Science.gov

Sample records for marrow-derived osteoblast progenitor

  1. Bone marrow-derived osteoblast progenitor cells in circulating blood contribute to ectopic bone formation in mice

    SciTech Connect

    Otsuru, Satoru; Tamai, Katsuto . E-mail: tamai@gts.med.osaka-u.ac.jp; Yamazaki, Takehiko; Yoshikawa, Hideki; Kaneda, Yasufumi

    2007-03-09

    Recent studies have suggested the existence of osteoblastic cells in the circulation, but the origin and role of these cells in vivo are not clear. Here, we examined how these cells contribute to osteogenesis in a bone morphogenetic protein (BMP)-induced model of ectopic bone formation. Following lethal dose-irradiation and subsequent green fluorescent protein-transgenic bone marrow cell-transplantation (GFP-BMT) in mice, a BMP-2-containing collagen pellet was implanted into muscle. Three weeks later, a significant number of GFP-positive osteoblastic cells were present in the newly generated ectopic bone. Moreover, peripheral blood mononuclear cells (PBMNCs) from the BMP-2-implanted mouse were then shown to include osteoblast progenitor cells (OPCs) in culture. Passive transfer of the PBMNCs isolated from the BMP-2-implanted GFP-mouse to the BMP-2-implanted nude mouse led to GFP-positive osteoblast accumulation in the ectopic bone. These data provide new insight into the mechanism of ectopic bone formation involving bone marrow-derived OPCs in circulating blood.

  2. Isolation and characterization of bone marrow-derived mesenchymal progenitor cells with myogenic and neuronal properties.

    PubMed

    Shiota, Mitsutaka; Heike, Toshio; Haruyama, Munetada; Baba, Shiro; Tsuchiya, Atsunori; Fujino, Hisanori; Kobayashi, Hirohiko; Kato, Takeo; Umeda, Katsutsugu; Yoshimoto, Momoko; Nakahata, Tatsutoshi

    2007-03-10

    Sphere formation has been utilized as a way to isolate multipotent stem/progenitor cells from various tissues. However, very few studies on bone marrow-derived spheres have been published and assessed their multipotentiality. In this study, multipotent marrow cell populations were isolated using a three-step method. First, after elimination of hematopoietic cells, murine marrow-derived adherent cells were cultured in plastic dishes until small cells gradually appeared and multiplied. Cells were then cultured under non-adherent conditions and formed spheres that were immunopositive for a neural precursor marker, nestin. RT-PCR analysis also revealed that the spheres were positive for nestin in addition to PPARgamma, osf2, SOX9, and myoD, which are markers of precursors of adipocytic, osteoblastic, chondrocytic, and skeletal myeloblastic lineages, respectively. Finally, spheres were dissociated into single cells and expanded in adherent cultures. Under appropriate induction conditions, the sphere-derived cells acquired the phenotypic properties in vitro of neurons, skeletal myoblasts, and beating cardiomyocytes, as well as adipocytes, osteoblasts, and chondrocytes. Next, sphere-derived cells were transplanted into murine myocardial infarction models. One month later, they had become engrafted as cardiomyocytes, and cardiac catheterization showed significant functional improvements. Thus, sphere-derived cells represent a new approach to enhance the multi-differentiation potential of murine bone marrow.

  3. Cell attachment and proliferation of bone marrow-derived osteoblast on zirconia of various surface treatment

    PubMed Central

    Lee, Heesu; Noh, Kwantae; Woo, Yi-Hyung

    2014-01-01

    PURPOSE This study was performed to characterize the effects of zirconia coated with calcium phosphate and hydroxyapatite compared to smooth zirconia after bone marrow-derived osteoblast culture. MATERIALS AND METHODS Bone marrow-derived osteoblasts were cultured on (1) smooth zirconia, (2) zirconia coated with calcium phosphate (CaP), and (3) zirconia coated with hydroxyapatite (HA). The tetrazolium-based colorimetric assay (MTT test) was used for cell proliferation evaluation. Scanning electron microscopy (SEM) and alkaline phosphatase (ALP) activity was measured to evaluate the cellular morphology and differentiation rate. X-ray photoelectron spectroscopy (XPS) was employed for the analysis of surface chemistry. The genetic expression of the osteoblasts and dissolution behavior of the coatings were observed. Assessment of the significance level of the differences between the groups was done with analysis of variance (ANOVA). RESULTS From the MTT assay, no significant difference between smooth and surface coated zirconia was found (P>.05). From the SEM image, cells on all three groups of discs were sporadically triangular or spread out in shape with formation of filopodia. From the ALP activity assay, the optical density of osteoblasts on smooth zirconia discs was higher than that on surface treated zirconia discs (P>.05). Most of the genes related to cell adhesion showed similar expression level between smooth and surface treated zirconia. The dissolution rate was higher with CaP than HA coating. CONCLUSION The attachment and growth behavior of bone-marrow-derived osteoblasts cultured on smooth surface coated zirconia showed comparable results. However, the HA coating showed more time-dependent stability compared to the CaP coating. PMID:24843393

  4. Bone marrow-derived progenitor cells in pulmonary fibrosis.

    PubMed

    Hashimoto, Naozumi; Jin, Hong; Liu, Tianju; Chensue, Stephen W; Phan, Sem H

    2004-01-01

    The origin of fibroblasts in pulmonary fibrosis is assumed to be intrapulmonary, but their extrapulmonary origin and especially derivation from bone marrow (BM) progenitor cells has not been ruled out. To examine this possibility directly, adult mice were durably engrafted with BM isolated from transgenic mice expressing enhanced GFP. Induction of pulmonary fibrosis in such chimera mice by endotracheal bleomycin (BLM) injection caused large numbers of GFP(+) cells to appear in active fibrotic lesions, while only a few GFP(+) cells could be identified in control lungs. Flow-cytometric analysis of lung cells confirmed the BLM-induced increase in GFP(+) cells in chimera mice and revealed a significant increase in GFP(+) cells that also express type I collagen. GFP(+) lung fibroblasts isolated from chimera mice expressed collagen and telomerase reverse transcriptase but not alpha-smooth muscle actin. Treatment of isolated GFP(+) fibroblasts with TGF-beta failed to induce myofibroblast differentiation. Cultured lung fibroblasts expressed the chemokine receptors CXCR4 and CCR7 and responded chemotactically to their cognate ligands, stromal cell-derived factor-1 alpha and secondary lymphoid chemokine, respectively. Thus the collagen-producing lung fibroblasts in pulmonary fibrosis can also be derived from BM progenitor cells.

  5. Transcoronary bone marrow-derived progenitor cells in a child with myocardial infarction: first pediatric experience.

    PubMed

    Limsuwan, Alisa; Pienvichit, Pavit; Limpijankit, Thosaphol; Khowsathit, Pongsak; Hongeng, Suradej; Pornkul, Ratanaporn; Siripornpitak, Suvipaporn; Boonbaichaiyapruk, Sarana

    2010-08-01

    Recent advances in stem cell therapy to restore cardiac function have great promise for patients with congestive heart failure after myocardial infarction in an adult population. We examined the benefits of bone marrow-derived progenitor cells treatment modality for the pediatric patient. We present our first case of transcoronary autologous stem cell transplantation in a 9-year-old girl with refractory congestive heart failure secondary to myocardial infarction 1 year after transcatheter revascularization. The child received daily injections of granulocyte colony-stimulating factor for 3 days prior to the bone marrow aspiration. The bone marrow cells were isolated to constitute CD133+/CD34+ more than 90% of the total number. Subsequently, the progenitor cell suspension was injected via a transcoronary catheter without any complication. Three months after stem cell therapy, her cardiac function, assessed by both cardiac magnetic resonance and echocardiogram, has been improved with the left ventricular ejection fraction at 47% compared to the baseline of 30%. This is the first reported pediatric case of successful transcoronary injection of bone marrow-derived progenitor cells for end-stage heart disease. The procedure is considered safe and feasible for the pediatric population.

  6. Characteristics of bone marrow-derived endothelial progenitor cells in aged mice

    SciTech Connect

    Zhang Wei; Zhang Guoping; Jin Huiming . E-mail: hmjin@shmu.edu.cn; Hu Renming

    2006-09-29

    Evidence for dysfunction of endothelial repair in aged mice was sought by studying the pattern of induced differentiation, quantity, and function of bone marrow-derived endothelial progenitor cells (EPCs) in aged mice. The CD117-positive stem cell population was separated from bone marrow by magnetic activated cell-sorting system (MACS), and EPCs were defined by demonstrating the expression of CD117{sup +}CD34{sup +}Flk-1{sup +} by flow cytometry. After 7 days of culture, the number of clones formed was counted, and proliferation and migration of EPCs were analyzed by MTT[3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] assay and modified Boyden chamber assay. The results demonstrated that compared to the control group, the quantity of bone marrow-derived CD117{sup +} stem cells and EPCs, as well as the proliferation, migration, the number of clones formed, and phagocytotic function of EPCs were significantly reduced in aged mice. There were no significant differences in the morphology and induced differentiation pattern of EPCs between the aged mouse group and the control group. Authors suggest that the dysfunction of EPCs may serve as a surrogate parameter of vascular function in old mice.

  7. Bone marrow-derived osteoblasts seeded into porous beta-tricalcium phosphate to repair segmental defect in canine's mandibula.

    PubMed

    Wu, Wei; Chen, Xiaobin; Mao, Tianqiu; Chen, Fulin; Feng, Xinghua

    2006-10-01

    Bone regeneration is often needed for many aesthetic and reconstructive procedures. Tissue engineering provided a promising approach to supplement existing treatment strategies. In this study, we aimed to evaluate the effect of reconstructing mandibular defect by using bioceramics seeded with bone marrow derived osteoblasts. Canine's autologous marrow stromal cells were Culture-expanded and induced to osteoblastic phenotype, then were seeded into prepared porous beta-tricalcium phosphate, after being incubated in vitro. The cell/ scaffold complexes were implanted into the prepared defect in canines' mandibula and fixed by internal rigid fixation. In control groups, beta-tricalcium phosphate alone and autologous iliums were implanted into the prepared defects. Twelve weeks after implantation, the specimens were examined macroscopically and histologically. In experimental group and autologous iliums group, new bone grafts were successfully developed at 12 weeks after implantation and repaired the continuity of the mandibula. Histologically, newly formed bone could be observed on the surface and in the pores of beta-tricalcium phosphate in the cell/scaffold group, whereas incomplete bone repair was found in pure beta-tricalcium phosphate group. The harvested bone marrow derived osteoblasts possess the ability to form new bone tissue when seeded onto porous beta-tricalcium phosphate, which shows the potential of using this method to repair large segmental mandibular defect clinically.

  8. PPARα Is Essential for Microparticle-Induced Differentiation of Mouse Bone Marrow-Derived Endothelial Progenitor Cells and Angiogenesis

    PubMed Central

    Benameur, Tarek; Tual-Chalot, Simon; Andriantsitohaina, Ramaroson; Martínez, María Carmen

    2010-01-01

    Background Bone marrow-derived endothelial progenitor cells (EPCs) are critical for neovascularization. We hypothesized that microparticles (MPs), small fragments generated from the plasma membrane, can activate angiogenic programming of EPCs. Methodology/Principal Findings We studied the effects of MPs obtained from wild type (MPsPPARα+/+) and knock-out (MPsPPARα−/−) mice on EPC differentiation and angiogenesis. Bone marrow-derived cells were isolated from WT or KO mice and were cultured in the presence of MPsPPARα+/+ or MPsPPARα−/− obtained from blood of mice. Only MPsPPARα+/+ harboring PPARα significantly increased EPC, but not monocytic, differentiation. Bone marrow-derived cells treated with MPsPPARα+/+ displayed increased expression of pro-angiogenic genes and increased in vivo angiogenesis. MPsPPARα+/+ increased capillary-like tube formation of endothelial cells that was associated with enhanced expressions of endothelial cell-specific markers. Finally, the effects of MPsPPARα+/+ were mediated by NF-κB-dependent mechanisms. Conclusions/Significance Our results underscore the obligatory role of PPARα carried by MPs for EPC differentiation and angiogenesis. PPARα-NF-κB-Akt pathways may play a pivotal stimulatory role for neovascularization, which may, at least in part, be mediated by bone marrow-derived EPCs. Improvement of EPC differentiation may represent a useful strategy during reparative neovascularization. PMID:20811625

  9. Nicotinamide phosphoribosyltransferase (Nampt) may serve as the marker for osteoblast differentiation of bone marrow-derived mesenchymal stem cells.

    PubMed

    He, Xu; He, Jiaxue; Shi, Yingai; Pi, Chenchen; Yang, Yue; Sun, Yanan; Ma, Cao; Lin, Lin; Zhang, Lihong; Li, Yulin; Li, Yan

    2017-03-01

    Decreased bone volume and strength with aging and enhanced risk of fractures are in part due to reduced number of bone-forming mesenchymal stem cells (MSCs) and cellular dysfunction. In a previous study, we found that osteogenic differentiation of the multipotent and omnipotent preosteoblasts are accompanied by the alterations of intracellular NAD metabolism in which nicotinamide phosphoribosyltransferase (Nampt) plays a regulatory role. The increased Nampt during osteoblast differentiation, the enzyme catalyzing NAD resynthesis from nicotinamide was noted. However, whether Nampt will also be able to affect osteogenic differentiation of primary bone marrow-derived mesenchymal stem cells (BM-MSCs), it is still uncertain. Here we report the role of Nampt in regulating osteoblast differentiation in primary mouse BM-MSCs. We found that Nampt expression was progressively elevated during BM-MSCs osteogenic differentiation. The Nampt inhibitor FK866 or knock-down of Nampt in BM-MSCs led to declined osteoblastogenesis, including attenuated ALP activity, diminished matrix mineralization and down-regulated osteoblast specific marker genes. In addition, declined osteoblastogenesis by Nampt deficiency or addition of FK866 was related to lower intracellular NAD concentration and decreased Sirt1 activity. The present findings demonstrate that osteogenic differentiation in MSCs can be modulated by intracellular NAD metabolism, in which Nampt may serve as an applicable marker for the osteoblast determination.

  10. Glycosaminoglycans enhance osteoblast differentiation of bone marrow derived human mesenchymal stem cells.

    PubMed

    Mathews, Smitha; Mathew, Suja Ann; Gupta, Pawan Kumar; Bhonde, Ramesh; Totey, Satish

    2014-02-01

    Extracellular matrix plays an important role in regulating cell growth and differentiation. The biomimetic approach of cell-based tissue engineering is based on mirroring this in vivo micro environment for developing a functional tissue engineered construct. In this study, we treated normal tissue culture plates with selected extracellular matrix components consisting of glycosaminoglycans such as chondroitin-4-sulphate, dermatan sulphate, chondroitin-6-sulphate, heparin and hyaluronic acid. Mesenchymal stem cells isolated from adult human bone marrow were cultured on the glycosaminoglycan treated culture plates to evaluate their regulatory role in cell growth and osteoblast differentiation. Although no significant improvement on human mesenchymal stem cell adhesion and proliferation was observed on the glycosaminoglycan-treated tissue culture plates, there was selective osteoblast differentiation, indicating its potential role in differentiation rather than proliferation. Osteoblast differentiation studies showed high osteogenic potential for all tested glycosaminoglycans except chondroitin-4-sulphate. Osteoblast differentiation-associated genes such as osterix, osteocalcin, integrin binding sialoprotein, osteonectin and collagen, type 1, alpha 1 showed significant upregulation. We identified osterix as the key transcription factor responsible for the enhanced bone matrix deposition observed on hyaluronic acid, heparin and chondroitin-6-sulphate. Hyaluronic acid provided the most favourable condition for osteoblast differentiation and bone matrix synthesis. Our results confirm and emphasise the significant role of extracellular matrix in regulating cell differentiation. To summarise, glycosaminoglycans of extracellular matrix played a significant role in regulating osteoblast differentiation and could be exploited in the biomimetic approach of fabricating or functionalizing scaffolds for stem cell based bone tissue engineering.

  11. Effects of biodegradable polymer particles on rat marrow-derived stromal osteoblasts in vitro.

    PubMed

    Wake, M C; Gerecht, P D; Lu, L; Mikos, A G

    1998-07-01

    Effects of biodegradable particles of poly(L-lactic acid) (PLLA) and poly(DL-lactic-co-glycolic acid) (PLGA) 50/50 with diameter ranging from 1.0 to 1.5 microm on rat marrow stromal osteoblasts in vitro have been investigated over a period of 28 days. This study examined the effects of three particle parameters, concentration, polymer molecular weight, and composition, on osteoblast proliferation and function. Cell cultures were challenged with particles at two different time points: upon cell seeding (Day 1), and after cells had begun to establish their own mineralized extracellular matrix (Day 14). The most significant trend observed in those cultures challenged with particles beginning on Day 1 was due to increasing the concentration of particles, resulting in decreased [3H]-thymidine incorporation, cell count, and mineralization. Those cultures challenged with particles beginning on Day 14 were significantly more mineralized than those challenged with particles beginning on Day 1. In addition, increasing osteocalcin secretion confirmed the osteoblastic phenotype of the derived stromal cells. These studies suggest that the particles may affect the bone remodeling process surrounding a degrading implant by direct interaction with osteoblasts in addition to their indirect contributions to the inflammatory mechanism via mediators secreted by macrophages upon their phagocytosis.

  12. Extracellular matrix protein mediated regulation of the osteoblast differentiation of bone marrow derived human mesenchymal stem cells.

    PubMed

    Mathews, Smitha; Bhonde, Ramesh; Gupta, Pawan Kumar; Totey, Satish

    2012-09-01

    The biomimetic approach of tissue engineering exploits the favorable properties of the extracellular matrix (ECM), to achieve better scaffold performance and tissue regeneration. ECM proteins regulate cell adhesion and differentiation through integrin mediated signal transduction. In the present study, we have examined the role of ECM proteins such as collagen type I, fibronectin, laminin and vitronectin in regulating the proliferation and osteogenic differentiation of bone marrow derived human mesenchymal stem cells (hMSCs). hMSCs were grown on selected ECM protein treated tissue culture plates. The growth kinetics was assessed by calculating the doubling time of the cells on different ECM treated plates. The cells were directed to osteoblast lineage by growing them in osteogenic induction media for 21 day. Differentiation was evaluated at different time points by osteoblast differentiation associated gene expression, alkaline phosphatase (ALP) activity, histochemical staining for mineralized matrix and calcium quantification. The doubling time of hMSCs cultured on collagen type I was significantly low, which was followed by laminin and fibronectin treated plates. However, doubling time of hMSCs cultured on vitronectin treated plate was not significantly different than that of the untreated control. High ALP gene (ALPL) expression and associated enhancement of mineralization were observed on collagen type I, fibronectin and vitronectin treated plates. Collagen type I showed early onset of mineralization with high ALP activity and up-regulation of osteopontin, ALPL, bone sialoprotein and osteocalcin genes. Vitronectin also up-regulated these genes and showed the highest amount of calcium in the secreted mineral matrix. Therefore, we conclude that, ECM proteins indeed modified the growth patterns and induced the osteoblast differentiation of hMSCs. Our findings have significant implication for bone tissue engineering applications.

  13. Micro-/Nano- sized hydroxyapatite directs differentiation of rat bone marrow derived mesenchymal stem cells towards an osteoblast lineage

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Zhou, Gang; Zheng, Lisha; Liu, Haifeng; Niu, Xufeng; Fan, Yubo

    2012-03-01

    Regenerative medicine consisting of cells and materials provides a new way for the repair and regeneration of tissues and organs. Nano-biomaterials are highlighted due to their advantageous features compared with conventional micro-materials. The aim of this study is to investigate the effects of micro-/nano- sized hydroxyapatite (μ/n-HA) on the osteogenic differentiation of rat bone marrow derived mesenchymal stem cells (rBMSCs). μ/n-HA were prepared by a microwave synthesizer and precipitation method, respectively. Different sizes of μ/n-HA were characterized by IR, XRD, SEM, TEM and co-cultured with rBMSCs. It was shown that rBMSCs expressed higher levels of osteoblast-related markers by n-HA than μ-HA stimulation. The size of HA is an important factor for affecting the osteogenic differentiation of rBMSCs. This provides a new avenue for mechanistic studies of stem cell differentiation and a new approach to obtain more committed differentiated cells.

  14. Mobilization of Endogenous Bone Marrow Derived Endothelial Progenitor Cells and Therapeutic Potential of Parathyroid Hormone after Ischemic Stroke in Mice

    PubMed Central

    Wang, Li-Li; Chen, Dongdong; Lee, Jinhwan; Gu, Xiaohuan; Alaaeddine, Ghina; Li, Jimei; Wei, Ling; Yu, Shan Ping

    2014-01-01

    Stroke is a major neurovascular disorder threatening human life and health. Very limited clinical treatments are currently available for stroke patients. Stem cell transplantation has shown promising potential as a regenerative treatment after ischemic stroke. The present investigation explores a new concept of mobilizing endogenous stem cells/progenitor cells from the bone marrow using a parathyroid hormone (PTH) therapy after ischemic stroke in adult mice. PTH 1-34 (80 µg/kg, i.p.) was administered 1 hour after focal ischemia and then daily for 6 consecutive days. After 6 days of PTH treatment, there was a significant increase in bone marrow derived CD-34/Fetal liver kinase-1 (Flk-1) positive endothelial progenitor cells (EPCs) in the peripheral blood. PTH treatment significantly increased the expression of trophic/regenerative factors including VEGF, SDF-1, BDNF and Tie-1 in the brain peri-infarct region. Angiogenesis, assessed by co-labeled Glut-1 and BrdU vessels, was significantly increased in PTH-treated ischemic brain compared to vehicle controls. PTH treatment also promoted neuroblast migration from the subventricular zone (SVZ) and increased the number of newly formed neurons in the peri-infarct cortex. PTH-treated mice showed significantly better sensorimotor functional recovery compared to stroke controls. Our data suggests that PTH therapy improves endogenous repair mechanisms after ischemic stroke with functional benefits. Mobilizing endogenous bone marrow-derived stem cells/progenitor cells using PTH and other mobilizers appears an effective and feasible regenerative treatment after ischemic stroke. PMID:24503654

  15. [Osteoblastic differentiation and in vivo osteogenic activity of marrow-derived mesenchymal stem cells stimulated by Tacrolimus: experiment with rats].

    PubMed

    Dong, Jian; Dai, Wen-da; Fang, Tao-lin; Lin, Hong; Uemura, Toshimasa

    2007-01-16

    To investigate the effect of the immunosuppressant Tacrolimus (FK506) on the osteoblastic differentiation and in vivo osteogenic inducement of bone marrow-derived mesenchymal stem cells (MSCs). MSCs were derived from Fischer 344 rats. Some MSCs were cultured with L-ascorbic acid-2-phosphate (AsAP) and beta-glycerophosphate (beta-GP) or FK506 plus AsAP and beta-GP. The alkaline phosphatase (APase) activity and calcium deposition were detected 4, 8, 12, and 16 days after the culture. Scanning electron microscopy was used to examine the calcified nodules. Northern blotting was used to detect the mRNA expression of osteocalcium. Multiparous beta-tricalcium phosphate (beta-TCP) ceramic cubes were dipped into 2 kinds of suspension of MSCs, treated by FK506 + AsAP + beta-GP or AsAP + beta-GP, so as to produce 48 pieces of MSCs/beta-TCP complex that were randomly divided into 2 equal groups to be cultured with AsAP + beta-GP or AsAP + beta-GP + FK506 for 4 weeks. The these pieces were transplanted into the subcutaneous sites of the rats' backs and were taken out 4 and 8 weeks later respectively for histological examination. In vitro assays showed that the APase activity, calcium deposition, expression of osteocalcin mRNA of the FK506 + AsAP + beta-GP group at any time points were all significantly higher than those of the AsAP + beta-GP group (all P < 0.05). SEM showed that since the 16th day after culture calcified nodules began to be seen in the FK506 + AsAP + beta-GP group. Since the 4th weeks after transplantation remarkable new bone formation could be seen in the FK506 treated MSCs/beta-TCP complexes in comparison with those MSCs/beta-TCP complexes without treatment with FK506. Greatly enhancing the in vitro osteoblastic differentiation and in vivo osteogenesis of MSCs, FK506 has a potential value as a bone growth factor and may improve the clinical result of bone transplantation used to treat large bone defect. The results of this experiment also contributes to a

  16. Fetal tracheal augmentation with cartilage engineered from bone marrow-derived mesenchymal progenitor cells.

    PubMed

    Fuchs, Julie R; Hannouche, Didier; Terada, Shinichi; Vacanti, Joseph P; Fauza, Dario O

    2003-06-01

    The authors have described previously the use of engineered fetal cartilage in a large animal model of fetal tracheal repair. This study was aimed at comparing cartilage engineered from bone marrow-derived stromal cells (BMSC) to native and engineered cartilage, in this model. Ovine BMSC were expanded in vitro, seeded onto biodegradable scaffolds, and maintained in transforming growth factor beta 1 (TGF-beta1)-supplemented medium for 3 months (group I). Identical scaffolds were seeded with fetal chondrocytes (group II). All constructs were analyzed in vitro, implanted into fetal tracheas, and harvested after birth for further analysis. There were no differences in survival between the groups. All BMSC-based constructs exhibited chondrogenic differentiation. Matrix analyses in vitro showed that both groups had similar levels of glycosaminoglycans (GAG) and type II collagen (C-II), but lower levels of elastin when compared with native fetal cartilage. Yet, compared with group II, group I had higher levels of GAG, equal levels of C-II, and lower levels of elastin. However, remodeling resulted in no differences between the 2 groups in any of these variables in vivo. The bone marrow may be a useful cell source for cartilage engineering aimed at the surgical repair of severe congenital tracheal anomalies, such as tracheal atresia and agenesis, in utero.

  17. Particle Radiation-Induced Nontargeted Effects in Bone-Marrow-Derived Endothelial Progenitor Cells

    PubMed Central

    Sasi, Sharath P.; Park, Daniel; Muralidharan, Sujatha; Wage, Justin; Kiladjian, Albert; Onufrak, Jillian; Enderling, Heiko; Yan, Xinhua; Goukassian, David A.

    2015-01-01

    Bone-marrow- (BM-) derived endothelial progenitor cells (EPCs) are critical for endothelial cell maintenance and repair. During future space exploration missions astronauts will be exposed to space irradiation (IR) composed of a spectrum of low-fluence protons (1H) and high charge and energy (HZE) nuclei (e.g., iron-56Fe) for extended time. How the space-type IR affects BM-EPCs is limited. In media transfer experiments in vitro we studied nontargeted effects induced by 1H- and 56Fe-IR conditioned medium (CM), which showed significant increase in the number of p-H2AX foci in nonirradiated EPCs between 2 and 24 h. A 2–15-fold increase in the levels of various cytokines and chemokines was observed in both types of IR-CM at 24 h. Ex vivo analysis of BM-EPCs from single, low-dose, full-body 1H- and 56Fe-IR mice demonstrated a cyclical (early 5–24 h and delayed 28 days) increase in apoptosis. This early increase in BM-EPC apoptosis may be the effect of direct IR exposure, whereas late increase in apoptosis could be a result of nontargeted effects (NTE) in the cells that were not traversed by IR directly. Identifying the role of specific cytokines responsible for IR-induced NTE and inhibiting such NTE may prevent long-term and cyclical loss of stem and progenitors cells in the BM milieu. PMID:26074973

  18. Bone marrow-derived endothelial progenitor cells protect postischemic axons after traumatic brain injury.

    PubMed

    Park, Katya J; Park, Eugene; Liu, Elaine; Baker, Andrew J

    2014-02-01

    White matter sparing after traumatic brain injury (TBI) is an important predictor of survival and outcome. Blood vessels and axons are intimately associated anatomically and developmentally. Neural input is required for appropriate vascular patterning, and vascular signaling is important for neuron development and axon growth. Owing to this codependence between endothelial cells and axons during development and the contribution of endothelial progenitor cells (EPCs) in ischemic injury, we hypothesized that EPCs are important in axonal survival after TBI. We examined the effects of allogenic-cultured EPCs on white matter protection and microvascular maintenance after midline fluid percussion injury in adult Sprague-Dawley rats. We used two in vitro models of injury, mechanical stretch and oxygen-glucose deprivation (OGD), to examine the effects of EPCs on the mechanical and ischemic components of brain trauma, respectively. Our results indicate that EPCs improve the white matter integrity and decrease capillary breakdown after injury. Cultured cortical neurons exposed to OGD had less axon degeneration when treated with EPC-conditioned media, whereas no effect was seen in axons injured by mechanical stretch. The results indicate that EPCs are important for the protection of the white matter after trauma and represent a potential avenue for therapy.

  19. Bone marrow-derived hematopoietic stem and progenitor cells infiltrate allogeneic and syngeneic transplants.

    PubMed

    Fan, Z; Enjoji, K; Tigges, J C; Toxavidis, V; Tchipashivili, V; Gong, W; Strom, T B; Koulmanda, M

    2014-12-01

    Lineage (CD3e, CD11b, GR1, B220 and Ly-76) negative hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) infiltrate islet allografts within 24 h posttransplantation. In fact, lineage(negative) Sca-1(+) cKit(+) ("LSK") cells, a classic signature for HSCs, were also detected among these graft infiltrating cells. Lineage negative graft infiltrating cells are functionally multi-potential as determined by a standard competitive bone marrow transplant (BMT) assay. By 3 months post-BMT, both CD45.1 congenic, lineage negative HSCs/HPCs and classic "LSK" HSCs purified from islet allograft infiltrating cells, differentiate and repopulate multiple mature blood cell phenotypes in peripheral blood, lymph nodes, spleen, bone marrow and thymus of CD45.2 hosts. Interestingly, "LSK" HSCs also rapidly infiltrate syngeneic islet transplants as well as allogeneic cardiac transplants and sham surgery sites. It seems likely that an inflammatory response, not an adaptive immune response to allo-antigen, is responsible for the rapid infiltration of islet and cardiac transplants by biologically active HSCs/HPCs. The pattern of hematopoietic differentiation obtained from graft infiltrating HSCs/HPCs, cells that are recovered from inflammatory sites, as noted in the competitive BMT assay, is not precisely the same as that of intramedullary HSCs. This does not refute the obvious multi-lineage potential of graft infiltrating HSCs/HPCs. © Copyright 2014 The American Society of Transplantation and the American Society of Transplant Surgeons.

  20. Bone Marrow Derived Hematopoietic Stem and Progenitor Cells Infiltrate Allogeneic and Syngeneic Transplants

    PubMed Central

    Fan, Z.; Enjoji, K.; Tigges, J. C.; Toxavidis, V.; Tchipashivili, V.; Gong, W.; Strom, T. B.; Koulmanda, M.

    2015-01-01

    Lineage (CD3e, CD11b, GR1, B220 and Ly-76) negative hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) infiltrate islet allografts within 24 h posttransplantation. In fact, lineagenegative Sca-1+cKit+ (“LSK”) cells, a classic signature for HSCs, were also detected among these graft infiltrating cells. Lineage negative graft infiltrating cells are functionally multi-potential as determined by a standard competitive bone marrow transplant (BMT) assay. By 3 months post-BMT, both CD45.1 congenic, lineage negative HSCs/HPCs and classic “LSK” HSCs purified from islet allograft infiltrating cells, differentiate and repopulate multiple mature blood cell phenotypes in peripheral blood, lymph nodes, spleen, bone marrow and thymus of CD45.2 hosts. Interestingly, “LSK” HSCs also rapidly infiltrate syngeneic islet transplants as well as allogeneic cardiac transplants and sham surgery sites. It seems likely that an inflammatory response, not an adaptive immune response to allo-antigen, is responsible for the rapid infiltration of islet and cardiac transplants by biologically active HSCs/HPCs. The pattern of hematopoietic differentiation obtained from graft infiltrating HSCs/HPCs, cells that are recovered from inflammatory sites, as noted in the competitive BMT assay, is not precisely the same as that of intra-medullary HSCs. This does not refute the obvious multi-lineage potential of graft infiltrating HSCs/HPCs. PMID:25387427

  1. Fracture induced mobilization and incorporation of bone marrow-derived endothelial progenitor cells for bone healing.

    PubMed

    Matsumoto, Tomoyuki; Mifune, Yutaka; Kawamoto, Atsuhiko; Kuroda, Ryosuke; Shoji, Taro; Iwasaki, Hiroto; Suzuki, Takahiro; Oyamada, Akira; Horii, Miki; Yokoyama, Ayumi; Nishimura, Hiromi; Lee, Sang Yang; Miwa, Masahiko; Doita, Minoru; Kurosaka, Masahiro; Asahara, Takayuki

    2008-04-01

    We recently reported that systemic administration of peripheral blood (PB) CD34+ cells, an endothelial progenitor cell (EPC)-enriched population, contributed to fracture healing via vasculogenesis/angiogenesis. However, pathophysiological role of EPCs in fracture healing process has not been fully clarified. Therefore, we investigated the hypothesis whether mobilization and incorporation of bone marrow (BM)-derived EPCs may play a pivotal role in appropriate fracture healing. Serial examinations of Laser doppler perfusion imaging and histological capillary density revealed that neovascularization activity at the fracture site peaked at day 7 post-fracture, the early phase of endochondral ossifification. Fluorescence-activated cell sorting (FACS) analysis demonstrated that the frequency of BM cKit+Sca1+Lineage- (Lin-) cells and PB Sca1+Lin- cells, which are EPC-enriched fractions, significantly increased post-fracture. The Sca1+ EPC-derived vasuculogenesis at the fracture site was confirmed by double immunohistochemistry for CD31 and Sca1. BM transplantation from transgenic donors expressing LacZ transcriptionally regulated by endothelial cell-specific Tie-2 promoter into wild type also provided direct evidence that EPCs contributing to enhanced neovascularization at the fracture site were specifically derived from BM. Animal model of systemic administration of PB Sca1+Lin- Green Fluorescent Protein (GFP)+ cells further confirmed incorporation of the mobilized EPCs into the fracture site for fracture healing. These findings indicate that fracture may induce mobilization of EPCs from BM to PB and recruitment of the mobilized EPCs into fracture sites, thereby augment neovascularization during the process of bone healing. EPCs may play an essential role in fracture healing by promoting a favorable environment through neovascularization in damaged skeletal tissue.

  2. Altered SDF-1-mediated differentiation of bone marrow-derived endothelial progenitor cells in diabetes mellitus

    PubMed Central

    De Falco, Elena; Avitabile, Daniele; Totta, Pierangela; Straino, Stefania; Spallotta, Francesco; Cencioni, Chiara; Torella, Anna Rita; Rizzi, Roberto; Porcelli, Daniele; Zacheo, Antonella; Vito, Luca Di; Pompilio, Giulio; Napolitano, Monica; Melillo, Guido; Capogrossi, Maurizio C; Pesce, Maurizio

    2009-01-01

    In diabetic patients and animal models of diabetes mellitus (DM), circulating endothelial progenitor cell (EPC) number is lower than in normoglycaemic conditions and EPC angiogenic properties are inhibited. Stromal cell derived factor-1 (SDF-1) plays a key role in bone marrow (BM) c-kit+ stem cell mobilization into peripheral blood (PB), recruitment from PB into ischemic tissues and differentiation into endothelial cells. The aim of the present study was to examine the effect of DM in vivo and in vitro, on murine BM-derived c-kit+ cells and on their response to SDF-1. Acute hindlimb ischemia was induced in streptozotocin-treated DM and control mice; circulating c-kit+ cells exhibited a rapid increase followed by a return to control levels which was significantly faster in DM than in control mice. CXCR4 expression by BM c-kit+ cells as well as SDF-1 protein levels in the plasma and in the skeletal muscle, both before and after the induction of ischemia, were similar between normoglycaemic and DM mice. However, BM-derived c-kit+ cells from DM mice exhibited an impaired differentiation towards the endothelial phenotype in response to SDF-1; this effect was associated with diminished protein kinase phosphorylation. Interestingly, SDF-1 ability to induce differentiation of c-kit+ cells from DM mice was restored when cells were cultured under normoglycaemic conditions whereas c-kit+ cells from normoglycaemic mice failed to differentiate in response to SDF-1 when they were cultured in hyperglycaemic conditions. These results show that DM diminishes circulating c-kit+ cell number following hindlimb ischemia and inhibits SDF-1-mediated AKT phosphorylation and differentiation towards the endothelial phenotype of BM-derived c-kit+ cells. PMID:20196780

  3. Diabetes impairs mobilization of mouse bone marrow-derived Lin(-)/VEGF-R2(+) progenitor cells.

    PubMed

    Barthelmes, D; Irhimeh, M R; Gillies, M C; Karimipour, M; Zhou, M; Zhu, L; Shen, W Y

    2013-10-01

    Endothelial progenitor cells circulating in the peripheral blood (PB) contribute to vascular repair. This study aimed to evaluate the potential of a 'cocktail' consisting of erythropoietin, granulocyte colony-stimulating factor and tetrahydrobiopterin to mobilize hematopoietic lineage negative/vascular endothelial growth factor receptor 2 positive (Lin(-)/VEGF-R2(+)) cells from the bone marrow (BM) to PB in non-diabetic and diabetic mice. Diabetes was induced in mice by intraperitoneal injection of streptozotocin. Diabetic mice were studied after 16weeks of hyperglycemia. Half the mice in each group (non-diabetic and diabetic) received daily intraperitoneal injections of the cocktail for 6 consecutive days while the other half received vehicle buffer. Mobilization of Lin(-)/VEGF-R2(+) cells, which were expanded in MCP301 medium, was evaluated after isolating them from BM and PB and their phenotypic and morphological properties were studied. We found that 16weeks of diabetes affected neither the total number of BM mononucleated cells nor the number of Lin(-)/VEGF-R2(+) cells in BM compared with non-diabetic controls. In non-diabetic mice, cocktail treatment resulted in a significant decrease in BM Lin(-)/VEGF-R2(+) cells, paralleled by a significant increase of these cells in PB. Such changes in the number of Lin(-)/VEGF-R2(+) cells in BM and PB after the cocktail treatment were less marked in diabetic mice. In vitro studies of BM Lin(-)/VEGF-R2(+) cells from diabetic and non-diabetic mice did not reveal any differences in either phenotypes or colony forming potential. These findings indicate that diabetes impairs the mobilization of Lin(-)/VEGF-R2(+) cells from BM to PB. Impaired mobilization of BM Lin(-)/VEGF-R2(+) cells soon after the onset of diabetes may contribute to complications such as diabetic retinopathy.

  4. Bone Marrow-Derived Endothelial Progenitor Cells Protect Against Scopolamine-Induced Alzheimer-Like Pathological Aberrations.

    PubMed

    Safar, Marwa M; Arab, Hany H; Rizk, Sherine M; El-Maraghy, Shohda A

    2016-04-01

    Vascular endothelial dysfunction plays a key role in the pathogenesis of Alzheimer's disease (AD). Patients with AD have displayed decreased circulating endothelial progenitor cells (EPCs) which repair and maintain the endothelial function. Transplantation of EPCs has emerged as a promising approach for the management of cerebrovascular diseases including ischemic stroke, however, its impact on AD has been poorly described. Thus, the current study aimed at investigating the effects of bone marrow-derived (BM) EPCs transplantation in repeated scopolamine-induced cognitive impairment, an experimental model that replicates biomarkers of AD. Intravenously transplanted BM-EPCs migrated into the brain of rats and improved the learning and memory deficits. Meanwhile, they mitigated the deposition of amyloid plaques and associated histopathological alterations. At the molecular levels, BM-EPCs blunted the increase of hippocampal amyloid beta protein (Aβ), amyloid precursor protein (APP) and reinstated the Aβ-degrading neprilysin together with downregulation of p-tau and its upstream glycogen synthase kinase-3β (GSK-3β). They also corrected the perturbations of neurotransmitter levels including restoration of acetylcholine and associated esterase along with dopamine, GABA, and the neuroexitatory glutamate. Furthermore, BM-EPCs induced behavioral recovery via boosting of vascular endothelial growth factor (VEGF), nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and its upstream cAMP response element binding (CREB), suppression of the proinflammatory tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and upregulation of interleukin-10 (IL-10). BM-EPCs also augmented Nrf2 and seladin-1. Generally, these actions were analogous to those exerted by adipose tissue-derived mesenchymal stem cells (AT-MSCs) and the reference anti-Alzheimer donepezil. For the first time, these findings highlight the beneficial actions of BM-EPCs against the memory

  5. Biological properties of bone marrow-derived early and late endothelial progenitor cells in different culture media.

    PubMed

    Guan, Xiu M; Cheng, Min; Li, Hong; Cui, Xiao D; Li, Xin; Wang, Yu L; Sun, Jin L; Zhang, Xiao Y

    2013-12-01

    Ex vivo expansion of endothelial progenitor cells (EPCs) may be a promising strategy to overcome the clinical problem of limited cell numbers. As the culture medium is the key for the cell characteristics, the effects of different culture media on EPCs were investigated in the present study. Rat bone marrow mononuclear cells were cultured in different media, including M-199 media with 20% fetal bovine serum (FBS) and bovine pituitary extract (M1); M-199 media with 10% FBS, 20 ng/ml vascular endothelial growth factor (VEGF) and 10 ng/ml basic fibroblast growth factor (bFGF; M2) or epidermal growth medium (EGM)-2MV media. The cell morphology and biological functions, such as proliferation, adhesion, migration, tube formation and nitric oxide (NO) production were subsequently assayed in vitro. Moreover, endothelial biomarkers and apoptosis were also analyzed. The results showed that endothelial‑like cells appeared in all of the culture systems. First‑passage cells, namely early EPCs, tended to form colonies in M2 and EGM-2MV media but showed a fusiform shape in M1 media. The 3rd or 4th generation EPCs, namely late EPCs, cultured in EGM-2MV media exhibited increased adhesion, migration, tube formation and NO production as compared with EPCs in M1 or M2 media. Furthermore, late EPCs cultured in EGM-2MV expressed higher levels of endothelial cell markers, such as von Willibrand factor (vWF)and CD31, but relatively greater levels of apoptosis were observed. In conclusion, cell culture conditions, for example the medium used, affects the biological properties of bone marrow-derived early and late EPCs.

  6. Spontaneous In Vivo Chondrogenesis of Bone Marrow-Derived Mesenchymal Progenitor Cells by Blocking Vascular Endothelial Growth Factor Signaling.

    PubMed

    Marsano, Anna; Medeiros da Cunha, Carolina M; Ghanaati, Shahram; Gueven, Sinan; Centola, Matteo; Tsaryk, Roman; Barbeck, Mike; Stuedle, Chiara; Barbero, Andrea; Helmrich, Uta; Schaeren, Stefan; Kirkpatrick, James C; Banfi, Andrea; Martin, Ivan

    2016-12-01

    : Chondrogenic differentiation of bone marrow-derived mesenchymal stromal/stem cells (MSCs) can be induced by presenting morphogenetic factors or soluble signals but typically suffers from limited efficiency, reproducibility across primary batches, and maintenance of phenotypic stability. Considering the avascular and hypoxic milieu of articular cartilage, we hypothesized that sole inhibition of angiogenesis can provide physiological cues to direct in vivo differentiation of uncommitted MSCs to stable cartilage formation. Human MSCs were retrovirally transduced to express a decoy soluble vascular endothelial growth factor (VEGF) receptor-2 (sFlk1), which efficiently sequesters endogenous VEGF in vivo, seeded on collagen sponges and immediately implanted ectopically in nude mice. Although naïve cells formed vascularized fibrous tissue, sFlk1-MSCs abolished vascular ingrowth into engineered constructs, which efficiently and reproducibly developed into hyaline cartilage. The generated cartilage was phenotypically stable and showed no sign of hypertrophic evolution up to 12 weeks. In vitro analyses indicated that spontaneous chondrogenic differentiation by blockade of angiogenesis was related to the generation of a hypoxic environment, in turn activating the transforming growth factor-β pathway. These findings suggest that VEGF blockade is a robust strategy to enhance cartilage repair by endogenous or grafted mesenchymal progenitors. This article outlines the general paradigm of controlling the fate of implanted stem/progenitor cells by engineering their ability to establish specific microenvironmental conditions rather than directly providing individual morphogenic cues. Chondrogenic differentiation of mesenchymal stromal/stem cells (MSCs) is typically targeted by morphogen delivery, which is often associated with limited efficiency, stability, and robustness. This article proposes a strategy to engineer MSCs with the capacity to establish specific

  7. Bone graft in the shape of human mandibular condyle reconstruction via seeding marrow-derived osteoblasts into porous coral in a nude mice model.

    PubMed

    Chen, Fulin; Mao, Tianqiu; Tao, Kai; Chen, Shujun; Ding, Guicong; Gu, Xiaoming

    2002-10-01

    The purpose of this study was to develop a tissue-engineered bone graft model in the shape of a human mandibular condyle. Natural coral with a pore size of 150 to 220 microm and porosity of about 36% was molded into the shape of a human mandibular condyle. Culture-expanded rabbit marrow mesenchymal stem cells were induced by recombinant human bone morphogenetic protein-2 (rhBMP2) to improve osteoblastic phenotype. Then marrow-derived osteoblasts were seeded into natural coral at a density of 2 x 10(8)/mL and incubated in vitro for 3 days before implantation. The cell-coral complexes were implanted subcutaneously into the backs of nude mice and incubated in vivo for 2 months before harvesting. Implantation of coral alone acted as control. The specimens were processed for gross inspection, radiographic examination, and histologic and scanning electronic microscopic observation. The results showed that new bone grafts in the shape of a human mandibular condyle were successfully developed 2 months after implantation and maintained the initial shape of the natural coral scaffold. New bone could be observed histologically on the surface and in the pores of natural coral in all specimens in the cell-seeding group (6 of 6), whereas in the control group there was no evidence of osteogenesis process (0 of 4). This study suggests the feasibility of using porous coral as scaffold material transplanted with marrow-derived osteoblasts to restore bone graft in the shape of human mandibular condyle and shows the potential of using this method for the reconstruction of bone defects. Copyright 2002 American Association of Oral and Maxillofacial Surgeons

  8. Transient 100 nM dexamethasone treatment reduces inter- and intraindividual variations in osteoblastic differentiation of bone marrow-derived human mesenchymal stem cells.

    PubMed

    Alm, Jessica J; Heino, Terhi J; Hentunen, Teuvo A; Väänänen, H Kalervo; Aro, Hannu T

    2012-09-01

    The development of in vitro culturing techniques for osteoblastic differentiation of human mesenchymal stem cells (hMSC) is important for cell biology research and the development of tissue-engineering applications. Dexamethasone (Dex) is a commonly used supplement, but the optimal use of Dex treatment is still unclear. By adjusting the timing of Dex supplementation, the negative effects of long-term Dex treatment could be overcome. Transient Dex treatment could contribute toward minimizing broad donor variation, which is a major challenge. We compared the two most widely used Dex concentrations of 10 and 100 nM as transient or continuous treatment and studied inter- and intraindividual variations in osteoblastic differentiation of hMSC. Characterized bone marrow-derived hMSC from 17 female donors of different age groups were used. During osteoblastic induction, the cells were treated with 10 or 100 nM Dex either transiently for different time periods or continuously. Differentiation was evaluated by measuring alkaline phosphatase (ALP) activity and staining for ALP, von Kossa, collagen type I, and osteocalcin. Cell proliferation, cell viability, and apoptosis were also monitored. The strongest osteoblastic differentiation was observed when 100 nM Dex was present for the first week. In terms of inter- and intraindividual coefficients of variations, transient treatment with 100 nM Dex was superior to the other culture conditions and showed the lowest variations in all age groups. This study demonstrates that the temporary presence of 100 nM Dex during the first week of induction culture promotes hMSC osteoblastic differentiation and reduces inter- and intraindividual variations. With this protocol, we can reproducibly produce functional osteoblasts in vitro from the hMSC of different donor populations.

  9. Adhesion and migration of marrow-derived osteoblasts on injectable in situ crosslinkable poly(propylene fumarate-co-ethylene glycol)-based hydrogels with a covalently linked RGDS peptide.

    PubMed

    Behravesh, Esfandiar; Zygourakis, Kyriacos; Mikos, Antonios G

    2003-05-01

    Marrow-derived osteoblasts were cultured on poly(propylene fumarate-co-ethylene glycol) (P(PF-co-EG)) based hydrogels modified in bulk with a covalently linked RGDS model peptide. A poly(ethylene glycol) spacer arm was utilized to covalently link the peptide to the hydrogel. Three P(PF-co-EG) block copolymers were synthesized with varying poly(ethylene glycol) block lengths relative to poly(ethylene glycol) spacer arm. A poly(ethylene glycol) block length of nominal molecular weight 2000 and spacer arm of nominal molecular weight 3400 were found to reduce nonspecific cell adhesion and show RGDS concentration dependent marrow-derived osteoblast adhesion. A concentration of 100 nmol/mL RGDS was sufficient to promote adhesion of 84 +/- 17% of the initial seeded marrow-derived osteoblasts compared with 9 +/- 1% for the unmodified hydrogel after 12 h. Cell spreading was quantified as a method for evaluating adhesivity of cells to the hydrogel. A megacolony migration assay was utilized to assess the migration characteristics of the marrow-derived osteoblasts on RGDS modified hydrogels. Marrow-stromal osteoblasts migration was greater on hydrogels modified with 100 nmol/mL linked RGDS when compared with hydrogels modified with 1000 nmol/mL linked RGDS, while proliferation was not affected. These P(PF-co-EG) hydrogels modified in the bulk with RGDS peptide are potential candidates as in situ forming scaffolds for bone tissue engineering applications.

  10. Gelatin Directly Enhances Neurogenic Differentiation Potential in Bone Marrow-Derived Mesenchymal Stem Cells Without Stimulation of Neural Progenitor Cell Proliferation.

    PubMed

    Lee, Hyun; Han, Na Rae; Hwang, Jae Yeon; Yun, Jung Im; Kim, Choonghyo; Park, Kyu Hyun; Lee, Seung Tae

    2016-09-01

    Gelatin has been reported to induce generation of mesenchymal stem cells (MSCs) with enhanced potential of differentiation into neuronal lineage cells. However, the presence of various cell types besides MSCs in bone marrow has raised doubts about the effects of gelatin. In the following report, we determined whether gelatin can directly enhance neurogenic differentiation potential in MSCs without proliferation of neural progenitor cells (NPCs). MSCs comprised a high proportion of bone marrow-derived primary cells (BMPCs) and gelatin induced significant increases in MSC proliferation during primary culture, and the proportion of MSCs was maintained at more than 99% throughout the subculture. However, NPCs comprised a low percentage of BMPCs and a decrease in proliferation was detected despite gelatin treatment during the primary culture, and the proportion of subcultured NPCs gradually decreased. In a similar manner, MSCs exposed to gelatin during primary culture showed more enhanced neurogenic differentiation ability than those not exposed to gelatin. Together, these results demonstrate that gelatin directly enhances neurogenic differentiation in bone marrow-derived MSCs without stimulating NPC proliferation.

  11. Assessment of the Role of Noni (Morinda citrifolia) Juice for Inducing Osteoblast Differentiation in Isolated Rat Bone Marrow Derived Mesenchymal Stem Cells

    PubMed Central

    Hussain, Sharmila; Tamizhselvi, Ramasamy; George, Leema; Manickam, Venkatraman

    2016-01-01

    Background and Objectives Morinda citrifolia (Noni), an important traditional medicinal plant still used in patients with bone fractures or dislocation to promote connective tissue repair and to reduce inflammation. However, the effects of Noni on bone metabolism and whether it influences the osteogenic differentiation is yet to be clarified. In this study, we investigated the effect of Morinda citrifolia (Noni) juice on the proliferation rate of rat bone marrow derived mesenchymal stem cells (BMSC) and the osteoblastic differentiation as shown by alkaline phosphatase (ALP), Runt-related transcription factor 2 (Runx2) and osteocalcin (OCN) mRNA expression in vitro. Methods and Results Treatment with 200 μg/ml Noni juice enhanced the proliferation rate of the BMSC and also upregulated the osteogenic differentiation marker genes ALP and OCN, and Runx2 measured by RTPCR. Consistent with these results collagen scaffolds implanted in vivo, which were loaded with BMSC pre-exposed to Noni, showed increased bone density measured by computed tomography and histological analysis revealed neo-angiogenesis for bone formation. Conclusions These results suggest that Noni stimulates osteoblastogenesis and can be used as adjuvant natural medicine for bone diseases such as osteoporosis. PMID:27572713

  12. Assessment of the Role of Noni (Morinda citrifolia) Juice for Inducing Osteoblast Differentiation in Isolated Rat Bone Marrow Derived Mesenchymal Stem Cells.

    PubMed

    Hussain, Sharmila; Tamizhselvi, Ramasamy; George, Leema; Manickam, Venkatraman

    2016-11-30

    Morinda citrifolia (Noni), an important traditional medicinal plant still used in patients with bone fractures or dislocation to promote connective tissue repair and to reduce inflammation. However, the effects of Noni on bone metabolism and whether it influences the osteogenic differentiation is yet to be clarified. In this study, we investigated the effect of Morinda citrifolia (Noni) juice on the proliferation rate of rat bone marrow derived mesenchymal stem cells (BMSC) and the osteoblastic differentiation as shown by alkaline phosphatase (ALP), Runt-related transcription factor 2 (Runx2) and osteocalcin (OCN) mRNA expression in vitro. Treatment with 200 μg/ml Noni juice enhanced the proliferation rate of the BMSC and also upregulated the osteogenic differentiation marker genes ALP and OCN, and Runx2 measured by RTPCR. Consistent with these results collagen scaffolds implanted in vivo, which were loaded with BMSC pre-exposed to Noni, showed increased bone density measured by computed tomography and histological analysis revealed neo-angiogenesis for bone formation. These results suggest that Noni stimulates osteoblastogenesis and can be used as adjuvant natural medicine for bone diseases such as osteoporosis.

  13. Lineage-related and particle size-dependent cytotoxicity of chitosan nanoparticles on mouse bone marrow-derived hematopoietic stem and progenitor cells.

    PubMed

    Omar Zaki, Siti Sarah; Katas, Haliza; Hamid, Zariyantey Abd

    2015-11-01

    Chitosan nanoparticles (CSNPs) have potential applications in stem cell research. In this study, ex vivo cytotoxicity of CSNPs on mouse bone marrow-derived (MBMCs) hematopoietic stem and progenitor cells (HSPCs) was determined. MBMCs were exposed to CSNPs of different particle sizes at various concentrations for up to 72 h. Cytotoxicity effect of CSNPs on MBMCs was determined using MTT, Live/Dead Viability/Cytotoxicity assays and flow cytometry analysis of surface antigens on HSCs (Sca-1(+)), myeloid-committed progenitors (CD11b(+), Gr-1(+)), and lymphoid-committed progenitors (CD45(+), CD3e(+)). At 24 h incubation, MBMCs' viability was not affected by CSNPs. At 48 and 72 h, significant reduction was detected at higher CSNPs concentrations. Small CSNPs (200 nm) significantly reduced MBMCs' viability while medium-sized particle (∼400 nm) selectively promoted MBMCs growth. Surface antigen assessment demonstrated lineage-dependent effect. Significant decrease in Sca-1(+) cells percentage was observed for medium-sized particle at the lowest CSNPs concentration. Meanwhile, reduction of CD11b(+) and Gr-1(+) cells percentage was detected at high and intermediate concentrations of medium-sized and large CSNPs. Percentage of CD45(+) and CD3e(+) cells along with ROS levels were not significantly affected by CSNPs. In conclusion, medium-sized and large CSNPs were relatively non-toxic at lower concentrations. However, further investigations are necessary for therapeutic applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Differential gene expression in Lin-/VEGF-R2+ bone marrow-derived endothelial progenitor cells isolated from diabetic mice.

    PubMed

    Barthelmes, Daniel; Zhu, Ling; Shen, Weiyong; Gillies, Mark C; Irhimeh, Mohammad R

    2014-02-12

    Diabetes is known to impair the number and function of endothelial progenitor cells in the circulation, causing structural and functional alterations in the micro- and macro-vasculature. The aim of this study was to identify early diabetes-related changes in the expression of genes that have been reported to be closely involved in endothelial progenitor cell migration and function. Based on review of current literature, this study examined the expression level of 35 genes that are known to be involved in endothelial progenitor cell migration and function in magnetically sorted Lin-/VEGF-R2+ endothelial progenitor cells obtained from the bone marrow of Akita mice in the early stages of diabetes (18 weeks) using RT-PCR and Western blotting. We used the Shapiro-Wilk and D'Agostino & Pearson Omnibus tests to assess normality. Differences between groups were evaluated by Student's t-test for normally distributed data (including Welch correction in cases of unequal variances) or Mann-Whitney test for not normally distributed data. We observed a significant increase in the number of Lin-/VEGF-R2+ endothelial progenitor cells within the bone marrow in diabetic mice compared with non-diabetic mice. Two genes, SDF-1 and SELE, were significantly differentially expressed in diabetic Lin-/VEGF-R2+ endothelial progenitor cells and six other genes, CAV1, eNOS, CLDN5, NANOG, OCLN and BDNF, showed very low levels of expression in diabetic Lin-/VEGF-R2+ progenitor cells. Low SDF-1 expression may contribute to the dysfunctional mobilization of bone marrow Lin-/VEGF-R2+ endothelial progenitor cells, which may contribute to microvascular injury in early diabetes.

  15. Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors.

    PubMed

    Muschler, G F; Nitto, H; Boehm, C A; Easley, K A

    2001-01-01

    Bone marrow harvested by aspiration contains connective tissue progenitor cells which can be induced to express a bone phenotype in vitro. The number of osteoblastic progenitors can be estimated by counting the colony-forming units which express alkaline phosphatase (CFU-APs). This study was undertaken to test the hypothesis that human aging is associated with a significant change in the number or prevalence of osteoblastic progenitors in the bone marrow. Four 2-ml bone marrow aspirates were harvested bilaterally from the anterior iliac crest of 57 patients, 31 men (age 15-83) and 26 women (age 13-79). A mean of 64 million nucleated cells was harvested per aspirate. The mean prevalence of CFU-APs was found to be 55 per million nucleated cells. These data revealed a significant age-related decline in the number of nucleated cells harvested per aspirate for both men and women (P = 0.002). The number of CFU-APs harvested per aspirate also decreased significantly with age for women (P = 0.02), but not for men (P = 0.3). These findings are relevant to the harvest of bone marrow derived connective tissue progenitors for bone grafting and other tissue engineering applications, and may also be relevant to the pathophysiology of age-related bone loss and post-menopausal osteoporosis.

  16. The role of bone marrow-derived endothelial progenitor cells and angiogenic responses in chronic obstructive pulmonary disease.

    PubMed

    Salter, Brittany; Sehmi, Roma

    2017-07-01

    Increased vascularity of the bronchial sub-mucosa is a cardinal feature of chronic obstructive pulmonary disease (COPD) and is associated with disease severity. Capillary engorgement, leakage, and vasodilatation can directly increase airway wall thickness resulting in airway luminal narrowing and facilitate inflammatory cell trafficking, thereby contributing to irreversible airflow obstruction, a characteristic of COPD. Airway wall neovascularisation, seen as increases in both the size and number of bronchial blood vessels is a prominent feature of COPD that correlates with reticular basement membrane thickening and airway obstruction. Sub-epithelial vascularization may be an important remodelling event for airway narrowing and airflow obstruction in COPD. Post-natal angiogenesis is a complex process, whereby new blood vessels sprouting from extant microvasculature, can arise from the proliferation of resident mature vascular endothelial cells (ECs). In addition, this may arise from increased turnover and lung-homing of circulating endothelial progenitor cells (EPCs) from the bone marrow (BM). Following lung-homing, EPCs can differentiate locally within the tissue into ECs, further contributing to vascular repair, maintenance, and expansion under pathological conditions, governed by a locally elaborated milieu of growth factors (GFs). In this article, we will review evidence for the role of BM-derived EPCs in the development of angiogenesis in the lug and discuss how this may relate to the pathogenesis of COPD.

