Science.gov

Sample records for marrow stromal osteoblast

  1. The expression of estrogen receptor and estrogen effect in MBA-15 marrow stromal osteoblasts.

    PubMed

    Shamay, A; Knopov, V; Benayahu, D

    1996-06-01

    MBA-15, a marrow stromal-derived cell line, was shown to express an estrogen receptor. This finding was confirmed by in situ hybridization and receptor binding assay. An exposure to estrogen (10(-12)-10(-6) M) in a dose response manner resulted in a decrease of cell proliferation as measured by MTT assay. Cell function was measured by enzymatic activities of two osteoblastic markers, CD10/NEP and alkaline phosphatase. These enzymatic activities were elevated following the estrogen treatment. This model enabled direct evaluation of the estrogen effect on stromal osteoblast cells. PMID:8858824

  2. TGF-beta1 release from biodegradable polymer microparticles: its effects on marrow stromal osteoblast function

    NASA Technical Reports Server (NTRS)

    Lu, L.; Yaszemski, M. J.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    BACKGROUND: Controlled release of transforming growth factor-beta1 (TGF-beta1) to a bone defect may be beneficial for the induction of a bone regeneration cascade. The objectives of this work were to assess the feasibility of using biodegradable polymer microparticles as carriers for controlled TGF-beta1 delivery and the effects of released TGF-beta1 on the proliferation and differentiation of marrow stromal cells in vitro. METHODS: Recombinant human TGF-beta1 was incorporated into microparticles of blends of poly(DL-lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG). Fluorescein isothiocynate-labeled bovine serum albumin (FITC-BSA) was co-encapsulated as a porogen. The effects of PEG content (0, 1, or 5% by weight [wt%]) and buffer pH (3, 5, or 7.4) on the protein release kinetics and the degradation of PLGA were determined in vitro for as long as 28 days. Rat marrow stromal cells were seeded on a biodegradable poly(propylene fumarate) (PPF) substrate. The dose response and biological activity of released TGF-beta1 was determined after 3 days in culture. The effects of TGF-beta1 released from PLGA/PEG microparticles on marrow stromal cell proliferation and osteoblastic differentiation were assessed during a 21-day period. RESULTS: TGF-beta1 was encapsulated along with FITC-BSA into PLGA/PEG blend microparticles and released in a multiphasic fashion including an initial burst for as long as 28 days in vitro. Increasing the initial PEG content resulted in a decreased cumulative mass of released proteins. Aggregation of FITC-BSA occurred at lower buffer pH, which led to decreased release rates of both proteins. The degradation of PLGA was increased at higher PEG content and significantly accelerated at acidic pH conditions. Rat marrow stromal cells cultured on PPF substrates showed a dose response to TGF-beta1 released from the microparticles similar to that of added TGF-beta1, indicating that the activity of TGF-beta1 was retained during microparticle

  3. Osteochondral interface generation by rabbit bone marrow stromal cells and osteoblasts coculture.

    PubMed

    Chen, Kelei; Teh, Thomas Kok Hiong; Ravi, Sujata; Toh, Siew Lok; Goh, James Cho Hong

    2012-09-01

    Physiological osteochondral interface regeneration is a significant challenge. This study aims to investigate the effect of the coculture of chondrogenic rabbit bone marrow stromal cells (rBMSCs) with rabbit osteoblasts in a specially designed two-dimensional (2D)-three-dimensional (3D) co-interface culture to develop the intermediate osteochondral region in vitro. The 2D-3D coculture system was set up by first independently culturing chondrogenic rBMSCs on a scaffold and osteoblasts in cell culture plates, and subsequently placed in contact and cocultured. As control, samples not cocultured with osteoblasts were used. The regulatory effects exerted by osteoblasts on chondrogenic rBMSCs were quantified by real-time polymerase chain reaction. To study the effect of coculture on cells located in different parts of the scaffold, samples were separated into two parts and significantly different gene expression patterns were found between them. In comparison with the control group, a significant moderate downregulation of chondrogenic marker genes, such as Collagen II and Aggrecan was observed. However, the Sox-9 and Collagen I expression increased. More importantly, chondrogenic rBMSCs in the coculture system were shown to form the osteochondral interface layer by expressing calcified cartilage zone specific extracellular matrix marker Collagen X and the hypertrophic chondrocyte marker MMP-13, which were not observed in the control group. Specifically, only the chondrogenic rBMSC layer in contact with the osteoblasts expressed Collagen X and MMP-13, indicating the positive influence of the coculture upon interface formation. Biochemical analyses, histology results, and immunohistochemical staining further supported this observation. In conclusion, this study revealed that specific regulatory stimulations from osteoblasts in the 2D-3D interface coculture system could induce the formation of ostochondral interface for the purpose of osteochondral tissue engineering. PMID

  4. Demineralized bone promotes chondrocyte or osteoblast differentiation of human marrow stromal cells cultured in collagen sponges.

    PubMed

    Zhou, Shuanhu; Yates, Karen E; Eid, Karim; Glowacki, Julie

    2005-01-01

    Demineralized bone implants have been used for many types of craniomaxillofacial, orthopedic, periodontal, and hand reconstruction procedures. In previous studies, we showed that demineralized bone powder (DBP) induces chondrogenesis of human dermal fibroblasts in a DBP/collagen sponge system that optimized interactions between particles of DBP and target cells in cell culture. In this study, we test the hypothesis that DBP promotes chondrogenesis or osteogenesis of human marrow stromal cells (hMSCs) in 3-D collagen sponge culture, depending upon the culture conditions. We first confirmed that hMSCs have chondrogenic potential when treated with TGF-beta, either in 2-D monolayer cultures or in 3-D porous collagen sponges. Second, we found that DBP markedly enhanced chondrogenesis in hMSCs in 3-D sponges, as assessed by metachromasia and expression of chondrocyte-specific genes AGGRECAN, COL II, and COL X. Human dermal fibroblasts (hDFs) were used to define mechanisms of chondroinduction because unlike hMSCs they have no inherent chondrogenic potential. In situ hybridization revealed that hDFs vicinal to DBPs express chondrocyte-specific genes AGGRECAN or COL II. Macroarray analysis showed that DBP activates TGF-beta/BMP signaling pathway genes in hDFs. Finally, DBP induced hMSCs to express the osteoblast phenotype when cultured with osteogenic supplements. These studies show how culture conditions can influence the differentiation pathway that human marrow stromal cells follow when stimulated by DBP. These results support the potential to engineer cartilage or bone in vitro by using human bone marrow stromal cells and DBP/collagen scaffolds. PMID:15735899

  5. BST2 Mediates Osteoblast Differentiation via the BMP2 Signaling Pathway in Human Alveolar-Derived Bone Marrow Stromal Cells.

    PubMed

    Yoo, Su-Hyang; Kim, Jae Goo; Kim, Beom-Su; Lee, Jun; Pi, Sung-Hee; Lim, Hyun-Dae; Shin, Hong-In; Cho, Eui-Sic; You, Hyung-Keun

    2016-01-01

    The molecular mechanisms controlling the differentiation of bone marrow stromal stem cells into osteoblasts remain largely unknown. In this study, we investigated whether bone marrow stromal antigen 2 (BST2) influences differentiation toward the osteoblasts lineage. BST2 mRNA expression in human alveolar-derived bone marrow stromal cells (hAD-BMSCs) increased during differentiation into osteoblasts. hAD-BMSCs differentiation into osteoblasts and the mRNA expression of the bone-specific markers alkaline phosphatase, collagen type α 1, bone sialoprotein, osteocalcin, and osterix were reduced by BST2 knockdown using siRNA. Furthermore, BST2 knockdown in hAD-BMSCs resulted in decreased RUNX2 mRNA and protein expression. We hypothesized that BST2 is involved in differentiation of into osteoblasts via the BMP2 signaling pathway. Accordingly, we evaluated the mRNA expression levels of BMP2, BMP receptors (BMPR1 and 2), and the downstream signaling molecules SMAD1, SMAD4, and p-SMAD1/5/8 in BST2 knockdown cells. BMP2 expression following the induction of differentiation was significantly lower in BST2 knockdown cells than in cells treated with a non-targeting control siRNA. Similar results were found for the knockdown of the BMP2 receptor- BMPR1A. We also identified significantly lower expression of SMAD1, SMAD4, and p-SMAD1/5/8 in the BST2 knockdown cells than control cells. Our data provide the first evidence that BST2 is involved in the osteogenic differentiation of bone marrow stromal cells via the regulation of the BMP2 signaling pathway. PMID:27359105

  6. BST2 Mediates Osteoblast Differentiation via the BMP2 Signaling Pathway in Human Alveolar-Derived Bone Marrow Stromal Cells

    PubMed Central

    Yoo, Su-Hyang; Kim, Jae Goo; Kim, Beom-Su; Lee, Jun; Pi, Sung-Hee; Lim, Hyun-Dae; Shin, Hong-In; Cho, Eui-Sic

    2016-01-01

    The molecular mechanisms controlling the differentiation of bone marrow stromal stem cells into osteoblasts remain largely unknown. In this study, we investigated whether bone marrow stromal antigen 2 (BST2) influences differentiation toward the osteoblasts lineage. BST2 mRNA expression in human alveolar-derived bone marrow stromal cells (hAD-BMSCs) increased during differentiation into osteoblasts. hAD-BMSCs differentiation into osteoblasts and the mRNA expression of the bone-specific markers alkaline phosphatase, collagen type α 1, bone sialoprotein, osteocalcin, and osterix were reduced by BST2 knockdown using siRNA. Furthermore, BST2 knockdown in hAD-BMSCs resulted in decreased RUNX2 mRNA and protein expression. We hypothesized that BST2 is involved in differentiation of into osteoblasts via the BMP2 signaling pathway. Accordingly, we evaluated the mRNA expression levels of BMP2, BMP receptors (BMPR1 and 2), and the downstream signaling molecules SMAD1, SMAD4, and p-SMAD1/5/8 in BST2 knockdown cells. BMP2 expression following the induction of differentiation was significantly lower in BST2 knockdown cells than in cells treated with a non-targeting control siRNA. Similar results were found for the knockdown of the BMP2 receptor- BMPR1A. We also identified significantly lower expression of SMAD1, SMAD4, and p-SMAD1/5/8 in the BST2 knockdown cells than control cells. Our data provide the first evidence that BST2 is involved in the osteogenic differentiation of bone marrow stromal cells via the regulation of the BMP2 signaling pathway. PMID:27359105

  7. Mineralization of marrow-stromal osteoblasts MBA-15 on three-dimensional carriers.

    PubMed

    Benayahu, D; Kompier, R; Shamay, A; Kadouri, A; Zipori, D; Wientroub, S

    1994-08-01

    The present study describes a new three-dimensional (3-D) culture system that enables the maintenance and phenotypic expression of bone marrow stromal osteoblasts. This culture substratum is advantageous in that it provides suitable conditions for attachment, growth, and differentiation of cells forming 3-D layers. The MBA-15 cell line was grown in unlimited quantities on 3-D Fibro-Cel carriers. These cells mineralized when exposed to ascorbic acid and beta-glycerophosphate (beta GP). Under these mineralization conditions, mRNA expressions of procollagen alpha 2(I) and [3H]-proline-labeled protein were increased. The expression of mRNA for osteonectin and to a lesser extent, for osteopontin was increased, whereas alkaline phosphatase and biglycan remained unaffected under similar conditions. Exposure of mineralizing cultures to dexamethasone reduced mRNA of procollagen alpha 2 (I) and osteonectin to control level. Scanning electron microscopy revealed that cells were grown along the fabric's fibers and produced collagen fibrils. Under appropriate conditions, extensive mineralization had taken place. The mineralization process involves the formation of calcospherites, and correlates with an increase in calcium content. The Fibro-Cel carriers enable formation of 3-D architecture and mineralized tissue in vitro. PMID:7953977

  8. The effect of different implant biomaterials on the behavior of canine bone marrow stromal cells during their differentiation into osteoblasts.

    PubMed

    Özdal-Kurt, F; Tuğlu, I; Vatansever, H S; Tong, S; Şen, B H; Deliloğlu-Gürhan, S I

    2016-08-01

    We investigated the effects of different implant biomaterials on cultured canine bone marrow stromal cells (BMSC) undergoing differentiation into osteoblasts (dBMSC). BMSC were isolated from canine humerus by marrow aspiration, cultured and differentiated on calcium phosphate scaffold (CPS), hydroxyapatite, hydroxyapatite in gel form and titanium mesh. We used the MTT method to determine the effects of osteogenic media on proliferation. The characteristics of dBMSC were assessed using alizarin red (AR), immunocytochemistry and osteoblastic markers including alkaline phosphatase/von Kossa (ALP/VK), osteocalcin (OC) and osteonectin (ON), and ELISA. The morphology of dBMSC on the biomaterials was investigated using inverted phase contrast microscopy and scanning electron microscopy. We detected expression of ALP/VK, AR, OC and ON by day 7 of culture; expression increased from day 14 until day 21. CPS supported the best adhesion, cell spreading, proliferation and differentiation of BMSCs. The effects of the biomaterials depended on their surface properties. Expression of osteoblastic markers showed that canine dBMSCs became functional osteoblasts. Tissue engineered stem cells can be useful clinically for autologous implants for treating bone wounds. PMID:27182756

  9. Osteoblasts and Bone Marrow Mesenchymal Stromal Cells Control Hematopoietic Stem Cell Migration and Proliferation in 3D In Vitro Model

    PubMed Central

    de Barros, Ana Paula D. N.; Takiya, Christina M.; Garzoni, Luciana R.; Leal-Ferreira, Mona Lisa; Dutra, Hélio S.; Chiarini, Luciana B.; Meirelles, Maria Nazareth; Borojevic, Radovan; Rossi, Maria Isabel D.

    2010-01-01

    Background Migration, proliferation, and differentiation of hematopoietic stem cells (HSCs) are dependent upon a complex three-dimensional (3D) bone marrow microenvironment. Although osteoblasts control the HSC pool, the subendosteal niche is complex and its cellular composition and the role of each cell population in HSC fate have not been established. In vivo models are complex and involve subtle species-specific differences, while bidimensional cultures do not reflect the 3D tissue organization. The aim of this study was to investigate in vitro the role of human bone marrow–derived mesenchymal stromal cells (BMSC) and active osteoblasts in control of migration, lodgment, and proliferation of HSCs. Methodology/Principal Findings A complex mixed multicellular spheroid in vitro model was developed with human BMSC, undifferentiated or induced for one week into osteoblasts. A clear limit between the two stromal cells was established, and deposition of extracellular matrix proteins fibronectin, collagens I and IV, laminin, and osteopontin was similar to the observed in vivo. Noninduced BMSC cultured as spheroid expressed higher levels of mRNA for the chemokine CXCL12, and the growth factors Wnt5a and Kit ligand. Cord blood and bone marrow CD34+ cells moved in and out the spheroids, and some lodged at the interface of the two stromal cells. Myeloid colony-forming cells were maintained after seven days of coculture with mixed spheroids, and the frequency of cycling CD34+ cells was decreased. Conclusions/Significance Undifferentiated and one-week osteo-induced BMSC self-assembled in a 3D spheroid and formed a microenvironment that is informative for hematopoietic progenitor cells, allowing their lodgment and controlling their proliferation. PMID:20161704

  10. The Src inhibitor dasatinib accelerates the differentiation of human bone marrow-derived mesenchymal stromal cells into osteoblasts

    PubMed Central

    2010-01-01

    Background The proto-oncogene Src is an important non-receptor protein tyrosine kinase involved in signaling pathways that control cell adhesion, growth, migration and differentiation. It negatively regulates osteoblast activity, and, as such, its inhibition is a potential means to prevent bone loss. Dasatinib is a new dual Src/Bcr-Abl tyrosine kinase inhibitor initially developed for the treatment of chronic myeloid leukemia. It has also shown promising results in preclinical studies in various solid tumors. However, its effects on the differentiation of human osteoblasts have never been examined. Methods We evaluated the effects of dasatinib on bone marrow-derived mesenchymal stromal cells (MSC) differentiation into osteoblasts, in the presence or absence of a mixture of dexamethasone, ascorbic acid and β-glycerophosphate (DAG) for up to 21 days. The differentiation kinetics was assessed by evaluating mineralization of the extracellular matrix, alkaline phosphatase (ALP) activity, and expression of osteoblastic markers (receptor activator of nuclear factor kappa B ligand [RANKL], bone sialoprotein [BSP], osteopontin [OPN]). Results Dasatinib significantly increased the activity of ALP and the level of calcium deposition in MSC cultured with DAG after, respectively, 7 and 14 days; it upregulated the expression of BSP and OPN genes independently of DAG; and it markedly downregulated the expression of RANKL gene and protein (decrease in RANKL/OPG ratio), the key factor that stimulates osteoclast differentiation and activity. Conclusions Our results suggest a dual role for dasatinib in both (i) stimulating osteoblast differentiation leading to a direct increase in bone formation, and (ii) downregulating RANKL synthesis by osteoblasts leading to an indirect inhibition of osteoclastogenesis. Thus, dasatinib is a potentially interesting candidate drug for the treatment of osteolysis through its dual effect on bone metabolism. PMID:20565769

  11. A cost-effective method to enhance adenoviral transduction of primary murine osteoblasts and bone marrow stromal cells

    PubMed Central

    Buo, Atum M; Williams, Mark S; Kerr, Jaclyn P; Stains, Joseph P

    2016-01-01

    We report here a method for the use of poly-l-lysine (PLL) to markedly improve the adenoviral transduction efficiency of primary murine osteoblasts and bone marrow stromal cells (BMSCs) in culture and in situ, which are typically difficult to transduce. We show by fluorescence microscopy and flow cytometry that the addition of PLL to the viral-containing medium significantly increases the number of green fluorescence protein (GFP)-positive osteoblasts and BMSCs transduced with an enhanced GFP-expressing adenovirus. We also demonstrate that PLL can greatly enhance the adenoviral transduction of osteoblasts and osteocytes in situ in ex vivo tibia and calvaria, as well as in long bone fragments. In addition, we validate that PLL can improve routine adenoviral transduction studies by permitting the use of low multiplicities of infection to obtain the desired biologic effect. Ultimately, the use of PLL to facilitate adenoviral gene transfer in osteogenic cells can provide a cost-effective means of performing efficient gene transfer studies in the context of bone research. PMID:27547486

  12. Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo

    PubMed Central

    Qin, Yunhao; Wang, Lian; Gao, Zhengliang; Chen, Genyin; Zhang, Changqing

    2016-01-01

    Emerging evidence suggests that extracellular vesicles (EVs) are secreted by diverse tissues and play important roles in cell-cell communication, organ interactions and tissue homeostasis. Studies have reported the use of EVs to stimulate tissue regeneration, such as hepatic cell regeneration, and to treat diseases, such as pulmonary hypertension. However, little is known about the osteogenic effect of EVs. In this study, we explore the role of bone marrow stromal cell-derived EVs in the regulation of osteoblast activity and bone regeneration. We isolated bone marrow stromal/stem cell (BMSC)-derived EVs through gradient ultracentrifugation and ultrafiltration, and tested the influence of the EVs on osteogenesis both in vivo and in vitro. The results indicated that EVs positively regulated osteogenic genes and osteoblastic differentiation but did not inhibit proliferation in vitro. Furthermore, we constructed an EVs delivery system to stimulate bone formation in Sprague Dawley (SD) rats with calvarial defects. We found that BMSC-derived EVs led to more bone formation in the critical-size calvarial bone defects. Moreover, we found that miR-196a plays an essential role in the regulation of osteoblastic differentiation and the expression of osteogenic genes. We anticipate that our assay using bone marrow stromal cell-derived EVs will become a valuable tool for promoting bone regeneration. PMID:26911789

  13. Early osteoblastic differentiation induced by dexamethasone enhances adenoviral gene delivery to marrow stromal cells.

    PubMed

    Blum, Jeremy S; Parrott, M Brandon; Mikos, Antonios G; Barry, Michael A

    2004-03-01

    We investigated the implications of induced osteogenic differentiation on gene delivery in multipotent rat marrow stromal cells (MSCs). Prior to genetic manipulation cells were cultured with or without osteogenic supplements (5x10(-8) M dexamethasone, 160 microM l-ascorbic acid 2-phosphate, and 10 mM beta-glycerophosphate). Comparison of liposome, retroviral, and adenoviral vectors demonstrated that all three vectors could mediate gene delivery to primary rat MSCs. When these vectors were applied in the absence or presence of osteogenic supplements, we found that MSCs differentiated prior to transduction with adenovirus type 5 vectors produced a 300% increase in transgene expression compared to MSCs that were not exposed to osteogenic supplements. This differentiation effect appeared specific to adenoviral mediated gene delivery, since there was minimal increase in retroviral gene delivery and no increase in liposome gene delivery when MSCs were treated with osteogenic supplements. In addition, we also determined this increase in transgene production to occur at a higher concentration of dexamethasone (5x10(-8) M) in the culture medium of MSCs prior to adenoviral transduction. We found that this increased transgene production could be extended to the osteogenic protein, human bone morphogenetic protein 2 (hBMP-2). When delivered by an adenoviral vector, hBMP-2 transgene production could be increased from 1.4 ng/10(5) cells/3 days to 4.3 ng/10(5) cells/3 days by culture of MSCs with osteogenic supplements prior to transduction. These results indicate that the utility of MSCs as a therapeutic protein delivery mechanism through genetic manipulation can be enhanced by pre-culture of these cells with dexamethasone. PMID:15013104

  14. A selective EP4 receptor antagonist abrogates the stimulation of osteoblast recruitment from bone marrow stromal cells by prostaglandin E2 in vivo and in vitro.

    PubMed

    Shamir, D; Keila, S; Weinreb, M

    2004-01-01

    Recent evidence indicates that systemic administration of PGE2 increases bone formation and bone mass via activation of the EP4 receptor. Previously, we demonstrated that osteoblastic recruitment from rat bone marrow stromal cells (BMSC) is a major mechanism for the anabolic effect of PGE2. In this study, we used a selective EP4 antagonist to test if the stimulation of osteoblast differentiation from rat BMSC in vitro and in vivo involves the EP4 receptor. In vitro, PGE2 (100 nM) increased nodule formation and alkaline phosphatase (ALP) activity in cultures of rat BMSC 1.5- to 2-fold. These effects were abolished by the EP4 antagonist at 10(-6) M but not 10(-9) M. Furthermore, PGE2 increased the number of surviving adherent BMSC by approximately 225% and the EP4 antagonist prevented this effect as well. The antagonist had no effect on basal levels of nodule formation and adherent cell number. In vivo, daily systemic administration of PGE2 at 6 mg/kg for 2 weeks increased cancellous bone area (by approximately 50%) and increased nodule formation (measured as mineralized area) in ex vivo stromal cultures by approximately 50%. Pre-administration of the EP4 antagonist at 10 mg/kg abrogated both the increase in bone mass as well as the increase in nodule formation. These data indicate that PGE2 stimulates osteoblastic commitment of BMSC via activation of the EP4 receptor.

  15. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner

    NASA Technical Reports Server (NTRS)

    Bancroft, Gregory N.; Sikavitsas, Vassilios I.; van den Dolder, Juliette; Sheffield, Tiffany L.; Ambrose, Catherine G.; Jansen, John A.; Mikos, Antonios G.; McIntire, L. V. (Principal Investigator)

    2002-01-01

    Bone is a complex highly structured mechanically active 3D tissue composed of cellular and matrix elements. The true biological environment of a bone cell is thus derived from a dynamic interaction between responsively active cells experiencing mechanical forces and a continuously changing 3D matrix architecture. To investigate this phenomenon in vitro, marrow stromal osteoblasts were cultured on 3D scaffolds under flow perfusion with different rates of flow for an extended period to permit osteoblast differentiation and significant matrix production and mineralization. With all flow conditions, mineralized matrix production was dramatically increased over statically cultured constructs with the total calcium content of the cultured scaffolds increasing with increasing flow rate. Flow perfusion induced de novo tissue modeling with the formation of pore-like structures in the scaffolds and enhanced the distribution of cells and matrix throughout the scaffolds. These results represent reporting of the long-term effects of fluid flow on primary differentiating osteoblasts and indicate that fluid flow has far-reaching effects on osteoblast differentiation and phenotypic expression in vitro. Flow perfusion culture permits the generation and study of a 3D, actively modeled, mineralized matrix and can therefore be a valuable tool for both bone biology and tissue engineering.

  16. Osteoblastic phenotype of rat marrow stromal cells cultured in the presence of dexamethasone, beta-glycerolphosphate, and L-ascorbic acid

    NASA Technical Reports Server (NTRS)

    Peter, S. J.; Liang, C. R.; Kim, D. J.; Widmer, M. S.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    We investigated the effects of the time course of addition of osteogenic supplements dexamethasone, beta-glycerolphosphate, and L-ascorbic acid to rat marrow stromal cells, and the exposure time on the proliferation and differentiation of the cells. It was the goal of these experiments to determine the time point for supplement addition to optimize marrow stromal cell proliferation and osteoblastic differentiation. To determine this, two studies were performed; one study was based on the age of the cells from harvest, and the other study was based on the duration of exposure to supplemented medium. Cells were seen to proliferate rapidly at early time points in the presence and absence of osteogenic supplements as determined by 3H-thymidine incorporation into the DNA of replicating cells. These results were supported by cell counts ascertained through total DNA analysis. Alkaline phosphatase (ALP) activity and osteocalcin production at 21 days were highest for both experimental designs when the cells were exposed to supplemented medium immediately upon harvest. The ALP levels at 21 days were six times greater for cells maintained in supplements throughout than for control cells cultured in the absence of supplements for both studies, reaching an absolute value of 75 x 10(-7) micromole/min/cell. Osteocalcin production reached 20 x 10(-6) ng/cell at 21 days in both studies for cells maintained in supplemented medium throughout the study, whereas the control cells produced an insignificant amount of osteocalcin. These results suggest that the addition of osteogenic supplements to marrow-derived cells early in the culture period did not inhibit proliferation and greatly enhanced the osteoblastic phenotype of cells in a rat model.

  17. Calcitonin gene-related peptide promotes the expression of osteoblastic genes and activates the WNT signal transduction pathway in bone marrow stromal stem cells

    PubMed Central

    ZHOU, RI; YUAN, ZHI; LIU, JIERONG; LIU, JIAN

    2016-01-01

    Calcitonin gene-related peptide (CGRP) is known to induce osteoblastic differentiation and alkaline phosphatase activity in bone marrow stromal stem cells (BMSCs). However, it has remained elusive whether this effect is mediated by CGRP receptors directly or whether other signaling pathways are involved. The present study assessed the possible involvement of the Wnt/β-catenin signaling pathway in the activation of CGRP signaling during the differentiation of BMSCs. First, the differentiation of BMSCs was induced in vitro and the expression of CGRP receptors was examined by western blot analysis. The effects of exogenous CGRP and LiCl, a stimulator of the Wnt/β-catenin signaling pathway, on the osteoblastic differentiation of BMSCs were assessed; furthermore, the expression of mRNA and proteins involved in the Wnt/β-catenin signaling pathway was assessed using quantitative PCR and western blot analyses. The results revealed that CGRP receptors were expressed throughout the differentiation of BMSCs, at days 7 and 14. Incubation with CGRP and LiCl led to the upregulation of the expression of osteoblastic genes associated with the Wnt/β-catenin pathway, including the mRNA of c-myc, cyclin D1, Lef1, Tcf7 and β-catenin as well as β-catenin protein. However, the upregulation of these genes and β-catenin protein was inhibited by CGRP receptor antagonist or secreted frizzled-related protein, an antagonist of the Wnt/β-catenin pathway. The results of the present study therefore suggested that the Wnt/β-catenin signaling pathway may be involved in CGRP- and LiCl-promoted osteoblastic differentiation of BMSCs. PMID:27082317

  18. Osteoinduction and survival of osteoblasts and bone-marrow stromal cells in 3D biphasic calcium phosphate scaffolds under static and dynamic culture conditions.

    PubMed

    Rath, Subha N; Strobel, Leonie A; Arkudas, Andreas; Beier, Justus P; Maier, Anne-Kathrin; Greil, Peter; Horch, Raymund E; Kneser, Ulrich

    2012-10-01

    In many tissue engineering approaches, the basic difference between in vitro and in vivo conditions for cells within three-dimensional (3D) constructs is the nutrition flow dynamics. To achieve comparable results in vitro, bioreactors are advised for improved cell survival, as they are able to provide a controlled flow through the scaffold. We hypothesize that a bioreactor would enhance long-term differentiation conditions of osteogenic cells in 3D scaffolds. To achieve this either primary rat osteoblasts or bone marrow stromal cells (BMSC) were implanted on uniform-sized biphasic calcium phosphate (BCP) scaffolds produced by a 3D printing method. Three types of culture conditions were applied: static culture without osteoinduction (Group A); static culture with osteoinduction (Group B); dynamic culture with osteoinduction (Group C). After 3 and 6 weeks, the scaffolds were analysed by alkaline phosphatase (ALP), dsDNA amount, SEM, fluorescent labelled live-dead assay, and real-time RT-PCR in addition to weekly alamarBlue assays. With osteoinduction, increased ALP values and calcium deposition are observed; however, under static conditions, a significant decrease in the cell number on the biomaterial is observed. Interestingly, the bioreactor system not only reversed the decreased cell numbers but also increased their differentiation potential. We conclude from this study that a continuous flow bioreactor not only preserves the number of osteogenic cells but also keeps their differentiation ability in balance providing a suitable cell-seeded scaffold product for applications in regenerative medicine.

  19. Ectopic bone formation by marrow stromal osteoblast transplantation using poly(DL-lactic-co-glycolic acid) foams implanted into the rat mesentery

    NASA Technical Reports Server (NTRS)

    Ishaug-Riley, S. L.; Crane, G. M.; Gurlek, A.; Miller, M. J.; Yasko, A. W.; Yaszemski, M. J.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    Porous biodegradable poly(DL-lactic-co-glycolic acid) foams were seeded with rat marrow stromal cells and implanted into the rat mesentery to investigate in vivo bone formation at an ectopic site. Cells were seeded at a density of 6.83 x 10(5) cells/cm2 onto polymer foams having pore sizes ranging from either 150 to 300 to 710 microns and cultured for 7 days in vitro prior to implantation. The polymer/cell constructs were harvested after 1, 7, 28, or 49 days in vivo and processed for histology and gel permeation chromatography. Visual observation of hematoxylin and eosin-stained sections and von Kossa-stained sections revealed the formation of mineralized bonelike tissue in the constructs within 7 days postimplantation. Ingrowth of vascular tissue was also found adjacent to the islands of bone, supplying the necessary metabolic requirements to the newly formed tissue. Mineralization and bone tissue formation were investigated by histomorphometry. The average penetration depth of mineralized tissue in the construct ranged from 190 +/- 50 microns for foams with 500-710-microns pores to 370 +/- 160 microns for foams with 150-300-microns pores after 49 days in vivo. The mineralized bone volume per surface area and total bone volume per surface area had maximal values of 0.28 +/- 0.21 mm (500-710-microns pore size, day 28) and 0.038 +/- 0.024 mm (150-300-microns, day 28), respectively. As much as 11% of the foam volume penetrated by bone tissue was filled with mineralized tissue. No significant trends over time were observed for any of the measured values (penetration depth, bone volume/surface area, or percent mineralized bone volume). These results suggest the feasibility of bone formation by osteoblast transplantation in an orthotopic site where not only bone formation from transplanted cells but also ingrowth from adjacent bone may occur.

  20. Immortalization and characterization of osteoblast cell lines generated from wild-type and Nmp4-null mouse bone marrow stromal cells using murine telomerase reverse transcriptase (mTERT).

    PubMed

    Alvarez, Marta B; Childress, Paul; Philip, Binu K; Gerard-O'Riley, Rita; Hanlon, Michael; Herbert, Brittney-Shea; Robling, Alexander G; Pavalko, Fredrick M; Bidwell, Joseph P

    2012-05-01

    Intermittent parathyroid hormone (PTH) adds new bone to the osteoporotic skeleton; the transcription factor Nmp4/CIZ represses PTH-induced bone formation in mice and as a consequence is a potential drug target for improving hormone clinical efficacy. To explore the impact of Nmp4/CIZ on osteoblast phenotype, we immortalized bone marrow stromal cells from wildtype (WT) and Nmp4-knockout (KO) mice using murine telomerase reverse transcriptase. Clonal lines were initially chosen based on their positive staining for alkaline phosphatase and capacity for mineralization. Disabling Nmp4/CIZ had no gross impact on osteoblast phenotype development. WT and KO clones exhibited identical sustained growth, reduced population doubling times, extended maintenance of the mature osteoblast phenotype, and competency for differentiating toward the osteoblast and adipocyte lineages. Additional screening of the immortalized cells for PTH-responsiveness permitted further studies with single WT and KO clones. We recently demonstrated that PTH-induced c-fos femoral mRNA expression is enhanced in Nmp4-KO mice and in the present study we observed that hormone stimulated either an equivalent or modestly enhanced increase in c-fos mRNA expression in both primary null and KO clone cells depending on PTH concentration. The null primary osteoblasts and KO clone cells exhibited a transiently enhanced response to bone morphogenetic protein 2 (BMP2). The clones exhibited lower and higher expressions of the PTH receptor (Pthr1) and the BMP2 receptor (Bmpr1a, Alk3), respectively, as compared to primary cells. These immortalized cell lines will provide a valuable tool for disentangling the complex functional roles underlying Nmp4/CIZ regulation of bone anabolism.

  1. Upregulation of long non-coding RNA HIF 1α-anti-sense 1 induced by transforming growth factor-β-mediated targeting of sirtuin 1 promotes osteoblastic differentiation of human bone marrow stromal cells

    PubMed Central

    XU, YAO; WANG, SHILONG; TANG, CHAOLIANG; CHEN, WENJUN

    2015-01-01

    The present study aimed to investigate the regulatory mechanism of long non-coding RNA hypoxia-inducible factor 1α-anti-sense 1 (lncRNA HIF1α-AS1) in osteoblast differentiation as well as its targeting by sirtuin 1 (SIRT1), which may be inhibited by transforming growth factor (TGF)-β in bone marrow stromal cells (BMSCs). Real-time polymerase chain reaction (PCR), western blot analysis, lncRNA PCR arrays and chromatin immunoprecipitation were performed in order to examine the interference of SIRT1 expression by TGF-β, the effects of SIRT1 overexpression on lncRNA HIF1α-AS1 and the regulation of the expression of homeobox (HOX)D10, which promotes BMSC differentiation, by lncRNA HIF1α-AS1. The results showed that TGF-β interfered with SIRT1 expression. Furthermore, lncRNA HIF1α-AS1 was significantly downregulated following overexpression of SIRT1. In addition, low expression of HIF1α-AS1 was sufficient to block the expression of HOXD10. The present study further demonstrated that downregulation of HOXD10 by HIF1α-AS1 interfered with acetylation, and subsequently resulted in the inhibition of osteoblast differentiation. These results suggested that HIF1α-AS1 is an essential mediator of osteoblast differentiation, and may thus represent a gene-therapeutic agent for the treatment of human bone diseases. PMID:26460121

  2. Construction of microenvironment onto titanium substrates to regulate the osteoblastic differentiation of bone marrow stromal cells in vitro and osteogenesis in vivo.

    PubMed

    Lai, Min; Cai, Kaiyong; Hu, Yan; Zhang, Yuan; Li, Liqi; Luo, Zhong; Hou, Yanhua; Li, Jinghua; Ding, Xingwei; Chen, Xiuyong

    2013-03-01

    To mimic the extracellular matrix of natural bone, apatite/gelatin composite was deposited onto nanostructured titanium substrates via a coprecipitation method, which was pretreated by potassium hydroxide and heat treatment to generate an anticorrosive nanostructured layer. The successful formation of the apatite/gelatin nanocomposite onto titanium surfaces was revealed by Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, atomic force microscopy (AFM), and thin film X-ray diffraction (TF-XRD) measurements, respectively. The immunofluorescence staining of vinculin revealed that the apatite/gelatin nanocomposite deposited titanium substrate was favorable for cell adhesion. More importantly, bone marrow stromal cells cultured onto the apatite/gelatin nanocomposite deposited titanium substrates displayed significantly higher (p < 0.05 or p < 0.01) proliferation and differentiation levels of alkaline phosphatase, mRNA expressions of osteocalcin (OC), osteopontin (OPN), and collagen type I (Col I), and OC content after culture for 7, 14, and 21 days, respectively, which was also revealed by the immunofluorescence analysis of OC and OPN expression. The deposition of apatite/gelatin nanocomposite improved bone density (p < 0.05) and bone-implant contact rate (p < 0.05), which was reflected by microcomputed tomography analysis and histological evaluation in vivo using a rabbit model. This work provides an approach to fabricate high-performance titanium-based implants with enhanced bone osseointegration.

  3. The effect of autologous bone marrow stromal cells differentiated on scaffolds for canine tibial bone reconstruction.

    PubMed

    Özdal-Kurt, F; Tuğlu, I; Vatansever, H S; Tong, S; Deliloğlu-Gürhan, S I

    2015-01-01

    Bone marrow contains mesenchymal stem cells that form many tissues. Various scaffolds are available for bone reconstruction by tissue engineering. Osteoblastic differentiated bone marrow stromal cells (BMSC) promote osteogenesis on scaffolds and stimulate bone regeneration. We investigated the use of cultured autologous BMSC on different scaffolds for healing defects in tibias of adult male canines. BMSC were isolated from canine humerus bone marrow, differentiated into osteoblasts in culture and loaded onto porous ceramic scaffolds including hydroxyapatite 1, hydroxyapatite gel and calcium phosphate. Osteoblast differentiation was verified by osteonectine and osteocalcine immunocytochemistry. The scaffolds with stromal cells were implanted in the tibial defect. Scaffolds without stromal cells were used as controls. Sections from the defects were processed for histological, ultrastructural, immunohistochemical and histomorphometric analyses to analyze the healing of the defects. BMSC were spread, allowed to proliferate and differentiate to osteoblasts as shown by alizarin red histochemistry, and osteocalcine and osteonectine immunostaining. Scanning electron microscopy showed that BMSC on the scaffolds were more active and adhesive to the calcium phosphate scaffold compared to the others. Macroscopic bone formation was observed in all groups, but scaffolds with stromal cells produced significantly better results. Bone healing occurred earlier and faster with stromal cells on the calcium phosphate scaffold and produced more callus compared to other scaffolds. Tissue healing and osteoblastic marker expression also were better with stromal cells on the scaffolds. Increased trabecula formation, cell density and decreased fibrosis were observed in the calcium phosphate scaffold with stromal cells. Autologous cultured stromal cells on the scaffolds were useful for healing of canine tibial bone defects. The calcium phosphate scaffold was the best for both cell

  4. Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development.

    PubMed

    Mizoguchi, Toshihide; Pinho, Sandra; Ahmed, Jalal; Kunisaki, Yuya; Hanoun, Maher; Mendelson, Avital; Ono, Noriaki; Kronenberg, Henry M; Frenette, Paul S

    2014-05-12

    Mesenchymal stem and progenitor cells (MSPCs) contribute to bone marrow (BM) homeostasis by generating multiple types of stromal cells. MSPCs can be labeled in the adult BM by Nestin-GFP, whereas committed osteoblast progenitors are marked by Osterix expression. However, the developmental origin and hierarchical relationship of stromal cells remain largely unknown. Here, by using a lineage-tracing system, we describe three distinct waves of contributions of Osterix(+) cells in the BM. First, Osterix(+) progenitors in the fetal BM contribute to nascent bone tissues and transient stromal cells that are replaced in the adult marrow. Second, Osterix-expressing cells perinatally contribute to osteolineages and long-lived BM stroma, which have characteristics of Nestin-GFP(+) MSPCs. Third, Osterix labeling in the adult marrow is osteolineage-restricted, devoid of stromal contribution. These results uncover a broad expression profile of Osterix and raise the intriguing possibility that distinct waves of stromal cells, primitive and definitive, may organize the developing BM.

  5. COL1A1 and miR-29b show lower expression levels during osteoblast differentiation of bone marrow stromal cells from Osteogenesis Imperfecta patients

    PubMed Central

    2014-01-01

    Background The majority of Osteogenesis Imperfecta (OI) cases are caused by mutations in one of the two genes, COL1A1 and COL1A2 encoding for the two chains that trimerize to form the procollagen 1 molecule. However, alterations in gene expression and microRNAs (miRNAs) are responsible for the regulation of cell fate determination and may be evolved in OI phenotype. Methods In this work, we analyzed the coding region and intron/exon boundaries of COL1A1 and COL1A2 genes by sequence analysis using an ABI PRISM 3130 automated sequencer and Big Dye Terminator Sequencing protocol. COL1A1 and miR-29b expression were also evaluated during the osteoblastic differentiation of mesenchymal stem cell (MSC) by qRT-PCR using an ABI7500 Sequence Detection System. Results We have identified eight novel mutations, where of four may be responsible for OI phenotype. COL1A1 and miR-29b showed lower expression values in OI type I and type III samples. Interestingly, one type III OI sample from a patient with Bruck Syndrome showed COL1A1 and miR-29b expressions alike those from normal samples. Conclusions Results suggest that the miR-29b mechanism directed to regulate collagen protein accumulation during mineralization is dependent upon the amount of COL1A1 mRNA. Taken together, results indicate that the lower levels observed in OI samples were not sufficient for the induction of miR-29b. PMID:24767406

  6. Degradation of polysaccharide hydrogels seeded with bone marrow stromal cells.

    PubMed

    Jahromi, Shiva H; Grover, Liam M; Paxton, Jennifer Z; Smith, Alan M

    2011-10-01

    In order to produce hydrogel cell culture substrates that are fit for the purpose, it is important that the mechanical properties are well understood not only at the point of cell seeding but throughout the culture period. In this study the change in the mechanical properties of three biopolymer hydrogels alginate, low methoxy pectin and gellan gum have been assessed in cell culture conditions. Samples of the gels were prepared encapsulating rat bone marrow stromal cells which were then cultured in osteogenic media. Acellular samples were also prepared and incubated in standard cell culture media. The rheological properties of the gels were measured over a culture period of 28 days and it was found that the gels degraded at very different rates. The degradation occurred most rapidly in the order alginate > Low methoxy pectin > gellan gum. The ability of each hydrogel to support differentiation of bone marrow stromal cells to osteoblasts was also verified by evidence of mineral deposits in all three of the materials. These results highlight that the mechanical properties of biopolymer hydrogels can vary greatly during in vitro culture, and provide the potential of selecting hydrogel cell culture substrates with mechanical properties that are tissue specific.

  7. Osterix enhances proliferation and osteogenic potential of bone marrow stromal cells

    SciTech Connect

    Tu Qisheng; Valverde, Paloma . E-mail: paloma.valverde@tufts.edu; Chen, Jake

    2006-03-24

    Osterix (Osx) is a zinc-finger-containing transcription factor that is expressed in osteoblasts of all endochondral and membranous bones. In Osx null mice osteoblast differentiation is impaired and bone formation is absent. In this study, we hypothesized that overexpression of Osx in murine bone marrow stromal cells (BMSC) would be able to enhance their osteoblastic differentiation and mineralization in vitro. Retroviral transduction of Osx in BMSC cultured in non-differentiating medium did not affect expression of Runx2/Cbfa1, another key transcription factor of osteoblast differentiation, but induced an increase in the expression of other markers associated with the osteoblastic lineage including alkaline phosphatase, bone sialoprotein, osteocalcin, and osteopontin. Retroviral transduction of Osx in BMSC also increased their proliferation, alkaline phosphatase activity, and ability to form bone nodules. These events occurred without significant changes in the expression of {alpha}1(II) procollagen or lipoprotein lipase, which are markers of chondrogenic and adipogenic differentiation, respectively.

  8. Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development

    PubMed Central

    Mizoguchi, Toshihide; Pinho, Sandra; Ahmed, Jalal; Kunisaki, Yuya; Hanoun, Maher; Mendelson, Avital; Ono, Noriaki; Kronenberg, Henry M.; Frenette, Paul S.

    2014-01-01

    Mesenchymal stem and progenitor cells (MSPCs) contribute to bone marrow (BM) homeostasis by generating multiple types of stromal cells. MSPCs can be labeled in the adult BM by Nestin-GFP, whereas committed osteoblast progenitors are marked by Osterix expression. However, the developmental origin and hierarchical relationship of stromal cells remain largely unknown. Here, using a lineage-tracing system, we describe three distinct waves of contributions of Osterix+ cells in the BM. First, Osterix+ progenitors in the fetal BM contribute to nascent bone tissues and transient stromal cells that are replaced in the adult marrow. Second, Osterix-expressing cells perinatally contribute to osteolineages and long-lived BM stroma, which have characteristics of Nestin-GFP+ MSPCs. Third, Osterix labeling in the adult marrow is osteolineage-restricted, devoid of stromal contribution. These results uncover a broad expression profile of Osterix and raise the intriguing possibility that distinct waves of stromal cells, primitive and definitive, may organize the developing BM. PMID:24823377

  9. IFITM1 increases osteogenesis through Runx2 in human alveolar-derived bone marrow stromal cells.

    PubMed

    Kim, Beom-Su; Kim, Hyung-Jin; Kim, Jin Seong; You, Yong-Ouk; Zadeh, Homa; Shin, Hong-In; Lee, Seung-Jin; Park, Yoon-Jeong; Takata, Takashi; Pi, Sung-Hee; Lee, Jun; You, Hyung-Keun

    2012-09-01

    The exact molecular mechanisms governing the differentiation of bone marrow stromal stem/progenitor cells (BMSCs) into osteoblasts remain largely unknown. In this study, a highly expressed protein that had a high degree of homology with interferon-induced transmembrane protein 1 (IFITM1) was identified using differentially expressed gene (DEG) screening. We sought to determine whether IFITM1 influenced osteoblast differentiation. During differentiation, IFITM1 expression gradually increased from 5 to 10days and subsequently decreased at 15 days in culture. Analysis of IFITM1 protein expression in several cell lines as well as in situ studies on human tissues revealed its selective expression in bone cells and human bone. Proliferation of human alveolar-derived bone marrow stromal cells (hAD-BMSCs) was significantly inhibited by IFITM1 knockdown by using short hairpin RNA, as were bone specific markers such as alkaline phosphatase, collagen type I α 1, bone sialoprotein, osteocalcin, and osterix were decreased. Calcium accumulation also decreased following IFITM1 knockdown. Moreover, IFITM1 knockdown in hAD-BMSCs was associated with inhibition of Runx2 mRNA and protein expression. Collectively, the present data provide evidence for the role of IFITM1 in osteoblast differentiation. The exact mechanisms of IFITM1's involvement in osteoblast differentiation are still under investigation.

  10. The Bone Marrow-Derived Stromal Cells: Commitment and Regulation of Adipogenesis

    PubMed Central

    Tencerova, Michaela; Kassem, Moustapha

    2016-01-01

    Bone marrow (BM) microenvironment represents an important compartment of bone that regulates bone homeostasis and the balance between bone formation and bone resorption depending on the physiological needs of the organism. Abnormalities of BM microenvironmental dynamics can lead to metabolic bone diseases. BM stromal cells (also known as skeletal or mesenchymal stem cells) [bone marrow stromal stem cell (BMSC)] are multipotent stem cells located within BM stroma and give rise to osteoblasts and adipocytes. However, cellular and molecular mechanisms of BMSC lineage commitment to adipocytic lineage and regulation of BM adipocyte formation are not fully understood. In this review, we will discuss recent findings pertaining to identification and characterization of adipocyte progenitor cells in BM and the regulation of differentiation into mature adipocytes. We have also emphasized the clinical relevance of these findings. PMID:27708616

  11. Fibroblast Growth Factor-2 facilitates the growth and chemo-resistance of leukemia cells in the bone marrow by modulating osteoblast functions.

    PubMed

    Sugimoto, Keiki; Miyata, Yasuhiko; Nakayama, Takayuki; Saito, Shigeki; Suzuki, Ritsuro; Hayakawa, Fumihiko; Nishiwaki, Satoshi; Mizuno, Hiroki; Takeshita, Kyosuke; Kato, Hidefumi; Ueda, Ryuzo; Takami, Akiyoshi; Naoe, Tomoki

    2016-01-01

    Stromal cells and osteoblasts play major roles in forming and modulating the bone marrow (BM) hematopoietic microenvironment. We have reported that FGF2 compromises stromal cell support of normal hematopoiesis. Here, we examined the effects of FGF2 on the leukemia microenvironment. In vitro, FGF2 significantly decreased the number of stromal-dependent and stromal-independent G0-leukemia cells in the stromal layers. Accordingly, CML cells placed on FGF2-treated stromal layers were more sensitive to imatinib. Conversely, FGF2 increased the proliferation of osteoblasts via FGFR1 IIIc, but its effects on osteoblast support of leukemia cell growth were limited. We next treated a human leukemia mouse model with Ara-C with/without systemic FGF2 administration. BM sections from FGF2-treated mice had thickened bone trabeculae and increased numbers of leukemia cells compared to controls. Leukemia cell density was increased, especially in the endosteal region in FGF2/Ara-C -treated mice compared to mice treated with Ara-C only. Interestingly, FGF2 did not promote leukemia cell survival in Ara-C treated spleen. Microarray analysis showed that FGF2 did not alter expression of many genes linked to hematopoiesis in osteoblasts, but modulated regulatory networks involved in angiogenesis and osteoblastic differentiation. These observations suggest that FGF2 promotes leukemia cell growth in the BM by modulating osteoblast functions. PMID:27481339

  12. Fibroblast Growth Factor-2 facilitates the growth and chemo-resistance of leukemia cells in the bone marrow by modulating osteoblast functions

    PubMed Central

    Sugimoto, Keiki; Miyata, Yasuhiko; Nakayama, Takayuki; Saito, Shigeki; Suzuki, Ritsuro; Hayakawa, Fumihiko; Nishiwaki, Satoshi; Mizuno, Hiroki; Takeshita, Kyosuke; Kato, Hidefumi; Ueda, Ryuzo; Takami, Akiyoshi; Naoe, Tomoki

    2016-01-01

    Stromal cells and osteoblasts play major roles in forming and modulating the bone marrow (BM) hematopoietic microenvironment. We have reported that FGF2 compromises stromal cell support of normal hematopoiesis. Here, we examined the effects of FGF2 on the leukemia microenvironment. In vitro, FGF2 significantly decreased the number of stromal-dependent and stromal-independent G0-leukemia cells in the stromal layers. Accordingly, CML cells placed on FGF2-treated stromal layers were more sensitive to imatinib. Conversely, FGF2 increased the proliferation of osteoblasts via FGFR1 IIIc, but its effects on osteoblast support of leukemia cell growth were limited. We next treated a human leukemia mouse model with Ara-C with/without systemic FGF2 administration. BM sections from FGF2-treated mice had thickened bone trabeculae and increased numbers of leukemia cells compared to controls. Leukemia cell density was increased, especially in the endosteal region in FGF2/Ara-C -treated mice compared to mice treated with Ara-C only. Interestingly, FGF2 did not promote leukemia cell survival in Ara-C treated spleen. Microarray analysis showed that FGF2 did not alter expression of many genes linked to hematopoiesis in osteoblasts, but modulated regulatory networks involved in angiogenesis and osteoblastic differentiation. These observations suggest that FGF2 promotes leukemia cell growth in the BM by modulating osteoblast functions. PMID:27481339

  13. CD34 defines an osteoprogenitor cell population in mouse bone marrow stromal cells.

    PubMed

    Abdallah, Basem M; Al-Shammary, Asma; Skagen, Peter; Abu Dawud, Raed; Adjaye, James; Aldahmash, Abdullah; Kassem, Moustapha

    2015-11-01

    Bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells) and their progenitors have been identified based on retrospective functional criteria. CD markers are employed to define cell populations with distinct functional characteristics. However, defining and prospective isolation of BMSCs and committed progenitors are lacking. Here, we compared the transcriptome profile of CD markers expressed at baseline and during the course of osteoblast and adipocyte differentiation of two well-characterized osteogenic-committed murine BMSCs (mBMSC(Bone)) and adipogenic-committed mBMSCs (mBMSC(Adipo)), respectively. Bioinformatic analysis revealed the presence of a core set of canonical mBMSC CD markers with comparable expression levels in mBMSC(Bone) and mBMSC(Adipo) at baseline and during their differentiation. We identified 11 CD markers that are differentially expressed between mBMSC(Adipo) and mBMSC(Bone). Among these, we identified osteoprogenitor-associated CD markers expressed only in mBMSC(Bone): CD34, CD54, CD73, CD132, CD200, CD227 and adipoprogenitor-associated CD markers expressed only in mBMSC(Adipo): CD53, CD80, CD134, CD141 and CD212. FACS analysis confirmed these results. We selected CD34 for further analysis. CD34 was expressed at baseline of mouse stromal cell line ST2, primary mBMSCs, mBMSC(Bone) and its expression decreased during osteoblast differentiation. FACS-sorted CD34(+) primary mBMSCs exhibited higher expression of 70% osteoblast-associated genes, and formed significantly higher heterotopic bone in vivo when implanted subcutaneously in immune-deficient mice compared with CD34(-) primary mBMSCs. Our results demonstrate that a set of CD markers can distinguish osteoprogenitor versus adipoprogenitor populations of mBMSCs. CD34 is suitable for prospective isolation of mouse bone marrow osteoprogenitors. PMID:26413784

  14. Activation of GLP-1 Receptor Promotes Bone Marrow Stromal Cell Osteogenic Differentiation through β-Catenin

    PubMed Central

    Meng, Jingru; Ma, Xue; Wang, Ning; Jia, Min; Bi, Long; Wang, Yunying; Li, Mingkai; Zhang, Huinan; Xue, Xiaoyan; Hou, Zheng; Zhou, Ying; Yu, Zhibin; He, Gonghao; Luo, Xiaoxing

    2016-01-01

    Summary Glucagon-like peptide 1 (GLP-1) plays an important role in regulating bone remodeling, and GLP-1 receptor agonist shows a positive relationship with osteoblast activity. However, GLP-1 receptor is not found in osteoblast, and the mechanism of GLP-1 receptor agonist on regulating bone remodeling is unclear. Here, we show that the GLP-1 receptor agonist exendin-4 (Ex-4) promoted bone formation and increased bone mass and quality in a rat unloading-induced bone loss model. These functions were accompanied by an increase in osteoblast number and serum bone formation markers, while the adipocyte number was decreased. Furthermore, GLP-1 receptor was detected in bone marrow stromal cells (BMSCs), but not in osteoblast. Activation of GLP-1 receptor by Ex-4 promoted the osteogenic differentiation and inhibited BMSC adipogenic differentiation through regulating PKA/β-catenin and PKA/PI3K/AKT/GSK3β signaling. These findings reveal that GLP-1 receptor regulates BMSC osteogenic differentiation and provide a molecular basis for therapeutic potential of GLP-1 against osteoporosis. PMID:26947974

  15. Enhancement of osteoblastic differentiation of mesenchymal stromal cells cultured by selective combination of bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor-2 (FGF-2).

    PubMed

    Maegawa, Naoki; Kawamura, Kenji; Hirose, Motohiro; Yajima, Hiroshi; Takakura, Yoshinori; Ohgushi, Hajime

    2007-01-01

    It is well known that bone marrow contains mesenchymal stromal cells (MSCs), which can show osteoblastic differentiation when cultured in osteogenic medium containing ascorbic acid, beta-glycerophosphate and dexamethasone. The differentiation results in the appearance of osteoblasts, together with the formation of bone matrix; thus, in vitro cultured bone (osteoblasts/bone matrix) could be fabricated by MSC culture. This type of cultured bone has already been used in clinical cases involving orthopaedic problems. To improve the therapeutic effect of the cultured bone, we investigated the culture conditions that contributed to extensive osteoblastic differentiation. Rat bone marrow was primarily cultured to expand the number of MSCs and further cultured in osteogenic medium for 12 days. The culture was also conducted in a medium supplemented with either bone morphogenetic protein-2 (BMP-2) or fibroblast growth factor (FGF-2), or with sequential combinations of both supplements. Among them, the sequential supplementation of FGF-2 followed by BMP-2 showed high alkaline phosphatase activity, sufficient bone-specific osteocalcein expression and abundant bone matrix formation of the MSC culture. These data implied that the number of responding cells or immature osteoblasts was increased by the supplementation of FGF-2 in the early phase of the culture and that these cells can show osteoblastic differentiation, of which capability was augmented by BMP-2 in the late phase. The sequential supplementation of these cytokines into MSC culture might be suitable for the fabrication of ideal cultured bone for use in bone tissue engineering. PMID:18038421

  16. Characterization of Cellular and Molecular Heterogeneity of Bone Marrow Stromal Cells

    PubMed Central

    Elsafadi, Mona; Manikandan, Muthurangan; Atteya, Muhammad; Hashmi, Jamil Amjad; Iqbal, Zafar; Aldahmash, Abdullah; Alfayez, Musaad

    2016-01-01

    Human bone marrow-derived stromal stem cells (hBMSC) exhibit multiple functions, including differentiation into skeletal cells (progenitor function), hematopoiesis support, and immune regulation (nonprogenitor function). We have previously demonstrated the presence of morphological and functional heterogeneity of hBMSC cultures. In the present study, we characterized in detail two hTERT-BMSC clonal cell populations termed here CL1 and CL2 that represent an opposing phenotype with respect to morphology, markers expression: alkaline phosphatase (ALP) and CD146, and ex vivo differentiation potential. CL1 differentiated readily to osteoblasts, adipocytes, and chondrocytes as shown by expression of lineage specific genes and proteins. Whole genome transcriptome profiling of CL1 versus CL2 revealed enrichment in CL1 of bone-, mineralization-, and skeletal muscle-related genes, for example, ALP, POSTN, IGFBP5 BMP4, and CXCL12. On the other hand, CL2 transcriptome was enriched in immune modulatory genes, for example, CD14, CD99, NOTCH3, CXCL6, CFB, and CFI. Furthermore, gene expression microarray analysis of osteoblast differentiated CL1 versus CL2 showed significant upregulation in CL1 of bone development and osteoblast differentiation genes which included several homeobox genes: TBX15, HOXA2 and HOXA10, and IGF1, FGFR3, BMP6, MCAM, ITGA10, IGFBP5, and ALP. siRNA-based downregulation of the ALP gene in CL1 impaired osteoblastic and adipocytic differentiation. Our studies demonstrate the existence of molecular and functional heterogeneity in cultured hBMSC. ALP can be employed to identify osteoblastic and adipocytic progenitor cells in the heterogeneous hBMSC cultures.

  17. Characterization of Cellular and Molecular Heterogeneity of Bone Marrow Stromal Cells.

    PubMed

    Elsafadi, Mona; Manikandan, Muthurangan; Atteya, Muhammad; Hashmi, Jamil Amjad; Iqbal, Zafar; Aldahmash, Abdullah; Alfayez, Musaad; Kassem, Moustapha; Mahmood, Amer

    2016-01-01

    Human bone marrow-derived stromal stem cells (hBMSC) exhibit multiple functions, including differentiation into skeletal cells (progenitor function), hematopoiesis support, and immune regulation (nonprogenitor function). We have previously demonstrated the presence of morphological and functional heterogeneity of hBMSC cultures. In the present study, we characterized in detail two hTERT-BMSC clonal cell populations termed here CL1 and CL2 that represent an opposing phenotype with respect to morphology, markers expression: alkaline phosphatase (ALP) and CD146, and ex vivo differentiation potential. CL1 differentiated readily to osteoblasts, adipocytes, and chondrocytes as shown by expression of lineage specific genes and proteins. Whole genome transcriptome profiling of CL1 versus CL2 revealed enrichment in CL1 of bone-, mineralization-, and skeletal muscle-related genes, for example, ALP, POSTN, IGFBP5 BMP4, and CXCL12. On the other hand, CL2 transcriptome was enriched in immune modulatory genes, for example, CD14, CD99, NOTCH3, CXCL6, CFB, and CFI. Furthermore, gene expression microarray analysis of osteoblast differentiated CL1 versus CL2 showed significant upregulation in CL1 of bone development and osteoblast differentiation genes which included several homeobox genes: TBX15, HOXA2 and HOXA10, and IGF1, FGFR3, BMP6, MCAM, ITGA10, IGFBP5, and ALP. siRNA-based downregulation of the ALP gene in CL1 impaired osteoblastic and adipocytic differentiation. Our studies demonstrate the existence of molecular and functional heterogeneity in cultured hBMSC. ALP can be employed to identify osteoblastic and adipocytic progenitor cells in the heterogeneous hBMSC cultures. PMID:27610142

  18. Characterization of Cellular and Molecular Heterogeneity of Bone Marrow Stromal Cells

    PubMed Central

    Elsafadi, Mona; Manikandan, Muthurangan; Atteya, Muhammad; Hashmi, Jamil Amjad; Iqbal, Zafar; Aldahmash, Abdullah; Alfayez, Musaad

    2016-01-01

    Human bone marrow-derived stromal stem cells (hBMSC) exhibit multiple functions, including differentiation into skeletal cells (progenitor function), hematopoiesis support, and immune regulation (nonprogenitor function). We have previously demonstrated the presence of morphological and functional heterogeneity of hBMSC cultures. In the present study, we characterized in detail two hTERT-BMSC clonal cell populations termed here CL1 and CL2 that represent an opposing phenotype with respect to morphology, markers expression: alkaline phosphatase (ALP) and CD146, and ex vivo differentiation potential. CL1 differentiated readily to osteoblasts, adipocytes, and chondrocytes as shown by expression of lineage specific genes and proteins. Whole genome transcriptome profiling of CL1 versus CL2 revealed enrichment in CL1 of bone-, mineralization-, and skeletal muscle-related genes, for example, ALP, POSTN, IGFBP5 BMP4, and CXCL12. On the other hand, CL2 transcriptome was enriched in immune modulatory genes, for example, CD14, CD99, NOTCH3, CXCL6, CFB, and CFI. Furthermore, gene expression microarray analysis of osteoblast differentiated CL1 versus CL2 showed significant upregulation in CL1 of bone development and osteoblast differentiation genes which included several homeobox genes: TBX15, HOXA2 and HOXA10, and IGF1, FGFR3, BMP6, MCAM, ITGA10, IGFBP5, and ALP. siRNA-based downregulation of the ALP gene in CL1 impaired osteoblastic and adipocytic differentiation. Our studies demonstrate the existence of molecular and functional heterogeneity in cultured hBMSC. ALP can be employed to identify osteoblastic and adipocytic progenitor cells in the heterogeneous hBMSC cultures. PMID:27610142

  19. The phytoestrogen genistein enhances osteogenesis and represses adipogenic differentiation of human primary bone marrow stromal cells.

    PubMed

    Heim, M; Frank, O; Kampmann, G; Sochocky, N; Pennimpede, T; Fuchs, P; Hunziker, W; Weber, P; Martin, I; Bendik, I

    2004-02-01

    In the present study, we investigated the role of the phytoestrogen genistein and 17beta-estradiol in human bone marrow stromal cells, undergoing induced osteogenic or adipogenic differentiation. Profiling of estrogen receptors (ERs)-alpha, -beta1, -beta2, -beta3, -beta4, -beta5, and aromatase mRNAs revealed lineage-dependent expression patterns. During osteogenic differentiation, the osteoblast-determining core binding factor-alpha1 showed a progressive increase, whereas the adipogenic regulator peroxisome proliferator-activated receptor gamma (PPARgamma) was sequentially decreased. This temporal regulation of lineage-determining marker genes was strongly enhanced by genistein during the early osteogenic phase. Moreover, genistein increased alkaline phosphatase mRNA levels and activity, the osteoprotegerin:receptor activator of nuclear factor-kappaB ligand gene expression ratio, and the expression of TGFbeta1. During adipogenic differentiation, down-regulation in the mRNA levels of PPARgamma and CCAAT/enhancer-binding protein-alpha at d 3 and decreased lipoprotein lipase and adipsin mRNA levels at d 21 were observed after genistein treatment. This led to a lower number of adipocytes and a reduction in the size of their lipid droplets. At d 3 of adipogenesis, TGFbeta1 was strongly up-regulated by genistein in an ER-dependent manner. Blocking the TGFbeta1 pathway abolished the effects of genistein on PPARgamma protein levels and led to a reduction in the proliferation rate of precursor cells. Overall, genistein enhanced the commitment and differentiation of bone marrow stromal cells to the osteoblast lineage but did not influence the late osteogenic maturation markers. Adipogenic differentiation and maturation, on the other hand, were reduced by genistein (and 17beta-estradiol) via an ER-dependent mechanism involving autocrine or paracrine TGFbeta1 signaling. PMID:14605006

  20. Metallofullerene nanoparticles promote osteogenic differentiation of bone marrow stromal cells through BMP signaling pathway

    NASA Astrophysics Data System (ADS)

    Yang, Kangning; Cao, Weipeng; Hao, Xiaohong; Xue, Xue; Zhao, Jing; Liu, Juan; Zhao, Yuliang; Meng, Jie; Sun, Baoyun; Zhang, Jinchao; Liang, Xing-Jie

    2013-01-01

    Although endohedral metallofullerenol [Gd@C82(OH)22]n nanoparticles have anti-tumor efficiency and mostly deposit in the bones of mice, how these nanoparticles act in bone marrow stromal cells (MSCs) remains largely unknown. Herein, we observed that [Gd@C82(OH)22]n nanoparticles facilitated the differentiation of MSCs toward osteoblasts, as evidenced by the enhancement of alkaline phosphatase (ALP) activity and mineralized nodule formation upon [Gd@C82(OH)22]n nanoparticle treatment. Mechanistically, the effect of [Gd@C82(OH)22]n nanoparticles on ALP activity was inhibited by the addition of noggin as an inhibitor of the BMP signaling pathway. Moreover, the in vivo results of the ovariectomized rats further indicated that [Gd@C82(OH)22]n nanoparticles effectively improved bone density and prevented osteoporosis.Although endohedral metallofullerenol [Gd@C82(OH)22]n nanoparticles have anti-tumor efficiency and mostly deposit in the bones of mice, how these nanoparticles act in bone marrow stromal cells (MSCs) remains largely unknown. Herein, we observed that [Gd@C82(OH)22]n nanoparticles facilitated the differentiation of MSCs toward osteoblasts, as evidenced by the enhancement of alkaline phosphatase (ALP) activity and mineralized nodule formation upon [Gd@C82(OH)22]n nanoparticle treatment. Mechanistically, the effect of [Gd@C82(OH)22]n nanoparticles on ALP activity was inhibited by the addition of noggin as an inhibitor of the BMP signaling pathway. Moreover, the in vivo results of the ovariectomized rats further indicated that [Gd@C82(OH)22]n nanoparticles effectively improved bone density and prevented osteoporosis. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr33575a

  1. Aged human bone marrow stromal cells maintaining bone forming capacity in vivo evaluated using an improved method of visualization.

    PubMed

    Stenderup, K; Rosada, C; Justesen, J; Al-Soubky, T; Dagnaes-Hansen, F; Kassem, M

    2004-01-01

    Age-related decreased osteoblast function is a well-known but poorly understood phenomenon. Previous studies that examined the effects of donor age on osteoblast functions employed in vitro assays that may not reflect the true osteoblast capacity for bone formation. Thus, we have developed an in vivo assay for quantifying the bone forming capacity (BFC) and we compared the BFC of osteoblastic cells obtained from young and old donors. Osteoblasts were obtained from human bone marrow stromal cell cultures and implanted subcutaneously in immuno-deficient mice (NOD/LtSz- Prkdc(scid)). After 8 weeks, the implants were removed and embedded un-decalcified in methyl methacrylate (MMA). Sections were stained histochemically with Goldner's Trichrome stain and immuno-histochemically using human-specific antibodies against known osteogenic markers. Implanted human marrow stromal cells (hMSC) were able to form bone in vivo. The donor origin of bone was verified using several human-specific antibodies. Dose-response experiments demonstrated that 5 x 10(5) hMSC per implant gave the maximal bone formation after 8 weeks. No difference in BFC was observed between cells obtained from young (24-30 years old; mean age 27 +/- 2 years, n = 5) and old (71-81 years old; mean age 75 +/- 4 years, n = 5) donors. Our study demonstrates that the capacity of hMSC to form bone in vivo is maintained with age and suggests that the observed senescence-associated decrease in bone formation is due to a defect in the bone microenvironment, the nature of which remains to be determined.

  2. Impaired function of bone marrow stromal cells in systemic mastocytosis.

    PubMed

    Nemeth, Krisztian; Wilson, Todd M; Ren, Jiaqiang J; Sabatino, Marianna; Stroncek, David M; Krepuska, Miklos; Bai, Yun; Robey, Pamela G; Metcalfe, Dean D; Mezey, Eva

    2015-07-01

    Patients with systemic mastocytosis (SM) have a wide variety of problems, including skeletal abnormalities. The disease results from a mutation of the stem cell receptor (c-kit) in mast cells and we wondered if the function of bone marrow stromal cells (BMSCs; also known as MSCs or mesenchymal stem cells) might be affected by the invasion of bone marrow by mutant mast cells. As expected, BMSCs from SM patients do not have a mutation in c-kit, but they proliferate poorly. In addition, while osteogenic differentiation of the BMSCs seems to be deficient, their adipogenic potential appears to be increased. Since the hematopoietic supportive abilities of BMSCs are also important, we also studied the engraftment in NSG mice of human CD34(+) hematopoietic progenitors, after being co-cultured with BMSCs of healthy volunteers vs. BMSCs derived from patients with SM. BMSCs derived from the bone marrow of patients with SM could not support hematopoiesis to the extent that healthy BMSCs do. Finally, we performed an expression analysis and found significant differences between healthy and SM derived BMSCs in the expression of genes with a variety of functions, including the WNT signaling, ossification, and bone remodeling. We suggest that some of the symptoms associated with SM might be driven by epigenetic changes in BMSCs caused by dysfunctional mast cells in the bone marrow of the patients.

  3. Engraftment Outcomes after HPC Co-Culture with Mesenchymal Stromal Cells and Osteoblasts.

    PubMed

    Cook, Matthew M; Doran, Michael R; Kollar, Katarina; Barbier, Valerie; Winkler, Ingrid G; Levesque, Jean-Pierre; Brooke, Gary; Atkinson, Kerry

    2013-01-01

    Haematopoietic stem cell (HSC) transplantation is an established cell-based therapy for a number of haematological diseases. To enhance this therapy, there is considerable interest in expanding HSCs in artificial niches prior to transplantation. This study compared murine HSC expansion supported through co-culture on monolayers of either undifferentiated mesenchymal stromal cells (MSCs) or osteoblasts. Sorted Lineage(-) Sca-1(+) c-kit(+) (LSK) haematopoietic stem/progenitor cells (HPC) demonstrated proliferative capacity on both stromal monolayers with the greatest expansion of LSK shown in cultures supported by osteoblast monolayers. After transplantation, both types of bulk-expanded cultures were capable of engrafting and repopulating lethally irradiated primary and secondary murine recipients. LSKs co-cultured on MSCs showed comparable, but not superior, reconstitution ability to that of freshly isolated LSKs. Surprisingly, however, osteoblast co-cultured LSKs showed significantly poorer haematopoietic reconstitution compared to LSKs co-cultured on MSCs, likely due to a delay in short-term reconstitution. We demonstrated that stromal monolayers can be used to maintain, but not expand, functional HSCs without a need for additional haematopoietic growth factors. We also demonstrated that despite apparently superior in vitro performance, co-injection of bulk cultures of osteoblasts and LSKs in vivo was detrimental to recipient survival and should be avoided in translation to clinical practice.

  4. Effects of continuous and pulsatile PTH treatments on rat bone marrow stromal cells

    SciTech Connect

    Yang Chiming; Frei, Hanspeter Burt, Helen M.; Rossi, Fabio

    2009-03-20

    Bone marrow stromal cells (MSCs) differentiation and proliferation are controlled by numerous growth factors and hormones. Continuous parathyroid hormone (PTH) treatment has been shown to decrease osteoblast differentiation, whereas pulsatile PTH increases osteoblast differentiation. However, the effects of PTH treatments on MSCs have not been investigated. This study showed continuous PTH treatment in the presence of dexamethasone (DEX) promoted osteogenic differentiation of rat MSCs in vitro, as demonstrated by increased alkaline phosphatase (ALP) activity, number of ALP expressing cells, and up-regulation of PTH receptor-1, ALP, and osteocalcin mRNA expressions. In contrast, pulsatile PTH treatment was found to suppress osteogenesis of rat MSCs, possibly by promoting the maintenance of undifferentiated cells. Additionally, the observed effects of PTH were strongly dependent on the presence of DEX. MSC proliferation however was not influenced by PTH independent of treatment regimen and presence or absence of DEX. Furthermore, our work raised the possibility that PTH treatment may modulate stem/progenitor cell activity within MSC cultures.

  5. Stromal cell-derived factor-1 mediates changes of bone marrow stem cells during the bone repair process.

    PubMed

    Okada, Kiyotaka; Kawao, Naoyuki; Yano, Masato; Tamura, Yukinori; Kurashimo, Shinzi; Okumoto, Katsumi; Kojima, Kotarou; Kaji, Hiroshi

    2016-01-01

    Osteoblasts, osteoclasts, chondrocytes, and macrophages that participate in the bone repair process are derived from hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). However, the roles of these stem cells during the repair of injured bone tissue are still unclear. In the present study, we examined the effects of bone defect on HSCs and MSCs in bone marrow and spleen in 75 mice and its mechanism. We analyzed the HSC and MSC populations in these tissues of a mouse with femoral bone damage by using flow cytometry. The number of HSCs in the bone marrow of mice with damaged femurs was significantly lower than the number of these cells in the bone marrow of the contralateral intact femurs on day 2 after injury. Meanwhile, the number of MSCs in the bone marrow of mice with damaged femurs was significantly higher than that of the contralateral femurs. Both intraperitoneal administration of AMD3100, a C-X-C chemokine receptor 4 (CXCR4) antagonist, and local treatment with an anti-stromal cell-derived factor-1 (SDF-1) antibody blunted the observed decrease in HSC and increase in MSC populations within the bone marrow of injured femurs. In conclusion, the present study revealed that there is a concurrent decrease and increase in the numbers of HSCs and MSCs, respectively, in the bone marrow during repair of mouse femoral bone damage. Furthermore, the SDF-1/CXCR4 system was implicated as contributing to the changes in these stem cell populations upon bone injury.

  6. Adipose-derived mesenchymal stromal (stem) cells differentiate to osteoblast and chondroblast lineages upon incubation with conditioned media from dental pulp stem cell-derived osteoblasts and auricle cartilage chondrocytes.

    PubMed

    Carbone, A; Valente, M; Annacontini, L; Castellani, S; Di Gioia, S; Parisi, D; Rucci, M; Belgiovine, G; Colombo, C; Di Benedetto, A; Mori, G; Lo Muzio, L; Maiorella, A; Portincasa, A; Conese, M

    2016-01-01

    The potential of adipose-derived mesenchymal stromal (stem) cells (ADSCs) to differentiate into either osteoblasts or chondrocytes is controversial. In this study we investigated the multicapacity potential of ADSCs to differentiate towards adipocyte, osteoblast, and chondrocyte lineages when cells are seeded onto plastic in comparison with incubation with conditioned media (CM) obtained from differentiated cell types.ADSCs, obtained from liposuctions, were characterized for mesenchymal and hematopoietic markers by cytofluorimetry. Their differentiation capacity towards adipocytes, osteoblasts, and chondrocytes was investigated by histochemistry methods (Oil-Red-O staining, Safranin O and Alizarin Red staining, respectively). Dental pulp stem cells (DPSCs) and dedifferentiated auricle derived-chondrocytes were differentiated towards osteoblastic and chondrocytic lineages respectively, and the CM obtained from these cultures was used to induce differentiation of ADSCs. ADSCs were positive for mesenchymal markers (CD29, CD105, CD73, CD44), but not for hematopoietic lineage markers (CD14, CD34, CD45) and this behavior was conserved from the isolation up to the fifth passage. While ADSCs were readily differentiated in adipocytes, they were not towards chondrocytes and osteoblastic lineages, a behavior different from that of bone marrow-derived MSCs that differentiated into the three lineages at two weeks post-induction. Only ADSCs treated with CM from cultured chondrocytes and DPSCs, produced glycosaminoglycans and mineralized matrix. These results indicate that ADSCs need growth/morphogenic factor supplementation from the tissue environment to be appropriately differentiated to mesodermic lineages. PMID:27049081

  7. Vitamin D Metabolism and Action in Human Marrow Stromal Cells: Effects of Chronic Kidney Disease

    PubMed Central

    Zhou, Shuanhu; LeBoff, Meryl S.; Waikar, Sushrut S.; Glowacki, Julie

    2012-01-01

    Human marrow stromal cells (hMSCs) are targets of 1! ,25-dihydroxyvitamin D [1! ,25(OH)2D3] action to promote their differentiation to osteoblasts, but they also participate in vitamin D metabolism by converting 25-dihydroxyvitamin D3 [25(OH)D3] to 1! ,25(OH)2D3 by 1α-hydroxylase (CYP27B1). Chronic kidney disease (CKD) is associated with impaired renal biosynthesis of 1! ,25(OH)2D, low bone mass, and increased fracture risk. We tested whether CKD influences hMSCs' responses to vitamin D3 metabolites. The hMSCs were obtained from tissues discarded during arthroplasty for hip osteoarthrosis, including a subject who had been undergoing hemodialysis for 2+ years. There was a significant positive correlation between in vitro stimulation of osteoblastogenesis (alkaline phosphatase activity) by 1! ,25(OH)2D3 and subjects' estimated glomerular filtration rate (eGFR, r=0.47, p=0.015, n=26, 56–83 years of age). Osteoblastogenesis was stimulated in hMSCs from both the hemodialysis and control subjects by 1! ,25(OH)2D3 (10 ! M), 25(OH)D3 (100 ! M), or D3 (1000 ! M). Thus, vitamin D metabolism may play an autocrine/paracrine role in osteoblast differentiation of hMSCs. These findings suggest that in CKD patients 25(OH)D-sufficiency may play an important role in skeletal health; osteoblastic bone formation in CKD patients may not be optimal unless there is sufficient serum 25(OH)D substrate for the MSCs to synthesize and respond to local 1! ,25(OH)2D. PMID:22989482

  8. Attenuation of the self-renewal of transit-amplifying osteoblast progenitors in the murine bone marrow by 17β-estradiol

    PubMed Central

    Di Gregorio, Gina B.; Yamamoto, Matsuo; Ali, A. Afshan; Abe, Etsuko; Roberson, Paula; Manolagas, Stavros C.; Jilka, Robert L.

    2001-01-01

    In agreement with evidence that estrogens slow the rate of bone remodeling by suppressing the production of both osteoclasts and osteoblasts, loss of estrogens leads to an increase in the number of osteoclast as well as early osteoblast progenitors (CFU-osteoblasts; CFU-OBs) in the murine bone marrow. Here we show that CFU-OBs are early transit-amplifying progenitors, i.e., dividing cells capable of limited self-renewal, and that 17β-estradiol acts in vivo and in vitro to attenuate their self-renewal by approximately 50%. Consistent with a direct receptor–mediated action of estrogens on early mesenchymal cell progenitors, anti–estrogen receptor-α (anti-ERα) Ab’s stain a small number of marrow cells that exhibit characteristics of primitive undifferentiated cells, including a high nucleus/cytoplasm ratio and lack of lineage-specific biochemical markers; the effect of 17β-estradiol on CFU-OB self-renewal is absent in mice lacking ERα. Because both osteoblasts and the stromal/osteoblastic cells that are required for osteoclast development are derived from CFU-OBs, suppression of the self-renewal of this common progenitor may represent a key mechanism of the anti-remodeling effects of estrogens. PMID:11285299

  9. Interleukin-1β modulates endochondral ossification by human adult bone marrow stromal cells.

    PubMed

    Mumme, Marcus; Scotti, Celeste; Papadimitropoulos, Adam; Todorov, Athanas; Hoffmann, Waldemar; Bocelli-Tyndall, Chiara; Jakob, Marcel; Wendt, David; Martin, Ivan; Barbero, Andrea

    2012-01-01

    Inflammatory cytokines present in the milieu of the fracture site are important modulators of bone healing. Here we investigated the effects of interleukin-1β (IL-1β) on the main events of endochondral bone formation by human bone marrow mesenchymal stromal cells (BM-MSC), namely cell proliferation, differentiation and maturation/remodelling of the resulting hypertrophic cartilage. Low doses of IL-1β (50 pg/mL) enhanced colony-forming units-fibroblastic (CFU-f) and -osteoblastic (CFU-o) number (up to 1.5-fold) and size (1.2-fold) in the absence of further supplements and glycosaminoglycan accumulation (1.4-fold) upon BM-MSC chondrogenic induction. In osteogenically cultured BM-MSC, IL-1β enhanced calcium deposition (62.2-fold) and BMP-2 mRNA expression by differential activation of NF-κB and ERK signalling. IL-1β-treatment of BM-MSC generated cartilage resulted in higher production of MMP-13 (14.0-fold) in vitro, mirrored by an increased accumulation of the cryptic cleaved fragment of aggrecan, and more efficient cartilage remodelling/resorption after 5 weeks in vivo (i.e., more TRAP positive cells and bone marrow, less cartilaginous areas), resulting in the formation of mature bone and bone marrow after 12 weeks. In conclusion, IL-1β finely modulates early and late events of the endochondral bone formation by BM-MSC. Controlling the inflammatory environment could enhance the success of therapeutic approaches for the treatment of fractures by resident MSC and as well as improve the engineering of implantable tissues. PMID:23007908

  10. Epigenetically Modified Bone Marrow Stromal Cells in Silk Scaffolds Promote Craniofacial Bone Repair and Wound Healing.

    PubMed

    Han, Qianqian; Yang, Pishan; Wu, Yuwei; Meng, Shu; Sui, Lei; Zhang, Lan; Yu, Liming; Tang, Yin; Jiang, Hua; Xuan, Dongying; Kaplan, David L; Kim, Sung Hoon; Tu, Qisheng; Chen, Jake

    2015-08-01

    Epigenetic regulation of gene expression is a central mechanism that governs cell stemness, determination, commitment, and differentiation. It has been recently found that PHF8, a major H4K20/H3K9 demethylase, plays a critical role in craniofacial and bone development. In this study, we hypothesize that PHF8 promotes osteoblastogenesis by epigenetically regulating the expression of a nuclear matrix protein, special AT-rich sequence-binding protein 2 (SATB2) that plays pivotal roles in skeletal patterning and osteoblast differentiation. Our results showed that expression levels of PHF8 and SATB2 in preosteoblasts and bone marrow stromal cells (BMSCs) increased simultaneously during osteogenic induction. Overexpressing PHF8 in these cells upregulated the expression of SATB2, Runx2, osterix, and bone matrix proteins. Conversely, knockdown of PHF8 reduced the expression of these genes. Furthermore, ChIP assays confirmed that PHF8 specifically bound to the transcription start site (TSS) of the SATB2 promoter, and the expression of H3K9me1 at the TSS region of SATB2 decreased in PHF8 overexpressed group. Implantation of the BMSCs overexpressing PHF8 with silk protein scaffolds promoted bone regeneration in critical-sized defects in mouse calvaria. Taken together, our results demonstrated that PHF8 epigenetically modulates SATB2 activity, triggering BMSCs osteogenic differentiation and facilitating bone formation and regeneration in biodegradable silk scaffolds.

  11. Stromal cell migration precedes hemopoietic repopulation of the bone marrow after irradiation

    SciTech Connect

    Werts, E.D.; Gibson, D.P.; Knapp, S.A.; DeGowin, R.L.

    1980-01-01

    Circulation of hemopoietic stem cells into an irradiated site has been thoroughly documented, but migration of stromal cells to repair radiation damage has not. We determined the radiosensitivity of mouse bone marrow stroma and evaluated stromal and hemopoietic repopulation in x-irradiated marrow. The D/sub 0/ for growth of colonies of marrow stromal cells (MSC) was 215 to 230 rad. Total-body irradiation (TB) obliterated marrow stromal and hemopoietic cells within 3 days. In contrast, 1 day after 1000 rad leg irradiation (LI), MSC rose to 80% of normal, but fell to 34% by 3 days and recovered to 72% by 30 days. However, femoral nucleated cells diminished to 20% by 3 days and recovered to 74% of normal by 30 days. Likewise, differentiated marrow cells and hemopoietic stem cells were initially depleted. With 1000 rad LI followed 3 h later by 1000 rad to the body while shielding the leg, MSC and femoral nucleated cells recovered to values intermediate between 1000 rad TB and 1000 rad LI. We concluded that: (1) the D/sub 0/ for MSC was 215 to 230 rad, (2) stromal repopulation preceded hemopoietic recovery, and (3) immigration of stromal cells from an unirradiated sanctuary facilitated hemopoietic repopulation of a heavily irradiated site.

  12. Craniofacial defect regeneration using engineered bone marrow mesenchymal stromal cells.

    PubMed

    Yang, Yi; Hallgrimsson, Benedikt; Putnins, Edward E

    2011-10-01

    Large craniofacial bony defects remain a significant clinical challenge. Bone marrow mesenchymal stromal cells (BM-MSCs) constitute a multipotent population. Previously, we developed a novel approach for BM-MSC expansion on 3D CultiSpher-S gelatin microcarrier beads in spin culture with preservation of their multipotentiality, reduction of apoptosis, and enhancement of bone formation in vivo. Here, we hypothesized that such cultured BM-MSCs without exogenous growth factors would respond to the orthopedic microenvironment, thus promoting craniofacial defect regeneration. BM-MSCs isolated from green fluorescent protein (GFP) transgenic rats were ex vivo expanded and transplanted into critical-sized (5-mm diameter) rat calvaria defects. Gelatin beads or defect alone served as controls. By 28 and 42 days, rats were sacrificed for microcomputed tomography (microCT), histologic, and immunohistochemistry examination. MicroCT results demonstrated that BM-MSCs were a statistically significant factor contributing to new bone volume regeneration. Histologic assessment showed that the BM-MSCs group produced more and higher quality new bone compared with beads or defect-alone groups in both osteoinductive and osteoconductive manners. Specifically, immunohistochemical staining identified GFP(+) cells residing in new bone lacunae in conjunction with non-GFP(+) cells. Therefore, ex vivo expanded BM-MSCs at least in part regenerated critical-sized calvaria defects by osteogenic differentiation in vivo.

  13. Effects of the 1, 4-dihydropyridine L-type calcium channel blocker benidipine on bone marrow stromal cells.

    PubMed

    Ma, Zhong-ping; Liao, Jia-cheng; Zhao, Chang; Cai, Dao-zhang

    2015-08-01

    Osteoporosis (OP) often increases the risk of bone fracture and other complications and is a major clinical problem. Previous studies have found that high blood pressure is associated with bone formation abnormalities, resulting in increased calcium loss. We have investigated the effect of the antihypertensive drug benidipine on bone marrow stromal cell (BMSC) differentiation into osteoblasts and bone formation under osteoporotic conditions. We used a combination of in vitro and in vivo approaches to test the hypothesis that benidipine promotes murine BMSC differentiation into osteoblasts. Alkaline phosphatase (ALP), osteocalcin (OCN), runt-related transcription factor 2 (RUNX2), β-catenin, and low-density lipoprotein receptor-related protein 5 (LRP5) protein expression was evaluated in primary femoral BMSCs from C57/BL6 mice cultured under osteogenic conditions for 2 weeks to examine the effects of benidipine. An ovariectomized (OVX) mouse model was used to investigate the effect of benidipine treatment for 3 months in vivo. We found that ALP, OCN, and RUNX2 expression was up-regulated and WNT/β-catenin signaling was enhanced in vitro and in vivo. In OVX mice that were intragastrically administered benidipine, bone parameters (trabecular thickness, bone mineral density, and trabecular number) in the distal femoral metaphysis were significantly increased compared with control OVX mice. Consistently, benidipine promoted BMSC differentiation into osteoblasts and protected against bone loss in OVX mice. Therefore, benidipine might be a suitable candidate for the treatment of patients with postmenopausal osteoporosis and hypertension.

  14. New Bone Formation in Tuberculous-Infected Vertebral Body Defect after Administration of Bone Marrow Stromal Cells in Rabbit Model

    PubMed Central

    Kurniawati, Tri; Siregar, Nurjati Chairani; Syahrurachman, Agus; Dilogo, Ismail Hadisubroto; Iskandriati, Diah; Fitri, Arni Diana

    2016-01-01

    Study Design Preliminary experimental study using a rabbit spondylitis model. Purpose To observe the ossification in a micro-environment containing live Mycobacterium tuberculosis transplanted with bone marrow stromal cells (BMSCs) in rabbits. Overview of Literature BMSCs differentiate to osteoblasts and then osteocytes during ossification. Mycobacterium tuberculosis does not affect BMSC growth in vitro. Methods Six rabbits were divided into two groups of three rabbits. One group was positive for spondylitis tuberculosis by culture, polymerase chain reaction (PCR), and histopathologically. The other group was positive by PCR and histopathologically. Both groups were treated using BMSC transplantation and anti-tuberculosis drugs. After 6 weeks, ossification was evaluated by enumerating the number of osteoblasts, osteocytes, and lesion level of calcium. Results Mean number of osteoblasts was 207.00±31.00 in the first group and 220.33±73.46 in the second group. Mean number of intra-lesions osteocytes was in the first and second group was 18.33±30.04 and 31.00±26.87, respectively. Mean calcium level in the first group and second group was 2.94%±0.89% and 2.51%±0.13%, respectively. Total ossification score in the first and second group was 31.00 and 25.67, respectively. Conclusions Mycobacterium tuberculosis provides support for new bone formation by stimulating intra-lesion calcium metabolism. The microscopic environment containing live Mycobacterium tuberculosis enhances ossification. PMID:26949451

  15. Human Bone Marrow Stromal Cells: A Reliable, Challenging Tool for In Vitro Osteogenesis and Bone Tissue Engineering Approaches.

