sized bone defects and other nonhealing bone scenarios such as a nonunion. Recent literature suggests that inflammatory cytokines can significantly impact the osteogenic potential of these cells. A review of relevant, recent literature is presented regarding the impact of the inflammatory cascade on the osteogenic differentiation of these cells and how this varies across species. Finally, we identify areas of conflicting or absent evidence regarding the behavior of mesenchymal stem cells in response to inflammatory cytokines. PMID:23972621

  14. Human blood and marrow side population stem cell and Stro-1 positive bone marrow stromal cell numbers decline with age, with an increase in quality of surviving stem cells: Correlation with cytokines

    PubMed Central

    Brusnahan, S.K.; McGuire, T.R.; Jackson, J.D.; Lane, J.T.; Garvin, K.L.; O’Kane, B.J.; Berger, A.M.; Tuljapurkar, S.R.; Kessinger, M.A.; Sharp, J.G.

    2010-01-01

    Hematological deficiencies increase with aging leading to anemias, reduced hematopoietic stress responses and myelodysplasias. This study tested the hypothesis that side population hematopoietic stem cells (SP-HSC) would decrease with aging, correlating with IGF-1 and IL-6 levels and increases in bone marrow fat. Marrow was obtained from the femoral head and trochanteric region of the femur at surgery for total hip replacement (N = 100). Whole trabecular marrow samples were ground in a sterile mortar and pestle and cellularity and fat content determined. Marrow and blood mononuclear cells were stained with Hoechst dye and the SP-HSC profiles acquired. Marrow stromal cells (MSC) were enumerated flow cytometrically employing the Stro-1 antibody, and clonally in the colony forming unit fibroblast (CFU-F) assay. Plasma levels of IGF-1 (ng/ml) and IL-6 (pg/ml) were measured by ELISA. SP-HSC in blood and bone marrow decreased with age but the quality of the surviving stem cells increased. MSC decreased non-significantly. IGF-1 levels (mean = 30.7, SEM = 2) decreased and IL-6 levels (mean = 4.4, SEM = 1) increased with age as did marrow fat (mean = 1.2 mm fat/g, SEM = 0.04). There were no significant correlations between cytokine levels or fat and SP-HSC numbers. Stem cells appear to be progressively lost with aging and only the highest quality stem cells survive. PMID:21035480

  15. Stem cell mobilization and collection from pediatric patients and healthy children.

    PubMed

    Karakukcu, Musa; Unal, Ekrem

    2015-08-01

    Today, hematopoietic stem cell transplantation (HSCT) is a standard treatment for a variety of conditions in children, including certain malignancies, hemoglobinopathies, bone marrow failure syndromes, immunodeficiency and inborn metabolic disease. Two fundamentally different types of HSCT are categorized by the source of the stem cells. The first, autologous HSCT represents infusion of patient's own hematopoietic stem cells (HSCs) obtained from the patient; the second, allogeneic HSCT refers to the infusion of HSCs obtained from a donor via bone marrow harvest or apheresis. Bone marrow has been the typical source for HSCs for pediatric donors. Bone marrow harvest is a safe procedure mainly related to mild and transient side effects. Recently, a dramatically increased use of mobilized peripheral blood stem cells (PBSCs) in the autologous as well as allogeneic setting has been seen worldwide. There are limited data comparing mobilization regimens; also mobilization practices vary widely in children. The most commonly used approach includes granulocyte colony stimulating factor (G-CSF) at 10 mg/kg/day as a single daily dose for 4 days before the day of leukapheresis. G-CSF induced pain was less reported in children compared to adult donors. For the collection, there are several technical problems, derived from the size of the patient or donor, which must be considered before and during the apheresis. Vascular access, extracorporeal circuit volume, blood flow rates are the main limiting factors for PBSC collection in small children. Most children younger than 12 years require central vascular access for apheresis; line placement may require either general anesthesia or conscious sedation and many of the complications arise from the central venous catheter. In this review, we discuss that the ethical considerations and some principals regarding children serving as stem cell donors and the commonest sources of HSCs are presented in children, together with a discussion of how to collect and process these cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Stem cell transplantation in the context of HIV--how can we cure HIV infection?

    PubMed

    Bauer, Gerhard; Anderson, Joseph S

    2014-01-01

    All HIV target cells are derived from hematopoietic stem cells. More than two decades ago, a hypothesis was postulated that a cure for HIV may be possible by performing a transplant with HIV-resistant hematopoietic stem cells that would allow for an HIV-resistant immune system to arise. HIV-resistant stem cells could be generated by genetically modifying them with gene therapy vectors transferring anti-HIV genes. First attempts of stem cell gene therapy for HIV were carried out in the USA in the 1990s demonstrating safety, but also little efficacy at that time. The first demonstration that the postulated hypothesis was correct was the cure of an HIV-infected individual in Berlin in 2009 who received an allogeneic bone marrow transplant from a donor who lacked the CCR5 chemokine receptor, a naturally arising mutation rendering HIV target cells resistant to infection with macrophage tropic strains of HIV. In 2013, reports were published about a possible cure of HIV-infected individuals who received allogeneic bone marrow transplants with cells not resistant to HIV. We will review these stem cell transplant procedures and discuss their utility to provide a cure for HIV infection, including efficacious future stem cell gene therapy applications.

  17. Mesenchymal Stem Cells Improve Motor Functions and Decrease Neurodegeneration in Ataxic Mice

    PubMed Central

    Jones, Jonathan; Estirado, Alicia; Redondo, Carolina; Pacheco-Torres, Jesus; Sirerol-Piquer, Maria-Salomé; Garcia-Verdugo, José M; Martinez, Salvador

    2015-01-01

    The main objective of this work is to demonstrate the feasibility of using bone marrow-derived stem cells in treating a neurodegenerative disorder such as Friedreich's ataxia. In this disease, the dorsal root ganglia of the spinal cord are the first to degenerate. Two groups of mice were injected intrathecally with mesenchymal stem cells isolated from either wild-type or Fxntm1Mkn/Tg(FXN)YG8Pook (YG8) mice. As a result, both groups presented improved motor skills compared to nontreated mice. Also, frataxin expression was increased in the dorsal root ganglia of the treated groups, along with lower expression of the apoptotic markers analyzed. Furthermore, the injected stem cells expressed the trophic factors NT3, NT4, and BDNF, which bind to sensory neurons of the dorsal root ganglia and increase their survival. The expression of antioxidant enzymes indicated that the stem cell-treated mice presented higher levels of catalase and GPX-1, which are downregulated in the YG8 mice. There were no significant differences in the use of stem cells isolated from wild-type and YG8 mice. In conclusion, bone marrow mesenchymal stem cell transplantation, both autologous and allogeneic, is a feasible therapeutic option to consider in delaying the neurodegeneration observed in the dorsal root ganglia of Friedreich's ataxia patients. PMID:25070719

  18. Mesenchymal Stem Cell as Targeted-Delivery Vehicle in Breast Cancer

    DTIC Science & Technology

    2008-06-01

    Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta . Nat Med. 1999;5:309-13. 3. Le...relevant because the beneficial effects of MSCs are being tested clinically in attempts to improve hematopoietic engraftment [1], to treat osteogenesis

  19. Destiny of autologous bone marrow-derived stromal cells implanted in the vocal fold.

    PubMed

    Kanemaru, Shin-ichi; Nakamura, Tatsuo; Yamashita, Masaru; Magrufov, Akhmar; Kita, Tomoko; Tamaki, Hisanobu; Tamura, Yoshihiro; Iguchi, Fuku-ichiro; Kim, Tae Soo; Kishimoto, Masanao; Omori, Koichi; Ito, Juichi

    2005-12-01

    The aim of this study was to investigate the destiny of implanted autologous bone marrow-derived stromal cells (BSCs) containing mesenchymal stem cells. We previously reported the successful regeneration of an injured vocal fold through implantation of BSCs in a canine model. However, the fate of the implanted BSCs was not examined. In this study, implanted BSCs were traced in order to determine the type of tissues resulting at the injected site of the vocal fold. After harvest of bone marrow from the femurs of green fluorescent transgenic mice, adherent cells were cultured and selectively amplified. By means of a fluorescence-activated cell sorter, it was confirmed that some cells were strongly positive for mesenchymal stem cell markers, including CD29, CD44, CD49e, and Sca-1. These cells were then injected into the injured vocal fold of a nude rat. Immunohistologic examination of the resected vocal folds was performed 8 weeks after treatment. The implanted cells were alive in the host tissues and showed positive expression for keratin and desmin, markers for epithelial tissue and muscle, respectively. The implanted BSCs differentiated into more than one tissue type in vivo. Cell-based tissue engineering using BSCs may improve the quality of the healing process in vocal fold injuries.

  20. Potential use of mesenchymal stem cells in human meniscal repair: current insights

    PubMed Central

    Pak, Jaewoo; Lee, Jung Hun; Park, Kwang Seung; Jeon, Jeong Ho; Lee, Sang Hee

    2017-01-01

    The menisci of the human knee play an important role in maintaining normal functions to provide stability and nutrition to the articular cartilage, and to absorb shock. Once injured, these important structures have very limited natural healing potential. Unfortunately, the traditional arthroscopic meniscectomy performed on these damaged menisci may predispose the joint toward early development of osteoarthritis. Although a very limited number of studies are available, mesenchymal stem cells (MSCs) have been investigated as an alternative therapeutic modality to repair human knee meniscal tears. This review summarizes the results of published applications of MSCs in human patients, which showed that the patients who received MSCs (autologous adipose tissue-derived stem cells or culture-expanded bone marrow-derived stem cells) presented symptomatic improvements, along with magnetic resonance imaging evidences of the meniscal repair. PMID:28356779

  1. Bridging defects in chronic spinal cord injury using peripheral nerve grafts combined with a chitosan-laminin scaffold and enhancing regeneration through them by co-transplantation with bone-marrow-derived mesenchymal stem cells: Case series of 14 patients

    PubMed Central

    Amr, Sherif M.; Gouda, Ashraf; Koptan, Wael T.; Galal, Ahmad A.; Abdel-Fattah, Dina Sabry; Rashed, Laila A.; Atta, Hazem M.; Abdel-Aziz, Mohammad T.

    2014-01-01

    Objective To investigate the effect of bridging defects in chronic spinal cord injury using peripheral nerve grafts combined with a chitosan-laminin scaffold and enhancing regeneration through them by co-transplantation with bone-marrow-derived mesenchymal stem cells. Methods In 14 patients with chronic paraplegia caused by spinal cord injury, cord defects were grafted and stem cells injected into the whole construct and contained using a chitosan-laminin paste. Patients were evaluated using the International Standards for Classification of Spinal Cord Injuries. Results Chitosan disintegration leading to post-operative seroma formation was a complication. Motor level improved four levels in 2 cases and two levels in 12 cases. Sensory-level improved six levels in two cases, five levels in five cases, four levels in three cases, and three levels in four cases. A four-level neurological improvement was recorded in 2 cases and a two-level neurological improvement occurred in 12 cases. The American Spinal Impairment Association (ASIA) impairment scale improved from A to C in 12 cases and from A to B in 2 cases. Although motor power improvement was recorded in the abdominal muscles (2 grades), hip flexors (3 grades), hip adductors (3 grades), knee extensors (2–3 grades), ankle dorsiflexors (1–2 grades), long toe extensors (1–2 grades), and plantar flexors (0–2 grades), this improvement was too low to enable them to stand erect and hold their knees extended while walking unaided. Conclusion Mesenchymal stem cell-derived neural stem cell-like cell transplantation enhances recovery in chronic spinal cord injuries with defects bridged by sural nerve grafts combined with a chitosan-laminin scaffold. PMID:24090088

  2. Periodontal regeneration with stem cells-seeded collagen-hydroxyapatite scaffold.

    PubMed

    Liu, Zeping; Yin, Xing; Ye, Qingsong; He, Wulin; Ge, Mengke; Zhou, Xiaofu; Hu, Jing; Zou, Shujuan

    2016-07-01

    Re-establishing compromised periodontium to its original structure, properties and function is demanding, but also challenging, for successful orthodontic treatment. In this study, the periodontal regeneration capability of collagen-hydroxyapatite scaffolds, seeded with bone marrow stem cells, was investigated in a canine labial alveolar bone defect model. Bone marrow stem cells were isolated, expanded and characterized. Porous collagen-hydroxyapatite scaffold and cross-linked collagen-hydroxyapatite scaffold were prepared. Attachment, migration, proliferation and morphology of bone marrow stem cells, co-cultured with porous collagen-hydroxyapatite or cross-linked collagen-hydroxyapatite, were evaluated in vitro. The periodontal regeneration capability of collagen-hydroxyapatite scaffold with or without bone marrow stem cells was tested in six beagle dogs, with each dog carrying one sham-operated site as healthy control, and three labial alveolar bone defects untreated to allow natural healing, treated with bone marrow stem cells - collagen-hydroxyapatite scaffold implant or collagen-hydroxyapatite scaffold implant, respectively. Animals were euthanized at 3 and 6 months (3 animals per group) after implantation and the resected maxillary and mandibular segments were examined using micro-computed tomography scan, H&E staining, Masson's staining and histometric evaluation. Bone marrow stem cells were successfully isolated and demonstrated self-renewal and multi-potency in vitro. The porous collagen-hydroxyapatite and cross-linked collagen-hydroxyapatite had average pore sizes of 415 ± 20 µm and 203 ± 18 µm and porosity of 69 ± 0.5% and 50 ± 0.2%, respectively. The attachment, proliferation and migration of bone marrow stem cells were satisfactory on both porous collagen-hydroxyapatite and cross-linked collagen-hydroxyapatite scaffolds. Implantation of bone marrow stem cells - collagen-hydroxyapatite or collagen-hydroxyapatite scaffold in beagle dogs with experimental periodontal defects resulted in significantly enhanced periodontal regeneration characterized by formation of new bone, periodontal ligament and cementum, compared with the untreated defects, as evidenced by histological and micro-computed tomography examinations. The prepared collagen-hydroxyapatite scaffolds possess favorable bio-compatibility. The bone marrow stem cells - collagen-hydroxyapatite and collagen-hydroxyapatite scaffold - induced periodontal regeneration, with no aberrant events complicating the regenerative process. Further research is necessary to improve the bone marrow stem cells behavior in collagen-hydroxyapatite scaffolds after implantation. © The Author(s) 2016.

  3. Comparison of differentiation potential of male mouse adipose tissue and bone marrow derived-mesenchymal stem cells into germ cells

    PubMed Central

    Hosseinzadeh Shirzeily, Maryam; Pasbakhsh, Parichehr; Amidi, Fardin; Mehrannia, Kobra; Sobhani, Aligholi

    2013-01-01

    Background: Recent publications about differentiation of stem cells to germ cells have motivated researchers to make new approaches to infertility. In vitro production of germ cells improves understanding differentiation process of male and female germ cells. Due to the problem of using embryonic stem cells (ESC), it’s necessary the mentioned cells be replaced with some adult multi-potent stem cells in laboratories. Objective: The aim of this study was to obtain germ cells from appropriate source beyond ESC and compare differential potentials of adipocytes derived stem cells (ADMSCs) with bone marrow derived stem cells (BMMSCs). Materials and Methods: To find multi-potential entity, after providing purified ADMSCs and BMMSCs, differentiation to osteoblast and adipocyte was confirmed by using appropriate culture medium. To confirm mesenchymal lineage production superficial markers (expression of CD90 and CD44 and non-expression of CD45 and CD31) were investigated by flowcytometry. Then the cells were differentiated to germ cells in inductive medium containing retinoic acid for 7days. To evaluate germ cells characteristic markers [Dazl (Deleted in azoospermia-like), Mvh (Mouse vasa homolog gene), Stra8 (Stimulated by retinoic acid) and Scp3 (Synaptonemal complex protein 3)] flowcytometry, imunoflorescence and real time PCR were used. Results: Both types of cells were able to differentiate into osteoblast and adipocyte cells and presentation of stem cell superficial markers (CD90, CD44) and absence of endothelial and blood cell markers (CD31, CD45) were confirmative The flowcytometry, imunoflorescence and real time PCR results showed remarkable expression of germ cells characteristic markers (Mvh, Dazl, Stra8, and Scp3). Conclusion: It was found that although ADMSCs were attained easier and also cultured and differentiated rapidly, germ cell markers were expressed in BMMSCs significantly more than ADMSCs. This article extracted from M.Sc. thesis. (Maryam Hosseinzadeh Shirzeily) PMID:24639722

  4. Mucopolysaccharidosis enzyme production by bone marrow and dental pulp derived human mesenchymal stem cells.

    PubMed

    Jackson, Matilda; Derrick Roberts, Ainslie; Martin, Ellenore; Rout-Pitt, Nathan; Gronthos, Stan; Byers, Sharon

    2015-04-01

    Mucopolysaccharidoses (MPS) are inherited metabolic disorders that arise from a complete loss or a reduction in one of eleven specific lysosomal enzymes. MPS children display pathology in multiple cell types leading to tissue and organ failure and early death. Mesenchymal stem cells (MSCs) give rise to many of the cell types affected in MPS, including those that are refractory to current treatment protocols such as hematopoietic stem cell (HSC) based therapy. In this study we compared multiple MPS enzyme production by bone marrow derived (hBM) and dental pulp derived (hDP) MSCs to enzyme production by HSCs. hBM MSCs produce significantly higher levels of MPS I, II, IIIA, IVA, VI and VII enzyme than HSCs, while hDP MSCs produce significantly higher levels of MPS I, IIIA, IVA, VI and VII enzymes. Higher transfection efficiency was observed in MSCs (89%) compared to HSCs (23%) using a lentiviral vector. Over-expression of four different lysosomal enzymes resulted in up to 9303-fold and up to 5559-fold greater levels in MSC cell layer and media respectively. Stable, persistent transduction of MSCs and sustained over-expression of MPS VII enzyme was observed in vitro. Transduction of MSCs did not affect the ability of the cells to differentiate down osteogenic, adipogenic or chondrogenic lineages, but did partially delay differentiation down the non-mesodermal neurogenic lineage. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Stem Cell Mobilizers: Novel Therapeutics for Acute Kidney Injury.

    PubMed

    Xu, Yue; Zeng, Song; Zhang, Qiang; Zhang, Zijian; Hu, Xiaopeng

    2017-01-01

    In the past decade, rapid developments in stem cell studies have occurred. Researchers have confirmed the plasticity of bone marrow stem cells and the repair and regeneration effects of bone marrow hematopoietic stem cells on solid organs. These findings have suggested the possibility of using bone marrow stem cell mobilizers to repair and regenerate injured organs. Recent studies on the effects of granulocyte colony-stimulating factor (G-CSF) and Plerixafor (AMD3100) on mouse acute kidney injury models have confirmed that the use of bone marrow stem cell mobilizers may be an effective therapeutic measure. This paper summarizes studies describing the effects of G-CSF and AMD3100 on various acute kidney injury models over the past 10 years. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Effects of Iron Overload on the Bone Marrow Microenvironment in Mice

    PubMed Central

    Zhao, Mingfeng; Li, Deguan; Chai, Xiao; Cao, Xiaoli; Meng, Juanxia; Chen, Jie; Xiao, Xia; Li, Qing; Mu, Juan; Shen, Jichun; Meng, Aimin

    2015-01-01

    Objective Using a mouse model, Iron Overload (IO) induced bone marrow microenvironment injury was investigated, focusing on the involvement of reactive oxygen species (ROS). Methods Mice were intraperitoneally injected with iron dextran (12.5, 25, or 50mg) every three days for two, four, and six week durations. Deferasirox(DFX)125mg/ml and N-acetyl-L-cysteine (NAC) 40mM were co-administered. Then, bone marrow derived mesenchymal stem cells (BM-MSCs) were isolated and assessed for proliferation and differentiation ability, as well as related gene changes. Immunohistochemical analysis assessed the expression of haematopoietic chemokines. Supporting functions of BM-MSCs were studied by co-culture system. Results In IO condition (25mg/ml for 4 weeks), BM-MSCs exhibited proliferation deficiencies and unbalanced osteogenic/adipogenic differentiation. The IO BM-MSCs showed a longer double time (2.07±0.14 days) than control (1.03±0.07 days) (P<0.05). The immunohistochemical analysis demonstrated that chemokine stromal cell-derived factor-1, stem cell factor -1, and vascular endothelial growth factor-1 expression were decreased. The co-cultured system demonstrated that bone marrow mononuclear cells (BMMNCs) co-cultured with IO BM-MSCs had decreased colony forming unit (CFU) count (p<0.01), which indicates IO could lead to decreased hematopoietic supporting functions of BM-MSCs. This effect was associated with elevated phosphatidylinositol 3 kinase (PI3K) and reduced of Forkhead box protein O3 (FOXO3) mRNA expression, which could induce the generation of ROS. Results also demonstrated that NAC or DFX treatment could partially attenuate cell injury and inhibit signaling pathway striggered by IO. Conclusion These results demonstrated that IO can impair the bone marrow microenvironment, including the quantity and quality of BM-MSCs. PMID:25774923

  7. Mesenchymal stem cells with rhBMP-2 inhibits the growth of canine osteosarcoma cells

    PubMed Central

    2012-01-01

    Background The bone morphogenetic proteins (BMPs) belong to a unique group of proteins that includes the growth factor TGF-β. BMPs play important roles in cell differentiation, cell proliferation, and inhibition of cell growth. They also participate in the maturation of several cell types, depending on the microenvironment and interactions with other regulatory factors. Depending on their concentration gradient, the BMPs can attract various types of cells and act as chemotactic, mitogenic, or differentiation agents. BMPs can interfere with cell proliferation and the formation of cartilage and bone. In addition, BMPs can induce the differentiation of mesenchymal progenitor cells into various cell types, including chondroblasts and osteoblasts. The aim of this study was to analyze the effects of treatment with rhBMP-2 on the proliferation of canine mesenchymal stem cells (cMSCs) and the tumor suppression properties of rhBMP-2 in canine osteocarcoma (OST) cells. Osteosarcoma cell lines were isolated from biopsies and excisions of animals with osteosarcoma and were characterized by the Laboratory of Biochemistry and Biophysics, Butantan Institute. The mesenchymal stem cells were derived from the bone marrow of canine fetuses (cMSCs) and belong to the University of São Paulo, College of Veterinary Medicine (FMVZ-USP) stem cell bank. After expansion, the cells were cultured in a 12-well Transwell system; cells were treated with bone marrow mesenchymal stem cells associated with rhBMP2. Expression of the intracytoplasmic and nuclear markers such as Caspase-3, Bax, Bad, Bcl-2, Ki-67, p53, Oct3/4, Nanog, Stro-1 were performed by flow citometry. Results We evaluated the regenerative potential of in vitro treatment with rhBMP-2 and found that both osteogenic induction and tumor regression occur in stem cells from canine bone marrow. rhBMP-2 inhibits the proliferation capacity of OST cells by mechanisms of apoptosis and tumor suppression mediated by p53. Conclusion We propose that rhBMP-2 has great therapeutic potential in bone marrow cells by serving as a tumor suppressor to increase p53 and the pro-apoptotic proteins Bad and Bax, as well as by increasing the activity of phosphorylated caspase 3. Study design Canine bone marrow mesenchymal stem cells associated with rhBMP2 in canine osteosarcoma treatment: "in vitro" study PMID:22356869

  8. Cytokine-primed bone marrow stem cells vs. peripheral blood stem cells for autologous transplantation: a randomized comparison of GM-CSF vs. G-CSF.

    PubMed

    Weisdorf, D; Miller, J; Verfaillie, C; Burns, L; Wagner, J; Blazar, B; Davies, S; Miller, W; Hannan, P; Steinbuch, M; Ramsay, N; McGlave, P

    1997-10-01

    Autologous transplantation for non-Hodgkins lymphoma and Hodgkin's disease is widely used as standard therapy for those with high-risk or relapsed tumor. Peripheral blood stem cell (PBSC) collections have nearly completely replaced bone marrow stem cell (BMSC) harvests because of the perceived advantages of more rapid engraftment, less tumor contamination in the inoculum, and better survival after therapy. The advantage of PBSC, however, may derive from the hematopoietic stimulating cytokines used for PBSC mobilization. Therefore, we tested a randomized comparison of GM-CSF vs. G-CSF used to prime either BMSC or PBSC before collection for use in autologous transplantation. Sixty-two patients receiving transplants (31 PBSC; 31 BMSC) for non-Hodgkin's lymphoma (n = 51) or Hodgkin's disease (n = 11) were treated. All patients received 6 days of randomly assigned cytokine. Those with cellular marrow in morphologic remission underwent BMSC harvest, while those with hypocellular marrow or microscopic marrow tumor involvement had PBSC collected. Neutrophil recovery was similarly rapid in all groups (median 14 days; range 10-23 days), though two patients had delayed neutrophil recovery using GM-CSF primed PBSC (p = 0.01). Red cell and platelet recovery were significantly quicker after BMSC mobilized with GM-CSF or PBSC mobilized with G-CSF. This speedier hematologic recovery resulted in earlier hospital discharge as well. However, in multivariate analysis, neither the stem cell source nor randomly assigned G-CSF vs. GM-CSF was independently associated with earlier multilineage hematologic recovery or shorter hospital stay. Relapse-free survival was not independently affected by either the assigned stem cell source or the randomly assigned priming cytokine, though malignant relapse was more frequent in those assigned to PBSC (RR of relapse 3.15, p = 0.03). These data document that BMSC, when collected following cytokine priming, can yield a similarly rapid hematologic recovery and short hospital stay compared with cytokine-primed PBSC. Using primed BMSC, no difference in malignant relapse or relapse-free survival was observed. These findings suggest that despite widespread use of PBSC for transplantation, BMSC, when collected following hematopoietically stimulating cytokines, may remain a satisfactory source of stem cells for autologous transplantation. G-CSF and GM-CSF are both effective in priming autologous PBSC or BMSC for collection.

  9. Mesenchymal stem cells with rhBMP-2 inhibits the growth of canine osteosarcoma cells.

    PubMed

    Rici, Rose Eli Grassi; Alcântara, Dayane; Fratini, Paula; Wenceslau, Cristiane Valverde; Ambrósio, Carlos Eduardo; Miglino, Maria Angelica; Maria, Durvanei Augusto

    2012-02-22

    The bone morphogenetic proteins (BMPs) belong to a unique group of proteins that includes the growth factor TGF-β. BMPs play important roles in cell differentiation, cell proliferation, and inhibition of cell growth. They also participate in the maturation of several cell types, depending on the microenvironment and interactions with other regulatory factors. Depending on their concentration gradient, the BMPs can attract various types of cells and act as chemotactic, mitogenic, or differentiation agents. BMPs can interfere with cell proliferation and the formation of cartilage and bone. In addition, BMPs can induce the differentiation of mesenchymal progenitor cells into various cell types, including chondroblasts and osteoblasts. The aim of this study was to analyze the effects of treatment with rhBMP-2 on the proliferation of canine mesenchymal stem cells (cMSCs) and the tumor suppression properties of rhBMP-2 in canine osteocarcoma (OST) cells. Osteosarcoma cell lines were isolated from biopsies and excisions of animals with osteosarcoma and were characterized by the Laboratory of Biochemistry and Biophysics, Butantan Institute. The mesenchymal stem cells were derived from the bone marrow of canine fetuses (cMSCs) and belong to the University of São Paulo, College of Veterinary Medicine (FMVZ-USP) stem cell bank. After expansion, the cells were cultured in a 12-well Transwell system; cells were treated with bone marrow mesenchymal stem cells associated with rhBMP2. Expression of the intracytoplasmic and nuclear markers such as Caspase-3, Bax, Bad, Bcl-2, Ki-67, p53, Oct3/4, Nanog, Stro-1 were performed by flow citometry. We evaluated the regenerative potential of in vitro treatment with rhBMP-2 and found that both osteogenic induction and tumor regression occur in stem cells from canine bone marrow. rhBMP-2 inhibits the proliferation capacity of OST cells by mechanisms of apoptosis and tumor suppression mediated by p53. We propose that rhBMP-2 has great therapeutic potential in bone marrow cells by serving as a tumor suppressor to increase p53 and the pro-apoptotic proteins Bad and Bax, as well as by increasing the activity of phosphorylated caspase 3. Canine bone marrow mesenchymal stem cells associated with rhBMP2 in canine osteosarcoma treatment: "in vitro" study.

  10. Adult mesenchymal stem cells and cell-based tissue engineering

    PubMed Central

    Tuan, Rocky S; Boland, Genevieve; Tuli, Richard

    2003-01-01

    The identification of multipotential mesenchymal stem cells (MSCs) derived from adult human tissues, including bone marrow stroma and a number of connective tissues, has provided exciting prospects for cell-based tissue engineering and regeneration. This review focuses on the biology of MSCs, including their differentiation potentials in vitro and in vivo, and the application of MSCs in tissue engineering. Our current understanding of MSCs lags behind that of other stem cell types, such as hematopoietic stem cells. Future research should aim to define the cellular and molecular fingerprints of MSCs and elucidate their endogenous role(s) in normal and abnormal tissue functions. PMID:12716446

  11. Effect of Adipose Tissue-Derived Osteogenic and Endothelial Cells on Bone Allograft Osteogenesis and Vascularization in Critical-Sized Calvarial Defects

    DTIC Science & Technology

    2012-05-10

    1% peni - cillin/streptomycin, and 50 ng/mL recombinant rat VEGF-C (Promocell, Heidelberg, Germany). The media were changed every other day for 8...various animal models that have demonstrated an enhanced osteogenic effect after treating bone allografts with adipose tissue or bone marrow-derived... enhanced 1560 CORNEJO ET AL. performance of bone allografts using osteogenic differentiated adipose derived mesenchymal stem cells. Biomaterials 32, 8880

  12. Reversal of Multidrug Resistance in Breast Cancer

    DTIC Science & Technology

    1994-08-23

    peripherally derived stem cells (72). Antman and others showed increased numbers of CFU-GM and BFU-E in peripheral blood in the majority of patients treated...original regimen as reported by Antman (45). Peripheral stem cells are not washed before reinfusion and the osmolality of the cell suspension requires the...dosE combination alkylating agents with autologous bone marrow support. A phase I trial. J Clin Oncol 4:646-654, 1986. 63. Eder JP, Antman K, Peters W

  13. Mesenchymal stem cells from adipose and bone marrow promote angiogenesis via distinct cytokine and protease expression mechanisms

    PubMed Central

    Kachgal, Suraj; Putnam, Andrew J.

    2012-01-01

    Using a fibrin-based angiogenesis model, we have established that there is no canonical mechanism used by ECs to degrade the surrounding extracellular matrix (ECM), but rather the set of proteases used is dependent on the mural cells providing the angiogenic cues. Mesenchymal stem cells (MSCs) originating from different tissues, which are thought to be phenotypically similar, promote angiogenesis through distinct mechanisms. Specifically, adipose-derived stem cells (ASCs) promote utilization of the plasminogen activator-plasmin axis by ECs as the primary means of vessel invasion and elongation in fibrin. Matrix metalloproteinases (MMPs) serve a purpose in regulating capillary diameter and possibly in stabilizing the nascent vessels. These proteolytic mechanisms are more akin to those involved in fibroblast-mediated angiogenesis than to those in bone marrow-derived stem cell (BMSC)-mediated angiogenesis. In addition, expression patterns of angiogenic factors such as urokinase plasminogen activator (uPA), hepatocyte growth factor (HGF), and tumor necrosis factor alpha (TNFα) were similar for ASC and fibroblast-mediated angiogenesis, and in direct contrast to BMSC-mediated angiogenesis. The present study illustrates that the nature of the heterotypic interactions between mural cells and endothelial cells depend on the identity of the mural cell used. Even MSCs which are shown to behave phenotypically similar do not stimulate angiogenesis via the same mechanisms. PMID:21104120

  14. Role of human amnion-derived mesenchymal stem cells in promoting osteogenic differentiation by influencing p38 MAPK signaling in lipopolysaccharide -induced human bone marrow mesenchymal stem cells.

    PubMed

    Wang, Yuli; Wu, Hongxia; Shen, Ming; Ding, Siyang; Miao, Jing; Chen, Ning

    2017-01-01

    Periodontitis is a chronic inflammatory disease induced by bacterial pathogens, which not only affect connective tissue attachments but also cause alveolar bone loss. In this study, we investigated the anti-inflammatory effects of Human amnion-derived mesenchymal stem cells (HAMSCs) on human bone marrow mesenchymal stem cells (HBMSCs) under lipopolysaccharide (LPS)-induced inflammatory conditions. Proliferation levels were measured by flow cytometry and immunofluorescence staining of 5-ethynyl-2'-deoxyuridine (EdU). Osteoblastic differentiation and mineralization were investigated using chromogenic alkaline phosphatase activity (ALP) activity substrate assays, Alizarin red S staining, and RT-PCR analysis of HBMSCs osteogenic marker expression. Oxidative stress induced by LPS was investigated by assaying reactive oxygen species (ROS) level and superoxide dismutase (SOD) activity. Here, we demonstrated that HAMSCs increased the proliferation, osteoblastic differentiation, and SOD activity of LPS-induced HBMSCs, and down-regulated the ROS level. Moreover, our results suggested that the activation of p38 MAPK signal transduction pathway is essential for reversing the LPS-induced bone-destructive processes. SB203580, a selective inhibitor of p38 MAPK signaling, significantly suppressed the anti-inflammatory effects in HAMSCs. In conclusion, HAMSCs show a strong potential in treating inflammation-induced bone loss by influencing p38 MAPK signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Use of G-CSF-stimulated marrow in allogeneic hematopoietic stem cell transplantation settings: a comprehensive review.

    PubMed

    Chang, Ying-Jun; Huang, Xiao-Jun

    2011-01-01

    In recent years, several researchers have unraveled the previously unrecognized effects of granulocyte colony-stimulating factor (G-CSF) on hematopoiesis and the immune cell functions of bone marrow in healthy donors. In human leukocyte antigen-matched or haploidentical transplant settings, available data have established the safety of using G-CSF-stimulated bone marrow grafts, as well as the ability of this source to produce rapid and sustained engraftment. Interestingly, G-CSF-primed bone marrow transplants could capture the advantages of blood stem cell transplants, without the increased risk of chronic graft-versus-host disease that is associated with blood stem cell transplants. This review summarizes the growing body of evidence that supports the use of G-CSF-stimulated bone marrow grafts as an alternative stem cell source in allogeneic hematopoietic stem cell transplantation. © 2010 John Wiley & Sons A/S.

  16. [Stem cells--cloning, plasticity, bioethic].

    PubMed

    Pflegerl, Pamina; Keller, Thomas; Hantusch, Brigitte; Hoffmann, Thomas Sören; Kenner, Lukas

    2008-01-01

    Stem cells with certain characteristics have become promising tools for molecular medicine. They have the potential to self-regenerate and to differentiate into specific tissues. Besides their great potential, embryonic stem cells (ESC) run the risk of enhanced tumorigenesis. The use of human embryonic stem cells (hESC) is ethically problematic because their isolation involves the destruction of human embryos. Recently developed methods generate are able to pluripotent stem cells from fibroblasts. Alternatives for ESC are adult stem cells (ASC) derived from bone marrow, cord blood, amniotic fluid and other tissues. The following article is on the basis of testimony of Lukas Kenner for the German Bundestag about the use of ESC for research, therapy and drug development. Ethical aspects are taken into consideration.

  17. Clinical Evaluation of Decellularized Nerve Allograft with Autologous Bone Marrow Stem Cells to Improve Peripheral Nerve Repair and Functional Outcomes

    DTIC Science & Technology

    2017-07-01

    AWARD NUMBER: W81XWH-15-2-0026 TITLE: Clinical Evaluation of Decellularized Nerve Allograft with Autologous Bone Marrow Stem Cells to Improve...of Decellularized Nerve Allograft with 5a. CONTRACT NUMBER Autologous Bone Marrow Stem Cells to Improve Peripheral Nerve 5b. GRANT NUMBER W81XWH...commercially available decellularized processed peripheral nerve allograft scaffold (Avance® Nerve Graft, AxoGen, Alachua FL) with autologous bone marrow

  18. Selection, proliferation and differentiation of bone marrow-derived liver stem cells with a culture system containing cholestatic serum in vitro.

    PubMed

    Cai, Yun-Feng; Zhen, Zuo-Jun; Min, Jun; Fang, Tian-Ling; Chu, Zhong-Hua; Chen, Ji-Sheng

    2004-11-15

    To explore the feasibility of direct separation, selective proliferation and differentiation of the bone marrow-derived liver stem cells (BDLSC) from bone marrow cells with a culture system containing cholestatic serum in vitro. Whole bone marrow cells of rats cultured in routine medium were replaced with conditioning selection media containing 20 mL/L, 50 mL/L, 70 mL/L, and 100 mL/L cholestatic sera, respectively, after they attached to the plates. The optimal concentration of cholestatic serum was determined according to the outcome of the selected cultures. Then the selected BDLSC were induced to proliferate and differentiate with the addition of hepatocyte growth factor (HGF). The morphology and phenotypic markers of BDLSC were characterized using immunohistochemistry, RT-PCR and electron microscopy. The metabolic functions of differentiated cells were also determined by glycogen staining and urea assay. Bone marrow cells formed fibroblast-like but not hepatocyte-like colonies in the presence of 20 mL/L cholestatic serum. In 70 mL/L cholestatic serum, BDLSC colonies could be selected but could not maintain good growth status. In 100 mL/L cholestatic serum, all of the bone marrow cells were unable to survive. A 50 mL/L cholestatic serum was the optimal concentration for the selection of BDLSC at which BDLSC could survive while the other populations of the bone marrow cells could not. The selected BDLSC proliferated and differentiated after HGF was added. Hepatocyte-like colony-forming units (H-CFU) then were formed. H-CFU expressed markers of embryonic hepatocytes (AFP, albumin and cytokeratin 8/18), biliary cells (cytokeratin 19), hepatocyte functional proteins (transthyretin and cytochrome P450-2b1), and hepatocyte nuclear factors (HNF-1alpha and HNF-3beta). They also had glycogen storage and urea synthesis functions, two of the critical features of hepatocytes. The selected medium containing cholestatic serum can select BDLSC from whole bone marrow cells. It will be a new way to provide a readily available alternate source of cells for clinical hepatocyte therapy.

  19. Glycinol Enhances Osteogenic Differentiation and Attenuates the Effects of Aging on Bone Marrow-derived Mesenchymal Stem Cells

    USDA-ARS?s Scientific Manuscript database

    Osteoporosis is characterized by decreased bone mineral density and increased risk of fractures. It is most prevalent in the elderly population, leading to significant morbidity and mortality. Recently, phytoestrogens have gained significant attention as an alternative therapy due to their structura...

  20. Bone marrow mesenchymal stem cell-derived extracellular vesicles improve the survival of transplanted fat grafts

    PubMed Central

    Huang, He; Feng, Shaoqing; Zhang, Wenjie; Li, Wei; Xu, Peng; Wang, Xiangsheng; Ai, Ai

    2017-01-01

    Autologous fat grafting is a promising surgical technique for soft tissue augmentation, reconstruction and rejuvenation. However, it is limited by the low survival rate of the transplanted fat, due to the slow revascularization of such grafts. Previous studies have demonstrated that bone marrow mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) are proangiogenic. The present study aimed to investigate whether BMSC-EVs could improve the survival of transplanted fat grafts. Extracellular vesicles were isolated from the supernatant of cultured rat bone marrow mesenchymal stem cells, and characterized by flow cytometry and scanning electron microscopy. Their proangiogenic potential was measured in vitro using tube formation and cell migration assays. Subsequently, human fat tissue grafts, alongside various concentrations of BMSC-EVs, were subcutaneously injected into nude mice. A total of 12 weeks following transplantation, the mice were sacrificed and the grafts were harvested. The grafts from the experimental group had a higher survival rate and an increased number of vessels compared with grafts from the control group, as demonstrated by tissue volume, weight and histological analyses. Reverse transcription-quantitative polymerase chain reaction analysis indicated that the expression levels of proangiogenic factors were increased in the experimental group compared with in the control group, thus suggesting that BMSC-EVs may promote neovascularization by stimulating the secretion of proangiogenic factors. The present study is the first, to the best of our knowledge, to demonstrate that supplementation of fat grafts with BMSC-EVs improves the long-term retention and quality of transplanted fat. PMID:28713978

  1. Intervertebral disc-derived stem cells: implications for regenerative medicine and neural repair.

    PubMed

    Erwin, W Mark; Islam, Diana; Eftekarpour, Eftekhar; Inman, Robert D; Karim, Muhammad Zia; Fehlings, Michael G

    2013-02-01

    An in vitro and in vivo evaluation of intervertebral disc (IVD)-derived stem/progenitor cells. To determine the chondrogenic, adipogenic, osteogenic, and neurogenic differentiation capacity of disc-derived stem/progenitor cells in vitro and neurogenic differentiation in vivo. Tissue repair strategies require a source of appropriate cells that could be used to replace dead or damaged cells and tissues such as stem cells. Here we examined the potential use of IVD-derived stem cells in regenerative medicine approaches and neural repair. Nonchondrodystrophic canine IVD nucleus pulposus (NP) cells were used to generate stem/progenitor cells (NP progenitor cells [NPPCs]) and the NPPCs were differentiated in vitro into chondrogenic, adipogenic, and neurogenic lineages and in vivo into the neurogenic lineage. NPPCs were compared with bone marrow-derived mesenchymal (stromal) stem cells in terms of the expression of stemness genes. The expression of the neural crest marker protein 0 and the Brachyury gene were evaluated in NP cells and NPPCs. NPPCs contain stem/progenitor cells and express "stemness" genes such as Sox2, Oct3/4, Nanog, CD133, Nestin, and neural cell adhesion molecule but differ from mesenchymal (stromal) stem cells in the higher expression of the Nanog gene by NPPCs. NPPCs do not express protein 0 or the Brachyury gene both of which are expressed by the totality of IVD NP cells. The percentage of NPPCs within the IVD is 1% of the total as derived by colony-forming assay. NPPCs are capable of differentiating along chondrogenic, adipogenic, and neurogenic lineages in vitro and into oligodendrocyte, neuron, and astroglial specific precursor cells in vivo within the compact myelin-deficient shiverer mouse. We propose that the IVD NP represents a regenerative niche suggesting that the IVD could represent a readily accessible source of precursor cells for neural repair and regeneration.

  2. Human blood and marrow side population stem cell and Stro-1 positive bone marrow stromal cell numbers decline with age, with an increase in quality of surviving stem cells: correlation with cytokines.

    PubMed

    Brusnahan, S K; McGuire, T R; Jackson, J D; Lane, J T; Garvin, K L; O'Kane, B J; Berger, A M; Tuljapurkar, S R; Kessinger, M A; Sharp, J G

    2010-01-01

    Hematological deficiencies increase with aging leading to anemias, reduced hematopoietic stress responses and myelodysplasias. This study tested the hypothesis that side population hematopoietic stem cells (SP-HSC) would decrease with aging, correlating with IGF-1 and IL-6 levels and increases in bone marrow fat. Marrow was obtained from the femoral head and trochanteric region of the femur at surgery for total hip replacement (N=100). Whole trabecular marrow samples were ground in a sterile mortar and pestle and cellularity and fat content determined. Marrow and blood mononuclear cells were stained with Hoechst dye and the SP-HSC profiles acquired. Marrow stromal cells (MSC) were enumerated flow cytometrically employing the Stro-1 antibody, and clonally in the colony forming unit fibroblast (CFU-F) assay. Plasma levels of IGF-1 (ng/ml) and IL-6 (pg/ml) were measured by ELISA. SP-HSC in blood and bone marrow decreased with age but the quality of the surviving stem cells increased. MSC decreased non-significantly. IGF-1 levels (mean=30.7, SEM=2) decreased and IL-6 levels (mean=4.4, SEM=1) increased with age as did marrow fat (mean=1.2mmfat/g, SEM=0.04). There were no significant correlations between cytokine levels or fat and SP-HSC numbers. Stem cells appear to be progressively lost with aging and only the highest quality stem cells survive. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Perspectives on stem cell therapy for cardiac regeneration. Advances and challenges.

    PubMed

    Choi, Sung Hyun; Jung, Seok Yun; Kwon, Sang-Mo; Baek, Sang Hong

    2012-01-01

    Ischemic heart disease (IHD) accelerates cardiomyocyte loss, but the developing stem cell research could be useful for regenerating a variety of tissue cells, including cardiomyocytes. Diverse sources of stem cells for IHD have been reported, including embryonic stem cells, induced pluripotent stem cells, skeletal myoblasts, bone marrow-derived stem cells, mesenchymal stem cells, and cardiac stem cells. However, stem cells have unique advantages and disadvantages for cardiac tissue regeneration, which are important considerations in determining the specific cells for improving cell survival and long-term engraftment after transplantation. Additionally, the dosage and administration method of stem cells need to be standardized to increase stability and efficacy for clinical applications. Accordingly, this review presents a summary of the stem cell therapies that have been studied for cardiac regeneration thus far, and discusses the direction of future cardiac regeneration research for stem cells.

  4. The happy destiny of frozen haematopoietic stem cells: from immature stem cells to mature applications.

    PubMed

    de Vries, E G E; Vellenga, E; Kluin-Nelemans, J C; Mulder, N H

    2004-09-01

    Forty years ago, van Putten described in the European Journal of Cancer (see this issue) quantitative studies on the optimal storage techniques of mouse and monkey bone marrow suspensions. Survival of the animals after irradiation following injection with stored bone marrow cell suspensions was the endpoint. He observed some species differences, but based on the data obtained considered a careful trial of the glycerol-polyvinylpyrrolide (PVP) combination for storage of marrow in man was indicated. In spite of this, dimethyl sulphoxide has become the 'standard' cryopreservant for human marrow stem cells. Over the last 40 years, there has been a tremendous increase in knowledge about haematopoietic stem cells and their use in the clinic. Haematopoietic stem cells are now known to travel between the bone marrow and peripheral blood and are the best-characterised adult stem cells. These cells are currently widely used for transplantations in the clinic and are obtained from a wide variety of sources. These include the bone marrow, peripheral blood, cord blood, autologous as well as allogeneic stem cells from related or unrelated donors. Increasingly, data has become available that adult haematopoietic stem cells can generate differentiated cells belonging to other cell types, a process called "developmental plasticity". Thus, they may contribute to non-haematopoietic tissue repair in multiple organ systems. This has created a whole new potential therapeutic armamentarium for the application of haematopoietic stem cells outside of the area of malignancies and haematopoietic disorders.

  5. Differential efficacy of human mesenchymal stem cells based on source of origin

    PubMed Central

    Collins, Erin; Gu, Fei; Qi, Maosong; Molano, Ivan; Ruiz, Phillip; Sun, Linyun; Gilkeson, Gary S.

    2014-01-01

    Mesenchymal stem cells (MSCs) are useful in tissue repair, but also possess immunomodulatory properties. Murine and uncontrolled human trials suggest efficacy of MSCs in treating lupus. Autologous cells are preferable, however, recent studies suggest that lupus derived MSCs lack efficacy in treating disease. Thus, the optimum derivation of MSCs for use in lupus is unknown. It is also unknown which in vitro assays of MSC function predict in vivo efficacy. The objectives for this study were to provide insight into the optimum source of MSCs and to identify in vitro assays that predict in vivo efficacy. We derived MSCs from four umbilical cords (UC), four healthy bone marrows (HBM) and four lupus bone marrows (LBM). In diseased MRL/lpr mice, MSCs from HBM and UC significantly decreased renal disease, while LBM-MSCs only delayed disease. Current in vitro assays did not differentiate efficacy of the different MSCs. Inhibition of B cell proliferation did differentiate based on efficacy. Our results suggest that autologous MSCs from lupus patients are not effective in treating disease. Furthermore, standard in vitro assays for MSC licensing are not predictive of in vivo efficacy, while inhibiting B cell proliferation appears to differentiate effective from ineffective MSCs. PMID:25274529

  6. Differential Effects of Small Molecule WNT Agonists on the Multilineage Differentiation Capacity of Human Mesenchymal Stem Cells.

    PubMed

    Narcisi, Roberto; Arikan, Ozan H; Lehmann, Johannes; Ten Berge, Derk; van Osch, Gerjo J V M

    2016-11-01

    Human bone marrow-derived mesenchymal stem cells (MSCs) are promising candidates for cell-based therapies, but loss of expansion and differentiation potential in vitro limits their applicability. Recently we showed that WNT3A protein promoted MSC proliferation and enhanced their chondrogenic potential, while simultaneously suppressing the propensity of the cartilage to undergo hypertrophic maturation. Since WNT3A protein is costly and rapidly loses its activity in culture, we investigated the possibility of replacing it with cheaper commercially available WNT agonists, specifically lithium chloride (LiCl), CHIR99021 (CHIR), SKL2001, and AMBMP. Of these, we found that only CHIR and LiCl stimulated MSC proliferation. Moreover, CHIR enhanced the chondrogenic capacity of MSCs, whereas LiCl predominantly increased the osteo- and adipogenic capacity. The different WNT agonists also differentially impacted the surface marker profile of the MSCs, possibly explaining the observed differences. Moreover, CHIR suppressed the hypertrophic propensity of the MSC-derived cartilage after in vivo implantation to an extent approaching that of WNT3A protein. These results indicate that CHIR may be a promising alternative for WNT3A protein for certain applications of human bone marrow-derived MSCs.

  7. Comparison of in vitro developmental competence of cloned caprine embryos using donor karyoplasts from adult bone marrow mesenchymal stem cells vs ear fibroblast cells.

    PubMed

    Kwong, P J; Nam, H Y; Wan Khadijah, W E; Kamarul, T; Abdullah, R B

    2014-04-01

    The aim of this study was to produce cloned caprine embryos using either caprine bone marrow-derived mesenchymal stem cells (MSCs) or ear fibroblast cells (EFCs) as donor karyoplasts. Caprine MSCs were isolated from male Boer goats of an average age of 1.5 years. To determine the pluripotency of MSCs, the cells were induced to differentiate into osteocytes, chondrocytes and adipocytes. Subsequently, MSCs were characterized through cell surface antigen profiles using specific markers, prior to their use as donor karyoplasts for nuclear transfer. No significant difference (p > 0.05) in fusion rates was observed between MSCs (87.7%) and EFCs (91.3%) used as donor karyoplasts. The cleavage rate of cloned embryos derived with MSCs (87.0%) was similar (p > 0.05) to those cloned using EFCs (84.4%). However, the in vitro development of MSCs-derived cloned embryos (25.3%) to the blastocyst stage was significantly higher (p < 0.05) than those derived with EFCs (20.6%). In conclusion, MSCs could be reprogrammed by caprine oocytes, and production of cloned caprine embryos with MSCs improved their in vitro developmental competence, but not in their fusion and cleavage rate as compared to cloning using somatic cells such as EFCs. © 2014 Blackwell Verlag GmbH.

  8. BONE MARROW MESENCHYMAL STEM CELLS ARE PROGENITORS IN VITRO FOR INNER EAR HAIR CELLS

    PubMed Central

    Jeon, Sang-Jun; Oshima, Kazuo; Heller, Stefan; Edge, Albert S.B.