  17. Human marrow-derived mesodermal progenitor cells generate insulin-secreting islet-like clusters in vivo.

    PubMed

    Ai, Cuiwei; Todorov, Ivan; Slovak, Marilyn L; Digiusto, David; Forman, Stephen J; Shih, Chu-Chih

    2007-10-01

    Transplantation of pancreatic islet cells is the only known potential cure for diabetes mellitus. However, the difficulty in obtaining sufficient numbers of purified islets for transplantation severely limits its use. A renewable and clinically accessible source of stem cells capable of differentiating into insulin-secreting beta-cells might circumvent this limitation. Here, we report that human fetal bone marrow (BM)-derived mesodermal progenitor cells (MPCs) possess the potential to generate insulinsecreting islet-like clusters (ISILCs) when injected into human fetal pancreatic tissues implanted in severe combined immunodeficiency (SCID) mice. Seven essential genes involved in pancreatic endocrine development, including insulin, glucagon, somatostatin, pdx-1, glut-2, nkx 2.2, and nkx 6.1, are expressed in these BM-MPC-derived ISILCs, suggesting that ISILCs are generated through neogenesis of BM-MPCs. Our data further suggest that differentiation of BM-MPCs into ISILCs is not mediated by cell fusion. Insulin secretion from these ISILCs is regulated by glucose concentration in vitro, and transplantation of purified ISILCs normalizes hyperglycemia in streptozocin (STZ)- induced nonobese diabetic (NOD)/SCID mice.

  18. mTOR regulates vascular smooth muscle cell differentiation from human bone marrow-derived mesenchymal progenitors.

    PubMed

    Hegner, Björn; Lange, Maria; Kusch, Angelika; Essin, Kirill; Sezer, Orhan; Schulze-Lohoff, Eckhard; Luft, Friedrich C; Gollasch, Maik; Dragun, Duska

    2009-02-01

    Vascular smooth muscle cells (VSMCs) and circulating mesenchymal progenitor cells (MSCs) with a VSMC phenotype contribute to neointima formation and lumen loss after angioplasty and during allograft arteriosclerosis. We hypothesized that phosphoinositol-Akt-mammalian target of rapamycin-p70S6 kinase (PI3K/Akt/mTOR/p70S6K) pathway activation regulates VSMC differentiation from MSCs. We studied effects of PI3K/Akt/mTOR signaling on phenotypic modulation of MSC and VSMC marker expression, including L-type Ca(2+) channels. Phosphorylation of Akt and p70S6K featured downregulation of VSMC markers in dedifferentiated MSCs. mTOR inhibition with rapamycin at below pharmacological concentrations blocked p70S6K phosphorylation and induced a differentiated contractile phenotype with smooth muscle (sm)-calponin, sm-alpha-actin, and SM protein 22-alpha (SM22alpha) expression. The PI3K inhibitor Ly294002 abolished Akt and p70S6K phosphorylation and reversed the dedifferentiated phenotype via induction of sm-calponin, sm-alpha-actin, SM22alpha, and myosin light chain kinase. Rapamycin acted antiproliferative without impairing MSC viability. In VSMCs, rapamycin increased a homing chemokine for MSCs, stromal cell-derived factor-1-alpha, at mRNA and protein levels. The CXCR4-mediated MSC migration toward conditioned medium of rapamycin-treated VSMCs was enhanced. We describe novel pleiotropic effects of rapamycin at very low concentrations that stabilized differentiated contractile VSMCs from MSCs in addition to exerting antiproliferative and enhanced homing effects.

  19. An intensified systemic trafficking of bone marrow-derived stem/progenitor cells in patients with pancreatic cancer

    PubMed Central

    Starzyńska, Teresa; Dąbkowski, Krzysztof; Błogowski, Wojciech; Zuba-Surma, Ewa; Budkowska, Marta; Sałata, Daria; Dołęgowska, Barbara; Marlicz, Wojciech; Lubikowski, Jerzy; Ratajczak, Mariusz Z

    2013-01-01

    Various experimental studies indicate potential involvement of bone marrow (BM)-derived stem cells (SCs) in malignancy development and progression. In this study, we comprehensively analysed systemic trafficking of various populations of BM-derived SCs (BMSCs), i.e., mesenchymal, haematopoietic, endothelial stem/progenitor cells (MSCs, HSCs, EPCs respectively), and of recently discovered population of very small embryonic/epiblast-like SCs (VSELs) in pancreatic cancer patients. Circulating CD133+/Lin−/CD45−/CD34+ cells enriched for HSCs, CD105+/STRO-1+/CD45− cells enriched for MSCs, CD34+/KDR+/CD31+/CD45− cells enriched for EPCs and small CXCR4+CD34+CD133+ subsets of Lin−CD45− cells that correspond to VSELs were enumerated and sorted from blood samples derived from 29 patients with pancreatic cancer, and 19 healthy controls. In addition, plasma levels of stromal-derived factor-1 (SDF-1), growth/inhibitory factors and sphingosine-1-phosphate (S1P; chemoattractants for SCs), as well as, of complement cascade (CC) molecules (C3a, C5a and C5b-9/membrane attack complex – MAC) were measured. Higher numbers of circulating VSELs and MSCs were detected in pancreatic cancer patients (P < 0.05 and 0.01 respectively). This trafficking of BMSCs was associated with significantly elevated C5a (P < 0.05) and C5b-9/MAC (P < 0.005) levels together with S1P concentrations detected in plasma of cancer patients, and seemed to be executed in a SDF-1 independent manner. In conclusion, we demonstrated that in patients with pancreatic cancer, intensified peripheral trafficking of selected populations of BMSCs occurs. This phenomenon seems to correlate with systemic activation of the CC, hepatocyte growth factor and S1P levels. In contrast to previous studies, we demonstrate herein that systemic SDF-1 levels do not seem to be linked with increased mobilization of stem cells in patients with pancreatic cancer. PMID:23672538

  20. Phase 1-2 pilot clinical trial in patients with decompensated liver cirrhosis treated with bone marrow-derived endothelial progenitor cells.

    PubMed

    D'Avola, Delia; Fernández-Ruiz, Verónica; Carmona-Torre, Francisco; Méndez, Miriam; Pérez-Calvo, Javier; Prósper, Felipe; Andreu, Enrique; Herrero, José Ignacio; Iñarrairaegui, Mercedes; Fuertes, Carmen; Bilbao, José Ignacio; Sangro, Bruno; Prieto, Jesús; Quiroga, Jorge

    2017-10-01

    The aim of this nonrandomized, open label, phase 1 clinical trial was to evaluate the safety and the feasibility of the treatment with autologous bone marrow-derived endothelial progenitor cells (EPC) in decompensated liver cirrhosis. In addition, the changes in liver function and hepatic venous pressure gradient (HVPG) and their relation with the characteristics of the cellular product were analyzed. Twelve patients with Child-Pugh ≥8 liver cirrhosis underwent bone marrow harvest for ex vivo differentiation of EPC. The final product was administered through the hepatic artery in a single administration. Patients underwent clinical and radiologic follow-up for 12 months. The phenotype and the ability to produce cytokines and growth factors of the final cellular suspension were analyzed. Eleven patients were treated (feasibility 91%). No treatment-related severe adverse events were observed as consequence of any study procedure or treatment. Model for end-stage liver disease score improved significantly (P 0.042) in the first 90 days after cells administration and 5 of the 9 patients alive at 90 days showed a decreased of HVPG. There was a direct correlation between the expression of acetylated-low density lipoprotein and von Willebrand factor in the cellular product and the improvement in liver function and HVPG. The treatment with EPCs in patients with decompensated liver cirrhosis is safe and feasible and might have therapeutic potential. Patients receiving a higher amount of functionally active EPC showed an improvement of liver function and portal hypertension suggesting that the potential usefulness of these cells for the treatment of liver cirrhosis deserves further evaluation. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. TNF-TNFR2/p75 Signaling Inhibits Early and Increases Delayed Nontargeted Effects in Bone Marrow-derived Endothelial Progenitor Cells*

    PubMed Central

    Sasi, Sharath P.; Song, Jin; Park, Daniel; Enderling, Heiko; McDonald, J. Tyson; Gee, Hannah; Garrity, Brittany; Shtifman, Alexander; Yan, Xinhua; Walsh, Kenneth; Natarajan, Mohan; Kishore, Raj; Goukassian, David A.

    2014-01-01

    TNF-α, a pro-inflammatory cytokine, is highly expressed after being irradiated (IR) and is implicated in mediating radiobiological bystander responses (RBRs). Little is known about specific TNF receptors in regulating TNF-induced RBR in bone marrow-derived endothelial progenitor cells (BM-EPCs). Full body γ-IR WT BM-EPCs showed a biphasic response: slow decay of p-H2AX foci during the initial 24 h and increase between 24 h and 7 days post-IR, indicating a significant RBR in BM-EPCs in vivo. Individual TNF receptor (TNFR) signaling in RBR was evaluated in BM-EPCs from WT, TNFR1/p55KO, and TNFR2/p75KO mice, in vitro. Compared with WT, early RBR (1–5 h) were inhibited in p55KO and p75KO EPCs, whereas delayed RBR (3–5 days) were amplified in p55KO EPCs, suggesting a possible role for TNFR2/p75 signaling in delayed RBR. Neutralizing TNF in γ-IR conditioned media (CM) of WT and p55KO BM-EPCs largely abolished RBR in both cell types. ELISA protein profiling of WT and p55KO EPC γ-IR-CM over 5 days showed significant increases in several pro-inflammatory cytokines, including TNF-α, IL-1α (Interleukin-1 alpha), RANTES (regulated on activation, normal T cell expressed and secreted), and MCP-1. In vitro treatments with murine recombinant (rm) TNF-α and rmIL-1α, but not rmMCP-1 or rmRANTES, increased the formation of p-H2AX foci in nonirradiated p55KO EPCs. We conclude that TNF-TNFR2 signaling may induce RBR in naïve BM-EPCs and that blocking TNF-TNFR2 signaling may prevent delayed RBR in BM-EPCs, conceivably, in bone marrow milieu in general. PMID:24711449

  2. Long-term functional improvement and gene expression changes after bone marrow-derived multipotent progenitor cell transplantation in myocardial infarction

    PubMed Central

    Jameel, Mohammad Nurulqadr; Li, Qinglu; Mansoor, Abdul; Qiang, Xiong; Sarver, Aaron; Wang, Xiaohong; Swingen, Cory

    2010-01-01

    The study examined the long-term outcome of cardiac stem cell transplantation in hearts with postinfarction left ventricular (LV) remodeling. Myocardial infarction (MI) was created by ligating the first and second diagonal branches of the left anterior descending coronary artery in miniature swines. Intramyocardial injections of 50 million LacZ-labeled bone marrow-derived multipotent progenitor cells (MPC) were performed in the periscar region (Cell, n = 7) immediately after MI, whereas, in control animals (Cont, n = 7), saline was injected. Functional outcome was assessed monthly for 4 mo with MRI and 31P-magnetic resonance spectroscopy. Engraftment was studied on histology, and gene chip (Affymetrix) array analysis was used to study differential expression of genes in the two groups. MPC treatment resulted in improvement of ejection fraction as early as 10 days after MI (Cell, 43.4 ± 5.1% vs. Cont, 32.2 ± 5.5%; P < 0.05). This improvement was seen each month and persisted to 4 mo (Cell, 51.2 ± 4.8% vs. Cont, 35.7 ± 5.0%; P < 0.05). PCr-to-ATP ratio (PCr/ATP) improved with MPC transplantation, which was most pronounced at high cardiac work states (subendocardial PCr/ATP was 1.70 ± 0.10 vs. 1.34 ± 0.14, P < 0.05). There was no significant difference in scar size (scar/LV area ∗ 100) at 10 days postinfarction. However, at 4 mo, there was a significant decrease in scar size in the Cell group (Cell, 4.6 ± 1.0% vs. Cont, 8.6 ± 2.4%; P < 0.05). No significant engraftment of MPC was observed. MPC transplantation was associated with a downregulation of mitochondrial oxidative enzymes and increased levels of myocyte enhancer factor 2a and zinc finger protein 91. In conclusion, MPC transplantation leads to long-term functional and bioenergetic improvement in a porcine model of postinfarction LV remodeling, despite no significant engraftment of stem cells in the heart. MPC transplantation reduces regional wall stresses and infarct size and mitigates the adverse

  3. TNF-TNFR2/p75 signaling inhibits early and increases delayed nontargeted effects in bone marrow-derived endothelial progenitor cells.

    PubMed

    Sasi, Sharath P; Song, Jin; Park, Daniel; Enderling, Heiko; McDonald, J Tyson; Gee, Hannah; Garrity, Brittany; Shtifman, Alexander; Yan, Xinhua; Walsh, Kenneth; Natarajan, Mohan; Kishore, Raj; Goukassian, David A

    2014-05-16

    TNF-α, a pro-inflammatory cytokine, is highly expressed after being irradiated (IR) and is implicated in mediating radiobiological bystander responses (RBRs). Little is known about specific TNF receptors in regulating TNF-induced RBR in bone marrow-derived endothelial progenitor cells (BM-EPCs). Full body γ-IR WT BM-EPCs showed a biphasic response: slow decay of p-H2AX foci during the initial 24 h and increase between 24 h and 7 days post-IR, indicating a significant RBR in BM-EPCs in vivo. Individual TNF receptor (TNFR) signaling in RBR was evaluated in BM-EPCs from WT, TNFR1/p55KO, and TNFR2/p75KO mice, in vitro. Compared with WT, early RBR (1-5 h) were inhibited in p55KO and p75KO EPCs, whereas delayed RBR (3-5 days) were amplified in p55KO EPCs, suggesting a possible role for TNFR2/p75 signaling in delayed RBR. Neutralizing TNF in γ-IR conditioned media (CM) of WT and p55KO BM-EPCs largely abolished RBR in both cell types. ELISA protein profiling of WT and p55KO EPC γ-IR-CM over 5 days showed significant increases in several pro-inflammatory cytokines, including TNF-α, IL-1α (Interleukin-1 alpha), RANTES (regulated on activation, normal T cell expressed and secreted), and MCP-1. In vitro treatments with murine recombinant (rm) TNF-α and rmIL-1α, but not rmMCP-1 or rmRANTES, increased the formation of p-H2AX foci in nonirradiated p55KO EPCs. We conclude that TNF-TNFR2 signaling may induce RBR in naïve BM-EPCs and that blocking TNF-TNFR2 signaling may prevent delayed RBR in BM-EPCs, conceivably, in bone marrow milieu in general. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Estrogen receptors alpha and beta mediate contribution of bone marrow-derived endothelial progenitor cells to functional recovery after myocardial infarction.

    PubMed

    Hamada, Hiromichi; Kim, Myeong Kon; Iwakura, Atsushi; Ii, Masaaki; Thorne, Tina; Qin, Gangjian; Asai, Jun; Tsutsumi, Yoshiaki; Sekiguchi, Haruki; Silver, Marcy; Wecker, Andrea; Bord, Evelyn; Zhu, Yan; Kishore, Raj; Losordo, Douglas W

    2006-11-21

    Estradiol (E2) modulates the kinetics of circulating endothelial progenitor cells (EPCs) and favorably affects neovascularization after ischemic injury. However, the roles of estrogen receptors alpha (ER alpha) and beta (ER beta) in EPC biology are largely unknown. In response to E2, migration, tube formation, adhesion, and estrogen-responsive element-dependent gene transcription activities were severely impaired in EPCs obtained from ER alpha-knockout mice (ER alphaKO) and moderately impaired in ER betaKO EPCs. The number of ER alphaKO EPCs (42.4+/-1.5; P<0.001) and ER betaKO EPCs (55.4+/-1.8; P=0.03) incorporated into the ischemic border zone was reduced as compared with wild-type (WT) EPCs (72.5+/-1.3). In bone marrow transplantation (BMT) models, the number of mobilized endogenous EPCs in E2-treated mice was significantly reduced in ER alphaKO BMT (WT mice transplanted with ER alphaKO bone marrow) (2.03+/-0.18%; P=0.004 versus WT BMT) and ER betaKO BMT (2.62+/-0.07%; P=0.02 versus WT) compared with WT BMT (2.87+/-0.13%) (WT to WT BMT as control) mice. Capillary density at the border zone of ischemic myocardium also was significantly reduced in ER alphaKO BMT and ER betaKO BMT compared with WT mice (WT BMT, 1718+/-75/mm2; ER alphaKO BMT, 1107+/-48/mm2; ER betaKO BMT, 1567+/-50/mm2). ER alpha mRNA was expressed more abundantly on EPCs compared with ER beta. Moreover, vascular endothelial growth factor was significantly downregulated on ER alphaKO EPCs compared with WT EPCs both in vitro and in vivo. Both ER alpha and ER beta contribute to E2-mediated EPC activation and tissue incorporation and to preservation of cardiac function after myocardial infarction. ER alpha plays a more prominent role in this process. Moreover, ER alpha contributes to upregulation of vascular endothelial growth factor, revealing possible mechanisms of an effect of E2 on EPC biology. Finally, these data provide additional evidence of the importance of bone marrow-derived EPC phenotype in

  5. Loss of Gsα Early in the Osteoblast Lineage Favors Adipogenic Differentiation of Mesenchymal Progenitors and Committed Osteoblast Precursors

    PubMed Central

    Sinha, Partha; Aarnisalo, Piia; Chubb, Rhiannon; Ono, Noriaki; Fulzele, Keertik; Selig, Martin; Saeed, Hamid; Chen, Min; Weinstein, Lee S; Pajevic, Paola Divieti; Kronenberg, Henry M; Wu, Joy Y

    2014-01-01

    In humans, aging and glucocorticoid treatment are associated with reduced bone mass and increased marrow adiposity, suggesting that the differentiation of osteoblasts and adipocytes may be coordinately regulated. Within the bone marrow, both osteoblasts and adipocytes are derived from mesenchymal progenitor cells, but the mechanisms guiding the commitment of mesenchymal progenitors into osteoblast versus adipocyte lineages are not fully defined. The heterotrimeric G protein subunit Gsα activates protein kinase A signaling downstream of several G protein-coupled receptors including the parathyroid hormone receptor, and plays a crucial role in regulating bone mass. Here, we show that targeted ablation of Gsα in early osteoblast precursors, but not in differentiated osteocytes, results in a dramatic increase in bone marrow adipocytes. Mutant mice have reduced numbers of mesenchymal progenitors overall, with an increase in the proportion of progenitors committed to the adipocyte lineage. Furthermore, cells committed to the osteoblast lineage retain adipogenic potential both in vitro and in vivo. These findings have clinical implications for developing therapeutic approaches to direct the commitment of mesenchymal progenitors into the osteoblast lineage. PMID:24806274

  6. Locally existing endothelial cells and pericytes in ovarian stroma, but not bone marrow-derived vascular progenitor cells, play a central role in neovascularization during follicular development in mice.

    PubMed

    Kizuka-Shibuya, Fumie; Tokuda, Nobuko; Takagi, Kiyoshi; Adachi, Yasuhiro; Lee, Lifa; Tamura, Isao; Maekawa, Ryo; Tamura, Hiroshi; Suzuki, Takashi; Owada, Yuji; Sugino, Norihiro

    2014-01-21

    Neovascularization is necessary for follicular growth. Vascularization is first observed in preantral follicles, and thereafter the vasculature markedly increases in follicles undergoing development. Neovascularization includes angiogenesis and vasculogenesis. Vasculogenesis is the formation of new blood vessels by bone marrow-derived endothelial progenitor cells. It is unclear whether vasculogenesis occurs during follicular growth. Blood vessels must be mature to be functional blood vessels. Mature blood vessels are characterized by the recruitment of pericytes. However, it is unclear where pericytes come from and whether they contribute to neovascularization in the follicle during follicular growth. In this study, we investigated whether bone marrow-derived progenitor cells that differentiate into vascular endothelial cells or pericytes contribute to neovascularization during follicular growth. A parabiosis model was used in this study. Six-week-old wild-type and transgenic female mice expressing green fluorescent protein (GFP) were conjoined between the lateral abdominal regions to create a shared circulatory system. After 6 weeks, the ovaries were obtained and immunostained for CD31/CD34 (a vascular endothelial cell marker), platelet-derived growth factor receptor-β (PDGFR-β) (a pericyte marker), and GFP (a bone marrow-derived cell marker). Cells that were positive for CD34 and PDGFR-β were observed in the stroma adjacent to the primary or early preantral follicles and in the theca cell layer of the follicles from the late preantral stage to the preovulatory stage. CD31/CD34 and GFP double-positive cells were observed in the theca cell layer of the follicle from the antral stage to the preovulatory stage while the number of double-positive cells in the preovulatory follicles did not increase. PDGFR-β and GFP double-positive cells were observed in the theca cell layer of the preovulatory follicle but not in the smaller follicle. Locally existing endothelial

  7. The effects of retinoic acid on reversing the adipocyte differentiation into an osteoblastic tendency in ST2 cells, a murine bone marrow-derived stromal cell line.

    PubMed

    Ding, J; Woo, J T; Nagai, K

    2001-07-01

    Although the mouse bone marrow stromal cell line ST2 has been known to be differentiated into osteoblasts, the differentiation characteristics of the cell into adipocyte and the concerned relationship between its adipogenesis and osteogenesis remains unknown. The adipogenic induction medium which is made up of insulin, dexamethasone (DEX) and 3-isobutyl-1-methylxanthine(IBMX), stimulated the expression of n early adipogenic marker PPAR gamma and a late marker GPDH in ST2 cells. The triglyceride accumulation and lipid stain level generated by the induction medium in ST2 cells was inhibited by RA with IC(50) at about 1 nM. The induction medium up-regulated expression of PPARgamma and GPDH was also inhibited by RA whereas RA (30 nM) exterted no effect on the cell growth. Interestingly, treatment of the cells with induction medium in the presense of RA caused a 3- or 10-fold higher in ALP activity respectively as compared to those treated with RA or the induction medium alone. RT-PCR analysis showed that such a synergistic effect of RA and the induction medium paralleled the process of inhibition on adipogenesis. Additional experiments showed that IBMX played a key role in increasing the effect of RA and ALP activity. Our results suggested that the relationship between adipogenesis and osteogenesis in ST2 cells was reciprocally interrelated and the process of adipogenesis could be potentially reversed into an osteoblastogenic tendency. This is the first report demonstrating that RA transforms adipogenic potential into an osteoblastic tendency.

  8. Osteoblastic Differentiation of Human and Equine Adult Bone Marrow-Derived Mesenchymal Stem Cells when BMP-2 or BMP-7 homodimer genetic modification is compared to BMP-2/7 heterodimer genetic modification in the Presence and Absence of Dexamethasone

    PubMed Central

    Carpenter, RS; Goodrich, LR; Frisbie, DD; Kisiday, JD; Carbone, B; McIlwraith, CW; Centeno, CJ; Hidaka, C

    2010-01-01

    Bone marrow-derived mesenchymal stem cells (BMDMSCs) have been targeted for use in enhancement of bone healing; and their osteogenic potential may be further augmented by genes encoding bone morphogenetic proteins (BMP’s). The purpose of this study was to compare the effect of genetic modification of human and equine BMDMSCs with BMP-2 or 7 or BMP-2 and 7 on their osteoblastogenic differentiation in the presence or absence of dexamethasone. The BMDMSCs were harvested from the iliac crest of 3 human donors and tuber coxae of 3 equine donors. Monolayer cells were genetically modified using adenovirus vectors encoding BMP-2, -7 or both and cultured in the presence or absence of dexamethasone. Expression of BMPs was confirmed by enzyme linked immunosorbent assay. To evaluate osteoblastic differentiation, cellular morphology was assessed every other day and expression and secretion of alkaline phosphatase (ALP), as well as expression levels of osteonectin, osteocalcin, and Runx2 were measured for up to 14 days. Human and equine BMDMSCs showed a capacity for osteogenic differentiation regardless of genetic modification or dexamethasone supplementation. Dexamethasone supplementation was more important for osteoblastogenic differentiation of equine BMDMSCs than human BMDMSCs. Genetic modification of BMDMSCs increased ALP secretion with AdBMP-2 homodimer having the greatest effect in both human and equine cells compared to AdBMP 7 or AdBMP 2/7. BMP protein elution rates reached their maximal concentration between day 4 and 8 and remained relatively stable thereafter, suggesting that genetically modified BMDMSCs could be useful for cell-based delivery of BMPs to a site of bone formation. PMID:20309952

  9. Spine fusion using cell matrix composites enriched in bone marrow-derived cells.

    PubMed

    Muschler, George F; Nitto, Hironori; Matsukura, Yoichi; Boehm, Cynthia; Valdevit, Antonio; Kambic, Helen; Davros, William; Powell, Kimerly; Easley, Kirk

    2003-02-01

    Bone marrow-derived cells including osteoblastic progenitors can be concentrated rapidly from bone marrow aspirates using the surface of selected implantable matrices for selective cell attachment. Concentration of cells in this way to produce an enriched cellular composite graft improves graft efficacy. The current study was designed to test the hypothesis that the biologic milieu of a bone marrow clot will significantly improve the efficacy of such a graft. An established posterior spinal fusion model and cancellous bone matrix was used to compare an enriched cellular composite bone graft alone, bone matrix plus bone marrow clot, and an enriched bone matrix composite graft plus bone marrow clot. Union score, quantitative computed tomography, and mechanical testing were used to define outcome. The union score for the enriched bone matrix plus bone marrow clot composite was superior to the enriched bone matrix alone and the bone matrix plus bone marrow clot. The enriched bone matrix plus bone marrow clot composite also was superior to the enriched bone matrix alone in fusion volume and in fusion area. These data confirm that the addition of a bone marrow clot to an enriched cell-matrix composite graft results in significant improvement in graft performance. Enriched composite grafts prepared using this strategy provide a rapid, simple, safe, and inexpensive method for intraoperative concentration and delivery of bone marrow-derived cells and connective tissue progenitors that may improve the outcome of bone grafting.

  10. Cardiac progenitor cells and bone marrow-derived very small embryonic-like stem cells for cardiac repair after myocardial infarction.

    PubMed

    Tang, Xian-Liang; Rokosh, D Gregg; Guo, Yiru; Bolli, Roberto

    2010-03-01

    Heart failure after myocardial infarction (MI) continues to be the most prevalent cause of morbidity and mortality worldwide. Although pharmaceutical agents and interventional strategies have contributed greatly to therapy, new and superior treatment modalities are urgently needed given the overall disease burden. Stem cell-based therapy is potentially a promising strategy to lead to cardiac repair after MI. An array of cell types has been explored in this respect, including skeletal myoblasts, bone marrow (BM)-derived stem cells, embryonic stem cells, and more recently, cardiac progenitor cells (CPCs). Recently studies have obtained evidence that transplantation of CPCs or BM-derived very small embryonic-like stem cells can improve cardiac function and alleviate cardiac remodeling, supporting the potential therapeutic utility of these cells for cardiac repair. This report summarizes the current data from those studies and discusses the potential implication of these cells in developing clinically-relevant stem cell-based therapeutic strategies for cardiac regeneration.

  11. Diverse contribution of bone marrow-derived late-outgrowth endothelial progenitor cells to vascular repair under pulmonary arterial hypertension and arterial neointimal formation.

    PubMed

    Ikutomi, Masayasu; Sahara, Makoto; Nakajima, Toshiaki; Minami, Yoshiyasu; Morita, Toshihiro; Hirata, Yasunobu; Komuro, Issei; Nakamura, Fumitaka; Sata, Masataka

    2015-09-01

    It is still controversial whether bone marrow (BM)-derived endothelial progenitor cells (EPCs) can contribute to vascular repair and prevent the progression of vascular diseases. We aimed to characterize BM-derived EPC subpopulations and to evaluate their therapeutic efficacies to repair injured vascular endothelium of systemic and pulmonary arteries. BM mononuclear cells of Fisher-344 rats were cultured under endothelial cell-conditions. Early EPCs appeared on days 3-6. Late-outgrowth and very late-outgrowth EPCs (LOCs and VLOCs) were defined as cells forming cobblestone colonies on days 9-14 and 17-21, respectively. Among EPC subpopulations, LOCs showed the highest angiogenic capability with enhanced proliferation potential and secretion of proangiogenic proteins. To investigate the therapeutic effects of these EPCs, Fisher-344 rats underwent wire-mediated endovascular injury in femoral artery (FA) and were concurrently injected intraperitoneally with 60mg/kg monocrotaline (MCT). Injured rats were then treated with six injections of one of three EPCs (1×10(6) per time). After 4weeks, transplanted LOCs, but not early EPCs or VLOCs, significantly attenuated neointimal lesion formation in injured FAs. Some of CD31(+) LOCs directly replaced the injured FA endothelium (replacement ratio: 11.7±7.0%). In contrast, any EPC treatment could neither replace MCT-injured endothelium of pulmonary arterioles nor prevent the progression of pulmonary arterial hypertension (PAH). LOCs modified protectively the expression profile of angiogenic and inflammatory genes in injured FAs, but not in MCT-injured lungs. BM-derived LOCs can contribute to vascular repair of injured systemic artery; however, even they cannot rescue injured pulmonary vasculature under MCT-induced PAH. Copyright © 2015. Published by Elsevier Ltd.

  12. Dynamics of bone marrow-derived endothelial progenitor cell/mesenchymal stem cell interaction in co-culture and its implications in angiogenesis

    SciTech Connect

    Aguirre, A.; Planell, J.A.; Engel, E.

    2010-09-17

    Research highlights: {yields} BM-EPCs and MSCs establish complex, self-organizing structures in co-culture. {yields} Co-culture decreases proliferation by cellular self-regulatory mechanisms. {yields} Co-cultured cells present an activated proangiogenic phenotype. {yields} qRT-PCR and cluster analysis identify new target genes playing important roles. -- Abstract: Tissue engineering aims to regenerate tissues and organs by using cell and biomaterial-based approaches. One of the current challenges in the field is to promote proper vascularization in the implant to prevent cell death and promote host integration. Bone marrow endothelial progenitor cells (BM-EPCs) and mesenchymal stem cells (MSCs) are bone marrow resident stem cells widely employed for proangiogenic applications. In vivo, they are likely to interact frequently both in the bone marrow and at sites of injury. In this study, the physical and biochemical interactions between BM-EPCs and MSCs in an in vitro co-culture system were investigated to further clarify their roles in vascularization. BM-EPC/MSC co-cultures established close cell-cell contacts soon after seeding and self-assembled to form elongated structures at 3 days. Besides direct contact, cells also exhibited vesicle transport phenomena. When co-cultured in Matrigel, tube formation was greatly enhanced even in serum-starved, growth factor free medium. Both MSCs and BM-EPCs contributed to these tubes. However, cell proliferation was greatly reduced in co-culture and morphological differences were observed. Gene expression and cluster analysis for wide panel of angiogenesis-related transcripts demonstrated up-regulation of angiogenic markers but down-regulation of many other cytokines. These data suggest that cross-talk occurs in between BM-EPCs and MSCs through paracrine and direct cell contact mechanisms leading to modulation of the angiogenic response.

  13. Platelet released growth factors boost expansion of bone marrow derived CD34(+) and CD133(+) endothelial progenitor cells for autologous grafting.

    PubMed

    Lippross, Sebastian; Loibl, Markus; Hoppe, Sven; Meury, Thomas; Benneker, Lorin; Alini, Mauro; Verrier, Sophie

    2011-01-01

    Stem cell based autologous grafting has recently gained mayor interest in various surgical fields for the treatment of extensive tissue defects. CD34(+) and CD133(+) cells that can be isolated from the pool of bone marrow mononuclear cells (BMC) are capable of differentiating into mature endothelial cells in vivo. These endothelial progenitor cells (EPC) are believed to represent a major portion of the angiogenic regenerative cells that are released from bone marrow when tissue injury has occurred. In recent years tissue engineers increasingly looked at the process of vessel neoformation because of its major importance for successful cell grafting to replace damaged tissue. Up to now one of the greatest problems preventing a clinical application is the large scale of expansion that is required for such purpose. We established a method to effectively enhance the expansion of CD34(+) and CD133(+) cells by the use of platelet-released growth factors (PRGF) as a media supplement. PRGF were prepared from thrombocyte concentrates and used as a media supplement to iscove's modified dulbecco's media (IMDM). EPC were immunomagnetically separated from human bone morrow monocyte cells and cultured in IMDM + 10% fetal calf serum (FCS), IMDM + 5%, FCS + 5% PRGF and IMDM + 10% PRGF. We clearly demonstrate a statistically significant higher and faster cell proliferation rate at 7, 14, 21, and 28 days of culture when both PRGF and FCS were added to the medium as opposed to 10% FCS or 10% PRGF alone. The addition of 10% PRGF to IMDM in the absence of FCS leads to a growth arrest from day 14 on. In histochemical, immunocytochemical, and gene-expression analysis we showed that angiogenic and precursor markers of CD34(+) and CD133(+) cells are maintained during long-term culture. In summary, we established a protocol to boost the expansion of CD34(+) and CD133(+) cells. Thereby we provide a technical step towards the clinical application of autologous stem cell

  14. Fms-like tyrosine kinase 3 ligand is required for thymic dendritic cell generation from bone marrow-derived CD117⁺ hematopoietic progenitor cells.

    PubMed

    Xu, Yunyun; Jiang, Dong; Hu, Yizhou; Li, Yiping; Zhang, Xueguang; Wang, Jian; Wang, Yong

    2015-11-01

    Thymic dendritic cells (TDCs) are a type of dendritic cell (DC) in the thymus, which can enhance the proliferation of thymic T lymphocytes, regulate negative selection and induce central tolerance through autoantigen presentation. However, further investigations using TDCs has been restricted due to insufficient numbers. Therefore, an effective expansion method for TDCs in vitro is urgently required to further examine their biological characteristics. In the present study, a novel system was established using fetal thymus organ culture (FTOC) and a hanging drop culture system in the presence of fms‑like tyrosine kinase 3 ligand (Flt3L), termed the Flt3L/FTOC system. TDCs were successfully generated and expanded from CD117+ bone marrow hematopoietic progenitor cells. Conventional DCs (cDCs; CD11c+B220‑ DCs) and plasmacytoid DCs (pDCs; CD11c+B220+ DCs) were found in the TDCs generated using the Flt3L/FTOC system. These cells exhibited the specific morphological features of DCs, which were confirmed using Giemsa staining. Furthermore, the cytokine and surface marker profiles were also analyzed. Higher expression levels of interferon‑α and interleukin‑12 were observed in the pDCs, compared with the cDCs, and higher expression levels of toll‑like receptor (TLR)7 and TLR9 were found in the pDCs than in the cDCs. In addition, the Flt3L/FTOC‑derived TDCs also exhibited the ability to stimulate the allogenic T cell response. In conclusion, a novel in vitro culture system of thymic cDCs and pDCs using Flt3L was established, and this may provide a methodological basis for understanding the properties of TDCs.

  15. Assessment of Methods for Rapid Intraoperative Concentration and Selection of Marrow-Derived Connective Tissue Progenitors for Bone Regeneration Using the Canine Femoral Multidefect Model

    PubMed Central

    Luangphakdy, Viviane; Boehm, Cynthia; Pan, Hui; Herrick, James; Zaveri, Phil

    2016-01-01

    Treatment of large bone defects remains an unsolved clinical challenge, despite a wide array of existing bone graft materials and strategies. Local deficiency in osteogenic connective tissue progenitors (CTP-Os) due to tissue loss is one of the central biological barriers to bone regeneration. Density separation (DS) and selective retention (SR) represent two promising methods that can be used intraoperatively to rapidly concentrate cells and potentially select CTP-Os. This project was designed to compare DS and SR using the canine femoral multidefect (CFMD) model. Mineralized cancellous allograft (MCA) was used as a standardized scaffold for cell transplantation. Two experiments were performed using a cohort of six animals in each comparison. In Cohort I, unprocessed bone marrow aspirate (BMA) clot was compared to DS processing. MCA combined with raw BMA or DS processed cells produced a robust and advanced stage of bone regeneration throughout the defect in 4 weeks with reconstitution of hematopoietic marrow. However, the retention of DS processed cells and CTP-Os in the MCA matrix was low compared to BMA clot. In Cohort II, MCA with DS-T cells (addition of calcium chloride thrombin to induce clotting and enhance cell and CTP-O retention) was compared to MCA with SR cells. A mean of 276 ± 86 million nucleated cells and 29,030 ± 10,510 CTP-Os were implanted per defect in the DS-T group. A mean of 76 ± 42 million nucleated cells and 30,266 ± 15,850 CTP-Os were implanted in the SR group. Bone formation was robust and not different between treatments. Histologically, both groups demonstrated regeneration of hematopoietic marrow tissue. However, SR sites contained more hematopoietic vascular tissues, less fibrosis, and less residual allograft, particularly in the intramedullary cavity, suggesting a more advanced stage of remodeling (p = 0.04). These data demonstrate excellent overall performance of DS and SR processing methods. Both methods

  16. Assessment of Methods for Rapid Intraoperative Concentration and Selection of Marrow-Derived Connective Tissue Progenitors for Bone Regeneration Using the Canine Femoral Multidefect Model.

    PubMed

    Luangphakdy, Viviane; Boehm, Cynthia; Pan, Hui; Herrick, James; Zaveri, Phil; Muschler, George F

    2016-01-01

    Treatment of large bone defects remains an unsolved clinical challenge, despite a wide array of existing bone graft materials and strategies. Local deficiency in osteogenic connective tissue progenitors (CTP-Os) due to tissue loss is one of the central biological barriers to bone regeneration. Density separation (DS) and selective retention (SR) represent two promising methods that can be used intraoperatively to rapidly concentrate cells and potentially select CTP-Os. This project was designed to compare DS and SR using the canine femoral multidefect (CFMD) model. Mineralized cancellous allograft (MCA) was used as a standardized scaffold for cell transplantation. Two experiments were performed using a cohort of six animals in each comparison. In Cohort I, unprocessed bone marrow aspirate (BMA) clot was compared to DS processing. MCA combined with raw BMA or DS processed cells produced a robust and advanced stage of bone regeneration throughout the defect in 4 weeks with reconstitution of hematopoietic marrow. However, the retention of DS processed cells and CTP-Os in the MCA matrix was low compared to BMA clot. In Cohort II, MCA with DS-T cells (addition of calcium chloride thrombin to induce clotting and enhance cell and CTP-O retention) was compared to MCA with SR cells. A mean of 276 ± 86 million nucleated cells and 29,030 ± 10,510 CTP-Os were implanted per defect in the DS-T group. A mean of 76 ± 42 million nucleated cells and 30,266 ± 15,850 CTP-Os were implanted in the SR group. Bone formation was robust and not different between treatments. Histologically, both groups demonstrated regeneration of hematopoietic marrow tissue. However, SR sites contained more hematopoietic vascular tissues, less fibrosis, and less residual allograft, particularly in the intramedullary cavity, suggesting a more advanced stage of remodeling (p = 0.04). These data demonstrate excellent overall performance of DS and SR processing methods. Both methods achieve a bone

  17. Morphological and proteomic analysis of early stage of osteoblast differentiation in osteoblastic progenitor cells

    SciTech Connect

    Hong, Dun; Chen, Hai-Xiao; Yu, Hai-Qiang; Liang, Yong; Wang, Carrie; Lian, Qing-Quan; Deng, Hai-Teng; Ge, Ren-Shan

    2010-08-15

    Bone remodeling relies on a dynamic balance between bone formation and resorption, mediated by osteoblasts and osteoclasts, respectively. Under certain stimuli, osteoprogenitor cells may differentiate into premature osteoblasts and further into mature osteoblasts. This process is marked by increased alkaline phosphatase (ALP) activity and mineralized nodule formation. In this study, we induced osteoblast differentiation in mouse osteoprogenitor MC3T3-E1 cells and divided the process into three stages. In the first stage (day 3), the MC3T3-E1 cell under osteoblast differentiation did not express ALP or deposit a mineralized nodule. In the second stage, the MC3T3-E1 cell expressed ALP but did not form a mineralized nodule. In the third stage, the MC3T3-E1 cell had ALP activity and formed mineralized nodules. In the present study, we focused on morphological and proteomic changes of MC3T3-E1 cells in the early stage of osteoblast differentiation - a period when premature osteoblasts transform into mature osteoblasts. We found that mean cell area and mean stress fiber density were increased in this stage due to enhanced cell spreading and decreased cell proliferation. We further analyzed the proteins in the signaling pathway of regulation of the cytoskeleton using a proteomic approach and found upregulation of IQGAP1, gelsolin, moesin, radixin, and Cfl1. After analyzing the focal adhesion signaling pathway, we found the upregulation of FLNA, LAMA1, LAMA5, COL1A1, COL3A1, COL4A6, and COL5A2 as well as the downregulation of COL4A1, COL4A2, and COL4A4. In conclusion, the signaling pathway of regulation of the cytoskeleton and focal adhesion play critical roles in regulating cell spreading and actin skeleton formation in the early stage of osteoblast differentiation.

  18. The mobilization, recruitment and contribution of bone marrow-derived endothelial progenitor cells to the tumor neovascularization occur at an early stage and throughout the entire process of hepatocellular carcinoma growth.

    PubMed

    Zhu, Haitao; Shao, Qianwen; Sun, Xitai; Deng, Zhengming; Yuan, Xianwen; Yu, Decai; Zhou, Xiang; Ding, Yitao

    2012-10-01

    Obvious neovascularization is a key feature of hepatocellular carcinoma (HCC) and the status of neovascularization in HCC is closely correlated with the tumor growth and patient prognosis. The actual effect of current antivascular treatment including embolization to HCC is not satisfactory. Compensatory angiogenesis is one of the primary causes responsible for failure of antiangiogenic therapy. Bone marrow-derived endothelial progenitor cells (BM-EPCs) are considered as important building blocks for adult neovascularization. However, the role of mobilized BM-EPCs in HCC remains unknown. In this study, GFP+-BM orthotropic HCC mice were established to investigate whether BM-EPCs are involved in HCC-induced neovascularization. We found that a large number of BM-EPCs were mobilized into the circulation with the development of HCC, recruited into the HCC region and incorporated into the vascular endothelium directly by differentiation into vascular endothelial cells, including sinus, capillary vessels and great vessels. Dynamic observation revealed that the mobilization and the incorporation of BM-EPCs into different types of vessels were present in early phases and throughout the whole process of HCC growth. The proportion of BM-EPCs in vessels increased gradually, from 17 to 21% with tumor growth. Moreover, injected GFP+-EPCs also specifically homed to tumor tissue and incorporated into tumor vessels directly. In this initial study, we demonstrated that BM-EPCs play a prominent role in HCC neovascularization. Blockade of BM-EPC-mediated vasculogenesis may improve the efficacy of current anti-vascularization therapy for patients with HCC.

  19. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation

    PubMed Central

    Hilton, Matthew J.; Tu, Xiaolin; Wu, Ximei; Bai, Shuting; Zhao, Haibo; Kobayashi, Tatsuya; Kronenberg, Henry M.; Teitelbaum, Steven L.; Ross, F. Patrick; Kopan, Raphael; Long, Fanxin

    2009-01-01

    Postnatal bone marrow houses mesenchymal progenitor cells that are osteoblast precursors. These cells have established therapeutic potential 1 but they are difficult to maintain and expand in vitro, presumably because little is known about the mechanisms controlling their fate decisions. To investigate the potential role of Notch signaling in osteoblastogenesis, we used conditional alleles to genetically remove components of the Notch signaling system during skeletal development. We find that Notch disruption in the limb skeletogenic mesenchyme markedly enhanced trabecular bone mass in adolescent mice. Notably, mesenchymal progenitors were virtually depleted in the bone marrow of the high-bone-mass animals. As a result, these animals developed severe osteopenia as they aged. Moreover, Notch appeared to inhibit osteoblast differentiation through Hes/Hey proteins that diminished Runx2 transcriptional activity via physical interaction. These results support a model wherein Notch signaling in bone marrow normally acts to maintain a pool of mesenchymal progenitors by suppressing osteoblast differentiation. Thus, mesechymal progenitors may be expanded in vitro by activating Notch, whereas bone formation in vivo may be enhanced by transiently suppressing this pathway. PMID:18297083

  20. Improved Mobilization of the CD34+ and CD133+ Bone Marrow-Derived Circulating Progenitor Cells by Freshly Isolated Intracoronary Bone Marrow Cell Transplantation in Patients with Ischemic Heart Disease

    PubMed Central

    Bozdag-Turan, Ilkay; Ortak, Jasmin; Akin, Ibrahim; Kische, Stephan; Schneider, Henrik; Turan, Cem Hakan; Rehders, Tim Christopher; Rauchhaus, Mathias; Kleinfeldt, Tilo; Adolph, Ester; Brehm, Micheal; Yokus, Sedat; Steiner, Stephan; Sahin, Kurtulus; Nienaber, Christoph A.; Ince, Hüseyin

    2011-01-01

    Cell therapy is a promising novel option for treatment of cardiovascular disease. Because the role of bone marrow-derived circulating progenitor cells (BM-CPCs) after cell therapy is less clear, we analyzed in this randomized, controlled study the influence of intracoronary autologous freshly isolated bone marrow cell transplantation (BMC-Tx) by using a point-of-care system on cardiac function and on the mobilization of BM-CPCs in patients with ischemic heart disease (IHD). Fifty-six patients with IHD were randomized to either receive freshly isolated BMC-Tx or a control group that did not receive cell therapy. Peripheral blood concentrations of CD34/45+ and CD133/45+ CPCs were measured by flow cytometry pre-, immediately post-, and at 3, 6, and 12 months postprocedure in both groups. Global ejection fraction and the size of infarct area were determined by left ventriculography. We observed in patients with IHD after intracoronary transplantation of autologous freshly isolated BMCs-Tx at 3 and 12 months follow-up a significant reduction of the size of infarct area and increase of global ejection fraction as well as infarct wall movement velocity. The mobilization of CD34/45+ and CD133/45+ BM-CPCs significantly increased at 3, 6, and 12 months after cell therapy when compared with baseline in patients with IHD, although no significant changes were observed between pre- and immediately postintracoronary cell therapy administration. In the control group without cell therapy, there was no significant difference of CD34/45+ and CD133/45+ BM-CPCs mobilization between pre- and at 3, 6, and 12 months postcoronary angiography. Intracoronary transplantation of autologous freshly isolated BMCs by using a point-of-care system in patients with IHD may enhance and prolong the mobilization of CD34/45+ and CD133/45+ BM-CPCs in peripheral blood and this might increase the regenerative potency in IHD. PMID:21190450

  1. Characterization of Scaffold Carriers for BMP9-Transduced Osteoblastic Progenitor Cells in Bone Regeneration

    PubMed Central

    Shui, Wei; Zhang, Wenwen; Yin, Liangjun; Nan, Guoxin; Liao, Zhan; Zhang, Hongmei; Wang, Ning; Wu, Ningning; Chen, Xian; Wen, Sheng; He, Yunfeng; Deng, Fang; Zhang, Junhui; Luu, Hue H.; Shi, Lewis L; Hu, Zhenming; Haydon, Rex C.; Mok, James; He, Tong-Chuan

    2015-01-01

    Successful bone tissue engineering at least requires sufficient osteoblast progenitors, efficient osteoinductive factors, and biocompatible scaffolding materials. We have demonstrated that BMP9 is one of the most potent factors in inducing osteogenic differentiation of mesenchymal progenitors. To facilitate the potential use of cell-based BMP9 gene therapy for bone regeneration, we characterize the in vivo osteoconductive activities and bone regeneration potential of three clinically-used scaffold materials, type I collagen sponge, hydroxyapatite-tricalcium phosphate (HA-TCP) and demineralized bone matrix (DBM), using BMP9-expressing C2C12 osteoblastic progenitor cells. We find that recombinant adenovirus-mediated BMP9 expression effectively induces osteogenic differentiation in C2C12 cells. Although direct subcutaneous injection of BMP9-transduced C2C12 cells forms ectopic bony masses, subcutaneous implantation of BMP9-expressing C2C12 cells with collagen sponge or HA-TCP scaffold yields the most robust and mature cancellous bone formation, whereas the DBM carrier group forms no or minimal bone masses. Our results suggest that collagen sponge and HA-TCP scaffold carriers may provide more cell-friendly environment to support the survival, propagation, and ultimately differentiation of BMP9-expressing progenitor cells. This line of investigation should provide important experimental evidence for further pre-clinical studies in BMP9-mediated cell based approach to bone tissue engineering. PMID:24133046

  2. Distinct requirements for cranial ectoderm and mesenchyme-derived wnts in specification and differentiation of osteoblast and dermal progenitors.

    PubMed

    Goodnough, L Henry; Dinuoscio, Gregg J; Ferguson, James W; Williams, Trevor; Lang, Richard A; Atit, Radhika P

    2014-02-01

    The cranial bones and dermis differentiate from mesenchyme beneath the surface ectoderm. Fate selection in cranial mesenchyme requires the canonical Wnt effector molecule β-catenin, but the relative contribution of Wnt ligand sources in this process remains unknown. Here we show Wnt ligands are expressed in cranial surface ectoderm and underlying supraorbital mesenchyme during dermal and osteoblast fate selection. Using conditional genetics, we eliminate secretion of all Wnt ligands from cranial surface ectoderm or undifferentiated mesenchyme, to uncover distinct roles for ectoderm- and mesenchyme-derived Wnts. Ectoderm Wnt ligands induce osteoblast and dermal fibroblast progenitor specification while initiating expression of a subset of mesenchymal Wnts. Mesenchyme Wnt ligands are subsequently essential during differentiation of dermal and osteoblast progenitors. Finally, ectoderm-derived Wnt ligands provide an inductive cue to the cranial mesenchyme for the fate selection of dermal fibroblast and osteoblast lineages. Thus two sources of Wnt ligands perform distinct functions during osteoblast and dermal fibroblast formation.

  3. Distinct Requirements for Cranial Ectoderm and Mesenchyme-Derived Wnts in Specification and Differentiation of Osteoblast and Dermal Progenitors

    PubMed Central

    Goodnough, L. Henry; DiNuoscio, Gregg J.; Ferguson, James W.; Williams, Trevor; Lang, Richard A.; Atit, Radhika P.

    2014-01-01

    The cranial bones and dermis differentiate from mesenchyme beneath the surface ectoderm. Fate selection in cranial mesenchyme requires the canonical Wnt effector molecule β-catenin, but the relative contribution of Wnt ligand sources in this process remains unknown. Here we show Wnt ligands are expressed in cranial surface ectoderm and underlying supraorbital mesenchyme during dermal and osteoblast fate selection. Using conditional genetics, we eliminate secretion of all Wnt ligands from cranial surface ectoderm or undifferentiated mesenchyme, to uncover distinct roles for ectoderm- and mesenchyme-derived Wnts. Ectoderm Wnt ligands induce osteoblast and dermal fibroblast progenitor specification while initiating expression of a subset of mesenchymal Wnts. Mesenchyme Wnt ligands are subsequently essential during differentiation of dermal and osteoblast progenitors. Finally, ectoderm-derived Wnt ligands provide an inductive cue to the cranial mesenchyme for the fate selection of dermal fibroblast and osteoblast lineages. Thus two sources of Wnt ligands perform distinct functions during osteoblast and dermal fibroblast formation. PMID:24586192

  4. Soluble factor cross-talk between human bone marrow-derived hematopoietic and mesenchymal cells enhances in vitro CFU-F and CFU-O growth and reveals heterogeneity in the mesenchymal progenitor cell compartment.

    PubMed

    Baksh, Dolores; Davies, John E; Zandstra, Peter W

    2005-11-01

    The homeostatic adult bone marrow (BM) is a complex tissue wherein physical and biochemical interactions serve to maintain a balance between the hematopoietic and nonhematopoietic compartments. To focus on soluble factor interactions occurring between mesenchymal and hematopoietic cells, a serum-free adhesion-independent culture system was developed that allows manipulation of the growth of both mesenchymal and hematopoietic human BM-derived progenitors and the balance between these compartments. Factorial experiments demonstrated a role for stem cell factor (SCF) and interleukin 3 (IL-3) in the concomitant growth of hematopoietic (CD45+) and nonhematopoietic (CD45-) cells, as well as their derivatives. Kinetic tracking of IL-3alpha receptor (CD123) and SCF receptor (CD117) expression on a sorted CD45- cell population revealed the emergence of CD45-CD123+ cells capable of osteogenesis. Of the total fibroblast colony-forming units (CFU-Fs) and osteoblast colony-forming units (CFU-O), approximately 24% of CFU-Fs and about 22% of CFU-Os were recovered from this population. Cell-sorting experiments demonstrated that the CD45+ cell population secreted soluble factors that positively affect the survival and proliferation of CFU-Fs and CFU-Os generated from the CD45- cells. Together, our results provide insight into the intercellular cytokine network between hematopoietic and mesenchymal cells and provide a strategy to mutually culture both mesenchymal and hematopoietic cells in a defined scalable bioprocess.

  5. The transcription factor protein Sox11 enhances early osteoblast differentiation by facilitating proliferation and the survival of mesenchymal and osteoblast progenitors.

    PubMed

    Gadi, Jogeswar; Jung, Seung-Hyun; Lee, Min-Jung; Jami, Ajita; Ruthala, Kalyani; Kim, Kyoung-Min; Cho, Nam-Hoon; Jung, Han-Sung; Kim, Cheol-Hee; Lim, Sung-Kil

    2013-08-30

    Sox11 deletion mice are known to exhibit developmental defects of craniofacial skeletal malformations, asplenia, and hypoplasia of the lung, stomach, and pancreas. Despite the importance of Sox11 in the developing skeleton, the role of Sox11 in osteogenesis has not been studied yet. In this study, we identified that Sox11 is an important transcription factor for regulating the proliferation and survival of osteoblast precursor cells as well as the self-renewal potency of mesenchymal progenitor cells via up-regulation of Tead2. Furthermore, Sox11 also plays an important role in the segregation of functional osteoblast lineage progenitors from osteochondrogenic progenitors. Facilitation of osteoblast differentiation from mesenchymal cells was achieved by enhanced expression of the osteoblast lineage specific transcription factors Runx2 and Osterix. Morpholino-targeted disruption of Sox11 in zebrafish impaired organogenesis, including the bones, which were under mineralized. These results indicated that Sox11 plays a crucial role in the proliferation and survival of mesenchymal and osteoblast precursors by Tead2, and osteogenic differentiation by regulating Runx2 and Osterix.

  6. Differentiation and proliferation of periosteal osteoblast progenitors are differentially regulated by estrogens and intermittent parathyroid hormone administration.

    PubMed

    Ogita, Mami; Rached, Marie Therese; Dworakowski, Elzbieta; Bilezikian, John P; Kousteni, Stavroula

    2008-11-01

    The periosteum is now widely recognized as a homeostatic and therapeutic target for actions of sex steroids and intermittent PTH administration. The mechanisms by which estrogens suppress but PTH promotes periosteal expansion are not known. In this report, we show that intermittent PTH(1-34) promotes differentiation of periosteal osteoblast precursors as evidenced by the stimulation of the expression or activity of alkaline phosphatase as well as of targets of the bone morphogenetic protein 2 (BMP-2) and Wnt pathways. In contrast, 17beta-estradiol (E2) had no effect by itself. However, it attenuated PTH- or BMP-2-induced differentiation of primary periosteal osteoblast progenitors. Administration of intermittent PTH to ovariectomized mice induced rapid phosphorylation of the BMP-2 target Smad1/5/8 in the periosteum. A replacement dose of E2 had no effect by itself but suppressed PTH-induced phosphorylation of Smad1/5/8. In contrast to its effects to stimulate periosteal osteoblast differentiation, PTH promoted and subsequently suppressed proliferation of periosteal osteoblast progenitors in vitro and in vivo. E2 promoted proliferation and attenuated the antiproliferative effect of PTH. Both hormones protected periosteal osteoblasts from apoptosis induced by various proapoptotic agents. These observations suggest that the different effects of PTH and estrogens on the periosteum result from opposing actions on the recruitment of early periosteal osteoblast progenitors. Intermittent PTH promotes osteoblast differentiation from periosteum-derived mesenchymal progenitors through ERK-, BMP-, and Wnt-dependent signaling pathways. Estrogens promote proliferation of early osteoblast progenitors but inhibit their differentiation by osteogenic agents such as PTH or BMP-2.

  7. Amphiregulin-EGFR signaling mediates the migration of bone marrow mesenchymal progenitors toward PTH-stimulated osteoblasts and osteocytes.

    PubMed

    Zhu, Ji; Siclari, Valerie A; Liu, Fei; Spatz, Jordan M; Chandra, Abhishek; Divieti Pajevic, Paola; Qin, Ling

    2012-01-01

    Intermittent administration of parathyroid hormone (PTH) dramatically increases bone mass and currently is one of the most effective treatments for osteoporosis. However, the detailed mechanisms are still largely unknown. Here we demonstrate that conditioned media from PTH-treated osteoblastic and osteocytic cells contain soluble chemotactic factors for bone marrow mesenchymal progenitors, which express a low amount of PTH receptor (PTH1R) and do not respond to PTH stimulation by increasing cAMP production or migrating toward PTH alone. Conditioned media from PTH-treated osteoblasts elevated phosphorylated Akt and p38MAPK amounts in mesenchymal progenitors and inhibition of these pathways blocked the migration of these progenitors toward conditioned media. Our previous and current studies revealed that PTH stimulates the expression of amphiregulin, an epidermal growth factor (EGF)-like ligand that signals through the EGF receptor (EGFR), in both osteoblasts and osteocytes. Interestingly, conditioned media from PTH-treated osteoblasts increased EGFR phosphorylation in mesenchymal progenitors. Using several different approaches, including inhibitor, neutralizing antibody, and siRNA, we demonstrate that PTH increases the release of amphiregulin from osteoblastic cells, which acts on the EGFRs expressed on mesenchymal progenitors to stimulate the Akt and p38MAPK pathways and subsequently promote their migration in vitro. Furthermore, inactivation of EGFR signaling specifically in osteoprogenitors/osteoblasts attenuated the anabolic actions of PTH on bone formation. Taken together, these results suggest a novel mechanism for the therapeutic effect of PTH on osteoporosis and an important role of EGFR signaling in mediating PTH's anabolic actions on bone.