    PubMed

    Hempel, Ute; Müller, Katrin; Preissler, Carolin; Noack, Carolin; Boxberger, Sabine; Dieter, Peter; Bornhäuser, Martin; Wobus, Manja

    2016-01-01

    Adult human bone marrow stromal cells (hBMSC) are important for many scientific purposes because of their multipotency, availability, and relatively easy handling. They are frequently used to study osteogenesis in vitro. Most commonly, hBMSC are isolated from bone marrow aspirates collected in clinical routine and cultured under the "aspect plastic adherence" without any further selection. Owing to the random donor population, they show a broad heterogeneity. Here, the osteogenic differentiation potential of 531 hBMSC was analyzed. The data were supplied to correlation analysis involving donor age, gender, and body mass index. hBMSC preparations were characterized as follows: (a) how many passages the osteogenic characteristics are stable in and (b) the influence of supplements and culture duration on osteogenic parameters (tissue nonspecific alkaline phosphatase (TNAP), octamer binding transcription factor 4, core-binding factor alpha-1, parathyroid hormone receptor, bone gla protein, and peroxisome proliferator-activated protein γ). The results show that no strong prediction could be made from donor data to the osteogenic differentiation potential; only the ratio of induced TNAP to endogenous TNAP could be a reliable criterion. The results give evidence that hBMSC cultures are stable until passage 7 without substantial loss of differentiation potential and that established differentiation protocols lead to osteoblast-like cells but not to fully authentic osteoblasts. PMID:27293446

  16. Human Bone Marrow Stromal Cells: A Reliable, Challenging Tool for In Vitro Osteogenesis and Bone Tissue Engineering Approaches

    PubMed Central

    Hempel, Ute; Müller, Katrin; Preissler, Carolin; Noack, Carolin; Boxberger, Sabine; Dieter, Peter; Bornhäuser, Martin; Wobus, Manja

    2016-01-01

    Adult human bone marrow stromal cells (hBMSC) are important for many scientific purposes because of their multipotency, availability, and relatively easy handling. They are frequently used to study osteogenesis in vitro. Most commonly, hBMSC are isolated from bone marrow aspirates collected in clinical routine and cultured under the “aspect plastic adherence” without any further selection. Owing to the random donor population, they show a broad heterogeneity. Here, the osteogenic differentiation potential of 531 hBMSC was analyzed. The data were supplied to correlation analysis involving donor age, gender, and body mass index. hBMSC preparations were characterized as follows: (a) how many passages the osteogenic characteristics are stable in and (b) the influence of supplements and culture duration on osteogenic parameters (tissue nonspecific alkaline phosphatase (TNAP), octamer binding transcription factor 4, core-binding factor alpha-1, parathyroid hormone receptor, bone gla protein, and peroxisome proliferator-activated protein γ). The results show that no strong prediction could be made from donor data to the osteogenic differentiation potential; only the ratio of induced TNAP to endogenous TNAP could be a reliable criterion. The results give evidence that hBMSC cultures are stable until passage 7 without substantial loss of differentiation potential and that established differentiation protocols lead to osteoblast-like cells but not to fully authentic osteoblasts. PMID:27293446

  17. Large-scale gene expression profiling data of bone marrow stromal cells from osteoarthritic donors.

    PubMed

    Stiehler, Maik; Rauh, Juliane; Bünger, Cody; Jacobi, Angela; Vater, Corina; Schildberg, Theresa; Liebers, Cornelia; Günther, Klaus-Peter; Bretschneider, Henriette

    2016-09-01

    This data article contains data related to the research article entitled, "in vitro characterization of bone marrow stromal cells from osteoarthritic donors" [1]. Osteoarthritis (OA) represents the main indication for total joint arthroplasty and is one of the most frequent degenerative joint disorders. However, the exact etiology of OA remains unknown. Bone marrow stromal cells (BMSCs) can be easily isolated from bone marrow aspirates and provide an excellent source of progenitor cells. The data shows the identification of pivotal genes and pathways involved in osteoarthritis by comparing gene expression patterns of BMSCs from osteoarthritic versus healthy donors using an array-based approach.

  18. Caffeine regulates osteogenic differentiation and mineralization of primary adipose-derived stem cells and a bone marrow stromal cell line.

    PubMed

    Su, Shu-Jem; Chang, Kee-Lung; Su, Shu-Hui; Yeh, Yao-Tsung; Shyu, Huey-Wen; Chen, Kuan-Ming

    2013-06-01

    Caffeine consumption reportedly influences bone mineral density and body weight. However, the effects of caffeine on bone metabolism are still controversial, and whether the dosage of caffeine influences osteogenic differentiation is yet to be clarified. In the present study, we cultured primary adipose-derived stem cells (ADSCs) and a bone marrow stromal cell line (M2-10B4) in osteogenic differentiation media containing varying concentrations of caffeine. Caffeine had biphasic effects: 0.1 mM caffeine significantly enhanced mineralization and alkaline phosphatase (ALP) activity. Consistent with these observations, a caffeine concentration of 0.1 mM upregulated the osteogenic differentiation marker genes ALP and osteocalcin (OCN), and elevated osteoprotegerin (OPG), Runt-related transcription factor 2 (RUNX2) and Sirtuin 1 (SIRT1) levels. However, a concentration of caffeine greater than 0.3 mM suppressed the differentiation of both the cell types. These findings indicate that caffeine has a beneficial effect on ADSCs and bone marrow stromal cells, enhancing differentiation to osteoblasts; this effect, which is mediated via RUNX2 activation at low doses is significantly suppressed at high doses.

  19. Molecular signature and in vivo behavior of bone marrow endosteal and subendosteal stromal cell populations and their relevance to hematopoiesis

    SciTech Connect

    Balduino, Alex; Mello-Coelho, Valeria; Wang, Zhou; Taichman, Russell S.; Krebsbach, Paul H.; Weeraratna, Ashani T.; Becker, Kevin G.; Mello, Wallace de; Taub, Dennis D.; Borojevic, Radovan

    2012-11-15

    In the bone marrow cavity, hematopoietic stem cells (HSC) have been shown to reside in the endosteal and subendosteal perivascular niches, which play specific roles on HSC maintenance. Although cells with long-term ability to reconstitute full hematopoietic system can be isolated from both niches, several data support a heterogenous distribution regarding the cycling behavior of HSC. Whether this distinct behavior depends upon the role played by the stromal populations which distinctly create these two niches is a question that remains open. In the present report, we used our previously described in vivo assay to demonstrate that endosteal and subendosteal stromal populations are very distinct regarding skeletal lineage differentiation potential. This was further supported by a microarray-based analysis, which also demonstrated that these two stromal populations play distinct, albeit complementary, roles in HSC niche. Both stromal populations were preferentially isolated from the trabecular region and behave distinctly in vitro, as previously reported. Even though these two niches are organized in a very close range, in vivo assays and molecular analyses allowed us to identify endosteal stroma (F-OST) cells as fully committed osteoblasts and subendosteal stroma (F-RET) cells as uncommitted mesenchymal cells mainly represented by perivascular reticular cells expressing high levels of chemokine ligand, CXCL12. Interestingly, a number of cytokines and growth factors including interleukin-6 (IL-6), IL-7, IL-15, Hepatocyte growth factor (HGF) and stem cell factor (SCF) matrix metalloproteases (MMPs) were also found to be differentially expressed by F-OST and F-RET cells. Further microarray analyses indicated important mechanisms used by the two stromal compartments in order to create and coordinate the 'quiescent' and 'proliferative' niches in which hematopoietic stem cells and progenitors reside.

  20. Isolation of the stromal-vascular fraction of mouse bone marrow markedly enhances the yield of clonogenic stromal progenitors

    PubMed Central

    Suire, Colby; Brouard, Nathalie; Hirschi, Karen

    2012-01-01

    The low incidence of CFU-F significantly complicates the isolation of homogeneous populations of mouse bone marrow stromal cells (BMSCs), a common problem being contamination with hematopoietic cells. Taking advantage of burgeoning evidence demonstrating the perivascular location of stromal cell stem/progenitors, we hypothesized that a potential reason for the low yield of mouse BMSCs is the flushing of the marrow used to remove single-cell suspensions and the consequent destruction of the marrow vasculature, which may adversely affect recovery of BMSCs physically associated with the abluminal surface of blood vessels. Herein, we describe a simple methodology based on preparation and enzymatic disaggregation of intact marrow plugs, which yields distinct populations of both stromal and endothelial cells. The recovery of CFU-F obtained by pooling the product of each digestion (1631.8 + 199) reproducibly exceeds that obtained using the standard BM flushing technique (14.32 + 1.9) by at least 2 orders of magnitude (P < .001; N = 8) with an accompanying 113.95-fold enrichment of CFU-F frequency when plated at low oxygen (5%). Purified BMSC populations devoid of hematopoietic contamination are readily obtained by FACS at P0 and from freshly prepared single-cell suspensions. Furthermore, this population demonstrates robust multilineage differentiation using standard in vivo and in vitro bioassays. PMID:22262767

  1. Differential effects of retinoic acid and growth factors on osteoblastic markers and CD10/NEP activity in stromal-derived osteoblasts.

    PubMed

    Benayahu, D; Fried, A; Shamay, A; Cunningham, N; Blumberg, S; Wientroub, S

    1994-09-01

    The effects of retinoic acid (RA) on the expression of osteoblastic-related cell markers was examined. A marrow stromal osteogenic cell line, MBA-15, was analyzed by Northern blotting for the expression of bone matrix proteins. These cells constitutively express mRNA encoding for procollagen alpha 2 (I), osteonectin, osteopontin, biglycan, and alkaline phosphatase (ALK-P). Gene expression was unchanged in response to RA triggering for 24 hr. Furthermore, cell growth and enzymatic activities of ALK-P and neutral endopeptidase (CD10/NEP) were studied. These parameters were examined in MBA-15 and clonal populations representing different stages of differentiation. The cell's growth rate was unchanged, while ALK-P activity was greatly increased during the culture period under RA treatment in MBA-15 and in the clonal cell lines examined while CD10/NEP activity displayed a different pattern. MBA-15.4, a preosteoblast cell line, exhibited an inhibition in CD10/NEP activity at the beginning of the culture period, reaching basal level with time. This activity was greatly increased over control level in MBA-15.6, a mature stage of osteoblasts. Furthermore, the response of cell lines to various growth factors was tested subsequent to priming the cultures with RA. A synergistic effect was monitored for ALK-P activity in MBA-15.4 and MBA-15.6 cells under rh-bone morphogenic protein (BMP-2) and purified osteogenin (BMP-3), and an antagonist effect was measured when cells were exposed to transforming growth factor beta (TGF beta). Contrarily, BMP-2 and BMP-3 inhibited the CD10/NEP activity that had remained unchanged following priming of the cell with RA. Insulin-like growth factor I (IGF-I) and basic fibroblast growth factors (bFGF) did not affect either ALK-P nor CD10/NEP activities in both cloned cells. Cellular response to bone-seeking hormone, parathyroid hormone (PTH), and prostaglandin E2 (PGE2) was monitored by activation of intracellular cAMP. Treatment with RA caused a

  2. Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds

    NASA Technical Reports Server (NTRS)

    Ishaug, S. L.; Crane, G. M.; Miller, M. J.; Yasko, A. W.; Yaszemski, M. J.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    Bone formation was investigated in vitro by culturing stromal osteoblasts in three-dimensional (3-D), biodegradable poly(DL-lactic-co-glycolic acid) foams. Three polymer foam pore sizes, ranging from 150-300, 300-500, and 500-710 microns, and two different cell seeding densities, 6.83 x 10(5) cells/cm2 and 22.1 x 10(5) cells/cm2, were examined over a 56-day culture period. The polymer foams supported the proliferation of seeded osteoblasts as well as their differentiated function, as demonstrated by high alkaline phosphatase activity and deposition of a mineralized matrix by the cells. Cell number, alkaline phosphatase activity, and mineral deposition increased significantly over time for all the polymer foams. Osteoblast foam constructs created by seeding 6.83 x 10(5) cells/cm2 on foams with 300-500 microns pores resulted in a cell density of 4.63 x 10(5) cells/cm2 after 1 day in culture; they had alkaline phosphatase activities of 4.28 x 10(-7) and 2.91 x 10(-6) mumol/cell/min on Days 7 and 28, respectively; and they had a cell density that increased to 18.7 x 10(5) cells/cm2 by Day 56. For the same constructs, the mineralized matrix reached a maximum penetration depth of 240 microns from the top surface of the foam and a value of 0.083 mm for mineralized tissue volume per unit of cross sectional area. Seeding density was an important parameter for the constructs, but pore size over the range tested did not affect cell proliferation or function. This study suggests the feasibility of using poly(alpha-hydroxy ester) foams as scaffolding materials for the transplantation of autogenous osteoblasts to regenerate bone tissue.

  3. Osteoblastic Wnts differentially regulate bone remodeling and the maintenance of bone marrow mesenchymal stem cells.

    PubMed

    Wan, Yong; Lu, Cheng; Cao, Jingjing; Zhou, Rujiang; Yao, Yiyun; Yu, Jian; Zhang, Lingling; Zhao, Haixia; Li, Hanjun; Zhao, Jianzhi; Zhu, Xuming; He, Lin; Liu, Yongzhong; Yao, Zhengju; Yang, Xiao; Guo, Xizhi

    2013-07-01

    Wnt signaling has important roles in embryonic bone development and postnatal bone remodeling, but inconsistent impact on bone property is observed in different genetic alterations of Lrp5 and β-catenin. More importantly, it is still controversial whether Lrp5 regulate bone formation locally or globally through gut-derived serotonin. Here we explored the function of Wnt proteins in osteoblastic niche through inactivation of the Wntless (Wls) gene, which abrogates the secretion of Wnts. The depletion of Wls in osteoblast progenitor cells resulted in severe osteopenia with more profound defects in osteoblastogenesis, osteoclastogenesis and maintenance of bone marrow mesenchymal stem cells (BMSCs) compared to that observed in Lrp5 and β-catenin mutants. These findings support the point of view that Wnt/Lrp5 signaling locally regulates bone mass accrual through multiple effects of osteoblastic Wnts on osteoblastic bone formation and osteoclastic bone resorption. Moreover, osteoblastic Wnts confer a niche role for maintenance of BMSCs, providing novel cues for the definition of BMSCs niche in bone marrow.

  4. Glycosaminoglycans enhance osteoblast differentiation of bone marrow derived human mesenchymal stem cells.

    PubMed

    Mathews, Smitha; Mathew, Suja Ann; Gupta, Pawan Kumar; Bhonde, Ramesh; Totey, Satish

    2014-02-01

    Extracellular matrix plays an important role in regulating cell growth and differentiation. The biomimetic approach of cell-based tissue engineering is based on mirroring this in vivo micro environment for developing a functional tissue engineered construct. In this study, we treated normal tissue culture plates with selected extracellular matrix components consisting of glycosaminoglycans such as chondroitin-4-sulphate, dermatan sulphate, chondroitin-6-sulphate, heparin and hyaluronic acid. Mesenchymal stem cells isolated from adult human bone marrow were cultured on the glycosaminoglycan treated culture plates to evaluate their regulatory role in cell growth and osteoblast differentiation. Although no significant improvement on human mesenchymal stem cell adhesion and proliferation was observed on the glycosaminoglycan-treated tissue culture plates, there was selective osteoblast differentiation, indicating its potential role in differentiation rather than proliferation. Osteoblast differentiation studies showed high osteogenic potential for all tested glycosaminoglycans except chondroitin-4-sulphate. Osteoblast differentiation-associated genes such as osterix, osteocalcin, integrin binding sialoprotein, osteonectin and collagen, type 1, alpha 1 showed significant upregulation. We identified osterix as the key transcription factor responsible for the enhanced bone matrix deposition observed on hyaluronic acid, heparin and chondroitin-6-sulphate. Hyaluronic acid provided the most favourable condition for osteoblast differentiation and bone matrix synthesis. Our results confirm and emphasise the significant role of extracellular matrix in regulating cell differentiation. To summarise, glycosaminoglycans of extracellular matrix played a significant role in regulating osteoblast differentiation and could be exploited in the biomimetic approach of fabricating or functionalizing scaffolds for stem cell based bone tissue engineering.

  5. Dexamethasone Regulates EphA5, a Potential Inhibitory Factor with Osteogenic Capability of Human Bone Marrow Stromal Cells

    PubMed Central

    Yamada, Tsuyoshi; Yoshii, Toshitaka; Yasuda, Hiroaki; Okawa, Atsushi; Sotome, Shinichi

    2016-01-01

    We previously demonstrated the importance of quality management procedures for the handling of human bone marrow stromal cells (hBMSCs) and provided evidence for the existence of osteogenic inhibitor molecules in BMSCs. One candidate inhibitor is the ephrin type-A receptor 5 (EphA5), which is expressed in hBMSCs and upregulated during long-term culture. In this study, forced expression of EphA5 diminished the expression of osteoblast phenotypic markers. Downregulation of endogenous EphA5 by dexamethasone treatment promoted osteoblast marker expression. EphA5 could be involved in the normal growth regulation of BMSCs and could be a potential marker for replicative senescence. Although Eph forward signaling stimulated by ephrin-B-Fc promoted the expression of ALP mRNA in BMSCs, exogenous addition of EphA5-Fc did not affect the ALP level. The mechanism underlying the silencing of EphA5 in early cultures remains unclear. EphA5 promoter was barely methylated in hBMSCs while histone deacetylation could partially suppress EphA5 expression in early-passage cultures. In repeatedly passaged cultures, the upregulation of EphA5 independent of methylation could competitively inhibit osteogenic signal transduction pathways such as EphB forward signaling. Elucidation of the potential inhibitory function of EphA5 in hBMSCs may provide an alternative approach for lineage differentiation in cell therapy strategies and regenerative medicine. PMID:27057165

  6. Mechanical loading down-regulates peroxisome proliferator-activated receptor gamma in bone marrow stromal cells and favors osteoblastogenesis at the expense of adipogenesis.

    PubMed

    David, Valentin; Martin, Aline; Lafage-Proust, Marie-Hélène; Malaval, Luc; Peyroche, Sylvie; Jones, David B; Vico, Laurence; Guignandon, Alain

    2007-05-01

    Because a lack of mechanical information favors the development of adipocytes at the expense of osteoblasts, we hypothesized that the peroxisome proliferator-activated receptor gamma (PPARgamma)-dependent balance between osteoblasts and adipocytes is affected by mechanical stimuli. We tested the robustness of this hypothesis in in vivo rodent osteogenic exercise, in vitro cyclic loading of cancellous haversian bone samples, and cyclic stretching of primary stromal and C3H10T1/2 cells. We found that running rats exhibit a decreased marrow fat volume associated with an increased bone formation, presumably through recruitment of osteoprogenitors. In the tissue culture model and primary stromal cells, cyclic loading induced higher Runx2 and lower PPARgamma2 protein levels. Given the proadipocytic and antiosteoblastic activities of PPARgamma, we studied the effects of cyclic stretching in C3H10T1/2 cells, treated either with the PPARgamma activator, Rosiglitazone, or with GW9662, a potent antagonist of PPARgamma. We found, through both cytochemistry and analysis of lineage marker expression, that under Roziglitazone cyclic stretch partially overcomes the induction of adipogenesis and is still able to favor osteoblast differentiation. Conversely, cyclic stretch has additive effects with GW9662 in inducing osteoblastogenesis. In conclusion, we provide evidence that mechanical stimuli are potential PPARgamma modulators counteracting adipocyte differentiation and inhibition of osteoblastogenesis.

  7. Cell attachment and proliferation of bone marrow-derived osteoblast on zirconia of various surface treatment

    PubMed Central

    Lee, Heesu; Noh, Kwantae; Woo, Yi-Hyung

    2014-01-01

    PURPOSE This study was performed to characterize the effects of zirconia coated with calcium phosphate and hydroxyapatite compared to smooth zirconia after bone marrow-derived osteoblast culture. MATERIALS AND METHODS Bone marrow-derived osteoblasts were cultured on (1) smooth zirconia, (2) zirconia coated with calcium phosphate (CaP), and (3) zirconia coated with hydroxyapatite (HA). The tetrazolium-based colorimetric assay (MTT test) was used for cell proliferation evaluation. Scanning electron microscopy (SEM) and alkaline phosphatase (ALP) activity was measured to evaluate the cellular morphology and differentiation rate. X-ray photoelectron spectroscopy (XPS) was employed for the analysis of surface chemistry. The genetic expression of the osteoblasts and dissolution behavior of the coatings were observed. Assessment of the significance level of the differences between the groups was done with analysis of variance (ANOVA). RESULTS From the MTT assay, no significant difference between smooth and surface coated zirconia was found (P>.05). From the SEM image, cells on all three groups of discs were sporadically triangular or spread out in shape with formation of filopodia. From the ALP activity assay, the optical density of osteoblasts on smooth zirconia discs was higher than that on surface treated zirconia discs (P>.05). Most of the genes related to cell adhesion showed similar expression level between smooth and surface treated zirconia. The dissolution rate was higher with CaP than HA coating. CONCLUSION The attachment and growth behavior of bone-marrow-derived osteoblasts cultured on smooth surface coated zirconia showed comparable results. However, the HA coating showed more time-dependent stability compared to the CaP coating. PMID:24843393

  8. Bone marrow stromal cell assays – in vitro and in vivo

    PubMed Central

    Robey, Pamela Gehron; Kuznetsov, Sergei A.; Riminucci, Mara; Bianco, Paolo

    2014-01-01

    Summary Populations of bone marrow stromal cells (BMSCs, also known as bone marrow-derived “mesenchymal stem cells”) contain a a subset of cells that are able to recapitulate the formation of a bone/marrow organ (skeletal stem cells, SSCs). The biological properties of BMSC cultures are assessed by a variety of assays, both in vitro and in vivo. Application of these assays in an appropriate fashion provide a great deal of information on the role of BMSCs, and the subset of SSCs, in health and in disease. PMID:24482181

  9. Osteoblast-specific gene expression after transplantation of marrow cells: Implications for skeletal gene therapy

    PubMed Central

    Hou, Zhen; Nguyen, Que; Frenkel, Baruch; Nilsson, Susan K.; Milne, Moira; van Wijnen, André J.; Stein, Janet L.; Quesenberry, Peter; Lian, Jane B.; Stein, Gary S.

    1999-01-01

    Somatic gene therapies require targeted transfer of the therapeutic gene(s) into stem cells that proliferate and then differentiate and express the gene in a tissue-restricted manner. We have developed an approach for gene therapy using marrow cells that takes advantage of the osteoblast specificity of the osteocalcin promoter to confine expression of chimeric genes to bone. Adherent marrow cells, carrying a reporter gene [chloramphenicol acetyltransferase (CAT)] under the control of a 1.7-kilobase rat osteocalcin gene promoter, were expanded ex vivo. After transplantation by intravenous infusion, engrafted donor cells in recipient mice were detected by the presence of the transgene in a broad spectrum of tissues. However, expression of the transgene was restricted to osteoblasts and osteocytes, as established by biochemical analysis of CAT activity and immunohistochemical analysis of CAT expression at the single cell level. Our data indicate that donor cells achieved long-term engraftment in various tissues of the recipients and that the CAT gene under control of the osteocalcin promoter is expressed specifically in bone. Thus, transplantation of multipotential marrow cells containing the osteocalcin promoter-controlled transgene provides an efficacious approach to deliver therapeutic gene expression to osteoblasts for treatment of bone disorders or tumor metastasis to the skeleton. PMID:10377408

  10. Effects of arachidonic acid on the concentration of hydroxyeicosatetraenoic acids in culture media of mesenchymal stromal cells differentiating into adipocytes or osteoblasts.

    PubMed

    Casado-Díaz, Antonio; Ferreiro-Vera, Carlos; Priego-Capote, Feliciano; Dorado, Gabriel; Luque-de-Castro, María Dolores; Quesada-Gómez, José Manuel

    2014-01-01

    Metabolites derived from the polyunsaturated fatty acids (PUFA) may modulate the mesenchymal stromal cell (MSC) differentiation. Such cells can differentiate into different cellular types, including adipocytes and osteoblasts. Aging favors the bone marrow MSC differentiation toward the former, causing a loss of bone density associated with pathologies like osteoporosis. The omega-6 arachidonic acid (AA) favors MSC adipogenesis to a greater extent than omega-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). In this work, we study the joint action of both PUFA. Thus, not induced and induced to adipocyte or osteoblast MSC were treated with 20 μM of each PUFA (either AA, AA + DHA or AA + EPA). The expression of osteogenic and adipogenic molecular markers, the alox15b lipoxygenase gene expression and the 5-, 8-, 11-, 12- and 15-hydroxyeicosatetraenoic acids (HETE) derived from the AA metabolism in the culture media were determined. The results show that the adipogenesis induction of AA is not suppressed by the joint presence of EPA and DHA. In fact, both increased the adipogenic effect of AA on MSC differentiated into osteoblasts. The different HETE concentrations increased in cultures supplemented with AA, albeit such concentrations were lower in the cultures induced to differentiate, mainly at day 21 after the induction. Furthermore, the reduction in the HETE concentration was correlated with a higher expression of the alox15b gene. These results highlight the PUFA metabolism differences between uninduced and induced MSC to differentiate into adipocytes and osteoblasts, besides the relevant role of the lipoxygenase gene expression in adipogenesis induction.

  11. Effects of Ti, PMMA, UHMWPE, and Co-Cr wear particles on differentiation and functions of bone marrow stromal cells.

    PubMed

    Jiang, Yunpeng; Jia, Tanghong; Gong, Weiming; Wooley, Paul H; Yang, Shang-You

    2013-10-01

    This study investigates the roles of orthopedic biomaterial particles [Ti-alloy, poly(methyl methacrylate) (PMMA), ultrahigh-molecular-weight polyethylene (UHMWPE), Co-Cr alloy] on the differentiation and functions of bone marrow stromal cells (BMSCs). Cells were isolated from femurs of BALB/c mice and cultured in complete osteoblast-induction medium in presence of micron-sized biomaterial particles at various doses. 3-(4,5)-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and lactate dehydrogenase assay were performed for cell proliferation and cytotoxicity. Differentiation and function of osteoblasts were evaluated by alkaline phosphatase (ALP), osteocalcin, RANKL, OSX, and Runx2 expressions. Murine interleukin-1 (IL-1), IL-6, and tumor necrosis factor-α in culture media were determined by enzyme-linked immunosorbent assay. Challenge with low doses of Ti, UHMWPE, or Co-Cr particles markedly promoted the bone marrow cell proliferation while high dose of Co-Cr significantly inhibited cell growth (p < 0.05). Cells challenged with low dose of PMMA or UHMWPE particles (0.63 mg/mL) exhibited strong ALP activity, whereas Ti and Co-Cr groups showed minimal effects (p < 0.05). UHMWPE and Ti particles also promoted higher expression of proinflammatory cytokines. Real-time polymerase chain reaction data suggested that cells treated with low dose (0.5 mg/mL) particles resulted in distinctly diminished RANKL expression compared to those exposed to high concentrated (3 mg/mL) particles. In conclusion, various types of wear debris particles behaved differently in the differentiation, maturation, and functions of osteogenic cells; and the particulate debris-interacted BMSCs may play an important role in the pathogenesis and process of the debris-associated aseptic prosthetic loosening.

  12. [Bone marrow stromal damage mediated by immune response activity].

    PubMed

    Vojinović, J; Kamenov, B; Najman, S; Branković, Lj; Dimitrijević, H

    1994-01-01

    The aim of this work was to estimate influence of activated immune response on hematopoiesis in vitro, using the experimental model of BCG immunized BALB/c mice and in patients with chronic immunoactivation: long-lasting infections, autoimmunity or malignancy. We correlated changes in long term bone marrow cultures (Dexter) and NBT reduction with appearance of anemia in patients and experimental model of immunization by BCG. Increased spontaneous NBT reduction pointed out role of macrophage activation in bone marrow stroma damage. Long-term bone marrow cultures showed reduced number of hematopoietic cells, with predomination of fibroblasts and loss of fat cells. This results correlated with anemia and leucocytosis with stimulated myelopoiesis in peripheral blood. Activation of immune response, or acting of any agent that directly changes extracellular matrix and cellularity of bone marrow, may result in microenviroment bone marrow damage that modify hematopoiesis.

  13. ERR{alpha} regulates osteoblastic and adipogenic differentiation of mouse bone marrow mesenchymal stem cells

    SciTech Connect

    Rajalin, Ann-Marie; Pollock, Hanna; Aarnisalo, Piia

    2010-05-28

    The orphan nuclear receptor estrogen-related receptor-{alpha} (ERR{alpha}) has been reported to have both a positive and a negative regulatory role in osteoblastic and adipocytic differentiation. We have studied the role of ERR{alpha} in osteoblastic and adipogenic differentiation of mesenchymal stem cells. Bone marrow mesenchymal stem cells were isolated from ERR{alpha} deficient mice and their differentiation capacities were compared to that of the wild-type cells. ERR{alpha} deficient cultures displayed reduced cellular proliferation, osteoblastic differentiation, and mineralization. In the complementary experiment, overexpression of ERR{alpha} in MC3T3-E1 cells increased the expression of osteoblastic markers and mineralization. Alterations in the expression of bone sialoprotein (BSP) may at least partially explain the effects on mineralization as BSP expression was reduced in ERR{alpha} deficient MSCs and enhanced upon ERR{alpha} overexpression in MC3T3-E1 cells. Furthermore, a luciferase reporter construct driven by the BSP promoter was efficiently transactivated by ERR{alpha}. Under adipogenic conditions, ERR{alpha} deficient cultures displayed reduced adipocytic differentiation. Our data thus propose a positive role for ERR{alpha} in osteoblastic and adipocytic differentiation. The variability in the results yielded in the different studies implies that ERR{alpha} may play different roles in bone under different physiological conditions.

  14. Osteocalcin (BGP), gene expression, and protein production by marrow stromal adipocytes.

    PubMed

    Benayahu, D; Shamay, A; Wientroub, S

    1997-02-13

    This study was designed to demonstrate the expression and production of osteocalcin, a bone Gla-protein (BGP), by marrow stromal cells. We were able to accomplish this by using a series of marrow stromal cell lines (MBA cells). A unique expression of the osteocalcin was detected by the adipocyte 14F1.1 cells. This was at the mRNA level by Northern blot and by RT-PCR analysis. The secreted protein was quantitated by radioimmunoassay (RIA), in conditioned medium (CM) harvested from these cultured cells. These findings offer the first evidence that marrow adipocyte 14F1.1 derived cells express mRNA for osteocalcin and produce the protein. PMID:9070297

  15. IGF-1-mediated osteoblastic niche expansion enhances long-term hematopoietic stem cell engraftment after murine bone marrow transplantation.

    PubMed

    Caselli, Anna; Olson, Timothy S; Otsuru, Satoru; Chen, Xiaohua; Hofmann, Ted J; Nah, Hyun-Duck; Grisendi, Giulia; Paolucci, Paolo; Dominici, Massimo; Horwitz, Edwin M

    2013-10-01

    The efficiency of hematopoietic stem cell (HSC) engraftment after bone marrow (BM) transplantation depends largely on the capacity of the marrow microenvironment to accept the transplanted cells. While radioablation of BM damages osteoblastic stem cell niches, little is known about their restoration and mechanisms governing their receptivity to engraft transplanted HSCs. We previously reported rapid restoration and profound expansion of the marrow endosteal microenvironment in response to marrow radioablation. Here, we show that this reorganization represents proliferation of mature endosteal osteoblasts which seem to arise from a small subset of high-proliferative, relatively radio-resistant endosteal cells. Multiple layers of osteoblasts form along the endosteal surface within 48 hours after total body irradiation, concomitant with a peak in marrow cytokine expression. This niche reorganization fosters homing of the transplanted hematopoietic cells to the host marrow space and engraftment of long-term-HSC. Inhibition of insulin-like growth factor (IGF)-1-receptor tyrosine kinase signaling abrogates endosteal osteoblast proliferation and donor HSC engraftment, suggesting that the cytokine IGF-1 is a crucial mediator of endosteal niche reorganization and consequently donor HSC engraftment. Further understanding of this novel mechanism of IGF-1-dependent osteoblastic niche expansion and HSC engraftment may yield clinical applications for improving engraftment efficiency after clinical HSC transplantation.

  16. Strain energy density gradients in bone marrow predict osteoblast and osteoclast activity: a finite element study.

    PubMed

    Webster, Duncan; Schulte, Friederike A; Lambers, Floor M; Kuhn, Gisela; Müller, Ralph

    2015-03-18

    Huiskes et al. hypothesized that mechanical strains sensed by osteocytes residing in trabecular bone dictate the magnitude of load-induced bone formation. More recently, the mechanical environment in bone marrow has also been implicated in bone׳s response to mechanical stimulation. In this study, we hypothesize that trabecular load-induced bone formation can be predicted by mechanical signals derived from an integrative µFE model, incorporating a description of both the bone and marrow phase. Using the mouse tail loading model in combination with in vivo micro-computed tomography (µCT) we tracked load induced changes in the sixth caudal vertebrae of C57BL/6 mice to quantify the amount of newly mineralized and eroded bone volumes. To identify the mechanical signals responsible for adaptation, local morphometric changes were compared to micro-finite element (µFE) models of vertebrae prior to loading. The mechanical parameters calculated were strain energy density (SED) on trabeculae at bone forming and resorbing surfaces, SED in the marrow at the boundary between bone forming and resorbing surfaces, along with SED in the trabecular bone and marrow volumes. The gradients of each parameter were also calculated. Simple regression analysis showed mean SED gradients in the trabecular bone matrix to significantly correlate with newly mineralized and eroded bone volumes R(2)=0.57 and 0.41, respectively, p<0.001). Nevertheless, SED gradients in the marrow were shown to be the best predictor of osteoblastic and osteoclastic activity (R(2)=0.83 and 0.60, respectively, p<0.001). These data suggest that the mechanical environment of the bone marrow plays a significant role in determining osteoblast and osteoclast activity.

  17. Mesenchymal stromal cells from bone marrow treated with bovine tendon extract acquire the phenotype of mature tenocytes☆

    PubMed Central

    Augusto, Lívia Maria Mendonça; Aguiar, Diego Pinheiro; Bonfim, Danielle Cabral; dos Santos Cavalcanti, Amanda; Casado, Priscila Ladeira; Duarte, Maria Eugênia Leite

    2016-01-01

    Objective This study evaluated in vitro differentiation of mesenchymal stromal cells isolated from bone marrow, in tenocytes after treatment with bovine tendon extract. Methods Bovine tendons were used for preparation of the extract and were stored at −80 °C. Mesenchymal stromal cells from the bone marrow of three donors were used for cytotoxicity tests by means of MTT and cell differentiation by means of qPCR. Results The data showed that mesenchymal stromal cells from bone marrow treated for up to 21 days in the presence of bovine tendon extract diluted at diminishing concentrations (1:10, 1:50 and 1:250) promoted activation of biglycan, collagen type I and fibromodulin expression. Conclusion Our results show that bovine tendon extract is capable of promoting differentiation of bone marrow stromal cells in tenocytes. PMID:26962503

  18. Bone Marrow Stromal Cells Generate Muscle Cells and Repair Muscle Degeneration

    NASA Astrophysics Data System (ADS)

    Dezawa, Mari; Ishikawa, Hiroto; Itokazu, Yutaka; Yoshihara, Tomoyuki; Hoshino, Mikio; Takeda, Shin-ichi; Ide, Chizuka; Nabeshima, Yo-ichi

    2005-07-01

    Bone marrow stromal cells (MSCs) have great potential as therapeutic agents. We report a method for inducing skeletal muscle lineage cells from human and rat general adherent MSCs with an efficiency of 89%. Induced cells differentiated into muscle fibers upon transplantation into degenerated muscles of rats and mdx-nude mice. The induced population contained Pax7-positive cells that contributed to subsequent regeneration of muscle upon repetitive damage without additional transplantation of cells. These MSCs represent a more ready supply of myogenic cells than do the rare myogenic stem cells normally found in muscle and bone marrow.

  19. The bone marrow stem stromal imbalance--a key feature of disease progression in case of myelodysplastic mouse model.

    PubMed

    Das, Madhurima; Chatterjee, Sumanta; Basak, Pratima; Das, Prosun; Pereira, Jacintha Archana; Dutta, Ranjan Kumar; Chaklader, Malay; Chaudhuri, Samaresh; Law, Sujata

    2010-01-01

    Myelodysplastic syndromes (MDSs) represent a spectrum of disorders that are generally thought to arise from a defective hematopoietic stem cell leading to clonal, dysregulated hematopoiesis. Although it is generally agreed that the marrow microenvironment plays a role in the biology of MDS, it is unclear whether this represents an intrinsically abnormal stromal compartment derived from the MDS clone. Hematopoiesis requires cooperation between progenitors and a variety of functionally and phenotypically different cell types that form the bone marrow stroma. Stromal abnormalities suspected to contribute to the pathology of bone marrow disorder with impaired hematopoiesis. Several studies on human MDS bone marrow microenvironment revealed functional alteration and increased cellular apoptosis thus contribute to the pathology of the disease progression. In this present study, we have investigated alterations in the hematopoietic microenvironment and underlying mechanisms involved in the disease progression of MDS animal model. We presented the results of bone marrow single cell culture study, Long-term bone marrow adherent culture study (LTBMC) and their functional efficacy, flowcytometric characterization of stem (Scal+c-kit+) and stromal (Scal+CD44+) progenitor cell population and expression level of extracellular apoptosis marker (Annexin v) in the bone marrow cells of MDS animal model. Bone marrow single cell culture study of MDS animal showed impairment in the normal cellular generation, proliferation and presence of apoptic cells. Long-term liquid Bone marrow stromal cell colony formation assay from MDS bone marrow cells showed significant difference in the colony formation and their maintenance than the control groups of animals. Immune functional capacity of the bone marrow stromal cells through cell mediated immune (CMI) parameter study denoted defects in the stromal microenvironment. Decreased expression of bone marrow long-term primitive hematopoietic

  20. Bone marrow stromal cells contribute to bone formation following infusion into femoral cavities of a mouse model of osteogenesis imperfecta.

    PubMed

    Li, Feng; Wang, Xujun; Niyibizi, Christopher

    2010-09-01

    Currently, there are conflicting data in literature regarding contribution of bone marrow stromal cells (BMSCs) to bone formation when the cells are systemically delivered in recipient animals. To understand if BMSCs contribute to bone cell phenotype and bone formation in osteogenesis imperfecta bones (OI), MSCs marked with GFP were directly infused into the femurs of a mouse model of OI (oim). The contribution of the cells to the cell phenotype and bone formation was assessed by histology, immunohistochemistry and biomechanical loading of recipient bones. Two weeks following infusion of BMSCs, histological examination of the recipient femurs demonstrated presence of new bone when compared to femurs injected with saline which showed little or no bone formation. The new bone contained few donor cells as demonstrated by GFP fluorescence. At 6 weeks following cell injection, new bone was still detectable in the recipient femurs but was enhanced by injection of the cells suspended in pepsin solubilized type I collagen. Immunofluorescence and immunohistochemical staining showed that donor GFP positive cells in the new bone were localized with osteocalcin expressing cells suggesting that the cells differentiated into osteoblasts in vivo. Biomechanical loading to failure in three point bending, revealed that, femurs infused with BMSCs in PBS or in soluble type I collagen were biomechanically stronger than those injected with PBS or type I collagen alone. Taken together, the results indicate that transplanted cells differentiated into osteoblasts in vivo and contributed to bone formation in vivo; we also speculate that donor cells induced differentiation or recruitment of endogenous cells to initiate reparative process at early stages following transplantation.

  1. In vitro growth of hematopoietic progenitors and stromal bone marrow cells from patients with multiple myeloma.

    PubMed

    Martínez-Jaramillo, Guadalupe; Vela-Ojeda, Jorge; Flores-Guzmán, Patricia; Mayani, Hector

    2011-02-01

    In the present study we have determined the content of hematopoietic and stromal progenitors in multiple myeloma (MM) bone marrow, and assessed their in vitro growth. Marrow cells were obtained from 17 MM patients at the time of diagnosis, and from 6 hematologically normal subjects. When mononuclear cells (MNC) from MM marrow were cultured, reduced numbers of hematopoietic progenitors were detected and their growth in long-term cultures was deficient, as compared to cultures of normal cells. When cell fractions enriched for CD34(+) Lin(-) cells were obtained, the levels of hematopoietic progenitors from MM marrow were within the normal range, and so was their growth kinetics in liquid suspension cultures. The levels of fibroblast progenitors in MM were not statistically different from those in normal marrow; however, their proliferation potential was significantly reduced. Conditioned media from MM-derived MNC and stroma cells contained factors that inhibited normal progenitor cell growth. Our observations suggest that hematopoietic progenitors in MM marrow are intrinsically normal; however, their growth in LTMC may be hampered by the presence of abnormal accessory and stroma cells. These results suggest that besides its role in the generation of osteolytic lesions and the expansion of the myeloma clone, the marrow microenvironment in MM may have a negative effect on hematopoiesis. PMID:20621354

  2. Role of Nanog in the maintenance of marrow stromal stem cells during post natal bone regeneration

    SciTech Connect

    Bais, Manish V.; Shabin, Zabrina M.; Young, Megan; Einhorn, Thomas A.; Kotton, Darrell N.; Gerstnefeld, Louis C.

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Nanog is related to marrow stromal stem cell maintenance. Black-Right-Pointing-Pointer Increasing Nanog expression is seen during post natal surgical bone repair. Black-Right-Pointing-Pointer Nanog knockdown decreases post surgical bone regeneration. -- Abstract: Post natal bone repair elicits a regenerative mechanism that restores the injured tissue to its pre-injury cellular composition and structure and is believed to recapitulate the embryological processes of bone formation. Prior studies showed that Nanog, a central epigenetic regulator associated with the maintenance of embryonic stem cells (ESC) was transiently expressed during fracture healing, Bais et al. . In this study, we show that murine bone marrow stromal cells (MSCs) before they are induced to undergo osteogenic differentiation express {approx}50 Multiplication-Sign the background levels of Nanog seen in murine embryonic fibroblasts (MEFs) and the W20-17 murine marrow stromal cell line stably expresses Nanog at {approx}80 Multiplication-Sign the MEF levels. Nanog expression in this cell line was inhibited by BMP7 treatment and Nanog lentivrial shRNA knockdown induced the expression of the terminal osteogenic gene osteocalcin. Lentivrial shRNA knockdown or lentiviral overexpression of Nanog in bone MSCs had inverse effects on proliferation, with knockdown decreasing and overexpression increasing MSC cell proliferation. Surgical marrow ablation of mouse tibia by medullary reaming led to a {approx}3-fold increase in Nanog that preceded osteogenic differentiation during intramembranous bone formation. Lentiviral shRNA knockdown of Nanog after surgical ablation led to an initial overexpression of osteogenic gene expression with no initial effect on bone formation but during subsequent remodeling of the newly formed bone a {approx}50% decrease was seen in the expression of terminal osteogenic gene expression and a {approx}50% loss in trabecular bone mass. This

  3. Tissue inhibitor of matrix metalloproteinase-1 suppresses apoptosis of mouse bone marrow stromal cell line MBA-1.

    PubMed

    Guo, L-J; Luo, X-H; Xie, H; Zhou, H-D; Yuan, L-Q; Wang, M; Liao, E-Y

    2006-05-01

    We investigated the action of tissue inhibitor of metalloproteinase-1 (TIMP-1) on apoptosis and differentiation of mouse bone marrow stromal cell line MBA-1. TIMP-1 did not affect alkaline phosphatase (ALP) activity, suggesting that it is not involved in osteoblastic differentiation in MBA-1 cells. However, TIMP-1 inhibited MBA-1 apoptosis induced by serum deprivation in a dose-dependent manner. Our study also showed increased Bcl-2 protein expression and decreased Bax protein expression with TIMP-1 treatment. TIMP-1 decreased cytochrome c release and caspase-3 activation in MBA-1 cells. TIMP-1 activated phosphatidylinositol 3-kinase (PI3-kinase) and c-Jun N-terminal kinase (JNK), and the PI3-kinase inhibitor LY294002 or the JNK inhibitor SP600125 abolished its antiapoptotic activity. To investigate whether antiapoptotic action of TIMP-1 was mediated through its inhibition on MMP activities, we constructed mutant TIMP-1 by side-directed mutagenesis, which abolished the inhibitory activity of MMPs by deletion of Cys1 to Ala4. Wild-type TIMP-1 and mutant TIMP-1 expression plasmids were transfected in MBA-1 cells, and results showed that mutant TIMP-1 still protected the induced MBA-1 cell against apoptosis. These data suggest that TIMP-1 antiapoptotic actions are mediated via the PI3-kinase and JNK signaling pathways and independent of TIMP-1 inhibition of MMP activities.

  4. Calcium phosphate nanoparticles are associated with inorganic phosphate-induced osteogenic differentiation of rat bone marrow stromal cells.

    PubMed

    Chen, Xiao-rong; Bai, Jing; Yuan, Shuai-jun; Yu, Cai-xia; Huang, Jian; Zhang, Tian-lan; Wang, Kui

    2015-08-01

    In the present study, we demonstrated that calcium phosphate (CaP) nanoparticles formed in cell culture media were implicated in the process of high inorganic phosphate (Pi) mediated osteogenic differentiation of rat bone marrow stromal cells (BMSCs). Exposure of BMSCs in vitro to high Pi-containing media reduced alkaline phosphatase (ALP) activity and the expressions of osteoblast-specific genes. The sediments of CaP nanoparticles were observed at the cell surface and some of them were concomitantly found inside cells at high Pi concentration. In addition, treatment the cells with pyrophosphate (PPi), an inhibitor of calcium crystal formation, abrogated the ALP activity induced by high Pi, suggesting the contribution of CaP nanoparticles. Moreover, for isolated CaP nanoparticles, there was a trend of conversion from amorphous calcium phosphate to hydroxyapatite with elevated Pi. The particle size of CaP increased and the surface morphology changed from spherical to irregular due to increased concentrations of serum proteins incorporated into CaP nanoparticles. The study demonstrated that those physicochemical properties of CaP nanoparticles played an important role in modulating BMSCs differentiation. Furthermore, the addition of Pi in the osteogenic media resulted in a dose-dependent increase in matrix mineralization, while treatment of the cells with PPi suppressed Pi-induced calcium deposition. The findings indicated that calcium deposition in the matrix partly came from the spontaneous precipitation of CaP nanoparticles. PMID:26111760

  5. Calcium phosphate nanoparticles are associated with inorganic phosphate-induced osteogenic differentiation of rat bone marrow stromal cells.

    PubMed

    Chen, Xiao-rong; Bai, Jing; Yuan, Shuai-jun; Yu, Cai-xia; Huang, Jian; Zhang, Tian-lan; Wang, Kui

    2015-08-01

    In the present study, we demonstrated that calcium phosphate (CaP) nanoparticles formed in cell culture media were implicated in the process of high inorganic phosphate (Pi) mediated osteogenic differentiation of rat bone marrow stromal cells (BMSCs). Exposure of BMSCs in vitro to high Pi-containing media reduced alkaline phosphatase (ALP) activity and the expressions of osteoblast-specific genes. The sediments of CaP nanoparticles were observed at the cell surface and some of them were concomitantly found inside cells at high Pi concentration. In addition, treatment the cells with pyrophosphate (PPi), an inhibitor of calcium crystal formation, abrogated the ALP activity induced by high Pi, suggesting the contribution of CaP nanoparticles. Moreover, for isolated CaP nanoparticles, there was a trend of conversion from amorphous calcium phosphate to hydroxyapatite with elevated Pi. The particle size of CaP increased and the surface morphology changed from spherical to irregular due to increased concentrations of serum proteins incorporated into CaP nanoparticles. The study demonstrated that those physicochemical properties of CaP nanoparticles played an important role in modulating BMSCs differentiation. Furthermore, the addition of Pi in the osteogenic media resulted in a dose-dependent increase in matrix mineralization, while treatment of the cells with PPi suppressed Pi-induced calcium deposition. The findings indicated that calcium deposition in the matrix partly came from the spontaneous precipitation of CaP nanoparticles.

  6. Adipose-derived stromal cells grown on a hydroxyapatite scaffold can support hematopoiesis in regenerated bone marrow in vivo.

    PubMed

    Ueda, Takahiro; Fujita, Atsushi; Ogawa, Rei; Itoh, Yasuhiko; Fukunaga, Yoshitaka; Shimada, Takashi; Migita, Makoto

    2014-06-01

    Osteoblastic cells are a key component of the bone marrow (BM) stem cell niche and help regulate hematopoietic stem cells (HSCs). We have previously demonstrated that adipose-derived stromal cells (ADSCs) can differentiate into both osteogenic and chondrogenic cells in vitro. The current study examined whether the anatomical architecture of the BM could be regenerated in vivo by using ADSCs cultured on a hydroxyapatite (HA) scaffold. ADSCs from GFP transgenic mice were cultured in vitro on an HA scaffold. The scaffold with the attached cells was implanted subcutaneously onto the backs of C57/BL6 (Ly5.2) recipient mice. Lineage-negative (Lin-) Ly5.1 BM cells transduced with a lentiviral vector containing the luciferase (Luc) gene were intravenously administered to the recipient mice after lethal irradiation. Eight weeks after BM transplantation, the scaffolds were removed from the first recipient mice and subcutaneously implanted into lethally irradiated second recipient mice. The biodistribution and kinetics of Luc(+) Ly5.1 cells were monitored by bioluminescence imaging and flow cytometry. Luc(+) hematopoietic cells were present in the scaffolds of the secondary implanted mice for at least 8 months. Subcutaneous injection of G-CSF resulted in wide distribution of bioluminescence signals from the original scaffolds to the whole body. Therefore, BM regenerated using ADSCs grown on an HA scaffold can support HSC populations in vivo, suggesting that a functional BM niche is reconstituted. These results may have a significant impact on the development of therapeutic strategies for various hematopoietic diseases.

  7. p38α MAPK Regulates Lineage Commitment and OPG Synthesis of Bone Marrow Stromal Cells to Prevent Bone Loss under Physiological and Pathological Conditions

    PubMed Central

    Cong, Qian; Jia, Hao; Biswas, Soma; Li, Ping; Qiu, Shoutao; Deng, Qi; Guo, Xizhi; Ma, Gang; Ling Chau, Jenny Fang; Wang, Yibin; Zhang, Zhen-Lin; Jiang, Xinquan; Liu, Huijuan; Li, Baojie

    2016-01-01

    Summary Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are capable of differentiating into osteoblasts, chondrocytes, and adipocytes. Skewed differentiation of BM-MSCs contributes to the pathogenesis of osteoporosis. Yet how BM-MSC lineage commitment is regulated remains unclear. We show that ablation of p38α in Prx1+ BM-MSCs produced osteoporotic phenotypes, growth plate defects, and increased bone marrow fat, secondary to biased BM-MSC differentiation from osteoblast/chondrocyte to adipocyte and increased osteoclastogenesis and bone resorption. p38α regulates BM-MSC osteogenic commitment through TAK1-NF-κB signaling and osteoclastogenesis through osteoprotegerin (OPG) production by BM-MSCs. Estrogen activates p38α to maintain OPG expression in BM-MSCs to preserve the bone. Ablation of p38α in BM-MSCs positive for Dermo1, a later BM-MSC marker, only affected osteogenic differentiation. Thus, p38α mitogen-activated protein kinase (MAPK) in Prx1+ BM-MSCs acts to preserve the bone by promoting osteogenic lineage commitment and sustaining OPG production. This study thus unravels previously unidentified roles for p38α MAPK in skeletal development and bone remodeling. PMID:26947973

  8. Extracellular calcium (Ca2+(o))-sensing receptor in a murine bone marrow-derived stromal cell line (ST2): potential mediator of the actions of Ca2+(o) on the function of ST2 cells

    NASA Technical Reports Server (NTRS)

    Yamaguchi, T.; Chattopadhyay, N.; Kifor, O.; Brown, E. M.; O'Malley, B. W. (Principal Investigator)

    1998-01-01

    The calcium-sensing receptor (CaR) is a G protein-coupled receptor that plays key roles in extracellular calcium ion (Ca2+(o)) homeostasis by mediating the actions of Ca2+(o) on parathyroid gland and kidney. Bone marrow stromal cells support the formation of osteoclasts from their progenitors as well as the growth of hematopoietic stem cells by secreting humoral factors and through cell to cell contact. Stromal cells also have the capacity to differentiate into bone-forming osteoblasts. Bone resorption by osteoclasts probably produces substantial local increases in Ca2+(o) that could provide a signal for stromal cells in the immediate vicinity, leading us to determine whether such stromal cells express the CaR. In this study, we used the murine bone marrow-derived, stromal cell line, ST2. Both immunocytochemistry and Western blot analysis, using an antiserum specific for the CaR, detected CaR protein in ST2 cells. We also identified CaR transcripts in ST2 cells by Northern analysis using a CaR-specific probe and by RT-PCR with CaR-specific primers, followed by nucleotide sequencing of the amplified products. Exposure of ST2 cells to high Ca2+(o) (4.8 mM) or to the polycationic CaR agonists, neomycin (300 microM) or gadolinium (100 microM), stimulated both chemotaxis and DNA synthesis in ST2 cells. Therefore, taken together, our data strongly suggest that the bone marrow-derived stromal cell line, ST2, possesses both CaR protein and messenger RNA that are very similar if not identical to those in parathyroid and kidney. Furthermore, as ST2 cells have the potential to differentiate into osteoblasts, the CaR in stromal cells could participate in bone turnover by stimulating the proliferation and migration of such cells to sites of bone resorption as a result of local, osteoclast-mediated release of Ca2+(o) and, thereafter, initiating bone formation after their differentiation into osteoblasts.

  9. Connective tissue growth factor is expressed in bone marrow stromal cells and promotes interleukin-7-dependent B lymphopoiesis.

    PubMed

    Cheung, Laurence C; Strickland, Deborah H; Howlett, Meegan; Ford, Jette; Charles, Adrian K; Lyons, Karen M; Brigstock, David R; Goldschmeding, Roel; Cole, Catherine H; Alexander, Warren S; Kees, Ursula R

    2014-07-01

    Hematopoiesis occurs in a complex bone marrow microenvironment in which bone marrow stromal cells provide critical support to the process through direct cell contact and indirectly through the secretion of cytokines and growth factors. We report that connective tissue growth factor (Ctgf, also known as Ccn2) is highly expressed in murine bone marrow stromal cells. In contrast, connective tissue growth factor is barely detectable in unfractionated adult bone marrow cells. While connective tissue growth factor has been implicated in hematopoietic malignancies, and is known to play critical roles in skeletogenesis and regulation of bone marrow stromal cells, its role in hematopoiesis has not been described. Here we demonstrate that the absence of connective tissue growth factor in mice results in impaired hematopoiesis. Using a chimeric fetal liver transplantation model, we show that absence of connective tissue growth factor has an impact on B-cell development, in particular from pro-B to more mature stages, which is linked to a requirement for connective tissue growth factor in bone marrow stromal cells. Using in vitro culture systems, we demonstrate that connective tissue growth factor potentiates B-cell proliferation and promotes pro-B to pre-B differentiation in the presence of interleukin-7. This study provides a better understanding of the functions of connective tissue growth factor within the bone marrow, showing the dual regulatory role of the growth factor in skeletogenesis and in stage-specific B lymphopoiesis.

  10. The differentiation directions of the bone marrow stromal cells under modeling microgravity

    NASA Astrophysics Data System (ADS)

    Nesterenko, Olga; Rodionova, Natalia; Katkova, Olena

    Within experiments on rats simulating microgravity by base load remove from back limbs (duration of the experiment 1,5 months) on marrow stromal cells cultures (ex vivo, in vitro) comprising osteogenic cells-predecessors, extracted from femurs, studied their peculiarities of the colony formation ablity, the cell structure, some cytological and ultra-structural characteristics and differentiation direction. It was found that that under microgravity conditions there is a decline of the stromal cells colony formation intensity, decrease of the colonies size and cells mitotic activity that indicates decrease of their growth potential. Both in control and in experiment the colonies were presented by population of low-differentiated cells, differentiated cells and mature cells. The comparative cytological and morphometric analysis have shown that the studied stromal cells in colonies have the smaller sizes, more elongated shape, and higher nucleocytoplasmic ratio. Cells composition in the experiment colonies is reliably different by the ratio of the low-differentiating to being differentiated cells; a ratio of low-differentiated to already differentiated cells; ratio of differentiated cells to total number of all cells. In comparison with control group, amount of the cells passed trough a differentiation stage and mature cells in colonies is decreased by 3 to 4 times. Among the differentiated stromal cells in colonies increasing amount of adipocytes was revealed. The analysis of electron microscope microphotographs showed that in osteogenic cells differentiated under microgravity conditions, there is a reduction of the specific volume of a granular endoplasmic reticulum, Golgi's complex and quantity of nuclei reduction that indicates depression of the specific biosyntheses process intensity in cells. The increase of lysosomes and myelinic structures quantity is linked to organelles partial reduction. Consolidation of mitochondrias is an evidence of the cells’ energy

  11. Multiparameter Analysis of Human Bone Marrow Stromal Cells Identifies Distinct Immunomodulatory and Differentiation-Competent Subtypes

    PubMed Central

    James, Sally; Fox, James; Afsari, Farinaz; Lee, Jennifer; Clough, Sally; Knight, Charlotte; Ashmore, James; Ashton, Peter; Preham, Olivier; Hoogduijn, Martin; Ponzoni, Raquel De Almeida Rocha; Hancock, Y.; Coles, Mark; Genever, Paul

    2015-01-01

    Summary Bone marrow stromal cells (BMSCs, also called bone-marrow-derived mesenchymal stromal cells) provide hematopoietic support and immunoregulation and contain a stem cell fraction capable of skeletogenic differentiation. We used immortalized human BMSC clonal lines for multi-level analysis of functional markers for BMSC subsets. All clones expressed typical BMSC cell-surface antigens; however, clones with trilineage differentiation capacity exhibited enhanced vascular interaction gene sets, whereas non-differentiating clones were uniquely CD317 positive with significantly enriched immunomodulatory transcriptional networks and high IL-7 production. IL-7 lineage tracing and CD317 immunolocalization confirmed the existence of a rare non-differentiating BMSC subtype, distinct from Cxcl12-DsRed+ perivascular stromal cells in vivo. Colony-forming CD317+ IL-7hi cells, identified at ∼1%–3% frequency in heterogeneous human BMSC fractions, were found to have the same biomolecular profile as non-differentiating BMSC clones using Raman spectroscopy. Distinct functional identities can be assigned to BMSC subpopulations, which are likely to have specific roles in immune control, lymphopoiesis, and bone homeostasis. PMID:26070611

  12. Histological Study of Bone Marrow and Umbilical Cord Stromal Cell Transplantation in Regenerating Rat Peripheral Nerve

    PubMed Central

    Zarbakhsh, Sam; Goudarzi, Nasim; Shirmohammadi, Maryam; Safari, Manouchehr

    2016-01-01

    Objective Bone marrow and umbilical cord stromal cells are multipotential stem cells that have the ability to produce growth factors that play an important role in survival and generation of axons. The goal of this study was to evaluate the effects of the two different mesenchymal stem cells on peripheral nerve regeneration. Materials and Methods In this experimental study, a 10 mm segment of the left sciatic nerve of male Wistar rats (250-300 g) was removed with a silicone tube interposed into this nerve gap. Bone marrow stromal cells (BMSCs) and human umbilical cord stromal cells (HUCSCs) were respectively obtained from rat and human. The cells were sepa- rately cultured and transplanted into the nerve gap. The sciatic nerve regeneration was evaluated by immunohistochemistry, and light and electron microscopy. Moreover, histo- morphology of the gastrocnemius muscle was observed. Results The nerve regeneration in the BMSCs and HUCSCs groups that had received the stem cells was significantly more favorable than the control group. In addition, the BM- SCs group was significantly more favorable than the HUCSCs group (P<0.05). Conclusion The results of this study suggest that both homograft BMSCs and het- erograft HUCSCs may have the potential to regenerate peripheral nerve injury and transplantation of BMSCs may be more effective than HUCSCs in rat. PMID:26862526

  13. Hematopoietic microenvironment. Origin, lineage, and transplantability of the stromal cells in long-term bone marrow cultures from chimeric mice

    SciTech Connect

    Perkins, S.; Fleischman, R.A.

    1988-04-01

    Studies of bone marrow transplant patients have suggested that the stromal cells of the in vitro hematopoietic microenvironment are transplantable into conditioned recipients. Moreover, in patients with myeloproliferative disorders, all of the stromal cells, which include presumptive endothelial cells, appear to be derived from hematopoietic precursors. To confirm these findings, we have constructed two chimeric mouse models: (a) traditional radiation chimeras, and (b) fetal chimeras, produced by placental injection of bone marrow into genetically anemic Wx/Wv fetuses, a technique that essentially precludes engraftment of nonhematopoietic cells. Using two-color indirect immunofluorescence, the stromal cells in long-term bone marrow culture derived from these chimeras were analyzed for donor or host origin by strain-specific H-2 antigens, and for cell lineage by a variety of other specific markers. 75-95% of the stromal cells were shown to be hematopoietic cells of the monocyte-macrophage lineage, based upon donor origin, phagocytosis, and expression of specific hematopoietic surface antigens. The remaining 5-25% of the stromal cells were exclusively host in origin. Apart from occasional fat cells, these cells uniformly expressed collagen type IV, laminin, and a surface antigen associated with endothelial cells. Since these endothelial-like cells are not transplantable into radiation or fetal chimeras, they are not derived from hematopoietic stem cells. The contrast between our findings and human studies suggests either unexpected species differences in the origin of stromal lineages or limitations in the previous methodology used to detect nonhematopoietic stromal cells.

  14. Contact- and growth factor-dependent survival in a canine marrow-derived stromal cell line.

    PubMed

    Huss, R; Hoy, C A; Deeg, H J

    1995-05-01

    Cell-cell interactions and the presence of growth factors such as stem cell factor (SCF; or c-kit ligand) or interleukin-6 (IL-6) are involved in the proliferation and differentiation of the canine marrow-derived stromal cell line DO64. In the presence of SCF, stromal cells are induced to differentiate, but not to proliferate. In contrast, in the presence of IL-6, stromal cells are induced to proliferate rather than to differentiate in culture. Both SCF and IL-6 are produced by the stromal cells themselves and, thus, act as autocrine factors. In addition, DO64 cells also interact physically with each other in culture when grown under optimal culture conditions (70% to 90% cell confluence and in the presence of serum), thereby supporting proliferation and maintaining viability. Under conditions of lower cell density or low serum or growth factor concentrations in culture, DO64 cells tend to aggregate and form clusters. This increase in local cell concentration is associated with preservation of viability, presumably because of the accumulation of autocrine factors. If no signal, neither intercellular nor soluble, is provided, and DO64 cells are not able to reach a critical cell density or to produce sufficient factors in an autocrine fashion, the cells cease to proliferate and eventually die.

  15. Canonical Wnt Pathway Signaling Suppresses VCAM-1 Expression by Marrow Stromal and Hematopoietic Cells

    PubMed Central

    Malhotra, Sachin; Kincade, Paul W.

    2009-01-01

    Objective The Wnt family may contribute to hematopoietic stem cell (HSC) maintenance in bone marrow, but many questions remain concerning mechanisms. Vascular cell adhesion molecule-1 (VCAM-1) is expressed in cellular compartments of the bone marrow and might contribute to the HSC niche, but mechanisms concerning its constitutive expression are largely unknown. We now explore the influence of Wnt signaling on cellular adhesion molecule (CAM) expression by bone marrow stromal and hematopoietic cells. Methods Recombinant Wnt ligands, retroviral Wnt transductions and co-cultures with Wnt secreting cells were used to analyze the effect of Wnt on adhesion molecule expression by stromal and hematopoietic cells. In vivo experiments were also done to assess the ability of Wnt3a induced, VCAM-1 deficient hematopoietic cells to engraft bone marrow. Results We now report that the beta-catenin dependent canonical Wnt signaling pathway negatively regulates VCAM-1 expression on two types of bone marrow cells. Wnt pathway inhibitors, Axin (intracellular) or Dkk1 (extracellular) blocked the regulation of VCAM-1 by diffusible Wnt3a. Interestingly, lipopolysaccharide (LPS) restored a substantial degree of VCAM-1 expression, suggesting functional cross-talk between Wnt and TLR4 signaling pathways. Decreasing VCAM-1 on HSC enriched Lin- Sca-1+ c-KitHi Thy1.1Lo cells by exposure to Wnt3a did not prevent their successful transplantation. Conclusions Our results suggest that cells comprising and residing in the HSC niche can respond to Wnt ligands and extinguish VCAM-1. This response may be important for export of hematopoietic cells. Given the known contribution of VCAM-1 to inflammation, this may represent a new avenue for therapeutic intervention. PMID:18951693

  16. Engraftment of a clonal bone marrow stromal cell line in vivo stimulates hematopoietic recovery from total body irradiation.

    PubMed Central

    Anklesaria, P; Kase, K; Glowacki, J; Holland, C A; Sakakeeny, M A; Wright, J A; FitzGerald, T J; Lee, C Y; Greenberger, J S

    1987-01-01

    Whether bone marrow stromal cells of donors contribute physiologically to hematopoietic stem cell reconstitution after marrow transplantation is unknown. To determine the transplantability of nonhematopoietic marrow stromal cells, stable clonal stromal cell line (GB1/6) expressing the a isoenzyme of glucose-6-phosphate isomerase (Glu6PI-a, D-glucose-6-phosphate ketol-isomerase; EC 5.3.1.9) was derived from murine long-term bone marrow cultures and made resistant to neomycin analogue G418 by retroviral gene transfer. GB1/6 cells were fibronectin+, laminin+, and collagen-type IV+ and collagen type I-; these GB1/6 cells supported in vitro growth of hematopoietic stem cells forming colony-forming units of spleen cells (CFU-S) and of granulocytes, erythrocytes, and macrophage/megakarocytes (CFU-GEMM) in the absence of detectable growth factors interleukin 3 (multi-colony-stimulating factor), granulocyte/macrophage colony-stimulating factor, granulocyte-stimulating factor, or their poly(A)+ mRNAs. The GB1/6 cells produced macrophage colony-stimulating factor constitutively. Recipient C57BL/6J (glucose-6-phosphate isomerase b) mice that received 3-Gy total-body irradiation and 13 Gy to the right hind limb were injected i.v. with GB1/6 cells. Engrafted mice demonstrated donor-originating Glu6PI-a+ stromal cells in marrow sinuses in situ 2 mo after transplantation and a significantly enhanced hematopoietic recovery compared with control irradiated nontransplanted mice. Continuous (over numerous passages) marrow cultures derived from transplanted mice demonstrated G418-resistant, Glu6PI-a+ stromal colony-forming cells and greater cumulative production of multipotential stem cells of recipient origin compared with cultures established from irradiated, nontransplanted control mice. These data are evidence for physiological function in vivo of a transplanted bone marrow stromal cell line. Images PMID:2890167

  17. Notch signalling drives bone marrow stromal cell-mediated chemoresistance in acute myeloid leukemia

    PubMed Central

    Kamga, Paul Takam; Bassi, Giulio; Cassaro, Adriana; Midolo, Martina; Di Trapani, Mariano; Gatti, Alessandro; Carusone, Roberta; Resci, Federica; Perbellini, Omar; Gottardi, Michele; Bonifacio, Massimiliano; Kamdje, Armel Hervé Nwabo; Ambrosetti, Achille; Krampera, Mauro

    2016-01-01

    Both preclinical and clinical investigations suggest that Notch signalling is critical for the development of many cancers and for their response to chemotherapy. We previously showed that Notch inhibition abrogates stromal-induced chemoresistance in lymphoid neoplasms. However, the role of Notch in acute myeloid leukemia (AML) and its contribution to the crosstalk between leukemia cells and bone marrow stromal cells remain controversial. Thus, we evaluated the role of the Notch pathway in the proliferation, survival and chemoresistance of AML cells in co-culture with bone marrow mesenchymal stromal cells expanded from both healthy donors (hBM-MSCs) and AML patients (hBM-MSCs*). As compared to hBM-MSCs, hBM-MSCs* showed higher level of Notch1, Jagged1 as well as the main Notch target gene HES1. Notably, hBM-MSCs* induced expression and activation of Notch signalling in AML cells, supporting AML proliferation and being more efficientin inducing AML chemoresistance than hBM-MSCs*. Pharmacological inhibition of Notch using combinations of Notch receptor-blocking antibodies or gamma-secretase inhibitors (GSIs), in presence of chemotherapeutic agents, significant lowered the supportive effect of hBM-MSCs and hBM-MSCs* towards AML cells, by activating apoptotic cascade and reducing protein level of STAT3, AKT and NF-κB. These results suggest that Notch signalling inhibition, by overcoming the stromal-mediated promotion of chemoresistance,may represent a potential therapeutic targetnot only for lymphoid neoplasms, but also for AML. PMID:26967055

  18. A simple and efficient method for deriving neurospheres from bone marrow stromal cells

    SciTech Connect

    Yang Qin; Mu Jun; Li Qi; Li Ao; Zeng Zhilei; Yang Jun; Zhang Xiaodong; Tang Jin; Xie Peng

    2008-08-08

    Bone marrow stromal cells (MSCs) can be differentiated into neuronal and glial-like cell types under appropriate experimental conditions. However, previously reported methods are complicated and involve the use of toxic reagents. Here, we present a simplified and nontoxic method for efficient conversion of rat MSCs into neurospheres that express the neuroectodermal marker nestin. These neurospheres can proliferate and differentiate into neuron, astrocyte, and oligodendrocyte phenotypes. We thus propose that MSCs are an emerging model cell for the treatment of a variety of neurological diseases.

  19. The effect of Arbas Cashmere goat bone marrow stromal cells on production of transgenic cloned embryos.

    PubMed

    Ren, Yu; Wu, Haiqing; Wang, Hefei; Wang, Xiao; Liang, Hao; Liu, Dongjun

    2014-06-01

    The aim of this study was to develop a method for the in vitro separation and culture of Arbas Cashmere goat bone marrow stromal cells (gBMSCs). Arbas Cashmere gBMSCs were isolated and cultured in vitro, and cell surface markers were identified immunohistochemically. The gBMSCs were differentiated into neurocytes and osteoblasts, and the expression of neuron-specific enolase and osteocalcin was identified by immunohistochemistry. The gBMSCs and goat fetal fibroblast cells (gFFCs) were compared for transient transfection efficiency and fluorescent colony-forming efficiency with Arbas Cashmere gFFCs as a control. pDsRed2-1 encodes DsRed2, a variant of the Discosoma sp. red fluorescent protein (DsRed). In addition, the coding sequence for DsRed2 contains a series of silent base-pair changes for higher expression in mammalian cells. Of the gBMSCs-pDsRed2-1, one fraction was tested for pluripotency, whereas the other fraction was manipulated using somatic cell nuclear transfer, and the in vitro growth status of transgenic embryos derived from gBMSCs-pDsRed2-1 and gFFCs-pDsRed2-1 was compared. The findings showed that gBMSCs were isolated and amplified to express CD29, CD44, and CD90 through adherent culture, with no marked signs of aging after multiple passages. Expression of neuron-specific enolase and osteocalcin by gBMSCs and gBMSCs-pDsRed2-1 was strongly induced by neuronal and osteogenic differentiation, whereas the integrated exogenous genes did not influence pluripotency (P > 0.05). The transient transfection efficiencies of gBMSCs and gFFCs after 48 hours were not significantly different; however, the fluorescent colony-forming efficiency of gBMSCs-pDsRed2-1 after G418 screening was approximately 13% higher than that of gFFCs-pDsRed2-1. The convergence and cleavage rates of cloned embryos derived from gBMSCs-pDsRed2-1 were higher than those derived from gFFCs-pDsRed2-1, whereas their eight-cell and blastocyst rates were similar. The red fluorescent protein

  20. Generation of clinical grade human bone marrow stromal cells for use in bone regeneration.

    PubMed

    Robey, Pamela G; Kuznetsov, Sergei A; Ren, Jiaqiang; Klein, Harvey G; Sabatino, Marianna; Stroncek, David F

    2015-01-01

    In current orthopaedic practice, there is a need to increase the ability to reconstruct large segments of bone lost due to trauma, resection of tumors and skeletal deformities, or when normal regenerative processes have failed such as in non-unions and avascular necrosis. Bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells), when used in conjunction with appropriate carriers, represent a means by which to achieve bone regeneration in such cases. While much has been done at the bench and in pre-clinical studies, moving towards clinical application requires the generation of clinical grade cells. What is described herein is an FDA-approved cell manufacturing procedure for the ex vivo expansion of high quality, biologically active human BMSCs. This article is part of a Special Issue entitled Stem Cells and Bone. PMID:25064527

  1. Enhanced accumulation of adipocytes in bone marrow stromal cells in the presence of increased extracellular and intracellular [Ca{sup 2+}

    SciTech Connect

    Hashimoto, Ryota; Katoh, Youichi; Nakamura, Kyoko; Itoh, Seigo; Iesaki, Takafumi; Daida, Hiroyuki; Nakazato, Yuji; Okada, Takao

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer High [Ca{sup 2+}]{sub o} enhances adipocyte accumulation in the presence of adipogenic inducers. Black-Right-Pointing-Pointer High [Ca{sup 2+}]{sub o} enhances both proliferation and adipocyte differentiation in BMSCs. Black-Right-Pointing-Pointer High [Ca{sup 2+}]{sub o} induces an increase in [Ca{sup 2+}]{sub o} in BMSCs. Black-Right-Pointing-Pointer An intracellular Ca{sup 2+} chelator suppresses the enhancement in adipocyte accumulation. Black-Right-Pointing-Pointer Controlling [Ca{sup 2+}]{sub o} may govern the balance of adipocyte and osteoblast development. -- Abstract: The bone marrow stroma contains osteoblasts and adipocytes that have a common precursor: the pluripotent mesenchymal stem cell found in bone marrow stromal cells (BMSCs). Local bone marrow Ca{sup 2+} levels can reach high concentrations due to bone resorption, which is one of the notable features of the bone marrow stroma. Here, we describe the effects of high [Ca{sup 2+}]{sub o} on the accumulation of adipocytes in the bone marrow stroma. Using primary mouse BMSCs, we evaluated the level of adipocyte accumulation by measuring Oil Red O staining and glycerol-3-phosphate dehydrogenase (GPDH) activity. High [Ca{sup 2+}]{sub o} enhanced the accumulation of adipocytes following treatment with both insulin and dexamethasone together but not in the absence of this treatment. This enhanced accumulation was the result of both the accelerated proliferation of BMSCs and their differentiation into adipocytes. Using the fura-2 method, we also showed that high [Ca{sup 2+}]{sub o} induces an increase in [Ca{sup 2+}]{sub i}. An intracellular Ca{sup 2+} chelator suppressed the enhancement in adipocyte accumulation due to increased [Ca{sup 2+}]{sub o} in BMSCs. These data suggest a new role for extracellular Ca{sup 2+} in the bone marrow stroma: increased [Ca{sup 2+}]{sub o} induces an increase in [Ca{sup 2+}]{sub i} levels, which in turn enhances the accumulation of

  2. Bead transfection: rapid and efficient gene transfer into marrow stromal and other adherent mammalian cells.

    PubMed

    Matthews, K E; Mills, G B; Horsfall, W; Hack, N; Skorecki, K; Keating, A

    1993-05-01

    We report a simple, rapid, efficient and cost-effective method of gene transfer into bone marrow stromal and other adherent mammalian cells. Our approach involves brief incubation of cells with glass beads in a solution containing the DNA to be transferred. We optimized the technique using COS cells (SV40 transformed kidney cell line from African green monkey) and a transient expression assay for chloramphenicol acetyl transferase (CAT). Factors affecting gene transfer include size and condition of the beads and DNA concentration, but not DNA conformation. Gene transfer efficiency, assessed in a transient expression assay for beta-galactosidase activity, was 5 and 3% in nontransformed human bone marrow stromal cells and COS cells, respectively. Long-term stable expression with the selectable marker, neomycin phosphotransferase, was demonstrated in clonogenic COS cells at a frequency of 27%. Southern analysis of resistant clones revealed the transferred DNA to be integrated in low copy number at one or two sites in the host cell genome. Comparison with electroporation and DEAE-dextran indicates that bead transfection is more efficient than the latter and less costly than either of these methods. In view of its simplicity and because the use of retroviral sequences can be avoided, bead transfection may be an attractive means of gene insertion for gene therapy.

  3. The Effects of Fungal Volatile Organic Compounds on Bone Marrow Stromal Cells

    PubMed Central

    Hokeness, Kirsten; Lux, Hillary; Kratch, Jaqueline; Nadolny, Christina; Aicardi, Kristie; Reid, Christopher

    2015-01-01

    Evidence has shown that individuals exposed to indoor toxic molds for extended periods of time have elevated risk of developing numerous respiratory illnesses and certain types of cancer. It is not clear at the cellular level, what impact mold exposure has on the immune system. Herein we show that two fungal volatiles (E)-2-octenal and oct-1-en-3-ol have cytotoxic effects on murine bone marrow stromal (BMS) cells. To further analyze alterations to the cell, we evaluated the impact these VOCs have on membrane composition and hence fluidity. Both (E)-2-octenal and oct-1-en-3-ol exposure caused a shift to unsaturated fatty acids and lower cholesterol levels in the membrane. This indicates that the volatile organic compounds (VOCs) under investigation increased membrane fluidity. These vast changes to the cell membrane are known to contribute to the breakdown of normal cell function and possibly lead to death. Since bone marrow stromal cells are vital for the appropriate development and activation of immune cells, this study provides the foundation for understanding the mechanism at a cellular level for how mold exposure can lead to immune-related disease conditions. PMID:24392920

  4. Sera of overweight people promote in vitro adipocyte differentiation of bone marrow stromal cells

    PubMed Central

    2014-01-01

    Introduction Overweight status should not be considered merely an aesthetic concern; rather, it can incur health risks since it may trigger a cascade of events that produce further fat tissue through altered levels of circulating signaling molecules. There have been few studies addressing the effect of overweight status on the physiological functions of stem cells, including mesenchymal stem cells (MSCs), which are the progenitors of adipocytes and osteocytes and are a subset of the bone marrow stromal cell population. Methods We decided to investigate the influence of overweight individuals’ sera on in vitro MSC proliferation and differentiation. Results We observed that in vitro incubation of bone marrow stromal cells with the sera of overweight individuals promotes the adipogenic differentiation of MSCs while partially impairing proper osteogenesis. Conclusions These results, which represent a pilot study, might suggest that becoming overweight triggers further weight gains by promoting a bias in the differentiation potential of MSCs toward adipogenesis. The circulating factors involved in this phenomenon remain to be determined, since the great majority of the well known pro-inflammatory cytokines and adipocyte-secreted factors we investigated did not show relevant modifications in overweight serum samples compared with controls. PMID:24405848

  5. Overexpression of PLAP-1 in bone marrow stromal cells inhibits the rat critical-size skull defect repair.

    PubMed

    Yu, Xijiao; Sun, Jing; Hu, Ying; Gao, Yan; Xiao, Changjie; Liu, Shuang; Li, Shu

    2015-06-01

    Periodontal ligament-associated protein-1 (PLAP-1) is an osteogenisis negative regulatory gene that inhibits the differentiation of rat bone marrow stromal cells (rBMSCs) into osteoblasts in vitro. The aim of this study was to verify whether PLAP-1 acted as an inhibitory factor of rBMSCs in rat critical-size skull defect repair in vivo. Six-week old male Wistar rats treated with a drill-hole injury were randomly assigned into five groups PLAP-1-transfected rBMSC group, empty vector-transfected rBMSC group, normal rBMSC group, collagen group and blank control group according to the treatment factors. Skull specimens were obtained at 8 weeks after surgery. X-ray examination, histological observation of hard tissue slices (HE, Masson staining and von Kossa staining), immunohistochemical staining were applied to evaluate the repair effects. X-ray examination showed that repair effect of the PLAP-1-transfected rBMSC group was significantly worse than that of the empty vector-transfected rBMSC group and normal rBMSC group. In HE staining, regenerated bone could only be observed in the partial defect area of the PLAP-1-transfected rBMSC group. However, new bone filled nearly the entire defects in the empty vector-transfected rBMSC group and normal rBMSC group. Mineralization of new bone in the two groups was significantly higher than that of the PLAP-1-transfected rBMSC group, according to Masson and von Kossa staining. Meanwhile, the transfected PLAP-1 gene worked well in vivo. Positive expression of PLAP-1 protein was only distributed in the newly formed bone of the PLAP-1-transfected rBMSC group, no positive staining was observed in the other four groups. Overexpression of PLAP-1 in rBMSCs inhibits new bone formation and mineralization in rat critical-size skull defects in vivo.

  6. Asperosaponin VI promotes bone marrow stromal cell osteogenic differentiation through the PI3K/AKT signaling pathway in an osteoporosis model

    PubMed Central

    Ke, Ke; Li, Qi; Yang, Xiaofeng; Xie, Zhijian; Wang, Yu; Shi, Jue; Chi, Linfeng; Xu, Weijian; Hu, Lingling; Shi, Huali

    2016-01-01

    Asperosaponin VI (ASA VI), a natural compound isolated from the well-known traditional Chinese herb Radix Dipsaci, has an important role in promoting osteoblast formation. However, its effects on osteoblasts in the context of osteoporosis is unknown. This study aimed to investigate the effects and mechanism of ASA VI action on the proliferation and osteogenic differentiation of bone marrow stromal cells isolated from the ovariectomized rats (OVX rBMSCs). The toxicity of ASA VI and its effects on the proliferation of OVX rBMSCs were measured using a CCK-8 assay. Various osteogenic differentiation markers were also analyzed, such as ALP activity, calcified nodule formation, and the expression of osteogenic genes, i.e., ALP, OCN, COL 1 and RUNX2. The results indicated that ASA VI promoted the proliferation of OVX rBMSCs and enhanced ALP activity and calcified nodule formation. In addition, while ASA VI enhanced the expression of ALP, OCN, Col 1 and RUNX2, treatment with LY294002 reduced all of these osteogenic effects and reduced the p-AKT levels induced by ASA VI. These results suggest that ASA VI promotes the osteogenic differentiation of OVX rBMSCs by acting on the phosphatidylinositol—3 kinase/AKT signaling pathway. PMID:27756897

  7. Bone marrow regeneration promoted by biophysically sorted osteoprogenitors from mesenchymal stromal cells.

    PubMed

    Poon, Zhiyong; Lee, Wong Cheng; Guan, Guofeng; Nyan, Lin Myint; Lim, Chwee Teck; Han, Jongyoon; Van Vliet, Krystyn J

    2015-01-01

    Human tissue repair deficiencies can be supplemented through strategies to isolate, expand in vitro, and reimplant regenerative cells that supplant damaged cells or stimulate endogenous repair mechanisms. Bone marrow-derived mesenchymal stromal cells (MSCs), a subset of which is described as mesenchymal stem cells, are leading candidates for cell-mediated bone repair and wound healing, with hundreds of ongoing clinical trials worldwide. An outstanding key challenge for successful clinical translation of MSCs is the capacity to produce large quantities of cells in vitro with uniform and relevant therapeutic properties. By leveraging biophysical traits of MSC subpopulations and label-free microfluidic cell sorting, we hypothesized and experimentally verified that MSCs of large diameter within expanded MSC cultures were osteoprogenitors that exhibited significantly greater efficacy over other MSC subpopulations in bone marrow repair. Systemic administration of osteoprogenitor MSCs significantly improved survival rates (>80%) as compared with other MSC subpopulations (0%) for preclinical murine bone marrow injury models. Osteoprogenitor MSCs also exerted potent therapeutic effects as "cell factories" that secreted high levels of regenerative factors such as interleukin-6 (IL-6), interleukin-8 (IL-8), vascular endothelial growth factor A, bone morphogenetic protein 2, epidermal growth factor, fibroblast growth factor 1, and angiopoietin-1; this resulted in increased cell proliferation, vessel formation, and reduced apoptosis in bone marrow. This MSC subpopulation mediated rescue of damaged marrow tissue via restoration of the hematopoiesis-supporting stroma, as well as subsequent hematopoiesis. Together, the capabilities described herein for label-freeisolation of regenerative osteoprogenitor MSCs can markedly improve the efficacy of MSC-based therapies.

  8. Late Adherent Human Bone Marrow Stromal Cells Form Bone and Restore the Hematopoietic Microenvironment In Vivo

    PubMed Central

    Vianna, Verônica Fernandes; Bonfim, Danielle Cabral; Cavalcanti, Amanda dos Santos; Fernandes, Marco Cury; Kahn, Suzana Assad; Casado, Priscila Ladeira; Lima, Inayá Correa; Murray, Samuel S.; Murray, Elsa J. Brochmann; Duarte, Maria Eugenia Leite

    2013-01-01

    Bone marrow stromal cells (BMSCs) are a valuable resource for skeletal regenerative medicine because of their osteogenic potential. In spite of the very general term “stem cell,” this population of cells is far from homogeneous, and different BMSCs clones have greatly different phenotypic properties and, therefore, potentially different therapeutic potential. Adherence to a culture flask surface is a primary defining characteristic of BMSCs. We hypothesized that based on the adherence time we could obtain an enriched population of cells with a greater therapeutic potential. We characterized two populations of bone marrow-derived cells, those that adhered by three days (R-cells) and those that did not adhere by three days but did by six days (L-cells). Clones derived from L-cells could be induced into adipogenic, chondrogenic, and osteogenic differentiation in vitro. L-cells appeared to have greater proliferative capacity, as manifested by larger colony diameter and clones with higher CD146 expression. Only clones from L-cells developed bone marrow stroma in vivo. We conclude that the use of late adherence of BMSCs is one parameter that can be used to enrich for cells that will constitute a superior final product for cell therapy in orthopedics. PMID:23710460

  9. Increased extracellular and intracellular Ca{sup 2+} lead to adipocyte accumulation in bone marrow stromal cells by different mechanisms

    SciTech Connect

    Hashimoto, Ryota; Katoh, Youichi; Miyamoto, Yuki; Itoh, Seigo; Daida, Hiroyuki; Nakazato, Yuji; Okada, Takao

    2015-02-20

    Mesenchymal stem cells found in bone marrow stromal cells (BMSCs) are the common progenitors for both adipocyte and osteoblast. An increase in marrow adipogenesis is associated with age-related osteopenia and anemia. Both extracellular and intracellular Ca{sup 2+} ([Ca{sup 2+}]{sub o} and [Ca{sup 2+}]{sub i}) are versatile signaling molecules that are involved in the regulation of cell functions, including proliferation and differentiation. We have recently reported that upon treatment of BMSCs with insulin and dexamethasone, both high [Ca{sup 2+}]{sub o} and high [Ca{sup 2+}]{sub i} enhanced adipocyte accumulation, which suggested that increases in [Ca{sup 2+}]{sub o} caused by bone resorption may accelerate adipocyte accumulation in aging and diabetic patients. In this study, we used primary mouse BMSCs to investigate the mechanisms by which high [Ca{sup 2+}]{sub o} and high [Ca{sup 2+}]{sub i} may enhance adipocyte accumulation. In the process of adipocyte accumulation, two important keys are adipocyte differentiation and the proliferation of BMSCs, which have the potential to differentiate into adipocytes. Use of MTT assay and real-time RT-PCR revealed that high [Ca{sup 2+}]{sub i} (ionomycin)-dependent adipocyte accumulation is caused by enhanced proliferation of BMSCs but not enhanced differentiation into adipocytes. Using fura-2 fluorescence-based approaches, we showed that high [Ca{sup 2+}]{sub o} (addition of CaCl{sub 2}) leads to increases in [Ca{sup 2+}]{sub i}. Flow cytometric methods revealed that high [Ca{sup 2+}]{sub o} suppressed the phosphorylation of ERK independently of intracellular Ca{sup 2+}. The inhibition of ERK by U0126 and PD0325901 enhanced the differentiation of BMSCs into adipocytes. These data suggest that increased extracellular Ca{sup 2+} provides the differentiation of BMSCs into adipocytes by the suppression of ERK activity independently of increased intracellular Ca{sup 2+}, which results in BMSC proliferation. - Highlights:

  10. Bone marrow-derived osteoblast progenitor cells in circulating blood contribute to ectopic bone formation in mice

    SciTech Connect

    Otsuru, Satoru; Tamai, Katsuto . E-mail: tamai@gts.med.osaka-u.ac.jp; Yamazaki, Takehiko; Yoshikawa, Hideki; Kaneda, Yasufumi

    2007-03-09

    Recent studies have suggested the existence of osteoblastic cells in the circulation, but the origin and role of these cells in vivo are not clear. Here, we examined how these cells contribute to osteogenesis in a bone morphogenetic protein (BMP)-induced model of ectopic bone formation. Following lethal dose-irradiation and subsequent green fluorescent protein-transgenic bone marrow cell-transplantation (GFP-BMT) in mice, a BMP-2-containing collagen pellet was implanted into muscle. Three weeks later, a significant number of GFP-positive osteoblastic cells were present in the newly generated ectopic bone. Moreover, peripheral blood mononuclear cells (PBMNCs) from the BMP-2-implanted mouse were then shown to include osteoblast progenitor cells (OPCs) in culture. Passive transfer of the PBMNCs isolated from the BMP-2-implanted GFP-mouse to the BMP-2-implanted nude mouse led to GFP-positive osteoblast accumulation in the ectopic bone. These data provide new insight into the mechanism of ectopic bone formation involving bone marrow-derived OPCs in circulating blood.