    2011-01-01

    Stem cells have been demonstrated in the inner ear but they do not spontaneously divide to replace damaged sensory cells. Mesenchymal stem cells (MSC) from bone marrow have been reported to differentiate into multiple lineages including neurons, and we therefore asked whether MSCs could generate sensory cells. Overexpression of the prosensory transcription factor, Math1, in sensory epithelial precursor cells induced expression of myosin VIIa, espin, Brn3c, p27Kip, and jagged2, indicating differentiation to inner ear sensory cells. Some of the cells displayed F-actin positive protrusions in the morphology characteristic of hair cell stereociliary bundles. Hair cell markers were also induced by culture of mouse MSC-derived cells in contact with embryonic chick inner ear cells, and this induction was not due to a cell fusion event, because the chick hair cells could be identified with a chick-specific antibody and chick and mouse antigens were never found in the same cell. PMID:17113786

  9. Long-term erythropoietic repopulating ability of old, young, and fetal stem cells.

    PubMed

    Harrison, D E

    1983-05-01

    It is possible that erythropoietic stem cells do not age. This would mean that stem cells from old donors can function as well as those from young or fetal donors. The competitive repopulation assay has been used to test long-term stem cell function by directly comparing how well competing stem cells repopulate a recipient and produce differentiated cell types. C57BL/6J (B6) mice were used as donors, while recipients and competitors were WBB6F1 hybrids with genetically distinguishable hemoglobin. Lethally irradiated young WBB6F1 recipients were given a mixture of 2.5 X 10(6) cells from B6 old marrow, young marrow, or fetal liver donors; each recipient also received a standard dose of 1 X 10(6) marrow cells from a pool of young WBB6F1 competitors. Surprisingly, the old marrow cells competed the best in repopulating the recipients. This pattern was maintained even after recovery from sublethal irradiation, a treatment that severely stresses stem cells. This stress was demonstrated when sublethal irradiation caused a 20-fold decline in repopulating ability measured using hemoglobin markers, and a 3- to 7-fold decline using chromosome markers. Stem cells from old marrow competed better than young or fetal cells in similar experiments using immunologically crippled recipients or using unirradiated W/Wv recipients that are immunologically intact. In both types of recipients, the advantage of old marrow cells again persisted after recovery from sublethal irradiation. Other genotypes were tested, and marrow cells from old B6CBAF1 donors competed better than those from young donors of that genotype. However, marrow cells from young CBA donors completed better than those from old CBA donors. These results support the hypothesis that stem cells do not age, and suggest that regulatory changes with age promote rapid stem cell repopulation in B6 and B6CBAF1 mice, but inhibit it in CBA mice.

  10. Neural Stem Cells Derived Directly from Adipose Tissue.

    PubMed

    Petersen, Eric D; Zenchak, Jessica R; Lossia, Olivia V; Hochgeschwender, Ute

    2018-05-01

    Neural stem cells (NSCs) are characterized as self-renewing cell populations with the ability to differentiate into the multiple tissue types of the central nervous system. These cells can differentiate into mature neurons, astrocytes, and oligodendrocytes. This category of stem cells has been shown to be a promisingly effective treatment for neurodegenerative diseases and neuronal injury. Most treatment studies with NSCs in animal models use embryonic brain-derived NSCs. This approach presents both ethical and feasibility issues for translation to human patients. Adult tissue is a more practical source of stem cells for transplantation therapies in humans. Some adult tissues such as adipose tissue and bone marrow contain a wide variety of stem cell populations, some of which have been shown to be similar to embryonic stem cells, possessing many pluripotent properties. Of these stem cell populations, some are able to respond to neuronal growth factors and can be expanded in vitro, forming neurospheres analogous to cells harvested from embryonic brain tissue. In this study, we describe a method for the collection and culture of cells from adipose tissue that directly, without going through intermediates such as mesenchymal stem cells, results in a population of NSCs that are able to be expanded in vitro and be differentiated into functional neuronal cells. These adipose-derived NSCs display a similar phenotype to those directly derived from embryonic brain. When differentiated into neurons, cells derived from adipose tissue have spontaneous spiking activity with network characteristics similar to that of neuronal cultures.

  11. A Halogen-Containing Stilbene Derivative from the Leaves of Cajanus cajan that Induces Osteogenic Differentiation of Human Mesenchymal Stem Cells.

    PubMed

    Cai, Jia-Zhong; Tang, Rong; Ye, Gui-Fu; Qiu, Sheng-Xiang; Zhang, Nen-Ling; Hu, Ying-Jie; Shen, Xiao-Ling

    2015-06-11

    A new natural halogen-containing stilbene derivative was isolated from the leaves of Cajanus cajan (L.) Millsp. and identified as 3-O-(3-chloro-2-hydroxyl-propanyl)-longistylin A by comprehensive spectroscopic and chemical analysis, and named cajanstilbene H (1). It is the first halogen-containing stilbene derivative found from plants. In human mesenchymal stem cells (hMSC) from bone marrow, 1 did not promote cell proliferation, but distinctly enhanced osteogenic differentiation of hMSC in time- and dose-dependent manners. In six human cancer cell lines, 1 showed a moderate inhibitory effect on cell proliferation, with IC50 values of 21.42-25.85 μmol·L(-1).

  12. Blood-Forming Stem Cell Transplants

    MedlinePlus

    ... to Ask about Your Treatment Research Blood-Forming Stem Cell Transplants On This Page What are bone marrow ... Considering becoming a bone marrow or a blood stem cell donor? View this video on YouTube. Follow a ...

  13. Understanding deregulated cellular and molecular dynamics in the haematopoietic stem cell niche to develop novel therapeutics for bone marrow fibrosis.

    PubMed

    Gleitz, Hélène Fe; Kramann, Rafael; Schneider, Rebekka K

    2018-06-01

    Bone marrow fibrosis is the continuous replacement of blood-forming cells in the bone marrow with excessive scar tissue, leading to failure of the body to produce blood cells and ultimately to death. Myofibroblasts are fibrosis-driving cells and are well characterized in solid organ fibrosis, but their role and cellular origin in bone marrow fibrosis have remained obscure. Recent work has demonstrated that Gli1 + and leptin receptor + mesenchymal stromal cells are progenitors of fibrosis-causing myofibroblasts in the bone marrow. Genetic ablation or pharmacological inhibition of Gli1 + mesenchymal stromal cells ameliorated fibrosis in mouse models of myelofibrosis. Conditional deletion of the platelet-derived growth factor (PDGF) receptor-α (PDGFRA) gene (Pdgfra) and inhibition of PDGFRA by imatinib in leptin receptor + stromal cells suppressed their expansion and ameliorated bone marrow fibrosis. Understanding the cellular and molecular mechanisms in the haematopoietic stem cell niche that govern the mesenchymal stromal cell-to-myofibroblast transition and myofibroblast expansion will be critical to understand the pathogenesis of bone marrow fibrosis in both malignant and non-malignant conditions, and will guide the development of novel therapeutics. In this review, we summarize recent discoveries of mesenchymal stromal cells as part of the haematopoietic niche and as myofibroblast precursors, and discuss potential therapeutic strategies in the specific targeting of fibrotic transformation in bone marrow fibrosis. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

  14. Comprehensive proteomic characterization of stem cell-derived extracellular matrices.

    PubMed

    Ragelle, Héloïse; Naba, Alexandra; Larson, Benjamin L; Zhou, Fangheng; Prijić, Miralem; Whittaker, Charles A; Del Rosario, Amanda; Langer, Robert; Hynes, Richard O; Anderson, Daniel G

    2017-06-01

    In the stem-cell niche, the extracellular matrix (ECM) serves as a structural support that additionally provides stem cells with signals that contribute to the regulation of stem-cell function, via reciprocal interactions between cells and components of the ECM. Recently, cell-derived ECMs have emerged as in vitro cell culture substrates to better recapitulate the native stem-cell microenvironment outside the body. Significant changes in cell number, morphology and function have been observed when mesenchymal stem cells (MSC) were cultured on ECM substrates as compared to standard tissue-culture polystyrene (TCPS). As select ECM components are known to regulate specific stem-cell functions, a robust characterization of cell-derived ECM proteomic composition is critical to better comprehend the role of the ECM in directing cellular processes. Here, we characterized and compared the protein composition of ECM produced in vitro by bone marrow-derived MSC, adipose-derived MSC and neonatal fibroblasts from different donors, employing quantitative proteomic methods. Each cell-derived ECM displayed a specific and unique matrisome signature, yet they all shared a common set of proteins. We evaluated the biological response of cells cultured on the different matrices and compared them to cells on standard TCPS. The matrices lead to differential survival and gene-expression profiles among the cell types and as compared to TCPS, indicating that the cell-derived ECMs influence each cell type in a different manner. This general approach to understanding the protein composition of different tissue-specific and cell-derived ECM will inform the rational design of defined systems and biomaterials that recapitulate critical ECM signals for stem-cell culture and tissue engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The morphology, proliferation rate, and population doubling time factor of adipose-derived mesenchymal stem cells cultured on to non-aqueous SiO2, TiO2, and hybrid sol-gel-derived oxide coatings.

    PubMed

    Marycz, Krzysztof; Krzak-Roś, Justyna; Donesz-Sikorska, Anna; Śmieszek, Agnieszka

    2014-11-01

    In recent years, much attention has been paid to the development of tissue engineering and regenerative medicine, especially when stem cells of various sources are concerned. In addition to the interest in mesenchymal stem cells isolated from bone marrow, recently more consideration has been given to stem cells isolated from adipose tissue (AdMSCs), due to their less invasive method of collection as well as their ease of isolation and culture. However, the development of regenerative medicine requires both the application of biocompatible material and the stem cells to accelerate the regeneration. In this study, we investigated the morphology, proliferation rate index (PRi), and population doubling time factor of adipose-derived mesenchymal stem cells cultured on non-aqueous sol-gel-derived SiO2, TiO2, and SiO2/TiO2 oxide coatings. The results indicated an increase in PRi of AdMSCs when cultured on to titanium dioxide, suggesting its high attractiveness for AdMSCs. In addition, the proper morphology and the shortest doubling time of AdMSCs were observed when cultured on titanium dioxide coating. © 2014 Wiley Periodicals, Inc.

  16. Evaluating the Potential of Adipose Tissue-Derived MSCs as Anticancer Gene Delivery Vehicles to Bone-Metastasized Prostate Cancer

    DTIC Science & Technology

    2010-04-01

    Isolation of  human adipose‐derived stem cells from biopsies and  liposuction  specimens. Methods Mol Biol. 2008;449:69‐79.  PMID: 18370084.  6:   Ricks DM...may already be in circulation in the bone marrow. Human adipose derived MSCs (AT-MSCs) on the other hand are easy to procure from liposuction

  17. Mouse bone marrow-derived mesenchymal stem cells inhibit leukemia/lymphoma cell proliferation in vitro and in a mouse model of allogeneic bone marrow transplant

    PubMed Central

    SONG, NINGXIA; GAO, LEI; QIU, HUIYING; HUANG, CHONGMEI; CHENG, HUI; ZHOU, HONG; LV, SHUQING; CHEN, LI; WANG, JIANMIN

    2015-01-01

    The allogeneic hematopoietic stem cell (HSC) transplantation of mesenchymal stem cells (MSCs) contributes to the reconstitution of hematopoiesis by ameliorating acute graft-versus-host disease (aGVHD). However, the role of MSCs in graft-versus-leukemia remains to be determined. In the present study, we co-cultured C57BL/6 mouse bone marrow (BM)-derived MSCs with A20 murine B lymphoma, FBL3 murine erythroleukemia and P388 murine acute lymphocytic leukemia cells. Cell proliferation, apoptosis, cell cycle progression and the amount of cytokine secretion were then measured using a Cell Counting kit-8, Annexin V/propidium iodide staining, flow cytometry and ELISA, respectively. We also established a model of allogeneic bone marrow transplantation (BMT) using BALB/c mice. Following the administration of A20 cells and MSCs, we recorded the symptoms and the survival of the mice for 4 weeks, assessed the T cell subsets present in peripheral blood, and, after the mice were sacrifice, we determined the infiltration of MSCs into the organs by histological staining. Our results revealed that the MSCs inhibited the proliferation of the mouse lymphoma and leukemia cells in vitro, leading to cell cycle arrest and reducing the secretion of interleukin (IL)-10. In our model of allogeneic BMT, the intravenous injection of MSCs into the mice injected wth A20 cells decreased the incidence of lymphoma, improved survival, increased the fraction of CD3+CD8+ T cells, decreased the fraction of CD3+CD4+ T cells and CD4+CD25+ T cells in peripheral blood, and ameliorated the manifestation of aGVHD. The results from the present study indicate that MSCs may be safe and effective when used in allogeneic BMT for the treatment of hemotological malignancies. PMID:25901937

  18. Mouse bone marrow-derived mesenchymal stem cells inhibit leukemia/lymphoma cell proliferation in vitro and in a mouse model of allogeneic bone marrow transplant.

    PubMed

    Song, Ningxia; Gao, Lei; Qiu, Huiying; Huang, Chongmei; Cheng, Hui; Zhou, Hong; Lv, Shuqing; Chen, Li; Wang, Jianmin

    2015-07-01

    The allogeneic hematopoietic stem cell (HSC) transplantation of mesenchymal stem cells (MSCs) contributes to the reconstitution of hematopoiesis by ameliorating acute graft‑versus‑host disease (aGVHD). However, the role of MSCs in graft‑versus‑leukemia remains to be determined. In the present study, we co‑cultured C57BL/6 mouse bone marrow (BM)‑derived MSCs with A20 murine B lymphoma, FBL3 murine erythroleukemia and P388 murine acute lymphocytic leukemia cells. Cell proliferation, apoptosis, cell cycle progression and the amount of cytokine secretion were then measured using a Cell Counting kit‑8, Annexin V/propidium iodide staining, flow cytometry and ELISA, respectively. We also established a model of allogeneic bone marrow transplantation (BMT) using BALB/c mice. Following the administration of A20 cells and MSCs, we recorded the symptoms and the survival of the mice for 4 weeks, assessed the T cell subsets present in peripheral blood, and, after the mice were sacrifice, we determined the infiltration of MSCs into the organs by histological staining. Our results revealed that the MSCs inhibited the proliferation of the mouse lymphoma and leukemia cells in vitro, leading to cell cycle arrest and reducing the secretion of interleukin (IL)‑10. In our model of allogeneic BMT, the intravenous injection of MSCs into the mice injected wth A20 cells decreased the incidence of lymphoma, improved survival, increased the fraction of CD3+CD8+ T cells, decreased the fraction of CD3+CD4+ T cells and CD4+CD25+ T cells in peripheral blood, and ameliorated the manifestation of aGVHD. The results from the present study indicate that MSCs may be safe and effective when used in allogeneic BMT for the treatment of hemotological malignancies.

  19. Modeling Human Bone Marrow Failure Syndromes Using Pluripotent Stem Cells and Genome Engineering.

    PubMed

    Jung, Moonjung; Dunbar, Cynthia E; Winkler, Thomas

    2015-12-01

    The combination of epigenetic reprogramming with advanced genome editing technologies opened a new avenue to study disease mechanisms, particularly of disorders with depleted target tissue. Bone marrow failure syndromes (BMFS) typically present with a marked reduction of peripheral blood cells due to a destroyed or dysfunctional bone marrow compartment. Somatic and germline mutations have been etiologically linked to many cases of BMFS. However, without the ability to study primary patient material, the exact pathogenesis for many entities remained fragmentary. Capturing the pathological genotype in induced pluripotent stem cells (iPSCs) allows studying potential developmental defects leading to a particular phenotype. The lack of hematopoietic stem and progenitor cells in these patients can also be overcome by differentiating patient-derived iPSCs into hematopoietic lineages. With fast growing genome editing techniques, such as CRISPR/Cas9, correction of disease-causing mutations in iPSCs or introduction of mutations in cells from healthy individuals enable comparative studies that may identify other genetic or epigenetic events contributing to a specific disease phenotype. In this review, we present recent progresses in disease modeling of inherited and acquired BMFS using reprogramming and genome editing techniques. We also discuss the challenges and potential shortcomings of iPSC-based models for hematological diseases.

  20. MicroRNA-29 facilitates transplantation of bone marrow-derived mesenchymal stem cells to alleviate pelvic floor dysfunction by repressing elastin.

    PubMed

    Jin, Minfei; Wu, Yuelin; Wang, Jun; Ye, Weiping; Wang, Lei; Yin, Peipei; Liu, Wei; Pan, Chenhao; Hua, Xiaolin

    2016-11-17

    Pelvic floor dysfunction (PFD) is a condition affecting many women worldwide, with symptoms including stress urinary incontinence (SUI) and pelvic organ prolapse (POP). We have previously demonstrated stable elastin-expressing bone marrow-derived mesenchymal stem cells (BMSCs) attenuated PFD in rats, and aim to further study the effect of microRNA-29a-3p regulation on elastin expression and efficacy of BMSC transplantation therapy. We inhibited endogenous microRNA-29a-3p in BMSCs and investigated its effect on elastin expression by RT-PCR and Western blot. MicroRNA-29-inhibited BMSCs were then transplanted into PFD rats, accompanied by sustained release of bFGF using formulated bFGF in poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NP), followed by evaluation of urodynamic tests. MicroRNA-29a-3p inhibition resulted in upregulated expression and secretion of elastin in in vitro culture of BMSCs. After co-injection with PLGA-loaded bFGF NP into the PFD rats in vivo, microRNA-29a-3p-inhibited BMSCs significantly improved the urodynamic test results. Our multidisciplinary study, combining microRNA biology, genetically engineered BMSCs, and nanoparticle technology, provides an excellent stem cell-based therapy for repairing connective tissues and treating PFD.

  1. Soft matrix supports osteogenic differentiation of human dental follicle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viale-Bouroncle, Sandra; Voellner, Florian; Moehl, Christoph

    Highlights: {yields} Rigid stiffness supports osteogenic differentiation in mesenchymal stem cells (MSCs). {yields} Our study examined stiffness and differentiation of dental follicle cells (DFCs). {yields} Soft ECMs have a superior capacity to support the osteogenic differentiation of DFCs. {yields} DFCs and MSCs react contrarily to soft and rigid surface stiffness. -- Abstract: The differentiation of stem cells can be directed by the grade of stiffness of the developed tissue cells. For example a rigid extracellular matrix supports the osteogenic differentiation in bone marrow derived mesenchymal stem cells (MSCs). However, less is known about the relation of extracellular matrix stiffness andmore » cell differentiation of ectomesenchymal dental precursor cells. Our study examined for the first time the influence of the surface stiffness on the proliferation and osteogenic differentiation of human dental follicle cells (DFCs). Cell proliferation of DFCs was only slightly decreased on cell culture surfaces with a bone-like stiffness. The osteogenic differentiation in DFCs could only be initiated with a dexamethasone based differentiation medium after using varying stiffness. Here, the softest surface improved the induction of osteogenic differentiation in comparison to that with the highest stiffness. In conclusion, different to bone marrow derived MSCs, soft ECMs have a superior capacity to support the osteogenic differentiation of DFCs.« less

  2. The Chondrogenic Induction Potential for Bone Marrow-Derived Stem Cells between Autologous Platelet-Rich Plasma and Common Chondrogenic Induction Agents: A Preliminary Comparative Study.

    PubMed

    Wang, Shan-Zheng; Chang, Qing; Kong, Xiang-Fei; Wang, Chen

    2015-01-01

    The interests in platelet-rich plasma (PRP) and their application in stem cell therapy have contributed to a better understanding of the basic biology of the prochondrogenesis effect on bone marrow-derived stem cells (BMSCs). We aimed at comparing the effect of autologous PRP with common chondrogenic induction agents (CCIAs) on the chondrogenic differentiation of BMSCs. Rabbit BMSCs were isolated and characterized by flow cytometry and differentiated towards adipocytes and osteoblasts. The chondrogenic response of BMSCs to autologous PRP and CCIAs which included transforming growth factor-β1 (TGF-β1), dexamethasone (DEX), and vitamin C (Vc) was examined by cell pellet culture. The isolated BMSCs after two passages highly expressed CD29 and CD44 but minimally expressed CD45. The osteogenic and adipogenic differentiation potentials of the isolated BMSCs were also confirmed. Compared with common CCIAs, autologous PRP significantly upregulated the chondrogenic related gene expression, including Col-2, AGC, and Sox-9. Osteogenic related gene expression, including Col-1 and OCN, was not of statistical significance between these two groups. Thus, our data shows that, compared with common chondrogenic induction agents, autologous PRP can be more effective in promoting the chondrogenesis of BMSCs.

  3. The role of stem cells in the prevention and treatment of radiation-induced xerostomia in patients with head and neck cancer.

    PubMed

    Nevens, Daan; Nuyts, Sandra

    2016-06-01

    Xerostomia is an important complication following radiotherapy (RT) for head and neck cancer. Current treatment approaches are insufficient and can only temporarily relieve symptoms. New insights into the physiopathology of radiation-induced xerostomia might help us in this regard. This review discusses the current knowledge of salivary gland stem cells in radiation-induced xerostomia and their value in the prevention and treatment of this complication. Salivary gland stem cell transplantation, bone marrow-derived cell mobilization, molecular regulation of parotid stem cells, stem cell sparing RT, and adaptive RT are promising techniques that are discussed in this study. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  4. Optimization of culture conditions for stem cells derived from human anterior cruciate ligament and bone marrow.

    PubMed

    Cheng, Ming-Te; Liu, Chien-Lin; Chen, Tain-Hsiung; Lee, Oscar K

    2014-01-01

    Tissue engineering with stem cells is a fascinating approach for treating anterior cruciate ligament (ACL) injuries. In our previous study, stem cells isolated from the human anterior cruciate ligament were shown to possess extensive proliferation and differentiation capabilities when treated with specific growth factors. However, optimal culture conditions and the usefulness of fetal bovine serum (FBS) as a growth factor in in vitro culture systems are yet to be determined. In this study, we compared the effects of different culture media containing combinations of various concentrations of FBS and the growth factors basic fibroblastic growth factor (bFGF) and transforming growth factor-β1 (TGF-β1) on the proliferation and differentiation of ligament-derived stem cells (LSCs) and bone marrow mesenchymal stem cells (BMSCs). We found that α-MEM plus 10% FBS and bFGF was able to maintain both LSCs and BMSCs in a relatively undifferentiated state but with lower major extracellular matrix (ECM) component gene expression and protein production, which is beneficial for stem cell expansion. However, the differentiation and proliferation potentials of LSCs and BMSCs were increased when cultured in MesenPRO, a commercially available stem cell medium containing 2% FBS. MesenPRO in conjunction with TGF-β1 had the greatest ability to induce the differentiation of BMSCs and LSCs to ligament fibroblasts, which was evidenced by the highest ligamentous ECM gene expression and protein production. These results indicate that culture media and growth factors play a very important role in the success of tissue engineering. With α-MEM plus 10% FBS and bFGF, rapid proliferation of stem cells can be achieved. In this study, MesenPRO was able to promote differentiation of both LSCs and BMSCs to ligament fibroblasts. Differentiation was further increased by TGF-β1. With increasing understanding of the effects of different culture media and growth factors, manipulation of stem cells in the desired direction for ligament tissue engineering can be achieved.

  5. Proteomic analysis of porcine mesenchymal stem cells derived from bone marrow and umbilical cord: implication of the proteins involved in the higher migration capability of bone marrow mesenchymal stem cells.

    PubMed

    Huang, Lei; Niu, Chenguang; Willard, Belinda; Zhao, Weimin; Liu, Lan; He, Wei; Wu, Tianwen; Yang, Shulin; Feng, Shutang; Mu, Yulian; Zheng, Lemin; Li, Kui

    2015-04-15

    Mesenchymal stem cells (MSCs) have the ability to proliferate in vivo with a large variety of differentiation potentials and therefore are widely used as an ideal material for cell therapy. MSCs derived from pig and human sources are similar in many aspects, such as cell immunophenotype and functional characteristics. However, differences in proteomics and the molecular mechanisms of cell functions between porcine bone marrow MSCs (BM-MSCs) and umbilical cord MSCs (UC-MSCs) are largely unknown. To the best of our knowledge, MSCs collected from different tissue have specific phenotype and differentiation ability in response to microenvironment, known as a niche. Porcine BM-MSCs and UC-MSCs were evaluated with flow cytometric and adipogenic and osteogenic differentiation analyses. We used isobaric tagging for relative and absolute quantitation (iTRAQ), combined with liquid chromatography-tandem mass spectrometry, to identify differentially expressed proteins (DEPs) between these two types of MSCs. Kyoto Encyclopedia of Genes and Genomes pathway and phenotype analyses were used to understand the links between cell migration ability and DEPs. Two separate iTRAQ experiments were conducted, identifying 95 DEPs (95% confidence interval). Five of these proteins were verified by Western blotting. These 95 DEPs were classified in terms of biological regulation, metabolic process, developmental process, immune system process, reproduction, death, growth, signaling, localization, response to stimulus, biological adhesion, and cellular component organization. Our study is the first to show results indicating that porcine BM-MSCs have a higher migration capability than UC-MSCs. Finally, one of the DEPs, Vimentin, was verified to have a positive role in MSC migration. These results represent the first attempt to use proteomics specifically targeted to porcine MSCs of different tissues. The identified components should help reveal a variety of tissue-specific functions in tissue-derived MSC populations and could serve as important tools for the regeneration of particular tissues in future stem cell-based tissue engineering studies using animal models.

  6. Mesenchymal Stem Cell Transplantation in Multiple Sclerosis

    PubMed Central

    Cohen, Jeffrey A.

    2013-01-01

    Mesenchymal stem cells (MSCs) are a pluripotent non-hematopoietic precursor cells that can be isolated from bone marrow and numerous other tissues, culture-expanded to purity, and induced to differentiate in vitro and in vivo into mesodermal derivatives. MSCs exhibit many phenotypic and functional similarities to pericytes. The immunomodulatory, tissue protective, and repair-promoting properties of MSCs demonstrated both in vitro and in animal models make them an attractive potential therapy for MS and other conditions characterized by inflammation and/or tissue injury. Other potential advantages of MSCs as a therapeutic include the relative ease of culture expansion, relative immunoprivilege allowing allogeneic transplantation, and their ability to traffic from blood to areas of tissue allowing intravascular administration. The overall published experience with MSC transplantation in MS is modest, but several small case series and preliminary studies yielded promising results. Several groups, including us, recently initiated formal studies of autologous, culture-expanded, bone-marrow-derived MSC transplantation in MS. Although there are several potential safety concerns, to date, the procedure has been well tolerated. Future studies that more definitively assess efficacy also will need to address several technical issues. PMID:23294498

  7. Isolation of adipose derived stem cells and their induction to a chondrogenic phenotype

    PubMed Central

    Estes, Bradley T.; Diekman, Brian O.; Gimble, Jeffrey M.; Guilak, Farshid

    2011-01-01

    Summary The ability to isolate, expand, and differentiate adult stem cells into a chondrogenic lineage is an important step in the development of tissue engineering approaches for cartilage repair or regeneration for the treatment of joint injury or osteoarthritis, or for application in plastic or reconstructive surgery. Adipose-derived stem cells (ASCs) provide an abundant and easily accessible source of adult stem cells for use in such regenerative approaches. This protocol describes the isolation of ASCs from liposuction aspirate, as well as cell culture conditions for growth factor based induction of ASCs into chondrocyte-like cells. These methods are similar to those used for bone marrow mesenchymal stem cells but distinct due to the unique properties of ASCs. Investigators can expect consistent ASC differentiation, allowing for slight variation due to donor and serum lot effects. Approximately 10–12 weeks are needed for ASC isolation and the characterization of chondrocyte-like cells, which is also described. PMID:20595958

  8. The effect of bone marrow-derived mesenchymal stem cells on chemotherapy induced ovarian failure in albino rats.

    PubMed

    Gabr, Hala; Rateb, Moshira Abdelhakiim; El Sissy, Maha Hamdi; Ahmed Seddiek, Hanan; Ali Abdelhameed Gouda, Sarah

    2016-10-01

    Chemotherapy targets rapidly dividing tissues in the body. It destroys the progenitor cells in gonads resulting in premature ovarian failure. Studies have suggested that bone marrow-derived stem cells can generate oocytes in chemotherapy treated female rats after transplantation. The present study aimed to assess mechanism of homing, the action of injected BM-MSCs on ovarian function after ovarian damage. Seventy two female albino rats were randomly allocated into Control and CTX group, The Experimental protocol was lasted for 12 weeks during which serum FSH and E2 were monitored twice at the end of the 2nd week (12 rats) and 8th week (6 rats). Stem cells identification and homing were evaluated by Flowcytometry and tagging of stem cells with iron oxide particles respectively. Also, histopathological examination was done to evaluate both degeneration (6 rats at 4th week) and regeneration (6 rats at 12th week) of ovarian tissue together with assessment of the levels of TNF-α in ovarian homogenate and IGF-I as a growth factor in ovarian tissue. Partial improvement of E2 and FSH levels as well as ovarian architecture. Elevation of ovarian TNF- α levels and of IGF-I immunohistochemical expressions in ovarian tissues of BM-MSCs injected rats were noticed following homing of BM- MSCs in the ovarian stroma in both control and chemotherapy groups. Injected BM- MSCs can home in the stroma of the injured ovaries. IGF-I and TNF- α may have a role in the attraction of stem cells in vivo. © 2016 Wiley Periodicals, Inc.

  9. Mesenchymal stem cell therapy for cutaneous radiation syndrome.

    PubMed

    Akita, Sadanori; Akino, Kozo; Hirano, Akiyoshi; Ohtsuru, Akira; Yamashita, Shunichi

    2010-06-01

    Systemic and local radiation injuries caused by nuclear power reactor accidents, therapeutic irradiation, or nuclear terrorism should be prevented or properly treated in order to improve wound management and save lives. Currently, regenerative surgical modalities should be attempted with temporal artificial dermis impregnated and sprayed with a local angiogenic factor such as basic fibroblast growth factor, and secondary reconstruction can be a candidate for demarcation and saving the donor morbidity. Human mesenchymal stem cells and adipose-derived stem cells, together with angiogenic and mitogenic factor of basic fibroblast growth factor and an artificial dermis, were applied over the excised irradiated skin defect and were tested for differentiation and local stimulation effects in the radiation-exposed wounds. The perforator flap and artificial dermal template with growth factor were successful for reconstruction in patients who were suffering from complex underlying disease. Patients were uneventfully treated with minimal morbidities. In the experiments, the hMSCs are strongly proliferative even after 20 Gy irradiation in vitro. In vivo, 4 Gy rat whole body irradiation demonstrated that sustained marrow stromal (mesenchymal stem) cells survived in the bone marrow. Immediate artificial dermis application impregnated with cells and the cytokine over the 20 Gy irradiated skin and soft tissues demonstrated the significantly improved fat angiogenesis, architected dermal reconstitution, and less inflammatory epidermal recovery. Detailed understanding of underlying diseases and rational reconstructive procedures brings about good outcomes for difficult irradiated wound healing. Adipose-derived stem cells are also implicated in the limited local injuries for short cell harvesting and processing time in the same subject.

  10. Cell Therapy From Bench to Bedside Translation in CNS Neurorestoratology Era

    PubMed Central

    Huang, Hongyun; Chen, Lin; Sanberg, Paul

    2010-01-01

    Recent advances in cell biology, neural injury and repair, and the progress towards development of neurorestorative interventions are the basis for increased optimism. Based on the complexity of the processes of demyelination and remyelination, degeneration and regeneration, damage and repair, functional loss and recovery, it would be expected that effective therapeutic approaches will require a combination of strategies encompassing neuroplasticity, immunomodulation, neuroprotection, neurorepair, neuroreplacement, and neuromodulation. Cell-based restorative treatment has become a new trend, and increasing data worldwide have strongly proven that it has a pivotal therapeutic value in CNS disease. Moreover, functional neurorestoration has been achieved to a certain extent in the CNS clinically. Up to now, the cells successfully used in preclinical experiments and/or clinical trial/treatment include fetal/embryonic brain and spinal cord tissue, stem cells (embryonic stem cells, neural stem/progenitor cells, hematopoietic stem cells, adipose-derived adult stem/precursor cells, skin-derived precursor, induced pluripotent stem cells), glial cells (Schwann cells, oligodendrocyte, olfactory ensheathing cells, astrocytes, microglia, tanycytes), neuronal cells (various phenotypic neurons and Purkinje cells), mesenchymal stromal cells originating from bone marrow, umbilical cord, and umbilical cord blood, epithelial cells derived from the layer of retina and amnion, menstrual blood-derived stem cells, Sertoli cells, and active macrophages, etc. Proof-of-concept indicates that we have now entered a new era in neurorestoratology. PMID:21359168

  11. Comparative Chondrogenesis of Human Cell Sources in 3D Scaffolds

    PubMed Central

    Tıg̑lı, R. Seda; Ghosh, Sourabh; Laha, Michael M.; Shevde, Nirupama K.; Daheron, Laurence; Gimble, Jeffrey; Gümüşdereliog̑lu, Menemşe; Kaplan, David L.

    2009-01-01

    Cartilage tissue can be engineered by starting from a diversity of cell sources, including stem-cell based and primary cell-based platforms. Selecting an appropriate cell source for the process of cartilage tissue engineering or repair is critical and challenging due to the variety of cell options available. In this study, cellular responses of isolated human chondrocytes, human embryonic stem cells and mesenchymal stem cells (MSCs) derived from three sources, human embryonic stem cells, bone marrow and adipose tissue, were assessed for chondrogenic potential in 3D culture. All cell sources were characterized by FACS analysis to compare expression of some surface markers. The cells were differentiated in two different biomaterial matrices, silk and chitosan scaffolds, in the presence and absence of bone morphogenetic protein 6 (BMP-6) along with the standard chondrogenic differentiating factors. Embryonic stem cells derived MSCs showed unique characteristics with preserved chondrogenic phenotype in both scaffolds with regard to chondrogenesis, as determined by real time RT-PCR, histological and microscopic analyses. After 4 weeks of cultivation, embryonic stem cells derived MSCs were promising for chondrogenesis, particularly in the silk scaffolds with BMP-6. The results suggest that cell source differences are important to consider with regard to chondrogenic outcomes and with the variables addressed here, the human embryonic stem cells derived MSCs were the preferred cell source. PMID:19382119

  12. The role of Hibiscus sabdariffa L. (Roselle) in maintenance of ex vivo murine bone marrow-derived hematopoietic stem cells.

    PubMed

    Abdul Hamid, Zariyantey; Lin Lin, Winnie Hii; Abdalla, Basma Jibril; Bee Yuen, Ong; Latif, Elda Surhaida; Mohamed, Jamaludin; Rajab, Nor Fadilah; Paik Wah, Chow; Wak Harto, Muhd Khairul Akmal; Budin, Siti Balkis

    2014-01-01

    Hematopoietic stem cells- (HSCs-) based therapy requires ex vivo expansion of HSCs prior to therapeutic use. However, ex vivo culture was reported to promote excessive production of reactive oxygen species (ROS), exposing HSCs to oxidative damage. Efforts to overcome this limitation include the use of antioxidants. In this study, the role of Hibiscus sabdariffa L. (Roselle) in maintenance of cultured murine bone marrow-derived HSCs was investigated. Aqueous extract of Roselle was added at varying concentrations (0-1000 ng/mL) for 24 hours to the freshly isolated murine bone marrow cells (BMCs) cultures. Effects of Roselle on cell viability, reactive oxygen species (ROS) production, glutathione (GSH) level, superoxide dismutase (SOD) activity, and DNA damage were investigated. Roselle enhanced the survival (P < 0.05) of BMCs at 500 and 1000 ng/mL, increased survival of Sca-1(+) cells (HSCs) at 500 ng/mL, and maintained HSCs phenotype as shown from nonremarkable changes of surface marker antigen (Sca-1) expression in all experimental groups. Roselle increased (P < 0.05) the GSH level and SOD activity but the level of reactive oxygen species (ROS) was unaffected. Moreover, Roselle showed significant cellular genoprotective potency against H2O2-induced DNA damage. Conclusively, Roselle shows novel property as potential supplement and genoprotectant against oxidative damage to cultured HSCs.

  13. The Role of Hibiscus sabdariffa L. (Roselle) in Maintenance of Ex Vivo Murine Bone Marrow-Derived Hematopoietic Stem Cells

    PubMed Central

    Abdul Hamid, Zariyantey; Lin Lin, Winnie Hii; Abdalla, Basma Jibril; Bee Yuen, Ong; Latif, Elda Surhaida; Mohamed, Jamaludin; Rajab, Nor Fadilah; Paik Wah, Chow; Budin, Siti Balkis

    2014-01-01

    Hematopoietic stem cells- (HSCs-) based therapy requires ex vivo expansion of HSCs prior to therapeutic use. However, ex vivo culture was reported to promote excessive production of reactive oxygen species (ROS), exposing HSCs to oxidative damage. Efforts to overcome this limitation include the use of antioxidants. In this study, the role of Hibiscus sabdariffa L. (Roselle) in maintenance of cultured murine bone marrow-derived HSCs was investigated. Aqueous extract of Roselle was added at varying concentrations (0–1000 ng/mL) for 24 hours to the freshly isolated murine bone marrow cells (BMCs) cultures. Effects of Roselle on cell viability, reactive oxygen species (ROS) production, glutathione (GSH) level, superoxide dismutase (SOD) activity, and DNA damage were investigated. Roselle enhanced the survival (P < 0.05) of BMCs at 500 and 1000 ng/mL, increased survival of Sca-1+ cells (HSCs) at 500 ng/mL, and maintained HSCs phenotype as shown from nonremarkable changes of surface marker antigen (Sca-1) expression in all experimental groups. Roselle increased (P < 0.05) the GSH level and SOD activity but the level of reactive oxygen species (ROS) was unaffected. Moreover, Roselle showed significant cellular genoprotective potency against H2O2-induced DNA damage. Conclusively, Roselle shows novel property as potential supplement and genoprotectant against oxidative damage to cultured HSCs. PMID:25405216

  14. Long-term cryopreservation of bone marrow for autologous transplantation.

    PubMed

    Attarian, H; Feng, Z; Buckner, C D; MacLeod, B; Rowley, S D

    1996-03-01

    Little is known about the effect of long-term cryopreservation on the viability of hematopoietic stem cells (HSC) or on the success of autologous bone marrow transplantation. Although progenitor cell assays such as culture of CFU-GM after thawing can be predictive of engraftment, the most rigorous assay for the cryosurvival of HSC is engraftment after reinfusion of stem cells. We retrospectively evaluated the engraftment data for 36 patients with hematologic malignancies or solid tumors treated at the Fred Hutchinson Cancer Research Center between 1981 and 1993 who received bone marrows stored for 2 years or more. The median duration of cryopreservation for this study group was 2.7 years (range 2.0-7.8). Ninety-seven percent of patients in the study group achieved a granulocyte count of > or = 0.5 x 1.0(9)/1 at a median of 19 days (range 10-115) vs 86% of control group (selected by diagnosis and date of storage) at a median of 20 days (P = 0.14). Seventy percent of patients in the study group achieved a platelet count > or = 20 x 10(9)/1 at a median of 27 days (range 9-69) vs 74% of control group at a median of 23 days (P = 0.47). Also, samples of 28 marrows cryopreserved for a median of 4.4 years (range 2.0-7.8) were cultured to determine if a loss of hematopoietic progenitors relative to duration of storage could be detected. The storage length was not predictive for the quantity of colonies formed (P = 0.57 for BFU-E-derived colonies; P = 0.65 for CFU-GM-derived colonies). We found no consistent detrimental effect of long-term cryopreservation on the success rate of autologous bone marrow transplantation. This report confirms previous reports that marrow cells cryopreserved for several years are capable of engrafting. Therefore, bone marrow cells may be stored at an early appropriate time before the side-effects of multiple cycles of chemotherapy and radiotherapy on hematopoietic tissues are incurred.

  15. From Human Mesenchymal Stem Cells to Insulin-Producing Cells: Comparison between Bone Marrow- and Adipose Tissue-Derived Cells.

    PubMed

    Gabr, Mahmoud M; Zakaria, Mahmoud M; Refaie, Ayman F; Abdel-Rahman, Engy A; Reda, Asmaa M; Ali, Sameh S; Khater, Sherry M; Ashamallah, Sylvia A; Ismail, Amani M; Ismail, Hossam El-Din A; El-Badri, Nagwa; Ghoneim, Mohamed A

    2017-01-01

    The aim of this study is to compare human bone marrow-derived mesenchymal stem cells (BM-MSCs) and adipose tissue-derived mesenchymal stem cells (AT-MSCs), for their differentiation potentials to form insulin-producing cells. BM-MSCs were obtained during elective orthotopic surgery and AT-MSCs from fatty aspirates during elective cosmetics procedures. Following their expansion, cells were characterized by phenotyping, trilineage differentiation ability, and basal gene expression of pluripotency genes and for their metabolic characteristics. Cells were differentiated according to a Trichostatin-A based protocol. The differentiated cells were evaluated by immunocytochemistry staining for insulin and c-peptide. In addition the expression of relevant pancreatic endocrine genes was determined. The release of insulin and c-peptide in response to a glucose challenge was also quantitated. There were some differences in basal gene expression and metabolic characteristics. After differentiation the proportion of the resulting insulin-producing cells (IPCs), was comparable among both cell sources. Again, there were no differences neither in the levels of gene expression nor in the amounts of insulin and c-peptide release as a function of glucose challenge. The properties, availability, and abundance of AT-MSCs render them well-suited for applications in regenerative medicine. Conclusion . BM-MSCs and AT-MSCs are comparable regarding their differential potential to form IPCs. The availability and properties of AT-MSCs render them well-suited for applications in regenerative medicine.

  16. From Human Mesenchymal Stem Cells to Insulin-Producing Cells: Comparison between Bone Marrow- and Adipose Tissue-Derived Cells

    PubMed Central

    Abdel-Rahman, Engy A.; Reda, Asmaa M.; Ashamallah, Sylvia A.; Ismail, Amani M.; Ismail, Hossam El-Din A.; El-Badri, Nagwa

    2017-01-01

    The aim of this study is to compare human bone marrow-derived mesenchymal stem cells (BM-MSCs) and adipose tissue-derived mesenchymal stem cells (AT-MSCs), for their differentiation potentials to form insulin-producing cells. BM-MSCs were obtained during elective orthotopic surgery and AT-MSCs from fatty aspirates during elective cosmetics procedures. Following their expansion, cells were characterized by phenotyping, trilineage differentiation ability, and basal gene expression of pluripotency genes and for their metabolic characteristics. Cells were differentiated according to a Trichostatin-A based protocol. The differentiated cells were evaluated by immunocytochemistry staining for insulin and c-peptide. In addition the expression of relevant pancreatic endocrine genes was determined. The release of insulin and c-peptide in response to a glucose challenge was also quantitated. There were some differences in basal gene expression and metabolic characteristics. After differentiation the proportion of the resulting insulin-producing cells (IPCs), was comparable among both cell sources. Again, there were no differences neither in the levels of gene expression nor in the amounts of insulin and c-peptide release as a function of glucose challenge. The properties, availability, and abundance of AT-MSCs render them well-suited for applications in regenerative medicine. Conclusion. BM-MSCs and AT-MSCs are comparable regarding their differential potential to form IPCs. The availability and properties of AT-MSCs render them well-suited for applications in regenerative medicine. PMID:28584815

  17. Extracellular Vesicles from Bone Marrow‐Derived Mesenchymal Stem Cells Improve Survival from Lethal Hepatic Failure in Mice

    PubMed Central

    Haga, Hiroaki; Yan, Irene K.; Takahashi, Kenji; Matsuda, Akiko

    2017-01-01

    Abstract Stem cell‐based therapies have potential for treatment of liver injury by contributing to regenerative responses, through functional tissue replacement or paracrine effects. The release of extracellular vesicles (EV) from cells has been implicated in intercellular communication, and may contribute to beneficial paracrine effects of stem cell‐based therapies. Therapeutic effects of bone‐marrow derived mesenchymal stem cells (MSC) and vesicles released by these cells were examined in a lethal murine model of hepatic failure induced by d‐galactosamine/tumor necrosis factor‐α (TNF‐α). Systemically administered EV derived from MSC accumulated within the injured liver following systemic administration, reduced hepatic injury, and modulated cytokine expression. Moreover, survival was dramatically increased by EV derived from either murine or human MSC. Similar results were observed with the use of cryopreserved mMSC‐EV after 3 months. Y‐RNA‐1 was identified as a highly enriched noncoding RNA within hMSC‐EV compared to cells of origin. Moreover, siRNA mediated knockdown of Y‐RNA‐1 reduced the protective effects of MSC‐EV on TNF‐α/ActD‐mediated hepatocyte apoptosis in vitro. These data support a critical role for MSC‐derived EV in mediating reparative responses following hepatic injury, and provide compelling evidence to support the therapeutic use of MSC‐derived EV in fulminant hepatic failure. Stem Cells Translational Medicine 2017;6:1262–1272 PMID:28213967

  18. The Effect of In Vivo Mobilization of Bone Marrow Stem Cells on the Pancreas of Diabetic Albino Rats (A Histological & Immunohistochemical Study)

    PubMed Central

    Ismail, Zeinab Mohamed Kamel; Kamel, Ashraf Mahmoud Fawzy; Yacoub, Mira Farouk Youssef; Aboulkhair, Alshaymaa Gamal

    2013-01-01

    Background and Objectives The rapidly increasing number of diabetic patients across the world drew the attention to develop more effective therapeutic approaches. Recent investigations on newly differentiated insulin producing cells (IPCs) revealed that they could be derived from embryonic, adult mesenchymal and hematopoietic stem cells. This work was planned to evaluate the role of StemEnhance (Aphanizomenon flos-aquae [AFA] plant extract) in mobilizing naturally occurring bone marrow stem cells as well as in improving streptozotocin-induced diabetic rats. Methods and Results Twenty adult male albino rats were divided into four groups namely the control, the diabetic, the positive control-StemEnhance and the diabetic-StemEnhance groups. After diabetes induction by streptozotocin (STZ), rats received StemEnhance for four weeks. The mean number of blood CD34 immunopositive cells was measured by flowcytometry and random blood sugar was measured weekly. The pancreas was removed from the sacrificed rats and processed for staining with H&E and immunohistochemical staining for CD34+ve and insulin +ve cells. CD34+ve cells increased in the blood after introduction of StemEnhance. CD34+ve cells were observed in the pancreas and the insulin producing cells in the islets of Langerhans were increased from the second to the fourth week of treatment. Blood glucose level improved but it was still higher than the control level after four weeks of StemEnhance treatment. Conclusions This work points to the significant role of StemEnhance in stem cell mobilization and the improvement of diabetes mellitus. PMID:24298369

  19. Heterogeneity of proangiogenic features in mesenchymal stem cells derived from bone marrow, adipose tissue, umbilical cord, and placenta.

    PubMed

    Du, Wen Jing; Chi, Ying; Yang, Zhou Xin; Li, Zong Jin; Cui, Jun Jie; Song, Bao Quan; Li, Xue; Yang, Shao Guang; Han, Zhi Bo; Han, Zhong Chao

    2016-11-10

    Mesenchymal stem cells (MSCs) have been widely proven effective for therapeutic angiogenesis in ischemia animal models as well as clinical vascular diseases. Because of the invasive method, limited resources, and aging problems of adult tissue-derived MSCs, more perinatal tissue-derived MSCs have been isolated and studied as promising substitutable MSCs for cell transplantation. However, fewer studies have comparatively studied the angiogenic efficacy of MSCs derived from different tissues sources. Here, we evaluated whether the in-situ environment would affect the angiogenic potential of MSCs. We harvested MSCs from adult bone marrow (BMSCs), adipose tissue (AMSCs), perinatal umbilical cord (UMSCs), and placental chorionic villi (PMSCs), and studied their "MSC identity" by flow cytometry and in-vitro trilineage differentiation assay. Then we comparatively studied their endothelial differentiation capabilities and paracrine actions side by side in vitro. Our data showed that UMSCs and PMSCs fitted well with the minimum standard of MSCs as well as BMSCs and AMSCs. Interestingly, we found that MSCs regardless of their tissue origins could develop similar endothelial-relevant functions in vitro, including producing eNOS and uptaking ac-LDL during endothelial differentiation in spite of their feeble expression of endothelial-related genes and proteins. Additionally, we surprisingly found that BMSCs and PMSCs could directly form tubular structures in vitro on Matrigel and their conditioned medium showed significant proangiogenic bioactivities on endothelial cells in vitro compared with those of AMSCs and UMSCs. Besides, several angiogenic genes were upregulated in BMSCs and PMSCs in comparison with AMSCs and UMSCs. Moreover, enzyme-linked immunosorbent assay further confirmed that BMSCs secreted much more VEGF, and PMSCs secreted much more HGF and PGE2. Our study demonstrated the heterogeneous proangiogenic properties of MSCs derived from different tissue origins, and the in vivo isolated environment might contribute to these differences. Our study suggested that MSCs derived from bone marrow and placental chorionic villi might be preferred in clinical application for therapeutic angiogenesis.

  20. Human Embryonic Stem Cell-Derived Mesenchymal Stroma Cells (hES-MSCs) Engraft In Vivo and Support Hematopoiesis without Suppressing Immune Function: Implications for Off-The Shelf ES-MSC Therapies

    PubMed Central

    Li, Ou; Tormin, Ariane; Sundberg, Berit; Hyllner, Johan; Le Blanc, Katarina; Scheding, Stefan

    2013-01-01

    Mesenchymal stroma cells (MSCs) have a high potential for novel cell therapy approaches in clinical transplantation. Commonly used bone marrow-derived MSCs (BM-MSCs), however, have a restricted proliferative capacity and cultures are difficult to standardize. Recently developed human embryonic stem cell-derived mesenchymal stroma cells (hES-MSCs) might represent an alternative and unlimited source of hMSCs. We therefore compared human ES-cell-derived MSCs (hES-MP002.5 cells) to normal human bone marrow-derived MSCs (BM-MSCs). hES-MP002.5 cells had lower yet reasonable CFU-F capacity compared with BM-MSC (8±3 versus 29±13 CFU-F per 100 cells). Both cell types showed similar immunophenotypic properties, i.e. cells were positive for CD105, CD73, CD166, HLA-ABC, CD44, CD146, CD90, and negative for CD45, CD34, CD14, CD31, CD117, CD19, CD 271, SSEA-4 and HLA-DR. hES-MP002.5 cells, like BM-MSCs, could be differentiated into adipocytes, osteoblasts and chondrocytes in vitro. Neither hES-MP002.5 cells nor BM-MSCs homed to the bone marrow of immune-deficient NSG mice following intravenous transplantation, whereas intra-femoral transplantation into NSG mice resulted in engraftment for both cell types. In vitro long-term culture-initiating cell assays and in vivo co-transplantation experiments with cord blood CD34+ hematopoietic cells demonstrated furthermore that hES-MP002.5 cells, like BM-MSCs, possess potent stroma support function. In contrast to BM-MSCs, however, hES-MP002.5 cells showed no or only little activity in mixed lymphocyte cultures and phytohemagglutinin (PHA) lymphocyte stimulation assays. In summary, ES-cell derived MSCs might be an attractive unlimited source for stroma transplantation approaches without suppressing immune function. PMID:23383153

  1. Maladaptive hypertrophy after acute myocardial infarction positive effect of bone marrow-derived stem cell therapy on regional remodeling measured by cardiac MRI.

    PubMed

    Rolf, Andreas; Assmus, Birgit; Schächinger, Volker; Rixe, Johannes; Möllmann, Susanne; Möllmann, Helge; Dimmeler, Stefanie; Zeiher, Andreas M; Hamm, Christian W; Dill, Thorsten

    2011-11-01

    In the aftermath of myocardial infarction, increased loading conditions will trigger hypertrophy of viable myocardium. This in turn causes deterioration of regional contractility. Cardiac magnetic resonance imaging (cMRI) allows the exact differentiation of viable and infarcted myocardium and therefore the measurement of regional wall thickness and function. Bone marrow-derived stem cell (BMC) transfer has been shown to improve global function and remodeling. The present study examines the effect of BMC transfer on regional remodeling and function after myocardial infarction by cMRI. Fifty-four patients of the MR substudy of the REPAIR-AMI trial have been studied at baseline and 12-month follow-up. Enddiastolic wall thickness (EDWT) and wall thickening (WT%) have been measured on SSFP cine sequences. Enddiastolic wall thickness decreased in both placebo and BMC groups in viable as well as infarcted segments. The effect was largest in the pre-specified subgroup of patients below the median EF of 48.9% (infarcted segments -1.14 mm Placebo vs. -1.91 mm BMC, p for interaction 0.01, remote segments -0.19 mm Placebo vs. -0.94 mm BMC, p for interaction 0.00001). Corrected for baseline values BMC therapy yielded smaller EDWT at 12 months in infarcted and remote segments (infarcted 7.58 mm Placebo vs. 6.13 mm BMC p = 0.0001, remote 8.76 mm Placebo vs. 7.32 mm BMC, p = 0.0001). This was associated with better contractility within the infarcted segments among BMC patients (WT% 24.17% Placebo vs. 49.31% BMC, p = 0.0001). The WT% was inversely correlated with EDWT (r = -0.37, p = 0.0001). Bone marrow-derived stem cell therapy yields smaller EDWT when compared with placebo patients suggesting a positive effect on maladaptive hypertrophy of viable myocardium. This notion is supported by the enhanced regional contractility within the BMC group which is inversely correlated with EDWT.