  8. Amphiregulin-EGFR Signaling Mediates the Migration of Bone Marrow Mesenchymal Progenitors toward PTH-Stimulated Osteoblasts and Osteocytes

    PubMed Central

    Zhu, Ji; Siclari, Valerie A.; Liu, Fei; Spatz, Jordan M.; Chandra, Abhishek; Divieti Pajevic, Paola; Qin, Ling

    2012-01-01

    Intermittent administration of parathyroid hormone (PTH) dramatically increases bone mass and currently is one of the most effective treatments for osteoporosis. However, the detailed mechanisms are still largely unknown. Here we demonstrate that conditioned media from PTH-treated osteoblastic and osteocytic cells contain soluble chemotactic factors for bone marrow mesenchymal progenitors, which express a low amount of PTH receptor (PTH1R) and do not respond to PTH stimulation by increasing cAMP production or migrating toward PTH alone. Conditioned media from PTH-treated osteoblasts elevated phosphorylated Akt and p38MAPK amounts in mesenchymal progenitors and inhibition of these pathways blocked the migration of these progenitors toward conditioned media. Our previous and current studies revealed that PTH stimulates the expression of amphiregulin, an epidermal growth factor (EGF)-like ligand that signals through the EGF receptor (EGFR), in both osteoblasts and osteocytes. Interestingly, conditioned media from PTH-treated osteoblasts increased EGFR phosphorylation in mesenchymal progenitors. Using several different approaches, including inhibitor, neutralizing antibody, and siRNA, we demonstrate that PTH increases the release of amphiregulin from osteoblastic cells, which acts on the EGFRs expressed on mesenchymal progenitors to stimulate the Akt and p38MAPK pathways and subsequently promote their migration in vitro. Furthermore, inactivation of EGFR signaling specifically in osteoprogenitors/osteoblasts attenuated the anabolic actions of PTH on bone formation. Taken together, these results suggest a novel mechanism for the therapeutic effect of PTH on osteoporosis and an important role of EGFR signaling in mediating PTH's anabolic actions on bone. PMID:23300521

  9. Bone marrow-derived cells are present in Mooren's ulcer.

    PubMed

    Ye, Juan; Chen, Jian; Kim, Jae Chan; Yao, Ke

    2004-01-01

    To investigate whether bone marrow-derived cells are present in Mooren's ulcer and involved in its destructive and regenerative disease course, tissue specimens were collected from 3 eyes of 3 patients with Mooren's ulcer that underwent lamellar keratectomy. Three normal donor limbal corneoscleras served as controls. Immunohistochemical staining patterns were analyzed by using the following antibodies: CD34 (a marker of hematopoietic progenitor cells and endothelium), c-kit (a marker of hematopoietic and stromal progenitor cells) and STRO-1 (a differentiation antigen present on bone marrow fibroblast cells and on various nonhematopoietic progenitor cells). Strong positive CD34, c-kit and STRO-1 cells were revealed in Mooren's ulcer specimens, especially in the superficial stroma. A few weakly expressed CD34 stromal cells were seen in normal limbal cornea, but no immunoreactivity for c-kit and STRO-1 was found. Bone marrow-derived cells are present in Mooren's ulcer and contribute to its destructive and regeneration process by synergizing with other factors. Specific therapeutic strategies that target the role of these cells in Mooren's ulcer are anticipated.

  10. Isolation of Murine Bone Marrow Derived Mesenchymal Stem Cells using Twist2 Cre Transgenic Mice

    PubMed Central

    Liu, Yaling; Wang, Liping; Fatahi, Reza; Kronenberg, Mark; Kalajzic, Ivo; Rowe, David; Li, Yingcui; Maye, Peter

    2010-01-01

    While human bone marrow derived mesenchymal stem cells (BMSCs) are of great interest for their potential therapeutic value, its murine equivalent remains an important basic research model that can provide critical insights into the biology of this progenitor cell population. Here we present a novel transgenic strategy that allowed for the selective identification and isolation of murine BMSCs at the early stages of stromal cell culture. This strategy involved crossing Twist2 –Cre mice with Cre reporter mice such as Z/EG or Ai9, which express EGFP or Tomato fluorescent protein, respectively, upon Cre mediated excision of a stop sequence. Using this approach, we identified an adherent fluorescent protein+ cell population (T2C+) that is present during the earliest stages of colony formation and by day 5 of culture represents ~20% of the total cell population. Cell surface profiling by flow cytometry showed that T2C+ cells are highly positive for SCA1 and CD29 and negative for CD45, CD117, TIE2, and TER119. Isolation of T2C+ cells by FACS selected for a cell population with skeletal potential that can be directed to differentiate into osteoblasts, adipocytes, or chondrocytes. We also demonstrated in a calvarial bone defect model that T2C+ cells retain a strong efficacy for osteogenic repair and can support a hematopoietic environment. Collectively, these studies provide evidence that the Twist2-Cre x Cre reporter breeding strategy can be used to positively identify and isolate multipotent murine BMSCs. PMID:20673822

  11. Maintenance and expansion of hematopoietic stem/progenitor cells in biomimetic osteoblast niche.

    PubMed

    Tan, Jing; Liu, Ting; Hou, Li; Meng, Wentong; Wang, Yuchun; Zhi, Wei; Deng, Li

    2010-10-01

    In this study, we employed bio-derived bone scaffold and composited with the marrow mesenchymal stem cell induced into osteoblast to replicate a "biomimetic niche." The CD34(+) cells or mononuclear cells (MNC) from umbilical cord blood were cultured for 2-5 weeks in the biomimetic niche (3D system) was compared with conventional two dimensional cultures (2D system) without adding cytokine supplement. After 2 weeks in culture, the CD34(+) cells from umbilical cord blood in the 3D system increased 3.3-4.8 folds when compared with the initial CD34(+) cells. CD34(+)/CD38(-) cells accounted for 82-90% of CD34(+) cells. After 5 weeks, CD34(+)/CD38(-) cells in the 3D system increased when compared with initial (1.3 ± 0.3 × 10(3) vs. 1.0 ± 0.5 × 10(4), p < 0.05), but were decreased in the 2D system (1.3 ± 0.3 × 10(3) vs. 2.5 ± 0.7 × 10(2), p < 0.05). The CFU progenitors were produced more in the 3D system than in the 2D system (4.6-9.3 folds vs. 1.0-1.5 folds) after 2 weeks in culture, and the colony distribution in the 3D system manifested higher percentage of BFU-E and CFU-GEMM, but in the 2D system was mainly CFU-GM. The LTC-ICs in the 3D system showed 5.2-7.2 folds increase over input at 2 weeks in culture, and maintain the immaturation of hematopoietic progenitor cells (HPCs) over 5 weeks. In conclusion, this new 3D hematopoietic progenitor cell culture system is the first to utilize natural cancellous bone as scaffold with osteoblasts as supporting cells; it is mimicry of natural bone marrow HSC niche. Our primary work has demonstrated it could maintain and expand HSC/HPC in vitro.

  12. Bone marrow-derived lung epithelial cells.

    PubMed

    Krause, Diane S

    2008-08-15

    Bone marrow-derived cells can take on the phenotype of epithelial cells and express epithelial-specific genes in multiple organs. Here, we focus on recent data on the appearance of marrow-derived epithelial cells in the adult lung. These findings have garnered significant skepticism because in most cases marrow-derived epithelial cells are very rare, the marrow cell of origin is not known, the techniques for detection have needed improvement, and there seem to be multiple mechanisms by which this occurs. Recent studies have focused on these concerns. Once these important concerns are addressed, further studies on the function(s) of these cells will need to be performed to determine whether this engraftment has any clinical significance-either beneficial or detrimental.

  13. Bone vs. fat: Embryonic origin of progenitors determines response to androgen in adipocytes and osteoblasts

    PubMed Central

    Wiren, Kristine M.; Hashimoto, Joel G.; Semirale, Anthony A.; Zhang, Xiao-Wei

    2011-01-01

    Although androgen is considered an anabolic hormone, the consequences of androgen receptor (AR) overexpression in skeletally-targeted AR-transgenic lines highlight the detrimental effect of enhanced androgen sensitivity on cortical bone quality. A compartment-specific anabolic response is observed only in male but not female AR3.6-transgenic (tg) mice, with increased periosteal bone formation and calvarial thickening. To identify anabolic signaling cascades that have the potential to increase bone formation, qPCR array analysis was employed to define expression differences between AR3.6-tg and wild-type (WT) periosteal tissue. Notably, categories that were significantly different between the two genotypes included axonal guidance, CNS development and negative regulation of Wnt signaling with a node centered on stem cell pathways. Further, fine mapping of AR3.6-tg calvaria revealed that anabolic thickening in vivo is not uniform across the calvaria, occurring only in frontal but not parietal bones. Multipotent fraction 1 progenitor populations from both genotypes were cultured separately as frontal bone neural crest stem-like cells (fNCSC) and parietal bone mesenchymal stem-like cells (pMSC). Both osteoblastic and adipogenic differentiation in these progenitor populations was influenced by embryonic lineage and by genotype. Adipogenesis was enhanced in WT fNCSC compared to pMSC, but transgenic cultures showed strong suppression of lipid accumulation only in fNCSC cells. Osteoblastogenesis was significantly increased in transgenic fNCSC cultures compared to WT, with elevated alkaline phosphatase (ALP) activity and induction of mineralization and nodule formation assessed by alizarin red and von Kossa staining. Osteocalcin (OC) and ALP mRNA levels were also increased in fNCSC cultures from AR3.6-tg vs. WT, but in pMSC cultures ALP mRNA levels, mineralization and nodule formation were decreased in AR3.6-tg cells. Expression differences identified by array in long bone

  14. Exposure of periodontal ligament progenitor cells to lipopolysaccharide from Escherichia coli changes osteoblast differentiation pattern

    PubMed Central

    ALBIERO, Mayra Laino; AMORIM, Bruna Rabelo; MARTINS, Luciane; CASATI, Márcio Zaffalon; SALLUM, Enilson Antonio; NOCITI, Francisco Humberto; SILVÉRIO, Karina Gonzales

    2015-01-01

    Periodontal ligament mesenchymal stem cells (PDLMSCs) are an important alternative source of adult stem cells and may be applied for periodontal tissue regeneration, neuroregenerative medicine, and heart valve tissue engineering. However, little is known about the impact of bacterial toxins on the biological properties of PDLSMSCs, including self-renewal, differentiation, and synthesis of extracellular matrix. Objective : This study investigated whether proliferation, expression of pro-inflammatory cytokines, and osteogenic differentiation of CD105-enriched PDL progenitor cell populations (PDL-CD105+ cells) would be affected by exposure to bacterial lipopolysaccharide from Escherichia coli (EcLPS). Material and Methods : Toll-like receptor 4 (TLR4) expression was assessed in PDL-CD105+ cells by the immunostaining technique and confirmed using Western blotting assay. Afterwards, these cells were exposed to EcLPS, and the following assays were carried out: (i) cell viability using MTS; (ii) expression of the interleukin-1 beta (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor alpha (TNF-α) genes; (iii) osteoblast differentiation assessed by mineralization in vitro, and by mRNA levels of run-related transcription factor-2 (RUNX2), alkaline phosphatase (ALP) and osteocalcin (OCN) determined by quantitative PCR. Results : PDL-CD105+ cells were identified as positive for TLR4. EcLPS did not affect cell viability, but induced a significant increase of transcripts for IL-6 and IL-8. Under osteogenic condition, PDL-CD105+ cells exposed to EcLPS presented an increase of mineralized matrix deposition and higher RUNX2 and ALP mRNA levels when compared to the control group. Conclusions : These results provide evidence that CD105-enriched PDL progenitor cells are able to adapt to continuous Escherichia coli endotoxin challenge, leading to an upregulation of osteogenic activities. PMID:26018305

  15. Lithium-end-capped polylactide thin films influence osteoblast progenitor cell differentiation and mineralization

    PubMed Central

    Gomillion, Cheryl T.; Lakhman, Rubinder Kaur; Kasi, Rajeswari M.; Weiss, R. A.; Kuhn, Liisa T.; Goldberg, A. Jon

    2015-01-01

    End-capping by covalently binding functional groups to the ends of polymer chains offers potential advantages for tissue engineering scaffolds, but the ability of such polymers to influence cell behavior has not been studied. As a demonstration, polylactide (PLA) was end-capped with lithium carboxylate ionic groups (hPLA13kLi) and evaluated. Thin films of the hPLA13kLi and PLA homopolymer were prepared with and without surface texturing. Murine osteoblast progenitor cells from collagen 1α1 transgenic reporter mice were used to assess cell attachment, proliferation, differentiation, and mineralization. Measurement of green fluorescent protein expressed by these cells and xylenol orange staining for mineral allowed quantitative analysis. The hPLA13kLi was biologically active, increasing initial cell attachment and enhancing differentiation, while reducing proliferation and strongly suppressing mineralization, relative to PLA. These effects of bound lithium ions (Li+) had not been previously reported, and were generally consistent with the literature on soluble additions of lithium. The surface texturing generated here did not influence cell behavior. These results demonstrate that end-capping could be a useful approach in scaffold design, where a wide range of biologically active groups could be employed, while likely retaining the desirable characteristics associated with the unaltered homopolymer backbone. PMID:24733780

  16. Lithium-end-capped polylactide thin films influence osteoblast progenitor cell differentiation and mineralization.

    PubMed

    Gomillion, Cheryl T; Lakhman, Rubinder Kaur; Kasi, Rajeswari M; Weiss, R A; Kuhn, Liisa T; Goldberg, A Jon

    2015-02-01

    End-capping by covalently binding functional groups to the ends of polymer chains offers potential advantages for tissue engineering scaffolds, but the ability of such polymers to influence cell behavior has not been studied. As a demonstration, polylactide (PLA) was end-capped with lithium carboxylate ionic groups (hPLA13kLi) and evaluated. Thin films of the hPLA13kLi and PLA homopolymer were prepared with and without surface texturing. Murine osteoblast progenitor cells from collagen 1α1 transgenic reporter mice were used to assess cell attachment, proliferation, differentiation, and mineralization. Measurement of green fluorescent protein expressed by these cells and xylenol orange staining for mineral allowed quantitative analysis. The hPLA13kLi was biologically active, increasing initial cell attachment and enhancing differentiation, while reducing proliferation and strongly suppressing mineralization, relative to PLA. These effects of bound lithium ions (Li(+) ) had not been previously reported, and were generally consistent with the literature on soluble additions of lithium. The surface texturing generated here did not influence cell behavior. These results demonstrate that end-capping could be a useful approach in scaffold design, where a wide range of biologically active groups could be employed, while likely retaining the desirable characteristics associated with the unaltered homopolymer backbone. © 2014 Wiley Periodicals, Inc.

  17. Recql4 haploinsufficiency in mice leads to defects in osteoblast progenitors: Implications for low bone mass phenotype

    SciTech Connect

    Yang Jieping; Murthy, Sreemala; Winata, Therry; Werner, Sean; Abe, Masumi; Prahalad, Agasanur K. . E-mail: aprahala@iupui.edu; Hock, Janet M.

    2006-05-26

    The cellular and molecular mechanisms that underlie skeletal abnormalities in defective Recql4-related syndromes are poorly understood. Our objective in this study was to explore the function of Recql4 in osteoblast biology both in vitro and in vivo. Immunohistochemistry on adult mouse bone showed Recql4 protein localization in active osteoblasts around growth plate, but not in fully differentiated osteocytes. Consistent with this finding, Recql4 gene expression was high in proliferating mouse osteoblastic MC3T3.E1 cells and decreased as cells progressively lost their proliferation activity during differentiation. Recql4 overexpression in osteoblastic cells exhibited higher proliferation activity, while its depletion impeded cell growth. In addition, bone marrow stromal cells from male Recql4+/- mice had fewer progenitor cells, including osteoprogenitors, indicated by reduced total fibroblast colony forming units (CFU-f) and alkaline phosphatase-positive CFU-f colonies concomitant with reduced bone mass. These findings provide evidence that Recql4 functions as a regulatory protein during osteoprogenitor proliferation, a critical cellular event during skeleton development.

  18. Bee Venom Accelerates Wound Healing in Diabetic Mice by Suppressing Activating Transcription Factor-3 (ATF-3) and Inducible Nitric Oxide Synthase (iNOS)-Mediated Oxidative Stress and Recruiting Bone Marrow-Derived Endothelial Progenitor Cells.

    PubMed

    Badr, Gamal; Hozzein, Wael N; Badr, Badr M; Al Ghamdi, Ahmad; Saad Eldien, Heba M; Garraud, Olivier

    2016-10-01

    Multiple mechanisms contribute to impaired diabetic wound healing including impaired neovascularization and deficient endothelial progenitor cell (EPC) recruitment. Bee venom (BV) has been used as an anti-inflammatory agent for the treatment of several diseases. Nevertheless, the effect of BV on the healing of diabetic wounds has not been studied. Therefore, in this study, we investigated the impact of BV on diabetic wound closure in a type I diabetic mouse model. Three experimental groups were used: group 1, non-diabetic control mice; group 2, diabetic mice; and group 3, diabetic mice treated with BV. We found that the diabetic mice exhibited delayed wound closure characterized by a significant decrease in collagen production and prolonged elevation of inflammatory cytokines levels in wounded tissue compared to control non-diabetic mice. Additionally, wounded tissue in diabetic mice revealed aberrantly up-regulated expression of ATF-3 and iNOS followed by a marked elevation in free radical levels. Impaired diabetic wound healing was also characterized by a significant elevation in caspase-3, -8, and -9 activity and a marked reduction in the expression of TGF-β and VEGF, which led to decreased neovascularization and angiogenesis of the injured tissue by impairing EPC mobilization. Interestingly, BV treatment significantly enhanced wound closure in diabetic mice by increasing collagen production and restoring the levels of inflammatory cytokines, free radical, TGF-β, and VEGF. Most importantly, BV-treated diabetic mice exhibited mobilized long-lived EPCs by inhibiting caspase activity in the wounded tissue. Our findings reveal the molecular mechanisms underlying improved diabetic wound healing and closure following BV treatment. J. Cell. Physiol. 231: 2159-2171, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. The Influence of Aspiration Volume on the Number of Osteoblastic Progenitors Obtained From Bone Marrow in Children.

    PubMed

    Yandow, Suzanne M; Van de Velde, Samuel K; Siebert, Jeanne; Perkins, Sherrie L

    2017-01-30

    Autologous bone marrow aspirates are utilized to treat various conditions in children. The biological value of bone marrow aspirate depends on the concentration of competent osteoblastic progenitors present in the aspirate. It has been shown in adults that increasing bone marrow aspiration volume beyond 2 mL decreases the concentration of osteoblast progenitor cells because of dilution of the sample with peripheral blood. The effect of varying bone marrow aspiration volumes on the osteoblast cell content has not been determined in children. In total, 21 children (3 male and 18 female patients, age range 8 mo to 14 y) scheduled for pelvic osteotomy were included in the study. Three separate bone marrow aspirates of 1, 5, and 10 mL were obtained from the anterior superior iliac crest. Total number of nucleated cells was counted per aspirate and the prevalence of alkaline phosphatase-positive colony-forming units was determined per million nucleated cells. We measured a significant, proportional increase in the total number of nucleated bone marrow precursor cells between the 1 and 5 mL samples (mean±SD, 27±13 and 152±78 million nucleated cells, respectively; P<0.0001). When the aspiration volume doubled from 5 to 10 mL the total number of nucleated cells was 178±76 million (P=0.17). A proportional increase from 2214 alkaline phosphatase-positive colony-forming units in the 1 mL sample to 14,100 alkaline phosphatase-positive colony-forming units in the 5 mL sample was observed. However, the number of colony-forming units per aspirate decreased to 11,880 in the 10 mL sample. These data demonstrate that in children aspiration up to 5 mL bone marrow from the iliac crest yields a proportional increase in osteoblastic progenitor cells per aspirate. Increasing the aspiration volume beyond 5 mL results in hemodilution, rather than further selection of osteoblastic material. These data provide clinicians with a guideline for optimizing aspiration volume of bone marrow in

  20. α-Tocopherol, especially α-tocopherol phosphate, exerts antiapoptotic and angiogenic effects on rat bone marrow-derived endothelial progenitor cells under high-glucose and hypoxia conditions.

    PubMed

    Wu, Ziheng; Zheng, Xiangtao; Meng, Luyang; Fang, Xin; He, Yangyan; Li, Donglin; Zheng, Chengfei; Zhang, Hongkun

    2017-05-29

    Considering the poor efficacy of local intramuscular injections with endothelial progenitor cells (EPCs) for critical limb ischemia in patients with diabetes, the study aimed to investigate the effect of α-tocopherol (α-T) and α-tocopherol phosphate (α-TP) on apoptosis and angiogenesis in a rat model under oxidative stress conditions. Primary EPCs from Sprague-Dawley rats were harvested and treated with α-T and α-TP for 24 hours. Gene transcription and protein expression were evaluated by real-time polymerase chain reaction and Western blot, respectively. Cell apoptosis, migration, and tube formation ability were detected by flow cytometry, Transwell assay (Chemicon International, Temecula, Calif), and Matrigel-based angiogenesis assay (Corning Inc, Corning, NY). The in vivo experiments were carried out using 30 single hind limb ischemic models of diabetic rats that were treated with allogeneic EPCs. Capillary density was evaluated by immunohistochemistry. α-T and α-TP attenuated high glucose/hypoxia-induced cell apoptosis by promoting Bcl-2 and Akt and inhibiting nuclear factor κB p65, JNK, Notch-1, and p38MAPK genes. Furthermore, α-T and α-TP promoted the transcription and expression of vascular endothelial growth factor receptor 2 and decreased the transcription and expression of Tie-2 and Notch-1 in EPCs under high-glucose/hypoxic conditions. Moreover, α-T and especially α-TP enhanced the migratory activity of EPCs under high-glucose/hypoxic conditions. Capillary density of ischemic hind limbs was increased on day 14 after administration of EPCs pretreated with α-T and α-TP. α-T, especially α-TP, possesses therapeutic potential in the inhibition of apoptosis and increases the migratory capacity of EPCs under high-glucose/hypoxic conditions. It promotes angiogenesis by upregulating Bcl-2, Akt, and vascular endothelial growth factor receptor 2 and decreasing nuclear factor κB p65, p38MAPK, Notch-1, JNK, and Tie-2. Copyright © 2017 Society for

  1. Nonhematopoietic cells are the primary source of bone marrow-derived lung epithelial cells.

    PubMed

    Kassmer, Susannah H; Bruscia, Emanuela M; Zhang, Ping-Xia; Krause, Diane S

    2012-03-01

    Previous studies have demonstrated that bone marrow (BM)-derived cells differentiate into nonhematopoietic cells of multiple tissues. To date, it remains unknown which population(s) of BM cells are primarily responsible for this engraftment. To test the hypothesis that nonhematopoietic stem cells in the BM are the primary source of marrow-derived lung epithelial cells, either wild-type hematopoietic or nonhematopoietic BM cells were transplanted into irradiated surfactant-protein-C (SPC)-null mice. Donor-derived, SPC-positive type 2 pneumocytes were predominantly detected in the lungs of mice receiving purified nonhematopoietic cells and were absent from mice receiving purified hematopoietic stem and progenitor cells. We conclude that cells contained in the nonhematopoietic fraction of the BM are the primary source of marrow-derived lung epithelial cells. These nonhematopoietic cells may represent a primitive stem cell population residing in adult BM.

  2. Nonhematopoietic Cells are the Primary Source of Bone Marrow-Derived Lung Epithelial Cells

    PubMed Central

    Kassmer, Susannah H.; Bruscia, Emanuela M.; Zhang, Ping-Xia; Krause, Diane S.

    2013-01-01

    Previous studies have demonstrated that bone marrow (BM)-derived cells differentiate into nonhematopoietic cells of multiple tissues. To date, it remains unknown which population(s) of BM cells are primarily responsible for this engraftment. To test the hypothesis that nonhematopoietic stem cells in the BM are the primary source of marrow-derived lung epithelial cells, either wild-type hematopoietic or nonhematopoietic BM cells were transplanted into irradiated surfactant-protein-C (SPC)-null mice. Donor-derived, SPC-positive type 2 pneumocytes were predominantly detected in the lungs of mice receiving purified nonhematopoietic cells and were absent from mice receiving purified hematopoietic stem and progenitor cells. We conclude that cells contained in the nonhematopoietic fraction of the BM are the primary source of marrow-derived lung epithelial cells. These nonhematopoietic cells may represent a primitive stem cell population residing in adult BM. PMID:22162244

  3. Effects of Fibronectin Coating on Bacterial and Osteoblast Progenitor Cells Adherence in a Co-culture Assay.

    PubMed

    Hindié, Mathilde; Wu, Dongni; Anselme, Karine; Gallet, Olivier; Di Martino, Patrick

    2016-07-06

    Bacterial adherence to the surface of implants functionalized with cell-adhesive biomolecules is a critical first step of infection development. This study was designed to determine how the immobilization of human plasmatic fibronectin (pFN) could impact bacterial and osteoblast cells interaction with the surface during concomitant exposition to the two cell-types. Calibrated suspensions of P. aeruginosa PAOI or S. aureus CIP4.83 bacteria and STRO-1(+)A osteoblast progenitor cells were mixed, co-seeded on glass coverslips coated or not with pFN and incubated at 37 °C. After 3 h of co-culture, the presence of bacteria did not modify the STRO-1(+)A cells adherence to glass. pFN coating significantly enhanced STRO-1(+)A cells, CIP4.83 and PAOI adherence to glass and bacterial interaction with STRO-1(+)A cells. Confocal laser scanning microscopy observations revealed that cells on the pFN-coated substrate exhibited a greater spreading, better organized network of cytoskeletal filaments, and an increased cellular FN expression than cells on the uncoated substrate. The use of fluorescently labeled pFN showed that adherent STRO-1(+)A cells were able to remodel and to concentrate coated pFN at the cells surface. Thus, the use of FN coating could increase the risk of bacterial adherence to the material surface, acting either directly onto the coating layer or indirectly on adherent osteoblastic cells. This may increase the infection risk in the presence of bacterial contamination.

  4. Bmp2 Transcription in Osteoblast Progenitors Is Regulated by a Distant 3′ Enhancer Located 156.3 Kilobases from the Promoter▿ †

    PubMed Central

    Chandler, Ronald L.; Chandler, Kelly J.; McFarland, Karen A.; Mortlock, Douglas P.

    2007-01-01

    Bone morphogenetic protein 2 (encoded by Bmp2) has been implicated as an important signaling ligand for osteoblast differentiation and bone formation and as a genetic risk factor for osteoporosis. To initially survey a large genomic region flanking the mouse Bmp2 gene for cis-regulatory function, two bacterial artificial chromosome (BAC) clones that extend far upstream and downstream of the gene were engineered to contain a lacZ reporter cassette and tested in transgenic mice. Each BAC clone directs a distinct subset of normal Bmp2 expression patterns, suggesting a modular arrangement of distant Bmp2 regulatory elements. Strikingly, regulatory sequences required for Bmp2 expression in differentiating osteoblasts, as well as tooth buds, hair placodes, kidney, and other tissues, are located more than 53 kilobases 3′ to the promoter. By testing BACs with engineered deletions across this distant 3′ region, we parsed these regulatory elements into separate locations and more closely refined the location of the osteoblast progenitor element. Finally, a conserved osteoblast progenitor enhancer was identified within a 656-bp sequence located 156.3 kilobases 3′ from the promoter. The identification of this enhancer should permit further investigation of upstream regulatory mechanisms that control Bmp2 transcription during osteoblast differentiation and are relevant to further studies of Bmp2 as a candidate risk factor gene for osteoporosis. PMID:17283059

  5. Differential expression of CCN-family members in primary human bone marrow-derived mesenchymal stem cells during osteogenic, chondrogenic and adipogenic differentiation

    PubMed Central

    Schutze, Norbert; Noth, Ulrich; Schneidereit, Jutta; Hendrich, Christian; Jakob, Franz

    2005-01-01

    Background The human cysteine rich protein 61 (CYR61, CCN1) as well as the other members of the CCN family of genes play important roles in cellular processes such as proliferation, adhesion, migration and survival. These cellular events are of special importance within the complex cellular interactions ongoing in bone remodeling. Previously, we analyzed the role of CYR61/CCN1 as an extracellular signaling molecule in human osteoblasts. Since mesenchymal stem cells of bone marrow are important progenitors for various differentiation pathways in bone and possess increasing potential for regenerative medicine, here we aimed to analyze the expression of CCN family members in bone marrow-derived human mesenchymal stem cells and along the osteogenic, the adipogenic and the chondrogenic differentiation. Results Primary cultures of human mesenchymal stem cells were obtained from the femoral head of patients undergoing total hip arthroplasty. Differentiation into adipocytes and osteoblasts was done in monolayer culture, differentiation into chondrocytes was induced in high density cell pellet cultures. For either pathway, established differentiation markers and CCN-members were analyzed at the mRNA level by RT-PCR and the CYR61/CCN1 protein was analyzed by immunocytochemistry. RT-PCR and histochemical analysis revealed the appropriate phenotype of differentiated cells (Alizarin-red S, Oil Red O, Alcian blue, alkaline phosphatase; osteocalcin, collagen types I, II, IX, X, cbfa1, PPARγ, aggrecan). Mesenchymal stem cells expressed CYR61/CCN1, CTGF/CCN2, CTGF-L/WISP2/CCN5 and WISP3/CCN6. The CYR61/CCN1 expression decreased markedly during osteogenic differentiation, adipogenic differentiation and chondrogenic differentiation. These results were confirmed by immuncytochemical analyses. WISP2/CCN5 RNA expression declined during adipogenic differentiation and WISP3/CCN6 RNA expression was markedly reduced in chondrogenic differentiation. Conclusion The decrease in CYR61/CCN1

  6. SSH-BM-I, a tryptamine derivative, stimulates mineralization in terminal osteoblast differentiation but inhibits osteogenesis of pre-committed progenitor cells.

    PubMed

    Mikami, Yoshikazu; Somei, Masanori; Tsuda, Hiromasa

    2011-01-01

    SSH-BM-I was synthesized from tryptamine by using a newly developed synthetic method, and it has structural similarity to bromomelatonin. Recently, it had been reported that SSH-BM-I increases osteoblasts in scales of gold fish. However, the effect of SSH-BM-I on osteoblast differentiation in mammalian cells has not yet been examined. Therefore, this study examined the effect of SSH-BM-I on osteoblast differentiation in mesenchymal progenitor-like cells and mature osteoblast-like cells. SSH-BM-I enhanced terminal osteoblast differentiation, as indicated by mineralization, which was accompanied by upregulation of the osteogenic marker genes bone sialoprotein (BSP) and osteocalcin (OC). However, in mesenchymal progenitor ROB-C26 cultures, no mineralized nodules were observed regardless of SSH-BM-I treatment, although BMP-2 was able to induce nodule formation in these cells. Furthermore, BMP-2-induced nodule formation was suppressed by SSH-BM-I treatment in ROB-C26 cultures. We further investigated the impact of the timing and duration of SSH-BM-I treatment on osteoblast differentiation. The effect of SSH-BM-I treatment on osteoblast differentiation of ROB-C26 in the presence of BMP-2 switches from negative to positive sometime between day 6 and 9, because SSH-BM-I treatment enhanced the formation of mineralized nodules when it was started on day 9, but suppressed nodule formation when it was started at day 6 or earlier. These results suggest that the stimulatory effects of SSH-BM-I on the formation of mineralized nodules depend on the degree of cell differentiation.

  7. Proliferative activity of vervet monkey bone marrow-derived adherent cells

    SciTech Connect

    Kramvis, A.; Garnett, H.M.

    1987-11-01

    Vervet monkey bone marrow-derived adherent cell population cultured in Fischer's medium supplemented with 12.5% fetal calf serum and 12.5% horse serum consists of two cell shapes: fusiform (type I) and polygonal (type II). Limiting-dilution cloning of the cells suggested that the two morphologically distinct cell types belong to the same cellular system even though they differ in their proliferative capabilities. The labeling index of type II cells, as measured by autoradiography, was found to be consistently lower than that of type I cells. It is probable that these two phenotypes represent different stages of differentiation, where progenitor type I gives rise to type II cells. The bone marrow-derived adherent cells were found to be cytokinetically at rest in vivo, using the thymidine suicide test, and relatively radioresistant with a D0 = 2.1 Gy and n = 2.36 at the time of explantation from the bone. Furthermore, in culture these cells are characterized by a relatively long cell cycle of 60 h, where the length of the S phase is 30 h, G2 is 12 h, M is 6 h, and G1 is 12 h. Thus, the vervet monkey bone marrow-derived adherent cells represent a cell population with a low turnover rate both in vivo and in vitro.

  8. Bone marrow-derived cells homing for self-repair of periodontal tissues: a histological characterization and expression analysis.

    PubMed

    Wang, Yan; Zhou, Lili; Li, Chen; Xie, Han; Lu, Yuwang; Wu, Ying; Liu, Hongwei

    2015-01-01

    Periodontitis, a disease leads to the formation of periodontal defect, can result in tooth loss if left untreated. The therapies to repair/regenerate periodontal tissues have attracted lots of attention these years. Bone marrow-derived cells (BMDCs), a group of cells containing heterogeneous stem/progenitor cells, are capable of homing to injured tissues and participating in tissue repair/regeneration. The amplification of autologous BMDCs' potential in homing for self-repair/regeneration, therefore, might be considered as an alternative therapy except for traditional cell transplantation. However, the knowledge of the BMDCs' homing and participation in periodontal repair/regeneration is still known little. For the purpose of directly observing BMDCs' involvement in periodontal repair, chimeric mouse models were established to make their bone marrow cells reconstituted with cells expressing green enhanced fluorescence protein (EGFP) in this study. One month after bone marrow transplantation, periodontal defects were made on the mesial side of bilateral maxillary first molars in chimeric mice. The green fluorescence protein-positive (GFP+) BMDCS in periodontal defect regions were examined by bioluminescent imaging and immunofluorescence staining. GFP+ BMDCs were found to aggregate in the periodontal defect regions and emerge in newly-formed bones or fibers. Some of them also co-expressed markers of fibroblasts, osteoblasts or vascular endothelial cells. These results indicated that BMDCs might contribute to the formation of new fibers, bones and blood vessels during periodontal repair. In conclusion, we speculated that autologous BMDCs were capable of negotiating into the surgical sites created by periodontal operation and participating in tissue repair.

  9. Bone marrow-derived cells homing for self-repair of periodontal tissues: a histological characterization and expression analysis

    PubMed Central

    Wang, Yan; Zhou, Lili; Li, Chen; Xie, Han; Lu, Yuwang; Wu, Ying; Liu, Hongwei

    2015-01-01

    Periodontitis, a disease leads to the formation of periodontal defect, can result in tooth loss if left untreated. The therapies to repair/regenerate periodontal tissues have attracted lots of attention these years. Bone marrow-derived cells (BMDCs), a group of cells containing heterogeneous stem/progenitor cells, are capable of homing to injured tissues and participating in tissue repair/regeneration. The amplification of autologous BMDCs’ potential in homing for self-repair/regeneration, therefore, might be considered as an alternative therapy except for traditional cell transplantation. However, the knowledge of the BMDCs’ homing and participation in periodontal repair/regeneration is still known little. For the purpose of directly observing BMDCs’ involvement in periodontal repair, chimeric mouse models were established to make their bone marrow cells reconstituted with cells expressing green enhanced fluorescence protein (EGFP) in this study. One month after bone marrow transplantation, periodontal defects were made on the mesial side of bilateral maxillary first molars in chimeric mice. The green fluorescence protein-positive (GFP+) BMDCS in periodontal defect regions were examined by bioluminescent imaging and immunofluorescence staining. GFP+ BMDCs were found to aggregate in the periodontal defect regions and emerge in newly-formed bones or fibers. Some of them also co-expressed markers of fibroblasts, osteoblasts or vascular endothelial cells. These results indicated that BMDCs might contribute to the formation of new fibers, bones and blood vessels during periodontal repair. In conclusion, we speculated that autologous BMDCs were capable of negotiating into the surgical sites created by periodontal operation and participating in tissue repair. PMID:26722424

  10. Initial Binding and Recellularization of Decellularized Mouse Lung Scaffolds with Bone Marrow-Derived Mesenchymal Stromal Cells

    PubMed Central

    Daly, Amanda B.; Wallis, John M.; Borg, Zachary D.; Bonvillain, Ryan W.; Deng, Bin; Ballif, Bryan A.; Jaworski, Diane M.; Allen, Gilman B.

    2012-01-01

    Recellularization of whole decellularized lung scaffolds provides a novel approach for generating functional lung tissue ex vivo for subsequent clinical transplantation. To explore the potential utility of stem and progenitor cells in this model, we investigated recellularization of decellularized whole mouse lungs after intratracheal inoculation of bone marrow-derived mesenchymal stromal cells (MSCs). The decellularized lungs maintained structural features of native lungs, including intact vasculature, ability to undergo ventilation, and an extracellular matrix (ECM) scaffold consisting primarily of collagens I and IV, laminin, and fibronectin. However, even in the absence of intact cells or nuclei, a number of cell-associated (non-ECM) proteins were detected using mass spectroscopy, western blots, and immunohistochemistry. MSCs initially homed and engrafted to regions enriched in types I and IV collagen, laminin, and fibronectin, and subsequently proliferated and migrated toward regions enriched in types I and IV collagen and laminin but not provisional matrix (fibronectin). MSCs cultured for up to 1 month in either basal MSC medium or in a small airways growth media (SAGM) localized in both parenchymal and airway regions and demonstrated several different morphologies. However, while MSCs cultured in basal medium increased in number, MSCs cultured in SAGM decreased in number over 1 month. Under both media conditions, the MSCs predominantly expressed genes consistent with mesenchymal and osteoblast phenotype. Despite a transient expression of the lung precursor TTF-1, no other airway or alveolar genes or vascular genes were expressed. These studies highlight the power of whole decellularized lung scaffolds to study functional recellularization with MSCs and other cells. PMID:21756220

  11. Detection of Bone Marrow Derived Lung Epithelial Cells

    PubMed Central

    Kassmer, Susannah H.; Krause, Diane S.

    2010-01-01

    Studies on the ability of bone marrow derived cells to adopt the morphology and protein expression of epithelial cells in vivo have expanded rapidly over the last decade, and hundreds of publications report that bone marrow derived cells can become epithelial cells of multiple organs including lung, liver, GI tract, skin, pancreas and others. In this review, we critically evaluate the literature related to engraftment of bone marrow derived cells as epithelial cells in the lung. Over 40 manuscripts focused on whether bone marrow cells can differentiate into lung epithelial cells have been published, nearly all of which claim to identify marrow derived epithelial cells. A few investigations have concluded that no such cells are present and that the phenomenon of marrow derived epithelial cells is based on detection artifacts. Here we discuss the problems that exist in published papers identifying marrow derived epithelial cells, and propose standards for detection methods that provide the most definitive data. Identification of BM derived epithelial cells requires reliable and sensitive techniques for their detection, which must include cell identification based on the presence of an epithelial marker and the absence of blood cell markers as well as a marker for donor BM origin. In order for these studies to be rigorous, they must also use approaches to rule out cell overlap by microscopy or single cell isolation. Once these stringent criteria for identification of marrow derived epithelial cells are used universally, then the field can move forward to address the critical questions regarding which bone marrow derived cells are responsible for engraftment as epithelial cells, the mechanisms by which this occurs, whether these cells play a role in normal tissue repair, and whether specific cell subsets can be used for therapeutic benefit. PMID:20447442

  12. Repair of bone defects with prefabricated vascularized bone grafts and double-labeled bone marrow-derived mesenchymal stem cells in a rat model

    PubMed Central

    Jiang, Xiao-Rui; Yang, Hui-Ying; Zhang, Xin-Xin; Lin, Guo-Dong; Meng, Yong-Chun; Zhang, Pei-Xun; Jiang, Shan; Zhang, Chun-Lei; Huang, Fei; Xu, Lin

    2017-01-01

    This study aims to investigate the repair of bone defects with prefabricated vascularized bone grafts and double-labeled bone marrow-derived mesenchymal stem cells (BMSCs) in a rat model. BMSCs were separated from rat bone marrow. LTR-CMVpro-RFP and LTR-CMVpro-GFP were transfected into the BMSCs for in vitro and in vivo tracking. BMSCs-RFP and BMSCs-GFP were induced into endothelial progenitor cells (EPCs) and osteoblasts (OBs). Rats were divided into five groups: Group A: in vitro prefabrication with EPCs-RFP + in vivo prefabrication with arteriovenous vascular bundle + secondary OBs-GFP implantation; Group B: in vitro prefabrication with EPCs-RFP + secondary OBs-GFP implantation; Group C: in vivo prefabrication with arteriovenous vascular bundle + secondary OBs-GFP implantation; Group D: implantation of EPCs-RFP + implantation of with arteriovenous vascular bundle + simultaneous OBs-GFP implantation; Group E: demineralized bone matrix (DBM) grafts (blank control). Among five groups, Group A had the fastest bone regeneration and repair, and the regenerated bone highly resembled normal bone tissues; Group D also had fast bone repair, but the repair was slightly slower than Group A. Therefore, in vitro prefabrication with EPCs-RFP plus in vivo prefabrication with arteriovenous vascular bundle and secondary OBs-GFP implantation could be the best treatment for bone defect. PMID:28150691

  13. Concise Review: Pancreatic Cancer and Bone Marrow-Derived Stem Cells.

    PubMed

    Błogowski, Wojciech; Bodnarczuk, Tomasz; Starzyńska, Teresa

    2016-07-01

    Pancreatic adenocarcinoma remains one of the most challenging diseases of modern gastroenterology, and, even though considerable effort has been put into understanding its pathogenesis, the exact molecular mechanisms underlying the development and/or systemic progression of this malignancy still remain unclear. Recently, much attention has been paid to the potential role of bone marrow-derived stem cells (BMSCs) in this malignancy. Hence, herein, we comprehensively review the most recent discoveries and current achievements and concepts in this field. Specifically, we discuss the significance of identifying pancreatic cancer stem cells and novel therapeutic approaches involving molecular interference of their metabolism. We also describe advances in the current understanding of the biochemical and molecular mechanisms responsible for BMSC mobilization during pancreatic cancer development and systemic spread. Finally, we summarize experimental, translational, and/or clinical evidence regarding the contribution of bone marrow-derived mesenchymal stem cells, endothelial progenitor cells, hematopoietic stem/progenitor cells, and pancreatic stellate cells in pancreatic cancer development/progression. We also present their potential therapeutic value for the treatment of this deadly malignancy in humans. Different bone marrow-derived stem cell populations contribute to the development and/or progression of pancreatic cancer, and they might also be a promising "weapon" that can be used for anticancer treatments in humans. Even though the exact role of these stem cells in pancreatic cancer development and/or progression in humans still remains unclear, this concept continues to drive a completely novel scientific avenue in pancreatic cancer research and gives rise to innovative ideas regarding novel therapeutic modalities that can be safely offered to patients. ©AlphaMed Press.

  14. Hydroxyapatite coating of cellulose sponges attracts bone-marrow-derived stem cells in rat subcutaneous tissue

    PubMed Central

    Tommila, Miretta; Jokilammi, Anne; Terho, Perttu; Wilson, Timothy; Penttinen, Risto; Ekholm, Erika

    2009-01-01

    The presence of bone-marrow-derived stem cells was investigated in a wound-healing model where subcutaneously implanted cellulose sponges were used to induce granulation tissue formation. When cellulose was coated with hydroxyapatite (HA), the sponges attracted circulating haemopoietic and mesenchymal progenitor cells more efficiently than uncoated cellulose. We hypothesized that the giant cells/macrophages of HA-coated sponges recognize HA as foreign material, phagocyte or hydrolyse it and release calcium ions, which are recognized by the calcium-sensing receptors (CaRs) expressed on many cells including haemopoietic progenitors. Our results showed, indeed, that the HA-coated sponges contained more CaR-positive cells than untreated sponges. The stem cells are, most probably, responsible for the richly vascularized granulation tissue formed in HA-coated sponges. This cell-guiding property of HA-coated cellulose might be useful in clinical situations involving impaired wound repair. PMID:19324666

  15. The teleost intervertebral region acts as a growth center of the centrum: in vivo visualization of osteoblasts and their progenitors in transgenic fish.

    PubMed

    Inohaya, Keiji; Takano, Yoshiro; Kudo, Akira

    2007-11-01

    The vertebral column is a defined feature of vertebrates. In birds and mammals, the sclerotome yields cartilaginous material for the vertebral column. In teleosts, however, it remains uncertain whether the sclerotome participates in vertebral column formation. To investigate osteoblast development in the teleost, we established transgenic systems that allow in vivo observation of osteoblasts and their progenitors marked by fluorescence of DsRed and enhanced green fluorescent protein (EGFP), respectively. In twist-EGFP transgenic medaka, EGFP-positive cells first appeared in the ventromedial portion of respective somites corresponding to the sclerotome, migrated dorsally around the notochord, and concentrated in the intervertebral regions. Ultrastructural analysis of the intervertebral regions revealed that some of these cells were directly located on the osteoidal surface of the perichordal centrum, and enriched with rough endoplasmic reticulum in their cytoplasm. By using the double transgenic medaka of twist-EGFP and osteocalcin-DsRed, we clarified that the EGFP-positive cells in the intervertebral region differentiated into mature osteoblasts expressing the DsRed. In vivo bone labeling in fact confirmed active matrix formation and mineralization of the perichordal centrum exclusively in the intervertebral region of zebrafish larvae as well as medaka larvae. These findings strongly suggest that the teleost intervertebral region acts as a growth center of the perichordal centrum, where the sclerotome-derived cells differentiate into osteoblasts.

  16. Bone marrow-derived mesenchymal cell differentiation toward myogenic lineages: facts and perspectives.

    PubMed

    Galli, Daniela; Vitale, Marco; Vaccarezza, Mauro

    2014-01-01

    Bone marrow-derived mesenchymal stem cells (BM-MSCs) are valuable platforms for new therapies based on regenerative medicine. BM-MSCs era is coming of age since the potential of these cells is increasingly demonstrated. In fact, these cells give origin to osteoblasts, chondroblasts, and adipocyte precursors in vitro, and they can also differentiate versus other mesodermal cell types like skeletal muscle precursors and cardiomyocytes. In our short review, we focus on the more recent manipulations of BM-MSCs toward skeletal and heart muscle differentiation, a growing field of obvious relevance considering the toll of muscle disease (i.e., muscular dystrophies), the heavier toll of heart disease in developed countries, and the still not completely understood mechanisms of muscle differentiation and repair.

  17. Potentiation of osteoclastogenesis by adipogenic conversion of bone marrow-derived mesenchymal stem cells.

    PubMed

    Mori, Keisuke; Suzuki, Keiji; Hozumi, Akira; Goto, Hisataka; Tomita, Masato; Koseki, Hironobu; Yamashita, Shunichi; Osaki, Makoto

    2014-01-01

    Bone marrow-derived mesenchymal stem cells (BMSCs) are the indispensable component of the bone marrow, being the common precursors for adipocytes and osteoblasts. We show here that adipogenic differentiation resulted in increase in the production of adipocyte markers, such as adiponectin,fatty-acid binding proteins (FABP4), peroxisome proliferator-activated receptor γ (PPARγ), as well as the receptor activator of nuclear-κB ligand (RANKL). Co-culture of osteoclast precursors (OCPs) with BMSCs-derived adipocytes significantly enhanced osteoclast differentiation with low-dose RANKL, whose levels alone could not promote osteoclastogenesis. These results demonstrate for the first time that adipogenic differentiation of BMSCs plays a pivotal role in maintaining bone homeostasis.

  18. The role of bone marrow-derived cells during the bone healing process in the GFP mouse bone marrow transplantation model.

    PubMed

    Tsujigiwa, Hidetsugu; Hirata, Yasuhisa; Katase, Naoki; Buery, Rosario Rivera; Tamamura, Ryo; Ito, Satoshi; Takagi, Shin; Iida, Seiji; Nagatsuka, Hitoshi

    2013-03-01

    Bone healing is a complex and multistep process in which the origin of the cells participating in bone repair is still unknown. The involvement of bone marrow-derived cells in tissue repair has been the subject of recent studies. In the present study, bone marrow-derived cells in bone healing were traced using the GFP bone marrow transplantation model. Bone marrow cells from C57BL/6-Tg (CAG-EGFP) were transplanted into C57BL/6 J wild mice. After transplantation, bone injury was created using a 1.0-mm drill. Bone healing was histologically assessed at 3, 7, 14, and 28 postoperative days. Immunohistochemistry for GFP; double-fluorescent immunohistochemistry for GFP-F4/80, GFP-CD34, and GFP-osteocalcin; and double-staining for GFP and tartrate-resistant acid phosphatase were performed. Bone marrow transplantation successfully replaced the hematopoietic cells into GFP-positive donor cells. Immunohistochemical analyses revealed that osteoblasts or osteocytes in the repair stage were GFP-negative, whereas osteoclasts in the repair and remodeling stages and hematopoietic cells were GFP-positive. The results indicated that bone marrow-derived cells might not differentiate into osteoblasts. The role of bone marrow-derived cells might be limited to adjustment of the microenvironment by differentiating into inflammatory cells, osteoclasts, or endothelial cells in immature blood vessels.

  19. Selective retention of bone marrow-derived cells to enhance spinal fusion.

    PubMed

    Muschler, George F; Matsukura, Yoichi; Nitto, Hironori; Boehm, Cynthia A; Valdevit, Antonio D; Kambic, Helen E; Davros, William J; Easley, Kirk A; Powell, Kimerly A

    2005-03-01

    Connective tissue progenitors can be concentrated rapidly from fresh bone marrow aspirates using some porous matrices as a surface for cell attachment and selective retention, and for creating a cellular graft that is enriched with respect to the number of progenitor cells. We evaluated the potential value of this method using demineralized cortical bone powder as the matrix. Matrix alone, matrix plus marrow, and matrix enriched with marrow cells were compared in an established canine spinal fusion model. Fusions were compared based on union score, fusion mass, fusion volume, and by mechanical testing. Enriched matrix grafts delivered a mean of 2.3 times more cells and approximately 5.6 times more progenitors than matrix mixed with bone marrow. The union score with enriched matrix was superior to matrix alone and matrix plus marrow. Fusion volume and fusion area also were greater with the enriched matrix. These data suggest that the strategy of selective retention provides a rapid, simple, and effective method for concentration and delivery of marrow-derived cells and connective tissue progenitors that may improve the outcome of bone grafting procedures in various clinical settings.

  20. Hepatocyte nuclear factor-1 as marker of epithelial phenotype reveals marrow-derived hepatocytes, but not duct cells, after liver injury in mice.

    PubMed

    Swenson, E Scott; Guest, Ian; Ilic, Zoran; Mazzeo-Helgevold, Maria; Lizardi, Pablo; Hardiman, Camille; Sell, Stewart; Krause, Diane S

    2008-07-01

    The potential bone marrow origin of hepatocytes, cholangiocytes, and ductal progenitor cells in the liver was examined in female mice after transplantation of bone marrow cells from male green fluorescent protein (GFP) transgenic donors. Following stable hematopoietic engraftment, the livers of the recipients were injured with carbon tetrachloride (CCl(4), with or without local irradiation of the liver) or 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC, with or without local irradiation of the liver). The presence of numerous marrow-derived, GFP-positive inflammatory cells had the potential to lead to erroneous interpretation of marrow-derived hepatocytes, cholangiocytes, and ductal progenitor cells. Identification of marrow-derived ductal progenitor or cholangiocyte phenotype using colocalization of GFP or Y chromosome with pancytokeratin staining also failed to distinguish epithelial cells from closely apposed inflammatory cells. To address this inadequacy, we developed a rigorous new immunofluorescence protocol to identify marrow-derived epithelial cells in the liver using Y chromosome (donor marker) and hepatocyte nuclear factor-1 (HNF1, a nuclear marker of liver epithelial, nonhematopoietic phenotype). Using the Y/HNF1 method, rare (approximately one in 20,000) hepatocytes in female mice transplanted with male bone marrow contained a donor-derived Y chromosome. On the other hand, no Y chromosomes were found in cholangiocytes or ductal progenitor cells in mice with liver injury due to DDC or CCl(4). The use of a nuclear marker of mature hepatocytes or cholangiocytes, such as HNF1, improves discrimination of marrow-derived epithelial cells in tissue sections.

  1. Extracellular calcium (Ca2+(o))-sensing receptor in a murine bone marrow-derived stromal cell line (ST2): potential mediator of the actions of Ca2+(o) on the function of ST2 cells

    NASA Technical Reports Server (NTRS)

    Yamaguchi, T.; Chattopadhyay, N.; Kifor, O.; Brown, E. M.; O'Malley, B. W. (Principal Investigator)

    1998-01-01

    The calcium-sensing receptor (CaR) is a G protein-coupled receptor that plays key roles in extracellular calcium ion (Ca2+(o)) homeostasis by mediating the actions of Ca2+(o) on parathyroid gland and kidney. Bone marrow stromal cells support the formation of osteoclasts from their progenitors as well as the growth of hematopoietic stem cells by secreting humoral factors and through cell to cell contact. Stromal cells also have the capacity to differentiate into bone-forming osteoblasts. Bone resorption by osteoclasts probably produces substantial local increases in Ca2+(o) that could provide a signal for stromal cells in the immediate vicinity, leading us to determine whether such stromal cells express the CaR. In this study, we used the murine bone marrow-derived, stromal cell line, ST2. Both immunocytochemistry and Western blot analysis, using an antiserum specific for the CaR, detected CaR protein in ST2 cells. We also identified CaR transcripts in ST2 cells by Northern analysis using a CaR-specific probe and by RT-PCR with CaR-specific primers, followed by nucleotide sequencing of the amplified products. Exposure of ST2 cells to high Ca2+(o) (4.8 mM) or to the polycationic CaR agonists, neomycin (300 microM) or gadolinium (100 microM), stimulated both chemotaxis and DNA synthesis in ST2 cells. Therefore, taken together, our data strongly suggest that the bone marrow-derived stromal cell line, ST2, possesses both CaR protein and messenger RNA that are very similar if not identical to those in parathyroid and kidney. Furthermore, as ST2 cells have the potential to differentiate into osteoblasts, the CaR in stromal cells could participate in bone turnover by stimulating the proliferation and migration of such cells to sites of bone resorption as a result of local, osteoclast-mediated release of Ca2+(o) and, thereafter, initiating bone formation after their differentiation into osteoblasts.

  2. Extracellular calcium (Ca2+(o))-sensing receptor in a murine bone marrow-derived stromal cell line (ST2): potential mediator of the actions of Ca2+(o) on the function of ST2 cells

    NASA Technical Reports Server (NTRS)

    Yamaguchi, T.; Chattopadhyay, N.; Kifor, O.; Brown, E. M.; O'Malley, B. W. (Principal Investigator)

    1998-01-01

    The calcium-sensing receptor (CaR) is a G protein-coupled receptor that plays key roles in extracellular calcium ion (Ca2+(o)) homeostasis by mediating the actions of Ca2+(o) on parathyroid gland and kidney. Bone marrow stromal cells support the formation of osteoclasts from their progenitors as well as the growth of hematopoietic stem cells by secreting humoral factors and through cell to cell contact. Stromal cells also have the capacity to differentiate into bone-forming osteoblasts. Bone resorption by osteoclasts probably produces substantial local increases in Ca2+(o) that could provide a signal for stromal cells in the immediate vicinity, leading us to determine whether such stromal cells express the CaR. In this study, we used the murine bone marrow-derived, stromal cell line, ST2. Both immunocytochemistry and Western blot analysis, using an antiserum specific for the CaR, detected CaR protein in ST2 cells. We also identified CaR transcripts in ST2 cells by Northern analysis using a CaR-specific probe and by RT-PCR with CaR-specific primers, followed by nucleotide sequencing of the amplified products. Exposure of ST2 cells to high Ca2+(o) (4.8 mM) or to the polycationic CaR agonists, neomycin (300 microM) or gadolinium (100 microM), stimulated both chemotaxis and DNA synthesis in ST2 cells. Therefore, taken together, our data strongly suggest that the bone marrow-derived stromal cell line, ST2, possesses both CaR protein and messenger RNA that are very similar if not identical to those in parathyroid and kidney. Furthermore, as ST2 cells have the potential to differentiate into osteoblasts, the CaR in stromal cells could participate in bone turnover by stimulating the proliferation and migration of such cells to sites of bone resorption as a result of local, osteoclast-mediated release of Ca2+(o) and, thereafter, initiating bone formation after their differentiation into osteoblasts.

  3. CCN1 Promotes VEGF Production in Osteoblasts and Induces Endothelial Progenitor Cell Angiogenesis by Inhibiting miR-126 Expression in Rheumatoid Arthritis.

    PubMed

    Chen, Cheng-Yu; Su, Chen-Ming; Hsu, Chin-Jung; Huang, Chien-Chung; Wang, Shih-Wei; Liu, Shih-Chia; Chen, Wei-Cheng; Fuh, Lih-Jyh; Tang, Chih-Hsin

    2017-01-01

    Angiogenesis is the formation of new capillaries from preexisting vasculature. The perpetuation of angiogenesis plays a critical role in the pathogenesis of various disease states including rheumatoid arthritis (RA). Cysteine-rich 61 (Cyr61 or CCN1) is an important proinflammatory cytokine in RA. Here, we investigated the role of CCN1 in angiogenesis associated with vascular endothelial growth factor (VEGF) production and osteoblasts. We found higher expression of CCN1 and VEGF in synovial fluid from RA patients compared with healthy controls. CCN1 induced VEGF expression in osteoblasts and increased endothelial progenitor cells (EPCs) angiogenesis by inhibiting miR-126 via the protein kinase C-alpha (PKC-α) signaling pathway. CCN1 knockdown inhibited angiogenesis in both in vitro and in vivo models. Inhibition of CCN1 expression with lentiviral vectors expressing short hairpin RNA (shRNA) ameliorated articular swelling, cartilage erosion, and angiogenesis in the ankle joint of mice with collagen-induced arthritis (CIA). Our study is the first to describe how CCN1 promotes VEGF expression in osteoblasts and increased EPCs angiogenesis in RA disease. CCN1 may serve as a potential target for RA treatment. © 2016 American Society for Bone and Mineral Research.

  4. Granulocyte Colony-Stimulating Factor Induces Osteoblast Inhibition by B Lymphocytes and Osteoclast Activation by T Lymphocytes during Hematopoietic Stem/Progenitor Cell Mobilization.

    PubMed

    Li, Sidan; Li, Tianshou; Chen, Yongbing; Nie, Yinchao; Li, Changhong; Liu, Lanting; Li, Qiaochuan; Qiu, Lugui

    2015-08-01

    In the bone marrow (BM), hematopoietic stem and progenitor cells (HSPCs) reside in specialized niches near osteoblast cells at the endosteum. HSPCs that egress to peripheral blood are widely used for transplant, and mobilization is most commonly performed with recombinant human granulocyte colony-stimulating factor (G-CSF). However, the cellular targets of G-CSF that initiate the mobilization cascade and bone remodeling are not completely understood. Here, we examined whether T and B lymphocytes modulate the bone niche and influence HSPC mobilization. We used T and B defective mice to show that G-CSF-induced mobilization of HSPCs correlated with B lymphocytes but poorly with T lymphocytes. In addition, we found that defective B lymphocytes prevent G-CSF-mediated osteoblast disruption, and further study showed BM osteoblasts were reduced coincident with mobilization, induced by elevated expression of dickkopf1 of BM B lymphocytes. BM T cells were also involved in G-CSF-induced osteoclast activation by regulating the Receptor Activator of Nuclear Factor-κ B Ligand/Osteoprotegerin (RANKL/OPG) axis. These data provide evidence that BM B and T lymphocytes play a role in G-CSF-induced HSPC mobilization by regulating bone remodeling.

  5. Experimental evidence and early translational steps using bone marrow derived stem cells after human stroke.

    PubMed

    Kasahara, Yukiko; Ihara, Masafumi; Taguchi, Akihiko

    2013-01-01

    Neurogenesis is principally restricted to the subventricular zone of the lateral ventricle wall and the subgranular zone of the hippocampal dentate gyrus in physiological situations. However, neuronal stem cells are known to be mobilized into the post- and peristroke area and we have demonstrated that appropriate support of these stem cells, achieved by therapeutic angiogenesis, enhances neuroregeneration followed by neuronal functional recovery in an experimental stroke model. We also found that neural stem cells are mobilized in patients after stroke, as well as in animal models. Based on these observations, we have started cell-based therapy using autologous bone marrow-derived stem/progenitor cells in patients after stroke. This review summarizes the findings of recent experimental and clinical studies that have focused on neurogenesis in the injured brain after cerebral infarction. We also refer to the challenges for future cell-based therapy, including regeneration of the aged brain. Copyright © 2013 S. Karger AG, Basel.