  11. Transplantation of goat bone marrow stromal cells to the degenerating intervertebral disc in a goat disc-injury model

    PubMed Central

    Zhang, Yejia; Drapeau, Susan; An, Howard S.; Thonar, Eugene J-M.A.; Anderson, D. Greg

    2010-01-01

    Study Design In vivo randomized controlled study in the goat intervertebral disc (IVD) injury model. Objective To define the effects of allogeneic bone marrow-derived stromal cell injected into the degenerating goat IVDs. Summary of Background Data Transplantation of bone marrow stromal cells to the degenerating disc has been suggested as a means to correct the biologic incompetence of the disc. However, large animal models with IVDs similar in shape and size to those of humans are needed to define the efficacy and safety of this approach. Methods Goat IVD degeneration was induced by stabbing with a #15 blade. One month after disc injury, the injured discs were randomly selected to receive goat bone marrow-derived stromal cell (suspended in hydrogel), saline (control), or hydrogel (control) injections. Three and 6 months after stem cell transplantation, goats were euthanized and the IVD were examined for biochemical content and tissue morphology. MR images at 3- and 6-month time points were also examined. Results The goat large animal model shows early degenerative changes following disc injury. Degenerating IVDs injected with bone marrow stromal cells showed significantly increased proteoglycan (PG) accumulation within their nucleus pulposus (NP) region. However, collagen content, MRI grade and histology did not show statistically significant differences between the cell-treated and control IVDs. Conclusions Following transplantation of bone marrow stromal cells, NP tissue contained more PG than control discs. Although this result was promising, the rate and severity of degeneration in this goat disc injury were modest, suggesting that a more severe injury and a larger sample size is indicated for future studies to better define the utility of cell therapies in this model. PMID:20890267

  12. Content of stromal precursor cells in heterotopic transplants of bone marrow in CBA mice of various ages.

    PubMed

    Gorskaya, Yu F; Kuralesova, A I; Shuklina, E Yu; Nesterenko, V G

    2002-02-01

    Efficiency of colony formation of stromal precursor cells in cultured bone marrow transplants from old (24 month) CBA mice implanted to young (2-month-old) mice almost 3-fold surpassed that in cultured transplants implanted to old recipients. The content of nucleated cells in bone marrow transplants from senescence accelerated mice SAMP increased more than 2-fold, if SAMR mice with normal aging rate were used as the recipients instead of SAMP mice. Bone marrow taken from old and young CBA mice endured the same number of transplantations if the recipient mice were of the same age (5 month). It was concluded that stromal tissue considerably changes with age and is under strict control of the body. PMID:12432868

  13. Deletion of BMP receptor type IB decreased bone mass in association with compromised osteoblastic differentiation of bone marrow mesenchymal progenitors.

    PubMed

    Shi, Ce; Iura, Ayaka; Terajima, Masahiko; Liu, Fei; Lyons, Karen; Pan, Haichun; Zhang, Honghao; Yamauchi, Mitsuo; Mishina, Yuji; Sun, Hongchen

    2016-01-01

    We previously found that disruption of two type I BMP receptors, Bmpr1a and Acvr1, respectively, in an osteoblast-specific manner, increased bone mass in mice. BMPR1B, another BMP type I receptor, is also capable of binding to BMP ligands and transduce BMP signaling. However, little is known about the function of BMPR1B in bone. In this study, we investigated the bone phenotype in Bmpr1b null mice and the impacts of loss of Bmpr1b on osteoblasts and osteoclasts. We found that deletion of Bmpr1b resulted in osteopenia in 8-week-old male mice, and the phenotype was transient and gender specific. The decreased bone mass was neither due to the changes in osteoblastic bone formation activity nor osteoclastic bone resorption activity in vivo. In vitro differentiation of Bmpr1b null osteoclasts was increased but resorption activity was decreased. Calvarial pre-osteoblasts from Bmpr1b mutant showed comparable differentiation capability in vitro, while they showed increased BMP-SMAD signaling in culture. Different from calvarial pre-osteoblasts, Bmpr1b mutant bone marrow mesenchymal progenitors showed compromised differentiation in vitro, which may be a reason for the osteopenic phenotype in the mutant mice. In conclusion, our results suggested that BMPR1B plays distinct roles from BMPR1A and ACVR1 in maintaining bone mass and transducing BMP signaling. PMID:27048979

  14. Deletion of BMP receptor type IB decreased bone mass in association with compromised osteoblastic differentiation of bone marrow mesenchymal progenitors

    PubMed Central

    Shi, Ce; Iura, Ayaka; Terajima, Masahiko; Liu, Fei; Lyons, Karen; Pan, Haichun; Zhang, Honghao; Yamauchi, Mitsuo; Mishina, Yuji; Sun, Hongchen

    2016-01-01

    We previously found that disruption of two type I BMP receptors, Bmpr1a and Acvr1, respectively, in an osteoblast-specific manner, increased bone mass in mice. BMPR1B, another BMP type I receptor, is also capable of binding to BMP ligands and transduce BMP signaling. However, little is known about the function of BMPR1B in bone. In this study, we investigated the bone phenotype in Bmpr1b null mice and the impacts of loss of Bmpr1b on osteoblasts and osteoclasts. We found that deletion of Bmpr1b resulted in osteopenia in 8-week-old male mice, and the phenotype was transient and gender specific. The decreased bone mass was neither due to the changes in osteoblastic bone formation activity nor osteoclastic bone resorption activity in vivo. In vitro differentiation of Bmpr1b null osteoclasts was increased but resorption activity was decreased. Calvarial pre-osteoblasts from Bmpr1b mutant showed comparable differentiation capability in vitro, while they showed increased BMP-SMAD signaling in culture. Different from calvarial pre-osteoblasts, Bmpr1b mutant bone marrow mesenchymal progenitors showed compromised differentiation in vitro, which may be a reason for the osteopenic phenotype in the mutant mice. In conclusion, our results suggested that BMPR1B plays distinct roles from BMPR1A and ACVR1 in maintaining bone mass and transducing BMP signaling. PMID:27048979

  15. Cytocompatible, Photoreversible, and Self-Healing Hydrogels for Regulating Bone Marrow Stromal Cell Differentiation.

    PubMed

    Yu, Lianlian; Xu, Kaige; Ge, Liangpeng; Wan, Wenbing; Darabi, Ali; Xing, Malcolm; Zhong, Wen

    2016-09-01

    Photo-crosslinking and self-healing have received considerable attention for the design of intelligent materials. A novel photostimulated, self-healing, and cytocompatible hydrogel system is reported. A coumarin methacrylate crosslinker is synthesized to modify the polyacrylamide-based hydrogels. With the [2+2] cyclo-addition of coumarin moieties, the hydrogels exhibit excellent self-healing capacity when they are exposed to light with wavelengths at 280 and 365 nm, respectively. To enhance cell compatibility, a poly (amidoamine) crosslinker is also synthesized. Variations in light exposure times and irradiation wavelengths are found to alter the self-healing property of the hydrogels. The hydrogels are shown to induce a regular cellular pattern. The hydrogels are used to regulate bone marrow stromal cells differentiation. The relative mRNA expressions are recorded to monitor the osteogenic differentiation of the cells.

  16. Polydatin induces bone marrow stromal cells migration by activation of ERK1/2.

    PubMed

    Chen, ZhenQiu; Wei, QiuShi; Hong, GuoJu; Chen, Da; Liang, Jiang; He, Wei; Chen, Mei Hui

    2016-08-01

    Bone marrow stromal cells (BMSCs) have proven to be useful for the treatment of numerous human diseases. However, the reparative ability of BMSCs is limited by their poor migration. Polydatin, widely used in traditional Chinese remedies, has proven to exert protective effects to BMSCs. However, little is known about its role in BMSCs migration. In this study, we studied the effects of polydatin on rat BMSCs migration using the scratch wound healing and transwell migration assays. Our results showed polydatin could promote BMSCs migration. Further experiments showed activation of ERK 1/2, but not JNK, was required for polydatin-induced BMSCs migration, suggesting that polydatin may promote BMSCs migration via the ERK 1/2 signaling pathways. Taken together, our results indicate that polydatin might be beneficial for stem cell replacement therapy by improving BMSCs migration.

  17. Mouse bone marrow stromal cells differentiate to neuron-like cells upon inhibition of BMP signaling.

    PubMed

    Saxena, Monika; Prashar, Paritosh; Yadav, Prem Swaroop; Sen, Jonaki

    2016-01-01

    Bone marrow stromal cells (BMSCs) are a source of autologous stem cells that have the potential for undergoing differentiation into multiple cell types including neurons. Although the neuronal differentiation of mesenchymal stem cells has been studied for a long time, the molecular players involved are still not defined. Here we report that the genetic deletion of two members of the bone morphogenetic protein (Bmp) family, Bmp2 and Bmp4 in mouse BMSCs causes their differentiation into cells with neuron-like morphology. Surprisingly these cells expressed certain markers characteristic of both neuronal and glial cells. Based on this observation, we inhibited BMP signaling in mouse BMSCs through a brief exposure to Noggin protein which also led to their differentiation into cells expressing both neuronal and glial markers. Such cells seem to have the potential for further differentiation into subtypes of neuronal and glial cells and thus could be utilized for cell-based therapeutic applications.

  18. Cytocompatible, Photoreversible, and Self-Healing Hydrogels for Regulating Bone Marrow Stromal Cell Differentiation.

    PubMed

    Yu, Lianlian; Xu, Kaige; Ge, Liangpeng; Wan, Wenbing; Darabi, Ali; Xing, Malcolm; Zhong, Wen

    2016-09-01

    Photo-crosslinking and self-healing have received considerable attention for the design of intelligent materials. A novel photostimulated, self-healing, and cytocompatible hydrogel system is reported. A coumarin methacrylate crosslinker is synthesized to modify the polyacrylamide-based hydrogels. With the [2+2] cyclo-addition of coumarin moieties, the hydrogels exhibit excellent self-healing capacity when they are exposed to light with wavelengths at 280 and 365 nm, respectively. To enhance cell compatibility, a poly (amidoamine) crosslinker is also synthesized. Variations in light exposure times and irradiation wavelengths are found to alter the self-healing property of the hydrogels. The hydrogels are shown to induce a regular cellular pattern. The hydrogels are used to regulate bone marrow stromal cells differentiation. The relative mRNA expressions are recorded to monitor the osteogenic differentiation of the cells. PMID:27280860

  19. In vitro inhibitory effects of imatinib mesylate on stromal cells and hematopoietic progenitors from bone marrow

    PubMed Central

    Soares, P.B.; Jeremias, T.S.; Alvarez-Silva, M.; Licínio, M.A.; Santos-Silva, M.C.; Vituri, C.L.

    2012-01-01

    Imatinib mesylate (IM) is used to treat chronic myeloid leukemia (CML) because it selectively inhibits tyrosine kinase, which is a hallmark of CML oncogenesis. Recent studies have shown that IM inhibits the growth of several non-malignant hematopoietic and fibroblast cells from bone marrow (BM). The aim of the present study was to evaluate the effects of IM on stromal and hematopoietic progenitor cells, specifically in the colony-forming units of granulocyte/macrophage (CFU-GM), using BM cultures from 108 1.5- to 2-month-old healthy Swiss mice. The results showed that low concentrations of IM (1.25 µM) reduced the growth of CFU-GM in clonogenic assays. In culture assays with stromal cells, fibroblast proliferation and α-SMA expression by immunocytochemistry analysis were also reduced in a concentration-dependent manner, with a survival rate of approximately 50% with a dose of 2.5 µM. Cell viability and morphology were analyzed using MTT and staining with acrydine orange/ethidium bromide. Most cells were found to be viable after treatment with 5 µM IM, although there was gradual growth inhibition of fibroblastic cells while the number of round cells (macrophage-like cells) increased. At higher concentrations (15 µM), the majority of cells were apoptotic and cell growth ceased completely. Oil red staining revealed the presence of adipocytes only in untreated cells (control). Cell cycle analysis of stromal cells by flow cytometry showed a blockade at the G0/G1 phases in groups treated with 5-15 µM. These results suggest that IM differentially inhibits the survival of different types of BM cells since toxic effects were achieved. PMID:23011404

  20. Different Procoagulant Activity of Therapeutic Mesenchymal Stromal Cells Derived from Bone Marrow and Placental Decidua.

    PubMed

    Moll, Guido; Ignatowicz, Lech; Catar, Rusan; Luecht, Christian; Sadeghi, Behnam; Hamad, Osama; Jungebluth, Philipp; Dragun, Duska; Schmidtchen, Artur; Ringdén, Olle

    2015-10-01

    While therapeutic mesenchymal stromal/stem cells (MSCs) have usually been obtained from bone marrow, perinatal tissues have emerged as promising new sources of cells for stromal cell therapy. In this study, we present a first safety follow-up on our clinical experience with placenta-derived decidual stromal cells (DSCs), used as supportive immunomodulatory and regenerative therapy for patients with severe complications after allogeneic hematopoietic stem cell transplantation (HSCT). We found that DSCs are smaller, almost half the volume of MSCs, which may favor microvascular passage. DSCs also show different hemocompatibility, with increased triggering of the clotting cascade after exposure to human blood and plasma in vitro. After infusion of DSCs in HSCT patients, we observed a weak activation of the fibrinolytic system, but the other blood activation markers remained stable, excluding major adverse events. Expression profiling identified differential levels of key factors implicated in regulation of hemostasis, such as a lack of prostacyclin synthase and increased tissue factor expression in DSCs, suggesting that these cells have intrinsic blood-activating properties. The stronger triggering of the clotting cascade by DSCs could be antagonized by optimizing the cell graft reconstitution before infusion, for example, by use of low-dose heparin anticoagulant in the cell infusion buffer. We conclude that DSCs are smaller and have stronger hemostatic properties than MSCs, thus triggering stronger activation of the clotting system, which can be antagonized by optimizing the cell graft preparation before infusion. Our results highlight the importance of hemocompatibility safety testing for every novel cell therapy product before clinical use, when applied using systemic delivery. PMID:26192403

  1. Data on nitric oxide production by human bone marrow-derived mesenchymal stromal cells.

    PubMed

    Najar, Mehdi; Fayyad-Kazan, Mohammad; Fayyad-Kazan, Hussein; Meuleman, Nathalie; Bron, Dominique; Lagneaux, Laurence

    2016-09-01

    Due to its anti-inflammatory and immunosuppressive potential, Nitric oxide (NO), a gaseous radical, is of special importance during graft-versus-host diseases (GVHD) and feoto-maternal tolerance. NO is a major mediator of murine mesenchymal stromal cells (MSCs)-immunosuppressive capacity. In this data article, we characterized NO production by human bone marrow-derived MSCs (hBMSCs). MSCs, isolated from healthy donors (n=5), were defined according to the International Society for cellular Therapy (ISCT) guidelines. Based on a fluorometric detection system, and upon using Nitrite ([Formula: see text])/Nitrate ( [Formula: see text]) Assay Kit, the amounts of NO metabolites ( [Formula: see text] and [Formula: see text]) produced by hBMSCs, being grown in a culture medium either lacking (constitutive condition) or containing IL-4, IL-10 or a pro-inflammatory cytokine cocktail made of IL-1β, TNF-α, IFN-α and IFN-γ, were assessed. All assays were carried out in triplicates and the mean values are reported. The data from this study supports and corroborates the discussion associated with our previously published work entitled "The Immunomodulatory Potential of Mesenchymal Stromal Cells: A Story of a Regulatory Network" (Najar et al., 2016) [1]. PMID:27536712

  2. MEK5 suppresses osteoblastic differentiation

    SciTech Connect

    Kaneshiro, Shoichi; Otsuki, Dai; Yoshida, Kiyoshi; Yoshikawa, Hideki; Higuchi, Chikahisa

    2015-07-31

    Extracellular signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family and is activated by its upstream kinase, MAPK kinase 5 (MEK5), which is a member of the MEK family. Although the role of MEK5 has been investigated in several fields, little is known about its role in osteoblastic differentiation. In this study, we have demonstrated the role of MEK5 in osteoblastic differentiation in mouse preosteoblastic MC3T3-E1 cells and bone marrow stromal ST2 cells. We found that treatment with BIX02189, an inhibitor of MEK5, increased alkaline phosphatase (ALP) activity and the gene expression of ALP, osteocalcin (OCN) and osterix, as well as it enhanced the calcification of the extracellular matrix. Moreover, osteoblastic cell proliferation decreased at a concentration of greater than 0.5 μM. In addition, knockdown of MEK5 using siRNA induced an increase in ALP activity and in the gene expression of ALP, OCN, and osterix. In contrast, overexpression of wild-type MEK5 decreased ALP activity and attenuated osteoblastic differentiation markers including ALP, OCN and osterix, but promoted cell proliferation. In summary, our results indicated that MEK5 suppressed the osteoblastic differentiation, but promoted osteoblastic cell proliferation. These results implied that MEK5 may play a pivotal role in cell signaling to modulate the differentiation and proliferation of osteoblasts. Thus, inhibition of MEK5 signaling in osteoblasts may be of potential use in the treatment of osteoporosis. - Highlights: • MEK5 inhibitor BIX02189 suppresses proliferation of osteoblasts. • MEK5 knockdown and MEK5 inhibitor promote differentiation of osteoblasts. • MEK5 overexpression inhibits differentiation of osteoblasts.

  3. CREB modulates calcium signaling in cAMP-induced bone marrow stromal cells (BMSCs).

    PubMed

    Zhang, Linxia; Liu, Li; Thompson, Ryan; Chan, Christina

    2014-10-01

    Calcium signaling has a versatile role in many important cellular functions. Despite its importance, regulation of calcium signaling in bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells) has not been explored extensively. Our previous study revealed that cyclic adenosine monophosphate (cAMP) enabled BMSCs to generate calcium signal upon stimulation by dopamine, KCl and glutamate. Concurrently, cAMP transiently activated the transcription factor cAMP response element binding protein (CREB) in BMSCs. Activity of CREB can be modulated by the calcium/calmodulin-dependent kinase signaling pathway, however, whether the calcium signaling observed in cAMP-induced BMSCs requires CREB has not been investigated. In an effort to uncover the role of CREB in the generation of calcium signaling in response to modulators such as dopamine and KCl, we knocked down CREB activity in BMSCs. Our study indicated that BMSCs, but not its close relative fibroblasts, are responsive to dopamine and KCl after cAMP treatment. Calcium signal elicited by dopamine depends, in part, on calcium influx whereas that elicited by KCl depends completely on calcium influx. Knock-down of CREB activity significantly reduced or abolished the cAMP-induced calcium response, and reintroducing a constitutively active CREB partially restored the calcium response.

  4. Identification of suitable reference genes in bone marrow stromal cells from osteoarthritic donors.

    PubMed

    Schildberg, Theresa; Rauh, Juliane; Bretschneider, Henriette; Stiehler, Maik

    2013-11-01

    Bone marrow stromal cells (BMSCs) are key cellular components for musculoskeletal tissue engineering strategies. Furthermore, recent data suggest that BMSCs are involved in the development of Osteoarthritis (OA) being a frequently occurring degenerative joint disease. Reliable reference genes for the molecular evaluation of BMSCs derived from donors exhibiting OA as a primary co-morbidity have not been reported on yet. Hence, the aim of the study was to identify reference genes suitable for comparative gene expression analyses using OA-BMSCs. Passage 1 bone marrow derived BMSCs were isolated from n=13 patients with advanced stage idiopathic hip osteoarthritis and n=15 age-matched healthy donors. The expression of 31 putative reference genes was analyzed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) using a commercially available TaqMan(®) assay. Calculating the coefficient of variation (CV), mRNA expression stability was determined and afterwards validated using geNorm and NormFinder algorithms. Importin 8 (IPO8), TATA box binding protein (TBP), and cancer susceptibility candidate 3 (CASC3) were identified as the most stable reference genes. Notably, commonly used reference genes, e.g. beta-actin (ACTB) and beta-2-microglobulin (B2M) were among the most unstable genes. For normalization of gene expression data of OA-BMSCs the combined use of IPO8, TBP, and CASC3 gene is recommended.

  5. Reproducible establishment of hemopoietic supportive stromal cell lines from murine bone marrow

    SciTech Connect

    Itoh, K.; Tezuka, H.; Sakoda, H.; Konno, M.; Nagata, K.; Uchiyama, T.; Uchino, H.; Mori, K.J.

    1989-02-01

    Stromal cell lines, designated MS-1, -2, -3, -4, -5, -6, and -7 were established by irradiating the adherent cells in long-term bone marrow cultures with 900-rad x-rays. Two of the cell lines, MS-1 and MS-5, have the capacity to support the growth of hemopoietic stem cells (spleen colony-forming cells and granulocyte-macrophage colony-forming cells) for greater than 2 months in vitro. These two cell lines were alkaline phosphatase-, peroxidase-, and factor VIII-negative and positive for periodic acid-Schiff and nonspecific esterase. Extracellular matrix proteins such as fibronectin, laminin, and collagen type I were produced by these two cell lines. Neither MS-1 cell- nor MS-5 cell-conditioned medium supported the growth of hemopoietic stem cells, and hemopoietic stem cells were found preferentially to be under and on MS-1 and MS-5 layers rather than in suspension. Close contact with the MS-1 cell layer or the MS-5 cell layer appears to be essential in maintaining hemopoiesis in vitro. Conditioned media from MS-1 cells and MS-5 cells stimulated granulocyte colony formation from murine bone marrow cells in semisolid culture.

  6. Evaluation of epithelial chimerism after bone marrow mesenchymal stromal cell infusion in intestinal transplant patients.

    PubMed

    Kilinc, S; Gurkan, U A; Guven, S; Koyuncu, G; Tan, S; Karaca, C; Ozdogan, O; Dogan, M; Tugmen, C; Pala, E E; Bayol, U; Baran, M; Kurtulmus, Y; Pirim, I; Kebapci, E; Demirci, U

    2014-01-01

    Intestinal transplantation is the most effective treatment for patients with short bowel syndrome and small bowel insufficiencies. We evaluated epithelial chimerism after infusion of autologous bone marrow mesenchymal stromal cells (BMSCs) in patients undergoing cadaveric donor isolated intestinal transplantation (I-ITx). BMSCs were isolated from patients' bone marrow via iliac puncture and expanded in vitro prior to infusion. Two out of the 3 patients were infused with autologous BMSCs, and small intestine tissue biopsies collected post-operatively were analyzed for epithelial chimerism using XY fluorescent in situ hybridization and short tandem repeat polymerase chain reaction. We observed epithelial chimeric effect in conditions both with and without BMSC infusion. Although our results suggest a higher epithelial chimerism effect with autologous BMSC infusion in I-ITx, the measurements in multiple biopsies at different time points that demonstrate the reproducibility of this finding and its stability or changes in the level over time would be beneficial. These approaches may have potential implications for improved graft survival, lower immunosuppressant doses, superior engraftment of the transplanted tissue, and higher success rates in I-ITx.

  7. CREB modulates calcium signaling in cAMP-induced bone marrow stromal cells (BMSCs)

    PubMed Central

    Zhang, Linxia; Liu, Li; Thompson, Ryan; Chan, Christina

    2014-01-01

    Calcium signaling has a versatile role in many important cellular functions. Despite its importance, regulation of calcium signaling in bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells) has not been explored extensively. Our previous study revealed that cyclic adenosine monophosphate (cAMP) enabled BMSCs to generate calcium signal upon stimulation by dopamine, KCl and glutamate. Concurrently, cAMP transiently activated the transcription factor cAMP response element binding protein (CREB) in BMSCs. Activity of CREB can be modulated by the calcium/calmodulin-dependent kinase signaling pathway, however, whether the calcium signaling observed in cAMP-induced BMSCs requires CREB has not been investigated. In an effort to uncover the role of CREB in the generation of calcium signaling in response to modulators such as dopamine and KCl, we knocked down CREB activity in BMSCs. Our study indicated that BMSCs, but not its close relative fibroblasts, are responsive to dopamine and KCl after cAMP treatment. Calcium signal elicited by dopamine depends, in part, on calcium influx whereas that elicited by KCl depends completely on calcium influx. Knock-down of CREB activity significantly reduced or abolished the cAMP-induced calcium response, and reintroducing a constitutively active CREB partially restored the calcium response. PMID:25154887

  8. Screening and Identification of Highly Specific MAbs for Discovering Novel Biomarkers of Bone Marrow Stromal Cells.

    PubMed

    Ma, Xingyuan; Lin, Nanjing; Kang, Yanyan; Li, Linfeng; Zheng, Wenyun

    2016-08-01

    Bone marrow stromal cells (BMSCs) are very useful model systems for a better understanding of cell behavior and differential gene expression. Up to now, there have not been specific markers and MAbs for BMSCs that hamper the identification and isolation of BMSCs populations. In this study, chicken BMSCs were isolated from 1-day-old Beijing fatty chickens by adherent culture. After biological characteristics were detected, the chicken BMSCs were used to immunize BALB/c mice to prepare BMSCs-specific monoclonal antibodies (MAbs) by the routine hybridoma technique. These MAbs were characterized by FACS analysis, immunocytochemistry, immunohistochemistry, subtype identification, and Western blotting assay and were used to explore markers of chicken BMSCs. Our data showed that BMSCs expressing antigens CD29, CD44, and CD105, but not expressing antigens CD34, CD45, and CD11b, could be isolated from postnatal chicken bone marrow and hold great potential for multiline age differentiation. Meanwhile, we obtained two hybridoma cell lines secreting chicken BMSCs-specific MAbs (named CHK1 and CHK2), which specifically recognized the surface antigens expressed on chicken BMSCs. According to our subtype identification, heavy chains of CHK1 and CHK2 were typed as IgG1 and IgG2b, respectively; all the light strands were kappa subtype. MAbs CHK1 and CHK2 can be used to develop the detection assay and to discover novel biomarkers of chicken BMSCs. PMID:27556910

  9. Osteoblast-Specific Deletion of Pkd2 Leads to Low-Turnover Osteopenia and Reduced Bone Marrow Adiposity

    PubMed Central

    Xiao, Zhousheng; Cao, Li; Liang, Yingjuan; Huang, Jinsong; Stern, Amber Rath; Dallas, Mark; Johnson, Mark; Quarles, Leigh Darryl

    2014-01-01

    Polycystin-1 (Pkd1) interacts with polycystin-2 (Pkd2) to form an interdependent signaling complex. Selective deletion of Pkd1 in the osteoblast lineage reciprocally regulates osteoblastogenesis and adipogenesis. The role of Pkd2 in skeletal development has not been defined. To this end, we conditionally inactivated Pkd2 in mature osteoblasts by crossing Osteocalcin (Oc)-Cre;Pkd2+/null mice with floxed Pkd2 (Pkd2flox/flox) mice. Oc-Cre;Pkd2flox/null (Pkd2Oc-cKO) mice exhibited decreased bone mineral density, trabecular bone volume, cortical thickness, mineral apposition rate and impaired biomechanical properties of bone. Pkd2 deficiency resulted in diminished Runt-related transcription factor 2 (Runx2) expressions in bone and impaired osteoblastic differentiation ex vivo. Expression of osteoblast-related genes, including, Osteocalcin, Osteopontin, Bone sialoprotein (Bsp), Phosphate-regulating gene with homologies to endopeptidases on the X chromosome (Phex), Dentin matrix protein 1 (Dmp1), Sclerostin (Sost), and Fibroblast growth factor 23 (FGF23) were reduced proportionate to the reduction of Pkd2 gene dose in bone of Oc-Cre;Pkd2flox/+ and Oc-Cre;Pkd2flox/null mice. Loss of Pkd2 also resulted in diminished peroxisome proliferator-activated receptor γ (PPARγ) expression and reduced bone marrow fat in vivo and reduced adipogenesis in osteoblast culture ex vivo. Transcriptional co-activator with PDZ-binding motif (TAZ) and Yes-associated protein (YAP), reciprocally acting as co-activators and co-repressors of Runx2 and PPARγ, were decreased in bone of Oc-Cre;Pkd2flox/null mice. Thus, Pkd1 and Pkd2 have coordinate effects on osteoblast differentiation and opposite effects on adipogenesis, suggesting that Pkd1 and Pkd2 signaling pathways can have independent effects on mesenchymal lineage commitment in bone. PMID:25464512

  10. Transforming growth factor-{beta} inhibits CCAAT/enhancer-binding protein expression and PPAR{gamma} activity in unloaded bone marrow stromal cells

    SciTech Connect

    Ahdjoudj, S.; Kaabeche, K.; Holy, X.; Fromigue, O.; Modrowski, D.; Zerath, E.; Marie, P.J. . E-mail: pierre.marie@larib.inserm.fr

    2005-02-01

    The molecular mechanisms regulating the adipogenic differentiation of bone marrow stromal cells in vivo remain largely unknown. In this study, we investigated the regulatory effects of transforming growth factor beta-2 (TGF-{beta}2) on transcription factors involved in adipogenic differentiation induced by hind limb suspension in rat bone marrow stromal cells in vivo. Time course real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis of gene expression showed that skeletal unloading progressively increases the expression of CCAAT/enhancer-binding protein (C/EBP){alpha} and C/EBP{beta} {alpha} at 5 days in bone marrow stromal cells resulting in increased peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}2) transcripts at 7 days. TGF-{beta}2 administration in unloaded rats corrected the rise in C/EBP{alpha} and C/EBP{beta} transcripts induced by unloading in bone marrow stromal cells. This resulted in inhibition of PPAR{gamma}2 expression that was associated with increased Runx2 expression. Additionally, the inhibition of C/EBP{alpha} and C/EBP{beta} expression by TGF-{beta}2 was associated with increased PPAR{gamma} serine phosphorylation in bone marrow stromal cells, a mechanism that inhibits PPAR{gamma} transactivating activity. The sequential inhibitory effect of TGF-{beta}2 on C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma}2 resulted in reduced LPL expression and abolition of bone marrow stromal cell adipogenic differentiation, which contributed to prevent bone loss induced by skeletal unloading. We conclude that TGF-{beta}2 inhibits the excessive adipogenic differentiation of bone marrow stromal cells induced by skeletal unloading by inhibiting C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma} expression and activity, which provides a sequential mechanism by which TGF-{beta}2 regulates adipogenic differentiation of bone marrow stromal cells in vivo.

  11. Comparative Study on Functional Effects of Allotransplantation of Bone Marrow Stromal Cells and Adipose Derived Stromal Vascular Fraction on Tendon Repair: A Biomechanical Study in Rabbits

    PubMed Central

    Behfar, Mehdi; Javanmardi, Sara; Sarrafzadeh-Rezaei, Farshid

    2014-01-01

    Objective Tendon never returns to its complete biological and mechanical properties after repair. Bone marrow and, recently, adipose tissue have been used as sources of mesenchymal stem cells which have been proven to enhance tendon healing. In the present study, we compared the effects of allotransplantation of bone marrow derived mesenchymal stromal cells (BMSCs) and adipose derived stromal vascular fraction (SVF) on tendon mechanical properties after experimentally induced flexor tendon transection. Materials and Methods In this experimental study, we used 48 adult male New Zealand white rabbits. Twelve of rabbits were used as donors of bone marrow and adipose tissue, the rest were divided into control and treatment groups. The injury model was a unilateral complete transection of the deep digital flexor tendon. Immediately after suture repair, 4×106cells of either fresh SVF from enzymatic digestion of adipose tissue or cultured BMSCs were intratendinously injected into tendon stumps in the treatment groups. Controls received phosphate-buffered saline (PBS). Immobilization with a cast was continued for two weeks after surgery. Animals were sacrificed three and eight weeks after surgery and tendons underwent mechanical evaluations. The differences among the groups were analyzed using the analysis of variance (ANOVA) test followed by Tukey’s multiple comparisons test. Results Stromal cell transplantation resulted in a significant increase in ultimate and yield loads, energy absorption, and stress of repairs compared to the controls. However, there were no statistically significant changes detected in terms of stiffness. In comparison, we observed no significant differences at the third week between SVF and BMSCs treated tendons in terms of all load related properties. However, at the eighth week SVF transplantation resulted in significantly increased energy absorption, stress and stiffness compared to BMSCs. Conclusion The enhanced biomechanical properties of

  12. Reactive Oxygen Species Limit the Ability of Bone Marrow Stromal Cells to Support Hematopoietic Reconstitution in Aging Mice

    PubMed Central

    Khatri, Rahul; Krishnan, Shyam; Roy, Sushmita; Chattopadhyay, Saborni; Kumar, Vikash

    2016-01-01

    Aging of organ and abnormal tissue regeneration are recurrent problems in physiological and pathophysiological conditions. This is most crucial in case of high-turnover tissues, like bone marrow (BM). Using reciprocal transplantation experiments in mouse, we have shown that self-renewal potential of hematopoietic stem and progenitor cells (HSPCs) and BM cellularity are markedly influenced with the age of the recipient mice rather than donor mice. Moreover, accumulation of excessive reactive oxygen species (ROS) in BM stromal cells compared to HSPC compartment, in time-dependent manner, suggests that oxidative stress is involved in suppression of BM cellularity by affecting microenvironment in aged mice. Treatment of these mice with a polyphenolic antioxidant curcumin is found to partially quench ROS, thereby rescues stromal cells from oxidative stress-dependent cellular injury. This rejuvenation of stromal cells significantly improves hematopoietic reconstitution in 18-month-old mice compared to age control mice. In conclusion, this study implicates the role of ROS in perturbation of stromal cell function upon aging, which in turn affects BM's reconstitution ability in aged mice. Thus, a rejuvenation therapy using curcumin, before HSPC transplantation, is found to be an efficient strategy for successful marrow reconstitution in older mice. PMID:27140293

  13. Role of marrow architecture and stromal cells in the recovery process of aplastic marrow of lethally irradiated rats parabiosed with healthy litter mates

    SciTech Connect

    Hayashi, K.; Kagawa, K.; Awai, M.; Irino, S.

    1986-01-01

    Bone marrow aplasia was induced in rats by whole body lethal irradiation (1,000 rads by x-ray), and rats died of irradiation injury within 7 days. Correlative studies at light (LM), transmission (TEM) and scanning electron microscopy (SEM) demonstrated swelling of endothelial and reticular cells and hemorrhage due to detachment of sinus endothelial cells on days 1 and 2. With time, structural recovery occurred without hemopoietic recovery. Reticular cells developed small intracytoplasmic lipid droplets on days 3 and 4. This resulted in fatty aplastic marrow within 7 days. On the other hand, in the marrow of irradiated rats parabiosed with healthy mates by aortic anastomosis, hemopoiesis was initiated by adhesion of nucleated blood cells to fine cytoplasmic pseudopods of fat-stored cells on days 1 and 2 after parabiosis. On days 3 to 5, reticular cells with large lipid droplets and fine pseudopods increased, then hemopoietic foci became clear and extensive. On day 8 after parabiosis, the aplastic bone marrow recovered completely both its structure and hemopoietic activity. Thus, hemopoietic recovery in lethally irradiated marrow begins with recovery of vascular endothelial cells, re-establishment of sinusoidal structure, and morphological and functional recoveries of reticular cells from fat-storage cells by releasing intracytoplasmic lipid droplets. Marrow stromal cells, namely reticular, fat-storage and fibroblastoid cells, share a common cellular origin, and regain their structure and function when fat-storage cells and fibroid cells are placed in contact with hemopoietic precursor cells.

  14. Different Balance of Wnt Signaling in Adult and Fetal Bone Marrow-Derived Mesenchymal Stromal Cells.

    PubMed

    Paciejewska, Maja M; Maijenburg, Marijke W; Gilissen, Christian; Kleijer, Marion; Vermeul, Kim; Weijer, Kees; Veltman, Joris A; von Lindern, Marieke; van der Schoot, C Ellen; Voermans, Carlijn

    2016-06-15

    Mesenchymal stromal cells (MSCs) are applied as novel therapeutics for their regenerative and immune-suppressive capacities. Clinical applications, however, require extensive expansion of MSCs. Fetal bone marrow-derived MSCs (FBMSCs) proliferate faster than adult bone marrow-derived MSC (ABMSCs). To optimize expansion and function of MSC in general, we explored the differences between ABMSC and FBMSC. Gene expression profiling implicated differential expression of genes encoding proteins in the Wnt signaling pathway, including excreted inhibitors of Wnt signaling, particularly by ABMSC. Both MSC types had a similar basal level of canonical Wnt signaling. Abrogation of autocrine Wnt production by inhibitor of Wnt production-2 (IWP2) reduced canonical Wnt signaling and cell proliferation of FBMSCs, but hardly affected ABMSC. Addition of exogenous Wnt3a, however, induced expression of the target genes lymphocyte enhancer-binding factor (LEF) and T-cell factor (TCF) faster and at lower Wnt3a levels in ABMSC compared to FBMSC. Medium replacement experiments indicated that ABMSC produce an inhibitor of Wnt signaling that is effective on ABMSC itself but not on FBMSC, whereas FBMSC excrete (Wnt) factors that stimulate proliferation of ABMSC. In contrast, FBMSC were not able to support hematopoiesis, whereas ABMSC displayed hematopoietic support sensitive to IWP2, the inhibitor of Wnt factor excretion. In conclusion, ABMSC and FBMSC differ in their Wnt signature. While FBMSC produced factors, including Wnt signals, that enhanced MSC proliferation, ABMSC produced Wnt factors in a setting that enhanced hematopoietic support. Thus, further unraveling the molecular basis of this phenomenon may lead to improvement of clinical expansion protocols of ABMSCs. PMID:27154244

  15. Human Bone Marrow Stromal Cell Confluence: Effects on Cell Characteristics and Methods of Assessment

    PubMed Central

    Ren, Jiaqiang; Wang, Huan; Tran, Katherine; Civini, Sara; Jin, Ping; Castiello, Luciano; Feng, Ji; Kuznetsov, Sergei A; Robey, Pamela G.; Sabatino, Marianna; Stroncek, David F.

    2015-01-01

    Background Aims Ex vivo expansion and serial passage of human Bone Marrow Stromal Cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells) is required to obtain sufficient quantities for clinical therapy. The BMSC confluence criteria used to determine passage and harvest timing vary widely and the impact of confluence on BMSC properties remains controversial. The effects of confluence on BMSC properties were studied and confluence-associated markers were identified. Methods BMSC characteristics were analyzed as they grew from 50% to 100% confluence including viability, population doubling time (PDT), apoptosis, colony formation, immunosuppression, surface marker expression, global gene expression and microRNA expression. In addition, culture supernatant protein, glucose, lactate and pH levels were analyzed Results Confluence-dependent changes were detected in the expression of several cell surface markers, 39 culture supernatant proteins, 26 microRNAs and 2078 genes. Many of these surface markers, proteins, microRNAs and genes have been reported to be important in BMSC function. The PEDF/VEGF ratio increased with confluence, but 80% and 100% confluent BMSCs demonstrated a similar level of immunosuppression of mixed lymphocyte reactions. In addition, changes in lactate and glucose levels correlated with BMSC density. Discussion BMSC characteristics change as confluence increases. 100% confluent BMSCs may have compromised pro-angiogenesis properties, but may retain their immunomodulatory properties. Supernatant lactate and glucose levels can be used to estimate confluence and ensure consistency in passage and harvest timing. Flow cytometry or microRNA expression can be used to confirm that the BMSCs have been harvested at the appropriate confluence. PMID:25882666

  16. Inferior ectopic bone formation of mesenchymal stromal cells from adipose tissue compared to bone marrow: rescue by chondrogenic pre-induction.

    PubMed

    Brocher, J; Janicki, P; Voltz, P; Seebach, E; Neumann, E; Mueller-Ladner, U; Richter, W

    2013-11-01

    Human mesenchymal stromal cells derived from bone marrow (BMSC) and adipose tissue (ATSC) represent a valuable source of progenitor cells for cell therapy and tissue engineering. While ectopic bone formation is a standard activity of human BMSC on calcium phosphate ceramics, the bone formation capacity of human ATSC has so far been unclear. The objectives of this study were to assess the therapeutic potency of ATSC for bone formation in an ectopic mouse model and determine molecular differences by standardized comparison with BMSC. Although ATSC contained less CD146(+) cells, exhibited better proliferation and displayed similar alkaline phosphatase activity upon osteogenic in vitro differentiation, cells did not develop into bone-depositing osteoblasts on β-TCP after 8weeks in vivo. Additionally, ATSC expressed less BMP-2, BMP-4, VEGF, angiopoietin and IL-6 and more adiponectin mRNA, altogether suggesting insufficient osteochondral commitment and reduced proangiogenic activity. Chondrogenic pre-induction of ATSC/β-TCP constructs with TGF-β and BMP-6 initiated ectopic bone formation in >75% of samples. Both chondrogenic pre-induction and the osteoconductive microenvironment of β-TCP were necessary for ectopic bone formation by ATSC pointing towards a need for inductive conditions/biomaterials to make this more easily accessible cell source attractive for future applications in bone regeneration.

  17. Tantalum coating of porous carbon scaffold supplemented with autologous bone marrow stromal stem cells for bone regeneration in vitro and in vivo.

    PubMed

    Wei, Xiaowei; Zhao, Dewei; Wang, Benjie; Wang, Wei; Kang, Kai; Xie, Hui; Liu, Baoyi; Zhang, Xiuzhi; Zhang, Jinsong; Yang, Zhenming

    2016-03-01

    Porous tantalum metal with low elastic modulus is similar to cancellous bone. Reticulated vitreous carbon (RVC) can provide three-dimensional pore structure and serves as the ideal scaffold of tantalum coating. In this study, the biocompatibility of domestic porous tantalum was first successfully tested with bone marrow stromal stem cells (BMSCs) in vitro and for bone tissue repair in vivo. We evaluated cytotoxicity of RVC scaffold and tantalum coating using BMSCs. The morphology, adhesion, and proliferation of BMSCs were observed via laser scanning confocal microscope and scanning electron microscopy. In addition, porous tantalum rods with or without autologous BMSCs were implanted on hind legs in dogs, respectively. The osteogenic potential was observed by hard tissue slice examination. At three weeks and six weeks following implantation, new osteoblasts and new bone were observed at the tantalum-host bone interface and pores. At 12 weeks postporous tantalum with autologous BMSCs implantation, regenerated trabecular equivalent to mature bone was found in the pore of tantalum rods. Our results suggested that domestic porous tantalum had excellent biocompatibility and could promote new bone formation in vivo. Meanwhile, the osteogenesis of porous tantalum associated with autologous BMSCs was more excellent than only tantalum implantation. Future clinical studies are warranted to verify the clinical efficacy of combined implantation of this domestic porous tantalum associated with autologous BMSCs implantation and compare their efficacy with conventional autologous bone grafting carrying blood vessel in patients needing bone repairing.

  18. IL-6 Contributes to the Defective Osteogenesis of Bone Marrow Stromal Cells from the Vertebral Body of the Glucocorticoid-Induced Osteoporotic Mouse

    PubMed Central

    Zhang, Yuan-yuan; Yang, Hui-lin

    2016-01-01

    Osteoporosis is one of the most prevalent skeletal system diseases. It is characterized by a decrease in bone mass and microarchitectural changes in bone tissue that lead to an attenuation of bone resistance and susceptibility to fracture. Vertebral fracture is by far the most prevalent osteoporotic fracture. In the musculoskeletal system, osteoblasts, originated from bone marrow stromal cells (BMSC), are responsible for osteoid synthesis and mineralization. In osteoporosis, BMSC osteogenic differentiation is defective. However, to date, what leads to the defective BMSC osteogenesis in osteoporosis remains an open question. In the current study, we made attempts to answer this question. A mouse model of glucocorticoid-induced osteoporosis (GIO) was established and BMSC were isolated from vertebral body. The impairment of osteogenesis was observed in BMSC of osteoporotic vertebral body. The expression profiles of thirty-six factors, which play important roles in bone metabolisms, were compared through antibody array between normal and osteoporotic BMSC. Significantly higher secretion level of IL-6 was observed in osteoporotic BMSCs compared with normal control. We provided evidences that IL-6 over-secretion impaired osteogenesis of osteoporotic BMSC. Further, it was observed that β-catenin activity was inhibited in response to IL-6 over-secretion. More importantly, in vivo administration of IL-6 neutralizing antibody was found to be helpful to rescue the osteoporotic phenotype of mouse vertebral body. Our study provides a deeper insight into the pathophysiology of osteoporosis and identifies IL-6 as a promising target for osteoporosis therapy. PMID:27128729

  19. Tantalum coating of porous carbon scaffold supplemented with autologous bone marrow stromal stem cells for bone regeneration in vitro and in vivo

    PubMed Central

    Wei, Xiaowei; Wang, Benjie; Wang, Wei; Kang, Kai; Xie, Hui; Liu, Baoyi; Zhang, Xiuzhi; Zhang, Jinsong; Yang, Zhenming

    2016-01-01

    Porous tantalum metal with low elastic modulus is similar to cancellous bone. Reticulated vitreous carbon (RVC) can provide three-dimensional pore structure and serves as the ideal scaffold of tantalum coating. In this study, the biocompatibility of domestic porous tantalum was first successfully tested with bone marrow stromal stem cells (BMSCs) in vitro and for bone tissue repair in vivo. We evaluated cytotoxicity of RVC scaffold and tantalum coating using BMSCs. The morphology, adhesion, and proliferation of BMSCs were observed via laser scanning confocal microscope and scanning electron microscopy. In addition, porous tantalum rods with or without autologous BMSCs were implanted on hind legs in dogs, respectively. The osteogenic potential was observed by hard tissue slice examination. At three weeks and six weeks following implantation, new osteoblasts and new bone were observed at the tantalum–host bone interface and pores. At 12 weeks postporous tantalum with autologous BMSCs implantation, regenerated trabecular equivalent to mature bone was found in the pore of tantalum rods. Our results suggested that domestic porous tantalum had excellent biocompatibility and could promote new bone formation in vivo. Meanwhile, the osteogenesis of porous tantalum associated with autologous BMSCs was more excellent than only tantalum implantation. Future clinical studies are warranted to verify the clinical efficacy of combined implantation of this domestic porous tantalum associated with autologous BMSCs implantation and compare their efficacy with conventional autologous bone grafting carrying blood vessel in patients needing bone repairing. PMID:26843518

  20. Tantalum coating of porous carbon scaffold supplemented with autologous bone marrow stromal stem cells for bone regeneration in vitro and in vivo.

    PubMed

    Wei, Xiaowei; Zhao, Dewei; Wang, Benjie; Wang, Wei; Kang, Kai; Xie, Hui; Liu, Baoyi; Zhang, Xiuzhi; Zhang, Jinsong; Yang, Zhenming

    2016-03-01

    Porous tantalum metal with low elastic modulus is similar to cancellous bone. Reticulated vitreous carbon (RVC) can provide three-dimensional pore structure and serves as the ideal scaffold of tantalum coating. In this study, the biocompatibility of domestic porous tantalum was first successfully tested with bone marrow stromal stem cells (BMSCs) in vitro and for bone tissue repair in vivo. We evaluated cytotoxicity of RVC scaffold and tantalum coating using BMSCs. The morphology, adhesion, and proliferation of BMSCs were observed via laser scanning confocal microscope and scanning electron microscopy. In addition, porous tantalum rods with or without autologous BMSCs were implanted on hind legs in dogs, respectively. The osteogenic potential was observed by hard tissue slice examination. At three weeks and six weeks following implantation, new osteoblasts and new bone were observed at the tantalum-host bone interface and pores. At 12 weeks postporous tantalum with autologous BMSCs implantation, regenerated trabecular equivalent to mature bone was found in the pore of tantalum rods. Our results suggested that domestic porous tantalum had excellent biocompatibility and could promote new bone formation in vivo. Meanwhile, the osteogenesis of porous tantalum associated with autologous BMSCs was more excellent than only tantalum implantation. Future clinical studies are warranted to verify the clinical efficacy of combined implantation of this domestic porous tantalum associated with autologous BMSCs implantation and compare their efficacy with conventional autologous bone grafting carrying blood vessel in patients needing bone repairing. PMID:26843518

  1. Human bone marrow-derived stromal cells cultured with a plasma sprayed CaO-ZrO2-SiO2 coating.

    PubMed

    Yang, Fei; Xie, Youtao; Li, Huiwu; Tang, Tingting; Zhang, Xiaoling; Gan, Yaokai; Zheng, Xuebin; Dai, Kerong

    2010-10-01

    The CaO-ZrO2-SiO2 (CZS) coating was prepared by plasma-spraying chemically synthesized CZS powder onto a Ti-6Al-4V substrate. This CZS coating has been demonstrated to have good bioactivity, high bonding strength with the substrate and a low degradation rate. However, the effect of CZS coating on the osseointegration of bone-implant is still unknown. In this study, human bone marrow-derived stromal cells (hBMSCs) were cultured on CZS coating in vitro, and cell behavior was investigated, with the classical hydroxyapatite (HA) coating as a control. Scanning electron microscopy (SEM) and immunofluorescence studies showed that the hBMSCs on the CZS coating spread well with organized cytoskeleton structure at 24 h following cell seeding. The MTT assay and the Alamar Blue assay indicated that CZS coating promoted the attachment and proliferation of hBMSCs. The results of alkaline phosphatase (ALP) activity test and the expression of osteogenic marker genes, such as ALP, collagen I (COLI), osteopontin (OPN), and osteocalcin (OCN), demonstrated that the osteoblastic differentiation of hBMSCs was enhanced more by CZS coating than by HA coating. These results suggest that CZS coating possess excellent biological properties and may have potential in biomedical applications.

  2. Comparison of Mesenchymal Stem Cell Surface Markers from Bone Marrow Aspirates and Adipose Stromal Vascular Fraction Sites.

    PubMed

    Sullivan, Meghan O; Gordon-Evans, Wanda J; Fredericks, Lisa Page; Kiefer, Kristina; Conzemius, Michael G; Griffon, Dominique J

    2015-01-01

    The objective of this study was to subjectively evaluate the harvest of two areas of adipose collection and three areas of bone marrow collection as potential sites for clinical harvest of adipose stromal vascular fraction (SVF) and bone marrow concentrate for clinical use by quantifying the amount of tissue harvested, subjective ease of harvest, the variation of each site, and determining the cell surface marker characteristics using commercially available antibodies. Bone marrow and adipose tissue samples were collected from 10 adult mixed breed dogs. Adipose tissue was collected from the caudal scapular region and falciform fat ligament. Bone marrow aspirates were collected from the ilium, humerus, and tibia. Tissues were weighed (adipose) or measured by volume (bone marrow), processed to isolate the SVF or bone marrow concentrate, and flow cytometry was performed to quantitate the percentage of cells that were CD90, CD44 positive, and CD45 negative. Sites and tissue types were compared using matched pairs t-test. Subjectively subcutaneous fat collection was the most difficult and large amounts of tissue dissection were necessary. Additionally the subcutaneous area yielded less than the goal amount of tissue. The bone marrow harvest ranged from 10 to 27.5 ml. Adipose tissue had the highest concentration of cells with CD90(+), CD44(+), and CD45(-) markers (P < 0.05), and bone marrow had the highest total number of these cells at harvest (P < 0.05). Variation was high for all sites, but the adipose collection yielded more consistent results. These results describe the relative cellular components in the SVF of adipose tissue and bone marrow as defined by the biomarkers chosen. Although bone marrow yielded higher absolute cell numbers on average, adipose tissue yielded more consistent results. Fat from the falciform ligament was easily obtained with less dissection and therefore created less perceived relative patient trauma.

  3. Comparison of Mesenchymal Stem Cell Surface Markers from Bone Marrow Aspirates and Adipose Stromal Vascular Fraction Sites

    PubMed Central

    Sullivan, Meghan O.; Gordon-Evans, Wanda J.; Fredericks, Lisa Page; Kiefer, Kristina; Conzemius, Michael G.; Griffon, Dominique J.

    2016-01-01

    The objective of this study was to subjectively evaluate the harvest of two areas of adipose collection and three areas of bone marrow collection as potential sites for clinical harvest of adipose stromal vascular fraction (SVF) and bone marrow concentrate for clinical use by quantifying the amount of tissue harvested, subjective ease of harvest, the variation of each site, and determining the cell surface marker characteristics using commercially available antibodies. Bone marrow and adipose tissue samples were collected from 10 adult mixed breed dogs. Adipose tissue was collected from the caudal scapular region and falciform fat ligament. Bone marrow aspirates were collected from the ilium, humerus, and tibia. Tissues were weighed (adipose) or measured by volume (bone marrow), processed to isolate the SVF or bone marrow concentrate, and flow cytometry was performed to quantitate the percentage of cells that were CD90, CD44 positive, and CD45 negative. Sites and tissue types were compared using matched pairs t-test. Subjectively subcutaneous fat collection was the most difficult and large amounts of tissue dissection were necessary. Additionally the subcutaneous area yielded less than the goal amount of tissue. The bone marrow harvest ranged from 10 to 27.5 ml. Adipose tissue had the highest concentration of cells with CD90+, CD44+, and CD45− markers (P < 0.05), and bone marrow had the highest total number of these cells at harvest (P < 0.05). Variation was high for all sites, but the adipose collection yielded more consistent results. These results describe the relative cellular components in the SVF of adipose tissue and bone marrow as defined by the biomarkers chosen. Although bone marrow yielded higher absolute cell numbers on average, adipose tissue yielded more consistent results. Fat from the falciform ligament was easily obtained with less dissection and therefore created less perceived relative patient trauma. PMID:26835460

  4. Mesenchymal stromal cells, colony-forming unit fibroblasts, from bone marrow of untreated advanced breast and lung cancer patients suppress fibroblast colony formation from healthy marrow.

    PubMed

    Hofer, Erica Leonor; Labovsky, Vivian; La Russa, Vincent; Vallone, Valeria Fernández; Honegger, Alba Elizabeth; Belloc, Carlos Gabriel; Wen, Huei Chi; Bordenave, Raúl Horacio; Bullorsky, Eduardo Oscar; Feldman, Leonardo; Chasseing, Norma Alejandra

    2010-03-01

    We have shown that bone marrow (BM) from untreated advanced lung and breast cancer patients (LCP and BCP) have a reduced number of colony-forming unit fibroblasts (CFU-Fs) or mesenchymal stem cells (MSCs). Factors that regulate the proliferation and differentiation of CFU-F are produced by the patients' BM microenvironment. We have now examined whether conditioned media (CM) from patients' CFU-F-derived stromal cells also inhibits the colony-forming efficiency (CFE) of CFU-F in primary cultures from healthy volunteers (HV)-BM. Thus the number and proliferation potential of HV-CFU-F were also found to be decreased and similar to colony numbers and colony size of patients' CFU-F. Stromal cells from both of these types of colonies appeared relatively larger and lacked the characteristic spindle morphology typically seen in healthy stromal cells. We developed an arbitrary mesenchymal stromal cell maturational index by taking three measures consisting of stromal cell surface area, longitudinal and horizontal axis. All stromal indices derived from HV-CFU-F grown in patients' CM were similar to those from stromal elements derived from patients' CFU-F. These indices were markedly higher than stromal indices typical of HV-CFU-F cultured in healthy CM or standard medium [alpha-medium plus 20% heat-inactivated fetal bovine serum (FBS)]. Patients' CM had increased concentrations of the CFU-F inhibitor, GM-CSF, and low levels of bFGF and Dkk-1, strong promoters of self-renewal of MSCs, compared to the levels quantified in CM from HV-CFU-F. Moreover, the majority of patients' MSCs were unresponsive in standard medium and healthy CM to give CFU-F, indicating that the majority of mesenchymal stromal cells from patients' CFU-F are locked in maturational arrest. These results show that alterations of GM-CSF, bFGF, and Dkk-1 are associated with deficient cloning and maturation arrest of CFU-F. Defective autocrine and paracrine mechanisms may be involved in the BM microenvironments of

  5. Studies with 1,2-dithiole-3-thione as a chemoprotector of hydroquinone-induced toxicity to DBA/2-derived bone marrow stromal cells.

    PubMed Central

    Twerdok, L E; Rembish, S J; Trush, M A

    1993-01-01

    Stromal cells from DBA/2 mouse bone marrow have been shown to be susceptible to cytotoxicity induced by several redox-active metabolites of benzene, including hydroquinone (HQ). Treatment with HQ also alters the composition of stromal cell populations by preferentially killing stromal macrophages compared to stromal fibroblasts. This cytotoxicity can be prevented by 1,2-dithiole-3-thione (DTT) as a result of the induction of quinone reductase (QR), a quinone-processing enzyme, and glutathione. The inductive activities of DTT protected stromal cells against HQ-induced cytotoxicity and against HQ-induced impairment of stromal cell ability to support myelopoiesis. In vivo feeding of DTT to DBA/2 mice increased QR activity within the bone marrow compartment and protected bone marrow stromal cells isolated from the DTT-fed animals from ex vivo HQ challenge. Thus, the inducibility of cellular defense mechanisms and xenobiotic-processing enzymes by chemoprotective agents such as DTT may be a useful strategy for protecting against chemically induced bone marrow toxicities. PMID:8354204

  6. [PROFILE OF THE MARROW-DERIVED STROMAL PRECURSORS POPULATION IN C57BL/6N MICE FLOWN ON BIOSATELLITE BION-M1].

    PubMed

    Markina, E A; Bobyleva, P I; Andrianova, I V; Andreeva, E R; Buravkova, L B

    2015-01-01

    The CFU-F number, proliferative activity and spontaneous differentiation potential of stromal cells derived from the tibia marrow of C57BL/6N mice readapted to the 1-g gravity following a long-term flight on biosatellite Bion-M1 were evaluated. The CFU-F number, proliferative activity and spontaneous adipogenic and osteogenic differentiation of marrow-derived stromal cells from the space flown group were no different from the group of vivarium control. However, the proliferative activity and adhesion properties of the cells were down-regulated on day 7 of readaptation. These results suggest that space flight factors did not impact the stromal differon of the mouse marrow. The decline of stromal cells activity indicates the decompensation of their functions under 1g gravity.

  7. Depot-specific and hypercaloric diet-induced effects on the osteoblast and adipocyte differentiation potential of adipose-derived stromal cells.

    PubMed

    Sadie-Van Gijsen, Hanel; Smith, Wayne; du Toit, Eugene Francois; Michie, John; Hough, F S; Ferris, William Frank

    2012-01-01

    Adipose-derived stromal cells (ADSCs) can be differentiated in vitro into several mesenchyme-derived cell types. We had previously described depot-specific differences in the adipocyte differentiation of ADSCs, and consequently we hypothesized that there may also be depot-specific differences in osteoblast differentiation of ADSCs. For this study, the osteoblast differentiation potential of rat subcutaneous ADSCs (scADSCs) and perirenal visceral ADSCs (pvADSCs) was compared. Osteoblast differentiation media (OM) induced markers of the osteoblastic phenotype in scADSCs, but not in pvADSCs. ADSCs harvested from rats with diet-induced visceral obesity (DIO) exhibited reduced osteoinduction, compared to lean controls, but adipocyte differentiation was not affected. Expression of the pro-osteogenic transcription factor Msx2 was significantly higher in naïve scADSCs from lean and DIO rats than in pvADSCs. Our findings indicate that ADSCs from different anatomical sites are uniquely pre-programmed in vivo in a depot-specific manner, and that diet-induced metabolic disturbances translate into reduced osteoblast differentiation of ADSCs.

  8. Proliferation and differentiation of bone marrow stromal cells under hypoxic conditions

    SciTech Connect

    Ren Hongying; Cai Huiguo; Han Zhongchao; Yang Renchi; Zhao, Qinjun; Cao Ying; Li Jing; Zhou Cixiang; Liao Lianming; Jia Mingyue; Zhao Qian; Chen Guoqiang . E-mail: chengq@shsmu.edu.cn; Zhao, R.C. |. E-mail: chunhuaz@public.tpt.tj.cn

    2006-08-18

    Low oxygen tension is a potent differentiation inducer of numerous cell types and an effective stimulus of many gene expressions. Here, we described that under 8% O{sub 2}, bone marrow stromal cells (MSCs) exhibited proliferative and morphologic changes. The level of differentiated antigen H-2Dd and the number of G{sub 2}/S/M phase cells increased evidently under 8% O{sub 2} condition. Also, the proportion of wide, flattened, and epithelial-like cells (which were alkaline phosphatase staining positive) in MSCs increased significantly. When cultured in adipogenic medium, there was a 5- to 6-fold increase in the number of lipid droplets under hypoxic conditions compared with that in normoxic culture. We also demonstrated the existence of MSC differentiation under hypoxic conditions by electron microscopy. Expression of Oct4 was inhibited under 8% O{sub 2} condition, but after adipocyte differentiation in normoxic culture and hypoxia-mimicking agents cobalt chloride (CoCl{sub 2}) and deferoxamine mesylate (DFX) treatments, Oct4 was still expressed in MSCs. These results indicate hypoxia accelerates MSC differentiation and hypoxia and hypoxia-mimicking agents exert different effects on MSC differentiation.

  9. Adult rat bone marrow stromal cells express genes associated with dopamine neurons

    SciTech Connect

    Kramer, Brian C.; Woodbury, Dale . E-mail: WOODBURYDL@AOL.COM; Black, Ira B.

    2006-05-19

    An intensive search is underway to identify candidates to replace the cells that degenerate in Parkinson's disease (PD). To date, no suitable substitute has been found. We have recently found that adult rat bone marrow stromal cells (MSCs) can be induced to assume a neuronal phenotype in vitro. These findings may have particular relevance to the treatment of PD. We now report that adult MSCs express multiple dopaminergic genes, suggesting that they are potential candidates for cell therapy. Using RT-PCR, we have examined families of genes that are associated with the development and/or survival of dopaminergic neurons. MSCs transcribe a variety of dopaminergic genes including patched and smoothened (components of the Shh receptor), Gli-1 (downstream mediator of Shh), and Otx-1, a gene associated with formation of the mesencephalon during development. Furthermore, Shh treatment elicits a 1.5-fold increase in DNA synthesis in cultured MSCs, suggesting the presence of a functional Shh receptor complex. We have also found that MSCs transcribe and translate Nurr-1, a nuclear receptor essential for the development of dopamine neurons. In addition, MSCs express a variety of growth factor receptors including the glycosyl-phosphatidylinositol-anchored ligand-binding subunit of the GDNF receptor, GFR{alpha}1, as well as fibroblast growth factor receptors one and four. The expression of genes that are associated with the development and survival of dopamine neurons suggests a potential role for these cells in the treatment of Parkinson's disease.

  10. Bone Marrow Stromal Cells Stimulate an Angiogenic Program that Requires Endothelial MT1-MMP

    PubMed Central

    Kachgal, Suraj; Carrion, Bita; Janson, Isaac A.; Putnam, Andrew J.

    2012-01-01

    Bone marrow-derived stromal/stem cells (BMSCs) have recently been characterized as mediators of tissue regeneration after injury. In addition to preventing fibrosis at the wound site, BMSCs elicit an angiogenic response within the fibrin matrix. The mechanistic interactions between BMSCs and invading endothelial cells (ECs) during this process are not fully understood. Using a three-dimensional, fibrin-based angiogenesis model, we sought to investigate the proteolytic mechanisms by which BMSCs promote vessel morphogenesis. We find that BMSC-mediated vessel formation depends on the proteolytic ability of membrane type 1-matrix metalloproteinase (MT1-MMP). Knockdown of the protease results in a small network of vessels with enlarged lumens. Contrastingly, vessel morphogenesis is unaffected by the knockdown of MMP-2 and MMP-9. Furthermore, we find that BMSC-mediated vessel morphogenesis in vivo follows mechanisms similar to what we observe in vitro. Subcutaneous, cellular fibrin implants in C.B-17/SCID mice form aberrant vasculature when MMPs are inhibited with a broad spectrum chemical inhibitor, and a very minimal amount of vessels when MT1-MMP proteolytic activity is interrupted in ECs. Other studies have debated the necessity of MT1-MMP in the context of vessel invasion in fibrin, but this study clearly demonstrates its requirement in BMSC-mediated angiogenesis. PMID:22262018

  11. Efficient differentiation of neural stem cells induced by the rat bone marrow stromal cells

    PubMed Central

    Gu, Ping; Qiu, Fu-Cheng; Han, Rui; Zhang, Zhong-Xia; Dong, Ci; Zhang, Li-Na; Wang, Yan-Yong; Ma, Qing-Ying; Yan, Bao-Yong

    2015-01-01

    Neural stem cells (NSCs) are valuable self-renewing cells that can maintain the capacity to differentiate into specific brain cell types. NSCs may repair and even replace the brain tissue, and ultimatley promoting the central nervous system regeneration. Therefore, it is important, for scientists and pjysicians, to study the method for efficient culture and differentiation of NSCs. Our previous study demonstrated that Bone Marrow Stromal Cells (BMSCs) can directly regulate the differentiation of NSCs into neurons, and soluble molecules excreted by BMSCs played a key role in this process. Hereby, we further identified the BMSCs-induced neurons could form the synapses, convey dopamine and express voltage-depend and receptor-depend calcium channels. Moreover, the extracellular signal-regulated protein kinase ERK1/2 pathway was founded to be involved in the process of neuron differentiation and proliferation by the in vitro experiments. Finally, by using protein array, we, for the first time, found that the cytokine-induced neutrophil chemoattractant-3 (CINC-3, a small molecule cytokine) can promote the leukocytes invasion into the inflammation site, and have the ability to induce mesencephal NSCs into neurons. Consequently, these positive findings suggested that our BMSCs-induced culture system could provide a useful tool to investigate the molecular mechanisms of neural differentiation of NSCs, which may be benifical for neurodegenerative diseases in the near future. PMID:26221209

  12. Critical role for bone marrow stromal antigen 2 in acute Chikungunya virus infection.

    PubMed

    Mahauad-Fernandez, Wadie D; Jones, Philip H; Okeoma, Chioma M

    2014-11-01

    Bone marrow stromal antigen 2 (BST-2; also known as tetherin or CD317) is an IFN-inducible gene that functions to block the release of a range of nascent enveloped virions from infected host cells. However, the role of BST-2 in viral pathogenesis remains poorly understood. BST-2 plays a multifaceted role in innate immunity, as it hinders retroviral infection and possibly promotes infection with some rhabdo- and orthomyxoviruses. This paradoxical role has probably hindered exploration of BST-2 antiviral function in vivo. We reported previously that BST-2 tethers Chikungunya virus (CHIKV)-like particles on the cell plasma membrane. To explore the role of BST-2 in CHIKV replication and host protection, we utilized CHIKV strain 181/25 to examine early events during CHIKV infection in a BST-2(-/-) mouse model. We observed an interesting dichotomy between WT and BST-2(-/-) mice. BST-2 deficiency increased inoculation site viral load, culminating in higher systemic viraemia and increased lymphoid tissues tropism. A suppressed inflammatory innate response demonstrated by impaired expression of IFN-α, IFN-γ and CD40 ligand was observed in BST-2(-/-) mice compared with the WT controls. These findings suggested that, in part, BST-2 protects lymphoid tissues from CHIKV infection and regulates CHIKV-induced inflammatory response by the host.

  13. Intrathecal bone marrow stromal cells inhibit neuropathic pain via TGF-β secretion

    PubMed Central

    Chen, Gang; Park, Chul-Kyu; Xie, Rou-Gang; Ji, Ru-Rong

    2015-01-01

    Neuropathic pain remains a pressing clinical problem. Here, we demonstrate that a local, intrathecal (i.t.) injection of bone marrow stromal cells (BMSCs) following lumbar puncture alleviates early- and late-phase neuropathic pain symptoms, such as allodynia and hyperalgesia, for several weeks in murine chronic constriction injury (CCI) and spared nerve injury models. Moreover, i.t. BMSCs reduced CCI-induced spontaneous pain and axonal injury of dorsal root ganglion (DRG) neurons and inhibited CCI-evoked neuroinflammation in DRGs and spinal cord tissues. BMSCs secreted TGF-β1 into the cerebrospinal fluid, and neutralization of TGF-β1, but not IL-10, reversed the analgesic effect of BMSCs. Conversely, i.t. administration of TGF-β1 potently inhibited neuropathic pain. TGF-β1 acted as a powerful neuromodulator and rapidly (within minutes) suppressed CCI-evoked spinal synaptic plasticity and DRG neuronal hyperexcitability via TGF-β receptor 1–mediated noncanonical signaling. Finally, nerve injury upregulated CXCL12 in lumbar L4–L6 DRGs, and this upregulation caused migration of i.t.-injected BMSCs to DRGs through the CXCL12 receptor CXCR4, which was expressed on BMSCs. BMSCs that migrated from the injection site survived at the border of DRGs for more than 2 months. Our findings support a paracrine mechanism by which i.t. BMSCs target CXCL12-producing DRGs to elicit neuroprotection and sustained neuropathic pain relief via TGF-β1 secretion. PMID:26168219

  14. Phenotypic characteristics of hybrid cells generated by transferring neuronal nuclei into bone marrow stromal cell cytoplasts.

    PubMed

    Zhou, Zhujuan; Xu, Yan; Zhong, Qi; Zheng, Jian

    2012-02-10

    Bone marrow stromal cells (BMSCs) are promising donor cells for transplantation therapies for a variety of diseases. However, there still lack efficient ways to induce directional differentiation of BMSCs to promote their practical use in transplantation therapy. In this study, we constructed hybrid cells by transferring neuronal nuclei into BMSC cytoplasts and investigated the proliferative capacity and phenotypic characteristics of the hybrid cells. The neuronal nuclei were labeled with Hoechst 33342 before the transfer process, and the cell membrane antigen CD71 was used as a marker of BMSC cytoplasts. The BMSC cytoplasts and neuronal karyoplasts were separated by Ficoll density gradient ultracentrifugation. The hybrid cells were generated by the polyethylene glycol-mediated fusion of BMSC cytoplasts with neuronal karyoplasts. The hybrid cells exhibited Hoechst 33342 staining in their nuclei and CD71 staining on their cytomembranes, which confirmed the success of cell fusion. The hybrid cells were positive for BrdU immunostaining. Viability analysis of the cultured hybrid cells by the MTT assay demonstrated their proliferative ability. Immunocytochemical staining revealed the expression of the neuron-specific markers NeuN and MAP2 in the third passage hybrid cells, which indicated their neuronal phenotypic characteristics. The results demonstrated that the hybrid cells produced by fusing neuronal karyoplasts with BMSC cytoplasts had proliferative capability and expressed the neuron-specific markers. Further study is required to investigate the phenotype of the hybrid cells both structurally and functionally.

  15. Reactive Bone Marrow Stromal Cells Attenuate Systemic Inflammation via sTNFR1

    PubMed Central

    Yagi, Hiroshi; Soto-Gutierrez, Alejandro; Navarro-Alvarez, Nalu; Nahmias, Yaakov; Goldwasser, Yoni; Kitagawa, Yuko; Tilles, Arno W; Tompkins, Ronald G; Parekkadan, Biju; Yarmush, Martin L

    2010-01-01

    Excessive systemic inflammation following trauma, sepsis, or burn could lead to distant organ damage. The transplantation of bone marrow stromal cells or mesenchymal stem cells (MSCs) has been reported to be an effective treatment for several immune disorders by modulating the inflammatory response to injury. We hypothesized that MSCs can dynamically secrete systemic factors that can neutralize the activity of inflammatory cytokines. In this study, we showed that cocultured MSCs are able to decrease nuclear factor κ-B (NFκB) activation in target epithelial cells incubated in inflammatory serum conditions. Proteomic screening revealed a responsive secretion of soluble tumor necrosis factor (TNF) receptor 1 (sTNFR1) when MSCs were exposed to lipopolysaccharide (LPS)-stimulated rat serum. The responsive effect was eliminated when NFκB activation was blocked in MSCs. Intramuscular transplantation of MSCs in LPS-endotoxic rats decreased a panel of inflammatory cytokines and inflammatory infiltration of macrophages and neutrophils in lung, kidney, and liver when compared to controls. These results suggest that improvements of inflammatory responses in animal models after local transplantation of MSCs are at least, in part, explained by the NFκB-dependent secretion of sTNFR1 by MSCs. PMID:20664529

  16. Bortezomib inhibits the survival and proliferation of bone marrow stromal cells

    PubMed Central

    Kim, Ha-Yon; Moon, Ji-Young; Ryu, Haewon; Choi, Yoon-Seok; Song, Ik-Chan; Lee, Hyo-Jin; Yun, Hwan-Jung; Kim, Samyong

    2015-01-01

    Background Bortezomib is widely used for the treatment of multiple myeloma. Bone marrow stromal cells (BMSCs) endow myeloma cells with survival and growth advantages. However, the influence of bortezomib on BMSCs is not well elucidated. We examined the effects of bortezomib on the survival and growth of BMSCs in vitro. Methods The effects of bortezomib on the survival and proliferation of the BMSC MS-5 cell line and on BMSCs obtained from healthy individuals (N=4) and newly diagnosed myeloma patients (N=5) were investigated in vitro. Transmembrane cell migration was evaluated using the Transwell system. A short interfering RNA strategy was used to knock down the expression of chemokine (CXC motif) ligand 12 (CXCL12) mRNA. To examine the effects of bortezomib-exposed BMSCs on the migration and localization of myeloma cells, MS-5 monolayers were treated with bortezomib for 24 hr, washed, and then overlaid with human RPMI8226 myeloma cells. Results Bortezomib inhibited BMSC proliferation in a concentration-dependent manner, and induced cellular apoptosis. Bortezomib decreased CXCL12 production by BMSCs. Knockdown of CXCL12 mRNA in BMSCs revealed that CXCL12 served as an autocrine growth factor. Short-term bortezomib treatment of BMSC monolayers reduced the tendency of myeloma cells to locate to positions under the monolayers. Conclusion Bortezomib inhibits the survival and growth of BMSCs via downregulation of CXCL12, which may contribute to the clinical effects of this agent. PMID:26157778

  17. Micro-aggregates do not influence bone marrow stromal cell chondrogenesis.

    PubMed

    Potier, E; Rivron, N C; Van Blitterswijk, C A; Ito, K

    2014-04-01

    Although bone marrow stromal cells (BMSCs) appear promising for cartilage repair, current clinical results are suboptimal and the success of BMSC-based therapies relies on a number of methodological improvements, among which is better understanding and control of their differentiation pathways. We investigated here the role of the cellular environment (paracrine vs juxtacrine signalling) in the chondrogenic differentiation of BMSCs. Bovine BMSCs were encapsulated in alginate beads, as dispersed cells or as small micro-aggregates, to create different paracrine and juxtacrine signalling conditions. BMSCs were then cultured for 21 days with TGFβ3 added for 0, 7 or 21 days. Chondrogenic differentiation was assessed at the gene (type II and X collagens, aggrecan, TGFβ, sp7) and matrix (biochemical assays and histology) levels. The results showed that micro-aggregates had no beneficial effects over dispersed cells: matrix production was similar, whereas chondrogenic marker gene expression was lower for the micro-aggregates, under all TGFβ conditions tested. This weakened chondrogenic differentiation might be explained by a different cytoskeleton organization at day 0 in the micro-aggregates. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Critical role for bone marrow stromal antigen 2 in acute Chikungunya virus infection.

    PubMed

    Mahauad-Fernandez, Wadie D; Jones, Philip H; Okeoma, Chioma M

    2014-11-01

    Bone marrow stromal antigen 2 (BST-2; also known as tetherin or CD317) is an IFN-inducible gene that functions to block the release of a range of nascent enveloped virions from infected host cells. However, the role of BST-2 in viral pathogenesis remains poorly understood. BST-2 plays a multifaceted role in innate immunity, as it hinders retroviral infection and possibly promotes infection with some rhabdo- and orthomyxoviruses. This paradoxical role has probably hindered exploration of BST-2 antiviral function in vivo. We reported previously that BST-2 tethers Chikungunya virus (CHIKV)-like particles on the cell plasma membrane. To explore the role of BST-2 in CHIKV replication and host protection, we utilized CHIKV strain 181/25 to examine early events during CHIKV infection in a BST-2(-/-) mouse model. We observed an interesting dichotomy between WT and BST-2(-/-) mice. BST-2 deficiency increased inoculation site viral load, culminating in higher systemic viraemia and increased lymphoid tissues tropism. A suppressed inflammatory innate response demonstrated by impaired expression of IFN-α, IFN-γ and CD40 ligand was observed in BST-2(-/-) mice compared with the WT controls. These findings suggested that, in part, BST-2 protects lymphoid tissues from CHIKV infection and regulates CHIKV-induced inflammatory response by the host. PMID:25053563

  19. Critical role for bone marrow stromal antigen 2 in acute Chikungunya virus infection

    PubMed Central

    Mahauad-Fernandez, Wadie D.; Jones, Philip H.

    2014-01-01

    Bone marrow stromal antigen 2 (BST-2; also known as tetherin or CD317) is an IFN-inducible gene that functions to block the release of a range of nascent enveloped virions from infected host cells. However, the role of BST-2 in viral pathogenesis remains poorly understood. BST-2 plays a multifaceted role in innate immunity, as it hinders retroviral infection and possibly promotes infection with some rhabdo- and orthomyxoviruses. This paradoxical role has probably hindered exploration of BST-2 antiviral function in vivo. We reported previously that BST-2 tethers Chikungunya virus (CHIKV)-like particles on the cell plasma membrane. To explore the role of BST-2 in CHIKV replication and host protection, we utilized CHIKV strain 181/25 to examine early events during CHIKV infection in a BST-2−/− mouse model. We observed an interesting dichotomy between WT and BST-2−/− mice. BST-2 deficiency increased inoculation site viral load, culminating in higher systemic viraemia and increased lymphoid tissues tropism. A suppressed inflammatory innate response demonstrated by impaired expression of IFN-α, IFN-γ and CD40 ligand was observed in BST-2−/− mice compared with the WT controls. These findings suggested that, in part, BST-2 protects lymphoid tissues from CHIKV infection and regulates CHIKV-induced inflammatory response by the host. PMID:25053563

  20. Thulium ion promotes apoptosis of primary mouse bone marrow stromal cells.

    PubMed

    Dai, Chunyan; Chen, Gong; Dong, Yaqiong; Duan, Jianlei; Wang, Shuxiang; Zhang, Jinchao

    2013-12-01

    Bone is one of the main target organs for the lanthanides (Ln). Biodistribution studies of Tm-based compounds in vivo showed that bone had significant uptake. But the effect of Tm(3+) on primary mouse bone marrow stromal cells (BMSCs) has not been reported. So we investigated the effect and underlying mechanisms of Tm(3+) on BMSCs. Cell viability, cell apoptosis, reactive oxygen species (ROS) level, lactate dehydrogenase (LDH) activity and mitochondrial membrane potential (MMP) were studied. The results indicated that Tm(3+) increased the viability of BMSCs at concentrations of 1×10(−7), 1×10(−6), 1×10(−5), and 1×10(−4) mol/L in a dose-dependent manner, turned to decrease the viability of BMSCs at the highest concentration of 1×10(−3) mol/L for 24, 48, and 72 h. Tm(3+) at 1×10(−3) mol/L promoted apoptosis of BMSCs, increased the ROS and LDH levels, and decreased MMP in BMSCs. Taken together, we demonstrated that Tm(3+) + at 1×10(−3) mol/L might induce cellular apoptosis through mitochondrial pathway. These resultsmay be helpful for more rational application of Tm-based compounds in the future.

  1. High-Frequency Vibration Treatment of Human Bone Marrow Stromal Cells Increases Differentiation toward Bone Tissue

    PubMed Central

    Prè, D.; Ceccarelli, G.; Visai, L.; Benedetti, L.; Imbriani, M.; Cusella De Angelis, M. G.; Magenes, G.

    2013-01-01

    In order to verify whether differentiation of adult stem cells toward bone tissue is promoted by high-frequency vibration (HFV), bone marrow stromal cells (BMSCs) were mechanically stimulated with HFV (30 Hz) for 45 minutes a day for 21 or 40 days. Cells were seeded in osteogenic medium, which enhances differentiation towards bone tissue. The effects of the mechanical treatment on differentiation were measured by Alizarin Red test, (q) real-time PCR, and protein content of the extracellular matrix. In addition, we analyzed the proliferation rate and apoptosis of BMSC subjected to mechanical stimulation. A strong increase in all parameters characterizing differentiation was observed. Deposition of calcium was almost double in the treated samples; the expression of genes involved in later differentiation was significantly increased and protein content was higher for all osteogenic proteins. Lastly, proliferation results indicated that stimulated BMSCs have a decreased growth rate in comparison with controls, but both treated and untreated cells do not enter the apoptosis process. These findings could reduce the gap between research and clinical application for bone substitutes derived from patient cells by improving the differentiation protocol for autologous cells and a further implant of the bone graft into the patient. PMID:23585968

  2. Response of human bone marrow stromal cells to a resorbable P(2)O(5)-SiO(2)-CaO-MgO-Na(2)O-K(2)O phosphate glass ceramic for tissue engineering applications.

    PubMed

    Leonardi, E; Ciapetti, G; Baldini, N; Novajra, G; Verné, E; Baino, F; Vitale-Brovarone, C

    2010-02-01

    This work focuses on the synthesis and characterization of a novel bioresorbable glass ceramic phosphate-based material (GC-ICEL). More specifically, its solubility in different aqueous media (water, Tris-HCl and acellular simulated body fluid) and the response of human stromal cells cultured on it were investigated. X-ray diffraction analysis showed the presence of two crystalline phases identified as Na(2)Mg(PO(4))(3) and Ca(2)P(2)O(7) and dissolution tests highlighted a preferential dissolution of the Na(2)Mg(PO(4))(3) phase and of the residual amorphous phase in all the chosen media. Soaking tests in simulated body fluid showed precipitation of a hydroxyapatite layer, demonstrating the bioactivity of GC-ICEL, which is partially due to the reported bioactivity of Ca(2)P(2)O(7). The effect of GC-ICEL on adhesion, proliferation and osteoblastic gene expression of human bone marrow-derived stromal cells was also studied. Combining molecular and biochemical analyses, it was found that bone marrow cell differentiation was stimulated over proliferation on GC-ICEL. Moreover, the expression of bone-related genes in cells cultured on GC-ICEL confirmed the bioactivity of this phosphate-based glass ceramic, which might have a stimulatory effect on osteogenesis.

  3. The LIM protein LIMD1 influences osteoblast differentiation and function

    SciTech Connect

    Luderer, Hilary F.; Bai Shuting; Longmore, Gregory D.

    2008-09-10

    The balance between bone resorption and bone formation involves the coordinated activities of osteoblasts and osteoclasts. Communication between these two cell types is essential for maintenance of normal bone homeostasis; however, the mechanisms regulating this cross talk are not completely understood. Many factors that mediate differentiation and function of both osteoblasts and osteoclasts have been identified. The LIM protein Limd1 has been implicated in the regulation of stress osteoclastogenesis through an interaction with the p62/sequestosome protein. Here we show that Limd1 also influences osteoblast progenitor numbers, differentiation, and function. Limd1{sup -/-} calvarial osteoblasts display increased mineralization and accelerated differentiation. While no significant differences in osteoblast number or function were detected in vivo, bone marrow stromal cells isolated from Limd1{sup -/-} mice contain significantly more osteoblast progenitors compared to wild type controls when cultured ex vivo. Furthermore, we observed a significant increase in nuclear {beta}-catenin staining in differentiating Limd1{sup -/-} calvarial osteoblasts suggesting that Limd1 is a negative regulator of canonical Wnt signaling in osteoblasts. These results demonstrate that Limd1 influences not only stress osteoclastogenesis but also osteoblast function and osteoblast progenitor commitment. Together, these data identify Limd1 as a novel regulator of both bone osetoclast and bone osteoblast development and function.

  4. Changes in compartments of hemospoietic and stromal marrow progenitor cells after continuous low dose gamma-irradiation

    NASA Astrophysics Data System (ADS)

    Domaratskaya, E.; Starostin, V.

    The low dose continuous gamma-irradiation chosen corresponded with that affected the organisms onboard a spacecraft (Mitrikas, Tsetlin, 2000). F1 (CBAxC57Bl/6) male and female mice were used at 3 4 months of age. Experimental mice were- irradiated during 10 days to a total dose of 15 mGy (Co60 gamma-sources, mean dose rate of 1.5-2.0 mGy/day). Another group of intact mice served as control. Younger and advanced hemopoietic progenitors measured at day 11 (i.e. CFU -S-11) and day 7 (i.e. CFU-S-7), respectively, after transplantation of test donor cells were assayed by the method of Till and McCulloch (1961). Stromal changes were evaluated by estimation of in vitro fibroblastic colony-forming units (CFU -F ) content and by the ability of ectopically grafted (under renal capsule) stroma to regenerate the new bone marrow organ. CFU-S-11 number increased of 40% as compared with control and almost 2-fold higher than that of CFU-S-7. The CFU-F content increased almost of 3-fold. Size of ectopic marrow transplants was estimated at day 70 following grafting by counting myelokariocyte and CFU -S number that repopulated the newly formed bone marrow organ. It was found more than 2-fold increase of myelokariocytes in transplants produced by marrow stroma of irradiated donors. CFU -S contents in transplants increased strikingly in comparison to control level. CFU-S-7 and CFU-S-11 increased of 7.5- and of 3.7-fold, respectively, i.e. the rate of advanced CFU - S predominated. It should be noted a good correlation between number of stromal progenitor cells (CFU-F) and ectopic transplant sizes evaluated as myelokaryocyte counts when irradiated donors used. In the same time, if sizes of transplants was measured as CFU-S-7 and CFU - S-11 numbers, their increases were more pronounced. Therefore, continuous low dose gamma- irradiation augments significantly both hemopoietic and stromal progenitor cell number in bone marrow. Additionally, the ratio of distinct CFU -S subpopulations

  5. In vitro quantitation of lethal and physiologic effects of total body irradiation on stromal and hematopoietic stem cells in continuous bone marrow cultures from Rf mice

    SciTech Connect

    Greenberger, J.S.; Eckner, R.J.; Otten, J.A.; Tennant, R.W.

    1982-07-01

    The effects of in vivo total body irradiation (TBI) and interval from TBI to explant of marrow on: stromal cell proliferation in vitro; stromal cell support of hematopoiesis in continuous bone marrow culture; and generation of WEHI-3 growth factor (GF)-dependent lines of hematopoietic progenitor cells were evaluated. Explant of marrow at 2, 4, 5, or 6 months after single fraction TBI (300-800 rad) was associated with decreased longevity of hemopoiesis and a decrease in the proliferative capacity of fibroblastic adherent-stromal colony forming cells (CFUf) as measured by colony size at 14 days and number of colonies per 10/sup 6/ cells plated. In contrast, explant of marrow 8 to 24 months after TBI produced cultures with longevity that was indistinguishable from age-matched control cultures (19-24 weeks). Marrow from irradiated first and second generation recipients of serially transferred marrow demonstrated a similar 7-month in vivo recovery period; however, the plateau maximum duration of hemopoiesis did not return to control levels. Purified stromal cell cultures were prepared by corticosteroid-deprivation of explanted marrow for 28 days and were then engrafted in vitro with marrow from C57BL/6J or RfM/UN mice that had been irradiated 1 month previously. Hemopoiesis in these cultures was restored, and they produced GM-CFUc and granulocytes for 15-24 weeks. Thus, healthy stroma supported growth of recently irradiated hemopoietic cells in vitro. Indirect effects of x-irradiation on hemopoietic stem cells through damage and repair in the stromal cell compartment can be effectively studied with the present bone marrow culture system. (JMT)

  6. Molecular cloning and chromosomal mapping of bone marrow stromal cell surface gene, BST2, that may be involved in pre-B-cell growth

    SciTech Connect

    Ishikawa, Jun; Kaisho, Tsuneyasu; Tomizawa, Hitoshi

    1995-04-10

    Bone marrow stromal cells regulate B-cell growth and development through their surface molecules and cytokines. In this study, we generated a mAb, RS38, that recognized a novel human membrane protein, BST-2, expressed on bone marrow stromal cell lines and synovial cell lines. We cloned a cDNA encoding BST-2 from a rheumatoid arthritis-derived synovial cell line. BST-2 is a 30- to 36-kDa type II transmembrane protein, consisting of 180 amino acids. The BST-2 gene (HGMW-approved symbol BST2) is located on chromosome 19p13.2. BST-2 is expressed not only on certain bone marrow stromal cell lines but also on various normal tissues, although its expression pattern is different from that of another bone marrow stromal cell surface molecule, BST-1. BST-2 surface expression on fibroblast cell lines facilitated the stromal cell-dependent growth of a murine bone marrow-derived pre-B-cell line, DW34. The results suggest that BST-2 may be involved in pre-B-cell growth. 45 refs., 7 figs., 2 tabs.

  7. Autologous bone marrow stromal cells are promising candidates for cell therapy approaches to treat bone degeneration in sickle cell disease.