  2. Distinct bone marrow blood vessels differentially regulate haematopoiesis.

    PubMed

    Itkin, Tomer; Gur-Cohen, Shiri; Spencer, Joel A; Schajnovitz, Amir; Ramasamy, Saravana K; Kusumbe, Anjali P; Ledergor, Guy; Jung, Yookyung; Milo, Idan; Poulos, Michael G; Kalinkovich, Alexander; Ludin, Aya; Kollet, Orit; Shakhar, Guy; Butler, Jason M; Rafii, Shahin; Adams, Ralf H; Scadden, David T; Lin, Charles P; Lapidot, Tsvee

    2016-04-21

    Bone marrow endothelial cells (BMECs) form a network of blood vessels that regulate both leukocyte trafficking and haematopoietic stem and progenitor cell (HSPC) maintenance. However, it is not clear how BMECs balance these dual roles, and whether these events occur at the same vascular site. We found that mammalian bone marrow stem cell maintenance and leukocyte trafficking are regulated by distinct blood vessel types with different permeability properties. Less permeable arterial blood vessels maintain haematopoietic stem cells in a low reactive oxygen species (ROS) state, whereas the more permeable sinusoids promote HSPC activation and are the exclusive site for immature and mature leukocyte trafficking to and from the bone marrow. A functional consequence of high permeability of blood vessels is that exposure to blood plasma increases bone marrow HSPC ROS levels, augmenting their migration and differentiation, while compromising their long-term repopulation and survival. These findings may have relevance for clinical haematopoietic stem cell transplantation and mobilization protocols.

  3. Combinatorial Gata2 and Sca1 expression defines hematopoietic stem cells in the bone marrow niche

    PubMed Central

    Suzuki, Norio; Ohneda, Osamu; Minegishi, Naoko; Nishikawa, Mitsuo; Ohta, Takayuki; Takahashi, Satoru; Engel, James Douglas; Yamamoto, Masayuki

    2006-01-01

    The interaction between stem cells and their supportive microenvironment is critical for their maintenance, function, and survival. Whereas hematopoietic stem cells (HSCs) are among the best characterized of tissue stem cells, their precise site of residence (referred to as the niche) in the adult bone marrow has not been precisely defined. In this study, we found that a Gata2 promoter directs activity in all HSCs. We show that HSCs can be isolated efficiently from bone marrow cells by following Gata2-directed GFP fluorescence, and that they can also be monitored in vivo. Each individual GFP-positive cell lay in a G0/G1 cell cycle state, in intimate contact with osteoblasts beside the endosteum, at the edge of the bone marrow. We conclude that the HSC niche is composed of solitary cells and that adult bone marrow HSC are not clustered. PMID:16461905

  4. Concise Review: The Periosteum: Tapping into a Reservoir of Clinically Useful Progenitor Cells

    PubMed Central

    Chang, Hana

    2012-01-01

    Elucidation of the periosteum and its regenerative potential has become a hot topic in orthopedics. Yet few review articles address the unique features of periosteum-derived cells, particularly in light of translational therapies and engineering solutions inspired by the periosteum's remarkable regenerative capacity. This review strives to define periosteum-derived cells in light of cumulative research in the field; in addition, it addresses clinical translation of current insights, hurdles to advancement, and open questions in the field. First, we examine the periosteal niche and its inhabitant cells and the key characteristics of these cells in the context of mesenchymal stem cells and their relevance for clinical translation. We compare periosteum-derived cells with those derived from the marrow niche in in vivo studies, addressing commonalities as well as features unique to periosteum cells that make them potentially ideal candidates for clinical application. Thereafter, we review the differentiation and tissue-building properties of periosteum cells in vitro, evaluating their efficacy in comparison with marrow-derived cells. Finally, we address a new concept of banking periosteum and periosteum-derived cells as a novel alternative to currently available autogenic umbilical blood and perinatal tissue sources of stem cells for today's population of aging adults who were “born too early” to bank their own perinatal tissues. Elucidating similarities and differences inherent to multipotent cells from distinct tissue niches and their differentiation and tissue regeneration capacities will facilitate the use of such cells and their translation to regenerative medicine. PMID:23197852

  5. Placental-derived stem cells: Culture, differentiation and challenges

    PubMed Central

    Oliveira, Maira S; Barreto-Filho, João B

    2015-01-01

    Stem cell therapy is a promising approach to clinical healing in several diseases. A great variety of tissues (bone marrow, adipose tissue, and placenta) are potentially sources of stem cells. Placenta-derived stem cells (p-SCs) are in between embryonic and mesenchymal stem cells, sharing characteristics with both, such as non-carcinogenic status and property to differentiate in all embryonic germ layers. Moreover, their use is not ethically restricted as fetal membranes are considered medical waste after birth. In this context, the present review will be focused on the biological properties, culture and potential cell therapy uses of placental-derived stem cells. Immunophenotype characterization, mainly for surface marker expression, and basic principles of p-SC isolation and culture (mechanical separation or enzymatic digestion of the tissues, the most used culture media, cell plating conditions) will be presented. In addition, some preclinical studies that were performed in different medical areas will be cited, focusing on neurological, liver, pancreatic, heart, muscle, pulmonary, and bone diseases and also in tissue engineering field. Finally, some challenges for stem cell therapy applications will be highlighted. The understanding of the mechanisms involved in the p-SCs differentiation and the achievement of pure cell populations (after differentiation) are key points that must be clarified before bringing the preclinical studies, performed at the bench, to the medical practice. PMID:26029347

  6. Hydrostatic pressure in combination with topographical cues affects the fate of bone marrow-derived human mesenchymal stem cells for bone tissue regeneration.

    PubMed

    Reinwald, Yvonne; El Haj, Alicia J

    2018-03-01

    Topographical and mechanical cues are vital for cell fate, tissue development in vivo, and to mimic the native cell growth environment in vitro. To date, the combinatory effect of mechanical and topographical cues as not been thoroughly investigated. This study investigates the effect of PCL nanofiber alignment and hydrostatic pressure on stem cell differentiation for bone tissue regeneration. Bone marrow-derived human mesenchymal stem cells were seeded onto standard tissue culture plastic and electrospun random and aligned nanofibers. These substrates were either cultured statically or subjected to intermittent hydrostatic pressure at 270 kPa, 1 Hz for 60 min daily over 21 days in osteogenic medium. Data revealed higher cell metabolic activities for all mechanically stimulated cell culture formats compared with non-stimulated controls; and random fibers compared with aligned fibers. Fiber orientation influenced cell morphology and patterns of calcium deposition. Significant up-regulation of Collagen-I, ALP, and Runx-2 were observed for random and aligned fibers following mechanical stimulation; highest levels of osteogenic markers were expressed when hydrostatic pressure was applied to random fibers. These results indicate that fiber alignment and hydrostatic pressure direct stem cell fate and are important stimulus for tissue regeneration. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: A: 629-640, 2018. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc.

  7. ECM microenvironment unlocks brown adipogenic potential of adult human bone marrow-derived MSCs.

    PubMed

    Lee, Michelle H; Goralczyk, Anna G; Kriszt, Rókus; Ang, Xiu Min; Badowski, Cedric; Li, Ying; Summers, Scott A; Toh, Sue-Anne; Yassin, M Shabeer; Shabbir, Asim; Sheppard, Allan; Raghunath, Michael

    2016-02-17

    Key to realizing the diagnostic and therapeutic potential of human brown/brite adipocytes is the identification of a renewable, easily accessible and safe tissue source of progenitor cells, and an efficacious in vitro differentiation protocol. We show that macromolecular crowding (MMC) facilitates brown adipocyte differentiation in adult human bone marrow mesenchymal stem cells (bmMSCs), as evidenced by substantially upregulating uncoupling protein 1 (UCP1) and uncoupled respiration. Moreover, MMC also induced 'browning' in bmMSC-derived white adipocytes. Mechanistically, MMC creates a 3D extracellular matrix architecture enshrouding maturing adipocytes in a collagen IV cocoon that is engaged by paxillin-positive focal adhesions also at the apical side of cells, without contact to the stiff support structure. This leads to an enhanced matrix-cell signaling, reflected by increased phosphorylation of ATF2, a key transcription factor in UCP1 regulation. Thus, tuning the dimensionality of the microenvironment in vitro can unlock a strong brown potential dormant in bone marrow.

  8. Stem cell treatment of degenerative eye disease.

    PubMed

    Mead, Ben; Berry, Martin; Logan, Ann; Scott, Robert A H; Leadbeater, Wendy; Scheven, Ben A

    2015-05-01

    Stem cell therapies are being explored extensively as treatments for degenerative eye disease, either for replacing lost neurons, restoring neural circuits or, based on more recent evidence, as paracrine-mediated therapies in which stem cell-derived trophic factors protect compromised endogenous retinal neurons from death and induce the growth of new connections. Retinal progenitor phenotypes induced from embryonic stem cells/induced pluripotent stem cells (ESCs/iPSCs) and endogenous retinal stem cells may replace lost photoreceptors and retinal pigment epithelial (RPE) cells and restore vision in the diseased eye, whereas treatment of injured retinal ganglion cells (RGCs) has so far been reliant on mesenchymal stem cells (MSC). Here, we review the properties of non-retinal-derived adult stem cells, in particular neural stem cells (NSCs), MSC derived from bone marrow (BMSC), adipose tissues (ADSC) and dental pulp (DPSC), together with ESC/iPSC and discuss and compare their potential advantages as therapies designed to provide trophic support, repair and replacement of retinal neurons, RPE and glia in degenerative retinal diseases. We conclude that ESCs/iPSCs have the potential to replace lost retinal cells, whereas MSC may be a useful source of paracrine factors that protect RGC and stimulate regeneration of their axons in the optic nerve in degenerate eye disease. NSC may have potential as both a source of replacement cells and also as mediators of paracrine treatment. Copyright © 2015. Published by Elsevier B.V.

  9. Hematopoietic stem cells found in lineage-positive subsets in the bone marrow of 5-fluorouracil-treated mice.

    PubMed

    Nishi, N; Osawa, M; Ishikawa, R; Nishikawa, M; Tsumura, H; Inoue, H; Sudo, T

    1995-09-01

    It is known that treatment of mice with 5-fluorouracil (5-FU, 150 mg/kg) confers radioprotection. To investigate this effect, we performed bone marrow transplantation (BMT) using C57BL/6-Ly5 congenic mice treated with 5-FU five days prior to experiments. The mononuclear cells (MNC) in 5-FU-treated bone marrow (BM) were 10 times more radioprotective than those in untreated BM. Moreover, the number of BM MNC expressing c-kit on their surface from 5-FU-treated mice was markedly decreased relative to those from untreated controls. These results showed that the surface characteristics of cells that contributed to this radio-protective effect differ from those of stem cells as reported recently. BM MNC of mice treated with 5-FU were separated on the basis of expression of the lineage-specific antigens (Lin), c-kit, and Ly6A/E. When injected into lethally irradiated mice, 1,000 Lin+ and Lin-c-kit+Ly6A/E+ cells showed radioprotective effects such that 100% and 60% survived, respectively. Flow cytometric analysis 165 days after BMT showed that 88.8% and 65.1% of peripheral blood (PB) in mice transplanted with Lin+ and Lin-c-kit+Ly6A/E+ was derived from donor mice, respectively. After six months, donor-derived Lin-c-kit+Ly6A/E+ cells which showed radioprotective effects on a secondary irradiated host were detected from mice transplanted with Lin+ cells from 5-FU-treated mice. Taken together, these findings demonstrated that stem cells expressing Lin+ present in the BM of mice treated with 5-FU other than Lin-c-kit+Ly6A/E+ cells and these Lin+ cells play an important role in the recovery of myeloablative mice.

  10. An Animal Model of Chronic Aplastic Bone Marrow Failure Following Pesticide Exposure in Mice

    PubMed Central

    Chatterjee, Sumanta; Chaklader, Malay; Basak, Pratima; Das, Prosun; Das, Madhurima; Pereira, Jacintha Archana; Dutta, Ranjan Kumar; Chaudhuri, Samaresh; Law, Sujata

    2010-01-01

    The wide use of pesticides for agriculture, domestic and industrial purposes and evaluation of their subsequent effect is of major concern for public health. Human exposure to these contaminants especially bone marrow with its rapidly renewing cell population is one of the most sensitive tissues to these toxic agents represents a risk for the immune system leading to the onset of different pathologies. In this experimental protocol we have developed a mouse model of pesticide(s) induced hypoplastic/aplastic marrow failure to study quantitative changes in the bone marrow hematopoietic stem cell (BMHSC) population through flowcytometric analysis, defects in the stromal microenvironment through short term adherent cell colony (STACC) forming assay and immune functional capacity of the bone marrow derived cells through cell mediated immune (CMI) parameter study. A time course dependent analysis for consecutive 90 days were performed to monitor the associated changes in the marrow’s physiology after 30th, 60th and 90th days of chronic pesticide exposure. The peripheral blood showed maximum lowering of the blood cell count after 90 days which actually reflected the bone marrow scenario. Severe depression of BMHSC population, immune profile of the bone marrow derived cells and reduction of adherent cell colonies pointed towards an essentially empty and hypoplastic marrow condition that resembled the disease aplastic anemia. The changes were accompanied by splenomegaly and splenic erythroid hyperplasia. In conclusion, this animal model allowed us a better understanding of clinico-biological findings of the disease aplastic anemia following toxic exposure to the pesticide(s) used for agricultural and industrial purposes. PMID:24855541

  11. Hematopoietic progenitors express neural genes

    PubMed Central

    Goolsby, James; Marty, Marie C.; Heletz, Dafna; Chiappelli, Joshua; Tashko, Gerti; Yarnell, Deborah; Fishman, Paul S.; Dhib-Jalbut, Suhayl; Bever, Christopher T.; Pessac, Bernard; Trisler, David

    2003-01-01

    Bone marrow, or cells selected from bone marrow, were reported recently to give rise to cells with a neural phenotype after in vitro treatment with neural-inducing factors or after delivery into the brain. However, we showed previously that untreated bone marrow cells express products of the neural myelin basic protein gene, and we demonstrate here that a subset of ex vivo bone marrow cells expresses the neurogenic transcription factor Pax-6 as well as neuronal genes encoding neurofilament H, NeuN (neuronal nuclear protein), HuC/HuD (Hu-antigen C/Hu-antigen D), and GAD65 (glutamic acid decarboxylase 65), as well as the oligodendroglial gene encoding CNPase (2′,3′ cyclic nucleotide 3′-phosphohydrolase). In contrast, astroglial glial fibrillary acidic protein (GFAP) was not detected. These cells also were CD34+, a marker of hematopoietic stem cells. Cultures of these highly proliferative CD34+ cells, derived from adult mouse bone marrow, uniformly displayed a phenotype comparable with that of hematopoietic progenitor cells (CD45+, CD34+, Sca-1+, AA4.1+, cKit+, GATA-2+, and LMO-2+). The neuronal and oligodendroglial genes expressed in ex vivo bone marrow also were expressed in all cultured CD34+ cells, and GFAP was not observed. After CD34+ cell transplantation into adult brain, neuronal or oligodendroglial markers segregated into distinct nonoverlapping cell populations, whereas astroglial GFAP appeared, in the absence of other neural markers, in a separate set of implanted cells. Thus, neuronal and oligodendroglial gene products are present in a subset of bone marrow cells, and the expression of these genes can be regulated in brain. The fact that these CD34+ cells also express transcription factors (Rex-1 and Oct-4) that are found in early development elicits the hypothesis that they may be pluripotent embryonic-like stem cells. PMID:14634211

  12. Adipose-derived stem cells and periodontal tissue engineering.

    PubMed

    Tobita, Morikuni; Mizuno, Hiroshi

    2013-01-01

    Innovative developments in the multidisciplinary field of tissue engineering have yielded various implementation strategies and the possibility of functional tissue regeneration. Technologic advances in the combination of stem cells, biomaterials, and growth factors have created unique opportunities to fabricate tissues in vivo and in vitro. The therapeutic potential of human multipotent mesenchymal stem cells (MSCs), which are harvested from bone marrow and adipose tissue, has generated increasing interest in a wide variety of biomedical disciplines. These cells can differentiate into a variety of tissue types, including bone, cartilage, fat, and nerve tissue. Adipose-derived stem cells have some advantages compared with other sources of stem cells, most notably that a large number of cells can be easily and quickly isolated from adipose tissue. In current clinical therapy for periodontal tissue regeneration, several methods have been developed and applied either alone or in combination, such as enamel matrix proteins, guided tissue regeneration, autologous/allogeneic/xenogeneic bone grafts, and growth factors. However, there are various limitations and shortcomings for periodontal tissue regeneration using current methods. Recently, periodontal tissue regeneration using MSCs has been examined in some animal models. This method has potential in the regeneration of functional periodontal tissues because the various secreted growth factors from MSCs might not only promote the regeneration of periodontal tissue but also encourage neovascularization of the damaged tissues. Adipose-derived stem cells are especially effective for neovascularization compared with other MSC sources. In this review, the possibility and potential of adipose-derived stem cells for regenerative medicine are introduced. Of particular interest, periodontal tissue regeneration with adipose-derived stem cells is discussed.

  13. Infection of hematopoietic stem cells by Leishmania infantum increases erythropoiesis and alters the phenotypic and functional profiles of progeny.

    PubMed

    Carvalho-Gontijo, Raquel; Moreira, Diana Raquel; Resende, Mariana; Costa-Silva, Matheus Fernandes; Peruhype-Magalhães, Vanessa; Ribeiro, Cláudia Maria Franco; Ribeiro, Daniel Dias; Silvestre, Ricardo; Cordeiro-da-Silva, Anabela; Martins-Filho, Olindo Assis; Teixeira-Carvalho, Andréa

    2018-04-01

    Immunosuppression is a well-established risk factor for Visceral Leishmaniasis. Post-immunosuppression leishmaniasis is characterized by an increase of parasite burden, hematopoietic disorders and unusual clinical manifestations. Although there are many reports on bone marrow findings in VL, less is known about the relationship between parasite dynamics in this organ and the function of either hematopoietic stem cells and progenitor cells themselves. In the present study, we tackle these issues using a new approach of infecting human stem cells derived from bone marrow with L. infantum. Using this strategy, we show that human hematopoietic stem cells (hHSC) are able to phagocytize L. infantum promastigotes and release modulatory and pro-inflammatory cytokines, mainly TNF-α. Our results demonstrated that L. infantum infection in vitro enhances hematopoiesis, favoring the development of erythrocitic lineage through a mechanism yet unknown. Moreover, we found that L. infantum infection alters the phenotypic profile of the hematopoietic progeny; modifying the surface markers expression of differentiated cells. Thus, our study represents a rare opportunity to monitor the in vitro differentiation of human stem cells experimentally infected by L. infantum to better understand the consequences of the infection on phenotypic and functional profile of the cell progeny. Copyright © 2017. Published by Elsevier Inc.

  14. Hepatocyte Growth Factor Improves the Therapeutic Efficacy of Human Bone Marrow Mesenchymal Stem Cells via RAD51.

    PubMed

    Lee, Eun Ju; Hwang, Injoo; Lee, Ji Yeon; Park, Jong Nam; Kim, Keun Cheon; Kim, Gi-Hwan; Kang, Chang-Mo; Kim, Irene; Lee, Seo-Yeon; Kim, Hyo-Soo

    2018-03-07

    Human embryonic stem cell-derived mesenchymal stem cells (hE-MSCs) have greater proliferative capacity than other human mesenchymal stem cells (hMSCs), suggesting that they may have wider applications in regenerative cellular therapy. In this study, to uncover the anti-senescence mechanism in hE-MSCs, we compared hE-MSCs with adult bone marrow (hBM-MSCs) and found that hepatocyte growth factor (HGF) was more abundantly expressed in hE-MSCs than in hBM-MSCs and that it induced the transcription of RAD51 and facilitated its SUMOylation at K70. RAD51 induction/modification by HGF not only increased telomere length but also increased mtDNA replication, leading to increased ATP generation. Moreover, HGF-treated hBM-MSCs showed significantly better therapeutic efficacy than naive hBM-MSCs. Together, the data suggest that the RAD51-mediated effects of HGF prevent hMSC senescence by promoting telomere lengthening and inducing mtDNA replication and function, which opens the prospect of developing novel therapies for liver disease. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  15. Association of murine lupus and thymic full-length endogenous retroviral expression maps to a bone marrow stem cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krieg, A.M.; Gourley, M.F.; Steinberg, A.D.

    1991-05-01

    Recent studies of thymic gene expression in murine lupus have demonstrated 8.4-kb (full-length size) modified polytropic (Mpmv) endogenous retroviral RNA. In contrast, normal control mouse strains do not produce detectable amounts of such RNA in their thymuses. Prior studies have attributed a defect in experimental tolerance in murine lupus to a bone marrow stem cell rather than to the thymic epithelium; in contrast, infectious retroviral expression has been associated with the thymic epithelium, rather than with the bone marrow stem cell. The present study was designed to determine whether the abnormal Mpmv expression associated with murine lupus mapped to thymicmore » epithelium or to a marrow precursor. Lethally irradiated control and lupus-prone mice were reconstituted with T cell depleted bone marrow; one month later their thymuses were studied for endogenous retroviral RNA and protein expression. Recipients of bone marrow from nonautoimmune donors expressed neither 8.4-kb Mpmv RNA nor surface MCF gp70 in their thymuses. In contrast, recipients of bone marrow from autoimmune NZB or BXSB donors expressed thymic 8.4-kb Mpmv RNA and mink cell focus-forming gp70. These studies demonstrate that lupus-associated 8.4-kb Mpmv endogenous retroviral expression is determined by bone marrow stem cells.« less

  16. Long-Term Tolerance Towards Haploidentical Vascularized Composite Allograft Transplantation in a Canine Model Using Bone Marrow or Mobilized Stem Cells

    PubMed Central

    Chang, Jeff; Graves, Scott S.; Butts-Miwongtum, Tiffany; Sale, George E.; Storb, Rainer; Mathes, David W.

    2017-01-01

    Background The development of safe and reliable protocols for the transplantation of the face and hands may be accomplished with animal modeling of transplantation of vascularized composite allografts (VCA). Previously, we demonstrated that tolerance to a VCA could be achieved after canine recipients were simultaneously given marrow from a dog leukocyte antigen (DLA) identical donor. In the present study, we extend those findings across a DLA mismatched barrier. Methods Eight Recipient dogs received total body irradiation (4.5 cGy), hematopoietic cell transplantation (HCT), either marrow (n=4) or granulocyte-colony stimulating factor (G-CSF) mobilized peripheral blood stem cells (n=4), and a VCA transplant from the HCT donor. Post grafting immunosuppression consisted of mycophenolate mofetil (28 days) and cyclosporine (35 days). Results In 4 dogs receiving bone marrow, 1 accepted both its marrow transplant and demonstrated long-term tolerance to the donor VCA (>52 weeks). Three dogs rejected both their marrow transplants and VCA at 5–7 weeks posttransplant. Dogs receiving mobilized stem cells all accepted their stem cell transplant and became tolerant to the VCA. However, 3 dogs developed graft-versus-host disease (GVHD) while 1 dog rejected its stem cell graft by week 15 but exhibited long-term tolerance towards its VCA (>90 weeks). Conclusion The data suggest that simultaneous transplantation of mobilized stem cells and a VCA is feasible and leads to tolerance towards the VCA in a haploidentical setting. However, there is a higher rate of donor stem cell engraftment compared to marrow HCT and an increase in the incidence of GVHD. PMID:27861292

  17. Bone marrow (stem cell) donation

    MedlinePlus

    ... medlineplus.gov/ency/patientinstructions/000839.htm Bone marrow (stem cell) donation To use the sharing features on this page, please enable ... cells are more likely to help patients than stem cells from older people. People who register must either: Use a cotton swab to take a sample of ...

  18. Efficient Generation of β-Globin-Expressing Erythroid Cells Using Stromal Cell-Derived Induced Pluripotent Stem Cells from Patients with Sickle Cell Disease.

    PubMed

    Uchida, Naoya; Haro-Mora, Juan J; Fujita, Atsushi; Lee, Duck-Yeon; Winkler, Thomas; Hsieh, Matthew M; Tisdale, John F

    2017-03-01

    Human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells represent an ideal source for in vitro modeling of erythropoiesis and a potential alternative source for red blood cell transfusions. However, iPS cell-derived erythroid cells predominantly produce ε- and γ-globin without β-globin production. We recently demonstrated that ES cell-derived sacs (ES sacs), known to express hemangioblast markers, allow for efficient erythroid cell generation with β-globin production. In this study, we generated several iPS cell lines derived from bone marrow stromal cells (MSCs) and peripheral blood erythroid progenitors (EPs) from sickle cell disease patients, and evaluated hematopoietic stem/progenitor cell (HSPC) generation after iPS sac induction as well as subsequent erythroid differentiation. MSC-derived iPS sacs yielded greater amounts of immature hematopoietic progenitors (VEGFR2 + GPA-), definitive HSPCs (CD34 + CD45+), and megakaryoerythroid progenitors (GPA + CD41a+), as compared to EP-derived iPS sacs. Erythroid differentiation from MSC-derived iPS sacs resulted in greater amounts of erythroid cells (GPA+) and higher β-globin (and βS-globin) expression, comparable to ES sac-derived cells. These data demonstrate that human MSC-derived iPS sacs allow for more efficient erythroid cell generation with higher β-globin production, likely due to heightened emergence of immature progenitors. Our findings should be important for iPS cell-derived erythroid cell generation. Stem Cells 2017;35:586-596. © 2016 AlphaMed Press.

  19. Expression of cardiac function genes in adult stem cells is increased by treatment with nitric oxide agents.

    PubMed

    Rebelatto, Carmen K; Aguiar, Alessandra M; Senegaglia, Alexandra C; Aita, Carlos M; Hansen, Paula; Barchiki, Fabiane; Kuligovski, Crisciele; Olandoski, Márcia; Moutinho, José A; Dallagiovanna, Bruno; Goldenberg, Samuel; Brofman, Paulo S; Nakao, Lia S; Correa, Alejandro

    2009-01-16

    Mesenchymal stem cells (MSCs) have received special attention for cardiomyoplasty because several studies have shown that they differentiate into cardiomyocytes both in vitro and in vivo. Nitric oxide (NO) is a free radical signaling molecule that regulates several differentiation processes including cardiomyogenesis. Here, we report an investigation of the effects of two NO agents (SNAP and DEA/NO), able to activate both cGMP-dependent and -independent pathways, on the cardiomyogenic potential of bone marrow-derived mesenchymal stem cells (BM-MSCs) and adipose tissue-derived stem cells (ADSCs). The cells were isolated, cultured and treated with NO agents. Cardiac- and muscle-specific gene expression was analyzed by indirect immunofluorescence, flow cytometry, RT-PCR and real-time PCR. We found that untreated (control) ADSCs and BM-MSCs expressed some muscle markers and NO-derived intermediates induce an increased expression of some cardiac function genes in BM-MSCs and ADSCs. Moreover, NO agents considerably increased the pro-angiogenic potential mostly of BM-MSCs as determined by VEGF mRNA levels.

  20. Bone marrow transplant – children - discharge

    MedlinePlus

    Transplant - bone marrow - children - discharge; Stem cell transplant - children - discharge; Hematopoietic stem cell transplant -children - discharge; Reduced intensity, non-myeloablative transplant - children - discharge; Mini transplant - children - discharge; Allogenic bone ...

  1. Knockdown of OY-TES-1 by RNAi causes cell cycle arrest and migration decrease in bone marrow-derived mesenchymal stem cells.

    PubMed

    Cen, Yan-Hui; Guo, Wen-Wen; Luo, Bin; Lin, Yong-Da; Zhang, Qing-Mei; Zhou, Su-Fang; Luo, Guo-Rong; Xiao, Shao-Wen; Xie, Xiao-Xun

    2012-10-01

    OY-TES-1 is a member of the CTA (cancer-testis antigen) group expressed in a variety of cancer and restrictedly expressed in adult normal tissues, except for testis. To determine whether MSCs (mesenchymal stem cells) express OY-TES-1 and its possible roles on MSCs, OY-TES-1 expression in MSCs isolated from human bone marrow was tested with RT (reverse transcription)-PCR, immunocytochemistry and Western blot. Using RNAi (RNA interference) technology, OY-TES-1 expression was knocked down followed by analysing cell viability, cell cycle, apoptosis and migration ability. MSCs expressed OY-TES-1 at both mRNA and protein levels. The down-regulation of OY-TES-1 expression in these MSCs caused cell growth inhibition, cell cycle arrest, apoptosis induction and migration ability attenuation. Through these primary results it was suggested that OY-TES-1 may influence the biological behaviour of MSCs.

  2. BMP2 repression and optimized culture conditions promote human bone marrow-derived mesenchymal stem cell isolation.

    PubMed

    Kay, Alasdair Gawain; Dale, Tina Patricia; Akram, Khondoker Mehedi; Mohan, Param; Hampson, Karen; Maffulli, Nicola; Spiteri, Monica A; El Haj, Alicia Jennifer; Forsyth, Nicholas Robert

    2015-01-01

    Human mesenchymal stem cells (hMSC) are multipotent progenitor cells. We propose the optimization of hMSC isolation and recovery using the application of a controlled hypoxic environment. We evaluated oxygen, glucose and serum in the recovery of hMSC from bone marrow (BMhMSC). Colony forming units-fibroblastic, cell numbers, tri-lineage differentiation, immunofluorescence and microarray were used to confirm and characterize BMhMSC. In an optimized (2% O(2), 4.5 g/l glucose and 5% serum) environment both colony forming units-fibroblastic (p = 0.01) and cell numbers (p = 0.0001) were enhanced over standard conditions. Transcriptional analysis identified differential expression of bone morphogenetic protein 2 (BMP2) and, putatively, chemokine (C-X-C motif) receptor 2 (CXCR2) signaling pathways. We have detailed a potential milestone in the process of refinement of the BMhMSC isolation process.

  3. Chm-1 gene-modified bone marrow mesenchymal stem cells maintain the chondrogenic phenotype of tissue-engineered cartilage.

    PubMed

    Chen, Zhuoyue; Wei, Jing; Zhu, Jun; Liu, Wei; Cui, Jihong; Li, Hongmin; Chen, Fulin

    2016-05-05

    Marrow mesenchymal stem cells (MSCs) can differentiate into specific phenotypes, including chondrocytes, and have been widely used for cartilage tissue engineering. However, cartilage grafts from MSCs exhibit phenotypic alternations after implantation, including matrix calcification and vascular ingrowth. We compared chondromodulin-1 (Chm-1) expression between chondrocytes and MSCs. We found that chondrocytes expressed a high level of Chm-1. We then adenovirally transduced MSCs with Chm-1 and applied modified cells to engineer cartilage in vivo. A gross inspection and histological observation indicated that the chondrogenic phenotype of the tissue-engineered cartilage graft was well maintained, and the stable expression of Chm-1 was detected by immunohistological staining in the cartilage graft derived from the Chm-1 gene-modified MSCs. Our findings defined an essential role for Chm-1 in maintaining chondrogenic phenotype and demonstrated that Chm-1 gene-modified MSCs may be used in cartilage tissue engineering.

  4. Discovery of survival factor for primitive chronic myeloid leukemia cells using induced pluripotent stem cells

    PubMed Central

    Suknuntha, Kran; Ishii, Yuki; Tao, Lihong; Hu, Kejin; McIntosh, Brian E.; Yang, David; Swanson, Scott; Stewart, Ron; Wang, Jean Y.J.; Thomson, James; Slukvin, Igor

    2016-01-01

    A definitive cure for chronic myeloid leukemia (CML) requires identifying novel therapeutic targets to eradicate leukemia stem cells (LSCs). However, the rarity of LSCs within the primitive hematopoietic cell compartment remains a major limiting factor for their study in humans. Here we show that primitive hematopoietic cells with typical LSC features, including adhesion defect, increased long-term survival and proliferation, and innate resistance to tyrosine kinase inhibitor (TKI) imatinib, can be generated de novo from reprogrammed primary CML cells. Using CML iPSC-derived primitive leukemia cells, we discovered olfactomedin 4 (OLFM4) as a novel factor that contributes to survival and growth of somatic lin−CD34+ cells from bone marrow of patients with CML in chronic phase, but not primitive hematopoietic cells from normal bone marrow. Overall, this study shows the feasibility and advantages of using reprogramming technology to develop strategies for targeting primitive leukemia cells. PMID:26561938

  5. Regulatory role of Megakaryocytes on Hematopoietic Stem Cells Quiescence by CXCL4/PF4 in Bone Marrow Niche.

    PubMed

    Norozi, Fatemeh; Shahrabi, Saeid; Hajizamani, Saeideh; Saki, Najmaldin

    2016-09-01

    Platelet factor-4 (CXCL4/PF-4) is a member of CXC-chemokine family produced by megakaryocytic lineage and stored in platelet α-granules. Platelet stimulation by aggregating agents such as thrombin and ADP leads to CXCL4 secretion. CXCL4 plays several roles in coagulation, angiogenesis control, immune system modulation and spread of cancer. Megakaryocytes (Mks) are associated with the vascular niche in the bone marrow (BM) and are located in vicinity of BM sinusoids. Mk-derived CXCL4 is involved in several hematopoietic processes, including inhibition of megakaryopoiesis and maintenance of hematopoietic stem cell (HSC) quiescence. The major aim of this review article was to evaluate the role of CXCL4 in hematological malignancies, promotion of HSC quiescence as well as BM niche cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Repair of traumatic skeletal muscle injury with bone-marrow-derived mesenchymal stem cells seeded on extracellular matrix.

    PubMed

    Merritt, Edward K; Cannon, Megan V; Hammers, David W; Le, Long N; Gokhale, Rohit; Sarathy, Apurva; Song, Tae J; Tierney, Matthew T; Suggs, Laura J; Walters, Thomas J; Farrar, Roger P

    2010-09-01

    Skeletal muscle injury resulting in tissue loss poses unique challenges for surgical repair. Despite the regenerative potential of skeletal muscle, if a significant amount of tissue is lost, skeletal myofibers will not grow to fill the injured area completely. Prior work in our lab has shown the potential to fill the void with an extracellular matrix (ECM) scaffold, resulting in restoration of morphology, but not functional recovery. To improve the functional outcome of the injured muscle, a muscle-derived ECM was implanted into a 1 x 1 cm(2), full-thickness defect in the lateral gastrocnemius (LGAS) of Lewis rats. Seven days later, bone-marrow-derived mesenchymal stem cells (MSCs) were injected directly into the implanted ECM. Partial functional recovery occurred over the course of 42 days when the LGAS was repaired with an MSC-seeded ECM producing 85.4 +/- 3.6% of the contralateral LGAS. This was significantly higher than earlier recovery time points (p < 0.05). The specific tension returned to 94 +/- 9% of the contralateral limb. The implanted MSC-seeded ECM had more blood vessels and regenerating skeletal myofibers than the ECM without cells (p < 0.05). The data suggest that the repair of a skeletal muscle defect injury by the implantation of a muscle-derived ECM seeded with MSCs can improve functional recovery after 42 days.

  7. Angiogenesis Research to Improve Therapies for Vascular Leak Syndromes, Intra-Abdominal Adhesions, and Arterial Injuries

    DTIC Science & Technology

    2007-02-01

    characterization of functional human microvessels in immunodeficient mice. Lab Invest. 2001;81:453-463. 14. Rafii S, Lyden D. Therapeutic stem and progenitor cell... Rafii S, Wu MH, et al. Evidence for circulating bone marrow-derived endothelial cells. Blood. 1998;92:362-367. 32. Hristov M, Erl W, Weber PC

  8. Evaluating effects of L-carnitine on human bone-marrow-derived mesenchymal stem cells.

    PubMed

    Fujisawa, Koichi; Takami, Taro; Fukui, Yumi; Quintanilha, Luiz Fernando; Matsumoto, Toshihiko; Yamamoto, Naoki; Sakaida, Isao

    2017-05-01

    Mesenchymal stem cells (MSCs) are multipotent cells showing potential for use in regenerative medicine. Culture techniques that are more stable and methods for the more efficient production of MSCs with therapeutic efficacy are needed. We evaluate the effects of growing bone marrow (Bm)-derived MSCs in the presence of L-carnitine, which is believed to promote lipid metabolism and to suppress apoptosis. The presence of L-carnitine decreased the degree of drug-induced apoptosis and suppressed adipogenic differentiation. Metabolomic analysis by means of the exhaustive investigation of metabolic products showed that, in addition to increased β-oxidation and the expression of all carnitine derivatives other than deoxycarnitine (an intermediate in carnitine synthesis), polysaturated and polyunsaturated acids were down-regulated. An integrated analysis incorporating both serial analysis of gene expression and metabolomics revealed increases in cell survival, suggesting the utility of carnitine. The addition of carnitine elevated the oxygen consumption rate by BmMSCs that had been cultured for only a few generations and those that had become senescent following repeated replication indicating that mitochondrial activation occurred. Our exhaustive analysis of the effects of various carnitine metabolites thus suggests that the addition of L-carnitine to BmMSCs during expansion enables efficient cell production.

  9. The mechanisms of substance P-mediated migration of bone marrow-derived mesenchymal stem cell-like ST2 cells.

    PubMed

    Dubon, Maria Jose; Park, Ki-Sook

    2016-04-01

    Substance P (SP) is known to induce the mobilization of bone marrow-derived mesenchymal stem cells (BM-MSCs) and thus participates in wound repair. However, the cellular and molecular mechanisms responsible for the SP-mediated migration of BM-MSCs were not fully understood. In the present study, we studied the molecular mechanisms that mediate the migration of the BM-derived MSC-like cell line ST2 in response to SP. Using a migration assay and western blot analysis, we noted that SP induced the chemotactic migration of ST2 cells through the intrinsic activation of extracellular signal-regulated kinases (ERKs) and protein kinase B (Akt), the phosphorylated expression levels of which were increased. We noted that Src is involved in the SP-mediated migration of ST2 cells and that focal adhesion kinase (FAK) was activated in the ST2 cells following SP treatment. Membrane ruffling increased in the ST2 cells after SP treatment, as was clearly demonstrated by immunocytochemical analysis. Importantly, using a blocking antibody against N-cadherin (GC-4), we studied cell migration and noted that SP mediated the migration of the ST2 cells through N-cadherin. The present study thus advanced our understanding of the mechanisms through which SP induces BM-MSC migration.

  10. Comparative characterization of stem cells from human exfoliated deciduous teeth, dental pulp, and bone marrow-derived mesenchymal stem cells.

    PubMed

    Kunimatsu, Ryo; Nakajima, Kengo; Awada, Tetsuya; Tsuka, Yuji; Abe, Takaharu; Ando, Kazuyo; Hiraki, Tomoka; Kimura, Aya; Tanimoto, Kotaro

    2018-06-18

    Mesenchymal stem cells (MSCs) are used clinically in tissue engineering and regenerative medicine. The proliferation and osteogenic differentiation potential of MSCs vary according to factors such as tissue source and cell population heterogeneity. Dental tissue has received attention as an easily accessible source of high-quality stem cells. In this study, we compared the in vitro characteristics of dental pulp stem cells from deciduous teeth (SHED), human dental pulp stem cells (hDPSCs), and human bone marrow mesenchymal stem cells (hBMSCs). SEHD and hDPSCs were isolated from dental pulp and analyzed in comparison with human bone marrow (hBM)MSCs. Proliferative capacity of cultured cells was analyzed using a bromodeoxyuridine immunoassay and cell counting. Alkaline phosphatase (ALP) levels were monitored to assess osteogenic differentiation. Mineralization was evaluated by alizarin red staining. Levels of bone marker mRNA were examined by real-time PCR analysis. SHED were highly proliferative compared with hDPSCs and hBMSCs. SHED, hDPSCs, and hBMSCs exhibited dark alizarin red staining on day 21 after induction of osteogenic differentiation, and staining of hBMSCs was significantly higher than that of SHED and hDPSCs by spectrophotometry. ALP staining was stronger in hBMSCs compared with SHED and hDPSCs, and ALP activity was significantly higher in hBMSCs compared with SHED or hDPSCs. SHED showed significantly higher expression of the Runx2 and ALP genes compared with hBMSCs, based on real-time PCR analysis. In bFGF, SHED showed significantly higher expression of the basic fibroblast growth factor (bFGF) gene compared with hDPSCs and hBMSCs. SHED exhibited higher proliferative activity and levels of bFGF and BMP-2 gene expression compared with BMMSCs and DPSCs. The ease of harvesting cells and ability to avoid invasive surgical procedures suggest that SHED may be a useful cell source for application in bone regeneration treatments. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Comparison of the bone regeneration ability between stem cells from human exfoliated deciduous teeth, human dental pulp stem cells and human bone marrow mesenchymal stem cells.

    PubMed

    Nakajima, Kengo; Kunimatsu, Ryo; Ando, Kazuyo; Ando, Toshinori; Hayashi, Yoko; Kihara, Takuya; Hiraki, Tomoka; Tsuka, Yuji; Abe, Takaharu; Kaku, Masato; Nikawa, Hiroki; Takata, Takashi; Tanne, Kazuo; Tanimoto, Kotaro

    2018-03-11

    Cleft lip and palate is the most common congenital anomaly in the orofacial region. Autogenous iliac bone graft, in general, has been employed for closing the bone defect at the alveolar cleft. However, such iliac bone graft provides patients with substantial surgical and psychological invasions. Consequently, development of a less invasive method has been highly anticipated. Stem cells from human exfoliated deciduous teeth (SHED) are a major candidate for playing a significant role in tissue engineering and regenerative medicine. The aim of this study was to elucidate the nature of bone regeneration by SHED as compared to that of human dental pulp stem cells (hDPSCs) and bone marrow mesenchymal stem cells (hBMSCs). The stems cells derived from pulp tissues and bone marrow were transplanted with a polylactic-coglycolic acid barrier membrane as a scaffold, for use in bone regeneration in an artificial bone defect of 4 mm in diameter in the calvaria of immunodeficient mice. Three-dimensional analysis using micro CT and histological evaluation were performed. Degree of bone regeneration with SHED relative to the bone defect was almost equivalent to that with hDPSCs and hBMSCs 12 weeks after transplantation. The ratio of new bone formation relative to the pre-created bone defect was not significantly different among groups with SHED, hDPSCs and hBMSCs. In addition, as a result of histological evaluation, SHED produced the largest osteoid and widely distributed collagen fibers compared to hDPSCs and hBMSCs groups. Thus, SHED transplantation exerted bone regeneration ability sufficient for the repair of bone defect. The present study has demonstrated that SHED is one of the best candidate as a cell source for the reconstruction of alveolar cleft due to the bone regeneration ability with less surgical invasion. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Injectable calcium phosphate with hydrogel fibers encapsulating induced pluripotent, dental pulp and bone marrow stem cells for bone repair

    PubMed Central

    Wang, Lin; Zhang, Chi; Li, Chunyan; Weir, Michael D.; Wang, Ping; Reynolds, Mark A.; Zhao, Liang; Xu, Hockin H.K.

    2017-01-01

    Human induced pluripotent stem cell-derived mesenchymal stem cells (hiPSC-MSCs), dental pulp stem cells (hDPSCs) and bone marrow MSCs (hBMSCs) are exciting cell sources in regenerative medicine. However, there has been no report comparing hDPSCs, hBMSCs and hiPSC-MSCs for bone engineering in an injectable calcium phosphate cement (CPC) scaffold. The objectives of this study were to: (1) develop a novel injectable CPC containing hydrogel fibers encapsulating stem cells for bone engineering, and (2) compare cell viability, proliferation and osteogenic differentiation of hDPSCs, hiPSC-MSCs from bone marrow (BM-hiPSC-MSCs) and from foreskin (FS-hiPSC-MSCs), and hBMSCs in CPC for the first time. The results showed that the injection did not harm cell viability. The porosity of injectable CPC was 62%. All four types of cells proliferated and differentiated down the osteogenic lineage inside hydrogel fibers in CPC. hDPSCs, BM-hiPSC-MSCs, and hBMSCs exhibited high alkaline phosphatase, runt-related transcription factor, collagen I, and osteocalcin gene expressions. Cell-synthesized minerals increased with time (p < 0.05), with no significant difference among hDPSCs, BM-hiPSC-MSCs and hBMSCs (p > 0.1). Mineralization by hDPSCs, BM-hiPSC-MSCs, and hBMSCs inside CPC at 14 d was 14-fold that at 1 d. FS-hiPSC-MSCs were inferior in osteogenic differentiation compared to the other cells. In conclusion, hDPSCs, BM-hiPSC-MSCs and hBMSCs are similarly and highly promising for bone tissue engineering; however, FS-hiPSC-MSCs were relatively inferior in osteogenesis. The novel injectable CPC with cell-encapsulating hydrogel fibers may enhance bone regeneration in dental, craniofacial and orthopedic applications. PMID:27612810

  13. Generation of clinical grade human bone marrow stromal cells for use in bone regeneration

    PubMed Central

    Robey, Pamela G.; Kuznetsov, Sergei A.; Ren, Jiaqiang; Klein, Harvey G.; Sabatino, Marianna; Stroncek, David F.

    2014-01-01

    In current orthopaedic practice, there is a need to increase the ability to reconstruct large segments of bone lost due to trauma, resection of tumors and skeletal deformities, or when normal regenerative processes have failed such as in non-unions and avascular necrosis. Bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells), when used in conjunction with appropriate carriers, represent a means by which to achieve bone regeneration in such cases. While much has been done at the bench and in pre-clinical studies, moving towards clinical application requires the generation of clinical grade cells. What is described herein is an FDA-approved cell manufacturing procedure for the ex vivo expansion of high quality, biologically active human BMSCs. PMID:25064527

  14. Production and Functional Characterization of Murine Osteoclasts Differentiated from ER-Hoxb8-Immortalized Myeloid Progenitor Cells.

    PubMed

    Zach, Frank; Mueller, Alexandra; Gessner, André

    2015-01-01

    In vitro differentiation into functional osteoclasts is routinely achieved by incubation of embryonic stem cells, induced pluripotent stem cells, or primary as well as cryopreserved spleen and bone marrow-derived cells with soluble receptor activator of nuclear factor kappa-B ligand and macrophage colony-stimulating factor. Additionally, osteoclasts can be derived from co-cultures with osteoblasts or by direct administration of soluble receptor activator of nuclear factor kappa-B ligand to RAW 264.7 macrophage lineage cells. However, despite their benefits for osteoclast-associated research, these different methods have several drawbacks with respect to differentiation yields, time and animal consumption, storage life of progenitor cells or the limited potential for genetic manipulation of osteoclast precursors. In the present study, we therefore established a novel protocol for the differentiation of osteoclasts from murine ER-Hoxb8-immortalized myeloid stem cells. We isolated and immortalized bone marrow cells from wild type and genetically manipulated mouse lines, optimized protocols for osteoclast differentiation and compared these cells to osteoclasts derived from conventional sources. In vitro generated ER-Hoxb8 osteoclasts displayed typical osteoclast characteristics such as multi-nucleation, tartrate-resistant acid phosphatase staining of supernatants and cells, F-actin ring formation and bone resorption activity. Furthermore, the osteoclast differentiation time course was traced on a gene expression level. Increased expression of osteoclast-specific genes and decreased expression of stem cell marker genes during differentiation of osteoclasts from ER-Hoxb8-immortalized myeloid progenitor cells were detected by gene array and confirmed by semi-quantitative and quantitative RT-PCR approaches. In summary, we established a novel method for the quantitative production of murine bona fide osteoclasts from ER-Hoxb8 stem cells generated from wild type or genetically manipulated mouse lines. These cells represent a standardized and theoretically unlimited source for osteoclast-associated research projects.

  15. microRNA-150 Regulates Mobilization and Migration of Bone Marrow-Derived Mononuclear Cells by Targeting Cxcr4

    PubMed Central

    Tano, Nobuko; Kim, Ha Won; Ashraf, Muhammad

    2011-01-01

    The interaction between chemokine receptor type 4 (CXCR4) and its ligand, stromal cell-derived factor (SDF)-1, plays an important role in stem cell mobilization and migration in ischemic tissues. MicroRNAs (miRs) are key regulators of stem cell function and are involved in regulation of stem cell survival and differentiation to adopt different cell lineages. In this study, we show that ischemia inhibits the expression of miR-150 in BM-derived mononuclear cells (MNC) and activates its target Cxcr4 gene. Our results show that miR-150/CXCR4 cascade enhances MNC mobilization and migration. By using mouse acute myocardial infarction (MI) model, we found that MNCs in peripheral blood (PB) were increased significantly at day 5 after AMI as compared to control group and the number of CXCR4 positive MNCs both in bone marrow (BM) and PB was also markedly increased after MI. Analysis by microarray-based miRNA profiling and real-time PCR revealed that the expression of miR-150 which targets Cxcr4 gene as predicted was significantly downregulated in BM-MNCs after MI. Abrogation of miR-150 markedly increased CXCR4 protein expression suggesting its target gene. To show that miR-150 regulates MNC mobilization, knockdown of miR-150 in BM-MNCs by specific antisense inhibitor resulted in their higher migration ability in vitro as compared to scramble-transfected MNCs. Furthermore, in vivo BM transplantation of MNCs lacking miR-150 expression by lentiviral vector into the irradiated wild type mice resulted in the increased number of MNCs in PB after AMI as compared to control. In conclusion, this study demonstrates that ischemia mobilizes BM stem cells via miR-150/CXCR4 dependent mechanism and miR-150 may be a novel therapeutic target for stem cell migration to the ischemic tissue for neovascularization and repair. PMID:22039399

  16. Exosomes as potential alternatives to stem cell therapy for intervertebral disc degeneration: in-vitro study on exosomes in interaction of nucleus pulposus cells and bone marrow mesenchymal stem cells.

    PubMed

    Lu, Kang; Li, Hai-Yin; Yang, Kuang; Wu, Jun-Long; Cai, Xiao-Wei; Zhou, Yue; Li, Chang-Qing

    2017-05-10

    The stem cell-based therapies for intervertebral disc degeneration have been widely studied. However, the mechanisms of mesenchymal stem cells interacting with intervertebral disc cells, such as nucleus pulposus cells (NPCs), remain unknown. Exosomes as a vital paracrine mechanism in cell-cell communication have been highly focused on. The purpose of this study was to detect the role of exosomes derived from bone marrow mesenchymal stem cells (BM-MSCs) and NPCs in their interaction with corresponding cells. The exosomes secreted by BM-MSCs and NPCs were purified by differential centrifugation and identified by transmission electron microscope and immunoblot analysis of exosomal marker proteins. Fluorescence confocal microscopy was used to examine the uptake of exosomes by recipient cells. The effects of NPC exosomes on the migration and differentiation of BM-MSCs were determined by transwell migration assays and quantitative RT-PCR analysis of NPC phenotypic genes. Western blot analysis was performed to examine proteins such as aggrecan, sox-9, collagen II and hif-1α in the induced BM-MSCs. Proliferation and the gene expression profile of NPCs induced by BM-MSC exosomes were measured by Cell Counting Kit-8 and qRT-PCR analysis, respectively. Both the NPCs and BM-MSCs secreted exosomes, and these exosomes underwent uptake by the corresponding cells. NPC-derived exosomes promoted BM-MSC migration and induced BM-MSC differentiation to a nucleus pulposus-like phenotype. BM-MSC-derived exosomes promoted NPC proliferation and healthier extracellular matrix production in the degenerate NPCs. Our study indicates that the exosomes act as an important vehicle in information exchange between BM-MSCs and NPCs. Given a variety of functions and multiple advantages, exosomes alone or loaded with specific genes and drugs would be an appropriate option in a cell-free therapy strategy for intervertebral disc degeneration.