  6. Bone marrow-derived stem cells initiate pancreatic regeneration.

    PubMed

    Hess, David; Li, Li; Martin, Matthew; Sakano, Seiji; Hill, David; Strutt, Brenda; Thyssen, Sandra; Gray, Douglas A; Bhatia, Mickie

    2003-07-01

    We show that transplantation of adult bone marrow-derived cells expressing c-kit reduces hyperglycemia in mice with streptozotocin-induced pancreatic damage. Although quantitative analysis of the pancreas revealed a low frequency of donor insulin-positive cells, these cells were not present at the onset of blood glucose reduction. Instead, the majority of transplanted cells were localized to ductal and islet structures, and their presence was accompanied by a proliferation of recipient pancreatic cells that resulted in insulin production. The capacity of transplanted bone marrow-derived stem cells to initiate endogenous pancreatic tissue regeneration represents a previously unrecognized means by which these cells can contribute to the restoration of organ function.

  7. [Functional activity of bone marrow-derived peptides (myelopeptides)].

    PubMed

    Mikhaĭlova, A A; Petrov, R V

    2009-12-01

    The review describes structure and functions of bone marrow-derived peptides (myelopeptides). The final biological effects of these endogenous bioregulators (antitumor, antiviral, anti-infectious, antileukemia etc.) are due to their immunocorrecting and differentiating activity. Myelopeptides are the integral parts of the immune homeostasis maintenance system. Nowadays, medical preparations with no side effects and natural mechanisms of action are being developed on the basis of synthesized myelopeptides.

  8. Reversin increase the plasticity of bone marrow-derived mesenchymal stem cell for generation of cardiomyocyte in vitro.

    PubMed

    Pikir, Budi S; Susilowati, Helen; Hendrianto, Eryk; Abdulrantam, Fedik

    2012-01-01

    to speed up transdifferentiation of bone marrow-derived stem cells into cardiomyocyte in vitro by inducing dedifferentiation of bone marrow-derived mesenchymal stem cell, before induction by 5-aza-2'-deoxycytidine into cardiomyocyte. two-three months old 2.5 kg weight adult male New Zealanad Rabbits were anesthezied with ether, thigh bones were excised, and bone marrow cells were obtained by aspiration. in our experiments after 1 week of mesenchymal stem cell cultures, 20 nM reversin was given to induce dediferentiation and after 24 hours exposure with 9μM 5-aza-2-deoxycytidine, early phase of cardiomyocyte differentiation appeared as cultured cell were strongly positive for GATA-4 and weakly positive for MLC-2ά, although beating cardiomyocyte has not yet appeared at the end of experiment. These experiments also showed a marked CD34+ and c-kit+ gene expression on RT-PCR examination. reversine increase plasticity of bone marrow-derived mesenchymal stem cell to generate cardiomyocyte after 5-aza-2'-deoxycytidine induction. CD34+ and c-kit+ may be a marker for cardiomyocyte progenitor cells.

  9. Disruption of cell-matrix interactions by heparin enhances mesenchymal progenitor adipocyte differentiation

    SciTech Connect

    Luo Weijun; Shitaye, Hailu; Friedman, Michael; Bennett, Christina N.; Miller, Joshua; MacDougald, Ormond A.; Hankenson, Kurt D.

    2008-11-01

    Differentiation of marrow-derived mesenchymal progenitors to either the osteoblast or adipocyte lineage is reciprocally regulated. Factors that promote osteoblastogenesis inhibit adipogenesis, while adipogenic factors are inhibitory to osteoblast differentiation. Heparin, a soluble glycosaminoglycan, inhibits bone formation in vivo and osteoblast cell differentiation and function in vitro, and has been shown to promote adipocyte differentiation. To elucidate the role that heparin plays in the adipogenic induction of murine mesenchymal progenitors, we studied immortalized marrow stromal cells (IM-MSC), the MSC cell line, ST2, and 3T3L1 pre-adipocytes. Heparin alone was not sufficient to induce adipogenesis, but enhanced the induction under a variety of adipogenic cocktails. This effect was both dose- and time-dependent. Heparin showed a positive effect at concentrations > 0. 1 {mu}g/ml when applied before day 3 during the induction course. Heparin's effect on adipogenesis was independent of cell proliferation, cell density, and extracellular lipid. This effect is likely related to the unique structure of heparin because another polyanionic glycosaminoglycan, dextran sulfate, did not promote adipogenic differentiation. Heparin treatment altered morphology and adhesion characteristics of progenitor cells, resulting in cell rounding and aggregation. As well, heparin counteracted the known inhibitory effect of fibronectin on adipogenesis and decreased basal focal adhesion kinase and paxillin phosphorylation. We conclude that heparin-mediated disruption of cell-matrix adhesion enhances adipogenic potential.

  10. Epigenetic Plasticity Drives Adipogenic and Osteogenic Differentiation of Marrow-derived Mesenchymal Stem Cells*

    PubMed Central

    Meyer, Mark B.; Benkusky, Nancy A.; Sen, Buer; Rubin, Janet; Pike, J. Wesley

    2016-01-01

    Terminal differentiation of multipotent stem cells is achieved through a coordinated cascade of activated transcription factors and epigenetic modifications that drive gene transcription responsible for unique cell fate. Within the mesenchymal lineage, factors such as RUNX2 and PPARγ are indispensable for osteogenesis and adipogenesis, respectively. We therefore investigated genomic binding of transcription factors and accompanying epigenetic modifications that occur during osteogenic and adipogenic differentiation of mouse bone marrow-derived mesenchymal stem cells (MSCs). As assessed by ChIP-sequencing and RNA-sequencing analyses, we found that genes vital for osteogenic identity were linked to RUNX2, C/EBPβ, retinoid X receptor, and vitamin D receptor binding sites, whereas adipocyte differentiation favored PPARγ, retinoid X receptor, C/EBPα, and C/EBPβ binding sites. Epigenetic marks were clear predictors of active differentiation loci as well as enhancer activities and selective gene expression. These marrow-derived MSCs displayed an epigenetic pattern that suggested a default preference for the osteogenic pathway; however, these patterns were rapidly altered near the Adipoq, Cidec, Fabp4, Lipe, Plin1, Pparg, and Cebpa genes during adipogenic differentiation. Surprisingly, we found that these cells also exhibited an epigenetic plasticity that enabled them to trans-differentiate from adipocytes to osteoblasts (and vice versa) after commitment, as assessed by staining, gene expression, and ChIP-quantitative PCR analysis. The osteogenic default pathway may be subverted during pathological conditions, leading to skeletal fragility and increased marrow adiposity during aging, estrogen deficiency, and skeletal unloading. Taken together, our data provide an increased mechanistic understanding of the epigenetic programs necessary for multipotent differentiation of MSCs that may prove beneficial in the development of therapeutic strategies. PMID:27402842

  11. Robust growth of avirulent phase II Coxiella burnetii in bone marrow-derived murine macrophages

    PubMed Central

    Cockrell, Diane C.; Long, Carrie M.; Robertson, Shelly J.; Shannon, Jeffrey G.; Miller, Heather E.; Myers, Lara; Larson, Charles L.; Starr, Tregei; Beare, Paul A.

    2017-01-01

    Published data show that murine bone marrow-derived macrophages (BMDM) restrict growth of avirulent phase II, but not virulent phase I, Coxiella burnetii. Growth restriction of phase II bacteria is thought to result from potentiated recognition of pathogen-associated molecular patterns, which leads to production of inhibitory effector molecules. Past studies have used conditioned medium from L-929 murine fibroblasts as a source of macrophage-colony stimulating factor (M-CSF) to promote differentiation of bone marrow-derived myeloid precursors into macrophages. However, uncharacterized components of conditioned medium, such as variable amounts of type I interferons, can affect macrophage activation status and their permissiveness for infection. In the current study, we show that the C. burnetii Nine Mile phase II (NMII) strain grows robustly in primary macrophages from C57BL/6J mice when bone marrow cells are differentiated with recombinant murine M-CSF (rmM-CSF). Bacteria were readily internalized by BMDM, and replicated within degradative, LAMP1-positive vacuoles to achieve roughly 3 logs of growth over 6 days. Uninfected BMDM did not appreciably express CD38 or Egr2, markers of classically (M1) and alternatively (M2) activated macrophages, respectively, nor did infection change the lack of polarization. In accordance with an M0 phenotype, infected BMDM produced moderate amounts of TNF and nitric oxide. Similar NMII growth results were obtained using C57BL/6J myeloid progenitors immortalized with an estrogen-regulated Hoxb8 (ER-Hoxb8) oncogene. To demonstrate the utility of the ER-Hoxb8 system, myeloid progenitors from natural resistance-associated macrophage protein 1 (Nramp1) C57BL/6J knock-in mice were transduced with ER-Hoxb8, and macrophages were derived from immortalized progenitors using rmM-CSF and infected with NMII. No difference in growth was observed when compared to macrophages from wild type mice, indicating depletion of metal ions by the Nramp1

  12. Neuropeptide Y Induces Hematopoietic Stem/Progenitor Cell Mobilization by Regulating Matrix Metalloproteinase-9 Activity Through Y1 Receptor in Osteoblasts.

    PubMed

    Park, Min Hee; Lee, Jong Kil; Kim, Namoh; Min, Woo-Kie; Lee, Jeong Eun; Kim, Kyoung-Tae; Akiyama, Haruhiko; Herzog, Herbert; Schuchman, Edward H; Jin, Hee Kyung; Bae, Jae-Sung

    2016-08-01

    Hematopoietic stem/progenitor cell (HSPC) mobilization is an essential homeostatic process regulated by the interaction of cellular and molecular components in bone marrow niches. It has been shown by others that neurotransmitters released from the sympathetic nervous system regulate HSPC egress from bone marrow to peripheral blood. In this study, we investigate the functional role of neuropeptide Y (NPY) on this process. NPY deficient mice had significantly impaired HSPC mobilization due to increased expression of HSPC maintenance factors by reduction of matrix metalloproteinase-9 (MMP-9) activity in bone marrow. Pharmacological or endogenous elevation of NPY led to decrease of HSPC maintenance factors expression by activating MMP-9 in osteoblasts, resulting in HSPC mobilization. Mice in which the Y1 receptor was deleted in osteoblasts did not exhibit HSPC mobilization by NPY. Furthermore, NPY treatment in ovariectomized mice caused reduction of bone loss due to HSPC mobilization. These results suggest a new role of NPY on HSPC mobilization, as well as the potential therapeutic application of this neuropeptide for stem cell-based therapy. Stem Cells 2016;34:2145-2156.

  13. Intracoronary infusion of a combination of bone marrow-derived stem cells in dogs

    PubMed Central

    Minguell, José J; Florenzano, Fernando M; Ramírez, Manuel R; Martínez, Ramón F; Lasala, Gabriel P

    2010-01-01

    BACKGROUND: Infusion of diverse types of bone marrow cells, as a source of endothelial progenitor cells (EPCs), into the ischemic myocardium is emerging as a promising therapy for coronary ischemia, probably mediated by the formation of new blood vessels. Studies have shown that while the procedure is safe and feasible, efficacy results are contentious. The investigators in the present preclinical translation study hypothesized that the infusion of a combination cell product consisting of EPCs and other cell types, such as mesenchymal stem cells, promotes the formation of more stable and mature blood vessels resulting in improved clinical outcomes. The safety and feasibility of the intracoronary infusion of such a cell combination was assessed in a canine model. METHODS: A mixture of canine autologous mononuclear cells (as the source of EPCs) and ex vivo-expanded bone marrow-derived mesenchymal stem cells or a placebo solution were intracoronarily infused into healthy dogs. Follow-up after cell/placebo infusion included an electrocardiogram, serum cardiac enzyme testing, a transthoracic echocardiography and a histopathological heart examination. RESULTS: On follow-up at all time points after infusion, no significant changes or abnormalities in vital signs, electrocardiogram, transthoracic echocardiography and heart histology were detected. CONCLUSIONS: From a clinical perspective, the safety and feasibility of the protocol used in the present animal study demonstrated clinical relevance and provided direct evidence supporting the intracoronary infusion of combination stem/progenitor cell products. PMID:20631864

  14. Intracoronary infusion of a combination of bone marrow-derived stem cells in dogs.

    PubMed

    Minguell, José J; Florenzano, Fernando M; Ramírez, Manuel R; Martínez, Ramón F; Lasala, Gabriel P

    2010-01-01

    Infusion of diverse types of bone marrow cells, as a source of endothelial progenitor cells (EPCs), into the ischemic myocardium is emerging as a promising therapy for coronary ischemia, probably mediated by the formation of new blood vessels. Studies have shown that while the procedure is safe and feasible, efficacy results are contentious. The investigators in the present preclinical translation study hypothesized that the infusion of a combination cell product consisting of EPCs and other cell types, such as mesenchymal stem cells, promotes the formation of more stable and mature blood vessels resulting in improved clinical outcomes. The safety and feasibility of the intracoronary infusion of such a cell combination was assessed in a canine model. A mixture of canine autologous mononuclear cells (as the source of EPCs) and ex vivo-expanded bone marrow-derived mesenchymal stem cells or a placebo solution were intracoronarily infused into healthy dogs. Follow-up after cell/placebo infusion included an electrocardiogram, serum cardiac enzyme testing, a transthoracic echocardiography and a histopathological heart examination. On follow-up at all time points after infusion, no significant changes or abnormalities in vital signs, electrocardiogram, transthoracic echocardiography and heart histology were detected. From a clinical perspective, the safety and feasibility of the protocol used in the present animal study demonstrated clinical relevance and provided direct evidence supporting the intracoronary infusion of combination stem/progenitor cell products.

  15. Fluid shear stress stimulates prostaglandin and nitric oxide release in bone marrow-derived preosteoclast-like cells

    NASA Technical Reports Server (NTRS)

    McAllister, T. N.; Du, T.; Frangos, J. A.

    2000-01-01

    Bone is a porous tissue that is continuously perfused by interstitial fluid. Fluid flow, driven by both vascular pressure and mechanical loading, may generate significant shear stresses through the canaliculi as well as along the bone lining at the endosteal surface. Both osteoblasts and osteocytes produce signaling factors such as prostaglandins and nitric in response to fluid shear stress (FSS); however, these humoral agents appear to have more profound affects on osteoclast activity at the endosteal surface. We hypothesized that osteoclasts and preosteoclasts may also be mechanosensitive and that osteoclast-mediated autocrine signaling may be important in bone remodeling. In this study, we investigated the effect of FSS on nitric oxide (NO), prostaglandin E(2) (PGE(2)), and prostacyclin (PGI(2)) release by neonatal rat bone marrow-derived preosteoclast-like cells. These cells were tartrate-resistant acid phosphatase (TRAP) positive, weakly nonspecific esterase (NSE) positive, and capable of fusing into calcitonin-responsive, bone-resorbing, multinucleated cells. Bone marrow-derived preosteoclast-like cells exposed for 6 h to a well-defined FSS of 16 dynes/cm(2) produced NO at a rate of 7.5 nmol/mg protein/h, which was 10-fold that of static controls. This response was completely abolished by 100 microM N(G)-amino-L-arginine (L-NAA). Flow also stimulated PGE(2) production (3.9 microg/mg protein/h) and PGI(2) production (220 pg/mg protein/h). L-NAA attenuated flow-induced PGE(2) production by 30%, suggesting that NO may partially modulate PGE(2) production. This is the first report demonstrating that marrow derived cells are sensitive to FSS and that autocrine signaling in these cells may play an important role in load-induced remodeling and signal transduction in bone. Copyright 2000 Academic Press.

  16. Isolation, culture, and induced multiple differentiation of Mongolian sheep bone marrow-derived mesenchymal stem cells.

    PubMed

    Liu, Zongzheng; Wang, Wei; Gao, Jinfang; Zhou, Huanmin; Zhang, Yanru

    2014-01-01

    The aim of this paper was to explore the optimal method of isolating, purifying, and proliferating Mongolian sheep bone marrow-derived mesenchymal stem cells (BMSCs) and their multiple differentiation potentialities. Bone marrow (BM) was punctured from ∼1-year-old sheep, and BMSCs were harvested through gradient centrifuge and adherent cultures. Analysis of the growth of the passage 1, 5, and 10 cultures revealed an S-shaped growth curve with a population doubling time of 31.2 h. Karyotyping indicated that the chromosome number in the Mongolian sheep was 2n = 54, comprising 26 pairs of autosomes and one pair of sex chromosomes (XY). RT-PCR demonstrated that OCT4, SOX2, and Nanog genes at passage 3 were positively expressed. The P3 BMSCs were cultured in vitro under inductive environments and induced into adipocytes, osteoblasts, chondrocytes, neural cells, and cardiomyocytes. Their differentiation properties were confirmed by histological staining, such as oil red, Alizarin red, hematoxylin-eosin, toluidine blue, and periodic acid schiff. RT-PCR showed that the specific genes to be induced were all expressed. This proves that the isolated cells are indeed the BMSCs and also provides valuable materials for somatic cell cloning and transgenic research.

  17. Bone marrow-derived mesenchymal stem cell plasticity and their application perspectives.

    PubMed

    Menabde, G; Gogilashvili, K; Kakabadze, Z; Berishvili, E

    2009-02-01

    The aim of this review is to summarize recent developments in research on the characteristics of bone marrow-derived mesenchymal stem cell plasticity. Stem cells are uncommitted entities capable of both self-renewal and differentiation into multiple cell lineages. In general, there are certain types of stem cell populations that are identified from embryonic and postnatal tissues. Embryonic stem cells are derived from mammalian blastocytes and theoretically have the ability to generate differentiated cell types arising from the three germ layers: mesoderm, ectoderm and endoderm. In contrast, postnatal stem cells are thought to be tissue specific, committed precursors capable of developing into a restricted number of cell lineages. Bone marrow stromal stem cells (BMSSCs), also known as mesenchymal stem cells, have been identified as a population of organized hierarchical postnatal stem cells with the potential to differentiate into osteoblasts, chondrocytes, adipocytes, cardiomyocytes, myoblasts and neural cells. Recently, studies on the plasticity of BMSSCs challenge the traditional dogma that the differentiation and commitment of postnatal stem cells are limited to cell populations resident in their local environment. Current boneregenerative techniques, such as autologous bone grafting, allografts and alloplastic materials, have limitations that hinder their use in a wider range of clinical conditions. Hence, the development of improved methods, such as BMSSC-mediated bone regeneration, is necessary for achieving future viable therapeutic alternatives.

  18. Differentiation potential and GFP labeling of sheep bone marrow-derived mesenchymal stem cells.

    PubMed

    Czernik, Marta; Fidanza, Antonella; Sardi, Martina; Galli, Cesare; Brunetti, Dario; Malatesta, Daniela; Della Salda, Leonardo; Matsukawa, Kazutsugu; Ptak, Grazyna E; Loi, Pasqualino

    2013-01-01

    Mesenchymal stem cells (MSCs) are an important cell population in the bone marrow microenvironment. MSCs have the capacity to differentiate in vitro into several mesenchymal tissues including bone, cartilage, fat, tendon, muscle, and marrow stroma. This study was designed to isolate, expand, and characterize the differentiation ability of sheep bone marrow-derived MSCs and to demonstrate the possibility to permanently express a reporter gene. Bone marrow was collected from the iliac crest and mononuclear cells were separated by density gradient centrifugation. Sheep MSCs cell lines were stable characterized as CD44+ and CD34- and then transfected with a green fluorescent protein (GFP) reporter gene. The GFP expression was maintained in about half (46.6%) of cloned blastocysts produced by nuclear transfer of GFP+ sheep MSCs, suggesting the possibility to establish multipotent embryonic cells' lines carrying the fluorescent tag for comparative studies on the differentiation capacity of adult stem cells (MSCs) versus embryonic stem cells. We found that sheep MSCs under appropriate culture conditions could be induced to differentiate into adipocytes, chondrocytes, and osteoblast lineages. Our results confirm the plasticity of sheep MSCs and establish the foundation for the development of a pre-clinical sheep model to test the efficiency and safety of cell replacement therapy. Copyright © 2012 Wiley Periodicals, Inc.

  19. Bones of contention: marrow-derived cells in myocardial regeneration.

    PubMed

    Sussman, Mark A; Murry, Charles E

    2008-06-01

    Almost 7 years have passed since the initial publication reporting that bone marrow cells regenerate infarcted myocardium. The subsequent years produced hundreds of investigations that ran the gamut of findings from validation to disproof. Undeterred by the concurrent debate, clinical trials ensued to test the safety and efficacy of bone marrow-derived cell population for autologous therapy in clinical treatment of myocardial disease. In the following conversational exchange, two scientists with distinct perspectives weigh the pros and cons of pursuing bone marrow stem cell therapy and look toward finding a consensus of where the future lies for regenerative medicine and the heart. The conclusion is that the two camps may not be as far apart as it may seem from the rancor in literature and at meetings, and the potential of one day achieving regenerative therapy is indeed a vision that both parties enthusiastically share.

  20. [Bone marrow-derived fibrocytes and thyroid-associated opthalmopathy].

    PubMed

    Wu, T; Tang, D R; Sun, F Y

    2017-06-11

    Thyroid-associated opthalmopathy(TAO) is a common autoimmune syndrome affecting the thyroid and orbit, which can result in the fibrosis of extraoular muscles and hyperplasia of adipose tissue. Advanced TAO patients could even lose vision caused by cornea ulcer and congestion of optic nerve from expansion of the extraocular muscles and orbit fat. Currently, there are no therapies shown to prevent it, because its cellular and molecular mechanisms are not clear. Some studies have recently implicated bone marrow-derived fibroblast-like, called fibrocytes are involved in the pathogenesis of TAO. We reviewed and summarized the research advances of TAO and also the relationship between the fibrocytes and pathogenesis of TAO in the paper. (Chin J Ophthalmol, 2017, 53: 470-473).

  1. IGF-1 Receptor Expression on Circulating Osteoblast Progenitor Cells Predicts Tissue-Based Bone Formation Rate and Response to Teriparatide in Premenopausal Women With Idiopathic Osteoporosis.

    PubMed

    Cohen, Adi; Kousteni, Stavroula; Bisikirska, Brygida; Shah, Jayesh G; Manavalan, J Sanil; Recker, Robert R; Lappe, Joan; Dempster, David W; Zhou, Hua; McMahon, Donald J; Bucovsky, Mariana; Kamanda-Kosseh, Mafo; Stubby, Julie; Shane, Elizabeth

    2017-06-01

    We have previously reported that premenopausal women with idiopathic osteoporosis (IOP) have profound microarchitectural deficiencies and heterogeneous bone remodeling. Those with the lowest bone formation rate have higher baseline serum insulin-like growth factor-1 (IGF-1) levels and less robust response to teriparatide. Because IGF-1 stimulates bone formation and is critical for teriparatide action on osteoblasts, these findings suggest a state of IGF-1 resistance in some IOP women. To further investigate the hypothesis that osteoblast and IGF-1-related mechanisms mediate differential responsiveness to teriparatide in IOP, we studied circulating osteoblast progenitor (COP) cells and their IGF-1 receptor (IGF-1R) expression. In premenopausal women with IOP, peripheral blood mononuclear cells (PBMCs) were obtained at baseline (n = 25) and over 24 months of teriparatide treatment (n = 11). Flow cytometry was used to identify and quantify COPs (non-hematopoetic lineage cells expressing osteocalcin and RUNX2) and to quantify IGF-1R expression levels. At baseline, both the percent of PBMCs that were COPs (%COP) and COP cell-surface IGF-1R expression correlated directly with several histomorphometric indices of bone formation in tetracycline-labeled transiliac biopsies. In treated subjects, both %COP and IGF-1R expression increased promptly after teriparatide, returning toward baseline by 18 months. Although neither baseline %COP nor increase in %COP after 3 months predicted the bone mineral density (BMD) response to teriparatide, the percent increase in IGF-1R expression on COPs at 3 months correlated directly with the BMD response to teriparatide. Additionally, lower IGF-1R expression after teriparatide was associated with higher body fat, suggesting links between teriparatide resistance, body composition, and the GH/IGF-1 axis. In conclusion, these assays may be useful to characterize bone remodeling noninvasively and may serve to predict early response to

  2. Bone marrow-derived stem cell therapy for metastatic brain cancers.

    PubMed

    Kaneko, Yuji; Tajiri, Naoki; Staples, Meaghan; Reyes, Stephanny; Lozano, Diego; Sanberg, Paul R; Freeman, Thomas B; van Loveren, Harry; Kim, Seung U; Borlongan, Cesar V

    2015-01-01

    We propose that stem cell therapy may be a potent treatment for metastatic melanoma in the brain. Here we discuss the key role of a leaky blood-brain barrier (BBB) that accompanies the development of brain metastases. We review the need to characterize the immunological and inflammatory responses associated with tumor-derived BBB damage in order to reveal the contribution of this brain pathological alteration to the formation and growth of brain metastatic cancers. Next, we discuss the potential repair of the BBB and attenuation of brain metastasis through transplantation of bone marrow-derived mesenchymal stem cells with the endothelial progenitor cell phenotype. In particular, we review the need for evaluation of the efficacy of stem cell therapy in repairing a disrupted BBB in an effort to reduce neuroinflammation, eventually attenuating brain metastatic cancers. The demonstration of BBB repair through augmented angiogenesis and vasculogenesis will be critical to establishing the potential of stem cell therapy for the treatment/prevention of metastatic brain tumors. The overarching hypothesis we advanced here is that BBB breakdown is closely associated with brain metastatic cancers of melanoma, exacerbating the inflammatory response of the brain during metastasis, and ultimately worsening the outcome of metastatic brain cancers. Abrogating this leaky BBB-mediated inflammation via stem cell therapy represents a paradigm-shifting approach to treating brain cancer. This review article discusses the pros and cons of cell therapy for melanoma brain metastases.

  3. Bone marrow-derived stem cell transplantation for the treatment of insulin-dependent diabetes.

    PubMed

    Fotino, Carmen; Ricordi, Camillo; Lauriola, Vincenzo; Alejandro, Rodolfo; Pileggi, Antonello

    2010-01-01

    The bone marrow is an invaluable source of adult pluripotent stem cells, as it gives rise to hematopoietic stem cells, endothelial progenitor cells, and mesenchymal cells, amongst others. The use of bone marrow-derived stem cell (BMC) transplantation (BMT) may be of assistance in achieving tissue repair and regeneration, as well as in modulating immune responses in the context of autoimmunity and transplantation. Ongoing clinical trials are evaluating the effects of BMC to preserve functional beta-cell mass in subjects with type 1 and type 2 diabetes, and to favor engraftment and survival of transplanted islets. Additional trials are evaluating the impact of BMT (i.e., mesenchymal stem cells) on the progression of diabetes complications. This article reviews the progress in the field of BMC for the treatment of subjects with insulin-dependent diabetes, and summarizes clinical data of pilot studies performed over the last two decades at our research center by combining allogeneic islet transplantation with donor-specific BMC. Clinical data is summarized from pilot studies performed at our research center over the last two decades.

  4. Mobilised bone marrow-derived cells accelerate wound healing.

    PubMed

    Wang, Yu; Sun, Yu; Yang, Xiao-Yan; Ji, Shi-Zhao; Han, Shu; Xia, Zhao-Fan

    2013-08-01

    Massive skin defects caused by severe burn and trauma are a clinical challenge to surgeons. Timely and effective wound closure is often hindered by the lack of skin donor site. Bone marrow-derived cells (BMDCs) have been shown to 'differentiate' into multiple tissue cells. In this study we focused on the direct manipulation of endogenous BMDCs, avoiding the immunocompatibility issues and complicated cell isolation, purification, identification and amplification procedures in vitro on wound repair. We found that mobilisation of the BMDCs into the circulation significantly increased the amount of BMDCs at the injury site which in turn accelerated healing of large open wound. We used a chimeric green fluorescent protein (GFP) mouse model to track BMDCs and to investigate their role in full-thickness skin excisional wounds. We have shown that bone marrow mobilisation by granulocyte colony stimulating factor (G-CSF) exerted multiple beneficial effects on skin repair, both by increasing the engraftment of BMDCs into the skin to differentiate into multiple skin cell types and by upregulating essential cytokine mRNAs critical to wound repair. The potential trophic effects of G-CSF on bone marrow stem cells to accelerate wound healing could have a significant clinical impact.

  5. Efficient generation of canine bone marrow-derived dendritic cells.

    PubMed

    Isotani, Mayu; Katsuma, Kensuke; Tamura, Kyoichi; Yamada, Misato; Yagihara, Hiroko; Azakami, Daigo; Ono, Kenichiro; Washizu, Tsukimi; Bonkobara, Makoto

    2006-08-01

    Because of their unsurpassed potency in presenting antigens to naive T cells, dendritic cells are considered to be an important candidate in the development of immunotherapeutic strategies. Despite the high potential of dendritic cell-based immunotherapy, as a so-called dendritic cell vaccination, few clinical approaches using dendritic cell vaccination have been performed in the dog because of very limited information regarding the generation of canine dendritic cells and their functional properties. We therefore established a protocol for the efficient generation of dendritic cells from canine bone marrow cells using recombinant feline granulocyte-macrophage colony-stimulating factor and canine interleukin-4. Dendritic cells were generated efficiently: a yield of 1-9 x 10(6) cells per approximately 0.5 ml of canine bone marrow aspiration was achieved. These dendritic cells showed features shared with mouse and human dendritic cells: dendrite morphology, expression of surface markers MHC class II and CD11c, and up-regulation of molecules related to antigen presentation (MHC class II, B7-1, and B7-2) by activation with lipopolysaccharide. Moreover, the dendritic cells demonstrated phagocytic activity, processing activity of pinocytosed proteins, and activation of allogeneic T cells far more potent than that by macrophages. Our findings suggest that the bone marrow-derived dendritic cells are functional for the capturing and processing of antigens and the initiation of T cell responses.

  6. Stemness Signature of Equine Marrow-derived Mesenchymal Stem Cells

    PubMed Central

    Zahedi, Morteza; Parham, Abbas; Dehghani, Hesam; Mehrjerdi, Hossein Kazemi

    2017-01-01

    Background Application of competent cells such as mesenchymal stem cells (MSCs) for treatment of musculoskeletal disorders in equine athletes is increasingly needed. Moreover, similarities of horse and human in size, load and types of joint injuries, make horse as a good model for MSCs therapy studies. This study was designed to isolate and characterize stemness signature of equine bone marrow-derived mesenchymal stem cells (BM-MSCs). Methods BM of three mares was aspirated and the mononuclear cells (MNCs) were isolated using density gradient. The primary MNCs were cultured and analyzed after tree passages (P3) for growth characteristics, differentiation potentials, and the expression of genes including CD29, CD34, CD44, CD90, CD105, MHC-I, MHC-II and pluripotency related genes (Nanog, Oct-4, Sox-2, SSEA-1, -3, -4) using RT-PCR or immunocytochemistry techniques. Results The isolated cells in P3 were adherent and fibroblast-like in shape with doubling times of 78.15 h. Their clonogenic capacity was 8.67±4% and they were able to differentiate to osteogenic, adipogenic and chondrogenic lineages. Cells showed expression of CD29, CD44, CD90, MHC-I and Sox-2 while no expression for CD34, MHC-II, CD105, and pluripotency stemness markers was detected. Conclusions In conclusion, data showed that isolated cells have the basic and minimal criteria for MSCs, however, expressing only one pluripotency gene (sox-2). PMID:28222255

  7. Osteogenic predifferentiation of human bone marrow-derived stem cells by short-term mechanical stimulation.

    PubMed

    Matziolis, Doerte; Tuischer, Jens; Matziolis, Georg; Kasper, Grit; Duda, Georg; Perka, Carsten

    2011-01-07

    It is commonly accepted that bone marrow-derived stem cells (BMSCs) have to be expanded in vitro, but a prolonged time in culture decreases their multilineage potential. Mechanical and biological stimuli have been used to improve their osteogenic potential. While long-term stimulation has been shown to improve osteogenic differentiation, it remains to be seen whether short-term stimulation is also sufficient.We investigated the influence of 24 hours' cyclic loading (0.05Hz, 4kPa) on gene expression of human BMSCs in three-dimensional fibrin-DMEM constructs (n=7) in a compression bioreactor using DNA-array technology. Expression of the following genes showed a significant increase after mechanical stimulation: 2.6-fold osteopontin (OPN) and integrin-β1 (ITGB1), 2.2-fold transforming growth factor-β-receptor 1 (TGF-β-R1) and 2.4-fold SMAD5 expression, compared to controls without mechanical stimulation (p<0.05 each). Platelet-derived growth factor-α (PDGF-α ) and annexin-V were also significantly overexpressed, the mechanical stimulation resulting in a 1.8-fold and 1.6-fold expression (p<0.05).Cells were identified as osteoblast precursors with a high proliferative capacity. Given the identical in-vitro environment for both groups, the increase in gene expression has been interpreted as a direct influence of cyclic mechanical stimulation on osteogenic differentiation. It may be postulated that short-term mechanical stimulation results in an improved osseous integration of tissue engineered grafts in bone defect healing.

  8. Osteogenic induction of bone marrow-derived stromal cells on simvastatin-releasing, biodegradable, nano- to microscale fiber scaffolds.

    PubMed

    Wadagaki, Ryu; Mizuno, Daiki; Yamawaki-Ogata, Aika; Satake, Makoto; Kaneko, Hiroaki; Hagiwara, Sumitaka; Yamamoto, Noriyuki; Narita, Yuji; Hibi, Hideharu; Ueda, Minoru

    2011-07-01

    Tissue engineering is an effective approach for the treatment of bone defects. Statins have been demonstrated to promote osteoblastic differentiation of bone marrow-derived stromal cells (BMSCs). Electrospun biodegradable fibers have also shown applicability to drug delivery in the form of bone tissue engineered scaffolds with nano- to microscale topography and high porosity similar to the natural extracellular matrix (ECM). The aim of this study was to investigate the feasibility of a simvastatin-releasing, biodegradable, nano- to microscale fiber scaffold (SRBFS) for bone tissue engineering with BMSCs. Simvastatin was released from SRBFS slowly. BMSCs were observed to spread actively and rigidly adhere to SRBFS. BMSCs on SRBFS showed an increase in alkaline phosphatase activity 2 weeks after cell culture. Furthermore, osteoclastogenesis was suppressed by SRBFS in vitro. The new bone formation and mineralization in the SRBFS group were significantly better than in the biodegradable fiber scaffold (BFS) without simvastatin 12 weeks after implantation of the cell-scaffold construct into an ectopic site on the murine back. These results suggest that SRBFS promoted osteoblastic differentiation of BMSCs in vitro and in vivo, and demonstrate feasibility as a bone engineering scaffold.

  9. The natural flavonoid galangin inhibits osteoclastic bone destruction and osteoclastogenesis by suppressing NF-κB in collagen-induced arthritis and bone marrow-derived macrophages.

    PubMed

    Huh, Jeong-Eun; Jung, In-Tae; Choi, Junyoung; Baek, Yong-Hyeon; Lee, Jae-Dong; Park, Dong-Suk; Choi, Do-Young

    2013-01-05

    We investigated the effect of galangin, a natural flavonoid, on osteoclastic bone destruction in collagen-induced arthritis and examined the molecular mechanisms by which galangin affects osteoclastogenesis in bone marrow derived macrophages. In mice with collagen-induced arthritis, administration of galangin significantly reduced the arthritis clinical score, edema and severity of disease without toxicity. Interestingly, galangin treatment during a later stage of collagen-induced arthritis, using mice with a higher clinical arthritis score, still significantly slowed the progression of the disease. Extensive cartilage and bone erosive changes as well as synovial inflammation, synovial hyperplasia and pannus formation were dramatically inhibited in arthritic mice treated with galangin. Furthermore, galangin-treated arthritic mice showed a significant reduction in the concentrations of IL-1β, TNF-α and IL-17. We found that galangin inhibited osteoclastogenic factors and osteoclast formation in bone marrow-derived macrophages and osteoblast co-cultured cells, and increased osteoprotegerin (OPG) levels in osteoblasts. Galangin and NF-κB siRNA suppressed RANKL-induced phosphorylation of the c-jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), but not AKT and extracellular signal-regulated kinase 1/2 (ERK1/2). Also, the JNK inhibitor SP600125 and p38 inhibitor SB203580 reduced RANKL-induced expressions of phospho-c-Jun, c-fos and NFATc1 genes during osteoclast development. In addition, galangin suppressed RANKL-induced phosphorylation of NF-κB, phospho-IκBα, inflammatory cytokines and osteoclast formation in bone marrow-derived macrophages. Our data suggest that galangin prevented osteoclastic bone destruction and osteoclastogenesis in osteoclast precursors as well as in collagen-induced arthritis mice without toxicity via attenuation of RANKL-induced activation of JNK, p38 and NF-κB pathways.

  10. Differences between chondrocytes and bone marrow-derived chondrogenic cells.

    PubMed

    Chiang, Hongsen; Hsieh, Chang-Hsun; Lin, Yun-Han; Lin, Shiming; Tsai-Wu, Jyy-Jih; Jiang, Ching-Chuan

    2011-12-01

    Implantation of autologous chondrogenic cells has become the mainstay strategy for repairing articular cartilage defects. Because the availability of autologous chondrocytes is extremely limited, many recent studies have used artificially induced mesenchymal stem cells (iMSCs) as substitutes for chondrocytes. In this study, we analyzed the differences between the iMSCs and chondrocytes, including their molecular biological and mechanical properties. Human bone marrow-derived MSCs were collected and induced to exhibit the chondrogenic phenotype by culturing the pelleted MSCs in a chemically defined culture medium supplemented with transforming growth factor-beta 1. The molecular biological properties of iMSCs and culture-expanded chondrocytes, including their mRNA profiles and surface proteomics, were analyzed using reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometry, respectively. The biomechanical properties of iMSCs and native chondrocytes, including their surface topology, adhesion force, and membrane stiffness, were analyzed using atomic force microscopy (AFM). Both iMSCs and chondrocytes presented type II collagen and glycosaminoglycan, whereas only chondrocytes presented type X collagen. Flow cytometric assays showed that the expression of type II collagen and integrin-1 was higher in the chondrocytes than in the iMSCs. AFM revealed that the MSCs, iMSCs, and chondrocytes greatly differed in their shape. The MSCs were spindle shaped and easily distinguishable from the spherical chondrocytes. The iMSCs appeared round and resembled the spherical chondrocytes; however, the iMSCs were flatter with a central hump of condensed mass and a surrounding thin and broad pleat. The mean adhesion force and mean surface stiffness were significantly lower for the iMSCs (4.54 nN and 0.109 N/m, respectively) than for the chondrocytes (6.86 nN and 0.134 N/m, respectively). To conclude, although the iMSCs exhibited the chondrogenic phenotype, they differed

  11. Growth of connective tissue progenitor cells on microtextured polydimethylsiloxane surfaces.

    PubMed

    Mata, Alvaro; Boehm, Cynthia; Fleischman, Aaron J; Muschler, George; Roy, Shuvo

    2002-12-15

    Growth of human connective tissue progenitor cells (CTPs) was characterized on smooth and microtextured polydimethylsiloxane (PDMS) surfaces. Human bone-marrow-derived cells were cultured for 9 days under conditions promoting osteoblastic differentiation on smooth PDMS surfaces and on PDMS post microtextures that were 6 microm high and 5, 10, 20, and 40 microm in diameter, respectively. Glass tissue-culture dishes were used as controls. The number of viable cells was determined, and an alkaline phosphatase stain was used as a marker for osteoblastic phenotype. CTPs attached, proliferated, and differentiated on all surfaces. Cells on the smooth PDMS and control surfaces spread and proliferated as colonies in proximity to other cells and migrated in random directions, with cell process lengths of up to 80 microm. In contrast, cells on the PDMS post microtextures grew as sparsely distributed networks of cells, with processes, occasionally up to 300 microm, that appeared to interact with the posts. Cell counts revealed that there were fewer (50%) CTPs on the smooth PDMS surface than were on the glass control surfaces. However, there were consistently more (>144%) CTPs on the PDMS post textures than on the controls. In particular, the 10-microm-in-diameter posts (268%) exhibited a significantly (p < 0.05) greater cell number than did the smooth PDMS.

  12. PELA microspheres with encapsulated arginine-chitosan/pBMP-2 nanoparticles induce pBMP-2 controlled-release, transfected osteoblastic progenitor cells, and promoted osteogenic differentiation.

    PubMed

    Xu, Xiaolong; Qiu, Sujun; Zhang, Yuxian; Yin, Jie; Min, Shaoxiong

    2017-03-01

    Repair of the bone injury remains a challenge in clinical practices. Recent progress in tissue engineering and therapeutic gene delivery systems have led to promising new strategies for successful acceleration of bone repair process. The aim of this study was to create a controlled-release system to slowly release the arginine-chitosan/plasmid DNA nanoparticles encoding BMP-2 gene (Arg-CS/pBMP-2 NPs), efficiently transfect osteoblastic progenitor cells, secrete functional BMP-2 protein, and promote osteogenic differentiation. In this study, chitosan was conjugated with arginine to generate arginine-chitosan polymer (Arg-CS) for gene delivery. Mix the Arg-CS with pBMP-2 to condense pBMP-2 into nano-sized particles. In vitro transfection assays demonstrated that the transfection efficiency of Arg-CS/pBMP-2 nanoparticles and the expression level of BMP-2 was obviously exceed control groups. Further, PELA microspheres as the controlled-release carrier for the nanoparticles were used to encapsulate Arg-CS/pBMP-2 NPs. We demonstrated that the Arg-CS/pBMP-2 NPs could slowly release from the PELA microspheres at least for 42 d. During the co-culture with the PELA microspheres, the content of BMP-2 protein secreted by MC3T3-E1 reached the peak at 7 d. After 21d, the secretion of BMP-2 protein still maintain a higher level. The alkaline phosphatase activity, alizarin red staining, and osteogenesis-related gene expression by real-time quantitative PCR analysis all showed the PELA microspheres entrapping with Arg-CS/pBMP-2 NPs can obviously induce the osteogenic differentiation. The results indicated that the Arg-CS is a suitable gene vector which can promote the gene transfection. And the novel PELA microspheres-nanoparticle controlled-release system has potential clinical application in the future after further research.

  13. p62 is required to retain short-term repopulating and myeloid progenitor cells through inhibition of IKK/NF-κB/Ccl4 signaling at the bone marrow macrophage-osteoblast niche

    PubMed Central

    Chang, Kyung Hee; Sengupta, Amitava; Nayak, Ramesh C.; Duran, Angeles; Lee, Sang Jun; Pratt, Ronald G.; Wellendorf, Ashley M.; Hill, Sarah E.; Watkins, Marcus; Gonzalez-Nieto, Daniel; Aronow, Bruce J.; Starczynowski, Daniel T.; Civitelli, Roberto; Diaz-Meco, Maria T.; Moscat, Jorge; Cancelas, Jose A.

    2014-01-01

    In the bone marrow (BM), hematopoietic progenitors (HP) reside in specific anatomical niches near osteoblasts (Ob), macrophages (MΦ) and other cells forming the BM microenvironment. A connection between immunosurveillance and traffic of HP has been demonstrated but the regulatory signals that instruct immune regulation on HP circulation are unknown. We discovered that the BM microenvironment deficiency of p62, an autophagy regulator and signal organizer, results in loss of autophagic repression of macrophage contact-dependent activation of Ob NF-κB signaling. Consequently, Ob p62-deficient mice lose bone, Ob Ccl4 expression and HP chemotaxis towards Cxcl12 resulting in egress of short-term hematopoietic stem cells and myeloid progenitors. Finally, Ccl4 expression and myeloid progenitor egress are reversed by the deficiency of the p62 PB1 binding partner Nbr1. A functional ‘MΦ-Ob niche’ is required for myeloid progenitor/short-term stem cell retention, in which Ob p62 is required to maintain NF-κB signaling repression, osteogenesis and BM progenitor retention. PMID:25533346

  14. Systemic and Local Administration of Allogeneic Bone Marrow-Derived Mesenchymal Stem Cells Promotes Fracture Healing in Rats.

    PubMed

    Huang, Shuo; Xu, Liangliang; Zhang, Yifeng; Sun, Yuxin; Li, Gang

    2015-01-01

    Mesenchymal stem cells (MSCs) are immune privileged and a cell source for tissue repair. Previous studies showed that there is systemic mobilization of osteoblastic precursors to the fracture site. We hypothesized that both systemic and local administration of allogeneic MSCs may promote fracture healing. Bone marrow-derived MSCs and skin fibroblasts were isolated from GFP Sprague-Dawley rats, cultured, and characterized. Closed transverse femoral fracture with internal fixation was established in 48 adult male Sprague-Dawley rats, which were randomly assigned into four groups receiving PBS injection, MSC systemic injection, fibroblast systemic injection, and MSC fracture site injection; 2 × 10(6) cells were injected at 4 days after fracture. All animals were sacrificed at 5 weeks after fracture; examinations included weekly radiograph, micro-CT, mechanical testing, histology, immunohistochemistry, and double immunofluorescence. The callus size of MSC injection groups was significantly larger among all the groups. Radiographs and 3D reconstruction images showed that the fracture gaps united in the MSC injected groups, while gaps were still seen in the fibroblast and PBS injection groups. The mechanical properties were significantly higher in the MSC injection groups than those in the fibroblast and PBS groups, but no difference was found between the MSC local and systemic injection groups. Immunohistochemistry and double immunofluorescence demonstrated that GFP-positive MSCs were present in the callus in the MSC injection groups at 5 weeks after fracture, and some differentiated into osteoblasts. Quantitative analysis revealed the number of GFP-positive cells in the callus in the MSC systemic injection group was significantly lower than that of the MSC local injection group. The proportion of GFP osteoblasts in GFP-positive cells in the MSC systemic injection group was significantly lower than that of the MSC local injection group. These findings provide critical

  15. Mitigating HZE Radiation-Induced Deficits in Marrow-Derived Mesenchymal Progenitor Cells and Skeletal Structure

    NASA Technical Reports Server (NTRS)

    Globus, Ruth K.; Schreurs, Ann-Sofie; Shirazi-Fard, Yasaman; Terada, Masahiro; Alwood, Joshua; Halloran, Bernard; Tahimic, Candice

    2016-01-01

    Future long-duration space exploration beyond the earths magnetosphere will increase human exposure to space radiation and associated risks to skeletal health. We hypothesize that oxidative stress resulting from radiation exposure causes progressive bone loss and dysfunction in associated tissue. In animal studies, increased free radical formation is associated with pathological changes in bone structure, enhanced bone resorption, reduced bone formation and decreased bone mineral density, which can lead to skeletal fragility.

  16. Bone marrow-derived cells are recruited by the melanoma tumor with endothelial cells contributing to tumor vasculature.

    PubMed

    Bonfim-Silva, R; Souza, L E B; Melo, F U F; Oliveira, V C; Magalhães, D A R; Oliveira, H F; Covas, D T; Fontes, A M

    2017-01-01

    Tumor expansion is dependent on neovascularization, a process that requires sustained new vessel formation. Although the critical role of angiogenesis by endothelial sprouting in this process, controversy still prevails on whether angiogenesis involving bone marrow-derived endothelial cells, does contribute to this process. This study aims to evaluate the recruitment of bone marrow-derived cells by the melanoma tumor, including endothelial cells, and if they contribute to angiogenesis. A chimeric mouse model of GFP bone marrow was used to induce melanoma tumors derived from murine B16-F10 cell line. These tumors were evaluated for the presence of myeloid cells (CD11b), T lymphocytes (CD3, CD4 and CD8) and endothelial cells (VEGFR2 and CD31) derived from bone marrow. Mice transplanted with GFP+ cells showed significant bone marrow chimerism (90.9 ± 0.87 %) when compared to the GFP transgenic mice (90.66 ± 2.1 %, p = 0.83) demonstrating successful engraftment of donor bone marrow stem/progenitor cells. Analysis of the murine melanoma tumor showed the presence of donor cells in the tumors (3.5 ± 1.7 %) and interestingly, these cells represent endothelial cells (CD31+ cells; 11.5 ± 6.85 %) and myeloid cells (CD11b+ cells; 80 ± 21 %), but also tumor-infiltrating lymphocytes (CD8+ T cells, 13.31 ± 0.2 %; CD4+ T-cells, 2.1 ± 1.2 %). Examination of the tumor endothelium by confocal microscopy suggests the presence of donor CD31+/GFP+ cells in the wall of some blood vessels. This study demonstrates that bone marrow-derived cells are recruited by the murine melanoma tumor, with myeloid cells and CD4 and CD8 T lymphocytes migrating as antitumor immune response, and endothelial cells participating of the tumor blood vessels formation.

  17. The Bone Marrow-Derived Stromal Cells: Commitment and Regulation of Adipogenesis

    PubMed Central

    Tencerova, Michaela; Kassem, Moustapha

    2016-01-01

    Bone marrow (BM) microenvironment represents an important compartment of bone that regulates bone homeostasis and the balance between bone formation and bone resorption depending on the physiological needs of the organism. Abnormalities of BM microenvironmental dynamics can lead to metabolic bone diseases. BM stromal cells (also known as skeletal or mesenchymal stem cells) [bone marrow stromal stem cell (BMSC)] are multipotent stem cells located within BM stroma and give rise to osteoblasts and adipocytes. However, cellular and molecular mechanisms of BMSC lineage commitment to adipocytic lineage and regulation of BM adipocyte formation are not fully understood. In this review, we will discuss recent findings pertaining to identification and characterization of adipocyte progenitor cells in BM and the regulation of differentiation into mature adipocytes. We have also emphasized the clinical relevance of these findings. PMID:27708616

  18. Activation of matrix metalloproteinase-9 is associated with mobilization of bone marrow-derived cells after coronary stent implantation.

    PubMed

    Inoue, Teruo; Taguchi, Isao; Abe, Shichiro; Toyoda, Shigeru; Nakajima, Kohsuke; Sakuma, Masashi; Node, Koichi

    2011-11-03

    After stent-related vascular injury, an inflammatory response triggers the mobilization of bone marrow-derived stem cells, including both endothelial and smooth muscle progenitors, leading to re-endothelialization as well as restenosis. It has been postulated that neutrophil-released matrix metalloproteinase-9 (MMP-9) induces stem cell mobilization. To elucidate the mechanistic link between inflammation and stem cell mobilization after coronary stenting. In 31 patients undergoing coronary stenting, we serially measured activated Mac-1 on the surface of neutrophils and active MMP-9 levels in the coronary sinus blood plasma, and the number of circulating CD34-positive cells in the peripheral blood. After bare-metal stent implantation (n=21), significant increases in the numbers of CD34-positive cells (maximum on post-procedure day 7, P<0.001), activated Mac-1 (at 48 h, P<0.001), and active MMP-9 levels (at 24h, P<0.001) were observed. However, these changes were absent after sirolimus-eluting stent implantation (n=10). In overall patients, the numbers of CD34-positive cells on day 7 (R=0.58, P<0.01) and activated Mac-1 at 48 h (R=0.58, P<0.01) were both correlated with active MMP-9 levels at 24h. Stimulation of activated Mac-1 on the surface of isolated human neutrophils produced active MMP-9 release in vitro. These results suggest that stent-induced activation of Mac-1 on the surface of neutrophils might trigger their MMP-9 release, possibly leading to the mobilization of bone marrow-derived stem cells. These reactions were substantially inhibited by sirolimus-eluting stents. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  19. VEGF treatment promotes bone marrow-derived CXCR4+ mesenchymal stromal stem cell differentiation into vessel endothelial cells

    PubMed Central

    Li, Qiming; Xia, Shudong; Fang, Hanyun; Pan, Jiansheng; Jia, Yinfeng; Deng, Gang

    2017-01-01

    Stem/progenitor cells serve an important role in the process of blood vessel repair. However, the mechanism of vascular repair mediated by C-X-C chemokine receptor type 4-positive (CXCR4+) bone marrow-derived mesenchymal stem cells (BMSCs) following myocardial infarction remains unclear. The aim of the present study was to investigate the effects of vascular endothelial growth factor (VEGF) on vessel endothelial differentiation from BMSCs. CXCR4+ BMSCs were isolated from the femoral bone marrow of 2-month-old mice and the cells were treated with VEGF. Expression of endothelial cell markers and the functional properties were assessed by reverse transcription-quantitative polymerase chain reaction, flow cytometry and vascular formation analyses. The results indicated that the CXCR4+ BMSCs from femoral bone marrow cells expressed putative cell surface markers of mesenchymal stem cells. Treatment with VEGF induced platelet/endothelial cell adhesion molecule-1 (PECAM-1) and von Willebrand factor (vWF) expression at the transcriptional and translational levels, compared with untreated controls. Moreover, VEGF treatment induced CXCR4+ BMSCs to form hollow tube-like structures on Matrigel, suggesting that the differentiated endothelial cells had the functional properties of blood vessels. The results demonstrate that the CXCR4+ BMSCs were able to differentiate into vessel endothelial cells following VEGF treatment. For cell transplantation in vascular disease, it may be concluded that CXCR4+ BMSCs are a novel source of endothelial progenitor cells with high potential for application in vascular repair. PMID:28352314

  20. Adipose lineage specification of bone marrow-derived myeloid cells

    PubMed Central

    Majka, Susan M.; Miller, Heidi L.; Sullivan, Timothy; Erickson, Paul F.; Kong, Raymond; Weiser-Evans, Mary; Nemenoff, Raphael; Moldovan, Radu; Morandi, Shelley A.; Davis, James A.; Klemm, Dwight J.

    2012-01-01

    We have reported the production of white adipocytes in adipose tissue from hematopoietic progenitors arising from bone marrow. However, technical challenges have hindered detection of this adipocyte population by certain other laboratories. These disparate results highlight the need for sensitive and definitive techniques to identify bone marrow progenitor (BMP)-derived adipocytes. In these studies we exploited new models and methods to enhance detection of this adipocyte population. Here we showed that confocal microscopy with spectrum acquisition could effectively identify green fluorescent protein (GFP) positive BMP-derived adipocytes by matching their fluorescence spectrum to that of native GFP. Likewise, imaging flow cytometry made it possible to visualize intact unilocular and multilocular GFP-positive BMP-derived adipocytes and distinguished them from non-fluorescent adipocytes and cell debris in the cytometer flow stream. We also devised a strategy to detect marker genes in flow-enriched adipocytes from which stromal cells were excluded. This technique also proved to be an efficient means for detecting genetically labeled adipocytes and should be applicable to models in which marker gene expression is low or absent. Finally, in vivo imaging of mice transplanted with BM from adipocyte-targeted luciferase donors showed a time-dependent increase in luciferase activity, with the bulk of luciferase activity confined to adipocytes rather than stromal cells. These results confirmed and extended our previous reports and provided proof-of-principle for sensitive techniques and models for detection and study of these unique cells. PMID:23700536

  1. JAK3/STAT6 Stimulates Bone Marrow-Derived Fibroblast Activation in Renal Fibrosis.

    PubMed

    Yan, Jingyin; Zhang, Zhengmao; Yang, Jun; Mitch, William E; Wang, Yanlin

    2015-12-01

    Renal fibrosis is a final common manifestation of CKD resulting in progressive loss of kidney function. Bone marrow-derived fibroblast precursors contribute significantly to the pathogenesis of renal fibrosis. However, the signaling mechanisms underlying the activation of bone marrow-derived fibroblast precursors in the kidney are not fully understood. In this study, we investigated the role of the Janus kinase 3 (JAK3)/signal transducer and activator of transcription (STAT6) signaling pathway in the activation of bone marrow-derived fibroblasts. In cultured mouse monocytes, IL-4 or IL-13 activated STAT6 and induced expression of α-smooth muscle actin and extracellular matrix proteins (fibronectin and collagen I), which was abolished by a JAK3 inhibitor (CP690,550) in a dose-dependent manner or blocked in the absence of STAT6. In vivo, STAT6 was activated in interstitial cells of the obstructed kidney, an effect that was abolished by CP690,550. Mice treated with CP690,550 accumulated fewer bone marrow-derived fibroblasts in the obstructed kidneys compared with vehicle-treated mice. Treatment with CP690,550 also significantly reduced myofibroblast transformation, matrix protein expression, fibrosis development, and apoptosis in obstructed kidneys. Furthermore, STAT6-deficient mice accumulated fewer bone marrow-derived fibroblasts in the obstructed kidneys, produced less extracellular matrix protein, and developed much less fibrosis. Finally, wild-type mice engrafted with STAT6(-/-) bone marrow cells displayed fewer bone marrow-derived fibroblasts in the obstructed kidneys and showed less severe renal fibrosis compared with wild-type mice engrafted with STAT6(+/+) bone marrow cells. Our results demonstrate that JAK3/STAT6 has an important role in bone marrow-derived fibroblast activation, extracellular matrix production, and interstitial fibrosis development.

  2. Transgelin is a TGFβ-inducible gene that regulates osteoblastic and adipogenic differentiation of human skeletal stem cells through actin cytoskeleston organization.

    PubMed

    Elsafadi, M; Manikandan, M; Dawud, R A; Alajez, N M; Hamam, R; Alfayez, M; Kassem, M; Aldahmash, A; Mahmood, A

    2016-08-04

    Regenerative medicine is a novel approach for treating conditions in which enhanced bone regeneration is required. We identified transgelin (TAGLN), a transforming growth factor beta (TGFβ)-inducible gene, as an upregulated gene during in vitro osteoblastic and adipocytic differentiation of human bone marrow-derived stromal (skeletal) stem cells (hMSC). siRNA-mediated gene silencing of TAGLN impaired lineage differentiation into osteoblasts and adipocytes but enhanced cell proliferation. Additional functional studies revealed that TAGLN deficiency impaired hMSC cell motility and in vitro transwell cell migration. On the other hand, TAGLN overexpression reduced hMSC cell proliferation, but enhanced cell migration, osteoblastic and adipocytic differentiation, and in vivo bone formation. In addition, deficiency or overexpression of TAGLN in hMSC was associated with significant changes in cellular and nuclear morphology and cytoplasmic organelle composition as demonstrated by high content imaging and transmission electron microscopy that revealed pronounced alterations in the distribution of the actin filament and changes in cytoskeletal organization. Molecular signature of TAGLN-deficient hMSC showed that several genes and genetic pathways associated with cell differentiation, including regulation of actin cytoskeleton and focal adhesion pathways, were downregulated. Our data demonstrate that TAGLN has a role in generating committed progenitor cells from undifferentiated hMSC by regulating cytoskeleton organization. Targeting TAGLN is a plausible approach to enrich for committed hMSC cells needed for regenerative medicine application.