    PubMed

    Lebouvier, Angélique; Poignard, Alexandre; Coquelin-Salsac, Laura; Léotot, Julie; Homma, Yasuhiro; Jullien, Nicolas; Bierling, Philippe; Galactéros, Frédéric; Hernigou, Philippe; Chevallier, Nathalie; Rouard, Hélène

    2015-11-01

    Osteonecrosis of the femoral head is a frequent complication in adult patients with sickle cell disease (SCD). To delay hip arthroplasty, core decompression combined with concentrated total bone marrow (BM) treatment is currently performed in the early stages of the osteonecrosis. Cell therapy efficacy depends on the quantity of implanted BM stromal cells. For this reason, expanded bone marrow stromal cells (BMSCs, also known as bone marrow derived mesenchymal stem cells) can be used to improve osteonecrosis treatment in SCD patients. In this study, we quantitatively and qualitatively evaluated the function of BMSCs isolated from a large number of SCD patients with osteonecrosis (SCD-ON) compared with control groups (patients with osteonecrosis not related to SCD (ON) and normal donors (N)). BM total nuclear cells and colony-forming efficiency values (CFE) were significantly higher in SCD-ON patients than in age and sex-matched controls. The BMSCs from SCD-ON patients were similar to BMSCs from the control groups in terms of their phenotypic and functional properties. SCD-ON patients have a higher frequency of BMSCs that retain their bone regeneration potential. Our findings suggest that BMSCs isolated from SCD-ON patients can be used clinically in cell therapy approaches. This work provides important preclinical data that is necessary for the clinical application of expanded BMSCs in advanced therapies and medical products. PMID:26492634

  8. Quantitative Analysis of Glycans, Related Genes, and Proteins in Two Human Bone Marrow Stromal Cell Lines using an Integrated Strategy

    PubMed Central

    Li, Xiang; Li, Dongliang; Pang, Xingchen; Yang, Ganglong; Deeg, H. Joachim; Guan, Feng

    2016-01-01

    Altered expressions of glycans is associated with cell-cell signal transduction and regulation of cell functions in the bone marrow microenvironment. Studies of this microenvironment often use two human bone marrow stromal cell lines, HS5 and HS27a, co-cultured with myeloid cells. We hypothesized that differential protein glycosylation between these two cell lines may contribute to functional differences in in vitro co-culture models. In this study, we applied an integrated strategy using genomic, proteomic, and functional glycomic techniques for global expression profiling of N-glycans and their related genes and enzymes in HS5 vs. HS27a cells. HS5 cells showed significantly enhanced levels of bisecting N-glycans (catalyzed by MGAT3), whereas HS27a cells showed enhanced levels of Galβ1, 4GlcNAc (catalyzed by β4GalT1). This integrated strategy provides useful information regarding the functional roles of glycans and their related glycogenes and glycosyltransferases in the bone marrow microenvironment, and a basis for future studies of crosstalk among stromal cells and myeloma cells in co-culture. PMID:25936519

  9. Autologous bone marrow stromal cells are promising candidates for cell therapy approaches to treat bone degeneration in sickle cell disease.

    PubMed

    Lebouvier, Angélique; Poignard, Alexandre; Coquelin-Salsac, Laura; Léotot, Julie; Homma, Yasuhiro; Jullien, Nicolas; Bierling, Philippe; Galactéros, Frédéric; Hernigou, Philippe; Chevallier, Nathalie; Rouard, Hélène

    2015-11-01

    Osteonecrosis of the femoral head is a frequent complication in adult patients with sickle cell disease (SCD). To delay hip arthroplasty, core decompression combined with concentrated total bone marrow (BM) treatment is currently performed in the early stages of the osteonecrosis. Cell therapy efficacy depends on the quantity of implanted BM stromal cells. For this reason, expanded bone marrow stromal cells (BMSCs, also known as bone marrow derived mesenchymal stem cells) can be used to improve osteonecrosis treatment in SCD patients. In this study, we quantitatively and qualitatively evaluated the function of BMSCs isolated from a large number of SCD patients with osteonecrosis (SCD-ON) compared with control groups (patients with osteonecrosis not related to SCD (ON) and normal donors (N)). BM total nuclear cells and colony-forming efficiency values (CFE) were significantly higher in SCD-ON patients than in age and sex-matched controls. The BMSCs from SCD-ON patients were similar to BMSCs from the control groups in terms of their phenotypic and functional properties. SCD-ON patients have a higher frequency of BMSCs that retain their bone regeneration potential. Our findings suggest that BMSCs isolated from SCD-ON patients can be used clinically in cell therapy approaches. This work provides important preclinical data that is necessary for the clinical application of expanded BMSCs in advanced therapies and medical products.

  10. Targeting eradication of malignant cells derived from human bone marrow mesenchymal stromal cells

    SciTech Connect

    Yang, Yingbin; Cai, Shaoxi; Yang, Li; Yu, Shuhui; Jiang, Jiahuan; Yan, Xiaoqing; Zhang, Haoxing; Liu, Lan; Liu, Qun; Du, Jun; Cai, Shaohui; Sung, K.L. Paul

    2010-12-10

    Human bone marrow mesenchymal stromal cells (hBMSC) have been shown to participate in malignant transformation. However, hampered by the low frequency of malignant transformation of hBMSC, we do not yet know how to prevent malignant transformation of implanted hBMSC. In this study, in order to establish a model for the eradication of hBMSC-derived malignant cells, a gene fusion consisting of a human telomerase (hTERT) promoter modified with both c-Myc and myeloid zinc finger protein2 (MZF-2) binding elements and followed by the E. coli cytosine deaminase (CD) and luciferase genes was stably transferred into hBMSC via lentiviral transduction; n-phosphonacelyl-L-aspartic acid (PALA) selection was used to generate malignant cell colonies derived from transduced hBMSC after treatment with the carcinogenic reagent BPDE. Cells that were amplified after PALA selection were used for transplantation and 5-FC pro-drug cytotoxicity tests. The results showed that PALA-resistant malignant cells could be generated from hBMSC co-induced with lentiviral transduction and treatment with Benzo(a)pyrene Diol Epoxide (BPDE); the modification of c-Myc and MZF-2 binding elements could remarkably enhance the transcriptional activities of the hTERT promoter in malignant cells, whereas transcriptional activity was depressed in normal hBMSC; malignant cells stably expressing CD under the control of the modified hTERT promoter could be eliminated by 5-FC administration. This study has provided a method for targeted eradication of malignant cells derived from hBMSC.

  11. Mechanical stimulation orchestrates the osteogenic differentiation of human bone marrow stromal cells by regulating HDAC1.

    PubMed

    Wang, J; Wang, C D; Zhang, N; Tong, W X; Zhang, Y F; Shan, S Z; Zhang, X L; Li, Q F

    2016-01-01

    Mechanical stimulation and histone deacetylases (HDACs) have essential roles in regulating the osteogenic differentiation of bone marrow stromal cells (BMSCs) and bone formation. However, little is known regarding what regulates HDAC expression and therefore the osteogenic differentiation of BMSCs during osteogenesis. In this study, we investigated whether mechanical loading regulates HDAC expression directly and examined the role of HDACs in mechanical loading-triggered osteogenic differentiation and bone formation. We first studied the microarrays of samples from patients with osteoporosis and found that the NOTCH pathway and skeletal development gene sets were downregulated in the BMSCs of patients with osteoporosis. Then we demonstrated that mechanical stimuli can regulate osteogenesis and bone formation both in vivo and in vitro. NOTCH signaling was upregulated during cyclic mechanical stretch (CMS)-induced osteogenic differentiation, whereas HDAC1 protein expression was downregulated. The perturbation of HDAC1 expression also had a significant effect on matrix mineralization and JAG1-mediated Notch signaling, suggesting that HDAC1 acts as an endogenous attenuator of Notch signaling in the mechanotransduction of BMSCs. Chromatin immunoprecipitation (ChIP) assay results suggest that HDAC1 modulates the CMS-induced histone H3 acetylation level at the JAG1 promoter. More importantly, we found an inhibitory role of Hdac1 in regulating bone formation in response to hindlimb unloading in mice, and pretreatment with an HDAC1 inhibitor partly rescued the osteoporosis caused by mechanical unloading. Our results demonstrate, for the first time, that mechanical stimulation orchestrates genes expression involved in the osteogenic differentiation of BMSCs via the direct regulation of HDAC1, and the therapeutic inhibition of HDAC1 may be an efficient strategy for enhancing bone formation under mechanical stimulation.

  12. Ultrastructural study of cultured ovine bone marrow-derived mesenchymal stromal cells.

    PubMed

    Desantis, Salvatore; Accogli, Gianluca; Zizza, Sara; Mastrodonato, Maria; Blasi, Antonella; Francioso, Edda; Rossi, Roberta; Crovace, Antonio; Resta, Leonardo

    2015-09-01

    Ovine bone marrow-derived mesenchymal stromal cells (oBM-MSCs) represent a good animal model for cell-based therapy and tissue engineering. Despite their use as a new therapeutic tool for several clinical applications, the morphological features of oBM-MSCs are yet unknown. Therefore, in this study the ultrastructural phenotype of these cells was analysed by transmission electron microscopy (TEM). The oBM-MSCs were isolated from the iliac crest and cultured until they reached near-confluence. After trypsinization, they were processed to investigate their ultrastructural features as well as specific surface marker proteins by flow cytometry and immunogold electron microscopy. Flow cytometry displayed that all oBM-MSCs lacked expression of CD31, CD34, CD45, HLA-DR whereas they expressed CD44, CD58, HLAI and a minor subset of the cell population (12%) exhibited CD90. TEM revealed the presence of two morphologically distinct cell types: cuboidal electron-lucent cells and spindle-shaped electron-dense cells, both expressing the CD90 antigen. Most of the electron-lucent cells showed glycogen aggregates, dilated cisternae of RER, moderately developed Golgi complex, and secretory activity. The electron-dense cell type was constituted by two different cell-populations: type A cells with numerous endosomes, dense bodies, rod-shaped mitochondria and filopodia; type B cells with elongated mitochondria, thin pseudopodia and cytoplasmic connectivity with electron-lucent cells. These morphological findings could provide a useful support to identify "in situ" the cellular components involved in the cell-therapy when cultured oBM-MSCs are injected.

  13. Functional characterisation of bone marrow-derived mesenchymal stromal cells from COPD patients

    PubMed Central

    Roelofs, Helene; Zarcone, Maria C.; Taube, Christian; Stolk, Jan; Hiemstra, Pieter S.

    2016-01-01

    Autologous bone marrow-derived mesenchymal stromal cells (BM-MSCs) are evaluated for clinical use in chronic obstructive pulmonary disease (COPD) patients, but it is unclear whether COPD affects BM-MSCs. To investigate this, BM-MSCs from nine COPD patients and nine non-COPD age-matched controls were compared with regard to immunophenotype, growth and differentiation potential, and migration capacity. Other functional assays included the response to pro-inflammatory stimuli and inducers of the nuclear factor (erythroid derived 2)-like 2 antioxidant response element (Nrf2-ARE) pathway, and effects on NCI-H292 airway epithelial cells. No significant differences were observed in terms of morphology, proliferation and migration, except for increased adipocyte differentiation potential in the COPD group. Both groups were comparable regarding mRNA expression of growth factors and inflammatory mediators, and in their potential to induce mRNA expression of epidermal growth factor receptor ligands in NCI-H292 airway epithelial cells. MSCs from COPD patients secreted more interleukin-6 in response to pro-inflammatory stimuli. Activation of the Nrf2-ARE pathway resulted in a comparable induction of mRNA expression of four target genes, but the expression of the NAD(P)H:quinone oxidoreductase 1 gene NQO1 was lower in MSCs from COPD patients. The observation that MSCs from COPD patients are phenotypically and functionally comparable to those from non-COPD controls implies that autologous MSCs can be considered for use in the setting of clinical trials as a treatment for COPD. PMID:27730190

  14. Growth and differentiation of bone marrow stromal cells on biodegradable polymer scaffolds: an in vitro study.

    PubMed

    Xue, Ying; Dånmark, Staffan; Xing, Zhe; Arvidson, Kristina; Albertsson, Ann-Christine; Hellem, Sølve; Finne-Wistrand, Anna; Mustafa, Kamal

    2010-12-15

    A fundamental component of bone tissue engineering is an appropriate scaffold as a carrier for osteogenic cells. The aim of the study was to evaluate the response of human bone marrow stromal cells (BMSC) to scaffolds made of three biodegradable polymers: poly(L-lactide-co-ε-caprolactone) (poly(LLA-co-CL)), poly(L-lactide-co-1,5dioxepan-2-one) (poly(LLA-co-DXO)), and poly(L-lactide) (poly(LLA)). Cellular response was evaluated in terms of attachment, proliferation, and differentiation. SEM disclosed earlier cell attachment and better spreading on poly(LLA-co-CL) and poly(LLA-co-DXO) scaffolds than on poly(LLA) after 1 h. At 24 h and 14 days postseeding, BMSCs had spread well, forming multiple cellular layers on the scaffolds. Cell proliferation was higher on poly(LLA-co-CL) and on poly(LLA-co-DXO) than on poly(LLA) after 1 and 7 days. Cell growth cycles of BMSC were longer on the scaffolds than on coverslips. After 7 and 14 days cultivation on scaffolds, the expression of osteogenic markers such as ALP, Col I, OPN, and Runx2 were stimulated by BMSC, which indicating that poly(LLA-co-DXO), poly(LLA-co-CL), and poly(LLA) could support the osteogenic differentiation of BMSC in vitro. Poly(LLA-co-CL) and poly(LLA-co-DXO) promoted better attachment and growth of BMSC than poly(LLA). BMSC also retained their osteogenic differentiation potential, indicating biological activity of BMSC on the scaffolds. The promising results of this in vitro study indicate that these copolymers warrant further evaluation for potential application in bone tissue engineering.

  15. Ultrastructural study of cultured ovine bone marrow-derived mesenchymal stromal cells.

    PubMed

    Desantis, Salvatore; Accogli, Gianluca; Zizza, Sara; Mastrodonato, Maria; Blasi, Antonella; Francioso, Edda; Rossi, Roberta; Crovace, Antonio; Resta, Leonardo

    2015-09-01

    Ovine bone marrow-derived mesenchymal stromal cells (oBM-MSCs) represent a good animal model for cell-based therapy and tissue engineering. Despite their use as a new therapeutic tool for several clinical applications, the morphological features of oBM-MSCs are yet unknown. Therefore, in this study the ultrastructural phenotype of these cells was analysed by transmission electron microscopy (TEM). The oBM-MSCs were isolated from the iliac crest and cultured until they reached near-confluence. After trypsinization, they were processed to investigate their ultrastructural features as well as specific surface marker proteins by flow cytometry and immunogold electron microscopy. Flow cytometry displayed that all oBM-MSCs lacked expression of CD31, CD34, CD45, HLA-DR whereas they expressed CD44, CD58, HLAI and a minor subset of the cell population (12%) exhibited CD90. TEM revealed the presence of two morphologically distinct cell types: cuboidal electron-lucent cells and spindle-shaped electron-dense cells, both expressing the CD90 antigen. Most of the electron-lucent cells showed glycogen aggregates, dilated cisternae of RER, moderately developed Golgi complex, and secretory activity. The electron-dense cell type was constituted by two different cell-populations: type A cells with numerous endosomes, dense bodies, rod-shaped mitochondria and filopodia; type B cells with elongated mitochondria, thin pseudopodia and cytoplasmic connectivity with electron-lucent cells. These morphological findings could provide a useful support to identify "in situ" the cellular components involved in the cell-therapy when cultured oBM-MSCs are injected. PMID:26196242

  16. Mesenchymal stromal cells derived from acute myeloid leukemia bone marrow exhibit aberrant cytogenetics and cytokine elaboration.

    PubMed

    Huang, J C; Basu, S K; Zhao, X; Chien, S; Fang, M; Oehler, V G; Appelbaum, F R; Becker, P S

    2015-01-01

    Bone marrow-derived mesenchymal stromal cells (BM-MSCs) play a fundamental role in the BM microenvironment (BME) and abnormalities of these cells may contribute to acute myeloid leukemia (AML) pathogenesis. The aim of the study was to characterize the cytokine and gene expression profile, immunophenotype and cytogenetics of BM-MSCs from AML patients compared to normal BM-MSCs from healthy donors. AML BM-MSCs showed decreased monocyte chemoattractant protein-1 levels compared to normal BM-MSCs. AML BM-MSCs expressed similar β1 integrin, CD44, CD73, CD90 and E-cadherin compared to normal BM-MSCs. Cytogenetic analysis revealed chromosomal aberrations in AML BM-MSCs, some overlapping with and others distinct from their corresponding AML blasts. No significant difference in gene expression was detected between AML BM-MSCs compared to normal BM-MSCs; however, comparing the differences between AML and MSCs from AML patients with the differences between normal hematopoietic cells and normal MSCs by Ingenuity pathway analysis showed key distinctions of the AML setting: (1) upstream gene regulation by transforming growth factor beta 1, tumor necrosis factor, tissue transglutaminase 2, CCAAT/enhancer binding protein alpha and SWItch/Sucrose NonFermentable related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4; (2) integrin and interleukin 8 signaling as overrepresented canonical pathways; and (3) upregulation of transcription factors FBJ murine osteosarcoma viral oncogene homolog and v-myb avian myeloblastosis viral oncogene homolog. Thus, phenotypic abnormalities of AML BM-MSCs highlight a dysfunctional BME that may impact AML survival and proliferation. PMID:25860293

  17. Mechanical stimulation orchestrates the osteogenic differentiation of human bone marrow stromal cells by regulating HDAC1

    PubMed Central

    Wang, J; Wang, C D; Zhang, N; Tong, W X; Zhang, Y F; Shan, S Z; Zhang, X L; Li, Q F

    2016-01-01

    Mechanical stimulation and histone deacetylases (HDACs) have essential roles in regulating the osteogenic differentiation of bone marrow stromal cells (BMSCs) and bone formation. However, little is known regarding what regulates HDAC expression and therefore the osteogenic differentiation of BMSCs during osteogenesis. In this study, we investigated whether mechanical loading regulates HDAC expression directly and examined the role of HDACs in mechanical loading-triggered osteogenic differentiation and bone formation. We first studied the microarrays of samples from patients with osteoporosis and found that the NOTCH pathway and skeletal development gene sets were downregulated in the BMSCs of patients with osteoporosis. Then we demonstrated that mechanical stimuli can regulate osteogenesis and bone formation both in vivo and in vitro. NOTCH signaling was upregulated during cyclic mechanical stretch (CMS)-induced osteogenic differentiation, whereas HDAC1 protein expression was downregulated. The perturbation of HDAC1 expression also had a significant effect on matrix mineralization and JAG1-mediated Notch signaling, suggesting that HDAC1 acts as an endogenous attenuator of Notch signaling in the mechanotransduction of BMSCs. Chromatin immunoprecipitation (ChIP) assay results suggest that HDAC1 modulates the CMS-induced histone H3 acetylation level at the JAG1 promoter. More importantly, we found an inhibitory role of Hdac1 in regulating bone formation in response to hindlimb unloading in mice, and pretreatment with an HDAC1 inhibitor partly rescued the osteoporosis caused by mechanical unloading. Our results demonstrate, for the first time, that mechanical stimulation orchestrates genes expression involved in the osteogenic differentiation of BMSCs via the direct regulation of HDAC1, and the therapeutic inhibition of HDAC1 may be an efficient strategy for enhancing bone formation under mechanical stimulation. PMID:27171263

  18. Bone Marrow Mesenchymal Stromal Cells Stimulate Skeletal Myoblast Proliferation through the Paracrine Release of VEGF

    PubMed Central

    Chellini, Flaminia; Mazzanti, Benedetta; Nistri, Silvia; Nosi, Daniele; Saccardi, Riccardo; Quercioli, Franco; Zecchi-Orlandini, Sandra; Formigli, Lucia

    2012-01-01

    Mesenchymal stromal cells (MSCs) are the leading cell candidates in the field of regenerative medicine. These cells have also been successfully used to improve skeletal muscle repair/regeneration; however, the mechanisms responsible for their beneficial effects remain to be clarified. On this basis, in the present study, we evaluated in a co-culture system, the ability of bone-marrow MSCs to influence C2C12 myoblast behavior and analyzed the cross-talk between the two cell types at the cellular and molecular level. We found that myoblast proliferation was greatly enhanced in the co-culture as judged by time lapse videomicroscopy, cyclin A expression and EdU incorporation. Moreover, myoblasts immunomagnetically separated from MSCs after co-culture expressed higher mRNA and protein levels of Notch-1, a key determinant of myoblast activation and proliferation, as compared with the single culture. Notch-1 intracellular domain and nuclear localization of Hes-1, a Notch-1 target gene, were also increased in the co-culture. Interestingly, the myoblastic response was mainly dependent on the paracrine release of vascular endothelial growth factor (VEGF) by MSCs. Indeed, the addition of MSC-derived conditioned medium (CM) to C2C12 cells yielded similar results as those observed in the co-culture and increased the phosphorylation and expression levels of VEGFR. The treatment with the selective pharmacological VEGFR inhibitor, KRN633, resulted in a marked attenuation of the receptor activation and concomitantly inhibited the effects of MSC-CM on C2C12 cell growth and Notch-1 signaling. In conclusion, this study provides novel evidence for a role of MSCs in stimulating myoblast cell proliferation and suggests that the functional interaction between the two cell types may be exploited for the development of new and more efficient cell-based skeletal muscle repair strategies. PMID:22815682

  19. Ameliorating replicative senescence of human bone marrow stromal cells by PSMB5 overexpression

    SciTech Connect

    Lu, Li; Song, Hui-Fang; Wei, Jiao-Long; Liu, Xue-Qin; Song, Wen-Hui; Yan, Ba-Yi; Yang, Gui-Jiao; Li, Ang; Yang, Wu-Lin

    2014-01-24

    Highlights: • PSMB5 overexpression restores the differentiation potential of aged hBMSCs. • PSMB5 overexpression enhances the proteasomal activity of late-stage hBMSCs. • PSMB5 overexpression inhibits replicative senescence and improved cell viability. • PSMB5 overexpression promotes cell growth by upregulating the Cyclin D1/CDK4 complex. - Abstract: Multipotent human bone marrow stromal cells (hBMSCs) potentially serve as a source for cell-based therapy in regenerative medicine. However, in vitro expansion was inescapably accompanied with cell senescence, characterized by inhibited proliferation and compromised pluripotency. We have previously demonstrated that this aging process is closely associated with reduced 20S proteasomal activity, with down-regulation of rate-limiting catalytic β-subunits particularly evident. In the present study, we confirmed that proteasomal activity directly contributes to senescence of hBMSCs, which could be reversed by overexpression of the β5-subunit (PSMB5). Knocking down PSMB5 led to decreased proteasomal activity concurrent with reduced cell proliferation in early-stage hBMSCs, which is similar to the senescent phenotype observed in late-stage cells. In contrast, overexpressing PSMB5 in late-stage cells efficiently restored the normal activity of 20S proteasomes and promoted cell growth, possibly via upregulating the Cyclin D1/CDK4 complex. Additionally, PSMB5 could enhance cell resistance to oxidative stress, as evidenced by the increased cell survival upon exposing senescent hBMSCs to hydrogen peroxide. Furthermore, PSMB5 overexpression retained the pluripotency of late-stage hBMSCs by facilitating their neural differentiation both in vitro and in vivo. Collectively, our work reveals a critical role of PSMB5 in 20S proteasome-mediated protection against replicative senescence, pointing to a possible strategy for maintaining the integrity of culture-expanded hBMSCs by manipulating the expression of PSMB5.

  20. Malignant transformation of bone marrow stromal cells induced by the brain glioma niche in rats.

    PubMed

    He, Qiuping; Zou, Xifeng; Duan, Deyi; Liu, Yujun; Xu, Qunyuan

    2016-01-01

    Normal human embryonic stem cells (hESCs) can develop neoplastic cancer stem cell (CSC) properties after coculture with transformed hESCs in vitro. In the present study, the influence of the tumor microenvironment on malignant transformation of bone marrow stromal cells (BMSCs) was studied after allografting a mixture of enhanced green fluorescent protein (EGFP)-labeled BMSCs and C6 glioma cells into the rat brain to understand the influence of the cellular environment, especially the tumor environment, on the transformation of grafted BMSCs in the rat brain. We performed intracerebral transplantation in the rat brain using EGFP-labeled BMSCs coinjected with C6 tumor cells. After transplantation, the EGFP-labeled cells were isolated from the tumor using fluorescence-activated cell sorting, and the characteristics of the recovered cells were investigated. Glioma-specific biomarkers of the sorted cells and the biological characteristics of the tumors were analyzed. The BMSCs isolated from the cografts were transformed into glioma CSCs, as indicated by the marked expression of the glioma marker GFAP in glioma cells, and of Nestin and CD133 in neural stem cells and CSCs, as well as rapid cell growth, decreased level of the tumor suppressor gene p53, increased level of the oncogene murine double minute gene 2 (MDM2), and recapitulation of glioma tissues in the brain. These data suggest that BMSCs can be transformed into CSCs, which can be further directed toward glioma formation under certain conditions, supporting the notion that the tumor microenvironment is involved in transforming normal BMSCs into glial CSCs. PMID:26590986

  1. Endogenous mesenchymal stromal cells in bone marrow are required to preserve muscle function in mdx mice.

    PubMed

    Fujita, Ryo; Tamai, Katsuto; Aikawa, Eriko; Nimura, Keisuke; Ishino, Saki; Kikuchi, Yasushi; Kaneda, Yasufumi

    2015-03-01

    The physiological role of "endogenous" bone marrow (BM) mesenchymal stromal cells (MSCs) in tissue regeneration is poorly understood. Here, we show the significant contribution of unique endogenous BM-MSC populations to muscle regeneration in Duchenne muscular dystrophy (DMD) mice (mdx). Transplantation of BM cells (BMCs) from 10-week-old mdx into 3-4-week-old mdx mice increased inflammation and fibrosis and reduced muscle function compared with mdx mice that received BMCs from 10-week-old wild-type mice, suggesting that the alteration of BMC populations in mdx mice affects the progression of muscle pathology. Two distinct MSC populations in BM, that is, hematopoietic lineage (Lin)(-) /ckit(-) /CD106(+) /CD44(+) and Lin(-) /ckit(-) /CD106(+) /CD44(-) cells, were significantly reduced in 10-week-old mdx mice in disease progression. The results of a whole-transcriptome analysis indicated that these two MSC populations have distinct gene expression profiles, indicating that the Lin(-) /ckit(-) /CD106(+) /CD44(+) and Lin(-) /ckit(-) /CD106(+) /CD44(-) MSC populations are proliferative- and dormant-state populations in BM, respectively. BM-derived Lin(-) /CD106(+) /CD44(+) MSCs abundantly migrated to damaged muscles and highly expressed tumor necrosis factor-alpha-stimulated gene/protein-6 (TSG-6), an anti-inflammatory protein, in damaged muscles. We also demonstrated that TSG-6 stimulated myoblast proliferation. The injection of Lin(-) /ckit(-) /CD106(+) /CD44(+) MSCs into the muscle of mdx mice successfully ameliorated muscle dysfunction by decreasing inflammation and enhancing muscle regeneration through TSG-6-mediated activities. Thus, we propose a novel function of the unique endogenous BM-MSC population, which countered muscle pathology progression in a DMD model.

  2. Bone marrow stromal cells as an inducer for cardiomyocyte differentiation from mouse embryonic stem cells.

    PubMed

    Yue, Fengming; Johkura, Kohei; Tomotsune, Daihachiro; Shirasawa, Sakiko; Yokoyama, Tadayuki; Nagai, Mika; Sasaki, Katsunori

    2010-09-20

    Bone marrow stromal cells (BMSCs) secrete soluble factors and display varied cell-biological functions. To confirm the ability and efficiency of BMSCs to induce embryonic stem cells (ESCs) into cardiomyocytes, mouse embryoid bodies (EBs) were co-cultured with rat BMSCs. After about 10 days, areas of rhythmically contracting cells in more solid aggregates became evident with bundle-like structures formed along borders between EB outgrowth and BMSC layer. ESC-derived cardiomyocytes exhibited sarcomeric striations when stained with troponin I (Trop I), organized in separated bundles. Besides, the staining for connexin 43 was detected in cell-cell junctions, which demonstrated that ESC-derived cardiomyocytes were coupled by gap junction in culture. The related genes of cardiomyocytes were found in these beating and no-beating EBs co-cultured with BMSCs. In addition, an improved efficiency of cardiomyocyte differentiation from ESC-BMSC co-culture was found in the serum-free medium: 5-fold up-regulation in the number of beating area compared with the serum medium. Effective cardiac differentiation was also recognized in transfer filter assay and in condition medium obtained from BMSC culture. A clear increase in the expression of cardiac genes and TropI protein confirmed further cardiac differentiation by BMP4 and Retinoic Acid (RA) treatment. These results demonstrate that BMSCs can induce cardiomyocyte differentiation from ESCs through soluble factors and enhance it with BMP4 or RA treatment. Serum-free ESC-BMSC co-culture represents a defined in vitro model for identifying the cardiomyocyte-inducing activity from BMSCs and, in addition, a straightforward experimental system for assessing clinical applications. PMID:20801009

  3. Heparin affects human bone marrow stromal cell fate: Promoting osteogenic and reducing adipogenic differentiation and conversion.

    PubMed

    Simann, Meike; Schneider, Verena; Le Blanc, Solange; Dotterweich, Julia; Zehe, Viola; Krug, Melanie; Jakob, Franz; Schilling, Tatjana; Schütze, Norbert

    2015-09-01

    Heparins are broadly used for the prevention and treatment of thrombosis and embolism. Yet, osteoporosis is considered to be a severe side effect in up to one third of all patients on long-term treatment. However, the mechanisms underlying this clinical problem are only partially understood. To investigate if heparin affects differentiation of skeletal precursors, we examined the effects of heparin on the osteogenic and adipogenic lineage commitment and differentiation of primary human bone marrow stromal cells (hBMSCs). Due to the known inverse relationship between adipogenesis and osteogenesis and the capacity of pre-differentiated cells to convert into the respective other lineage, we also determined heparin effects on osteogenic conversion and adipogenic differentiation/conversion. Interestingly, heparin did not only significantly increase mRNA expression and enzyme activity of the osteogenic marker alkaline phosphatase (ALP), but it also promoted mineralization during osteogenic differentiation and conversion. Furthermore, the mRNA expression of the osteogenic marker bone morphogenic protein 4 (BMP4) was enhanced. In addition, heparin administration partly prevented adipogenic differentiation and conversion demonstrated by reduced lipid droplet formation along with a decreased expression of adipogenic markers. Moreover, luciferase reporter assays, inhibitor experiments and gene expression analyses revealed that heparin had putative permissive effects on osteogenic signaling via the BMP pathway and reduced the mRNA expression of the Wnt pathway inhibitors dickkopf 1 (DKK1) and sclerostin (SOST). Taken together, our data show a rather supportive than inhibitory effect of heparin on osteogenic hBMSC differentiation and conversion in vitro. Further studies will have to investigate the net effects of heparin administration on bone formation versus bone resorption in vivo to unravel the molecular mechanisms of heparin-associated osteoporosis and reconcile

  4. Age and skeletal sites affect BMP-2 responsiveness of human bone marrow stromal cells.

    PubMed

    Osyczka, Anna Maria; Damek-Poprawa, Monika; Wojtowicz, Aleksandra; Akintoye, Sunday O

    2009-01-01

    Bone marrow stromal cells (BMSCs) contain osteoprogenitors responsive to stimulation by osteogenic growth factors like bone morphogenetic proteins (BMPs). When used as grafts, BMSCs can be harvested from different skeletal sites such as axial, appendicular, and orofacial bones, but the lower therapeutic efficacy of BMPs on BMSCs-responsiveness in humans compared to animal models may be due partly to effects of skeletal site and age of donor. We previously reported superior differentiation capacity and osteogenic properties of orofacial BMSCs relative to iliac crest BMSCs in same individuals. This study tested the hypothesis that recombinant human BMP-2 (rhBMP-2) stimulates human BMSCs differently based on age and skeletal site of harvest. Adult maxilla, mandible, and iliac crest BMSCs from same individuals and pediatric iliac crest BMSCs were comparatively assessed for BMP-2 responsiveness under serum-containing and serum-free insulin-supplemented culture conditions. Adult orofacial BMSCs were more BMP-2-responsive than iliac crest BMSCs based on higher gene transcripts of alkaline phosphatase, osteopontin, and osteogenic transcription factors MSX-2 and Osterix in serum-free insulin-containing medium. Pediatric iliac crest BMSCs were more responsive to rhBMP-2 than adult iliac crest BMSCs based on higher expression of alkaline phosphatase and osteopontin in serum-containing medium. Unlike orofacial BMSCs, MSX-2 and Osterix transcripts were similarly expressed by adult and pediatric iliac crest BMSCs in response to rhBMP-2. These data demonstrate that age and skeletal site-specific differences exist in BMSC osteogenic responsiveness to BMP-2 stimulation and suggest that MSX-2 and Osterix may be potential regulatory transcription factors in BMP-mediated osteogenesis of adult orofacial cells.

  5. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow.

    PubMed

    Zhou, Bo O; Yue, Rui; Murphy, Malea M; Peyer, James G; Morrison, Sean J

    2014-08-01

    Studies of the identity and physiological function of mesenchymal stromal cells (MSCs) have been hampered by a lack of markers that permit both prospective identification and fate mapping in vivo. We found that Leptin Receptor (LepR) is a marker that highly enriches bone marrow MSCs. Approximately 0.3% of bone marrow cells were LepR(+), 10% of which were CFU-Fs, accounting for 94% of bone marrow CFU-Fs. LepR(+) cells formed bone, cartilage, and adipocytes in culture and upon transplantation in vivo. LepR(+) cells were Scf-GFP(+), Cxcl12-DsRed(high), and Nestin-GFP(low), markers which also highly enriched CFU-Fs, but negative for Nestin-CreER and NG2-CreER, markers which were unlikely to be found in CFU-Fs. Fate-mapping showed that LepR(+) cells arose postnatally and gave rise to most bone and adipocytes formed in adult bone marrow, including bone regenerated after irradiation or fracture. LepR(+) cells were quiescent, but they proliferated after injury. Therefore, LepR(+) cells are the major source of bone and adipocytes in adult bone marrow.

  6. Silencing of RB1 and RB2/P130 during adipogenesis of bone marrow stromal cells results in dysregulated differentiation.

    PubMed

    Capasso, Stefania; Alessio, Nicola; Di Bernardo, Giovanni; Cipollaro, Marilena; Melone, Mariarosa Ab; Peluso, Gianfranco; Giordano, Antonio; Galderisi, Umberto

    2014-01-01

    Bone marrow adipose tissue (BMAT) is different from fat found elsewhere in the body, and only recently have some of its functions been investigated. BMAT may regulate bone marrow stem cell niche and plays a role in energy storage and thermogenesis. BMAT may be involved also in obesity and osteoporosis onset. Given the paramount functions of BMAT, we decided to better clarify the human bone marrow adipogenesis by analyzing the role of the retinoblastoma gene family, which are key players in cell cycle regulation. Our data provide evidence that the inactivation of RB1 or RB2/P130 in uncommitted bone marrow stromal cells (BMSC) facilitates the first steps of adipogenesis. In cultures with silenced RB1 or RB2/P130, we observed an increase of clones with adipogenic potential and a higher percentage of cells accumulating lipid droplets. Nevertheless, the absence of RB1 or RB2/P130 impaired the terminal adipocyte differentiation and gave rise to dysregulated adipose cells, with alteration in lipid uptake and release. For the first time, we evidenced that RB2/P130 plays a role in bone marrow adipogenesis. Our data suggest that while the inactivation of retinoblastoma proteins may delay the onset of last cell division and allow more BMSC to be committed to adipocyte, it did not allow a permanent cell cycle exit, which is a prerequisite for adipocyte terminal maturation.

  7. Silencing of RB1 and RB2/P130 during adipogenesis of bone marrow stromal cells results in dysregulated differentiation

    PubMed Central

    Capasso, Stefania; Alessio, Nicola; Di Bernardo, Giovanni; Cipollaro, Marilena; Melone, Mariarosa AB; Peluso, Gianfranco; Giordano, Antonio; Galderisi, Umberto

    2014-01-01

    Bone marrow adipose tissue (BMAT) is different from fat found elsewhere in the body, and only recently have some of its functions been investigated. BMAT may regulate bone marrow stem cell niche and plays a role in energy storage and thermogenesis. BMAT may be involved also in obesity and osteoporosis onset. Given the paramount functions of BMAT, we decided to better clarify the human bone marrow adipogenesis by analyzing the role of the retinoblastoma gene family, which are key players in cell cycle regulation. Our data provide evidence that the inactivation of RB1 or RB2/P130 in uncommitted bone marrow stromal cells (BMSC) facilitates the first steps of adipogenesis. In cultures with silenced RB1 or RB2/P130, we observed an increase of clones with adipogenic potential and a higher percentage of cells accumulating lipid droplets. Nevertheless, the absence of RB1 or RB2/P130 impaired the terminal adipocyte differentiation and gave rise to dysregulated adipose cells, with alteration in lipid uptake and release. For the first time, we evidenced that RB2/P130 plays a role in bone marrow adipogenesis. Our data suggest that while the inactivation of retinoblastoma proteins may delay the onset of last cell division and allow more BMSC to be committed to adipocyte, it did not allow a permanent cell cycle exit, which is a prerequisite for adipocyte terminal maturation. PMID:24281253

  8. Adult human bone marrow stromal spheres express neuronal traits in vitro and in a rat model of Parkinson's disease

    PubMed Central

    Suon, Sokreine; Yang, Ming; Iacovitti, Lorraine

    2007-01-01

    Adult human bone marrow stromal cells (hMSCs) grown in suspension culture gave rise to spheres of neural progenitor (NP) cells, capable of expressing both dopaminergic (DA) and GABAergic (GABA) traits. After transplantation into the Parkinsonian rat, human NPs and neurons were present at 2 weeks. Although no DA neurons appeared to survive transplantation, there were abundant GABA neurons present in the graft. By 4 weeks, however, all cells had died. Finding ways to prolong survival and promote the appropriate neurotransmitter phenotype is essential if hMSCs are to be clinically useful. PMID:16828720

  9. Increased Gs Signaling in Osteoblasts Reduces Bone Marrow and Whole-Body Adiposity in Male Mice.

    PubMed

    Cain, Corey J; Valencia, Joel T; Ho, Samantha; Jordan, Kate; Mattingly, Aaron; Morales, Blanca M; Hsiao, Edward C

    2016-04-01

    Bone is increasingly recognized as an endocrine organ that can regulate systemic hormones and metabolism through secreted factors. Although bone loss and increased adiposity appear to be linked clinically, whether conditions of increased bone formation can also change systemic metabolism remains unclear. In this study, we examined how increased osteogenesis affects metabolism by using an engineered G protein-coupled receptor, Rs1, to activate Gs signaling in osteoblastic cells in ColI(2.3)(+)/Rs1(+) transgenic mice. We previously showed that these mice have dramatically increased bone formation resembling fibrous dysplasia of the bone. We found that total body fat was significantly reduced starting at 3 weeks of age. Furthermore, ColI(2.3)(+)/Rs1(+) mice showed reduced O2 consumption and respiratory quotient measures without effects on food intake and energy expenditure. The mice had significantly decreased serum triacylglycerides, leptin, and adiponectin. Resting glucose and insulin levels were unchanged; however, glucose and insulin tolerance tests revealed increased sensitivity to insulin. The mice showed resistance to fat accumulation from a high-fat diet. Furthermore, ColI(2.3)(+)/Rs1(+) mouse bones had dramatically reduced mature adipocyte differentiation, increased Wingless/Int-1 (Wnt) signaling, and higher osteoblastic glucose utilization than controls. These findings suggest that osteoblasts can influence both local and peripheral adiposity in conditions of increased bone formation and suggest a role for osteoblasts in the regulation of whole-body adiposity and metabolic homeostasis. PMID:26901092

  10. The HIV proteins Tat and Nef promote human bone marrow mesenchymal stem cell senescence and alter osteoblastic differentiation

    PubMed Central

    Beaupere, Carine; Garcia, Marie; Larghero, Jerome; Fève, Bruno; Capeau, Jacqueline; Lagathu, Claire

    2015-01-01

    To maintain bone mass turnover and bone mineral density (BMD), bone marrow (BM) mesenchymal stem cells (MSCs) are constantly recruited and subsequently differentiated into osteoblasts. HIV-infected patients present lower BMD than non-HIV infected individuals and a higher prevalence of osteopenia/osteoporosis. In antiretroviral treatment (ART)-naive patients, encoded HIV proteins represent pathogenic candidates. They are released by infected cells within BM and can impact on neighbouring cells. In this study, we tested whether HIV proteins Tat and/or Nef could induce senescence of human BM-MSCs and reduce their capacity to differentiate into osteoblasts. When compared to nontreated cells, MSCs chronically treated with Tat and/or Nef up to 30 days reduced their proliferative activity and underwent early senescence, associated with increased oxidative stress and mitochondrial dysfunction. The antioxidant molecule N-acetyl- cysteine had no or minimal effects on Tat- or Nef-induced senescence. Tat but not Nef induced an early increase in NF-κB activity and cytokine/chemokine secretion. Tat-induced effects were prevented by the NF-κB inhibitor parthenolide, indicating that Tat triggered senescence via NF-κB activation leading to oxidative stress. Otherwise, Nef- but not Tat-treated cells displayed early inhibition of autophagy. Rapamycin, an autophagy inducer, reversed Nef-induced senescence and oxidative stress. Moreover, Tat+Nef had cumulative effects. Finally, Tat and/or Nef decreased the MSC potential of osteoblastic differentiation. In conclusion, our in vitro data show that Tat and Nef could reduce the number of available precursors by inducing MSC senescence, through either enhanced inflammation or reduced autophagy. These results offer new insights into the pathophysiological mechanisms of decreased BMD in HIV-infected patients. PMID:25847297

  11. Zinc enhances bone metabolism in ovariectomized rats and exerts anabolic osteoblastic/adipocytic marrow effects ex vivo.

    PubMed

    Li, Binbin; Liu, Hao; Jia, Shengnan

    2015-02-01

    Investigations of bone mass and marrow adiposity are critical for defining the role of zinc (Zn) in bone metabolism. Rats used for study were grouped as follows: control (sham), ovariectomy (OVX), ovariectomy + estradiol (OVX-E), ovariectomy + Zn treatment (OVX-Zn). Bone mineral density (BMD) was quantified (microCT); serum osteocalcin, adiponectin, RANKL, and TRAP levels were assayed (ELISA); and biochemical determinations of serum alkaline phosphatase (ALP), calcium (Ca), and phosphorus (P) were done. Cells derived from bone mesenchymal stem cell (BMSC) isolates of respective test groups were compared, identifying primary osteoblasts by MTT assay and adipocytes by Oil Red O stain. Osteocalcin and adiponectin levels in culture supernatants were determined by ELISA. Zn supplementation resulted in a modest increase in BMD, but serum osteocalcin and ALP activity increased significantly (P < 0.01, both). Serum levels of RANKL and TRAP were lower in OVX-Zn (vs OVX) rats (P < 0.01), whereas serum concentrations of adiponectin, Ca, and P did not differ by group. Osteocalcin level was significantly upregulated ex vivo (P < 0.01) in the supernatant of cultured OVX-Zn (vs OVX) cells, accompanied by a slight upturn in osteoblastic differentiation. However, Oil Red O uptake and adiponectin level in supernatant were sharply diminished in cultured OVX-Zn (vs OVX) cells (P < 0.01). Overall, we concluded that Zn contributes to bone mass by marginally stimulating differentiation and proliferation of osteoblasts and by effectively inhibiting osteoclastic and adipocytic differentiation of BMSCs.

  12. Differentiation of Bone Marrow Mesenchymal Stem Cells in Osteoblasts and Adipocytes and its Role in Treatment of Osteoporosis

    PubMed Central

    Wang, Cheng; Meng, Haoye; Wang, Xin; Zhao, Chenyang; Peng, Jing; Wang, Yu

    2016-01-01

    Osteoporosis is a systemic metabolic bone disorder characterized by a decrease in bone mass and degradation of the bone microstructure, leaving bones that are fragile and prone to fracture. Most osteoporosis treatments improve symptoms, but to date there is no quick and effective therapy. Bone marrow mesenchymal stem cells (BMMSCs) have pluripotent potential. In adults, BMMSCs differentiate mainly into osteoblasts and adipocytes in the skeleton. However, if this differentiation is unbalanced, it may lead to a decrease in bone mass. If the number of adipocyte cells increases and that of osteoblast cells decreases, osteoporosis can result. A variety of hormones and cytokines play an important role in the regulation of BMMSCs bidirectional differentiation. Therefore, a greater understanding of the regulation mechanism of BMMSC differentiation may provide new methods to prevent and treat osteoporosis. In addition, autologous, allogeneic BMMSCs or genetically modified BMMSC transplantation can effectively increase bone mass and density, increase bone mechanical strength, correct the imbalance in bone metabolism, and increase bone formation, and is expected to provide a new strategy and method for the treatment of osteoporosis. PMID:26795027

  13. Phenotype, donor age and gender affect function of human bone marrow-derived mesenchymal stromal cells

    PubMed Central

    2013-01-01

    Background Mesenchymal stromal cells (MSCs) are attractive for cell-based therapies ranging from regenerative medicine and tissue engineering to immunomodulation. However, clinical efficacy is variable and it is unclear how the phenotypes defining bone marrow (BM)-derived MSCs as well as donor characteristics affect their functional properties. Methods BM-MSCs were isolated from 53 (25 female, 28 male; age: 13 to 80 years) donors and analyzed by: (1) phenotype using flow cytometry and cell size measurement; (2) in vitro growth kinetics using population doubling time; (3) colony formation capacity and telomerase activity; and (4) function by in vitro differentiation capacity, suppression of T cell proliferation, cytokines and trophic factors secretion, and hormone and growth factor receptor expression. Additionally, expression of Oct4, Nanog, Prdm14 and SOX2 mRNA was compared to pluripotent stem cells. Results BM-MSCs from younger donors showed increased expression of MCAM, VCAM-1, ALCAM, PDGFRβ, PDL-1, Thy1 and CD71, and led to lower IL-6 production when co-cultured with activated T cells. Female BM-MSCs showed increased expression of IFN-γR1 and IL-6β, and were more potent in T cell proliferation suppression. High-clonogenic BM-MSCs were smaller, divided more rapidly and were more frequent in BM-MSC preparations from younger female donors. CD10, β1integrin, HCAM, CD71, VCAM-1, IFN-γR1, MCAM, ALCAM, LNGFR and HLA ABC were correlated to BM-MSC preparations with high clonogenic potential and expression of IFN-γR1, MCAM and HLA ABC was associated with rapid growth of BM-MSCs. The mesodermal differentiation capacity of BM-MSCs was unaffected by donor age or gender but was affected by phenotype (CD10, IFN-γR1, GD2). BM-MSCs from female and male donors expressed androgen receptor and FGFR3, and secreted VEGF-A, HGF, LIF, Angiopoietin-1, basic fibroblast growth factor (bFGF) and NGFB. HGF secretion correlated negatively to the expression of CD71, CD140b and

  14. Neural differentiation potential of human bone marrow-derived mesenchymal stromal cells: misleading marker gene expression

    PubMed Central

    Montzka, Katrin; Lassonczyk, Nina; Tschöke, Beate; Neuss, Sabine; Führmann, Tobias; Franzen, Rachelle; Smeets, Ralf; Brook, Gary A; Wöltje, Michael

    2009-01-01

    Background In contrast to pluripotent embryonic stem cells, adult stem cells have been considered to be multipotent, being somewhat more restricted in their differentiation capacity and only giving rise to cell types related to their tissue of origin. Several studies, however, have reported that bone marrow-derived mesenchymal stromal cells (MSCs) are capable of transdifferentiating to neural cell types, effectively crossing normal lineage restriction boundaries. Such reports have been based on the detection of neural-related proteins by the differentiated MSCs. In order to assess the potential of human adult MSCs to undergo true differentiation to a neural lineage and to determine the degree of homogeneity between donor samples, we have used RT-PCR and immunocytochemistry to investigate the basal expression of a range of neural related mRNAs and proteins in populations of non-differentiated MSCs obtained from 4 donors. Results The expression analysis revealed that several of the commonly used marker genes from other studies like nestin, Enolase2 and microtubule associated protein 1b (MAP1b) are already expressed by undifferentiated human MSCs. Furthermore, mRNA for some of the neural-related transcription factors, e.g. Engrailed-1 and Nurr1 were also strongly expressed. However, several other neural-related mRNAs (e.g. DRD2, enolase2, NFL and MBP) could be identified, but not in all donor samples. Similarly, synaptic vesicle-related mRNA, STX1A could only be detected in 2 of the 4 undifferentiated donor hMSC samples. More significantly, each donor sample revealed a unique expression pattern, demonstrating a significant variation of marker expression. Conclusion The present study highlights the existence of an inter-donor variability of expression of neural-related markers in human MSC samples that has not previously been described. This donor-related heterogeneity might influence the reproducibility of transdifferentiation protocols as well as contributing to the

  15. Formation and differentiation of three-dimensional rat marrow stromal cell culture on microcarriers in a rotating-wall vessel

    NASA Technical Reports Server (NTRS)

    Qiu, Q.; Ducheyne, P.; Gao, H.; Ayyaswamy, P.

    1998-01-01

    Using a high aspect ratio vessel (HARV), this study investigated the formation of 3-D rat marrow stromal cell culture on microcarriers and the expression of bone-related biochemical markers under conditions of simulated microgravity. In addition, it calculated the shear stresses imparted on the surface of microcarriers of different densities by the medium fluid in an HARV. Secondary rat marrow stromal cells were cultured on two types of microcarriers, Cytodex-3 beads and modified bioactive glass particles. Examination of cellular morphology by scanning electron microscopy revealed the presence of three-dimensional multicellular aggregates consisting of multiple cell-covered Cytodex-3 microcarriers bridged together. Mineralization was observed in the aggregates. Spherical cell-bead aggregates were observed in an HARV, while cell-bead assemblies were mostly loosely packed in a chain-like or branched structure in a cell bag. The expressions of alkaline phosphatase activity, collagen type I, and osteopontin were shown via the use of histochemical staining, immunolabeling, and confocal scanning electron microscopy. Using a numerical approach, it was found that at a given rotational speed and for a given culture medium, a larger density difference between the microcarrier and the culture medium (e.g., a modified bioactive glass particle) imparted a higher maximum shear stress on the microcarrier.

  16. Three-dimensional co-culture of mesenchymal stromal cells and differentiated osteoblasts on human bio-derived bone scaffolds supports active multi-lineage hematopoiesis in vitro: Functional implication of the biomimetic HSC niche

    PubMed Central

    Huang, Xiaobing; Zhu, Biao; Wang, Xiaodong; Xiao, Rong; Wang, Chunsen

    2016-01-01

    Recent studies have indicated that the hematopoietic stem/progenitor cell (HSPC) niche, consisting of two major crucial components, namely osteoblasts (OBs) and mesenchymal stromal cells (MSCs), is responsible for the fate of HSPCs. Thus, closely mimicking the HSPC niche ex vivo may be an efficient strategy with which to develop new culture strategies to specifically regulate the balance between HSPC self-renewal and proliferation. The aim of this study was to establish a novel HSPC three-dimensional culture system by co-culturing bone marrow-derived MSCs and OBs differentiated from MSCs without any cytokines as feeder cells and applying bio-derived bone from human femoral metaphyseal portion as the scaffold. Scanning electron microscopy revealed the excellent biocompatibility of bio-derived bone with bone marrow-derived MSCs and OBs differentiated from MSCs. Western blot analysis revealed that many cytokines, which play key roles in HSPC regulation, were comprehensively secreted, while ELISA revealed that extracellular matrix molecules were also highly expressed. Hoechst 33342/propidium iodide fluorescence staining proved that our system could be used to supply a long-term culture of HSPCs. Flow cytometric analysis and qPCR of p21 expression demonstrated that our system significantly promoted the self-renewal and ex vivo expansion of HSPCs. Colony-forming unit (CFU) and long-term culture-initiating cell (LTC-IC) assays confirmed that our system has the ability for both the expansion of CD34+ hematopoietic stem cells (HPCs) and the maintenance of a primitive cell subpopulation of HSCs. The severe-combined immunodeficient mouse repopulating cell assay revealed the promoting effects of our system on the expansion of long-term primitive transplantable HSCs. In conclusion, our system may be a more comprehensive and balanced system which not only promotes the self-renewal and ex vivo expansion of HSPCs, but also maintains primitive HPCs with superior phenotypic and

  17. Cell-cell contact between marrow stromal cells and myeloma cells via VCAM-1 and alpha(4)beta(1)-integrin enhances production of osteoclast-stimulating activity.

    PubMed

    Michigami, T; Shimizu, N; Williams, P J; Niewolna, M; Dallas, S L; Mundy, G R; Yoneda, T

    2000-09-01

    Myeloma is a unique hematologic malignancy that exclusively homes in the bone marrow and induces massive osteoclastic bone destruction presumably by producing cytokines that promote the differentiation of the hematopoietic progenitors to osteoclasts (osteoclastogenesis). It is recognized that neighboring bone marrow stromal cells influence the expression of the malignant phenotype in myeloma cells. This study examined the role of the interactions between myeloma cells and neighboring stromal cells in the production of osteoclastogenic factors to elucidate the mechanism underlying extensive osteoclastic bone destruction. A murine myeloma cell line 5TGM1, which causes severe osteolysis, expresses alpha(4)beta(1)-integrin and tightly adheres to the mouse marrow stromal cell line ST2, which expresses the vascular cell adhesion molecule-1 (VCAM-1), a ligand for alpha(4)beta(1)-integrin. Co-cultures of 5TGM1 with primary bone marrow cells generated tartrate-resistant acid phosphatase-positive multinucleated bone-resorbing osteoclasts. Co-cultures of 5TGM1 with ST2 showed increased production of bone-resorbing activity and neutralizing antibodies against VCAM-1 or alpha(4)beta(1)-integrin inhibited this. The 5TGM1 cells contacting recombinant VCAM-1 produced increased osteoclastogenic and bone-resorbing activity. The activity was not blocked by the neutralizing antibody to known osteoclastogenic cytokines including interleukin (IL)-1, IL-6, tumor necrosis factor, or parathyroid hormone-related peptide. These data suggest that myeloma cells are responsible for producing osteoclastogenic activity and that establishment of direct contact with marrow stromal cells via alpha(4)beta(1)-integrin/VCAM-1 increases the production of this activity by myeloma cells. They also suggest that the presence of stromal cells may provide a microenvironment that allows exclusive colonization of myeloma cells in the bone marrow. (Blood. 2000;96:1953-1960) PMID:10961900

  18. Fasudil hydrochloride induces osteoblastic differentiation of stromal cell lines, C3H10T1/2 and ST2, via bone morphogenetic protein-2 expression.

    PubMed

    Kanazawa, Ippei; Yamaguchi, Toru; Yano, Shozo; Yamauchi, Mika; Sugimoto, Toshitsugu

    2010-01-01

    Rho-kinase (ROK), downstream of the mevalonate pathway, is detrimental to vessels, and suppressing its activity is a target for the treatment of human disease such as coronary artery disease and pulmonary hypertension. Recent studies have shown that ROK has a crucial role in bone metabolism. However, the role of ROK in stromal cells is still unclear. The present study was undertaken to investigate the effect of a ROK inhibitor, fasudil hydrochloride, on stromal cell lines, C3H10T1/2 and ST2. In both cells, Fasudil significantly stimulated alkaline phosphatase activity and enhanced cell mineralization. Moreover, fasudil significantly increased the mRNA expression of collagen-I, osteocalcin, and bone morphogenetic protein-2 (BMP-2). Supplementation of noggin, a BMP-2 antagonist, significantly reversed the fasudil-induced collagen-I and osteocalcin mRNA expression in both cells. These findings suggest that fasudil induces the osteoblastic differentiation of stromal cells via enhancing BMP-2 expression, and that this drug might be beneficial for not only atherosclerosis but also osteoporosis by promoting bone formation. PMID:20154408

  19. Bone Marrow Stress Decreases Osteogenic Progenitors.

    PubMed

    Ng, Adeline H; Baht, Gurpreet S; Alman, Benjamin A; Grynpas, Marc D

    2015-11-01

    Age-related bone loss may be a result of declining levels of stem cells in the bone marrow. Using the Col2.3Δtk (DTK) transgenic mouse, osteoblast depletion was used as a source of marrow stress in order to investigate the effects of aging on osteogenic progenitors which reside in the marrow space. Five-month-old DTK mice were treated with one or two cycles of ganciclovir to conditionally ablate differentiated osteoblasts, whereas controls were saline-treated. Treatment cycles were two weeks in length followed by four weeks of recovery. All animals were sacrificed at 8 months of age; bone marrow stromal cells (BMSCs) were harvested for cell culture and whole bones were excised for bone quality assessment. Colony-forming unit (CFU) assays were conducted to investigate the osteogenic potential of BMSC in vitro, and RNA was extracted to assess the expression of osteoblastic genes. Bone quality assessments included bone histomorphometry, TRAP staining, microcomputed tomography, and biomechanical testing. Osteoblast depletion decreased CFU-F (fibroblast), CFU-ALP (alkaline phosphatase), and CFU-VK (von Kossa) counts and BMSC osteogenic capacity in cell culture. Ex vivo, there were no differences in bone mineral density of vertebrae or femurs between treatment groups. Histology showed a decrease in bone volume and bone connectivity with repeated osteoblast depletion; however, this was accompanied by an increase in bone formation rate. There were no notable differences in osteoclast parameters or observed bone marrow adiposity. We have developed a model that uses bone marrow stress to mimic age-related decrease in osteogenic progenitors. Our data suggest that the number of healthy BMSCs and their osteogenic potential decline with repeated osteoblast depletion. However, activity of the remaining osteoblasts increases to compensate for this loss in progenitor osteogenic potential.

  20. Bone Marrow Stress Decreases Osteogenic Progenitors.

    PubMed

    Ng, Adeline H; Baht, Gurpreet S; Alman, Benjamin A; Grynpas, Marc D

    2015-11-01

    Age-related bone loss may be a result of declining levels of stem cells in the bone marrow. Using the Col2.3Δtk (DTK) transgenic mouse, osteoblast depletion was used as a source of marrow stress in order to investigate the effects of aging on osteogenic progenitors which reside in the marrow space. Five-month-old DTK mice were treated with one or two cycles of ganciclovir to conditionally ablate differentiated osteoblasts, whereas controls were saline-treated. Treatment cycles were two weeks in length followed by four weeks of recovery. All animals were sacrificed at 8 months of age; bone marrow stromal cells (BMSCs) were harvested for cell culture and whole bones were excised for bone quality assessment. Colony-forming unit (CFU) assays were conducted to investigate the osteogenic potential of BMSC in vitro, and RNA was extracted to assess the expression of osteoblastic genes. Bone quality assessments included bone histomorphometry, TRAP staining, microcomputed tomography, and biomechanical testing. Osteoblast depletion decreased CFU-F (fibroblast), CFU-ALP (alkaline phosphatase), and CFU-VK (von Kossa) counts and BMSC osteogenic capacity in cell culture. Ex vivo, there were no differences in bone mineral density of vertebrae or femurs between treatment groups. Histology showed a decrease in bone volume and bone connectivity with repeated osteoblast depletion; however, this was accompanied by an increase in bone formation rate. There were no notable differences in osteoclast parameters or observed bone marrow adiposity. We have developed a model that uses bone marrow stress to mimic age-related decrease in osteogenic progenitors. Our data suggest that the number of healthy BMSCs and their osteogenic potential decline with repeated osteoblast depletion. However, activity of the remaining osteoblasts increases to compensate for this loss in progenitor osteogenic potential. PMID:26220824

  1. Multipotent human stromal cells isolated from cord blood, term placenta and adult bone marrow show distinct differences in gene expression pattern.

    PubMed

    Matigian, Nicholas; Brooke, Gary; Zaibak, Faten; Rossetti, Tony; Kollar, Katarina; Pelekanos, Rebecca; Heazlewood, Celena; Mackay-Sim, Alan; Wells, Christine A; Atkinson, Kerry

    2015-03-01

    Multipotent mesenchymal stromal cells derived from human placenta (pMSCs), and unrestricted somatic stem cells (USSCs) derived from cord blood share many properties with human bone marrow-derived mesenchymal stromal cells (bmMSCs) and are currently in clinical trials for a wide range of clinical settings. Here we present gene expression profiles of human cord blood-derived unrestricted somatic stem cells (USSCs), human placental-derived mesenchymal stem cells (hpMSCs), and human bone marrow-derived mesenchymal stromal cells (bmMSCs), all derived from four different donors. The microarray data are available on the ArrayExpress database (www.ebi.ac.uk/arrayexpress) under accession number E-TABM-880. Additionally, the data has been integrated into a public portal, www.stemformatics.org. Our data provide a resource for understanding the differences in MSCs derived from different tissues. PMID:26484151

  2. Multipotent human stromal cells isolated from cord blood, term placenta and adult bone marrow show distinct differences in gene expression pattern

    PubMed Central

    Matigian, Nicholas; Brooke, Gary; Zaibak, Faten; Rossetti, Tony; Kollar, Katarina; Pelekanos, Rebecca; Heazlewood, Celena; Mackay-Sim, Alan; Wells, Christine A.; Atkinson, Kerry

    2014-01-01

    Multipotent mesenchymal stromal cells derived from human placenta (pMSCs), and unrestricted somatic stem cells (USSCs) derived from cord blood share many properties with human bone marrow-derived mesenchymal stromal cells (bmMSCs) and are currently in clinical trials for a wide range of clinical settings. Here we present gene expression profiles of human cord blood-derived unrestricted somatic stem cells (USSCs), human placental-derived mesenchymal stem cells (hpMSCs), and human bone marrow-derived mesenchymal stromal cells (bmMSCs), all derived from four different donors. The microarray data are available on the ArrayExpress database (www.ebi.ac.uk/arrayexpress) under accession number E-TABM-880. Additionally, the data has been integrated into a public portal, www.stemformatics.org. Our data provide a resource for understanding the differences in MSCs derived from different tissues. PMID:26484151

  3. Assessment of DNA damage in human bone marrow cells and multipotent mesenchymal stromal cells.

    PubMed

    Nikitina, V A; Chausheva, A I; Zhanataev, A K; Osipova, E Yu; Durnev, A D; Bochkov, N P

    2011-08-01

    We carried out a comparative analysis of DNA damage (percentage of DNA in comet tail) and frequencies of comets in apoptotic cells in BM samples and cultures of BM multipotent mesenchymal stromal cells at different terms of culturing (passages 3-11). The levels of DNA damage in mesenchymal stromal cells remained unchanged during culturing (3.5 ± 0.9 and 4.4 ± 1.2%) and did not differ from those in BM cells (3.6 ± 0.8%). In BM samples, 10-28% atypical cells with high level of DNA damage were detected. In mesenchymal stromal cells, 2.8 ± 0.9 and 3.6 ± 1.8% apoptotic cells were detected at early and late passages, respectively. PMID:22448389

  4. FGF7 supports hematopoietic stem and progenitor cells and niche-dependent myeloblastoma cells via autocrine action on bone marrow stromal cells in vitro

    SciTech Connect

    Ishino, Ruri; Minami, Kaori; Tanaka, Satowa; Nagai, Mami; Matsui, Keiji; Hasegawa, Natsumi; Roeder, Robert G.; Asano, Shigetaka; Ito, Mitsuhiro

    2013-10-11

    Highlights: •FGF7 is downregulated in MED1-deficient mesenchymal cells. •FGF7 produced by mesenchymal stromal cells is a novel hematopoietic niche molecule. •FGF7 supports hematopoietic progenitor cells and niche-dependent leukemia cells. •FGF7 activates FGFR2IIIb of bone marrow stromal cells in an autocrine manner. •FGF7 indirectly acts on hematopoietic cells lacking FGFR2IIIb via stromal cells. -- Abstract: FGF1 and FGF2 support hematopoietic stem and progenitor cells (HSPCs) under stress conditions. In this study, we show that fibroblast growth factor (FGF7) may be a novel niche factor for HSPC support and leukemic growth. FGF7 expression was attenuated in mouse embryonic fibroblasts (MEFs) deficient for the MED1 subunit of the Mediator transcriptional coregulator complex. When normal mouse bone marrow (BM) cells were cocultured with Med1{sup +/+} MEFs or BM stromal cells in the presence of anti-FGF7 antibody, the growth of BM cells and the number of long-time culture-initiating cells (LTC-ICs) decreased significantly. Anti-FGF7 antibody also attenuated the proliferation and cobblestone formation of MB1 stromal cell-dependent myeloblastoma cells. The addition of recombinant FGF7 to the coculture of BM cells and Med1{sup −/−} MEFs increased BM cells and LTC-ICs. FGF7 and its cognate receptor, FGFR2IIIb, were undetectable in BM cells, but MEFs and BM stromal cells expressed both. FGF7 activated downstream targets of FGFR2IIIb in Med1{sup +/+} and Med1{sup −/−} MEFs and BM stromal cells. Taken together, we propose that FGF7 supports HSPCs and leukemia-initiating cells indirectly via FGFR2IIIb expressed on stromal cells.

  5. Comparing the Immunomodulatory Properties of Bone Marrow, Adipose Tissue, and Birth-Associated Tissue Mesenchymal Stromal Cells

    PubMed Central

    Mattar, Philipp; Bieback, Karen

    2015-01-01

    Mesenchymal stromal cells (MSC) have gained immense attraction in regenerative medicine, tissue engineering, and immunotherapy. This is based on their differentiation potential and the supply of pro-regenerative and immunomodulatory signals. MSC can be isolated from a multitude of tissue sources, but mainly bone marrow, adipose tissue, and birth-associated tissues (e.g., umbilical cord, cord blood, placenta) appear to be relevant for clinical translation in immune-mediated disorders. However, only a few studies directly compared the immunomodulatory potency of MSC from different tissue sources. This review compiles the current literature regarding the similarities and differences between these three sources for MSCs with a special focus on their immunomodulatory effects on T-lymphocyte subsets and monocytes, macrophages, and dendritic cells. PMID:26579133

  6. Hydroxyapatite/regenerated silk fibroin scaffold-enhanced osteoinductivity and osteoconductivity of bone marrow-derived mesenchymal stromal cells.

    PubMed

    Jiang, Jia; Hao, Wei; Li, Yuzhuo; Yao, Jinrong; Shao, Zhengzhong; Li, Hong; Yang, Jianjun; Chen, Shiyi

    2013-04-01

    A novel hydroxyapatite/regenerated silk fibroin scaffold was prepared and investigated for its potential to enhance both osteoinductivity and osteoconductivity of bone marrow-derived mesenchymal stromal cells in vitro. Approx. 12.4 ± 0.06 % (w/w) hydroxyapatite was deposited onto the scaffold, and cell viability and DNA content were significantly increased (18.5 ± 0.6 and 33 ± 1.2 %, respectively) compared with the hydroxyapatite scaffold after 14 days. Furthermore, alkaline phosphatase activity in the novel scaffold increased 41 ± 2.5 % after 14 days compared with the hydroxyapatite scaffold. The data indicate that this novel hydroxyapatite/regenerated silk fibroin scaffold has a positive effect on osteoinductivity and osteoconductivity, and may be useful for bone tissue engineering.

  7. Rat marrow stromal cells rapidly transduced with a self-inactivating retrovirus synthesize L-DOPA in vitro.

    PubMed

    Schwarz, E J; Reger, R L; Alexander, G M; Class, R; Azizi, S A; Prockop, D J

    2001-08-01

    Autologous bone marrow stromal cells engineered to produce 3,4,-dihydroxyphenylalanine (L-DOPA) can potentially be used as donor cells for neural transplantation in Parkinson's disease. Here, we examined the possibility of using several different promoters and either a self-inactivating retrovirus (pSIR) or standard retroviruses to introduce into marrow stromal cells (MSCs), the two genes necessary for the cells to synthesize L-DOPA. pSIR vectors were constructed using the mouse phosphoglycerate kinase-1 (PGK) promoter or the cytomegalovirus (CMV) promoter to drive expression of either a GFP reporter gene or a bicistronic sequence containing the genes for human tyrosine hydroxylase type I (TH) and rat GTP cyclohydrolase I (GC) separated by an internal ribosome entry site (IRES). rMSCs were successfully transduced with both standard retroviral vectors and pSIR containing the PGK promoter. Transduced rMSCs expressed GFP (90.4--94.4% of cells) or were able to synthesize and secrete L-DOPA (89.0--283 pmols/10(6) cells/h). After transduced rMSCs were plated at low density (3--6 cells/cm(2)), the cells expanded over 1000-fold in 3--4 weeks, and the rMSCs continued to either express GFP or produce L-DOPA. Furthermore, two high-expressing clones were isolated and expanded at low-density from rMSCs transduced with pSIR driven by the PGK promoter (97.0% GFP+ or 1096.0 pmols L-DOPA/10(6) cells/h).

  8. Skeletal site-specific characterization of orofacial and iliac crest human bone marrow stromal cells in same individuals.

    PubMed

    Akintoye, Sunday O; Lam, Thanh; Shi, Songtao; Brahim, Jaime; Collins, Michael T; Robey, Pamela G

    2006-06-01

    Autologous grafts from axial and appendicular bones commonly used to repair orofacial bone defects often result in unfavorable outcome. This clinical observation, along with the fact that many bone abnormalities are limited to craniofacial bones, suggests that there are significant differences in bone metabolism in orofacial, axial and appendicular bones. It is plausible that these differences are dictated by site-specificity of embryological progenitor cells and osteogenic properties of resident multipotent human bone marrow stromal cells (hBMSCs). This study investigated skeletal site-specific phenotypic and functional differences between orofacial (maxilla and mandible) and axial (iliac crest) hBMSCs in vitro and in vivo. Primary cultures of maxilla, mandible and iliac crest hBMSCs were established with and without osteogenic inducers. Site-specific characterization included colony forming efficiency, cell proliferation, life span before senescence, relative presence of surface markers, adipogenesis, osteogenesis and transplantation in immunocompromised mice to compare bone regenerative capacity. Compared with iliac crest cells, orofacial hBMSCs (OF-MSCs) proliferated more rapidly with delayed senescence, expressed higher levels of alkaline phosphatase and demonstrated more calcium accumulation in vitro. Cells isolated from the three skeletal sites were variably positive for STRO 1, a marker of hBMSCs. OF-MSCs formed more bone in vivo, while iliac crest hBMSCs formed more compacted bone that included hematopoietic tissue and were more responsive in vitro and in vivo to osteogenic and adipogenic inductions. These data demonstrate that hBMSCs from the same individuals differ in vitro and in vivo in a skeletal site-specific fashion and identified orofacial marrow stromal cells as unique cell populations. Further understanding of site-specific properties of hBMSCs and their impact on site-specific bone diseases and regeneration are needed.

  9. Micro-/Nano- sized hydroxyapatite directs differentiation of rat bone marrow derived mesenchymal stem cells towards an osteoblast lineage

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Zhou, Gang; Zheng, Lisha; Liu, Haifeng; Niu, Xufeng; Fan, Yubo

    2012-03-01

    Regenerative medicine consisting of cells and materials provides a new way for the repair and regeneration of tissues and organs. Nano-biomaterials are highlighted due to their advantageous features compared with conventional micro-materials. The aim of this study is to investigate the effects of micro-/nano- sized hydroxyapatite (μ/n-HA) on the osteogenic differentiation of rat bone marrow derived mesenchymal stem cells (rBMSCs). μ/n-HA were prepared by a microwave synthesizer and precipitation method, respectively. Different sizes of μ/n-HA were characterized by IR, XRD, SEM, TEM and co-cultured with rBMSCs. It was shown that rBMSCs expressed higher levels of osteoblast-related markers by n-HA than μ-HA stimulation. The size of HA is an important factor for affecting the osteogenic differentiation of rBMSCs. This provides a new avenue for mechanistic studies of stem cell differentiation and a new approach to obtain more committed differentiated cells.

  10. Influence of platelet-rich plasma (PRP) on osteogenic differentiation of rat bone marrow stromal cells. An in vitro study.

    PubMed

    Arpornmaeklong, P; Kochel, M; Depprich, R; Kübler, N R; Würzler, K K

    2004-01-01

    Recent clinical reports suggest that the application of an autologous blood plasma enriched with thrombocytes by centrifugal concentration (platelet-rich plasma: PRP) can enhance the formation of new bone. There are very fewin vitro or in vivo studies published on the efficiency of PRP. In this project a three dimensional cell culture system was used to compare PRP and rhBMP-2 in vitro. Marrow derived bone forming cells from Spraque-Dawley (SD) rats were seeded on porous collagenous carriers (d=5mm, h=3mm) at a density of 4 x 10(4) cells/carrier and exposed to different concentrations of PRP (platelet counts from 2.5 x 10(8)-1.6 x 10(7) platelets/culture), rhBMP-2 (300 ng) or plasma poor in thrombocytes (platelet-poor plasma, PPP). Cultures without additional supplements were used as controls. During a culture period of 21 days cell proliferation, alkaline phosphatase activity (ALP) and calcium content (days 18, 21) were measured in 3 day intervals.PRP showed a dose dependent stimulation of cell proliferation, while reducing ALP activity and calcium deposition in the culture. BMP-2 led to an opposite cell response and induced the highest ALP activity and mineral deposition. These data suggest that PRP inhibited osteogenic differentiation of marrow derived pre-osteoblasts in a dose dependent manner. PRP is not a substitute for BMP-2 in osteogenic induction. PMID:14690661

  11. Hydrogen gas treatment prolongs replicative lifespan of bone marrow multipotential stromal cells in vitro while preserving differentiation and paracrine potentials

    SciTech Connect

    Kawasaki, Haruhisa; Guan, Jianjun; Tamama, Kenichi

    2010-07-02

    Cell therapy with bone marrow multipotential stromal cells/mesenchymal stem cells (MSCs) represents a promising approach in the field of regenerative medicine. Low frequency of MSCs in adult bone marrow necessitates ex vivo expansion of MSCs after harvest; however, such a manipulation causes cellular senescence with loss of differentiation, proliferative, and therapeutic potentials of MSCs. Hydrogen molecules have been shown to exert organ protective effects through selective reduction of hydroxyl radicals. As oxidative stress is one of the key insults promoting cell senescence in vivo as well as in vitro, we hypothesized that hydrogen molecules prevent senescent process during MSC expansion. Addition of 3% hydrogen gas enhanced preservation of colony forming early progenitor cells within MSC preparation and prolonged the in vitro replicative lifespan of MSCs without losing differentiation potentials and paracrine capabilities. Interestingly, 3% hydrogen gas treatment did not decrease hydroxyl radical, protein carbonyl, and 8-hydroxydeoxyguanosine, suggesting that scavenging hydroxyl radical might not be responsible for these effects of hydrogen gas in this study.

  12. Immunosuppressive Effects of Multipotent Mesenchymal Stromal Cells on Graft-Versus-Host Disease in Rats Following Allogeneic Bone Marrow Transplantation

    PubMed Central

    Nevruz, Oral; Avcu, Ferit; Ural, A. Uğur; Pekel, Aysel; Dirican, Bahar; Safalı, Mükerrem; Akdağ, Elvin; Beyzadeoğlu, Murat; İde, Tayfun; Sengül, Ali

    2013-01-01

    Objective: Graft-versus-host disease (GVHD) is a major obstacle to successful allogeneic bone marrow transplantation (allo-BMT). While multipotent mesenchymal stromal cells (MSCs) demonstrate alloresponse in vitro and in vivo, they also have clinical applications toward prevention or treatment of GVHD. The aim of this study was to investigate the ability of MSCs to prevent or treat GVHD in a rat BMT model. Materials and Methods: The GVHD model was established by transplantation of Sprague Dawley rats’ bone marrow and spleen cells into lethally irradiated (950 cGy) SDxWistar rat recipients. A total of 49 rats were randomly assigned to 4 study and 3 control groups administered different GVHD prophylactic regimens including MSCs. After transplantation, clinical GVHD scores and survival status were monitored. Results: All irradiated and untreated control mice with GVHD died. MSCs inhibited lethal GVHD as efficiently as the standard GVHD prophylactic regimen. The gross and histopathological findings of GVHD and the ratio of CD4/CD8 expression decreased. The subgroup given MSCs displayed higher in vivo proportions of CD25+ T cells and plasma interleukin-2 levels as compared to conventional GVHD treatment after allo-BMT. Conclusion: Our results suggest that clinical use of MSCs in both prophylaxis against and treatment of established GVHD is effective. This study supports the use of MSCs in the prophylaxis and treatment of GVHD after allo-BMT; however, large scale studies are needed. Conflict of interest:None declared. PMID:24385804

  13. Chimerism of bone marrow mesenchymal stem/stromal cells in allogeneic hematopoietic cell transplantation: is it clinically relevant?

    PubMed

    Miura, Yasuo; Yoshioka, Satoshi; Yao, Hisayuki; Takaori-Kondo, Akifumi; Maekawa, Taira; Ichinohe, Tatsuo

    2013-01-01

    Multipotent mesenchymal stem/stromal cells (MSCs) have been extensively used as a transplantable cell source for regenerative medicine and immunomodulatory therapy. Specifically in allogeneic hematopoietic stem cell transplantation (HSCT), co-transplantation or post-transplant infusion of MSCs derived from bone marrow (BM) of non-self donors has been implicated in accelerating hematopoietic recovery, ameliorating graft-vs.-host disease, and promoting tissue regeneration. However, irrespective of the use of MSC co-administration, post-transplant chimerism of BM-derived MSCs after allogeneic HSCT has been reported to remain of host origin, suggesting that the infused donor MSCs are immunologically rejected or not capable of long-term engraftment in the host microenvironment. Also, hematopoietic cell allografts currently used for HSCT do not seem to contain sufficient amount of MSCs or their precursors to reconstitute host BM microenvironment. Since the toxic conditioning employed in allo-HSCT may impair the function of host MSCs to maintain hematopoietic/regenerative stem cell niches and to provide a local immunomodulatory milieu, we propose that new directions for enhancing immunohematopoietic reconstitution and tissue repair after allogeneic HSCT include the development of strategies to support functional replenishment of residual host MSCs or to support more efficient engraftment of infused donor MSCs. Future areas of research should include in vivo tracking of infused MSCs and detection of their microchimeric presence in extra-marrow sites as well as in BM.

  14. Direct Reprogramming of Human Bone Marrow Stromal Cells into Functional Renal Cells Using Cell-free Extracts

    PubMed Central

    Papadimou, Evangelia; Morigi, Marina; Iatropoulos, Paraskevas; Xinaris, Christodoulos; Tomasoni, Susanna; Benedetti, Valentina; Longaretti, Lorena; Rota, Cinzia; Todeschini, Marta; Rizzo, Paola; Introna, Martino; Grazia de Simoni, Maria; Remuzzi, Giuseppe; Goligorsky, Michael S.; Benigni, Ariela

    2015-01-01

    Summary The application of cell-based therapies in regenerative medicine is gaining recognition. Here, we show that human bone marrow stromal cells (BMSCs), also known as bone-marrow-derived mesenchymal cells, can be reprogrammed into renal proximal tubular-like epithelial cells using cell-free extracts. Streptolysin-O-permeabilized BMSCs exposed to HK2-cell extracts underwent morphological changes—formation of “domes” and tubule-like structures—and acquired epithelial functional properties such as transepithelial-resistance, albumin-binding, and uptake and specific markers E-cadherin and aquaporin-1. Transmission electron microscopy revealed the presence of brush border microvilli and tight intercellular contacts. RNA sequencing showed tubular epithelial transcript abundance and revealed the upregulation of components of the EGFR pathway. Reprogrammed BMSCs integrated into self-forming kidney tissue and formed tubular structures. Reprogrammed BMSCs infused in immunodeficient mice with cisplatin-induced acute kidney injury engrafted into proximal tubuli, reduced renal injury and improved function. Thus, reprogrammed BMSCs are a promising cell resource for future cell therapy. PMID:25754206

  15. Direct reprogramming of human bone marrow stromal cells into functional renal cells using cell-free extracts.

    PubMed

    Papadimou, Evangelia; Morigi, Marina; Iatropoulos, Paraskevas; Xinaris, Christodoulos; Tomasoni, Susanna; Benedetti, Valentina; Longaretti, Lorena; Rota, Cinzia; Todeschini, Marta; Rizzo, Paola; Introna, Martino; Grazia de Simoni, Maria; Remuzzi, Giuseppe; Goligorsky, Michael S; Benigni, Ariela

    2015-04-14

    The application of cell-based therapies in regenerative medicine is gaining recognition. Here, we show that human bone marrow stromal cells (BMSCs), also known as bone-marrow-derived mesenchymal cells, can be reprogrammed into renal proximal tubular-like epithelial cells using cell-free extracts. Streptolysin-O-permeabilized BMSCs exposed to HK2-cell extracts underwent morphological changes-formation of "domes" and tubule-like structures-and acquired epithelial functional properties such as transepithelial-resistance, albumin-binding, and uptake and specific markers E-cadherin and aquaporin-1. Transmission electron microscopy revealed the presence of brush border microvilli and tight intercellular contacts. RNA sequencing showed tubular epithelial transcript abundance and revealed the upregulation of components of the EGFR pathway. Reprogrammed BMSCs integrated into self-forming kidney tissue and formed tubular structures. Reprogrammed BMSCs infused in immunodeficient mice with cisplatin-induced acute kidney injury engrafted into proximal tubuli, reduced renal injury and improved function. Thus, reprogrammed BMSCs are a promising cell resource for future cell therapy.

  16. Marrow Stromal Cells Migrate Throughout Forebrain and Cerebellum, and They Differentiate into Astrocytes after Injection into Neonatal Mouse Brains

    NASA Astrophysics Data System (ADS)

    Kopen, Gene C.; Prockop, Darwin J.; Phinney, Donald G.

    1999-09-01

    Stem cells are a valuable resource for treating disease, but limited access to stem cells from tissues such as brain restricts their utility. Here, we injected marrow stromal cells (MSCs) into the lateral ventricle of neonatal mice and asked whether these multipotential mesenchymal progenitors from bone marrow can adopt neural cell fates when exposed to the brain microenvironment. By 12 days postinjection, MSCs migrated throughout the forebrain and cerebellum without disruption to the host brain architecture. Some MSCs within the striatum and the molecular layer of the hippocampus expressed glial fibrillary acidic protein and, therefore, differentiated into mature astrocytes. MSCs also populated neuron rich regions including the Islands of Calleja, the olfactory bulb, and the internal granular layer of the cerebellum. A large number of MSCs also were found within the external granular layer of the cerebellum. In addition, neurofilament positive donor cells were found within the reticular formation of the brain stem, suggesting that MSCs also may have differentiated into neurons. Therefore, MSCs are capable of producing differentiated progeny of a different dermal origin after implantation into neonatal mouse brains. These results suggest that MSCs are potentially useful as vectors for treating a variety of central nervous system disorders.

  17. Using the quantum cell expansion system for the automated expansion of clinical-grade bone marrow-derived human mesenchymal stromal cells.

    PubMed

    Martin-Manso, Gema; Hanley, Patrick J

    2015-01-01

    Bone marrow-derived human mesenchymal stromal cells (hMSCs) constitute a promising therapeutic approach. However, the extremely low frequency of hMSCs in bone marrow makes the translation of these regulatory cells to clinical therapies difficult for large patient populations. Here, we describe a good manufacturing practices-compliant procedure for the expansion of hMSCs using the Quantum Cell Expansion System. This closed and automated system allows the large-scale expansion of hMSCs while maintaining their multipotency, immunophenotype, morphology, and karyotype. PMID:25523809

  18. Efficient labeling in vitro with non-ionic gadolinium magnetic resonance imaging contrast agent and fluorescent transfection agent in bone marrow stromal cells of neonatal rats.

    PubMed

    Li, Ying-Qin; Tang, Ying; Fu, Rao; Meng, Qiu-Hua; Zhou, Xue; Ling, Ze-Min; Cheng, Xiao; Tian, Su-Wei; Wang, Guo-Jie; Liu, Xue-Guo; Zhou, Li-Hua

    2015-07-01

    Although studies have been undertaken on gadolinium labeling-based molecular imaging in magnetic resonance imaging (MRI), the use of non-ionic gadolinium in the tracking of stem cells remains uncommon. To investigate the efficiency in tracking of stem cells with non-ionic gadolinium as an MRI contrast agent, a rhodamine-conjugated fluorescent reagent was used to label bone marrow stromal cells (BMSCs) of neonatal rats in vitro, and MRI scanning was undertaken. The fluorescent-conjugated cell uptake reagents were able to deliver gadodiamide into BMSCs, and cell uptake was verified using flow cytometry. In addition, the labeled stem cells with paramagnetic contrast medium remained detectable by an MRI monitor for a minimum of 28 days. The present study suggested that this method can be applied efficiently and safely for the labeling and tracking of bone marrow stromal cells in neonatal rats.

  19. The monitoring of gene functions on a cell-defined siRNA microarray in human bone marrow stromal and U2OS cells

    PubMed Central

    Kim, Hi Chul; Kim, Gi-Hwan; Shum, David; Cho, Ssang-Goo; Lee, Eun Ju; Kwon, Yong-Jun

    2016-01-01

    Here, we developed a cell defined siRNA microarray (CDSM) for human bone marrow stromal cells (hBMSCs) designed to control the culture of cells inside the spot area without reducing the efficiency of siRNA silencing, “Development of a cell-defined siRNA microarray for analysis of gene functionin human bone marrow stromal cells” (Kim et al., 2016 [1]). First, we confirmed that p65 protein inhibition efficiency was maintained when hBMSCs were culture for 7 days on the siRNA spot, and siRNA spot activity remained in spite of long term storage (10 days and 2 months). Additionally, we confirmed p65 protein inhibition in U2OS cells after 48 h reverse transfection. PMID:27054175

  20. Isolation and Manufacture of Clinical-Grade Bone Marrow-Derived Human Mesenchymal Stromal Cells.

    PubMed

    Miller, Renuka P; Hanley, Patrick J

    2016-01-01

    Mesenchymal stromal cells (MSCs) are multipotent cells with both regenerative and immunomodulatory capacities. These unique properties make them appealing as a biologic, with multiple phase 1-3 clinical trials currently testing their safety and efficacy. Although expanding MSCs does not require extensive manipulation, expanding MSCs for use in clinical trials does require the knowledge and safety that are delineated in current good manufacturing practices (GMPs). Here we briefly detail the characteristics of MSCs and considerations for expanding them for clinical use. We then include a step-by-step protocol for expanding MSCs for early phase clinical trials, with important notes to consider during the expansion of these MSCs. PMID:27236680

  1. Functionally and Phenotypically Distinct Subpopulations of Marrow Stromal Cells Are Fibroblast in Origin and Induce Different Fates in Peripheral Blood Monocytes

    PubMed Central

    Iwata, Mineo; Sandstrom, Richard S.; Delrow, Jeffrey J.; Stamatoyannopoulos, John A.

    2014-01-01

    Marrow stromal cells constitute a heterogeneous population of cells, typically isolated after expansion in culture. In vivo, stromal cells often exist in close proximity or in direct contact with monocyte-derived macrophages, yet their interaction with monocytes is largely unexplored. In this report, isolated CD146+ and CD146− stromal cells, as well as immortalized cell lines representative of each (designated HS27a and HS5, respectively), were shown by global DNase I hypersensitive site mapping and principal coordinate analysis to have a lineage association with marrow fibroblasts. Gene expression profiles generated for the CD146+ and CD146− cell lines indicate significant differences in their respective transcriptomes, which translates into differences in secreted factors. Consequently, the conditioned media (CM) from these two populations induce different fates in peripheral blood monocytes. Monocytes incubated in CD146+ CM acquire a tissue macrophage phenotype, whereas monocytes incubated in CM from CD146− cells express markers associated with pre-dendritic cells. Importantly, when CD14+ monocytes are cultured in contact with the CD146+ cells, the combined cell populations, assayed as a unit, show increased levels of transcripts associated with organismal development and hematopoietic regulation. In contrast, the gene expression profile from cocultures of monocytes and CD146− cells does not differ from that obtained when monocytes are cultured with CD146− CM. These in vitro results show that the CD146+ marrow stromal cells together with monocytes increase the expression of genes relevant to hematopoietic regulation. In vivo relevance of these data is suggested by immunohistochemistry of marrow biopsies showing juxtaposed CD146+ cells and CD68+ cells associated with these upregulated proteins. PMID:24131213

  2. Propagation and titration of murine cytomegalovirus in a continuous bone marrow-derived stromal cell line (M2-10B4).

    PubMed

    Lutarewych, M A; Quirk, M R; Kringstad, B A; Li, W; Verfaillie, C M; Jordan, M C

    1997-11-01

    Murine cytomegalovirus (MCMV) can only be propagated effectively in mouse embryo fibroblast (MEF) cells. We demonstrate that MCMV replicates significantly better in M2-10B4 cells, a continuous line of murine bone marrow stromal cells. M2-10B4 cells were also comparable to MEF cells for detection of small amounts of MCMV reactivating from latently infected spleen explants. M2-10B4 cells will be very useful for studies of MCMV pathogenesis.

  3. Comparative study of the chondrogenic potential of human bone marrow stromal cells, neonatal chondrocytes and adult chondrocytes

    SciTech Connect

    Saha, Sushmita; Kirkham, Jennifer; Wood, David; Curran, Stephen; Yang, Xuebin

    2010-10-22

    Research highlights: {yields} This study has characterised three different cell types under conditions similar to those used for autologous chondrocyte implantation (ACI) for applications in cartilage repair/regeneration. {yields} Compared for the first time the chondrogenic potential of neonatal chondrocytes with human bone marrow stromal cells (HBMSCs) and adult chondrocytes. {yields} Demonstrated that adult chondrocytes hold greatest potential for use in ACI based on their higher proliferation rates, lower alkaline phosphatise activity and enhanced expression of chondrogenic genes. {yields} Demonstrated the need for chondroinduction as a necessary pre-requisite to efficient chondrogenesis in vitro and, by extrapolation, for cell based therapy (e.g. ACI or cartilage tissue engineering). -- Abstract: Cartilage tissue engineering is still a major clinical challenge with optimisation of a suitable source of cells for cartilage repair/regeneration not yet fully addressed. The aims of this study were to compare and contrast the differences in chondrogenic behaviour between human bone marrow stromal cells (HBMSCs), human neonatal and adult chondrocytes to further our understanding of chondroinduction relative to cell maturity and to identify factors that promote chondrogenesis and maintain functional homoeostasis. Cells were cultured in monolayer in either chondrogenic or basal medium, recapitulating procedures used in existing clinical procedures for cell-based therapies. Cell doubling time, morphology and alkaline phosphatase specific activity (ALPSA) were determined at different time points. Expression of chondrogenic markers (SOX9, ACAN and COL2A1) was compared via real time polymerase chain reaction. Amongst the three cell types studied, HBMSCs had the highest ALPSA in basal culture and lowest ALPSA in chondrogenic media. Neonatal chondrocytes were the most proliferative and adult chondrocytes had the lowest ALPSA in basal media. Gene expression analysis revealed

  4. Apatite formation on bioactive calcium-silicate cements for dentistry affects surface topography and human marrow stromal cells proliferation.