  17. Clinical Evaluation of Decellularized Nerve Allograft with Autologous Bone Marrow Stem Cells to Improve Peripheral Nerve Repair and Functional Outcomes

    DTIC Science & Technology

    2016-07-01

    AWARD NUMBER: W81XWH-15-2-0026 TITLE: Clinical Evaluation of Decellularized Nerve Allograft With Autologous Bone Marrow Stem Cells To Improve...5b. GRANT NUMBER W81XWH-15-2-0026 CClinical Evaluation of Decellularized Nerve Allograft With Autologous Bone Marrow Stem Cells To Improve...co- treatments of a commercially available decellularized processed peripheral nerve allograft scaffold (Avance® Nerve Graft, AxoGen, Alachua FL) with

  18. Bone marrow-derived human mesenchymal stem cells express cardiomyogenic proteins but do not exhibit functional cardiomyogenic differentiation potential.

    PubMed

    Siegel, Georg; Krause, Petra; Wöhrle, Stefanie; Nowak, Patrick; Ayturan, Miriam; Kluba, Torsten; Brehm, Bernhard R; Neumeister, Birgid; Köhler, David; Rosenberger, Peter; Just, Lothar; Northoff, Hinnak; Schäfer, Richard

    2012-09-01

    Despite their paracrine activites, cardiomyogenic differentiation of bone marrow (BM)-derived mesenchymal stem cells (MSCs) is thought to contribute to cardiac regeneration. To systematically evaluate the role of differentiation in MSC-mediated cardiac regeneration, the cardiomyogenic differentiation potential of human MSCs (hMSCs) and murine MSCs (mMSCs) was investigated in vitro and in vivo by inducing cardiomyogenic and noncardiomyogenic differentiation. Untreated hMSCs showed upregulation of cardiac tropopin I, cardiac actin, and myosin light chain mRNA and protein, and treatment of hMSCs with various cardiomyogenic differentiation media led to an enhanced expression of cardiomyogenic genes and proteins; however, no functional cardiomyogenic differentiation of hMSCs was observed. Moreover, co-culturing of hMSCs with cardiomyocytes derived from murine pluripotent cells (mcP19) or with murine fetal cardiomyocytes (mfCMCs) did not result in functional cardiomyogenic differentiation of hMSCs. Despite direct contact to beating mfCMCs, hMSCs could be effectively differentiated into cells of only the adipogenic and osteogenic lineage. After intramyocardial transplantation into a mouse model of myocardial infarction, Sca-1(+) mMSCs migrated to the infarcted area and survived at least 14 days but showed inconsistent evidence of functional cardiomyogenic differentiation. Neither in vitro treatment nor intramyocardial transplantation of MSCs reliably generated MSC-derived cardiomyocytes, indicating that functional cardiomyogenic differentiation of BM-derived MSCs is a rare event and, therefore, may not be the main contributor to cardiac regeneration.

  19. Modelling Fanconi anemia pathogenesis and therapeutics using integration-free patient-derived iPSCs.

    PubMed

    Liu, Guang-Hui; Suzuki, Keiichiro; Li, Mo; Qu, Jing; Montserrat, Nuria; Tarantino, Carolina; Gu, Ying; Yi, Fei; Xu, Xiuling; Zhang, Weiqi; Ruiz, Sergio; Plongthongkum, Nongluk; Zhang, Kun; Masuda, Shigeo; Nivet, Emmanuel; Tsunekawa, Yuji; Soligalla, Rupa Devi; Goebl, April; Aizawa, Emi; Kim, Na Young; Kim, Jessica; Dubova, Ilir; Li, Ying; Ren, Ruotong; Benner, Chris; Del Sol, Antonio; Bueren, Juan; Trujillo, Juan Pablo; Surralles, Jordi; Cappelli, Enrico; Dufour, Carlo; Esteban, Concepcion Rodriguez; Belmonte, Juan Carlos Izpisua

    2014-07-07

    Fanconi anaemia (FA) is a recessive disorder characterized by genomic instability, congenital abnormalities, cancer predisposition and bone marrow (BM) failure. However, the pathogenesis of FA is not fully understood partly due to the limitations of current disease models. Here, we derive integration free-induced pluripotent stem cells (iPSCs) from an FA patient without genetic complementation and report in situ gene correction in FA-iPSCs as well as the generation of isogenic FANCA-deficient human embryonic stem cell (ESC) lines. FA cellular phenotypes are recapitulated in iPSCs/ESCs and their adult stem/progenitor cell derivatives. By using isogenic pathogenic mutation-free controls as well as cellular and genomic tools, our model serves to facilitate the discovery of novel disease features. We validate our model as a drug-screening platform by identifying several compounds that improve hematopoietic differentiation of FA-iPSCs. These compounds are also able to rescue the hematopoietic phenotype of FA patient BM cells.

  20. Peripheral-blood stem cells versus bone marrow from unrelated donors.

    PubMed

    Anasetti, Claudio; Logan, Brent R; Lee, Stephanie J; Waller, Edmund K; Weisdorf, Daniel J; Wingard, John R; Cutler, Corey S; Westervelt, Peter; Woolfrey, Ann; Couban, Stephen; Ehninger, Gerhard; Johnston, Laura; Maziarz, Richard T; Pulsipher, Michael A; Porter, David L; Mineishi, Shin; McCarty, John M; Khan, Shakila P; Anderlini, Paolo; Bensinger, William I; Leitman, Susan F; Rowley, Scott D; Bredeson, Christopher; Carter, Shelly L; Horowitz, Mary M; Confer, Dennis L

    2012-10-18

    Randomized trials have shown that the transplantation of filgrastim-mobilized peripheral-blood stem cells from HLA-identical siblings accelerates engraftment but increases the risks of acute and chronic graft-versus-host disease (GVHD), as compared with the transplantation of bone marrow. Some studies have also shown that peripheral-blood stem cells are associated with a decreased rate of relapse and improved survival among recipients with high-risk leukemia. We conducted a phase 3, multicenter, randomized trial of transplantation of peripheral-blood stem cells versus bone marrow from unrelated donors to compare 2-year survival probabilities with the use of an intention-to-treat analysis. Between March 2004 and September 2009, we enrolled 551 patients at 48 centers. Patients were randomly assigned in a 1:1 ratio to peripheral-blood stem-cell or bone marrow transplantation, stratified according to transplantation center and disease risk. The median follow-up of surviving patients was 36 months (interquartile range, 30 to 37). The overall survival rate at 2 years in the peripheral-blood group was 51% (95% confidence interval [CI], 45 to 57), as compared with 46% (95% CI, 40 to 52) in the bone marrow group (P=0.29), with an absolute difference of 5 percentage points (95% CI, -3 to 14). The overall incidence of graft failure in the peripheral-blood group was 3% (95% CI, 1 to 5), versus 9% (95% CI, 6 to 13) in the bone marrow group (P=0.002). The incidence of chronic GVHD at 2 years in the peripheral-blood group was 53% (95% CI, 45 to 61), as compared with 41% (95% CI, 34 to 48) in the bone marrow group (P=0.01). There were no significant between-group differences in the incidence of acute GVHD or relapse. We did not detect significant survival differences between peripheral-blood stem-cell and bone marrow transplantation from unrelated donors. Exploratory analyses of secondary end points indicated that peripheral-blood stem cells may reduce the risk of graft failure, whereas bone marrow may reduce the risk of chronic GVHD. (Funded by the National Heart, Lung, and Blood Institute-National Cancer Institute and others; ClinicalTrials.gov number, NCT00075816.).

  1. Differentiation of mesenchymal stem cells into neuronal cells on fetal bovine acellular dermal matrix as a tissue engineered nerve scaffold

    PubMed Central

    Feng, Yuping; Wang, Jiao; Ling, Shixin; Li, Zhuo; Li, Mingsheng; Li, Qiongyi; Ma, Zongren; Yu, Sijiu

    2014-01-01

    The purpose of this study was to assess fetal bovine acellular dermal matrix as a scaffold for supporting the differentiation of bone marrow mesenchymal stem cells into neural cells following induction with neural differentiation medium. We performed long-term, continuous observation of cell morphology, growth, differentiation, and neuronal development using several microscopy techniques in conjunction with immunohistochemistry. We examined specific neuronal proteins and Nissl bodies involved in the differentiation process in order to determine the neuronal differentiation of bone marrow mesenchymal stem cells. The results show that bone marrow mesenchymal stem cells that differentiate on fetal bovine acellular dermal matrix display neuronal morphology with unipolar and bi/multipolar neurite elongations that express neuronal-specific proteins, including βIII tubulin. The bone marrow mesenchymal stem cells grown on fetal bovine acellular dermal matrix and induced for long periods of time with neural differentiation medium differentiated into a multilayered neural network-like structure with long nerve fibers that was composed of several parallel microfibers and neuronal cells, forming a complete neural circuit with dendrite-dendrite to axon-dendrite to dendrite-axon synapses. In addition, growth cones with filopodia were observed using scanning electron microscopy. Paraffin sectioning showed differentiated bone marrow mesenchymal stem cells with the typical features of neuronal phenotype, such as a large, round nucleus and a cytoplasm full of Nissl bodies. The data suggest that the biological scaffold fetal bovine acellular dermal matrix is capable of supporting human bone marrow mesenchymal stem cell differentiation into functional neurons and the subsequent formation of tissue engineered nerve. PMID:25598779

  2. A modified method of insulin producing cells' generation from bone marrow-derived mesenchymal stem cells.

    PubMed

    Czubak, Paweł; Bojarska-Junak, Agnieszka; Tabarkiewicz, Jacek; Putowski, Lechosław

    2014-01-01

    Type 1 diabetes mellitus is a result of autoimmune destruction of pancreatic insulin producing β-cells and so far it can be cured only by insulin injection, by pancreas transplantation, or by pancreatic islet cells' transplantation. The methods are, however, imperfect and have a lot of disadvantages. Therefore new solutions are needed. The best one would be the use of differentiated mesenchymal stem cells (MSCs). In the present study, we investigated the potential of the bone marrow-derived MSCs line for in vitro differentiation into insulin producing cells (IPSs). We applied an 18-day protocol to differentiate MSCs. Differentiating cells formed cell clusters some of which resembled pancreatic islet-like cells. Using dithizone we confirmed the presence of insulin in the cells. What is more, the expression of proinsulin C-peptide in differentiated IPCs was analyzed by flow cytometry. For the first time, we investigated the influence of growth factors' concentration on IPCs differentiation efficiency. We have found that an increase in the concentration of growth factors up to 60 ng/mL of β-FGF/EGF and 30 ng/mL of activin A/β-cellulin increases the percentage of IPCs. Further increase of growth factors does not show any increase of the percentage of differentiated cells. Our findings suggest that the presented protocol can be adapted for differentiation of insulin producing cells from stem cells.

  3. Polyglycolic acid-hyaluronan scaffolds loaded with bone marrow-derived mesenchymal stem cells show chondrogenic differentiation in vitro and cartilage repair in the rabbit model.

    PubMed

    Patrascu, Jenel M; Krüger, Jan Philipp; Böss, Hademar G; Ketzmar, Anna-Katharina; Freymann, Undine; Sittinger, Michael; Notter, Michael; Endres, Michaela; Kaps, Christian

    2013-10-01

    In cartilage repair, scaffold-assisted one-step approaches are used to improve the microfracture (Mfx) technique. Since the number of progenitors in Mfx is low and may further decrease with age, aim of our study was to analyze the chondrogenic potential of freeze-dried polyglycolic acid-hyaluronan (PGA-HA) implants preloaded with mesenchymal stem cells (MSCs) in vitro and in a rabbit articular cartilage defect model. Human bone marrow-derived MSC from iliac crest were cultured in freeze-dried PGA-HA implants for chondrogenic differentiation. In a pilot study, implants were loaded with autologous rabbit MSC and used to cover 5 mm × 6 mm full-thickness femoral articular cartilage defects (n = 4). Untreated defects (n = 3) served as controls. Gene expression analysis and histology showed induction of typical chondrogenic marker genes like type II collagen and formation of hyaline-like cartilaginous tissue in MSC-laden PGA-HA implants. Histological evaluation of rabbit repair tissue formation after 30 and 45 days showed formation of repair tissue, rich in chondrocytic cells and of a hyaline-like appearance. Controls showed no articular resurfacing, tissue repair in the subchondral zone and fibrin formation. These results suggest that MSC-laden PGA-HA scaffolds have chondrogenic potential and are a promising option for stem cell-mediated cartilage regeneration. Copyright © 2013 Wiley Periodicals, Inc.

  4. 3D Bioprinted Artificial Trachea with Epithelial Cells and Chondrogenic-Differentiated Bone Marrow-Derived Mesenchymal Stem Cells.

    PubMed

    Bae, Sang-Woo; Lee, Kang-Woog; Park, Jae-Hyun; Lee, JunHee; Jung, Cho-Rok; Yu, JunJie; Kim, Hwi-Yool; Kim, Dae-Hyun

    2018-05-31

    Tracheal resection has limited applicability. Although various tracheal replacement strategies were performed using artificial prosthesis, synthetic stents and tissue transplantation, the best method in tracheal reconstruction remains to be identified. Recent advances in tissue engineering enabled 3D bioprinting using various biocompatible materials including living cells, thereby making the product clinically applicable. Moreover, clinical interest in mesenchymal stem cell has dramatically increased. Here, rabbit bone marrow-derived mesenchymal stem cells (bMSC) and rabbit respiratory epithelial cells were cultured. The chondrogenic differentiation level of bMSC cultured in regular media (MSC) and that in chondrogenic media (d-MSC) were compared. Dual cell-containing artificial trachea were manufactured using a 3D bioprinting method with epithelial cells and undifferentiated bMSC (MSC group, n = 6) or with epithelial cells and chondrogenic-differentiated bMSC (d-MSC group, n = 6). d-MSC showed a relatively higher level of glycosaminoglycan (GAG) accumulation and chondrogenic marker gene expression than MSC in vitro. Neo-epithelialization and neo-vascularization were observed in all groups in vivo but neo-cartilage formation was only noted in d-MSC. The epithelial cells in the 3D bioprinted artificial trachea were effective in respiratory epithelium regeneration. Chondrogenic-differentiated bMSC had more neo-cartilage formation potential in a short period. Nevertheless, the cartilage formation was observed only in a localized area.

  5. Infusion of freshly isolated autologous bone marrow derived mononuclear cells prevents endotoxin-induced lung injury in an ex-vivo perfused swine model

    PubMed Central

    2013-01-01

    Introduction The acute respiratory distress syndrome (ARDS), affects up to 150,000 patients per year in the United States. We and other groups have demonstrated that bone marrow derived mesenchymal stromal stem cells prevent ARDS induced by systemic and local administration of endotoxin (lipopolysaccharide (LPS)) in mice. Methods A study was undertaken to determine the effects of the diverse populations of bone marrow derived cells on the pathophysiology of ARDS, using a unique ex-vivo swine preparation, in which only the ventilated lung and the liver are perfused with autologous blood. Six experimental groups were designated as: 1) endotoxin alone, 2) endotoxin + total fresh whole bone marrow nuclear cells (BMC), 3) endotoxin + non-hematopoietic bone marrow cells (CD45 neg), 4) endotoxin + hematopoietic bone marrow cells (CD45 positive), 5) endotoxin + buffy coat and 6) endotoxin + in vitro expanded swine CD45 negative adherent allogeneic bone marrow cells (cultured CD45neg). We measured at different levels the biological consequences of the infusion of the different subsets of cells. The measured parameters were: pulmonary vascular resistance (PVR), gas exchange (PO2), lung edema (lung wet/dry weight), gene expression and serum concentrations of the pro-inflammatory cytokines IL-1β, TNF-α and IL-6. Results Infusion of freshly purified autologous total BMCs, as well as non-hematopoietic CD45(-) bone marrow cells significantly reduced endotoxin-induced pulmonary hypertension and hypoxemia and reduced the lung edema. Also, in the groups that received BMCs and cultured CD45neg we observed a decrease in the levels of IL-1β and TNF-α in plasma. Infusion of hematopoietic CD45(+) bone marrow cells or peripheral blood buffy coat cells did not protect against LPS-induced lung injury. Conclusions We conclude that infusion of freshly isolated autologous whole bone marrow cells and the subset of non-hematopoietic cells can suppress the acute humoral and physiologic responses induced by endotoxemia by modulating the inflammatory response, mechanisms that do not involve engraftment or trans-differentiation of the cells. These observations may have important implications for the design of future cell therapies for ARDS. PMID:23497755

  6. Low Molecular Weight Fraction of Commercial Human Serum Albumin Induces Morphologic and Transcriptional Changes of Bone Marrow-Derived Mesenchymal Stem Cells.

    PubMed

    Bar-Or, David; Thomas, Gregory W; Rael, Leonard T; Gersch, Elizabeth D; Rubinstein, Pablo; Brody, Edward

    2015-08-01

    Osteoarthritis (OA) is the most common chronic disease of the joint; however, the therapeutic options for severe OA are limited. The low molecular weight fraction of commercial 5% human serum albumin (LMWF5A) has been shown to have anti-inflammatory properties that are mediated, in part, by a diketopiperazine that is present in the albumin preparation and that was demonstrated to be safe and effective in reducing pain and improving function when administered intra-articularly in a phase III clinical trial. In the present study, bone marrow-derived mesenchymal stem cells (BMMSCs) exposed to LMWF5A exhibited an elongated phenotype with diffuse intracellular F-actin, pronounced migratory leading edges, and filopodia-like projections. In addition, LMWF5A promoted chondrogenic condensation in "micromass" culture, concurrent with the upregulation of collagen 2α1 mRNA. Furthermore, the transcription of the CXCR4-CXCL12 axis was significantly regulated in a manner conducive to migration and homing. Several transcription factors involved in stem cell differentiation were also found to bind oligonucleotide response element probes following exposure to LMWF5A. Finally, a rapid increase in PRAS40 phosphorylation was observed following treatment, potentially resulting in the activation mTORC1. Proteomic analysis of synovial fluid taken from a preliminary set of patients indicated that at 12 weeks following administration of LMWF5A, a microenvironment exists in the knee conducive to stem cell infiltration, self-renewal, and differentiation, in addition to indications of remodeling with a reduction in inflammation. Taken together, these findings imply that LMWF5A treatment may prime stem cells for both mobilization and chondrogenic differentiation, potentially explaining some of the beneficial effects achieved in clinical trials. ©AlphaMed Press.

  7. The transplantation of neural stem cells and predictive factors in hematopoietic recovery in irradiated mice.

    PubMed

    Filip, S; Mokrý, J; Karbanová, J; Vávrová, J; Vokurková, J; Bláha, M; English, D

    2005-04-01

    A number of surprising observations have shown that stem cells, in suitable conditions, have the ability to produce a whole spectrum of cell types, regardless, whether these tissues are derived from the same germ layer or not. This phenomenon is called stem cell plasticity, which means that tissue-specific stem cells are mutually interchangeable. In our experiments, as a model, we used neural stem cells (NSCs) harvested from fetal (E14-15) neocortex and beta-galactosidase positive. In the first experiment we found that on days 12 and 30 after sub-lethal irradiation (LD 8.5 Gy) and (beta-galactosidase(+)) NSCs transplantation all mice survived, just as the group with bone marrow transplantation. Moreover, the bone marrow of mice transplanted NSCs contained the number of CFU-GM colonies with beta-galactosidase(+) cells which was as much as 50% higher. These differences were statistically significant, p<0.001. In the second experiment, we studied kinetics of (beta-galactosidase(+)) NSCs after their transplantation to sub-lethally irradiated mice. Histochemistry of tissues was performed on days 12 and 30 post-transplantation, and beta-galactosidase(+) cells were detected with the help of histochemical examination of removed tissues (lung, liver, spleen, thymus, and skeletal muscle). In tissues removed on day 12 post-transplantation, we found a significantly higher number of beta-galactosidase(+) cells in the spleen and thymus on day 30. While we presumed the presence beta-galactosidase(+) cells in the spleen, as spleen and reticuloendothelial system represent an important retaining system for different cell types, the presence of beta-galactosidase(+) cells in the thymus was rather surprising but very interesting. This indicates a certain mutual and close interconnection of transplanted stem cells and immune system in an adult organism. In the third experiment, we verified the mutual interchange of Sca-1 surface antigen in the bone marrow cells and NSCs before transplantation. Analysis of this antigen showed 24.8% Sca-1 positive cells among the bone marrow cells, while NSCs were Sca-1 negative. Our experiments show that NSCs share hemopoietic identity and may significantly influence the recovery of damaged hematopoiesis but do not have typical superficial markers as HSCs. This result is important for the determination of predictive factors for hemopoiesis recovery, for stem cell plasticity and for their use in the cell therapy.

  8. Niche matters: The comparison between bone marrow stem cells and endometrial stem cells and stromal fibroblasts reveal distinct migration and cytokine profiles in response to inflammatory stimulus

    PubMed Central

    Sorjamaa, Anna; Kangasniemi, Marika; Sutinen, Meeri; Salo, Tuula; Liakka, Annikki; Lehenkari, Petri; Tapanainen, Juha S.; Vuolteenaho, Olli; Chen, Joseph C.; Lehtonen, Siri; Piltonen, Terhi T.

    2017-01-01

    Objective Intrinsic inflammatory characteristics play a pivotal role in stem cell recruitment and homing through migration where the subsequent change in niche has been shown to alter these characteristics. The bone marrow mesenchymal stem cells (bmMSCs) have been demonstrated to migrate to the endometrium contributing to the stem cell reservoir and regeneration of endometrial tissue. Thus, the aim of the present study was to compare the inflammation-driven migration and cytokine secretion profile of human bmMSCs to endometrial mesenchymal stem cells (eMSCs) and endometrial fibroblasts (eSFs). Materials and methods The bmMSCs were isolated from bone marrow aspirates through culturing, whereas eMSCs and eSFs were FACS-isolated. All cell types were tested for their surface marker, proliferation profiles and migration properties towards serum and inflammatory attractants. The cytokine/chemokine secretion profile of 35 targets was analysed in each cell type at basal level along with lipopolysaccharide (LPS)-induced state. Results Both stem cell types, bmMSCs and eMSCs, presented with similar stem cell surface marker profiles as well as possessed high proliferation and migration potential compared to eSFs. In multiplex assays, the secretion of 16 cytokine targets was detected and LPS stimulation expanded the cytokine secretion pattern by triggering the secretion of several targets. The bmMSCs exhibited higher cytokine secretion of vascular endothelial growth factor (VEGF)-A, stromal cell-derived factor-1 alpha (SDF)-1α, interleukin-1 receptor antagonist (IL-1RA), IL-6, interferon-gamma inducible protein (IP)-10, monocyte chemoattractant protein (MCP)-1, macrophage inflammatory protein (MIP)1α and RANTES compared to eMSCs and/or eSFs after stimulation with LPS. The basal IL-8 secretion was higher in both endometrial cell types compared to bmMSCs. Conclusion Our results highlight that similar to bmMSCs, the eMSCs possess high migration activity while the differentiation process towards stromal fibroblasts seemed to result in loss of stem cell surface markers, minimal migration activity and a subtler cytokine profile likely contributing to normal endometrial function. PMID:28419140

  9. Identification and isolation from either adult human bone marrow or G-CSF-mobilized peripheral blood of CD34(+)/CD133(+)/CXCR4(+)/ Lin(-)CD45(-) cells, featuring morphological, molecular, and phenotypic characteristics of very small embryonic-like (VSEL) stem cells.

    PubMed

    Sovalat, Hanna; Scrofani, Maurice; Eidenschenk, Antoinette; Pasquet, Stéphanie; Rimelen, Valérie; Hénon, Philippe

    2011-04-01

    Recently, we demonstrated that normal human bone marrow (hBM)-derived CD34(+) cells, released into the peripheral blood after granulocyte colony-stimulating factor mobilization, contain cell subpopulations committed along endothelial and cardiac differentiation pathways. These subpopulations could play a key role in the regeneration of post-ischemic myocardial lesion after their direct intracardiac delivery. We hypothesized that these relevant cells might be issued from very small embryonic-like stem cells deposited in the BM during ontogenesis and reside lifelong in the adult BM, and that they could be mobilized into peripheral blood by granulocyte colony-stimulating factor. Samples of normal hBM and leukapheresis products harvested from cancer patients after granulocyte colony-stimulating factor mobilization were analyzed and sorted by multiparameter flow cytometry strategy. Immunofluorescence and reverse transcription quantitative polymerase chain reaction assays were performed to analyze the expression of typical pluripotent stem cells markers. A population of CD34(+)/CD133(+)/CXCR4(+)/Lin(-) CD45(-) immature cells was first isolated from the hBM or from leukapheresis products. Among this population, very small (2-5 μm) cells expressing Oct-4, Nanog, and stage-specific embryonic antigen-4 at protein and messenger RNA levels were identified. Our study supports the hypothesis that very small embryonic-like stem cells constitute a "mobile" pool of primitive/pluripotent stem cells that could be released from the BM into the peripheral blood under the influence of various physiological or pathological stimuli. In order to fully support that hBM- and leukapheresis product-derived very small embryonic-like stem cells are actually pluripotent, we are currently testing their ability to differentiate in vitro into cells from all three germ layers. Copyright © 2011 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  10. Primitive Sca-1 Positive Bone Marrow HSC in Mouse Model of Aplastic Anemia: A Comparative Study through Flowcytometric Analysis and Scanning Electron Microscopy

    PubMed Central

    Chatterjee, Sumanta; Basak, Pratima; Das, Prosun; Das, Madhurima; Pereira, Jacintha Archana; Dutta, Ranjan Kumar; Chaklader, Malay; Chaudhuri, Samaresh; Law, Sujata

    2010-01-01

    Self-renewing Hematopoietic Stem Cells (HSCs) are responsible for reconstitution of all blood cell lineages. Sca-1 is the “stem cell antigen” marker used to identify the primitive murine HSC population, the expression of which decreases upon differentiation to other mature cell types. Sca-1+ HSCs maintain the bone marrow stem cell pool throughout the life. Aplastic anemia is a disease considered to involve primary stem cell deficiency and is characterized by severe pancytopenia and a decline in healthy blood cell generation system. Studies conducted in our laboratory revealed that the primitive Sca-1+ BM-HSCs (bone marrow hematopoietic stem cell) are significantly affected in experimental Aplastic animals pretreated with chemotherapeutic drugs (Busulfan and Cyclophosphamide) and there is increased Caspase-3 activity with consecutive high Annexin-V positivity leading to premature apoptosis in the bone marrow hematopoietic stem cell population in Aplastic condition. The Sca-1bright, that is, “more primitive” BM-HSC population was more affected than the “less primitive” BM-HSC Sca-1dim  population. The decreased cell population and the receptor expression were directly associated with an empty and deranged marrow microenvironment, which is evident from scanning electron microscopy (SEM). The above experimental evidences hint toward the manipulation of receptor expression for the benefit of cytotherapy by primitive stem cell population in Aplastic anemia cases. PMID:21048851

  11. The efficacy of polycaprolactone/hydroxyapatite scaffold in combination with mesenchymal stem cells for bone tissue engineering.

    PubMed

    Chuenjitkuntaworn, Boontharika; Osathanon, Thanaphum; Nowwarote, Nunthawan; Supaphol, Pitt; Pavasant, Prasit

    2016-01-01

    Major drawbacks of using an autograft are the possibilities of insufficient bony source and patient's morbidity after operation. Bone tissue engineering technology, therefore, has been applied for repairing bony defects. Previous study showed that a novel fabricated 3D-Polycaprolactone/Hydroxyapatite (PCL/HAp) scaffold possessed a good biocompatibility for bone cells. This study aimed to determine the ability of PCL/HAp for supporting cell growth, gene expression, and osteogenic differentiation in three types of mesenchymal stem cells, including bone marrow-derived mesenchymal stem cells (BMSCs), dental pulp stem cells (DPSCs), and adiposed-derived mesenchymal stem cells (ADSCs). These were assessed by cell viability assay (MTT), reverse-transcription polymerase chain reaction (RT-PCR) analysis, alkaline phosphatase activity, and osteogenic differentiation by alizarin red-S staining. The results showed that PCL/HAp scaffold could support growth of all three types of mesenchymal stem cells. In addition, DPSCs with PCL/HAp showed the highest level of calcium deposition compared to other groups. In conclusion, DPSCs exhibited a better compatibility with these scaffolds compared to BMSCs and ADSCs. However, the PCL/HAp could be a good candidate scaffold for all tested mesenchymal stem cells in bone tissue engineering. © 2015 Wiley Periodicals, Inc.

  12. Use of RUNX2 Expression to Identify Osteogenic Progenitor Cells Derived from Human Embryonic Stem Cells

    PubMed Central

    Zou, Li; Kidwai, Fahad K.; Kopher, Ross A.; Motl, Jason; Kellum, Cory A.; Westendorf, Jennifer J.; Kaufman, Dan S.

    2015-01-01

    Summary We generated a RUNX2-yellow fluorescent protein (YFP) reporter system to study osteogenic development from human embryonic stem cells (hESCs). Our studies demonstrate the fidelity of YFP expression with expression of RUNX2 and other osteogenic genes in hESC-derived osteoprogenitor cells, as well as the osteogenic specificity of YFP signal. In vitro studies confirm that the hESC-derived YFP+ cells have similar osteogenic phenotypes to osteoprogenitor cells generated from bone-marrow mesenchymal stem cells. In vivo studies demonstrate the hESC-derived YFP+ cells can repair a calvarial defect in immunodeficient mice. Using the engineered hESCs, we monitored the osteogenic development and explored the roles of osteogenic supplements BMP2 and FGF9 in osteogenic differentiation of these hESCs in vitro. Taken together, this reporter system provides a novel system to monitor the osteogenic differentiation of hESCs and becomes useful to identify soluble agents and cell signaling pathways that mediate early stages of human bone development. PMID:25680477

  13. Mycobacterium tuberculosis-Infected Hematopoietic Stem and Progenitor Cells Unable to Express Inducible Nitric Oxide Synthase Propagate Tuberculosis in Mice.

    PubMed

    Reece, Stephen T; Vogelzang, Alexis; Tornack, Julia; Bauer, Wolfgang; Zedler, Ulrike; Schommer-Leitner, Sandra; Stingl, Georg; Melchers, Fritz; Kaufmann, Stefan H E

    2018-04-23

    Persistence of Mycobacterium tuberculosis within human bone marrow stem cells has been identified as a potential bacterial niche during latent tuberculosis. Using a murine model of tuberculosis, we show here that bone marrow stem and progenitor cells containing M. tuberculosis propagated tuberculosis when transferred to naive mice, given that both transferred cells and recipient mice were unable to express inducible nitric oxide synthase, which mediates killing of intracellular bacteria via nitric oxide. Our findings suggest that bone marrow stem and progenitor cells containing M. tuberculosis propagate hallmarks of disease if nitric oxide-mediated killing of bacteria is defective.

  14. A Comparison of Bone Marrow and Cord Blood Mesenchymal Stem Cells for Cartilage Self-Assembly.

    PubMed

    White, Jamie L; Walker, Naomi J; Hu, Jerry C; Borjesson, Dori L; Athanasiou, Kyriacos A

    2018-04-02

    Joint injury is a common cause of premature retirement for the human and equine athlete alike. Implantation of engineered cartilage offers the potential to increase the success rate of surgical intervention and hasten recovery times. Mesenchymal stem cells (MSCs) are a particularly attractive cell source for cartilage engineering. While bone marrow-derived MSCs (BM-MSCs) have been most extensively characterized for musculoskeletal tissue engineering, studies suggest that cord blood MSCs (CB-MSCs) may elicit a more robust chondrogenic phenotype. The objective of this study was to determine a superior equine MSC source for cartilage engineering. MSCs derived from bone marrow or cord blood were stimulated to undergo chondrogenesis through aggregate redifferentiation and used to generate cartilage through the self-assembling process. The resulting neocartilage produced from either BM-MSCs or CB-MSCs was compared by measuring mechanical, biochemical, and histological properties. We found that while BM constructs possessed higher tensile properties and collagen content, CB constructs had superior compressive properties comparable to that of native tissue and higher GAG content. Moreover, CB constructs had alkaline phosphatase activity, collagen type X, and collagen type II on par with native tissue suggesting a more hyaline cartilage-like phenotype. In conclusion, while both BM-MSCs and CB-MSCs were able to form neocartilage, CB-MSCs resulted in tissue more closely resembling native equine articular cartilage as determined by a quantitative functionality index. Therefore, CB-MSCs are deemed a superior source for the purpose of articular cartilage self-assembly.

  15. Lithium stimulates the recovery of granulopoiesis following acute radiation injury.

    PubMed

    Gallicchio, V S; Chen, M G; Watts, T D; Gamba-Vitalo, C

    1983-07-01

    Lithium (Li) is a known stimulator of steady-state granulopoiesis, influencing both pluripotential (CFUS) and granulocyte-macrophage committed stem cell (CFUGM) populations. Li has therefore been suggested to be an effective agent to reduce the neutropenia that often is seen after either cytotoxic chemotherapy or radiotherapy protocols. In this report, we have examined bone marrow and spleen cells for their recovery patterns of CFUS, CFUGM, CFUE, BFUE and 59Fe-incorporation, along with the usual peripheral blood indices (packed red cell volume, WBC and differential) from mice administered Li after receiving 200 rad whole body irradiation. Li increased granulopoietic recovery as measured by significant elevations in both marrow and spleen derived CFUGM compared to those values obtained from radiation controls. Significant elevation in the WBC, consisting mainly of neutrophils, was also observed. Bone marrow and splenic derived erythroid stem cells (CFUE, BFUE) and % 59Fe-incorporation measured from peripheral blood, femur and spleen were all slightly reduced, but not to a significant degree to alter the packed red cell volume. The CFUS populations from both irradiated groups (control and Li-treated) were depressed when compared to normal non-irr controls and this degree of suppression was greater in the Li-treated group. These results document the ability of Li to stimulate the recovery of granulopoiesis after radiation-induced hematopoietic injury and suggest Li may be useful in ameliorating the neutropenia that can often develop after routine radiotherapy protocols.

  16. Gremlin 1 Identifies a Skeletal Stem Cell with Bone, Cartilage, and Reticular Stromal Potential

    PubMed Central

    Worthley, Daniel L.; Churchill, Michael; Compton, Jocelyn T.; Tailor, Yagnesh; Rao, Meenakshi; Si, Yiling; Levin, Daniel; Schwartz, Matthew G.; Uygur, Aysu; Hayakawa, Yoku; Gross, Stefanie; Renz, Bernhard W.; Setlik, Wanda; Martinez, Ashley N.; Chen, Xiaowei; Nizami, Saqib; Lee, Heon Goo; Kang, H. Paco; Caldwell, Jon-Michael; Asfaha, Samuel; Westphalen, C. Benedikt; Graham, Trevor; Jin, Guangchun; Nagar, Karan; Wang, Hongshan; Kheirbek, Mazen A.; Kolhe, Alka; Carpenter, Jared; Glaire, Mark; Nair, Abhinav; Renders, Simon; Manieri, Nicholas; Muthupalani, Sureshkumar; Fox, James G.; Reichert, Maximilian; Giraud, Andrew S.; Schwabe, Robert F.; Pradere, Jean-Phillipe; Walton, Katherine; Prakash, Ajay; Gumucio, Deborah; Rustgi, Anil K.; Stappenbeck, Thaddeus S.; Friedman, Richard A.; Gershon, Michael D.; Sims, Peter; Grikscheit, Tracy; Lee, Francis Y.; Karsenty, Gerard; Mukherjee, Siddhartha; Wang, Timothy C.

    2014-01-01

    The stem cells that maintain and repair the postnatal skeleton remain undefined. One model suggests that perisinusoidal mesenchymal stem cells (MSCs) give rise to osteoblasts, chondrocytes, marrow stromal cells, and adipocytes, although the existence of these cells has not been proven through fate-mapping experiments. We demonstrate here that expression of the bone morphogenetic protein (BMP) antagonist gremlin 1 defines a population of osteochondroreticular (OCR) stem cells in the bone marrow. OCR stem cells self-renew and generate osteoblasts, chondrocytes, and reticular marrow stromal cells, but not adipocytes. OCR stem cells are concentrated within the metaphysis of long bones not in the perisinusoidal space and are needed for bone development, bone remodeling, and fracture repair. Grem1 expression also identifies intestinal reticular stem cells (iRSCs) that are cells of origin for the periepithelial intestinal mesenchymal sheath. Grem1 expression identifies distinct connective tissue stem cells in both the bone (OCR stem cells) and the intestine (iRSCs). PMID:25594183

  17. A comparative study of the effect of Bio-Oss® in combination with concentrated growth factors or bone marrow-derived mesenchymal stem cells in canine sinus grafting.

    PubMed

    Wang, Fang; Li, Qiong; Wang, Zuolin

    2017-08-01

    To compare the effects of Bio-Oss ® in combination with concentrated growth factors (CGFs) and bone marrow-derived mesenchymal stem cells (BMSCs) on bone regeneration for maxillary sinus floor augmentation in beagle dogs. Six beagle dogs received bilateral maxillary sinus floor augmentation. Venous blood drawn from dogs was collected and centrifuged to obtain CGFs. BMSCs derived from canine bone marrow were cultured using density gradient centrifugation. The suspension of BMSCs was added onto Bio-Oss ® granules at a density of 2 × 10 6 cells/ml, and the BMSCs/Bio-Oss ® constructs were incubated for an additional 4 h before use. Twelve sinuses were grafted with a mixture of CGFs/Bio-Oss ® , BMSCs/Bio-Oss ® construct, or Bio-Oss ® alone. Six months later, the bone formation of bilateral sinuses was evaluated by Micro-CT, microhardness test, histological examination, and histomorphometry. No adverse effect was found in these dogs. The dome-shaped augmentation protruded into the sinus cavity. Micro-CT revealed that there was significant difference in BV/TV but not in Tb. N, between groups A, B, and C. The extent of microhardness in groups A and B was significantly higher than in group C. The proportion of newly formed bone in groups A and B showed significant difference when compared to group C (P ≤ 0.01). The amount of residual grafts in groups A and B was significantly lower than in group C. Grafting with Bio-Oss ® in combination with CGFs can increase new bone formation more efficiently than using Bio-Oss ® alone in a canine model. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. G-CSF treatment after myocardial infarction: impact on bone marrow-derived vs cardiac progenitor cells.

    PubMed

    Brunner, Stefan; Huber, Bruno C; Fischer, Rebekka; Groebner, Michael; Hacker, Marcus; David, Robert; Zaruba, Marc-Michael; Vallaster, Marcus; Rischpler, Christoph; Wilke, Andrea; Gerbitz, Armin; Franz, Wolfgang-Michael

    2008-06-01

    Besides its classical function in the field of autologous and allogenic stem cell transplantation, granulocyte colony-stimulating factor (G-CSF) was shown to have protective effects after myocardial infarction (MI) by mobilization of bone marrow-derived progenitor cells (BMCs) and in addition by activation of multiple signaling pathways. In the present study, we focused on the impact of G-CSF on migration of BMCs and the impact on resident cardiac cells after MI. Mice (C57BL/6J) were sublethally irradiated, and BM from green fluorescent protein (GFP)-transgenic mice was transplanted. Coronary artery ligation was performed 10 weeks later. G-CSF (100 microg/kg) was daily injected for 6 days. Subpopulations of enhanced GFP(+) cells in peripheral blood, bone marrow, and heart were characterized by flow cytometry. Growth factor expression in the heart was analyzed by quantitative real-time polymerase chain reaction. Perfusion was investigated in vivo by gated single photon emission computed tomography (SPECT). G-CSF-treated animals revealed a reduced migration of c-kit(+) and CXCR-4(+) BMCs associated with decreased expression levels of the corresponding growth factors, namely stem cell factor and stromal-derived factor-1 alpha in ischemic myocardium. In contrast, the number of resident cardiac Sca-1(+) cells was significantly increased. However, SPECT-perfusion showed no differences in infarct size between G-CSF-treated and control animals 6 days after MI. Our study shows that G-CSF treatment after MI reduces migration capacity of BMCs into ischemic tissue, but increases the number of resident cardiac cells. To optimize homing capacity a combination of G-CSF with other agents may optimize cytokine therapy after MI.

  19. Intramuscular transplantation of bone marrow cells prolongs the lifespan of SOD1G93A mice and modulates expression of prognosis biomarkers of the disease.

    PubMed

    Rando, Amaya; Pastor, Diego; Viso-León, Mari Carmen; Martínez, Anna; Manzano, Raquel; Navarro, Xavier; Osta, Rosario; Martínez, Salvador

    2018-04-06

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by progressive muscle weakness, paralysis and death. There is no effective treatment for ALS and stem cell therapy has arisen as a potential therapeutic approach. SOD1 mutant mice were used to study the potential neurotrophic effect of bone marrow cells grafted into quadriceps femoris muscle. Bone marrow intramuscular transplants resulted in increased longevity with improved motor function and decreased motoneuron degeneration in the spinal cord. Moreover, the increment of the glial-derived neurotrophic factor and neurotrophin 4 observed in the grafted muscles suggests that this partial neuroprotective effect is mediated by neurotrophic factor release at the neuromuscular junction level. Finally, certain neurodegeneration and muscle disease-specific markers, which are altered in the SOD1 G93A mutant mouse and may serve as molecular biomarkers for the early detection of ALS in patients, have been studied with encouraging results. This work demonstrates that stem cell transplantation in the muscle prolonged the lifespan, increased motoneuron survival and slowed disease progression, which was also assessed by genetic expression analysis.

  20. Use of Bone Marrow-Derived Mesenchymal Stem Cells in Improving Thioacetamide Induced Liver Fibrosis in Rats

    NASA Astrophysics Data System (ADS)

    Mansour, Fatma A. A.; Shaheed, Iman; Hassan, Nabiha R. A.

    Liver fibrosis, is one of big problems usually ends with cirrhosis which considered a life threatening disease as the only way of treatment is the liver transplantation, this study aimed to find a new way for fibrosis treatment by the use of bone marrow isolated Mesenchymal stem cells (MSCs). Thioacetamide (TAA) was used for fibrosis induction in male Sprague Dawely (SD) rats which divided into two random groups: group infused with TAA for fibrosis induction and group as control negative group. MSCs were isolated from bone marrow of twenty five (4-5) weeks male SD rats, and labeled with fluorescent material (PKH26) to confirm the homing of cells. After fibrosis induction, rats were divided into four subgroups to study the effect of MSCs injection in fibrosis treatment. After 4 weeks from MSCs administration, all rats were sacrificed. Liver tissue were collected for histopathological and immunohistopathological studies. In comparison with control groups, the treated groups with MSCs showed improvement in the amount of deposited collagen which decreased compared to control positive group. So MSCs can be used to replace liver transplantation in the treatment of fibrosis.

  1. Acute myelogenous leukemia cells with the MLL-ELL translocation convert morphologically and functionally into adherent myofibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tashiro, Haruko; Mizutani-Noguchi, Mitsuho; Shirasaki, Ryosuke

    2010-01-01

    Bone marrow-myofibroblasts, a major component of bone marrow-stroma, are reported to originate from hematopoietic stem cells. We show in this paper that non-adherent leukemia blasts can change into myofibroblasts. When myeloblasts from two cases of acute myelogenous leukemia with a fusion product comprising mixed lineage leukemia and RNA polymerase II elongation factor, were cultured long term, their morphology changed to that of myofibroblasts with similar molecular characteristics to the parental myeloblasts. The original leukemia blasts, when cultured on the leukemia blast-derived myofibroblasts, grew extensively. Leukemia blasts can create their own microenvironment for proliferation.

  2. Agent-Based Deterministic Modeling of the Bone Marrow Homeostasis.

    PubMed

    Kurhekar, Manish; Deshpande, Umesh

    2016-01-01

    Modeling of stem cells not only describes but also predicts how a stem cell's environment can control its fate. The first stem cell populations discovered were hematopoietic stem cells (HSCs). In this paper, we present a deterministic model of bone marrow (that hosts HSCs) that is consistent with several of the qualitative biological observations. This model incorporates stem cell death (apoptosis) after a certain number of cell divisions and also demonstrates that a single HSC can potentially populate the entire bone marrow. It also demonstrates that there is a production of sufficient number of differentiated cells (RBCs, WBCs, etc.). We prove that our model of bone marrow is biologically consistent and it overcomes the biological feasibility limitations of previously reported models. The major contribution of our model is the flexibility it allows in choosing model parameters which permits several different simulations to be carried out in silico without affecting the homeostatic properties of the model. We have also performed agent-based simulation of the model of bone marrow system proposed in this paper. We have also included parameter details and the results obtained from the simulation. The program of the agent-based simulation of the proposed model is made available on a publicly accessible website.

  3. Bone Marrow-derived Mesenchymal Stem Cells (MSCs) as a Selective Delivery Vehicle for a PSA-Activated Protoxin for Advanced Prostate Cancer

    DTIC Science & Technology

    2013-03-01

    tissue have been optimized • Optimization of flow cytometry-based analyses to characterize co- incident expression of multiple MSC-related markers on a...CA). Mouse anti-human vimentin (clone LN-6) was purchased from Sigma-Aldrich (St. Louis, MO). Goat anti-mouse Alexa Fluor 488, Roswell Park

  4. Assessment of the Role of Noni (Morinda citrifolia) Juice for Inducing Osteoblast Differentiation in Isolated Rat Bone Marrow Derived Mesenchymal Stem Cells

    PubMed Central

    Hussain, Sharmila; Tamizhselvi, Ramasamy; George, Leema; Manickam, Venkatraman

    2016-01-01

    Background and Objectives Morinda citrifolia (Noni), an important traditional medicinal plant still used in patients with bone fractures or dislocation to promote connective tissue repair and to reduce inflammation. However, the effects of Noni on bone metabolism and whether it influences the osteogenic differentiation is yet to be clarified. In this study, we investigated the effect of Morinda citrifolia (Noni) juice on the proliferation rate of rat bone marrow derived mesenchymal stem cells (BMSC) and the osteoblastic differentiation as shown by alkaline phosphatase (ALP), Runt-related transcription factor 2 (Runx2) and osteocalcin (OCN) mRNA expression in vitro. Methods and Results Treatment with 200 μg/ml Noni juice enhanced the proliferation rate of the BMSC and also upregulated the osteogenic differentiation marker genes ALP and OCN, and Runx2 measured by RTPCR. Consistent with these results collagen scaffolds implanted in vivo, which were loaded with BMSC pre-exposed to Noni, showed increased bone density measured by computed tomography and histological analysis revealed neo-angiogenesis for bone formation. Conclusions These results suggest that Noni stimulates osteoblastogenesis and can be used as adjuvant natural medicine for bone diseases such as osteoporosis. PMID:27572713

  5. Assessment of the Role of Noni (Morinda citrifolia) Juice for Inducing Osteoblast Differentiation in Isolated Rat Bone Marrow Derived Mesenchymal Stem Cells.

    PubMed

    Hussain, Sharmila; Tamizhselvi, Ramasamy; George, Leema; Manickam, Venkatraman

    2016-11-30

    Morinda citrifolia (Noni), an important traditional medicinal plant still used in patients with bone fractures or dislocation to promote connective tissue repair and to reduce inflammation. However, the effects of Noni on bone metabolism and whether it influences the osteogenic differentiation is yet to be clarified. In this study, we investigated the effect of Morinda citrifolia (Noni) juice on the proliferation rate of rat bone marrow derived mesenchymal stem cells (BMSC) and the osteoblastic differentiation as shown by alkaline phosphatase (ALP), Runt-related transcription factor 2 (Runx2) and osteocalcin (OCN) mRNA expression in vitro . Treatment with 200 μg/ml Noni juice enhanced the proliferation rate of the BMSC and also upregulated the osteogenic differentiation marker genes ALP and OCN, and Runx2 measured by RTPCR. Consistent with these results collagen scaffolds implanted in vivo , which were loaded with BMSC pre-exposed to Noni, showed increased bone density measured by computed tomography and histological analysis revealed neo-angiogenesis for bone formation. These results suggest that Noni stimulates osteoblastogenesis and can be used as adjuvant natural medicine for bone diseases such as osteoporosis.

  6. Biological Response of Human Bone Marrow-Derived Mesenchymal Stem Cells to Commercial Tantalum Coatings with Microscale and Nanoscale Surface Topographies

    NASA Astrophysics Data System (ADS)

    Skoog, Shelby A.; Kumar, Girish; Goering, Peter L.; Williams, Brian; Stiglich, Jack; Narayan, Roger J.

    2016-06-01

    Tantalum is a promising orthopaedic implant coating material due to its robust mechanical properties, corrosion resistance, and excellent biocompatibility. Previous studies have demonstrated improved biocompatibility and tissue integration of surface-treated tantalum coatings compared to untreated tantalum. Surface modification of tantalum coatings with biologically inspired microscale and nanoscale features may be used to evoke optimal tissue responses. The goal of this study was to evaluate commercial tantalum coatings with nanoscale, sub-microscale, and microscale surface topographies for orthopaedic and dental applications using human bone marrow-derived mesenchymal stem cells (hBMSCs). Tantalum coatings with different microscale and nanoscale surface topographies were fabricated using a diffusion process or chemical vapor deposition. Biological evaluation of the tantalum coatings using hBMSCs showed that tantalum coatings promote cellular adhesion and growth. Furthermore, hBMSC adhesion to the tantalum coatings was dependent on surface feature characteristics, with enhanced cell adhesion on sub-micrometer- and micrometer-sized surface topographies compared to hybrid nano-/microstructures. Nanostructured and microstructured tantalum coatings should be further evaluated to optimize the surface coating features to promote osteogenesis and enhance osseointegration of tantalum-based orthopaedic implants.

  7. Bone marrow stem and progenitor cell contribution to neovasculogenesis is dependent on model system with SDF-1 as a permissive trigger

    PubMed Central

    Madlambayan, Gerard J.; Butler, Jason M.; Hosaka, Koji; Jorgensen, Marda; Fu, Dongtao; Guthrie, Steven M.; Shenoy, Anitha K.; Brank, Adam; Russell, Kathryn J.; Otero, Jaclyn; Siemann, Dietmar W.

    2009-01-01

    Adult bone marrow (BM) contributes to neovascularization in some but not all settings, and reasons for these discordant results have remained unexplored. We conducted novel comparative studies in which multiple neovascularization models were established in single mice to reduce variations in experimental methodology. In different combinations, BM contribution was detected in ischemic retinas and, to a lesser extent, Lewis lung carcinoma cells, whereas B16 melanomas showed little to no BM contribution. Using this spectrum of BM contribution, we demonstrate the necessity for site-specific expression of stromal-derived factor-1α (SDF-1α) and its mobilizing effects on BM. Blocking SDF-1α activity with neutralizing antibodies abrogated BM-derived neovascularization in lung cancer and retinopathy. Furthermore, secondary transplantation of single hematopoietic stem cells (HSCs) showed that HSCs are a long-term source of neovasculogenesis and that CD133+CXCR4+ myeloid progenitor cells directly participate in new blood vessel formation in response to SDF-1α. The varied BM contribution seen in different model systems is suggestive of redundant mechanisms governing postnatal neovasculogenesis and provides an explanation for contradictory results observed in the field. PMID:19717647

  8. Altered MicroRNA Expression Profile in Exosomes during Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells

    PubMed Central

    Zhang, Shui-Jun; Zhao, Chen; Qiu, Bin-Song; Gu, Hai-Feng; Hong, Jian-Fei; Cao, Li; Chen, Yu; Xia, Bing; Bi, Qin; Wang, Ya-Ping

    2014-01-01

    The physiological role of microRNAs (miRNAs) in osteoblast differentiation remains elusive. Exosomal miRNAs isolated from human bone marrow-derived mesenchymal stem cells (BMSCs) culture were profiled using miRNA arrays containing probes for 894 human matured miRNAs. Seventy-nine miRNAs (∼8.84%) could be detected in exosomes isolated from BMSC culture supernatants when normalized to endogenous control genes RNU44. Among them, nine exosomal miRNAs were up regulated and 4 miRNAs were under regulated significantly (Relative fold>2, p<0.05) when compared with the values at 0 day with maximum changes at 1 to 7 days. Five miRNAs (miR-199b, miR-218, miR-148a, miR-135b, and miR-221) were further validated and differentially expressed in the individual exosomal samples from hBMSCs cultured at different time points. Bioinformatic analysis by DIANA-mirPath demonstrated that RNA degradation, mRNA surveillance pathway, Wnt signaling pathway, RNA transport were the most prominent pathways enriched in quantiles with differential exosomal miRNA patterns related to osteogenic differentiation. These data demonstrated exosomal miRNA is a regulator of osteoblast differentiation. PMID:25503309

  9. A novel strontium(II)-modified calcium phosphate bone cement stimulates human-bone-marrow-derived mesenchymal stem cell proliferation and osteogenic differentiation in vitro.