  3. The Effect of Quercetin on the Osteogenesic Differentiation and Angiogenic Factor Expression of Bone Marrow-Derived Mesenchymal Stem Cells

    PubMed Central

    Zhou, Yuning; Wu, Yuqiong; Jiang, Xinquan; Zhang, Xiuli; Xia, Lunguo; Lin, Kaili; Xu, Yuanjin

    2015-01-01

    Bone marrow-derived mesenchymal stem cells (BMSCs) are widely used in regenerative medicine in light of their ability to differentiate along the chondrogenic and osteogenic lineages. As a type of traditional Chinese medicine, quercetin has been preliminarily reported to promote osteogenic differentiation in osteoblasts. In the present study, the effects of quercetin on the proliferation, viability, cellular morphology, osteogenic differentiation and angiogenic factor secretion of rat BMSCs (rBMSCs) were examined by MTT assay, fluorescence activated cell sorter (FACS) analysis, real-time quantitative PCR (RT-PCR) analysis, alkaline phosphatase (ALP) activity and calcium deposition assays, and Enzyme-linked immunosorbent assay (ELISA). Moreover, whether mitogen-activated protein kinase (MAPK) signaling pathways were involved in these processes was also explored. The results showed that quercetin significantly enhanced the cell proliferation, osteogenic differentiation and angiogenic factor secretion of rBMSCs in a dose-dependent manner, with a concentration of 2 μM achieving the greatest stimulatory effect. Moreover, the activation of the extracellular signal-regulated protein kinases (ERK) and p38 pathways was observed in quercetin-treated rBMSCs. Furthermore, these induction effects could be repressed by either the ERK inhibitor PD98059 or the p38 inhibitor SB202190, respectively. These data indicated that quercetin could promote the proliferation, osteogenic differentiation and angiogenic factor secretion of rBMSCs in vitro, partially through the ERK and p38 signaling pathways. PMID:26053266

  4. Characterizing and Targeting Bone Marrow-Derived Inflammatory Cells in Driving the Malignancy and Progression of Childhood Astrocytic Brain Tumors

    DTIC Science & Technology

    2016-11-01

    AWARD NUMBER: W81XWH-13-1-0303 TITLE: Characterizing and Targeting Bone Marrow-Derived Inflammatory Cells in Driving the Malignancy and...W81XWH-13-1-0303 Characterizing and Targeting Bone Marrow-Derived Inflammatory Cells in Driving the Malignancy and Progression of Childhood Astrocytic...lineages during the progression of gliomas, and We observed bone marrow derived mesenchymal stem cells have only minimal effort on tumor progression. We

  5. Bone marrow-derived fibrocytes contribute to liver fibrosis

    PubMed Central

    Xu, Jun

    2015-01-01

    Chronic liver injury often leads to hepatic fibrosis, a condition associated with increased levels of circulating TGF-β1 and lipopolysaccharide, activation of myofibroblasts, and extensive deposition of extracellular matrix, mostly collagen Type I. Hepatic stellate cells are considered to be the major1 but not the only source of myofibroblasts in the injured liver.2 Hepatic myofibroblasts may also originate from portal fibroblasts, mesenchymal cells, and fibrocytes.3 Since the discovery of fibrocytes in 1994 by Dr. Bucala and colleagues, this bone marrow (BM)-derived collagen Type I-producing CD45+ cells remain the most fascinating cells of the hematopoietic system. Due to the ability to differentiate into collagen Type I producing cells/myofibroblasts, fibrocytes were implicated in the pathogenesis of liver, skin, lung, and kidney fibrosis. However, studies of different organs often contain controversial results on the number of fibrocytes recruited to the site of injury and their biological function. Furthermore, fibrocytes were implicated in the pathogenesis of sepsis and were shown to possess antimicrobial activity. Finally, in response to specific stimuli, fibrocytes can give rise to fully differentiated macrophages, suggesting that in concurrence with the high plasticity of hematopoietic cells, fibrocytes exhibit progenitor properties. Here, we summarize our current understanding of the role of CD45+Collagen Type I+ BM-derived cells in response to fibrogenic liver injury and septicemia and discuss the most recent evidence supporting the critical role of fibrocytes in the mediation of pro-fibrogenic and/or pro-inflammatory responses. PMID:25966982

  6. Bone marrow-derived pancreatic stellate cells in rats.

    PubMed

    Sparmann, Gisela; Kruse, Marie-Luise; Hofmeister-Mielke, Nicole; Koczan, Dirk; Jaster, Robert; Liebe, Stefan; Wolff, Daniel; Emmrich, Jörg

    2010-03-01

    Origin and fate of pancreatic stellate cells (PSCs) before, during and after pancreatic injury are a matter of debate. The crucial role of PSCs in the pathogenesis of pancreatic fibrosis is generally accepted. However, the turnover of the cells remains obscure. The present study addressed the issue of a potential bone marrow (BM) origin of PSCs. We used a model of stable hematopoietic chimerism by grafting enhanced green fluorescence protein (eGFP)-expressing BM cells after irradiation of acceptor rats. Chimerism was detected by FACS analysis of eGFP-positive cells in the peripheral blood. Dibutyltin dichloride (DBTC) was used to induce acute pancreatic inflammation with subsequent recovery over 4 weeks. Investigations have been focused on isolated cells to detect the resting PSC population. The incidence of eGFP-positive PSC obtained from the pancreas of chimeric rats was approximately 7% in healthy pancreatic tissue and increased significantly to a mean of 18% in the restored pancreas 4 weeks after DBTC-induced acute inflammation. Our results suggest that BM-derived progenitor cells represent a source of renewable stellate cells in the pancreas. Increased numbers of resting PSCs after regeneration point toward enhanced recruitment of BM-derived cells to the pancreas and/or re-acquisition of a quiescent state after inflammation-induced activation.

  7. Transforming growth factor beta 1 induces CXCL16 and leukemia inhibitory factor expression in osteoclasts to modulate migration of osteoblast progenitors.

    PubMed

    Ota, Kuniaki; Quint, Patrick; Weivoda, Megan M; Ruan, Ming; Pederson, Larry; Westendorf, Jennifer J; Khosla, Sundeep; Oursler, Merry Jo

    2013-11-01

    The processes of bone resorption and bone formation are tightly coupled in young adults, which is crucial to maintenance of bone integrity. We have documented that osteoclasts secrete chemotactic agents to recruit osteoblast lineage cells, contributing to coupling. Bone formation subsequent to bone resorption becomes uncoupled with aging, resulting in significant bone loss. During bone resorption, osteoclasts release and activate transforming growth factor beta 1 (TGF-β1) from the bone matrix; thus, elevated bone resorption increases the level of active TGF-β in the local environment during aging. In this study, we examined the influences of TGF-β1 on the ability of osteoclasts to recruit osteoblasts. TGF-β1 increased osteoclast expression of the chemokine CXCL16 to promote osteoblast migration. TGF-β1 also directly stimulated osteoblast migration; however, this direct response was blocked by conditioned medium from TGF-β1-treated osteoclasts due to the presence of leukemia inhibitory factor (LIF) in the medium. CXCL16 and LIF expression was dependent on TGF-β1 activation of Smad2 and Smad3. These results establish that TGF-β1 induces CXCL16 and LIF production in osteoclasts, which modulate recruitment of osteoblasts to restore the bone lost during the resorptive phase of bone turnover. © 2013. Published by Elsevier Inc. All rights reserved.

  8. Glycomics of bone marrow-derived mesenchymal stem cells can be used to evaluate their cellular differentiation stage.

    PubMed

    Heiskanen, Annamari; Hirvonen, Tia; Salo, Hanna; Impola, Ulla; Olonen, Anne; Laitinen, Anita; Tiitinen, Sari; Natunen, Suvi; Aitio, Olli; Miller-Podraza, Halina; Wuhrer, Manfred; Deelder, André M; Natunen, Jari; Laine, Jarmo; Lehenkari, Petri; Saarinen, Juhani; Satomaa, Tero; Valmu, Leena

    2009-04-01

    Human mesenchymal stem cells (MSCs) are adult multipotent progenitor cells. They hold an enormous therapeutic potential, but at the moment there is little information on the properties of MSCs, including their surface structures. In the present study, we analyzed the mesenchymal stem cell glycome by using mass spectrometric profiling as well as a panel of glycan binding proteins. Structural verifications were obtained by nuclear magnetic resonance spectroscopy, mass spectrometric fragmentation, and glycosidase digestions. The MSC glycome was compared to the glycome of corresponding osteogenically differentiated cells. More than one hundred glycan signals were detected in mesenchymal stem cells and osteoblasts differentiated from them. The glycan profiles of MSCs and osteoblasts were consistently different in biological replicates, indicating that stem cells and osteoblasts have characteristic glycosylation features. Glycosylation features associated with MSCs rather than differentiated cells included high-mannose type N-glycans, linear poly-N-acetyllactosamine chains and alpha2-3-sialylation. Mesenchymal stem cells expressed SSEA-4 and sialyl Lewis x epitopes. Characteristic glycosylation features that appeared in differentiated osteoblasts included abundant sulfate ester modifications. The results show that glycosylation analysis can be used to evaluate MSC differentiation state.

  9. Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes

    PubMed Central

    Darling, Eric M.; Topel, Matthew; Zauscher, Stefan; Vail, Thomas P.; Guilak, Farshid

    2010-01-01

    The mechanical properties of single cells play important roles in regulating cell-matrix interactions, potentially influencing the process of mechanotransduction. Recent studies also suggest that cellular mechanical properties may provide novel biological markers, or “biomarkers,” of cell phenotype, reflecting specific changes that occur with disease, differentiation, or cellular transformation. Of particular interest in recent years has been the identification of such biomarkers that can be used to determine specific phenotypic characteristics of stem cells that separate them from primary, differentiated cells. The goal of this study was to determine the elastic and viscoelastic properties of three primary cell types of mesenchymal lineage (chondrocytes, osteoblasts, and adipocytes) and to test the hypothesis that primary differentiated cells exhibit distinct mechanical properties compared to adult stem cells (adipose-derived or bone marrow-derived mesenchymal stem cells). In an adherent, spread configuration, chondrocytes, osteoblasts, and adipocytes all exhibited significantly different mechanical properties, with osteoblasts being stiffer than chondrocytes and both being stiffer than adipocytes. Adipose-derived and mesenchymal stem cells exhibited similar properties to each other, but were mechanically distinct from primary cells, particularly when comparing a ratio of elastic to relaxed moduli. These findings will help more accurately model the cellular mechanical environment in mesenchymal tissues, which could assist in describing injury thresholds and disease progression or even determining the influence of mechanical loading for tissue engineering efforts. Furthermore, the identification of mechanical properties distinct to stem cells could result in more successful sorting procedures to enrich multipotent progenitor cell populations. PMID:17825308

  10. Enhanced adipogenic differentiation of bovine bone marrow-derived mesenchymal stem cells

    USDA-ARS?s Scientific Manuscript database

    Until now, the isolation and characterization of bovine bone marrow-derived mesenchymal stem cells (bBM-MSCs) have not been established, which prompted us to optimize the differentiation protocol for bBM-MSCs. In this study, bBM-MSCs were freshly isolated from three 6-month-old cattle and used for p...

  11. Systemic Injection of RPE65-Programmed Bone Marrow-Derived Cells Prevents Progression of Chronic Retinal Degeneration.

    PubMed

    Qi, Xiaoping; Pay, S Louise; Yan, Yuanqing; Thomas, James; Lewin, Alfred S; Chang, Lung-Ji; Grant, Maria B; Boulton, Michael E

    2017-04-05

    Bone marrow stem and progenitor cells can differentiate into a range of non-hematopoietic cell types, including retinal pigment epithelium (RPE)-like cells. In this study, we programmed bone marrow-derived cells (BMDCs) ex vivo by inserting a stable RPE65 transgene using a lentiviral vector. We tested the efficacy of systemically administered RPE65-programmed BMDCs to prevent visual loss in the superoxide dismutase 2 knockdown (Sod2 KD) mouse model of age-related macular degeneration. Here, we present evidence that these RPE65-programmed BMDCs are recruited to the subretinal space, where they repopulate the RPE layer, preserve the photoreceptor layer, retain the thickness of the neural retina, reduce lipofuscin granule formation, and suppress microgliosis. Importantly, electroretinography and optokinetic response tests confirmed that visual function was significantly improved. Mice treated with non-modified BMDCs or BMDCs pre-programmed with LacZ did not exhibit significant improvement in visual deficit. RPE65-BMDC administration was most effective in early disease, when visual function and retinal morphology returned to near normal, and less effective in late-stage disease. This experimental paradigm offers a minimally invasive cellular therapy that can be given systemically overcoming the need for invasive ocular surgery and offering the potential to arrest progression in early AMD and other RPE-based diseases.

  12. Transplantation of Bone Marrow-Derived Mononuclear Cells Improves Mechanical Hyperalgesia, Cold Allodynia and Nerve Function in Diabetic Neuropathy

    PubMed Central

    Funakubo, Megumi; Hata, Masaki; Nakamura, Nobuhisa; Kobayashi, Yasuko; Kamiya, Hideki; Shibata, Taiga; Kondo, Masaki; Himeno, Tatsuhito; Matsubara, Tatsuaki; Oiso, Yutaka; Nakamura, Jiro

    2011-01-01

    Relief from painful diabetic neuropathy is an important clinical issue. We have previously shown that the transplantation of cultured endothelial progenitor cells or mesenchymal stem cells ameliorated diabetic neuropathy in rats. In this study, we investigated whether transplantation of freshly isolated bone marrow-derived mononuclear cells (BM-MNCs) alleviates neuropathic pain in the early stage of streptozotocin-induced diabetic rats. Two weeks after STZ injection, BM-MNCs or vehicle saline were injected into the unilateral hind limb muscles. Mechanical hyperalgesia and cold allodynia in SD rats were measured as the number of foot withdrawals to von Frey hair stimulation and acetone application, respectively. Two weeks after the BM-MNC transplantation, sciatic motor nerve conduction velocity (MNCV), sensory nerve conduction velocity (SNCV), sciatic nerve blood flow (SNBF), mRNA expressions and histology were assessed. The BM-MNC transplantation significantly ameliorated mechanical hyperalgesia and cold allodynia in the BM-MNC-injected side. Furthermore, the slowed MNCV/SNCV and decreased SNBF in diabetic rats were improved in the BM-MNC-injected side. BM-MNC transplantation improved the decreased mRNA expression of NT-3 and number of microvessels in the hind limb muscles. There was no distinct effect of BM-MNC transplantation on the intraepidermal nerve fiber density. These results suggest that autologous transplantation of BM-MNCs could be a novel strategy for the treatment of painful diabetic neuropathy. PMID:22125614

  13. Transplantation of bone marrow-derived mononuclear cells improves mechanical hyperalgesia, cold allodynia and nerve function in diabetic neuropathy.

    PubMed

    Naruse, Keiko; Sato, Jun; Funakubo, Megumi; Hata, Masaki; Nakamura, Nobuhisa; Kobayashi, Yasuko; Kamiya, Hideki; Shibata, Taiga; Kondo, Masaki; Himeno, Tatsuhito; Matsubara, Tatsuaki; Oiso, Yutaka; Nakamura, Jiro

    2011-01-01

    Relief from painful diabetic neuropathy is an important clinical issue. We have previously shown that the transplantation of cultured endothelial progenitor cells or mesenchymal stem cells ameliorated diabetic neuropathy in rats. In this study, we investigated whether transplantation of freshly isolated bone marrow-derived mononuclear cells (BM-MNCs) alleviates neuropathic pain in the early stage of streptozotocin-induced diabetic rats. Two weeks after STZ injection, BM-MNCs or vehicle saline were injected into the unilateral hind limb muscles. Mechanical hyperalgesia and cold allodynia in SD rats were measured as the number of foot withdrawals to von Frey hair stimulation and acetone application, respectively. Two weeks after the BM-MNC transplantation, sciatic motor nerve conduction velocity (MNCV), sensory nerve conduction velocity (SNCV), sciatic nerve blood flow (SNBF), mRNA expressions and histology were assessed. The BM-MNC transplantation significantly ameliorated mechanical hyperalgesia and cold allodynia in the BM-MNC-injected side. Furthermore, the slowed MNCV/SNCV and decreased SNBF in diabetic rats were improved in the BM-MNC-injected side. BM-MNC transplantation improved the decreased mRNA expression of NT-3 and number of microvessels in the hind limb muscles. There was no distinct effect of BM-MNC transplantation on the intraepidermal nerve fiber density. These results suggest that autologous transplantation of BM-MNCs could be a novel strategy for the treatment of painful diabetic neuropathy.

  14. Recruitment of bone marrow derived cells during anti-angiogenic therapy in GBM: the potential of combination strategies.

    PubMed

    Boer, Jennifer C; Walenkamp, Annemiek M E; den Dunnen, Wilfred F A

    2014-10-01

    Glioblastoma (GBM) is a highly vascular tumor characterized by rapid and invasive tumor growth, followed by oxygen depletion, hypoxia and neovascularization, which generate a network of disorganized, tortuous and permeable vessels. Recruitment of bone marrow derived cells (BMDC) is crucial for vasculogenesis. These cells may act as vascular progenitors by integrating into the newly formed blood vessels or as vascular modulators by releasing pro-angiogenic factors. In patients with recurrent GBM, anti-vascular endothelial growth factor (VEGF) therapy has been evaluated in combination with chemotherapy, yielding improvements in progression-free survival (PFS). However, benefits are temporary as vascular tumors acquire angiogenic pathways independently of VEGF. Specifically, acute hypoxia following prolonged VEGF depletion induces the recruitment of certain myeloid cell subpopulations, which highly contribute to treatment refractoriness. Here we review the molecular mechanisms of neovascularization in relation to bevacizumab therapy with special emphasis on the recruitment of BMDCs and possible combination therapies for GBM patients. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Bone marrow-derived cells are differentially involved in pathological and physiological retinal angiogenesis in mice

    SciTech Connect

    Zou, He; Otani, Atsushi; Oishi, Akio; Yodoi, Yuko; Kameda, Takanori; Kojima, Hiroshi; Yoshimura, Nagahisa

    2010-01-08

    Purpose: Bone marrow-derived cells have been shown to play roles in angiogenesis. Although these cells have been shown to promote angiogenesis, it is not yet clear whether these cells affect all types of angiogenesis. This study investigated the involvement of bone marrow-derived cells in pathological and physiological angiogenesis in the murine retina. Materials and methods: The oxygen-induced retinopathy (OIR) model was used as a retinal angiogenesis model in newborn mice. To block the influence of bone marrow-derived cells, the mice were irradiated with a 4-Gy dose of radiation from a {sup 137}Cs source. Irradiation was performed in four different conditions with radio dense 2-cm thick lead disks; (1) H group, the head were covered with these discs to protect the eyes from radiation; (2) A group, all of the body was covered with these discs; (3) N group, mice were completely unshielded; (4) C group, mice were put in the irradiator but were not irradiated. On P17, the retinal areas showing pathological and physiological retinal angiogenesis were measured and compared to the retinas of nonirradiated mice. Results: Although irradiation induced leukocyte depletion, it did not affect the number of other cell types or body weight. Retinal nonperfusion areas were significantly larger in irradiated mice than in control mice (P < 0.05), indicating that physiological angiogenesis was impaired. However, the formation of tuft-like angiogenesis processes was more prominent in the irradiated mice (P < 0.05), indicating that pathological angiogenesis was intact. Conclusions: Bone marrow-derived cells seem to be differentially involved in the formation of physiological and pathological retinal vessels. Pathological angiogenesis in the murine retina does not require functional bone marrow-derived cells, but these cells are important for the formation of physiological vessels. Our results add a new insight into the pathology of retinal angiogenesis and bolster the hypothesis that

  16. Cigarette smoke inhibits recruitment of bone-marrow-derived stem cells to the uterus.

    PubMed

    Zhou, Yuping; Gan, Ye; Taylor, Hugh S

    2011-02-01

    Cigarette smoking leads to female infertility and a decreased incidence of endometriosis. Bone marrow derived stem cells are recruited to uterine endometrium and endometriosis. The effect of cigarette smoking on stem cell recruitment to any organ is uncharacterized. We hypothesized that bone marrow-derived mesenchymal stem cell recruitment to the uterus and differentiation would be diminished by cigarette smoke. We used human mesenchymal stem cells (hMSC) in vitro and a mouse model of cigarette smoke exposure. After myeloablation female C57BL/6J received bone marrow cells from males. Mice were exposed to room air or smoke from unfiltered cigarettes. Immunofluorescence and Y-FISH was performed on uterine sections. In vitro hMSCs were treated with 8-Br-cAMP to induce endometrial cell differentiation with or without cigarette smoke extract (CSE) and decidualization assessed morphologically and by prolactin expression. After 4 weeks the total number of Y-chromosome cells in the uterus was reduced by 68% in the smoke exposed mice. Both leukocytes and bone marrow derived endometrial cells were reduced by 60% and 73%, respectively. Differentiation of bone marrow derived cell to endometrial epithelial cells was reduced by 84%. hMSC treated with CSE failed to show cytological characteristics of decidualization. mRNA levels of the decidualization marker prolactin were decreased by 90% in CSE treated cells. Smoking inhibits both recruitment of bone marrow derived stem cells to uterus and stem cell differentiation. Inhibition of stem cells recruitment may be a general mechanism by which smoking leads to long term organ damage through inability to repair or regenerate multiple tissues.

  17. Bioactive lipid coating of bone allografts directs engraftment and fate determination of bone marrow-derived cells in rat GFP chimeras.

    PubMed

    Das, Anusuya; Segar, Claire E; Chu, Yihsuan; Wang, Tiffany W; Lin, Yong; Yang, Chunxi; Du, Xeujun; Ogle, Roy C; Cui, Quanjun; Botchwey, Edward A

    2015-09-01

    Bone grafting procedures are performed to treat wounds incurred during wartime trauma, accidents, and tumor resections. Endogenous mechanisms of repair are often insufficient to ensure integration between host and donor bone and subsequent restoration of function. We investigated the role that bone marrow-derived cells play in bone regeneration and sought to increase their contributions by functionalizing bone allografts with bioactive lipid coatings. Polymer-coated allografts were used to locally deliver the immunomodulatory small molecule FTY720 in tibial defects created in rat bone marrow chimeras containing genetically-labeled bone marrow for monitoring cell origin and fate. Donor bone marrow contributed significantly to both myeloid and osteogenic cells in remodeling tissue surrounding allografts. FTY720 coatings altered the phenotype of immune cells two weeks post-injury, which was associated with increased vascularization and bone formation surrounding allografts. Consequently, degradable polymer coating strategies that deliver small molecule growth factors such as FTY720 represent a novel therapeutic strategy for harnessing endogenous bone marrow-derived progenitors and enhancing healing in load-bearing bone defects.

  18. Connective tissue progenitor cell growth characteristics on textured substrates

    PubMed Central

    Mata, Alvaro; Boehm, Cynthia; Fleischman, Aaron J; Muschler, George F; Roy, Shuvo

    2007-01-01

    Growth characteristics of human connective tissue progenitor (CTP) cells were investigated on smooth and textured substrates, which were produced using MEMS (microelectromechanical systems) fabrication technology. Human bone marrow derived cells were cultured for 9 days under conditions promoting osteoblastic differentiation on polydimethylsiloxane (PDMS) substrates comprising smooth (non-patterned) surfaces (SMOOTH), 4 different cylindrical post micro-textures (POSTS) that were 7–10 μm high and 5, 10, 20, and 40 μm diameter, respectively, and channel micro-textures (CHANNELS) with curved cross-sections that were 11 μm high, 45 μm wide, and separated by 5 μm wide ridges. Standard glass-tissue culture surfaces were used as controls. Micro-textures resulted in the modification of CTP morphology, attachment, migration, and proliferation characteristics. Specifically, cells on POSTS exhibited more contoured morphology with closely packed cytoskeletal actin microfilaments compared to the more random orientation in cells grown on SMOOTH. CTP colonies on 10 μm-diameter POSTS exhibited higher cell number than any other POSTS, and a significant increase in cell number (442%) compared to colonies on SMOOTH (71%). On CHANNELS, colonies tended to be denser (229%) than on POSTS (up to 140% on 10 μm POSTS), and significantly more so compared to those on SMOOTH (104%). PMID:18019838

  19. Using brain slice cultures of mouse brain to assess the effect of growth factors on differentiation of bone marrow derived stem cells.

    PubMed

    Bratincsák, András; Lonyai, Anna; Shahar, Tal; Hansen, Arne; Tóth, Zsuzsanna E; Mezey, Eva

    2007-03-30

    Bone marrow derived stem cells (BMDSCs) have been reported to form neurons and supportive cells in the brain. We describe a technique that combines the simplicity of in vitro studies with many of the advantages of in vivo experiments. We cultured mouse brain slices, deposited GFP-tagged BMDSCs evenly distributed on their surfaces, and then added test factors to the culture medium. Addition of both SDF-1 and EGF resulted in morphological changes of BMDSC and in the induction of islet-1, a marker of neuroepithelial progenitors. We conclude that organotypic tissue culture (OTC) may allow us to detect the effects of exogenous factors on the differentiation of BMDSCs (or any other type of stem cells) in an environment that may resemble the CNS after brain injury. Once such factors have been identified they could be evaluated for tissue regeneration in more complex, whole animal models.

  20. Unlocking bat immunology: establishment of Pteropus alecto bone marrow-derived dendritic cells and macrophages.

    PubMed

    Zhou, Peng; Chionh, Yok Teng; Irac, Sergio Erdal; Ahn, Matae; Jia Ng, Justin Han; Fossum, Even; Bogen, Bjarne; Ginhoux, Florent; Irving, Aaron T; Dutertre, Charles-Antoine; Wang, Lin-Fa

    2016-12-09

    Bats carry and shed many emerging infectious disease agents including Ebola virus and SARS-like Coronaviruses, yet they rarely display clinical symptoms of infection. Bat epithelial or fibroblast cell lines were previously established to study the bat immune response against viral infection. However, the lack of professional immune cells such as dendritic cells (DC) and macrophages has greatly limited the significance of current investigations. Using Pteropus alecto (P. alecto) GM-CSF plus IL4, FLT3L and CSF-1, we successfully generated bat bone marrow-derived DC and macrophages. Cells with the phenotype, morphology and functional features of monocyte-derived DC, bona fide DC or macrophages were obtained in GM-CSF/IL4, FLT3L or CSF-1 cultures, respectively. The successful generation of the first bat bone marrow-derived immune cells paves the way to unlocking the immune mechanisms that confer host resilience to pathogens in bats.

  1. Unlocking bat immunology: establishment of Pteropus alecto bone marrow-derived dendritic cells and macrophages

    PubMed Central

    Zhou, Peng; Chionh, Yok Teng; Irac, Sergio Erdal; Ahn, Matae; Jia Ng, Justin Han; Fossum, Even; Bogen, Bjarne; Ginhoux, Florent; Irving, Aaron T; Dutertre, Charles-Antoine; Wang, Lin-Fa

    2016-01-01

    Bats carry and shed many emerging infectious disease agents including Ebola virus and SARS-like Coronaviruses, yet they rarely display clinical symptoms of infection. Bat epithelial or fibroblast cell lines were previously established to study the bat immune response against viral infection. However, the lack of professional immune cells such as dendritic cells (DC) and macrophages has greatly limited the significance of current investigations. Using Pteropus alecto (P. alecto) GM-CSF plus IL4, FLT3L and CSF-1, we successfully generated bat bone marrow-derived DC and macrophages. Cells with the phenotype, morphology and functional features of monocyte-derived DC, bona fide DC or macrophages were obtained in GM-CSF/IL4, FLT3L or CSF-1 cultures, respectively. The successful generation of the first bat bone marrow-derived immune cells paves the way to unlocking the immune mechanisms that confer host resilience to pathogens in bats. PMID:27934903

  2. Granule cargo release from bone marrow-derived cells sustains cardiac hypertrophy.

    PubMed

    Yang, Fanmuyi; Dong, Anping; Ahamed, Jasimuddin; Sunkara, Manjula; Smyth, Susan S

    2014-11-15

    Bone marrow-derived inflammatory cells, including platelets, may contribute to the progression of pressure overload-induced left ventricular hypertrophy (LVH). However, the underlying mechanisms for this are still unclear. One potential mechanism is through release of granule cargo. Unc13-d(Jinx) (Jinx) mice, which lack Munc13-4, a limiting factor in vesicular priming and fusion, have granule secretion defects in a variety of hematopoietic cells, including platelets. In the current study, we investigated the role of granule secretion in the development of LVH and cardiac remodeling using chimeric mice specifically lacking Munc13-4 in marrow-derived cells. Pressure overload was elicited by transverse aortic constriction (TAC). Chimeric mice were created by bone marrow transplantation. Echocardiography, histology staining, immunohistochemistry, real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and mass spectrometry were used to study LVH progression and inflammatory responses. Wild-type (WT) mice that were transplanted with WT bone marrow (WT→WT) and WT mice that received Jinx bone marrow (Jinx→WT) developed LVH and a classic fetal reprogramming response early (7 days) after TAC. However, at late times (5 wk), mice lacking Munc13-4 in bone marrow-derived cells (Jinx→WT) failed to sustain the cardiac hypertrophy observed in WT chimeric mice. No difference in cardiac fibrosis was observed at early or late time points. Reinjection of WT platelets or platelet releasate partially restored cardiac hypertrophy in Jinx chimeric mice. These results suggest that sustained LVH in the setting of pressure overload depends on one or more factors secreted from bone marrow-derived cells, possibly from platelets. Inhibiting granule cargo release may represent a novel target for preventing sustained LVH.

  3. Adeno associated viral-mediated intraosseous labeling of bone marrow derived cells for CNS tracking.

    PubMed

    Selenica, Maj-Linda B; Reid, Patrick; Pena, Gabriela; Alvarez, Jennifer; Hunt, Jerry B; Nash, Kevin R; Morgan, Dave; Gordon, Marcia N; Lee, Daniel C

    2016-05-01

    Inflammation, including microglial activation in the CNS, is an important hallmark in many neurodegenerative diseases. Microglial stimuli not only impact the brain microenvironment by production and release of cytokines and chemokines, but also influence the activity of bone marrow derived cells and blood born macrophage populations. In many diseases including brain disorders and spinal cord injury, researchers have tried to harbor the neuroprotective and repair properties of these subpopulations. Hematopoietic bone marrow derived cells (BMDCs) are of great interest, especially during gene therapy because certain hematopoietic cell subpopulations traffic to the sites of injury and inflammation. The aim of this study was to develop a method of labeling endogenous bone marrow derived cells through intraosseous impregnation of recombinant adeno-associated virus (rAAV) or lentivirus. We utilized rAAV serotype 9 (rAAV-9) or lentivirus for gene delivery of green florescence protein (GFP) to the mouse bone marrow cells. Flow cytometry showed that both viruses were able to efficiently transduce mouse bone marrow cells in vivo. However, the rAAV9-GFP viral construct transduced BMDCs more efficiently than the lentivirus (11.2% vs. 6.8%), as indicated by cellular GFP expression. We also demonstrate that GFP labeled cells correspond to bone marrow cells of myeloid origin using CD11b as a marker. Additionally, we characterized the ability of bone marrow derived, GFP labeled cells to extravasate into the brain parenchyma upon acute and subchronic neuroinflammatory stimuli in the mouse CNS. Viral mediated over expression of chemokine (C-C motif) ligand 2 (CCL2) or intracranial injection of lipopolysaccharide (LPS) recruited GFP labeled BMDCs from the periphery into the brain parenchyma compared to vehicle treated mice. Altogether our findings demonstrate a useful method of labeling endogenous BMDCs via viral transduction and the ability to track subpopulations throughout the body

  4. One-step bone marrow-derived cell transplantation in talarosteochondral lesions: mid-term results

    PubMed Central

    BUDA, ROBERTO; VANNINI, FRANCESCA; CAVALLO, MARCO; BALDASSARRI, MATTEO; NATALI, SIMONE; CASTAGNINI, FRANCESCO; GIANNINI, SANDRO

    2013-01-01

    Purpose to verify the capability of scaffold-supported bone marrow-derived cells to be used in the repair of osteochondral lesions of the talus. Methods using a device to concentrate bone marrow-derived cells, a scaffold (collagen powder or hyaluronic acid membrane) for cell support and platelet gel, a one-step arthroscopic technique was developed for cartilage repair. In a prospective clinical study, we investigated the ability of this technique to repair talar osteochondral lesions in 64 patients. The mean follow-up was 53 months. Clinical results were evaluated using the American Orthopaedic Foot and Ankle Society (AOFAS) scale score. We also considered the influence of scaffold type, lesion area, previous surgery, and lesion depth. Results the mean preoperative AOFAS scale score was 65.2 ± 13.9. The clinical results peaked at 24 months, before declining gradually to settle at a score of around 80 at the maximum follow-up of 72 months. Conclusions the use of bone marrow-derived cells supported by scaffolds to repair osteochondral lesions of the talus resulted in significant clinical improvement, which was maintained over time. Level of Evidence level IV, therapeutic case series. PMID:25606518

  5. Review of Preclinical and Clinical Studies of Bone Marrow-Derived Cell Therapies for Intracerebral Hemorrhage

    PubMed Central

    de Carvalho, Felipe Gonçalves; de Freitas, Gabriel Rodriguez

    2016-01-01

    Stroke is the second leading cause of mortality worldwide, causing millions of deaths annually, and is also a major cause of disability-adjusted life years. Hemorrhagic stroke accounts for approximately 10 to 27% of all cases and has a fatality rate of about 50% in the first 30 days, with limited treatment possibilities. In the past two decades, the therapeutic potential of bone marrow-derived cells (particularly mesenchymal stem cells and mononuclear cells) has been intensively investigated in preclinical models of different neurological diseases, including models of intracerebral hemorrhage and subarachnoid hemorrhage. More recently, clinical studies, most of them small, unblinded, and nonrandomized, have suggested that the therapy with bone marrow-derived cells is safe and feasible in patients with ischemic or hemorrhagic stroke. This review discusses the available evidence on the use of bone marrow-derived cells to treat hemorrhagic strokes. Distinctive properties of animal studies are analyzed, including study design, cell dose, administration route, therapeutic time window, and possible mechanisms of action. Furthermore, clinical trials are also reviewed and discussed, with the objective of improving future studies in the field. PMID:27698671

  6. Evidence for transdifferentiation of human bone marrow-derived stem cells: recent progress and controversies.

    PubMed

    Tao, Helen; Ma, David D F

    2003-02-01

    Adult bone marrow-derived stem cells have traditionally been known as tissue-specific stem cells capable of producing blood cells. This concept is being challenged by a series of recent discoveries. It has been demonstrated that there are heterogeneous stem cell populations in adult bone marrow compartment. Under appropriate experimental conditions, a certain type of bone marrow stem cells appears to differentiate (or transdifferentiate) into a variety of non-haemopoietic cells of ectodermal, mesodermal and endodermal origins (such as myocytes, neural cells and hepatocytes). The plasticity, that is, the ability to regenerate cells belonging to different organs and tissues of adult (postnatal) stem cells, has raised the therapeutic possibility of using these stem cells for tissue repair and regeneration. Presently, definitive evidence for plasticity or transdifferentiation of bone marrow stem cells is lacking. Despite controversies concerning the plasticity of bone marrow-derived stem cells, early clinical trials are being conducted in patients suffering from myocardial infarct, arthritic and neurological diseases using autologous bone marrow stem cells. This review summarises recent progresses and controversies in transdifferentiation of adult bone marrow-derived stem cells to non-haemopoietic tissues.

  7. One-step bone marrow-derived cell transplantation in talarosteochondral lesions: mid-term results.

    PubMed

    Buda, Roberto; Vannini, Francesca; Cavallo, Marco; Baldassarri, Matteo; Natali, Simone; Castagnini, Francesco; Giannini, Sandro

    2013-01-01

    to verify the capability of scaffold-supported bone marrow-derived cells to be used in the repair of osteochondral lesions of the talus. using a device to concentrate bone marrow-derived cells, a scaffold (collagen powder or hyaluronic acid membrane) for cell support and platelet gel, a one-step arthroscopic technique was developed for cartilage repair. In a prospective clinical study, we investigated the ability of this technique to repair talar osteochondral lesions in 64 patients. The mean follow-up was 53 months. Clinical results were evaluated using the American Orthopaedic Foot and Ankle Society (AOFAS) scale score. We also considered the influence of scaffold type, lesion area, previous surgery, and lesion depth. the mean preoperative AOFAS scale score was 65.2 ± 13.9. The clinical results peaked at 24 months, before declining gradually to settle at a score of around 80 at the maximum follow-up of 72 months. the use of bone marrow-derived cells supported by scaffolds to repair osteochondral lesions of the talus resulted in significant clinical improvement, which was maintained over time. level IV, therapeutic case series.

  8. CXCL16 recruits bone marrow-derived fibroblast precursors in renal fibrosis.

    PubMed

    Chen, Gang; Lin, Song-Chang; Chen, Jiyuan; He, Liqun; Dong, Feixia; Xu, Jing; Han, Shuhua; Du, Jie; Entman, Mark L; Wang, Yanlin

    2011-10-01

    Although fibroblasts are responsible for the production and deposition of extracellular matrix in renal fibrosis, their origin is controversial. Circulating fibroblast precursors may contribute to the pathogenesis of renal fibrosis, but the signaling mechanisms underlying the recruitment of bone marrow-derived fibroblast precursors into the kidney in response to injury are incompletely understood. Here, in the unilateral ureteral obstruction model of renal fibrosis, tubular epithelial cells upregulated the chemokine CXCL16 in obstructed kidneys, and circulating fibroblast precursors expressed the CXCL16 receptor, CXCR6. Compared with wild-type mice, CXCL16-knockout mice accumulated significantly fewer bone marrow-derived fibroblast precursors in obstructed kidneys. CXCL16-knockout mice also exhibited significantly fewer CD45-, collagen I-, and CXCR6-triple-positive fibroblast precursors in injured kidneys. Furthermore, targeted deletion of CXCL16 inhibited myofibroblast activation, reduced collagen deposition, and suppressed expression of collagen I and fibronectin. In conclusion, CXCL16 contributes to the pathogenesis of renal fibrosis by recruiting bone marrow-derived fibroblast precursors.

  9. Subtypes of endothelial progenitor cells affect healing of segmental bone defects differently.

    PubMed

    Giles, Erica M; Godbout, Charles; Chi, Wendy; Glick, Michael A; Lin, Tony; Li, Ru; Schemitsch, Emil H; Nauth, Aaron

    2017-08-24

    Treating fracture nonunion with endothelial progenitor cells (EPCs) is a promising approach. Nevertheless, the effect of different EPC-related cell populations remains unclear. In this study, we compared the therapeutic potential of early (E-EPCs) and late EPCs (L-EPCs). Male Fischer 344 rats were used for cell isolation and in vivo experiments. Bone marrow-derived E-EPCs and L-EPCs were kept in culture for seven to ten days and four weeks, respectively. For each treatment group, we seeded one million cells on a gelatin scaffold before implantation in a segmental defect created in a rat femur; control animals received a cell-free scaffold. Bone healing was monitored via radiographs for up to ten weeks after surgery. In vitro, secretion of vascular endothelial growth factor (VEGF) and bone morphogenetic protein (BMP)-2 was quantified by ELISA for both cell populations. Tube formation assays were also performed. Final radiographs showed complete (four out of five rats) or partial (one out of five rats) union with E-EPC treatment. In contrast, complete healing was achieved in only one of five animals after L-EPC implantation, while control treatment resulted in nonunion in all animals. In vitro, E-EPCs released more VEGF, but less BMP-2 than L-EPCs. In addition, L-EPCs formed longer and more mature tubules on basement membrane matrix than E-EPCs. However, co-culture with primary osteoblasts stimulated tubulogenesis of E-EPCs while inhibiting that of L-EPCs. We demonstrated that bone marrow-derived E-EPCs are a better alternative than L-EPCs for treatment of nonunion. We hypothesize that the expression profile of E-EPCs and their adaptation to the local environment contribute to superior bone healing.

  10. Loss of Myostatin (GDF8) Function Increases Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells but the Osteogenic Effect is Ablated with Unloading

    PubMed Central

    Hamrick, M.; Shi, X.; Zhang, W.; Pennington, C.; Thakore, H.; Haque, M.; Kang, B.; Isales, C.M.; Fulzele, S.; Wenger, K.

    2007-01-01

    Myostatin (GDF8) is a negative regulator of skeletal muscle growth and mice lacking myostatin show a significant increase in muscle mass and bone density compared to normal mice. In order to further define the role of myostatin in regulating bone mass we sought to determine if loss of myostatin function significantly altered the potential for osteogenic differentiation in bone marrow-derived mesenchymal stem cells in vitro and in vivo. We first examined expression of the myostatin receptor, the type IIB activin receptor (AcvrIIB), in bone marrow-derived mesenchymal stem cells (BMSCs) isolated from mouse long bones. This receptor was found to be expressed at high levels in BMSCs, and we were also able to detect AcvrIIB protein in BMSCs in situ using immunofluorescence. BMSCs isolated from myostatin-deficient mice showed increased osteogenic differentiation compared to wild-type mice; however, treatment of BMSCs from myostatin-deficient mice with recombinant myostatin did not attenuate the osteogenic differentiation of these cells. Loading of BMSCs in vitro increased the expression of osteogenic factors such as BMP-2 and IGF-1, but treatment of BMSCs with recombinant myostatin was found to decrease the expression of these factors. We investigated the effects of myostatin loss-of-function on the differentiation of BMSCs in vivo using hindlimb unloading (7 days tail suspension). Unloading caused a greater increase in marrow adipocyte number, and a greater decrease in osteoblast number, in myostatin-deficient mice than in normal mice. These data suggest that the increased osteogenic differentiation of BMSCs from mice lacking myostatin is load-dependent, and that myostatin may alter the mechanosensitivity of BMSCs by suppressing the expression of osteogenic factors during mechanical stimulation. Furthermore, although myostatin deficiency increases muscle mass and bone strength, it does not prevent muscle and bone catabolism with unloading. PMID:17383950

  11. Macromolecular crowding amplifies adipogenesis of human bone marrow-derived mesenchymal stem cells by enhancing the pro-adipogenic microenvironment.

    PubMed

    Ang, Xiu Min; Lee, Michelle H C; Blocki, Anna; Chen, Clarice; Ong, L L Sharon; Asada, H Harry; Sheppard, Allan; Raghunath, Michael

    2014-03-01

    The microenvironment plays a vital role in both the maintenance of stem cells in their undifferentiated state (niche) and their differentiation after homing into new locations outside this niche. Contrary to conventional in-vitro culture practices, the in-vivo stem cell microenvironment is physiologically crowded. We demonstrate here that re-introducing macromolecular crowding (MMC) at biologically relevant fractional volume occupancy during chemically induced adipogenesis substantially enhances the adipogenic differentiation response of human bone marrow-derived mesenchymal stem cells (MSCs). Both early and late adipogenic markers were significantly up-regulated and cells accumulated 25-40% more lipid content under MMC relative to standard induction cocktails. MMC significantly enhanced deposition of extracellular matrix (ECM), notably collagen IV and perlecan, a heparan sulfate proteoglycan. As a novel observation, MMC also increased the presence of matrix metalloproteinase -2 in the deposited ECM, which was concomitant with geometrical ECM remodeling typical of adipogenesis. This suggested a microenvironment that was richer in both matrix components and associated ligands and was conducive to adipocyte maturation. This assumption was confirmed by seeding undifferentiated MSCs on decellularized ECM deposited by adipogenically differentiated MSCs, Adipo-ECM. On Adipo-ECM generated under crowding, MSCs differentiated much faster under a classical differentiation protocol. This was evidenced throughout the induction time course, by a significant up-regulation of both early and late adipogenic markers and a 60% higher lipid content on MMC-generated Adipo-ECM in comparison to standard induction on tissue culture plastic. This suggests that MMC helps build and endow the nascent microenvironment with adipogenic cues. Therefore, MMC initiates a positive feedback loop between cells and their microenvironment as soon as progenitor cells are empowered to build and shape it

  12. The peripheral chimerism of bone marrow-derived stem cells after transplantation: regeneration of gastrointestinal tissues in lethally irradiated mice.

    PubMed

    Filip, Stanislav; Mokrý, Jaroslav; Vávrová, Jiřina; Sinkorová, Zuzana; Mičuda, Stanislav; Sponer, Pavel; Filipová, Alžběta; Hrebíková, Hana; Dayanithi, Govindan

    2014-05-01

    Bone marrow-derived cells represent a heterogeneous cell population containing haematopoietic stem and progenitor cells. These cells have been identified as potential candidates for use in cell therapy for the regeneration of damaged tissues caused by trauma, degenerative diseases, ischaemia and inflammation or cancer treatment. In our study, we examined a model using whole-body irradiation and the transplantation of bone marrow (BM) or haematopoietic stem cells (HSCs) to study the repair of haematopoiesis, extramedullary haematopoiesis and the migration of green fluorescent protein (GFP(+)) transplanted cells into non-haematopoietic tissues. We investigated the repair of damage to the BM, peripheral blood, spleen and thymus and assessed the ability of this treatment to induce the entry of BM cells or GFP(+) lin(-) Sca-1(+) cells into non-haematopoietic tissues. The transplantation of BM cells or GFP(+) lin(-) Sca-1(+) cells from GFP transgenic mice successfully repopulated haematopoiesis and the haematopoietic niche in haematopoietic tissues, specifically the BM, spleen and thymus. The transplanted GFP(+) cells also entered the gastrointestinal tract (GIT) following whole-body irradiation. Our results demonstrate that whole-body irradiation does not significantly alter the integrity of tissues such as those in the small intestine and liver. Whole-body irradiation also induced myeloablation and chimerism in tissues, and induced the entry of transplanted cells into the small intestine and liver. This result demonstrates that grafted BM cells or GFP(+) lin(-) Sca-1(+) cells are not transient in the GIT. Thus, these transplanted cells could be used for the long-term treatment of various pathologies or as a one-time treatment option if myeloablation-induced chimerism alone is not sufficient to induce the entry of transplanted cells into non-haematopoietic tissues.

  13. Overexpression of microRNA-124 promotes the neuronal differentiation of bone marrow-derived mesenchymal stem cells.

    PubMed

    Zou, Defeng; Chen, Yi; Han, Yaxin; Lv, Chen; Tu, Guanjun

    2014-06-15

    microRNAs (miRNAs) play an important regulatory role in the self-renewal and differentiation of stem cells. In this study, we examined the effects of miRNA-124 (miR-124) overexpression in bone marrow-derived mesenchymal stem cells. In particular, we focused on the effect of overexpression on the differentiation of bone marrow-derived mesenchymal stem cells into neurons. First, we used GeneChip technology to analyze the expression of miRNAs in bone marrow-derived mesenchymal stem cells, neural stem cells and neurons. miR-124 expression was substantially reduced in bone marrow-derived mesenchymal stem cells compared with the other cell types. We constructed a lentiviral vector overexpressing miR-124 and transfected it into bone marrow-derived mesenchymal stem cells. Intracellular expression levels of the neuronal early markers β-III tubulin and microtubule-associated protein-2 were significantly increased, and apoptosis induced by oxygen and glucose deprivation was reduced in transfected cells. After miR-124-transfected bone marrow-derived mesenchymal stem cells were transplanted into the injured rat spinal cord, a large number of cells positive for the neuronal marker neurofilament-200 were observed in the transplanted region. The Basso-Beattie-Bresnahan locomotion scores showed that the motor function of the hind limb of rats with spinal cord injury was substantially improved. These results suggest that miR-124 plays an important role in the differentiation of bone marrow-derived mesenchymal stem cells into neurons. Our findings should facilitate the development of novel strategies for enhancing the therapeutic efficacy of bone marrow-derived mesenchymal stem cell transplantation for spinal cord injury.

  14. The fate of bone marrow-derived cells carrying a polycystic kidney disease mutation in the genetically normal kidney

    PubMed Central

    2012-01-01

    Background Polycystic Kidney Disease (PKD) is a genetic condition in which dedifferentiated and highly proliferative epithelial cells form renal cysts and is frequently treated by renal transplantation. Studies have reported that bone marrow-derived cells give rise to renal epithelial cells, particularly following renal injury as often occurs during transplantation. This raises the possibility that bone marrow-derived cells from a PKD-afflicted recipient could populate a transplanted kidney and express a disease phenotype. However, for reasons that are not clear the reoccurrence of PKD has not been reported in a genetically normal renal graft. We used a mouse model to examine whether PKD mutant bone marrow-derived cells are capable of expressing a disease phenotype in the kidney. Methods Wild type female mice were transplanted with bone marrow from male mice homozygous for a PKD-causing mutation and subjected to renal injury. Y chromosome positive, bone marrow-derived cells in the kidney were assessed for epithelial markers. Results Mutant bone marrow-derived cells were present in the kidney. Some mutant cells were within the bounds of the tubule or duct, but none demonstrated convincing evidence of an epithelial phenotype. Conclusions Bone marrow-derived cells appear incapable of giving rise to genuine epithelial cells and this is the most likely reason cysts do not reoccur in kidneys transplanted into PKD patients. PMID:22931547

  15. The LIM protein LIMD1 influences osteoblast differentiation and function

    SciTech Connect

    Luderer, Hilary F.; Bai Shuting; Longmore, Gregory D.

    2008-09-10

    The balance between bone resorption and bone formation involves the coordinated activities of osteoblasts and osteoclasts. Communication between these two cell types is essential for maintenance of normal bone homeostasis; however, the mechanisms regulating this cross talk are not completely understood. Many factors that mediate differentiation and function of both osteoblasts and osteoclasts have been identified. The LIM protein Limd1 has been implicated in the regulation of stress osteoclastogenesis through an interaction with the p62/sequestosome protein. Here we show that Limd1 also influences osteoblast progenitor numbers, differentiation, and function. Limd1{sup -/-} calvarial osteoblasts display increased mineralization and accelerated differentiation. While no significant differences in osteoblast number or function were detected in vivo, bone marrow stromal cells isolated from Limd1{sup -/-} mice contain significantly more osteoblast progenitors compared to wild type controls when cultured ex vivo. Furthermore, we observed a significant increase in nuclear {beta}-catenin staining in differentiating Limd1{sup -/-} calvarial osteoblasts suggesting that Limd1 is a negative regulator of canonical Wnt signaling in osteoblasts. These results demonstrate that Limd1 influences not only stress osteoclastogenesis but also osteoblast function and osteoblast progenitor commitment. Together, these data identify Limd1 as a novel regulator of both bone osetoclast and bone osteoblast development and function.

  16. Ginsenoside Re Promotes Osteoblast Differentiation in Mouse Osteoblast Precursor MC3T3-E1 Cells and a Zebrafish Model.

    PubMed

    Kim, Hye-Min; Kim, Dong Hyun; Han, Ho-Jin; Park, Chan-Mi; Ganipisetti, Srinivas Rao; Valan Arasu, Mariadhas; Kim, Young Ock; Park, Chun Geun; Kim, Bo-Yeon; Soung, Nak-Kyun

    2016-12-29

    Bone homeostasis is tightly regulated to balance bone formation and bone resorption. Many anabolic drugs are used as bone-targeted therapeutic agents for the promotion of osteoblast-mediated bone formation or inhibition of osteoclast-mediated bone resorption. Previous studies showed that ginsenoside Re has the effect of the suppression of osteoclast differentiation in mouse bone-marrow derived macrophages and zebrafish. Herein, we investigated whether ginsenoside Re affects osteoblast differentiation and mineralization in in vitro and in vivo models. Mouse osteoblast precursor MC3T3-E1 cells were used to investigate cell viability, alkaline phosphatase (ALP) activity, and mineralization. In addition, we examined osteoblastic signaling pathways. Ginsenoside Re affected ALP activity without cytotoxicity, and we also observed the stimulation of osteoblast differentiation through the activation of osteoblast markers including runt-related transcription factor 2, type 1 collagen, ALP, and osteocalcin in MC3T3-E1 cells. Moreover, Alizarin red S staining indicated that ginsenoside Re increased osteoblast mineralization in MC3T3-E1 cells and zebrafish scales compared to controls. These results suggest that ginsenoside Re promotes osteoblast differentiation as well as inhibits osteoclast differentiation, and it could be a potential therapeutic agent for bone diseases.

  17. Autologous bone marrow-derived cells for healing excisional dermal wounds of rabbits.

    PubMed

    Borena, B M; Pawde, A M; Amarpal; Aithal, H P; Kinjavdekar, P; Singh, R; Kumar, D

    2009-11-07

    The wound-healing potential of autologous bone marrow-derived nucleated cells was evaluated in full-thickness skin wounds in the thoracolumbar region of 20 clinically healthy rabbits. Three wounds of 2 x 2 cm, one on the left side and two right of the midline, were created on the dorsal lumbar region of each rabbit under xylazine-ketamine anaesthesia. The wounds of each animal were randomly assigned to one of three treatments: injection of autologous bone marrow-derived cells into wound margins (BI), topical application of bone marrow-derived cells over the wound surface (BT) or 5 per cent povidone iodine solution (PI) (control). Wounds were observed for 28 days for granulation tissue formation, wound contraction, histomorphological and histochemical evaluation, and time to complete healing. The mean (se) time to appearance of granulation tissue was significantly less in BI-treated wounds (3.22 [0.22] days) than the BT-treated (3.89 [0.40] days) and PI-treated (4.89 [0.47] days) groups. On days 14 and 21 after surgery, wound contraction was significantly (P<0.05) higher in BI-treated wounds (73.00 and 97.35 per cent) than in those treated with BT (58.75 and 84.87 per cent) and PI (54.84 and 84.60 per cent). Histomorphological findings showed an earlier disappearance of inflammatory reaction, better epithelialisation, significantly more neovascularisation, more fibroplasia and collagenation, and earlier histological maturation in BI- and BT-treated wounds than in control wounds.

  18. Aging impairs peritoneal but not bone marrow-derived macrophage phagocytosis.

    PubMed

    Linehan, Eimear; Dombrowski, Yvonne; Snoddy, Rachel; Fallon, Padraic G; Kissenpfennig, Adrien; Fitzgerald, Denise C

    2014-08-01

    Aging results in deterioration of the immune system, which is associated with increased susceptibility to infection and impaired wound healing in the elderly. Phagocytosis is an essential process in both wound healing and immune defence. As such, age-related impairments in phagocytosis impact on the health of the elderly population. Phagocytic efficiency in peritoneal macrophages, bone marrow-derived macrophages and bone marrow monocytes from young and old mice was investigated. Aging significantly impaired phagocytosis by peritoneal macrophages, both in vitro and in vivo. However, bone marrow-derived macrophages and bone marrow monocytes did not exhibit age-related impairments in phagocytosis, suggesting no intrinsic defect in these cells. We sought to investigate underlying mechanisms in age-related impairments in phagocytosis by peritoneal macrophages. We hypothesized that microenvironmental factors in the peritoneum of old mice impaired macrophage phagocytosis. Indeed, macrophages from young mice injected into the peritoneum of old mice exhibited impaired phagocytosis. Proportions of peritoneal immune cells were characterized, and striking increases in numbers of T cells, B1 and B2 cells were observed in the peritoneum of old mice compared with young mice. In addition, B cell-derived IL-10 was increased in resting and LPS-activated peritoneal cell cultures from old mice. These data demonstrate that aging impairs phagocytosis by tissue-resident peritoneal macrophages, but not by bone marrow-derived macrophages/monocytes, and suggest that age-related defects in macrophage phagocytosis may be due to extrinsic factors in the tissue microenvironment. As such, defects may be reversible and macrophages could be targeted therapeutically in order to boost immune function in the elderly.

  19. In Vivo Transplantation of Autogenous Marrow-Derived Cells Following Rapid Intraoperative Magnetic Separation Based on Hyaluronan to Augment Bone Regeneration

    PubMed Central

    Joshi, Powrnima; Fleury, Sean; Luangphakdy, Viviane; Shinohara, Kentaro; Pan, Hui; Boehm, Cynthia; Vasanji, Amit; Hefferan, Theresa E.; Walker, Esteban; Yaszemski, Michael; Hascall, Vincent; Zborowski, Maciej

    2013-01-01

    Introduction This project was designed to test the hypothesis that rapid intraoperative processing of bone marrow based on hyaluronan (HA) could be used to improve the outcome of local bone regeneration if the concentration and prevalence of marrow-derived connective tissue progenitors (CTPs) could be increased and nonprogenitors depleted before implantation. Methods HA was used as a marker for positive selection of marrow-derived CTPs using magnetic separation (MS) to obtain a population of HA-positive cells with an increased CTP prevalence. Mineralized cancellous allograft (MCA) was used as an osteoconductive carrier scaffold for loading of HA-positive cells. The canine femoral multidefect model was used and four cylindrical defects measuring 10 mm in diameter and 15 mm in length were grafted with MCA combined with unprocessed marrow or with MS processed marrow that was enriched in HA+ CTPs and depleted in red blood cells and nonprogenitors. Outcome was assessed at 4 weeks using quantitative 3D microcomputed tomography (micro-CT) analysis of bone formation and histomorphological assessment. Results Histomorphological assessment showed a significant increase in new bone formation and in the vascular sinus area in the MS-processed defects. Robust bone formation was found throughout the defect area in both groups (defects grafted with unprocessed marrow or with MS processed marrow.) Percent bone volume in the defects, as assessed by micro-CT, was greater in defects engrafted with MS processed cells, but the difference was not statistically significant. Conclusion Rapid intraoperative MS processing to enrich CTPs based on HA as a surface marker can be used to increase the concentration and prevalence of CTPs. MCA grafts supplemented with heparinized bone marrow or MS processed cells resulted in a robust and advanced stage of bone regeneration at 4 weeks. A greater new bone formation and vascular sinus area was found in defects grafted with MS processed cells

  20. The proteomic dataset for bone marrow derived human mesenchymal stromal cells: Effect of in vitro passaging

    PubMed Central

    Mindaye, Samuel T.; Lo Surdo, Jessica; Bauer, Steven R.; Alterman, Michail A.

    2015-01-01

    Bone-marrow derived mesenchymal stromal cells (BMSCs) have been in clinical trials for therapy. One major bottleneck in the advancement of BMSC-based products is the challenge associated with cell isolation, characterization, and ensuring cell fitness over the course of in vitro cell propagation steps. The data in this report is part of publications that explored the proteomic changes following in vitro passaging of BMSCs [4] and the molecular heterogeneity in cultures obtained from different human donors [5], [6].The methodological details involving cell manufacturing, proteome harvesting, protein identification and quantification as well as the bioinformatic analyses were described to ensure reproducibility of the results. PMID:26702413

  1. Bone marrow derived stem cells in trauma and orthopaedics: a review of the current trend.

    PubMed

    Singh, Jagwant; Onimowo, Jemina O; Khan, Wasim S

    2015-01-01

    Bone tissue engineering is a promising therapeutic option to enhance tissue regeneration and repair. The development of bone tissue engineering is directly related to changes in materials technology. While the inclusion of material requirements is standard in the design process of engineered bone substitutes, it is critical to incorporate clinical requirements in order to engineer a clinically relevant device. This review focuses on the potentials of bone marrow derived mesenchymal stem cells (BM-MSCs) in trauma and orthopaedics and presents the need for bone tissue-engineered alternatives.

  2. An observational study of autologous bone marrow-derived stem cells transplantation in seven patients with nervous system diseases: a 2-year follow-up.

    PubMed

    Ren, Chao; Geng, Run-lu; Ge, Wei; Liu, Xiao-Yun; Chen, Hao; Wan, Mei-Rong; Geng, De-Qin

    2014-05-01

    Currently, autologous bone marrow-derived stem cell is one of the most innovative areas of stem cells research. Previous studies on animal models of nervous system diseases have shown that these cells have a good effect on nervous system disorders. The alternative treatment with stem cells for the nervous system diseases has also gradually reached to clinical application stage. The prospect is captivating, but the safety and efficacy of this procedure need further research. To observe the clinical efficacy and side effects of the treatment for autologous mesenchymal stem cells and neural stem/progenitor cells which are in differentiated form by inducing with cerebrospinal fluid in the patients with nervous system diseases, thirty patients were selected from our hospital (2009-10 to 2012-07) and were followed at 1 month, 3 months, 6 months, 1 year and 2 years after the treatment with autologous mesenchymal stem cells and neural stem/progenitor cells in differentiated form was introduced. In this paper, we will introduce the process to make cells accessible for the clinical application by the description of the changes observed in 7 cases were followed for 2 years. The time for bone marrow mesenchymal stem cells could be available for clinical needs is as early as 5 days, not later than 10 days, and the median time is 8 days, while neural stem/progenitor cells in differentiated form can be available for clinical needs in as early as 12 days, not later than 15 days, and the median time is 13.5 days (statistical explanation: Case 5 only uses autologous mesenchymal stem cells, and Case 7 has two times bone marrow punctures). The neurological function of the patients was improved in 1-month follow-up, and the patients have a better discontinuous trend (statistical explanation: sometimes the neurological function of the patients between two adjacent follow-ups does not change significantly). After transplantation, four patients appeared to have transient fever, but it was

  3. Osteoblast Differentiation at a Glance

    PubMed Central

    Rutkovskiy, Arkady; Stensløkken, Kåre-Olav; Vaage, Ingvar Jarle

    2016-01-01

    Ossification is a tightly regulated process, performed by specialized cells called osteoblasts. Dysregulation of this process may cause inadequate or excessive mineralization of bones or ectopic calcification, all of which have grave consequences for human health. Understanding osteoblast biology may help to treat diseases such as osteogenesis imperfecta, calcific heart valve disease, osteoporosis, and many others. Osteoblasts are bone-building cells of mesenchymal origin; they differentiate from mesenchymal progenitors, either directly or via an osteochondroprogenitor. The direct pathway is typical for intramembranous ossification of the skull and clavicles, while the latter is a hallmark of endochondral ossification of the axial skeleton and limbs. The pathways merge at the level of preosteoblasts, which progress through 3 stages: proliferation, matrix maturation, and mineralization. Osteoblasts can also differentiate into osteocytes, which are stellate cells populating narrow interconnecting passages within the bone matrix. The key molecular switch in the commitment of mesenchymal progenitors to osteoblast lineage is the transcription factor cbfa/runx2, which has multiple upstream regulators and a wide variety of targets. Upstream is the Wnt/Notch system, Sox9, Msx2, and hedgehog signaling. Cofactors of Runx2 include Osx, Atf4, and others. A few paracrine and endocrine factors serve as coactivators, in particular, bone morphogenetic proteins and parathyroid hormone. The process is further fine-tuned by vitamin D and histone deacetylases. Osteoblast differentiation is subject to regulation by physical stimuli to ensure the formation of bone adequate for structural and dynamic support of the body. Here, we provide a brief description of the various stimuli that influence osteogenesis: shear stress, compression, stretch, micro- and macrogravity, and ultrasound. A complex understanding of factors necessary for osteoblast differentiation paves a way to introduction

  4. Bone marrow-derived cells migrate to the liver and contribute to the generation of different cell types in chronic Schistosoma mansoni infection.