    PubMed

    Gandolfi, Maria Giovanna; Ciapetti, Gabriela; Taddei, Paola; Perut, Francesca; Tinti, Anna; Cardoso, Marcio Vivan; Van Meerbeek, Bart; Prati, Carlo

    2010-10-01

    The effect of ageing in phosphate-containing solution of bioactive calcium-silicate cements on the chemistry, morphology and topography of the surface, as well as on in vitro human marrow stromal cells viability and proliferation was investigated. A calcium-silicate cement (wTC) mainly based on dicalcium-silicate and tricalcium-silicate was prepared. Alpha-TCP was added to wTC to obtain wTC-TCP. Bismuth oxide was inserted in wTC to prepare a radiopaque cement (wTC-Bi). A commercial calcium-silicate cement (ProRoot MTA) was tested as control. Cement disks were aged in DPBS for 5 h ('fresh samples'), 14 and 28 days, and analyzed by ESEM/EDX, SEM/EDX, ATR-FTIR, micro-Raman techniques and scanning white-light interferometry. Proliferation, LDH release, ALP activity and collagen production of human marrow stromal cells (MSC) seeded for 1-28 days on the cements were evaluated. Fresh samples exposed a surface mainly composed of calcium-silicate hydrates CSH (from the hydration of belite and alite), calcium hydroxide, calcium carbonate, and ettringite. Apatite nano-spherulites rapidly precipitated on cement surfaces within 5 h. On wTC-TCP the Ca-P deposits appeared thicker than on the other cements. Aged cements showed an irregular porous calcium-phosphate (Ca-P) coating, formed by aggregated apatite spherulites with interspersed calcite crystals. All the experimental cements exerted no acute toxicity in the cell assay system and allowed cell growth. Using biochemical results, the scores were: fresh cements>aged cements for cell proliferation and ALP activity (except for wTC-Bi), whereas fresh cements

  5. Recombinant tumor necrosis factor. alpha. and interleukin 1. alpha. increase expression of c-abl protooncogene mRNA in cultured human marrow stromal cells

    SciTech Connect

    Andrews, D.F. III; Nemunaitis, J.J.; Singer, J.W. )

    1989-09-01

    Analysis of protooncogene RNA expression in marrow stromal cells from long-term marrow culture demonstrated high levels of c-abl 5-, 6-, and 7-kilobase (kb) RNA transcripts. In experiments on three independently derived simian virus 40-transformed marrow stromal cell lines, the expression of these c-abl transcripts was further increased in response to recombinant tumor necrosis factor {alpha} (1,000 units/ml) and interleukin 1{alpha} (10 units/ml). Although lymphocyte-conditioned medium predominantly up-regulated the 5-kb transcript, interleukin 1{alpha} primarily affected the 6-kb transcript. The up-regulation of the 5-kb c-abl message correlated with up-regulation of the granulocyte/macrophage colony-stimulating factor transcript and down-regulation of procollagen I transcripts in transformed cells. These data suggest that c-abl plays roles in the regulation of extracellular matrix expression and in the regulation of hematopoietic growth factors by stromal cells.

  6. In vitro differentiation of bone marrow stromal cells into neurons and glial cells and differential protein expression in a two-compartment bone marrow stromal cell/neuron co-culture system.

    PubMed

    Qi, Xu; Shao, Ming; Peng, Haisheng; Bi, Zhenggang; Su, Zhiqiang; Li, Hulun

    2010-07-01

    This study was performed to establish a bone marrow stromal cell (BMSC)/neuron two-compartment co-culture model in which differentiation of BMSCs into neurons could occur without direct contact between the two cell types, and to investigate protein expression changes during differentiation of this entirely BMSC-derived population. Cultured BMSCs isolated from Wistar rats were divided into three groups: BMSC culture, BMSC/neuron co-culture and BMSC/neuron two-compartment co-culture. Cells were examined for neuron-specific enolase (NSE) and glial fibrillary acidic protein (GFAP) expression. The electrophysiological behavior of the BMSCs was examined using patch clamping. Proteins that had significantly different expression levels in BMSCs cultured alone and co-cultured with neurons were studied using a protein chip-mass spectroscopy technique. Expression of NSE and GFAP were significantly higher in co-culture cells than in two-compartment co-culture cells, and significantly higher in both co-culture groups than in BMSCs cultured alone. Five proteins showed significant changes in expression during differentiation: TIP39_RAT and CALC_RAT underwent increases, and INSL6_RAT, PNOC_RAT and PCSK1_RAT underwent decreases in expression. We conclude that BMSCs can differentiate into neurons during both contact co-culture with neurons and two-compartment co-culture with neurons. The rate at which BMSCs differentiated into neurons was higher in contact co-culture than in non-contact co-culture.

  7. Collagen‐containing scaffolds enhance attachment and proliferation of non‐cultured bone marrow multipotential stromal cells

    PubMed Central

    El‐Jawhari, Jehan J.; Sanjurjo‐Rodríguez, Clara; Jones, Elena

    2015-01-01

    ABSTRACT Large bone defects are ideally treated with autografts, which have many limitations. Therefore, osteoconductive scaffolds loaded with autologous bone marrow (BM) aspirate are increasingly used as alternatives. The purpose of this study was to compare the growth of multipotential stromal cells (MSCs) from unprocessed BM on a collagen‐containing bovine bone scaffold (Orthoss® Collagen) with a non‐collagen‐containing bovine bone scaffold, Orthoss®. Another collagen‐containing synthetic scaffold, Vitoss® was included in the comparison. Colonization of scaffolds by BM MSCs (n = 23 donors) was evaluated using microscopy, colony forming unit‐fibroblast assay and flow‐cytometry. The number of BM MSCs initially attached to Orthoss® Collagen and Vitoss® was similar but greater than Orthoss® (p = 0.001 and p = 0.041, respectively). Furthermore, the number of MSCs released from Orthoss® Collagen and Vitoss® after 2‐week culture was also higher compared to Orthoss® (p = 0.010 and p = 0.023, respectively). Interestingly, collagen‐containing scaffolds accommodated larger numbers of lymphocytic and myelomonocytic cells. Additionally, the proliferation of culture‐expanded MSCs on Orthoss® collagen and Vitoss® was greater compared to Orthoss® (p = 0.047 and p = 0.004, respectively). Collectively, collagen‐containing scaffolds were superior in supporting the attachment and proliferation of MSCs when they were loaded with unprocessed BM aspirates. This highlights the benefit of collagen incorporation into bone scaffolds for use with autologous bone marrow aspirates as autograft substitutes. © 2015 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 34:597–606, 2016. PMID:26466765

  8. Collagen-containing scaffolds enhance attachment and proliferation of non-cultured bone marrow multipotential stromal cells.

    PubMed

    El-Jawhari, Jehan J; Sanjurjo-Rodríguez, Clara; Jones, Elena; Giannoudis, Peter V

    2016-04-01

    Large bone defects are ideally treated with autografts, which have many limitations. Therefore, osteoconductive scaffolds loaded with autologous bone marrow (BM) aspirate are increasingly used as alternatives. The purpose of this study was to compare the growth of multipotential stromal cells (MSCs) from unprocessed BM on a collagen-containing bovine bone scaffold (Orthoss(®) Collagen) with a non-collagen-containing bovine bone scaffold, Orthoss(®) . Another collagen-containing synthetic scaffold, Vitoss(®) was included in the comparison. Colonization of scaffolds by BM MSCs (n = 23 donors) was evaluated using microscopy, colony forming unit-fibroblast assay and flow-cytometry. The number of BM MSCs initially attached to Orthoss(®) Collagen and Vitoss(®) was similar but greater than Orthoss(®) (p = 0.001 and p = 0.041, respectively). Furthermore, the number of MSCs released from Orthoss(®) Collagen and Vitoss(®) after 2-week culture was also higher compared to Orthoss(®) (p = 0.010 and p = 0.023, respectively). Interestingly, collagen-containing scaffolds accommodated larger numbers of lymphocytic and myelomonocytic cells. Additionally, the proliferation of culture-expanded MSCs on Orthoss(®) collagen and Vitoss(®) was greater compared to Orthoss(®) (p = 0.047 and p = 0.004, respectively). Collectively, collagen-containing scaffolds were superior in supporting the attachment and proliferation of MSCs when they were loaded with unprocessed BM aspirates. This highlights the benefit of collagen incorporation into bone scaffolds for use with autologous bone marrow aspirates as autograft substitutes.

  9. Adult equine bone marrow stromal cells produce a cartilage-like ECM mechanically superior to animal-matched adult chondrocytes.

    PubMed

    Kopesky, P W; Lee, H-Y; Vanderploeg, E J; Kisiday, J D; Frisbie, D D; Plaas, A H K; Ortiz, C; Grodzinsky, A J

    2010-06-01

    Our objective was to evaluate the age-dependent mechanical phenotype of bone marrow stromal cell- (BMSC-) and chondrocyte-produced cartilage-like neo-tissue and to elucidate the matrix-associated mechanisms which generate this phenotype. Cells from both immature (2-4 month-old foals) and skeletally-mature (2-5 year-old adults) mixed-breed horses were isolated from animal-matched bone marrow and cartilage tissue, encapsulated in self-assembling-peptide hydrogels, and cultured with and without TGF-beta1 supplementation. BMSCs and chondrocytes from both donor ages were encapsulated with high viability. BMSCs from both ages produced neo-tissue with higher mechanical stiffness than that produced by either young or adult chondrocytes. Young, but not adult, chondrocytes proliferated in response to TGF-beta1 while BMSCs from both age groups proliferated with TGF-beta1. Young chondrocytes stimulated by TGF-beta1 accumulated ECM with 10-fold higher sulfated-glycosaminoglycan content than adult chondrocytes and 2-3-fold higher than BMSCs of either age. The opposite trend was observed for hydroxyproline content, with BMSCs accumulating 2-3-fold more than chondrocytes, independent of age. Size-exclusion chromatography of extracted proteoglycans showed that an aggrecan-like peak was the predominant sulfated proteoglycan for all cell types. Direct measurement of aggrecan core protein length and chondroitin sulfate chain length by single molecule atomic force microscopy imaging revealed that, independent of age, BMSCs produced longer core protein and longer chondroitin sulfate chains, and fewer short core protein molecules than chondrocytes, suggesting that the BMSC-produced aggrecan has a phenotype more characteristic of young tissue than chondrocyte-produced aggrecan. Aggrecan ultrastructure, ECM composition, and cellular proliferation combine to suggest a mechanism by which BMSCs produce a superior cartilage-like neo-tissue than either young or adult chondrocytes. PMID:20153827

  10. System-wide survey of proteomic responses of human bone marrow stromal cells (hBMSCs) to in vitro cultivation.

    PubMed

    Mindaye, Samuel T; Lo Surdo, Jessica; Bauer, Steven R; Alterman, Michail A

    2015-11-01

    Human bone marrow stromal cells (hBMSCs, also loosely called bone marrow-derived mesenchymal stem cells) are the subject of increasing numbers of clinical trials and laboratory research. Our group recently reported on the optimization of a workflow for a sensitive proteomic study of hBMSCs. Here, we couple this workflow with a label-free protein quantitation method to investigate the molecular responses of hBMSCs to long-term in vitro passaging. We explored the proteomic responses of hBMSCs by assessing the expression levels of proteins at early passage (passage 3, P3) and late passage (P7). We used multiple biological as well as technical replicates to ensure that the detected proteomic changes are repeatable between cultures and thus likely to be biologically relevant. Over 1700 proteins were quantified at three passages and a list of differentially expressed proteins was compiled. Bioinformatics-based network analysis and term enrichment revealed that metabolic pathways are largely altered, where many proteins in the glycolytic, pentose phosphate, and TCA pathways were shown to be largely upregulated in late passages. We also observed significant proteomic alterations in functional categories including apoptosis, and ER-based protein processing and sorting following in vitro cell aging. We posit that the comprehensive map outlined in this report of affected phenotypes as well as the underpinning molecular factors tremendously benefit the effort to uncovering targets that are not just used only to monitor cell fitness but can be employed to slowdown the in vitro aging process in hBMSCs and hence ensure manufacturing of cells with known quality, efficacy and stability. PMID:26523674

  11. Detection of Intranasally Delivered Bone Marrow-Derived Mesenchymal Stromal Cells in the Lesioned Mouse Brain: A Cautionary Report

    PubMed Central

    Chartoff, Elena H.; Damez-Werno, Diane; Sonntag, Kai C.; Hassinger, Linda; Kaufmann, Daniel E.; Peterson, Jesse; McPhie, Donna; Cataldo, Anne M.; Cohen, Bruce M.

    2011-01-01

    Bone marrow-derived mesenchymal stromal cells (MSCs) hold promise for autologous treatment of neuropathologies. Intranasal delivery is relatively noninvasive and has recently been reported to result in transport of MSCs to the brain. However, the ability of MSCs to migrate from nasal passages to sites of neuropathology and ultimately survive has not been fully examined. In this paper, we harvested MSCs from transgenic mice expressing enhanced green fluorescent protein (cells hereafter referred to as MSC-EGFP) and delivered them intranasally to wild-type mice sustaining mechanical lesions in the striatum. Using fluorescent, colorimetric, and ultrastructural detection methods, GFP-expressing cells were undetectable in the brain from 3 hours to 2 months after MSC delivery. However, bright autofluorescence that strongly resembled emission from GFP was observed in the olfactory bulb and striatum of lesioned control and MSC-EGFP-treated mice. In a control experiment, we directly implanted MSC-EGFPs into the mouse striatum and detected robust GFP expression 1 and 7 days after implantation. These findings suggest that—under our conditions—intranasally delivered MSC-EGFPs do not survive or migrate in the brain. Furthermore, our observations highlight the necessity of including appropriate controls when working with GFP as a cellular marker. PMID:22190964

  12. Bone Marrow Derived Mesenchymal Stromal Cells Harness Purinergenic Signaling to Tolerize Human Th1 Cells In Vivo

    PubMed Central

    Amarnath, Shoba; Foley, Jason E.; Farthing, Don E.; Gress, Ronald E.; Laurence, Arian; Eckhaus, Michael A.; Métais, Jean-Yves; Rose, Jeremy J.; Hakim, Frances T.; Felizardo, Tania C.; Cheng, Austin V.; Robey, Pamela G.; Stroncek, David E.; Sabatino, Marianna; Battiwalla, Minoo; Ito, Sawa; Fowler, Daniel H.; Barrett, Austin J.

    2014-01-01

    The use of bone marrow derived mesenchymal stromal cells (BMSC) in the treatment of alloimmune and autoimmune conditions has generated much interest, yet an understanding of the therapeutic mechanism remains elusive. We therefore explored immune modulation by a clinical-grade BMSC product in a model of human-into-mouse xenogeneic GVHD (x-GVHD) mediated by human CD4+ Th1 cells. BMSC reversed established, lethal x-GVHD through marked inhibition of Th1 cell effector function. Gene marking studies indicated BMSC engraftment was limited to the lung; further, there was no increase in regulatory T cells, thereby suggesting a paracrine mechanism of BMSC action. BMSC recipients had increased serum CD73 expressing exosomes that promoted adenosine accumulation ex vivo. Importantly, immune modulation mediated by BMSC was fully abrogated by pharmacologic therapy with an adenosine A2A receptor antagonist. To investigate the potential clinical relevance of these mechanistic findings, patient serum samples collected pre- and post-BMSC treatment were studied for exosome content: CD73 expressing exosomes promoting adenosine accumulation were detected in post-BMSC samples. In conclusion, BMSC effectively modulate experimental GVHD through a paracrine mechanism that promotes adenosine-based immune suppression. PMID:25532725

  13. Effect of Increasing Doses of γ-Radiation on Bone Marrow Stromal Cells Grown on Smooth and Rough Titanium Surfaces

    PubMed Central

    Huang, Bo; Guang, Mengkai; Ye, Jun; Gong, Ping; Tang, Hua

    2015-01-01

    Radiation therapy for oral and maxillofacial tumors could damage bone marrow stromal cells (BMSCs) in jaw, which caused dental implant failure. However, how radiation affects BMSCs on SLA (sandblasted with large-grits, acid-etched) surfaces is still unknown. The aim of this study was to investigate effect of different dose of γ-radiation on BMSCs on SLA and PT (polished titanium) surfaces. Rat BMSCs were radiated with 2, 4, and 8 Gy γ-radiation and then seeded on both surfaces. Cell adhesion, spreading, and proliferation were tested. The osteogenesis and the adipogenesis ability were examined by Alizarin-Red and Oil-Red staining, respectively. Real-time PCR was performed to detect osteogenic (osteocalcin, OCN; runt-related transcription factor 2, Runx2) and adipogenic (peroxisome proliferator-activated receptor gamma, PPARγ) gene expression at days 7 and 14 postirradiation. Results showed that γ-radiation reduced cell proliferation, adhesion, spreading, and osteogenic differentiation. 2 Gy radiation promoted adipogenic differentiation, but it was significantly decreased when dosage reached 4 Gy. In conclusion, results suggest that γ-radiation influenced BMSCs behaviors in a dosage-dependent manner except adipogenic differentiation, low dose promoted it, and high dose inhibited it. This effect was influenced by surface characteristics, which may explain the different failure rate of various implants in patients after radiation. PMID:26257788

  14. Proliferation and osteogenic differentiation of human bone marrow stromal cells on alginate-gelatine-hydroxyapatite scaffolds with anisotropic pore structure.

    PubMed

    Bernhardt, A; Despang, F; Lode, A; Demmler, A; Hanke, T; Gelinsky, M

    2009-01-01

    Porous mineralized scaffolds are required for various applications in bone engineering. In particular, tube-like pores with controlled orientation inside the scaffold may support homogeneous cell seeding as well as sufficient nutrient supply and may facilitate blood vessel ingrowth. Scaffolds with parallely orientated tube-like pores were generated by diffusion-controlled ionotropic gelation of alginate. Incorporation of hydroxyapatite (HA) during the gelation process yielded stable scaffolds with an average pore diameter of approximately 90 microm. To evaluate the potential use of alginate-gelatine-HA scaffolds for bone tissue engineering, in vitro tests with human bone marrow stromal cells (hBMSCs) were carried out. We analysed biocompatibility and cell penetration into the capillary pores by microscopic methods. hBMSCs were also cultivated on alginate-gelatine-HA scaffolds for 3 weeks in the presence and absence of osteogenic supplements. We studied proliferation and osteogenic differentiation in terms of total lactate dehydrogenase (LDH) activity, DNA content and alkaline phosphatase (ALP) activity and found a 10-14-fold increase of cell number after 2 weeks of cultivation, as well as an increase of specific ALP activity for osteogenic-induced hBMSCs. Furthermore, the expression of bone-related genes [ALP, bone sialoprotein II (BSPII)] was analysed. We found an increase of ALP as well as BSPII expression for osteogenic-induced hBMSCs on alginate-gelatin-HA scaffolds.

  15. The New Role of CD163 in the Differentiation of Bone Marrow Stromal Cells into Vascular Endothelial-Like Cells.

    PubMed

    Lu, Wei; Su, Le; Yu, Zhezheng; Zhang, Shangli; Miao, Junying

    2016-01-01

    Bone marrow stromal cells (BMSCs) can differentiate into vascular endothelial cells (VECs). It is regarded as an important solution to cure many diseases, such as ischemic diseases and diabetes. However, the mechanisms underlying BMSC differentiation into VECs are not well understood. Recent reports showed that CD163 expression was associated with angiogenesis. In this study, overexpression of CD163 in BMSCs elevated the protein level of the endothelial-associated markers CD31, Flk-1, eNOS, and VE-cadherin, significantly increased the proportion of Alexa Fluor 488-acetylated-LDL-positive VECs, and promoted angiogenesis on Matrigel. Furthermore, we demonstrated that CD163 acted downstream homeobox containing 1 (Hmbox1) and upstream fibroblast growth factor 2 (FGF-2). These data suggested that CD163 was involved in Hmbox1/CD163/FGF-2 signal pathway in BMSC differentiation into vascular endothelial-like cells. We found a new signal pathway and a novel target for further investigating the gene control of BMSC differentiation into a VEC lineage. PMID:26880943

  16. An amphiphilic degradable polymer/hydroxyapatite composite with enhanced handling characteristics promotes osteogenic gene expression in bone marrow stromal cells

    PubMed Central

    Kutikov, Artem B.; Song, Jie

    2013-01-01

    Electrospun polymer/hydroxyapatite (HA) composites combining biodegradability with osteoconductivity are attractive for skeletal tissue engineering applications. However, most biodegradable polymers such as PLA are hydrophobic and do not blend with adequate interfacial adhesion with HA, compromising the structural homogeneity, mechanical integrity, and biological performance of the composite. To overcome this challenge, we incorporated a hydrophilic polyethylene glycol (PEG) block to poly(D,L-lactic acid) to improve the adhesion of the degradable polymer with HA. The amphiphilic triblock copolymer PLA-PEG-PLA (PELA) improved the stability of HA-PELA suspension at 25 wt% HA content, which was readily electrospun into HA-PELA composite scaffolds with uniform fiber dimensions. HA-PELA was highly extensible (failure strain >200% vs. <40% for HA-PLA), superhydrophilic (~0° water contact angle vs. >100° for HA-PLA), and exhibited an 8-fold storage modulus increase (unlike deterioration for HA-PLA) upon hydration, owing to the favorable interaction between HA and PEG. HA-PELA also better promoted osteochondral lineage commitment of bone marrow stromal cells in unstimulated culture and supported far more potent osteogenesis upon induction than HA-PLA. We demonstrate that the chemical incorporation of PEG is an effective strategy to improve the performance of degradable polymer/HA composites for bone tissue engineering applications. PMID:23791675

  17. SDF-1α stiffens myeloma bone marrow mesenchymal stromal cells through the activation of RhoA-ROCK-Myosin II

    PubMed Central

    Choi, Dong Soon; Stark, Daniel J.; Raphael, Robert M.; Wen, Jianguo; Su, Jing; Zhou, Xiaobo; Chang, Chung-Che; Zu, Youli

    2015-01-01

    Multiple myeloma (MM) is a B lymphocyte malignancy that remains incurable despite extensive research efforts. This is due, in part, to frequent disease recurrences associated with the persistence of myeloma cancer stem cells (mCSCs). Bone marrow mesenchymal stromal cells (BMSCs) play critical roles in supporting mCSCs through genetic or biochemical alterations. Previously, we identified mechanical distinctions between BMSCs isolated from MM patients (mBMSCs) and those present in the BM of healthy individuals (nBMSCs). These properties of mBMSC contributed to their ability to preferentially support mCSCs. To further illustrate mechanisms underlying the differences between mBMSCs and nBMSCs, here we report that (i) mBMSCs express an abnormal, constitutively high level of phosphorylated Myosin II, which leads to stiffer membrane mechanics, (ii) mBMSCs are more sensitive to SDF-1α-induced activation of MYL2 through the G(i./o)-PI3K-RhoA-ROCK-Myosin II signaling pathway, affecting Young’s modulus in BMSCs and (iii) activated Myosin II confers increased cell contractile potential, leading to enhanced collagen matrix remodeling and promoting the cell–cell interaction between mCSCs and mBMSCs. Together, our findings suggest that interfering with SDF-1α signaling may serve as a new therapeutic approach for eliminating mCSCs by disrupting their interaction with mBMSCs. PMID:25137150

  18. The temporal expression of estrogen receptor alpha-36 and runx2 in human bone marrow derived stromal cells during osteogenesis

    SciTech Connect

    Francis, W.R.; Owens, S.E.; Wilde, C.; Pallister, I.; Kanamarlapudi, V.; Zou, W.; Xia, Z.

    2014-10-24

    Highlights: • ERα36 is the predominant ERα isoform involved in bone regulation in human BMSC. • ERα36 mRNA is significantly upregulated during the process of osteogenesis. • The pattern of ERα36 and runx2 mRNA expression is similar during osteogenesis. • ERα36 appears to be co-localised with runx2 during osteogenesis. - Abstract: During bone maintenance in vivo, estrogen signals through estrogen receptor (ER)-α. The objectives of this study were to investigate the temporal expression of ERα36 and ascertain its functional relevance during osteogenesis in human bone marrow derived stromal cells (BMSC). This was assessed in relation to runt-related transcription factor-2 (runx2), a main modulatory protein involved in bone formation. ERα36 and runx2 subcellular localisation was assessed using immunocytochemistry, and their mRNA expression levels by real time PCR throughout the process of osteogenesis. The osteogenically induced BMSCs demonstrated a rise in ERα36 mRNA during proliferation followed by a decline in expression at day 10, which represents a change in dynamics within the culture between the proliferative stage and the differentiative stage. The mRNA expression profile of runx2 mirrored that of ERα36 and showed a degree subcellular co-localisation with ERα36. This study suggests that ERα36 is involved in the process of osteogenesis in BMSCs, which has implications in estrogen deficient environments.

  19. MRI measurement of angiogenesis and the therapeutic effect of acute marrow stromal cell administration on traumatic brain injury.

    PubMed

    Li, Lian; Chopp, Michael; Ding, Guang Liang; Qu, Chang Sheng; Li, Qing Jiang; Lu, Mei; Wang, Shiyang; Nejad-Davarani, Siamak P; Mahmood, Asim; Jiang, Quan

    2012-11-01

    Using magnetic resonance imaging (MRI), the present study was undertaken to investigate the therapeutic effect of acute administration of human bone marrow stromal cells (hMSCs) on traumatic brain injury (TBI) and to measure the temporal profile of angiogenesis after the injury with or without cell intervention. Male Wistar rats (300 to 350 g, n=18) subjected to controlled cortical impact TBI were intravenously injected with 1 mL of saline (n=9) or hMSCs in suspension (n=9, 3 × 10(6) hMSCs) 6 hours after TBI. In-vivo MRI acquisitions of T2-weighted imaging, cerebral blood flow (CBF), three-dimensional (3D) gradient echo imaging, and blood-to-brain transfer constant (Ki) of contrast agent were performed on all animals 2 days after injury and weekly for 6 weeks. Sensorimotor function and spatial learning were evaluated. Volumetric changes in the trauma-induced brain lesion and the lateral ventricles were tracked and quantified using T2 maps, and hemodynamic alteration and blood-brain barrier permeability were monitored by CBF and Ki, respectively. Our data show that transplantation of hMSCs 6 hours after TBI leads to reduced cerebral atrophy, early and enhanced cerebral tissue perfusion and improved functional outcome compared with controls. The hMSC treatment increases angiogenesis in the injured brain, which may promote neurologic recovery after TBI.

  20. The crucial role of vitamin C and its transporter (SVCT2) in bone marrow stromal cell autophagy and apoptosis

    PubMed Central

    Sangani, Rajnikumar; Periyasamy-Thandavan, Sudharsan; Pathania, Rajneesh; Ahmad, Saif; Kutiyanawalla, Ammar; Kolhe, Ravindra; Bhattacharyya, Maryka H.; Chutkan, Norman; Hunter, Monte; Hill, William D.; Hamrick, Mark; Isales, Carlos; Fulzele, Sadanand

    2016-01-01

    Vitamin C is an antioxidant that plays a vital role in various biological processes including bone formation. Previously, we reported that vitamin C is transported into bone marrow stromal cells (BMSCs) through the sodium dependent Vitamin C Transporter 2 (SVCT2) and this transporter plays an important role in osteogenic differentiation. Furthermore, this transporter is regulated by oxidative stress. To date, however, the exact role of vitamin C and its transporter (SVCT2) in ROS regulated autophagy and apoptosis in BMSCs is poorly understood. In the present study, we observed that oxidative stress decreased survival of BMSCs in a dose-dependent manner and induced growth arrest in the G1 phase of the cell cycle. These effects were accompanied by the induction of autophagy, confirmed by P62 and LC3B protein level and punctate GFP–LC3B distribution. The supplementation of vitamin C significantly rescued the BMSCs from oxidative stress by regulating autophagy. Knockdown of the SVCT2 transporter in BMSCs synergistically decreased cell survival even under low oxidative stress conditions. Also, supplementing vitamin C failed to rescue cells from stress. Our results reveal that the SVCT2 transporter plays a vital role in the mechanism of BMSC survival under stress conditions. Altogether, this study has given new insight into the role of the SVCT2 transporter in oxidative stress related autophagy and apoptosis in BMSCs. PMID:26210298

  1. MicroRNAs-141 and 200a regulate the SVCT2 transporter in bone marrow stromal cells

    PubMed Central

    Sangani, Rajnikumar; Periyasamy-Thandavan, Sudharsan; Kolhe, Ravindra; Bhattacharyya, Maryka H.; Chutkan, Norman; Hunter, Monte; Isales, Carlos; Hamrick, Mark; Hill, William D.; Fulzele, Sadanand

    2016-01-01

    Vitamin C is a micro-nutrient which plays an important role in bone marrow stromal cell (BMSCs) differentiation to osteogenesis. This vitamin is transported into the BMSCs through the sodium dependent vitamin C transporter 2 (SVCT2). We previously reported that knockdown of the SVCT2 transporter decreases osteogenic differentiation. However, our understanding of the post-transcriptional regulatory mechanism of the SVCT2 transporter remains poor. MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate the messenger RNAs of protein-coding genes. In this study, we aimed to investigate the impact of miR-141 and miR-200a on SVCT2 expression. We found that mouse BMSCs expressed miR-141 and miR-200a and repressed SVCT2 expression at the functional level by targeting the 3'-untranslated region of mRNA. We also found that miR-141 and miR-200a decreased osteogenic differentiation. Furthermore, miRNA inhibitors increased SVCT2 and osteogenic gene expression in BMSCs. Taken together, these results indicate that both miRNAs are novel regulators of the SVCT2 transporter and play an important role in the osteogenic differentiation of BMSCs. PMID:25617715

  2. Recovery of function following grafting of human bone marrow-derived stromal cells into the injured spinal cord.

    PubMed

    Himes, B Timothy; Neuhuber, Birgit; Coleman, Carl; Kushner, Robert; Swanger, Sharon A; Kopen, Gene C; Wagner, Joseph; Shumsky, Jed S; Fischer, Itzhak

    2006-06-01

    This study evaluates functional recovery after transplanting human bone marrow-derived stromal cells (BMSCs) into contusion models of spinal cord injury (SCI). The authors used a high-throughput process to expand BMSCs and characterized them by flow cytometry, ELISA, and gene expression. They found that BMSCs secrete neurotrophic factors and cytokines with therapeutic potential for cell survival and axon growth. In adult immune-suppressed rats, mild, moderate, or severe contusions were generated using the MASCIS impactor. One week following injury, 0.5 to 1 x 106 BMSCs were injected into the lesioned spinal cord; control animals received vehicle injection. Biweekly behavioral tests included the Basso, Beattie, and Bresnahan Locomotor Rating Scale (BBB), exploratory rearing, grid walking, and thermal sensitivity. Animals receiving moderate contusions followed by BMSC grafts showed significant behavioral recovery in BBB and rearing tests when compared to controls. Animals receiving BMSC grafts after mild or severe contusion showed trends toward improved recovery. Immunocytochemistry identified numerous axons passing through the injury in animals with BMSC grafts but few in controls. BMSCS were detected at 2 weeks after transplantation; however, at 11 weeks very few grafted cells remained. The authors conclude that BMSCs show potential for repairing SCI. However, the use of carefully characterized BMSCs improved transplantation protocols ensuring BMSC, survival, and systematic motor and sensory behavioral testing to identify robust recovery is imperative for further improvement. PMID:16679505

  3. Bone Marrow Stromal Cell Intraspinal Transplants Fail to Improve Motor Outcomes in a Severe Model of Spinal Cord Injury.

    PubMed

    Brock, John H; Graham, Lori; Staufenberg, Eileen; Collyer, Eileen; Koffler, Jacob; Tuszynski, Mark H

    2016-06-15

    Bone marrow stromal cells (BMSCs) have been reported to exert potential neuroprotective properties in models of neurotrauma, although precise mechanisms underlying their benefits are poorly understood. Despite this lack of knowledge, several clinical trials have been initiated using these cells. To determine whether local mechanisms mediate BMSC neuroprotective actions, we grafted allogeneic BMSCs to sites of severe, compressive spinal cord injury (SCI) in Sprague-Dawley rats. Cells were administered 48 h after the original injury. Additional animals received allogeneic MSCs that were genetically modified to secrete brain-derived neurotrophic factor (BDNF) to further determine whether a locally administered neurotrophic factor provides or extends neuroprotection. When assessed 2 months post-injury in a clinically relevant model of severe SCI, BMSC grafts with or without BDNF secretion failed to improve motor outcomes. Thus, allogeneic grafts of BMSCs do not appear to act through local mechanisms, and future clinical trials that acutely deliver BMSCs to actual sites of injury within days are unlikely to be beneficial. Additional studies should address whether systemic administration of BMSCs alter outcomes from neurotrauma.

  4. Transplantation of NGF-gene-modified bone marrow stromal cells into a rat model of Alzheimer' disease.

    PubMed

    Li, Li-Yan; Li, Jin-Tao; Wu, Qing-Ying; Li, Jin; Feng, Zhong-Tang; Liu, Su; Wang, Ting-Hua

    2008-02-01

    It is well known that bone marrow stromal cells (BMSC) grafted into the hippocampus of the rat model of Alzheimer's disease (AD) could survive and differentiate into cholinergic neurons as well as contribute towards functional restoration. The present study evaluated the effects of BMSC as a seed cell modified by nerve growth factor (NGF) gene into the hippocampus of AD rats. The beta-amyloid protein was injected bilaterally into the rat hippocampus to reproduce the AD model. After the human total RNA was extracted, the NGF gene was amplified by reverse transcription-polymerase chain reaction, then cloned into the pcDNA3. BMSC derived from a green fluorescence protein transgenic mouse were isolated, cultured, identified, and transfected by the NGF recombinant. The NGF-gene-modified BMSC were then transplanted into the hippocampus of AD rats. The results showed that implanted BMSC survived, migrated and expressed NGF as well as differentiated into ChAT-positive neurons. A significant improvement in learning and memory in AD rats was also seen in NGF-gene-modified BMSC group, when compared with the BMSC group. The present findings suggested that BMSC provided an effective carrier for delivery of NGF into AD rats, and the administration of NGF-gene-modified BMSC may be considered as a potential strategy for the development of effective therapies for the treatment of AD.

  5. Tungsten Promotes Sex-Specific Adipogenesis in the Bone by Altering Differentiation of Bone Marrow-Resident Mesenchymal Stromal Cells.

    PubMed

    Bolt, Alicia M; Grant, Michael P; Wu, Ting Hua; Flores Molina, Manuel; Plourde, Dany; Kelly, Alexander D R; Negro Silva, Luis Fernando; Lemaire, Maryse; Schlezinger, Jennifer J; Mwale, Fackson; Mann, Koren K

    2016-04-01

    Tungsten is a naturally occurring metal that increasingly is being incorporated into industrial goods and medical devices, and is recognized as an emerging contaminant. Tungsten preferentially and rapidly accumulates in murine bone in a concentration-dependent manner; however the effect of tungsten deposition on bone biology is unknown. Other metals alter bone homeostasis by targeting bone marrow-derived mesenchymal stromal cell (MSC) differentiation, thus, we investigated the effects of tungsten on MSCsin vitroandin vivoIn vitro, tungsten shifted the balance of MSC differentiation by enhancing rosiglitazone-induced adipogenesis, which correlated with an increase in adipocyte content in the bone of tungsten-exposed, young, male mice. Conversely, tungsten inhibited osteogenesis of MSCsin vitro; however, we found no evidence that tungsten inhibited osteogenesisin vivo Interestingly, two factors known to influence adipogenesis are sex and age of mice. Both female and older mice have enhanced adipogenesis. We extended our study and exposed young female and adult (9-month) male and female mice to tungsten for 4 weeks. Although tungsten accumulated to a similar extent in young female mice, it did not promote adipogenesis. Interestingly, tungsten did not accumulate in the bone of older mice; it was undetectable in adult male mice, and just above the limit of detect in adult female mice. Surprisingly, tungsten enhanced adipogenesis in adult female mice. In summary, we found that tungsten alters bone homeostasis by altering differentiation of MSCs, which could have significant implications for bone quality, but is highly dependent upon sex and age.

  6. Short-time survival and engraftment of bone marrow stromal cells in an ectopic model of bone regeneration.

    PubMed

    Giannoni, Paolo; Scaglione, Silvia; Daga, Antonio; Ilengo, Cristina; Cilli, Michele; Quarto, Rodolfo

    2010-02-01

    In tissue-engineered applications bone marrow stromal cells (BMSCs) are combined with scaffolds to target bone regeneration; animal models have been devised and the cells' long-term engraftment has been widely studied. However, in regenerated bone, the cell number is severely reduced with respect to the initially seeded BMSCs. This reflects the natural low cellularity of bone but underlines the selectivity of the differentiation processes. In this respect, we evaluated the short-term survival of BMSCs, transduced with the luciferase gene, after implantation of cell-seeded scaffolds in a nude mouse model. Cell proliferation/survival was assessed by bioluminescence imaging: light production was decreased by 30% on the first day, reaching a 50% loss within 48 h. Less than 5% of the initial signal remained after 2 months in vivo. Apoptotic BMSCs were detected within the first 2 days of implantation. Interestingly, the initial frequency of clonogenic progenitors matched the percentage of in vivo surviving cells. Cytokines and inflammation may contribute to the apoptotic onset at the implant milieu. However, preculturing cells with tumor necrosis factor alpha enhanced survival, allowing detection of 8.1% of the seeded BMSCs 2 months after implantation. Thus culturing conditions may reduce the apoptotic overload of seeded osteoprogenitors, strengthening the constructs' osteogenic potential.

  7. Cell–cell interaction between vocal fold fibroblasts and bone marrow mesenchymal stromal cells in three-dimensional hyaluronan hydrogel

    PubMed Central

    Chen, Xia; Thibeault, Susan L.

    2013-01-01

    Mesenchymal stromal cells (MSCs) are multipotential adult cells present in all tissues. Paracrine effects and differentiating ability make MSCs an ideal cell source for tissue regeneration. However, little is known about how interactions between implanted MSCs and native cells influence cellular growth, proliferation, and behaviour. By using an in vitro three-dimensional (3D) co-culture assay of normal or scarred human vocal fold fibroblasts (VFFs) and bone marrow-derived MSCs (BM-MSCs) in a uniquely suited hyaluronan hydrogel (HyStem–VF), we investigated cell morphology, survival rate, proliferation and protein and gene expression of VFFs and BM-MSCs. BM-MSCs inhibited cell proliferation of both normal and scarred VFFs without changes in VFF morphology or viability. BM-MSCs demonstrated decreased proliferation and survival rate after 7 days of co-culture with VFFs. Interactions between BM-MSCs and VFFs led to a significant increase in protein secretion of collagen I and hepatocyte growth factor (HGF) and a decrease of vascular endothelial growth factor (VEGF), monocyte chemotactic protein-1 (MCP-1) and interleukin-6 (IL-6). In particular, BM-MSCs significantly upregulated matrix metalloproteinase 1 (MMP1) and HGF gene expression for scarred VFFs compared to normal VFFs, indicating the potential for increases in extracellular matrix remodelling and tissue regeneration. Application of BM-MSCs-hydrogels may play a significant role in tissue regeneration, providing a therapeutic approach for vocal fold scarring. PMID:23653427

  8. Naringin Stimulates Osteogenic Differentiation of Rat Bone Marrow Stromal Cells via Activation of the Notch Signaling Pathway

    PubMed Central

    Yu, Guo-yong; Zheng, Gui-zhou; Chang, Bo; Hu, Qin-xiao; Lin, Fei-xiang; Liu, De-zhong; Wu, Chu-cheng; Du, Shi-xin

    2016-01-01

    Naringin is a major flavonoid found in grapefruit and is an active compound extracted from the Chinese herbal medicine Rhizoma Drynariae. Naringin is a potent stimulator of osteogenic differentiation and has potential application in preventing bone loss. However, the signaling pathway underlying its osteogenic effect remains unclear. We hypothesized that the osteogenic activity of naringin involves the Notch signaling pathway. Rat bone marrow stromal cells (BMSCs) were cultured in osteogenic medium containing-naringin, with or without DAPT (an inhibitor of Notch signaling), the effects on ALP activity, calcium deposits, osteogenic genes (ALP, BSP, and cbfa1), adipogenic maker gene PPARγ2 levels, and Notch expression were examined. We found that naringin dose-dependently increased ALP activity and Alizarin red S staining, and treatment at the optimal concentration (50 μg/mL) increased mRNA levels of osteogenic genes and Notch1 expression, while decreasing PPARγ2 mRNA levels. Furthermore, treatment with DAPT partly reversed effects of naringin on BMSCs, as judged by decreases in naringin-induced ALP activity, calcium deposits, and osteogenic genes expression, as well as upregulation of PPARγ2 mRNA levels. These results suggest that the osteogenic effect of naringin partly involves the Notch signaling pathway. PMID:27069482

  9. In Vivo Transfer of Intracellular Labels from Locally Implanted Bone Marrow Stromal Cells to Resident Tissue Macrophages

    PubMed Central

    Pawelczyk, Edyta; Jordan, Elaine K.; Balakumaran, Arun; Chaudhry, Aneeka; Gormley, Nicole; Smith, Melissa; Lewis, Bobbi K.; Childs, Richard; Robey, Pamela G.; Frank, Joseph A.

    2009-01-01

    Intracellular labels such as dextran coated superparamagnetic iron oxide nanoparticles (SPION), bromodeoxyuridine (BrdU) or green fluorescent protein (GFP) are frequently used to study the fate of transplanted cells by in vivo magnetic resonance imaging or fluorescent microscopy. Bystander uptake of labeled cells by resident tissue macrophages (TM) can confound the interpretation of the presence of intracellular labels especially during direct implantation of cells, which can result in more than 70% cell death. In this study we determined the percentages of TM that took up SPION, BrdU or GFP from labeled bone marrow stromal cells (BMSCs) that were placed into areas of angiogenesis and inflammation in a mouse model known as Matrigel™ plaque perfusion assay. Cells recovered from digested plaques at various time points were analyzed by fluorescence microscopy and flow cytometry. The analysis of harvested plaques revealed 5% of BrdU+, 5–10% of GFP+ and 5–15% of dextran+ macrophages. The transfer of the label was not dependent on cell dose or viability. Collectively, this study suggests that care should be taken to validate donor origin of cells using an independent marker by histology and to assess transplanted cells for TM markers prior to drawing conclusions about the in vivo behavior of transplanted cells. PMID:19696933

  10. Bone marrow-derived cells participate in stromal remodeling of the lung following acute bacterial pneumonia in mice.

    PubMed

    Serikov, Vladimir B; Mikhaylov, Viatcheslav M; Krasnodembskay, Anna D; Matthay, Michael A

    2008-01-01

    Bone marrow-derived cells (BMDC) have been shown to graft injured tissues, differentiate in specialized cells, and participate in repair. The importance of these processes in acute lung bacterial inflammation and development of fibrosis is unknown. The goal of this study was to investigate the temporal sequence and lineage commitment of BMDC in mouse lungs injured by bacterial pneumonia. We transplanted GFP-tagged BMDC into 5-Gy-irradiated C57BL/6 mice. After 3 months of recovery, mice were subjected to LD(50) intratracheal instillation of live E. coli (controls received saline) which produced pneumonia and subsequent areas of fibrosis. Lungs were investigated by immunohistology for up to 6 months. At the peak of lung inflammation, the predominant influx of BMDC were GFP(+) leukocytes. Postinflammatory foci of lung fibrosis were evident after 1-2 months. The fibrotic foci in lung stroma contained clusters of GFP(+) CD45(+) cells, GFP(+) vimentin-positive cells, and GFP(+) collagen I-positive fibroblasts. GFP(+) endothelial or epithelial cells were not identified. These data suggest that following 5-Gy irradiation and acute bacterial pneumonia, BMDC may temporarily participate in lung postinflammatory repair and stromal remodeling without long-term engraftment as specialized endothelial or epithelial cells.

  11. Human tonsil-derived mesenchymal stromal cells enhanced myelopoiesis in a mouse model of allogeneic bone marrow transplantation

    PubMed Central

    Ryu, Jung-Hwa; Park, Minhwa; Kim, Bo-Kyung; Kim, Yu-Hee; Woo, So-Youn; Ryu, Kyung-Ha

    2016-01-01

    Mesenchymal stromal cells (MSCs) have therapeutic potential for repairing tissue damage and are involved in immune regulation. MSCs are predominantly isolated from bone marrow (BM), adipose tissue or placental tissue. Further to these well-known sources, the isolation of MSCs from human tonsils was previously reported. The aim of the present study was to investigate a potential role for tonsil-derived MSCs (T-MSCs) in BM reconstitution and application towards supplementing hematopoiesis in a mouse model of BM transplantation (BMT). Eight-week-old BALB/c female mice received 80 mg/kg busulfan (Bu)/200 mg/kg cyclophosphamide (Cy) conditioning chemotherapy for BM ablation. Subsequently, human T-MSCs were injected into the Bu/Cy-treated mice with or without BM cells (BMCs) obtained from allogeneic C57BL/6 male mice. After 3 weeks, peripheral blood and BM was collected for analysis. The red blood cell count in the group that received BMCs had almost returned to normal, whereas mononuclear cell counts and BM cellularity were most improved in the T-MSCs + BMCs group. These results indicate that the T-MSCs enhanced myelopoiesis in the allogeneic BMT mouse model, as evidenced by the restoration of BM with hematopoietic cells, as well as increased myeloid colony formation in vitro. Therefore, T-MSCs may provide a source of MSCs to facilitate myelopoiesis and megakaryocytosis following BMT. PMID:27511380

  12. Effects of acoustic and EHF impulses on multipotent stromal cells during formation of bone marrow containing heterotopic organs in tissue engineered constructions.

    PubMed

    Chaikhalyan, R K; Yusupov, V I; Gorskaya, Yu F; Kuralesova, A I; Gerasimov, Yu V; Sviridov, A P; Tambiev, A Kh; Vorob'eva, N N; Shishkova, A G Grosheva V V; Moskvina, I L; Bagratashvili, V N

    2015-03-01

    We studied the effects of physical factors (acoustic impulses of laser-induced hydrodynamics, AILIH, and EHF-radiation) on the formation of heterotopic bone marrow organs. Suspension of precipitated mouse bone marrow cells was exposed to AILIH and EHF or their combinations (AILIH+EHF, EHF+AILIH). The developed tissue engineering constructions (gelatin sponges containing 107 nucleated bone marrow cells exposed to physical factors) were transplanted under the renal capsule of syngeneic mice. Analysis of newly formed hemopoietic organs was performed after 3 and 5 months. The total amount of hemopoietic cells, number of multipotent stromal cells, efficiency of colony formation from these cells, and weight of bone capsule of the transplants were measured. Microscopic study showed that 5-month transplants were significantly larger than 3-month transplants and contained 3-fold more hemopoietic cells (20-fold in the AILIH+EHF group). The number of multipotent stromal cells was maximum in EHF+AILIH group (by 2.2 times higher than in the control) and minimum in AILIH+EHF group. Exposure to EHF+AILIH had most pronounced effect on the formation of the bone marrow transplants. The weight of bone capsules more rapidly increased in gelatin sponges of 3-month transplants of EHF+AILIH and AILIH groups. These data suggest that the studied physical factors can be used for acceleration of rehabilitation process.

  13. Culture perfusion schedules influence the metabolic activity and granulocyte-macrophage colony-stimulating factor production rates of human bone marrow stromal cells.

    PubMed

    Caldwell, J; Palsson, B O; Locey, B; Emerson, S G

    1991-05-01

    The metabolic function and GM-CSF production rates of adherent human bone marrow stromal cells were investigated as functions of medium and serum feeding rates. A range of medium exchange schedules was studied, ranging from a typical Dexter culture protocol of one weekly medium exchange to a full media exchange daily, which more closely approximates what bone marrow cells experience in situ. Glucose consumption was found to be significantly higher at full daily exchange rate than at any other exchange schedule examined. However, the lactate yield on glucose was a constant, at 1.8 mol/mol, under all conditions considered. Differential serum vs. medium exchange experiment showed that both serum supply and medium nutrients were responsible for the altered behavior at high exchange rates. Glutamine consumption was found to be insignificant under all culture conditions examined. A change in exchange schedule from 50% daily medium exchange to full daily medium exchange after 14 days of culture was found to result in a transient production of GM-CSF and a change in metabolic behavior to resemble that of cultures which had full daily exchange from day one. These results suggest that both stromal cell metabolism and GM-CSF production are sensitive to medium exchange schedules. Taken together, the data presented indicate that attempts to model the function of human bone marrow in vitro may be well served by beginning with medium exchange schedules that more closely mimic the in vivo physiologic state of bone marrow. PMID:2040665

  14. Id4, a New Candidate Gene for Senile Osteoporosis, Acts as a Molecular Switch Promoting Osteoblast Differentiation

    PubMed Central

    Yamashita, Yzumi; Nakachi, Yutaka; Nikaido, Itoshi; Bono, Hidemasa; Ninomiya, Yuichi; Kanesaki-Yatsuka, Yukiko; Akita, Masumi; Motegi, Hiromi; Wakana, Shigeharu; Noda, Tetsuo; Sablitzky, Fred; Arai, Shigeki; Kurokawa, Riki; Fukuda, Toru; Katagiri, Takenobu; Schönbach, Christian; Suda, Tatsuo; Mizuno, Yosuke; Okazaki, Yasushi

    2010-01-01

    Excessive accumulation of bone marrow adipocytes observed in senile osteoporosis or age-related osteopenia is caused by the unbalanced differentiation of MSCs into bone marrow adipocytes or osteoblasts. Several transcription factors are known to regulate the balance between adipocyte and osteoblast differentiation. However, the molecular mechanisms that regulate the balance between adipocyte and osteoblast differentiation in the bone marrow have yet to be elucidated. To identify candidate genes associated with senile osteoporosis, we performed genome-wide expression analyses of differentiating osteoblasts and adipocytes. Among transcription factors that were enriched in the early phase of differentiation, Id4 was identified as a key molecule affecting the differentiation of both cell types. Experiments using bone marrow-derived stromal cell line ST2 and Id4-deficient mice showed that lack of Id4 drastically reduces osteoblast differentiation and drives differentiation toward adipocytes. On the other hand knockdown of Id4 in adipogenic-induced ST2 cells increased the expression of Pparγ2, a master regulator of adipocyte differentiation. Similar results were observed in bone marrow cells of femur and tibia of Id4-deficient mice. However the effect of Id4 on Pparγ2 and adipocyte differentiation is unlikely to be of direct nature. The mechanism of Id4 promoting osteoblast differentiation is associated with the Id4-mediated release of Hes1 from Hes1-Hey2 complexes. Hes1 increases the stability and transcriptional activity of Runx2, a key molecule of osteoblast differentiation, which results in an enhanced osteoblast-specific gene expression. The new role of Id4 in promoting osteoblast differentiation renders it a target for preventing the onset of senile osteoporosis. PMID:20628571

  15. Oleate Abrogates Palmitate-Induced Lipotoxicity and Proinflammatory Response in Human Bone Marrow-Derived Mesenchymal Stem Cells and Osteoblastic Cells.

    PubMed

    Gillet, C; Spruyt, D; Rigutto, S; Dalla Valle, A; Berlier, J; Louis, C; Debier, C; Gaspard, N; Malaisse, W J; Gangji, V; Rasschaert, J

    2015-11-01

    Osteoporosis is a metabolic bone disease associated with unequilibrated bone remodeling resulting from decreased bone formation and/or increased bone resorption, leading to progressive bone loss. In osteoporotic patients, low bone mass is associated with an increase of bone marrow fat resulting from accumulation of adipocytes within the bone marrow. Marrow adipocytes are active secretory cells, releasing cytokines, adipokines and free fatty acids (FA) that influence the bone marrow microenvironment and alter the biology of neighboring cells. Therefore, we examined the effect of palmitate (Palm) and oleate (Ole), 2 highly prevalent FA in human organism and diet, on the function and survival of human mesenchymal stem cells (MSC) and MSC-derived osteoblastic cells. The saturated FA Palm exerted a cytotoxic action via initiation of endoplasmic reticulum stress and activation of the nuclear factor κB (NF-κB) and ERK pathways. In addition, Palm induced a proinflammatory response, as determined by the up-regulation of Toll-like receptor 4 expression as well as the increase of IL-6 and IL-8 expression and secretion. Moreover, we showed that MSC-derived osteoblastic cells were more sensitive to lipotoxicity than undifferentiated MSC. The monounsaturated FA Ole fully neutralized Palm-induced lipotoxicity by impairing activation of the pathways triggered by the saturated FA. Moreover, Ole promoted Palm detoxification by fostering its esterification into triglycerides and storage in lipid droplets. Altogether, our data showed that physiological concentrations of Palm and Ole differently modulated cell death and function in bone cells. We therefore propose that FA could influence skeletal health. PMID:26327577

  16. Canine bone marrow-derived mesenchymal stromal cells suppress alloreactive lymphocyte proliferation in vitro but fail to enhance engraftment in canine bone marrow transplantation.

    PubMed

    Lee, Won Sik; Suzuki, Yasuhiro; Graves, Scott S; Iwata, Mineo; Venkataraman, G M; Mielcarek, Marco; Peterson, Laura J; Ikehara, Susumu; Torok-Storb, Beverly; Storb, Rainer

    2011-04-01

    Stable mixed hematopoietic chimerism has been consistently established in dogs who were mildly immunosuppressed by 200 cGy of total body irradiation (TBI) before undergoing dog leukocyte antigen (DLA)-identical bone marrow (BM) transplantation and who received a brief course of immunosuppression with mycophenolate mofetil (28 days) and cyclosporine (35 days) after transplantation. However, when TBI was reduced from 200 to 100 cGy, grafts were nearly uniformly rejected within 3-12 weeks. Here, we asked whether stable engraftment could be accomplished after a suboptimal dose of 100 cGy TBI with host immunosuppression enhanced by donor-derived mesenchymal stromal cells (MSCs) given after transplantation. MSCs were cultured from BM cells and evaluated in vitro for antigen expression. They showed profound immunosuppressive properties in mixed lymphocyte reactions (MLRs) in a cell dose-dependent manner not restricted by DLA. MSC and lymphocyte contact was not required, indicating that immunosuppression was mediated by soluble factors. Prostaglandin E2 was increased in culture supernatant when MSCs were cocultured in MLRs. The addition of indomethacin restored lymphocyte proliferation in cultures containing MSCs. MSCs expressed CD10, CD13, CD29, CD44, CD73/SH-3, CD90/Thy-1, and CD106/VCAM-1. For in vivo studies, MSCs were injected on the day of BM grafting and on day 35, the day of discontinuation of posttransplantation cyclosporine. MSCs derived from the respective BM donors failed to avert BM graft rejection in 4 dogs who received DLA-identical grafts after nonmyeloablative conditioning with 100 cGy TBI in a time course not significantly different from that of control dogs not given MSCs. Although the MSCs displayed in vitro characteristics similar to those reported for MSCs from other species, their immunosuppressive qualities failed to sustain stable BM engraftment in vivo in this canine model. PMID:20457265

  17. Marrow Fat and the Bone Microenvironment: Developmental, Functional, and Pathological Implications

    PubMed Central

    Rosen, Clifford J.; Ackert-Bicknell, Cheryl; Rodriguez, Juan Pablo; Pino, Ana Maria

    2008-01-01

    Bone marrow adipogenesis is a normal physiologic process in all mammals. However, its function is unknown. The mesenchymal stem cell is the marrow precursor for adipocytes as well as osteoblasts, and PPARγ is an essential differentiation factor for entrance into the fat lineage. Mouse models have provided significant insight into the molecular cues that define stromal cell fate. In humans, accelerated marrow adipogenesis has been associated with aging and several chronic conditions including diabetes mellitus and osteoporosis. Newer imaging techniques have been used to determine the developmental time course of fat generation in bone marrow. However, more studies are needed to understand the interrelationship among hematopoietic, osteoblastic, and adipogenic cells within the marrow niche. PMID:19392647

  18. Bone tissue engineering with a collagen–hydroxyapatite scaffold and culture expanded bone marrow stromal cells

    PubMed Central

    Villa, Max M.; Wang, Liping; Huang, Jianping; Rowe, David W.; Wei, Mei

    2015-01-01

    Osteoprogenitor cells combined with supportive biomaterials represent a promising approach to advance the standard of care for bone grafting procedures. However, this approach faces challenges, including inconsistent bone formation, cell survival in the implant, and appropriate biomaterial degradation. We have developed a collagen–hydroxyapatite (HA) scaffold that supports consistent osteogenesis by donor derived osteoprogenitors, and is more easily degraded than a pure ceramic scaffold. Herein, the material properties are characterized as well as cell attachment, viability, and progenitor distribution in vitro. Furthermore, we examined the biological performance in vivo in a critical-size mouse calvarial defect. To aid in the evaluation of the in-house collagen–HA scaffold, the in vivo performance was compared with a commercial collagen–HA scaffold (Healos®, Depuy). The in-house collagen–HA scaffold supported consistent bone formation by predominantly donor-derived osteoblasts, nearly completely filling a 3.5 mm calvarial defect with bone in all samples (n=5) after 3 weeks of implantation. In terms of bone formation and donor cell retention at 3 weeks postimplantation, no statistical difference was found between the in-house and commercial scaffold following quantitative histomorphometry. The collagen–HA scaffold presented here is an open and well-defined platform that supports robust bone formation and should facilitate the further development of collagen–hydroxyapatite biomaterials for bone tissue engineering. PMID:24909953

  19. Characterization of Gaucher disease bone marrow mesenchymal stromal cells reveals an altered inflammatory secretome

    PubMed Central

    Campeau, Philippe M.; Rafei, Moutih; Boivin, Marie-Noëlle; Sun, Ying; Grabowski, Gregory A.

    2009-01-01

    Gaucher disease causes pathologic skeletal changes that are not fully explained. Considering the important role of mesenchymal stromal cells (MSCs) in bone structural development and maintenance, we analyzed the cellular biochemistry of MSCs from an adult patient with Gaucher disease type 1 (N370S/L444P mutations). Gaucher MSCs possessed a low glucocerebrosidase activity and consequently had a 3-fold increase in cellular glucosylceramide. Gaucher MSCs have a typical MSC marker phenotype, normal osteocytic and adipocytic differentiation, growth, exogenous lactosylceramide trafficking, cholesterol content, lysosomal morphology, and total lysosomal content, and a marked increase in COX-2, prostaglandin E2, interleukin-8, and CCL2 production compared with normal controls. Transcriptome analysis on normal MSCs treated with the glucocerebrosidase inhibitor conduritol B epoxide showed an up-regulation of an array of inflammatory mediators, including CCL2, and other differentially regulated pathways. These cells also showed a decrease in sphingosine-1-phosphate. In conclusion, Gaucher disease MSCs display an altered secretome that could contribute to skeletal disease and immune disease manifestations in a manner distinct and additive to Gaucher macrophages themselves. PMID:19587377

  20. Bone-related matrix proteins expression in vitro and in vivo by marrow stromal cell line.

    PubMed

    Benayahu, D; Gurevitz, O A; Shamay, A

    1994-10-01

    MBA-1, a bone marrow stroma-derived cell line, was transplanted in an ectopic site and formed endochondral bone. The ossicle developed through stages of cell proliferation, differentiated into a zone of hypertrophy and formed a chondroid-like area which further developed to primary mineralized bone. We explored the expression of various matrix proteins by MBA-1 cells in vitro and in the ossicle formed in vivo. MBA-1 cells constitutively expressed mRNAs encoding for collagen I, non-collagenous proteins and alkaline phosphatase. RNA extracted from the ossicle formed by these cells was expressed in a different pattern. The in vivo maturation of MBA-1 cells was accompanied by low expression of mRNA for procollagen alpha 2(I) and a marked increase in osteonectin and osteopontin mRNA levels. Thus, the ability to follow expression of these genes through bone formation in vivo has been demonstrated. PMID:9437244

  1. Steroid regulation of proliferation and osteogenic differentiation of bone marrow stromal cells: a gender difference.

    PubMed

    Hong, Liu; Sultana, Habiba; Paulius, Karina; Zhang, Guoquan

    2009-04-01

    Bone marrow mesenchymal stem cells (MSCs) are considered a potential cell source for stem cell-based bone tissue engineering. However, noticeable limitations of insufficient supply and reduction of differentiation potential impact the feasibility of their clinical application. This study investigated the in vitro function of steroids and gender differences on the proliferation and differentiation of rat MSCs. Bone marrow MSCs of age-matched rats were exposed to proliferation and osteogenic differentiation media supplements with various concentrations of 17beta-estradiol (E2) and dexamethasone. Cell proliferation was measured by MTS assay; osteogenic markers and steroid-associated growth factors and receptors were evaluated by ELISA and real-time PCR. The results revealed that supplements of E2 and dexamethasone increase MSC proliferation in a biphasic manner. The optimal dose and interaction of steroids required to improve MSC proliferation effectively varied depending on the gender of donors. Supplementation of E2 effectively improves osteogenic differentiation markers including ALP, osteocalcin and calcium levels for MSCs isolated from both male and female donors. The mRNA of TGF-beta1 and BMP-7 are also up-regulated. However, effective doses to maximally improve osteogenic potentials and growth factors for MSCs are different between male and female donors. The relationship between steroid receptors, osteogenic markers and cytokines are also varied by genders. The outcomes of the present study strongly indicate that steroids potentially function as an effective modulator to improve the capacity of MSCs in bone regeneration. It provides crucial information for improving and optimizing MSCs for future clinical application of bone regeneration. PMID:19429449

  2. Syngeneic Cardiac and Bone Marrow Stromal Cells Display Tissue-Specific microRNA Signatures and microRNA Subsets Restricted to Diverse Differentiation Processes

    PubMed Central

    Meraviglia, Viviana; Azzimato, Valerio; Piacentini, Luca; Chiesa, Mattia; Kesharwani, Rupesh K.; Frati, Caterina; Capogrossi, Maurizio C.; Gaetano, Carlo; Pompilio, Giulio

    2014-01-01

    MicroRNAs are key modulators at molecular level in different biological processes, including determination of cell fate and differentiation. Herein, microRNA expression profiling experiments were performed on syngeneic cardiac (CStC) and bone marrow (BMStC) mesenchymal stromal cells cultured in standard growth medium and then in vitro exposed to adipogenic, osteogenic, cardiomyogenic and endothelial differentiation media. Analysis identified a tissue-specific microRNA signature composed of 16 microRNAs that univocally discriminated cell type of origin and that were completely unaffected by in vitro differentiation media: 4 microRNAs were over-expressed in cardiac stromal cells, and 12 were overexpressed or present only in bone marrow stromal cells. Further, results revealed microRNA subsets specifically modulated by each differentiation medium, irrespective of the cell type of origin, and a subset of 7 microRNAs that were down-regulated by all media with respect to growth medium. Finally, we identified 16 microRNAs that were differentially modulated by the media when comparing the two tissues of origin. The existence of a tissue-specific microRNA signature surviving to any differentiation stimuli, strongly support the role if microRNAs determining cell identity related to tissue origin. Moreover, we identified microRNA subsets modulated by different culture conditions in a tissue-specific manner, pointing out their importance during differentiation processes. PMID:25232725

  3. Specially modified stromal and immune microenvironment in injected bone marrow following intrabone transplantation facilitates allogeneic hematopoietic stem cell engraftment.

    PubMed

    Chen, Chen; Su, Yingjun; Chen, Jianwu; Song, Yajuan; Zhuang, Ran; Xiao, Bo; Guo, Shuzhong

    2016-07-01

    For allogeneic hematopoietic stem cell transplantation (HSCT), the first key step is the engraftment of hematopoietic stem cells (HSCs) across the major histocompatibility complex (MHC) barrier. Intrabone bone marrow transplantation (IBBMT) could replace more recipient stromal cells with donor cells and facilitate allogeneic organ transplantation compared with the conventional intravenous approach. However, it remains unknown whether and how IBBMT reconstructs the immune microenvironment for allogeneic HSCs. We explored where the BM microenvironment changes by determining BM stromal cell chimerism and measuring the change in CXCL-12 expression and regulatory T cells in recipient BM. We found that most stromal cells were replaced by allogeneic cells in the injected BM, with higher expression of immune regulatory cytokines (interleukin-10) compared with the contralateral BM and the intravenous group BM. This difference was independent of injury caused by intrabone injection. Consistent with the microenvironment modification, the allogeneic the engraftment rate and reconstitution capacity of HSCs were enhanced in the injected BM compared with the contralateral BM and intravenous group BM. Surgical removal of the injected bone at 7 days rather than 21 days reduced the levels of allogeneic granulocytes and HSCs in the peripheral blood. In conclusion, IBBMT specially modifies stromal cells in the injected BM which provide immune protective cues that improve the engraftment of allogeneic HSCs in an early period. PMID:27090963

  4. Osteogenic behavior of alginate encapsulated bone marrow stromal cells: an in vitro study.

    PubMed

    Abbah, S A; Lu, W W; Chan, D; Cheung, K M C; Liu, W G; Zhao, F; Li, Z Y; Leong, J C Y; Luk, K D K

    2008-05-01

    Sodium alginate is a useful polymer for the encapsulation and immobilization of a variety of cells in tissue engineering because it is biocompatible, biodegradable and easy to process into injectable microbeads. Despite these properties, little is known of the efficacy of calcium cross-linked alginate gel beads as a biodegradable scaffold for osteogenic cell proliferation and differentiation. In this study, we investigated the ability of rabbit derived bone marrow cells (BMCs) to proliferate and differentiate in alginate microbeads and compared them with BMCs cultured in poly-L-lysine (PLL) coated microbeads and on conventional 2D plastic surfaces. Results show that levels of proliferation and differentiation in microbeads and on tissue culture plastics were comparable. Cell proliferation in microbeads however diminished after fortification with a coating layer of PLL. Maximum cell numbers observed were, 3.32 x 10(5) +/- 1.72 x 103; 3.11 x 10(5) +/- 1.52 x 10(3) and 3.28 x 10(5) +/- 1.21 x 10(3 ) for the uncoated, PLL coated and plastic surface groups respectively. Alkaline phosphatase and protein expressions reflected the stage of cell differentiation. We conclude that calcium cross-linked alginate microbeads can act as a scaffold for BMC proliferation and osteogenic differentiation and has potential for use as 3D degradable scaffold.

  5. Effect of KCA-098 on the function of osteoblast-like cells and the formation of TRAP-positive multinucleated cells in a mouse bone marrow cell population.

    PubMed

    Kawashima, K; Inoue, T; Tsutsumi, N; Endo, H

    1996-01-26

    KCA-098 (3,9-bis(N,N-dimethylcarbamoyloxy)-5H-benzofuro[3,2-c]quinol ine-6-one), an analogue of coumestrol (a naturally occurring weak phytoestrogen), dose-dependently increased alkaline phosphatase activity of osteoblastic ROS 17/2.8 cells and freshly-isolated osteoblasts from neonatal mouse calvaria, and reduced cell proliferation. In addition, KCA-098 increased the synthesis of collagenese-digestible protein (CDP) of ROS 17/2.8 cells. On the other hand, KCA-098 had no effect on the basal synthesis of osteocalcin but reduced the 1 alpha,25-dihydroxyvitamin D3 (1 alpha,25(OH)(2)D3)-induced increase in osteocalcin synthesized by ROS 17/2.8 cells. Therefore, KCA-098 had a bidirectional effect on the differentiation of osteoblasts (i.e., stimulating both alkaline phosphatase activity and synthesis of CDP and inhibiting osteocalcin synthesis). However, as KCA-098 stimulated the mineralization of chick embryonic bone in organ culture and recovered the bone density reduced by ovariectomy of rats, it would serve overall to stimulate the differentiation of osteoblasts. On the other hand, KCA-098 inhibited the formation of tartrate-resistant, acid phosphate-positive multinucleated cells (TRAP(+)MNC) induced by 1 alpha,25(OH)(2)D(3), parathyroid hormone (PTH), and prostaglandin E2 (PGE2) in cultures of mouse bone marrow cells, showing that it inhibits the formation of osteoclast-like cells. Coumestrol and 17beta-estradiol had no effect on the proliferation and alkaline phosphatase activity of ROS 17/2.8 cells. They did, however, dose-dependently inhibit osteoclast-like cell formation as well as KCA-098 did, indicating that the main action of coumestrol and 17beta-estradiol on bone tissue is the inhibition of bone resorption.

  6. Increased NF-κB Activity and Decreased Wnt/β-Catenin Signaling Mediate Reduced Osteoblast Differentiation and Function in ΔF508 Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Mice*

    PubMed Central

    Le Henaff, Carole; Mansouri, Rafik; Modrowski, Dominique; Zarka, Mylène; Geoffroy, Valérie; Marty, Caroline; Tarantino, Nadine; Laplantine, Emmanuel; Marie, Pierre J.

    2015-01-01

    The prevalent human ΔF508 mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) is associated with reduced bone formation and bone loss in mice. The molecular mechanisms by which the ΔF508-CFTR mutation causes alterations in bone formation are poorly known. In this study, we analyzed the osteoblast phenotype in ΔF508-CFTR mice and characterized the signaling mechanisms underlying this phenotype. Ex vivo studies showed that the ΔF508-CFTR mutation negatively impacted the differentiation of bone marrow stromal cells into osteoblasts and the activity of osteoblasts, demonstrating that the ΔF508-CFTR mutation alters both osteoblast differentiation and function. Treatment with a CFTR corrector rescued the abnormal collagen gene expression in ΔF508-CFTR osteoblasts. Mechanistic analysis revealed that NF-κB signaling and transcriptional activity were increased in mutant osteoblasts. Functional studies showed that the activation of NF-κB transcriptional activity in mutant osteoblasts resulted in increased β-catenin phosphorylation, reduced osteoblast β-catenin expression, and altered expression of Wnt/β-catenin target genes. Pharmacological inhibition of NF-κB activity or activation of canonical Wnt signaling rescued Wnt target gene expression and corrected osteoblast differentiation and function in bone marrow stromal cells and osteoblasts from ΔF508-CFTR mice. Overall, the results show that the ΔF508-CFTR mutation impairs osteoblast differentiation and function as a result of overactive NF-κB and reduced Wnt/β-catenin signaling. Moreover, the data indicate that pharmacological inhibition of NF-κB or activation of Wnt/β-catenin signaling can rescue the abnormal osteoblast differentiation and function induced by the prevalent ΔF508-CFTR mutation, suggesting novel therapeutic strategies to correct the osteoblast dysfunctions in cystic fibrosis. PMID:26060255

  7. Origin of osteoclasts: Mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells

    SciTech Connect

    Udagawa, Nobuyuki; Takahashi, Naoyuki; Akatsu, Takuhiko; Tanaka, Hirofumi; Sasaki, Takahisa; Suda, Tatsuo ); Nishihara, Tatsuji; Koga, Toshihiko ); Martin, T.J. )

    1990-09-01

    The authors previously reported that osteoclast-like cells were formed in cocultures of a mouse marrow-derived stromal cell line (ST2) with mouse spleen cells in the presence of 1{alpha},25-dihydroxyvitamin D{sub 3} and dexamethasone. In this study, they developed a new coculture system to determine the origin of osteoclasts. When relatively small numbers of mononuclear cells obtained from mouse bone marrow, spleen, thymus, or peripheral blood were cultured for 12 days on the ST2 cell layers, they formed colonies with a linear relationship between the number of colonies formed and the number of hemopoietic cells inoculated. Tartrate-resistant acid phosphatase (TRAPase)-positive monoculear and multinucleated cells appeared in the colonies (TRAPase-positive colonies) in response to 1{alpha},25-dihydroxyvitamin D{sub 3} and dexamethasone. When hemopoietic cells suspended in a collagen-gel solution were cultured on the ST2 cell layers to prevent their movement, TRAPase-positive colonies were similarly formed, indicating that each colony originated from a single cell. Salmon {sup 125}I-labeled calcitonin specifically bound to the TRAPase-positive cells. Resorption lacunae were formed on dentine slices on which cocultures were performed. These results indicate that osteoclasts are also derived from the mature monocytes and macrophages when a suitable microenvironment is provided by bone marrow-derived stromal cells.

  8. Neuroprotective Effects of Bone Marrow Stromal Cell Transplantation in Combination With Treadmill Exercise Following Traumatic Brain Injury

    PubMed Central

    2016-01-01

    Purpose: Traumatic brain injury (TBI) causes cognitive impairments, motor deficits, and neuropsychiatric/behavioral deficits problems. Transplantation of bone marrow stromal cells (BMSCs) facilitates functional recovery from brain insults. Treadmill exercise increases neurogenesis and inhibits apoptosis. In this study, we investigated the effects of BMSC transplantation in combination with treadmill exercise on memory function, by evaluating its effect on neurogenesis and apoptosis in the hippocampus following TBI. Methods: TBI was induced using an electromagnetic-controlled cortical impact device. BMSCs were transplanted into both sides of traumatic scar region 1 week after TBI induction. One week after transplantation of BMSCs, the rats in the exercise groups were trained to run on a treadmill for 30 minutes once daily for 28 days. Step-down avoidance task and radial 8-arm maze test were conducted. Levels of 5-bromo-2ʹ-deoxyuridine and caspase-3 were evaluated using immunohistochemistry. Western blot was used to evaluate the expression of brain-derived neurotrophic factor (BDNF), tyrosine kinase B (TrkB), total-extracellular signal-regulated kinase 1 and 2 (t-ERK1/2), phosphorylated-ERK1/2 (p-ERK1/2), Bcl-2, and Bax. Results: TBI deteriorated memory function, suppressed neurogenesis, and accelerated apoptosis in the hippocampus. Treadmill exercise and BMSC transplantation independently improved memory function by increasing neurogenesis with suppression of apoptosis through the BDNF-ERK pathway in the TBI-induced rats. Combination of BMSC transplantation with treadmill exercise showed additional enhancement of neurogenesis and suppression of apoptosis in the hippocampus. Conclusions: The present study shows that treadmill exercise may aid the therapeutic effect of BMSC transplantation on TBI in rats. PMID:27230460

  9. Chondrogenesis of human bone marrow mesenchymal stromal cells in highly porous alginate-foams supplemented with chondroitin sulfate.

    PubMed

    Huang, Zhao; Nooeaid, Patcharakamon; Kohl, Benjamin; Roether, Judith A; Schubert, Dirk W; Meier, Carola; Boccaccini, Aldo R; Godkin, Owen; Ertel, Wolfgang; Arens, Stephan; Schulze-Tanzil, Gundula

    2015-05-01

    To overcome the limited intrinsic cartilage repair, autologous chondrocyte or bone-marrow-derived mesenchymal stromal cell (BM-MSC) was implanted into cartilage defects. For this purpose suitable biocompatible scaffolds are needed to provide cell retention, chondrogenesis and initial mechanical stability. The present study should indicate whether a recently developed highly porous alginate (Alg) foam scaffold supplemented with chondroitin sulfate (CS) allows the attachment, survival and chondrogenesis of BM-MSCs and articular chondrocytes. The foams were prepared using a freeze-drying method; some of them were supplemented with CS and subsequently characterized for porosity, biodegradation and mechanical profile. BM-MSCs were cultured for 1-2 weeks on the scaffold either under chondrogenic or maintenance conditions. Cell vitality assays, histology, glycosaminoglycan (sGAG) assay, and type II and I collagen immunolabelings were performed to monitor cell growth and extracellular matrix (ECM) synthesis in the scaffolds. Scaffolds had a high porosity ~93-95% with a mean pore sizes of 237±48 μm (Alg) and 197±61 μm (Alg/CS). Incorporation of CS increased mechanical strength of the foams providing gradually CS release over 7 days. Most of the cells survived in the scaffolds. BM-MSCs and articular chondrocytes formed rounded clusters within the scaffold pores. The BM-MSCs, irrespective of whether cultured under non/chondrogenic conditions and chondrocytes produced an ECM containing sGAGs, and types II and I collagen. Total collagen and sGAG contents were higher in differentiated BM-MSC cultures supplemented with CS than in CS-free foams after 14 days. The cell cluster formation induced by the scaffolds might stimulate chondrogenesis via initial intense cell-cell contacts.

  10. Knockdown of SVCT2 impairs in-vitro cell attachment, migration and wound healing in bone marrow stromal cells.

    PubMed

    Sangani, Rajnikumar; Pandya, Chirayu D; Bhattacharyya, Maryka H; Periyasamy-Thandavan, Sudharsan; Chutkan, Norman; Markand, Shanu; Hill, William D; Hamrick, Mark; Isales, Carlos; Fulzele, Sadanand

    2014-03-01

    Bone marrow stromal cell (BMSC) adhesion and migration are fundamental to a number of pathophysiologic processes, including fracture and wound healing. Vitamin C is beneficial for bone formation, fracture repair and wound healing. However, the role of the vitamin C transporter in BMSC adhesion, migration and wound healing is not known. In this study, we knocked-down the sodium-dependent vitamin C transporter, SVCT2, the only known transporter of vitamin C in BMSCs, and performed cell adhesion, migration, in-vitro scratch wound healing and F-actin re-arrangement studies. We also investigated the role of oxidative stress on the above processes. Our results demonstrate that both oxidative stress and down-regulation of SVCT2 decreased cell attachment and spreading. A trans-well cell migration assay showed that vitamin C helped in BMSC migration and that knockdown of SVCT2 decreased cell migration. In the in-vitro scratch wound healing studies, we established that oxidative stress dose-dependently impairs wound healing. Furthermore, the supplementation of vitamin C significantly rescued the BMSCs from oxidative stress and increased wound closing. The knockdown of SVCT2 in BMSCs strikingly decreased wound healing, and supplementing with vitamin C failed to rescue cells efficiently. The knockdown of SVCT2 and induction of oxidative stress in cells produced an alteration in cytoskeletal dynamics. Signaling studies showed that oxidative stress phosphorylated members of the MAP kinase family (p38) and that vitamin C inhibited their phosphorylation. Taken together, these results indicate that both the SVCT2 transporter and oxidative stress play a vital role in BMSC attachment, migration and cytoskeletal re-arrangement. BMSC-based cell therapy and modulation of SVCT2 could lead to a novel therapeutic approach that enhances bone remodeling, fracture repair and wound healing in chronic disease conditions.

  11. Molecular examination of bone marrow stromal cells and chondroitinase ABC-assisted acellular nerve allograft for peripheral nerve regeneration

    PubMed Central

    Wang, Ying; Jia, Hua; Li, Wen-Yuan; Guan, Li-Xin; Deng, Lingxiao; Liu, Yan-Cui; Liu, Gui-Bo

    2016-01-01

    The present study aimed to evaluate the molecular mechanisms underlying combinatorial bone marrow stromal cell (BMSC) transplantation and chondroitinase ABC (Ch-ABC) therapy in a model of acellular nerve allograft (ANA) repair of the sciatic nerve gap in rats. Sprague Dawley rats (n=24) were used as nerve donors and Wistar rats (n=48) were randomly divided into the following groups: Group I, Dulbecco's modified Eagle's medium (DMEM) control group (ANA treated with DMEM only); Group II, Ch-ABC group (ANA treated with Ch-ABC only); Group III, BMSC group (ANA seeded with BMSCs only); Group IV, Ch-ABC + BMSCs group (Ch-ABC treated ANA then seeded with BMSCs). After 8 weeks, the expression of nerve growth factor, brain-derived neurotrophic factor and vascular endothelial growth factor in the regenerated tissues were detected by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry. Axonal regeneration, motor neuron protection and functional recovery were examined by immunohistochemistry, horseradish peroxidase retrograde neural tracing and electrophysiological and tibialis anterior muscle recovery analyses. It was observed that combination therapy enhances the growth response of the donor nerve locally as well as distally, at the level of the spinal cord motoneuron and the target muscle organ. This phenomenon is likely due to the propagation of retrograde and anterograde transport of growth signals sourced from the graft site. Collectively, growth improvement on the donor nerve, target muscle and motoneuron ultimately contribute to efficacious axonal regeneration and functional recovery. Thorough investigation of molecular peripheral nerve injury combinatorial strategies are required for the optimization of efficacious therapy and full functional recovery following ANA. PMID:27698684

  12. Identification of Pathways Mediating Growth Differentiation Factor5-Induced Tenogenic Differentiation in Human Bone Marrow Stromal Cells

    PubMed Central

    Tan, Sik-Loo; Ahmad, Tunku Sara; Ng, Wuey-Min; Azlina, Amir Abbas; Azhar, Mahmood Merican; Selvaratnam, Lakshmi; Kamarul, Tunku

    2015-01-01

    To date, the molecular signalling mechanisms which regulate growth factors-induced MSCs tenogenic differentiation remain largely unknown. Therefore, a study to determine the global gene expression profile of tenogenic differentiation in human bone marrow stromal cells (hMSCs) using growth differentiation factor 5 (GDF5) was conducted. Microarray analyses were conducted on hMSCs cultures supplemented with 100 ng/ml of GDF5 and compared to undifferentiated hMSCs and adult tenocytes. Results of QuantiGene® Plex assay support the use and interpretation of the inferred gene expression profiles and pathways information. From the 27,216 genes assessed, 873 genes (3.21% of the overall human transcriptome) were significantly altered during the tenogenic differentiation process (corrected p<0.05). The genes identified as potentially associated with tenogenic differentiation were ARHGAP29, CCL2, integrin alpha 8 and neurofilament medium polypeptides. These genes, were mainly associated with cytoskeleton reorganization (stress fibers formation) signaling. Pathway analysis demonstrated the potential molecular pathways involved in tenogenic differentiation were: cytoskeleton reorganization related i.e. keratin filament signaling and activin A signaling; cell adhesion related i.e. chemokine and adhesion signaling; and extracellular matrix related i.e. arachidonic acid production signaling. Further investigation using atomic force microscopy and confocal laser scanning microscopy demonstrated apparent cytoskeleton reorganization in GDF5-induced hMSCs suggesting that cytoskeleton reorganization signaling is an important event involved in tenogenic differentiation. Besides, a reduced nucleostemin expression observed suggested a lower cell proliferation rate in hMSCs undergoing tenogenic differentiation. Understanding and elucidating the tenogenic differentiation signalling pathways are important for future optimization of tenogenic hMSCs for functional tendon cell-based therapy and

  13. Further observations on the behavioral and neural effects of bone marrow stromal cells in rodent pain models

    PubMed Central

    Guo, Wei; Chu, Yu-Xia; Imai, Satoshi; Yang, Jia-Le; Zou, Shiping; Mohammad, Zaid; Wei, Feng; Dubner, Ronald

    2016-01-01

    Background Bone marrow stromal cells (BMSCs) have shown potential to treat chronic pain, although much still needs to be learned about their efficacy and mechanisms of action under different pain conditions. Here, we provide further convergent evidence on the effects of BMSCs in rodent pain models. Results In an orofacial pain model involving injury of a tendon of the masseter muscle, BMSCs attenuated behavioral pain conditions assessed by von Frey filaments and a conditioned place avoidance test in female Sprague-Dawley rats. The antihyperalgesia of BMSCs in females lasted for <8 weeks, which is shorter than that seen in males. To relate preclinical findings to human clinical conditions, we used human BMSCs. Human BMSCs (1.5 M cells, i.v.) attenuated mechanical and thermal hyperalgesia induced by spinal nerve ligation and suppressed spinal nerve ligation-induced aversive behavior, and the effect persisted through the 8-week observation period. In a trigeminal slice preparation, BMSC-treated and nerve-injured C57B/L mice showed reduced amplitude and frequency of spontaneous excitatory postsynaptic currents, as well as excitatory synaptic currents evoked by electrical stimulation of the trigeminal nerve root, suggesting inhibition of trigeminal neuronal hyperexcitability and primary afferent input by BMSCs. Finally, we observed that GluN2A (N-methyl-D-aspartate receptor subunit 2A) tyrosine phosphorylation and protein kinase Cgamma (PKCγ) immunoreactivity in rostral ventromedial medulla was suppressed at 8 weeks after BMSC in tendon-injured rats. Conclusions Collectively, the present work adds convergent evidence supporting the use of BMSCs in pain control. As PKCγ activity related to N-methyl-D-aspartate receptor activation is critical in opioid tolerance, these results help to understand the mechanisms of BMSC-produced long-term antihyperalgesia, which requires opioid receptors in rostral ventromedial medulla and apparently lacks the development of tolerance

  14. Adenoviral Mediated Expression of BMP2 by Bone Marrow Stromal Cells Cultured in 3D Copolymer Scaffolds Enhances Bone Formation

    PubMed Central

    Sharma, Sunita; Sapkota, Dipak; Xue, Ying; Sun, Yang; Finne-Wistrand, Anna; Bruland, Ove; Mustafa, Kamal

    2016-01-01

    Selection of appropriate osteoinductive growth factors, suitable delivery method and proper supportive scaffold are critical for a successful outcome in bone tissue engineering using bone marrow stromal cells (BMSC). This study examined the molecular and functional effect of a combination of adenoviral mediated expression of bone morphogenetic protein-2 (BMP2) in BMSC and recently developed and characterized, biodegradable Poly(L-lactide-co-є-caprolactone){poly(LLA-co-CL)}scaffolds in osteogenic molecular changes and ectopic bone formation by using in vitro and in vivo approaches. Pathway-focused custom PCR array, validation using TaqMan based quantitative RT-PCR (qRT-PCR) and ALP staining showed significant up-regulation of several osteogenic and angiogenic molecules, including ALPL and RUNX2 in ad-BMP2 BMSC group grown in poly(LLA-co-CL) scaffolds both at 3 and 14 days. Micro CT and histological analyses of the subcutaneously implanted scaffolds in NOD/SCID mice revealed significantly increased radiopaque areas, percentage bone volume and formation of vital bone in ad-BMP2 scaffolds as compared to the control groups both at 2 and 8 weeks. The increased bone formation in the ad-BMP2 group in vivo was paralleled at the molecular level with concomitant over-expression of a number of osteogenic and angiogenic genes including ALPL, RUNX2, SPP1, ANGPT1. The increased bone formation in ad-BMP2 explants was not found to be associated with enhanced endochondral activity as evidenced by qRT-PCR (SOX9 and FGF2) and Safranin O staining. Taken together, combination of adenoviral mediated BMP-2 expression in BMSC grown in the newly developed poly(LLA-co-CL) scaffolds induced expression of osteogenic markers and enhanced bone formation in vivo. PMID:26808122

  15. Characteristics of three-dimensional prospectively isolated mouse bone marrow mesenchymal stem/stromal cell aggregates on nanoculture plates.

    PubMed

    Obara, Chizuka; Tomiyama, Ken-Ichi; Takizawa, Kazuya; Islam, Rafiqul; Yasuda, Takeshi; Gotoh, Takaya; Tajima, Katsushi

    2016-10-01

    Three-dimensional (3-D) aggregate culturing is useful for investigating the functional properties of mesenchymal stem/stromal cells (MSCs). For 3-D MSC analysis, however, pre-expansion of MSCs with two-dimensional (2-D) monolayer culturing must first be performed, which might abolish their endogenous properties. To avoid the need for 2-D expansion, we used prospectively isolated mouse bone marrow (BM)-MSCs and examined the differences in the biological properties of 2-D and 3-D MSC cultures. The BM-MSCs self-assembled into aggregates on nanoculture plates (NCP) that have nanoimprinted patterns with a low-cellular binding texture. The 3-D MSCs proliferated at the same rate as 2-D-cultured cells by only diffusion culture and secreted higher levels of pro-angiogenic factors such as vascular endothelial growth factor and hepatocyte growth factor (HGF). Conditioned medium from 3-D MSC cultures promoted more capillary formation than that of 2-D MSCs in an in vitro tube formation assay. Matrigel-implanted 3-D MSC aggregates tended to induce angiogenesis in host mice. The 3-D culturing on NCP induced alpha-fetoprotein (AFP) expression in MSCs without the application of AFP- or endodermal-inducible factors, possibly via an HGF-autocrine mechanism, and maintained their differentiation ability for adipocytes, osteocytes, and chondrocytes. Prospectively isolated mouse BM-MSCs expressed low/negative stemness-related genes including Oct3/4, Nanog, and Sox2, which were not enhanced by NCP-based 3-D culturing, suggesting that some of these cells differentiate into meso-endodermal layer cells. Culturing of prospectively isolated MSCs on NCP in 3-D allows the analysis of the biological properties of more closely endogenous BM-MSCs and might contribute to tissue engineering and repair.

  16. Matrix-mediated retention of osteogenic differentiation potential by human adult bone marrow stromal cells during ex vivo expansion.