    PubMed

    Schumacher, M; Lode, A; Helth, A; Gelinsky, M

    2013-12-01

    In the present study, the in vitro effects of novel strontium-modified calcium phosphate bone cements (SrCPCs), prepared using two different approaches on human-bone-marrow-derived mesenchymal stem cells (hMSCs), were evaluated. Strontium ions, known to stimulate bone formation and therefore already used in systemic osteoporosis therapy, were incorporated into a hydroxyapatite-forming calcium phosphate bone cement via two simple approaches: incorporation of strontium carbonate crystals and substitution of Ca(2+) by Sr(2+) ions during cement setting. All modified cements released 0.03-0.07 mM Sr(2+) under in vitro conditions, concentrations that were shown not to impair the proliferation or osteogenic differentiation of hMSCs. Furthermore, strontium modification led to a reduced medium acidification and Ca(2+) depletion in comparison to the standard calcium phosphate cement. In indirect and direct cell culture experiments with the novel SrCPCs significantly enhanced cell proliferation and differentiation were observed. In conclusion, the SrCPCs described here could be beneficial for the local treatment of defects, especially in the osteoporotic bone. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Chromatin remodeling agent trichostatin A: a key-factor in the hepatic differentiation of human mesenchymal stem cells derived of adult bone marrow

    PubMed Central

    Snykers, Sarah; Vanhaecke, Tamara; De Becker, Ann; Papeleu, Peggy; Vinken, Mathieu; Van Riet, Ivan; Rogiers, Vera

    2007-01-01

    Background The capability of human mesenchymal stem cells (hMSC) derived of adult bone marrow to undergo in vitro hepatic differentiation was investigated. Results Exposure of hMSC to a cocktail of hepatogenic factors [(fibroblast growth factor-4 (FGF-4), hepatocyte growth factor (HGF), insulin-transferrin-sodium-selenite (ITS) and dexamethasone)] failed to induce hepatic differentiation. Sequential exposure to these factors (FGF-4, followed by HGF, followed by HGF+ITS+dexamethasone), however, resembling the order of secretion during liver embryogenesis, induced both glycogen-storage and cytokeratin (CK)18 expression. Additional exposure of the cells to trichostatin A (TSA) considerably improved endodermal differentiation, as evidenced by acquisition of an epithelial morphology, chronological expression of hepatic proteins, including hepatocyte-nuclear factor (HNF)-3β, alpha-fetoprotein (AFP), CK18, albumin (ALB), HNF1α, multidrug resistance-associated protein (MRP)2 and CCAAT-enhancer binding protein (C/EBP)α, and functional maturation, i.e. upregulated ALB secretion, urea production and inducible cytochrome P450 (CYP)-dependent activity. Conclusion hMSC are able to undergo mesenchymal-to-epithelial transition. TSA is hereby essential to promote differentiation of hMSC towards functional hepatocyte-like cells. PMID:17407549

  11. Involvement of PI3K and ROCK signaling pathways in migration of bone marrow-derived mesenchymal stem cells through human brain microvascular endothelial cell monolayers.

    PubMed

    Lin, Mei-Na; Shang, De-Shu; Sun, Wei; Li, Bo; Xu, Xin; Fang, Wen-Gang; Zhao, Wei-Dong; Cao, Liu; Chen, Yu-Hua

    2013-06-04

    Bone marrow-derived mesenchymal stem cells (MSC) represent an important and easily available source of stem cells for potential therapeutic use in neurological diseases. The entry of circulating cells into the central nervous system by intravenous administration requires, firstly, the passage of the cells across the blood-brain barrier (BBB). However, little is known of the details of MSC transmigration across the BBB. In the present study, we employed an in vitro BBB model constructed using a human brain microvascular endothelial cell monolayer to study the mechanism underlying MSC transendothelial migration. Transmigration assays, transendothelial electrical resistance (TEER) and horseradish peroxidase (HRP) flux assays showed that MSC could transmigrate through human brain microvascular endothelial cell monolayers by a paracellular pathway. Cell fractionation and immunofluorescence assays confirmed the disruption of tight junctions. Inhibition assays showed that a Rho-kinase (ROCK) inhibitor (Y27632) effectively promoted MSC transendothelial migration; conversely, a PI3K inhibitor (LY294002) blocked MSC transendothelial migration. Interestingly, adenovirus-mediated interference with ROCK in MSC significantly increased MSC transendothelial migration, and overexpression of a PI3K dominant negative mutant in MSC cells could block transendothelial migration. Our findings provide clear evidence that the PI3K and ROCK pathways are involved in MSC migration through human brain microvascular endothelial cell monolayers. The information yielded by this study may be helpful in constructing gene-modified mesenchymal stem cells that are able to penetrate the BBB effectively for cell therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Human Dental Pulp Stem Cells Are More Effective Than Human Bone Marrow-Derived Mesenchymal Stem Cells in Cerebral Ischemic Injury.

    PubMed

    Song, Miyeoun; Lee, Jae-Hyung; Bae, Jinhyun; Bu, Youngmin; Kim, Eun-Cheol

    2017-06-09

    We compared the therapeutic effects and mechanism of transplanted human dental pulp stem cells (hDPSCs) and human bone marrow-derived mesenchymal stem cells (hBM-MSCs) in a rat stroke model and an in vitro model of ischemia. Rats were intravenously injected with hDPSCs or hBM-MSCs 24 h after middle cerebral artery occlusion (MCAo), and both groups showed improved functional recovery and reduced infarct volume versus control rats, but the hDPSC group showed greater reduction in infarct volume than the hBM-MSC group. The positive area for the endothelial cell marker was greater in the lesion boundary areas in the hDPSC group than in the hBM-MSC group. Administration of hDPSCs to rats with stroke significantly decreased reactive gliosis, as evidenced by the attenuation of MCAo-induced GFAP+/nestin+ and GFAP+/Musashi-1+ cells, compared with hBM-MSCs. In vivo findings were confirmed by in vitro data illustrating that hDPSCs showed superior neuroprotective, migratory, and in vitro angiogenic effects in oxygen-glucose deprivation (OGD)-injured human astrocytes (hAs) versus hBM-MSCs. Comprehensive comparative bioinformatics analyses from hDPSC- and hBM-MSC-treated in vitro OGD-injured hAs were examined by RNA sequencing technology. In gene ontology and KEGG pathway analyses, significant pathways in the hDPSC-treated group were the MAPK and TGF-β signaling pathways. Thus, hDPSCs may be a better cell therapy source for ischemic stroke than hBM-MSCs.

  13. Comparison of Immunological Characteristics of Mesenchymal Stem Cells Derived from Human Embryonic Stem Cells and Bone Marrow

    PubMed Central

    Fu, Xin; Chen, Yao; Xie, Fang-Nan; Dong, Ping; Liu, Wen-bo; Cao, Yilin

    2015-01-01

    Mesenchymal stem cell (MSC) has great potential for both regenerative medicine and immunotherapy due to its multipotency and immunomodulatory property. The derivation of MSCs from human tissues involves an invasive procedure and the obtained MSCs often suffer from inconsistent quality. To overcome these issues, the approaches of deriving a highly potent and replenishable population of MSCs from human embryonic stem cells (hESCs) were established. However, few studies compared the immunological characteristics of MSCs derived from hESCs with tissue-derived MSCs or demonstrated differences and the underlying mechanisms. Here, we differentiated H9 hESCs into MSC-like cells (H9-MSCs) through an embryoid body outgrowth method and compared the immunological characteristics of H9-MSCs with bone marrow-derived MSCs (BMSCs). Both sources of derived cells exhibited typical MSC morphologies and surface marker expressions, as well as multipotency to differentiate into osteogenic and adipogenic lineages. A immunological characterization study showed that H9-MSCs and BMSCs had similar immunoprivileged properties without triggering allogeneic lymphocyte proliferation as well as equivalent immunosuppressive effects on T-cell proliferation induced by either cellular or mitogenic stimuli. Flow cytometry analysis revealed a lower expression of human major histocompatability complex class II molecule human lymphocyte antigen (HLA)-DR and a higher expression of coinhibitory molecule B7-H1 in H9-MSCs than in BMSCs. Interferon gamma (IFN-γ) is a proinflammatory cytokine that can induce the expression of HLA class II molecules in many cell types. Our results showed that pretreatment of H9-MSCs and BMSCs with IFN-γ did not change their immunogenicity and immunosuppressive abilities, but increased the difference between H9-MSCs and BMSCs for their expression of HLA-DR. Further detection of expression of molecules involved in IFN-γ signaling pathways suggested that the lower expression of HLA-DR in H9-MSCs could be partially attributed to the lower expression and the less nuclear translocation of its transcriptional factor CIITA. The present study provides evidence that the hESC-derived MSCs share similar immunogenicity and immunosuppressive abilities with BMSCs, but differ in the expression profile of immunological markers and the responsiveness to certain inflammatory cytokines, which suggests that H9-MSCs could be a safe and efficient candidate for MSC treatment in patients with inflammatory disorders. PMID:25256849

  14. Lithium attenuates lead induced toxicity on mouse non-adherent bone marrow cells.

    PubMed

    Banijamali, Mahsan; Rabbani-Chadegani, Azra; Shahhoseini, Maryam

    2016-07-01

    Lead is a poisonous heavy metal that occurs in all parts of environment and causes serious health problems in humans. The aim of the present study was to investigate the possible protective effect of lithium against lead nitrate induced toxicity in non-adherent bone marrow stem cells. Trypan blue and MTT assays represented that exposure of the cells to different concentrations of lead nitrate decreased viability in a dose dependent manner, whereas, pretreatment of the cells with lithium protected the cells against lead toxicity. Lead reduced the number and differentiation status of bone marrow-derived precursors when cultured in the presence of colony stimulating factor (CSF), while the effect was attenuated by lithium. The cells treated with lead nitrate exhibited cell shrinkage, DNA fragmentation, anion superoxide production, but lithium prevented lead action. Moreover, apoptotic indexes such as PARP cleavage and release of HMGB1 induced by lead, were protected by lithium, suggesting anti-apoptotic effect of lithium. Immunoblot analysis of histone H3K9 acetylation indicated that lithium overcame lead effect on acetylation. In conclusion, lithium efficiently reduces lead toxicity suggesting new insight into lithium action which may contribute to increased cell survival. It also provides a potentially new therapeutic strategy for lithium and a cost-effective approach to minimize destructive effects of lead on bone marrow stem cells. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Neonatal bone marrow transplantation of ADA-deficient SCID mice results in immunologic reconstitution despite low levels of engraftment and an absence of selective donor T lymphoid expansion

    PubMed Central

    Carbonaro, Denise A.; Jin, Xiangyang; Cotoi, Daniel; Mi, Tiejuan; Yu, Xiao-Jin; Skelton, Dianne C.; Dorey, Frederick; Kellems, Rodney E.; Blackburn, Michael R.

    2008-01-01

    Adenosine deaminase (ADA)–deficient severe combined immune deficiency (SCID) may be treated by allogeneic hematopoietic stem cell transplantation without prior cytoreductive conditioning, although the mechanism of immune reconstitution is unclear. We studied this process in a murine gene knockout model of ADA-deficient SCID. Newborn ADA-deficient pups received transplants of intravenous infusion of normal congenic bone marrow, without prior cytoreductive conditioning, which resulted in long-term survival, multisystem correction, and nearly normal lymphocyte numbers and mitogenic proliferative responses. Only 1% to 3% of lymphocytes and myeloid cells were of donor origin without a selective expansion of donor-derived lymphocytes; immune reconstitution was by endogenous, host-derived ADA-deficient lymphocytes. Preconditioning of neonates with 100 to 400 cGy of total body irradiation before normal donor marrow transplant increased the levels of engrafted donor cells in a radiation dose–dependent manner, but the chimerism levels were similar for lymphoid and myeloid cells. The absence of selective reconstitution by donor T lymphocytes in the ADA-deficient mice indicates that restoration of immune function occurred by rescue of endogenous ADA-deficient lymphocytes through cross-correction from the engrafted ADA-replete donor cells. Thus, ADA-deficient SCID is unique in its responses to nonmyeloablative bone marrow transplantation, which has implications for clinical bone marrow transplantation or gene therapy. PMID:18356486

  16. Neonatal bone marrow transplantation of ADA-deficient SCID mice results in immunologic reconstitution despite low levels of engraftment and an absence of selective donor T lymphoid expansion.

    PubMed

    Carbonaro, Denise A; Jin, Xiangyang; Cotoi, Daniel; Mi, Tiejuan; Yu, Xiao-Jin; Skelton, Dianne C; Dorey, Frederick; Kellems, Rodney E; Blackburn, Michael R; Kohn, Donald B

    2008-06-15

    Adenosine deaminase (ADA)-deficient severe combined immune deficiency (SCID) may be treated by allogeneic hematopoietic stem cell transplantation without prior cytoreductive conditioning, although the mechanism of immune reconstitution is unclear. We studied this process in a murine gene knockout model of ADA-deficient SCID. Newborn ADA-deficient pups received transplants of intravenous infusion of normal congenic bone marrow, without prior cytoreductive conditioning, which resulted in long-term survival, multisystem correction, and nearly normal lymphocyte numbers and mitogenic proliferative responses. Only 1% to 3% of lymphocytes and myeloid cells were of donor origin without a selective expansion of donor-derived lymphocytes; immune reconstitution was by endogenous, host-derived ADA-deficient lymphocytes. Preconditioning of neonates with 100 to 400 cGy of total body irradiation before normal donor marrow transplant increased the levels of engrafted donor cells in a radiation dose-dependent manner, but the chimerism levels were similar for lymphoid and myeloid cells. The absence of selective reconstitution by donor T lymphocytes in the ADA-deficient mice indicates that restoration of immune function occurred by rescue of endogenous ADA-deficient lymphocytes through cross-correction from the engrafted ADA-replete donor cells. Thus, ADA-deficient SCID is unique in its responses to nonmyeloablative bone marrow transplantation, which has implications for clinical bone marrow transplantation or gene therapy.

  17. Imaging approaches for the study of cell based cardiac therapies

    PubMed Central

    Lau, Joe F.; Anderson, Stasia A.; Adler, Eric; Frank, Joseph A.

    2009-01-01

    Despite promising preclinical data, the treatment of cardiovascular diseases using embryonic, bone-marrow-derived, and skeletal myoblast stem cells has not yet come to fruition within mainstream clinical practice. Major obstacles in cardiac stem cell investigations include the ability to monitor cell engraftment and survival following implantation within the myocardium. Several cellular imaging modalities, including reporter gene and MRI-based tracking approaches, have emerged that provide the means to identify, localize and monitor stem cells longitudinally in vivo following implantation. This Review will examine the various cardiac cellular tracking modalities, including the combinatorial use of several probes in multimodality imaging, with a focus on data from the last five years. PMID:20027188

  18. Biophysical regulation of stem cell differentiation.

    PubMed

    Govey, Peter M; Loiselle, Alayna E; Donahue, Henry J

    2013-06-01

    Bone adaptation to its mechanical environment, from embryonic through adult life, is thought to be the product of increased osteoblastic differentiation from mesenchymal stem cells. In parallel with tissue-scale loading, these heterogeneous populations of multipotent stem cells are subject to a variety of biophysical cues within their native microenvironments. Bone marrow-derived mesenchymal stem cells-the most broadly studied source of osteoblastic progenitors-undergo osteoblastic differentiation in vitro in response to biophysical signals, including hydrostatic pressure, fluid flow and accompanying shear stress, substrate strain and stiffness, substrate topography, and electromagnetic fields. Furthermore, stem cells may be subject to indirect regulation by mechano-sensing osteocytes positioned to more readily detect these same loading-induced signals within the bone matrix. Such paracrine and juxtacrine regulation of differentiation by osteocytes occurs in vitro. Further studies are needed to confirm both direct and indirect mechanisms of biophysical regulation within the in vivo stem cell niche.

  19. Trophic Effects and Regenerative Potential of Mobilized Mesenchymal Stem Cells From Bone Marrow and Adipose Tissue as Alternative Cell Sources for Pulp/Dentin Regeneration.

    PubMed

    Murakami, Masashi; Hayashi, Yuki; Iohara, Koichiro; Osako, Yohei; Hirose, Yujiro; Nakashima, Misako

    2015-01-01

    Dental pulp stem cell (DPSC) subsets mobilized by granulocyte-colony-stimulating factor (G-CSF) are safe and efficacious for complete pulp regeneration. The supply of autologous pulp tissue, however, is very limited in the aged. Therefore, alternative sources of mesenchymal stem/progenitor cells (MSCs) are needed for the cell therapy. In this study, DPSCs, bone marrow (BM), and adipose tissue (AD)-derived stem cells of the same individual dog were isolated using G-CSF-induced mobilization (MDPSCs, MBMSCs, and MADSCs). The positive rates of CXCR4 and G-CSFR in MDPSCs were similar to MADSCs and were significantly higher than those in MBMSCs. Trophic effects of MDPSCs on angiogenesis, neurite extension, migration, and antiapoptosis were higher than those of MBMSCs and MADSCs. Pulp-like loose connective tissues were regenerated in all three MSC transplantations. Significantly higher volume of regenerated pulp and higher density of vascularization and innervation were observed in response to MDPSCs compared to MBMSC and MADSC transplantation. Collagenous matrix containing dentin sialophosphoprotein (DSPP)-positive odontoblast-like cells was the highest in MBMSCs and significantly higher in MADSCs compared to MDPSCs. MBMSCs and MADSCs, therefore, have potential for pulp regeneration, although the volume of regenerated pulp tissue, angiogenesis, and reinnervation, were less. Thus, in conclusion, an alternative cell source for dental pulp/dentin regeneration are stem cells from BM and AD tissue.

  20. Placenta-an alternative source of stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matikainen, Tiina; Laine, Jarmo

    2005-09-01

    The two most promising practical applications of human stem cells are cellular replacement therapies in human disease and toxicological screening of candidate drug molecules. Both require a source of human stem cells that can be isolated, purified, expanded in number and differentiated into the cell type of choice in a controlled manner. Currently, uses of both embryonic and adult stem cells are investigated. While embryonic stem cells are pluripotent and can differentiate into any specialised cell type, their use requires establishment of embryonic stem cell lines using the inner cell mass of an early pre-implantation embryo. As the blastocyst ismore » destroyed during the process, ethical issues need to be carefully considered. The use of embryonic stem cells is also limited by the difficulties in growing large numbers of the cells without inducing spontaneous differentiation, and the problems in controlling directed differentiation of the cells. The use of adult stem cells, typically derived from bone marrow, but also from other tissues, is ethically non-controversial but their differentiation potential is more limited than that of the embryonic stem cells. Since human cord blood, umbilical cord, placenta and amnion are normally discarded at birth, they provide an easily accessible alternative source of stem cells. We review the potential and current status of the use of adult stem cells derived from the placenta or umbilical cord in therapeutic and toxicological applications.« less

  1. A comparison of the functionality and in vivo phenotypic stability of cartilaginous tissues engineered from different stem cell sources.

    PubMed

    Vinardell, Tatiana; Sheehy, Eamon J; Buckley, Conor T; Kelly, Daniel J

    2012-06-01

    Joint-derived stem cells are a promising alternative cell source for cartilage repair therapies that may overcome many of the problems associated with the use of primary chondrocytes (CCs). The objective of this study was to compare the in vitro functionality and in vivo phenotypic stability of cartilaginous tissues engineered using bone marrow-derived stem cells (BMSCs) and joint tissue-derived stem cells following encapsulation in agarose hydrogels. Culture-expanded BMSCs, fat pad-derived stem cells (FPSCs), and synovial membrane-derived stem cells (SDSCs) were encapsulated in agarose and maintained in a chondrogenic medium supplemented with transforming growth factor-β3. After 21 days of culture, constructs were either implanted subcutaneously into the back of nude mice for an additional 28 days or maintained for a similar period in vitro in either chondrogenic or hypertrophic media formulations. After 49 days of in vitro culture in chondrogenic media, SDSC constructs accumulated the highest levels of sulfated glycosaminoglycan (sGAG) (∼2.8% w/w) and collagen (∼1.8% w/w) and were mechanically stiffer than constructs engineered using other cell types. After subcutaneous implantation in nude mice, sGAG content significantly decreased for all stem cell-seeded constructs, while no significant change was observed in the control constructs engineered using primary CCs, indicating that the in vitro chondrocyte-like phenotype generated in all stem cell-seeded agarose constructs was transient. FPSCs and SDSCs appeared to undergo fibrous dedifferentiation or resorption, as evident from increased collagen type I staining and a dramatic loss in sGAG content. BMSCs followed a more endochondral pathway with increased type X collagen expression and mineralization of the engineered tissue. In conclusion, while joint tissue-derived stem cells possess a strong intrinsic chondrogenic capacity, further studies are needed to identify the factors that will lead to the generation of a more stable chondrogenic phenotype.

  2. Treatment of aggressive multiple myeloma by high-dose chemotherapy and total body irradiation followed by blood stem cells autologous graft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fermand, J.P.; Levy, Y.; Gerota, J.

    1989-01-01

    Eight patients with stage III aggressive multiple myeloma, refractory to current chemotherapy in six cases, were treated by high-dose chemotherapy (nitrosourea, etoposide, and melphalan) (HDC) and total body irradiation (TBI), followed by autografting with blood stem cells. These cells were previously collected by leukapheresis performed during hematologic recovery following cytotoxic drug-induced bone marrow aplasia. Seven patients were alive 9 to 17 months after HDC-TBI and graft. One died at day 40 from cerebral bleeding. All living patients achieved a 90% or greater reduction in tumor mass. In two cases, a complete remission (CR) has persisted at a follow-up of 15more » and 16 months. Three patients have been well and off therapy with stable minimal residual disease (RD) since 10, 11, and 17 months, respectively. A patient in apparent CR and another with RD have relapsed 9 to 12 months posttreatment. Autologous blood-derived hematopoietic stem cells induced successful and sustained engraftment in all living patients. These results, although still preliminary, indicate that HDC and TBI, followed by blood stem cells autograft, which has both practical and theoretical interest over allogeneic or autologous bone marrow transplantation, deserve consideration in selected patients with multiple myeloma.« less

  3. Cell Expansion-Dependent Inflammatory and Metabolic Profile of Human Bone Marrow Mesenchymal Stem Cells.

    PubMed

    Prieto, Patricia; Fernández-Velasco, María; Fernández-Santos, María E; Sánchez, Pedro L; Terrón, Verónica; Martín-Sanz, Paloma; Fernández-Avilés, Francisco; Boscá, Lisardo

    2016-01-01

    Stem cell therapy has emerged as a promising new area in regenerative medicine allowing the recovery of viable tissues. Among the many sources of adult stem cells, bone marrow-derived are easy to expand in culture via plastic adherence and their multipotentiality for differentiation make them ideal for clinical applications. Interestingly, several studies have indicated that MSCs expansion in vitro may be limited mainly due to "cell aging" related to the number of cell divisions in culture. We have determined that MSCs exhibit a progressive decline across successive passages in the expression of stem cell markers, in plasticity and in the inflammatory response, presenting low immunogenicity. We have exposed human MSCs after several passages to TLRs ligands and analyzed their inflammatory response. These cells responded to pro-inflammatory stimuli (i.e., NOS-2 expression) and to anti-inflammatory cytokines (i.e., HO1 and Arg1) until two expansions, rapidly declining upon subculture. Moreover, in the first passages, MSCs were capable to release IL1β, IL6, and IL8, as well as to produce active MMPs allowing them to migrate. Interestingly enough, after two passages, anaerobic glycolysis was enhanced releasing high levels of lactate to the extracellular medium. All these results may have important implications for the safety and efficacy of MSCs-based cell therapies.

  4. Mycobacterium tuberculosis-Infected Hematopoietic Stem and Progenitor Cells Unable to Express Inducible Nitric Oxide Synthase Propagate Tuberculosis in Mice

    PubMed Central

    Reece, Stephen T; Vogelzang, Alexis; Tornack, Julia; Bauer, Wolfgang; Zedler, Ulrike; Schommer-Leitner, Sandra; Stingl, Georg; Melchers, Fritz; Kaufmann, Stefan H E

    2018-01-01

    Abstract Persistence of Mycobacterium tuberculosis within human bone marrow stem cells has been identified as a potential bacterial niche during latent tuberculosis. Using a murine model of tuberculosis, we show here that bone marrow stem and progenitor cells containing M. tuberculosis propagated tuberculosis when transferred to naive mice, given that both transferred cells and recipient mice were unable to express inducible nitric oxide synthase, which mediates killing of intracellular bacteria via nitric oxide. Our findings suggest that bone marrow stem and progenitor cells containing M. tuberculosis propagate hallmarks of disease if nitric oxide-mediated killing of bacteria is defective. PMID:29471332

  5. Can Human Embryonic Stem Cell-Derived Stromal Cells Serve a Starting Material for Myoblasts?

    PubMed Central

    Ando, Yu; Saito, Marie; Machida, Masakazu; Yoshida-Noro, Chikako; Akutsu, Hidenori; Takahashi, Masataka

    2017-01-01

    A large number of myocytes are necessary to treat intractable muscular disorders such as Duchenne muscular dystrophy with cell-based therapies. However, starting materials for cellular therapy products such as myoblasts, marrow stromal cells, menstrual blood-derived cells, and placenta-derived cells have a limited lifespan and cease to proliferate in vitro. From the viewpoints of manufacturing and quality control, cells with a long lifespan are more suitable as a starting material. In this study, we generated stromal cells for future myoblast therapy from a working cell bank of human embryonic stem cells (ESCs). The ESC-derived CD105+ cells with extensive in vitro proliferation capability exhibited myogenesis and genetic stability in vitro. These results imply that ESC-derived CD105+ cells are another cell source for myoblasts in cell-based therapy for patients with genetic muscular disorders. Since ESCs are immortal, mesenchymal stromal cells generated from ESCs can be manufactured at a large scale in one lot for pharmaceutical purposes. PMID:28706537

  6. Impaired Therapeutic Capacity of Autologous Stem Cells in a Model of Type 2 Diabetes

    PubMed Central

    Shin, Laura

    2012-01-01

    Endogenous stem cells in the bone marrow respond to environmental cues and contribute to tissue maintenance and repair. In type 2 diabetes, a multifaceted metabolic disease characterized by insulin resistance and hyperglycemia, major complications are seen in multiple organ systems. To evaluate the effects of this disease on the endogenous stem cell population, we used a type 2 diabetic mouse model (db/db), which recapitulates these diabetic phenotypes. Bone marrow-derived mesenchymal stem cells (MSCs) from db/db mice were characterized in vitro using flow cytometric cell population analysis, differentiation, gene expression, and proliferation assays. Diabetic MSCs were evaluated for their therapeutic potential in vivo using an excisional splint wound model in both nondiabetic wild-type and diabetic mice. Diabetic animals possessed fewer MSCs, which were proliferation and survival impaired in vitro. Examination of the recruitment response of stem and progenitor cells after wounding revealed that significantly fewer endogenous MSCs homed to the site of injury in diabetic subjects. Although direct engraftment of healthy MSCs accelerated wound closure in both healthy and diabetic subjects, diabetic MSC engraftment produced limited improvement in the diabetic subjects and could not produce the same therapeutic outcomes as in their nondiabetic counterparts in vivo. Our data reveal stem cell impairment as a major complication of type 2 diabetes in mice and suggest that the disease may stably alter endogenous MSCs. These results have implications for the efficiency of autologous therapies in diabetic patients and identify endogenous MSCs as a potential therapeutic target. PMID:23197759

  7. Role of adipose-derived stem cells in wound healing.

    PubMed

    Hassan, Waqar Ul; Greiser, Udo; Wang, Wenxin

    2014-01-01

    Impaired wound healing remains a challenge to date and causes debilitating effects with tremendous suffering. Recent advances in tissue engineering approaches in the area of cell therapy have provided promising treatment options to meet the challenges of impaired skin wound healing such as diabetic foot ulcers. Over the last few years, stem cell therapy has emerged as a novel therapeutic approach for various diseases including wound repair and tissue regeneration. Several different types of stem cells have been studied in both preclinical and clinical settings such as bone marrow-derived stem cells, adipose-derived stem cells (ASCs), circulating angiogenic cells (e.g., endothelial progenitor cells), human dermal fibroblasts, and keratinocytes for wound healing. Adipose tissue is an abundant source of mesenchymal stem cells, which have shown an improved outcome in wound healing studies. ASCs are pluripotent stem cells with the ability to differentiate into different lineages and to secrete paracrine factors initiating tissue regeneration process. The abundant supply of fat tissue, ease of isolation, extensive proliferative capacities ex vivo, and their ability to secrete pro-angiogenic growth factors make them an ideal cell type to use in therapies for the treatment of nonhealing wounds. In this review, we look at the pathogenesis of chronic wounds, role of stem cells in wound healing, and more specifically look at the role of ASCs, their mechanism of action and their safety profile in wound repair and tissue regeneration. © 2014 by the Wound Healing Society.

  8. Peripheral-Blood Stem Cells versus Bone Marrow from Unrelated Donors

    PubMed Central

    Anasetti, Claudio; Logan, Brent R.; Lee, Stephanie J.; Waller, Edmund K.; Weisdorf, Daniel J.; Wingard, John R.; Cutler, Corey S.; Westervelt, Peter; Woolfrey, Ann; Couban, Stephen; Ehninger, Gerhard; Johnston, Laura; Maziarz, Richard T.; Pulsipher, Michael A.; Porter, David L.; Mineishi, Shin; McCarty, John M.; Khan, Shakila P.; Anderlini, Paolo; Bensinger, William I.; Leitman, Susan F.; Rowley, Scott D.; Bredeson, Christopher; Carter, Shelly L.; Horowitz, Mary M.; Confer, Dennis L.

    2012-01-01

    BACKGROUND Randomized trials have shown that the transplantation of filgrastim-mobilized peripheral-blood stem cells from HLA-identical siblings accelerates engraftment but increases the risks of acute and chronic graft-versus-host disease (GVHD), as compared with the transplantation of bone marrow. Some studies have also shown that peripheral-blood stem cells are associated with a decreased rate of relapse and improved survival among recipients with high-risk leukemia. METHODS We conducted a phase 3, multicenter, randomized trial of transplantation of peripheral-blood stem cells versus bone marrow from unrelated donors to compare 2-year survival probabilities with the use of an intention-to-treat analysis. Between March 2004 and September 2009, we enrolled 551 patients at 48 centers. Patients were randomly assigned in a 1:1 ratio to peripheral-blood stem-cell or bone marrow transplantation, stratified according to transplantation center and disease risk. The median follow-up of surviving patients was 36 months (interquartile range, 30 to 37). RESULTS The overall survival rate at 2 years in the peripheral-blood group was 51% (95% confidence interval [CI], 45 to 57), as compared with 46% (95% CI, 40 to 52) in the bone marrow group (P = 0.29), with an absolute difference of 5 percentage points (95% CI, −3 to 14). The overall incidence of graft failure in the peripheral-blood group was 3% (95% CI, 1 to 5), versus 9% (95% CI, 6 to 13) in the bone marrow group (P = 0.002). The incidence of chronic GVHD at 2 years in the peripheral-blood group was 53% (95% CI, 45 to 61), as compared with 41% (95% CI, 34 to 48) in the bone marrow group (P = 0.01). There were no significant between-group differences in the incidence of acute GVHD or relapse. CONCLUSIONS We did not detect significant survival differences between peripheral-blood stem-cell and bone marrow transplantation from unrelated donors. Exploratory analyses of secondary end points indicated that peripheral-blood stem cells may reduce the risk of graft failure, whereas bone marrow may reduce the risk of chronic GVHD. (Funded by the National Heart, Lung, and Blood Institute–National Cancer Institute and others; ClinicalTrials.gov number, NCT00075816.) PMID:23075175

  9. The Differentiation Balance of Bone Marrow Mesenchymal Stem Cells Is Crucial to Hematopoiesis

    PubMed Central

    Zhang, Weiwei; Ran, Qian; Xiang, Yang; Zhong, Jiang F.; Li, Shengwen Calvin

    2018-01-01

    Bone marrow mesenchymal stem cells (BMSCs), the important component and regulator of bone marrow microenvironment, give rise to hematopoietic-supporting stromal cells and form hematopoietic niches for hematopoietic stem cells (HSCs). However, how BMSC differentiation affects hematopoiesis is poorly understood. In this review, we focus on the role of BMSC differentiation in hematopoiesis. We discussed the role of BMSCs and their progeny in hematopoiesis. We also examine the mechanisms that cause differentiation bias of BMSCs in stress conditions including aging, irradiation, and chemotherapy. Moreover, the differentiation balance of BMSCs is crucial to hematopoiesis. We highlight the negative effects of differentiation bias of BMSCs on hematopoietic recovery after bone marrow transplantation. Keeping the differentiation balance of BMSCs is critical for hematopoietic recovery. This review summarises current understanding about how BMSC differentiation affects hematopoiesis and its potential application in improving hematopoietic recovery after bone marrow transplantation. PMID:29765406

  10. Space microgravity drives transdifferentiation of human bone marrow-derived mesenchymal stem cells from osteogenesis to adipogenesis.

    PubMed

    Zhang, Cui; Li, Liang; Jiang, Yuanda; Wang, Cuicui; Geng, Baoming; Wang, Yanqiu; Chen, Jianling; Liu, Fei; Qiu, Peng; Zhai, Guangjie; Chen, Ping; Quan, Renfu; Wang, Jinfu

    2018-03-13

    Bone formation is linked with osteogenic differentiation of mesenchymal stem cells (MSCs) in the bone marrow. Microgravity in spaceflight is known to reduce bone formation. In this study, we used a real microgravity environment of the SJ-10 Recoverable Scientific Satellite to examine the effects of space microgravity on the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs). hMSCs were induced toward osteogenic differentiation for 2 and 7 d in a cell culture device mounted on the SJ-10 Satellite. The satellite returned to Earth after going through space experiments in orbit for 12 d, and cell samples were harvested and analyzed for differentiation potentials. The results showed that space microgravity inhibited osteogenic differentiation and resulted in adipogenic differentiation, even under osteogenic induction conditions. Under space microgravity, the expression of 10 genes specific for osteogenesis decreased, including collagen family members, alkaline phosphatase ( ALP), and runt-related transcription factor 2 ( RUNX2), whereas the expression of 4 genes specific for adipogenesis increased, including adipsin ( CFD), leptin ( LEP), CCAAT/enhancer binding protein β ( CEBPB), and peroxisome proliferator-activated receptor-γ ( PPARG). In the analysis of signaling pathways specific for osteogenesis, we found that the expression and activity of RUNX2 was inhibited, expression of bone morphogenetic protein-2 ( BMP2) and activity of SMAD1/5/9 were decreased, and activity of focal adhesion kinase (FAK) and ERK-1/2 declined significantly under space microgravity. These data indicate that space microgravity plays a dual role by decreasing RUNX2 expression and activity through the BMP2/SMAD and integrin/FAK/ERK pathways. In addition, we found that space microgravity increased p38 MAPK and protein kinase B (AKT) activities, which are important for the promotion of adipogenic differentiation of hMSCs. Space microgravity significantly decreased the expression of Tribbles homolog 3 ( TRIB3), a repressor of adipogenic differentiation. Y15, a specific inhibitor of FAK activity, was used to inhibit the activity of FAK under normal gravity; Y15 decreased protein expression of TRIB3. Therefore, it appears that space microgravity decreased FAK activity and thereby reduced TRIB3 expression and derepressed AKT activity. Under space microgravity, the increase in p38 MAPK activity and the derepression of AKT activity seem to synchronously lead to the activation of the signaling pathway specifically promoting adipogenesis.-Zhang, C., Li, L., Jiang, Y., Wang, C., Geng, B., Wang, Y., Chen, J., Liu, F., Qiu, P., Zhai, G., Chen, P., Quan, R., Wang, J. Space microgravity drives transdifferentiation of human bone marrow-derived mesenchymal stem cells from osteogenesis to adipogenesis.

  11. Lentiviral gene transduction of mouse and human hematopoietic stem cells.

    PubMed

    van Til, Niek P; Wagemaker, Gerard

    2014-01-01

    Lentiviral vectors can be used to genetically modify a broad range of cells. Hematopoietic stem cells (HSCs) are particularly suitable for lentiviral gene augmentation, because these cells can be enriched with relative ease from mouse bone marrow and human hematopoietic sources, and in principle require relatively limited cell numbers to completely reconstitute the hematopoietic system in vivo. Furthermore, lentiviral vectors are very efficient if pseudotyped with broad tropism envelope proteins. This chapter focuses on gene modification by the use of self-inactivating third-generation human immunodeficiency virus-derived lentiviral vectors for ex vivo HSC modification for both mouse and human application.

  12. Integration of Stem Cell to Chondrocyte-Derived Cartilage Matrix in Healthy and Osteoarthritic States in the Presence of Hydroxyapatite Nanoparticles.

    PubMed

    Dua, Rupak; Comella, Kristin; Butler, Ryan; Castellanos, Glenda; Brazille, Bryn; Claude, Andrew; Agarwal, Arvind; Liao, Jun; Ramaswamy, Sharan

    2016-01-01

    We investigated the effectiveness of integrating tissue engineered cartilage derived from human bone marrow derived stem cells (HBMSCs) to healthy as well as osteoarthritic cartilage mimics using hydroxyapatite (HA) nanoparticles immersed within a hydrogel substrate. Healthy and diseased engineered cartilage from human chondrocytes (cultured in agar gels) were integrated with human bone marrow stem cell (HBMSC)-derived cartilaginous engineered matrix with and without HA, and evaluated after 28 days of growth. HBMSCs were seeded within photopolymerizable poly (ethylene glycol) diacrylate (PEGDA) hydrogels. In addition, we also conducted a preliminary in vivo evaluation of cartilage repair in rabbit knee chondral defects treated with subchondral bone microfracture and cell-free PEGDA with and without HA. Under in vitro conditions, the interfacial shear strength between tissue engineered cartilage derived from HBMSCs and osteoarthritic chondrocytes was significantly higher (p < 0.05) when HA nanoparticles were incorporated within the HBMSC culture system. Histological evidence confirmed a distinct spatial transition zone, rich in calcium phosphate deposits. Assessment of explanted rabbit knees by histology demonstrated that cellularity within the repair tissues that had filled the defects were of significantly higher number (p < 0.05) when HA was used. HA nanoparticles play an important role in treating chondral defects when osteoarthritis is a co-morbidity. We speculate that the calcified layer formation at the interface in the osteoarthritic environment in the presence of HA is likely to have attributed to higher interfacial strength found in vitro. From an in vivo standpoint, the presence of HA promoted cellularity in the tissues that subsequently filled the chondral defects. This higher presence of cells can be considered important in the context of accelerating long-term cartilage remodeling. We conclude that HA nanoparticles play an important role in engineered to native cartilage integration and cellular processes.

  13. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases.

    PubMed

    Son, Bo-Ra; Marquez-Curtis, Leah A; Kucia, Magda; Wysoczynski, Marcin; Turner, A Robert; Ratajczak, Janina; Ratajczak, Mariusz Z; Janowska-Wieczorek, Anna

    2006-05-01

    Human mesenchymal stem cells (MSCs) are increasingly being considered in cell-based therapeutic strategies for regeneration of various organs/tissues. However, the signals required for their homing and recruitment to injured sites are not yet fully understood. Because stromal-derived factor (SDF)-1 and hepatocyte growth factor (HGF) become up-regulated during tissue/organ damage, in this study we examined whether these factors chemoattract ex vivo-expanded MSCs derived from bone marrow (BM) and umbilical cord blood (CB). Specifically, we investigated the expression by MSCs of CXCR4 and c-met, the cognate receptors of SDF-1 and HGF, and their functionality after early and late passages of MSCs. We also determined whether MSCs express matrix metalloproteinases (MMPs), including membrane type 1 (MT1)-MMP, matrix-degrading enzymes that facilitate the trafficking of hematopoietic stem cells. We maintained expanded BM- or CB-derived MSCs for up to 15-18 passages with monitoring of the expression of 1) various tissue markers (cardiac and skeletal muscle, neural, liver, and endothelial cells), 2) functional CXCR4 and c-met, and 3) MMPs. We found that for up to 15-18 passages, both BM- and CB-derived MSCs 1) express mRNA for cardiac, muscle, neural, and liver markers, as well as the vascular endothelial (VE) marker VE-cadherin; 2) express CXCR4 and c-met receptors and are strongly attracted by SDF-1 and HGF gradients; 3) express MMP-2 and MT1-MMP transcripts and proteins; and 4) are chemo-invasive across the reconstituted basement membrane Matrigel. These in vitro results suggest that the SDF-1-CXCR4 and HGF-c-met axes, along with MMPs, may be involved in recruitment of expanded MSCs to damaged tissues.

  14. Bone-Derived Stem Cells Repair the Heart after Myocardial Infarction Through Transdifferentiation and Paracrine Signaling Mechanisms

    PubMed Central

    Duran, Jason M.; Makarewich, Catherine A.; Sharp, Thomas E.; Starosta, Timothy; Fang, Zhu; Hoffman, Nicholas E.; Chiba, Yumi; Madesh, Muniswamy; Berretta, Remus M.; Kubo, Hajime; Houser, Steven R.

    2013-01-01

    Rationale Autologous bone marrow- or cardiac-derived stem cell therapy for heart disease has demonstrated safety and efficacy in clinical trials but functional improvements have been limited. Finding the optimal stem cell type best suited for cardiac regeneration is key toward improving clinical outcomes. Objective To determine the mechanism by which novel bone-derived stem cells support the injured heart. Methods and Results Cortical bone stem cells (CBSCs) and cardiac-derived stem cells (CDCs) were isolated from EGFP+ transgenic mice and were shown to express c-kit and Sca-1 as well as 8 paracrine factors involved in cardioprotection, angiogenesis and stem cell function. Wild-type C57BL/6 mice underwent sham operation (n=21) or myocardial infarction (MI) with injection of CBSCs (n=67), CDCs (n=36) or saline (n=60). Cardiac function was monitored using echocardiography. Only 2/8 paracrine factors were detected in EGFP+ CBSCs in vivo (basic fibroblast growth factor and vascular endothelial growth factor) and this expression was associated with increased neovascularization of the infarct border zone. CBSC therapy improved survival, cardiac function, regional strain, attenuated remodeling, and decreased infarct size relative to CDC- or saline-treated MI controls. By 6 weeks, EGFP+ cardiomyocytes, vascular smooth muscle and endothelial cells could be identified in CBSC- but not in CDC-treated animals. EGFP+ CBSC-derived isolated myocytes were smaller and more frequently mononucleated, but were functionally indistinguishable from EGFP- myocytes. Conclusions CBSCs improve survival, cardiac function, and attenuate remodeling through two mechanisms:1) secretion of pro-angiogenic factors that stimulate endogenous neovascularization, and 2) differentiation into functional adult myocytes and vascular cells. PMID:23801066

  15. Wild Type Bone Marrow Transplant Partially Reverses Neuroinflammation in Progranulin-Deficient Mice

    PubMed Central

    Yang, Yue; Aloi, Macarena S.; Cudaback, Eiron; Josephsen, Samuel R.; Rice, Samantha J.; Jorstad, Nikolas L.; Keene, C. Dirk; Montine, Thomas J.

    2014-01-01

    Frontotemporal dementia (FTD) is a neurodegenerative disease with devastating changes in behavioral performance and social function. Mutations in the progranulin gene (GRN) are one of the most common causes of inherited FTD due to reduced progranulin expression or activity, including in brain where it is expressed primarily by neurons and microglia. Thus, efforts aimed at enhancing progranulin levels might be a promising therapeutic strategy. Bone marrow-derived cells are able to engraft in the brain and adopt a microglial phenotype under myeloablative irradiation conditioning. This ability makes bone marrow (BM)-derived cells a potential cellular vehicle for transferring therapeutic molecules to the central nervous system. Here, we utilized BM cells from Grn+/+ (wild type or wt) mice labeled with green fluorescence protein for delivery of progranulin to progranulin deficient (Grn−/−) mice. Our results showed that wt bone marrow transplantation (BMT) partially reconstituted progranulin in the periphery and in cerebral cortex of Grn−/− mice. We demonstrated a pro-inflammatory effect in vivo and in ex vivo preparations of cerebral cortex of Grn−/− mice that was partially to fully reversed five months after BMT. Our findings suggest that BMT can be administered as a stem cell-based approach to prevent or to treat neurodegenerative diseases. PMID:25199051

  16. Curcumin-functionalized silk materials for enhancing adipogenic differentiation of bone marrow-derived human mesenchymal stem cells

    PubMed Central

    Li, Chunmei; Luo, Tingting; Zheng, Zhaozhu; Murphy, Amanda R.; Wang, Xiaoqin; Kaplan, David L.

    2014-01-01

    Curcumin, a natural phenolic compound derived from the plant Curcuma longa, was physically entrapped and stabilized in silk hydrogel films and its influence on human bone marrow-derived mesenchymal stem cells (hBMSCs) was assessed related to adipogenic differentiation. The presence of curcumin significantly reduced silk gelation time and changed the porous morphology of gel matrix, but did not change the formation of silk beta-sheet structure. Based on spectrofluorimetric analysis, curcumin likely interacted with hydrophobic residues in silk, interacting with the beta-sheet domains formed in the hydrogels. The antioxidant activity of silk film-associated curcumin remained functional over at least one month in both the dry and hydrated state. Negligible curcumin was released from silk hydrogel films over 48 hours incubation in aqueous solution. For hBMSCs cultured on silk films containing more than 0.25 mg/mL curcumin, cell proliferation was inhibited while adipogenesis was significantly promoted based on transcripts as well as oil red O staining. When hBMSCs were cultured in media containing free curcumin, both proliferation and adipogenesis of hBMSCs were inhibited when curcumin concentrations exceeded 5 μM, which is more than 1,000-times higher than the level of curcumin released from the films in aqueous solution. Thus, silk film-associated curcumin exhibited different effects on hBMSC proliferation and differentiation when compared to curcumin in solution. PMID:25132274

  17. Administration of bone marrow derived mesenchymal stem cells into the liver: potential to rescue pseudoxanthoma elasticum in a mouse model (Abcc6-/-).

    PubMed

    Jiang, Qiujie; Takahagi, Shunsuke; Uitto, Jouni

    2012-01-01

    Pseudoxanthoma elasticum (PXE) is a heritable ectopic mineralization disorder caused by loss-of-function mutations in the ABCC6 gene which is primarily expressed in the liver. There is currently no effective treatment for PXE. In this study, we characterized bone marrow derived mesenchymal stem cells (MSCs) and evaluated their ability to contribute to liver regeneration, with the aim to rescue PXE phenotype. The MSCs, isolated from GFP-transgenic mice by magnetic cell sorting, were shown to have high potential for hepatic differentiation, with expression of Abcc6, in culture. These cells were transplanted into the livers of 4-week-old immunodeficient Abcc6⁻/⁻ mice by intrasplenic injection one day after partial hepatectomy, when peak expression of the stromal cell derived factor-1 (SDF-1) in the liver was observed. Fluorescent bioimaging analyses indicated that transplanted MSCs homed into liver between day 1 and 7, and significant numbers of GFP-positive cells were confirmed in the liver by immunofluorescence. Moreover, enhanced engraftment efficiency was observed with MSCs with high expression levels of the chemokine receptor Cxcr4, a receptor for SDF-1. These data suggest that purified MSCs have the capability of differentiating into hepatic lineages relevant to PXE pathogenesis and may contribute to partial correction of the PXE phenotype.

  18. Endothelial jagged-2 sustains hematopoietic stem and progenitor reconstitution after myelosuppression.

    PubMed

    Guo, Peipei; Poulos, Michael G; Palikuqi, Brisa; Badwe, Chaitanya R; Lis, Raphael; Kunar, Balvir; Ding, Bi-Sen; Rabbany, Sina Y; Shido, Koji; Butler, Jason M; Rafii, Shahin

    2017-12-01

    Angiocrine factors, such as Notch ligands, supplied by the specialized endothelial cells (ECs) within the bone marrow and splenic vascular niche play an essential role in modulating the physiology of adult hematopoietic stem and progenitor cells (HSPCs). However, the relative contribution of various Notch ligands, specifically jagged-2, to the homeostasis of HSPCs is unknown. Here, we show that under steady state, jagged-2 is differentially expressed in tissue-specific vascular beds, but its expression is induced in hematopoietic vascular niches after myelosuppressive injury. We used mice with EC-specific deletion of the gene encoding jagged-2 (Jag2) to demonstrate that while EC-derived jagged-2 was dispensable for maintaining the capacity of HSPCs to repopulate under steady-state conditions, by activating Notch2 it did contribute to the recovery of HSPCs in response to myelosuppressive conditions. Engraftment and/or expansion of HSPCs was dependent on the expression of endothelial-derived jagged-2 following myeloablation. Additionally, jagged-2 expressed in bone marrow ECs regulated HSPC cell cycle and quiescence during regeneration. Endothelial-deployed jagged-2 triggered Notch2/Hey1, while tempering Notch2/Hes1 signaling in HSPCs. Collectively, these data demonstrate that EC-derived jagged-2 activates Notch2 signaling in HSPCs to promote hematopoietic recovery and has potential as a therapeutic target to accelerate balanced hematopoietic reconstitution after myelosuppression.

  19. Endothelial jagged-2 sustains hematopoietic stem and progenitor reconstitution after myelosuppression

    PubMed Central

    Guo, Peipei; Poulos, Michael G.; Palikuqi, Brisa; Badwe, Chaitanya R.; Lis, Raphael; Kunar, Balvir; Ding, Bi-Sen; Rabbany, Sina Y.; Butler, Jason M.

    2017-01-01

    Angiocrine factors, such as Notch ligands, supplied by the specialized endothelial cells (ECs) within the bone marrow and splenic vascular niche play an essential role in modulating the physiology of adult hematopoietic stem and progenitor cells (HSPCs). However, the relative contribution of various Notch ligands, specifically jagged-2, to the homeostasis of HSPCs is unknown. Here, we show that under steady state, jagged-2 is differentially expressed in tissue-specific vascular beds, but its expression is induced in hematopoietic vascular niches after myelosuppressive injury. We used mice with EC-specific deletion of the gene encoding jagged-2 (Jag2) to demonstrate that while EC-derived jagged-2 was dispensable for maintaining the capacity of HSPCs to repopulate under steady-state conditions, by activating Notch2 it did contribute to the recovery of HSPCs in response to myelosuppressive conditions. Engraftment and/or expansion of HSPCs was dependent on the expression of endothelial-derived jagged-2 following myeloablation. Additionally, jagged-2 expressed in bone marrow ECs regulated HSPC cell cycle and quiescence during regeneration. Endothelial-deployed jagged-2 triggered Notch2/Hey1, while tempering Notch2/Hes1 signaling in HSPCs. Collectively, these data demonstrate that EC-derived jagged-2 activates Notch2 signaling in HSPCs to promote hematopoietic recovery and has potential as a therapeutic target to accelerate balanced hematopoietic reconstitution after myelosuppression. PMID:29058691

  20. Human bone marrow-derived MSCs can home to orthotopic breast cancer tumors and promote bone metastasis

    PubMed Central

    Goldstein, Robert H; Reagan, Michaela R; Anderson, Kristen; Kaplan, David L; Rosenblatt, Michael

    2010-01-01

    American women have a nearly 25% lifetime risk of developing breast cancer, with 20–40% of these patients developing life-threatening metastases. Over 70% of patients presenting with metastases have skeletal involvement, which signals progression to an incurable stage. Tumor-stroma cell interactions are only superficially understood, specifically regarding the ability of stromal cells to affect metastasis. In vivo models show that exogenously supplied hBMSCs (human bone-marrow derived stem cells) migrate to breast cancer tumors, but no reports have shown endogenous hBMSC migration from the bone to primary tumors. Here we present a model of in vivo hBMSC migration from a physiologic human bone environment to human breast tumors. Further, hBMSCs alter tumor growth and bone metastasis frequency. hBMSCs may home to certain breast tumors based on tumor-derived TGF-β1. Moreover, at the primary tumor IL-17B/IL-17BR signaling may mediate interactions between hBMSCs and breast cancer cells (BCCs). PMID:21159629

  1. Stimulation of Skin and Wound Fibroblast Migration by Mesenchymal Stem Cells Derived from Normal Donors and Chronic Wound Patients

    PubMed Central

    Rodriguez-Menocal, Luis; Salgado, Marcela; Ford, Dwayne

    2012-01-01

    Chronic wounds continue to be a major cause of morbidity for patients and an economic burden on the health care system. Novel therapeutic approaches to improved wound healing will need, however, to address cellular changes induced by a number of systemic comorbidities seen in chronic wound patients, such as diabetes, chronic renal failure, and arterial or venous insufficiency. These effects likely include impaired inflammatory cell migration, reduced growth factor production, and poor tissue remodeling. The multifunctional properties of bone marrow-derived mesenchymal stem cells (MSCs), including their ability to differentiate into various cell types and capacity to secrete factors important in accelerating healing of cutaneous wounds, have made MSCs a promising agent for tissue repair and regeneration. In this study we have used an in vitro scratch assay procedure incorporating labeled MSCs and fibroblasts derived from normal donors and chronic wound patients in order to characterize the induction of mobilization when these cells are mixed. A modified Boyden chamber assay was also used to examine the effect of soluble factors on fibroblast migration. These studies suggest that MSCs play a role in skin wound closure by affecting dermal fibroblast migration in a dose-dependent manner. Deficiencies were noted, however, in chronic wound patient fibroblasts and MSCs as compared with those derived from normal donors. These findings provide a foundation to develop therapies targeted specifically to the use of bone marrow-derived MSCs in wound healing and may provide insight into why some wounds do not heal. PMID:23197781

  2. Stimulation of skin and wound fibroblast migration by mesenchymal stem cells derived from normal donors and chronic wound patients.