    PubMed

    Azevedo, Carine Machado; Solano de Freitas Souza, Bruno; Andrade de Oliveira, Sheilla; Paredes, Bruno Diaz; Barreto, Elton Sá; Neto, Hélio Almeida; Ribeiro dos Santos, Ricardo; Pereira Soares, Milena Botelho

    2015-12-01

    The main pathogenic event caused by Schistosoma mansoni infection is characterized by a granulomatous inflammatory reaction around parasite eggs and fibrosis in the liver. We have previously shown that transplantation of bone marrow cells (BMC) promotes a reduction in liver fibrosis in chronically S. mansoni-infected mice. Here we investigated the presence and phenotype of bone marrow-derived cells in livers of S. mansoni-infected mice. During the chronic phase of infection, C57BL/6 mice had an increased number of circulating mesenchymal stem cells and endothelial progenitor cells in the peripheral blood when compared to uninfected controls. In order to investigate the fate of BMC in the liver, we generated bone marrow chimeric mice by transplanting BMC from transgenic green fluorescent protein (GFP) mice into lethally irradiated wild-type C57BL/6 mice. S. mansoni-infected chimeric mice did not demonstrate increased mortality and developed similar liver histopathological features, when compared to wild-type S. mansoni-infected mice. GFP(+) bone marrow-derived cells were found in the liver parenchyma, particularly in periportal regions. CD45(+)GFP(+) cells were found in the granulomas. Flow cytometry analysis of digested liver tissue characterized GFP(+) cells as lymphocytes, myeloid cells and stem cells. GFP(+) cells were also found in areas of collagen deposition, although rare GFP(+) cells expressed the myofibroblast cell marker α-SMA. Additionally GFP(+) endothelial cells (co-stained with von Willebrand factor) were frequently observed, while BMC-derived hepatocytes (GFP(+) albumin(+) cells) were sparsely found in the liver of chimeric mice chronically infected with S. mansoni. In conclusion, BMC are recruited to the liver during chronic experimental infection with S. mansoni and contribute to the generation of different cell types involved, not only in disease pathogenesis, but possibly in liver regeneration and repair.

  5. Hemozoin Enhances Maturation of Murine Bone Marrow Derived Macrophages and Myeloid Dendritic Cells.

    PubMed

    Waseem, Shahid; Ur-Rehman, Kashif; Kumar, Ramesh; Mahmood, Tariq

    2016-03-01

    Falciparum malaria is a severe health burden worldwide. Antigen presenting cells are reported to be affected by erythrocytic stage of the parasite. Malarial hemozoin (HZ), a metabolite of malaria parasite, has adjuvant properties and may play a role in the induction of immune response against the parasite. To determine the immunological impact of hemozoin on the capacity of innate immune cells maturation. Plasmodium falciparum (F32 strain) was cultured in O+ blood group up to 18% parasitemia. Natural hemozoin was extracted from infected red blood cells. Murine bone marrow derived macrophages and myeloid dendritic cells were stimulated with 4 μg/mL or 40 μg/mL of synthetic hemozoin (β-hematin) or natural hemozoin. We assessed the immunomodulatory role of synthetic or natural hemozoinin vitro by flowcytometric analysis. The maturation markers MHC-II, CD80 and CD86 were significantly upregulated (p<0.05) on the surface of murine bone marrow derived macrophages or myeloid dendritic cells. Data confirmed the potential of macrophages or myeloid dendritic cells, through hemozoin activation, to establish an innate immune response against malaria parasites. Both synthetic and natural hemozoin are potent inducers of cellular immunity against malaria infection. However, natural hemozoin is a stronger inducer as compared to synthetic hemozoin.

  6. Primary Structure and Antibacterial Activity of Chicken Bone Marrow-Derived β-Defensins▿

    PubMed Central

    Derache, Chrystelle; Labas, Valérie; Aucagne, Vincent; Meudal, Hervé; Landon, Céline; Delmas, Agnès F.; Magallon, Thierry; Lalmanach, Anne-Christine

    2009-01-01

    Three biologically active β-defensins were purified by chromatography from chicken bone marrow extract: avian β-defensin 1 (AvBD1), AvBD2, and the newly isolated β-defensin AvBD7. Mass spectrometry analyses showed that bone marrow-derived AvBD1, -2, and -7 peptides were present as mature peptides and revealed posttranslational modifications for AvBD1 and AvBD7 in comparison to their in silico-predicted amino acid sequences. Tandem mass spectrometry analysis using the nanoelectrospray-quadrupole time of flight method showed N-terminal glutaminyl cyclization of mature AvBD7 and C-terminal amidation of mature AvBD1 peptide, while posttranslational modifications were absent in bone marrow-derived mature AvBD2 peptide. Furthermore, mass spectrometry analysis performed on intact cells confirmed the presence of these three peptides in mature heterophils. In addition, the antibacterial activities of the three β-defensins against a large panel of gram-positive and -negative bacteria were assessed. While the three defensins displayed similar antibacterial spectra of activity against gram-positive strains, AvBD1 and AvBD7 exhibited the strongest activity against gram-negative strains in comparison to AvBD2. PMID:19738012

  7. Intravitreal Implantation of Genetically Modified Autologous Bone Marrow-Derived Stem Cells for Treating Retinal Disorders.

    PubMed

    Tracy, Christopher J; Sanders, Douglas N; Bryan, Jeffrey N; Jensen, Cheryl A; Castaner, Leilani J; Kirk, Mark D; Katz, Martin L

    2016-01-01

    A number of retinal degenerative diseases may be amenable to treatment with continuous intraocular delivery of therapeutic agents that cannot be delivered effectively to the retina via systemic or topical administration. Among these disorders are lysosomal storage diseases resulting from deficiencies in soluble lysosomal enzymes. Most cells, including those of the retina, are able to take up these enzymes and incorporate them in active form into their lysosomes. In theory, therefore, continuous intraocular administration of a normal form of a soluble lysosomal enzyme should be able to cure the molecular defect in the retinas of subjects lacking this enzyme. Experiments were conducted to determine whether genetically modified bone marrow-derived stem cells implanted into the vitreous could be used as -vehicles for continuous delivery of such enzymes to the retina. Bone marrow-derived mesenchymal stem cells (MSCs) from normal mice were implanted into the vitreous of mice undergoing retinal degeneration as a result of a mutation in the PPT1 gene. The implanted cells appeared to survive indefinitely in the vitreous without proliferating or invading the retina. This indicates that intravitreal implantation of MSCs is likely a safe means of long-term delivery of proteins synthesized by the implanted cells. Experiments have been initiated to test the efficacy of using genetically modified autologous MSCs to inhibit retinal degeneration in a canine model of neuronal ceroid lipofuscinosis.

  8. Mint3 in bone marrow-derived cells promotes lung metastasis in breast cancer model mice.

    PubMed

    Hara, Toshiro; Murakami, Yoshinori; Seiki, Motoharu; Sakamoto, Takeharu

    2017-08-26

    Breast cancer is one of the most common cancers in women in the world. Although breast cancer is well treatable at the early stage, patients with distant metastases show a poor prognosis. Data from recent studies using transplantation models indicate that Mint3/APBA3 might promote breast cancer malignancy. However, whether Mint3 indeed contributes to tumor development, progression, or metastasis in vivo remains unclear. To address this, here we examined whether Mint3 depletion affects tumor malignancy in MMTV-PyMT breast cancer model mice. In MMTV-PyMT mice, Mint3 depletion did not affect tumor onset and tumor growth, but attenuated lung metastases. Experimental lung metastasis of breast cancer Met-1 cells derived from MMTV-PyMT mice also decreased in Mint3-depleted mice, indicating that host Mint3 expression affected lung metastasis of MMTV-PyMT-derived breast cancer cells. Further bone marrow transplant experiments revealed that Mint3 in bone marrow-derived cells promoted lung metastasis in MMTV-PyMT mice. Thus, targeting Mint3 in bone marrow-derived cells might be a good strategy for preventing metastasis and improving the prognosis of breast cancer patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Rat bone marrow-derived dendritic cells generated with GM-CSF/IL-4 or FLT3L exhibit distinct phenotypical and functional characteristics.

    PubMed

    N'diaye, Marie; Warnecke, Andreas; Flytzani, Sevasti; Abdelmagid, Nada; Ruhrmann, Sabrina; Olsson, Tomas; Jagodic, Maja; Harris, Robert A; Guerreiro-Cacais, Andre Ortlieb

    2016-03-01

    Dendritic cells are professional APCs that play a central role in the initiation of immune responses. The limited ex vivo availability of dendritic cells inspires the widespread use of bone marrow-derived dendritic cells as an alternative in research. However, the functional characteristics of bone marrow-derived dendritic cells are incompletely understood. Therefore, we compared functional and phenotypic characteristics of rat bone marrow-derived dendritic cells generated with GM-CSF/IL-4 or FLT3 ligand bone marrow-derived dendritic cells. A comparison of surface markers revealed that FLT3 ligand-bone marrow-derived dendritic cells expressed signal regulatory protein α, CD103, and CD4 and baseline levels of MHC class II, CD40, and CD86, which were highly up-regulated upon stimulation. Conversely, GM-CSF/IL-4-bone marrow-derived dendritic cells constitutively expressed signal regulatory protein α, CD11c, and CD11b but only mildly up-regulated MHC class II, CD40, or CD86 following stimulation. Expression of dendritic cell-associated core transcripts was restricted to FLT3 ligand-bone marrow-derived dendritic cells . GM-CSF/IL-4-bone marrow-derived dendritic cells were superior at phagocytosis but were outperformed by FLT3 ligand-bone marrow-derived dendritic cells at antigen presentation and T cell stimulation in vitro. Stimulated GM-CSF/IL-4-bone marrow-derived dendritic cells secreted more TNF, CCL5, CCL20, and NO, whereas FLT3 ligand-bone marrow-derived dendritic cells secreted more IL-6 and IL-12. Finally, whereas GM-CSF/IL-4-bone marrow-derived dendritic cell culture supernatants added to resting T cell cultures promoted forkhead box p3(+) regulatory T cell populations, FLT3 ligand-bone marrow-derived dendritic cell culture supernatants drove Th17 differentiation. We conclude that rat GM-CSF/IL-4-bone marrow-derived dendritic cells and FLT3 ligand-bone marrow-derived dendritic cells are functionally distinct. Our data support the current rationale that FLT3

  10. Biologic effect and immunoisolating behavior of BMP-2 gene-transfected bone marrow-derived mesenchymal stem cells in APA microcapsules.

    PubMed

    Ding, H F; Liu, R; Li, B G; Lou, J R; Dai, K R; Tang, T T

    2007-11-03

    We investigated the encapsulation of BMP-2 gene-modified mesenchymal stem cells (MSCs) in alginate-poly-L-lysine (APA) microcapsules for the persistent delivery of bone morphogenic protein-2 (BMP-2) to induce bone formation. An electrostatic droplet generator was employed to produce APA microcapsules containing encapsulated beta-gal or BMP-2 gene-transfected bone marrow-derived MSCs. We found that X-gal staining was still positive 28 days after encapsulation. Encapsulated BMP-2 gene-transfected cells were capable of constitutive delivery of BMP-2 proteins for at least 30 days. The encapsulated BMP-2 gene-transfected MSCs or the encapsulated non-gene transfer MSCs (control group) were cocultured with the undifferentiated MSCs. The gene products from the encapsulated BMP-2 cells could induce the undifferentiated MSCs to become osteoblasts that had higher alkaline phosphatase (ALP) activity than those in the control group (p<0.05). The APA microcapsules could inhibit the permeation of fluorescein isothiocyanate-conjuncted immunoglobulin G. Mixed lymphocyte reaction also indicates that the APA microcapsules could prevent the encapsulated BMP-2 gene-transfected MSCs from initiating the cellular immune response. These results demonstrated that the nonautologous BMP-2 gene-transfected stem cells are of potential utility for enhancement of bone repair and bone regeneration in vivo.

  11. Effects of wollastonite on proliferation and differentiation of human bone marrow-derived stromal cells in PHBV/wollastonite composite scaffolds.

    PubMed

    Li, Haiyan; Zhai, Wanying; Chang, Jiang

    2009-09-01

    In this study, the effects of wollastonite on proliferation and differentiation of human bone marrow-derived stromal cells (hBMSCs) have been investigated based on a polyhydroxybutyrate-co-hydroxyvalerate (PHBV)/ wollastonite (W) composite scaffolds system. Cell morphology, proliferation, and differentiation were measured. The results showed that the incorporation of wollastonite benefited hBMSCs adhesion, proliferation, and differentiation rate. In addition, an increase of proliferation and differentiation rate was observed when the wollastonite content in the PHBV/W composite scaffolds increased from 10 to 20 wt%. Based on our previous studies on PHBV/W composite discs, the differentiation measurements in this paper further proved that the wollastonite itself can stimulate the hBMSCs to differentiate toward osteoblasts without any osteogenic medium, and the ionic products (Ca and Si) released from wollastonite might contribute to this advantage. It is also suggested that the osteogenic differentiation of the hBMSCs can be affected by adjusting the wollastonite content in the composite scaffolds.

  12. Modulation of murine bone marrow-derived CFU-F and CFU-OB by in vivo bisphosphonate and fluoride treatments.

    PubMed

    Chou, M-Y; Yan, D; Jafarov, T; Everett, E T

    2009-05-01

    Bisphosphonates (BPN) have actions on a variety of cell types including: osteoclasts, osteoblasts, osteocytes, and endothelial cells. The objectives of this report are to review the current state of understanding of the effects of BPNs on orthodontic tooth movement and to provide evidence on BPN's in vivo effects on bone marrow-derived osteoprogenitor cells. Mice from the C3H/HeJ (C3H), C57BL/6J (B6), FVB/NJ (FVB), and BALB/cByJ (BALB) strains were treated for 3 weeks with 0, 3, 30, or 150 mcg/kg/week alendronate (ALN) administered subcutaneous alone or in combination with 50 ppm fluoride (F). Bone marrow cells were harvested and subjected to in vitro colony-forming unit fibroblast (CFU-F) and colony-forming unit osteoblasts (CFU-OB) assays. Baseline differences in CFU-F, CFU-OB/ALP+, and CFU-OB/total were observed among the four strains. Strain-specific responses to ALN and F treatments were observed for CFU-F, CFU-OB/ALP+, and CFU-OB/total. F treatment alone resulted in decreases in CFU-F (p = 0.013), CFU-OB/ALP+ (p = 0.005), and CFU-OB/total (p = 0.003) in the C3H strain. CFU-F (p = 0.036) were decreased by F in the B6 strain. No significant (NS) effects of F were observed for FVB and BALB. ALN treatment resulted in a significant decrease in CFU-F (p = 0.0014) and CFU-OB/total (p = 0.028) in C3H only. ALN treatment had NS effect on CFU-OB/ALP+ in all four strains. Genetic factors appear to play a role in ALN's effects on CFU-F and CFU-OB/total but not on CFU-OB/ALP+.

  13. Compensatory cellular reactions to nonsteroidal anti-inflammatory drugs on osteogenic differentiation in canine bone marrow-derived mesenchymal stem cells.

    PubMed

    Oh, Namgil; Kim, Sangho; Hosoya, Kenji; Okumura, Masahiro

    2014-05-01

    The suppressive effects of nonsteroidal anti-inflammatory drugs (NSAIDs) on the bone healing process have remained controversial, since no clinical data have clearly shown the relationship between NSAIDs and bone healing. The aim of this study was to assess the compensatory response of canine bone marrow-derived mesenchymal stem cells (BMSCs) to several classes of NSAIDs, including carprofen, meloxicam, indomethacin and robenacoxib, on osteogenic differentiation. Each of the NSAIDs (10 µM) was administered during 20 days of the osteogenic process with human recombinant IL-1β (1 ng/ml) as an inflammatory stimulator. Gene expression of osteoblast differentiation markers (alkaline phosphatase and osteocalcin), receptors of PGE2 (EP2 and EP4) and enzymes for prostaglandin (PG) E2 synthesis (COX-1, COX-2, cPGES and mPGES-1) was measured by using quantitative reverse transcription-polymerase chain reaction. Protein production levels of alkaline phosphatase, osteocalcin and PGE2 were quantified using an alkaline phosphatase activity assay, osteocalcin immunoassay and PGE2 immunoassay, respectively. Histologic analysis was performed using alkaline phosphatase staining, von Kossa staining and alizarin red staining. Alkaline phosphatase and calcium deposition were suppressed by all NSAIDs. However, osteocalcin production showed no significant suppression by NSAIDs. Gene expression levels of PGE2-related receptors and enzymes were upregulated during continuous treatment with NSAIDs, while certain channels for PGE2 synthesis were utilized differently depending on the kind of NSAIDs. These data suggest that canine BMSCs have a compensatory mechanism to restore PGE2 synthesis, which would be an intrinsic regulator to maintain differentiation of osteoblasts under NSAID treatment.

  14. Systemic Preconditioning by a Prolyl Hydroxylase Inhibitor Promotes Prevention of Skin Flap Necrosis via HIF-1-Induced Bone Marrow-Derived Cells

    PubMed Central

    Takaku, Mitsuru; Tomita, Shuhei; Kurobe, Hirotsugu; Kihira, Yoshitaka; Morimoto, Atsushi; Higashida, Mayuko; Ikeda, Yasumasa; Ushiyama, Akira; Hashimoto, Ichiro; Nakanishi, Hideki; Tamaki, Toshiaki

    2012-01-01

    Background Local skin flaps often present with flap necrosis caused by critical disruption of the blood supply. Although animal studies demonstrate enhanced angiogenesis in ischemic tissue, no strategy for clinical application of this phenomenon has yet been defined. Hypoxia-inducible factor 1 (HIF-1) plays a pivotal role in ischemic vascular responses, and its expression is induced by the prolyl hydroxylase inhibitor dimethyloxalylglycine (DMOG). We assessed whether preoperative stabilization of HIF-1 by systemic introduction of DMOG improves skin flap survival. Methods and Results Mice with ischemic skin flaps on the dorsum were treated intraperitoneally with DMOG 48 hr prior to surgery. The surviving area with neovascularization of the ischemic flaps was significantly greater in the DMOG-treated mice. Significantly fewer apoptotic cells were present in the ischemic flaps of DMOG-treated mice. Interestingly, marked increases in circulating endothelial progenitor cells (EPCs) and bone marrow proliferative progenitor cells were observed within 48 hr after DMOG treatment. Furthermore, heterozygous HIF-1α-deficient mice exhibited smaller surviving flap areas, fewer circulating EPCs, and larger numbers of apoptotic cells than did wild-type mice, while DMOG pretreatment of the mutant mice completely restored these parameters. Finally, reconstitution of wild-type mice with the heterozygous deficient bone marrow cells significantly decreased skin flap survival. Conclusion We demonstrated that transient activation of the HIF signaling pathway by a single systemic DMOG treatment upregulates not only anti-apoptotic pathways but also enhances neovascularization with concomitant increase in the numbers of bone marrow-derived progenitor cells. PMID:22880134

  15. The pro-metastatic role of bone marrow-derived cells: a focus on MSCs and regulatory T cells

    PubMed Central

    Koh, Bong Ihn; Kang, Yibin

    2012-01-01

    Several bone marrow-derived cells have been shown to promote tumour growth and progression. These cells can home to the primary tumour and become active components of the tumour microenvironment. Recent studies have also identified bone marrow-derived cells—such as mesenchymal stem cells and regulatory T cells—as contributors to cancer metastasis. The innate versatility of these cells provides diverse functional aid to promote malignancy, ranging from structural support to signal-mediated suppression of the host immune response. Here, we review the role of mesenchymal stem cells and regulatory T cells in cancer metastasis. A better understanding of the bipolar nature of these bone marrow-derived cells in physiological and malignant contexts could pave the way for new therapeutics against metastatic disease. PMID:22473297

  16. Following damage, the majority of bone marrow-derived airway cells express an epithelial marker

    PubMed Central

    MacPherson, Heather; Keir, Pamela A; Edwards, Carol J; Webb, Sheila; Dorin, Julia R

    2006-01-01

    Background Adult-derived bone marrow stem cells are capable of reconstituting the haematopoietic system. However there is ongoing debate in the literature as to whether bone marrow derived cells have the ability to populate other tissues and express tissue specific markers. The airway has been an organ of major interest and was one of the first where this was demonstrated. We have previously demonstrated that the mouse airway can be repopulated by side population bone marrow transplanted cells. Here we investigate the frequency and phenotypic nature of these bone marrow derived cells. Methods Female mice were engrafted with male whole bone marrow or side population (SP) cells and subjected to detergent-induced damage after 3 months. Donor cells were identified by Y chromosome fluorescence in situ hybridisation and their phenotype was assessed by immunohistochemistry on the same sections. Slides were visualised by a combination of widefield and deconvolved microscopy and whole cells were analysed on cytospin preparations. Results The frequencies of engraftment of male cells in the airway of mice that show this (9/10), range from 1.0 – 1.6% with whole marrow and 0.6 – 1.5% with SP cells. Undamaged controls have only between 0.1 and 0.2% male cells in the trachea. By widefield microscopy analysis we find 60.2% (53/88) of male donor derived cells express cytokeratins as a marker of epithelial cells. These results were reinforced using deconvolved microscopy and scored by two independent investigators. In addition cytospin analysis of cells dissociated from the damaged trachea of engrafted mice also reveals donor derived Y chromosome positive cells that are immunopositive for cytokeratin. Using cytokeratin and the universal haematopoietic marker CD45 immunohistochemistry, we find the donor derived cells fall into four phenotypic classes. We do not detect cytokeratin positive cells in whole bone marrow using cytokeratin immunostaining and we do not detect any

  17. Bone-marrow-derived mesenchymal stem cells inhibit gastric aspiration lung injury and inflammation in rats.

    PubMed

    Zhou, Jing; Jiang, Liyan; Long, Xuan; Fu, Cuiping; Wang, Xiangdong; Wu, Xiaodan; Liu, Zilong; Zhu, Fen; Shi, Jindong; Li, Shanqun

    2016-09-01

    Gastric aspiration lung injury is one of the most common clinical events. This study investigated the effects of bone-marrow-derived mesenchymal stem cells (BMSCs) on combined acid plus small non-acidified particle (CASP)-induced aspiration lung injury. Enhanced green fluorescent protein (EGFP(+) ) or EGFP(-) BMSCs or 15d-PGJ2 were injected via the tail vein into rats immediately after CASP-induced aspiration lung injury. Pathological changes in lung tissues, blood gas analysis, the wet/dry weight ratio (W/D) of the lung, levels of total proteins and number of total cells and neutrophils in bronchoalveolar lavage fluid (BALF) were determined. The cytokine levels were measured using ELISA. Protein expression was determined by Western blot. Bone-marrow-derived mesenchymal stem cells treatment significantly reduced alveolar oedema, exudation and lung inflammation; increased the arterial partial pressure of oxygen; and decreased the W/D of the lung, the levels of total proteins and the number of total cells and neutrophils in BALF in the rats with CASP-induced lung injury. Bone-marrow-derived mesenchymal stem cells treatment decreased the levels of tumour necrosis factor-α and Cytokine-induced neutrophil chemoattractant (CINC)-1 and the expression of p-p65 and increased the levels of interleukin-10 and 15d-PGJ2 and the expression of peroxisome proliferator-activated receptor (PPAR)-γ in the lung tissue in CASP-induced rats. Tumour necrosis factor-α stimulated BMSCs to secrete 15d-PGJ2 . A tracking experiment showed that EGFP(+) BMSCs were able to migrate to local lung tissues. Treatment with 15d-PGJ2 also significantly inhibited CASP-induced lung inflammation and the production of pro-inflammatory cytokines. Our results show that BMSCs can protect lung tissues from gastric aspiration injury and inhibit lung inflammation in rats. A beneficial effect might be achieved through BMSC-derived 15d-PGJ2 activation of the PPAR-γ receptor, reducing the production of

  18. Macromolecular Crowding Amplifies Adipogenesis of Human Bone Marrow-Derived Mesenchymal Stem Cells by Enhancing the Pro-Adipogenic Microenvironment

    PubMed Central

    Ang, Xiu Min; Lee, Michelle H.C.; Blocki, Anna; Chen, Clarice; Ong, L.L. Sharon; Asada, H. Harry; Sheppard, Allan

    2014-01-01

    The microenvironment plays a vital role in both the maintenance of stem cells in their undifferentiated state (niche) and their differentiation after homing into new locations outside this niche. Contrary to conventional in-vitro culture practices, the in-vivo stem cell microenvironment is physiologically crowded. We demonstrate here that re-introducing macromolecular crowding (MMC) at biologically relevant fractional volume occupancy during chemically induced adipogenesis substantially enhances the adipogenic differentiation response of human bone marrow-derived mesenchymal stem cells (MSCs). Both early and late adipogenic markers were significantly up-regulated and cells accumulated 25–40% more lipid content under MMC relative to standard induction cocktails. MMC significantly enhanced deposition of extracellular matrix (ECM), notably collagen IV and perlecan, a heparan sulfate proteoglycan. As a novel observation, MMC also increased the presence of matrix metalloproteinase −2 in the deposited ECM, which was concomitant with geometrical ECM remodeling typical of adipogenesis. This suggested a microenvironment that was richer in both matrix components and associated ligands and was conducive to adipocyte maturation. This assumption was confirmed by seeding undifferentiated MSCs on decellularized ECM deposited by adipogenically differentiated MSCs, Adipo-ECM. On Adipo-ECM generated under crowding, MSCs differentiated much faster under a classical differentiation protocol. This was evidenced throughout the induction time course, by a significant up-regulation of both early and late adipogenic markers and a 60% higher lipid content on MMC-generated Adipo-ECM in comparison to standard induction on tissue culture plastic. This suggests that MMC helps build and endow the nascent microenvironment with adipogenic cues. Therefore, MMC initiates a positive feedback loop between cells and their microenvironment as soon as progenitor cells are empowered to build and shape

  19. Bone Marrow-Derived Cells as a Therapeutic Approach to Optic Nerve Diseases

    PubMed Central

    Mesentier-Louro, Louise A.; Zaverucha-do-Valle, Camila; Rosado-de-Castro, Paulo H.; Silva-Junior, Almir J.; Pimentel-Coelho, Pedro M.; Mendez-Otero, Rosalia; Santiago, Marcelo F.

    2016-01-01

    Following optic nerve injury associated with acute or progressive diseases, retinal ganglion cells (RGCs) of adult mammals degenerate and undergo apoptosis. These diseases have limited therapeutic options, due to the low inherent capacity of RGCs to regenerate and due to the inhibitory milieu of the central nervous system. Among the numerous treatment approaches investigated to stimulate neuronal survival and axonal extension, cell transplantation emerges as a promising option. This review focuses on cell therapies with bone marrow mononuclear cells and bone marrow-derived mesenchymal stem cells, which have shown positive therapeutic effects in animal models of optic neuropathies. Different aspects of available preclinical studies are analyzed, including cell distribution, potential doses, routes of administration, and mechanisms of action. Finally, published and ongoing clinical trials are summarized. PMID:26649049

  20. Enhanced cardiomyogenic lineage differentiation of adult bone-marrow-derived stem cells grown on cardiogel.

    PubMed

    Sreejit, P; Verma, R S

    2013-09-01

    The extracellular matrix (ECM) and its components are known to promote growth and cellular differentiation in vitro. Cardiogel, a three-dimensional extracellular matrix derived from cardiac fibroblasts, is evaluated for its cardiomyogenic-differentiation-inducing potential on bone-marrow-derived stem cells (BMSC). BMSC from adult mice were grown on cardiogel and induced to differentiate into specific lineages that were validated by morphological, phenotypic and molecular assays. The data revealed that the cardiogel enhanced cardiomyogenic and adipogenic differentiation and relegated osteogenic differentiation following specific induction. More importantly, increased cardiomyogenic differentiation was also observed following BMSC growth on cardiogel without specific chemical (5-azacytidine) induction. This is the first report of an attempt to use cardiogel as a biomaterial on which to achieve cardiomyogenic differentiation of BMSC without chemical induction. Our study suggests that cardiogel is an efficient extracellular matrix that enhances the cardiomyogenic differentiation of BMSC and that it can therefore be used as a scaffold for cardiac tissue regeneration.

  1. Hedgehog-mediated paracrine interaction between hepatic stellate cells and marrow-derived mesenchymal stem cells

    SciTech Connect

    Lin Nan Tang Zhaofeng; Deng Meihai; Zhong Yuesi; Lin Jizong; Yang Xuhui; Xiang Peng; Xu Ruiyun

    2008-07-18

    During liver injury, bone marrow-derived mesenchymal stem cells (MSCs) can migrate and differentiate into hepatocytes. Hepatic stellate cell (SC) activation is a pivotal event in the development of liver fibrosis. Therefore, we hypothesized that SCs may play an important role in regulating MSC proliferation and differentiation through the paracrine signaling pathway. We demonstrate that MSCs and SCs both express hedgehog (Hh) pathway components, including its ligands, receptors, and target genes. Transwell co-cultures of SCs and MSCs showed that the SCs produced sonic hedgehog (Shh), which enhanced the proliferation and differentiation of MSCs. These findings demonstrate that SCs indirectly modulate the activity of MSCs in vitro via the Hh pathway, and provide a plausible explanation for the mechanisms of transplanted MSCs in the treatment of liver fibrosis.

  2. Identification of Bone Marrow-Derived Soluble Factors Regulating Human Mesenchymal Stem Cells for Bone Regeneration.

    PubMed

    Tsai, Tsung-Lin; Li, Wan-Ju

    2017-02-14

    Maintaining properties of human bone marrow-derived mesenchymal stem cells (BMSCs) in culture for regenerative applications remains a great challenge. An emerging approach of constructing a culture environment mimicking the bone marrow niche to regulate BMSC activities has been developed. In this study, we have demonstrated a systematic approach to identify soluble factors of interest extracted from human bone marrow and used them in BMSC culture for tissue regeneration. We have found that lipocalin-2 and prolactin are key factors in bone marrow, involved in regulating BMSC activities. Treating the cell with lipocalin-2 and prolactin delays cellular senescence of BMSCs and primes the cell for osteogenesis and chondrogenesis. We have also demonstrated that BMSCs pretreated with lipocalin-2 and prolactin can enhance the repair of calvarial defects in mice. Together, our study provides research evidence of using a viable approach to prime BMSC properties in vitro for improving cell-based tissue regeneration in vivo.

  3. Generation and characterization of bovine bone marrow-derived macrophage cell line.

    PubMed

    Xiao, Jiajia; Xie, Rongxia; Li, Qiaoqiao; Chen, Wuju; Zhang, Yong

    2016-05-01

    Macrophages, as the forefront of innate immune defense, have an important role in the host responses to mycobacterial infection. Therefore, a stable macrophage cell line is needed for future bovine immune system research on the bacterial infection. In this study, we established a bovine macrophage cell line by introducing the human telomerase reverse transcriptase (hTERT) gene into bovine bone marrow-derived macrophages (bBMMs). The TERT-bBMMs cells expressed macrophage surface antigen (CD11b, CD282) and upregulated expression of the cytokines IL-1β, IL-6, IL-10, IL-12, TNF-α in response to bacterial invasion. These results demonstrate that this cell line provide reliable cell model system for future studies on interactions between the bovine macrophages and Mycobacterium tuberculosis.

  4. Cancer cell-secreted IGF2 instigates fibroblasts and bone marrow-derived vascular progenitor cells to promote cancer progression

    PubMed Central

    Xu, Wen Wen; Li, Bin; Guan, Xin Yuan; Chung, Sookja K.; Wang, Yang; Yip, Yim Ling; Law, Simon Y. K.; Chan, Kin Tak; Lee, Nikki P. Y.; Chan, Kwok Wah; Xu, Li Yan; Li, En Min; Tsao, Sai Wah; He, Qing-Yu; Cheung, Annie L. M.

    2017-01-01

    Local interactions between cancer cells and stroma can produce systemic effects on distant organs to govern cancer progression. Here we show that IGF2 secreted by inhibitor of differentiation (Id1)-overexpressing oesophageal cancer cells instigates VEGFR1-positive bone marrow cells in the tumour macroenvironment to form pre-metastatic niches at distant sites by increasing VEGF secretion from cancer-associated fibroblasts. Cancer cells are then attracted to the metastatic site via the CXCL5/CXCR2 axis. Bone marrow cells transplanted from nude mice bearing Id1-overexpressing oesophageal tumours enhance tumour growth and metastasis in recipient mice, whereas systemic administration of VEGFR1 antibody abrogates these effects. Mechanistically, IGF2 regulates VEGF in fibroblasts via miR-29c in a p53-dependent manner. Analysis of patient serum samples showed that concurrent elevation of IGF2 and VEGF levels may serve as a prognostic biomarker for oesophageal cancer. These findings suggest that the Id1/IGF2/VEGF/VEGFR1 cascade plays a critical role in tumour-driven pathophysiological processes underlying cancer progression. PMID:28186102

  5. The Regenerative Effect of Bone Marrow-Derived Stem Cells in Spermatogenesis of Infertile Hamster

    PubMed Central

    Vahdati, Akbar; Fathi, Alireza; Hajihoseini, Mehrdokht; Aliborzi, Ghaem; Hosseini, Ebrahim

    2017-01-01

    BACKGROUND Infertility is a serious social problem in advanced nations, with male factor in half of all cases of infertility. This study was conducted to determine the regenerative effect of bone marrow-derived stem cells in spermatogenesis of infertile hamster. METHODS Twelve adult male hamsters were equally divided into azoospermic and control groups. Busulfan was intraperitoneally used for induction of azoospermia, while the right testis was treated with bone marrow-derived stem cells (106 BM-SCs), labeled with sterile trypan blue, 35 days after busulfan injection. The left testis served as positive control for azoospermia. Sixty days after cell transplantation, the animals were euthanized and both testes were removed and evaluated histologically. RESULTS BM-SCs were spindle-shaped, adherent to the culture flasks and had positive expression of CD29 and CD73 and negative expression of CD45. Alcian blue staining confirmed differentiation of BM-SCs into chondrocytes. Karyotyping denoted to stability of chromosomes. Treatment with busulfan in seminiferous tubules resulted into distruption of spermatogenesis. After two months in busulfan treatment group, seminiferous tubular atrophy and germinal epitheliums degenerations were noticed with no spermatozoa in epididymis. After treatment of busulfan group with BM-SCs, spermatogonia, primary spermatocytes, spermatids and sperms were present in seminiferous tubules. CONCLUSION As cell transplantation in seminiferous tubules resulted into a rapid repair of pathological changes, BM-SCs can be recommended an effective treatment measure in azoospermia. It seems that more studies are necessary to confirm the use of this technique in treatment of azoospermia and infertility in human. PMID:28289609

  6. A functional comparison of canine and murine bone marrow derived cultured mast cells.

    PubMed

    Lin, Tzu-Yin; London, Cheryl A

    2006-12-15

    Disorders involving mast cells are extremely common in dogs, ranging from allergic diseases to neoplastic transformation resulting in malignant mast cell tumors. Relatively little is known regarding the basic biologic properties of normal canine mast cells, largely due to the difficulty in reliably purifying large numbers from canine skin. In vitro generated bone marrow derived cultured mast cells (BMCMCs) are routinely used in both human and murine studies as a ready source of material for in vitro and in vivo studies. We previously developed a technique to generate canine BMCMCs from bone marrow derived CD34+ cells and demonstrated that these cells exhibit the phenotypic properties characteristic of mast cells and release histamine in response to IgE cross-linking. The purpose of the following study was to characterize the functional properties of these canine BMCMCs and contrast these with the functional properties of murine BMCMCs. Our work demonstrates that both IL-4 and IL-10 promote canine BMCMC proliferation, possibly through upregulation of Kit expression, while TGFbeta inhibits proliferation. The canine BMCMCs produce a variety of cytokines and chemokines in response to IgE cross-linking and chemical stimulation including IL-3, IL-4, IL-13, GM-CSF, RANTES, and MIP1alpha. Interestingly, the canine BMCMCs released significantly larger amounts of MCP-1 and tryptase and significantly smaller amounts of IL-6 following chemical stimulation and IgE cross-linking when compared to murine BMCMCs. Lastly, the canine BMCMCs produced larger amounts of active MMP9 than their murine counterparts. In summary, canine BMCMCs exhibit unique functional properties that distinguish them from murine BMCMCs and provide insight into the contribution of these cells to mast cell disorders in the dog.

  7. FoxO4 inhibits atherosclerosis through its function in bone marrow derived cells

    PubMed Central

    Zhu, Min; Zhang, Qing-Jun; Wang, Lin; Li, Hao; Liu, Zhi-Ping

    2011-01-01

    Objectives FoxO proteins are transcription factors involved in varieties of cellular processes, including immune cell homeostasis, cytokine production, anti-oxidative stress, and cell proliferation and differentiation. Although these processes are implicated in the development of atherosclerosis, very little is known about the role of FoxO proteins in the context of atherosclerosis. Our objectives were to determine whether and how inactivation of Foxo4, a member of the FoxO family, in vivo promotes atherosclerosis. Methods and Results Apolipoprotein E-deficient (apoE−/−) mice were crossbred with animals lacking Foxo4 (Foxo4−/−). After 10 weeks on a high fat diet (HFD), Foxo4−/−apoE−/− mice showed elevated atherosclerosis and increased amount of macrophages and T cells in the plaque compared to apoE−/− mice. Bone marrow transplantations of chimeric C57B/6 mice reconstituted with either wild-type or Foxo4−/− bone marrows indicate that Foxo4-deficiency in bone marrow derived cells sufficiently promoted atherosclerosis. Foxo4-null macrophages produced elevated inflammatory cytokine IL-6 and levels of reactive oxygen species (ROS) in response to lipopolysaccharides in vitro. Serum levels of IL-6 were upregulated in HFD-fed Foxo4−/−apoE−/− mice compared to those of apoE−/− mice. Conclusions FoxO4 inhibits atherosclerosis through bone marrow derived cells, possibly by inhibition of ROS and inflammatory cytokines that promote monocyte recruitment and/or retention. PMID:22005198

  8. Bone marrow-derived stromal cells are associated with gastric cancer progression

    PubMed Central

    Kasashima, H; Yashiro, M; Nakamae, H; Masuda, G; Kinoshita, H; Morisaki, T; Fukuoka, T; Hasegawa, T; Sakurai, K; Toyokawa, T; Kubo, N; Tanaka, H; Muguruma, K; Ohira, M; Nakane, T; Hino, M; Hirakawa, K

    2015-01-01

    Background: The aim of this study was to clarify the role of bone marrow-derived stromal cells (BM-SCs) expressing CD271 in the development of gastric cancer. Methods: The effect of human BM-SCs on the proliferation and motility of six gastric cancer cell lines, OCUM-2M, OCUM-2MD3, OCUM-12, KATO-III, NUGC-3, and MKN-74, was examined. CD271 expression levels in BM-SCs were analysed by flow cytometry. We also generated a gastric tumour model by orthotopic inoculation of OCUM-2MLN cells in mice that had received transplantation of bone marrow from the CAG-EGFP mice. The correlation between the clinicopathological features of 279 primary gastric carcinomas and CD271 expression in tumour stroma was examined by immunohistochemistry. Results: Numerous BM-SCs infiltrated the gastric tumour microenvironment; CD271 expression was found in ∼25% of BM-SCs. Conditioned medium from BM-SCs significantly increased the proliferation of gastric cancer cell lines. Furthermore, conditioned medium from gastric cancer cells significantly increased the number of BM-SCs, whereas migration of OCUM-12 and NUGC-3 cells was significantly increased by conditioned medium from BM-SCs. CD271 expression in stromal cells was significantly associated with macroscopic type-4 cancers, diffuse-type tumours, and tumour invasion depth. The overall survival of patients (n=279) with CD271-positive stromal cells was significantly worse compared with that of patients with CD271-negative stromal cells. This is the first report of the significance of BM-SCs in gastric cancer progression. Conclusions: Bone marrow-derived stromal cells might have an important role in gastric cancer progression, and CD271-positive BM-SCs might be a useful prognostic factor for gastric cancer patients. PMID:26125445

  9. Alpinia officinarum Stimulates Osteoblast Mineralization and Inhibits Osteoclast Differentiation.

    PubMed

    Shim, Ki-Shuk; Lee, Chung-Jo; Yim, Nam-Hui; Gu, Min Jung; Ma, Jin Yeul

    2016-01-01

    Alpinia officinarum rhizome has been used as a traditional herbal remedy to treat inflammatory and internal diseases. Based on the previously observed inhibitory effect of A. officinarum rhizome in an arthritis model, we evaluated whether a water extract of A. officinarum rhizome (WEAO) would enhance in vitro osteoblast mineralization using calvarial osteoblast precursor cells or would inhibit in vitro osteoclast differentiation and bone resorption using bone marrow derived macrophages. In osteoblasts, WEAO enhanced the mRNA levels of transcription factor (runt-related transcription factor 2, smad1, smad5, and junB) and marker (bone morphogenetic protein-2, collagen type 1alpha1, and osteocalcin) genes related to osteoblast mineralization, consistent with increased alizarin red S staining intensity. WEAO markedly inhibited osteoclast differentiation by suppressing the receptor activator for nuclear factor-[Formula: see text]B ligand-induced downregulation of inhibitor of DNA binding 2 and V-maf musculoaponeurotic fibrosarcoma oncogene homolog B and the phosphorylation of c-Jun N-terminal kinase, p38, nuclear factor-[Formula: see text]B, c-Src, and Bruton's tyrosine kinase to induce nuclear factor of activated T cells cytoplasmic 1 expression. WEAO also suppressed the resorbing activity of mature osteoclasts by altering actin ring formation. Therefore, the results of this study demonstrate that WEAO stimulates osteoblast mineralization and inhibits osteoclast differentiation. Thus, WEAO may be a promising herbal candidate to treat or prevent pathological bone diseases by regulating the balance between osteoclast and osteoblast activity.

  10. Increased formation of autophagosomes in ectromelia virus-infected primary culture of murine bone marrow-derived macrophages.

    PubMed

    Martyniszyn, L; Szulc-Dąbrowska, L; Boratyńska-Jasińska, A; Niemiałtowski, M

    2013-01-01

    Induction of autophagy by ectromelia virus (ECTV) in primary cultures of bone marrow-derived macrophages (BMDMs) was investigated. The results showed that ECTV infection of BMDMs resulted in increased formation of autophagosomes, increased level of LC3-II protein present in aggregates and extensive cytoplasmic vacuolization. These data indicate an increased autophagic activity in BMDMs during ECTV infection.

  11. Evaluation of adipose-derived stromal vascular fraction or bone marrow-derived mesenchymal stem cells for treatment of osteoarthritis.

    PubMed

    Frisbie, David D; Kisiday, John D; Kawcak, Chris E; Werpy, Natasha M; McIlwraith, C Wayne

    2009-12-01

    The purpose of this study was the assessment of clinical, biochemical, and histologic effects of intraarticular administered adipose-derived stromal vascular fraction or bone marrow-derived mesenchymal stem cells for treatment of osteoarthritis. Osteoarthritis was induced arthroscopically in the middle carpal joint of all horses, the contralateral joint being sham-operated. All horses received treatment on Day 14. Eight horses received placebo treatment and eight horses received adipose-derived stromal vascular fraction in their osteoarthritis-affected joint. The final eight horses were treated the in osteoarthritis-affected joint with bone marrow-derived mesenchymal stem cells. Evaluations included clinical, radiographic, synovial fluid analysis, gross, histologic, histochemical, and biochemical evaluations. No adverse treatment-related events were observed. The model induced a significant change in all but two parameters, no significant treatment effects were demonstrated, with the exception of improvement in synovial fluid effusion PGE2 levels with bone marrow-derived mesenchymal stem cells when compared to placebo. A greater improvement was seen with bone marrow-derived mesenchymal stem cells when compared to adipose-derived stromal vascular fraction and placebo treatment. Overall, the findings of this study were not significant enough to recommend the use of stem cells for the treatment of osteoarthritis represented in this model.

  12. The chemokine receptor CXCR6 contributes to recruitment of bone marrow-derived fibroblast precursors in renal fibrosis.

    PubMed

    Xia, Yunfeng; Yan, Jingyin; Jin, Xiaogao; Entman, Mark L; Wang, Yanlin

    2014-08-01

    Bone marrow-derived fibroblasts in circulation are of hematopoietic origin, and they proliferate, differentiate into myofibroblasts, and express the chemokine receptor CXCR6. As chemokines mediate the trafficking of circulating cells to sites of injury, we studied the role of CXCR6 in mouse models of renal injury. Significantly, the kidney of CXCR6 knockout mice accumulated fewer bone marrow-derived fibroblasts in response to injury, expressed less profibrotic chemokines and cytokines, displayed fewer myofibroblasts, and expressed less α-smooth muscle actin in the obstructed kidneys compared with wild-type (WT) mice. CXCR6 deficiency inhibited total collagen deposition and suppressed the expression of collagen I and fibronectin in the obstructed kidneys. Furthermore, WT mice engrafted with CXCR6(-/-) bone marrow cells displayed fewer bone marrow-derived fibroblasts in the kidneys with obstructive injury and showed less severe renal fibrosis compared with WT mice engrafted with CXCR6(+/+) bone marrow cells. Transplant of WT bone marrow into CXCR6(-/-) recipients restored recruitment of myeloid fibroblasts and susceptibility to fibrosis. Hematopoietic fibroblasts migrate into injured kidney and proliferate and differentiate into myofibroblasts. Thus, CXCR6, together with other chemokines and their receptors, may have important roles in the recruitment of bone marrow-derived fibroblast precursors into the kidney and contribute to the pathogenesis of renal fibrosis.

  13. The great migration of bone marrow-derived stem cells toward the ischemic brain: therapeutic implications for stroke and other neurological disorders.

    PubMed

    Borlongan, Cesar V; Glover, Loren E; Tajiri, Naoki; Kaneko, Yuji; Freeman, Thomas B

    2011-10-01

    Accumulating laboratory studies have implicated the mobilization of bone marrow (BM)-derived stem cells in brain plasticity and stroke therapy. This mobilization of bone cells to the brain is an essential concept in regenerative medicine. Over the past ten years, mounting data have shown the ability of bone marrow-derived stem cells to mobilize from BM to the peripheral blood (PB) and eventually enter the injured brain. This homing action is exemplified in BM stem cell mobilization following ischemic brain injury. Various BM-derived cells, such as hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs) and very small embryonic-like cells (VSELs) have been demonstrated to exert therapeutic benefits in stroke. Here, we discuss the current status of these BM-derived stem cells in stroke therapy, with emphasis on possible cellular and molecular mechanisms of action that mediate the cells' beneficial effects in the ischemic brain. When possible, we also discuss the relevance of this therapeutic regimen in other central nervous system (CNS) disorders. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Spatial and Temporal Coordination of Bone Marrow-Derived Cell Activity During Arteriogenesis: Regulation of the Endogenous Response and Therapeutic Implications

    PubMed Central

    Meisner, Joshua K.; Price, Richard J.

    2010-01-01

    Arterial occlusive disease (AOD) is the leading cause of morbidity and mortality through the developed world, which creates a significant need for effective therapies to halt disease progression. Despite success of animal and small-scale human therapeutic arteriogenesis studies, this promising concept for treating AOD has yielded largely disappointing results in large-scale clinical trials. One reason for this lack of successful translation is that endogenous arteriogenesis is highly dependent on a poorly understood sequence of events and interactions between bone marrow derived cells (BMCs) and vascular cells, which makes designing effective therapies difficult. We contend that the process follows a complex, ordered sequence of events with multiple, specific BMC populations recruited at specific times and locations. Here we present the evidence suggesting roles for multiple BMC populations from neutrophils and mast cells to progenitor cells and propose how and where these cell populations fit within the sequence of events during arteriogenesis. Disruptions in these various BMC populations can impair the arteriogenesis process in patterns that characterize specific patient populations. We propose that an improved understanding of how arteriogenesis functions as a system can reveal individual BMC populations and functions that can be targeted for overcoming particular impairments in collateral vessel development. PMID:21044213

  15. Different but synergistic effects of bone marrow-derived VEGFR2+ and VEGFR2−CD45+ cells during hepatocellular carcinoma progression

    PubMed Central

    Zhu, Xiaolin; Zhou, Hongyuan; Luo, Jingtao; Cui, Yunlong; Li, Huikai; Zhang, Wei; Fang, Feng; Li, Qiang; Zhang, Ti

    2017-01-01

    Hepatocellular carcinoma (HCC) is the second leading cause of cancer-associated mortality worldwide in men. Bone marrow-derived cells (BMDCs), including circulating endothelial progenitor cells, have been reported to be involved in the progression of HCC. The complexity of BMDCs inspires further interest in the study of HCC. In the present study, highly metastatic HCC models with BM function deficiency/reconstruction were established by sublethal irradiation/BM transplantation. The effects of vascular endothelial growth factor receptor-2 (VEGFR2)+ or VEGFR2−/cluster of differentiation 45 (CD45)+ BMDCs on HCC growth were evaluated. VEGFR2+ and VEGFR2−CD45+ BMDCs facilitated the recovery of BM function and promoted tumor growth, while the enhancement of tumor growth by VEGFR2−CD45+ BMDCs was independent of VEGFR2+ BMDCs. BM-derived CD45+CD133+ and VEGFR2+CD133+ cells synergistically played a role in the different stages during HCC progression. In conclusion, different types of BMDCs exhibit effects on HCC tumor growth in a coordinated manner. PMID:28123523

  16. Novel therapeutic approach to counter the recruitment of circulating endothelial progenitor cells to tumors.

    PubMed

    Espinoza, Luis R

    2006-11-01

    Evaluation of: Shaked Y, Ciarrocchi A, Franco M et al. Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science 313, 1785-1787 (2006). Recently gathered evidence indicates that bone marrow-derived circulating endothelial progenitor cells can contribute to tumor angiogenesis and the growth of certain tumors. The paper under evaluation presents a novel therapeutic approach that disrupts the recruitment of these cells by tumors, therefore facilitating the antitumor activity of chemotherapeutic agents.

  17. CCR2 mediates the uptake of bone marrow-derived fibroblast precursors in angiotensin II-induced cardiac fibrosis

    PubMed Central

    Xu, Jing; Lin, Song-Chang; Chen, Jiyuan; Miao, Yuanxin; Taffet, George E.; Entman, Mark L.

    2011-01-01

    Angiotensin II plays an important role in the development of cardiac hypertrophy and fibrosis, but the underlying cellular and molecular mechanisms are not completely understood. Recent studies have shown that bone marrow-derived fibroblast precursors are involved in the pathogenesis of cardiac fibrosis. Since bone marrow-derived fibroblast precursors express chemokine receptor, CCR2, we tested the hypothesis that CCR2 mediates the recruitment of fibroblast precursors into the heart, causing angiotensin II-induced cardiac fibrosis. Wild-type and CCR2 knockout mice were infused with angiotensin II at 1,500 ng·kg−1·min−1. Angiotensin II treatment resulted in elevated blood pressure and cardiac hypertrophy that were not significantly different between wild-type and CCR2 knockout mice. Angiotensin II treatment of wild-type mice caused prominent cardiac fibrosis and accumulation of bone marrow-derived fibroblast precursors expressing the hematopoietic markers, CD34 and CD45, and the mesenchymal marker, collagen I. However, angiotensin II-induced cardiac fibrosis and accumulation of bone marrow-derived fibroblast precursors in the heart were abrogated in CCR2 knockout mice. Furthermore, angiotensin II treatment of wild-type mice increased the levels of collagen I, fibronectin, and α-smooth muscle actin in the heart, whereas these changes were not observed in the heart of angiotensin II-treated CCR2 knockout mice. Functional studies revealed that the reduction of cardiac fibrosis led to an impairment of cardiac systolic function and left ventricular dilatation in angiotensin II-treated CCR2 knockout mice. Our data demonstrate that CCR2 plays a pivotal role in the pathogenesis of angiotensin II-induced cardiac fibrosis through regulation of bone marrow-derived fibroblast precursors. PMID:21572015

  18. The bone marrow microenvironment contributes to type I diabetes induced osteoblast death.

    PubMed

    Coe, Lindsay M; Irwin, Regina; Lippner, Dennean; McCabe, Laura R

    2011-02-01

    Type I diabetes increases an individual's risk for bone loss and fracture, predominantly through suppression of osteoblast activity (bone formation). During diabetes onset, levels of blood glucose and pro-inflammatory cytokines (including tumor necrosis factor α (TNFα)) increased. At the same time, levels of osteoblast markers are rapidly decreased and stay decreased chronically (i.e., 40 days later) at which point bone loss is clearly evident. We hypothesized that early bone marrow inflammation can promote osteoblast death and hence reduced osteoblast markers. Indeed, examination of type I diabetic mouse bones demonstrates a greater than twofold increase in osteoblast TUNEL staining and increased expression of pro-apoptotic factors. Osteoblast death was amplified in both pharmacologic and spontaneous diabetic mouse models. Given the known signaling and inter-relationships between marrow cells and osteoblasts, we examined the role of diabetic marrow in causing the osteoblast death. Co-culture studies demonstrate that compared to control marrow cells, diabetic bone marrow cells increase osteoblast (MC3T3 and bone marrow derived) caspase 3 activity and the ratio of Bax/Bcl-2 expression. Mouse blood glucose levels positively correlated with bone marrow induced osteoblast death and negatively correlated with osteocalcin expression in bone, suggesting a relationship between type I diabetes, bone marrow and osteoblast death. TNF expression was elevated in diabetic marrow (but not co-cultured osteoblasts); therefore, we treated co-cultures with TNFα neutralizing antibodies. The antibody protected osteoblasts from bone marrow induced death. Taken together, our findings implicate the bone marrow microenvironment and TNFα in mediating osteoblast death and contributing to type I diabetic bone loss.

  19. Matrix-mediated retention of adipogenic differentiation potential by human adult bone marrow-derived mesenchymal stem cells during ex vivo expansion.

    PubMed

    Mauney, Joshua R; Volloch, Vladimir; Kaplan, David L

    2005-11-01

    Recently, cell-based approaches utilizing adipogenic progenitor cells for fat tissue engineering have been developed and reported to have success in promoting in vivo adipogenesis and the repair of defect sites. For autologous applications, human bone marrow-derived mesenchymal stem cells (MSCs) have been suggested as a potential cell source for adipose tissue engineering applications due to their ability to be isolated and ex vivo expanded from adult bone marrow aspirates and their versatility for pluripotent differentiation into various mesenchymal lineages including adipogenic. Due to the relatively low frequency of MSCs present within bone marrow, extensive ex vivo expansion of these cells is necessary to obtain therapeutic cell populations for tissue engineering strategies. Currently, utilization of MSCs for adipose tissue engineering is limited due to the attenuation of their adipogenic differentiation potential following extensive ex vivo expansion on conventional tissue culture plastic (TCP) substrates. In the present study, the ability of a denatured collagen type I (DC) matrix to preserve MSC adipogenic potential during ex vivo expansion was examined. Adipocyte-related markers and functions were examined in vitro in response to adipogenic culture conditions for 21 days in comparison to early passage MSCs and late passage MSCs ex vivo expanded on TCP. The results demonstrated significant preservation of the ability of late passage MSCs ex vivo expanded on the DC matrix to express adipogenic markers (fatty acid-binding protein-4, lipoprotein lipase, acyl-CoA synthetase, adipsin, facilitative glucose transporter-4, and accumulation of lipids) similar to the early passage cells and in contrast to late passage MSCs expanded on TCP. The ability of the DC matrix to preserve adipocyte-related markers and functions of MSCs following extensive ex vivo expansion represents a novel culture technique to expand functional adipogenic progenitors for tissue engineering

  20. Restoration of the GM2 ganglioside metabolism in bone marrow-derived stromal cells from Tay-Sachs disease animal model.

    PubMed

    Martino, S; Cavalieri, C; Emiliani, C; Dolcetta, D; Cusella De Angelis, M G; Chigorno, V; Severini, G M; Sandhoff, K; Bordignon, C; Sonnino, S; Orlacchio, A

    2002-08-01

    The therapeutic potential of bone marrow-derived stromal cells for the therapy of Tay-Sachs disease is primarily related to the restoration of their own GM2 ganglioside storage. With this aim, we produced bone marrow-derived stromal cells from the adult Tay-Sachs animal model and transduced them with a retroviral vector encoding for the alpha-subunit of the lysosomal enzyme beta-hexosaminidase A (E.C. 3.2.1.52). Our results demonstrate that transduced Tay-Sachs bone marrow-derived stromal cells have beta-hexosaminidase A comparable to that of bone marrow-derived stromal cells from wild-type mice. Moreover, beta-hexosaminidase A in transduced Tay-Sachs bone marrow-derived stromal cells was able to hydrolyze the GM2 ganglioside in a feeding experiment, thus demonstrating the correction of the altered phenotype.