    PubMed

    Mauney, Joshua R; Kaplan, David L; Volloch, Vladimir

    2004-07-01

    During prolonged cultivation ex vivo, adult bone marrow stromal stem cells (BMSCs) undergo two probably interdependent processes, replicative aging and a decline in differentiation potential. Recently, our results with primary human fibroblasts indicated that growth on denatured collagen (DC) matrix results in the reduction of the rate of cellular aging. The present study has been undertaken to test whether the growth of human BMSCs under the same conditions would translate into preservation of cellular aging-attenuated functions, such as the ability to express HSP70 in response to stress as well as of osteogenic differentiation potential. We report here that growth of BMSCs on a DC matrix versus tissue culture polystyrene significantly reduced one of the main manifestations of cellular aging, the attenuation of the ability to express a major protective stress response component, HSP70, increased the proliferation capacity of ex vivo expanded BMSCs, reduced the rate of morphological changes, and resulted in a dramatic increase in the retention of the potential to express osteogenic-specific functions and markers upon treatment with osteogenic stimulants. BMSCs are a promising and increasingly important cell source for tissue engineering as well as cell and gene therapeutic strategies. For use of BMSCs in these applications, ex vivo expansion is necessary to obtain a sufficient, therapeutically useful, number of cells; however, this results in the loss of differentiation potential. This problem is especially acute in older patients where more extensive in vitro expansion of smaller number of stem/progenitor cells is needed. The finding that growth on certain biomaterials preserves aging-attenuated functions, enhances proliferation capacity, and maintains differentiation potential of BMSCs indicates a promising approach to address this problem.

  17. Influence of biomechanical and biochemical stimulation on the proliferation and differentiation of bone marrow stromal cells seeded on polyurethane scaffolds

    PubMed Central

    TENG, SONGSONG; LIU, CHAOXU; GUENTHER, DANIEL; OMAR, MOHAMED; NEUNABER, CLAUDIA; KRETTEK, CHRISTIAN; JAGODZINSKI, MICHAEL

    2016-01-01

    The aim of the present investigation was to compare the effects of cyclic compression, perfusion, dexamethasone (DEX) and bone morphogenetic protein-7 (BMP-7) on the proliferation and differentiation of human bone marrow stromal cells (hBMSCs) in polyurethane scaffolds in a perfusion bioreactor. Polyurethane scaffolds seeded with hBMSCs were cultured under six different conditions, as follows: 10% Cyclic compression at 0.5 and 5 Hz; 10 ml/min perfusion; 100 nM DEX; 100 ng/ml BMP-7; and 1 ml/min perfusion without mechanical and biochemical stimulation (control). On days 7 and 14, samples were tested for the following data: Cell proliferation; mRNA expression of Runx2, COL1A1 and osteocalcin; osteocalcin content; calcium deposition; and the equilibrium modulus of the tissue specimen. The results indicated that BMP-7 and 10 ml/min perfusion promoted cell proliferation, which was inhibited by 5 Hz cyclic compression and DEX. On day 7, the 5 Hz cyclic compression inhibited Runx2 expression, whereas the 0.5 Hz cyclic compression and BMP-7 upregulated the COL1A1 mRNA levels on day 7 and enhanced the osteocalcin expression on day 14. The DEX-treated hBMSCs exhibited downregulated osteocalcin expression. After 14 days, the BMP-7 group exhibited the highest calcium deposition, followed by the 0.5 Hz cyclic compression and the DEX groups. The equilibrium modulus of the engineered constructs significantly increased in the BMP-7, 0.5 Hz cyclic compression and DEX groups. In conclusion, the present results suggest that BMP-7 and perfusion enhance cell proliferation, whereas high frequency cyclic compression inhibits the proliferation and osteogenic differentiation of hBMSCs. Low frequency cyclic compression is more effective than DEX, but less effective compared with BMP-7 on the osteogenic differentiation of hBMSCs seeded on polyurethane scaffolds. PMID:27284290

  18. Conditioned media from differentiating craniofacial bone marrow stromal cells influence mineralization and proliferation in periodontal ligament stem cells.

    PubMed

    Jin, Zhenyu; Feng, Yuan; Liu, Hongwei

    2016-10-01

    Previous reports have mainly focused on the behavioral responses of human periodontal ligament stem cells (hPDLSCs) in interaction with tibia bone marrow stromal cells (BMSCs). However, there is little study on the biologic features of hPDLSCs under the induction of maxilla BMSCs (M-BMSCs) at different phases of osteogenic differentiation. We hypothesized that M-BMSCs undergoing osteogenic differentiation acted on the proliferation, differentiation, and bone-forming capacity of hPDLSCs. In this paper, primary hPDLSCs and human M-BMSCs (hM-BMSCs) were expanded in vitro. After screening of surface markers for characterization, hPDLSCs were cocultured with different phases of differentiating hM-BMSCs. Cell proliferation and alkaline phosphatase activity were examined, and mineralization-associated markers such as osteocalcin and runt-related transcription factor 2 of hPDLSCs in coculture with uninduced/osteoinduced hM-BMSCs were evaluated. hPDLSCs in hM-BMSCs-conditioned medium (hM-BMSCs-CM) group showed a reduction in proliferation compared with untreated hPDLSCs, while osteoinduced hM-BMSCs for 10 day-conditioned medium (hM-BMSCs-CM-10ds) and osteoinduced hM-BMSCs for 15 day-conditioned medium (hM-BMSCs-CM-15ds) enhance the proliferation of hPDLSCs. hM-BMSCs of separate differentiation stages temporarily inhibited osteogenesis of hPDLSCs in the early days. Upon extending time periods, uninduced/osteoinduced hM-BMSCs markedly enhanced osteogenesis of hPDLSCs to different degrees. The transplantation results showed hM-BMSCs-CM-15ds treatment promoted tissue regeneration to generate cementum/periodontal ligament-like structure characterized by hard-tissue formation. This research supported the notion that hM-BMSCs triggered osteogenesis of hPDLSCs suggesting important implications for periodontal engineering. PMID:27614434

  19. Comparative cellular and molecular analyses of pooled bone marrow multipotent mesenchymal stromal cells during continuous passaging and after successive cryopreservation.

    PubMed

    Mamidi, Murali Krishna; Nathan, Kavitha Ganesan; Singh, Gurbind; Thrichelvam, Saratha Thevi; Mohd Yusof, Nurul Ain Nasim; Fakharuzi, Noor Atiqah; Zakaria, Zubaidah; Bhonde, Ramesh; Das, Anjan Kumar; Majumdar, Anish Sen

    2012-10-01

    The clinical application of human bone marrow derived multipotent mesenchymal stromal cells (MSC) requires expansion, cryopreservation, and transportation from the laboratory to the site of cell implantation. The cryopreservation and thawing process of MSCs may have important effects on the viability, growth characteristics and functionality of these cells both in vitro and in vivo. More importantly, MSCs after two rounds of cryopreservation have not been as well characterized as fresh MSCs from the transplantation perspective. The objective of this study was to determine if the effect of successive cryopreservation of pooled MSCs during the exponential growth phase could impair their morphology, phenotype, gene expression, and differentiation capabilities. MSCs cryopreserved at passage 3 (cell bank) were thawed and expanded up to passage 4 and cryopreserved for the second time. These cells (passive) were then thawed and cultured up to passage 6, and, at each passage MSCs were characterized. As control, pooled passage 3 cells (active) after one round of cryopreservation were taken all the way to passage 6 without cryopreservation. We determined the growth rate of MSCs for both culture conditions in terms of population doubling number (PDN) and population doubling time (PDT). Gene expression profiles for pluripotency markers and tissue specific markers corresponding to neuroectoderm, mesoderm and endoderm lineages were also analyzed for active and passive cultures of MSC. The results show that in both culture conditions, MSCs exhibited similar growth properties, phenotypes and gene expression patterns as well as similar differentiation potential to osteo-, chondro-, and adipo-lineages in vitro. To conclude, it appears that successive or multiple rounds of cryopreservation of MSCs did not alter the fundamental characteristics of these cells and may be used for clinical therapy. PMID:22615164

  20. Creation of New Bone by the Percutaneous Injection of Human Bone Marrow Stromal Cell and HA/TCP Suspensions

    PubMed Central

    Mankani, Mahesh H.; Kuznetsov, Sergei A.; Marshall, Grayson W.; Robey, Pamela Gehron

    2009-01-01

    Background The in vivo transplantation assay has become a valuable tool for assessing the osteogenic potential of diverse cell populations. It has required that cells are cotransplanted with a matrix into recipient animals using large incisions and extensive dissections. Here, we demonstrate that transplants of an osteogenic cell population, bone marrow stromal cells (BMSCs), are capable of assembling into mature bone organs when injected as suspensions of cells and a particulate matrix. Methods Human BMSCs, along with hydroxyapatite/tricalcium phosphate (HA/TCP) particles, were placed either into the dorsal subcutaneous space or onto the calvarium of immunodeficient mice, either via injection or via a wide operative exposure. Transplants were harvested from 7 to 110 weeks later; their histologic and mechanical properties and their cellular origin were analyzed. Results A total of 43 transplants were evaluated. The extent of new bone and hematopoiesis, the bone's adherence to the underlying mouse calvarium, and the bone elastic modulus and hardness were comparable between the two groups. In situ hybridization confirmed a human origin of the new bone. Conclusions Our data indicate that BMSCs and HA/TCP particles, when injected as a suspension, can assemble into mature bone organs, and that this bone has histologic and mechanical properties similar to bone formed in standard transplants delivered through a large incision. These results open the possibility for assessing the osteogenic capacities of cell populations, for modeling bone formation and repair and for treating bone deficits, all in the context of minimal surgical intervention or soft tissue disruption. PMID:18800877

  1. Bone Marrow Mesenchymal Stromal Cells from Clinical Scale Culture: In Vitro Evaluation of Their Differentiation, Hematopoietic Support, and Immunosuppressive Capacities.

    PubMed

    Fajardo-Orduña, Guadalupe R; Mayani, Héctor; Castro-Manrreza, Marta E; Flores-Figueroa, Eugenia; Flores-Guzmán, Patricia; Arriaga-Pizano, Lourdes; Piña-Sánchez, Patricia; Hernández-Estévez, Erika; Castell-Rodríguez, Andrés E; Chávez-Rueda, Adriana K; Legorreta-Haquet, María V; Santiago-Osorio, Edelmiro; Montesinos, Juan J

    2016-09-01

    The differentiation capacity, hematopoietic support, and immunomodulatory properties of human bone marrow mesenchymal stromal cells (BM-MSCs) make them attractive therapeutic agents for a wide range of diseases. Clinical scale cultures (CSCs) have been used to expand BM-MSCs for their use in cell therapy protocols; however, little is known about the functionality of the expanded cells. The main goal of the present study was to evaluate the functional characteristics of BM-MSCs expanded from CSCs to determine the quality of the cells for cellular therapy protocols. To address this issue, we analyzed the morphology, immunophenotype, differentiation potential (adipogenic, osteogenic and chondrogenic), hematopoietic support, and immunosuppressive capacity of BM-MSCs from short scale cultures (SSCs) and CSCs in a comparative manner. After 12 days of culture in CSCs (HYPERFlask System), BM-MSCs reached cell numbers of 125.52 × 10(6) ± 25.6 × 10(6) MSCs, which corresponded to the number of cells required for transplantation (∼1.7 × 10(6) MSCs/kg for a 70-kg patient). After expansion, BM-MSCs expressed the characteristic markers CD73, CD90, and CD105; however, expansion decreased their differentiation capacity toward the adipogenic, osteogenic, and chondrogenic lineages and their ability to inhibit T-cell proliferation compared with SSCs-MSCs. Importantly, CSCs-MSCs maintained the ability to support the proliferation and expansion of hematopoietic progenitor cells and the capacity to express the molecules, cytokines, and extracellular matrix proteins involved in the regulation of hematopoiesis. Our study highlights the need to evaluate the functional properties of the expanded BM-MSCs for verification of their quality for cell therapy protocols. PMID:27462977

  2. Characteristics of three-dimensional prospectively isolated mouse bone marrow mesenchymal stem/stromal cell aggregates on nanoculture plates.

    PubMed

    Obara, Chizuka; Tomiyama, Ken-Ichi; Takizawa, Kazuya; Islam, Rafiqul; Yasuda, Takeshi; Gotoh, Takaya; Tajima, Katsushi

    2016-10-01

    Three-dimensional (3-D) aggregate culturing is useful for investigating the functional properties of mesenchymal stem/stromal cells (MSCs). For 3-D MSC analysis, however, pre-expansion of MSCs with two-dimensional (2-D) monolayer culturing must first be performed, which might abolish their endogenous properties. To avoid the need for 2-D expansion, we used prospectively isolated mouse bone marrow (BM)-MSCs and examined the differences in the biological properties of 2-D and 3-D MSC cultures. The BM-MSCs self-assembled into aggregates on nanoculture plates (NCP) that have nanoimprinted patterns with a low-cellular binding texture. The 3-D MSCs proliferated at the same rate as 2-D-cultured cells by only diffusion culture and secreted higher levels of pro-angiogenic factors such as vascular endothelial growth factor and hepatocyte growth factor (HGF). Conditioned medium from 3-D MSC cultures promoted more capillary formation than that of 2-D MSCs in an in vitro tube formation assay. Matrigel-implanted 3-D MSC aggregates tended to induce angiogenesis in host mice. The 3-D culturing on NCP induced alpha-fetoprotein (AFP) expression in MSCs without the application of AFP- or endodermal-inducible factors, possibly via an HGF-autocrine mechanism, and maintained their differentiation ability for adipocytes, osteocytes, and chondrocytes. Prospectively isolated mouse BM-MSCs expressed low/negative stemness-related genes including Oct3/4, Nanog, and Sox2, which were not enhanced by NCP-based 3-D culturing, suggesting that some of these cells differentiate into meso-endodermal layer cells. Culturing of prospectively isolated MSCs on NCP in 3-D allows the analysis of the biological properties of more closely endogenous BM-MSCs and might contribute to tissue engineering and repair. PMID:27100525

  3. Molecular examination of bone marrow stromal cells and chondroitinase ABC-assisted acellular nerve allograft for peripheral nerve regeneration

    PubMed Central

    Wang, Ying; Jia, Hua; Li, Wen-Yuan; Guan, Li-Xin; Deng, Lingxiao; Liu, Yan-Cui; Liu, Gui-Bo

    2016-01-01

    The present study aimed to evaluate the molecular mechanisms underlying combinatorial bone marrow stromal cell (BMSC) transplantation and chondroitinase ABC (Ch-ABC) therapy in a model of acellular nerve allograft (ANA) repair of the sciatic nerve gap in rats. Sprague Dawley rats (n=24) were used as nerve donors and Wistar rats (n=48) were randomly divided into the following groups: Group I, Dulbecco's modified Eagle's medium (DMEM) control group (ANA treated with DMEM only); Group II, Ch-ABC group (ANA treated with Ch-ABC only); Group III, BMSC group (ANA seeded with BMSCs only); Group IV, Ch-ABC + BMSCs group (Ch-ABC treated ANA then seeded with BMSCs). After 8 weeks, the expression of nerve growth factor, brain-derived neurotrophic factor and vascular endothelial growth factor in the regenerated tissues were detected by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry. Axonal regeneration, motor neuron protection and functional recovery were examined by immunohistochemistry, horseradish peroxidase retrograde neural tracing and electrophysiological and tibialis anterior muscle recovery analyses. It was observed that combination therapy enhances the growth response of the donor nerve locally as well as distally, at the level of the spinal cord motoneuron and the target muscle organ. This phenomenon is likely due to the propagation of retrograde and anterograde transport of growth signals sourced from the graft site. Collectively, growth improvement on the donor nerve, target muscle and motoneuron ultimately contribute to efficacious axonal regeneration and functional recovery. Thorough investigation of molecular peripheral nerve injury combinatorial strategies are required for the optimization of efficacious therapy and full functional recovery following ANA.

  4. Material properties and bone marrow stromal cells response to in situ crosslinkable RGD-functionlized lactide-co-glycolide scaffolds.

    PubMed

    Jabbari, Esmaiel; He, Xuezhong; Valarmathi, Mani T; Sarvestani, Alireza S; Xu, Weijie

    2009-04-01

    In situ crosslinkable biomaterials with degradation profiles that can be tailored to a particular application are indispensable for treating irregularly shaped defects and for fabrication of shape-selective scaffolds. The objective of this work was to synthesize ultra low molecular weight functionalized PLA and PLGA macromers that can be grafted with bioactive peptides and crosslinked in situ to fabricate biodegradable functional scaffolds. In situ crosslinkable lactide-co-glycolide macromer (cMLGA; "c" for crosslinkable, "M" for macromer, and "LGA" for lactide-co-glycolide) was synthesized by anionic polymerization of lactide and glycolide monomers followed by condensation polymerization with fumaryl chloride. The cMLA (100% L-lactide) and cMLGA macromers formed porous crosslinked scaffolds with NVP as the crosslinker. The mass loss of the crosslinked cMLA and cMLGA was linear with incubation time in vitro (zero-order degradation) and the degradation rate depended on the ratio of lactide to glycolide. cMLGA scaffold with 1:1 lactide to glycolide ratio completely degraded after 4 weeks while the cMLA lost less than 40% of its initial mass after 35 weeks. When cMLA scaffold was functionalized with acrylated integrin-binding Ac-GRGD amino acid sequence, bone marrow stromal (BMS) cells attached and spread on the cMLA scaffold and exhibited focal-point cell adhesion. The mRNA expression levels of collagen-1alpha, osteonectin, and osteopontin for BMS cells seeded in the scaffolds with 1 and 5% Ac-GRGD were upregulated compared with those without Ac-GRGD. cMLGA is attractive as in situ crosslinkable macromer for fabrication of functional scaffolds with degradation characteristics that can be tailored to a particular application. PMID:18431754

  5. Schwann cell coculture improves the therapeutic effect of bone marrow stromal cells on recovery in spinal cord-injured mice.

    PubMed

    Xu, Xiaoyun; Geremia, Nicole; Bao, Feng; Pniak, Anna; Rossoni, Melissa; Brown, Arthur

    2011-01-01

    Studies of bone marrow stromal cells (MSCs) transplanted into the spinal cord-injured rat give mixed results: some groups report improved locomotor recovery while others only demonstrate improved histological appearance of the lesion. These studies show no clear correlation between neurological improvements and MSC survival. We examined whether MSC survival in the injured spinal cord could be enhanced by closely matching donor and recipient mice for genetic background and marker gene expression and whether exposure of MSCs to a neural environment (Schwann cells) prior to transplantation would improve their survival or therapeutic effects. Mice underwent a clip compression spinal cord injury at the fourth thoracic level and cell transplantation 7 days later. Despite genetic matching of donors and recipients, MSC survival in the injured spinal cord was very poor (∼1%). However, we noted improved locomotor recovery accompanied by improved histopathological appearance of the lesion in mice receiving MSC grafts. These mice had more white and gray matter sparing, laminin expression, Schwann cell infiltration, and preservation of neurofilament and 5-HT-positive fibers at and below the lesion. There was also decreased collagen and chondroitin sulphate proteoglycan deposition in the scar and macrophage activation in mice that received the MSC grafts. The Schwann cell cocultured MSCs had greater effects than untreated MSCs on all these indices of recovery. Analyses of chemokine and cytokine expression revealed that MSC/Schwann cell cocultures produced far less MCP-1 and IL-6 than MSCs or Schwann cells cultured alone. Thus, transplanted MSCs may improve recovery in spinal cord-injured mice through immunosuppressive effects that can be enhanced by a Schwann cell coculturing step. These results indicate that the temporary presence of MSCs in the injured cord is sufficient to alter the cascade of pathological events that normally occurs after spinal cord injury, generating a

  6. Adenoviral Mediated Expression of BMP2 by Bone Marrow Stromal Cells Cultured in 3D Copolymer Scaffolds Enhances Bone Formation.

    PubMed

    Sharma, Sunita; Sapkota, Dipak; Xue, Ying; Sun, Yang; Finne-Wistrand, Anna; Bruland, Ove; Mustafa, Kamal

    2016-01-01

    Selection of appropriate osteoinductive growth factors, suitable delivery method and proper supportive scaffold are critical for a successful outcome in bone tissue engineering using bone marrow stromal cells (BMSC). This study examined the molecular and functional effect of a combination of adenoviral mediated expression of bone morphogenetic protein-2 (BMP2) in BMSC and recently developed and characterized, biodegradable Poly(L-lactide-co-є-caprolactone){poly(LLA-co-CL)}scaffolds in osteogenic molecular changes and ectopic bone formation by using in vitro and in vivo approaches. Pathway-focused custom PCR array, validation using TaqMan based quantitative RT-PCR (qRT-PCR) and ALP staining showed significant up-regulation of several osteogenic and angiogenic molecules, including ALPL and RUNX2 in ad-BMP2 BMSC group grown in poly(LLA-co-CL) scaffolds both at 3 and 14 days. Micro CT and histological analyses of the subcutaneously implanted scaffolds in NOD/SCID mice revealed significantly increased radiopaque areas, percentage bone volume and formation of vital bone in ad-BMP2 scaffolds as compared to the control groups both at 2 and 8 weeks. The increased bone formation in the ad-BMP2 group in vivo was paralleled at the molecular level with concomitant over-expression of a number of osteogenic and angiogenic genes including ALPL, RUNX2, SPP1, ANGPT1. The increased bone formation in ad-BMP2 explants was not found to be associated with enhanced endochondral activity as evidenced by qRT-PCR (SOX9 and FGF2) and Safranin O staining. Taken together, combination of adenoviral mediated BMP-2 expression in BMSC grown in the newly developed poly(LLA-co-CL) scaffolds induced expression of osteogenic markers and enhanced bone formation in vivo. PMID:26808122

  7. Matrix formation is enhanced in co-cultures of human meniscus cells with bone marrow stromal cells.

    PubMed

    Matthies, Norah-Faye; Mulet-Sierra, Aillette; Jomha, Nadr M; Adesida, Adetola B

    2013-12-01

    The ultimate aim of this study was to assess the feasibility of using human bone marrow stromal cells (BMSCs) to supplement meniscus cells for meniscus tissue engineering and regeneration. Human menisci were harvested from three patients undergoing total knee replacements. Meniscus cells were released from the menisci after collagenase treatment. BMSCs were harvested from the iliac crest of three patients and were expanded in culture until passage 2. Primary meniscus cells and BMSCs were co-cultured in vitro in three-dimensional (3D) pellet culture at three different cell-cell ratios for 3 weeks under normal (21% O2 ) or low (3% O2 ) oxygen tension in the presence of serum-free chondrogenic medium. Pure BMSCs and pure meniscus cell pellets served as control groups. The tissue generated was assessed biochemically, histochemically and by quantitative RT-PCR. Co-cultures of primary meniscus cells and BMSCs resulted in tissue with increased (1.3-1.7-fold) deposition of proteoglycan (GAG) extracellular matrix (ECM) relative to tissues derived from BMSCs or meniscus cells alone under 21% O2 . GAG matrix formation was also enhanced (1.3-1.6-fold) under 3% O2 culture conditions. Alcian blue staining of generated tissue confirmed increased deposition of GAG-rich matrix. mRNA expression of type I collagen (COL1A2), type II collagen (COL2A1) and aggrecan were upregulated in co-cultured pellets. However, SOX9 and HIF-1α mRNA expression were not significantly modulated by co-culture. Co-culture of primary meniscus cells with BMSCs resulted in increased ECM formation. Co-delivery of meniscus cells and BMSCs can, in principle, be used in tissue engineering and regenerative medicine strategies to repair meniscus defects.

  8. Effect of immunization with polyvinylpyrrolidone on the counts of stromal precursor cells in bone marrow and spleen of CBA and CBA/N mice and cytokine gene expression in primary cultures of these cells.

    PubMed

    Gorskaya, U F; Danilova, T A; Mezentzeva, M V; Shapoval, M M; Nesterenko, V G

    2012-05-01

    Injection of polyvinylpyrrolidone (synthetic type 2 T-independent antigen) stimulated the efficiency of clone-forming efficiency and the content of stromal precursor cells in CBA mice in the femoral bone marrow (almost 3-fold) and in the spleen (by 1.7 times) with the peak within 24 h and normalization by day 3 after immunization. The expression of IL-6, IL-8, and TNF-α genes in bone marrow and spleen cultures from immunized animals appeared on day 1 and disappeared on day 3. Hence, stimulation of stromal tissue in response to polyvinylpyrrolidone immunization was significantly less pronounced in comparison with immunization with S. typhimurium antigens. The counts of stromal precursor cells in these organs did not increase in CBA/N mice not responding to polyvinylpyrrolidone because they had no xid-mutation in Brutton's tyrosine kinase (Btk) gene, and the proinflammatory cytokine genes expression in primary cultures derived from these animals did not increase either. These data indicated that the degree of stromal tissue stimulation in immunized mice correlated with the immune response intensity. This indicated a close relationship between the stromal tissue and immune system. Stromal tissue seemed to be stimulated not only and not so much through the stromal cell Toll-like receptors, but mainly through interactions of immunocompetent and stromal cells, the former presumably playing the leading role in this process.

  9. In vivo expression of human growth hormone by genetically modified murine bone marrow stromal cells and its effect on the cells in vitro.

    PubMed

    Suzuki, K; Oyama, M; Faulcon, L; Robbins, P D; Niyibizi, C

    2000-01-01

    Human growth hormone (hGH) is frequently used clinically for growth abnormalities in children and also in adults with growth hormone deficiency. The hormone is usually administered to the individuals by frequent injections. In the present study we investigated the potential of bone marrow stromal cells as vehicles to deliver the GH in vivo by infusion of cells transduced with hGH cDNA into mice femurs. The effect of the hormone on the transduced cells in vitro was also assessed. Bone marrow stromal cells established from a mouse model of human osteogenesis imperfecta mice (oim) were transduced with a retrovirus containing hGH and neomycin resistance genes. The hGH-expressing cells were selected in a medium containing G418 and were then assessed for the hGH expression in vitro. The selected cells synthesized 15 ng/10(6) cells of hGH per 24 h in vitro and exhibited alkaline phosphatase activity when they were treated with the human recombinant bone morphogenetic protein 2 (rhBMP-2). The transduced cells also proliferated faster than the LacZ transduced cells but they did not exhibit a higher rate of matrix synthesis. When 2 x 10(6) hGH+ cells were injected into the femurs of mice, hGH was detected in the serum of the recipient mice up to 10 days after injection. The highest level of growth hormone expression, 750 pg/ml, was detected in the serum of the recipient mice I day after injection of the transduced cells. hGH was also detected in the medium conditioned by cells that were flushed from the femurs of the recipient mice at 1, 3, and 6 days after cell injection. These data indicate that bone marrow stromal cells could potentially be used therapeutically for the delivery of GH or any other therapeutic proteins targeted for bone. The data also suggest that GH may exert its effects on bone marrow stromal cells by increasing their rate of proliferation.

  10. Soluble MMP-14 produced by bone marrow-derived stromal cells sheds epithelial endoglin modulating the migratory properties of human breast cancer cells.

    PubMed

    Tobar, Nicolás; Avalos, M Celeste; Méndez, Nicolás; Smith, Patricio C; Bernabeu, Carmelo; Quintanilla, Miguel; Martínez, Jorge

    2014-08-01

    It has been proposed that epithelial cells can acquire invasive properties through exposure to paracrine signals originated from mesenchymal cells within the tumor microenvironment. Transforming growth factor-β (TGF-β) has been revealed as an active factor that mediates the epithelial-stroma cross-talk that facilitates cell invasion and metastasis. TGF-β signaling is modulated by the coreceptor Endoglin (Eng), which shows a tumor suppressor activity in epithelial cells and regulates the ALK1-Smad1,5,8 as well as the ALK5-Smad2,3 signaling pathways. In the current work, we present evidence showing that cell surface Eng abundance in epithelial MCF-7 breast cancer cells is inversely related with cell motility. Shedding of Eng in MCF-7 cell surface by soluble matrix metalloproteinase-14 (MMP-14) derived from the HS-5 bone-marrow-derived cell line induces a motile epithelial phenotype. On the other hand, restoration of full-length Eng expression blocks the stromal stimulus on migration. Processing of surface Eng by stromal factors was demonstrated by biotin-neutravidin labeling of cell surface proteins and this processing generated a shift in TGF-β signaling through the activation of Smad2,3 pathway. Stromal MMP-14 abundance was stimulated by TGF-β secreted by MCF-7 cells acting in a paracrine manner. In turn, the stromal proteolytic activity of soluble MMP-14, by inducing Eng shedding, promoted malignant progression. From these data, and due to the capacity of TGF-β to regulate malignancy in epithelial cancer, we propose that stromal-dependent epithelial Eng shedding constitutes a putative mechanism that exerts an environmental control of cell malignancy.

  11. MHC-compatible bone marrow stromal/stem cells trigger fibrosis by activating host T cells in a scleroderma mouse model.

    PubMed

    Ogawa, Yoko; Morikawa, Satoru; Okano, Hideyuki; Mabuchi, Yo; Suzuki, Sadafumi; Yaguchi, Tomonori; Sato, Yukio; Mukai, Shin; Yaguchi, Saori; Inaba, Takaaki; Okamoto, Shinichiro; Kawakami, Yutaka; Tsubota, Kazuo; Matsuzaki, Yumi; Shimmura, Shigeto

    2016-01-26

    Fibrosis of organs is observed in systemic autoimmune disease. Using a scleroderma mouse, we show that transplantation of MHC compatible, minor antigen mismatched bone marrow stromal/stem cells (BMSCs) play a role in the pathogenesis of fibrosis. Removal of donor BMSCs rescued mice from disease. Freshly isolated PDGFRα(+) Sca-1(+) BMSCs expressed MHC class II following transplantation and activated host T cells. A decrease in FOXP3(+) CD25(+) Treg population was observed. T cells proliferated and secreted IL-6 when stimulated with mismatched BMSCs in vitro. Donor T cells were not involved in fibrosis because transplanting T cell-deficient RAG2 knock out mice bone marrow still caused disease. Once initially triggered by mismatched BMSCs, the autoimmune phenotype was not donor BMSC dependent as the phenotype was observed after effector T cells were adoptively transferred into naïve syngeneic mice. Our data suggest that minor antigen mismatched BMSCs trigger systemic fibrosis in this autoimmune scleroderma model.

  12. The effect of intrathecal delivery of bone marrow stromal cells on hippocampal neurons in rat model of Alzheimer’s disease

    PubMed Central

    Eftekharzadeh, Mina; Nobakht, Maliheh; Alizadeh, Akram; Soleimani, Mansooreh; Hajghasem, Mahmood; Kordestani Shargh, Bahareh; Karkuki Osguei, Nushin; Behnam, Babak; Samadikuchaksaraei, Ali

    2015-01-01

    Objective(s): Intracerebral injection of bone marrow stromal cells (BMSCs) is being investigated as a therapeutic tool to prevent Alzheimer’s disease (AD). Our aim was to investigate the effects of BMSCs by intrathecal injection in AD rat model. Materials and Methods: BMSCs were obtained from the bone marrow of Wistar rat and transplanted into AD rat model via intrathecal injection. The rat model had received an injection of β amyloid into the hippocampus for histological and immunohistochemical studies. Results: Histological examination of the brains in transplanted rats compared to controls demonstrated the migration of BrdU-labeled BMSCs from the site of delivery, confirmed the differentiation of BMSCs transplanted cells into the cholinergic neurons, and increased number of healthy and decreased number of dark neurons. Conclusion: Our results showed that BMSCs intratechal administration could be a promising method for treatment of Alzheimer’s disease in rat model. PMID:26124940

  13. Effects of Kagocel® on the Counts of Multipotent Stromal Cells, Expression of Cytokine Genes in Primary Cultures of Bone Marrow Stromal Cells, and Serum Cytokine Concentrations in CBA Mice.

    PubMed

    Gorskaya, Yu F; Grabko, V I; Konopleva, M V; Suslov, A P; Nesterenko, V G

    2015-06-01

    The efficiency of cloning of bone marrow multipotent stromal cells (ECF-MSC) from CBA mice and the MSC counts in the femoral bone increased 24 h after a single in vivo (but not in vitro) injection of kagocel (active substance of antiviral drug Kagocel (®) ) 1.4 times (in response to 50-80 μg) and 4.6 times (in response to 250 μg). The maximum increase of ECF-MSC in response to 50 μg per mouse was detected just 1 h after Kagocel injection to intact mice and to mice previously receiving the drug for 3 days (2 and 1.7 times, respectively). The increase of ECF-MSC was 3-fold less intense in response to oral Kagocel in a dose of 250 μg/mouse vs. intraperitoneal Kagocel, ECF-MSC corresponding to its level in response to oral Poly (I:C). In vivo Kagocel led to emergence of proinflammatory cytokine IFN-γ, IL-1β, and IL-8 mRNA in primary cultures of bone marrow stromal cells. Serum concentrations of IL-2, IL-5, IL-10, GM-CSF, IFN-γ, TNF-α, IL-4, and IL-12 increased 1.5 and 2 times just 1 h after Kagocel injection in doses of 30-50 and 250 μg, respectively, to intact mice and to animals previously treated with the drug for 3 days. The cytokine concentrations normalized after 3 h and increased again after 24 h, though did not reach the levels recorded 1 h after the drug injection. These data indicated that the therapeutic and preventive effects of Kagocel, together with its previously demonstrated stimulation of α- and β-interferon production during several days, could be due to the capacity of this drug to increase the bone marrow ECF-MSC, serum cytokine concentrations, and induce the expression of proinflammatory cytokine genes in the bone marrow stromal cells 1 h after its injection.

  14. Interactions between mesenchymal stem cells, adipocytes, and osteoblasts in a 3D tri-culture model of hyperglycemic conditions in the bone marrow microenvironment.

    PubMed

    Rinker, Torri E; Hammoudi, Taymour M; Kemp, Melissa L; Lu, Hang; Temenoff, Johnna S

    2014-03-01

    Recent studies have found that uncontrolled diabetes and consequential hyperglycemic conditions can lead to an increased incidence of osteoporosis. Osteoblasts, adipocytes, and mesenchymal stem cells (MSCs) are all components of the bone marrow microenvironment and thus may have an effect on diabetes-related osteoporosis. However, few studies have investigated the influence of these three cell types on each other, especially in the context of hyperglycemia. Thus, we developed a hydrogel-based 3D culture platform engineered to allow live-cell retrieval in order to investigate the interactions between MSCs, osteoblasts, and adipocytes in mono-, co-, and tri-culture configurations under hyperglycemic conditions for 7 days of culture. Gene expression, histochemical analysis of differentiation markers, and cell viability were measured for all cell types, and MSC-laden hydrogels were degraded to retrieve cells to assess their colony-forming capacity. Multivariate models of gene expression data indicated that primary discrimination was dependent on the neighboring cell type, validating the need for co-culture configurations to study conditions modeling this disease state. MSC viability and clonogenicity were reduced when mono- and co-cultured with osteoblasts at high glucose levels. In contrast, MSCs showed no reduction of viability or clonogenicity when cultured with adipocytes under high glucose conditions, and the adipogenic gene expression indicates that cross-talk between MSCs and adipocytes may occur. Thus, our unique culture platform combined with post-culture multivariate analysis provided a novel insight into cellular interactions within the MSC microenvironment and highlights the necessity of multi-cellular culture systems for further investigation of complex pathologies such as diabetes and osteoporosis.

  15. Interactions between Mesenchymal Stem Cells, Adipocytes, and Osteoblasts in a 3D Tri-Culture Model of Hyperglycemic Conditions in the Bone Marrow Microenvironment

    PubMed Central

    Rinker, Torri E.; Hammoudi, Taymour M.; Kemp, Melissa L.; Lu, Hang; Temenoff, Johnna S.

    2014-01-01

    Recent studies have found that uncontrolled diabetes and consequential hyperglycemic conditions can lead to increased incidence of osteoporosis. Osteoblasts, adipocytes, and mesenchymal stem cells (MSCs) are all components of the bone marrow microenvironment and thus may have an effect on diabetes-related osteoporosis. However, few studies have investigated the influence of these three cell types on each other, especially in the context of hyperglycemia. Thus, we developed a hydrogel-based 3D culture platform engineered to allow live-cell retrieval in order to investigate the interactions between MSCs, osteoblasts, and adipocytes in mono-, co-, and tri-culture configurations under hyperglycemic conditions for 7 days of culture. Gene expression, histochemical analysis of differentiation markers, and cell viability were measured for all cell types, and MSC-laden hydrogels were degraded to retrieve cells to assess colony-forming capacity. Multivariate models of gene expression data indicated that primary discrimination was dependent on neighboring cell type, validating the need for co-culture configurations to study conditions modeling this disease state. MSC viability and clonogenicity were reduced when mono- and co-cultured with osteoblasts in high glucose levels. In contrast, MSCs had no reduction of viability or clonogenicity when cultured with adipocytes in high glucose conditions and adipogenic gene expression indicated that cross-talk between MSCs and adipocytes may occur. Thus, our unique culture platform combined with post-culture multivariate analysis provided novel insight into cellular interactions within the MSC microenvironment and highlights the necessity of multi-cellular culture systems for further investigation of complex pathologies such as diabetes and osteoporosis. PMID:24463781

  16. Potency Biomarker Signature Genes from Multiparametric Osteogenesis Assays: Will cGMP Human Bone Marrow Mesenchymal Stromal Cells Make Bone?

    PubMed Central

    Murgia, Alba; Veronesi, Elena; Candini, Olivia; Caselli, Anna; D’souza, Naomi; Rasini, Valeria; Giorgini, Andrea; Catani, Fabio; Iughetti, Lorenzo

    2016-01-01

    In skeletal regeneration approaches using human bone marrow derived mesenchymal stromal cells (hBM-MSC), functional evaluation before implantation has traditionally used biomarkers identified using fetal bovine serum-based osteogenic induction media and time courses of at least two weeks. However, emerging pre-clinical evidence indicates donor-dependent discrepancies between these ex vivo measurements and the ability to form bone, calling for improved tests. Therefore, we adopted a multiparametric approach aiming to generate an osteogenic potency assay with improved correlation. hBM-MSC populations from six donors, each expanded under clinical-grade (cGMP) conditions, showed heterogeneity for ex vivo growth response, mineralization and bone-forming ability in a murine xenograft assay. A subset of literature-based biomarker genes was reproducibly upregulated to a significant extent across all populations as cells responded to two different osteogenic induction media. These 12 biomarkers were also measurable in a one-week assay, befitting clinical cell expansion time frames and cGMP growth conditions. They were selected for further challenge using a combinatorial approach aimed at determining ex vivo and in vivo consistency. We identified five globally relevant osteogenic signature genes, notably TGF-ß1 pathway interactors; ALPL, COL1A2, DCN, ELN and RUNX2. Used in agglomerative cluster analysis, they correctly grouped the bone-forming cell populations as distinct. Although donor #6 cells were correlation slope outliers, they contrastingly formed bone without showing ex vivo mineralization. Mathematical expression level normalization of the most discrepantly upregulated signature gene COL1A2, sufficed to cluster donor #6 with the bone-forming classification. Moreover, attenuating factors causing genuine COL1A2 gene down-regulation, restored ex vivo mineralization. This suggested that the signature gene had an osteogenically influential role; nonetheless no single

  17. Glucose-Dependent Insulinotropic Peptide Prevents Serum Deprivation-Induced Apoptosis in Human Bone Marrow-Derived Mesenchymal Stem Cells and Osteoblastic Cells.

    PubMed

    Berlier, J L; Kharroubi, I; Zhang, J; Dalla Valle, A; Rigutto, S; Mathieu, M; Gangji, V; Rasschaert, J

    2015-12-01

    Human bone marrow-derived mesenchymal stem cells (hBMSC) are able to differentiate into cells of connective tissue lineages, including bone and cartilage. They are therefore considered as a promising tool for the treatment of bone degenerative diseases. One of the major issues in regenerative cell therapy is the biosafety of fetal bovine serum used for cell culture. Therefore, the development of a culture medium devoid of serum but preserving hBMSC viability will be of clinical value. The glucose-dependent insulinotropic peptide (GIP) has an anti-apoptotic action in insulin-producing cells. Interestingly, GIP also exerts beneficial effects on bone turnover by acting on osteoblasts and osteoclasts. We therefore evaluated the ability of GIP to prevent cell death in osteoblastic cells cultured in serum-free conditions. In hBMSC and SaOS-2 cells, activation of the GIP receptor increased intracellular cAMP levels. Serum deprivation induced apoptosis in SaOS-2 and hBMSC that was reduced by 30 and 50 %, respectively, in the presence of GIP. The protective effect of GIP involves activation of the adenylate cyclase pathway and inhibition of caspases 3/7 activation. These findings demonstrate that GIP exerts a protective action against apoptosis in hBMSC and suggest a novel approach to preserve viability of hBMSC cultured in the absence of serum. PMID:26254594

  18. Naringin promotes differentiation of bone marrow stem cells into osteoblasts by upregulating the expression levels of microRNA-20a and downregulating the expression levels of PPARγ.

    PubMed

    Fan, Jifeng; Li, Jie; Fan, Qinbo

    2015-09-01

    Naringin is a dihydrotestosterone flavonoid compound that significantly inhibits bone loss, improves bone density, and enhances biomechanical anti‑compression performance. Previous studies have demonstrated that naringin improves the activity levels of osteocalcin (OC) and alkaline phosphatase (ALP) in MC3T3‑E1 osteoblast precursor cells. The present study investigated the effects of naringin on osteoblastic differentiation and inhibition of adipocyte formation in bone marrow stem cells (BMSCs). The levels of osteogenesis were modulated via upregulation of the expression levels of microRNA (miR)‑20a, and downregulation of the expression levels of peroxisome proliferator‑activated receptor γ (PPARγ). The results indicated that naringin significantly enhanced BMSC proliferation in a dose‑dependent manner. In addition, naringin significantly increased the mRNA expression levels of OC, ALP, and collagen type I. Furthermore, naringin decreased the protein expression levels of PPARγ, and increased the expression levels of miR‑20a in the BMSCs. These results suggested that miR‑20a may regulate the expression of PPARγ in BMSCs. To our knowledge, this is the first study to report naringin‑induced osteogenesis via upregulation of the expression levels of miR‑20a, and downregulation of the expression levels of PPARγ. These results indicated the important role of naringin in BMSC differentiation.

  19. Production of stromal cell-derived factor-1 (SDF-1)and expression of CXCR4 in human bone marrow endothelial cells.

    PubMed Central

    Yun, Hwan-Jung; Jo, Deog-Yeon

    2003-01-01

    This study investigated the production of stromal cell-derived factor-1 (SDF-1) and the expression of CXCR4 in human bone marrow endothelial cells (BMECs). Human BMEC cell line BMEC-1 cells expressed SDF-1 mRNA, and conditioned medium induced chemoattraction of CD34+ cells. Migration was not inhibited by pretreating the input cells with pertussis toxin, indicating that the chemoattractive activity was not dependent on SDF-1. Three-day culture of BMEC-1 and primary human BMEC cells produced 1,710+/-204 and 1,050+/-153 pg/mL SDF-1alpha, respectively, which was much less than primary human BM stromal cells (29,536+/-532 pg/ mL). By immuno-histochemistry, CXCR4 was detected in the endothelial cells lining sinusoids, arterioles, and venules in the bone marrow. However, cultured BMECs and BMEC-1 cells did not express CXCR4 on their surfaces. These results indicate that BMECs produce and release small amounts of SDF-1 and express CXCR4 in vivo only. PMID:14555820

  20. The effect of two novel amino acid-coated magnetic nanoparticles on survival in vascular endothelial cells, bone marrow stromal cells, and macrophages

    NASA Astrophysics Data System (ADS)

    Wu, Qinghua; Meng, Ning; Zhang, Yanru; Han, Lei; Su, Le; Zhao, Jing; Zhang, Shangli; Zhang, Yun; Zhao, Baoxiang; Miao, Junying

    2014-09-01

    Magnetic nanoparticles (MNPs) have been popularly used in many fields. Recently, many kinds of MNPs are modified as new absorbents, which have attracted considerable attention and are promising to be applied in waste water. In our previous study, we synthesized two novel MNPs surface-coated with glycine or lysine, which could efficiently remove many anionic and cationic dyes under severe conditions. It should be considered that MNP residues in water may exert some side effects on human health. In the present study, we evaluated the potential nanotoxicity of MNPs in human endothelial cells, macrophages, and rat bone marrow stromal cells. The results showed that the two kinds of nanoparticles were consistently absorbed into the cell cytoplasm. The concentration of MNPs@Gly that could distinctly decrease survival was 15 μg/ml in human umbilical vascular endothelial cells (HUVECs) or bone marrow stromal cells (BMSCs) and 10 μg/ml in macrophages. While the concentration of MNPs@Lys that obviously reduced viability was 15 μg/ml in HUVECs or macrophages and 50 μg/ml in BMSCs. Furthermore, cell nucleus staining and cell integrity assay indicated that the nanoparticles induced cell apoptosis, but not necrosis even at a high concentration. Altogether, these data suggest that the amino acid-coated magnetic nanoparticles exert relatively high cytotoxicity. By contrast, lysine-coated magnetic nanoparticles are more secure than glycine-coated magnetic nanoparticles.

  1. Incorporation of Fucoidan in β-Tricalcium phosphate-Chitosan scaffold prompts the differentiation of human bone marrow stromal cells into osteogenic lineage

    PubMed Central

    Puvaneswary, Subramaniam; Raghavendran, Hanumantharao Balaji; Talebian, Sepehr; Murali, Malliga Raman; A Mahmod, Suhaeb; Singh, Simmrat; Kamarul, Tunku

    2016-01-01

    In our previous study, we reported the fabrication and characterization of a novel tricalcium phosphate-fucoidan-chitosan (TCP-Fu-Ch) biocomposite scaffold. However, the previous report did not show whether the biocomposite scaffold can exhibit osteogenic differentiation of human bone marrow stromal cells in osteogenic media and normal media supplemented with platelet-derived growth factor (PDGF-BB). On day 15, the release of osteocalcin, was significant in the TCP-Fu-Ch scaffold, when compared with that in the TCP-Ch scaffold, and the level of release was approximately 8 and 6 ng/ml in osteogenic and normal media supplemented with PDGF-BB, respectively. Scanning electron microscopy of the TCP-Fu-Ch scaffold demonstrated mineralization and apatite layer formation on day 14, while the addition of PDGF-BB also improved the osteogenic differentiation of the scaffold. An array of gene expression analysis demonstrated that TCP-Fu-Ch scaffold cultured in osteogenic and normal media supplemented with PDGF-BB showed significant improvement in the expression of collagen 1, Runt-related transcription factor 2, osteonectin, bone gamma-carboxyglutamate protein, alkaline phosphatase, and PPA2, but a decline in the expression of integrin. Altogether, the present study demonstrated that fucoidan-incorporated TCP-Ch scaffold could be used in the differentiation of bone marrow stromal cells and can be a potential candidate for the treatment of bone-related ailments through tissue engineering technology. PMID:27068453

  2. Incorporation of Fucoidan in β-Tricalcium phosphate-Chitosan scaffold prompts the differentiation of human bone marrow stromal cells into osteogenic lineage.

    PubMed

    Puvaneswary, Subramaniam; Raghavendran, Hanumantharao Balaji; Talebian, Sepehr; Murali, Malliga Raman; A Mahmod, Suhaeb; Singh, Simmrat; Kamarul, Tunku

    2016-04-12

    In our previous study, we reported the fabrication and characterization of a novel tricalcium phosphate-fucoidan-chitosan (TCP-Fu-Ch) biocomposite scaffold. However, the previous report did not show whether the biocomposite scaffold can exhibit osteogenic differentiation of human bone marrow stromal cells in osteogenic media and normal media supplemented with platelet-derived growth factor (PDGF-BB). On day 15, the release of osteocalcin, was significant in the TCP-Fu-Ch scaffold, when compared with that in the TCP-Ch scaffold, and the level of release was approximately 8 and 6 ng/ml in osteogenic and normal media supplemented with PDGF-BB, respectively. Scanning electron microscopy of the TCP-Fu-Ch scaffold demonstrated mineralization and apatite layer formation on day 14, while the addition of PDGF-BB also improved the osteogenic differentiation of the scaffold. An array of gene expression analysis demonstrated that TCP-Fu-Ch scaffold cultured in osteogenic and normal media supplemented with PDGF-BB showed significant improvement in the expression of collagen 1, Runt-related transcription factor 2, osteonectin, bone gamma-carboxyglutamate protein, alkaline phosphatase, and PPA2, but a decline in the expression of integrin. Altogether, the present study demonstrated that fucoidan-incorporated TCP-Ch scaffold could be used in the differentiation of bone marrow stromal cells and can be a potential candidate for the treatment of bone-related ailments through tissue engineering technology.

  3. Evaluation of transport conditions for autologous bone marrow-derived mesenchymal stromal cells for therapeutic application in horses

    PubMed Central

    Espina, Miguel; Jülke, Henriette; Brehm, Walter; Ribitsch, Iris; Winter, Karsten

    2016-01-01

    Background. Mesenchymal stromal cells (MSCs) are increasingly used for clinical applications in equine patients. For MSC isolation and expansion, a laboratory step is mandatory, after which the cells are sent back to the attending veterinarian. Preserving the biological properties of MSCs during this transport is paramount. The goal of the study was to compare transport-related parameters (transport container, media, temperature, time, cell concentration) that potentially influence characteristics of culture expanded equine MSCs. Methods. The study was arranged in three parts comparing (I) five different transport containers (cryotube, two types of plastic syringes, glass syringe, CellSeal), (II) seven different transport media, four temperatures (4 °C vs. room temperature; −20 °C vs. −80 °C), four time frames (24 h vs. 48 h; 48 h vs. 72 h), and (III) three MSC concentrations (5 × 106, 10 × 106, 20 × 106 MSC/ml). Cell viability (Trypan Blue exclusion; percent and total number viable cell), proliferation and trilineage differentiation capacity were assessed for each test condition. Further, the recovered volume of the suspension was determined in part I. Each condition was evaluated using samples of six horses (n = 6) and differentiation protocols were performed in duplicates. Results. In part I of the study, no significant differences in any of the parameters were found when comparing transport containers at room temperature. The glass syringe was selected for all subsequent evaluations (highest recoverable volume of cell suspension and cell viability). In part II, media, temperatures, or time frames had also no significant influence on cell viability, likely due to the large number of comparisons and small sample size. Highest cell viability was observed using autologous bone marrow supernatant as transport medium, and “transport” at 4 °C for 24 h (70.6% vs. control group 75.3%); this was not significant. Contrary, viability was unacceptably low

  4. Evaluation of transport conditions for autologous bone marrow-derived mesenchymal stromal cells for therapeutic application in horses.

    PubMed

    Espina, Miguel; Jülke, Henriette; Brehm, Walter; Ribitsch, Iris; Winter, Karsten; Delling, Uta

    2016-01-01

    Background. Mesenchymal stromal cells (MSCs) are increasingly used for clinical applications in equine patients. For MSC isolation and expansion, a laboratory step is mandatory, after which the cells are sent back to the attending veterinarian. Preserving the biological properties of MSCs during this transport is paramount. The goal of the study was to compare transport-related parameters (transport container, media, temperature, time, cell concentration) that potentially influence characteristics of culture expanded equine MSCs. Methods. The study was arranged in three parts comparing (I) five different transport containers (cryotube, two types of plastic syringes, glass syringe, CellSeal), (II) seven different transport media, four temperatures (4 °C vs. room temperature; -20 °C vs. -80 °C), four time frames (24 h vs. 48 h; 48 h vs. 72 h), and (III) three MSC concentrations (5 × 10(6), 10 × 10(6), 20 × 10(6) MSC/ml). Cell viability (Trypan Blue exclusion; percent and total number viable cell), proliferation and trilineage differentiation capacity were assessed for each test condition. Further, the recovered volume of the suspension was determined in part I. Each condition was evaluated using samples of six horses (n = 6) and differentiation protocols were performed in duplicates. Results. In part I of the study, no significant differences in any of the parameters were found when comparing transport containers at room temperature. The glass syringe was selected for all subsequent evaluations (highest recoverable volume of cell suspension and cell viability). In part II, media, temperatures, or time frames had also no significant influence on cell viability, likely due to the large number of comparisons and small sample size. Highest cell viability was observed using autologous bone marrow supernatant as transport medium, and "transport" at 4 °C for 24 h (70.6% vs. control group 75.3%); this was not significant. Contrary, viability was unacceptably low (<40

  5. Effect of Androgen Blockade on HER-2 and Matrix Metalloproteinase-2 Expression on Bone Marrow Micrometastasis and Stromal Cells in Men with Prostate Cancer

    PubMed Central

    Murray, N. P.; Reyes, E.; Badinez, L.; Orellana, N.; Fuentealba, C.; Olivares, R.; Porcell, J.; Dueñas, R.

    2013-01-01

    Introduction. HER-2 has been associated with castrate resistant prostate cancer and matrix metalloproteinase-2 (MMP-2) in the dissemination and invasion of tumor cells as well as activating angiogenesis. We present an immunocytochemical study of the effect of androgen blockade on the expression of HER-2 and MMP-2 in bone marrow micrometastasis and the surrounding stromal cells in men with prostate cancer. Methods and Patients. A cross-sectional study of men with prostate cancer. Touch preps were obtained from bone marrow biopsies of men with prostate cancer, before and after radical prostatectomy and during androgen blockade. Micrometastasis detected with anti-PSA immunocytochemistry underwent processing with anti-HER-2 and anti-MMP-2 immunocytochemistry. Patients were defined as HER-2 positive or negative, MMP-2 negative or an MMP-2 pattern described as border or central and stromal MMP-2 defined as positive or negative. The expression of the biomarkers was compared before and after primary treatment and during androgen blockade in relation to the serum PSA at the time of sampling and duration of androgen blockade. Results. 191 men participated, 35 men before surgery and 43 after surgery; there were no significant differences in HER-2 expression between groups, there was no MMP-2 expression centrally or stromal expression of MMP-2. In men with androgen blockade, HER-2 expression was significantly higher; there was a trend for increasing HER-2 expression up to 5 years; central MMP-2 expression significantly increased after 3 years, while stromal MMP-2 significantly increased after 6 years. MMP-2 expression both in micrometastasis and stroma was significantly associated with HER-2 expression. Expression of MMP-2 at the border of the micrometastasis was not associated with HER-2 expression and occurred in the absence of androgen blockade. Conclusions. Androgen blockade decreases serum PSA by eliminating HER-2 negative prostate cancer cells. However, there is early

  6. Induction of adult human bone marrow mesenchymal stromal cells into functional astrocyte-like cells: potential for restorative treatment in Parkinson's disease.

    PubMed

    Bahat-Stroomza, Merav; Barhum, Yael; Levy, Yossef S; Karpov, Olga; Bulvik, Shlomo; Melamed, Eldad; Offen, Daniel

    2009-09-01

    Parkinson's disease (PD) is a neurodegenerative disorder with its motor phenomena due mostly to loss of dopamine-producing neurons in the substantia nigra. Pharmacological treatments aimed to increase the deficient dopaminergic neurotransmission are effective in ameliorating the cardinal symptoms, but none of these therapies is curative. It has been suggested that treatment with neurotrophic factors (NTFs) might protect and prevent death of the surviving dopaminergic neurons and induce proliferation of their axonal nerve terminals with reinnervations of the deafferented striatum. However, long-term delivery of such proteins into the CNS is problematic. We therefore aimed to differentiate ex vivo human bone marrow-derived mesenchymal stromal cells into astrocyte-like cells, capable of generating NTFs for future transplantation into basal ganglia of PD patients. Indeed, mesenchymal stromal cells treated with our novel astrocyte differentiation medium, present astrocyte-like morphology and express the astrocyte markers S100beta, glutamine synthetase and glial fibrillary acidic protein. Moreover, these astrocyte-like cells produce and secrete significant amounts of glial cell line-derived neurotrophic factor (GDNF), nerve growth factor (NGF), and brain-derived neurotrophic factor as indicated by messenger RNA, real-time polymerase chain reaction, ELISA, and Western blot analyses. Such NTF-producing cells transplanted into the striatum of 6-hydroxydopamine-lesioned rats, a model of PD, produced a progressive reduction in the apomorphine-induced contralateral rotations as well as behavioral improvement in rotor-rod and the "sunflower seeds" eating motor tests. Histological assessments revealed that the engrafted cells survived and expressed astrocyte and human markers and acted to regenerate the damaged dopaminergic nerve terminal system. Findings indicate that our novel procedure to induce NTF-producing astrocyte-like cells derived from human bone marrow stromal cells

  7. Dexamethasone Enhances Osteogenic Differentiation of Bone Marrow- and Muscle-Derived Stromal Cells and Augments Ectopic Bone Formation Induced by Bone Morphogenetic Protein-2

    PubMed Central

    Yuasa, Masato; Yamada, Tsuyoshi; Taniyama, Takashi; Masaoka, Tomokazu; Xuetao, Wei; Yoshii, Toshitaka; Horie, Masaki; Yasuda, Hiroaki; Uemura, Toshimasa; Okawa, Atsushi; Sotome, Shinichi

    2015-01-01

    We evaluated whether dexamethasone augments the osteogenic capability of bone marrow-derived stromal cells (BMSCs) and muscle tissue-derived stromal cells (MuSCs), both of which are thought to contribute to ectopic bone formation induced by bone morphogenetic protein-2 (BMP-2), and determined the underlying mechanisms. Rat BMSCs and MuSCs were cultured in growth media with or without 10-7 M dexamethasone and then differentiated under osteogenic conditions with dexamethasone and BMP-2. The effects of dexamethasone on cell proliferation and osteogenic differentiation, and also on ectopic bone formation induced by BMP-2, were analyzed. Dexamethasone affected not only the proliferation rate but also the subpopulation composition of BMSCs and MuSCs, and subsequently augmented their osteogenic capacity during osteogenic differentiation. During osteogenic induction by BMP-2, dexamethasone also markedly affected cell proliferation in both BMSCs and MuSCs. In an in vivo ectopic bone formation model, bone formation in muscle-implanted scaffolds containing dexamethasone and BMP-2 was more than two fold higher than that in scaffolds containing BMP-2 alone. Our results suggest that dexamethasone potently enhances the osteogenic capability of BMP-2 and may thus decrease the quantity of BMP-2 required for clinical application, thereby reducing the complications caused by excessive doses of BMP-2. Highlights: 1. Dexamethasone induced selective proliferation of bone marrow- and muscle-derived cells with higher differentiation potential. 2. Dexamethasone enhanced the osteogenic capability of bone marrow- and muscle-derived cells by altering the subpopulation composition. 3. Dexamethasone augmented ectopic bone formation induced by bone morphogenetic protein-2. PMID:25659106

  8. Research of osteoblastic induced rat bone marrow mesenchymal stem cells cultured on β-TCP/PLLA porous scaffold

    PubMed Central

    Yang, Yi; Wu, Jiang; Jin, Gele; Li, Liang; Li, Zhongwei; Li, Cao

    2015-01-01

    Background: Ceramic and polymer composite scaffolds are widely used in tissue engineering for bone tissue regeneration. Composite of β-tricalcium phosphate (β-TCP) and poly L-lactic acid (PLLA), due to its biocompatibility and biodegradability, is widely used in bioengineering. However, optimal ratio, porosity and pore size of this kind of scaffolds were not very clear yet. Materials and methods: We cultured osteoblastic induced rMSCs on β-TCP/PLLA scaffolds to investigate the optimum construction, which owned better properties for supporting cells growth, proliferation and differentiation. A total of 24 mice were divided into three groups: rMSCs + β-TCP/PLLA, osteoblastic rMSCs + β-TCP/PLLA and β-TCP/PLLA without cells. 8 rude mice were implanted with rMSCs + β-TCP/PLLA in the left thighs and β-TCP/PLLA without cells in the right thighs. 8 rude mice were implanted with osteoblastic rMSCs + β-TCP/PLLA in the left thighs and the same treatments in the right thighs as the above. After 8 and 12 weeks, the mice were sacrificed and implants with the surrounding tissues were harvested together. Paraffin sections were got and HE stain and Masson-Goldner stain were employed to observe the ectopic bone formation. Results: The scaffolds of β-TCP/PLLA = 2:1 significantly increased osteocalcin production of the cells. In addition, scaffolds with NaCl = 70 wt%, pore size 200~450 μm showed better compatibility to these seeding cells. A significantly larger area of bone formation in the osteoblastic rMSCs and β-TCP/PLLA composite than that in rMSCs/scaffold and in the scaffold without cells in vivo. Conclusion: compounds of osteoblastic induced rMSCs and the scaffold with β-TCP/PLLA = 2:1, NaCl = 70 wt%, pore size = 200-450 μm had good properties as a kind of bone substitute. PMID:26064209

  9. Bone Marrow Stromal Cells Protect Lymphoma B-cells from Rituximab-Induced Apoptosis and Targeting Integrin alfa-4-beta-1 (VLA-4) with Natalizumab can Overcome this Resistance

    PubMed Central

    Mraz, Marek; Zent, Clive S.; Church, Amy K.; Jelinek, Diane F.; Wu, Xiaosheng; Pospisilova, Sarka; Ansell, Stephen M.; Novak, Anne J.; Kay, Neil E.; Witzig, Thomas E.; Nowakowski, Grzegorz S.

    2011-01-01

    Rituximab improves the outcome of patients with non-Hodgkin lymphoma, but does not completely eradicate residual B-cell populations in the microenvironment of the bone marrow and lymph nodes. Adhesion to stromal cells can protect B-cells from apoptosis induced by chemotherapy drugs (cell adhesion-mediated drug resistance; CAM-DR). A similar mechanism of resistance to rituximab has not, to our knowledge, been described. We tested the hypothesis that the microenvironment protects malignant B-cells from rituximab-induced apoptosis, and that blocking these interactions with natalizumab, an antibody targeting VLA-4 (integrin alfa-4-beta-1/CD49d), can overcome this protection. VLA-4 is an adhesion molecule constitutively expressed on malignant B-cells and is important for pro-survival signalling in the bone marrow and lymph node microenvironment. The human bone marrow stromal cell line HS-5 was shown to strongly protect B-cell lymphoma cells from rituximab cytotoxicity, suggesting the existence of a stromal cell adhesion-mediated antibody resistance (CAM-AR) mechanism analogous to CAM-DR. Natalizumab decreased B-lymphocyte adherence to fibronectin by 75-95% and partially overcame stromal protection against rituximab and cytotoxic drugs. These pre-clinical findings suggest that the addition of stromal adhesion-disruptive drugs to rituximab-containing therapy could improve treatment efficacy. PMID:21749361

  10. Arsenic induces cell apoptosis in cultured osteoblasts through endoplasmic reticulum stress

    SciTech Connect

    Tang, C.-H.; Chiu, Y.-C.; Huang, C.-F.; Chen, Y.-W.; Chen, P.-C.

    2009-12-01

    Osteoporosis is characterized by low bone mass resulting from an imbalance between bone resorption by osteoclasts and bone formation by osteoblasts. Therefore, decreased bone formation by osteoblasts may lead to the development of osteoporosis, and rate of apoptosis is responsible for the regulation of bone formation. Arsenic (As) exists ubiquitously in our environment and increases the risk of neurotoxicity, liver injury, peripheral vascular disease and cancer. However, the effect of As on apoptosis of osteoblasts is mostly unknown. Here, we found that As induced cell apoptosis in osteoblastic cell lines (including hFOB, MC3T3-E1 and MG-63) and mouse bone marrow stromal cells (M2-10B4). As also induced upregulation of Bax and Bak, downregulation of Bcl-2 and dysfunction of mitochondria in osteoblasts. As also triggered endoplasmic reticulum (ER) stress, as indicated by changes in cytosolic-calcium levels. We found that As increased the expression and activities of glucose-regulated protein 78 (GRP78) and calpain. Transfection of cells with GRP78 or calpain siRNA reduced As-mediated cell apoptosis in osteoblasts. Therefore, our results suggest that As increased cell apoptosis in cultured osteoblasts and increased the risk of osteoporosis.

  11. Multicellular spheroids of bone marrow stromal cells: a three-dimensional in vitro culture system for the study of hematopoietic cell migration.

    PubMed

    Rossi, M I D; Barros, A P D N; Baptista, L S; Garzoni, L R; Meirelles, M N; Takiya, C M; Pascarelli, B M O; Dutra, H S; Borojevic, R

    2005-10-01

    Cell fate decisions are governed by a complex interplay between cell-autonomous signals and stimuli from the surrounding tissue. In vivo cells are connected to their neighbors and to the extracellular matrix forming a complex three-dimensional (3-D) microenvironment that is not reproduced in conventional in vitro systems. A large body of evidence indicates that mechanical tension applied to the cytoskeleton controls cell proliferation, differentiation and migration, suggesting that 3-D in vitro culture systems that mimic the in vivo situation would reveal biological subtleties. In hematopoietic tissues, the microenvironment plays a crucial role in stem and progenitor cell survival, differentiation, proliferation, and migration. In adults, hematopoiesis takes place inside the bone marrow cavity where hematopoietic cells are intimately associated with a specialized three 3-D scaffold of stromal cell surfaces and extracellular matrix that comprise specific niches. The relationship between hematopoietic cells and their niches is highly dynamic. Under steady-state conditions, hematopoietic cells migrate within the marrow cavity and circulate in the bloodstream. The mechanisms underlying hematopoietic stem/progenitor cell homing and mobilization have been studied in animal models, since conventional two-dimensional (2-D) bone marrow cell cultures do not reproduce the complex 3-D environment. In this review, we will highlight some of the mechanisms controlling hematopoietic cell migration and 3-D culture systems.

  12. Dental pulp-derived stromal cells exhibit a higher osteogenic potency than bone marrow-derived stromal cells in vitro and in a porcine critical-size bone defect model

    PubMed Central

    Jensen, Jonas; Tvedesøe, Claus; Rölfing, Jan Hendrik Duedal; Foldager, Casper Bindzus; Lysdahl, Helle; Kraft, David Christian Evar; Chen, Muwan; Baas, Jorgen; Le, Dang Quang Svend; Bünger, Cody Eric

    2016-01-01

    Introduction: The osteogenic differentiation of bone marrow-derived mesenchymal stromal cells (BMSCs) was compared with that of dental pulp-derived stromal cells (DPSCs) in vitro and in a pig calvaria critical-size bone defect model. Methods: BMSCs and DPSCs were extracted from the tibia bone marrow and the molar teeth of each pig, respectively. BMSCs and DPSCs were cultured in monolayer and on a three-dimensional (3D) polycaprolactone (PCL) – hyaluronic acid – tricalcium phosphate (HT-PCL) scaffold. Population doubling (PD), alkaline phosphatase (ALP) activity, and calcium deposition were measured in monolayer. In the 3D culture ALP activity, DNA content, and calcium deposition were evaluated. Six non-penetrating critical-size defects were made in each calvarium of 14 pigs. Three paired sub-studies were conducted: (1) empty defects vs. HT-PCL scaffolds; (2) PCL scaffolds vs. HT-PCL scaffolds; and (3) autologous BMSCs on HT-PCL scaffolds vs. autologous DPSCs on HT-PCL scaffolds. The observation time was five weeks. Bone volume fractions (BV/TV) were assessed with micro-computed tomography (μCT) and histomorphometry. Results and discussion: The results from the in vitro study revealed a higher ALP activity and calcium deposition of the DPSC cultures compared with BMSC cultures. Significantly more bone was present in the HT-PCL group than in both the pure PCL scaffold group and the empty defect group in vivo. DPSCs generated more bone than BMSCs when seeded on HT-PCL. In conclusion, DPSCs exhibited a higher osteogenic potential compared with BMSCs both in vitro and in vivo, making it a potential cell source for future bone tissue engineering. PMID:27163105

  13. Simvastatin mobilizes bone marrow stromal cells migrating to injured areas and promotes functional recovery after spinal cord injury in the rat.

    PubMed

    Han, Xiaoguang; Yang, Ning; Cui, Yueyi; Xu, Yingsheng; Dang, Gengting; Song, Chunli

    2012-07-19

    This study investigated the therapeutic effects of simvastatin administered by subarachnoid injection after spinal cord injury (SCI) in rats; explored the underlying mechanism from the perspective of mobilization, migration and homing of bone marrow stromal cells (BMSCs) to the injured area induced by simvastatin. Green fluorescence protein labeled-bone marrow stromal cells (GFP-BMSCs) were transplanted into rats through the tail vein for stem cell tracing. Twenty-four hours after transplantation, spinal cord injury (SCI) was produced using weight-drop method (10g 4cm) at the T10 level. Simvastatin (5mg/kg) or vehicle was administered by subarachnoid injection at lumbar level 4 after SCI. Locomotor functional recovery was assessed in the 4 weeks following surgery using the open-field test and inclined-plane test. At the end of the study, MRI was used to evaluate the reparation of the injured spinal cord. Animals were then euthanized, histological evaluation was used to measure lesion cavity volumes. Immunofluorescence for GFP and cell lineage markers (NeuN and GFAP) was used to evaluate simvastatin-mediated mobilization and differentiation of transplanted BMSCs. Western blot and immunohistochemistry were used to assess the expression of vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF). Simvastatin-treated animals showed significantly better locomotor recovery, less signal abnormality in MRI and a smaller cavity volume compared to the control group. Immunofluorescence revealed that simvastatin increased the number of GFP-positive cells in the injured spinal cord, and the number of cells double positive for GFP/NeuN or GFP/GFAP was larger in the simvastatin treated group than the control group. Western blot and immunohistochemistry showed higher expression of BDNF and VEGF in the simvastatin treated group than the control group. In conclusion, simvastatin can help to repair spinal cord injury in rat, where the underlying

  14. Combinatorial treatment of bone marrow stem cells and stromal cell-derived factor 1 improves glycemia and insulin production in diabetic mice.

    PubMed

    Cheng, H; Zhang, Y C; Wolfe, S; Valencia, V; Qian, K; Shen, L; Tang, Y L; Hsu, W H; Atkinson, M A; Phillips, M I

    2011-10-15

    Transdifferentiation of stem cells into insulin-producing cells for the treatment of diabetes have shown promising but inconsistent results. We examined the potential for attracting bone marrow stem cells (BMSCs) to the pancreas using a chemokine, stromal cell-derived factor 1 (SDF-1). SDF-1 treatment markedly increased the number of GFP labeled BMSCs in the pancreas, but surprisingly, the majority was observed in liver. The liver cells had typical pancreatic endocrine cell gene expression including insulin I, insulin II, PDX-1, somatostatin, and glucagon. Combined treatment with SDF-1 and BMSC transplant reduced hyperglycemia and prolonged the long-term survival of diabetic mice, and a sub group had complete normoglycemia (<150 mg/dl), restored blood insulin levels, and normal glucose tolerance. Our results suggest that SDF-1 could potentially be used to improve the homing of stem cells and β-cell regeneration. The mechanism appears to involve an increase in insulin producing cells mainly in the liver.

  15. Platelet-derived growth factor BB enhances osteogenesis of adipose-derived but not bone marrow-derived mesenchymal stromal/stem cells

    PubMed Central

    Hung, Ben P.; Hutton, Daphne L.; Kozielski, Kristen L.; Bishop, Corey J.; Naved, Bilal; Green, Jordan J.; Caplan, Arnold I.; Gimble, Jeffrey M.; Dorafshar, Amir H.; Grayson, Warren L.

    2015-01-01

    Tissue engineering using mesenchymal stem cells holds great promise for regenerating critically sized bone defects. While the bone marrow-derived mesenchymal stem cell (MSC) is the most widely studied stromal/stem cell type for this application, its rarity within bone marrow and painful isolation procedure have motivated investigation of alternative cell sources. Adipose-derived stromal/stem cells (ASCs) are more abundant and more easily procured; furthermore, they also possess robust osteogenic potency. While these two cell types are widely considered very similar, there is a growing appreciation of possible innate differences in their biology and response to growth factors. In particular, reports indicate that their osteogenic response to platelet-derived growth factor BB (PDGF-BB) is markedly different: MSCs responded negatively or not at all to PDGF-BB while ASCs exhibited enhanced mineralization in response to physiological concentrations of PDGF-BB. In this study, we directly tested whether a fundamental difference existed between the osteogenic responses of MSCs and ASCs to PDGF-BB. MSCs and ASCs cultured under identical osteogenic conditions responded disparately to 20 ng/mL of PDGF-BB: MSCs exhibited no difference in mineralization while ASCs produced more calcium per cell. siRNA-mediated knockdown of PDGFRβ within ASCs abolished their ability to respond to PDGF-BB. Gene expression was also different; MSCs generally downregulated and ASCs generally upregulated osteogenic genes in response to PDGF-BB. ASCs transduced to produce PDGF-BB resulted in more regenerated bone within a critically sized murine calvarial defect compared to control ASCs, indicating PDGF-BB used specifically in conjunction with ASCs might enhance tissue engineering approaches for bone regeneration. PMID:26013357

  16. Stromal niche communalities underscore the contribution of the matricellular protein SPARC to B-cell development and lymphoid malignancies.

    PubMed

    Sangaletti, Sabina; Tripodo, Claudio; Portararo, Paola; Dugo, Matteo; Vitali, Caterina; Botti, Laura; Guarnotta, Carla; Cappetti, Barbara; Gulino, Alessandro; Torselli, Ilaria; Casalini, Patrizia; Chiodoni, Claudia; Colombo, Mario P

    2014-01-01

    Neoplastic B-cell clones commonly arise within secondary lymphoid organs (SLO). However, during disease progression, lymphomatous cells may also colonize the bone marrow (BM), where they localize within specialized stromal niches, namely the osteoblastic and the vascular niche, according to their germinal center- or extra-follicular-derivation, respectively. We hypothesized the existence of common stromal motifs in BM and SLO B-cell lymphoid niches involved in licensing normal B-cell development as well as in fostering transformed B lymphoid cells. Thus, we tested the expression of prototypical mesenchymal stromal cell (MSC) markers and regulatory matricellular proteins in human BM and SLO under physiologically unperturbed conditions and during B-cell lymphoma occurrence. We identified common stromal features in the BM osteoblastic niche and SLO germinal center (GC) microenvironments, traits that were also enriched within BM infiltrates of GC-associated B-cell lymphomas, suggesting that stromal programs involved in central and peripheral B-cell lymphopoiesis are also involved in malignant B-cell nurturing. Among factors co-expressed by stromal elements within these different specialized niches, we identified the pleiotropic matricellular protein secreted protein acidic and rich in cysteine (SPARC). The actual role of stromal SPARC in normal B-cell lymphopoiesis, investigated in Sparc(-/-) mice and BM chimeras retaining the Sparc(-/-) genotype in host stroma, demonstrated defective BM and splenic B-cell lymphopoiesis. Moreover, in the Trp53 knockout (KO) lymphoma model, p53(-/-)/Sparc(-/-) double-KO mice displayed impaired spontaneous splenic B-cell lymphomagenesis and reduced neoplastic clone BM infiltration in comparison with their p53(-/-)/Sparc(+/+) counterparts. Our results are among the first to demonstrate the existence of common stromal programs regulating both the BM osteoblastic niche and the SLO GC lymphopoietic functions potentially fostering the genesis

  17. Stromal niche communalities underscore the contribution of the matricellular protein SPARC to B-cell development and lymphoid malignancies.

    PubMed

    Sangaletti, Sabina; Tripodo, Claudio; Portararo, Paola; Dugo, Matteo; Vitali, Caterina; Botti, Laura; Guarnotta, Carla; Cappetti, Barbara; Gulino, Alessandro; Torselli, Ilaria; Casalini, Patrizia; Chiodoni, Claudia; Colombo, Mario P

    2014-01-01

    Neoplastic B-cell clones commonly arise within secondary lymphoid organs (SLO). However, during disease progression, lymphomatous cells may also colonize the bone marrow (BM), where they localize within specialized stromal niches, namely the osteoblastic and the vascular niche, according to their germinal center- or extra-follicular-derivation, respectively. We hypothesized the existence of common stromal motifs in BM and SLO B-cell lymphoid niches involved in licensing normal B-cell development as well as in fostering transformed B lymphoid cells. Thus, we tested the expression of prototypical mesenchymal stromal cell (MSC) markers and regulatory matricellular proteins in human BM and SLO under physiologically unperturbed conditions and during B-cell lymphoma occurrence. We identified common stromal features in the BM osteoblastic niche and SLO germinal center (GC) microenvironments, traits that were also enriched within BM infiltrates of GC-associated B-cell lymphomas, suggesting that stromal programs involved in central and peripheral B-cell lymphopoiesis are also involved in malignant B-cell nurturing. Among factors co-expressed by stromal elements within these different specialized niches, we identified the pleiotropic matricellular protein secreted protein acidic and rich in cysteine (SPARC). The actual role of stromal SPARC in normal B-cell lymphopoiesis, investigated in Sparc(-/-) mice and BM chimeras retaining the Sparc(-/-) genotype in host stroma, demonstrated defective BM and splenic B-cell lymphopoiesis. Moreover, in the Trp53 knockout (KO) lymphoma model, p53(-/-)/Sparc(-/-) double-KO mice displayed impaired spontaneous splenic B-cell lymphomagenesis and reduced neoplastic clone BM infiltration in comparison with their p53(-/-)/Sparc(+/+) counterparts. Our results are among the first to demonstrate the existence of common stromal programs regulating both the BM osteoblastic niche and the SLO GC lymphopoietic functions potentially fostering the genesis

  18. Mesenchymal stromal cells from pooled mononuclear cells of multiple bone marrow donors as rescue therapy in pediatric severe steroid-refractory graft-versus-host disease: a multicenter survey

    PubMed Central

    Kuçi, Zyrafete; Bönig, Halvard; Kreyenberg, Hermann; Bunos, Milica; Jauch, Anna; Janssen, Johannes W.G.; Škifić, Marijana; Michel, Kristina; Eising, Ben; Lucchini, Giovanna; Bakhtiar, Shahrzad; Greil, Johann; Lang, Peter; Basu, Oliver; von Luettichau, Irene; Schulz, Ansgar; Sykora, Karl-Walter; Jarisch, Andrea; Soerensen, Jan; Salzmann-Manrique, Emilia; Seifried, Erhard; Klingebiel, Thomas; Bader, Peter; Kuçi, Selim

    2016-01-01

    To circumvent donor-to-donor heterogeneity which may lead to inconsistent results after treatment of acute graft-versus-host disease with mesenchymal stromal cells generated from single donors we developed a novel approach by generating these cells from pooled bone marrow mononuclear cells of 8 healthy “3rd-party” donors. Generated cells were frozen in 209 vials and designated as mesenchymal stromal cell bank. These vials served as a source for generation of clinical grade mesenchymal stromal cell end-products, which exhibited typical mesenchymal stromal cell phenotype, trilineage differentiation potential and at later passages expressed replicative senescence-related markers (p21 and p16). Genetic analysis demonstrated their genomic stability (normal karyotype and a diploid pattern). Importantly, clinical end-products exerted a significantly higher allosuppressive potential than the mean allosuppressive potential of mesenchymal stromal cells generated from the same donors individually. Administration of 81 mesenchymal stromal cell end-products to 26 patients with severe steroid-resistant acute graft-versus-host disease in 7 stem cell transplant centers who were refractory to many lines of treatment, induced a 77% overall response at the primary end point (day 28). Remarkably, although the cohort of patients was highly challenging (96% grade III/IV and only 4% grade II graft-versus-host disease), after treatment with mesenchymal stromal cell end-products the overall survival rate at two years follow up was 71±11% for the entire patient cohort, compared to 51.4±9.0% in graft-versus-host disease clinical studies, in which mesenchymal stromal cells were derived from single donors. Mesenchymal stromal cell end-products may, therefore, provide a novel therapeutic tool for the effective treatment of severe acute graft-versus-host disease. PMID:27175026

  19. Human Umbilical Cord Perivascular Cells Exhibited Enhanced Migration Capacity towards Hepatocellular Carcinoma in Comparison with Bone Marrow Mesenchymal Stromal Cells: A Role for Autocrine Motility Factor Receptor

    PubMed Central

    Aquino, Jorge B.; Malvicini, Mariana; Bolontrade, Marcela; Podhajcer, Osvaldo; Garcia, Mariana G.; Mazzolini, Guillermo

    2014-01-01

    Hepatocellular carcinoma (HCC) is the third cause of cancer-related death worldwide. Unfortunately, the incidence and mortality associated with HCC are increasing. Therefore, new therapeutic strategies are urgently needed and the use of mesenchymal stromal cells (MSCs) as carrier of therapeutic genes is emerging as a promising option. Different sources of MSCs are being studied for cell therapy and bone marrow-derived cells are the most extensively explored; however, birth associated-tissues represent a very promising source. The aim of this work was to compare the in vitro and in vivo migration capacity between bone marrow MSCs (BM-MSCs) and human umbilical cord perivascular cells (HUCPVCs) towards HCC. We observed that HUCPVCs presented higher in vitro and in vivo migration towards factors released by HCC. The expression of autocrine motility factor (AMF) receptor, genes related with the availability of the receptor on the cell surface (caveolin-1 and -2) and metalloproteinase 3, induced by the receptor activation and important for cell migration, was increased in HUCPVCs. The chemotactic response towards recombinant AMF was increased in HUCPVCs compared to BM-MSCs, and its inhibition in the conditioned medium from HCC induced higher decrease in HUCPVC migration than in BM-MSC. Our results indicate that HUCPVCs could be a useful cellular source to deliver therapeutic genes to HCC. PMID:25147818

  20. How does the supernatant of Lactobacillus acidophilus affect the proliferation and differentiation activities of rat bone marrow-derived stromal cells?

    PubMed

    Samadikuchaksaraei, A; Gholipourmalekabadi, M; Saberian, M; Abdollahpour Alitappeh, M; Shahidi Delshad, E

    2016-01-01

    Low proliferation rate and unwanted differentiation of bone marrow-derived stromal cells (rBMSCs) during the frequent passages have limited the use of such cells in clinical cell therapy. Recently, the researchers have focused on the effects of the components produced by some bacteria on proliferation of the stem cells. In this study, we discussed the possible effects of the Lactobacillus acidophilus supernatant on proliferation and differentiation of the rBMSCs. For this aim, the cells were isolated from rat bone marrow, characterized by culturing on tissue specific differentiation media and stained. The cells (passage two) were treated with different concentrations of the L. acidophilus supernatant (0, 0.1, 0.3, 0.9, 3, 9 and 30 &mgr;l/ml) for 14 days. The proliferation and differentiation capacity of the cells were then determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT assay) and tissue specific staining. The results showed a positive effect of the supernatant on the cell proliferation in 3 and 9 &mgr;l/ml concentrations, while did not affect the differentiation capacity of the rBMSCs. The current study strongly suggests the L. acidophilus supernatant as an alternative material that could be added to the media with aim of improvement in the proliferation rate of the rBMSCs without affecting their differentiation capacity. PMID:27609467

  1. Stromal cell-derived factor-1 receptor CXCR4-overexpressing bone marrow mesenchymal stem cells accelerate wound healing by migrating into skin injury areas.

    PubMed

    Yang, Dazhi; Sun, Shijin; Wang, Zhengguo; Zhu, Peifang; Yang, Zailiang; Zhang, Bo

    2013-06-01

    Stromal cell-derived factor-1 (SDF-1) and its membrane receptor C-X-C chemokine receptor type 4 (CXCR4) are involved in the homing and migration of multiple stem cell types, neovascularization, and cell proliferation. This study investigated the hypothesis that bone marrow-derived mesenchymal stem cells (BMSCs) accelerate skin wound healing in the mouse model by overexpression of CXCR4 in BMSCs. We compared SDF-1 expression and skin wound healing times of BALB/c mice, severe combined immunodeficiency (SCID) mice, and immune system-deficient nude mice after (60)Co radiation-induced injury of their bone marrow. The occurrence of transplanted adenovirus-transfected CXCR4-overexpressing male BMSCs in the wound area was compared with the occurrence of untransfected male BALB/c BMSCs in (60)Co-irradiated female mice skin wound healing areas by Y chromosome marker analyses. The wound healing time of BALB/c mice was 14.00±1.41 days, whereas for the nude and SCID mice it was 17.16±1.17 days and 19.83±0.76 days, respectively. Male BMSCs could be detected in the surrounding areas of (60)Co-irradiated female BALB/c mice wounds, and CXCR4-overexpressing BMSCs accelerated the wound healing time. CXCR4-overexpressing BMSCs migrate in an enhanced manner to skin wounds in a SDF-1-expression-dependent manner, thereby reducing the skin wound healing time.

  2. Human umbilical cord perivascular cells exhibited enhanced migration capacity towards hepatocellular carcinoma in comparison with bone marrow mesenchymal stromal cells: a role for autocrine motility factor receptor.

    PubMed

    Bayo, Juan; Fiore, Esteban; Aquino, Jorge B; Malvicini, Mariana; Rizzo, Manglio; Peixoto, Estanislao; Alaniz, Laura; Piccioni, Flavia; Bolontrade, Marcela; Podhajcer, Osvaldo; Garcia, Mariana G; Mazzolini, Guillermo

    2014-01-01

    Hepatocellular carcinoma (HCC) is the third cause of cancer-related death worldwide. Unfortunately, the incidence and mortality associated with HCC are increasing. Therefore, new therapeutic strategies are urgently needed and the use of mesenchymal stromal cells (MSCs) as carrier of therapeutic genes is emerging as a promising option. Different sources of MSCs are being studied for cell therapy and bone marrow-derived cells are the most extensively explored; however, birth associated-tissues represent a very promising source. The aim of this work was to compare the in vitro and in vivo migration capacity between bone marrow MSCs (BM-MSCs) and human umbilical cord perivascular cells (HUCPVCs) towards HCC. We observed that HUCPVCs presented higher in vitro and in vivo migration towards factors released by HCC. The expression of autocrine motility factor (AMF) receptor, genes related with the availability of the receptor on the cell surface (caveolin-1 and -2) and metalloproteinase 3, induced by the receptor activation and important for cell migration, was increased in HUCPVCs. The chemotactic response towards recombinant AMF was increased in HUCPVCs compared to BM-MSCs, and its inhibition in the conditioned medium from HCC induced higher decrease in HUCPVC migration than in BM-MSC. Our results indicate that HUCPVCs could be a useful cellular source to deliver therapeutic genes to HCC.

  3. Bone marrow mesenchymal stromal cells affect the cell cycle arrest effect of genotoxic agents on acute lymphocytic leukemia cells via p21 down-regulation.

    PubMed

    Zhang, Yiran; Hu, Kaimin; Hu, Yongxian; Liu, Lizhen; Wang, Binsheng; Huang, He

    2014-09-01

    The effect of bone marrow microenvironment on the cell cycle of acute lymphocytic leukemia (ALL) and the underlying mechanism has not been elucidated. In this study, we found that in normal condition, bone marrow mesenchymal stromal cells (BM-MSCs) had no significant effect on the cell cycle and apoptosis of ALL; in the condition when the cell cycle of ALL was blocked by genotoxic agents, BM-MSCs could increase the S-phase cell ratio and decrease the G2/M phase ratio of ALL. Besides, BM-MSCs could protect ALL cells from drug-induced apoptosis. Then, we proved that BM-MSCs affect the cell cycle arrest effect of genotoxic agents on ALL cells via p21 down-regulation. Moreover, our results indicated that activation of Wnt/β-catenin and Erk pathways might be involved in the BM-MSC-induced down-regulation of p21 in ALL cells. Targeting microenvironment-related signaling pathway may therefore be a potential novel approach for ALL therapy.

  4. Effects of corneal stromal cell- and bone marrow-derived endothelial progenitor cell-conditioned media on the proliferation of corneal endothelial cells

    PubMed Central

    Zhu, Meng-Yu; Yao, Qin-Ke; Chen, Jun-Zhao; Shao, Chun-Yi; Yan, Chen-Xi; Ni, Ni; Fan, Xian-Qun; Gu, Ping; Fu, Yao

    2016-01-01

    AIM To explore the effects of conditioned media on the proliferation of corneal endothelial cells (CECs) and to compare the efficiency of different conditioned media (CM). METHODS Rat CECs, corneal stromal cells (CSCs), bone marrow-derived endothelial progenitor cells (BEPCs), and bone marrow-derived mesenchymal stem cells (BMSCs) were isolated and cultured in vitro. CM was collected from CSCs, BEPCs, and BMSCs. CECs were cultivated in different culture media. Cell morphology was recorded, and gene and protein expression were analyzed. RESULTS After grown in CM for 5d, CECs in each experimental group remained polygonal, in a cobblestone-like monolayer arrangement. Immunocytofluorescence revealed positive expression of Na+/K+-ATP, aquaporin 1 (AQP1), and zonula occludens 1 (ZO-1). Based on quantitative polymerase chain reaction (qPCR) analysis, Na+/K+-ATP expression in CSC-CM was notably upregulated by 1.3-fold (±0.036) (P<0.05, n=3). The expression levels of ZO-1, neuron specific enolase (NSE), Vimentin, paired homebox 6 (PAX6), and procollagen type VIII (COL8A1) were notably upregulated in each experimental group. Each CM had a positive effect on CEC proliferation, and CSC-CM had the strongest effect on proliferation. CONCLUSION CSC-CM, BEPC-CM, and BMSC-CM not only stimulated the proliferation of CECs, but also maintained the characteristic differentiated phenotypes necessary for endothelial functions. CSC-CM had the most notable effect on CEC proliferation. PMID:27158599

  5. MHC-compatible bone marrow stromal/stem cells trigger fibrosis by activating host T cells in a scleroderma mouse model

    PubMed Central

    Ogawa, Yoko; Morikawa, Satoru; Okano, Hideyuki; Mabuchi, Yo; Suzuki, Sadafumi; Yaguchi, Tomonori; Sato, Yukio; Mukai, Shin; Yaguchi, Saori; Inaba, Takaaki; Okamoto, Shinichiro; Kawakami, Yutaka; Tsubota, Kazuo; Matsuzaki, Yumi; Shimmura, Shigeto

    2016-01-01

    Fibrosis of organs is observed in systemic autoimmune disease. Using a scleroderma mouse, we show that transplantation of MHC compatible, minor antigen mismatched bone marrow stromal/stem cells (BMSCs) play a role in the pathogenesis of fibrosis. Removal of donor BMSCs rescued mice from disease. Freshly isolated PDGFRα+ Sca-1+ BMSCs expressed MHC class II following transplantation and activated host T cells. A decrease in FOXP3+ CD25+ Treg population was observed. T cells proliferated and secreted IL-6 when stimulated with mismatched BMSCs in vitro. Donor T cells were not involved in fibrosis because transplanting T cell-deficient RAG2 knock out mice bone marrow still caused disease. Once initially triggered by mismatched BMSCs, the autoimmune phenotype was not donor BMSC dependent as the phenotype was observed after effector T cells were adoptively transferred into naïve syngeneic mice. Our data suggest that minor antigen mismatched BMSCs trigger systemic fibrosis in this autoimmune scleroderma model. DOI: http://dx.doi.org/10.7554/eLife.09394.001 PMID:26809474

  6. miR-23a/b regulates the balance between osteoblast and adipocyte differentiation in bone marrow mesenchymal stem cells

    PubMed Central

    Guo, Qi; Chen, Yusi; Guo, Lijuan; Jiang, Tiejian; Lin, Zhangyuan

    2016-01-01

    Age-related osteoporosis is associated with the reduced capacity of bone marrow mesenchymal stem cells (BMSCs) to differentiate into osteoblasts instead of adipocytes. However, the molecular mechanisms that decide the fate of BMSCs remain unclear. In our study, microRNA-23a, and microRNA-23b (miR-23a/b) were found to be markedly downregulated in BMSCs of aged mice and humans. The overexpression of miR-23a/b in BMSCs promoted osteogenic differentiation, whereas the inhibition of miR-23a/b increased adipogenic differentiation. Transmembrane protein 64 (Tmem64), which has expression levels inversely related to those of miR-23a/b in aged and young mice, was identified as a major target of miR-23a/b during BMSC differentiation. In conclusion, our study suggests that miR-23a/b has a critical role in the regulation of mesenchymal lineage differentiation through the suppression of Tmem64.