    PubMed

    Rodriguez-Menocal, Luis; Salgado, Marcela; Ford, Dwayne; Van Badiavas, Evangelos

    2012-03-01

    Chronic wounds continue to be a major cause of morbidity for patients and an economic burden on the health care system. Novel therapeutic approaches to improved wound healing will need, however, to address cellular changes induced by a number of systemic comorbidities seen in chronic wound patients, such as diabetes, chronic renal failure, and arterial or venous insufficiency. These effects likely include impaired inflammatory cell migration, reduced growth factor production, and poor tissue remodeling. The multifunctional properties of bone marrow-derived mesenchymal stem cells (MSCs), including their ability to differentiate into various cell types and capacity to secrete factors important in accelerating healing of cutaneous wounds, have made MSCs a promising agent for tissue repair and regeneration. In this study we have used an in vitro scratch assay procedure incorporating labeled MSCs and fibroblasts derived from normal donors and chronic wound patients in order to characterize the induction of mobilization when these cells are mixed. A modified Boyden chamber assay was also used to examine the effect of soluble factors on fibroblast migration. These studies suggest that MSCs play a role in skin wound closure by affecting dermal fibroblast migration in a dose-dependent manner. Deficiencies were noted, however, in chronic wound patient fibroblasts and MSCs as compared with those derived from normal donors. These findings provide a foundation to develop therapies targeted specifically to the use of bone marrow-derived MSCs in wound healing and may provide insight into why some wounds do not heal.

  3. Innate Immunity Dysregulation in Myelodysplastic Syndromes

    DTIC Science & Technology

    2014-10-01

    the CD34+ enriched MDS bone marrow hematopoietic stem/ progenitor cells . We also demonstrated that interference of the TLR2-JMJD3 innate immunity...able to demonstrate that TLR2 innate immune signaling is excessively activated in MDS bone marrow stem/ progenitor cells and that inhibiting this...evidence that the deregulation of innate immune and inflammatory signaling also 13 affects other cells from the immune system and the bone marrow

  4. Comparison of potentials between stem cells isolated from human anterior cruciate ligament and bone marrow for ligament tissue engineering.

    PubMed

    Cheng, Ming-Te; Liu, Chien-Lin; Chen, Tain-Hsiung; Lee, Oscar K

    2010-07-01

    We have previously isolated and identified stem cells from human anterior cruciate ligament (ACL). The purpose of this study was to evaluate the differences in proliferation, differentiation, and extracellular matrix (ECM) formation abilities between bone marrow stem cells (BMSCs) and ACL-derived stem cells (LSCs) from the same donors when cultured with different growth factors, including basic fibroblast growth factor (bFGF), epidermal growth factor, and transforming growth factor-beta 1 (TGF-beta1). Ligament tissues and bone marrow aspirate were obtained from patients undergoing total knee arthroplasty and ACL reconstruction surgeries. Proliferation, colony formation, and population doubling capacity as well as multilineage differentiation potentials of LSCs and BMSCs were compared. Gene expression and ECM production for ligament engineering were also evaluated. It was found that BMSCs possessed better osteogenic differentiation potential than LSCs, while similar adipogenic and chondrogenic differentiation abilities were observed. Proliferation rates of both LSCs and BMSCs were enhanced by bFGF and TGF-beta1. TGF-beta1 treatment significantly increased the expression of type I collagen, type III collagen, fibronectin, and alpha-smooth muscle actin in LSCs, but TGF-beta1 only upregulated type I collagen and tenascin-c in BMSCs. Protein quantification further confirmed the results of differential gene expression and suggested that LSCs and BMSCs increase ECM production upon TGF-beta1 treatment. In summary, in comparison with BMSCs, LSCs proliferate faster and maintain an undifferentiated state with bFGF treatment, whereas under TGF-beta1 treatment, LSCs upregulate major tendinous gene expression and produce a robust amount of ligament ECM protein, making LSCs a potential cell source in future applications of ACL tissue engineering.

  5. Ox-LDL Promotes Migration and Adhesion of Bone Marrow-Derived Mesenchymal Stem Cells via Regulation of MCP-1 Expression

    PubMed Central

    Wang, Congrui; Wang, Huaibin; Lu, Ming; Li, Yonghai; Feng, Huigen; Yuan, Zhiqing

    2013-01-01

    Bone marrow-derived mesenchymal stem cells (bmMSCs) are the most important cell source for stem cell transplant therapy. The migration capacity of MSCs is one of the determinants of the efficiency of MSC-based transplant therapy. Our recent study has shown that low concentrations of oxidized low-density lipoprotein (ox-LDL) can stimulate proliferation of bmMSCs. In this study, we investigated the effects of ox-LDL on bmMSC migration and adhesion, as well as the related mechanisms. Our results show that transmigration rates of bmMSCs and cell-cell adhesion between bmMSCs and monocytes are significantly increased by treatments with ox-LDL in a dose- and time-dependent manner. Expressions of ICAM-1, PECAM-1, and VCAM-1 as well as the levels of intracellular Ca2+ are also markedly increased by ox-LDL in a dose-dependent manner. Cytoskeleton analysis shows that ox-LDL treatment benefits to spreading of bmMSCs and organization of F-actin fibers after being plated for 6 hours. More interestingly, treatments with ox-LDL also markedly increase expressions of LOX-1, MCP-1, and TGF-β; however, LOX-1 antibody and MCP-1 shRNA markedly inhibit ox-LDL-induced migration and adhesion of bmMSCs, which suggests that ox-LDL-induced bmMSC migration and adhesion are dependent on LOX-1 activation and MCP-1 expression. PMID:23956504

  6. Carvedilol protects bone marrow stem cells against hydrogen peroxide-induced cell death via PI3K-AKT pathway.

    PubMed

    Chen, Meihui; Chen, Shudong; Lin, Dingkun

    2016-03-01

    Carvedilol, a nonselective β-adrenergic receptor blocker, has been reported to exert potent anti-oxidative activities. In the present study, we aimed to investigate the effects of carvedilol against hydrogen peroxide (H2O2)-induced bone marrow-derived mesenchymal stem cells (BMSCs) death, which imitate the microenvironment surrounding transplanted cells in the injured spinal cord in vitro. Carvedilol significantly reduced H2O2-induced reactive oxygen species production, apoptosis and subsequent cell death. LY294002, the PI3K inhibitor, blocked the protective effects and up-regulation of Akt phosphorylation of carvedilol. Together, our results showed that carvedilol protects H2O2-induced BMSCs cell death partly through PI3K-Akt pathway, suggesting carvedilol could be used in combination with BMSCs for the treatment of spinal cord injury by improving the cell survival and oxidative stress microenvironments. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. NOTCH-Mediated Maintenance and Expansion of Human Bone Marrow Stromal/Stem Cells: A Technology Designed for Orthopedic Regenerative Medicine

    PubMed Central

    Dong, Yufeng; Long, Teng; Wang, Cuicui; Mirando, Anthony J.; Chen, Jianquan; O’Keefe, Regis J.

    2014-01-01

    Human bone marrow-derived stromal/stem cells (BMSCs) have great therapeutic potential for treating skeletal disease and facilitating skeletal repair, although maintaining their multipotency and expanding these cells ex vivo have proven difficult. Because most stem cell-based applications to skeletal regeneration and repair in the clinic would require large numbers of functional BMSCs, recent research has focused on methods for the appropriate selection, expansion, and maintenance of BMSC populations during long-term culture. We describe here a novel biological method that entails selection of human BMSCs based on NOTCH2 expression and activation of the NOTCH signaling pathway in cultured BMSCs via a tissue culture plate coated with recombinant human JAGGED1 (JAG1) ligand. We demonstrate that transient JAG1-mediated NOTCH signaling promotes human BMSC maintenance and expansion while increasing their skeletogenic differentiation capacity, both ex vivo and in vivo. This study is the first of its kind to describe a NOTCH-mediated methodology for the maintenance and expansion of human BMSCs and will serve as a platform for future clinical or translational studies aimed at skeletal regeneration and repair. PMID:25368376

  8. The Effects of Hematopoietic Growth Factors on Neurite Outgrowth

    PubMed Central

    Su, Ye; Cui, Lili; Piao, Chunshu; Li, Bin; Zhao, Li-Ru

    2013-01-01

    Stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) are initially discovered as the essential hematopoietic growth factors regulating bone marrow stem cell proliferation and differentiation, and SCF in combination with G-CSF (SCF+G-CSF) has synergistic effects on bone marrow stem cell mobilization. In this study we have determined the effect of SCF and G-CSF on neurite outgrowth in rat cortical neurons. Using molecular and cellular biology and live cell imaging approaches, we have revealed that receptors for SCF and G-CSF are expressed on the growth core of cortical neurons, and that SCF+G-CSF synergistically enhances neurite extension through PI3K/AKT and NFκB signaling pathways. Moreover, SCF+G-CSF induces much greater NFκB activation, NFκB transcriptional binding and brain-derived neurotrophic factor (BDNF) production than SCF or G-CSF alone. In addition, we have also observed that BDNF, the target gene of NFκB, is required for SCF+G-CSF-induced neurite outgrowth. These data suggest that SCF+G-CSF has synergistic effects to promote neurite growth. This study provides new insights into the contribution of hematopoietic growth factors in neuronal plasticity. PMID:24116056

  9. Retrovirus-mediated transfer of a hygromycin phosphotransferase-thymidine kinase fusion gene into human CD34+ bone marrow cells.

    PubMed

    Akatsuka, Y; Emi, N; Kato, H; Abe, A; Tanimoto, M; Lupton, S D; Saito, H

    1994-12-01

    Retrovirus-mediated gene transfer into human hematopoietic stem cells has been proposed as a means of therapy for various inherited diseases and as a method of gene marking. The transduction efficiency of an amphotropic retroviral vector (PA317/HyTK) containing a hygromycin phosphotransferase-thymidine kinase fusion gene was examined with human CD34+ bone marrow cells in the presence of interleukin-3 (IL-3), interleukin-6 (IL-6), and stem cell factor. Transduction efficiencies determined from the ability of transduced granulocyte-macrophage colony forming units (CFU-GM) to grow in hygromycin B and from polymerase chain reaction analysis of individual transduced CFU-GM growing in the presence of hygromycin B were 0.3-3.0% (mean +/- S.D., 1.1 +/- 0.9%) and 0.1-1.2% (mean +/- S.D., 0.5 +/- 0.4%), respectively. Ganciclovir at a dose of approximately 1 microM reduced the number of CFU-GM derived from vector-infected CD34+ cells by 50%. These findings demonstrate that human hematopoietic stem cells infected with this retroviral vector are susceptible to ganciclovir, offering the potential to control transduced gene expression in vivo.

  10. Tunable Surface Repellency Maintains Stemness and Redox Capacity of Human Mesenchymal Stem Cells.

    PubMed

    Balikov, Daniel A; Crowder, Spencer W; Boire, Timothy C; Lee, Jung Bok; Gupta, Mukesh K; Fenix, Aidan M; Lewis, Holley N; Ambrose, Caitlyn M; Short, Philip A; Kim, Chang Soo; Burnette, Dylan T; Reilly, Matthew A; Murthy, N Sanjeeva; Kang, Mi-Lan; Kim, Won Shik; Sung, Hak-Joon

    2017-07-12

    Human bone marrow derived mesenchymal stem cells (hMSCs) hold great promise for regenerative medicine due to their multipotent differentiation capacity and immunomodulatory capabilities. Substantial research has elucidated mechanisms by which extracellular cues regulate hMSC fate decisions, but considerably less work has addressed how material properties can be leveraged to maintain undifferentiated stem cells. Here, we show that synthetic culture substrates designed to exhibit moderate cell-repellency promote high stemness and low oxidative stress-two indicators of naïve, healthy stem cells-in commercial and patient-derived hMSCs. Furthermore, the material-mediated effect on cell behavior can be tuned by altering the molar percentage (mol %) and/or chain length of poly(ethylene glycol) (PEG), the repellant block linked to hydrophobic poly(ε-caprolactone) (PCL) in the copolymer backbone. Nano- and angstrom-scale characterization of the cell-material interface reveals that PEG interrupts the adhesive PCL domains in a chain-length-dependent manner; this prevents hMSCs from forming mature focal adhesions and subsequently promotes cell-cell adhesions that require connexin-43. This study is the first to demonstrate that intrinsic properties of synthetic materials can be tuned to regulate the stemness and redox capacity of hMSCs and provides new insight for designing highly scalable, programmable culture platforms for clinical translation.

  11. Mesenchymal stem cells from the Wharton’s jelly of umbilical cord segments provide stromal support for the maintenance of cord blood hematopoietic stem cells during long-term ex vivo culture

    PubMed Central

    Bakhshi, Tiki; Zabriskie, Ryan C.; Bodie, Shamanique; Kidd, Shannon; Ramin, Susan; Paganessi, Laura A.; Gregory, Stephanie A.; Fung, Henry C.; Christopherson, Kent W.

    2012-01-01

    BACKGROUND Hematopoietic stem cells (HSCs) are routinely obtained from marrow, mobilized peripheral blood, and umbilical cord blood. Mesenchymal stem cells (MSCs) are traditionally isolated from marrow. Bone marrow–derived MSCs (BM-MSCs) have previously demonstrated their ability to act as a feeder layer in support of ex vivo cord blood expansion. However, the use of BM-MSCs to support the growth, differentiation, and engraftment of cord blood may not be ideal for transplant purposes. Therefore, the potential of MSCs from a novel source, the Wharton’s jelly of umbilical cords, to act as stromal support for the long-term culture of cord blood HSC was evaluated. STUDY DESIGN AND METHODS Umbilical cord–derived MSCs (UC-MSCs) were cultured from the Wharton’s jelly of umbilical cord segments. The UC-MSCs were then profiled for expression of 12 cell surface receptors and tested for their ability to support cord blood HSCs in a long-term culture-initiating cell (LTC-IC) assay. RESULTS Upon culture, UC-MSCs express a defined set of cell surface markers (CD29, CD44, CD73, CD90, CD105, CD166, and HLA-A) and lack other markers (CD45, CD34, CD38, CD117, and HLA-DR) similar to BM-MSCs. Like BM-MSCs, UC-MSCs effectively support the growth of CD34+ cord blood cells in LTC-IC assays. CONCLUSION These data suggest the potential therapeutic application of Wharton’s jelly–derived UC-MSCs to provide stromal support structure for the long-term culture of cord blood HSCs as well as the possibility of cotransplantation of genetically identical, HLA-matched, or unmatched cord blood HSCs and UC-MSCs in the setting of HSC transplantation. PMID:18798803

  12. Opposite Effects of Coinjection and Distant Injection of Mesenchymal Stem Cells on Breast Tumor Cell Growth.

    PubMed

    Zheng, Huilin; Zou, Weibin; Shen, Jiaying; Xu, Liang; Wang, Shu; Fu, Yang-Xin; Fan, Weimin

    2016-09-01

    : Mesenchymal stem cells (MSCs) usually promote tumor growth and metastasis. By using a breast tumor 4T1 cell-based animal model, this study determined that coinjection and distant injection of allogeneic bone marrow-derived MSCs with tumor cells could exert different effects on tumor growth. Whereas the coinjection of MSCs with 4T1 cells promoted tumor growth, surprisingly, the injection of MSCs at a site distant from the 4T1 cell inoculation site suppressed tumor growth. We further observed that, in the distant injection model, MSCs decreased the accumulation of myeloid-derived suppressor cells and regulatory T cells in tumor tissues by enhancing proinflammatory factors such as interferon-γ, tumor necrosis factor-α, Toll-like receptor (TLR)-3, and TLR-4, promoting host antitumor immunity and inhibiting tumor growth. Unlike previous reports, this is the first study reporting that MSCs may exert opposite roles on tumor growth in the same animal model by modulating the host immune system, which may shed light on the potential application of MSCs as vehicles for tumor therapy and other clinical applications. Mesenchymal stem cells (MSCs) have been widely investigated for their potential roles in tissue engineering, autoimmune diseases, and tumor therapeutics. This study explored the impact of coinjection and distant injection of allogeneic bone marrow-derived MSCs on mouse 4T1 breast cancer cells. The results showed that the coinjection of MSCs and 4T1 cells promoted tumor growth. MSCs might act as the tumor stromal precursors and cause immunosuppression to protect tumor cells from immunosurveillance, which subsequently facilitated tumor metastasis. Interestingly, the distant injection of MSCs and 4T1 cells suppressed tumor growth. Together, the results of this study revealed the dual functions of MSCs in immunoregulation. ©AlphaMed Press.

  13. The therapeutic effects of bone marrow-derived mesenchymal stem cells and simvastatin in a rat model of liver fibrosis.

    PubMed

    Motawi, Tarek M K; Atta, Hazem M; Sadik, Nermin A H; Azzam, May

    2014-01-01

    Liver fibrosis is the excessive accumulation of extracellular matrix (ECM) proteins including collagen that occurs in most types of chronic liver diseases. Studies concerning the capacity of mesenchymal stem cells (MSCs) and simvasatain (SIMV) to repair fibrotic tissues through reducing inflammation, collagen deposition, are still controversial. This study aimed to investigate the therapeutic efficacy of bone marrow (BM)-derived MSCs and SIMV on carbon tetrachloride (CCl4)-induced liver fibrosis in rats. Rats were divided into: normal, CCl4, CCl4/MSCs, CCl4/SIMV, CCl4/MSCs/SIMV, and SIMV groups. BM-derived MSCs were detected by RT-PCR of CD29 and were then infused into the tail vein of female rats that received CCl4 injection to induce liver fibrosis. Sex-determining region Y (SRY) gene on Y-chromosome gene was assessed by PCR to confirm homing of the male stem cells in liver tissue of the female recipients. Serum liver function tests, liver procollagens I and III, tissue inhibitors of metalloproteinase-1 (TIMP-1), endoglin, matrix metalloproteinase-1 (MMP-1) gene expressions, transforming growth factor-beta (TGF-β1) immunostaining, and histopathologicl examination were performed. MSCs and SIMV decreased liver procollagens I and III, TIMP-1 and endoglin gene expressions, TGF-β1 immunostaining, and serum liver function tests compared with the CCl4 group. MMP-1 expression was increased in the CCl4/MSCs group. Histopathological examination as well as fibrosis score supports the biochemical and molecular findings. It can be concluded that MSCs and SIMV were effective in the treatment of hepatic CCl4-induced fibrosis-rat model. Treatment with MSCs was superior to SIMV. This antifibrotic effect can be attributed to their effect on the MMPs/TIMPs balance which is central in fibrogenesis.

  14. Influence of a dual-injection regimen, plerixafor and CXCR4 on in utero hematopoietic stem cell transplantation and engraftment with use of the sheep model.

    PubMed

    Goodrich, A Daisy; Varain, Nicole M; Jeanblanc, Christine M; Colon, Donna M; Kim, Jaehyup; Zanjani, Esmail D; Hematti, Peiman

    2014-09-01

    Inadequate engraftment of hematopoietic stem cells (HSCs) after in utero HSC transplantation (IUHSCT) remains a major obstacle for the prenatal correction of numerous hereditary disorders. HSCs express CXCR4 receptors that allow homing and engraftment in response to stromal-derived factor 1 (SDF-1) ligand present in the bone marrow stromal niche. Plerixafor, a mobilization drug, works through the interruption of the CXCR4-SDF-1 axis. We used the fetal sheep large-animal model to test our hypotheses that (i) by administering plerixafor in utero before performing IUHSCT to release fetal HSCs and thus vacating recipient HSC niches, (ii) by using human mesenchymal stromal/stem cells (MSCs) to immunomodulate and humanize the fetal BM niches and (iii) by increasing the CXCR4(+) fraction of CD34(+) HSCs, we could improve engraftment. Human cord blood-derived CD34(+) cells and human bone marrow-derived MSCs were used for these studies. When MSCs were transplanted 1 week before CD34(+) cells with plerixafor treatment, we observed 2.80% donor hematopoietic engraftment. Combination of this regimen with additional CD34(+) cells at the time of MSC infusion increased engraftment levels to 8.77%. Next, increasing the fraction of CXCR4(+) cells in the CD34(+) population albeit transplanting at a late gestation age was not beneficial. Our results show engraftment of both lymphoid and myeloid lineages. Prior MSC and HSC cotransplantation followed by manipulation of the CXCR4-SDF-1 axis in IUHSCT provides an innovative conceptual approach for conferring competitive advantage to donor HSCs. Our novel approach could provide a clinically relevant approach for enhancing engraftment early in the fetus. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  15. Transplantation of marrow-derived cardiac stem cells carried in fibrin improves cardiac function after myocardial infarction.

    PubMed

    Guo, Hai-Dong; Wang, Hai-Jie; Tan, Yu-Zhen; Wu, Jin-Hong

    2011-01-01

    The high death rate of the transplanted stem cells in the infarcted heart and the low efficiency of differentiation toward cardiomyocytes influence the outcome of stem cell transplantation for treatment of myocardial infarction (MI). Fibrin glue (FG) has been extensively used as a cell implantation matrix to increase cell survival. However, mechanisms of the effects of FG for stem cell transplantation to improve cardiac function are unclear. We have isolated c-kit+/Sca-1+ marrow-derived cardiac stem cells (MCSCs) from rat bone marrow; the cells expressed weakly early cardiac transcription factor Nkx2.5, GATA-4, Mef2C, and Tbx5. Effects of FG on survival, proliferation, and migration of MCSCs were examined in vitro. Cytoprotective effects of FG were assessed by exposure of MCSCs to anoxia. Efficacy of MCSC transplantation in FG was evaluated in the female rat MI model. The MCSCs survived well and proliferated in FG, and they may migrate out from the edge of FG in the wound and nature state. Acridine orange/ethidium bromide staining and lactate dehydrogenase analysis showed that MCSCs in FG were more resistant to anoxia as compared with MCSCs alone. In a rat MI model, cardiac function was improved and scar area was obviously reduced in group of MCSCs in FG compared with group of MCSCs and FG alone, respectively. Y chromosome fluorescence in situ hybridization showed that there were more survived MCSCs in group of MCSCs in FG than those in group of MCSCs alone, and most Y chromosome positive cells expressed cardiac troponin T (cTnT) and connexin-43 (Cx-43). Cx-43 was located between Y chromosome positive cells and recipient cardiomyocytes. Microvessel density in the peri-infarct regions and infarct regions significantly increased in group of MCSCs in FG. These results suggest that FG provide a suitable microenvironment for survival and proliferation of MCSCs and protect cells from apoptosis and necrosis caused by anoxia. MCSCs could differentiate into cardiomyocytes after being transplanted in the border of the infarcted myocardium and form connections with native cardiomyocytes. FG is helpful for MCSC transplantation to repair myocardium and improve cardiac function through promoting the survival, migration, and cardiomyogenic differentiation of MCSCs and inducing angiogenesis.

  16. Introduction of N-cadherin-binding motif to alginate hydrogels for controlled stem cell differentiation.

    PubMed

    Lee, Jae Won; An, Hyoseok; Lee, Kuen Yong

    2017-07-01

    Control of stem cell fate and phenotype using biomimetic synthetic extracellular matrices (ECMs) is an important tissue engineering approach. Many studies have focused on improving cell-matrix interactions. However, proper control of cell-cell interactions using synthetic ECMs could be critical for tissue engineering, especially with undifferentiated stem cells. In this study, alginate hydrogels were modified with a peptide derived from the low-density lipoprotein receptor-related protein 5 (LRP5), which is known to bind to N-cadherin, as a cell-cell interaction motif. In vitro changes in the morphology and differentiation of mouse bone marrow stromal cells (D1 stem cells) cultured in LRP5-alginate hydrogels were investigated. LRP5-alginate gels successfully induced stem cell aggregation and enhanced chondrogenic differentiation of D1 stem cells, compared to RGD-alginate gels, at low cell density. This approach to tailoring synthetic biomimetic ECMs using cell-cell interaction motifs may be critical in tissue engineering approaches using stem cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Cell Cycle Related Differentiation of Bone Marrow Cells into Lung Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dooner, Mark; Aliotta, Jason M.; Pimental, Jeffrey

    2007-12-31

    Green-fluorescent protein (GFP) labeled marrow cells transplanted into lethally irradiated mice can be detected in the lungs of transplanted mice and have been shown to express lung specific proteins while lacking the expression of hematopoietic markers. We have studied marrow cells induced to transit cell cycle by exposure to IL-3, IL-6, IL-11 and steel factor at different times of culture corresponding to different phases of cell cycle. We have found that marrow cells at the G1/S interface have a 3-fold increase in cells which assume a lung phenotype and that this increase is no longer seen in late S/G2. Thesemore » cells have been characterized as GFP{sup +} CD45{sup -} and GFP{sup +} cytokeratin{sup +}. Thus marrow cells with the capacity to convert into cells with a lung phenotype after transplantation show a reversible increase with cytokine induced cell cycle transit. Previous studies have shown the phenotype of bone marrow stem cells fluctuates reversibly as these cells traverse cell cycle, leading to a continuum model of stem cell regulation. The present studies indicate that marrow stem cell production of nonhematopoietic cells also fluctuates on a continuum.« less

  18. Role of T cells in sex differences in syngeneic bone marrow transfers.

    PubMed

    Raveche, E S; Santoro, T; Brecher, G; Tjio, J H

    1985-11-01

    Transferred marrow cells will proliferate in normal mice not exposed to irradiation or any other type of stem cell depletion when five consecutive transfers of 40 million cells are given. Approximately 25% of the mitotic cells are of male donor origin observed cytogenetically in all of the female recipient spleens and marrow analyzed from two weeks to one and one-half years after transfusions. Male donor stem cells are accepted and form a stable component of the self-renewing stem cell pool. In contrast, only 5% female cells are found in male recipients. This sex difference in engraftment is not hormonal since castration of recipients does not alter the percentage of donor cells. Rigorous T depletion of female donor bone marrow, however, increases the percentage of donor engraftment to the level observed when male marrow, either whole or T depleted, is transferred to female recipients. The success of T-depleted female stem cells to seed male recipients is observed in both C57BL/6, a responder strain in which females readily respond to the H-Y antigen as manifest by skin graft rejection, and CBA/J, a strain in which females do not readily respond to H-Y. In addition, recipient nude BALB/c males, which lack a thymus, fail to accept whole bone marrow from BALB/c females. However, male bone marrow cells seed BALB/c nude females. These studies demonstrate that the poor engraftment of female cells in transfused male recipients is abrogated by the removal of T cells from the donor female marrow.

  19. Changes in the frequencies of human hematopoietic stem and progenitor cells with age and site

    PubMed Central

    Farrell, TL; McGuire, TR; Bilek, L; Brusnahan, SK; Jackson, JD; Lane, JT; Garvin, KL; O'Kane, BJ; Berger, AM; Tuljapurkar, SR; Kessinger, MA; Sharp, JG

    2013-01-01

    This study enumerated CD45hi/CD34+ and CD45hi/CD133+ human hematopoietic stem cells (HSC) and granulocyte-monocyte colony forming (GM-CFC) progenitor cells in blood and trochanteric and femoral bone marrow in 233 individuals. Stem cell frequencies were determined by multi-parameter flow cytometry employing an internal control to determine the intrinsic variance of the assays. Progenitor cell frequency was determined using a standard colony assay technique. The frequency of outliers from undetermined methodological causes was highest for blood but less than 5% for all values. The frequency of CD45hi/CD133+ cells correlated highly with the frequency of CD45hi/CD34+ cells in trochanteric and femoral bone marrow. The frequency of these HSC populations in trochanteric and femoral bone marrow rose significantly with age. In contrast, there was no significant trend of either of these cell populations with age in the blood. Trochanteric marrow GM-CFC progenitor cells showed no significant trends with age, but femoral marrow GM-CFC trended downward with age, potentially because of the reported conversion of red marrow at this site to fat with age. Hematopoietic stem and progenitor cells exhibited changes in frequencies with age that differed between blood and bone marrow. We previously reported that side population (SP) multipotential HSC, that include the precursors of CD45hi/CD133+ and CD45hi/CD34+, decline with age. Potentially the increases in stem cell frequencies in the intermediate compartment between SP and GM progenitor cells observed in this study represent a compensatory increase for the loss of more potent members of the HSC hierarchy. PMID:24246745

  20. Adipogenic placenta-derived mesenchymal stem cells are not lineage restricted by withdrawing extrinsic factors: developing a novel visual angle in stem cell biology.

    PubMed

    Hu, C; Cao, H; Pan, X; Li, J; He, J; Pan, Q; Xin, J; Yu, X; Li, J; Wang, Y; Zhu, D; Li, L

    2016-03-17

    Current evidence implies that differentiated bone marrow mesenchymal stem cells (BMMSCs) can act as progenitor cells and transdifferentiate across lineage boundaries. However, whether this unrestricted lineage has specificities depending on the stem cell type is unknown. Placental-derived mesenchymal stem cells (PDMSCs), an easily accessible and less invasive source, are extremely useful materials in current stem cell therapies. No studies have comprehensively analyzed the transition in morphology, surface antigens, metabolism and multilineage potency of differentiated PDMSCs after their dedifferentiation. In this study, we showed that after withdrawing extrinsic factors, adipogenic PDMSCs reverted to a primitive cell population and retained stem cell characteristics. The mitochondrial network during differentiation and dedifferentiation may serve as a marker of absent or acquired pluripotency in various stem cell models. The new population proliferated faster than unmanipulated PDMSCs and could be differentiated into adipocytes, osteocytes and hepatocytes. The cell adhesion molecules (CAMs) signaling pathway and extracellular matrix (ECM) components modulate cell behavior and enable the cells to proliferate or differentiate during the differentiation, dedifferentiation and redifferentiation processes in our study. These observations indicate that the dedifferentiated PDMSCs are distinguishable from the original PDMSCs and may serve as a novel source in stem cell biology and cell-based therapeutic strategies. Furthermore, whether PDMSCs differentiated into other lineages can be dedifferentiated to a primitive cell population needs to be investigated.

  1. [Osteogenic potential of bone marrow mesenchymal stem cells from ovariectomied osteoporotic rat].

    PubMed

    Li, Dong-ju; Ge, Dong-xia; Wu, Wen-chao; Wu, Jiang; Li, Liang

    2005-05-01

    To investigate the difference of osteogenic potential of bone marrow mesenchymal stem cells (MSCs) between healthy rats and osteoporotic rats. We established the animal model of osteoporosis by performing ovariectom on the 3-month-old female Sprague-Dawley rats. Bone marrow mesenchymal stem cells(MSCs) were isolated from the rats of control group and of ovariectomized (ovx) group by means of the density-gradient centrifugation method, and the 3rd-4th passage MSCs were used in all the experiments. The experiments comprised 4 groups: (1) Marrow mesenchymal stem cells control group (MSCs control group); (2) Marrow mesenchymal stem cells ovx group (MSCs ovx group); (3) Osteogenesis induction control group (OSI control group); (4) Osteogenesis induction ovx group (OSI ovx group). Cell cycle and proliferation index (PI) of MSCs were detected by flow cytometry. The expression of alkaline phosphatase (ALP) was detected by dynamics method with substrate of phosphoric acid para-Nitro benzene. The levels of osteocalcin were detected with the isotope labelling method. (1) PI of MSCs was lower in MSCs ovx group than in MSCs control group. (2) The expression of alkaline phosphatase (ALP) was much higher in OSI control group than in the MSCs control group; the expression of alkaline phosphatase (ALP) was much higher in the OSI control group than in OSI ovx group after 7-day and 14-day osteogenic induction. (3) The level of osteocalcin was much higher in the OSI control group than in the MSCs control group after 14-day, 21-day, 28-day osteogenic induction. The level of osteocalcin was much higher in the OSI control group than in the OSI ovx group. Both the proliferative potential and the osteogenic potential of bone marrow mesenchymal stem cells (MSCs) from the ovariectomized osteoporotic rat are decreased.

  2. Study of the quantitative, functional, cytogenetic, and immunoregulatory properties of bone marrow mesenchymal stem cells in patients with B-cell chronic lymphocytic leukemia.

    PubMed

    Pontikoglou, Charalampos; Kastrinaki, Maria-Christina; Klaus, Mirjam; Kalpadakis, Christina; Katonis, Pavlos; Alpantaki, Kalliopi; Pangalis, Gerassimos A; Papadaki, Helen A

    2013-05-01

    The bone marrow (BM) microenvironment has clearly been implicated in the pathogenesis of B-cell chronic lymphocytic leukemia (B-CLL). However, the potential involvement of BM stromal progenitors, the mesenchymal stem cells (MSCs), in the pathophysiology of the disease has not been extensively investigated. We expanded in vitro BM-MSCs from B-CLL patients (n=11) and healthy individuals (n=16) and comparatively assessed their reserves, proliferative potential, differentiation capacity, and immunoregulatory effects on T- and B-cells. We also evaluated the anti-apoptotic effect of patient-derived MSCs on leukemic cells and studied their cytogenetic characteristics in comparison to BM hematopoietic cells. B-CLL-derived BM MSCs exhibit a similar phenotype, differentiation potential, and ability to suppress T-cell proliferative responses as compared with MSCs from normal controls. Furthermore, they do not carry the cytogenetic abnormalities of the leukemic clone, and they exert a similar anti-apoptotic effect on leukemic cells and healthy donor-derived B-cells, as their normal counterparts. On the other hand, MSCs from B-CLL patients significantly promote normal B-cell proliferation and IgG production, in contrast to healthy-donor-derived MSCs. Furthermore, they have impaired reserves, defective cellular growth due to increased apoptotic cell death and exhibit aberrant production of stromal cell-derived factor 1, B-cell activating factor, a proliferation inducing ligand, and transforming growth factor β1, cytokines that are crucial for the survival/nourishing of the leukemic cells. We conclude that ex vivo expanded B-CLL-derived MSCs harbor intrinsic qualitative and quantitative abnormalities that may be implicated in disease development and/or progression.

  3. The TPO/c-MPL pathway in the bone marrow may protect leukemia cells from chemotherapy in AML Patients.

    PubMed

    Dong-Feng, Zeng; Ting, Liu; Yong, Zhang; Cheng, Chang; Xi, Zhang; Pei-Yan, Kong

    2014-04-01

    Accumulating evidence indicates that the interaction of human LSCs (leukemic stem cells) with the hematopoietic microenvironment, mediated by the thrombopoietin (TPO)/c-MPL pathway, may be an underlying mechanism for resistance to cell cycle-dependent cytotoxic chemotherapy. However, the role of TPO/c-MPL signaling in AML (acute myelogenous leukemia) chemotherapy resistance hasn't been fully understood. The c-MPL and TPO levels in different AML samples were measured by flow cytometry and ELISA. We also assessed the TPO levels in the osteoblasts derived from bone mesenchymal stem cells (BMSCs). The survival rate of an AML cell line that had been co-cultured with different BMSC-derived osteoblasts was measured to determine the IC50 of an AML chemotherapy drug daunorubicin (DNR). The levels of TPO/c-MPL in the initial and relapse AML patients were significantly higher than that in the control (P < 0.05). The osteoblasts derived from AML patients' BMSCs secreted more TPO than the osteoblasts derived from normal control BMSCs (P < 0.05). A strong positive correlation between the TPO level and c-MPL expression was found in the bone marrow mononuclear cells of the relapse AML patients. More importantly, the IC50 of DNR in the HEL + AML-derived osteoblasts was the highest among all co-culture systems. High level of TPO/c-MPL signaling may protect LSCs from chemotherapy in AML. The effects of inhibition of the TPO/c-MPL pathway on enhancing the chemotherapy sensitivity of AML cells, and on their downstream effector molecules that direct the interactions between patient-derived blasts and leukemia repopulating cells need to be further studied.

  4. shRNA-Induced Gene Knockdown In Vivo to Investigate Neutrophil Function.

    PubMed

    Basit, Abdul; Tang, Wenwen; Wu, Dianqing

    2016-01-01

    To silence genes in neutrophils efficiently, we exploited the RNA interference and developed an shRNA-based gene knockdown technique. This method involves transfection of mouse bone marrow-derived hematopoietic stem cells with retroviral vector carrying shRNA directed at a specific gene. Transfected stem cells are then transplanted into irradiated wild-type mice. After engraftment of stem cells, the transplanted mice have two sets of circulating neutrophils. One set has a gene of interest knocked down while the other set has full complement of expressed genes. This efficient technique provides a unique way to directly compare the response of neutrophils with a knocked-down gene to that of neutrophils with the full complement of expressed genes in the same environment.

  5. Heterogenic transplantation of bone marrow-derived rhesus macaque mesenchymal stem cells ameliorates liver fibrosis induced by carbon tetrachloride in mouse

    PubMed Central

    Yan, Yaping; Wang, Junfeng; Duan, Yanchao; Li, Shanshan; Yan, Li; Wang, Hong; Chen, Bingbing; Sang, Xiongbo; Ji, Weizhi

    2018-01-01

    Liver fibrosis is a disease that causes high morbidity and has become a major health problem. Liver fibrosis can lead to the end stage of liver diseases (livercirrhosisand hepatocellularcarcinoma). Currently, liver transplantation is the only effective treatment for end-stage liver disease. However, the shortage of organ donors, high cost of medical surgery, immunological rejection and transplantation complications severely hamper liver transplantation therapy. Mesenchymal stem cells (MSCs) have been regarded as promising cells for clinical applications in stem cell therapy in the treatment of liver diseases due to their unique multipotent differentiation capacity, immunoregulation and paracrine effects. Although liver fibrosis improvements by MSC transplantation in preclinical experiments as well as clinical trials have been reported, the in vivo fate of MSCs after transportation and their therapeutic mechanisms remain unclear. In this present study, we isolated MSCs from the bone marrow of rhesus macaques. The cells exhibited typical MSC markers and could differentiate into chondrocytes, osteocytes, and adipocytes, which were not affected by labeling with enhanced green fluorescent protein (EGFP). The harvested MSCs respond to interferon-γ stimulation and have the ability to inhibit lymphocyte proliferation in vitro. EGFP-labeled MSCs (1 × 106 cells) were transplanted into mice with carbon tetrachloride-induced liver fibrosis via tail vein injection. The ability of the heterogenic MSC infusion to ameliorate liver fibrosis in mice was evaluated by a blood plasma chemistry index, pathological examination and liver fibrosis-associated gene expression. Additionally, a small number of MSCs that homed and engrafted in the mouse liver tissues were evaluated by immunofluorescence analysis. Our results showed that the transplantation of heterogenic MSCs derived from monkey bone marrow can be used to treat liver fibrosis in the mouse model and that the paracrine effects of MSCs may play an important role in the improvement of liver fibrosis. PMID:29456886

  6. Small Molecule Protection of Bone Marrow Hematopoietic Stem Cells

    DTIC Science & Technology

    2015-10-01

    several recently identified small molecules can protect hematopoietic stem cells (HSCs) from damage or killing by endogenous aldehydes . Proof-of-concept...anemia bone marrow failure CD34+ hematopoietic stem cells aldehydes formaldehyde DNA damage DNA base adduct DNA-protein crosslink mass...below. Revised Specific Aim 1: Small molecule protection of human cells from aldehyde - induced killing (in vitro studies - no mice or human subjects

  7. Generation and characterisation of human umbilical cord derived mesenchymal stem cells by explant method.

    PubMed

    Yusoff, Z; Maqbool, M; George, E; Hassan, R; Ramasamy, R

    2016-06-01

    Mesenchymal stem cells (MSCs) derived from human umbilical cord (UC) have been considered as an important tool for treating various malignancies, tissue repair and organ regeneration. Umbilical cord-derived mesenchymal stem cells (UC-MSCs) are better alternative to MSCs that derived from bone marrow (BM-MSCs) as they are regarded as medical waste with little ethical concern for research and easily culture-expanded. In this present study, the foetal distal end of human UC was utilised to generate MSC by explant method. Upon in vitro culture, adherent cells with fibroblastic morphology were generated with rapid growth kinetics. Under the respective inductive conditions, these cells were capable of differentiating into adipocytes and osteocytes; express an array of standard MSC's surface markers CD29, CD73, CD90, CD106 and MHC-class I. Further assessment of immunosuppression activity revealed that MSCs generated from UC had profoundly inhibited the proliferation of mitogen-activated T lymphocytes in a dosedependent manner. The current laboratory findings have reinforced the application of explant method to generate UCMSCs thus, exploring an ideal platform to fulfil the increasing demand of MSCs for research and potential clinical use.

  8. Influence of in vitro biomimicked stem cell 'niche' for regulation of proliferation and differentiation of human bone marrow-derived mesenchymal stem cells to myocardial phenotypes: serum starvation without aid of chemical agents and prevention of spontaneous stem cell transformation enhanced by the matrix environment.

    PubMed

    Kim, Jae Hyung; Shin, Sang-Hyun; Li, Tian Zhu; Suh, Hwal

    2016-01-01

    Niche appears important for preventing the spontaneous differentiation or senescence that cells undergo during in vitro expansion. In the present study, it was revealed that human bone marrow-derived mesenchymal stem cells (hBM-MSCs) undergo senescence-related differentiation into the myocardial lineage in vitro without any induction treatment. This phenomenon occurred over the whole population of MCSs, much different from conventional differentiation with limited frequency of occurrence, and was accompanied by a change of morphology into large, flat cells with impeded proliferation, which are the representative indications of MSC senescence. By culturing MSCs under several culture conditions, it was determined that induction treatment with 5-azacytidine was not associated with the phenomenon, but the serum-starvation condition, under which proliferation is severely hampered, caused senescence progression and upregulation of cardiac markers. Nevertheless, MSCs gradually developed a myocardial phenotype under normal culture conditions over a prolonged culture period and heterogeneous populations were formed. In perspectives of clinical applications, this must be prevented for fair and consistent outcomes. Hence, the biomimetic 'niche' was constituted for hBM-MSCs by cultivating on a conventionally available extracellular matrix (ECM). Consequently, cells on ECM regained a spindle-shape morphology, increased in proliferation rate by two-fold and showed decreased expression of cardiac markers at both the mRNA and protein levels. In conclusion, the outcome indicates that progression of MSC senescence may occur via myocardial differentiation during in vitro polystyrene culture, and this can be overcome by employing appropriate ECM culture techniques. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Role of human amnion-derived mesenchymal stem cells in promoting osteogenic differentiation by influencing p38 MAPK signaling in lipopolysaccharide -induced human bone marrow mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuli; Wu, Hongxia; Shen, Ming

    Periodontitis is a chronic inflammatory disease induced by bacterial pathogens, which not only affect connective tissue attachments but also cause alveolar bone loss. In this study, we investigated the anti-inflammatory effects of Human amnion-derived mesenchymal stem cells (HAMSCs) on human bone marrow mesenchymal stem cells (HBMSCs) under lipopolysaccharide (LPS)-induced inflammatory conditions. Proliferation levels were measured by flow cytometry and immunofluorescence staining of 5-ethynyl-2′-deoxyuridine (EdU). Osteoblastic differentiation and mineralization were investigated using chromogenic alkaline phosphatase activity (ALP) activity substrate assays, Alizarin red S staining, and RT-PCR analysis of HBMSCs osteogenic marker expression. Oxidative stress induced by LPS was investigated by assayingmore » reactive oxygen species (ROS) level and superoxide dismutase (SOD) activity. Here, we demonstrated that HAMSCs increased the proliferation, osteoblastic differentiation, and SOD activity of LPS-induced HBMSCs, and down-regulated the ROS level. Moreover, our results suggested that the activation of p38 MAPK signal transduction pathway is essential for reversing the LPS-induced bone-destructive processes. SB203580, a selective inhibitor of p38 MAPK signaling, significantly suppressed the anti-inflammatory effects in HAMSCs. In conclusion, HAMSCs show a strong potential in treating inflammation-induced bone loss by influencing p38 MAPK signaling. - Highlights: • LPS inhibites osteogenic differentiation in HBMSCs via suppression of p38 MAPK signaling pathway. • HAMSCs promote LPS-induced HBMSCs osteogenic differentiation through p38 MAPK signaling pathway. • HAMSCs reverse LPS-induced oxidative stress in LPS-induced HBMSCs through p38 MAPK signaling pathway.« less

  10. The osteo-inductive activity of bone-marrow-derived mononuclear cells resides within the CD14+ population and is independent of the CD34+ population.

    PubMed

    Henrich, D; Seebach, C; Verboket, R; Schaible, A; Marzi, I; Bonig, H

    2018-03-06

    Bone marrow mononuclear cells (BMC) seeded on a scaffold of β-tricalcium phosphate (β-TCP) promote bone healing in a critical-size femur defect model. Being BMC a mixed population of predominantly mature haematopoietic cells, which cell type(s) is(are) instrumental for healing remains elusive. Although clinical therapies using BMC are often dubbed as stem cell therapies, whether stem cells are relevant for the therapeutic effects is unclear and, at least in the context of bone repair, seems dubious. Instead, in light of the critical contribution of monocytes and macrophages to tissue development, homeostasis and injury repair, in the current study it was hypothesised that BMC-mediated bone healing derived from the stem cell population. To test this hypothesis, bone remodelling studies were performed in an established athymic rats critical-size femoral defect model, with β-TCP scaffolds augmented with complete BMC or BMC immunomagnetically depleted of stem cells (CD34+) or monocytes/macrophages (CD14+). Bone healing was assessed 8 weeks after transplantation. Compared to BMC-augmented controls, when CD14- BMC, but not CD34- BMC were transplanted into the bone defect, femora possessed dramatically decreased biomechanical stability and new bone formation was markedly reduced, as measured by histology. The degree of vascularisation did not differ between the two groups. It was concluded that the monocyte fraction within the BMC provided critical osteo-inductive cues during fracture healing. Which factors were responsible at the molecular levels remained elusive. However, this study marked a significant progress towards elucidating the mechanisms by which BMC elicit their therapeutic effects, at least in bone regeneration.

  11. Improved Protocol for Chondrogenic Differentiation of Bone Marrow Derived Mesenchymal Stem Cells -Effect of PTHrP and FGF-2 on TGFβ1/BMP2-Induced Chondrocytes Hypertrophy.

    PubMed

    Nasrabadi, Davood; Rezaeiani, Siamak; Eslaminejad, Mohamadreza Baghaban; Shabani, Aliakbar

    2018-04-24

    Growth factors have a pivotal role in chondrogenic differentiation of stem cells. The differential effects of known growth factors involved in the maintenance and homeostasis of cartilage tissue have been previously studied in vitro. However, there are few reported researches about the interactional effects of growth factors on chondrogenic differentiation of stem cells. The aim of this study is to examine the combined effects of four key growth factors on chondrogenic differentiation of mesenchymal stem cells (MSCs). Isolated and expanded rabbit bone marrow-derived MSCs underwent chondrogenic differentiation in a micromass cell culture system that used a combination of the following growth factors: transforming growth factor beta 1 (TGF-β1), bone morphogenetic protein 2 (BMP2), parathyroid hormone related protein (PTHrP), and fibroblast growth factor 2 (FGF2) according to a defined program. The chondrogenic differentiation program was analyzed by histochemistry methods, quantitative RT-PCR (qRT-PCR), and measurement of matrix deposition of sulfated glycosaminoglycan (sGAG) and collagen content at days 16, 23, and 30. The results showed that the short-term combination of TGF-β1 and BMP-2 increased sGAG and collagen content, Alkaline phosphates (ALP) activity, and type X collagen (COL X) expression. Application of either PTHrP or FGF2 simultaneously decreased TGF-β1/BMP-2 induced hypertrophy and chondrogenic markers (at least for FGF2). However, successive application of PTHrP and FGF2 dramatically maintained the synergistic effects of TGF-β1/BMP-2 on the chondrogenic differentiation potential of MSCs and decreased unwanted hypertrophic markers. This new method can be used effectively in chondrogenic differentiation programs.

  12. Potential feasibility of dental stem cells for regenerative therapies: stem cell transplantation and whole-tooth engineering.

    PubMed

    Nakahara, Taka

    2011-07-01

    Multipotent mesenchymal stem cells from bone marrow are expected to be a somatic stem cell source for the development of new cell-based therapy in regenerative medicine. However, dental clinicians are unlikely to carry out autologous cell/tissue collection from patients (i.e., marrow aspiration) as a routine procedure in their clinics; hence, the utilization of bone marrow stem cells seems impractical in the dental field. Dental tissues harvested from extracted human teeth are well known to contain highly proliferative and multipotent stem cell compartments and are considered to be an alternative autologous cell source in cell-based medicine. This article provides a short overview of the ongoing studies for the potential application of dental stem cells and suggests the utilization of 2 concepts in future regenerative medicine: (1) dental stem cell-based therapy for hepatic and other systemic diseases and (2) tooth replacement therapy using the bioengineered human whole tooth, called the "test-tube dental implant." Regenerative therapies will bring new insights and benefits to the fields of clinical medicine and dentistry.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagemaker, G.; Visser, T.P.; van Bekkum, D.W.

    alpha-Thalassemic heterozygous (Hbath/+) mice were used to investigate the possible selective advantage of transplanted normal (+/+) hemopoietic cells. Without conditioning by total-body irradiation (TBI), infusion of large numbers of normal bone marrow cells failed to correct the thalassemic peripheral blood phenotype. Since the recipients' stem cells are normal with respect to number and differentiation capacity, it was thought that the transplanted stem cells were not able to lodge, or that they were not stimulated to proliferate. Therefore, a nonlethal dose of TBI was given to temporarily reduce endogenous stem cell numbers and hemopoiesis. TBI doses of 2 or 3 Gymore » followed by infusion of normal bone marrow cells proved to be effective in replacing the thalassemic red cells by normal red cells, whereas a dose of 1 Gy was ineffective. It is concluded that cure of thalassemia by bone marrow transplantation does not necessarily require eradication of thalassemic stem cells. Consequently, the objectives of conditioning regimens for bone marrow transplantation of thalassemic patients (and possibly other nonmalignant hemopoietic disorders) should be reconsidered.« less

  14. Kidney repair using stem cells: myth or reality as a therapeutic option?

    PubMed

    Iwatani, Hirotsugu; Imai, Enyu

    2010-01-01

    The kidney has been considered a highly terminally differentiated organ of the body, and its proliferative potential is low, with the result that it has been thought of as a most unlikely organ for regeneration. From the structural point of view, the kidney is elaborately composed of many cell types that function as a tissue unit and not as individual cells, which also makes it more difficult to regenerate. However, in clinical settings, the kidney does have regenerative potential as seen in the recovery from acute kidney injury. The role of bone marrow-derived mesenchymal stromal cells may mainly be to produce humoral factors accelerating regeneration. The origin, localization and role of kidney stem cells are under investigation. We also discuss potential applications of embryonic stem cells and induced pluripotent stem cells in kidney regeneration.