  1. Effect of Matrix Metallopeptidase 13 on the Function of Mouse Bone Marrow-derived Dendritic Cells

    PubMed Central

    Li, Xiao-Dong; Zhang, Xin-Rui; Li, Zhi-Hao; Yang, Yang; Zhang, Duo; Zheng, Heng; Dong, Shu-Ying; Chen, Juan; Zeng, Xian-Dong

    2017-01-01

    Background: Dendritic cells are professional antigen-presenting cells found in an immature state in epithelia and interstitial space, where they capture antigens such as pathogens or damaged tissue. Matrix metallopeptidase 13 (MMP-13), a member of the collagenase subfamily, is involved in many different cellular processes and is expressed in murine bone marrow-derived dendritic cells (DCs). The function of MMP-13 in DCs is not well understood. Here, we investigated the effect of MMP-13 on DC maturation, apoptosis, and phagocytosis. Methods: Bone marrow-derived dendritic cells were obtained from C57BL/6 mice. One short-interfering RNA specific for MMP-13 was used to transfect DCs. MMP-13-silenced DCs and control DCs were prepared, and apoptosis was measured using real-time polymerase chain reaction and Western blotting. MMP-13-silenced DCs and control DCs were analyzed for surface expression of CD80 and CD86 and phagocytosis capability using flow cytometry. Results: Compared to the control DCs, MMP-13-silenced DCs increased expression of anti-apoptosis-related genes, BAG1 (control group vs. MMP-13-silenced group: 4.08 ± 0.60 vs. 6.11 ± 0.87, P = 0.008), BCL-2 (control group vs. MMP-13-silenced group: 7.54 ± 0.76 vs. 9.54 ± 1.29, P = 0.036), and TP73 (control group vs. MMP-13-silenced group: 4.33 ± 0.29 vs. 5.60 ± 0.32, P = 0.001) and decreased apoptosis-related genes, CASP1 (control group vs. MMP-13-silenced group: 3.79 ± 0.67 vs. 2.54 ± 0.39, P = 0.019), LTBR (control group vs. MMP-13-silenced group: 9.23 ± 1.25 vs. 6.24 ± 1.15, P = 0.012), and CASP4 (control group vs. MMP-13-silenced group: 2.07 ± 0.56 vs. 0.35 ± 0.35, P = 0.002). Protein levels confirmed the same expression pattern. MMP-13-silenced groups decreased expression of CD86 on DCs; however, there was no statistical difference in CD80 surface expression. Furthermore, MMP-13-silenced groups exhibited weaker phagocytosis capability. Conclusion: These results indicate that MMP-13 inhibition

  2. Clinical applications of blood-derived and marrow-derived stem cells for nonmalignant diseases.

    PubMed

    Burt, Richard K; Loh, Yvonne; Pearce, William; Beohar, Nirat; Barr, Walter G; Craig, Robert; Wen, Yanting; Rapp, Jonathan A; Kessler, John

    2008-02-27

    Stem cell therapy is rapidly developing and has generated excitement and promise as well as confusion and at times contradictory results in the lay and scientific literature. Many types of stem cells show great promise, but clinical application has lagged due to ethical concerns or difficulties in harvesting or safely and efficiently expanding sufficient quantities. In contrast, clinical indications for blood-derived (from peripheral or umbilical cord blood) and bone marrow-derived stem cells, which can be easily and safely harvested, are rapidly increasing. To summarize new, nonmalignant, nonhematologic clinical indications for use of blood- and bone marrow-derived stem cells. Search of multiple electronic databases (MEDLINE, EMBASE, Science Citation Index), US Food and Drug Administration [FDA] Drug Site, and National Institutes of Health Web site to identify studies published from January 1997 to December 2007 on use of hematopoietic stem cells (HSCs) in autoimmune, cardiac, or vascular diseases. The search was augmented by hand searching of reference lists in clinical trials, review articles, proceedings booklets, FDA reports, and contact with study authors and device and pharmaceutical companies. Of 926 reports identified, 323 were examined for feasibility and toxicity, including those with small numbers of patients, interim or substudy reports, and reports on multiple diseases, treatment of relapse, toxicity, mechanism of action, or stem cell mobilization. Another 69 were evaluated for outcomes. For autoimmune diseases, 26 reports representing 854 patients reported treatment-related mortality of less than 1% (2/220 patients) for nonmyeloablative, less than 2% (3/197) for dose-reduced myeloablative, and 13% (13/100) for intense myeloablative regimens, ie, those including total body irradiation or high-dose busulfan. While all trials performed during the inflammatory stage of autoimmune disease suggested that transplantation of HSCs may have a potent disease

  3. Three-dimensional co-culture of mesenchymal stromal cells and differentiated osteoblasts on human bio-derived bone scaffolds supports active multi-lineage hematopoiesis in vitro: Functional implication of the biomimetic HSC niche

    PubMed Central

    Huang, Xiaobing; Zhu, Biao; Wang, Xiaodong; Xiao, Rong; Wang, Chunsen

    2016-01-01

    Recent studies have indicated that the hematopoietic stem/progenitor cell (HSPC) niche, consisting of two major crucial components, namely osteoblasts (OBs) and mesenchymal stromal cells (MSCs), is responsible for the fate of HSPCs. Thus, closely mimicking the HSPC niche ex vivo may be an efficient strategy with which to develop new culture strategies to specifically regulate the balance between HSPC self-renewal and proliferation. The aim of this study was to establish a novel HSPC three-dimensional culture system by co-culturing bone marrow-derived MSCs and OBs differentiated from MSCs without any cytokines as feeder cells and applying bio-derived bone from human femoral metaphyseal portion as the scaffold. Scanning electron microscopy revealed the excellent biocompatibility of bio-derived bone with bone marrow-derived MSCs and OBs differentiated from MSCs. Western blot analysis revealed that many cytokines, which play key roles in HSPC regulation, were comprehensively secreted, while ELISA revealed that extracellular matrix molecules were also highly expressed. Hoechst 33342/propidium iodide fluorescence staining proved that our system could be used to supply a long-term culture of HSPCs. Flow cytometric analysis and qPCR of p21 expression demonstrated that our system significantly promoted the self-renewal and ex vivo expansion of HSPCs. Colony-forming unit (CFU) and long-term culture-initiating cell (LTC-IC) assays confirmed that our system has the ability for both the expansion of CD34+ hematopoietic stem cells (HPCs) and the maintenance of a primitive cell subpopulation of HSCs. The severe-combined immunodeficient mouse repopulating cell assay revealed the promoting effects of our system on the expansion of long-term primitive transplantable HSCs. In conclusion, our system may be a more comprehensive and balanced system which not only promotes the self-renewal and ex vivo expansion of HSPCs, but also maintains primitive HPCs with superior phenotypic and

  4. Human bone marrow-derived mesenchymal stem cells display enhanced clonogenicity but impaired differentiation with hypoxic preconditioning.

    PubMed

    Boyette, Lisa B; Creasey, Olivia A; Guzik, Lynda; Lozito, Thomas; Tuan, Rocky S

    2014-02-01

    Stem cells are promising candidate cells for regenerative applications because they possess high proliferative capacity and the potential to differentiate into other cell types. Mesenchymal stem cells (MSCs) are easily sourced but do not retain their proliferative and multilineage differentiative capabilities after prolonged ex vivo propagation. We investigated the use of hypoxia as a preconditioning agent and in differentiating cultures to enhance MSC function. Culture in 5% ambient O(2) consistently enhanced clonogenic potential of primary MSCs from all donors tested. We determined that enhanced clonogenicity was attributable to increased proliferation, increased vascular endothelial growth factor secretion, and increased matrix turnover. Hypoxia did not impact the incidence of cell death. Application of hypoxia to osteogenic cultures resulted in enhanced total mineral deposition, although this effect was detected only in MSCs preconditioned in normoxic conditions. Osteogenesis-associated genes were upregulated in hypoxia, and alkaline phosphatase activity was enhanced. Adipogenic differentiation was inhibited by exposure to hypoxia during differentiation. Chondrogenesis in three-dimensional pellet cultures was inhibited by preconditioning with hypoxia. However, in cultures expanded under normoxia, hypoxia applied during subsequent pellet culture enhanced chondrogenesis. Whereas hypoxic preconditioning appears to be an excellent way to expand a highly clonogenic progenitor pool, our findings suggest that it may blunt the differentiation potential of MSCs, compromising their utility for regenerative tissue engineering. Exposure to hypoxia during differentiation (post-normoxic expansion), however, appears to result in a greater quantity of functional osteoblasts and chondrocytes and ultimately a larger quantity of high-quality differentiated tissue.

  5. Impaired phagocytosis of apoptotic cells causes accumulation of bone marrow-derived macrophages in aged mice

    PubMed Central

    Kim, Ok-Hee; Kim, Hyojung; Kang, Jinku; Yang, Dongki; Kang, Yu-Hoi; Lee, Dae Ho; Cheon, Gi Jeong; Park, Sang Chul; Oh, Byung-Chul

    2017-01-01

    Accumulation of tissue macrophages is a significant characteristic of disease-associated chronic inflammation, and facilitates the progression of disease pathology. However, the functional roles of these bone marrow-derived macrophages (BMDMs) in aging are unclear. Here, we identified age-dependent macrophage accumulation in the bone marrow, showing that aging significantly increases the number of M1 macrophages and impairs polarization of BMDMs. We found that age-related dysregulation of BMDMs is associated with abnormal overexpression of the anti-inflammatory interleukin-10. BMDM dysregulation in aging impairs the expression levels of pro-inflammatory cytokines and genes involved in B-cell maturation and activation. Phagocytosis of apoptotic Jurkat cells by BMDMs was reduced because of low expression of phagocytic receptor CD14, indicating that increased apoptotic cells may result from defective phagocytosis of apoptotic cells in the BM of aged mice. Therefore, CD14 may represent a promising target for preventing BMDM dysregulation, and macrophage accumulation may provide diagnostic and therapeutic clues. PMID:27866511

  6. Effect of Different Titanium Surfaces on Maturation of Murine Bone Marrow-Derived Dendritic Cells

    PubMed Central

    Zheng, Xiaofei; Zhou, Fengjuan; Gu, Yifei; Duan, Xiaobo; Mo, Anchun

    2017-01-01

    Dendritic cells (DCs) play a pivotal role in the host response to implanted biomaterials. Osseointegration of titanium (Ti) implant is an immunological and inflammatory-driven process. However, the role of DCs in this complex process is largely unknown. This study aimed to investigate the effect of different Ti surfaces on DC maturation, and evaluate its subsequent potential on osteogenic differentiation of preosteoblasts. Murine bone marrow-derived DCs were seeded on Ti disks with different surface treatments, including pretreatment (PT), sandblasted/acid-etched (SLA) and modified SLA (modSLA) surface. Compared with DCs cultured on PT and SLA surfaces, the cells seeded on modSLA surface demonstrated a more round morphology with lower expression of CD86 and MHC-II, the DC maturation markers. Those cells also secreted high levels of anti-inflammatory cytokine IL-10 and TGF-β. Notably, addition of conditioned medium (CM) from modSLA-induced DCs significantly increased the mRNA expression of Runx2 and ALP as well as ALP activity by murine preosteoblast MC3T3-E1 cells. Our data demonstrated that Ti disks with different surfaces lead to differential DCs responses. PT and SLA surfaces induce DCs mature, while DCs seeded on modSLA-Ti surface maintain an immature phenotype and exhibit a potential of promoting osteogenic differentiation of MC3T3-E1 cells. PMID:28157196

  7. Aging impairs the mobilization and homing of bone marrow-derived angiogenic cells to burn wounds

    PubMed Central

    Zhang, Xianjie; Sarkar, Kakali; Rey, Sergio; Sebastian, Raul; Andrikopoulou, Efstathia; Marti, Guy P.; Fox-Talbot, Karen

    2013-01-01

    Impaired wound healing in the elderly represents a major clinical problem. Delineating the cellular and molecular mechanisms by which aging impairs wound healing may lead to the development of improved treatment strategies for elderly patients with non-healing wounds. Neovascularization is an essential step in wound healing, and bone marrow-derived angiogenic cells (BMDACs) play an important role in vascularization. Using a mouse full-thickness burn wound model, we demonstrate that perfusion and vascularization of burn wounds were impaired by aging and were associated with dramatically reduced mobilization of BMDACs bearing the cell surface molecules CXCR4 and Sca1. Expression of stromal-derived factor 1 (SDF-1), the cytokine ligand for CXCR4, was significantly decreased in peripheral blood and burn wounds of old mice. Expression of hypoxia-inducible factor (HIF)-1α was detected in burn wounds from young (2-month-old), but not old (2-year-old), mice. When BMDACs from young donor mice were injected intravenously, homing to burn wound tissue was impaired in old recipient mice, whereas the age of the BMDAC donor mice had no effect on homing. Our results indicate that aging impairs burn wound vascularization by impairing the mobilization of BMDACs and their homing to burn wound tissue as a result of impaired HIF-1 induction and SDF-1 signaling. PMID:21499736

  8. Donor age and cell passage affects differentiation potential of murine bone marrow-derived stem cells

    PubMed Central

    Kretlow, James D; Jin, Yu-Qing; Liu, Wei; Zhang, Wen Jie; Hong, Tan-Hui; Zhou, Guangdong; Baggett, L Scott; Mikos, Antonios G; Cao, Yilin

    2008-01-01

    Background Bone marrow-derived mesenchymal stem cells (BMSCs) are a widely researched adult stem cell population capable of differentiation into various lineages. Because many promising applications of tissue engineering require cell expansion following harvest and involve the treatment of diseases and conditions found in an aging population, the effect of donor age and ex vivo handling must be understood in order to develop clinical techniques and therapeutics based on these cells. Furthermore, there currently exists little understanding as to how these two factors may be influenced by one another. Results Differences in the adipogenic, chondrogenic, and osteogenic differentiation capacity of murine MSCs harvested from donor animals of different age and number of passages of these cells were observed. Cells from younger donors adhered to tissue culture polystyrene better and proliferated in greater number than those from older animals. Chondrogenic and osteogenic potential decreased with age for each group, and adipogenic differentiation decreased only in cells from the oldest donors. Significant decreases in differentiation potentials due to passage were observed as well for osteogenesis of BMSCs from the youngest donors and chondrogenesis of the cells from the oldest donors. Conclusion Both increasing age and the number of passages have lineage dependent effects on BMSC differentiation potential. Furthermore, there is an obvious interplay between donor age and cell passage that in the future must be accounted for when developing cell-based therapies for clinical use. PMID:18957087

  9. Proliferation of canine bone marrow derived mesenchymal stem cells on different nanomaterial based thin film scaffolds.

    PubMed

    Das, Kinsuk; Mili, Bhabesh; A P, Madhusoodan; Saxena, Abhishek Chandra; Kumar, Ajay; Singh, Praveen; Verma, Med Ram; Sarkar, Mihir; Bag, Sadhan

    2017-04-01

    Stem cell niche research uses nanotechnologies to mimic the extra-cellular microenvironment to promote proliferation and differentiation. The aim of designing different scaffolds is to simulate the best structural and environmental pattern for extracellular matrix. This experiment was designed to study the proliferative behaviour of canine bone marrow deriver mesenchymal stem cells (MSCs) on different nanomaterial based thin film scaffolds of carbon nanotubes (CNT), chitosan and poly ε-caprolactone. Similar number of cells was seeded on the scaffolds and standard cell culture flask, taken as control. Cells were maintained on DMEM media and relative number of metabolically active cells was determined by MTT assay up to day six of culture. Cells proliferated on control and all the scaffolds as the days progressed. Although proliferation rate was slow but no decline of cell number was noticed on the scaffolds during the study period. Initially, the cell proliferation was lower on CNT but as time progressed no significant difference was observed compared to control. The result indicated that nanomaterial based scaffolds reduce the proliferation rate of canine MSCs. However, canine MSCs adapted and proliferated better on CNT substrate in vitro and may be used as a scaffold component in canine tissue engineering in future.

  10. Aldose reductase (AKR1B) deficiency promotes phagocytosis in bone marrow derived mouse macrophages.

    PubMed

    Singh, Mahavir; Kapoor, Aniruddh; McCracken, James; Hill, Bradford; Bhatnagar, Aruni

    2017-03-01

    Macrophages are critical drivers of the immune response during infection and inflammation. The pathogenesis of several inflammatory conditions, such as diabetes, cancer and sepsis has been linked with aldose reductase (AR), a member of the aldo-keto reductase (AKR) superfamily. However, the role of AR in the early stages of innate immunity such as phagocytosis remains unclear. In this study, we examined the role of AR in regulating the growth and the phagocytic activity of bone marrow-derived mouse macrophages (BMMs) from AR-null and wild-type (WT) mice. We found that macrophages derived from AR-null mice were larger in size and had a slower growth rate than those derived from WT mice. The AR-null macrophages also displayed higher basal, and lipopolysaccharide (LPS) stimulated phagocytic activity than WT macrophages. Moreover, absence of AR led to a marked increase in cellular levels of both ATP and NADPH. These data suggest that metabolic pathways involving AR suppress macrophage energy production, and that inhibition of AR could induce a favorable metabolic state that promotes macrophage phagocytosis. Hence, modulation of macrophage metabolism by inhibition of AR might represent a novel strategy to modulate host defense responses and to modify metabolism to promote macrophage hypertrophy and phagocytosis under inflammatory conditions.

  11. Age-associated metabolic dysregulation in bone marrow-derived macrophages stimulated with lipopolysaccharide

    NASA Astrophysics Data System (ADS)

    Fei, Fan; Lee, Keith M.; McCarry, Brian E.; Bowdish, Dawn M. E.

    2016-03-01

    Macrophages are major contributors to age-associated inflammation. Metabolic processes such as oxidative phosphorylation, glycolysis and the urea cycle regulate inflammatory responses by macrophages. Metabolic profiles changes with age; therefore, we hypothesized that dysregulation of metabolic processes could contribute to macrophage hyporesponsiveness to LPS. We examined the intracellular metabolome of bone marrow-derived macrophages from young (6–8 wk) and old (18–22 mo) mice following lipopolysaccharide (LPS) stimulation and tolerance. We discovered known and novel metabolites that were associated with the LPS response of macrophages from young mice, which were not inducible in macrophages from old mice. Macrophages from old mice were largely non-responsive towards LPS stimulation, and we did not observe a shift from oxidative phosphorylation to glycolysis. The critical regulatory metabolites succinate, γ-aminobutyric acid, arginine, ornithine and adenosine were increased in LPS-stimulated macrophages from young mice, but not macrophages from old mice. A shift between glycolysis and oxidative phosphorylation was not observed during LPS tolerance in macrophages from either young or old mice. Metabolic bottlenecks may be one of the mechanisms that contribute to the dysregulation of LPS responses with age.

  12. Malfunction of Bone Marrow Derived Osteoclasts and the Delay of Bone Fracture Healing in Diabetic Mice

    PubMed Central

    Kasahara, Toshiyuki; Imai, Sinji; Kojima, Hideto; Katagi, Miwako; Kimura, Hiroshi; Chan, Lawrence; Matsusue, Yoshitaka

    2010-01-01

    It is well known that bone fracture healing is delayed in diabetes mellitus, but the mechanism remains to be elucidated. Since several studies have demonstrated that diabetes causes abnormalities in bone marrow-derived cells, we used the streptozotocin (STZ)-induced diabetic mouse model after bone marrow transfer from green fluorescent protein (GFP) transgenic mice, and examined fracture healing. Compared with non-diabetic mice, diabetic mice at 3 weeks after fracture showed a decrease in mineralized callus, with the remainder consisting of cartilage. Bone formation parameters and mineralization rate were not altered in the STZ mice, but bone resorption parameters were significantly decreased. Therefore, the delayed bone formation in the STZ mice may have resulted from an impairment of cartilage resorption. Interestingly, we found that 80 % of the osteoclasts in the callus were derived from bone marrow and the sizes of the osteoclasts as well as the resorption pits formed were significantly smaller in the diabetic mice. Moreover, transcript analysis using RNA isolated by laser capture microdissection (LCM) showed that the expression of DC-STAMP, a putative pivotal gene for osteoclast fusion, was decreased in osteoclasts from diabetic mice. Since the sustainability of osteoclast function depends on the controlled renewal of multinuclear osteoclasts, impaired osteoclast function in diabetes may contribute to decreased cartilage resorption and delayed endochondral ossification. PMID:20601287

  13. Bone marrow derived macrophages fuse with intestine stromal cells and contribute to chronic fibrosis after radiation.

    PubMed

    Yeh, Ming-Han; Chang, Ya-Hui; Tsai, Yi-Chih; Chen, Su-Liang; Huang, Tze-Sing; Chiu, Jeng-Fong; Ch'ang, Hui-Ju

    2016-05-01

    Bone marrow-derived cells (BMDC) have been demonstrated to play a critical role in intestine regeneration. However, organ fibrosis was one of the major side effects of bone marrow (BM) transplantation. It warrants further investigation on the mechanisms of BM cell therapy in radiation induced intestine damage. We established three murine models to evaluate BMDC within intestines after radiation, including cre-loxP system of transgenic mice. In vitro co-culture between murine BM with human intestine stromal cells was also performed to measure the level of fusion and fibrosis after treatment with anti-fibrotic agents or after macrophage depletion. Despite complete recovery of epithelial mucosa from radiation damage, we found persistent proliferation and repopulation of BMDC within the lamina propria. Fusion between BM derived monocytic and intestine stromal cells correlated with the level of fibrosis and proliferation index. Depleting macrophages genetically using CD11b-DTR mouse model or pharmacologically using clodronate liposome reduced the level of cell fusion and intestine fibrosis. Fibrotic cues from intestine enhance fusion between BM-derived monocytes/macrophages with intestine stromal cells. The fusion hybrids promote cell cycle re-entry, proliferation and reinforce fibrosis signal. Depleting macrophages interferes with cell fusion and ameliorates radiation-induced intestine fibrosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. The Healing Effect of Bone Marrow-Derived Stem Cells in Knee Osteoarthritis: A Case Report

    PubMed Central

    Mehrabani, Davood; Mojtahed Jaberi, Fereidoon; Zakerinia, Maryam; Hadianfard, Mohammad Javad; Jalli, Reza; Tanideh, Nader; Zare, Shahrokh

    2016-01-01

    Osteoarthritis (OA) is a prevalent chronic disease impacting on quality of life and has societal and economical burden increasing with age. Yet, no confirmed pharmacological, biological or surgical therapy could prevent the progressive destruction of OA joint. Mesenchymal stem cells (MSCs) with immunosuppressive activities emerged a potential therapy. We describe a magnetic resonance images (MRI) approved 47 years old nomad female suffering from a severe right knee OA. After intra-articular injection of 36×106 passage 2 of bone marrow-derived stem cells (BMSCs), the patient’s functional status of the knee, the number of stairs she could climb, the pain on visual analog scale (VAS) and walking distance improved after two months post-transplantation. MRI revealed an extension of the repaired tissue over subchondral bone. So as MSC transplantation is a simple technique, resulted into pain relief, minimized donor-site morbidity, provided a better quality of life, significantly improved cartilage quality with no need to hospitalization or surgery, cell transplantation can be considered as a reliable alternative treatment for chronic knee OA. Therefore these findings can be added to the literature on using BMSCs for treatment of OA. PMID:27579273

  15. NLRP3 inflammasome activation mediates radiation-induced pyroptosis in bone marrow-derived macrophages

    PubMed Central

    Liu, Yan-gang; Chen, Ji-kuai; Zhang, Zi-teng; Ma, Xiu-juan; Chen, Yong-chun; Du, Xiu-ming; Liu, Hong; Zong, Ying; Lu, Guo-cai

    2017-01-01

    A limit to the clinical benefit of radiotherapy is not an incapacity to eliminate tumor cells but rather a limit on its capacity to do so without destroying normal tissue and inducing inflammation. Recent evidence reveals that the inflammasome is essential for mediating radiation-induced cell and tissue damage. In this study, using primary cultured bone marrow-derived macrophages (BMDM) and a mouse radiation model, we explored the role of NLRP3 inflammasome activation and the secondary pyroptosis underlying radiation-induced immune cell death. We observed an increasing proportion of pyroptosis and elevating Caspase-1 activation in 10 and 20 Gy radiation groups. Nlrp3 knock out significantly diminished the quantity of cleaved-Caspase-1 (p10) and IL-1β as well as the proportion of pyroptosis. Additionally, in vivo research shows that 9.5 Gy of radiation promotes Caspase-1 activation in marginal zone cells and induces death in mice, both of which can be significantly inhibited by knocking out Nlrp3. Thus, based on these findings, we conclude that the NLRP3 inflammasome activation mediates radiation-induced pyroptosis in BMDMs. Targeting NLRP3 inflammasome and pyroptosis may serve as effective strategies to diminish injury caused by radiation. PMID:28151471

  16. Osteogenic activity of bone marrow-derived mesenchymal stem cells (BMSCs) seeded on irradiated allogenic bone.

    PubMed

    Tohma, Yasuaki; Dohi, Yoshiko; Ohgushi, Hajime; Tadokoro, Mika; Akahane, Manabu; Tanaka, Yasuhito

    2012-02-01

    Allogenic bone grafting, a technique used in orthopaedic surgery, has several problems, including low osteogenic activity. To overcome the problem, this study aimed to determine whether in vivo osteogenesis could be enhanced using allogenic irradiated bone grafts after seeding with autologous bone marrow-derived mesenchymal stem cells (BMSCs). The allogenic bone cylinders were extracted from ACI rats and sterilized by irradiation. Donor BMSCs were obtained from fresh Fischer 344 (F344) rat bone marrow by cell culture. The allogenic bone with or without BMSCs were transplanted subcutaneously into syngeneic F344 rats. At 4 weeks after transplantation, high alkaline phosphatase (ALP) activity, bone-specific osteocalcin mRNA expression and newly formed bone were detected in the allogenic bone with BMSCs. The origin of the newly formed bone was derived from cultured donor BMSCs. However, none of these identifiers of osteogenesis were detected in either the fresh or the irradiated allogenic bone without BMSCs. These results indicate the availability of autologous BMSCs to heighten the osteogenic response of allogenic bone. Our present tissue-engineering method might contribute to a wide variety of allogenic bone grafting techniques in clinical settings.

  17. High glucose induces bone marrow-derived mesenchymal stem cell senescence by upregulating autophagy.

    PubMed

    Chang, Tzu-Ching; Hsu, Min-Fen; Wu, Kenneth K

    2015-01-01

    Hyperglycemia was reported to cause bone marrow hematopoietic niche dysfunction, and high glucose (HG) in the cultured medium induces MSC senescence. The underlying mechanism is unclear. Here, we investigated the role of HG-induced autophagy in bone-marrow-derived mesenchymal stem cell (BMSC) senescence. HG (25 mM) increased expression of Beclin-1, Atg 5, 7 and 12, generation of LC3-II and autophagosome formation which was correlated with development of cell senescence. Pretreatment of HG-MSC with 3-methyladenine (3-MA) prevented senescence but increased apoptosis. N-acetylcysteine (NAC) was effective in abrogating HG-induced autophagy accompanied by prevention of senescence. Diphenyleneiodonium (DPI), an inhibitor of NADPH oxidase, blocked autophagy and senescence in a manner comparable to NAC. 3-MA, NAC and DPI inhibited HG-induced interleukin-6 production in BMSCs. These results suggest that hyperglycemia induces MSC senescence and local inflammation via a novel oxidant-mediated autophagy which contributes to bone marrow niche dysfunction and hematopoietic impairment.

  18. Preparation of cationized polysaccharides as gene transfection carrier for bone marrow-derived mesenchymal stem cells.

    PubMed

    Jo, Jun-ichiro; Okazaki, Arimichi; Nagane, Kentaro; Yamamoto, Masaya; Tabata, Yasuhiko

    2010-01-01

    The objective of this study is to prepare a non-viral carrier of gene transfection from various polysaccharides and evaluate the feasibility in gene expression for mesenchymal stem cells (MSCs). Various amounts of spermine were chemically introduced into pullulan, dextran and mannan with a molecular weight of around 40 000 or pullulan with different molecular weights to prepare cationized polysaccharides with different extents of spermine introduced (spermine-polysaccharide). Each cationized polysaccharide was complexed with a plasmid DNA at various ratios and in vitro gene transfection was investigated for rat bone marrow-derived MSCs. The level of gene expression depended on the type of cationized polysaccharide. The highest level was observed for the complex of spermine-pullulan and plasmid DNA. Additionally, the level also depended on the molecular weight of pullulan and the extent of spermine introduced to pullulan. Suppression of gene expression with chlorpromazine and methyl-beta-cyclodextrin of endocytosis inhibitors demonstrated that the cellular uptake of spermine-pullulan-plasmid DNA complexes was mediated by clathrin- and raft/caveolae-dependent endocytic pathways. The cationized pullulan is a promising non-viral carrier of plasmid DNA for MSCs.

  19. Adult bone marrow-derived stem cells for organ regeneration and repair.

    PubMed

    Tögel, Florian; Westenfelder, Christof

    2007-12-01

    Stem cells have been recognized as a potential tool for the development of innovative therapeutic strategies. There are in general two types of stem cells, embryonic and adult stem cells. While embryonic stem cell therapy has been riddled with problems of allogeneic rejection and ethical concerns, adult stem cells have long been used in the treatment of hematological malignancies. With the recognition of additional, potentially therapeutic characteristics, bone marrow-derived stem cells have become a tool in regenerative medicine. The bone marrow is an ideal source of stem cells because it is easily accessible and harbors two types of stem cells. Hematopoietic stem cells give rise to all blood cell types and have been shown to exhibit plasticity, while multipotent marrow stromal cells are the source of osteocytes, chondrocytes, and fat cells and have been shown to support and generate a large number of different cell types. This review describes the general characteristics of these stem cell populations and their current and potential future applications in regenerative medicine.

  20. Direct and indirect contribution of bone marrow-derived cells to cancer.

    PubMed

    Guest, Ian; Ilic, Zoran; Ma, Jun; Grant, Denise; Glinsky, Gennadi; Sell, Stewart

    2010-05-15

    Stromal-epithelial interactions may control the growth and initiation of cancers. Here, we not only test the hypothesis that bone marrow-derived cells may effect development of cancers arising from other tissue cells by forming tumor stroma but also that sarcomas may arise by transformation of stem cells from the bone marrow and epithelial cancers may arise by transdifferentiation of bone marrow stem cells to epithelial cancers. Lethally irradiated female FVB/N mice were restored with bone marrow (BM) transplants from a male transgenic mouse carrying the polyoma middle T-oncoprotein under the control of the mouse mammary tumor virus promoter (MMTV-PyMT) and followed for development of lesions. All of 8 lethally irradiated female FVB/N recipient mice, restored with BM transplants from a male MMTV-PyMT transgenic mouse, developed Y-chromosome negative (Y-) cancers of various organs surrounded by Y+ stroma. One of the female FVB/N recipient mice also developed fibrosarcoma and 1, a diploid breast adenocarcinoma containing Y chromosomes. In contrast, only 1 of 12 control female mice restored with normal male BM developed a tumor (lymphoma) during the same time period. These results indicate not only that the transgenic BM-derived stromal cells may indirectly contribute to development of tumors in recipient mice but also that sarcomas may arise by transformation of BM stem cells and that breast cancers arise by transdifferentiation of BM stem cells, presumably by mesenchymal-epithelial transition.

  1. Bone marrow derived mesenchymal stem cell transplantation in cerebellar degeneration: a behavioral study.

    PubMed

    Edalatmanesh, Mohammad Amin; Bahrami, Ahmad Reza; Hosseini, Ebrahim; Hosseini, Mahmoud; Khatamsaz, Saeid

    2011-11-20

    In addition to its key role in complex motor function, the cerebellum is increasingly recognized to have a role in cognition. Thus, motor and cognitive deficits can be associated with cerebellar degeneration. After unilateral lesion in cerebellum (folia VI) was caused by Quinolinic acid, CM-DiI labeled mesenchymal stem cells (MSCs), which were isolated and purified from bone marrow, were transplanted into the damaged folium. Motor function was assessed using the cylinder test, rotarod, hanging wire and beam balance during 6 weeks after transplantation. Cognitive function was assessed using the Morris water maze learning paradigm in 3 weeks after transplantation. Six weeks after transplantation surviving MSCs were detectable in QA-treated animals. The MSC-transplanted group showed markedly improved functional performance in spatial memory, motor learning, locomotor asymmetry, dysmetria, abnormality in neuromuscular strength and equilibrium 2-6 weeks compared with the controls. We found that cerebellar lesions produced deficits (folia VI) in motor and cognitive aspects of a spatial task. The results indicate that transplantation of MSCs can significantly reduce the behavioral abnormalities of these animals during six weeks after engraftment. According to results of this assay, cell therapy by means of bone marrow derived adult stem cells promises for treatment of cerebellar diseases.

  2. Retinal Electrophysiological Effects of Intravitreal Bone Marrow Derived Mesenchymal Stem Cells in Streptozotocin Induced Diabetic Rats

    PubMed Central

    Akkoç, Tolga; Eraslan, Muhsin; Şahin, Özlem; Özkara, Selvinaz; Vardar Aker, Fugen; Subaşı, Cansu; Karaöz, Erdal; Akkoç, Tunç

    2016-01-01

    Diabetic retinopathy is the most common cause of legal blindness in developed countries at middle age adults. In this study diabetes was induced by streptozotocin (STZ) in male Wistar albino rats. After 3 months of diabetes, rights eye were injected intravitreally with green fluorescein protein (GFP) labelled bone marrow derived stem cells (BMSC) and left eyes with balanced salt solution (Sham). Animals were grouped as Baseline (n = 51), Diabetic (n = 45), Diabetic+BMSC (n = 45 eyes), Diabetic+Sham (n = 45 eyes), Healthy+BMSC (n = 6 eyes), Healthy+Sham (n = 6 eyes). Immunohistology analysis showed an increased retinal gliosis in the Diabetic group, compared to Baseline group, which was assessed with GFAP and vimentin expression. In the immunofluorescence analysis BMSC were observed to integrate mostly into the inner retina and expressing GFP. Diabetic group had prominently lower oscillatory potential wave amplitudes than the Baseline group. Three weeks after intravitreal injection Diabetic+BMSC group had significantly better amplitudes than the Diabetic+Sham group. Taken together intravitreal BMSC were thought to improve visual function. PMID:27300133

  3. Recruitment of bone marrow-derived cells to periodontal tissue defects

    PubMed Central

    Kimura, Yasuyuki; Komaki, Motohiro; Iwasaki, Kengo; Sata, Masataka; Izumi, Yuichi; Morita, Ikuo

    2014-01-01

    Bone marrow-derived cells (BMCs) are considered to be a major source of mesenchymal stem cells (MSCs) in adults and are known to be effective in periodontal tissue regeneration. However, whether endogenous BMCs are involved in periodontal tissue repair process is uncertain. We therefore created periodontal tissue defects in the buccal alveolar bone of mandibular first molars in bone marrow chimeric mice, and immunohistochemically examined the expression of stromal cell derived factor-1 (SDF-1) and the mobilization of BMCs. We found that SDF-1 expression was increased around the defects at as early as 1 week after injury and that BMCs were mobilized to the defects, while GFP+/CD45+ were rarely observed. Fluorescence-activated cell sorting (FACS) analysis demonstrated that the number of platelet-derived growth factor receptor (pdgfr) α+/Sca-1+ (PαS) cells in the bone marrow decreased after injury. Taken together, these results suggest that BMCs are mobilized to the periodontal tissue defects. Recruitment of BMCs, including a subset of MSCs could be a new target of periodontal treatment. PMID:25364726

  4. Bone marrow-derived cells serve as proangiogenic macrophages but not endothelial cells in wound healing.

    PubMed

    Okuno, Yuji; Nakamura-Ishizu, Ayako; Kishi, Kazuo; Suda, Toshio; Kubota, Yoshiaki

    2011-05-12

    Bone marrow-derived cells (BMDCs) contribute to postnatal vascular growth by differentiating into endothelial cells or secreting angiogenic factors. However, the extent of their endothelial differentiation highly varies according to the angiogenic models used. Wound healing is an intricate process in which the skin repairs itself after injury. As a process also observed in cancer progression, neoangiogenesis into wound tissues is profoundly involved in this healing process, suggesting the contribution of BMDCs. However, the extent of the differentiation of BMDCs to endothelial cells in wound healing is unclear. In this study, using the green fluorescent protein-bone marrow chim-eric experiment and high resolution confocal microscopy at a single cell level, we observed no endothelial differentiation of BMDCs in 2 acute wound healing models (dorsal excisional wound and ear punch) and a chronic wound healing model (decubitus ulcer). Instead, a major proportion of BMDCs were macrophages. Indeed, colony-stimulating factor 1 (CSF-1) inhibition depleted approximately 80% of the BMDCs at the wound healing site. CSF-1-mutant (CSF-1(op/op)) mice showed significantly reduced neoangiogenesis into the wound site, supporting the substantial role of BMDCs as macrophages. Our data show that the proangiogenic effects of macrophages, but not the endothelial differentiation, are the major contribution of BMDCs in wound healing.

  5. Treatment with bone marrow-derived stromal cells accelerates wound healing in diabetic rats.

    PubMed

    Kwon, David S; Gao, Xiaohua; Liu, Yong Bo; Dulchavsky, Deborah S; Danyluk, Andrew L; Bansal, Mona; Chopp, Michael; McIntosh, Kevin; Arbab, Ali S; Dulchavsky, Scott A; Gautam, Subhash C

    2008-06-01

    Bone marrow stem cells participate in tissue repair processes and may have a role in wound healing. Diabetes is characterised by delayed and poor wound healing. We investigated the potential of bone marrow-derived mesenchymal stromal cells (BMSCs) to promote healing of fascial wounds in diabetic rats. After manifestation of streptozotocin (STZ)-induced diabetic state for 5 weeks in male adult Sprague-Dawley rats, healing of fascial wounds was severely compromised. Compromised wound healing in diabetic rats was characterised by excessive polymorphonuclear cell infiltration, lack of granulation tissue formation, deficit of collagen and growth factor [transforming growth factor (TGF-beta), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), platelet-derived growth factor PDGF-BB and keratinocyte growth factor (KGF)] expression in the wound tissue and significant decrease in biomechanical strength of wounds. Treatment with BMSC systemically or locally at the wound site improved the wound-breaking strength (WBS) of fascial wounds. The improvement in WBS was associated with an immediate and significant increase in collagen levels (types I-V) in the wound bed. In addition, treatment with BMSCs increased the expression of growth factors critical to proper repair and regeneration of the damaged tissue moderately (TGF-beta, KGF) to markedly (EGF, VEGF, PDGF-BB). These data suggest that cell therapy with BMSCs has the potential to augment healing of the diabetic wounds.

  6. PACAP38/PAC1 Signaling Induces Bone Marrow-Derived Cells Homing to Ischemic Brain

    PubMed Central

    Lin, Chen-Huan; Chiu, Lian; Lee, Hsu-Tung; Chiang, Chun-Wei; Liu, Shih-Ping; Hsu, Yung-Hsiang; Lin, Shinn-Zong; Hsu, Chung Y; Hsieh, Chia-Hung; Shyu, Woei-Cherng

    2015-01-01

    Understanding stem cell homing, which is governed by environmental signals from the surrounding niche, is important for developing effective stem cell-based repair strategies. The molecular mechanism by which the brain under ischemic stress recruits bone marrow-derived cells (BMDCs) to the vascular niche remains poorly characterized. Here we report that hypoxia-inducible factor-1α (HIF-1α) activation upregulates pituitary adenylate cyclase-activating peptide 38 (PACAP38), which in turn activates PACAP type 1 receptor (PAC1) under hypoxia in vitro and cerebral ischemia in vivo. BMDCs homing to endothelial cells in the ischemic brain are mediated by HIF-1α activation of the PACAP38-PAC1 signaling cascade followed by upregulation of cellular prion protein and α6-integrin to enhance the ability of BMDCs to bind laminin in the vascular niche. Exogenous PACAP38 confers a similar effect in facilitating BMDCs homing into the ischemic brain, resulting in reduction of ischemic brain injury. These findings suggest a novel HIF-1α-activated PACAP38-PAC1 signaling process in initiating BMDCs homing into the ischemic brain for reducing brain injury and enhancing functional recovery after ischemic stroke. Stem Cells 2015;33:1153–1172 PMID:25523790

  7. Deficiency of AXL in Bone Marrow-Derived Cells Does Not Affect Advanced Atherosclerotic Lesion Progression

    PubMed Central

    Subramanian, Manikandan; Proto, Jonathan D.; Matsushima, Glenn K.; Tabas, Ira

    2016-01-01

    AXL, a member of the TAM (Tyro3, Axl, MerTK) family of receptors, plays important roles in cell survival, clearance of dead cells (efferocytosis), and suppression of inflammation, which are processes that critically influence atherosclerosis progression. Whereas MerTK deficiency promotes defective efferocytosis, inflammation, and plaque necrosis in advanced murine atherosclerosis, the role of Axl in advanced atherosclerosis progression is not known. Towards this end, bone marrow cells from Axl−/− or wild-type mice were transplanted into lethally irradiated Ldlr−/− mice. These chimeric mice were then fed the Western-type diet (WD) for 17 weeks. We demonstrate that lesional macrophages in WT mice express Axl but that Axl deficiency in bone marrow-derived cells does not affect lesion size, cellularity, necrosis, or inflammatory parameters in advanced atherosclerotic plaques. Moreover, apoptosis of lesional cells was unaffected, and we found no evidence of defective lesional efferocytosis. In contrast to previously reported findings with MerTK deficiency, hematopoietic cell-Axl deficiency in WD-fed Ldlr−/− mice does not affect the progression of advanced atherosclerosis or lesional processes associated with TAM receptor signaling. These findings suggest a heretofore unappreciated TAM receptor hierarchy in advanced atherosclerosis. PMID:27958361

  8. Expression of complement components and regulators by different subtypes of bone marrow-derived macrophages.

    PubMed

    Luo, Chang; Chen, Mei; Madden, Angelina; Xu, Heping

    2012-08-01

    Under inflammatory conditions, macrophages can differentiate into different functional subtypes. We show that bone marrow-derived macrophages constitutively express different levels of various complement-related genes. The relative expression levels are C1qb > Crry > CFH > C3 > C1r > CFB > DAF1 > CD59a > C2 > C1INH > C1s > C4. Upon activation, the expression of C1r, C1s, C3, C2, CFB, and C1INH was up-regulated, and CFH, CD59a, and DAF1, down-regulated in M1 (induced by interferon-γ + lipopolysaccharides (LPS)) and M2b (induced by immune complex + LPS) macrophages. The expression of C4 and CFH was slightly up-regulated in interleukin (IL)-10-induced M2c macrophages. Complement gene expression in IL-4-induced M2a macrophages was weakly down-regulated as compared to resting M0 macrophages. Higher levels of C3, C1INH, and CFB but lower levels of CFH expression in M1 and M2b macrophage suggests that they may be involved in the alternative pathway of complement activation during inflammation.

  9. Characterization of common marmoset (Callithrix jacchus) bone marrow-derived mesenchymal stem cells.

    PubMed

    Kanda, Akifumi; Sotomaru, Yusuke; Nobukiyo, Asako; Yamaoka, Emi; Hiyama, Eiso

    2013-01-01

    Mesenchymal stem cells (MSCs) could be useful for regenerative medicine because they can beharvested easily from the bone marrow of living donors and the cells can be differentiated into adipogenic, osteogenic, and chondrogenic lineages in vitro. To apply MSCs for the medical treatment of human diseases as regenerative medicine, detailed experimental characterization of the cells is required. Recently, a New World primate, the common marmoset (Callithrix jacchus), has been widely used as a new human disease model because of its ease of handling and breeding. Although common marmoset MSCs have been established and will be used in preclinical studies of regenerative medicine, the characteristics of these cells remain unclear. Aiming to characterize common marmoset MSCs further, we harvested common marmoset bone marrow-derived cells (cmBMDCs) from the femurs of newborn males. We revealed that the morphology of the cells was similar to common marmoset fibroblasts, and extracellular matrix components, such as gelatin and fibronectin, were effective for their proliferation and formation of colony-forming unit fibroblasts. Furthermore, we were able to differentiate cmBMDCs into adipocytes, osteocytes, and chondrocytes in vitro, and they expressed the MSCmarkers CD44, CD73, CD90, and CD105, but their expression decreased with increasing passage number. The data demonstrate that cmBMDCs exhibit characteristics of MSCs and thus it would be beneficial to use these cells in preclinical studies.

  10. Transplantation of Bone Marrow-Derived Mesenchymal Stem Cells into the Developing Mouse Eye

    PubMed Central

    Lee, Eun-Shil; Yu, Song-Hee; Jang, Yu-Jin; Hwang, Dong-Youn; Jeon, Chang-Jin

    2011-01-01

    Mesenchymal stem cells (MSCs) have been studied widely for their potential to differentiate into various lineage cells including neural cells in vitro and in vivo. To investigate the influence of the developing host environment on the integration and morphological and molecular differentiation of MSCs, human bone marrow-derived mesenchymal stem cells (BM-MSCs) were transplanted into the developing mouse retina. Enhanced green fluorescent protein (GFP)-expressing BM-MSCs were transplanted by intraocular injections into mice, ranging in ages from 1 day postnatal (PN) to 10 days PN. The survival dates ranged from 7 days post-transplantation (DPT) to 28DPT, at which time an immunohistochemical analysis was performed on the eyes. The transplanted BM-MSCs survived and showed morphological differentiation into neural cells and some processes within the host retina. Some transplanted cells expressed microtubule associated protein 2 (MAP2ab, marker for mature neural cells) or glial fibrillary acid protein (GFAP, marker for glial cells) at 5PN 7DPT. In addition, some transplanted cells integrated into the developing retina. The morphological and molecular differentiation and integration within the 5PN 7DPT eye was greater than those of other-aged host eye. The present findings suggest that the age of the host environment can strongly influence the differentiation and integration of BM-MSCs. PMID:22096261

  11. Engineering interaction between bone marrow derived endothelial cells and electrospun surfaces for artificial vascular graft applications.

    PubMed

    Ahmed, Furqan; Dutta, Naba K; Zannettino, Andrew; Vandyke, Kate; Choudhury, Namita Roy

    2014-04-14

    The aim of this investigation was to understand and engineer the interactions between endothelial cells and the electrospun (ES) polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) nanofiber surfaces and evaluate their potential for endothelialization. Elastomeric PVDF-HFP samples were electrospun to evaluate their potential use as small diameter artificial vascular graft scaffold (SDAVG) and compared with solvent cast (SC) PVDF-HFP films. We examined the consequences of fibrinogen adsorption onto the ES and SC samples for endothelialisation. Bone marrow derived endothelial cells (BMEC) of human origin were incubated with the test and control samples and their attachment, proliferation, and viability were examined. The nature of interaction of fibrinogen with SC and ES samples was investigated in detail using ELISA, XPS, and FTIR techniques. The pristine SC and ES PVDF-HFP samples displayed hydrophobic and ultrahydrophobic behavior and accordingly, exhibited minimal BMEC growth. Fibrinogen adsorbed SC samples did not significantly enhance endothelial cell binding or proliferation. In contrast, the fibrinogen adsorbed electrospun surfaces showed a clear ability to modulate endothelial cell behavior. This system also represents an ideal model system that enables us to understand the natural interaction between cells and their extracellular environment. The research reported shows potential of ES surfaces for artificial vascular graft applications.

  12. Deficiency of AXL in Bone Marrow-Derived Cells Does Not Affect Advanced Atherosclerotic Lesion Progression.

    PubMed

    Subramanian, Manikandan; Proto, Jonathan D; Matsushima, Glenn K; Tabas, Ira

    2016-12-13

    AXL, a member of the TAM (Tyro3, Axl, MerTK) family of receptors, plays important roles in cell survival, clearance of dead cells (efferocytosis), and suppression of inflammation, which are processes that critically influence atherosclerosis progression. Whereas MerTK deficiency promotes defective efferocytosis, inflammation, and plaque necrosis in advanced murine atherosclerosis, the role of Axl in advanced atherosclerosis progression is not known. Towards this end, bone marrow cells from Axl(-/-) or wild-type mice were transplanted into lethally irradiated Ldlr(-/-) mice. These chimeric mice were then fed the Western-type diet (WD) for 17 weeks. We demonstrate that lesional macrophages in WT mice express Axl but that Axl deficiency in bone marrow-derived cells does not affect lesion size, cellularity, necrosis, or inflammatory parameters in advanced atherosclerotic plaques. Moreover, apoptosis of lesional cells was unaffected, and we found no evidence of defective lesional efferocytosis. In contrast to previously reported findings with MerTK deficiency, hematopoietic cell-Axl deficiency in WD-fed Ldlr(-/-) mice does not affect the progression of advanced atherosclerosis or lesional processes associated with TAM receptor signaling. These findings suggest a heretofore unappreciated TAM receptor hierarchy in advanced atherosclerosis.

  13. Bioinspired superhydrophobic poly(L-lactic acid) surfaces control bone marrow derived cells adhesion and proliferation.

    PubMed

    Alves, Natália M; Shi, Jun; Oramas, Elena; Santos, José L; Tomás, Helena; Mano, João F

    2009-11-01

    The aptitude of a cell to adhere, migrate, and differentiate on a compact substrate or scaffold is important in the field of tissue engineering and biomaterials. It is well known that cell behavior can be controlled and guided through the change in micro- and nano-scale topographic features. In this work, we intend to demonstrate that special topographic features that control wettability may also have an important role in the biological performance of biodegradable substrates. Poly(L-lactic acid) surfaces with superhydrophobic characteristics were produced, based on the so-called Lotus effect, exhibiting dual micro- and nano-scale roughness. The water contact angle could be higher than 150 degrees and a value of that order could be kept even upon immersion in a simulated body fluid solution for more than 20 days. Such water repellent surfaces were found to prevent adhesion and proliferation of bone marrow derived cells previously isolated from the femurs of 6-week-old male Wistar rats, when compared with smoother surfaces prepared by simple solvent casting. Such results demonstrate that these superhydrophobic surfaces may be used to control cell behavior onto biodegradable substrates.

  14. A staging of bone-marrow-derived osteosarcoma of long bones with a 64-case analysis.

    PubMed

    Wang, D; Wang, G

    1991-12-01

    According to the natural development of the bone-marrow-derived osteosarcoma (BMDOS) of long bones, it was classified into 4 stages. Stage A: The tumor is confined within the marrow cavity; stage B: The tumor has perforated the bone cortex; stage C: The tumor has involved the contiguous joint cartilage; and stage D: The tumor has metastasized to the lung. According to this staging, 64 cases of BMDOS of the long bones were investigated and the relationship between staging and prognosis, between different kinds of treatment and prognosis, etc. were analyzed. This staging of BMDOS of long bones proved to be very significant clinically. Only those cases in stage A or B can be expected to survive for 5 years; and because most of the non-survivors die within 2.5 years after treatment, this time is considered a critical period. Tumor involvement of the contiguous joint cartilage is also a critical sign. As to prognosis, the stage of the tumor is a more accurate indicator than is the method of treatment. And finally, the prognosis of patients treated with chemotherapy and amputation was generally better than that of patients treated by amputation alone.

  15. Comparison of immature and mature bone marrow-derived dendritic cells by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Xing, Feiyue; Wang, Jiongkun; Hu, Mingqian; Yu, Yu; Chen, Guoliang; Liu, Jing

    2011-07-01

    A comparative study of immature and mature bone marrow-derived dendritic cells (BMDCs) was first performed through an atomic force microscope (AFM) to clarify differences of their nanostructure and adhesion force. AFM images revealed that the immature BMDCs treated by granulocyte macrophage-colony stimulating factor plus IL-4 mainly appeared round with smooth surface, whereas the mature BMDCs induced by lipopolysaccharide displayed an irregular shape with numerous pseudopodia or lamellapodia and ruffles on the cell membrane besides becoming larger, flatter, and longer. AFM quantitative analysis further showed that the surface roughness of the mature BMDCs greatly increased and that the adhesion force of them was fourfold more than that of the immature BMDCs. The nano-features of the mature BMDCs were supported by a high level of IL-12 produced from the mature BMDCs and high expression of MHC-II on the surface of them. These findings provide a new insight into the nanostructure of the immature and mature BMDCs.

  16. Effect of Different Titanium Surfaces on Maturation of Murine Bone Marrow-Derived Dendritic Cells

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaofei; Zhou, Fengjuan; Gu, Yifei; Duan, Xiaobo; Mo, Anchun

    2017-02-01

    Dendritic cells (DCs) play a pivotal role in the host response to implanted biomaterials. Osseointegration of titanium (Ti) implant is an immunological and inflammatory-driven process. However, the role of DCs in this complex process is largely unknown. This study aimed to investigate the effect of different Ti surfaces on DC maturation, and evaluate its subsequent potential on osteogenic differentiation of preosteoblasts. Murine bone marrow-derived DCs were seeded on Ti disks with different surface treatments, including pretreatment (PT), sandblasted/acid-etched (SLA) and modified SLA (modSLA) surface. Compared with DCs cultured on PT and SLA surfaces, the cells seeded on modSLA surface demonstrated a more round morphology with lower expression of CD86 and MHC-II, the DC maturation markers. Those cells also secreted high levels of anti-inflammatory cytokine IL-10 and TGF-β. Notably, addition of conditioned medium (CM) from modSLA-induced DCs significantly increased the mRNA expression of Runx2 and ALP as well as ALP activity by murine preosteoblast MC3T3-E1 cells. Our data demonstrated that Ti disks with different surfaces lead to differential DCs responses. PT and SLA surfaces induce DCs mature, while DCs seeded on modSLA-Ti surface maintain an immature phenotype and exhibit a potential of promoting osteogenic differentiation of MC3T3-E1 cells.

  17. Bone marrow and bone marrow derived mononuclear stem cells therapy for the chronically ischemic myocardium

    SciTech Connect

    Waksman, Ron; Baffour, Richard

    2003-09-01

    Bone marrow stem cells have been shown to differentiate into various phenotypes including cardiomyocytes, vascular endothelial cells and smooth muscle. Bone marrow stem cells are mobilized and home in to areas of injured myocardium where they are involved in tissue repair. In addition, bone marrow secretes multiple growth factors, which are essential for angiogenesis and arteriogenesis. In some patients, these processes are not enough to avert clinical symptoms of ischemic disease. Therefore, in vivo administration of an adequate number of stem cells would be a significant therapeutic advance. Unfractionated bone marrow derived mononuclear stem cells, which contain both hematopoietic and nonhematopoietic cells may be more appropriate for cell therapy. Studies in animal models suggest that implantation of different types of stem cells improve angiogenesis and arteriogenesis, tissue perfusion as well as left ventricular function. Several unanswered questions remain. For example, the optimal delivery approach, dosage and timing of the administration of cell therapy as well as durability of improvements need to be studied. Early clinical studies have demonstrated safety and feasibility of various cell therapies in ischemic disease. Randomized, double blind and placebo-controlled clinical trials need to be completed to determine the effectiveness of stem cell.

  18. Bone Marrow Derivation of Interstitial Cells of Cajal in Small Intestine Following Intestinal Injury

    PubMed Central

    Liu, Dengqun; Wang, Fengchao; Zou, Zhongmin; Dong, Shiwu; Wang, Junping; Ran, Xinze; Li, Chunxue; Shi, Chunmeng; Su, Yongping

    2010-01-01

    Interstitial cells of Cajal (ICCs) in gastrointestinal tract are specialized cells serving as pacemaker cells. The origin of ICCs is currently not fully characterized. In this work, we aimed to study whether bone marrow-derived cells (BMDCs) could contribute to the origin of ICCs in the muscular plexus of small intestine using GFP-C57BL/6 chimeric mice.Engraftment of BMDCs in the intestine was investigated for GFP expression. GFP positive bone marrow mononuclear cells reached a proportion of 95.65% ± 3.72% at different times in chimerism. Donor-derived cells distributed widely in all the layers of the gastrointestinal tract. There were GFP positive BMDCs in the myenteric plexus, which resembled characteristics of ICCs, including myenteric location, c-Kit positive staining, and ramified morphology. Donor-derived ICCs in the myenteric plexus contributed to a percentage ranging 9.25% ± 4.9% of all the ICCs in the myenteric plexus. In conclusion, here we described that donor-derived BMDCs might differentiate into gastrointestinal ICCs after radiation injury, which provided an alternative source for the origin of the ICCs in the muscular plexus of adult intestine. These results further identified the plasticity of BMDCs and indicated therapeutic implications of BMDCs for the gastrointestinal dysmotility caused by ICCs disorders. PMID:20396598

  19. Therapeutic action of bone marrow-derived stem cells against acute kidney injury.

    PubMed

    Liu, Pengfei; Feng, Yetong; Wang, Yi; Zhou, Yulai

    2014-10-12

    Acute kidney injury (AKI) is a frequent clinical disease with a high morbidity rate and mortality rate, while the treatment options for this intractable disease are limited currently. In recent years, bone marrow-derived mesenchymal stem cells (BMSCs) have been demonstrated to hold an effect therapeutic action against AKI by scientists gradually, and the cells are capable to localize to renal compartments and contribute to kidney regeneration though differentiation or paracrine action. Especially, the advantages of BMSCs, such as low toxicity and side effect as well as autologous transplantation, endue the cell with a promising potential in clinical therapy against AKI. In this review, we mainly provide a concise overview of the application of BMSCs in the treatment of AKI, and summarize a series of published data regarding the mechanisms and optimizations of the BMSC-based therapy in renal repair after AKI. Even though some critical points about the BMSC-based therapy model still need clarification, we hope to develop more reliable pharmacological or biotechnical strategies utilizing the stem cell for the eventual treatment of humans with AKI, based on these studies and the understanding of mechanism of renal protection by BMSCs.

  20. Mechanism of insulin production in canine bone marrow derived mesenchymal stem cells.

    PubMed

    Takemitsu, Hiroshi; Zhao, Dongwei; Ishikawa, Shingo; Michishita, Masaki; Arai, Toshiro; Yamamoto, Ichiro

    2013-08-01

    Insulin is a critical hormone in the regulation of blood glucose levels and is produced exclusively by pancreatic islet beta-cells. Insulin deficiency due to reduced pancreatic islet beta-cell number underlies the progression of diabetes mellitus, prompting efforts to develop beta-cell replacement therapies. However, precise information on beta-cell replacement and differentiation in canines is limited. In this study, we established insulin-producing cells from bone marrow derived mesenchymal stem cells transiently expressing canine pancreatic and duodenal homeobox 1 (Pdx1), beta cell transactivator 2 (Beta2) and V-maf avian musculoaponeurotic fibrosarcoma oncogene homolog A (Mafa) using a gene transfer technique. Real-time PCR analysis revealed an increase in insulin mRNA expression of transfected cells. And ELISA revealed that insulin protein expressed was detected in cytoplasmic fraction. Insulin immunostaining analysis was performed and observed in cytoplasmic fraction. These results suggest that co-transfection of Pdx1, Beta2 and Mafa induce insulin production in canine BMSCs. Our findings provide a clue to basic research into the mechanisms underlying insulin production in the canines.

  1. Osteoblasts Protect AML Cells from SDF-1-Induced Apoptosis

    PubMed Central

    Kremer, Kimberly N.; Dudakovic, Amel; McGee-Lawrence, Meghan E.; Philips, Rachael L.; Hess, Allan D.; Smith, B. Douglas; van Wijnen, Andre J.; Karp, Judith E.; Kaufmann, Scott H.; Westendorf, Jennifer J.; Hedin, Karen E.

    2014-01-01

    The bone marrow provides a protective environment for acute myeloid leukemia (AML) cells that often allows leukemic stem cells to survive standard chemotherapeutic regimens. Targeting these leukemic stem cells within the bone marrow is critical for preventing relapse. We recently demonstrated that SDF-1, a chemokine abundant in the bone marrow, induces apoptosis in AML cell lines and in patient samples expressing high levels of its receptor, CXCR4. Here we show that a subset of osteoblast lineage cells within the bone marrow can protect AML cells from undergoing apoptosis in response to the SDF-1 naturally present in that location. In co-culture systems, osteoblasts at various stages of differentiation protected AML cell lines and patient isolates from SDF-1-induced apoptosis. The differentiation of the osteoblast cell lines, MC3T3 and W-20-17, mediated this protection via a cell contact-independent mechanism. In contrast, bone marrow-derived mesenchymal cells, the precursors of osteoblasts, induced apoptosis in AML cells via a CXCR4-dependent mechanism and failed to protect AML cells from exogenously added SDF-1. These results indicate that osteoblasts in the process of differentiation potently inhibit the SDF-1-driven apoptotic pathway of CXCR4-expressing AML cells residing in the bone marrow. Drugs targeting this protective mechanism could potentially provide a new approach to treating AML by enhancing the SDF-1-induced apoptosis of AML cells residing within the bone marrow microenvironment. PMID:24851270

  2. miR-17, miR-21, and miR-143 Enhance Adipogenic Differentiation from Porcine Bone Marrow-Derived Mesenchymal Stem Cells.