  7. miR-23a/b regulates the balance between osteoblast and adipocyte differentiation in bone marrow mesenchymal stem cells

    PubMed Central

    Guo, Qi; Chen, Yusi; Guo, Lijuan; Jiang, Tiejian; Lin, Zhangyuan

    2016-01-01

    Age-related osteoporosis is associated with the reduced capacity of bone marrow mesenchymal stem cells (BMSCs) to differentiate into osteoblasts instead of adipocytes. However, the molecular mechanisms that decide the fate of BMSCs remain unclear. In our study, microRNA-23a, and microRNA-23b (miR-23a/b) were found to be markedly downregulated in BMSCs of aged mice and humans. The overexpression of miR-23a/b in BMSCs promoted osteogenic differentiation, whereas the inhibition of miR-23a/b increased adipogenic differentiation. Transmembrane protein 64 (Tmem64), which has expression levels inversely related to those of miR-23a/b in aged and young mice, was identified as a major target of miR-23a/b during BMSC differentiation. In conclusion, our study suggests that miR-23a/b has a critical role in the regulation of mesenchymal lineage differentiation through the suppression of Tmem64. PMID:27606130

  8. miR-23a/b regulates the balance between osteoblast and adipocyte differentiation in bone marrow mesenchymal stem cells.

    PubMed

    Guo, Qi; Chen, Yusi; Guo, Lijuan; Jiang, Tiejian; Lin, Zhangyuan

    2016-01-01

    Age-related osteoporosis is associated with the reduced capacity of bone marrow mesenchymal stem cells (BMSCs) to differentiate into osteoblasts instead of adipocytes. However, the molecular mechanisms that decide the fate of BMSCs remain unclear. In our study, microRNA-23a, and microRNA-23b (miR-23a/b) were found to be markedly downregulated in BMSCs of aged mice and humans. The overexpression of miR-23a/b in BMSCs promoted osteogenic differentiation, whereas the inhibition of miR-23a/b increased adipogenic differentiation. Transmembrane protein 64 (Tmem64), which has expression levels inversely related to those of miR-23a/b in aged and young mice, was identified as a major target of miR-23a/b during BMSC differentiation. In conclusion, our study suggests that miR-23a/b has a critical role in the regulation of mesenchymal lineage differentiation through the suppression of Tmem64. PMID:27606130

  9. Induction of a program gene expression during osteoblast differentiation with strontium ranelate

    SciTech Connect

    Zhu Lingling; Zaidi, Samir; Peng Yuanzhen; Zhou Hang; Moonga, Baljit S.; Blesius, Alexia; Dupin-Roger, Isabelle; Zaidi, Mone . E-mail: mone.zaidi@mssm.edu; Sun Li

    2007-04-06

    Strontium ranelate, a new agent for the treatment of osteoporosis, has been shown stimulate bone formation in various experimental models. This study examines the effect of strontium ranelate on gene expression in osteoblasts, as well as the formation of mineralized (von Kossa-positive) colony-forming unit-osteoblasts (CFU-obs). Bone marrow-derived stromal cells cultured for 21 days under differentiating conditions, when exposed to strontium ranelate, displayed a significant time- and concentration-dependent increase in the expression of the master gene, Runx2, as well as bone sialoprotein (BSP), but interestingly without effects on osteocalcin. This was associated with a significant increase in the formation of CFU-obs at day 21 of culture. In U-33 pre-osteoblastic cells, strontium ranelate significantly enhanced the expression of Runx2 and osteocalcin, but not BSP. Late, more mature osteoblastic OB-6 cells showed significant elevations in BSP and osteocalcin, but with only minimal effects on Runx2. In conclusion, strontium ranelate stimulates osteoblast differentiation, but the induction of the program of gene expression appears to be cell type-specific. The increased osteoblastic differentiation is the likely basis underlying the therapeutic bone-forming actions of strontium ranelate.

  10. Interleukin-18 produced by bone marrow-derived stromal cells supports T-cell acute leukaemia progression

    PubMed Central

    Uzan, Benjamin; Poglio, Sandrine; Gerby, Bastien; Wu, Ching-Lien; Gross, Julia; Armstrong, Florence; Calvo, Julien; Cahu, Xavier; Deswarte, Caroline; Dumont, Florent; Passaro, Diana; Besnard-Guérin, Corinne; Leblanc, Thierry; Baruchel, André; Landman-Parker, Judith; Ballerini, Paola; Baud, Véronique; Ghysdael, Jacques; Baleydier, Frédéric; Porteu, Francoise; Pflumio, Francoise

    2014-01-01

    Development of novel therapies is critical for T-cell acute leukaemia (T-ALL). Here, we investigated the effect of inhibiting the MAPK/MEK/ERK pathway on T-ALL cell growth. Unexpectedly, MEK inhibitors (MEKi) enhanced growth of 70% of human T-ALL cell samples cultured on stromal cells independently of NOTCH activation and maintained their ability to propagate in vivo. Similar results were obtained when T-ALL cells were cultured with ERK1/2-knockdown stromal cells or with conditioned medium from MEKi-treated stromal cells. Microarray analysis identified interleukin 18 (IL-18) as transcriptionally up-regulated in MEKi-treated MS5 cells. Recombinant IL-18 promoted T-ALL growth in vitro, whereas the loss of function of IL-18 receptor in T-ALL blast cells decreased blast proliferation in vitro and in NSG mice. The NFKB pathway that is downstream to IL-18R was activated by IL-18 in blast cells. IL-18 circulating levels were increased in T-ALL-xenografted mice and also in T-ALL patients in comparison with controls. This study uncovers a novel role of the pro-inflammatory cytokine IL-18 and outlines the microenvironment involvement in human T-ALL development. PMID:24778454

  11. What Makes Umbilical Cord Tissue-Derived Mesenchymal Stromal Cells Superior Immunomodulators When Compared to Bone Marrow Derived Mesenchymal Stromal Cells?

    PubMed Central

    Bárcia, R. N.; Santos, J. M.; Filipe, M.; Teixeira, M.; Martins, J. P.; Almeida, J.; Água-Doce, A.; Almeida, S. C. P.; Varela, A.; Pohl, S.; Dittmar, K. E. J.; Calado, S.; Simões, S. I.; Gaspar, M. M.; Cruz, M. E. M.; Lindenmaier, W.; Graça, L.; Cruz, H.; Cruz, P. E.

    2015-01-01

    MSCs derived from the umbilical cord tissue, termed UCX, were investigated for their immunomodulatory properties and compared to bone marrow-derived MSCs (BM-MSCs), the gold-standard in immunotherapy. Immunogenicity and immunosuppression were assessed by mixed lymphocyte reactions, suppression of lymphocyte proliferation and induction of regulatory T cells. Results showed that UCX were less immunogenic and showed higher immunosuppression activity than BM-MSCs. Further, UCX did not need prior activation or priming to exert their immunomodulatory effects. This was further corroborated in vivo in a model of acute inflammation. To elucidate the potency differences observed between UCX and BM-MSCs, gene expression related to immune modulation was analysed in both cell types. Several gene expression profile differences were found between UCX and BM-MSCs, namely decreased expression of HLA-DRA, HO-1, IGFBP1, 4 and 6, ILR1, IL6R and PTGES and increased expression of CD200, CD273, CD274, IL1B, IL-8, LIF and TGFB2. The latter were confirmed at the protein expression level. Overall, these results show that UCX seem to be naturally more potent immunosuppressors and less immunogenic than BM-MSCs. We propose that these differences may be due to increased levels of immunomodulatory surface proteins such as CD200, CD273, CD274 and cytokines such as IL1β, IL-8, LIF and TGFβ2. PMID:26064137

  12. Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression.

    PubMed

    Cui, Yazhou; Luan, Jing; Li, Haiying; Zhou, Xiaoyan; Han, Jinxiang

    2016-01-01

    Mineralizing osteoblasts (MOBs) can release exosomes, although the functional significance remains unclear. In the present study, we demonstrate that exosomes derived from mineralizing pre-osteoblast MC3T3-E1 cells can promote bone marrow stromal cell (ST2) differentiation to osteoblasts. We reveal that MOB-derived exosomes significantly influence miRNA profiles in recipient ST2 cells, and these changes tend to activate the Wnt signaling pathway by inhibiting Axin1 expression and increasing β-catenin expression. We also suggest that MOB derived-exosomes partly induce the variation in miRNA expression in recipient ST2 cells by exosomal miRNA transfer. These findings suggest an exosome-mediated mode of cell-to-cell communication in the osteogenic microenvironment, and also indicate the potential of MOB exosomes in bone tissue engineering.

  13. A xeno-free microcarrier-based stirred culture system for the scalable expansion of human mesenchymal stem/stromal cells isolated from bone marrow and adipose tissue.

    PubMed

    Carmelo, Joana G; Fernandes-Platzgummer, Ana; Diogo, Maria Margarida; da Silva, Cláudia Lobato; Cabral, Joaquim M S

    2015-08-01

    Human mesenchymal stem/stromal cells (MSC) are promising candidates for cell-based therapies and the development of microcarrier-based cultures in scalable bioreactors with well-defined xenogeneic-free components represent important milestones towards the clinical-scale production of these cells. In this work, we optimized our previously developed xeno-free microcarrier-based system for the scalable expansion of human MSC isolated from bone marrow (BM MSC) and adipose-derived stem/stromal cells (ASC). By adapting the agitation/feeding protocol at the initial cell seeding/cultivation stage in spinner flasks, we were able to maximize cell expansion rate and final cell yield. Maximal cell densities of 3.6 × 10(5) and 1.9 × 10(5) cells/mL were obtained for BM MSC (0.60 ± 0.04 day(-1) ) and ASC (0.9 ± 0.1 day(-1) ) cultures, upon seven and eight days of cultivation, respectively. Ready-to-use microcarriers Synthemax® II and Enhanced Attachment® supported identical expansion performance of BM MSC, turning those effective alternatives to the pre-coated plastic microcarriers used in our xeno-free scalable culture system. Importantly, expanded MSC maintained their immunophenotype and multilineage differentiation potential. Moreover, secretome analysis suggested a priming effect of stirred culture conditions on cytokine production by MSC. This culture system yielded considerable final cell densities that can be scaled-up to controlled large-scale bioreactors allowing a more efficient, safe and cost-effective MSC production for clinical settings.

  14. Expansion of Human Mesenchymal Stromal Cells from Fresh Bone Marrow in a 3D Scaffold-Based System under Direct Perfusion

    PubMed Central

    Brachat, Sophie; Braccini, Alessandra; Wendt, David; Barbero, Andrea; Jacobi, Carsten; Martin, Ivan

    2014-01-01

    Mesenchymal stromal/stem cell (MSC) expansion in conventional monolayer culture on plastic dishes (2D) leads to progressive loss of functionality and thus challenges fundamental studies on the physiology of skeletal progenitors, as well as translational applications for cellular therapy and molecular medicine. Here we demonstrate that 2D MSC expansion can be entirely bypassed by culturing freshly isolated bone marrow nucleated cells within 3D porous scaffolds in a perfusion-based bioreactor system. The 3D-perfusion system generated a stromal tissue that could be enzymatically treated to yield CD45- MSC. As compared to 2D-expanded MSC (control), those derived from 3D-perfusion culture after the same time (3 weeks) or a similar extent of proliferation (7–8 doublings) better maintained their progenitor properties, as assessed by a 4.3-fold higher clonogenicity and the superior differentiation capacity towards all typical mesenchymal lineages. Transcriptomic analysis of MSC from 5 donors validated the robustness of the process and indicated a reduced inter-donor variability and a significant upregulation of multipotency-related gene clusters following 3D-perfusion- as compared to 2D-expansion. Interestingly, the differences in functionality and transcriptomics between MSC expanded in 2D or under 3D-perfusion were only partially captured by cytofluorimetric analysis using conventional surface markers. The described system offers a multidisciplinary approach to study how factors of a 3D engineered niche regulate MSC function and, by streamlining conventional labor-intensive processes, is prone to automation and scalability within closed bioreactor systems. PMID:25020062

  15. CD138-negative myeloma cells regulate mechanical properties of bone marrow stromal cells through SDF-1/CXCR4/AKT signaling pathway

    PubMed Central

    Wu, Dan; Guo, Xinyi; Su, Jing; Chen, Ruoying; Berenzon, Dmitriy; Guthold, Martin; Bonin, Keith; Zhao, Weiling; Zhou, Xiaobo

    2014-01-01

    As the second most prevalent hematologic malignancy, multiple myeloma (MM) remains incurable and relapses due to intrinsic or acquired drug resistance. Therefore, new therapeutic strategies that target molecular mechanisms responsible for drug resistance are attractive. Interactions of tumor cells with their surrounding microenvironment impact tumor initiation, progression and metastasis, as well as patient prognosis. This cross-talk is bidirectional. Tumor cells can also attract or activate tumor-associated stromal cells by releasing cytokines to facilitate their growth, invasion and metastasis. The effect of myeloma cells on bone marrow stromal cells (BMSCs) has not been well studied. In our study, we found that higher stiffness of BMSCs was not a unique characteristic of BMSCs from MM patients (M-BMSCs). BMSCs from MGUS (Monoclonal gammopathy of undetermined significance) patients were also stiffer than the BMSCs from healthy volunteers (N-BMSCs). The stiffness of M-BMSCs was enhanced when cocultured with myeloma cells. In contrast, no changes were seen in myeloma cell-primed MGUS- and N-BMSCs. Interestingly, our data indicated that CD138− myeloma cells, but not CD138+ cells, regulated M-BMSC stiffness. SDF-1 was highly expressed in the CD138− myeloma subpopulation compared with that in CD138+ cells. Inhibition of SDF-1 using AMD3100 or knocking-down CXCR4 in M-BMSCs blocked CD138− myeloma cells-induced increase in M-BMSC stiffness, suggesting a crucial role of SDF-1/CXCR4. AKT inhibition attenuated SDF-1-induced increases in M-BMSC stiffness. These findings demonstrate, for the first time, CD138− myeloma cell-directed cross-talk with BMSCs and reveal that CD138− myeloma cells regulate M-BMSC stiffness through SDF-1/CXCR4/AKT signaling. PMID:25450979

  16. Systemic Administration of Human Bone Marrow-Derived Mesenchymal Stromal Cell Extracellular Vesicles Ameliorates Aspergillus Hyphal Extract-Induced Allergic Airway Inflammation in Immunocompetent Mice

    PubMed Central

    Cruz, Fernanda F.; Borg, Zachary D.; Goodwin, Meagan; Sokocevic, Dino; Wagner, Darcy E.; Coffey, Amy; Antunes, Mariana; Robinson, Kristen L.; Mitsialis, S. Alex; Kourembanas, Stella; Thane, Kristen; Hoffman, Andrew M.; McKenna, David H.; Rocco, Patricia R.M.

    2015-01-01

    An increasing number of studies demonstrate that administration of either conditioned media (CM) or extracellular vesicles (EVs) released by mesenchymal stromal cells (MSCs) derived from bone marrow and other sources are as effective as the MSCs themselves in mitigating inflammation and injury. The goal of the current study was to determine whether xenogeneic administration of CM or EVs from human bone marrow-derived MSCs would be effective in a model of mixed Th2/Th17, neutrophilic-mediated allergic airway inflammation, reflective of severe refractory asthma, induced by repeated mucosal exposure to Aspergillus hyphal extract (AHE) in immunocompetent C57Bl/6 mice. Systemic administration of both CM and EVs isolated from human and murine MSCs, but not human lung fibroblasts, at the onset of antigen challenge in previously sensitized mice significantly ameliorated the AHE-provoked increases in airway hyperreactivity (AHR), lung inflammation, and the antigen-specific CD4 T-cell Th2 and Th17 phenotype. Notably, both CM and EVs from human MSCs (hMSCs) were generally more potent than those from mouse MSCs (mMSCs) in most of the outcome measures. The weak cross-linking agent 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride was found to inhibit release of both soluble mediators and EVs, fully negating effects of systemically administered hMSCs but only partly inhibited the ameliorating effects of mMSCs. These results demonstrate potent xenogeneic effects of CM and EVs from hMSCs in an immunocompetent mouse model of allergic airway inflammation and they also show differences in mechanisms of action of hMSCs versus mMSCs to mitigate AHR and lung inflammation in this model. Significance There is a growing experience demonstrating benefit of mesenchymal stromal cell (MSC)-based cell therapies in preclinical models of asthma. In the current study, conditioned media (CM) and, in particular, the extracellular vesicle fraction obtained from the CM were as potent as the

  17. Effects of Arsenic on Osteoblast Differentiation in Vitro and on Bone Mineral Density and Microstructure in Rats

    PubMed Central

    Wu, Cheng-Tien; Lu, Tung-Ying; Chan, Ding-Cheng; Tsai, Keh-Sung; Yang, Rong-Sen

    2014-01-01

    Background: Arsenic is a ubiquitous toxic element and is known to contaminate drinking water in many countries. Several epidemiological studies have shown that arsenic exposure augments the risk of bone disorders. However, the detailed effect and mechanism of inorganic arsenic on osteoblast differentiation of bone marrow stromal cells and bone loss still remain unclear. Objectives: We investigated the effects and mechanism of arsenic on osteoblast differentiation in vitro and evaluated bone mineral density (BMD) and bone microstructure in rats at doses relevant to human exposure from drinking water. Methods: We used a cell model of rat primary bone marrow stromal cells (BMSCs) and a rat model of long-term exposure with arsenic-contaminated drinking water, and determined bone microstructure and BMD in rats by microcomputed tomography (μCT). Results: We observed significant attenuation of osteoblast differentiation after exposure of BMSCs to arsenic trioxide (0.5 or 1 μM). After arsenic treatment during differentiation, expression of runt-related transcription factor-2 (Runx2), bone morphogenetic protein-2 (BMP-2), and osteocalcin in BMSCs was inhibited and phosphorylation of enhanced extracellular signal-regulated kinase (ERK) was increased. These altered differentiation-related molecules could be reversed by the ERK inhibitor PD98059. Exposure of rats to arsenic trioxide (0.05 or 0.5 ppm) in drinking water for 12 weeks altered BMD and microstructure, decreased Runx2 expression, and increased ERK phosphorylation in bones. In BMSCs isolated from arsenic-treated rats, osteoblast differentiation was inhibited. Conclusions: Our results suggest that arsenic is capable of inhibiting osteoblast differentiation of BMSCs via an ERK-dependent signaling pathway and thus increasing bone loss. Citation: Wu CT, Lu TY, Chan DC, Tsai KS, Yang RS, Liu SH. 2014. Effects of arsenic on osteoblast differentiation in vitro and on bone mineral density and microstructure in rats. Environ

  18. A robust and reproducible animal serum-free culture method for clinical-grade bone marrow-derived mesenchymal stromal cells.

    PubMed

    Laitinen, Anita; Oja, Sofia; Kilpinen, Lotta; Kaartinen, Tanja; Möller, Johanna; Laitinen, Saara; Korhonen, Matti; Nystedt, Johanna

    2016-08-01

    Efficient xenofree expansion methods to replace fetal bovine serum (FBS)-based culture methods are strongly encouraged by the regulators and are needed to facilitate the adoption of mesenchymal stromal cell (MSC)-based therapies. In the current study we established a clinically-compliant and reproducible animal serum-free culture protocol for bone marrow-(BM-) MSCs based on an optimized platelet-derived supplement. Our study compared two different platelet-derived supplements, platelet lysate PL1 versus PL2, produced by two different methods and lysed with different amounts of freeze-thaw cycles. Our study also explored the effect of a low oxygen concentration on BM-MSCs. FBS-supplemented BM-MSC culture served as control. Growth kinetics, differentiation and immunomodulatory potential, morphology, karyotype and immunophenotype was analysed. Growth kinetics in long-term culture was also studied. Based on the initial results, we chose to further process develop the PL1-supplemented culture protocol at 20 % oxygen. The results from 11 individual BM-MSC batches expanded in the chosen condition were consistent, yielding 6.60 × 10(9) ± 4.74 × 10(9) cells from only 20 ml of bone marrow. The cells suppressed T-cell proliferation, displayed normal karyotype and typical MSC differentiation potential and phenotype. The BM-MSCs were, however, consistently HLA-DR positive when cultured in platelet lysate (7.5-66.1 %). We additionally show that culture media antibiotics and sterile filtration of the platelet lysate can be successfully omitted. We present a robust and reproducible clinically-compliant culture method for BM-MSCs based on platelet lysate, which enables high quantities of HLA-DR positive MSCs at a low passage number (p2) and suitable for clinical use. PMID:25777046

  19. Multimodality Molecular Imaging of Cardiac Cell Transplantation: Part I. Reporter Gene Design, Characterization, and Optical in Vivo Imaging of Bone Marrow Stromal Cells after Myocardial Infarction.

    PubMed

    Parashurama, Natesh; Ahn, Byeong-Cheol; Ziv, Keren; Ito, Ken; Paulmurugan, Ramasamy; Willmann, Jürgen K; Chung, Jaehoon; Ikeno, Fumiaki; Swanson, Julia C; Merk, Denis R; Lyons, Jennifer K; Yerushalmi, David; Teramoto, Tomohiko; Kosuge, Hisanori; Dao, Catherine N; Ray, Pritha; Patel, Manishkumar; Chang, Ya-Fang; Mahmoudi, Morteza; Cohen, Jeff Eric; Goldstone, Andrew Brooks; Habte, Frezghi; Bhaumik, Srabani; Yaghoubi, Shahriar; Robbins, Robert C; Dash, Rajesh; Yang, Phillip C; Brinton, Todd J; Yock, Paul G; McConnell, Michael V; Gambhir, Sanjiv S

    2016-09-01

    Purpose To use multimodality reporter-gene imaging to assess the serial survival of marrow stromal cells (MSC) after therapy for myocardial infarction (MI) and to determine if the requisite preclinical imaging end point was met prior to a follow-up large-animal MSC imaging study. Materials and Methods Animal studies were approved by the Institutional Administrative Panel on Laboratory Animal Care. Mice (n = 19) that had experienced MI were injected with bone marrow-derived MSC that expressed a multimodality triple fusion (TF) reporter gene. The TF reporter gene (fluc2-egfp-sr39ttk) consisted of a human promoter, ubiquitin, driving firefly luciferase 2 (fluc2), enhanced green fluorescent protein (egfp), and the sr39tk positron emission tomography reporter gene. Serial bioluminescence imaging of MSC-TF and ex vivo luciferase assays were performed. Correlations were analyzed with the Pearson product-moment correlation, and serial imaging results were analyzed with a mixed-effects regression model. Results Analysis of the MSC-TF after cardiac cell therapy showed significantly lower signal on days 8 and 14 than on day 2 (P = .011 and P = .001, respectively). MSC-TF with MI demonstrated significantly higher signal than MSC-TF without MI at days 4, 8, and 14 (P = .016). Ex vivo luciferase activity assay confirmed the presence of MSC-TF on days 8 and 14 after MI. Conclusion Multimodality reporter-gene imaging was successfully used to assess serial MSC survival after therapy for MI, and it was determined that the requisite preclinical imaging end point, 14 days of MSC survival, was met prior to a follow-up large-animal MSC study. (©) RSNA, 2016 Online supplemental material is available for this article. PMID:27308957

  20. Cytoskeletal proteins and stem cell markers gene expression in human bone marrow mesenchymal stromal cells after different periods of simulated microgravity

    NASA Astrophysics Data System (ADS)

    Gershovich, P. M.; Gershovich, J. G.; Zhambalova, A. P.; Romanov, Yu. A.; Buravkova, L. B.

    2012-01-01

    Mesenchymal stem (stromal) cells (MSCs) are present in a variety of tissues during prenatal and postnatal human development. In adult organism, they are prevalent in bone marrow and supposed to be involved in space-flight induced osteopenia. We studied expression of various genes in human bone marrow MSCs after different terms of simulated microgravity (SMG) provided by Random Positioning Machine. Simulated microgravity induced transient changes in expression level of genes associated with actin cytoskeleton, especially after 48 h of SMG. However, after 120 h exposure in SMG partial restoration of gene expression levels (relative to the control) was found. Similar results were obtained with bmMSCs subjected to 24 h readaptation in static state after 24 h in SMG. Analysis of 84 genes related to identification, growth and differentiation of stem cells revealed that expression of nine genes was changed slightly after 48 h in SMG. More pronounced changes in gene expression of "stem cells markers" were observed after 120 h of simulated microgravity. Among 84 investigated genes, 30 were up-regulated and 24 were down-regulated. Finally, MSCs osteogenesis induced by long-term (10-20 days) simulation of microgravity was accompanied by down-regulation of gene expression of the main osteogenic differentiation markers ( ALPL, OMD) and master transcription osteogenic factor of MSCs ( Runx2). Thus, our study demonstrated that changes in expression level of some genes associated with actin cytoskeleton and stem cell markers are supposed to be one of the mechanisms, which contribute to precursor's cellular adaptation to the microgravity conditions. These results can clarify genomic mechanisms through which SMG reduces osteogenic differentiation of bmMSCs.

  1. Bone Defect Regeneration by a Combination of a β-Tricalcium Phosphate Scaffold and Bone Marrow Stromal Cells in a Non-Human Primate Model

    PubMed Central

    Masaoka, Tomokazu; Yoshii, Toshitaka; Yuasa, Masato; Yamada, Tsuyoshi; Taniyama, Takashi; Torigoe, Ichiro; Shinomiya, Kenichi; Okawa, Atsushi; Morita, Sadao; Sotome, Shinichi

    2016-01-01

    Background: Reconstruction of large bone defects is a great challenge in orthopedic research. In the present study, we prepared composites of bone marrow-derived stromal cells (BMSCs) and β-tricalcium phosphate (β-TCP) with three novel aspects: proliferation of BMSCs with continuous dexamethasone treatment, cell loading under low pressure, and use of autologous plasma as the cell loading medium. The effectiveness of the resulting composite for large bone-defect reconstruction was tested in a non-human primate model, and the bone union capability of the regenerated bones was examined. Materials and Methods: Primary surgery: Bone defects (5 cm long) were created in the left femurs of nine cynomolgus monkeys with resection of the periosteum (five cases) or without resection (four cases), and porous β-TCP blocks were transplanted into the defects. Secondary surgery: Bone marrow aspirates harvested from seven of the nine monkeys were cultured with dexamethasone, and BMSCs were obtained. BMSCs were suspended in autologous plasma and introduced into a porous β-TCP block under low-pressure conditions. The BMSC/β-TCP composites were transplanted into bone defects created at the same sites as the primary surgery. Bone union evaluation: Five regenerated femurs were shortened by osteotomy surgery 8 to 15 months after transplantation of the β-TCP/BMSC composites, and bone union was evaluated radiographically. Results: After the primary surgery and treatment with β-TCP alone, one of the five periosteum-resected monkeys and two of the four periosteum-preserved monkeys exhibited successful bone reconstruction. In contrast, five of the seven cases treated with the β-TCP/MSC composite showed successful bone regeneration. In four of the five osteotomy cases, bone union was confirmed. Conclusion: We validated the effectiveness of a novel β-TCP/BMSC composite for large bone defect regeneration and confirmed the bone union capability of the regenerated bone. PMID:27073583

  2. Effects of in vitro chondrogenic priming time of bone-marrow-derived mesenchymal stromal cells on in vivo endochondral bone formation.

    PubMed

    Yang, Wanxun; Both, Sanne K; van Osch, Gerjo J V M; Wang, Yining; Jansen, John A; Yang, Fang

    2015-02-01

    Recapitulation of endochondral ossification leads to a new concept of bone tissue engineering via a cartilage intermediate as an osteoinductive template. In this study, we aimed to investigate the influence of in vitro chondrogenic priming time for the creation of cartilage template on the in vivo endochondral bone formation both qualitatively and quantitatively. To this end, rat bone-marrow-derived mesenchymal stromal cells (MSCs) were seeded onto two scaffolds with distinguished features: a fibrous poly(lactic-co-glycolic acid)/poly(ε-caprolactone) electrospun scaffold (PLGA/PCL) and a porous hydroxyapatite/tricalcium phosphate composite (HA/TCP). The constructs were then chondrogenically differentiated for 2, 3 and 4 weeks in vitro, followed by subcutaneous implantation in vivo for up to 8 weeks. A longer chondrogenic priming time resulted in a significantly increased amount and homogeneous deposition of the cartilage matrix on both the PLGA/PCL and HA/TCP scaffolds in vitro. In vivo, all implanted constructs gave rise to endochondral bone formation, whereas the bone volume was not affected by the length of priming time. An unpolarized woven bone-like structure, with significant amounts of cartilage remaining, was generated in fibrous PLGA/PCL scaffolds, while porous HA/TCP scaffolds supported progressive lamellar-like bone formation with mature bone marrow development. These data suggest that, by utilizing a chondrogenically differentiated MSC-scaffold construct as cartilage template, 2 weeks of in vitro priming time is sufficient to generate a substantial amount of vascularized endochondral bone in vivo. The structure of the bone depends on the chemical and structural cues provided by the scaffold design.

  3. Organotypic culture of human bone marrow adipose tissue.

    PubMed

    Uchihashi, Kazuyoshi; Aoki, Shigehisa; Shigematsu, Masamori; Kamochi, Noriyuki; Sonoda, Emiko; Soejima, Hidenobu; Fukudome, Kenji; Sugihara, Hajime; Hotokebuchi, Takao; Toda, Shuji

    2010-04-01

    The precise role of bone marrow adipose tissue (BMAT) in the marrow remains unknown. The purpose of the present study was therefore to describe a novel method for studying BMAT using 3-D collagen gel culture of BMAT fragments, immunohistochemistry, ELISA and real-time reverse transcription-polymerase chain reaction. Mature adipocytes and CD45+ leukocytes were retained for >3 weeks. Bone marrow stromal cells (BMSC) including a small number of lipid-laden preadipocytes and CD44+/CD105+ mesenchymal stem cell (MSC)-like cells, developed from BMAT. Dexamethasone (10 micromol/L), but not insulin (20 mU/mL), significantly increased the number of preadipocytes. Dexamethasone and insulin also promoted leptin production and gene expression in BMAT. Adiponectin production by BMAT was <0.8 ng/mL under all culture conditions. Dexamethasone promoted adiponectin gene expression, while insulin inhibited it. This finding suggests that dexamethasone, but not insulin, may serve as a powerful adipogenic factor for BMAT, in which adiponectin protein secretion is normally very low, and that BMAT may exhibit a different phenotype from that of the visceral and subcutaneous adipose tissues. BMAT-osteoblast interactions were also examined, and it was found that osteoblasts inhibited the development of BMSC and reduced leptin production, while BMAT inhibited the growth and differentiation of osteoblasts. The present novel method proved to be useful for the study of BMAT biology.

  4. Synergistic enhancement of human bone marrow stromal cell proliferation and osteogenic differentiation on BMP-2-derived and RGD peptide concentration gradients.

    PubMed

    Moore, Nicole M; Lin, Nancy J; Gallant, Nathan D; Becker, Matthew L

    2011-05-01

    Rational design of bioactive tissue engineered scaffolds for directing bone regeneration in vivo requires a comprehensive understanding of cell interactions with the immobilized bioactive molecules. In the current study, substrates possessing gradient concentrations of immobilized peptides were used to measure the concentration-dependent proliferation and osteogenic differentiation of human bone marrow stromal cells. Two bioactive peptides, one derived from extracellular matrix protein (ECM), GRGDS, and one from bone morphogenic protein-2 (BMP-2), KIPKASSVPTELSAISTLYL, were found to synergistically enhance cell proliferation, up-regulate osteogenic mRNA markers bone sialoprotein (BSP) and Runt-related transcription factor 2, and produce mineralization at densities greater than 130 pmol cm(-2) (65 pmol cm(-2) for each peptide). In addition, COOH-terminated self-assembled monolayers alone led to up-regulated BSP mRNA levels at densities above 200 pmol cm(-2) and increased cell proliferation from day 3 to day 14. Taking further advantage of both the synergistic potentials and the concentration-dependent activities of ECM and growth-factor-derived peptides on proliferative activity and osteogenic differentiation, without the need for additional osteogenic supplements, will enable the successful incorporation of the bioactive species into biorelevant tissue engineering scaffolds. PMID:21272672

  5. Expression of CD24 in Human Bone Marrow-Derived Mesenchymal Stromal Cells Is Regulated by TGFβ3 and Induces a Myofibroblast-Like Genotype

    PubMed Central

    Schäck, Luisa Marilena; Buettner, Manuela; Wirth, Alexander; Krettek, Christian; Hoffmann, Andrea; Noack, Sandra

    2016-01-01

    Human bone marrow-derived stromal cells (hBMSCs) derived from the adult organism hold great promise for diverse settings in regenerative medicine. Therefore a more complete understanding of hBMSC biology to fully exploit the cells' potential for clinical settings is important. The protein CD24 has been reported to be involved in a diverse range of processes such as cancer, adaptive immunity, inflammation, and autoimmune diseases in other cell types. Its expression in hBMSCs, which has not yet been analyzed, may add an important aspect in the understanding of hBMSC biology. The present study therefore analyzes the expression, regulation, and functional implication of the surface protein CD24 in hBMSCs. Methods used are stimulation studies with TGF beta as well as shRNA-mediated knockdown and overexpression of CD24 followed by microarray, immunocytochemistry, and flow cytometric analyses. To our knowledge, we demonstrate for the first time that the expression of CD24 is an inherent property of hBMSCs. Importantly, the data links the upregulation of CD24 to the adoption of a myofibroblast-like gene expression pattern in hBMSCs. We demonstrate that CD24 is an important modulator in transforming growth factor beta 3 (TGFβ3) signaling with a reciprocal regulatory relationship between these two proteins. PMID:26788063

  6. Induction of Poly(ADP-ribose) Polymerase in Mouse Bone Marrow Stromal Cells Exposed to 900 MHz Radiofrequency Fields: Preliminary Observations

    PubMed Central

    He, Qina; Sun, Yulong; Zong, Lin; Tong, Jian; Cao, Yi

    2016-01-01

    Background. Several investigators have reported increased levels of poly(ADP-ribose) polymerase-1 (PARP-1), a nuclear enzyme which plays an important role in the repair of damaged DNA, in cells exposed to extremely low dose ionizing radiation which does not cause measurable DNA damage. Objective. To examine whether exposure of the cells to nonionizing radiofrequency fields (RF) is capable of increasing messenger RNA of PARP-1 and its protein levels in mouse bone marrow stromal cells (BMSCs). Methods. BMSCs were exposed to 900 MHz RF at 120 μW/cm2 power intensity for 3 hours/day for 5 days. PARP-1 mRNA and its protein levels were examined at 0, 0.5, 1, 2, 4, 6, 8, and 10 hours after exposure using RT-PCR and Western blot analyses. Sham-exposed (SH) cells and those exposed to ionizing radiation were used as unexposed and positive control cells. Results. BMSCs exposed to RF showed significantly increased expression of PARP-1 mRNA and its protein levels after exposure to RF while such changes were not observed in SH-exposed cells. Conclusion. Nonionizing RF exposure is capable of inducing PARP-1. PMID:27190989

  7. Enhanced human bone marrow stromal cell affinity for modified poly(L-lactide) surfaces by the upregulation of adhesion molecular genes.

    PubMed

    Mao, Xueli; Peng, Hui; Ling, Junqi; Friis, Thor; Whittaker, Andrew K; Crawford, Ross; Xiao, Yin

    2009-12-01

    To enhance and regulate cell affinity for poly (L-lactic acid) (PLLA) based materials, two hydrophilic ligands, poly (ethylene glycol) (PEG) and poly (L-lysine) (PLL), were used to develop triblock copolymers: methoxy-terminated poly (ethylene glycol)-block-poly (L-lactide)-block-poly (L-lysine) (MPEG-b-PLLA-b-PLL) in order to regulate protein absorption and cell adhesion. Bone marrow stromal cells (BMSCs) were cultured on different composition of MPEG-b-PLLA-b-PLL copolymer films to determine the effect of modified polymer surfaces on BMSC attachment. To understand the molecular mechanism governing the initial cell adhesion on difference polymer surfaces, the mRNA expression of 84 human extracellular matrix (ECM) and adhesion molecules was analysed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). It was found that down regulation of adhesion molecules was responsible for the impaired BMSC attachment on PLLA surface. MPEG-b-PLLA-b-PLL copolymer films improved significantly the cell adhesion and cytoskeleton expression by upregulation of relevant molecule genes significantly. Six adhesion genes (CDH1, ITGL, NCAM1, SGCE, COL16A1, and LAMA3) were most significantly influenced by the modified PLLA surfaces. In summary, polymer surfaces altered adhesion molecule gene expression of BMSCs, which consequently regulated cell initial attachment on modified PLLA surfaces. PMID:19796804

  8. The PI3-Kinase Delta Inhibitor Idelalisib (GS-1101) Targets Integrin-Mediated Adhesion of Chronic Lymphocytic Leukemia (CLL) Cell to Endothelial and Marrow Stromal Cells

    PubMed Central

    Fiorcari, Stefania; Brown, Wells S.; McIntyre, Bradley W.; Estrov, Zeev; Maffei, Rossana; O’Brien, Susan; Sivina, Mariela; Hoellenriegel, Julia; Wierda, William G.; Keating, Michael J.; Ding, Wei; Kay, Neil E.; Lannutti, Brian J.; Marasca, Roberto; Burger, Jan A.

    2013-01-01

    CLL cell trafficking between blood and tissue compartments is an integral part of the disease process. Idelalisib, a phosphoinositide 3-kinase delta (PI3Kδ) inhibitor causes rapid lymph node shrinkage, along with an increase in lymphocytosis, prior to inducing objective responses in CLL patients. This characteristic activity presumably is due to CLL cell redistribution from tissues into the blood, but the underlying mechanisms are not fully understood. We therefore analyzed idelalisib effects on CLL cell adhesion to endothelial and bone marrow stromal cells (EC, BMSC). We found that idelalisib inhibited CLL cell adhesion to EC and BMSC under static and shear flow conditions. TNFα-induced VCAM-1 (CD106) expression in supporting layers increased CLL cell adhesion and accentuated the inhibitory effect of idelalisib. Co-culture with EC and BMSC also protected CLL from undergoing apoptosis, and this EC- and BMSC-mediated protection was antagonized by idelalisib. Furthermore, we demonstrate that CLL cell adhesion to EC and VLA-4 (CD49d) resulted in the phosphorylation of Akt, which was sensitive to inhibition by idelalisib. These findings demonstrate that idelalisib interferes with integrin-mediated CLL cell adhesion to EC and BMSC, providing a novel mechanism to explain idelalisib-induced redistribution of CLL cells from tissues into the blood. PMID:24376763

  9. High-Fat Diet/Low-Dose Streptozotocin-Induced Type 2 Diabetes in Rats Impacts Osteogenesis and Wnt Signaling in Bone Marrow Stromal Cells.

    PubMed

    Qian, Chao; Zhu, Chenyuan; Yu, Weiqiang; Jiang, Xinquan; Zhang, Fuqiang

    2015-01-01

    Bone regeneration disorders are a significant problem in patients with type 2 diabetes mellitus. Bone marrow stromal cells (BMSCs) are recognized as ideal seed cells for tissue engineering because they can stimulate osteogenesis during bone regeneration. Therefore, the aim of this study was to investigate the osteogenic potential of BMSCs derived from type 2 diabetic rats and the pathogenic characteristics of dysfunctional BMSCs that affect osteogenesis. BMSCs were isolated from normal and high-fat diet+streptozotocin-induced type 2 diabetic rats. Cell metabolic activity, alkaline phosphatase (ALP) activity, mineralization and osteogenic gene expression were reduced in the type 2 diabetic rat BMSCs. The expression levels of Wnt signaling genes, such as β-catenin, cyclin D1 and c-myc, were also significantly decreased in the type 2 diabetic rat BMSCs, but the expression of GSK3β remained unchanged. The derived BMSCs were cultured on calcium phosphate cement (CPC) scaffolds and placed subcutaneously into nude mice for eight weeks; they were detected at a low level in newly formed bone. The osteogenic potential of the type 2 diabetic rat BMSCs was not impaired by the culture environment, but it was impaired by inhibition of the Wnt signaling pathway, likely due to an insufficient accumulation of β-catenin rather than because of GSK3β stimulation. Using BMSCs derived from diabetic subjects could offer an alternative method of regenerating bone together with the use of supplementary growth factors to stimulate the Wnt signaling pathway. PMID:26296196

  10. Human Bone Marrow-Derived Mesenchymal Stromal Cells Differentially Inhibit Cytokine Production by Peripheral Blood Monocytes Subpopulations and Myeloid Dendritic Cells

    PubMed Central

    Laranjeira, Paula; Gomes, Joana; Pedrosa, Monia; Martinho, Antonio; Antunes, Brigida; Ribeiro, Tania; Santos, Francisco; Domingues, Rosario; Abecasis, Manuel; Trindade, Helder; Paiva, Artur

    2015-01-01

    The immunosuppressive properties of mesenchymal stromal/stem cells (MSC) rendered them an attractive therapeutic approach for immune disorders and an increasing body of evidence demonstrated their clinical value. However, the influence of MSC on the function of specific immune cell populations, namely, monocyte subpopulations, is not well elucidated. Here, we investigated the influence of human bone marrow MSC on the cytokine and chemokine expression by peripheral blood classical, intermediate and nonclassical monocytes, and myeloid dendritic cells (mDC), stimulated with lipopolysaccharide plus interferon (IFN)γ. We found that MSC effectively inhibit tumor necrosis factor- (TNF-) α and macrophage inflammatory protein- (MIP-) 1β protein expression in monocytes and mDC, without suppressing CCR7 and CD83 protein expression. Interestingly, mDC exhibited the highest degree of inhibition, for both TNF-α and MIP-1β, whereas the reduction of TNF-α expression was less marked for nonclassical monocytes. Similarly, MSC decreased mRNA levels of interleukin- (IL-) 1β and IL-6 in classical monocytes, CCL3, CCL5, CXCL9, and CXCL10 in classical and nonclassical monocytes, and IL-1β and CXCL10 in mDC. MSC do not impair the expression of maturation markers in monocytes and mDC under our experimental conditions; nevertheless, they hamper the proinflammatory function of monocytes and mDC, which may impede the development of inflammatory immune responses. PMID:26060498

  11. Ontology analysis of global gene expression differences of human bone marrow stromal cells cultured on 3D scaffolds or 2D films.

    PubMed

    Baker, Bryan A; Pine, P Scott; Chatterjee, Kaushik; Kumar, Girish; Lin, Nancy J; McDaniel, Jennifer H; Salit, Marc L; Simon, Carl G

    2014-08-01

    Differences in gene expression of human bone marrow stromal cells (hBMSCs) during culture in three-dimensional (3D) nanofiber scaffolds or on two-dimensional (2D) films were investigated via pathway analysis of microarray mRNA expression profiles. Previous work has shown that hBMSC culture in nanofiber scaffolds can induce osteogenic differentiation in the absence of osteogenic supplements (OS). Analysis using ontology databases revealed that nanofibers and OS regulated similar pathways and that both were enriched for TGF-β and cell-adhesion/ECM-receptor pathways. The most notable difference between the two was that nanofibers had stronger enrichment for cell-adhesion/ECM-receptor pathways. Comparison of nanofibers scaffolds with flat films yielded stronger differences in gene expression than comparison of nanofibers made from different polymers, suggesting that substrate structure had stronger effects on cell function than substrate polymer composition. These results demonstrate that physical (nanofibers) and biochemical (OS) signals regulate similar ontological pathways, suggesting that these cues use similar molecular mechanisms to control hBMSC differentiation. PMID:24840613

  12. The Morphofunctional Effect of the Transplantation of Bone Marrow Stromal Cells and Predegenerated Peripheral Nerve in Chronic Paraplegic Rat Model via Spinal Cord Transection.

    PubMed

    Buzoianu-Anguiano, Vinnitsa; Orozco-Suárez, Sandra; García-Vences, Elisa; Caballero-Chacón, Sara; Guizar-Sahagún, Gabriel; Chavez-Sanchez, Luis; Grijalva, Israel

    2015-01-01

    Functional recovery following spinal cord injury (SCI) is limited by poor axonal and cellular regeneration as well as the failure to replace damaged myelin. Employed separately, both the transplantation of the predegenerated peripheral nerve (PPN) and the transplantation of bone marrow stromal cells (BMSCs) have been shown to promote the regrowth and remyelination of the damaged central axons in SCI models of hemisection, transection, and contusion injury. With the aim to test the effects of the combined transplantation of PPN and BMSC on regrowth, remyelination, and locomotor function in an adult rat model of spinal cord (SC) transection, 39 Fischer 344 rats underwent SC transection at T9 level. Four weeks later they were randomly assigned to traumatic spinal cord injury (TSCI) without treatment, TSCI + Fibrin Glue (FG), TSCI + FG + PPN, and TSCI + FG + PPN + BMSCs. Eight weeks after, transplantation was carried out on immunofluorescence and electron microscope studies. The results showed greater axonal regrowth and remyelination in experimental groups TSCI + FG + PPN and TSCI + FG + PPN + BMSCs analyzed with GAP-43, neuritin, and myelin basic protein. It is concluded that the combined treatment of PPN and BMSCs is a favorable strategy for axonal regrowth and remyelination in a chronic SC transection model. PMID:26634157

  13. The Morphofunctional Effect of the Transplantation of Bone Marrow Stromal Cells and Predegenerated Peripheral Nerve in Chronic Paraplegic Rat Model via Spinal Cord Transection

    PubMed Central

    Buzoianu-Anguiano, Vinnitsa; Orozco-Suárez, Sandra; García-Vences, Elisa; Caballero-Chacón, Sara; Guizar-Sahagún, Gabriel; Chavez-Sanchez, Luis; Grijalva, Israel

    2015-01-01

    Functional recovery following spinal cord injury (SCI) is limited by poor axonal and cellular regeneration as well as the failure to replace damaged myelin. Employed separately, both the transplantation of the predegenerated peripheral nerve (PPN) and the transplantation of bone marrow stromal cells (BMSCs) have been shown to promote the regrowth and remyelination of the damaged central axons in SCI models of hemisection, transection, and contusion injury. With the aim to test the effects of the combined transplantation of PPN and BMSC on regrowth, remyelination, and locomotor function in an adult rat model of spinal cord (SC) transection, 39 Fischer 344 rats underwent SC transection at T9 level. Four weeks later they were randomly assigned to traumatic spinal cord injury (TSCI) without treatment, TSCI + Fibrin Glue (FG), TSCI + FG + PPN, and TSCI + FG + PPN + BMSCs. Eight weeks after, transplantation was carried out on immunofluorescence and electron microscope studies. The results showed greater axonal regrowth and remyelination in experimental groups TSCI + FG + PPN and TSCI + FG + PPN + BMSCs analyzed with GAP-43, neuritin, and myelin basic protein. It is concluded that the combined treatment of PPN and BMSCs is a favorable strategy for axonal regrowth and remyelination in a chronic SC transection model. PMID:26634157

  14. Sciatic nerve regeneration induced by transplantation of in vitro bone marrow stromal cells into an inside-out artery graft in rat.

    PubMed

    Mohammadi, Rahim; Vahabzadeh, Behnam; Amini, Keyvan

    2014-10-01

    Traumatic injury to peripheral nerves results in considerable motor and sensory disability. Several research groups have tried to improve the regeneration of traumatized nerves by invention of favorable microsurgery. Effect of undifferentiated bone marrow stromal cells (BMSCs) combined with artery graft on peripheral nerve regeneration was studied using a rat sciatic nerve regeneration model. A 10-mm sciatic nerve defect was bridged using an artery graft (IOAG) filled with undifferentiated BMSCs (2 × 10(7) cells/mL). In control group, the graft was filled with phosphated buffer saline alone. The regenerated fibers were studied 4, 8 and 12 weeks after surgery. Assessment of nerve regeneration was based on behavioral, functional (Walking Track Analysis), electrophysiological, histomorphometric and immuohistochemical (Schwann cell detection by S-100 expression) criteria. The behavioral, functional and electrophysiological studies confirmed significant recovery of regenerated axons in IOAG/BMSC group (P < 0.05). Quantitative morphometric analyses of regenerated fibers showed the number and diameter of myelinated fibers in IOAG/BMSC group were significantly higher than in the control group (P < 0.05). This demonstrates the potential of using undifferentiated BMSCs combined with artery graft in peripheral nerve regeneration without limitations of donor-site morbidity associated with isolation of Schwann cells. It is also cost saving due to reduction in interval from tissue collection until cell injection, simplicity of laboratory procedures compared to differentiated BMSCs and may have clinical implications for the surgical management of patients after facial nerve transection. PMID:24942097

  15. Stromal cell-derived factor-1 (SDF1)-dependent recruitment of bone marrow-derived renal endothelium-like cells in a mouse model of acute kidney injury

    PubMed Central

    OHNISHI, Hiroyuki; MIZUNO, Shinya; MIZUNO-HORIKAWA, Yoko; KATO, Takashi

    2015-01-01

    Ischemic acute kidney injury (AKI) is the most key pathological event for accelerating progression to chronic kidney disease through vascular endothelial injury or dysfunction. Thus, it is critical to elucidate the molecular mechanism of endothelial protection and regeneration. Emerging evidence indicates that bone marrow-derived cells (BMCs) contribute to tissue reconstitution in several types of organs post-injury, but little is known whether and how BMCs contribute to renal endothelial reconstitution, especially in an early-stage of AKI. Using a mouse model of ischemic AKI, we provide evidence that incorporation of BMCs in vascular components (such as endothelial and smooth muscle cells) becomes evident within four days after renal ischemia and reperfusion, associated with an increase in stromal cell-derived factor-1 (SDF1) in endothelium and that in CXCR4/SDF1-receptor in BMCs. Notably, anti-CXCR4 antibody decreased the numbers of infiltrated BMCs and BMC-derived endothelium-like cells, but not of BMC-derived smooth muscle cell-like cells. These results suggest that reconstitution of renal endothelium post-ischemia partially depends on a paracrine loop of SDF1-CXCR4 between resident endothelium and BMCs. Such a chemokine ligand-receptor system may be attributable for selecting a cellular lineage (s), required for renal vascular protection, repair and homeostasis, even in an earlier phase of AKI. PMID:25833353

  16. Molecular Imaging for Comparison of Different Growth Factors on Bone Marrow-Derived Mesenchymal Stromal Cells' Survival and Proliferation In Vivo.

    PubMed

    Qiao, Hongyu; Zhang, Ran; Gao, Lina; Guo, Yanjie; Wang, Jinda; Zhang, Rongqing; Li, Xiujuan; Li, Congye; Chen, Yundai; Cao, Feng

    2016-01-01

    Introduction. Bone marrow-derived mesenchymal stromal cells (BMSCs) have emerged as promising cell candidates but with poor survival after transplantation. This study was designed to investigate the efficacy of VEGF, bFGF, and IGF-1 on BMSCs' viability and proliferation both in vivo and in vitro using bioluminescence imaging (BLI). Methods. BMSCs were isolated from β-actin-Fluc(+) transgenic FVB mice, which constitutively express firefly luciferase. Apoptosis was induced by hypoxia preconditioning for up to 24 h followed by flow cytometry and TUNEL assay. 10(6) BMSCs with/without growth factors were injected subcutaneously into wild type FVB mice's backs. Survival of BMSCs was longitudinally monitored using bioluminescence imaging (BLI) for 5 weeks. Protein expression of Akt, p-Akt, PARP, and caspase-3 was detected by Western blot. Results. Hypoxia-induced apoptosis was significantly attenuated by bFGF and IGF-1 compared with VEGF and control group in vitro (P < 0.05). When combined with matrigel, IGF-1 showed the most beneficial effects in protecting BMSCs from apoptosis in vivo. The phosphorylation of Akt had a higher ratio in the cells from IGF-1 group. Conclusion. IGF-1 could protect BMSCs from hypoxia-induced apoptosis through activation of p-Akt/Akt pathway. PMID:27419126

  17. Bone Marrow Stromal Antigen 2 Is a Novel Plasma Biomarker and Prognosticator for Colorectal Carcinoma: A Secretome-Based Verification Study

    PubMed Central

    Chiang, Sum-Fu; Kan, Chih-Yen; Hsiao, Yung-Chin; Tang, Reiping; Hsieh, Ling-Ling; Chiang, Jy-Ming; Tsai, Wen-Sy; Yeh, Chien-Yuh; Hsieh, Pao-Shiu; Liang, Ying; Chen, Jinn-Shiun; Yu, Jau-Song

    2015-01-01

    Background. The cancer cell secretome has been recognized as a valuable reservoir for identifying novel serum/plasma biomarkers for different cancers, including colorectal cancer (CRC). This study aimed to verify four CRC cell-secreted proteins (tumor-associated calcium signal transducer 2/trophoblast cell surface antigen 2 (TACSTD2/TROP2), tetraspanin-6 (TSPAN6), bone marrow stromal antigen 2 (BST2), and tumor necrosis factor receptor superfamily member 16 (NGFR)) as potential plasma CRC biomarkers. Methods. The study population comprises 152 CRC patients and 152 controls. Target protein levels in plasma and tissue samples were assessed by ELISA and immunohistochemistry, respectively. Results. Among the four candidate proteins examined by ELISA in a small sample set, only BST2 showed significantly elevated plasma levels in CRC patients versus controls. Immunohistochemical analysis revealed the overexpression of BST2 in CRC tissues, and higher BST2 expression levels correlated with poorer 5-year survival (46.47% versus 65.57%; p = 0.044). Further verification confirmed the elevated plasma BST2 levels in CRC patients (2.35 ± 0.13 ng/mL) versus controls (1.04 ± 0.03 ng/mL) (p < 0.01), with an area under the ROC curve (AUC) being 0.858 comparable to that of CEA (0.867). Conclusion. BST2, a membrane protein selectively detected in CRC cell secretome, may be a novel plasma biomarker and prognosticator for CRC. PMID:26494939

  18. 3D cell culture and osteogenic differentiation of human bone marrow stromal cells plated onto jet-sprayed or electrospun micro-fiber scaffolds.

    PubMed

    Brennan, Meadhbh Á; Renaud, Audrey; Gamblin, Anne-Laure; D'Arros, Cyril; Nedellec, Steven; Trichet, Valerie; Layrolle, Pierre

    2015-08-01

    A major limitation of the 2D culture systems is that they fail to recapitulate the in vivo 3D cellular microenvironment whereby cell-cell and cell-extracellular matrix (ECM) interactions occur. In this paper, a biomaterial scaffold that mimics the structure of collagen fibers was produced by jet-spraying. This micro-fiber polycaprolactone (PCL) scaffold was evaluated for 3D culture of human bone marrow mesenchymal stromal cells (MSCs) in comparison with a commercially available electrospun scaffold. The jet-sprayed scaffolds had larger pore diameters, greater porosity, smaller diameter fibers, and more heterogeneous fiber diameter size distribution compared to the electrospun scaffolds. Cells on jet-sprayed constructs exhibited spread morphology with abundant cytoskeleton staining, whereas MSCs on electrospun scaffolds appeared less extended with fewer actin filaments. MSC proliferation and cell infiltration occurred at a faster rate on jet-sprayed compared to electrospun scaffolds. Osteogenic differentiation of MSCs and ECM production as measured by ALP, collagen and calcium deposition was superior on jet-sprayed compared to electrospun scaffolds. The jet-sprayed scaffold which mimics the native ECM and permits homogeneous cell infiltration is important for 3D in vitro applications such as bone cellular interaction studies or drug testing, as well as bone tissue engineering strategies. PMID:26238732

  19. [Actin cytoskeleton organization and spreading of bone marrow stromal cells and cartilage cells during their combined and independent cultivation on different extracellular matrix proteins].

    PubMed

    Sakhenberg, E I; Nikolaenko, N S; Pinaev, G P

    2014-01-01

    To clarify the mutual influence of bone marrow stromal cells (BMSCs) and cartilage cells we studied the organization of their actin cytoskeleton and cell spreading on different extracellular matrix proteins--laminin 2/4, collagen type I or fibronectin. It has been shown that the most pronounced difference in morphological characteristics of the cells such as their form, size and actin cytoskeleton organization occur in the case of interaction with fibronectin. So, after separate brief incubation of both cell types on fibronectin, the average area of BMSCs spreading was about 4 times greater than the area of the cartilage cell spreading. However, in the co-culture of these cells in a ratio of 1:1, the average jointed spreading area on fibronctin was nearly 1.5 times less than the theoretically calculated. To determine the nature of exposure of the cells to each other we have studied spreading of these cells in the media conditioned by another cell type. We have found that the area of BMSC's spreading in the medium conditioned by cartilage cells is markedly smaller than the area of spreading of the same cells in the control medium. These data suggest that the cartilage cells secrete factors that reduce BMSC's spreading.

  20. Delayed minimally invasive injection of allogenic bone marrow stromal cell sheets regenerates large bone defects in an ovine preclinical animal model.

    PubMed

    Berner, Arne; Henkel, Jan; Woodruff, Maria A; Steck, Roland; Nerlich, Michael; Schuetz, Michael A; Hutmacher, Dietmar W

    2015-05-01

    Cell-based tissue engineering approaches are promising strategies in the field of regenerative medicine. However, the mode of cell delivery is still a concern and needs to be significantly improved. Scaffolds and/or matrices loaded with cells are often transplanted into a bone defect immediately after the defect has been created. At this point, the nutrient and oxygen supply is low and the inflammatory cascade is incited, thus creating a highly unfavorable microenvironment for transplanted cells to survive and participate in the regeneration process. We therefore developed a unique treatment concept using the delayed injection of allogenic bone marrow stromal cell (BMSC) sheets to regenerate a critical-sized tibial defect in sheep to study the effect of the cells' regeneration potential when introduced at a postinflammatory stage. Minimally invasive percutaneous injection of allogenic BMSCs into biodegradable composite scaffolds 4 weeks after the defect surgery led to significantly improved bone regeneration compared with preseeded scaffold/cell constructs and scaffold-only groups. Biomechanical testing and microcomputed tomography showed comparable results to the clinical reference standard (i.e., an autologous bone graft). To our knowledge, we are the first to show in a validated preclinical large animal model that delayed allogenic cell transplantation can provide applicable clinical treatment alternatives for challenging bone defects in the future.

  1. Distribution and Viability of Fetal and Adult Human Bone Marrow Stromal Cells in a Biaxial Rotating Vessel Bioreactor after Seeding on Polymeric 3D Additive Manufactured Scaffolds

    PubMed Central

    Leferink, Anne M.; Chng, Yhee-Cheng; van Blitterswijk, Clemens A.; Moroni, Lorenzo

    2015-01-01

    One of the conventional approaches in tissue engineering is the use of scaffolds in combination with cells to obtain mechanically stable tissue constructs in vitro prior to implantation. Additive manufacturing by fused deposition modeling is a widely used technique to produce porous scaffolds with defined pore network, geometry, and therewith defined mechanical properties. Bone marrow-derived mesenchymal stromal cells (MSCs) are promising candidates for tissue engineering-based cell therapies due to their multipotent character. One of the hurdles to overcome when combining additive manufactured scaffolds with MSCs is the resulting heterogeneous cell distribution and limited cell proliferation capacity. In this study, we show that the use of a biaxial rotating bioreactor, after static culture of human fetal MSCs (hfMSCs) seeded on synthetic polymeric scaffolds, improved the homogeneity of cell and extracellular matrix distribution and increased the total cell number. Furthermore, we show that the relative mRNA expression levels of indicators for stemness and differentiation are not significantly changed upon this bioreactor culture, whereas static culture shows variations of several indicators for stemness and differentiation. The biaxial rotating bioreactor presented here offers a homogeneous distribution of hfMSCs, enabling studies on MSCs fate in additive manufactured scaffolds without inducing undesired differentiation. PMID:26557644

  2. Effect of Metformin on Viability, Morphology, and Ultrastructure of Mouse Bone Marrow-Derived Multipotent Mesenchymal Stromal Cells and Balb/3T3 Embryonic Fibroblast Cell Line.

    PubMed

    Śmieszek, Agnieszka; Czyrek, Aleksandra; Basinska, Katarzyna; Trynda, Justyna; Skaradzińska, Aneta; Siudzińska, Anna; Marędziak, Monika; Marycz, Krzysztof

    2015-01-01

    Metformin, a popular drug used to treat diabetes, has recently gained attention as a potentially useful therapeutic agent for treating cancer. In our research metformin was added to in vitro cultures of bone marrow-derived multipotent mesenchymal stromal cells (BMSCs) and Balb/3T3 fibroblast at concentration of 1 mM, 5 mM, and 10 mM. Obtained results indicated that metformin negatively affected proliferation activity of investigated cells. The drug triggered the formation of autophagosomes and apoptotic bodies in all tested cultures. Additionally, we focused on determination of expression of genes involved in insulin-like growth factor 2 (IGF2) signaling pathway. The most striking finding was that the mRNA level of IGF2 was constant in both BMSCs and Balb/3T3. Further, the analysis of IGF2 concentration in cell supernatants showed that it decreased in BMSC cultures after 5 and 10 mM metformin treatments. In case of Balb/3T3 the concentration of IGF2 in culture supernatants decreased after 1 and 5 mM and increased after 10 mM of metformin. Our results suggest that metformin influences the cytophysiology of somatic cells in a dose- and time-dependent manner causing inhibition of proliferation and abnormalities of their morphology and ultrastructure. PMID:26064951

  3. Prostaglandin E2 plays a key role in the immunosuppressive properties of adipose and bone marrow tissue-derived mesenchymal stromal cells

    SciTech Connect

    Yanez, Rosa Oviedo, Alberto Aldea, Montserrat Bueren, Juan A. Lamana, Maria L.

    2010-11-15

    Mesenchymal stromal cells (MSCs) have important immunosuppressive properties, but the mechanisms and soluble factors involved in these effects remain unclear. We have studied prostaglandin-E2 (PGE2) as a possible candidate implied in adipose tissue-derived MSCs (Ad-MSCs) immunosuppressive properties over dendritic cells and T lymphocytes, compared to bone marrow derived MSCs (BM-MSCs). We found that both MSCs inhibited the maturation of myeloid-DCs and plasmocytoid-DCs. High levels of PGE2 were detected in DCs/MSCs co-cultures. Its blockade with indomethacin (IDM) allowed plasmocytoid-DCs but not myeloid-DCs maturation. Additionally, high levels of PGE2 were found in co-cultures in which Ad-MSCs or BM-MSCs inhibited activated T cells proliferation and pro-inflammatory cytokines production. PGE2 blockade by IDM preserved T lymphocytes proliferation but did not restore the pro-inflammatory cytokines secretion. However, an increased expression of transcription factors and cytokines genes involved in the Th1/Th2 differentiation pathway was detected in the T cells co-cultured with Ad-MSCs, but not with BM-MSCs. In conclusion, we propose that PGE2 is a soluble factor mediating most of the immunosuppressive effects of Ad-MSCs and BM-MSCs over p-DCs maturation and activated T lymphocytes proliferation and cytokine secretion.

  4. Adaptive response in mouse bone-marrow stromal cells exposed to 900-MHz radiofrequency fields: Gamma-radiation-induced DNA strand breaks and repair.

    PubMed

    Ji, Yongxin; He, Qina; Sun, Yulong; Tong, Jian; Cao, Yi

    2016-01-01

    The aim of this study was to examine whether radiofrequency field (RF) preexposure induced adaptive responses (AR) in mouse bone-marrow stromal cells (BMSC) and the mechanisms underlying the observed findings. Cells were preexposed to 900-MHz radiofrequency fields (RF) at 120 μW/cm(2) power intensity for 4 h/d for 5 d. Some cells were subjected to 1.5 Gy γ-radiation (GR) 4 h following the last RF exposure. The intensity of strand breaks in the DNA was assessed immediately at 4 h. Subsequently, some BMSC were examined at 30, 60, 90, or 120 min utilizing the alkaline comet assay and γ-H2AX foci technique. Data showed no significant differences in number and intensity of strand breaks in DNA between RF-exposed and control cells. A significant increase in number and intensity of DNA strand breaks was noted in cells exposed to GR exposure alone. RF followed by GR exposure significantly decreased number of strand breaks and resulted in faster kinetics of repair of DNA strand breaks compared to GR alone. Thus, data suggest that RF preexposure protected cells from damage induced by GR. Evidence indicates that in RF-mediated AR more rapid repair kinetics occurs under conditions of GR-induced damage, which may be attributed to diminished DNA strand breakage.

  5. Modulus-driven differentiation of marrow stromal cells in 3D scaffolds that is independent of myosin-based cytoskeletal tension.

    PubMed

    Parekh, Sapun H; Chatterjee, Kaushik; Lin-Gibson, Sheng; Moore, Nicole M; Cicerone, Marcus T; Young, Marian F; Simon, Carl G

    2011-03-01

    Proliferation and differentiation of cells are known to be influenced by the physical properties of the extracellular environment. Previous studies examining biophysics underlying cell response to matrix stiffness utilized a two-dimensional (2D) culture format, which is not representative of the three-dimensional (3D) tissue environment in vivo. We report on the effect of 3D matrix modulus on human bone marrow stromal cell (hBMSC) differentiation. hBMSCs underwent osteogenic differentiation in poly(ethylene glycol) hydrogels of all modulus (300-fold modulus range, from 0.2 kPa to 59 kPa) in the absence of osteogenic differentiation supplements. This osteogenic differentiation was modulus-dependent and was enhanced in stiffer gels. Osteogenesis in these matrices required integrin-protein ligation since osteogenesis was inhibited by soluble Arginine-Glycine-Aspartate-Serine peptide, which blocks integrin receptors. Immunostained images revealed lack of well-defined actin filaments and microtubules in the encapsulated cells. Disruption of mechanosensing elements downstream of integrin binding that have been identified from 2D culture such as actin filaments, myosin II contraction, and RhoA kinase did not abrogate hBMSC material-driven osteogenic differentiation in 3D. These data show that increased hydrogel modulus enhanced osteogenic differentiation of hBMSCs in 3D scaffolds but that hBMSCs did not use the same mechanosensing pathways that have been identified in 2D culture.

  6. Detection of the quantity of kinesin and microgravity-sensitive kinesin genes in rat bone marrow stromal cells grown in a simulated microgravity environment

    NASA Astrophysics Data System (ADS)

    Ni, Chengzhi; Wang, Chunyan; Li, Yuan; Li, Yinghui; Dai, Zhongquan; Zhao, Dongming; Sun, Hongyi; Wu, Bin

    2011-06-01

    Kinesin and kinesin-like proteins (KLPs) constitute a superfamily of microtubule motor proteins found in all eukaryotic organisms. Members of the kinesin superfamily are known to play important roles in many fundamental cellular and developmental processes. To date, few published studies have reported on the effects of microgravity on kinesin expression. In this paper, we describe the expression pattern and microgravity-sensitive genes of kinesin in rat bone marrow stromal cells cultured in a ground-based rotating bioreactor. The quantity of kinesin under the clinorotation condition was examined by immunoblot analysis with anti-kinesin. Furthermore, the distribution of kinesin at various times during clinorotation was determined by dual immunostaining, using anti-kinesin monoclonal antibody or anti-β-tubulin monoclonal antibody. In terms of kinesin quantity, we found that the ratios of the amounts of clinorotated/stationary KLPs decreased from clinorotation day 5 to day 10, although it increased on days 2 and 3. Immunofluorescence analysis revealed that kinesin in the nucleus was the first to be affected by simulated microgravity, following the kinesin at the periphery that was affected at various times during clinorotation. Real-time RT-PCR analysis of kinesin mRNA expression was performed and led to the identification of 3 microgravity-sensitive kinesin genes: KIF9, KIFC1, and KIF21A. Our results suggest that kinesin has a distinct expression pattern, and the identification of microgravity-sensitive kinesin genes offers insight into fundamental cell biology.

  7. Functional properties of bone marrow derived multipotent mesenchymal stromal cells are altered in heart failure patients, and could be corrected by adjustment of expansion strategies

    PubMed Central

    Dmitrieva, Renata I.; Revittser, Alla V.; Klukina, Maria A.; Sviryaev, Yuri V.; Korostovtseva, Ludmila S.; Kostareva, Anna A.; Zaritskey, Andrey Yu.; Shlyakhto, Evgeny V.

    2015-01-01

    Background: Bone marrow multipotent mesenchymal stromal cells (BM-MMSC) considered as a prospective substrate for cell therapy applications, however adult stem cells could be affected by donor-specific factors: age, gender, medical history. Our aim was to investigate how HF affects the functional properties of BM-MMSC. Materials and methods: BM-MMSC from 10 healthy donors (HD), and 16 donors with chronic HF were evaluated for proliferative activity, ability to differentiate, replicative senescence, expression of genes that affect regeneration and fibrosis. The effect of culturing conditions on efficiency of BM-MMSC expansion was determined. Results: HF-derived BM-MMSC demonstrated early decrease of proliferative activity and upregulation of genes that control both, regeneration and fibrosis: Tgf-β pathway, synthesis of ECM, remodeling enzymes, adhesion molecules. We assume that these effects were related to increase of frequency of myofibroblast-like CD146+/SMAα+ CFU-F in HF samples; (ii) low seeding density and hypoxia resulted in predominant purification and expansion of CD146+/SMAα- CFU-Fs. (iii) the activity of NPs system was downregulated in HF BM-MMSC; Conclusions: downregulation of NP signaling in combination with upregulation of Tgf-β pathway in BM-MMSC would result in pro-fibrotic phenotype and make these cells non-effective for therapeutic applications; the corrections in culturing strategy resulted in 23-27 increase of expansion efficiency. PMID:25606985

  8. Adaptive response in mouse bone-marrow stromal cells exposed to 900-MHz radiofrequency fields: Gamma-radiation-induced DNA strand breaks and repair.

    PubMed

    Ji, Yongxin; He, Qina; Sun, Yulong; Tong, Jian; Cao, Yi

    2016-01-01

    The aim of this study was to examine whether radiofrequency field (RF) preexposure induced adaptive responses (AR) in mouse bone-marrow stromal cells (BMSC) and the mechanisms underlying the observed findings. Cells were preexposed to 900-MHz radiofrequency fields (RF) at 120 μW/cm(2) power intensity for 4 h/d for 5 d. Some cells were subjected to 1.5 Gy γ-radiation (GR) 4 h following the last RF exposure. The intensity of strand breaks in the DNA was assessed immediately at 4 h. Subsequently, some BMSC were examined at 30, 60, 90, or 120 min utilizing the alkaline comet assay and γ-H2AX foci technique. Data showed no significant differences in number and intensity of strand breaks in DNA between RF-exposed and control cells. A significant increase in number and intensity of DNA strand breaks was noted in cells exposed to GR exposure alone. RF followed by GR exposure significantly decreased number of strand breaks and resulted in faster kinetics of repair of DNA strand breaks compared to GR alone. Thus, data suggest that RF preexposure protected cells from damage induced by GR. Evidence indicates that in RF-mediated AR more rapid repair kinetics occurs under conditions of GR-induced damage, which may be attributed to diminished DNA strand breakage. PMID:27267824

  9. Ectopic bone formation using an injectable biphasic calcium phosphate/Si-HPMC hydrogel composite loaded with undifferentiated bone marrow stromal cells.

    PubMed

    Trojani, Christophe; Boukhechba, Florian; Scimeca, Jean-Claude; Vandenbos, Fanny; Michiels, Jean-François; Daculsi, Guy; Boileau, Pascal; Weiss, Pierre; Carle, Georges F; Rochet, Nathalie

    2006-06-01

    We have used a new synthetic injectable composite constituted of hydroxyapatite/tricalcium phosphate (HA/TCP) particles in suspension in a self-hardening Si-hydroxypropylmethylcellulose (HPMC) hydrogel. The aim of this study was to evaluate in vivo the biocompatibility and the new bone formation efficacy of this scaffold loaded with undifferentiated bone marrow stromal cells (BMSCs). This biomaterial was mixed extemporaneously with BMSCs prepared from C57BL/6 mice, injected in subcutaneous and intramuscular sites and retrieved 4 and 8 weeks after implantation. Dissection of the implants revealed a hard consistency and the absence of a fibrous capsule reflecting a good integration into the host tissues. Histological analysis showed mineralized woven bone in the granule inter-space with numerous active osteoclasts attached to the particles as assessed by the presence of multinucleated cells positively stained for TRAP activity and for the a3 subunit of the V-ATPase. Small vessels were homogenously distributed in the whole implants. Similar results were obtained in SC and IM sites and no bone formation was observed in the control groups when cell-free and particle-free transplants were injected. These results indicate that this injectable biphasic calcium phosphate-hydrogel composite mixed with undifferentiated BMSCs is a new promising osteoinductive bone substitute. It also provides with an original in vivo model of osteoclast differentiation and function. PMID:16510180

  10. Transfection of CXCR-4 using microbubble-mediated ultrasound irradiation and liposomes improves the migratory ability of bone marrow stromal cells.

    PubMed

    Wang, Gong; Zhuo, Zhongxiong; Zhang, Qian; Xu, Yali; Wu, Shengzheng; Li, Lu; Xia, Hongmei; Gao, Yunhua

    2015-01-01

    Bone marrow stromal cells (BMSCs) have proven useful for the treatment of various human diseases and injuries. However, their reparative capacity is limited by their poor migration and homing ability, which are primarily dependent on the SDF-1/CXCR4 axis. Most subcultured BMSCs lack CXCR4 receptor expression on the cell surface and exhibit impaired migratory capacity. To increase responsiveness to SDF-1 and promote cell migration and survival of cultured BMSCs, we used a combination of ultrasound-targeted microbubble destruction (UTMD) and liposomes to increase CXCR4 expression in vitro. We isolated and cultured rat BMSCs to their third passage and transduced them with recombinant plasmid pDsRed-CXCR4 using microbubble-mediated ultrasound irradiation and liposomes. Compared to some viral vectors, the method we employed here resulted in significantly better transfection efficiency, CXCR4 expression, and technical reproducibility. The benefits of this approach are likely due to the combination of "sonoporation" caused by shockwaves and microjet flow resulting from UTMD-generated cavitation. Following transfection, we performed a transwell migration assay and found that the migration ability of CXCR4-modified BMSCs was 9-fold higher than controls. The methods we describe here provide an effective, safe, non-viral means to achieve high levels of CXCR4 expression. This is associated with enhanced migration of subcultured BMSCs and may be useful for clinical application as well.

  11. Enhanced Ex Vivo Expansion of Human Hematopoietic Progenitors on Native and Spin Coated Acellular Matrices Prepared from Bone Marrow Stromal Cells

    PubMed Central

    Wasnik, Samiksha; Kantipudi, Suma; Kirkland, Mark A.; Pande, Gopal

    2016-01-01

    The extracellular microenvironment in bone marrow (BM) is known to regulate the growth and differentiation of hematopoietic stem and progenitor cells (HSPC). We have developed cell-free matrices from a BM stromal cell line (HS-5), which can be used as substrates either in native form or as tissue engineered coatings, for the enhanced ex vivo expansion of umbilical cord blood (UCB) derived HSPC. The physicochemical properties (surface roughness, thickness, and uniformity) of native and spin coated acellular matrices (ACM) were studied using scanning and atomic force microscopy (SEM and AFM). Lineage-specific expansion of HSPC, grown on these substrates, was evaluated by immunophenotypic (flow cytometry) and functional (colony forming) assays. Our results show that the most efficient expansion of lineage-specific HSPC occurred on spin coated ACM. Our method provides an improved protocol for ex vivo HSPC expansion and it offers a system to study the in vivo roles of specific molecules in the hematopoietic niche that influence HSPC expansion. PMID:26981135

  12. [ANGIOGENESIS IN THE TISSUES AFTER THE INJECTION OF STROMAL STEM CELLS OF BONE MARROW ORIGIN CLOSE TO THROMBOSED VEIN IN AN EXPERIMENT].

    PubMed

    Maiborodin, I V; Morozov, V V; Novikova, Ya V; Matveyeva, V A; Artemiyeva, L V; Matveyev, A L; Maslov, R V; Onopriyenko, N V; Chastikin, G A

    2015-01-01

    The effects of the injection of autologous multipotent stromal stem cells of bone marrow origin (MSSCBM) (mesenchymal stem cells) with green fluorescent protein gene, additionally marked with DAPI nuclear stain, close to a thrombosed hindlimb vein, were studied by fluorescent microscopy in adult male Wag rats (n = 214). The control groups consisted of intact rats (n = 12), animals with venous thrombosis without the injection of MSSCBM (n = 71) and rats that received paravasal injection of MSSCBM, but without preliminary modeling of venous thrombosis (n = 72). It was found that MSSCBM participated in the development of granulation tissue at the site of surgical intervention performed during the modeling of thrombosis. The rapid development of granulation tissue at the site of surgical trauma may contribute to faster wound clearance from detritus, nonviable tissue and antigenic substances, early onset of tissue repair processes and rapid healing. Restoration of blood flow in the tissue region of a thrombosed vein began later than after the intravenous injection of MSSCBM. PMID:26601465

  13. High-Fat Diet/Low-Dose Streptozotocin-Induced Type 2 Diabetes in Rats Impacts Osteogenesis and Wnt Signaling in Bone Marrow Stromal Cells

    PubMed Central

    Yu, Weiqiang; Jiang, Xinquan; Zhang, Fuqiang

    2015-01-01

    Bone regeneration disorders are a significant problem in patients with type 2 diabetes mellitus. Bone marrow stromal cells (BMSCs) are recognized as ideal seed cells for tissue engineering because they can stimulate osteogenesis during bone regeneration. Therefore, the aim of this study was to investigate the osteogenic potential of BMSCs derived from type 2 diabetic rats and the pathogenic characteristics of dysfunctional BMSCs that affect osteogenesis. BMSCs were isolated from normal and high-fat diet+streptozotocin-induced type 2 diabetic rats. Cell metabolic activity, alkaline phosphatase (ALP) activity, mineralization and osteogenic gene expression were reduced in the type 2 diabetic rat BMSCs. The expression levels of Wnt signaling genes, such as β-catenin, cyclin D1 and c-myc, were also significantly decreased in the type 2 diabetic rat BMSCs, but the expression of GSK3β remained unchanged. The derived BMSCs were cultured on calcium phosphate cement (CPC) scaffolds and placed subcutaneously into nude mice for eight weeks; they were detected at a low level in newly formed bone. The osteogenic potential of the type 2 diabetic rat BMSCs was not impaired by the culture environment, but it was impaired by inhibition of the Wnt signaling pathway, likely due to an insufficient accumulation of β-catenin rather than because of GSK3β stimulation. Using BMSCs derived from diabetic subjects could offer an alternative method of regenerating bone together with the use of supplementary growth factors to stimulate the Wnt signaling pathway. PMID:26296196

  14. Identification of Meflin as a Potential Marker for Mesenchymal Stromal Cells.

    PubMed

    Maeda, Keiko; Enomoto, Atsushi; Hara, Akitoshi; Asai, Naoya; Kobayashi, Takeshi; Horinouchi, Asuka; Maruyama, Shoichi; Ishikawa, Yuichi; Nishiyama, Takahiro; Kiyoi, Hitoshi; Kato, Takuya; Ando, Kenju; Weng, Liang; Mii, Shinji; Asai, Masato; Mizutani, Yasuyuki; Watanabe, Osamu; Hirooka, Yoshiki; Goto, Hidemi; Takahashi, Masahide

    2016-02-29

    Bone marrow-derived mesenchymal stromal cells (BM-MSCs) in culture are derived from BM stromal cells or skeletal stem cells. Whereas MSCs have been exploited in clinical medicine, the identification of MSC-specific markers has been limited. Here, we report that a cell surface and secreted protein, Meflin, is expressed in cultured MSCs, fibroblasts and pericytes, but not other types of cells including epithelial, endothelial and smooth muscle cells. In vivo, Meflin is expressed by immature osteoblasts and chondroblasts. In addition, Meflin is found on stromal cells distributed throughout the BM, and on pericytes and perivascular cells in multiple organs. Meflin maintains the undifferentiated state of cultured MSCs and is downregulated upon their differentiation, consistent with the observation that Meflin-deficient mice exhibit increased number of osteoblasts and accelerated bone development. In the bone and BM, Meflin is more highly expressed in primitive stromal cells that express platelet-derived growth factor receptor α and Sca-1 than the Sca-1-negative adipo-osteogenic progenitors, which create a niche for hematopoiesis. Those results are consistent with a decrease in the number of clonogenic colony-forming unit-fibroblasts within the BM of Meflin-deficient mice. These preliminary data suggest that Meflin is a potential marker for cultured MSCs and their source cells in vivo.

  15. Identification of Meflin as a Potential Marker for Mesenchymal Stromal Cells

    PubMed Central

    Maeda, Keiko; Enomoto, Atsushi; Hara, Akitoshi; Asai, Naoya; Kobayashi, Takeshi; Horinouchi, Asuka; Maruyama, Shoichi; Ishikawa, Yuichi; Nishiyama, Takahiro; Kiyoi, Hitoshi; Kato, Takuya; Ando, Kenju; Weng, Liang; Mii, Shinji; Asai, Masato; Mizutani, Yasuyuki; Watanabe, Osamu; Hirooka, Yoshiki; Goto, Hidemi; Takahashi, Masahide

    2016-01-01

    Bone marrow-derived mesenchymal stromal cells (BM-MSCs) in culture are derived from BM stromal cells or skeletal stem cells. Whereas MSCs have been exploited in clinical medicine, the identification of MSC-specific markers has been limited. Here, we report that a cell surface and secreted protein, Meflin, is expressed in cultured MSCs, fibroblasts and pericytes, but not other types of cells including epithelial, endothelial and smooth muscle cells. In vivo, Meflin is expressed by immature osteoblasts and chondroblasts. In addition, Meflin is found on stromal cells distributed throughout the BM, and on pericytes and perivascular cells in multiple organs. Meflin maintains the undifferentiated state of cultured MSCs and is downregulated upon their differentiation, consistent with the observation that Meflin-deficient mice exhibit increased number of osteoblasts and accelerated bone development. In the bone and BM, Meflin is more highly expressed in primitive stromal cells that express platelet-derived growth factor receptor α and Sca-1 than the Sca-1-negative adipo-osteogenic progenitors, which create a niche for hematopoiesis. Those results are consistent with a decrease in the number of clonogenic colony-forming unit-fibroblasts within the BM of Meflin-deficient mice. These preliminary data suggest that Meflin is a potential marker for cultured MSCs and their source cells in vivo. PMID:26924503

  16. Gremlin 1 Identifies a Skeletal Stem Cell with Bone, Cartilage, and Reticular Stromal Potential

    PubMed Central

    Worthley, Daniel L.; Churchill, Michael; Compton, Jocelyn T.; Tailor, Yagnesh; Rao, Meenakshi; Si, Yiling; Levin, Daniel; Schwartz, Matthew G.; Uygur, Aysu; Hayakawa, Yoku; Gross, Stefanie; Renz, Bernhard W.; Setlik, Wanda; Martinez, Ashley N.; Chen, Xiaowei; Nizami, Saqib; Lee, Heon Goo; Kang, H. Paco; Caldwell, Jon-Michael; Asfaha, Samuel; Westphalen, C. Benedikt; Graham, Trevor; Jin, Guangchun; Nagar, Karan; Wang, Hongshan; Kheirbek, Mazen A.; Kolhe, Alka; Carpenter, Jared; Glaire, Mark; Nair, Abhinav; Renders, Simon; Manieri, Nicholas; Muthupalani, Sureshkumar; Fox, James G.; Reichert, Maximilian; Giraud, Andrew S.; Schwabe, Robert F.; Pradere, Jean-Phillipe; Walton, Katherine; Prakash, Ajay; Gumucio, Deborah; Rustgi, Anil K.; Stappenbeck, Thaddeus S.; Friedman, Richard A.; Gershon, Michael D.; Sims, Peter; Grikscheit, Tracy; Lee, Francis Y.; Karsenty, Gerard; Mukherjee, Siddhartha; Wang, Timothy C.

    2014-01-01

    The stem cells that maintain and repair the postnatal skeleton remain undefined. One model suggests that perisinusoidal mesenchymal stem cells (MSCs) give rise to osteoblasts, chondrocytes, marrow stromal cells, and adipocytes, although the existence of these cells has not been proven through fate-mapping experiments. We demonstrate here that expression of the bone morphogenetic protein (BMP) antagonist gremlin 1 defines a population of osteochondroreticular (OCR) stem cells in the bone marrow. OCR stem cells self-renew and generate osteoblasts, chondrocytes, and reticular marrow stromal cells, but not adipocytes. OCR stem cells are concentrated within the metaphysis of long bones not in the perisinusoidal space and are needed for bone development, bone remodeling, and fracture repair. Grem1 expression also identifies intestinal reticular stem cells (iRSCs) that are cells of origin for the periepithelial intestinal mesenchymal sheath. Grem1 expression identifies distinct connective tissue stem cells in both the bone (OCR stem cells) and the intestine (iRSCs). PMID:25594183

  17. Remote ischemic postconditioning enhances cell retention in the myocardium after intravenous administration of bone marrow mesenchymal stromal cells.

    PubMed

    Jiang, Qin; Song, Peng; Wang, Enshi; Li, Jun; Hu, Shengshou; Zhang, Hao

    2013-03-01

    Efficacy of intravenous administration of mesenchymal stromal cells (MSCs) for myocardial infarction (MI) is limited by low cell retention in the damaged myocardium. Previous studies indicated that remote ischemic conditioning could protect against ischemia-reperfusion-induced injury by release of various cytokines including stromal cell derived factor-1 alpha (SDF-1α). However, whether remote ischemic postconditioning (RIPostC) can also enhance the retention of infused cells in the myocardium by activating MSC homing is unclear. In this study, RIPostC was induced with 4cycles of 5min occlusion and reperfusion of the abdominal aorta in female Sprague-Dawley (SD) rats which underwent ligation of the coronary artery 1week previously. Cytokine levels in serum and myocardium were evaluated by enzyme-linked immunosorbent assay (ELISA) at 1, 6, 24 and 48h after RIPostC. Then, a total of 4×10(6) male MSCs were infused intravenously at 24h after RIPostC. The number of survived cells in the myocardium was evaluated by real-time polymerase chain reaction analysis for Y chromosome and the heart function was evaluated by echocardiography at 1month after cell infusion. Furthermore, 10μg/kg rabbit anti-rat CXCR4 polyclonal antibody was injected intraperitoneally to prove the role of SDF-1α for RIPostC. RIPostC induced an increase in SDF-1α in serum at 1h and enhanced SDF-1α transcription and protein synthesis in the myocardium at 24h after the procedure. 1month after cell transplantation, RIPostC significantly increased MSC myocardial retention by 79.1±12.3% and thereby contributed to enhanced cardiac function in comparison with cell transplantation without RIPostC. Furthermore, blockade with a CXCR4-specific antibody after RIPostC markedly attenuated the enhancement of therapeutic efficacy. We conclude that RIPostC activated SDF-1α expression and enhanced retention of the infused MSCs in the injured myocardium. Priming of the heart with RIPostC might be a novel

  18. Interferon-γ and Tumor Necrosis Factor-α Polarize Bone Marrow Stromal Cells Uniformly to a Th1 Phenotype

    PubMed Central

    Jin, Ping; Zhao, Yuanlong; Liu, Hui; Chen, Jinguo; Ren, Jiaqiang; Jin, Jianjian; Bedognetti, Davide; Liu, Shutong; Wang, Ena; Marincola, Francesco; Stroncek, David

    2016-01-01

    Activated T cells polarize mesenchymal stromal cells (MSCs) to a proinflammatory Th1 phenotype which likely has an important role in amplifying the immune response in the tumor microenvironment. We investigated the role of interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α), two factors produced by activated T cells, in MSC polarization. Gene expression and culture supernatant analysis showed that TNF-α and IFN-γ stimulated MSCs expressed distinct sets of proinflammatory factors. The combination of IFN-γ and TNF-α was synergistic and induced a transcriptome most similar to that found in MSCs stimulated with activated T cells and similar to that found in the inflamed tumor microenvironment; a Th1 phenotype with the expression of the immunosuppressive factors IL-4, IL-10, CD274/PD-L1 and indoleamine 2,3 dioxygenase (IDO). Single cell qRT-PCR analysis showed that the combination of IFN-γ and TNF-α polarized uniformly to this phenotype. The combination of IFN-γ and TNF-α results in the synergist uniform polarization of MSCs toward a primarily Th1 phenotype. The stimulation of MSCs by IFN-γ and TNF-α released from activated tumor infiltrating T cells is likely responsible for the production of many factors that characterize the tumor microenvironment. PMID:27211104

  19. Differential sensitivity of two predominant stromal progenitor cell subpopulations in bone marrow to single and fractionated radiation doses

    SciTech Connect

    Kolesnikova, A.I.; Konoplyannikov, A.G.; Hendry, J.H.