  15. Are nestin-positive mesenchymal stromal cells a better source of cells for CNS repair?

    PubMed

    Lindsay, Susan L; Barnett, Susan C

    2017-06-01

    In recent years there has been a great deal of research within the stem cell field which has led to the definition and classification of a range of stem cells from a plethora of tissues and organs. Stem cells, by classification, are considered to be pluri- or multipotent and have both self-renewal and multi-differentiation capabilities. Presently there is a great deal of interest in stem cells isolated from both embryonic and adult tissues in the hope they hold the therapeutic key to restoring or treating damaged cells in a number of central nervous system (CNS) disorders. In this review we will discuss the role of mesenchymal stromal cells (MSCs) isolated from human olfactory mucosa, with particular emphasis on their potential role as a candidate for transplant mediated repair in the CNS. Since nestin expression defines the entire population of olfactory mucosal derived MSCs, we will compare these cells to a population of neural crest derived nestin positive population of bone marrow-MSCs. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Scaffold-Based Delivery of Autologous Mesenchymal Stem Cells for Mandibular Distraction Osteogenesis: Preliminary Studies in a Porcine Model

    PubMed Central

    Sun, Zongyang; Tee, Boon Ching; Kennedy, Kelly S.; Kennedy, Patrick M.; Kim, Do-Gyoon; Mallery, Susan R.; Fields, Henry W.

    2013-01-01

    Purpose Bone regeneration through distraction osteogenesis (DO) is promising but remarkably slow. To accelerate it, autologous mesenchymal stem cells have been directly injected to the distraction site in a few recent studies. Compared to direct injection, a scaffold-based method can provide earlier cell delivery with potentially better controlled cell distribution and retention. This pilot project investigated a scaffold-based cell-delivery approach in a porcine mandibular DO model. Materials and Methods Eleven adolescent domestic pigs were used for two major sets of studies. The in-vitro set established methodologies to: aspirate bone marrow from the tibia; isolate, characterize and expand bone marrow-derived mesenchymal stem cells (BM-MSCs); enhance BM-MSC osteogenic differentiation using FGF-2; and confirm cell integration with a gelatin-based Gelfoam scaffold. The in-vivo set transplanted autologous stem cells into the mandibular distraction sites using Gelfoam scaffolds; completed a standard DO-course and assessed bone regeneration by macroscopic, radiographic and histological methods. Repeated-measure ANOVAs and t-tests were used for statistical analyses. Results From aspirated bone marrow, multi-potent, heterogeneous BM-MSCs purified from hematopoietic stem cell contamination were obtained. FGF-2 significantly enhanced pig BM-MSC osteogenic differentiation and proliferation, with 5 ng/ml determined as the optimal dosage. Pig BM-MSCs integrated readily with Gelfoam and maintained viability and proliferative ability. After integration with Gelfoam scaffolds, 2.4–5.8×107 autologous BM-MSCs (undifferentiated or differentiated) were transplanted to each experimental DO site. Among 8 evaluable DO sites included in the final analyses, the experimental DO sites demonstrated less interfragmentary mobility, more advanced gap obliteration, higher mineral content and faster mineral apposition than the control sites, and all transplanted scaffolds were completely degraded. Conclusion It is technically feasible and biologically sound to deliver autologous BM-MSCs to the distraction site immediately after osteotomy using a Gelfoam scaffold to enhance mandibular DO. PMID:24040314

  17. Sphingosine-1-phosphate mediates proliferation maintaining the multipotency of human adult bone marrow and adipose tissue-derived stem cells.

    PubMed

    He, Xiaoli; H'ng, Shiau-Chen; Leong, David T; Hutmacher, Dietmar W; Melendez, Alirio J

    2010-08-01

    High renewal and maintenance of multipotency of human adult stem cells (hSCs), are a prerequisite for experimental analysis as well as for potential clinical usages. The most widely used strategy for hSC culture and proliferation is using serum. However, serum is poorly defined and has a considerable degree of inter-batch variation, which makes it difficult for large-scale mesenchymal stem cells (MSCs) expansion in homogeneous culture conditions. Moreover, it is often observed that cells grown in serum-containing media spontaneously differentiate into unknown and/or undesired phenotypes. Another way of maintaining hSC development is using cytokines and/or tissue-specific growth factors; this is a very expensive approach and can lead to early unwanted differentiation. In order to circumvent these issues, we investigated the role of sphingosine-1-phosphate (S1P), in the growth and multipotency maintenance of human bone marrow and adipose tissue-derived MSCs. We show that S1P induces growth, and in combination with reduced serum, or with the growth factors FGF and platelet-derived growth factor-AB, S1P has an enhancing effect on growth. We also show that the MSCs cultured in S1P-supplemented media are able to maintain their differentiation potential for at least as long as that for cells grown in the usual serum-containing media. This is shown by the ability of cells grown in S1P-containing media to be able to undergo osteogenic as well as adipogenic differentiation. This is of interest, since S1P is a relatively inexpensive natural product, which can be obtained in homogeneous high-purity batches: this will minimize costs and potentially reduce the unwanted side effects observed with serum. Taken together, S1P is able to induce proliferation while maintaining the multipotency of different human stem cells, suggesting a potential for S1P in developing serum-free or serum-reduced defined medium for adult stem cell cultures.

  18. Effects of Mesenchymal Stem Cell Derivatives on Hematopoiesis and Hematopoietic Stem Cells

    PubMed Central

    Aqmasheh, Sara; Shamsasanjan, karim; Akbarzadehlaleh, Parvin; Pashoutan Sarvar, Davod; Timari, Hamze

    2017-01-01

    Hematopoiesis is a balance among quiescence, self-renewal, proliferation, and differentiation, which is believed to be firmly adjusted through interactions between hematopoietic stem and progenitor cells (HSPCs) with the microenvironment. This microenvironment is derived from a common progenitor of mesenchymal origin and its signals should be capable of regulating the cellular memory of transcriptional situation and lead to an exchange of stem cell genes expression. Mesenchymal stem cells (MSCs) have self-renewal and differentiation capacity into tissues of mesodermal origin, and these cells can support hematopoiesis through release various molecules that play a crucial role in migration, homing, self-renewal, proliferation, and differentiation of HSPCs. Studies on the effects of MSCs on HSPC differentiation can develop modern solutions in the treatment of patients with hematologic disorders for more effective Bone Marrow (BM) transplantation in the near future. However, considerable challenges remain on realization of how paracrine mechanisms of MSCs act on the target tissues, and how to design a therapeutic regimen with various paracrine factors in order to achieve optimal results for tissue conservation and regeneration. The aim of this review is to characterize and consider the related aspects of the ability of MSCs secretome in protection of hematopoiesis. PMID:28761818

  19. Bone Marrow Mesenchymal Stem Cell-Derived CD63+ Exosomes Transport Wnt3a Exteriorly and Enhance Dermal Fibroblast Proliferation, Migration, and Angiogenesis In Vitro.

    PubMed

    McBride, Jeffrey D; Rodriguez-Menocal, Luis; Guzman, Wellington; Candanedo, Ambar; Garcia-Contreras, Marta; Badiavas, Evangelos V

    2017-10-01

    Wnts are secreted glycoproteins that regulate stem cell self-renewal, differentiation, and cell-to-cell communication during embryonic development and in adult tissues. Bone marrow mesenchymal stem cells (BM-MSCs) have been shown to stimulate dermis repair and regeneration; however, it is unclear how BM-MSCs may modulate downstream Wnt signaling. While recent reports implicate that Wnt ligands and Wnt messenger RNAs (such as Wnt4) exist within the interior compartment of exosomes, it has been debated whether or not Wnts exist on the exterior surface of exosomes to travel in the extracellular space. To help answer this question, we utilized flow cytometry of magnetic beads coated with anti-CD63 antibodies and found, for the first time, that Wnt3a protein is detectable exteriorly on CD63 + exosomes derived from BM-MSCs over-secreting Wnt3a into serum-free conditioned media (Wnt3a CM). Our data suggest that CD63 + exosomes significantly help transport exterior Wnt3a signal to recipient cells to promote fibroblast and endothelial functions. During purification of exosomes, we unexpectedly found that use of ultracentrifugation alone significantly decreased the ability to detect exteriorly bound Wnt3a on CD63 + exosomes, however, polyethylene glycol (PEG)-mediated exosome-enrichment before exosome-purification (with ultracentrifugation into a sucrose cushion) resulted in exosomes more likely to retain exterior Wnt3a detectability and downstream Wnt/beta-catenin activity. Our findings indicate the important role that purification methods may have on stem cell-derived Wnt-exosome activity in downstream assays. The ability for BM-MSC Wnt3a CM and exosomes to stimulate dermal fibroblast proliferation and migration, and endothelial angiogenesis in vitro, was significantly decreased after CD63 + -exosome depletion or knockdown of Wnt coreceptor LRP6 in recipient cells, suggesting both are required for optimal Wnt-exosome activity in our system. Thus, BM-MSC-derived CD63 + exosomes are a significant carrier of exterior Wnt3a within high Wnt environments, resulting in downstream fibroblast proliferation, migration, and angiogenesis in vitro.

  20. Autologous Marrow-Derived Stem Cell-Seeded Gene-Supplemented Collagen Scaffolds for Spinal Cord Regeneration as a Treatment for Paralysis

    DTIC Science & Technology

    2009-01-01

    scaffold. II. BODY During the past project year, research focused on the following: 1. Novel magnetic calcium phosphate nanoparticles were...the achievement related to the development of navel calcium phosphate nanoparticles and hyaluronic acid-collagen composite scaffolds. A. Novel...Magnetic Calcium Phosphate Nanoparticles as Non-Viral Vectors 1. Background The goal was to employ nanoparticles to deliver genes for neurotrophic

  1. Eosinophil-derived CCL-6 impairs hematopoietic stem cell homeostasis

    PubMed Central

    Zhang, Chao; Yi, Weiwei; Li, Fei; Du, Xufei; Wang, Hu; Wu, Ping; Peng, Chao; Luo, Man; Hua, Wen; Wong, Catherine CL; Lee, James J; Li, Wen; Chen, Zhihua; Ying, Songmin; Ju, Zhenyu; Shen, Huahao

    2018-01-01

    Eosinophils (Eos) have been long considered as end-stage effector cells in the hierarchical hematopoietic system. Numerous lines of evidence have suggested that Eos are multifunctional leukocytes with respect to the initiation, propagation and regulation of various inflammatory or immune reactions, especially in allergic diseases. Recent studies have shown that Eos are also required for maintenance of bone marrow plasma cells and differentiation of B cells. However, it remains unclear whether Eos contributes to regulation of hematopoietic stem cell (HSC) homeostasis. Here, we demonstrate that Eos disrupt HSC homeostasis by impairing HSC quiescence and reconstitution ability in wild-type mice following ovalbumin (OVA) challenge and even by causing bone marrow HSC failure and exhaustion in Cd3δ-Il-5 transgenic mice. The impaired maintenance and function of HSCs were associated with Eos-induced redox imbalance (increased oxidative phosphorylation and decreased anti-oxidants levels). More importantly, using mass spectrometry, we determined that CCL-6 is expressed at a high level under eosinophilia. We demonstrate that CCL-6 is Eos-derived and responsible for the impaired HSC homeostasis. Interestingly, blockage of CCL-6 with a specific neutralizing antibody, restored the reconstitution ability of HSCs while exacerbating eosinophilia airway inflammation in OVA-challenged mice. Thus, our study reveals an unexpected function of Eos/CCL-6 in HSC homeostasis. PMID:29327730

  2. Inhibition of AQP1 Hampers Osteosarcoma and Hepatocellular Carcinoma Progression Mediated by Bone Marrow-Derived Mesenchymal Stem Cells.

    PubMed

    Pelagalli, Alessandra; Nardelli, Anna; Fontanella, Raffaela; Zannetti, Antonella

    2016-07-11

    The complex cross-talk between tumor cells and their surrounding stromal environment plays a key role in the pathogenesis of cancer. Among several cell types that constitute the tumor stroma, bone marrow-derived mesenchymal stem cells (BM-MSCs) selectively migrate toward the tumor microenvironment and contribute to the active formation of tumor-associated stroma. Therefore, here we elucidate the involvement of BM-MSCs to promote osteosarcoma (OS) and hepatocellular carcinoma (HCC) cells migration and invasion and deepening the role of specific pathways. We analyzed the function of aquaporin 1 (AQP1), a water channel known to promote metastasis and neoangiogenes. AQP1 protein levels were analyzed in OS (U2OS) and HCC (SNU-398) cells exposed to conditioned medium from BM-MSCs. Tumor cell migration and invasion in response to BM-MSC conditioned medium were evaluated through a wound healing assay and Boyden chamber, respectively. The results showed that the AQP1 level was increased in both tumor cell lines after treatment with BM-MSC conditioned medium. Moreover, BM-MSCs-mediated tumor cell migration and invasion were hampered after treatment with AQP1 inhibitor. These data suggest that the recruitment of human BM-MSCs into the tumor microenvironment might cause OS and HCC cell migration and invasion through involvement of AQP1.

  3. Chromatin organization regulated by EZH2-mediated H3K27me3 is required for OPN-induced migration of bone marrow-derived mesenchymal stem cells.

    PubMed

    Liu, Lingling; Luo, Qing; Sun, Jinghui; Ju, Yang; Morita, Yasuyuki; Song, Guanbin

    2018-03-01

    Osteopontin (OPN) is a chemokine-like extracellular matrix-associated protein involved in the migration of bone marrow-derived mesenchymal stem cells (BMSCs). An increasing number of studies have found that chromatin organization may affect cellular migration. However, whether OPN regulates chromatin organization is not understood, nor are the underlying molecular mechanisms. In this study, we investigated the link between chromatin organization and BMSC migration and demonstrated that OPN-mediated BMSC migration leads to elevated levels of heterochromatin marker histone H3 lysine 27 trimethylation (H3K27me3) through the methyltransferase EZH2. The expression of EZH2 reorganizes the chromatin structure of BMSCs. Pharmacological inhibition or depletion of EZH2 blocks BMSC migration. Moreover, using an atomic force microscope (AFM), we found that chromatin decondensation alters the mechanical properties of the nucleus. In addition, inhibition of extracellular signal-regulated kinase 1/2 (ERK1/2) signals represses OPN-promoted chromatin condensation and cell migration. Thus, our results identify a mechanism by which ERK1/2 signalling drives specific chromatin modifications in BMSCs, which alters chromatin organization and thereby enables OPN-mediated BMSC migration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Decreased nuclear stiffness via FAK-ERK1/2 signaling is necessary for osteopontin-promoted migration of bone marrow-derived mesenchymal stem cells.

    PubMed

    Liu, Lingling; Luo, Qing; Sun, Jinghui; Wang, Aoli; Shi, Yisong; Ju, Yang; Morita, Yasuyuki; Song, Guanbin

    2017-06-15

    Migration of bone marrow-derived mesenchymal stem cells (BMSCs) plays an important role in many physiological and pathological settings, including wound healing. During the migration of BMSCs through interstitial tissues, the movement of the nucleus must be coordinated with the cytoskeletal dynamics, which in turn affects the cell migration efficiency. Our previous study indicated that osteopontin (OPN) significantly promotes the migration of rat BMSCs. However, the nuclear behaviors and involved molecular mechanisms in OPN-mediated BMSC migration are largely unclear. In the present study, using an atomic force microscope (AFM), we found that OPN could decrease the nuclear stiffness of BMSCs and reduce the expression of lamin A/C, which is the main determinant of nuclear stiffness. Increased lamin A/C expression attenuates BMSC migration by increasing nuclear stiffness. Decreased lamin A/C expression promotes BMSC migration by decreasing nuclear stiffness. Furthermore, OPN promotes BMSC migration by diminishing lamin A/C expression and decreasing nuclear stiffness via the FAK-ERK1/2 signaling pathway. This study provides strong evidence for the role of nuclear mechanics in BMSC migration as well as new insight into the molecular mechanisms of OPN-promoted BMSC migration. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Eosinophil-derived CCL-6 impairs hematopoietic stem cell homeostasis.

    PubMed

    Zhang, Chao; Yi, Weiwei; Li, Fei; Du, Xufei; Wang, Hu; Wu, Ping; Peng, Chao; Luo, Man; Hua, Wen; Wong, Catherine Cl; Lee, James J; Li, Wen; Chen, Zhihua; Ying, Songmin; Ju, Zhenyu; Shen, Huahao

    2018-03-01

    Eosinophils (Eos) have been long considered as end-stage effector cells in the hierarchical hematopoietic system. Numerous lines of evidence have suggested that Eos are multifunctional leukocytes with respect to the initiation, propagation and regulation of various inflammatory or immune reactions, especially in allergic diseases. Recent studies have shown that Eos are also required for maintenance of bone marrow plasma cells and differentiation of B cells. However, it remains unclear whether Eos contributes to regulation of hematopoietic stem cell (HSC) homeostasis. Here, we demonstrate that Eos disrupt HSC homeostasis by impairing HSC quiescence and reconstitution ability in wild-type mice following ovalbumin (OVA) challenge and even by causing bone marrow HSC failure and exhaustion in Cd3δ-Il-5 transgenic mice. The impaired maintenance and function of HSCs were associated with Eos-induced redox imbalance (increased oxidative phosphorylation and decreased anti-oxidants levels). More importantly, using mass spectrometry, we determined that CCL-6 is expressed at a high level under eosinophilia. We demonstrate that CCL-6 is Eos-derived and responsible for the impaired HSC homeostasis. Interestingly, blockage of CCL-6 with a specific neutralizing antibody, restored the reconstitution ability of HSCs while exacerbating eosinophilia airway inflammation in OVA-challenged mice. Thus, our study reveals an unexpected function of Eos/CCL-6 in HSC homeostasis.

  6. Variations in chondrogenesis of human bone marrow-derived mesenchymal stem cells in fibrin/alginate blended hydrogels

    PubMed Central

    Ma, Kun; Titan, Ashley L.; Stafford, Melissa; Zheng, Chun hua; Levenston, Marc E.

    2012-01-01

    Fibrin and alginate hydrogels have been widely used to support chondrogenesis of bone marrow-derived mesenchymal stem cells (BM-MSCs) for articular cartilage and fibrocartilage tissue engineering, with distinct advantages and disadvantages to each material. Attempting to produce a gel scaffold exhibiting beneficial characteristics of both materials, we fabricated fibrin/alginate blended hydrogels at various blend ratios and evaluated the gel morphology, mechanical properties and their support for BM-MSC chondrogenesis. Results show that when the fibrin/alginate ratio decreased, the fibrin architecture transitioned from uniform to interconnected fibrous and finally to disconnected islands against an alginate background, with opposing trends in the alginate architecture. Fibrin maintained gel extensibility and promoted cell proliferation, while alginate improved the gel biostability and better supported glycosaminoglycan and collagen II production and chondrogenic gene expression. Blended gels had physical and biological characteristics intermediate between fibrin and alginate. Of the blends examined, FA 40:8 (40 mg/mL fibrinogen blended with 8 mg/mL alginate) was found to be the most appropriate group for future studies on tension-driven BM-MSC fibrochondrogenesis. As BM-MSC differentiation appeared to vary between fibrin and alginate regions of blended scaffolds, this study also highlighted the potential to develop spatially heterogeneous tissues through manipulating the heterogeneity of scaffold composition. PMID:22750738

  7. Generation of insulin-producing cells from human bone marrow-derived mesenchymal stem cells: comparison of three differentiation protocols.

    PubMed

    Gabr, Mahmoud M; Zakaria, Mahmoud M; Refaie, Ayman F; Khater, Sherry M; Ashamallah, Sylvia A; Ismail, Amani M; El-Badri, Nagwa; Ghoneim, Mohamed A

    2014-01-01

    Many protocols were utilized for directed differentiation of mesenchymal stem cells (MSCs) to form insulin-producing cells (IPCs). We compared the relative efficiency of three differentiation protocols. Human bone marrow-derived MSCs (HBM-MSCs) were obtained from three insulin-dependent type 2 diabetic patients. Differentiation into IPCs was carried out by three protocols: conophylline-based (one-step protocol), trichostatin-A-based (two-step protocol), and β -mercaptoethanol-based (three-step protocol). At the end of differentiation, cells were evaluated by immunolabeling for insulin production, expression of pancreatic endocrine genes, and release of insulin and c-peptide in response to increasing glucose concentrations. By immunolabeling, the proportion of generated IPCs was modest ( ≃ 3%) in all the three protocols. All relevant pancreatic endocrine genes, insulin, glucagon, and somatostatin, were expressed. There was a stepwise increase in insulin and c-peptide release in response to glucose challenge, but the released amounts were low when compared with those of pancreatic islets. The yield of functional IPCs following directed differentiation of HBM-MSCs was modest and was comparable among the three tested protocols. Protocols for directed differentiation of MSCs need further optimization in order to be clinically meaningful. To this end, addition of an extracellular matrix and/or a suitable template should be attempted.

  8. Bone marrow-derived fibrocytes promote stem cell-like properties of lung cancer cells.

    PubMed

    Saijo, Atsuro; Goto, Hisatsugu; Nakano, Mayuri; Mitsuhashi, Atsushi; Aono, Yoshinori; Hanibuchi, Masaki; Ogawa, Hirohisa; Uehara, Hisanori; Kondo, Kazuya; Nishioka, Yasuhiko

    2018-05-01

    Cancer stem cells (CSCs) represent a minor population that have clonal tumor initiation and self-renewal capacity and are responsible for tumor initiation, metastasis, and therapeutic resistance. CSCs reside in niches, which are composed of diverse types of stromal cells and extracellular matrix components. These stromal cells regulate CSC-like properties by providing secreted factors or by physical contact. Fibrocytes are differentiated from bone marrow-derived CD14 + monocytes and have features of both macrophages and fibroblasts. Accumulating evidence has suggested that stromal fibrocytes might promote cancer progression. However, the role of fibrocytes in the CSC niches has not been revealed. We herein report that human fibrocytes enhanced the CSC-like properties of lung cancer cells through secreted factors, including osteopontin, CC-chemokine ligand 18, and plasminogen activator inhibitor-1. The PIK3K/AKT pathway was critical for fibrocytes to mediate the CSC-like functions of lung cancer cells. In human lung cancer specimens, the number of tumor-infiltrated fibrocytes was correlated with high expression of CSC-associated protein in cancer cells. These results suggest that fibrocytes may be a novel cell population that regulates the CSC-like properties of lung cancer cells in the CSC niches. Copyright © 2018. Published by Elsevier B.V.

  9. Bone Marrow-Derived Mesenchymal Stem Cells Enhance Angiogenesis via their α6β1 Integrin Receptor

    PubMed Central

    Carrion, Bita; Kong, Yen P.; Kaigler, Darnell; Putnam, Andrew J

    2013-01-01

    Bone marrow-derived mesenchymal stem cells (BMSCs) facilitate the angiogenic response of endothelial cells (ECs) within three-dimensional (3D) matrices in vivo and in engineered tissues in vitro in part through paracrine mediators and by acting as stabilizing pericytes. However, the molecular interactions between BMSCs and nascent tubules during the process of angiogenesis are not fully understood. In this study, we have used a tractable 3D co-culture model to explore the functional role of the α6β1 integrin adhesion receptor on BMSCs in sprouting angiogenesis. We report that knockdown of the α6 integrin subunit in BMSCs significantly reduces capillary sprouting, and causes their failure to associate with the nascent vessels. Furthermore, we demonstrate that the BMSCs with attenuated α6 integrin proliferate at a significantly lower rate relative to either control cells expressing non-targeting shRNA or wild type BMSCs; however, despite adding more cells to compensate for this deficit in proliferation, deficient sprouting persists. Collectively, our findings demonstrate that the α6 integrin subunit in BMSCs is important for their ability to stimulate vessel morphogenesis. This conclusion may have important implications in the optimization of cell-based strategies to promote angiogenesis. PMID:24056178

  10. The synergistic effects of shear stress and cyclic hydrostatic pressure modulate chondrogenic induction of human mesenchymal stem cells.

    PubMed

    Hosseini, Motahare-Sadat; Tafazzoli-Shadpour, Mohammad; Haghighipour, Nooshin; Aghdami, Naser; Goodarzi, Alireza

    2015-10-01

    In this study, we examined chondrogenic regulation of 2 types of mesenchymal stem cells seeded on the bioengineered substrate in monolayer cultures under mechanically defined conditions to mimic the in vivo microenvironment of chondrocytes within articular cartilage tissues. Human adipose-derived mesenchymal stem cells (ASCs) and bone marrow mesenchymal stem cells (BSCs) were exposed to 0.2 Pa shear stress, 3 MPa cyclic hydrostatic pressure, and combined loading with different sequences on chemically designed medical-grade silicone rubber, while no soluble growth factors were added to the culture medium. The expression levels of chondrogenic-specific genes of SOX9, aggrecan, and type II collagen (Col II) were measured. Results were compared to those of cells treated by biological growth factor. Gene expression patterns were dependent on the loading regime. Moreover, the source of mesenchymal stem cells (adipose or bone marrow) was influential in gene expression. Overall, enhanced expression of chondrogenic markers was found through application of mechanical stimuli. The response was generally found to be significantly promoted when the 2 loading regimes were superimposed. Differentiation of ASCs was shown by a modest increase in gene expression profiles. In general, BSCs expressed higher levels of chondrogenic gene expression than ASCs after 3 weeks. A greater effect on Col II and SOX9 mRNA expression was observed when combined loadings were applied. Results may be applied in determining the proper loading sequence for obtaining functional target cells in cartilage engineering applications.

  11. Isolation and purification of rabbit mesenchymal stem cells using an optimized protocol.

    PubMed

    Lin, Chunbo; Shen, Maorong; Chen, Weiping; Li, Xiaofeng; Luo, Daoming; Cai, Jinhong; Yang, Yuan

    2015-11-01

    Mesenchymal stem cells were first isolated and grown in vitro by Friedenstein over 40 yr ago; however, their isolation remains challenging as they lack unique markers for identification and are present in very small quantities in mesenchymal tissues and bone marrow. Using whole marrow samples, common methods for mesenchymal stem cell isolation are the adhesion method and density gradient fractionation. The whole marrow sample adhesion method still results in the nonspecific isolation of mononuclear cells, and activation and/or potential loss of target cells. Density gradient fractionation methods are complicated, and may result in contamination with toxic substances that affect cell viability. In the present study, we developed an optimized protocol for the isolation and purification of mesenchymal stem cells based on the principles of hypotonic lysis and natural sedimentation.

  12. The Role of Mesenchymal Stem Cells in the Regenerative Wound Healing Phenotype.

    PubMed

    Balaji, Swathi; Keswani, Sundeep G; Crombleholme, Timothy M

    2012-08-01

    Mesenchymal stem cells (MSCs) are key to regenerative wound healing. MSCs have spatial memory and respond to local environment. MSCs orchestrate wound repair by: (1) structural repair via cellular differentiation; (2) immune-modulation; (3) secretion of growth factors that drive neovascularization and re-epithelialization; and (4) mobilization of resident stem cells. Autologous bone-marrow-derived cells and MSCs demonstrate improved healing and tissue-integrity in animal models and clinical trials. However, the effects are variable and the mechanisms of MSC-mediated wound healing are not fully understood. The mammalian MSC niche and signaling sequences and factors affecting their homing, differentiation, viability, and safety need to be characterized to get full benefits of MSC cellular therapy. MSCs can be isolated from bone-marrow, and less-invasive tissues such as adipose, gingiva, muscle, and umbilical cord, with similar functional effects. However, isolation, culture conditions, and markers used to identify and trace the lineage of these MSCs have not been standardized, which is crucial to determine the extent to which MSCs act as multipotent stem cells or sources of secreted factors in wounds. In chronic nonhealing wounds, where efficacy of conventional therapies is unsatisfactory, autotransplantation of MSCs could accelerate wound healing, promote regeneration and restoration of tissue integrity, and reduce recurrence of wounds at characteristically predisposed sites. Regenerative medicine and novel wound therapies using autologous stem cells holds great promise for clinical management of difficult wounds. The ideal candidate stem cells can be used to repopulate the wound bed to mediate appropriate epidermal and dermal regeneration and promote efficient wound repair, while modulating the immune system to prevent infection.

  13. Combination therapy with carfilzomib, lenalidomide and dexamethasone (KRd) results in an unprecedented purity of the stem cell graft in newly diagnosed patients with myeloma.

    PubMed

    Tageja, Nishant; Korde, Neha; Kazandjian, Dickran; Panch, Sandhya; Manasanch, Elisabet; Bhutani, Manisha; Kwok, Mary; Mailankody, Sham; Yuan, Constance; Stetler-Stevenson, Maryalice; Leitman, Susan F; Sportes, Claude; Landgren, Ola

    2018-05-04

    Still, many physicians give 4 cycles of combination therapy to multiple myeloma patients prior to collection of stem cells for autologous bone marrow transplant. This tradition originates from older doxorubicin-containing regiments which limited the number of cycles due to cumulative cardiotoxicity. Using older regiments, most patients had residual myeloma cells in their autologous stem-cell grafts during collection. Emerging data show that newly diagnosed multiple myeloma patients treated with modern carfilzomib/lenalidomide/dexamethasone (KRd) therapy, on average, take 6 cycles until reaching minimal residual disease (MRD) negativity. We assessed newly diagnosed patients treated with KRd focusing MRD status both in the individual patient's bone marrow, and the corresponding autologous hematopoietic progenitor cell grafts during collection. Per protocol, stem-cell collection was allowed after 4 to 8 cycles of KRd. We found similar stem-cell yield independent of the number of cycles of KRd. At stem-cell collection, 11/30 patients (36.6%) were MRD negative in their bone marrow; all 11 patients had MRD negative hematopoietic progenitor cell grafts. Furthermore, 18/19 patients who were MRD positive in their bone marrows also had MRD negative hematopoietic progenitor cell grafts. These observations support 6 cycles of KRd as an efficacious and safe induction strategy prior to stem-cell collection.

  14. Bone marrow-derived stromal cells are more beneficial cell sources for tooth regeneration compared with adipose-derived stromal cells.

    PubMed

    Ye, Lanfeng; Chen, Lin; Feng, Fan; Cui, Junhui; Li, Kaide; Li, Zhiyong; Liu, Lei

    2015-10-01

    Tooth loss is presently a global epidemic and tooth regeneration is thought to be a feasible and ideal treatment approach. Choice of cell source is a primary concern in tooth regeneration. In this study, the odontogenic differentiation potential of two non-dental-derived stem cells, adipose-derived stromal cells (ADSCs) and bone marrow-derived stromal cells (BMSCs), were evaluated both in vitro and in vivo. ADSCs and BMSCs were induced in vitro in the presence of tooth germ cell-conditioned medium (TGC-CM) prior to implantation into the omentum majus of rats, in combination with inactivated dentin matrix (IDM). Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the mRNA expression levels of odontogenic-related genes. Immunofluorescence and immunohistochemical assays were used to detect the protein levels of odontogenic-specific genes, such as DSP and DMP-1 both in vitro and in vivo. The results suggest that both ADSCs and BMSCs have odontogenic differentiation potential. However, the odontogenic potential of BMSCs was greater compared with ADSCs, showing that BMSCs are a more appropriate cell source for tooth regeneration. © 2015 International Federation for Cell Biology.

  15. Stromal cell derived factor-1alpha protects stem cell derived insulin-producing cells from glucotoxicity under high glucose conditions in-vitro and ameliorates drug induced diabetes in rats

    PubMed Central

    2013-01-01

    Background Diabetes mellitus is affecting more than 300 million people worldwide. Current treatment strategies cannot prevent secondary complications. Stem cells due to their regenerative power have long been the attractive target for the cell-based therapies. Mesenchymal stem cells (MSCs) possess the ability to differentiate into several cell types and to escape immune recognition in vitro. MSCs can be differentiated into insulin-producing cells (IPCs) and could be an exciting therapy for diabetes but problems like poor engraftment and survivability need to be confronted. It was hypothesized that stromal cell derived factor- 1alpha (SDF-1alpha) will enhance therapeutic potential of stem cell derived IPCs by increasing their survival and proliferation rate. Methods Novel culture conditions were developed to differentiate bone marrow derived mesenchymal stem cells (BMSCs) into IPCs by using endocrine differentiation inducers and growth factors via a three stage protocol. In order to enhance their therapeutic potential, we preconditioned IPCs with SDF-1alpha. Results Our results showed that SDF-1alpha increases survival and proliferation of IPCs and protects them from glucotoxicity under high glucose conditions in vitro. SDF-1alpha also enhances the glucose responsive insulin secretion in IPCs in vitro. SDF-1alpha preconditioning reverses hyperglycemia and increase serum insulin in drug induced diabetic rats. Conclusions The differentiation of BMSCs into IPCs and enhancement of their therapeutic potential by SDF-1alpha preconditioning may contribute to cell based therapies for diabetes. PMID:23648189

  16. Conditioned medium as a strategy for human stem cells chondrogenic differentiation.

    PubMed

    Alves da Silva, M L; Costa-Pinto, A R; Martins, A; Correlo, V M; Sol, P; Bhattacharya, M; Faria, S; Reis, R L; Neves, Nuno M

    2015-06-01

    Paracrine signalling from chondrocytes has been reported to increase the synthesis and expression of cartilage extracellular matrix (ECM) by stem cells. The use of conditioned medium obtained from chondrocytes for stimulating stem cells chondrogenic differentiation may be a very interesting alternative for moving into the clinical application of these cells, as chondrocytes could be partially replaced by stem cells for this type of application. In the present study we aimed to achieve chondrogenic differentiation of two different sources of stem cells using conditioned medium, without adding growth factors. We tested both human bone marrow-derived mesenchymal stem cells (hBSMCs) and human Wharton's jelly-derived stem cells (hWJSCs). Conditioned medium obtained from a culture of human articular chondrocytes was used to feed the cells during the experiment. Cultures were performed in previously produced three-dimensional (3D) scaffolds, composed of a blend of 50:50 chitosan:poly(butylene succinate). Both types of stem cells were able to undergo chondrogenic differentiation without the addition of growth factors. Cultures using hWJSCs showed significantly higher GAGs accumulation and expression of cartilage-related genes (aggrecan, Sox9 and collagen type II) when compared to hBMSCs cultures. Conditioned medium obtained from articular chondrocytes induced the chondrogenic differentiation of MSCs and ECM formation. Obtained results showed that this new strategy is very interesting and should be further explored for clinical applications. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Skeletal stem cell isolation: A review on the state-of-the-art microfluidic label-free sorting techniques.

    PubMed

    Xavier, Miguel; Oreffo, Richard O C; Morgan, Hywel

    2016-01-01

    Skeletal stem cells (SSC) are a sub-population of bone marrow stromal cells that reside in postnatal bone marrow with osteogenic, chondrogenic and adipogenic differentiation potential. SSCs reside only in the bone marrow and have organisational and regulatory functions in the bone marrow microenvironment and give rise to the haematopoiesis-supportive stroma. Their differentiation capacity is restricted to skeletal lineages and therefore the term SSC should be clearly distinguished from mesenchymal stem cells which are reported to exist in extra-skeletal tissues and, critically, do not contribute to skeletal development. SSCs are responsible for the unique regeneration capacity of bone and offer unlimited potential for application in bone regenerative therapies. A current unmet challenge is the isolation of homogeneous populations of SSCs, in vitro, with homogeneous regeneration and differentiation capacities. Challenges that limit SSC isolation include a) the scarcity of SSCs in bone marrow aspirates, estimated at between 1 in 10-100,000 mononuclear cells; b) the absence of specific markers and thus the phenotypic ambiguity of the SSC and c) the complexity of bone marrow tissue. Microfluidics provides innovative approaches for cell separation based on bio-physical features of single cells. Here we review the physical principles underlying label-free microfluidic sorting techniques and review their capacity for stem cell selection/sorting from complex (heterogeneous) samples. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. JAK2V617F-mutant megakaryocytes contribute to hematopoietic stem/progenitor cell expansion in a model of murine myeloproliferation

    PubMed Central

    Zhan, H; Ma, Y; Lin, CHS; Kaushansky, K

    2016-01-01

    The myeloproliferative neoplasms (MPNs) are characterized by hematopoietic stem/progenitor cell (HSPC) expansion and overproduction of mature blood cells. The JAK2V617F mutation is present in hematopoietic cells in a majority of patients with MPNs, but the mechanism(s) responsible for MPN stem cell expansion remain incomplete. One hallmark feature of the marrow in patients with MPNs is megakaryocyte (MK) hyperplasia. We report here that mice bearing a human JAK2V617F gene restricted exclusively to the MK lineage develop many of the features of a MPN. Specifically, these mice exhibit thrombocytosis, splenomegaly, increased numbers of marrow and splenic hematopoietic progenitors and a substantial expansion of HSPCs. In addition, wild-type mice transplanted with cells from JAK2V617F-bearing MK marrow develop a myeloproliferative syndrome with thrombocytosis and erythrocytosis as well as pan-hematopoietic progenitor and stem cell expansion. As marrow histology in this murine model of myeloproliferation reveals a preferentially perivascular localization of JAK2V617F-mutant MKs and an increased marrow sinusoid vascular density, it adds to accumulating data that MKs are an important component of the marrow HSPC niche, and that MK expansion might indirectly contribute to the critical role of the thrombopoietin/c-Mpl signaling pathway in HSPC maintenance and expansion. PMID:27133820

  19. Microvesicles Derived from Adult Human Bone Marrow and Tissue Specific Mesenchymal Stem Cells Shuttle Selected Pattern of miRNAs

    PubMed Central

    Collino, Federica; Deregibus, Maria Chiara; Bruno, Stefania; Sterpone, Luca; Aghemo, Giulia; Viltono, Laura; Tetta, Ciro; Camussi, Giovanni

    2010-01-01

    Background Cell-derived microvesicles (MVs) have been described as a new mechanism of cell-to-cell communication. MVs after internalization within target cells may deliver genetic information. Human bone marrow derived mesenchymal stem cells (MSCs) and liver resident stem cells (HLSCs) were shown to release MVs shuttling functional mRNAs. The aim of the present study was to evaluate whether MVs derived from MSCs and HLSCs contained selected micro-RNAs (miRNAs). Methodology/Principal Findings MVs were isolated from MSCs and HLSCs. The presence in MVs of selected ribonucleoproteins involved in the traffic and stabilization of RNA was evaluated. We observed that MVs contained TIA, TIAR and HuR multifunctional proteins expressed in nuclei and stress granules, Stau1 and 2 implicated in the transport and stability of mRNA and Ago2 involved in miRNA transport and processing. RNA extracted from MVs and cells of origin was profiled for 365 known human mature miRNAs by real time PCR. Hierarchical clustering and similarity analysis of miRNAs showed 41 co-expressed miRNAs in MVs and cells. Some miRNAs were accumulated within MVs and absent in the cells after MV release; others were retained within the cells and not secreted in MVs. Gene ontology analysis of predicted and validated targets showed that the high expressed miRNAs in cells and MVs could be involved in multi-organ development, cell survival and differentiation. Few selected miRNAs shuttled by MVs were also associated with the immune system regulation. The highly expressed miRNAs in MVs were transferred to target cells after MV incorporation. Conclusions This study demonstrated that MVs contained ribonucleoproteins involved in the intracellular traffic of RNA and selected pattern of miRNAs, suggesting a dynamic regulation of RNA compartmentalization in MVs. The observation that MV-highly expressed miRNAs were transferred to target cells, rises the possibility that the biological effect of stem cells may, at least in part, depend on MV-shuttled miRNAs. Data generated from this study, stimulate further functional investigations on the predicted target genes and pathways involved in the biological effect of human adult stem cells. PMID:20668554

  20. Contribution of different bone marrow-derived cell types in endometrial regeneration using an irradiated murine model.

    PubMed

    Gil-Sanchis, Claudia; Cervelló, Irene; Khurana, Satish; Faus, Amparo; Verfaillie, Catherine; Simón, Carlos

    2015-06-01

    To study the involvement of seven types of bone marrow-derived cells (BMDCs) in the endometrial regeneration in mice after total body irradiation. Prospective experimental animal study. University research laboratories. β-Actin-green fluorescent protein (GFP) transgenic C57BL/6-Tg (CAG-EGFP) and C57BL/6J female mice. The BMDCs were isolated from CAG-EGFP mice: unfractionated bone marrow cells, hematopoietic progenitor cells, endothelial progenitor cells (EPCs), and mesenchymal stem cells (MSCs). In addition three murine GFP(+) cell lines were used: mouse Oct4 negative BMDC multipotent adult progenitor cells (mOct4(-)BM-MAPCs), BMDC hypoblast-like stem cells (mOct4(+) BM-HypoSCs), and MSCs. All cell types were injected through the tail vein of 9 Gy-irradiated C57BL/6J female mice. Flow cytometry, cell culture, bone marrow transplantation assays, histologic evaluation, immunohistochemistry, proliferation, apoptosis, and statistical analysis. After 12 weeks, histologic analysis revealed that uteri of mice with mOct4(-)BM-MAPCs and MSC line were significantly smaller than uteri of mice with uncultured BMDCs or mOct4(+) BM-HypoSCs. The percentage of engrafted GFP(+) cells ranged from 0.13%-4.78%. Expression of Ki-67 was lower in all uteri from BMDCs treated mice than in the control, whereas TUNEL(+) cells were increased in the EPCs and mOct4(+)BM-HypoSCs groups. Low number of some BMDCs can be found in regenerating endometrium, including stromal, endotelial, and epithelial compartments. Freshly isolated MSCs and EPCs together with mOct4(+) BM-HypoSCs induced the greatest degree of regeneration, whereas culture isolated MSCs and mOct4(-)BM-MAPCs transplantation may have an inhibitory effect on endometrial regeneration. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  1. Therapeutic strategies involving uterine stem cells in reproductive medicine.

    PubMed

    Simoni, Michael; Taylor, Hugh S

    2018-06-01

    The current review provides an update on recent advances in stem cell biology relevant to female reproduction. Stem cells are undifferentiated cells that often serve as a reservoir of cells to regenerate tissue in settings or injury or cell loss. The endometrium has progenitor stem cells that can replace all of the endometrium during each menstrual cycle. In addition, multipotent endometrial cells replace these progenitor cells when depleted. Recruitment of stem cells from outside of the uterus occurs in setting of increased demand such as ischemia or injury. Bone marrow-derived multipotent stem cells are recruited to the uterus by estrogen or injury-induced expression of the chemokine CXCL12. In the setting of overwhelming injury, especially in the setting of low estrogen levels, there may be insufficient stem cell recruitment to adequately repair the uterus resulting in conditions such as Asherman syndrome or other endometrial defects. In contrast, excessive recruitment of stem cells underlies endometriosis. Enhanced understanding of stem-cell mobilization, recruitment, and engraftment has created the possibility of improved therapy for endometrial defects and endometriosis through enhanced manipulation of stem-cell trafficking. Further, the normal endometrium is a rich source of multipotent stem cells that can be used for numerous applications in regenerative medicine beyond reproduction. A better understanding of reproductive stem-cell biology may allow improved treatment of endometrial disease such as Asherman syndrome and other endometrial receptivity defects. Inhibiting stem-cell mobilization may also be helpful in endometriosis therapy. Finally, endometrial derived multipotent stem cells may play a crucial role in cell therapy for regenerative medicine.

  2. A revisionist history of adult marrow stem cell biology or 'they forgot about the discard'.

    PubMed

    Quesenberry, P; Goldberg, L

    2017-08-01

    The adult marrow hematopoietic stem cell biology has largely been based on studies of highly purified stem cells. This is unfortunate because during the stem cell purification the great bulk of stem cells are discarded. These cells are actively proliferating. The final purified stem cell is dormant and not representative of the whole stem cell compartment. Thus, a large number of studies on the cellular characteristics, regulators and molecular details of stem cells have been carried on out of non-represented cells. Niche studies have largely pursued using these purified stem cells and these are largely un-interpretable. Other considerations include the distinction between baseline and transplant stem cells and the modulation of stem cell phenotype by extracellular vesicles, to cite a non-inclusive list. Work needs to proceed on characterizing the true stem cell population.

  3. Survival and characteristics of murine leukaemic and normal stem cells after hyperthermia: a murine model for human bone marrow purging.

    PubMed

    Gidáli, J; Szamosvölgyi, S; Fehér, I; Kovács, P

    1990-01-01

    The effect of hyperthermia in vitro on the survival and leukaemogenic effectiveness of WEHI 3-B cells and on the survival and transplantation efficiency of bone marrow cells was compared in a murine model system. Normal murine clonogenic haemopoietic cells (day 9 CFU-S and CFU-GM) proved to be significantly less sensitive to 42.5 degrees C hyperthermia (Do values: 54.3 and 41.1 min, respectively) than leukaemic clonogenic cells (CFU-L) derived from suspension culture or from bone marrow of leukaemic mice (Do: 17.8 min). Exposure for 120 min to 42.5 degrees C reduced the surviving fraction of CFU-L to 0.002 and that of CFU-S to 0.2. If comparable graft sizes were transplanted from normal or heat exposed bone marrow, 60-day survival of supralethally irradiated mice was similar. Surviving WEHI 3-B cells were capable of inducing leukaemia in vivo. The two log difference in the surviving fraction of CFU-L and CFU-S after 120 min exposure to 42.5 degrees C suggests that hyperthermia ex vivo may be a suitable purging method for autologous bone marrow transplantation.

  4. Effect of low oxygen tension on the biological characteristics of human bone marrow mesenchymal stem cells.

    PubMed

    Kim, Dae Seong; Ko, Young Jong; Lee, Myoung Woo; Park, Hyun Jin; Park, Yoo Jin; Kim, Dong-Ik; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2016-11-01

    Culture of mesenchymal stem cells (MSCs) under ambient conditions does not replicate the low oxygen environment of normal physiological or pathological states and can result in cellular impairment during culture. To overcome these limitations, we explored the effect of hypoxia (1 % O 2 ) on the biological characteristics of MSCs over the course of different culture periods. The following biological characteristics were examined in human bone marrow-derived MSCs cultured under hypoxia for 8 weeks: proliferation rate, morphology, cell size, senescence, immunophenotypic characteristics, and the expression levels of stemness-associated factors and cytokine and chemokine genes. MSCs cultured under hypoxia for approximately 2 weeks showed increased proliferation and viability. During long-term culture, hypoxia delayed phenotypic changes in MSCs, such as increased cell volume, altered morphology, and the expression of senescence-associated-β-gal, without altering their characteristic immunophenotypic characteristics. Furthermore, hypoxia increased the expression of stemness and chemokine-related genes, including OCT4 and CXCR7, and did not decrease the expression of KLF4, C-MYC, CCL2, CXCL9, CXCL10, and CXCR4 compared with levels in cells cultured under normoxia. In conclusion, low oxygen tension improved the biological characteristics of MSCs during ex vivo expansion. These data suggest that hypoxic culture could be a useful method for increasing the efficacy of MSC cell therapies.

  5. Comparison of Long Noncoding RNA and mRNA Expression Profiles in Mesenchymal Stem Cells Derived from Human Periodontal Ligament and Bone Marrow

    PubMed Central

    Dong, Rui; Du, Juan; Wang, Liping; Wang, Jinsong; Ding, Gang; Wang, Songlin; Fan, Zhipeng

    2014-01-01

    Mesenchymal stem cells (MSCs) in different anatomic locations possess diverse biological activities. Maintaining the pluripotent state and differentiation depend on the expression and regulation of thousands of genes, but it remains unclear which molecular mechanisms underlie MSC diversity. Thus, potential MSC applications are restricted. Long noncoding RNAs (lncRNAs) are implicated in the complex molecular circuitry of cellular processes. We investigated differences in lncRNA and mRNA expression profiles between bone marrow stem cells (BMSCs) and periodontal ligament stem cells (PDLSCs) with lncRNA microarray assays and bioinformatics analysis. In PDLSCs, numerous lncRNAs were significantly upregulated (n = 457) or downregulated (n = 513) compared to BMSCs. Furthermore, 1,578 mRNAs were differentially expressed. These genes implicated cellular pathways that may be associated with MSC characteristics, including apoptosis, MAPK, cell cycle, and Wnt signaling pathway. Signal-net analysis indicated that phospholipase C beta 4, filamin B beta, calcium/calmodulin-dependent protein kinase II gamma, and the ionotropic glutamate receptor, AMPA 1, had the highest betweenness centrality among significant genes in the differential gene profile network. A comparison between the coding-noncoding gene coexpression networks of PDLSCs and BMSCs identified chemokine (C-X-C motif) ligand 12 as a core regulatory factor in MSC biology. These results provided insight into the mechanisms underlying MSC biology. PMID:24790996

  6. Characterization of bone marrow derived mesenchymal stem cells in suspension

    PubMed Central

    2012-01-01

    Introduction Bone marrow mesenchymal stem cells (BMMSCs) are a heterogeneous population of postnatal precursor cells with the capacity of adhering to culture dishes generating colony-forming unit-fibroblasts (CFU-F). Here we identify a new subset of BMMSCs that fail to adhere to plastic culture dishes and remain in culture suspension (S-BMMSCs). Methods To catch S-BMMSCs, we used BMMSCs-produced extracellular cell matrix (ECM)-coated dishes. Isolated S-BMMSCs were analyzed by in vitro stem cell analysis approaches, including flow cytometry, inductive multiple differentiation, western blot and in vivo implantation to assess the bone regeneration ability of S-BMMSCs. Furthermore, we performed systemic S-BMMSCs transplantation to treat systemic lupus erythematosus (SLE)-like MRL/lpr mice. Results S-BMMSCs are capable of adhering to ECM-coated dishes and showing mesenchymal stem cell characteristics with distinction from hematopoietic cells as evidenced by co-expression of CD73 or Oct-4 with CD34, forming a single colony cluster on ECM, and failure to differentiate into hematopoietic cell lineage. Moreover, we found that culture-expanded S-BMMSCs exhibited significantly increased immunomodulatory capacities in vitro and an efficacious treatment for SLE-like MRL/lpr mice by rebalancing regulatory T cells (Tregs) and T helper 17 cells (Th17) through high NO production. Conclusions These data suggest that it is feasible to improve immunotherapy by identifying a new subset BMMSCs. PMID:23083975

  7. Exosomes secreted from mutant-HIF-1α-modified bone-marrow-derived mesenchymal stem cells attenuate early steroid-induced avascular necrosis of femoral head in rabbit.

    PubMed

    Li, Haile; Liu, Danping; Li, Chen; Zhou, Shanjian; Tian, Dachuan; Xiao, Dawei; Zhang, Huan; Gao, Feng; Huang, Jianhua

    2017-12-01

    Mesenchymal stem cells (MSCs)-derived exosomes exhibit protective effects on damaged or diseased tissues. Hypoxia-inducible factor 1α (HIF-1α) plays a critical role in bone development. However, HIF-1α is easily biodegradable under normoxic conditions. The bone-marrow-derived mesenchymal stem cells (BMSCs) were transfected with adenovirus carrying triple point-mutations (amino acids 402, 564, and 803) in the HIF-1α coding sequence (CDS). The mutant HIF-1α can efficiently express functional proteins under normoxic conditions. To date, no study has reported the role of exosomes secreted by mutant HIF-1α modified BMSCs in the recovery of the early steroid-induced avascular necrosis of femoral head (SANFH). In this study, we firstly analyzed exosomes derived from BMSCs modified by mutant (BMSC-Exos MU ) or wild-type HIF-1α (BMSC-Exos WT ). In vitro, we investigated the osteogenic differentiation capacity of BMSCs modified by BMSC-Exos MU or BMSC-Exos WT , and the angiogenesis effects of BMSC-Exos MU and BMSC-Exos WT on human umbilical vein endothelial cells (HUVECs). Besides, the healing of the femoral head was also assessed in vivo. We found that the potential of osteogenic differentiation of BMSCs treated with BMSC-Exos MU was higher than the wild-type group in vitro. In addition, BMSC-Exos MU stimulated the proliferation, migration, and tube formation of HUVECs in a dose-dependent manner. Compared with the BMSC-Exos WT or PBS control group, the injection of BMSC-Exos MU into the necrosis region markedly accelerated the bone regeneration and angiogenesis, which were indicated by the increased trabecular reconstruction and microvascular density. Taken together, our data suggest that BMSC-Exos MU facilitates the repair of SANFH by enhancing osteogenesis and angiogenesis. © 2017 International Federation for Cell Biology.