    1995-12-01

    The sensitivity of fibroblastoid precursor cells in rat bone marrow to single and fractionated doses of {gamma} rays delivered in vivo was measured. In vitro colonies were classified as being compact or diffuse, and the progenitor cells for both types were slowly cycling in vivo (survival levels after exposure to hydroxyurea were 90 {+-} 6% and 93 {+-} 11%, respectively). The progenitor cells forming diffuse colonies were more resistant (D{sub o} = 1.39 Gy) than those forming compact colonies (D{sub o} = 0.76 Gy). The fractionation sensitivities were characterized by an {alpha}/{beta} ratio of 12.7 {+-} 5.5 Gy for diffuse colonies and 4.5 {+-} 3.0 Gy for compact colonies, respectively. The progenitor cells forming diffuse colonies may contribute more to long-term regeneration after high doses in vivo. 15 refs., 2 figs., 1 tab.

  20. Possible Mechanism of Therapeutic Effect of 3-Methyl-1-phenyl-2-pyrazolin-5-one and Bone Marrow Stromal Cells Combination Treatment in Rat Ischemic Stroke Model

    PubMed Central

    Shen, Li-Hua; Chen, Jin; Shen, Hua-Chao; Ye, Min; Liu, Xiao-Fei; Ding, Wen-Sen; Sheng, Ya-Feng; Ding, Xin-Sheng

    2016-01-01

    Background: The functional improvement following bone marrow stromal cells (BMSCs) transplantation after stroke is directly related to the number of engrafted cells and neurogenesis in the injured brain. Here, we tried to evaluate whether 3-methyl-1-phenyl-2-pyrazolin-5-one (MCI-186), a free radical scavenger, might influence BMSCs migration to ischemic brain, which could promote neurogenesis and thereby enhance treatment effects after stroke. Methods: Rat transient middle cerebral artery occlusion (MCAO) model was established. Two separate MCAO groups were administered with either MCI-186 or phosphate-buffered saline (PBS) solution to evaluate the expression of stromal cell-derived factor-1 (SDF-1) in ischemic brain, and compared to that in sham group (n = 5/group/time point[at 1, 3, and 7 days after operation]). The content of chemokine receptor-4 (CXCR4, a main receptor of SDF-1) at 7 days after operation was also observed on cultured BMSCs. Another four MCAO groups were intravenously administered with either PBS, MCI-186, BMSCs (2 × 106), or a combination of MCI-186 and BMSCs (n = 10/group). 5-bromo-2-deoxyuridine (BrdU) and Nestin double-immunofluorescence staining was performed to identify the engrafted BMSCs and neuronal differentiation. Adhesive-removal test and foot-fault evaluation were used to test the neurological outcome. Results: MCI-186 upregulated the expression of SDF-1 in ischemic brain and CXCR4 content in BMSCs was enhanced after hypoxic stimulation. When MCAO rats were treated with either MCI-186, BMSCs, or a combination of MCI-186 and BMSCs, the neurologic function was obviously recovered as compared to PBS control group (P < 0.01 or 0.05, respectively). Combination therapy represented a further restoration, increased the number of BMSCs and Nestin+ cells in ischemic brain as compared with BMSCs monotherapy (P < 0.01). The number of engrafted-BMSCs was correlated with the density of neuronal cells in ischemic brain (r = 0.72, P < 0.01) and

  1. Identification of stable reference genes for gene expression analysis of three-dimensional cultivated human bone marrow-derived mesenchymal stromal cells for bone tissue engineering.

    PubMed

    Rauh, Juliane; Jacobi, Angela; Stiehler, Maik

    2015-02-01

    The principles of tissue engineering (TE) are widely used for bone regeneration concepts. Three-dimensional (3D) cultivation of autologous human mesenchymal stromal cells (MSCs) on porous scaffolds is the basic prerequisite to generate newly formed bone tissue. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is a specific and sensitive analytical tool for the measurement of mRNA-levels in cells or tissues. For an accurate quantification of gene expression levels, stably expressed reference genes (RGs) are essential to obtain reliable results. Since the 3D environment can affect a cell's morphology, proliferation, and gene expression profile compared with two-dimensional (2D) cultivation, there is a need to identify robust RGs for the quantification of gene expression. So far, this issue has not been adequately investigated. The aim of this study was to identify the most stably expressed RGs for gene expression analysis of 3D-cultivated human bone marrow-derived MSCs (BM-MSCs). For this, we analyzed the gene expression levels of n=31 RGs in 3D-cultivated human BM-MSCs from six different donors compared with conventional 2D cultivation using qRT-PCR. MSCs isolated from bone marrow aspirates were cultivated on human cancellous bone cube scaffolds for 14 days. Osteogenic differentiation was assessed by cell-specific alkaline phosphatase (ALP) activity and expression of osteogenic marker genes. Expression levels of potential reference and target genes were quantified using commercially available TaqMan(®) assays. mRNA expression stability of RGs was determined by calculating the coefficient of variation (CV) and using the algorithms of geNorm and NormFinder. Using both algorithms, we identified TATA box binding protein (TBP), transferrin receptor (p90, CD71) (TFRC), and hypoxanthine phosphoribosyltransferase 1 (HPRT1) as the most stably expressed RGs in 3D-cultivated BM-MSCs. Notably, genes that are routinely used as RGs, for example, beta actin

  2. Platelet-rich concentrate in serum free medium enhances osteogenic differentiation of bone marrow-derived human mesenchymal stromal cells.

    PubMed

    Samuel, Shani; Ahmad, Raja Elina; Ramasamy, Thamil Selvee; Karunanithi, Puvanan; Naveen, Sangeetha Vasudevaraj; Murali, Malliga Raman; Abbas, Azlina A; Kamarul, Tunku

    2016-01-01

    Previous studies have shown that platelet concentrates used in conjunction with appropriate growth media enhance osteogenic differentiation of human mesenchymal stromal cells (hMSCs). However, their potential in inducing osteogenesis of hMSCs when cultured in serum free medium has not been explored. Furthermore, the resulting osteogenic molecular signatures of the hMSCs have not been compared to standard osteogenic medium. We studied the effect of infrequent supplementation (8-day interval) of 15% non-activated platelet-rich concentrate (PRC) in serum free medium on hMSCs proliferation and differentiation throughout a course of 24 days, and compared the effect with those cultured in a standard osteogenic medium (OM). Cell proliferation was analyzed by alamar blue assay. Gene expression of osteogenic markers (Runx2, Collagen1, Alkaline Phosphatase, Bone morphogenetic protein 2, Osteopontin, Osteocalcin, Osteonectin) were analyzed using Q-PCR. Immunocytochemical staining for osteocalcin, osteopontin and transcription factor Runx2 were done at 8, 16 and 24 days. Biochemical assays for the expression of ALP and osteocalcin were also performed at these time-points. Osteogenic differentiation was further confirmed qualitatively by Alizarin Red S staining that was quantified using cetylpyridinium chloride. Results showed that PRC supplemented in serum free medium enhanced hMSC proliferation, which peaked at day 16. The temporal pattern of gene expression of hMSCs under the influence of PRC was comparable to that of the osteogenic media, but at a greater extent at specific time points. Immunocytochemical staining revealed stronger staining for Runx2 in the PRC-treated group compared to OM, while the staining for Osteocalcin and Osteopontin were comparable in both groups. ALP activity and Osteocalcin/DNA level were higher in the PRC group. Cells in the PRC group had similar level of bone mineralization as those cultured in OM, as reflected by the intensity of Alizarin red

  3. Platelet-rich concentrate in serum free medium enhances osteogenic differentiation of bone marrow-derived human mesenchymal stromal cells

    PubMed Central

    Ramasamy, Thamil Selvee; Karunanithi, Puvanan; Naveen, Sangeetha Vasudevaraj; Murali, Malliga Raman; Abbas, Azlina A.; Kamarul, Tunku

    2016-01-01

    Previous studies have shown that platelet concentrates used in conjunction with appropriate growth media enhance osteogenic differentiation of human mesenchymal stromal cells (hMSCs). However, their potential in inducing osteogenesis of hMSCs when cultured in serum free medium has not been explored. Furthermore, the resulting osteogenic molecular signatures of the hMSCs have not been compared to standard osteogenic medium. We studied the effect of infrequent supplementation (8-day interval) of 15% non-activated platelet-rich concentrate (PRC) in serum free medium on hMSCs proliferation and differentiation throughout a course of 24 days, and compared the effect with those cultured in a standard osteogenic medium (OM). Cell proliferation was analyzed by alamar blue assay. Gene expression of osteogenic markers (Runx2, Collagen1, Alkaline Phosphatase, Bone morphogenetic protein 2, Osteopontin, Osteocalcin, Osteonectin) were analyzed using Q-PCR. Immunocytochemical staining for osteocalcin, osteopontin and transcription factor Runx2 were done at 8, 16 and 24 days. Biochemical assays for the expression of ALP and osteocalcin were also performed at these time-points. Osteogenic differentiation was further confirmed qualitatively by Alizarin Red S staining that was quantified using cetylpyridinium chloride. Results showed that PRC supplemented in serum free medium enhanced hMSC proliferation, which peaked at day 16. The temporal pattern of gene expression of hMSCs under the influence of PRC was comparable to that of the osteogenic media, but at a greater extent at specific time points. Immunocytochemical staining revealed stronger staining for Runx2 in the PRC-treated group compared to OM, while the staining for Osteocalcin and Osteopontin were comparable in both groups. ALP activity and Osteocalcin/DNA level were higher in the PRC group. Cells in the PRC group had similar level of bone mineralization as those cultured in OM, as reflected by the intensity of Alizarin red

  4. Platelet-rich concentrate in serum free medium enhances osteogenic differentiation of bone marrow-derived human mesenchymal stromal cells

    PubMed Central

    Ramasamy, Thamil Selvee; Karunanithi, Puvanan; Naveen, Sangeetha Vasudevaraj; Murali, Malliga Raman; Abbas, Azlina A.; Kamarul, Tunku

    2016-01-01

    Previous studies have shown that platelet concentrates used in conjunction with appropriate growth media enhance osteogenic differentiation of human mesenchymal stromal cells (hMSCs). However, their potential in inducing osteogenesis of hMSCs when cultured in serum free medium has not been explored. Furthermore, the resulting osteogenic molecular signatures of the hMSCs have not been compared to standard osteogenic medium. We studied the effect of infrequent supplementation (8-day interval) of 15% non-activated platelet-rich concentrate (PRC) in serum free medium on hMSCs proliferation and differentiation throughout a course of 24 days, and compared the effect with those cultured in a standard osteogenic medium (OM). Cell proliferation was analyzed by alamar blue assay. Gene expression of osteogenic markers (Runx2, Collagen1, Alkaline Phosphatase, Bone morphogenetic protein 2, Osteopontin, Osteocalcin, Osteonectin) were analyzed using Q-PCR. Immunocytochemical staining for osteocalcin, osteopontin and transcription factor Runx2 were done at 8, 16 and 24 days. Biochemical assays for the expression of ALP and osteocalcin were also performed at these time-points. Osteogenic differentiation was further confirmed qualitatively by Alizarin Red S staining that was quantified using cetylpyridinium chloride. Results showed that PRC supplemented in serum free medium enhanced hMSC proliferation, which peaked at day 16. The temporal pattern of gene expression of hMSCs under the influence of PRC was comparable to that of the osteogenic media, but at a greater extent at specific time points. Immunocytochemical staining revealed stronger staining for Runx2 in the PRC-treated group compared to OM, while the staining for Osteocalcin and Osteopontin were comparable in both groups. ALP activity and Osteocalcin/DNA level were higher in the PRC group. Cells in the PRC group had similar level of bone mineralization as those cultured in OM, as reflected by the intensity of Alizarin red

  5. Hdac3 Deficiency Increases Marrow Adiposity and Induces Lipid Storage and Glucocorticoid Metabolism in Osteochondroprogenitor Cells

    PubMed Central

    McGee-Lawrence, Meghan E; Carpio, Lomeli R; Schulze, Ryan J; Pierce, Jessica L; McNiven, Mark A; Farr, Joshua N; Khosla, Sundeep; Oursler, Merry Jo; Westendorf, Jennifer J

    2016-01-01

    Bone loss and increased marrow adiposity are hallmarks of aging skeletons. Conditional deletion of histone deacetylase 3 (Hdac3) in murine osteochondroprogenitor cells causes osteopenia and increases marrow adiposity, even in young animals, but the origins of the increased adiposity are unclear. To explore this, bone marrow stromal cells (BMSCs) from Hdac3-depleted and control mice were cultured in osteogenic medium. Hdac3-deficient cultures accumulated lipid droplets in greater abundance than control cultures and expressed high levels of genes related to lipid storage (Fsp27/Cidec, Plin1) and glucocorticoid metabolism (Hsd11b1) despite normal levels of Pparγ2. Approximately 5% of the lipid containing cells in the wild-type cultures expressed the master osteoblast transcription factor Runx2, but this population was threefold greater in the Hdac3-depleted cultures. Adenoviral expression of Hdac3 restored normal gene expression, indicating that Hdac3 controls glucocorticoid activation and lipid storage within osteoblast lineage cells. HDAC3 expression was reduced in bone cells from postmenopausal as compared to young women, and in osteoblasts from aged as compared to younger mice. Moreover, phosphorylation of S424 in Hdac3, a posttranslational mark necessary for deacetylase activity, was suppressed in osseous cells from old mice. Thus, concurrent declines in transcription and phosphorylation combine to suppress Hdac3 activity in aging bone, and reduced Hdac3 activity in osteochondroprogenitor cells contributes to increased marrow adiposity associated with aging. PMID:26211746

  6. Bone marrow stromal cells on a three-dimensional bioactive fiber mesh undergo osteogenic differentiation in the absence of osteogenic media supplements: the effect of silanol groups.

    PubMed

    Rodrigues, Márcia T; Leonor, Isabel B; Gröen, Nathalie; Viegas, Carlos A; Dias, Isabel R; Caridade, Sofia G; Mano, João F; Gomes, Manuela E; Reis, Rui L

    2014-10-01

    Osteogenic differentiation is a tightly regulated process dependent on the stimuli provided by the micro-environment. Silicon-substituted materials are known to have an influence on the osteogenic phenotype of undifferentiated and bone-derived cells. This study aims to investigate the bioactivity profile as well as the mechanical properties of a blend of starch and poly-caprolactone (SPCL) polymeric fiber mesh scaffolds functionalized with silanol (Si-OH) groups as key features for bone tissue engineering strategies. The scaffolds were made from SPCL by a wet spinning technique. A calcium silicate solution was used as a non-solvent to develop an in situ functionalization with Si-OH groups in a single-step approach. We also explored the relevance of silicon incorporated in SPCL-Si scaffolds to the in vitro osteogenic process of goat bone marrow stromal cells (gBMSCs) with and without osteogenic supplements in the culture medium. We hypothesized that SPCL-Si scaffolds could act as physical and chemical millieus to induce per se the osteogenic differentiation of gBMSCs. Results show that osteogenic differentiation of gBMSCs and the production of a mineralized extracellular matrix on bioactive SPCL-Si scaffolds occur for up to 2weeks, even in the absence of osteogenic supplements in the culture medium. The omission of media supplements to induce osteogenic differentiation is a promising feature towards simplified and cost-effective cell culturing procedures of a potential bioengineered product, and concomitant translation into the clinical field. Thus, the present work demonstrates that SPCL-Si scaffolds and their intrinsic properties sustain gBMSC osteogenic features in vitro, even in the absence of osteogenic supplements to the culture medium, and show great potential for bone regeneration strategies.

  7. Potential role of 20S proteasome in maintaining stem cell integrity of human bone marrow stromal cells in prolonged culture expansion

    SciTech Connect

    Lu, Li; Song, Hui-Fang; Zhang, Wei-Guo; Liu, Xue-Qin; Zhu, Qian; Cheng, Xiao-Long; Yang, Gui-Jiao; Li, Ang; Xiao, Zhi-Cheng

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer Prolonged culture expansion retards proliferation and induces senescence of hBMSCs. Black-Right-Pointing-Pointer Reduced 20S proteasomal activity and expression potentially contribute to cell aging. Black-Right-Pointing-Pointer MG132-mediated 20S proteasomal inhibition induces senescence-like phenotype. Black-Right-Pointing-Pointer 18{alpha}-GA stimulates proteasomal activity and restores replicative senescence. Black-Right-Pointing-Pointer 18{alpha}-GA retains differentiation without affecting stem cell characterizations. -- Abstract: Human bone marrow stromal cells (hBMSCs) could be used in clinics as precursors of multiple cell lineages following proper induction. Such application is impeded by their characteristically short lifespan, together with the increasing loss of proliferation capability and progressive reduction of differentiation potential after the prolonged culture expansion. In the current study, we addressed the possible role of 20S proteasomes in this process. Consistent with prior reports, long-term in vitro expansion of hBMSCs decreased cell proliferation and increased replicative senescence, accompanied by reduced activity and expression of the catalytic subunits PSMB5 and PSMB1, and the 20S proteasome overall. Application of the proteasome inhibitor MG132 produced a senescence-like phenotype in early passages, whereas treating late-passage cells with 18{alpha}-glycyrrhetinic acid (18{alpha}-GA), an agonist of 20S proteasomes, delayed the senescence progress, enhancing the proliferation and recovering the capability of differentiation. The data demonstrate that activation of 20S proteasomes assists in counteracting replicative senescence of hBMSCs expanded in vitro.

  8. Local delivery of allogeneic bone marrow and adipose tissue-derived mesenchymal stromal cells for cutaneous wound healing in a porcine model.

    PubMed

    Hanson, Summer E; Kleinbeck, Kyle R; Cantu, David; Kim, Jaeyhup; Bentz, Michael L; Faucher, Lee D; Kao, W John; Hematti, Peiman

    2016-02-01

    Wound healing remains a major challenge in modern medicine. Bone marrow- (BM) and adipose tissue- (AT) derived mesenchymal stromal/stem cells (MSCs) are of great interest for tissue reconstruction due to their unique immunological properties and regenerative potential. The purpose of this study was to characterize BM and AT-MSCs and evaluate their effect when administered in a porcine wound model. MSCs were derived from male Göttingen Minipigs and characterized according to established criteria. Allogeneic BM- or AT-MSCs were administered intradermally (1 x 10(6) cells) into partial-thickness wounds created on female animals, and covered with Vaseline® gauze or fibrin in a randomized pattern. Animals were euthanized at 7, 10, 14 and 21 days. Tissues were analyzed visually for healing and by microscopic examination for epidermal development and remodelling. Polymerase chain reaction (PCR) was used to detect the presence of male DNA in the specimens. All wounds were healed by 14 days. MSC-injected wounds were associated with improved appearance and faster re-epithelialization compared to saline controls. Evaluation of rete ridge depth and architecture showed that MSC treatment promoted a faster rate of epidermal maturation. Male DNA was detected in all samples at days 7 and 10, suggesting the presence of MSCs. We showed the safety, feasibility and potential efficacy of local injection of allogeneic BM- and AT-MSCs for treatment of wounds in a preclinical model. Our data in this large animal model support the potential use of BM- and AT-MSC for treatment of cutaneous wounds through modulation of healing and epithelialization.

  9. Bone marrow mesenchymal stromal cells with CD47 high expression via the signal transducer and activators of transcription signaling pathway preventing myocardial fibrosis

    PubMed Central

    Deng, Wei; Chen, Qing-Wei; Li, Xing-Sheng; Yuan, Zhong-Ming; Li, Gui-Qiong; Ke, Da-Zhi; Wang, Li; Wu, Zhi-Qing; Luo, Shi-Lan

    2015-01-01

    This study was initiated to investigate the efficacy of myocardial fibrosis intervention via signal transducer and activators of transcription (STAT) signaling using bone marrow (BM) mesenchymal stromal cells (MSC) in which being over-expressed with the aid of bispecific antibody (BiAb) and ultrasound-mediated microbubbles (MB). BiAb was prepared and combined with isolated MSC with CD47 overexpression from male mice and trans-fused into female mice with isoproterenol-induced myocardial fibrosis via the tail vein, followed by MB. This study included five groups. Five weeks after treatment, expression levels of the sex-determining region of Y-chromosome (SRY), matrix metalloproteinases (MMP)-9, tissue inhibitor of metalloproteinase (TIMP)-1 and vascular endothelial growth factor (VEGF) in myocardium were detected by fluorescent quantitative real-time polymerase chain reaction (qRT-PCR). The protein expression of signal transducer and activators of transcription (STAT) 1 and STAT 3 was detected by Western blot. Results: The highest homing number of MSC was in the CD47 + MSC + BiAb + MB group, second highest in the CD47 + MSC + BiAb group, and lowest in MSC alone. Compared with the Control group, CD47 + MSC + BiAb + MB, CD47 + MSC + BiAb, CD47 + MSC and MSC groups had decreased levels of MMP-9, TIMP-1, STAT 1 and collagen deposition, and increased levels of STAT 3. Up regulated STAT 3 and down regulated TIMP-1 were significantly different in CD47 + MSC + BiAb + MB compared with CD47 + MSC or CD47 + MSC + BiAb. Conclusion: CD47 can enhance the homing rate and repairing efficacy of MSC. MSC can improve MMP-TIMP expression in injured myocardium and interfere with myocardial fibrosis after homing, a mechanism that may be related to the STAT-mediated signaling pathway. PMID:26617765

  10. Evaluation of GMP-compliant culture media for in vitro expansion of human bone marrow mesenchymal stromal cells.

    PubMed

    Wuchter, Patrick; Vetter, Marcel; Saffrich, Rainer; Diehlmann, Anke; Bieback, Karen; Ho, Anthony D; Horn, Patrick

    2016-06-01

    Mesenchymal stromal cells (MSCs) from human bone marrow serve as a resource for cell-based therapies in regenerative medicine. Clinical applications require standardized protocols according to good manufacturing practice (GMP) guidelines. Donor variability as well as the intrinsic heterogeneity of MSC populations must be taken into consideration. The composition of the culture medium is a key factor in successful MSC expansion. The aim of this study was to comparatively assess the efficiency of xeno-free human platelet lysate (HPL)-based cell expansion with two commercially available media-StemPro MSC SFM CTS (for human ex vivo tissue and cell culture processing applications) and MSCGM (non-GMP-compliant, for research only)-in an academic setting as the first optimization step toward GMP-compliant manufacturing. We report the feasibility of MSC expansion up to the yielded cell number with all three media. MSCs exhibited the typical fibroblastoid morphology, with distinct differences in cell size depending on the medium. The differentiation capacity and characteristic immunophenotype were confirmed for all MSC populations. Proliferation was highest using StemPro MSC SFM CTS, whereas HPL medium was more cost-effective and its composition could be adjusted individually according to the respective needs. In summary, we present a comprehensive evaluation of GMP-compatible culture media for MSC expansion. Both StemPro and HPL medium proved to be suitable for clinical application and allowed sufficient cell proliferation. Specific differences were observed and should be considered according to the intended use. This study provides a detailed cost analysis and tools that may be helpful for the establishment of GMP-compliant MSC expansion. PMID:26911671

  11. Experimental bladder regeneration using a poly-l-lactide/silk fibroin scaffold seeded with nanoparticle-labeled allogenic bone marrow stromal cells

    PubMed Central

    Yudintceva, Natalia M; Nashchekina, Yulia A; Blinova, Miralda I; Orlova, Nadezhda V; Muraviov, Alexandr N; Vinogradova, Tatiana I; Sheykhov, Magomed G; Shapkova, Elena Y; Emeljannikov, Dmitriy V; Yablonskii, Petr K; Samusenko, Igor A; Mikhrina, Anastasiya L; Pakhomov, Artem V; Shevtsov, Maxim A

    2016-01-01

    In the present study, a poly-l-lactide/silk fibroin (PL-SF) bilayer scaffold seeded with allogenic bone marrow stromal cells (BMSCs) was investigated as a potential approach for bladder tissue engineering in a model of partial bladder wall cystectomy in rabbits. The inner porous layer of the scaffold produced from silk fibroin was designed to promote cell proliferation and the outer layer produced from poly-l-lactic acid to serve as a waterproof barrier. To compare the feasibility and efficacy of BMSC application in the reconstruction of bladder defects, 12 adult male rabbits were divided into experimental and control groups (six animals each) that received a scaffold seeded with BMSCs or an acellular one, respectively. For BMSC tracking in the graft in in vivo studies using magnetic resonance imaging, cells were labeled with superparamagnetic iron oxide nanoparticles. In vitro studies demonstrated high intracellular incorporation of nanoparticles and the absence of a toxic influence on BMSC viability and proliferation. Following implantation of the graft with BMSCs into the bladder, we observed integration of the scaffold with surrounding bladder tissues (as detected by magnetic resonance imaging). During the follow-up period of 12 weeks, labeled BMSCs resided in the implanted scaffold. The functional activity of the reconstructed bladder was confirmed by electromyography. Subsequent histological assay demonstrated enhanced biointegrative properties of the PL-SF scaffold with cells in comparison to the control graft, as related to complete regeneration of the smooth muscle and urothelium tissues in the implant. Confocal microscopy studies confirmed the presence of the superparamagnetic iron oxide nanoparticle-labeled BMSCs in newly formed bladder layers, thus indicating the role of stem cells in bladder regeneration. The results of this study demonstrate that application of a PL-SF scaffold seeded with allogenic BMSCs can enhance biointegration of the graft in

  12. Elevated expression of APE1/Ref-1 and its regulation on IL-6 and IL-8 in bone marrow stromal cells of multiple myeloma.

    PubMed

    Xie, Jia-Yin; Li, Meng-Xia; Xiang, De-Bing; Mou, Jiang-Hong; Qing, Yi; Zeng, Lin-Li; Yang, Zhen-Zhou; Guan, Wei; Wang, Dong

    2010-10-01

    A number of growth factors secreted by bone marrow stromal cells (BMSCs), including interleukin-6 and -8 (IL-6/8), are important for the initiation and progression of multiple myeloma (MM). However, the mechanisms that regulate the production of IL-6/8 by BMSC have not yet been well characterized. Human dual functional protein apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE1/Ref-1) is essential for cell survival and proliferation. Previous studies showed that APE1/Ref-1 was overexpressed in tumor cells, but few studies showed its expression in supportive cells in the tumor microenvironment. We first detected APE1/Ref-1 expression in BMSCs of normal, initial, and recurrent MM patients, and then explore the correlation between APE1/Ref-1 level and IL-6/8 secretion of BMSCs. A marked increase of APE1/Ref-1 expression and abnormal subcellular distribution were observed in MM BMSCs. APE1/Ref-1 overexpression was related to higher secretary level of IL-6/8 by MM BMSCs and the IL-6/8 secretion was blocked significantly by adenovirus-mediated APE1/Ref-1-specific (small interfering RNA) siRNA. Our results also demonstrated that APE1/Ref-1-specific siRNA significantly inhibited DNA binding activity of AP-1 and nuclear factor-κB (NF-κB), 2 important transcription factors in the regulation IL-6/8 secretion in MM BMSCs. The results provided by the present study indicate APE1/Ref-1, which plays a regulatory role in IL-6/8 production by BMSCs, may be a potential therapeutic target of MM.

  13. Multimodality Molecular Imaging of Cardiac Cell Transplantation: Part II. In Vivo Imaging of Bone Marrow Stromal Cells in Swine with PET/CT and MR Imaging.

    PubMed

    Parashurama, Natesh; Ahn, Byeong-Cheol; Ziv, Keren; Ito, Ken; Paulmurugan, Ramasamy; Willmann, Jürgen K; Chung, Jaehoon; Ikeno, Fumiaki; Swanson, Julia C; Merk, Denis R; Lyons, Jennifer K; Yerushalmi, David; Teramoto, Tomohiko; Kosuge, Hisanori; Dao, Catherine N; Ray, Pritha; Patel, Manishkumar; Chang, Ya-Fang; Mahmoudi, Morteza; Cohen, Jeff Eric; Goldstone, Andrew Brooks; Habte, Frezghi; Bhaumik, Srabani; Yaghoubi, Shahriar; Robbins, Robert C; Dash, Rajesh; Yang, Phillip C; Brinton, Todd J; Yock, Paul G; McConnell, Michael V; Gambhir, Sanjiv S

    2016-09-01

    Purpose To quantitatively determine the limit of detection of marrow stromal cells (MSC) after cardiac cell therapy (CCT) in swine by using clinical positron emission tomography (PET) reporter gene imaging and magnetic resonance (MR) imaging with cell prelabeling. Materials and Methods Animal studies were approved by the institutional administrative panel on laboratory animal care. Seven swine received 23 intracardiac cell injections that contained control MSC and cell mixtures of MSC expressing a multimodality triple fusion (TF) reporter gene (MSC-TF) and bearing superparamagnetic iron oxide nanoparticles (NP) (MSC-TF-NP) or NP alone. Clinical MR imaging and PET reporter gene molecular imaging were performed after intravenous injection of the radiotracer fluorine 18-radiolabeled 9-[4-fluoro-3-(hydroxyl methyl) butyl] guanine ((18)F-FHBG). Linear regression analysis of both MR imaging and PET data and nonlinear regression analysis of PET data were performed, accounting for multiple injections per animal. Results MR imaging showed a positive correlation between MSC-TF-NP cell number and dephasing (dark) signal (R(2) = 0.72, P = .0001) and a lower detection limit of at least approximately 1.5 × 10(7) cells. PET reporter gene imaging demonstrated a significant positive correlation between MSC-TF and target-to-background ratio with the linear model (R(2) = 0.88, P = .0001, root mean square error = 0.523) and the nonlinear model (R(2) = 0.99, P = .0001, root mean square error = 0.273) and a lower detection limit of 2.5 × 10(8) cells. Conclusion The authors quantitatively determined the limit of detection of MSC after CCT in swine by using clinical PET reporter gene imaging and clinical MR imaging with cell prelabeling. (©) RSNA, 2016 Online supplemental material is available for this article. PMID:27332865

  14. Autologous bone marrow stromal cell transplantation as a treatment for acute radiation enteritis induced by a moderate dose of radiation in dogs.

    PubMed

    Xu, Wenda; Chen, Jiang; Liu, Xu; Li, Hongyu; Qi, Xingshun; Guo, Xiaozhong

    2016-05-01

    Radiation enteritis is one of the most common complications of cancer radiotherapy, and the development of new and effective measures for its prevention and treatment is of great importance. Adult bone marrow stromal stem cells (ABMSCs) are capable of self-renewal and exhibit low immunogenicity. In this study, we investigated ABMSC transplantation as a treatment for acute radiation enteritis. We developed a dog model of acute radiation enteritis using abdominal intensity-modulated radiation therapy in a single X-ray dose of 14 Gy. ABMSCs were cultured in vitro, identified via immunofluorescence and flow cytometry, and double labeled with CM-Dil and superparamagnetic iron oxide (SPIO) before transplantation, which took place 48 hours after abdominal irradiation in a single fraction. The dog model of acute radiation enteritis was transplanted with cultured ABMSCs labeled with CM-Dil and SPIO into the mesenteric artery through the femoral artery. Compared with untreated control groups, dogs treated with ABMSCs exhibited substantially longer survival time and improved relief of clinical symptoms. ABMSC transplantation induced the regeneration of the intestinal epithelium and the recovery of intestinal function. Furthermore, ABMSC transplantation resulted in elevated serum levels of the anti-inflammatory cytokine interleukin-11 (IL10) and intestinal radioprotective factors, such as keratinocyte growth factor, basic fibroblast growth factor-2, and platelet-derived growth factor-B while reducing the serum level of the inflammatory cytokine IL17. ABMSCs induced the regeneration of the intestinal epithelium and regulated the secretion of serum cytokines and the expression of radioprotective proteins and thus could be beneficial in the development of novel and effective mitigators of and protectors against acute radiation enteritis. PMID:26763584

  15. Toll-Like Receptor 3 and Suppressor of Cytokine Signaling Proteins Regulate CXCR4 and CXCR7 Expression in Bone Marrow-Derived Human Multipotent Stromal Cells

    PubMed Central

    Tomchuck, Suzanne L.; Henkle, Sarah L.; Coffelt, Seth B.; Betancourt, Aline M.

    2012-01-01

    Background The use of bone marrow-derived human multipotent stromal cells (hMSC) in cell-based therapies has dramatically increased in recent years, as researchers have exploited the ability of these cells to migrate to sites of tissue injury, inflammation, and tumors. Our group established that hMSC respond to “danger” signals – by-products of damaged, infected or inflamed tissues – via activation of Toll-like receptors (TLRs). However, little is known regarding downstream signaling mediated by TLRs in hMSC. Methodology/Principal Findings We demonstrate that TLR3 stimulation activates a Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 1 pathway, and increases expression of suppressor of cytokine signaling (SOCS) 1 and SOCS3 in hMSC. Our studies suggest that each of these SOCS plays a distinct role in negatively regulating TLR3 and JAK/STAT signaling. TLR3-mediated interferon regulatory factor 1 (IRF1) expression was inhibited by SOCS3 overexpression in hMSC while SOCS1 overexpression reduced STAT1 activation. Furthermore, our study is the first to demonstrate that when TLR3 is activated in hMSC, expression of CXCR4 and CXCR7 is downregulated. SOCS3 overexpression inhibited internalization of both CXCR4 and CXCR7 following TLR3 stimulation. In contrast, SOCS1 overexpression only inhibited CXCR7 internalization. Conclusion/Significance These results demonstrate that SOCS1 and SOCS3 each play a functionally distinct role in modulating TLR3, JAK/STAT, and CXCR4/CXCR7 signaling in hMSC and shed further light on the way hMSC respond to danger signals. PMID:22745793

  16. Europium-doped Gd2O3 nanotubes cause the necrosis of primary mouse bone marrow stromal cells through lysosome and mitochondrion damage.

    PubMed

    Jin, Yi; Chen, Shizhu; Duan, Jianlei; Jia, Guang; Zhang, Jinchao

    2015-05-01

    With the wide applications of europium-doped Gd2O3 nanoparticles (Gd2O3:Eu(3+) NPs) in biomedical fields, it will inevitably increase the chance of human exposure. It was reported that Gd2O3:Eu(3+) NPs could accumulate in bone. However, there have been few reports about the potential effect of Gd2O3:Eu(3+) NPs on bone marrow stromal cells (BMSCs). In this study, the Gd2O3:Eu(3+) nanotubes were prepared and characterized by powder X-ray diffraction (XRD), photoluminescence (PL) excitation and emission spectra, scanning electron microscope (SEM), and transmission electron microscopy (TEM). The cytotoxicity of Gd2O3:Eu(3+) nanotubes on BMSCs and the associated mechanisms were further studied. The results indicated that they could be uptaken into BMSCs by an energy-dependent and macropinocytosis-mediated endocytosis process, and primarily localized in lysosome. Gd2O3:Eu(3+) nanotubes effectively inhibited the viability of BMSCs in concentration and time-dependent manners. A significant increase in the percentage of late apoptotic/necrotic cells, lactate dehydrogenase (LDH) leakage and the number of PI-stained cells was found after BMSCs were treated by 10, 20, and 40μg/mL of Gd2O3:Eu(3+) nanotubes for 12h. No obvious DNA ladders were detected, but a dispersed band was observed. The above results revealed that Gd2O3:Eu(3+) nanotubes could trigger cell death by necrosis instead of apoptosis. Two mechanisms were involved in Gd2O3:Eu(3+) nanotube-induced BMSCs necrosis: lysosomal rupture and release of cathepsins B; and the overproduction of reactive oxygen species (ROS) injury to the mitochondria and DNA. The study provides novel evidence to elucidate the toxicity mechanisms and may be beneficial to more rational applications of these nanomaterials in the future.

  17. Bone Marrow Mesenchymal Stromal Cells from Patients with Acute and Chronic Graft-versus-Host Disease Deploy Normal Phenotype, Differentiation Plasticity, and Immune-Suppressive Activity.

    PubMed

    Copland, Ian B; Qayed, Muna; Garcia, Marco A; Galipeau, Jacques; Waller, Edmund K

    2015-05-01

    The success of allogeneic hematopoietic stem cell transplantation (allo-HSCT) is often limited by the development of acute and/or chronic graft-versus-host disease (GVHD). The lack of effective therapies to treat steroid-refractory GVHD patients has bolstered clinical evaluation of mesenchymal stromal cell (MSC) therapy for GVHD. Currently, testing of MSCs for the treatment of GVHD has exclusively used allogeneic MSCs despite emerging evidence that MSCs lose their immunoprivileged status in vivo. We hypothesized that autologous MSCs could be a viable alternative MSC source for treating active GVHD. MSCs were isolated and successfully expanded from the bone marrow of 12 volunteers (ages 2 to 55 years) who had allo-HSCT transplants and subsequently developed GVHD. MSCs from subjects with GVHD demonstrated an initial lag in growth compared with healthy control subjects; however, this lag disappeared with continued ex vivo expansion. Immunophenotype and mesodermal differentiation capacity of MSCs from GVHD patients were indistinguishable from that of healthy control MSCs. In vitro immunomodulatory functional analyses also demonstrated that GVHD MSCs were equivalent to healthy control MSCs with regards to dose dependently suppressing T cell proliferation and up-regulating indoleamine 2,3-dioxygenase expression when primed with IFN-γ. Single tandem repeat chimerism analyses further demonstrated that MSCs expanded from GVHD patients were exclusively recipient derived. Based on these data, we conclude that recipient-derived MSCs from patients with GVHD are analogous to MSCs from healthy volunteers and represent a viable option for clinical testing as an immunomodulatory option for symptomatic GVHD.

  18. Autologous bone marrow stromal cell transplantation as a treatment for acute radiation enteritis induced by a moderate dose of radiation in dogs.

    PubMed

    Xu, Wenda; Chen, Jiang; Liu, Xu; Li, Hongyu; Qi, Xingshun; Guo, Xiaozhong

    2016-05-01

    Radiation enteritis is one of the most common complications of cancer radiotherapy, and the development of new and effective measures for its prevention and treatment is of great importance. Adult bone marrow stromal stem cells (ABMSCs) are capable of self-renewal and exhibit low immunogenicity. In this study, we investigated ABMSC transplantation as a treatment for acute radiation enteritis. We developed a dog model of acute radiation enteritis using abdominal intensity-modulated radiation therapy in a single X-ray dose of 14 Gy. ABMSCs were cultured in vitro, identified via immunofluorescence and flow cytometry, and double labeled with CM-Dil and superparamagnetic iron oxide (SPIO) before transplantation, which took place 48 hours after abdominal irradiation in a single fraction. The dog model of acute radiation enteritis was transplanted with cultured ABMSCs labeled with CM-Dil and SPIO into the mesenteric artery through the femoral artery. Compared with untreated control groups, dogs treated with ABMSCs exhibited substantially longer survival time and improved relief of clinical symptoms. ABMSC transplantation induced the regeneration of the intestinal epithelium and the recovery of intestinal function. Furthermore, ABMSC transplantation resulted in elevated serum levels of the anti-inflammatory cytokine interleukin-11 (IL10) and intestinal radioprotective factors, such as keratinocyte growth factor, basic fibroblast growth factor-2, and platelet-derived growth factor-B while reducing the serum level of the inflammatory cytokine IL17. ABMSCs induced the regeneration of the intestinal epithelium and regulated the secretion of serum cytokines and the expression of radioprotective proteins and thus could be beneficial in the development of novel and effective mitigators of and protectors against acute radiation enteritis.

  19. Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells.

    PubMed

    Vitale-Brovarone, Chiara; Ciapetti, Gabriela; Leonardi, Elisa; Baldini, Nicola; Bretcanu, Oana; Verné, Enrica; Baino, Francesco

    2011-11-01

    Highly porous bioresorbable glass-ceramic scaffolds were prepared via sponge replication method by using an open-cell polyurethane foam as a template and phosphate-based glass powders. The glass, belonging to the P2O5-SiO2-CaO-MgO-Na2O-K2O system, was synthesized by a melting-quenching route, ground, and sieved to obtain powders with a grain size of less than 30 μm. A slurry containing glass powders, polyvinyl alcohol, and water was prepared to coat the polymeric template. The removal of the polymer and the sintering of the glass powders were performed by a thermal treatment, in order to obtain an inorganic replica of the template structure. The structure and properties of the scaffold were investigated from structural, morphological, and mechanical viewpoints by means of X-ray diffraction, scanning electron microscopy, density measurements, image analysis, and compressive tests. The scaffolds exhibited a trabecular architecture that closely mimics the structure of a natural spongy bone. The solubility of the porous structures was assessed by soaking the samples in acellular simulated body fluid (SBF) and Tris-HCl for different time frames and then by assessing the scaffold weight loss. As far as the test in SBF is concerned, the nucleation of hydroxyapatite on the scaffold trabeculae demonstrates the bioactivity of the material. Biological tests were carried out using human bone marrow stromal cells to test the osteoconductivity of the material. The cells adhered to the scaffold struts and were metabolically active; it was found that cell differentiation over proliferation occurred. Therefore, the produced scaffolds, being biocompatible, bioactive, resorbable, and structurally similar to a spongy bone, can be proposed as interesting candidates for bone grafting.

  20. Evaluation of GMP-compliant culture media for in vitro expansion of human bone marrow mesenchymal stromal cells.

    PubMed

    Wuchter, Patrick; Vetter, Marcel; Saffrich, Rainer; Diehlmann, Anke; Bieback, Karen; Ho, Anthony D; Horn, Patrick

    2016-06-01

    Mesenchymal stromal cells (MSCs) from human bone marrow serve as a resource for cell-based therapies in regenerative medicine. Clinical applications require standardized protocols according to good manufacturing practice (GMP) guidelines. Donor variability as well as the intrinsic heterogeneity of MSC populations must be taken into consideration. The composition of the culture medium is a key factor in successful MSC expansion. The aim of this study was to comparatively assess the efficiency of xeno-free human platelet lysate (HPL)-based cell expansion with two commercially available media-StemPro MSC SFM CTS (for human ex vivo tissue and cell culture processing applications) and MSCGM (non-GMP-compliant, for research only)-in an academic setting as the first optimization step toward GMP-compliant manufacturing. We report the feasibility of MSC expansion up to the yielded cell number with all three media. MSCs exhibited the typical fibroblastoid morphology, with distinct differences in cell size depending on the medium. The differentiation capacity and characteristic immunophenotype were confirmed for all MSC populations. Proliferation was highest using StemPro MSC SFM CTS, whereas HPL medium was more cost-effective and its composition could be adjusted individually according to the respective needs. In summary, we present a comprehensive evaluation of GMP-compatible culture media for MSC expansion. Both StemPro and HPL medium proved to be suitable for clinical application and allowed sufficient cell proliferation. Specific differences were observed and should be considered according to the intended use. This study provides a detailed cost analysis and tools that may be helpful for the establishment of GMP-compliant MSC expansion.

  1. Experimental bladder regeneration using a poly-l-lactide/silk fibroin scaffold seeded with nanoparticle-labeled allogenic bone marrow stromal cells

    PubMed Central

    Yudintceva, Natalia M; Nashchekina, Yulia A; Blinova, Miralda I; Orlova, Nadezhda V; Muraviov, Alexandr N; Vinogradova, Tatiana I; Sheykhov, Magomed G; Shapkova, Elena Y; Emeljannikov, Dmitriy V; Yablonskii, Petr K; Samusenko, Igor A; Mikhrina, Anastasiya L; Pakhomov, Artem V; Shevtsov, Maxim A

    2016-01-01

    In the present study, a poly-l-lactide/silk fibroin (PL-SF) bilayer scaffold seeded with allogenic bone marrow stromal cells (BMSCs) was investigated as a potential approach for bladder tissue engineering in a model of partial bladder wall cystectomy in rabbits. The inner porous layer of the scaffold produced from silk fibroin was designed to promote cell proliferation and the outer layer produced from poly-l-lactic acid to serve as a waterproof barrier. To compare the feasibility and efficacy of BMSC application in the reconstruction of bladder defects, 12 adult male rabbits were divided into experimental and control groups (six animals each) that received a scaffold seeded with BMSCs or an acellular one, respectively. For BMSC tracking in the graft in in vivo studies using magnetic resonance imaging, cells were labeled with superparamagnetic iron oxide nanoparticles. In vitro studies demonstrated high intracellular incorporation of nanoparticles and the absence of a toxic influence on BMSC viability and proliferation. Following implantation of the graft with BMSCs into the bladder, we observed integration of the scaffold with surrounding bladder tissues (as detected by magnetic resonance imaging). During the follow-up period of 12 weeks, labeled BMSCs resided in the implanted scaffold. The functional activity of the reconstructed bladder was confirmed by electromyography. Subsequent histological assay demonstrated enhanced biointegrative properties of the PL-SF scaffold with cells in comparison to the control graft, as related to complete regeneration of the smooth muscle and urothelium tissues in the implant. Confocal microscopy studies confirmed the presence of the superparamagnetic iron oxide nanoparticle-labeled BMSCs in newly formed bladder layers, thus indicating the role of stem cells in bladder regeneration. The results of this study demonstrate that application of a PL-SF scaffold seeded with allogenic BMSCs can enhance biointegration of the graft in

  2. Promotion of chondrogenesis of marrow stromal stem cells by TGF-β3 fusion protein in vivo. [corrected].

    PubMed

    Wu, Wei; Dan, Yang; Yang, Shu-hua; Yang, Cao; Shao, Zeng-wu; Xu, Wei-hua; Li, Jin; Liu, Xian-zhe; Zheng, Dong

    2013-10-01

    The purpose of this study was to investigate the repair of the osteoarthritis(OA)-induced cartilage injury by transfecting the new TGF-β3 fusion protein (LAP-MMP-mTGF-β3) with targeted therapy function into the bone marrow-derived mesenchymal stem cells (MSCs) in rats. The recombinant of pIRES-EGFP-MMP was constructed by combination of DNA encoding MMP enzyme cutting site and eukaryotic expression vector pIRES-EGFP. LAP and mTGF-β3 fragments were obtained from rat embryos by RT-PCR and inserted into the upstream and downstream of MMP from pIRES-EGFP-MMP respectively, so as to construct the recombinant plasmid of pIRES-EGFP-LAP-MMP-mTGF-β3. pIRES-EGFP-LAP-MMP-mTGF-β3 was transfected into rat MSCs. The genetically modified MSCs were cultured in medium with MMP-1 or not. The transfected MSCs were transplanted in the rat OA models. The OA animal models were surgically induced by anterior cruciate ligament transaction (ACLT). The pathological changes were observed under a microscope by HE staining, Alcian blue, Safranin-fast Green and graded by Mankin's scale. pIRES-EGFP-LAP-MMP-mTGF-β3 was successfully constructed by means of enzyme cutting and sequencing, and the mTGF-β3 fusion protein (39 kD) was certified by Western blotting. Those genetically modified MSCs could differentiate into chondrocytes induced by MMP and secrete the relevant-matrix. The transfected MSCs could promote chondrogenesis and matrix production in rat OA models in vivo. It was concluded that a new fusion protein LAP-MMP-mTGF-β3 was constructed successfully by gene engineering, and could be used to repair the OA-induced cartilage injury. PMID:24142722

  3. Chitosan-poly(butylene succinate) scaffolds and human bone marrow stromal cells induce bone repair in a mouse calvaria model.

    PubMed

    Costa-Pinto, A R; Correlo, V M; Sol, P C; Bhattacharya, M; Srouji, S; Livne, E; Reis, R L; Neves, N M

    2012-01-01

    Tissue engineering sustains the need of a three-dimensional (3D) scaffold to promote the regeneration of tissues in volume. Usually, scaffolds are seeded with an adequate cell population, allowing their growth and maturation upon implantation in vivo. Previous studies obtained by our group evidenced significant growth patterns and osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) when seeded and cultured on melt-based porous chitosan fibre mesh scaffolds (cell constructs). Therefore, it is crucial to test the in vivo performance of these in vitro 3D cell constructs. In this study, chitosan-based scaffolds were seeded and cultured in vitro with hBMSCs for 3 weeks under osteogenic stimulation conditions and analysed for cell adhesion, proliferation and differentiation. Implantation of 2 weeks precultured cell constructs in osteogenic culture conditions was performed into critical cranial size defects in nude mice. The objective of this study was to verify the scaffold integration and new bone formation. At 8 weeks of implantation, scaffolds were harvested and prepared for micro-computed tomography (µCT) analysis. Retrieved implants showed good integration with the surrounding tissue and significant bone formation, more evident for the scaffolds cultured and implanted with human cells. The results of this work demonstrated that chitosan-based scaffolds, besides supporting in vitro proliferation and osteogenic differentiation of hBMSCs, induced bone formation in vivo. Thus, their osteogenic potential in orthotopic location in immunodeficient mice was validated, evidencing good prospects for their use in bone tissue-engineering therapies.

  4. The Role of D4Z4-Encoded Proteins in the Osteogenic Differentiation of Mesenchymal Stromal Cells Isolated from Bone Marrow.

    PubMed

    de la Kethulle de Ryhove, Laurence; Ansseau, Eugénie; Nachtegael, Charlotte; Pieters, Karlien; Vanderplanck, Céline; Geens, Mieke; Sermon, Karen; Wilton, Steve D; Coppée, Frédérique; Lagneaux, Laurence; Belayew, Alexandra

    2015-11-15

    Facioscapulohumeral muscular dystrophy (FSHD) is associated with an activation of the double homeobox 4 (DUX4) gene, which we previously identified within the D4Z4 repeated elements in the 4q35 subtelomeric region. The pathological DUX4 mRNA is derived from the most distal D4Z4 unit and extends unexpectedly within the flanking pLAM region, which provides an intron and polyadenylation signal. The conditions that are required to develop FSHD are a permissive allele providing the polyadenylation signal and hypomethylation of the D4Z4 repeat array compared with the healthy muscle. The DUX4 protein is a 52-kDa transcription factor that initiates a large gene deregulation cascade leading to muscle atrophy, inflammation, differentiation defects, and oxidative stress, which are the key features of FSHD. DUX4 is a retrogene that is normally expressed in germline cells and is submitted to repeat-induced silencing in adult tissues. Since DUX4 mRNAs have been detected in human embryonic and induced pluripotent stem cells, we investigated whether they could also be expressed in human mesenchymal stromal cells (hMSCs). We found that DUX4 mRNAs were induced during the differentiation of hMSCs into osteoblasts and that this process involved DUX4 and new longer protein forms (58 and 70 kDa). A DUX4 mRNA with a more distant 5' start site was characterized that presented a 60-codon reading frame extension and encoded the 58-kDa protein. Transfections of hMSCs with an antisense oligonucleotide targeting DUX4 mRNAs decreased both the 52- and 58-kDa protein levels and confirmed their identity. Gain- and loss-of-function experiments in hMSCs suggested these DUX4 proteins had opposite roles in osteogenic differentiation as evidenced by the alkaline phosphatase activity and calcium deposition. Differentiation was delayed by the 58-kDa DUX4 expression and it was increased by 52-kDa DUX4. These data indicate a role for DUX4 protein forms in the osteogenic differentiation of h

  5. Activation of HIFa Pathway in Mature Osteoblasts Disrupts the Integrity of the Osteocyte/Canalicular Network

    PubMed Central

    Qi, Jin; Kang, Hui; Jia, Peng; Chen, Hao; Shen, Xing; Guo, Lei; Zhou, Han-bing; Wang, Jin-shen; Zhou, Qi; Qian, Nian-dong; Deng, Lian-fu

    2015-01-01

    The hypoxia-inducible factors (HIFs), HIF-1α and HIF-2α, are the central mediators of the homeostatic response that enables cells to survive and differentiate in low-oxygen conditions. Previous studies indicated that disruption of the von Hippel-Lindau gene (Vhl) coincides with the activation of HIFα signaling. Here we show that inactivation of Vhl in mature osteoblasts/osteocytes induces their apoptosis and disrupts the cell/canalicular network. VHL-deficient (ΔVHL) mice exhibited a significantly increased cortical bone area resulting from enhanced proliferation and osteogenic differentiation of the bone marrow stromal cells (BMSCs) by inducing the expression of β-catenin in the BMSC. Our data suggest that the VHL/HIFα pathway in mature osteoblasts/osteocytes plays a critical role in the bone cell/canalicular network and that the changes of osteocyte morphology/function and cell/canalicular network may unleash the bone formation, The underlying mechanism of which was the accumulation of β-catenin in the osteoblasts/osteoprogenitors of the bone marrow. PMID:25806791

  6. Effects of the tripeptide glycyl-L-histidyl-L-lysine copper complex on osteoblastic cell spreading, attachment and phenotype.

    PubMed

    Godet, D; Marie, P J

    1995-12-01

    We have studied the effects of the complex Glycyl-L-Histidyl-L-Lysine:Cu (GHK:Cu), the GHK sequence present in the alpha 2 (I) chain of human collagen (Coll I), and bone matrix glycoproteins containing either RGD (fibronectin, FN), or RGD and GHK (Coll I), on the spreading, attachment and markers of the osteoblast phenotype in rat calvaria cells (RC), human trabecular osteoblastic cells (HT) and human marrow stromal cells (HM). Coll I (20 micrograms/ml) and FN (20 micrograms/ml) coating enhanced osteoblastic cell spreading, whereas free GHK:Cu and GHK coating (10(-10)-10(-8) M) had no effect. FN and Coll I, as well as GHK:Cu and GHK, increased the attachment of RC and HT cells. The attachment of both total number of cells and alkaline phosphatase (ALP)-positive osteoblastic cells was increased, showing no preferential effect on cells expressing this early marker of the osteoblast phenotype. In addition, immunocytochemical analysis showed that FN, Coll I and GHK:Cu coating increased both the total number of HM cells and the number of HM cells expressing Coll I or osteocalcin, indicating that GHK:Cu and RGD-containing proteins acted similarly on cells expressing different maturational stages. In contrast to its effect on cell attachment, GHK:Cu coating slightly inhibited the basal and 1,25(OH)2D-induced stimulation of ALP activity or osteocalcin production in rat and human osteoblastic cells. The finding that GHK promotes cell attachment and decreases the phenotype of normal rat and human osteoblastic cells suggests that osteoblasts may interact with free GHK or GHK-containing proteins in the bone matrix. PMID:8747089

  7. Overexpression of hsa-miR-125b during osteoblastic differentiation does not influence levels of Runx2, osteopontin, and ALPL gene expression

    PubMed Central

    Pinto, M.T.; Nicolete, L.D.F.; Rodrigues, E.S.; Palma, P.V.B.; Orellana, M.D.; Kashima, S.; Covas, D.T.

    2013-01-01

    Multipotent mesenchymal stromal cells (MSCs) were first isolated from bone marrow and then from various adult tissues including placenta, cord blood, deciduous teeth, and amniotic fluid. MSCs are defined or characterized by their ability to adhere to plastic, to express specific surface antigens, and to differentiate into osteogenic, chondrogenic, adipogenic, and myogenic lineages. Although the molecular mechanisms that control MSC proliferation and differentiation are not well understood, the involvement of microRNAs has been reported. In the present study, we investigated the role of miR-125b during osteoblastic differentiation in humans. We found that miR-125b increased during osteoblastic differentiation, as well as Runx2 and ALPL genes. To study whether the gain or loss of miR-125b function influenced osteoblastic differentiation, we transfected MSCs with pre-miR-125b or anti-miR-125b and cultured the transfected cells in an osteoblastic differentiation medium. After transfection, no change was observed in osteoblastic differentiation, and Runx2, OPN, and ALPL gene expression were not changed. These results suggest that the gain or loss of miR-125b function does not influence levels of Runx2, OPN, and ALPL during osteoblastic differentiation. PMID:24036939

  8. Overexpression of hsa-miR-125b during osteoblastic differentiation does not influence levels of Runx2, osteopontin, and ALPL gene expression.

    PubMed

    Pinto, M T; Nicolete, L D F; Rodrigues, E S; Palma, P V B; Orellana, M D; Kashima, S; Covas, D T

    2013-08-01

    Multipotent mesenchymal stromal cells (MSCs) were first isolated from bone marrow and then from various adult tissues including placenta, cord blood, deciduous teeth, and amniotic fluid. MSCs are defined or characterized by their ability to adhere to plastic, to express specific surface antigens, and to differentiate into osteogenic, chondrogenic, adipogenic, and myogenic lineages. Although the molecular mechanisms that control MSC proliferation and differentiation are not well understood, the involvement of microRNAs has been reported. In the present study, we investigated the role of miR-125b during osteoblastic differentiation in humans. We found that miR-125b increased during osteoblastic differentiation, as well as Runx2 and ALPL genes. To study whether the gain or loss of miR-125b function influenced osteoblastic differentiation, we transfected MSCs with pre-miR-125b or anti-miR-125b and cultured the transfected cells in an osteoblastic differentiation medium. After transfection, no change was observed in osteoblastic differentiation, and Runx2, OPN, and ALPL gene expression were not changed. These results suggest that the gain or loss of miR-125b function does not influence levels of Runx2, OPN, and ALPL during osteoblastic differentiation.

  9. Plasmid-based genetic modification of human bone marrow-derived stromal cells: analysis of cell survival and transgene expression after transplantation in rat spinal cord

    PubMed Central

    Ronsyn, Mark W; Daans, Jasmijn; Spaepen, Gie; Chatterjee, Shyama; Vermeulen, Katrien; D'Haese, Patrick; Van Tendeloo, Viggo FI; Van Marck, Eric; Ysebaert, Dirk; Berneman, Zwi N; Jorens, Philippe G; Ponsaerts, Peter

    2007-01-01

    Background Bone marrow-derived stromal cells (MSC) are attractive targets for ex vivo cell and gene therapy. In this context, we investigated the feasibility of a plasmid-based strategy for genetic modification of human (h)MSC with enhanced green fluorescent protein (EGFP) and neurotrophin (NT)3. Three genetically modified hMSC lines (EGFP, NT3, NT3-EGFP) were established and used to study cell survival and transgene expression following transplantation in rat spinal cord. Results First, we demonstrate long-term survival of transplanted hMSC-EGFP cells in rat spinal cord under, but not without, appropriate immune suppression. Next, we examined the stability of EGFP or NT3 transgene expression following transplantation of hMSC-EGFP, hMSC-NT3 and hMSC-NT3-EGFP in rat spinal cord. While in vivo EGFP mRNA and protein expression by transplanted hMSC-EGFP cells was readily detectable at different time points post-transplantation, in vivo NT3 mRNA expression by hMSC-NT3 cells and in vivo EGFP protein expression by hMSC-NT3-EGFP cells was, respectively, undetectable or declined rapidly between day 1 and 7 post-transplantation. Further investigation revealed that the observed in vivo decline of EGFP protein expression by hMSC-NT3-EGFP cells: (i) was associated with a decrease in transgenic NT3-EGFP mRNA expression as suggested following laser capture micro-dissection analysis of hMSC-NT3-EGFP cell transplants at day 1 and day 7 post-transplantation, (ii) did not occur when hMSC-NT3-EGFP cells were transplanted subcutaneously, and (iii) was reversed upon re-establishment of hMSC-NT3-EGFP cell cultures at 2 weeks post-transplantation. Finally, because we observed a slowly progressing tumour growth following transplantation of all our hMSC cell transplants, we here demonstrate that omitting immune suppressive therapy is sufficient to prevent further tumour growth and to eradicate malignant xenogeneic cell transplants. Conclusion In this study, we demonstrate that genetically

  10. Co- transplantation of Bone Marrow Stromal Cells with Schwann Cells Evokes Mechanical Allodynia in the Contusion Model of Spinal Cord Injury in Rats

    PubMed Central

    Pourheydar, Bagher; Joghataei, Mohammad Taghi; Bakhtiari, Mehrdad; Mehdizadeh, Mehdi; Yekta, Zahra; Najafzadeh, Norooz

    2012-01-01

    Objective: Several studies have shown that, although transplantation of neural stem cells into the contusion model of spinal cord injury (SCI) promotes locomotor function and improves functional recovery, it induces a painful response, Allodynia. Different studies indicate that bone marrow stromal cells (BMSCs) and Schwann cells (SCs) can improve locomotor recovery when transplanted into the injured rat spinal cord. Since these cells are commonly used in cell therapy, we investigated whether co-transplantation of these cells leads to the development of Allodynia. Materials and Methods: In this experimental research, the contusion model of SCI was induced by laminectomy at the T8-T9 level of the spinal cord in adult female wistar rats (n=40) weighting (250-300g) using the New York University Device. BMSCs and SCs were cultured and prelabeled with 5-bromo-2-deoxyuridine (BrdU) and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) respectively. The rats were divided into five groups of 8 including: a control group (laminectomy only), three experimental groups (BMSC, SC and Co-transplant) and a sham group. The experimental groups received BMSCs, SCs, and BMSCs and SCs respectively by intraspinal injection 7 days after injury and the sham group received serum only. Locomotion was assessed using Basso, Beattie and Bresnahan (BBB) test and Allodynia by the withdrawal threshold test using Von Frey Filaments at 1, 7, 14, 21, 28, 35, 42, 49 and 56 days after SCI. The statistical comparisons between groups were carried out by using repeated measures analysis of variances (ANOVA). Results: Significant differences were observed in BBB scores in the Co- transplant group compared to the BMSC and SC groups (p< 0.05). There were also significant differences in the withdrawal threshold means between animals in the sham group and the BMSC, SC and the Co-transplant groups (p<0.05).BBB scores and withdrawal threshold means showed that co-transplation improved

  11. A comparison of human bone marrow-derived mesenchymal stem cells and human umbilical cord-derived mesenchymal stromal cells for cartilage tissue engineering.

    PubMed

    Wang, Limin; Tran, Ivy; Seshareddy, Kiran; Weiss, Mark L; Detamore, Michael S

    2009-08-01

    Bone marrow-derived mesenchymal stem cells (BMSCs) have long been considered the criterion standard for stem cell sources in musculoskeletal tissue engineering. The true test of a stem cell source is a side-by-side comparison with BMSCs. Human umbilical cord-derived mesenchymal stromal cells (hUCMSCs), one such candidate with high potential, are a fetus-derived stem cell source collected from discarded tissue (Wharton's jelly) after birth. Compared with human BMSCs (hBMSCs), hUCMSCs have the advantages of abundant supply, painless collection, no donor site morbidity, and faster and longer self-renewal in vitro. In this 6-week study, a chondrogenic comparison was conducted of hBMSCs and hUCMSCs in a three-dimensional (3D) scaffold for the first time. Cells were seeded on polyglycolic acid (PGA) scaffolds at 25 M cells/mL and then cultured in identical conditions. Cell proliferation, biosynthesis, and chondrogenic differentiation were assessed at weeks 0, 3, and 6 after seeding. At weeks 3 and 6, hUCMSCs produced more glycosaminoglycans than hBMSCs. At week 6, the hUCMSC group had three times as much collagen as the hBMSC group. Immunohistochemistry revealed the presence of collagen types I and II and aggrecan in both groups, but type II collagen staining was more intense for hBMSCs than hUCMSCs. At week 6, the quantitative reverse transcriptase polymerase chain reaction (RT-PCR) revealed less type I collagen messenger RNA (mRNA) with both cell types, and more type II collagen mRNA with hBMSCs, than at week 3. Therefore, it was concluded that hUCMSCs may be a desirable option for use as a mesenchymal cell source for fibrocartilage tissue engineering, based on abundant type I collagen and aggrecan production of hUCMSCs in a 3D matrix, although further investigation of signals that best promote type II collagen production of hUCMSCs is warranted for hyaline cartilage engineering.

  12. Transportation conditions for prompt use of ex vivo expanded and freshly harvested clinical-grade bone marrow mesenchymal stromal/stem cells for bone regeneration.

    PubMed

    Veronesi, Elena; Murgia, Alba; Caselli, Anna; Grisendi, Giulia; Piccinno, Maria Serena; Rasini, Valeria; Giordano, Rosaria; Montemurro, Tiziana; Bourin, Philippe; Sensebé, Luc; Rojewski, Markus T; Schrezenmeier, Hubert; Layrolle, Pierre; Ginebra, Maria Pau; Panaitescu, Carmen Bunu; Gómez-Barrena, Enrique; Catani, Fabio; Paolucci, Paolo; Burns, Jorge S; Dominici, Massimo

    2014-03-01

    Successful preliminary studies have encouraged a more translational phase for stem cell research. Nevertheless, advances in the culture of human bone marrow-derived mesenchymal stromal/stem cells (hBM-MSC) and osteoconductive qualities of combined biomaterials can be undermined if necessary cell transportation procedures prove unviable. We aimed at evaluating the effect of transportation conditions on cell function, including the ability to form bone in vivo, using procedures suited to clinical application. hBM-MSC expanded in current Good Manufacturing Practice (cGMP) facilities (cGMP-hBM-MSC) to numbers suitable for therapy were transported overnight within syringes and subsequently tested for viability. Scaled-down experiments mimicking shipment for 18 h at 4°C tested the influence of three different clinical-grade transportation buffers (0.9% saline alone or with 4% human serum albumin [HSA] from two independent sources) compared with cell maintenance medium. Cell viability after shipment was >80% in all cases, enabling evaluation of (1) adhesion to plastic flasks and hydroxyapatite tricalcium phosphate osteoconductive biomaterial (HA/β-TCP 3D scaffold); (2) proliferation rate; (3) ex vivo osteogenic differentiation in contexts of 2D monolayers on plastic and 3D HA/β-TCP scaffolds; and (4) in vivo ectopic bone formation after subcutaneous implantation of cells with HA/β-TCP scaffold into NOD/SCID mice. Von Kossa staining was used to assess ex vivo osteogenic differentiation in 3D cultures, providing a quantifiable test of 3D biomineralization ex vivo as a rapid, cost-effective potency assay. Near-equivalent capacities for cell survival, proliferation, and osteogenic differentiation were found for all transportation buffers. Moreover, cGMP-hBM-MSC transported from a production facility under clinical-grade conditions of 4% HSA in 0.9% saline to a destination 18 h away showed prompt adhesion to HA/β-TCP 3D scaffold and subsequent in vivo bone formation

  13. Transportation Conditions for Prompt Use of Ex Vivo Expanded and Freshly Harvested Clinical-Grade Bone Marrow Mesenchymal Stromal/Stem Cells for Bone Regeneration

    PubMed Central

    Veronesi, Elena; Murgia, Alba; Caselli, Anna; Grisendi, Giulia; Piccinno, Maria Serena; Rasini, Valeria; Giordano, Rosaria; Montemurro, Tiziana; Bourin, Philippe; Sensebé, Luc; Rojewski, Markus T.; Schrezenmeier, Hubert; Layrolle, Pierre; Ginebra, Maria Pau; Panaitescu, Carmen Bunu; Gómez-Barrena, Enrique; Catani, Fabio; Paolucci, Paolo; Burns, Jorge S.

    2014-01-01

    Successful preliminary studies have encouraged a more translational phase for stem cell research. Nevertheless, advances in the culture of human bone marrow-derived mesenchymal stromal/stem cells (hBM-MSC) and osteoconductive qualities of combined biomaterials can be undermined if necessary cell transportation procedures prove unviable. We aimed at evaluating the effect of transportation conditions on cell function, including the ability to form bone in vivo, using procedures suited to clinical application. hBM-MSC expanded in current Good Manufacturing Practice (cGMP) facilities (cGMP-hBM-MSC) to numbers suitable for therapy were transported overnight within syringes and subsequently tested for viability. Scaled-down experiments mimicking shipment for 18 h at 4°C tested the influence of three different clinical-grade transportation buffers (0.9% saline alone or with 4% human serum albumin [HSA] from two independent sources) compared with cell maintenance medium. Cell viability after shipment was >80% in all cases, enabling evaluation of (1) adhesion to plastic flasks and hydroxyapatite tricalcium phosphate osteoconductive biomaterial (HA/β-TCP 3D scaffold); (2) proliferation rate; (3) ex vivo osteogenic differentiation in contexts of 2D monolayers on plastic and 3D HA/β-TCP scaffolds; and (4) in vivo ectopic bone formation after subcutaneous implantation of cells with HA/β-TCP scaffold into NOD/SCID mice. Von Kossa staining was used to assess ex vivo osteogenic differentiation in 3D cultures, providing a quantifiable test of 3D biomineralization ex vivo as a rapid, cost-effective potency assay. Near-equivalent capacities for cell survival, proliferation, and osteogenic differentiation were found for all transportation buffers. Moreover, cGMP-hBM-MSC transported from a production facility under clinical-grade conditions of 4% HSA in 0.9% saline to a destination 18 h away showed prompt adhesion to HA/β-TCP 3D scaffold and subsequent in vivo bone formation

  14. Transforming growth factor-beta 3 stimulates cartilage matrix elaboration by human marrow-derived stromal cells encapsulated in photocrosslinked carboxymethylcellulose hydrogels: potential for nucleus pulposus replacement.

    PubMed

    Gupta, Michelle S; Cooper, Elana S; Nicoll, Steven B

    2011-12-01

    Degeneration of the nucleus pulposus (NP) has been implicated as a major cause of low back pain. Tissue engineering strategies using marrow-derived stromal cells (MSCs) have been used to develop cartilaginous tissue constructs, which may serve as viable NP replacements. Supplementation with growth factors, such as transforming growth factor-beta 3 (TGF-β3), has been shown to enhance the differentiation of MSCs and promote functional tissue development of such constructs. A potential candidate material that may be useful as a scaffold for NP tissue engineering is carboxymethylcellulose (CMC), a biocompatible, cost-effective derivative of cellulose. Photocrosslinked CMC hydrogels have been shown to support NP cell viability and promote phenotypic matrix deposition capable of maintaining mechanical properties when cultured in serum-free, chemically defined medium (CDM) supplemented with TGF-β3. However, MSCs have not been characterized using this hydrogel system. In this study, human MSCs (hMSCs) were encapsulated in photocrosslinked CMC hydrogels and cultured in CDM with and without TGF-β3 to determine the effect of the growth factor on the differentiation of hMSCs toward an NP-like phenotype. Constructs were evaluated for matrix elaboration and functional properties consistent with native NP tissue. CDM supplemented with TGF-β3 resulted in significantly higher glycosaminoglycan content (762.69±220.79 ng/mg wet weight) and type II collagen (COL II) content (6.25±1.64 ng/mg wet weight) at day 21 compared with untreated samples. Immunohistochemical analyses revealed uniform, pericellular, and interterritorial staining for chondroitin sulfate proteoglycan and COL II in growth factor-supplemented constructs compared with faint, strictly pericellular staining in untreated constructs at 21 days. Consistent with matrix deposition, mechanical properties of hydrogels treated with TGF-β3 increased over time and exhibited the highest peak stress in stress-relaxation (

  15. Severe Acute Respiratory Syndrome Coronavirus ORF7a Inhibits Bone Marrow Stromal Antigen 2 Virion Tethering through a Novel Mechanism of Glycosylation Interference

    PubMed Central

    Taylor, Justin K.; Coleman, Christopher M.; Postel, Sandra; Sisk, Jeanne M.; Bernbaum, John G.; Venkataraman, Thiagarajan; Sundberg, Eric J.

    2015-01-01

    ABSTRACT Severe acute respiratory syndrome (SARS) emerged in November 2002 as a case of atypical pneumonia in China, and the causative agent of SARS was identified to be a novel coronavirus, severe acute respiratory syndrome coronavirus (SARS-CoV). Bone marrow stromal antigen 2 (BST-2; also known as CD317 or tetherin) was initially identified to be a pre-B-cell growth promoter, but it also inhibits the release of virions of the retrovirus human immunodeficiency virus type 1 (HIV-1) by tethering budding virions to the host cell membrane. Further work has shown that BST-2 restricts the release of many other viruses, including the human coronavirus 229E (hCoV-229E), and the genomes of many of these viruses encode BST-2 antagonists to overcome BST-2 restriction. Given the previous studies on BST-2, we aimed to determine if BST-2 has the ability to restrict SARS-CoV and if the SARS-CoV genome encodes any proteins that modulate BST-2's antiviral function. Through an in vitro screen, we identified four potential BST-2 modulators encoded by the SARS-CoV genome: the papain-like protease (PLPro), nonstructural protein 1 (nsp1), ORF6, and ORF7a. As the function of ORF7a in SARS-CoV replication was previously unknown, we focused our study on ORF7a. We found that BST-2 does restrict SARS-CoV, but the loss of ORF7a leads to a much greater restriction, confirming the role of ORF7a as an inhibitor of BST-2. We further characterized the mechanism of BST-2 inhibition by ORF7a and found that ORF7a localization changes when BST-2 is overexpressed and ORF7a binds directly to BST-2. Finally, we also show that SARS-CoV ORF7a blocks the restriction activity of BST-2 by blocking the glycosylation of BST-2. IMPORTANCE The severe acute respiratory syndrome coronavirus (SARS-CoV) emerged from zoonotic sources in 2002 and caused over 8,000 infections and 800 deaths in 37 countries around the world. Identifying host factors that regulate SARS-CoV pathogenesis is critical to understanding how

  16. The thiocarbamate disulphide drug, disulfiram induces osteopenia in rats by inhibition of osteoblast function due to suppression of acetaldehyde dehydrogenase activity.

    PubMed

    Mittal, Monika; Khan, Kainat; Pal, Subhashis; Porwal, Konica; China, Shyamsundar Pal; Barbhuyan, Tarun K; Baghel, Khemraj S; Rawat, Tara; Sanyal, Sabyasachi; Bhadauria, Smrati; Sharma, Vishnu L; Chattopadhyay, Naibedya

    2014-05-01

    Dithiocarbamates (DTC), a sulfhydryl group containing compounds, are extensively used by humans that include metam and thiram due to their pesticide properties, and disulfiram (DSF) as an alcohol deterrent. We screened these DTC in an osteoblast viability assay. DSF exhibited the highest cytotoxicity (IC50 488nM). Loss in osteoblast viability and proliferation was due to induction of apoptosis via G1 arrest. DSF treatment to osteoblasts reduced glutathione (GSH) levels and exogenous addition of GSH prevented DSF-induced reactive oxygen species generation and osteoblast apoptosis. DSF also inhibited osteoblast differentiation in vitro and in vivo, and the effect was associated with inhibition of aldehyde dehydrogenase (ALDH) activity. Out of various ALDH isozymes, osteoblasts expressed only ALDH2 and DSF downregulated its transcript as well as activity. Alda-1, a specific activator of ALDH2, stimulated osteoblast differentiation. Subcutaneous injection of DSF over the calvarium of new born rats reduced the differentiation phenotype of calvarial osteoblasts but increased the mRNA levels of Runx-2 and osteocalcin. DSF treatment at a human-equivalent dose of 30 mg/kg p.o. to adult Sprague Dawley rats caused trabecular osteopenia and suppressed the formation of mineralized nodule by bone marrow stromal cells. Moreover, DSF diminished bone regeneration at the fracture site. In growing rats, DSF diminished growth plate height, primary and secondary spongiosa, mineralized osteoid and trabecular strength. Substantial decreased bone formation was also observed in the cortical site of these rats. We conclude that DSF has a strong osteopenia inducing effect by impairing osteoblast survival and differentiation due to the inhibition of ALDH2 function. PMID:24496638

  17. Combination of Local Transplantation of In Vitro Bone-marrow Stromal Cells and Pulsed Electromagnetic Fields Accelerate Functional Recovery of Transected Sciatic Nerve Regeneration: A Novel Approach in Transected Nerve Repair.

    PubMed

    Mohammadi, Rahim; Mahmoodzadeh, Sirvan

    2015-01-01

    Effect of combination of undifferentiated bone marrow stromal cells (BMSCs) and pulsed electromagnetic fields (PEMF) on transected sciatic nerve regeneration was assessed in rats. A 10 mm nerve segment was excised and a vein graft was used to bridge the gap. Twenty microliter undifferentiated BMSCs (2× 107 cells /mL) were administered into the graft inBMSC group with no exposure to PEMF. In BMSC/PEMF group the whole body was exposed to PEMF (0.3 mT, 2Hz) for 4h/day within 1-5 days. In PEMF group the transected nerve was bridged and phosphate buffered saline was administered into the graft. In authograft group (AUTO), the transected nervesegments were reimplanted reversely and the whole body was exposed to PEMF. The regenerated nerve fibers were studied within 12 weeks after surgery. Behavioral, functional, electrophysiological, biomechanical, gastrocnemius muscle mass findings, morphometric indices and immuonohistochemical reactions confirmed faster recovery of regenerated axons in BMSC/PEMF group compared to those in the other groups (P<0.05). The use of undifferentiated BMSCs with whole body exposure to PEMF improved functional recovery. Combination of local transplantation of in vitro bone-marrow stromal cells and pulsed electromagnetic fields could be considered as an effective, safe and tolerable treatment for peripheral nerve repair in clinical practice.

  18. Cyclooxygenase-2 gene disruption promotes proliferation of murine calvarial osteoblasts in vitro.

    PubMed

    Xu, Zheng; Choudhary, Shilpa; Okada, Yosuke; Voznesensky, Olga; Alander, Cynthia; Raisz, Lawrence; Pilbeam, Carol

    2007-07-01

    Cyclooxygenase-2 (COX-2) is highly expressed in osteoblasts, and COX-2 produced prostaglandins (PGs) can increase osteoblastic differentiation in vitro. The goal of this study was to examine effects of COX-2 expression on calvarial osteoblastic proliferation and apoptosis. Primary osteoblasts (POBs) were cultured from calvariae of COX-2 wild-type (WT) and knockout (KO) mice. POB proliferation was evaluated by (3)H-thymidine incorporation and analysis of cell replication and cell cycle distribution by flow cytometry. POB apoptosis was evaluated by annexin and PI staining on flow cytometry. As expected, PGE(2) production and alkaline phosphatase (ALP) activity were increased in WT cultures compared to KO cultures. In contrast, cell numbers were decreased in WT compared to KO cells by day 4 of culture. Proliferation, measured on days 3-7 of culture, was 2-fold greater in KO than in WT POBs and associated with decreased Go/G1 and increased S cell cycle distribution. There was no significant effect of COX-2 genotype on apoptosis under basal culture conditions on day 5 of culture. Cell growth was decreased in KO POBs by the addition of PGE(2) or a protein kinase A agonist and increased in WT POBs by the addition of NS398, a selective COX-2 inhibitor. In contrast, differentiation and cell growth in marrow stromal cell (MSC) cultures, evaluated by ALP and crystal violet staining respectively, were increased in MSCs from WT mice compared to MSCs from KO mice, and exogenous PGE(2) increased cell growth in KO MSC cultures. We conclude that PGs secondary to COX-2 expression decrease osteoblastic proliferation in cultured calvarial cells but increase growth of osteoblastic precursors in MSC cultures.

  19. Zoledronic acid in vivo increases in vitro proliferation of rat mesenchymal stromal cells.

    PubMed

    Heino, Terhi J; Alm, Jessica J; Halkosaari, Heikki J; Välimäki, Ville-Valtteri

    2016-08-01

    Background and purpose - Bisphosphonates are widely used in the treatment of bone loss, but they might also have positive effects on osteoblastic cells and bone formation. We evaluated the effect of in vivo zoledronic acid (ZA) treatment and possible concomitant effects of ZA and fracture on the ex vivo osteogenic capacity of rat mesenchymal stromal cells (MSCs). Methods - A closed femoral fracture model was used in adult female rats and ZA was administered as a single bolus or as weekly doses up to 8 weeks. Bone marrow MSCs were isolated and cultured for in vitro analyses. Fracture healing was evaluated by radiography, micro-computed tomography (μCT), and histology. Results - Both bolus and weekly ZA increased fracture-site bone mineral content and volume. MSCs from weekly ZA-treated animals showed increased ex vivo proliferative capacity, while no substantial effect on osteoblastic differentiation was observed. Fracture itself did not have any substantial effect on cell proliferation or differentiation at 8 weeks. Serum biochemical markers showed higher levels of bone formation in animals with fracture than in intact animals, while no difference in bone resorption was observed. Interestingly, ex vivo osteoblastic differentiation of MSCs was found to correlate with in vivo serum bone markers. Interpretation - Our data show that in vivo zoledronic acid treatment can influence ex vivo proliferation of MSCs, indicating that bisphosphonates can have sustainable effects on cells of the osteoblastic lineage. Further research is needed to investigate the mechanisms. PMID:27196705

  20. Shared oxidative pathways in response to gravity-dependent loading and gamma-irradiation of bone marrow-derived skeletal cell progenitors.

    PubMed

    Kondo, H; Limoli, C; Searby, N D; Almeida, E A C; Loftus, D J; Vercoutere, W; Morey-Holton, E; Giedzinski, E; Mojarrab, R; Hilton, D; Globus, R K

    2007-01-01

    Astronauts are exposed to radiation during space travel under conditions of dramatically reduced weightbearing activity. However, we know little about how gravity-dependent loading affects tissue sensitivity to radiation. We hypothesize gravity-dependent loading and irradiation share common molecular signaling pathways in bone cell progenitors that are sensitive to stress-induced reactive oxygen species (ROS), species capable of impacting skeletal health. To address this, progenitor cells with potential to differentiate into bone-forming osteoblasts were extracted from bone marrow, then cells were centrifuged (from 5-gravity (g) to 50-g for 5-180 min) on day 2 in culture, or were exposed to a single dose (1-5 Gy) of irradiation (137Cs 1 Gy/min) on day 3 or 4. Production of ROS was measured via fluorescence-activated cell sorting (FACS) using an oxidation-sensitive dye. Cell numbers were assessed by measurement of DNA content (CyQUANT). Osteoblastogenesis was estimated by measurement of alkaline phosphatase (ALP) activity and production of mineralized matrix (Alizarin Red staining). Transient centrifugation was a potent stimulus to bone marrow stromal cells, increasing production of ROS (1.2-fold), cell number (1.5-fold to 2.2-fold), and ALP activity (2.7-fold). Radiation also caused dose- and time-dependent increases in ROS production (1.1-fold to 1.4-fold) by bone marrow stromal cells, but inhibited subsequent osteoblast differentiation. In summary, gravity-dependent loading by centrifugation stimulated ROS production and increased numbers of osteoblasts. Although radiation increased production of ROS by bone marrow stromal cells, cell number and differentiation of osteoprogenitors appeared reduced. We conclude gravity-dependent loading and radiation both stimulate production of ROS and affect critical bone cell functions including growth and differentiation.

  1. Bilateral maxillary sinus floor augmentation with tissue-engineered autologous osteoblasts and demineralized freeze-dried bone

    PubMed Central

    Deshmukh, Aashish; Kalra, Rinku; Chhadva, Shruti; Shetye, Angad

    2015-01-01

    The pneumatization of the maxillary sinus often results in a lack of sufficient alveolar bone for implant placement. In the last decades, maxillary sinus lift has become a very popular procedure with predictable results. Sinus floor augmentation procedures are generally carried out using autologous bone grafts, bone substitutes, or composites of bone and bone substitutes. However, the inherent limitations associated with each of these, have directed the attention of investigators to new technologies like bone tissue engineering. Bone marrow stromal cells have been regarded as multi-potent cells residing in bone marrow. These cells can be harvested from a person, multiplied outside his body using bioengineering principles and technologies and later introduced into a tissue defect. We present a case where tissue-engineered autologous osteoblasts were used along with demineralized freeze-dried bone for sinus floor augmentation. PMID:26097364

  2. Identification of osteoblast stimulating factor 5 as a negative regulator in the B-lymphopoietic niche.

    PubMed

    Fujita, Natsuko; Ichii, Michiko; Maeda, Tetsuo; Saitoh, Norimitsu; Yokota, Takafumi; Yamawaki, Kengo; Kakitani, Makoto; Tomizuka, Kazuma; Oritani, Kenji; Kanakura, Yuzuru

    2015-11-01

    Recent studies have revealed the crucial role of the niche which supports B-lymphocyte differentiation from hematopoietic stem cells. In this study, we aimed to identify a novel regulator of B lymphopoiesis secreted in the specific niche using the signal sequence trap method. Among the identified proteins from MS5 stromal cells, expression of pleiotrophin, placental proliferin 2, and osteoblast stimulating factor 5 (OSF-5) was dominantly high in several stromal cell lines. We found that OSF-5 suppressed early B lymphopoiesis in transgenic mice producing the target protein. The number of pre-B and immature B cells was reduced by more than half compared with control in the transgenic mice. In vitro studies showed that a secreted variant of OSF-5 inhibited the proliferation and colony formation of pre-B cells, whereas cell-intrinsic form had no influence on B lymphopoiesis. The main components of the B-lymphopoietic niche, osteoblasts in mice and mesenchymal cells in humans, are primary producers of OSF-5. These results define a novel mechanism of B lymphopoiesis in bone marrow. In the specific niche, B-lymphocyte differentiation is fine-tuned by negative regulators as well as supportive factors. PMID:26213229

  3. Recql4 haploinsufficiency in mice leads to defects in osteoblast progenitors: Implications for low bone mass phenotype

    SciTech Connect

    Yang Jieping; Murthy, Sreemala; Winata, Therry; Werner, Sean; Abe, Masumi; Prahalad, Agasanur K. . E-mail: aprahala@iupui.edu; Hock, Janet M.

    2006-05-26

    The cellular and molecular mechanisms that underlie skeletal abnormalities in defective Recql4-related syndromes are poorly understood. Our objective in this study was to explore the function of Recql4 in osteoblast biology both in vitro and in vivo. Immunohistochemistry on adult mouse bone showed Recql4 protein localization in active osteoblasts around growth plate, but not in fully differentiated osteocytes. Consistent with this finding, Recql4 gene expression was high in proliferating mouse osteoblastic MC3T3.E1 cells and decreased as cells progressively lost their proliferation activity during differentiation. Recql4 overexpression in osteoblastic cells exhibited higher proliferation activity, while its depletion impeded cell growth. In addition, bone marrow stromal cells from male Recql4+/- mice had fewer progenitor cells, including osteoprogenitors, indicated by reduced total fibroblast colony forming units (CFU-f) and alkaline phosphatase-positive CFU-f colonies concomitant with reduced bone mass. These findings provide evidence that Recql4 functions as a regulatory protein during osteoprogenitor proliferation, a critical cellular event during skeleton development.

  4. Polygonatum sibiricum polysaccharide inhibits osteoporosis by promoting osteoblast formation and blocking osteoclastogenesis through Wnt/β-catenin signalling pathway

    PubMed Central

    Du, Li; Nong, Meng-Ni; Zhao, Jin-Min; Peng, Xiao-Ming; Zong, Shao-Hui; Zeng, Gao-Feng

    2016-01-01

    Bone homeostasis is maintained by a balance between bone formation by osteoblasts and bone resorption by osteoclasts. Osteoporosis occurs when osteoclast activity surpasses osteoblast activity. Our previous studies showed the plant-derived natural polysaccharide (Polygonatum sibiricum polysaccharide or PSP) had significant anti-ovariectomy (OVX)-induced osteoporosis effects in vivo, but the mechanisms of PSP’s anti-osteoporosis effect remains unclear. In this study, we assessed PSP’s effect on the generation of osteoblast and osteoclast in vitro. This study showed that PSP promoted the osteogenic differentiation of mouse bone marrow stromal cells (BMSCs) without affecting BMPs signaling pathway. This effect was due to the increased nuclear accumulation of β-catenin, resulting in a higher expression of osteoblast-related genes. Furthermore, the study showed PSP could inhibit the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis and exert prophylatic protection against LPS-induced osteolysis in vivo. This effect was also related to the increased nuclear accumulation of β-catenin, resulting in the decreased expression of osteoclast-related genes. In conclusion, our results showed that PSP effectively promoted the osteogenic differentiation of mouse BMSCs and suppressed osteoclastogenesis; therefore, it could be used to treat osteoporosis. PMID:27554324

  5. miR-218 Directs a Wnt Signaling Circuit to Promote Differentiation of Osteoblasts and Osteomimicry of Metastatic Cancer Cells*

    PubMed Central

    Hassan, Mohammad Q.; Maeda, Yukiko; Taipaleenmaki, Hanna; Zhang, Weibing; Jafferji, Mohammad; Gordon, Jonathan A. R.; Li, Zhaoyong; Croce, Carlo M.; van Wijnen, Andre J.; Stein, Janet L.; Stein, Gary S.; Lian, Jane B.

    2012-01-01

    MicroRNAs (miRNAs) negatively and post-transcriptionally regulate expression of multiple target genes to support anabolic pathways for bone formation. Here, we show that miR-218 is induced during osteoblast differentiation and has potent osteogenic properties. miR-218 promotes commitment and differentiation of bone marrow stromal cells by activati