  8. Colonization of collagen scaffolds by adipocytes derived from mesenchymal stem cells of the common marmoset monkey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernemann, Inga, E-mail: bernemann@imp.uni-hannover.de; Mueller, Thomas; Blasczyk, Rainer

    Highlights: {yields} Marmoset bone marrow-derived MSCs differentiate in suspension into adipogenic, osteogenic and chondrogenic lineages. {yields} Marmoset MSCs integrate in collagen type I scaffolds and differentiate excellently into adipogenic cells. {yields} Common marmoset monkey is a suitable model for soft tissue engineering in human regenerative medicine. -- Abstract: In regenerative medicine, human cell replacement therapy offers great potential, especially by cell types differentiated from immunologically and ethically unproblematic mesenchymal stem cells (MSCs). In terms of an appropriate carrier material, collagen scaffolds with homogeneous pore size of 65 {mu}m were optimal for cell seeding and cultivating. However, before clinical application andmore » transplantation of MSC-derived cells in scaffolds, the safety and efficiency, but also possible interference in differentiation due to the material must be preclinically tested. The common marmoset monkey (Callithrix jacchus) is a preferable non-human primate animal model for this aim due to its genetic and physiological similarities to the human. Marmoset bone marrow-derived MSCs were successfully isolated, cultured and differentiated in suspension into adipogenic, osteogenic and chondrogenic lineages by defined factors. The differentiation capability could be determined by FACS. Specific marker genes for all three cell types could be detected by RT-PCR. Furthermore, MSCs seeded on collagen I scaffolds differentiated in adipogenic lineage showed after 28 days of differentiation high cell viability and homogenous distribution on the material which was validated by calcein AM and EthD staining. As proof of adipogenic cells, the intracellular lipid vesicles in the cells were stained with Oil Red O. The generation of fat vacuoles was visibly extensive distinguishable and furthermore determined on the molecular level by expression of specific marker genes. The results of the study proved both the differential potential of marmoset MSCs in adipogenic, osteogenic and chondrogenic lineages and the suitability of collagen scaffolds as carrier material undisturbing differentiation of primate mesenchymal stem cells.« less

  9. Novel 3D Tissue Engineered Bone Model, Biomimetic Nanomaterials, and Cold Atmospheric Plasma Technique for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Wang, Mian

    This thesis research is consist of four chapters, including biomimetic three-dimensional tissue engineered nanostructured bone model for breast cancer bone metastasis study (Chapter one), cold atmospheric plasma for selectively ablating metastatic breast cancer (Chapter two), design of biomimetic and bioactive cold plasma modified nanostructured scaffolds for enhanced osteogenic differentiation of bone marrow derived mesenchymal stem cells (Chapter three), and enhanced osteoblast and mesenchymal stem cell functions on titanium with hydrothermally treated nanocrystalline hydroxyapatite/magnetically treated carbon nanotubes for orthopedic applications (Chapter four). All the thesis research is focused on nanomaterials and the use of cold plasma technique for various biomedical applications.

  10. Flow cytometric analysis of normal and neoplastic mast cells: role in diagnosis and follow-up of mast cell disease.

    PubMed

    Escribano, Luis; Garcia Montero, Andres C; Núñez, Rosa; Orfao, Alberto

    2006-08-01

    Human mast cells (MCs) are directly derived from human pluripotent CD34+ stem and progenitor hematopoietic cells with stem cell factor being a critical growth factor supporting human MC proliferation, differentiation, and survival. Because of the advantages that flow cytometry offers (it allows rapid, objective, and sensitive multiparameter analysis of high numbers of cells from a sample, with information being provided on the basis of a single cell), it has become the method of choice in the past decade for immunophenotypic identification, enumeration, and characterization of human MCs in bone marrow and other tissue specimens.

  11. In vitro differentiation of human umbilical cord blood-derived mesenchymal stem cells into hepatocyte-like cells.

    PubMed

    Hong, Seung Hyun; Gang, Eun Ji; Jeong, Ju Ah; Ahn, Chiyoung; Hwang, Soo Han; Yang, Il Ho; Park, Hwon Kyum; Han, Hoon; Kim, Hoeon

    2005-05-20

    In addition to long-term self-renewal capability, human mesenchymal stem cells (MSCs) possess versatile differentiation potential ranging from mesenchyme-related multipotency to neuroectodermal and endodermal competency. Of particular concern is hepatogenic potential that can be used for liver-directed stem cell therapy and transplantation. In this study, we have investigated whether human umbilical cord blood (UCB)-derived MSCs are also able to differentiate into hepatocyte-like cells. MSCs isolated from UCB were cultured under the pro-hepatogenic condition similar to that for bone marrow (BM)-derived MSCs. Expression of a variety of hepatic lineage markers was analyzed by flow cytometry, RT-PCR, Western blot, and immunofluorescence. The functionality of differentiated cells was assessed by their ability to incorporate DiI-acetylated low-density lipoprotein (DiI-Ac-LDL). As the cells were morphologically transformed into hepatocyte-like cells, they expressed Thy-1, c-Kit, and Flt-3 at the cell surface, as well as albumin, alpha-fetoprotein, and cytokeratin-18 and 19 in the interior. Moreover, about a half of the cells were found to acquire the capability to transport DiI-Ac-LDL. Based on these observations, and taking into account immense advantages of UCB over other stem cell sources, we conclude that UCB-derived MSCs retain hepatogenic potential suitable for cell therapy and transplantation against intractable liver diseases.

  12. Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction

    PubMed Central

    Yoon, Young-sup; Wecker, Andrea; Heyd, Lindsay; Park, Jong-Seon; Tkebuchava, Tengiz; Kusano, Kengo; Hanley, Allison; Scadova, Heather; Qin, Gangjian; Cha, Dong-Hyun; Johnson, Kirby L.; Aikawa, Ryuichi; Asahara, Takayuki; Losordo, Douglas W.

    2005-01-01

    We have identified a subpopulation of stem cells within adult human BM, isolated at the single-cell level, that self-renew without loss of multipotency for more than 140 population doublings and exhibit the capacity for differentiation into cells of all 3 germ layers. Based on surface marker expression, these clonally expanded human BM-derived multipotent stem cells (hBMSCs) do not appear to belong to any previously described BM-derived stem cell population. Intramyocardial transplantation of hBMSCs after myocardial infarction resulted in robust engraftment of transplanted cells, which exhibited colocalization with markers of cardiomyocyte (CMC), EC, and smooth muscle cell (SMC) identity, consistent with differentiation of hBMSCs into multiple lineages in vivo. Furthermore, upregulation of paracrine factors including angiogenic cytokines and antiapoptotic factors, and proliferation of host ECs and CMCs, were observed in the hBMSC-transplanted hearts. Coculture of hBMSCs with CMCs, ECs, or SMCs revealed that phenotypic changes of hBMSCs result from both differentiation and fusion. Collectively, the favorable effect of hBMSC transplantation after myocardial infarction appears to be due to augmentation of proliferation and preservation of host myocardial tissues as well as differentiation of hBMSCs for tissue regeneration and repair. To our knowledge, this is the first demonstration that a specific population of multipotent human BM-derived stem cells can induce both therapeutic neovascularization and endogenous and exogenous cardiomyogenesis. PMID:15690083

  13. Consequences of irradiation on bone and marrow phenotypes, and its relation to disruption of hematopoietic precursors

    PubMed Central

    Green, Danielle E.; Rubin, Clinton T.

    2014-01-01

    The rising levels of radiation exposure, specifically for medical treatments and accidental exposures, have added great concern for the long term risks of bone fractures. Both the bone marrow and bone architecture are devastated following radiation exposure. Even sub-lethal doses cause a deficit to the bone marrow microenvironment, including a decline in hematopoietic cells, and this deficit occurs in a dose dependent fashion. Certain cell phenotypes though are more susceptible to radiation damage, with mesenchymal stem cells being more resilient than the hematopoietic stem cells. The decline in total bone marrow hematopoietic cells is accompanied with elevated adipocytes into the marrow cavity, thereby inhibiting hematopoiesis and recovery of the bone marrow microenvironment. Poor bone marrow is also associated with a decline in bone architectural quality. Therefore, the ability to maintain the bone marrow microenvironment would hinder much of the trabecular bone loss caused by radiation exposure, ultimately decreasing some comorbidities in patients exposed to radiation. PMID:24607941

  14. Wild-type bone marrow transplant partially reverses neuroinflammation in progranulin-deficient mice.

    PubMed

    Yang, Yue; Aloi, Macarena S; Cudaback, Eiron; Josephsen, Samuel R; Rice, Samantha J; Jorstad, Nikolas L; Keene, C Dirk; Montine, Thomas J

    2014-11-01

    Frontotemporal dementia (FTD) is a neurodegenerative disease with devastating changes in behavioral performance and social function. Mutations in the progranulin gene (GRN) are one of the most common causes of inherited FTD due to reduced progranulin expression or activity, including in brain where it is expressed primarily by neurons and microglia. Thus, efforts aimed at enhancing progranulin levels might be a promising therapeutic strategy. Bone marrow (BM)-derived cells are able to engraft in the brain and adopt a microglial phenotype under myeloablative irradiation conditioning. This ability makes BM-derived cells a potential cellular vehicle for transferring therapeutic molecules to the central nervous system. Here, we utilized BM cells from Grn(+/+) (wild type or wt) mice labeled with green fluorescence protein for delivery of progranulin to progranulin-deficient (Grn(-/-)) mice. Our results showed that wt bone marrow transplantation (BMT) partially reconstituted progranulin in the periphery and in cerebral cortex of Grn(-/-) mice. We demonstrated a pro-inflammatory effect in vivo and in ex vivo preparations of cerebral cortex of Grn(-/-) mice that was partially to fully reversed 5 months after BMT. Our findings suggest that BMT can be administered as a stem cell-based approach to prevent or to treat neurodegenerative diseases.

  15. The effect of low-frequency electromagnetic field on human bone marrow stem/progenitor cell differentiation

    PubMed Central

    Ross, Christina L.; Siriwardane, Mevan; Almeida-Porada, Graça; Porada, Christopher D.; Brink, Peter; Christ, George J.; Harrison, Benjamin S.

    2015-01-01

    Human bone marrow stromal cells (hBMSCs, also known as bone marrow-derived mesenchymal stem cells) are a population of progenitor cells that contain a subset of skeletal stem cells (hSSCs), able to recreate cartilage, bone, stroma that supports hematopoiesis and marrow adipocytes. As such, they have become an important resource in developing strategies for regenerative medicine and tissue engineering due to their self-renewal and differentiation capabilities. The differentiation of SSCs/BMSCs is dependent on exposure to biophysical and biochemical stimuli that favor early and rapid activation of the in vivo tissue repair process. Exposure to exogenous stimuli such as an electromagnetic field (EMF) can promote differentiation of SSCs/BMSCs via ion dynamics and small signaling molecules. The plasma membrane is often considered to be the main target for EMF signals and most results point to an effect on the rate of ion or ligand binding due to a receptor site acting as a modulator of signaling cascades. Ion fluxes are closely involved in differentiation control as stem cells move and grow in specific directions to form tissues and organs. EMF affects numerous biological functions such as gene expression, cell fate, and cell differentiation, but will only induce these effects within a certain range of low frequencies as well as low amplitudes. EMF has been reported to be effective in the enhancement of osteogenesis and chondrogenesis of hSSCs/BMSCs with no documented negative effects. Studies show specific EMF frequencies enhance hSSC/BMSC adherence, proliferation, differentiation, and viability, all of which play a key role in the use of hSSCs/BMSCs for tissue engineering. While many EMF studies report significant enhancement of the differentiation process, results differ depending on the experimental and environmental conditions. Here we review how specific EMF parameters (frequency, intensity, and time of exposure) significantly regulate hSSC/BMSC differentiation in vitro. We discuss optimal conditions and parameters for effective hSSC/BMSC differentiation using EMF treatment in an in vivo setting, and how these can be translated to clinical trials. PMID:26042793

  16. Characterization and In Vivo Testing of Mesenchymal Stem Cells Derived from Human Embryonic Stem Cells

    PubMed Central

    Gruenloh, William; Kambal, Amal; Sondergaard, Claus; McGee, Jeannine; Nacey, Catherine; Kalomoiris, Stefanos; Pepper, Karen; Olson, Scott; Fierro, Fernando

    2011-01-01

    Mesenchymal stem cells (MSCs) have been shown to contribute to the recovery of tissues through homing to injured areas, especially to hypoxic, apoptotic, or inflamed areas and releasing factors that hasten endogenous repair. In some cases genetic engineering of the MSC is desired, since they are excellent delivery vehicles. We have derived MSCs from the human embryonic stem cell (hESC) line H9 (H9-MSCs). They expressed CD105, CD90, CD73, and CD146, and lacked expression of CD45, CD34, CD14, CD31, and HLA-DR, the hESC pluripotency markers SSEA-4 and Tra-1-81, and the hESC early differentiation marker SSEA-1. Marrow-derived MSCs showed a similar phenotype. H9-MSCs did not form teratoma in our initial studies, whereas the parent H9 line did so robustly. H9-MSCs differentiated into bone, cartilage, and adipocytes in vitro, and displayed increased migration under hypoxic conditions. Finally, using a hindlimb ischemia model, H9-MSCs were shown to home to the hypoxic muscle, but not the contralateral limb, by 48 h after IV injection. In summary, we have defined methods for differentiation of hESCs into MSCs and have defined their characteristics and in vivo migratory properties. PMID:21275830

  17. Infrapatellar Fat Pad Stem Cells: From Developmental Biology to Cell Therapy.

    PubMed

    do Amaral, Ronaldo J F C; Almeida, Henrique V; Kelly, Daniel J; O'Brien, Fergal J; Kearney, Cathal J

    2017-01-01

    The ideal cell type to be used for cartilage therapy should possess a proven chondrogenic capacity, not cause donor-site morbidity, and should be readily expandable in culture without losing their phenotype. There are several cell sources being investigated to promote cartilage regeneration: mature articular chondrocytes, chondrocyte progenitors, and various stem cells. Most recently, stem cells isolated from joint tissue, such as chondrogenic stem/progenitors from cartilage itself, synovial fluid, synovial membrane, and infrapatellar fat pad (IFP) have gained great attention due to their increased chondrogenic capacity over the bone marrow and subcutaneous adipose-derived stem cells. In this review, we first describe the IFP anatomy and compare and contrast it with other adipose tissues, with a particular focus on the embryological and developmental aspects of the tissue. We then discuss the recent advances in IFP stem cells for regenerative medicine. We compare their properties with other stem cell types and discuss an ontogeny relationship with other joint cells and their role on in vivo cartilage repair. We conclude with a perspective for future clinical trials using IFP stem cells.

  18. Infrapatellar Fat Pad Stem Cells: From Developmental Biology to Cell Therapy

    PubMed Central

    Almeida, Henrique V.; Kelly, Daniel J.; O'Brien, Fergal J.; Kearney, Cathal J.

    2017-01-01

    The ideal cell type to be used for cartilage therapy should possess a proven chondrogenic capacity, not cause donor-site morbidity, and should be readily expandable in culture without losing their phenotype. There are several cell sources being investigated to promote cartilage regeneration: mature articular chondrocytes, chondrocyte progenitors, and various stem cells. Most recently, stem cells isolated from joint tissue, such as chondrogenic stem/progenitors from cartilage itself, synovial fluid, synovial membrane, and infrapatellar fat pad (IFP) have gained great attention due to their increased chondrogenic capacity over the bone marrow and subcutaneous adipose-derived stem cells. In this review, we first describe the IFP anatomy and compare and contrast it with other adipose tissues, with a particular focus on the embryological and developmental aspects of the tissue. We then discuss the recent advances in IFP stem cells for regenerative medicine. We compare their properties with other stem cell types and discuss an ontogeny relationship with other joint cells and their role on in vivo cartilage repair. We conclude with a perspective for future clinical trials using IFP stem cells. PMID:29018484

  19. Feasibility of autologous bone marrow mesenchymal stem cell-derived extracellular matrix scaffold for cartilage tissue engineering.

    PubMed

    Tang, Cheng; Xu, Yan; Jin, Chengzhe; Min, Byoung-Hyun; Li, Zhiyong; Pei, Xuan; Wang, Liming

    2013-12-01

    Extracellular matrix (ECM) materials are widely used in cartilage tissue engineering. However, the current ECM materials are unsatisfactory for clinical practice as most of them are derived from allogenous or xenogenous tissue. This study was designed to develop a novel autologous ECM scaffold for cartilage tissue engineering. The autologous bone marrow mesenchymal stem cell-derived ECM (aBMSC-dECM) membrane was collected and fabricated into a three-dimensional porous scaffold via cross-linking and freeze-drying techniques. Articular chondrocytes were seeded into the aBMSC-dECM scaffold and atelocollagen scaffold, respectively. An in vitro culture and an in vivo implantation in nude mice model were performed to evaluate the influence on engineered cartilage. The current results showed that the aBMSC-dECM scaffold had a good microstructure and biocompatibility. After 4 weeks in vitro culture, the engineered cartilage in the aBMSC-dECM scaffold group formed thicker cartilage tissue with more homogeneous structure and higher expressions of cartilaginous gene and protein compared with the atelocollagen scaffold group. Furthermore, the engineered cartilage based on the aBMSC-dECM scaffold showed better cartilage formation in terms of volume and homogeneity, cartilage matrix content, and compressive modulus after 3 weeks in vivo implantation. These results indicated that the aBMSC-dECM scaffold could be a successful novel candidate scaffold for cartilage tissue engineering. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.

  20. An electromagnetic compressive force by cell exciter stimulates chondrogenic differentiation of bone marrow-derived mesenchymal stem cells.

    PubMed

    Park, Sang-Hyug; Sim, Woo Young; Park, Sin Wook; Yang, Sang Sik; Choi, Byung Hyune; Park, So Ra; Park, Kwideok; Min, Byoung-Hyun

    2006-11-01

    In this study, we present a biological micro-electromechanical system and its application to the chondrogenic differentiation of rabbit bone marrow-derived mesenchymal stem cells (MSCs). Actuated by an electromagnetic force, the micro cell exciter was designed to deliver a cyclic compressive load (CCL) with various magnitudes. Two major parts in the system are an actuator and a cartridge-type chamber. The former has a permanent magnet and coil, and the latter is equipped with 7 sample dishes and 7 metal caps. Mixed with a 2.4% alginate solution, the alginate/MSC layers were positioned in the sample dishes; the caps contained chondrogenic defined medium without transforming growth factor-beta (TGF-beta). Once powered, the actuator coil-derived electromagnetic force pulled the metal caps down, compressing the samples. The cyclic load was given at 1-Hz frequency for 10 min twice a day. Samples in the dishes without a cap served as a control. The samples were analyzed at 3, 5, and 7 days after stimulation for cell viability, biochemical assays, histologic features, immunohistochemistry, and gene expression of the chondrogenic markers. Applied to the alginate/MSC layer, the CCL system enhanced the synthesis of cartilage-specific matrix proteins and the chondrogenic markers, such as aggrecan, type II collagen, and Sox9. We found that the micromechanically exerted CCL by the cell exciter was very effective in enhancing the chondrogenic differentiation of MSCs, even without using exogenous TGF-beta.

  1. Mesenchymal stem cells derived from bone marrow of diabetic patients portrait unique markers influenced by the diabetic microenvironment.

    PubMed

    Phadnis, Smruti M; Ghaskadbi, Surendra M; Hardikar, Anandwardhan A; Bhonde, Ramesh R

    2009-01-01

    Cellular microenvironment is known to play a critical role in the maintenance of human bone marrow-derived mesenchymal stem cells (BM-MSCs). It was uncertain whether BM-MSCs obtained from a 'diabetic milieu' (dBM-MSCs) offer the same regenerative potential as those obtained from healthy (non-diabetic) individuals (hBM-MSCs). To investigate the effect of diabetic microenvironment on human BM-MSCs, we isolated and characterized these cells from diabetic patients (dBM-MSCs). We found that dBM-MSCs expressed mesenchymal markers such as vimentin, smooth muscle actin, nestin, fibronectin, CD29, CD44, CD73, CD90, and CD105. These cells also exhibited multilineage differentiation potential, as evident from the generation of adipocytes, osteocytes, and chondrocytes when exposed to lineage specific differentiation media. Although the cells were similar to hBM-MSCs, 6% (3/54) of dBM-MSCs expressed proinsulin/C-peptide. Emanating from the diabetic microenvironmental milieu, we analyzed whether in vitro reprogramming could afford the maturation of the islet-like clusters (ICAs) derived from dBM-MSCs. Upon mimicking the diabetic hyperglycemic niche and the supplementation of fetal pancreatic extract, to differentiate dBM-MSCs into pancreatic lineage in vitro, we observed rapid differentiation and maturation of dBM-MSCs into islet-like cell aggregates. Thus, our study demonstrated that diabetic hyperglycemic microenvironmental milieu plays a major role in inducing the differentiation of human BM-MSCs in vivo and in vitro.

  2. Effect of Secreted Molecules of Human Embryonic Stem Cell-Derived Mesenchymal Stem Cells on Acute Hepatic Failure Model.

    PubMed

    Lotfinia, Majid; Kadivar, Mehdi; Piryaei, Abbas; Pournasr, Behshad; Sardari, Soroush; Sodeifi, Niloofar; Sayahpour, Forugh-Azam; Baharvand, Hossein

    2016-12-15

    Adult tissue-derived mesenchymal stem cells (MSCs) show tremendous promise for a wide array of therapeutic applications predominantly through paracrine activity. Recent reports showed that human embryonic stem cell (ESC)-derived MSCs are an alternative for regenerative cellular therapy due to manufacturing large quantities of MSCs from a single donor. However, no study has been reported to uncover the secretome of human ESC-MSCs as treatment of an acute liver failure (ALF) mouse model. We demonstrated that human ESC-MSCs showed similar morphology and cell surface markers compared with bone marrow-derived MSCs. ESC-MSCs exhibited a higher growth rate during early in vitro expansion, along with adipogenic and osteogenic differentiation potential. Treatment with ESC-MSC-conditioned medium (CM) led to statistically significant enhancement of primary hepatocyte viability and increased immunomodulatory interleukin-10 secretion from lipopolysaccharide-induced human blood mononuclear cells. Analysis of the MSCs secretome by a protein array screen showed an association between higher frequencies of secretory proteins such as vascular endothelial growth factor (VEGF) and regulation of cell proliferation, cell migration, the development process, immune system process, and apoptosis. In this thioacetamide-induced mouse model of acute liver injury, we observed that systemic infusion of VEGF led to significant survival. These data have provided the first experimental evidence of the therapeutic potential of human ESC-MSC-derived molecules. These molecules show trophic support to hepatocytes, which potentially creates new avenues for the treatment of ALF, as an inflammatory condition.

  3. Generation of functional islets from human umbilical cord and placenta derived mesenchymal stem cells.

    PubMed

    Kadam, Sachin; Govindasamy, Vijayendran; Bhonde, Ramesh

    2012-01-01

    Bone marrow-derived mesenchymal stem cells (BM-MSCs) have been used for allogeneic application in tissue engineering but have certain drawbacks. Therefore, mesenchymal stem cells (MSCs) derived from other adult tissue sources have been considered as an alternative. The human umbilical cord and placenta are easily available noncontroversial sources of human tissue, which are often discarded as biological waste, and their collection is noninvasive. These sources of MSCs are not subjected to ethical constraints, as in the case of embryonic stem cells. MSCs derived from umbilical cord and placenta are multipotent and have the ability to differentiate into various cell types crossing the lineage boundary towards endodermal lineage. The aim of this chapter is to provide a detailed reproducible cookbook protocol for the isolation, propagation, characterization, and differentiation of MSCs derived from human umbilical cord and placenta with special reference to harnessing their potential towards pancreatic/islet lineage for utilization as a cell therapy product. We show here that mesenchymal stromal cells can be extensively expanded from umbilical cord and placenta of human origin retaining their multilineage differentiation potential in vitro. Our report indicates that postnatal tissues obtained as delivery waste represent a rich source of mesenchymal stromal cells, which can be differentiated into functional islets employing three-stage protocol developed by our group. These islets could be used as novel in vitro model for screening hypoglycemics/insulin secretagogues, thus reducing animal experimentation for this purpose and for the future human islet transplantation programs to treat diabetes.

  4. PAR1 signaling regulates the retention and recruitment of EPCR-expressing bone marrow hematopoietic stem cells

    PubMed Central

    Gur-Cohen, Shiri; Itkin, Tomer; Chakrabarty, Sagarika; Graf, Claudine; Kollet, Orit; Ludin, Aya; Golan, Karin; Kalinkovich, Alexander; Ledergor, Guy; Wong, Eitan; Niemeyer, Elisabeth; Porat, Ziv; Erez, Ayelet; Sagi, Irit; Esmon, Charles T; Ruf, Wolfram; Lapidot, Tsvee

    2016-01-01

    Retention of long-term repopulating hematopoietic stem cells (LT-HSCs) in the bone marrow is essential for hematopoiesis and for protection from myelotoxic injury. We report that signaling cascades that are traditionally viewed as coagulation-related also control retention of EPCR+ LT-HSCs in the bone marrow and their recruitment to the blood via two different protease activated receptor 1 (PAR1)-mediated pathways. Thrombin-PAR1 signaling induces nitric oxide (NO) production, leading to TACE-mediated EPCR shedding, enhanced CXCL12-CXCR4-induced motility, and rapid stem and progenitor cell mobilization. Conversely, bone marrow blood vessels provide a microenvironment enriched with protein C that retain EPCR+ LT-HSCs by limiting NO generation, reducing Cdc42 activity and enhancing VLA4 affinity and adhesion. Inhibition of NO production by activated protein C (aPC)-EPCR-PAR1 signaling reduces progenitor cell egress, increases NOlow bone marrow EPCR+ LT-HSCs retention and protects mice from chemotherapy-induced hematological failure and death. Our study reveals new roles for PAR1 and EPCR that control NO production to balance maintenance and recruitment of bone marrow EPCR+ LT-HSCs with clinical relevance. PMID:26457757

  5. Donor Experiences of Second Marrow or Peripheral Blood Stem Cell Collection Mirror the First, but CD34+ Yields Are Less.

    PubMed

    Stroncek, David F; Shaw, Bronwen E; Logan, Brent R; Kiefer, Deidre M; Savani, Bipin N; Anderlini, Paolo; Bredeson, Christopher N; Hematti, Peiman; Ganguly, Siddhartha; Diaz, Miguel Angel; Abdel-Azim, Hisham; Ahmed, Ibrahim; Maharaj, Dipnarine; Seftel, Matthew; Beitinjaneh, Amer; Seo, Sachiko; Yared, Jean A; Halter, Joerg; O'Donnell, Paul V; Hale, Gregory A; DeFilipp, Zachariah; Lazarus, Hillard; Liesveld, Jane L; Zhou, Zheng; Munshi, Pashna; Olsson, Richard F; Kasow, Kimberly Anne; Szer, Jeffrey; Switzer, Galen E; Chitphakdithai, Pintip; Shah, Nirali; Confer, Dennis L; Pulsipher, Michael A

    2018-01-01

    Little is known about the experiences of individuals donating peripheral blood stem cells (PBSCs) or marrow for a second time. To study this, unrelated donors making a second donation through the National Marrow Donor Program between 2004 and 2013 were evaluated. Experiences of second-time donors giving marrow (n = 118: first donation was PBSC in 76 and marrow in 42) were compared with those making only 1 marrow donation (n = 5829). Experiences of second-time donors giving PBSCs (n = 602) (first donation was PBSCs in 362; marrow in 240) were compared to first-time PBSC donors (n = 16,095). For donors giving a second PBSC or marrow donation there were no significant differences in maximum skeletal pain, maximum symptoms measured by an established modified toxicity criteria, and recovery time compared with those who donated only once. Notably, the yield of marrow nucleated cells and PBSC CD34 + cells with second donations was less. As previously noted with single first-time donations, female (PBSCs and marrow) and obese donors (PBSCs) had higher skeletal pain and/or toxicity with a second donation. PBSC donors who experienced high levels of pain or toxicity with the first donation also experienced high levels of these symptoms with their second donation and slower recovery times. In conclusion, for most donors second donation experiences were similar to first donation experiences, but CD34 + yields were less. Knowledge of the donor's first experience and stem cell yields may help centers decide whether second donations are appropriate and institute measures to improve donor experiences. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carreon-Rodriguez, A.; Belkind-Gerson, J.; Serrano-Luna, G.

    Availability of adult stem cells from several organs like bone marrow, umbilical cord blood or peripheral blood has become a powerful therapeutic tool for many chronic diseases. Potential of adult stem cells for regeneration extents to other tissues among them the nervous system. However two obstacles should be resolved before such cells could be currently applied in clinical practice: a) slow growth rate and b) ability to form enough dense colonies in order to populate a specific injury or cellular deficiency. Many approaches have been explored as genetic differentiation programs, growth factors, and supplemented culture media, among others. Electromagnetic fieldmore » stimulation of differentiation, proliferation, migration, and particularly on neurogenesis is little known. Since the biological effects of ELF-EMF are well documented, we hypothesize ELF-EMF could affect growth and maturation of stem cells derived of enteric tissue.« less

  7. Stem Cells for Skeletal Muscle Tissue Engineering.

    PubMed

    Pantelic, Molly N; Larkin, Lisa M

    2018-04-19

    Volumetric muscle loss (VML) is a debilitating condition wherein muscle loss overwhelms the body's normal physiological repair mechanism. VML is particularly common among military service members who have sustained war injuries. Because of the high social and medical cost associated with VML and suboptimal current surgical treatments, there is great interest in developing better VML therapies. Skeletal muscle tissue engineering (SMTE) is a promising alternative to traditional VML surgical treatments that use autogenic tissue grafts, and rather uses isolated stem cells with myogenic potential to generate de novo skeletal muscle tissues to treat VML. Satellite cells are the native precursors to skeletal muscle tissue, and are thus the most commonly studied starting source for SMTE. However, satellite cells are difficult to isolate and purify, and it is presently unknown whether they would be a practical source in clinical SMTE applications. Alternative myogenic stem cells, including adipose-derived stem cells, bone marrow-derived mesenchymal stem cells, perivascular stem cells, umbilical cord mesenchymal stem cells, induced pluripotent stem cells, and embryonic stem cells, each have myogenic potential and have been identified as possible starting sources for SMTE, although they have yet to be studied in detail for this purpose. These alternative stem cell varieties offer unique advantages and disadvantages that are worth exploring further to advance the SMTE field toward highly functional, safe, and practical VML treatments. The following review summarizes the current state of satellite cell-based SMTE, details the properties and practical advantages of alternative myogenic stem cells, and offers guidance to tissue engineers on how alternative myogenic stem cells can be incorporated into SMTE research.

  8. Klf5 controls bone marrow homing of stem cells and progenitors through Rab5-mediated β1/β2-integrin trafficking

    PubMed Central

    Taniguchi Ishikawa, E.; Chang, K.H.; Nayak, R.; Olsson, H.A; Ficker, A.; Dunn, S.K.; Madhu, M.; Sengupta, A.; Whitsett, J.A.; Grimes, H.L.; Cancelas, J.A.

    2013-01-01

    Kruppel-like factor 5 (Klf5) regulates pluripotent stem cell self-renewal but its role in somatic stem cells is unknown. Here we show that Klf5 deficient haematopoietic stem cells and progenitors (HSC/P) fail to engraft after transplantation. This HSC/P defect is associated with impaired bone marrow homing and lodging and decreased retention in bone marrow, and with decreased adhesion to fibronectin and expression of membrane-bound β1/β2-integrins. In vivo inducible gain-of-function of Klf5 in HSCs increases HSC/P adhesion. The expression of Rab5 family members, mediators of β1/β2-integrin recycling in the early endosome, is decreased in Klf5Δ/Δ HSC/Ps. Klf5 binds directly to the promoter of Rab5a/b and overexpression of Rab5b rescues the expression of activated β1/β2-integrins, adhesion and bone marrow homing of Klf5Δ/Δ HSC/Ps. Altogether, these data indicate that Klf5 is indispensable for adhesion, homing, lodging and retention of HSC/Ps in the bone marrow through Rab5-dependent post-translational regulation of β1/β2 integrins. PMID:23552075

  9. Gastrocnemius tendon strain in a dog treated with autologous mesenchymal stem cells and a custom orthosis.

    PubMed

    Case, J Brad; Palmer, Ross; Valdes-Martinez, Alex; Egger, Erick L; Haussler, Kevin K

    2013-05-01

    To report clinical findings and outcome in a dog with gastrocnemius tendon strain treated with autologous mesenchymal stem cells and a custom orthosis. Clinical report. A 4-year-old spayed female Border Collie. Bone-marrow derived, autologous mesenchymal stem cells were transplanted into the tendon core lesion. A custom, progressive, dynamic orthosis was fit to the tarsus. Serial orthopedic examinations and ultrasonography as well as long-term force-plate gait analysis were utilized for follow up. Lameness subjectively resolved and peak vertical force increased from 43% to 92% of the contralateral pelvic limb. Serial ultrasonographic examinations revealed improved but incomplete restoration of normal linear fiber pattern of the gastrocnemius tendon. Findings suggest that autologous mesenchymal stem cell transplantation with custom, progressive, dynamic orthosis may be a viable, minimally invasive technique for treatment of calcaneal tendon injuries in dogs. © Copyright 2013 by The American College of Veterinary Surgeons.

  10. Behaviour of human mesenchymal stem cells on chemically synthesized HA-PCL scaffolds for hard tissue regeneration.

    PubMed

    D'Antò, Vincenzo; Raucci, Maria Grazia; Guarino, Vincenzo; Martina, Stefano; Valletta, Rosa; Ambrosio, Luigi

    2016-02-01

    Our goal was to characterize the response of human mesenchymal stem cells (hMSCs) to a novel composite scaffold for bone tissue engineering. The hydroxyapatite-polycaprolactone (HA-PCL) composite scaffolds were prepared by a sol-gel method at room temperature and the scaffold morphology was investigated by scanning electron microscopy (SEM)/energy-dispersive spectroscopy (EDS) to validate the synthesis process. The response of two different lines of hMSCs, bone-marrow-derived human mesenchymal stem cells (BMSCs) and dental pulp stem cells (DPSCs) in terms of cell proliferation and differentiation into the osteoblastic phenotype, was evaluated using Alamar blue assay, SEM, histology and alkaline phosphatase activity. Our results indicate that tissue engineering by means of composite HA-PCL scaffolds may represent a new therapeutic strategy to repair craniofacial bone defects. Copyright © 2013 John Wiley & Sons, Ltd.

  11. NADPH Oxidase Signaling Pathway Mediates Mesenchymal Stem Cell-Induced Inhibition of Hepatic Stellate Cell Activation.

    PubMed

    Qiao, Haowen; Zhou, Yu; Qin, Xingping; Cheng, Jing; He, Yun; Jiang, Yugang

    2018-01-01

    Bone marrow-derived mesenchymal stem cells (BMSCs) have blossomed into an effective approach with great potential for the treatment of liver fibrosis. The aim of this study was to investigate the underlying antifibrosis mechanisms by which the BMSC inhibit activated hepatic stellate cells (HSCs) in vivo and in vitro. To study the effect of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) on activated HSCs, we used HSCs and the coculture systems to evaluate the inhibition of activated HSCs from the aspects of the apoptosis of activated HSCs. In addition, activation of NADPH oxidase pathway and the changes in liver histopathology were tested by using the carbon tetrachloride- (CCl 4 -) induced liver fibrosis in mice. Introduction of hBM-MSCs significantly inhibited the proliferation of activated HSCs by inducing the apoptosis process of activated HSCs. The effect of hBM-MSCs reduced the signaling pathway of NADPH oxidase in activated HSCs. Besides, the signaling pathway of NADPH oxidase mediated hBM-MSC upregulation of the expression of the peroxisome proliferator-activated receptor γ and downregulation of the expression of α 1(I) collagen and alpha-smooth muscle actin ( α -SMA) in activated HSCs. Moreover, the hBM-MSC-induced decrease in the signaling pathway of NADPH oxidase was accompanied by the decrease of the activated HSC number and liver fibrosis in a mouse model of CCl 4 -induced liver fibrosis. The hBM-MSCs act as a promising drug source against liver fibrosis development with respect to hepatopathy as a therapeutic target.

  12. Basic Fibroblast Growth Factor Stimulates the Proliferation of Bone Marrow Mesenchymal Stem Cells in Giant Panda (Ailuropoda melanoleuca)

    PubMed Central

    Wang, Jun-Jie; Liu, Yu-Liang; Sun, Yuan-Chao; Ge, Wei; Wang, Yong-Yong; Dyce, Paul W.; Hou, Rong; Shen, Wei

    2015-01-01

    It has been widely known that the giant panda (Ailuropoda melanoleuca) is one of the most endangered species in the world. An optimized platform for maintaining the proliferation of giant panda mesenchymal stem cells (MSCs) is very necessary for current giant panda protection strategies. Basic fibroblast growth factor (bFGF), a member of the FGF family, is widely considered as a growth factor and differentiation inducer within the stem cell research field. However, the role of bFGF on promoting the proliferation of MSCs derived from giant panda bone marrow (BM) has not been reported. In this study, we aimed to investigate the role of bFGF on the proliferation of BM-MSCs derived from giant panda. MSCs were cultured for cell proliferation analysis at 24, 48 and 72 hrs following the addition of bFGF. With increasing concentrations of bFGF, cell numbers gradually increased. This was further demonstrated by performing 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) cell proliferation assay, 5-Bromo-2-deoxyUridine (BrdU) labeling and cell cycle testing. Furthermore, the percentage of MSCs that were OCT4 positive increased slightly following treatment with 5 ng/ml bFGF. Moreover, we demonstrated that the extracellular signal-regulated kinase (ERK) signaling pathway may play an important role in the proliferation of panda MSCs stimulated by bFGF. In conclusion, this study suggests that giant panda BM-MSCs have a high proliferative capacity with the addition of 5 ng/ml bFGF in vitro. PMID:26375397

  13. Basic Fibroblast Growth Factor Stimulates the Proliferation of Bone Marrow Mesenchymal Stem Cells in Giant Panda (Ailuropoda melanoleuca).

    PubMed

    Wang, Jun-Jie; Liu, Yu-Liang; Sun, Yuan-Chao; Ge, Wei; Wang, Yong-Yong; Dyce, Paul W; Hou, Rong; Shen, Wei

    2015-01-01

    It has been widely known that the giant panda (Ailuropoda melanoleuca) is one of the most endangered species in the world. An optimized platform for maintaining the proliferation of giant panda mesenchymal stem cells (MSCs) is very necessary for current giant panda protection strategies. Basic fibroblast growth factor (bFGF), a member of the FGF family, is widely considered as a growth factor and differentiation inducer within the stem cell research field. However, the role of bFGF on promoting the proliferation of MSCs derived from giant panda bone marrow (BM) has not been reported. In this study, we aimed to investigate the role of bFGF on the proliferation of BM-MSCs derived from giant panda. MSCs were cultured for cell proliferation analysis at 24, 48 and 72 hrs following the addition of bFGF. With increasing concentrations of bFGF, cell numbers gradually increased. This was further demonstrated by performing 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) cell proliferation assay, 5-Bromo-2-deoxyUridine (BrdU) labeling and cell cycle testing. Furthermore, the percentage of MSCs that were OCT4 positive increased slightly following treatment with 5 ng/ml bFGF. Moreover, we demonstrated that the extracellular signal-regulated kinase (ERK) signaling pathway may play an important role in the proliferation of panda MSCs stimulated by bFGF. In conclusion, this study suggests that giant panda BM-MSCs have a high proliferative capacity with the addition of 5 ng/ml bFGF in vitro.

  14. Low level light promotes the proliferation and differentiation of bone marrow derived mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Ahn, Jin-Chul; Rhee, Yun-Hee; Choi, Sun-Hyang; Kim, Dae Yu; Chung, Phil-Sang

    2015-03-01

    Low-level light irradiation (LLLI) reported to stimulate the proliferation or differentiation of a variety of cell types. However, very little is known about the effect of light therapy on stem cells. The aim of the present study was to evaluate the effect of LLLI on the molecular physiological change of human bone marrow derived stem cells (hBMSC) by wavelength (470, 630, 660, 740 and 850, 50mW). The laser diode was performed with different time interval (0, 7.5, 15, 30J/cm2, 50mW) on hBMSC. To determine the molecular physiological changes of cellular level of hBMSC, the clonogenic assay, ATP assay, reactive oxygen species (ROS) detection, mitochondria membrane potential (MMPΦ) staining and calcium efflux assay were assessed after irradiation. There was a difference between with and without irradiation on hBMSCs. An energy density up to 30 J/cm² improved the cell proliferation in comparison to the control group. Among these irradiated group, 630 and 660nm were significantly increased the cell proliferation. The cellular level of ATP and calcium influx was increased with energy dose-dependent in all LLLI groups. Meanwhile, ROS and MMPΦ were also increased after irradiation except 470nm. It can be concluded that LLLI using infrared light and an energy density up to 30 J/cm² has a positive stimulatory effect on the proliferation or differentiation of hBMSCs. Our results suggest that LLLI may influence to the mitochondrial membrane potential activity through ATP synthesis and increased cell metabolism which leads to cell proliferation and differentiation.

  15. Effect of erythropoietin on mesenchymal stem cell differentiation and secretion in vitro in an acute kidney injury microenvironment.

    PubMed

    Liu, N M; Tian, J; Wang, W W; Han, G F; Cheng, J; Huang, J; Zhang, J Y

    2013-02-28

    We investigated the effect of erythropoietin (EPO) on differentiation and secretion of bone marrow-derived mesenchymal stem cells in an acute kidney injury microenvironment. Acute kidney injury mouse models were prepared. Both renal cortices were then immediately collected to produce the ischemia/reperfusion kidney homogenate supernatant. The morphological and ultrastructural changes in the cells were observed using an inverted microscope and a transmission electron microscope. Cytokeratin-18 was detected using flow cytometry. Bone morphogenetic protein-7 levels, hepatocyte growth factor, and vascular endothelial growth factor in the culture medium were detected using an enzyme-linked immunosorbent assay. The cells had high CD29 and CD44 expression, as well as low CD34 and CD45 expression. More round and oval cells with cobble-like appearances were observed after EPO treatment. In addition, an increase in the number of rough endoplasmic reticula, lysosomes, and mitochondria was observed in the cytoplasm; the intercellular junction peculiar to epithelial cells was also seen on the cell surface. After treatment with ischemia/reperfusion kidney homogenate supernatant, cytokeratin-18 expression increased significantly and EPO could magnify its expression. Bone morphogenetic protein-7 levels, hepatocyte growth factor, and vascular endothelial growth factor levels after treatment with ischemia/reperfusion kidney homogenate supernatant significantly decreased, whereas EPO increased the cytokine secretion. The acute kidney injury microenvironment can induce the bone marrow-derived mesenchymal stem cells to partially differentiate into renal tubular epithelium-shaped cells, but weaken their secretion function. EPO intervention can boost up their differentiation function and reverse their low secretion effect.

  16. Conditioned medium from human bone marrow-derived mesenchymal stem cells promotes skin moisturization and effacement of wrinkles in UVB-irradiated SKH-1 hairless mice.

    PubMed

    Kwon, Tae-Rin; Oh, Chang Taek; Choi, Eun Ja; Kim, Soon Re; Jang, Yu-Jin; Ko, Eun Jung; Yoo, Kwang Ho; Kim, Beom Joon

    2016-05-01

    Mesenchymal stem cells (MSCs) are promising therapeutic agents for various diseases. To investigate the effects of conditioned medium from human bone marrow-derived mesenchymal stem cells (MSC-CdM) on pro-collagen production and wrinkle formation, we performed in vitro and in vivo experiments. We assessed the effects of MSC-CdM on proliferation and photo-aging in human dermal fibroblasts after UVB exposure using enzyme activity assays for collagen type I secretion and MMP-1. To determine the effect of topically applied MSC-CdM on wrinkle formation, MSC-CdM (1% and 10%) and vehicle (propylene glycol: ethanol, 7 : 3) were applied to the dorsal skin of UVB-irradiated hairless mice for 8 weeks. We examined the effects on wrinkle formation by assessing visual skin grading, replica, tape stripping, transepidermal water loss (TEWL), and skin hydration measurement. We also examined histology of the lesions using hematoxylin-eosin, Masson's trichrome, and immunohistochemical staining. MSC-CdM markedly reduced UV-induced matrix metalloproteinase-1 expression and increased pro-collagen synthesis in a dose-dependent manner. Our findings suggest that MSC-CdM induces repair of dermal damage and effacement of wrinkles on UVB-irradiated hairless mice through protective effect of hydration. These results support an anti-wrinkle effect of MSC-CdM that involves increased collagen synthesis and suggest that MSC-CdM might be a potential candidate for preventing UV-induced skin damage. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Mesenchymal Stem Cell as Targeted-Delivery Vehicle in Breast Cancer

    DTIC Science & Technology

    2010-06-01

    osteogenesis imperfect [2], graft-versus-host disease [3], and autoimmune diseases [4, 5], and to deliver therapy for malignancies [6, 7]. For the current...Gordon PL, Neel M, et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis ... imperfecta . Nat Med. 1999;5:309-13. 3. Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M, et al. Treatment of severe acute graft-versus

  18. Inflammatory Cytokines Induce a Unique Mineralizing Phenotype in Mesenchymal Stem Cells Derived from Human Bone Marrow*

    PubMed Central

    Ferreira, Elisabeth; Porter, Ryan M.; Wehling, Nathalie; O'Sullivan, Regina P.; Liu, Fangjun; Boskey, Adele; Estok, Daniel M.; Harris, Mitchell B.; Vrahas, Mark S.; Evans, Christopher H.; Wells, James W.

    2013-01-01

    Bone marrow contains mesenchymal stem cells (MSCs) that can differentiate along multiple mesenchymal lineages. In this capacity they are thought to be important in the intrinsic turnover and repair of connective tissues while also serving as a basis for tissue engineering and regenerative medicine. However, little is known of the biological responses of human MSCs to inflammatory conditions. When cultured with IL-1β, marrow-derived MSCs from 8 of 10 human subjects deposited copious hydroxyapatite, in which authenticity was confirmed by Fourier transform infrared spectroscopy. Transmission electron microscopy revealed the production of fine needles of hydroxyapatite in conjunction with matrix vesicles. Alkaline phosphatase activity did not increase in response to inflammatory mediators, but PPi production fell, reflecting lower ectonucleotide pyrophosphatase activity in cells and matrix vesicles. Because PPi is the major physiological inhibitor of mineralization, its decline generated permissive conditions for hydroxyapatite formation. This is in contrast to MSCs treated with dexamethasone, where PPi levels did not fall and mineralization was fuelled by a large and rapid increase in alkaline phosphatase activity. Bone sialoprotein was the only osteoblast marker strongly induced by IL-1β; thus these cells do not become osteoblasts despite depositing abundant mineral. RT-PCR did not detect transcripts indicative of alternative mesenchymal lineages, including chondrocytes, myoblasts, adipocytes, ligament, tendon, or vascular smooth muscle cells. IL-1β phosphorylated multiple MAPKs and activated nuclear factor-κB (NF-κB). Certain inhibitors of MAPK and PI3K, but not NF-κB, prevented mineralization. The findings are of importance to soft tissue mineralization, tissue engineering, and regenerative medicine. PMID:23970554

  19. Differentiation "in vitro" of primary and immortalized porcine mesenchymal stem cells into cardiomyocytes for cell transplantation.

    PubMed

    Moscoso, I; Centeno, A; López, E; Rodriguez-Barbosa, J I; Santamarina, I; Filgueira, P; Sánchez, M J; Domínguez-Perles, R; Peñuelas-Rivas, G; Domenech, N

    2005-01-01

    Cell transplantation to regenerate injured tissues is a promising new treatment for patients suffering several diseases. Bone marrow contains a population of progenitor cells known as mesenchymal stem cells (MSCs), which have the capability to colonize different tissues, replicate, and differentiate into multilineage cells. Our goal was the isolation, characterization, and immortalization of porcine MSCs (pMSCs) to study their potential differentiation "in vitro" into cardiomyocytes. pMSCs were obtained from the aspirated bone marrow of Large-White pigs. After 4 weeks in culture, adherent cells were phenotypically characterized by flow cytometry and immunochemistry by using monoclonal antibodies. Primary pMSCs were transfected with the plasmid pRNS-1 to obtain continuous growing cloned cell lines. Fresh pMSCs and immortalized cells were treated with 5-azacytidine to differentiate them into cardiomyocytes. Flow cytometry analysis of isolated pMSCs demonstrated the following phenotype, CD90(pos), CD29(pos), CD44(pos), SLA-I(pos), CD106(pos), CD46(pos) and CD45(neg), CD14(neg), CD31(neg), and CD11b(neg), similar to that described for human MSC. We derived several stable immortalized MSC cell lines. One of these, called pBMC-2, was chosen for further characterization. After "in vitro" stimulation of both primary or immortalized cells with 5-azacytidine, we obtained different percentages (30%-50%) of cells with cardiomyocyte characteristics, namely, positive for alpha-Actin and T-Troponin. Thus, primary or immortalized pMSCs derived from bone marrow and cultured were able to differentiate "ex vivo" into cardiac-like muscle cells. These elements may be potentials tools to improve cardiac function in a swine myocardial infarct model.

  20. Human bone marrow-derived clonal mesenchymal stem cells inhibit inflammation and reduce acute pancreatitis in rats.

    PubMed

    Jung, Kyung Hee; Song, Sun U; Yi, Tacghee; Jeon, Myung-Shin; Hong, Sang-Won; Zheng, Hong-Mei; Lee, Hee-Seung; Choi, Myung-Joo; Lee, Don-Haeng; Hong, Soon-Sun

    2011-03-01

    Acute pancreatitis (AP) has a high mortality rate; repetitive AP induces chronic AP and pancreatic adenocarcinoma. Mesenchymal stem cells (MSCs) have immunoregulatory effects and reduce inflammation. We developed a protocol to isolate human bone marrow-derived clonal MSCs (hcMSCs) from bone marrow aspirate and investigated the effects of these cells in rat models of mild and severe AP. Mild AP was induced in Sprague-Dawley rats by 3 intraperitoneal injections of cerulein (100 μg/kg), given at 2-hour intervals; severe AP was induced by intraparenchymal injection of 3% sodium taurocholate solution. hcMSCs were labeled with CM-1,1'-dioctadecyl-3,3,3'-tetramethylindo-carbocyanine perchloride and administered to rats through the tail vein. hcMSCs underwent self-renewal and had multipotent differentiation capacities and immunoregulatory functions. Greater numbers of infused hcMSCs were detected in pancreas of rats with mild and severe AP than of control rats. Infused hcMSCs reduced acinar-cell degeneration, pancreatic edema, and inflammatory cell infiltration in each model of pancreatitis. The hcMSCs reduced expression of inflammation mediators and cytokines in rats with mild and severe AP. hcMSCs suppressed the mixed lymphocyte reaction and increased expression of Foxp3(+) (a marker of regulatory T cells) in cultured rat lymph node cells. Rats with mild or severe AP that were given infusions of hcMSCs had reduced numbers of CD3(+) T cells and increased expression of Foxp3(+) in pancreas tissues. hcMSCs reduced inflammation and damage to pancreatic tissue in a rat model of AP; they reduced levels of cytokines and induced numbers of Foxp3(+) regulatory T cells. hcMSCs might be developed as a cell therapy for pancreatitis. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

Top