    PubMed

    An, Xinglan; Ma, Kuiying; Zhang, Zhiren; Zhao, Tianchuang; Zhang, Xueming; Tang, Bo; Li, Ziyi

    2016-08-01

    Bone marrow-derived mesenchymal stem cells (BMSCs) have multilineage differentiation abilities toward adipocytes and osteoblasts. Recently, numerous studies have focused on the roles of microRNAs (miRNAs) in the process of adipogenic differentiation of human and mouse cells. However, the role of miRNAs in adipogenic differentiation process of porcine BMSCs (pBMSCs) remains unclear. In this study, pBMSCs were induced to differentiate into adipocytes using a chemical approach, and the roles of miR-17, miR-21, and miR-143 in this process were investigated. Our results showed that pBMSCs could be chemically induced to differentiate into adipocytes and that the expression of miR-17, miR-21, and miR-143 increased during differentiation. Then, overexpression of mimics of miR-17, miR-21, and miR-143 increased the number of oil red O-positive cells of adipocyte differentiation. The expression levels of CCAAT/enhancer-binding protein alpha (C/EBPα) mRNA showed increases of 1.8-, 1.5-, and 1.2-fold in the groups expressing mimics of miR-21, miR-17, and miR-143, respectively, at day 20. These results demonstrate that miR-17, miR-21, and miR-143 are involved in and promote the adipogenic differentiation of pBMSCs. This study provides an experimental basis for establishing a stable and efficient adipogenic differentiation model for applications in cell therapy and tissue engineering.

  3. P-glycoprotein overexpression in bone marrow-derived multipotent stromal cells decreases the risk of steroid-induced osteonecrosis in the femoral head.

    PubMed

    Han, Ning; Li, Zengchun; Cai, Zhengdong; Yan, Zuoqin; Hua, Yingqi; Xu, Chong

    2016-11-01

    P-glycoprotein (P-gp) plays a role in steroid-induced osteonecrosis of the femoral head (ONFH), but the underlying mechanism remains unknown. We hypothesized that P-gp overexpression can prevent ONFH by regulating bone marrow-derived multipotent stromal cell (BMSC) adipogenesis and osteogenesis. BMSCs from Sprague-Dawley rats were transfected with green fluorescent protein (GFP) or the multidrug resistance gene 1 (MDR1) encoding GFP and P-gp. Dexamethasone was used to induce BMSC differentiation. Adipogenesis was determined by measuring peroxisome proliferator-activated receptor (PPAR-γ) expression and the triglyceride level. Osteogenesis was determined by measuring runt-related transcription factor 2 (Runx2) expression and alkaline phosphatase activity. For in vivo experiments, rats were injected with saline, BMSCs expressing GFP (GFP-BMSCs) or BMSCs expressing GFP-P-gp (MDR1-GFP-BMSCs). After dexamethasone induction, adipogenesis was determined by measuring PPAR-γ expression and fatty marrow, whereas osteogenesis was detected by measuring Runx2 expression, trabecular parameters and the mineral apposition rate, followed by evaluation of the incidence of ONFH. Overexpression of P-gp in BMSCs resulted in markedly decreased expression of adipogenic markers and increased expression of osteogenic markers. Compared with rats injected with saline, rats injected with GFP-BMSCs showed reduced ONFH, and the injected GFP-positive BMSCs attached to trabecular surfaces and exhibited an osteoblast-like morphology. Compared with the rats injected with BMSCs expressing GFP alone, rats injected with BMSCs overexpressing GFP and P-gp showed lower adipocytic variables, higher osteogenic variables and lower incidence of ONFH. Overexpression of P-gp inhibited BMSC adipogenesis and promoted osteogenesis, which reduced the incidence of steroid-induced ONFH. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular

  4. Impact of bone marrow-derived mesenchymal stem cells on remodeling the lung injury induced by lipopolysaccharides in mice

    PubMed Central

    Mohi El-Din, Mouchira M; Rashed, Laila A; Mahmoud Haridy, Mohi A; Khalil, Atef Mohamed; Mohamed Albadry, Mohamed A

    2017-01-01

    Aim: This study evaluated the potential of bone marrow derived mesenchymal stem cells (MSCs) to regulate cytokines and remodel the lung induced by lipopolysaccharide (LPS; O-antigen). Materials & methods: A group of mice (n = 21) was inoculated intraperitoneally with one dose 0.1 ml containing 0.025 mg LPS/mouse, and another treated intravenously with one dose of labeling bone marrow derived MSCs at 7.5 × 105 cell/mouse 4 h after LPS injection. All animals were sacrificed on the 1st, 7th and 14th days post-injection. Results: MSCs increased the level of IL-10 with suppression of TNF-α, decrease of collagen fibers and renewal of alveolar type I cells, together with lung tissue remodeling. Conclusion: MSCs were shown to modulate inflammatory cytokines (TNF-α and IL-10) and to differentiate into alveolar type I cells, which prevented fibrosis in lung tissue from LPS-treated mice. PMID:28344826

  5. Transplanted bone marrow-derived circulating PDGFRα+ cells restore type VII collagen in recessive dystrophic epidermolysis bullosa mouse skin graft.

    PubMed

    Iinuma, Shin; Aikawa, Eriko; Tamai, Katsuto; Fujita, Ryo; Kikuchi, Yasushi; Chino, Takenao; Kikuta, Junichi; McGrath, John A; Uitto, Jouni; Ishii, Masaru; Iizuka, Hajime; Kaneda, Yasufumi

    2015-02-15

    Recessive dystrophic epidermolysis bullosa (RDEB) is an intractable genetic blistering skin disease in which the epithelial structure easily separates from the underlying dermis because of genetic loss of functional type VII collagen (Col7) in the cutaneous basement membrane zone. Recent studies have demonstrated that allogeneic bone marrow transplantation (BMT) ameliorates the skin blistering phenotype of RDEB patients by restoring Col7. However, the exact therapeutic mechanism of BMT in RDEB remains unclear. In this study, we investigated the roles of transplanted bone marrow-derived circulating mesenchymal cells in RDEB (Col7-null) mice. In wild-type mice with prior GFP-BMT after lethal irradiation, lineage-negative/GFP-positive (Lin(-)/GFP(+)) cells, including platelet-derived growth factor receptor α-positive (PDGFRα(+)) mesenchymal cells, specifically migrated to skin grafts from RDEB mice and expressed Col7. Vascular endothelial cells and follicular keratinocytes in the deep dermis of the skin grafts expressed SDF-1α, and the bone marrow-derived PDGFRα(+) cells expressed CXCR4 on their surface. Systemic administration of the CXCR4 antagonist AMD3100 markedly decreased the migration of bone marrow-derived PDGFRα(+) cells into the skin graft, resulting in persistent epidermal detachment with massive necrosis and inflammation in the skin graft of RDEB mice; without AMD3100 administration, Col7 was significantly supplemented to ameliorate the pathogenic blistering phenotype. Collectively, these data suggest that the SDF1α/CXCR4 signaling axis induces transplanted bone marrow-derived circulating PDGFRα(+) mesenchymal cells to migrate and supply functional Col7 to regenerate RDEB skin.

  6. [β-Glucan promotes the maturation and migration of bone marrow-derived dendritic cells].

    PubMed

    Xu, Dongqin; Zhang, Xiaohang; Wang, Yong; Ning, Yongling; Ding, Jun; Qian, Keqing; Qi, Chunjian

    2016-01-01

    To investigate the effects of β-glucan on the maturation and migration of bone marrow-derived dendritic cells (BMDCs). BMDCs were isolated from mouse bone marrow cells in vitro and induced by β-glucan for maturation. The expressions of cell surface markers were detected by flow cytometry (FCM). The cytokines (IL-6, IL-12p40, tumor necrosis factor α) in the supernatants were measured by ELISA, and the expressions of intracellular CC chemokine receptor 1 (CCR1), CCR2, CCR5, CCR7 were determined by real-time quantitative PCR. Furthermore, the chemotactic response to CC chemokine ligand 19 (CCLl9) and CCL21, i.e. CCR7-1igands, was measured by Transwell(TM) migration assay. Moreover, the number of migrated cells in the draining lymph nodes was analyzed by FCM. Compared with the control group, the expressions of co-stimulation molecules (MHC II, CD40, CD80, CD86) on BMDCs were up-regulated in the presence of β-glucan. Furthermore, β-glucan could prompt BMDCs to secret high levels of IL-6, TNF-α, IL-12 p40 and increase the production of CCR7 mRNA. After β-glucan treatment, BMDCs were more sensitive to CCL19/CCL21. The number of BMDCs migrated from subcutaneous injection site into the draining lymph nodes significantly increased in β-glucan group. β-glucan can promote the maturation of BMDCs and enhance the migration ability of BMDCs in vitro and in vivo.

  7. Cellular behaviours of bone marrow-derived mesenchymal stem cells towards pristine graphene oxide nanosheets.

    PubMed

    Wei, Changbo; Liu, Zifeng; Jiang, Fangfang; Zeng, Binghui; Huang, Mingdi; Yu, Dongsheng

    2017-10-01

    Graphene oxide (GO), the derivative of graphene with unique properties, has attracted much attention for applications in dental implants. The aim of this study was, by two biomimetic cell culture methods, to investigate the quantitative relationship between the concentration of pristine GO nanosheets and their cellular behaviours towards bone marrow-derived mesenchymal stem cells (BMSCs). The cells were firstly characterized according to their morphology, self-renewal capabilities and multipotency. Subsequently, adhesion density, proliferation, alkaline phosphatase activity and mineralization of BMSCs treated with various concentrations of GO were analysed. In addition, osteogenic-related proteins were measured for further verification of the GO-induced osteogenic differentiation. Pristine GO nanosheets inhibited the proliferation of BMSCs at a high concentration of 10 μg/mL during the first 3 days with two seeding methods and facilitated proliferation of BMSCs at a low concentration of 0.1 μg/mL after 5 days with a sequential-seeding method compared to a co-seeding method. Analogously, osteogenic differentiation was promoted when BMSCs were treated with 0.1 μg/mL of GO. Both the proliferation and differentiation showed concentration-dependent behaviour. Interestingly, Wnt/β-catenin signalling pathway appeared to be involved in osteogenic differentiation induced by pristine GO nanosheets. Pristine GO nanosheets at a concentration of 0.1 μg/mL provide benefits to promote BMSCs proliferation and osteogenesis under a sequential-seeding method, contributing to the use of GO for dental implantation. © 2017 John Wiley & Sons Ltd.

  8. Differential regulation of smooth muscle markers in human bone marrow-derived mesenchymal stem cells.

    PubMed

    Hegner, Björn; Weber, Manfred; Dragun, Duska; Schulze-Lohoff, Eckhard

    2005-06-01

    To study smooth-muscle differentiation and de-differentiation of human bone marrow-derived mesenchymal stem cells (MSCs), which have been shown to enter the circulation and to contribute to vascular repair and atherosclerosis. Human MSCs from bone marrow were cultured with 20% fetal calf serum (FCS) or with 10% FCS and various concentrations of dimethyl sulfoxide (DMSO). Expression of smooth muscle markers was determined by Western blot analysis and immunofluorescence. For signalling studies, involvement of the mammalian target of rapamycin (mTOR) pathway was tested by treatment with rapamycin. MSCs cultured with 20% FCS acquired a smooth muscle-like appearance and expressed the smooth muscle (sm) markers sm-alpha-actin, desmin, sm-calponin and myosin light chain kinase (MLCK). DMSO induced a spindle-like morphology with marked reduction of stress fibers. As judged by Western blot analysis, treatment with 2.5% DMSO strongly downregulated expression of sm-calponin (-85%), short MLCK (-98%) and sm-alpha-actin expression (-51%). Reduced calponin expression was detected by day 2 of treatment with 0.5-2.5% DMSO. After withdrawal of DMSO, MSCs regained high expression of sm-calponin. Treatment with 6 nmol/l rapamycin partly antagonized the effect of DMSO, indicating the involvement of mTOR in regulation of the smooth muscle phenotype of MSCs. DMSO strongly downregulates the smooth muscle markers sm-calponin, short MLCK and sm-alpha-actin in human MSCs, indicating a transition from a smooth muscle-like phenotype to an undifferentiated state by an mTOR-dependent mechanism. Regulating the phenotype of human MSCs may be of relevance for novel therapeutic approaches in atherosclerosis and intimal hyperplasia after vascular injury.

  9. Nitric Oxide Modulates Postnatal Bone Marrow-Derived Mesenchymal Stem Cell Migration

    PubMed Central

    Fuseler, John W.; Valarmathi, Mani T.

    2016-01-01

    Nitric oxide (NO) is a small free-radical gas molecule, which is highly diffusible and can activate a wide range of downstream effectors, with rapid and widespread cellular effects. NO is a versatile signaling mediator with a plethora of cellular functions. For example, NO has been shown to regulate actin, the microfilament, dependent cellular functions, and also acts as a putative stem cell differentiation-inducing agent. In this study, using a wound-healing model of cellular migration, we have explored the effect of exogenous NO on the kinetics of movement and morphological changes in postnatal bone marrow-derived mesenchymal stem cells (MSCs). Cellular migration kinetics and morphological changes of the migrating MSCs were measured in the presence of an NO donor (S-Nitroso-N-Acetyl-D,L-Penicillamine, SNAP), especially, to track the dynamics of single-cell responses. Two experimental conditions were assessed, in which SNAP (200 μM) was applied to the MSCs. In the first experimental group (SN-1), SNAP was applied immediately following wound formation, and migration kinetics were determined for 24 h. In the second experimental group (SN-2), MSCs were pretreated for 7 days with SNAP prior to wound formation and the determination of migration kinetics. The generated displacement curves were further analyzed by non-linear regression analysis. The migration displacement of the controls and NO treated MSCs (SN-1 and SN-2) was best described by a two parameter exponential functions expressing difference constant coefficients. Additionally, changes in the fractal dimension (D) of migrating MSCs were correlated with their displacement kinetics for all the three groups. Overall, these data suggest that NO may evidently function as a stop migration signal by disordering the cytoskeletal elements required for cell movement and proliferation of MSCs. PMID:27933292

  10. Bone marrow-derived mesenchymal stem cell attenuates skin fibrosis development in mice.

    PubMed

    Wu, Yan; Huang, Sha; Enhe, Jirigala; Ma, Kui; Yang, Siming; Sun, Tongzhu; Fu, Xiaobing

    2014-12-01

    Recent studies showed that mesenchymal stem cell (MSC) transplantation significantly alleviated tissue fibrosis; however, little is known about the efficacy on attenuating cutaneous scar formation. In this study, we established a dermal fibrosis model induced by bleomycin and evaluated the benefit of bone marrow-derived mesenchymal stem cells (BM-MSCs) on skin fibrosis development. Tracing assay of green fluorescent protein (GFP(+) )BM-MSCs showed that the cells disappeared gradually within 24 hours upon administration, which hinted the action of BM-MSCs in vivo was exerted in the initial phase of repair in this model. Therefore, we repeatedly transplanted syngeneic BM-MSCs in the process of skin fibrosis formation. After 3 weeks, it was found that BM-MSC-treated lesional skin demonstrated a unanimous basket-weave organisation of collagen arrangement similar to normal skin, with few inflammatory cells. In addition, lesional skin with BM-MSC treatment exhibited a significant down-regulation of transforming growth factor-β1 (TGF-β1), type I collagen and heat-shock protein 47 (HSP47), with higher expression of matrix metalloproteinases (MMPs)-2, -9 and -13. Further experiments showed that α-smooth muscle actin (α-SMA) positive cells, the most reliable marker of myofibroblasts, apparently decreased after BM-MSC transplantation, which revealed that BM-MSCs could attenuate myofibroblast proliferation and differentiation as well as matrix production. Taken together, these findings suggested that BM-MSCs can inhibit the formation process of bleomycin-induced skin fibrosis, alleviate inflammation and favour the remodelling of extracellular matrix. © 2013 The Authors. International Wound Journal © 2013 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  11. Establishment and characterization of mouse bone marrow-derived mast cell hybridomas

    SciTech Connect

    Kawahara, Takeshi

    2012-11-01

    Interleukin (IL)-3-dependent mouse bone marrow-derived mast cells (BMMCs) are an important model for studying the function of mucosal-type mast cells. In the present study, BMMCs were successfully immortalized by cell fusion using a hypoxanthine-aminopterin-thymidine medium-sensitive variant of P815 mouse mastocytoma (P815-6TgR) as a partner cell line. The established mouse mast cell hybridomas (MMCHs) expressed {alpha}, {beta}, and {gamma} subunits of high-affinity immunoglobulin E (IgE) receptor (Fc{epsilon}RI) and possessed cytoplasmic granules devoid of or partially filled with electron-dense material. Four independent MMCH clones continuously proliferated without supplemental exogenous IL-3 and showed a degranulation response on stimulation with IgE+antigen. Furthermore, histamine synthesis and release by degranulation were confirmed in MMCH-D5, a MMCH clone that showed the strongest degranulation response. MMCH-D5 exhibited elevated levels of IL-3, IL-4, IL-13, granulocyte-macrophage colony-stimulating factor, tumor necrosis factor (TNF)-{alpha}, and cyclooxygenase 2, and production of prostaglandin D{sub 2} and leukotriene C{sub 4} in response to IgE-induced stimulation. MMCH clones also expressed Toll-like receptors (TLRs) 1, 2, 4, and 6 and showed elevated levels of TNF-{alpha} expression in response to stimulation with TLR2 and TLR4 ligands. The MMCHs established using this method should be suitable for studies on Fc{epsilon}RI- and TLR-mediated effector functions of mast cells.

  12. Fibroblasts induce heparin synthesis in chondroitin sulfate E containing human bone marrow-derived mast cells

    SciTech Connect

    Gilead, L.; Bibi, O.; Razin, E. )

    1990-09-15

    Human bone marrow-derived mast cells (hBMMCs), differentiated in vitro in suspension culture and under the influence of human peripheral blood mononuclear cells conditioned medium (hCM), were tested for their response to recombinant human interleukin-3 (rhIL-3) and for their behavior in different microenvironments. The hBMMCs were incubated in the presence of rhIL-3 and the changes in their proliferation rate were determined. Recombinant hIL-3 induced a more than sixfold increase in 3H-thymidine uptake into the hBMMC DNA in a dose-dependent manner. Human CM used as a control for proliferation response induced a more than eightfold maximal proliferation rate increase. Rabbit anti-rhIL-3 completely inhibited hBMMC 3H-thymidine uptake induced by rhIL-3 and decreased the hCM-induced proliferation by approximately 50%. These hBMMCs were cocultured with four different mytomicin C-treated cell monolayers and assayed for phenotypic changes. After only 2 days in coculture with either embryonic mouse skin-derived fibroblasts (MESFs) or human skin-derived fibroblasts (HSFs), a marked increase in granule number and density was noted on staining with toluidine blue. Mast cells that initially stained alcian blue+/safranin- at day 0 of coculture became alcian blue+/safranin+ during the coculture period. Human BMMC proteoglycan synthesis shifted from approximately 85% chondroitin sulfate E to approximately 60% heparin within 14 to 19 days of coculture with the MESF monolayer and to approximately 50% heparin within 19 days of coculture with the HSF monolayer. None of the above-mentioned changes were noted in cocultures of hBMMCs with 3T3 cell line fibroblast monolayers or in cocultures with bovine vascular endothelium (BVE) cell monolayers.

  13. CD44 promotes the migration of bone marrow-derived mesenchymal stem cells toward glioma

    PubMed Central

    YIN, QIANG; ZHOU, YANG-YANG; WANG, PENG; MA, LI; LI, PENG; WANG, XIAO-GUANG; SHE, CHUN-HUA; LI, WEN-LIANG

    2016-01-01

    Previous in vivo and in vitro studies have shown that human mesenchymal stem cells (MSCs) exhibit tropism for gliomas. However, the mechanism underlying this directed migration remains unclear. The aim of the present study was to investigate the possible mechanism underlying platelet-derived growth factor-BB (PDGF-BB)-induced chemotactic migration of bone marrow-derived MSCs (BMSCs) toward glioma. Rat glioma C6 cell-conditioned medium was utilized to evaluate the chemotactic response of BMSCs toward glioma using an in vitro migration assay. Recombinant rat PDGF-BB was added to C6 cell-conditioned medium to assess its effect on the tropism of BMSCs. The effect of PDGF-BB on the expression levels of cluster of differentiation (CD)44 in BMSCs was evaluated by reverse transcription-polymerase chain reaction (RT-PCR) and immunofluorescence assays. The results revealed that chemotactic migration was induced in BMSCs by rat glioma C6 cell-conditioned medium, which was enhanced by PDGF-BB treatment in a dose-dependent manner. Furthermore, RT-PCR and immunofluorescence assays showed that CD44 expression was upregulated in BMSCs following treatment with 40 ng/ml PDGF-BB for 12 h. Additionally, 3-h pretreatment with the anti-CD44 neutralizing antibody OX-50 was observed to attenuate the tropism of BMSCs toward glioma in the presence or absence of PDGF-BB. The results of the present study indicate that CD44 mediates the tropism of BMSCs toward glioma, and PDGF-BB promotes the migration of BMSCs toward glioma via the upregulation of CD44 expression in BMSCs. These findings suggest CD44 inhibition may be a potential therapeutic target for the treatment of glioma. PMID:27073479

  14. Bone marrow-derived cells rescue salivary gland function in mice with head and neck irradiation

    PubMed Central

    Sumita, Yoshinori; Liu, Younan; Khalili, Saeed; Maria, Ola M.; Xia, Dengsheng; Key, Sharon; Cotrim, Ana P.; Mezey, Eva; Tran, Simon D.

    2012-01-01

    Treatment for most patients with head and neck cancers includes ionizing radiation. A consequence of this treatment is irreversible damage to salivary glands (SGs), which is accompanied by a loss of fluid-secreting acinar-cells and a considerable decrease of saliva output. While there are currently no adequate conventional treatments for this condition, cell-based therapies are receiving increasing attention to regenerate SGs. In this study, we investigated whether bone marrow-derived cells (BMDCs) can differentiate into salivary epithelial cells and restore SG function in head and neck irradiated mice. BMDCs from male mice were transplanted into the tail-vein of 18 Gy-irradiated female mice. Salivary output was increased in mice that received BMDCs transplantation at week 8 and 24 post-irradiation. At 24 weeks after irradiation (IR), harvested SGs (submandibular and parotid glands) of BMDC-treated mice had greater weights than those of non-treated mice. Histological analysis shows that SGs of treated mice demonstrated an increased level of tissue regenerative activity such as blood vessel formation and cell proliferation, while apoptotic activity was increased in non-transplanted mice. The expression of stem cell markers (Sca-1 or c-kit) was detected in BMDC-treated SGs. Finally, we detected an increased ratio of acinar-cell area and approximately 9% of Y-chromosome-positive (donor-derived) salivary epithelial cells in BMDC-treated mice. We propose here that cell therapy using BMDCs can rescue the functional damage of irradiated SGs by direct differentiation of donor BMDCs into salivary epithelial cells. PMID:20933096

  15. Cultivation and spontaneous differentiation of rat bone marrow-derived mesenchymal stem cells on polymeric surfaces.

    PubMed

    Xu, Xun; Kratz, Karl; Wang, Weiwei; Li, Zhengdong; Roch, Toralf; Jung, Friedrich; Lendlein, Andreas; Ma, Nan

    2013-01-01

    Accumulating evidence demonstrated many physical and chemical cues from the local microenvironment could influence mesenchymal stem cells (MSCs) maintenance and differentiation. In this study, we systematically investigated the interaction of rat bone marrow-derived mesenchymal stem cells (rBMSCs) and polymeric substrates. Adhesion, proliferative capacity, cytoskeleton alteration, cytotoxicity, apoptosis, senescence, and adipogenesis potential of rBMSCs were determined on these polymeric inserts prepared from polyetherurethane (PEU) and poly(ether imide) (PEI). Inserts for culture plates were applied to ensure that the rBMSCs were solely in contact to the tested material. The explored inserts exhibited advancing contact angles of 84° (PEU) and 93° (PEI). Finally, the micromechanical properties determined by atomic force microscopy (AFM) indentation varied in the range from 6 GPa (PEU) to 13 GPa (PEI). We found that both PEU and PEI showed a good cell compatibility to rBMSCs. rBMSCs could adherent on both polymeric surfaces with the similar adhesion ratio and subsequent division rate. However, cells cultured on PEU exhibited higher apoptosis level and senescence ratio, which resulted in lower cell density (22061 ± 3000/cm(2)) compared to that on PEI (68395 ± 8000/cm(2)) after 20 days cultivation. Morphological differences of rBMSCs were detected after 5 days cultivation. Cells on PEU exhibited flat and enlarged shape with rearranged filamentous actin (F-actin) cytoskeleton, while cells on PEI and tissue culture plate (TCP) had similar spindle-shape morphology and oriented F-actin. After 20 days, lipid droplets were spontaneously formed in rBMSCs on PEU and PEI but not on TCP. Both PEU and PEI might trigger rBMSCs towards spontaneous adipogenic commitment, whereas PEI provided better cell compatibility on rBMSCs apoptosis, senescence and proliferation.

  16. The signalling imprints of nanoparticle uptake by bone marrow derived dendritic cells.

    PubMed

    Karlson, Tanya De L; Kong, Ying Ying; Hardy, Charles L; Xiang, Sue Dong; Plebanski, Magdalena

    2013-05-01

    Nanoparticles (NP) possess remarkable adjuvant and carrier capacity, therefore are used in the development of various vaccine formulations. Our previous studies demonstrated that inert non-toxic 40-50 nm polystyrene NP (PS-NP) can promote strong CD8 T cell and antibody responses to the antigen, in the absence of observable inflammatory responses. Furthermore, instillation of PS-NP inhibited the development of allergic airway inflammation by induction of an immunological imprint via modulation of dendritic cell (DC) function without inducing oxidative stress in the lungs in mice. This is in contrast to many studies which show that a variety of ambient and man-made NP promote lung immunopathology, raising concerns generally about the safe use of NPs in biomedicine. Most NPs are capable of inducing inflammatory pathways in DC largely mediated by signalling via the extracellular signal-regulated kinase 1/2 (ERK). Herein, we investigate whether PS-NPs also activate ERK in DC in vitro. Our data show that PS-NP do not induce ERK activation in two different types of bone marrow derived (BM) DC cultures (expanded with GM-CSF or with GM-CSF together with IL-4). The absence of such signalling was not due to lack of PS-NP uptake by BM-DC as confirmed by confocal microscopy and flow cytometry. The process of NP uptake by DC usually initiates ERK signalling, suggesting an unusual uptake pathway may be engaged by PS-NPs. Indeed, data herein showns that uptake of PS-NP by BM-DC was substantially inhibited by phorbol myristate acetate (PMA) but not cytochalasin D (CCD), suggesting an uptake pathway utilising caveole for PS-NP. Together these data show that BM-DC take up PS-NP via a caveole-dependent pathway which does not trigger ERK signalling which may explain their efficient uptake by DC, without the concomitant activation of conventional inflammatory pathways.

  17. Functional characterisation of bone marrow-derived mesenchymal stromal cells from COPD patients

    PubMed Central

    Roelofs, Helene; Zarcone, Maria C.; Taube, Christian; Stolk, Jan; Hiemstra, Pieter S.

    2016-01-01

    Autologous bone marrow-derived mesenchymal stromal cells (BM-MSCs) are evaluated for clinical use in chronic obstructive pulmonary disease (COPD) patients, but it is unclear whether COPD affects BM-MSCs. To investigate this, BM-MSCs from nine COPD patients and nine non-COPD age-matched controls were compared with regard to immunophenotype, growth and differentiation potential, and migration capacity. Other functional assays included the response to pro-inflammatory stimuli and inducers of the nuclear factor (erythroid derived 2)-like 2 antioxidant response element (Nrf2-ARE) pathway, and effects on NCI-H292 airway epithelial cells. No significant differences were observed in terms of morphology, proliferation and migration, except for increased adipocyte differentiation potential in the COPD group. Both groups were comparable regarding mRNA expression of growth factors and inflammatory mediators, and in their potential to induce mRNA expression of epidermal growth factor receptor ligands in NCI-H292 airway epithelial cells. MSCs from COPD patients secreted more interleukin-6 in response to pro-inflammatory stimuli. Activation of the Nrf2-ARE pathway resulted in a comparable induction of mRNA expression of four target genes, but the expression of the NAD(P)H:quinone oxidoreductase 1 gene NQO1 was lower in MSCs from COPD patients. The observation that MSCs from COPD patients are phenotypically and functionally comparable to those from non-COPD controls implies that autologous MSCs can be considered for use in the setting of clinical trials as a treatment for COPD. PMID:27730190

  18. Quantitative activation suppression assay to evaluate human bone marrow-derived mesenchymal stromal cell potency.

    PubMed

    Salem, Bahey; Miner, Samantha; Hensel, Nancy F; Battiwalla, Minoo; Keyvanfar, Keyvan; Stroncek, David F; Gee, Adrian P; Hanley, Patrick J; Bollard, Catherine M; Ito, Sawa; Barrett, A John

    2015-12-01

    With the increasing use of cell therapies involving immune modulatory cells, there is a need for a simple standardized method to evaluate and compare the suppressive potency of different cell products. We used the Karpas 299 (K299) cell line as the reference suppressor cell to develop a standardized suppression assay to quantify the immune-modulatory capacity of bone marrow-derived mesenchymal stromal cells (BM-MSCs). Healthy donor CD4 T cells were co-cultured with the K299 cell line or with third-party BM-MSCs. After stimulation with anti-CD3/CD28 beads, CD154 activation and proliferation of CD4 T cells were measured to calculate suppression. The K299 cell line reproducibly suppressed both the activation and proliferation of healthy donor CD4 T cells in a dose-dependent manner. A rapid (16-h) assay that was based on activation-suppression was selected for development. In replicate testing, there was an inherent variability of suppression of 11% coefficient of variation between different responder T cells. Suppression by BM-MSCs on different responders correlated with suppression by K299. We therefore used K299 suppression as the reference to define suppression potency of BM-MSCs in K299 Suppression Units. We found that inter-donor variability, passage number, method of manufacture and exposure of BM-MSCs to steroids or interferon-γ all affected BM-MSC potency of suppression. This method provides a platform for standardizing suppressor function to facilitate comparisons between laboratories and for use as a cell product release assay. Published by Elsevier Inc.

  19. The effect of rat bone marrow derived mesenchymal stem cells transplantation for restoration of olfactory disorder.

    PubMed

    Jo, Hyogyeong; Jung, Minyoung; Seo, Dong Jin; Park, Dong Joon

    2015-11-13

    The purpose of the study was to investigate the effect of bone marrow-derived mesenchymal stem cells (BMSCs) transplantation on olfactory epithelium (OE) of morphologic and functional restoration following neural Sensorineural Disorder in rats. Except the Normal group, twenty-one rats underwent Triton X-100 (TX-100) irrigation to induce degeneration of OE, and then BMSCs and PBS were treated from the both medial canthus to the rear part of the both nasal cavity into the experimental group and then were observed for restoration according to time point. At two and four weeks after transplantation with BMSCs, restoration of OE was observed with olfactory marker protein (OMP) and behavioral test. And we observed the expression of OMP, nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). After TX-100 irrigation, the OE almost disappeared in 3 days. At four weeks after transplantation with BMSCs, the thickness and cellular composition of OE was considerably restored to normal group and expression of OMP was markedly increased when compared with PBS group and reduced the searching time in the behavioral test. Furthermore at two weeks after treatment with BMSCs, expression of NGF and BDNF was greatly increased when compared with PBS group. However at four weeks after treatment with BMSCs, expression of NGF and BDNF was slightly decreased. Our results suggest the BMSCs transplantation affect restoration of OE and olfaction, most likely via regulation of the neurotrophic factor expression, especially the expression of NGF and BDNF and has a possibility of a new therapeutic strategy for the treatment of olfactory disorder caused by the degeneration of OE.

  20. Conditioned medium from hypoxic bone marrow-derived mesenchymal stem cells enhances wound healing in mice.

    PubMed

    Chen, Lei; Xu, Yingbin; Zhao, Jingling; Zhang, Zhaoqiang; Yang, Ronghua; Xie, Julin; Liu, Xusheng; Qi, Shaohai

    2014-01-01

    Growing evidence indicates that bone marrow-derived mesenchymal stem cells (BM-MSCs) enhance wound repair via paracrine. Because the extent of environmental oxygenation affects the innate characteristics of BM-MSCs, including their stemness and migration capacity, the current study set out to elucidate and compare the impact of normoxic and hypoxic cell-culture conditions on the expression and secretion of BM-MSC-derived paracrine molecules (e.g., cytokines, growth factors and chemokines) that hypothetically contribute to cutaneous wound healing in vivo. Semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) analyses of normoxic and hypoxic BM-MSCs and their conditioned medium fractions showed that the stem cells expressed and secreted significantly higher amounts of basic fibroblast growth factor (bFGF),vascular endothelial growth factor A (VEGF-A) interleukin 6 (IL-6) and interleukin 8 (IL-8) under hypoxic conditions. Moreover, hypoxic BM-MSC-derived conditioned medium (hypoCM) vs. normoxic BM-MSC-derived conditioned medium (norCM) or vehicle control medium significantly enhanced the proliferation of keratinocytes, fibroblasts and endothelial cells, the migration of keratinocytes, fibroblasts, endothelial cells and monocytes, and the formation of tubular structures by endothelial cells cultured on Matrigel matrix. Consistent with these in vitro results, skin wound contraction was significantly accelerated in Balb/c nude mice treated with topical hypoCM relative to norCM or the vehicle control. Notably increased in vivo cell proliferation, neovascularization as well as recruitment of inflammatory macrophages and evidently decreased collagen I, and collagen III were also found in the hypoCM-treated group. These findings suggest that BM-MSCs promote murine skin wound healing via hypoxia-enhanced paracrine.

  1. Bone Marrow Derived Myeloid Cells Orchestrate Antiangiogenic Resistance in Glioblastoma through Coordinated Molecular Networks

    PubMed Central

    Achyut, B.R.; Shankar, Adarsh; Iskander, ASM; Ara, Roxan; Angara, Kartik; Zeng, Peng; Knight, Robert A.; Scicli, Alfonso G; Arbab, Ali S.

    2015-01-01

    Glioblastoma (GBM) is a hypervascular and malignant form of brain tumors. Anti-angiogenic therapies (AAT) were used as an adjuvant against VEGF-VEGFR pathway to normalize blood vessels in clinical and preclinical studies, which resulted into marked hypoxia and recruited bone marrow derived cells (BMDCs) to the tumor microenvironment (TME). In vivo animal models to track BMDCs and investigate molecular mechanisms in AAT resistance are rare. We exploited recently established chimeric mouse to develop orthotopic U251 tumor, which uses as low as 5×106 GFP+ BM cells in athymic nude mice and engrafted >70% GFP+ cells within 14 days. Our unpublished data and published studies have indicated the involvement of immunosuppressive myeloid cells in therapeutic resistance in glioma. Similarly, in the present study, vatalanib significantly increased CD68+ myeloid cells, and CD133+, CD34+ and Tie2+ endothelial cell signatures. Therefore, we tested inhibition of CSF1R+ myeloid cells using GW2580 that reduced tumor growth by decreasing myeloid (Gr1+ CD11b+ and F4/80+) and angiogenic (CD202b+ and VEGFR2+) cell signatures in TME. CSF1R blockade significantly decreased inflammatory, proangiogenic and immunosuppressive molecular signatures compared to vehicle, vatalanib or combination. TCK1 or CXCL7, a potent chemoattractant and activator of neutrophils, was observed as most significantly decreased cytokine in CSF1R blockade. ERK MAPK pathway was involved in cytokine network regulation. In conclusion, present study confirmed the contribution of myeloid cells in GBM development and therapeutic resistance using chimeric mouse model. We identified novel molecular networks including CXCL7 chemokine as a promising target for future studies. Nonetheless, survival studies are required to assess the beneficial effect of CSF1R blockade. PMID:26404753

  2. Genetic stability of bone marrow-derived human mesenchymal stromal cells in the Quantum System.

    PubMed

    Jones, Mark; Varella-Garcia, Marileila; Skokan, Margaret; Bryce, Steven; Schowinsky, Jeffrey; Peters, Rebecca; Vang, Boah; Brecheisen, Michelle; Startz, Thomas; Frank, Nathan; Nankervis, Brian

    2013-11-01

    The Quantum® Cell Expansion System (Quantum; Terumo BCT, Inc, Lakewood, CO, USA) is a novel hollow fiber-based device that automates and closes the cell culture process, reducing labor intensive tasks such as manual cell culture feeding and harvesting. The manual cell selection and expansion processes for the production of clinical-scale quantities of bone marrow-derived human mesenchymal stromal cells (BM-hMSCs) have been successfully translated onto the Quantum platform previously. The formerly static, manual, in vitro process performed primarily on tissue culture polystyrene substrates may raise the question of whether BM-hMSCs cultured on a hollow fiber platform yields comparable cell quality. A rigorous battery of assays was used to determine the genetic stability of BM-hMSCs selected and produced with the Quantum. In this study, genetic stability was determined by assessing spectral karyotype, micronucleus formation and tumorigenicity to resolve chromosomal aberrations in the stem cell population. Cell phenotype, adherent growth kinetics and tri-lineage differentiation were also evaluated. HMSC bone marrow aspirates, obtained from three approved donors, were expanded in parallel using T225 culture flasks and the Quantum. BM-hMSCs harvested from the Quantum demonstrated immunophenotype, morphology and tri-lineage differentiation capacity characteristics consistent with the International Society of Cell Therapy standard for hMSCs. Cell populations showed no malignant neoplastic formation in athymic mice 60 days post-transplant, no clonal chromosomal aberrations were observed and no DNA damage was found as measured by micronucleus formation. Quantum-produced BM-hMSCs are of comparable quality and demonstrate analogous genetic stability to BM-hMSCs cultured on tissue culture polystyrene substrates. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  3. Molecular and cellular characterization of buffalo bone marrow-derived mesenchymal stem cells.

    PubMed

    Gade, N E; Pratheesh, M D; Nath, A; Dubey, P K; Amarpal; Sharma, B; Saikumar, G; Taru Sharma, G

    2013-06-01

    Immune privileged mesenchymal stem cells (MSCs) can differentiate into multiple cell types and possess great potential for human and veterinary regenerative therapies. This study was designed with an objective to isolate, expand and characterize buffalo bone marrow-derived MSCs (BM-MSCs) at molecular and cellular level. Buffalo BM-MSCs were isolated by Ficoll density gradient method and cultured in Dulbecco's modified Eagle's medium supplemented with fetal bovine serum (FBS). These cells were characterized through alkaline phosphatase (AP) staining, colony-forming unit (CFU) assay, mRNA expression analysis (CD 73, CD 90, CD 105, Oct4 and Nanog), immunolocalization along with flow cytometry (Stro 1, CD 73, CD 105, Oct4, Sox2 and Nanog) and in situ hybridization (Oct4 and Sox2). Multilineage differentiation (osteogenic, adipogenic and chondrogenic) was induced in vitro, which was further assessed by specific staining. Buffalo BM-MSCs have the capacity to form plastic adherent clusters of fibroblast-like cells and were successfully maintained up to 16(th) passage. These cells were AP positive, and further CFU assay confirmed their clonogenic property. RT-PCR analysis and protein localization study showed that buffalo BM-MSCs are positive for various cell surface markers and pluripotency markers. Cytoplasmic distribution of mRNA for pluripotency markers in buffalo BM-MSCs and multilineage differentiation were induced in vitro, which was further assessed by specific staining. To the best of our knowledge, this is the first report of buffalo BM-MSCs, which suggests that MSCs can be derived and expanded from buffalo bone marrow and can be used after characterization as a novel agent for regenerative therapy.

  4. The function of CCR3 on mouse bone marrow-derived mast cells in vitro.

    PubMed

    Collington, Sarah J; Westwick, John; Williams, Timothy J; Weller, Charlotte L

    2010-01-01

    The mechanisms governing the population of tissues by mast cells are not fully understood, but several studies using human mast cells have suggested that expression of the chemokine receptor CCR3 and migration to its ligands may be important. In CCR3-deficient mice, a change in mast cell tissue distribution in the airways following allergen challenge was reported compared with wild-type mice. In addition, there is evidence that CCR3 is important in mast cell maturation in mouse. In this study, bone marrow-derived mast cells (BMMCs) were cultured and CCR3 expression and the migratory response to CCR3 ligands were characterized. In addition, BMMCs were cultured from wild-type and CCR3-deficient mice and their phenotype and migratory responses were compared. CCR3 messenger RNA was detectable in BMMCs, but this was not significantly increased after activation by immunoglobulin E (IgE). CCR3 protein was not detected on BMMCs during maturation and expression could not be enhanced after IgE activation. Resting and IgE-activated immature and mature BMMCs did not migrate in response to the CCR3 ligands eotaxin- 1 and eotaxin-2. Comparing wild-type and CCR3-deficient BMMCs, there were no differences in mast cell phenotype or ability to migrate to the mast cell chemoattractants leukotriene B4 and stem cell factor. The results of this study show that CCR3 may not mediate mast cell migration in mouse BMMCs in vitro. These observations need to be considered in relation to the findings of CCR3 deficiency on mast cells in vivo.

  5. Ultrastructural localization of stem cell factor in canine marrow-derived stromal cells.

    PubMed

    Huss, R; Hong, D S; Beckham, C; Kimball, L; Myerson, D H; Storb, R; Deeg, H J

    1995-01-01

    Stromal cell lines derived from canine long-term bone marrow cultures (LTBMC) were characterized regarding the expression of growth factors and especially the localization of stem cell factor (SCF) (c-kit ligand). One cell line (DO64) was immortalized by transformation with a retroviral vector containing the open reading frames (ORFs) E6 and E7 of the human papilloma virus type 16 (HPV-16). Transfection did not change cellular characteristics but rendered the cell line more independent from culture conditions. The transformed line DO64 consisted mainly of fibroblast-like cells. In addition, some cells showed endothelial and some smooth-muscle cell features. Stromal cells expressed a broad spectrum of surface markers, including low levels of major histocompatibility-complex (MHC) class-II antigens. A new murine monoclonal antibody (MAb), RG7.6 (IgG1), specific for canine SCF, recognized the majority of fibroblast-like stromal cells. The staining pattern for SCF showed perinuclear and intracytoplasmic dense areas. Immunoelectron microscopy revealed the localization of SCF in secretory vesicles, the perivesicular cytoplasm, and bound to the cytoplasmatic membrane. RNA analysis showed that stromal cells transcribed, in addition to SCF, messages for granulocyte colony-stimulating factor (G-CSF), granulocyte-monocyte CSF (GM-CSF), interleukin-6 (IL-6), and transforming growth factor-beta (TGF-beta). In summary, we have established and characterized canine marrow-derived stromal cell lines, and using the new MAb RG7.6, we have localized SCF to cytoplasmatic vesicles as well as the membrane of stromal cells.

  6. Effects of 810-nm Laser on Murine Bone-Marrow-Derived Dendritic Cells

    PubMed Central

    Chen, Aaron C.-H.; Huang, Ying-Ying; Sharma, Sulbha K

    2011-01-01

    Abstract Objective: The purpose of this study was to Investigate the effect of 810-nm low level laser therapy (LLLT) on dendritic cells (DC) in vitro. Background data: LLLT can enhance wound healing and increase cell proliferation and survival, and is used to treat inflammatory conditions. However there are reports that LLLT can stimulate leukocytes and could therefore be pro-inflammatory. Recently, DC have been found to play an important role in inflammation and immune response. Methods: Murine bone-marrow-derived DC were isolated, stimulated with lipopolysaccharide (LPS) or CpG oligodeoxynucleotide and treated with 810-nm laser, using fluences of 0.3, 3, and 30 J/cm2 delivered at irradiances of 1, 10, and 100 mW/cm2 respectively. Confocal microscopy, flow cytometry for DC markers, viability using propidium iodide, enzyme-linked immunosorbent assays (ELISA) for secreted interleukin-12 (IL-12), and bioluminescence measurements in cells transduced with a reporter for toll-like receptor (TLR)-9/nuclear factor kappa B (NF-κB) activation, were performed. Results: LLLT changed the morphology of LPS-stimulated DC, increased their viability, and altered the balance of DC activation markers (major histocompatibility complex [MHC] class 2 up and CD86 down). LLLT reduced IL-12 secretion from DC stimulated by either LPS or CpG. LLLT reduced NF-κB activation in reporter cells stimulated with CpG. There was no obvious light dose response observed. Conclusions: Taken together, these data suggest that 810-nm LLLT has an anti-inflammatory effect on activated DC, possibly mediated by cyclic adenosine monophosphate (cAMP) and reduced NF-κB signaling. PMID:21214383

  7. Low level light promotes the proliferation and differentiation of bone marrow derived mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Ahn, Jin-Chul; Rhee, Yun-Hee; Choi, Sun-Hyang; Kim, Dae Yu; Chung, Phil-Sang

    2015-03-01

    Low-level light irradiation (LLLI) reported to stimulate the proliferation or differentiation of a variety of cell types. However, very little is known about the effect of light therapy on stem cells. The aim of the present study was to evaluate the effect of LLLI on the molecular physiological change of human bone marrow derived stem cells (hBMSC) by wavelength (470, 630, 660, 740 and 850, 50mW). The laser diode was performed with different time interval (0, 7.5, 15, 30J/cm2, 50mW) on hBMSC. To determine the molecular physiological changes of cellular level of hBMSC, the clonogenic assay, ATP assay, reactive oxygen species (ROS) detection, mitochondria membrane potential (MMPΦ) staining and calcium efflux assay were assessed after irradiation. There was a difference between with and without irradiation on hBMSCs. An energy density up to 30 J/cm² improved the cell proliferation in comparison to the control group. Among these irradiated group, 630 and 660nm were significantly increased the cell proliferation. The cellular level of ATP and calcium influx was increased with energy dose-dependent in all LLLI groups. Meanwhile, ROS and MMPΦ were also increased after irradiation except 470nm. It can be concluded that LLLI using infrared light and an energy density up to 30 J/cm² has a positive stimulatory effect on the proliferation or differentiation of hBMSCs. Our results suggest that LLLI may influence to the mitochondrial membrane potential activity through ATP synthesis and increased cell metabolism which leads to cell proliferation and differentiation.

  8. Acute mobilization and migration of bone marrow-derived stem cells following anterior cruciate ligament rupture.

    PubMed

    Maerz, T; Fleischer, M; Newton, M D; Davidson, A; Salisbury, M; Altman, P; Kurdziel, M D; Anderson, K; Bedi, A; Baker, K C

    2017-08-01

    Little is known regarding acute local and systemic processes following anterior cruciate ligament (ACL) rupture. No study has elucidated whether bone marrow-derived mesenchymal stem cells (MSCs) are mobilized into circulation and recruited to the injured joint. In Part 1, Lewis rats were randomized to noninvasive ACL rupture (Rupture) or non-injured (Control) (n = 6/group). After 72 h, whole blood MSC concentration was assessed using flow cytometry. Synovial fluid and serum were assayed for stromal cell-derived factor (SDF)-1α and cartilage degeneration biomarkers, respectively. In Part 2, 12 additional rats were randomized and intravenously-injected with fluorescently-labeled allogenic MSCs. Cell tracking was performed using longitudinal, in vivo and ex vivo near-infrared (NIR) imaging and histology. Synovium SDF-1α and interleukin (IL)-17A immunostaining was performed. Serum was assayed for SDF-1α and 29 other cytokines. In Part 1, there was a significant increase in MSC concentration and synovial fluid SDF-1α in Rupture. No differences in cartilage biomarkers were observed. In Part 2, Rupture had significantly higher NIR signal at 24, 48, and 72 h, indicating active recruitment of MSCs to the injured joint. Ex vivo cell tracking demonstrated MSC localization in the synovium and myotendinous junction (MTJ) of the quadriceps. Injured synovia exhibited increased synovitis grade and higher degree of IL-17A and SDF-1α immunostaining. ACL rupture induced peripheral blood mobilization of MSCs and migration of intravenously-injected allogenic MSCs to the injured joint, where they localized in the synovium and quadriceps MTJ. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  9. Susceptibility of bone marrow-derived macrophages to influenza virus infection is dependent on macrophage phenotype.

    PubMed

    Campbell, Gillian M; Nicol, Marlynne Q; Dransfield, Ian; Shaw, Darren J; Nash, Anthony A; Dutia, Bernadette M

    2015-10-01

    The role of the macrophage in influenza virus infection is complex. Macrophages are critical for resolution of influenza virus infections but implicated in morbidity and mortality in severe infections. They can be infected with influenza virus and consequently macrophage infection is likely to have an impact on the host immune response. Macrophages display a range of functional phenotypes, from the prototypical pro-inflammatory classically activated cell to alternatively activated anti-inflammatory macrophages involved in immune regulation and wound healing. We were interested in how macrophages of different phenotype respond to influenza virus infection and therefore studied the infection of bone marrow-derived macrophages (BMDMs) of classical and alternative phenotype in vitro. Our results show that alternatively activated macrophages are more readily infected and killed by the virus than classically activated. Classically activated BMDMs express the pro-inflammatory markers inducible nitric oxide synthase (iNOS) and TNF-α, and TNF-α expression was further upregulated following infection. Alternatively activated macrophages express Arginase-1 and CD206; however, following infection, expression of these markers was downregulated whilst expression of iNOS and TNF-α was upregulated. Thus, infection can override the anti-inflammatory state of alternatively activated macrophages. Importantly, however, this results in lower levels of pro-inflammatory markers than those produced by classically activated cells. Our results showed that macrophage phenotype affects the inflammatory macrophage response following infection, and indicated that modulating the macrophage phenotype may provide a route to develop novel strategies to prevent and treat influenza virus infection.

  10. Cloning of two adenosine receptor subtypes from mouse bone marrow-derived mast cells.

    PubMed

    Marquardt, D L; Walker, L L; Heinemann, S

    1994-05-01

    Adenosine potentiates the stimulated release of mast cell mediators. Pharmacologic studies suggest the presence of two adenosine receptors, one positively coupled to adenylate cyclase and the other coupled to phospholipase C activation. To identify mast cell adenosine receptor subtypes, cDNAs for the A1 and A2a adenosine receptors were obtained by screening a mouse brain cDNA library with the use of PCR-derived probes. Mouse bone marrow-derived mast cell cDNA libraries were constructed and screened with the use of A1 and A2a cDNA probes, which revealed the presence of A2a, but not A1, receptor clones. A putative A2b receptor was identified by using low stringency mast cell library screening. Northern blotting of mast cell poly(A)+ RNA with the use of receptor subtype probes labeled single mRNA bands of 2.4 kb and 1.8 kb for the A2a and A2b receptors, respectively. In situ cells. An A2a receptor-specific agonist failed to enhance mast cell mediator release, which suggests that the secretory process is modulated through the A2b and/or another receptor subtype. By using RNase protection assays, we found that mast cells that had been cultured in the presence of N-ethylcarboxamidoadenosine for 24 h exhibited a decrease in both A2a and A2b receptor RNA levels. Cells that had been cultured for 1 to 2 days in the presence of dexamethasone demonstrated increased amounts of A2a receptor mRNA, but no identifiable change in A2b receptor mRNA. Mast cells possess at least two adenosine receptor subtypes that may be differentially regulated.

  11. Mild cerebellar neurodegeneration of aged heterozygous PCD mice increases cell fusion of Purkinje and bone marrow-derived cells.

    PubMed

    Díaz, David; Recio, Javier S; Weruaga, Eduardo; Alonso, José R

    2012-01-01

    Bone marrow-derived cells have different plastic properties, especially regarding cell fusion, which increases with time and is prompted by tissue injury. Several recessive mutations, including Purkinje Cell Degeneration, affect the number of Purkinje cells in homozygosis; heterozygous young animals have an apparently normal phenotype but they undergo Purkinje cell loss as they age. Our findings demonstrate that heterozygous pcd mice undergo Purkinje cell loss at postnatal day 300, this slow but steadily progressing cell death starting sooner than has been reported previously and without massive reactive gliosis or inflammation. Here, transplantation of bone marrow stem cells was performed to assess the arrival of bone marrow-derived cells in the cerebellum in these heterozygous mice. Our results reveal that a higher number of cell fusion events occurs in heterozygous animals than in the controls, on days 150 and 300 postnatally. In sum, this study indicates that mild cell death promotes the fusion of bone marrow-derived cells with surviving Purkinje neurons. This phenomenon suggests new therapies for long-lasting neurodegenerative disorders.

  12. Rotating three-dimensional dynamic culture of adult human bone marrow-derived cells for tissue engineering of hyaline cartilage.

    PubMed

    Sakai, Shinsuke; Mishima, Hajime; Ishii, Tomoo; Akaogi, Hiroshi; Yoshioka, Tomokazu; Ohyabu, Yoshimi; Chang, Fei; Ochiai, Naoyuki; Uemura, Toshimasa

    2009-04-01

    The method of constructing cartilage tissue from bone marrow-derived cells in vitro is considered a valuable technique for hyaline cartilage regenerative medicine. Using a rotating wall vessel (RWV) bioreactor developed in a NASA space experiment, we attempted to efficiently construct hyaline cartilage tissue from human bone marrow-derived cells without using a scaffold. Bone marrow aspirates were obtained from the iliac crest of nine patients during orthopedic operation. After their proliferation in monolayer culture, the adherent cells were cultured in the RWV bioreactor with chondrogenic medium for 2 weeks. Cells from the same source were cultured in pellet culture as controls. Histological and immunohistological evaluations (collagen type I and II) and quantification of glycosaminoglycan were performed on formed tissues and compared. The engineered constructs obtained using the RWV bioreactor showed strong features of hyaline cartilage in terms of their morphology as determined by histological and immunohistological evaluations. The glycosaminoglycan contents per microg DNA of the tissues were 10.01 +/- 3.49 microg/microg DNA in the case of the RWV bioreactor and 6.27 +/- 3.41 microg/microg DNA in the case of the pellet culture, and their difference was significant. The RWV bioreactor could provide an excellent environment for three-dimensional cartilage tissue architecture that can promote the chondrogenic differentiation of adult human bone marrow-derived cells.

  13. Iron overload induced death of osteoblasts in vitro: involvement of the mitochondrial apoptotic pathway

    PubMed Central

    Dai, Zhipeng; Yang, Jingjing; Zheng, Jin

    2016-01-01

    Background Iron overload is recognized as a new pathogenfor osteoporosis. Various studies demonstrated that iron overload could induce apoptosis in osteoblasts and osteoporosis in vivo. However, the exact molecular mechanisms involved in the iron overload-mediated induction of apoptosis in osteoblasts has not been explored. Purpose In this study, we attempted to determine whether the mitochondrial apoptotic pathway is involved in iron-induced osteoblastic cell death and to investigate the beneficial effect of N-acetyl-cysteine (NAC) in iron-induced cytotoxicity. Methods The MC3T3-E1 osteoblastic cell line was treated with various concentrations of ferric ion in the absence or presence of NAC, and intracellular iron, cell viability, reactive oxygen species, functionand morphology changes of mitochondria and mitochondrial apoptosis related key indicators were detected by commercial kits. In addition, to further explain potential mechanisms underlying iron overload-related osteoporosis, we also assessed cell viability, apoptosis, and osteogenic differentiation potential in bone marrow-derived mesenchymal stemcells(MSCs) by commercial kits. Results Ferric ion demonstrated concentration-dependent cytotoxic effects on osteoblasts. After incubation with iron, an elevation of intracelluar labile iron levels and a concomitant over-generation of reactive oxygen species (ROS) were detected by flow cytometry in osteoblasts. Nox4 (NADPH oxidase 4), an important ROS producer, was also evaluated by western blot. Apoptosis, which was evaluated by Annexin V/propidium iodide staining, Hoechst 33258 staining, and the activation of caspase-3, was detected after exposure to iron. Iron contributed to the permeabilizatio of mitochondria, leading to the release of cytochrome C (cyto C), which, in turn, induced mitochondrial apoptosis in osteoblasts via activation of Caspase-3, up-regulation of Bax, and down-regulation of Bcl-2. NAC could reverse iron-mediated mitochondrial dysfunction and

  14. Iron overload induced death of osteoblasts in vitro: involvement of the mitochondrial apoptotic pathway.

    PubMed

    Tian, Qing; Wu, Shilei; Dai, Zhipeng; Yang, Jingjing; Zheng, Jin; Zheng, Qixin; Liu, Yong

    2016-01-01

    Iron overload is recognized as a new pathogenfor osteoporosis. Various studies demonstrated that iron overload could induce apoptosis in osteoblasts and osteoporosis in vivo. However, the exact molecular mechanisms involved in the iron overload-mediated induction of apoptosis in osteoblasts has not been explored. In this study, we attempted to determine whether the mitochondrial apoptotic pathway is involved in iron-induced osteoblastic cell death and to investigate the beneficial effect of N-acetyl-cysteine (NAC) in iron-induced cytotoxicity. The MC3T3-E1 osteoblastic cell line was treated with various concentrations of ferric ion in the absence or presence of NAC, and intracellular iron, cell viability, reactive oxygen species, functionand morphology changes of mitochondria and mitochondrial apoptosis related key indicators were detected by commercial kits. In addition, to further explain potential mechanisms underlying iron overload-related osteoporosis, we also assessed cell viability, apoptosis, and osteogenic differentiation potential in bone marrow-derived mesenchymal stemcells(MSCs) by commercial kits. Ferric ion demonstrated concentration-dependent cytotoxic effects on osteoblasts. After incubation with iron, an elevation of intracelluar labile iron levels and a concomitant over-generation of reactive oxygen species (ROS) were detected by flow cytometry in osteoblasts. Nox4 (NADPH oxidase 4), an important ROS producer, was also evaluated by western blot. Apoptosis, which was evaluated by Annexin V/propidium iodide staining, Hoechst 33258 staining, and the activation of caspase-3, was detected after exposure to iron. Iron contributed to the permeabilizatio of mitochondria, leading to the release of cytochrome C (cyto C), which, in turn, induced mitochondrial apoptosis in osteoblasts via activation of Caspase-3, up-regulation of Bax, and down-regulation of Bcl-2. NAC could reverse iron-mediated mitochondrial dysfunction and blocked the apoptotic events

  15. Injury mechanism dictates contribution of bone marrow-derived cells to murine hepatic vascular regeneration

    USDA-ARS?s Scientific Manuscript database

    Stem and progenitor cells derived from adult marrow have been shown to regenerate vascular cells in response to injury. However, it is unclear whether the type of injury dictates the contribution of such cells to neovascularization and which subpopulations of cells contribute to vascular regeneratio...

  16. Hydrocortisone differentially affects the ability of murine stromal cells and human marrow-derived adherent cells to promote the differentiation of CD34++/CD38- long-term culture-initiating cells.

    PubMed

    Croisille, L; Auffray, I; Katz, A; Izac, B; Vainchenker, W; Coulombel, L

    1994-12-15

    Very primitive human hematopoietic progenitor cells are identified indirectly by their ability to give rise to clonogenic progenitors in the presence of either human or murine stromal cells. These long-term culture-initiating cell (LTC-IC) assays are usually performed in the presence of hydrocortisone based on the initial observation that hydrocortisone was required for prolonged hematopoiesis in standard long-term bone marrow cultures. In this report, we investigated the role of hydrocortisone in LTC-IC assays initiated with CD34++/CD38- cells seeded onto either human bone marrow LTC-derived adherent cells or a murine marrow-derived stromal cell line, MS-5. It was found that weekly addition of hydrocortisone to the cultures reduced the frequency of LTC-IC (from 1/5 to 1/20) calculated from limiting dilution experiments and also reduced fivefold to 10-fold the number of their progeny clonogenic cells detected after 4 to 5 weeks. In contrast, the frequency and differentiative potential of CD34++/CD38- grown in the presence of human marrow feeders was unaltered by the addition of glucocorticoids. Data are consistent with the hypothesis that hydrocortisone inhibited LTC-IC differentiation by downregulating the expression of a synergistic factor produced by MS-5 cells. (1) In the absence of hydrocortisone, the number of clonogenic progenitors generated by LTC-IC was much higher in cultures seeded on MS-5 than in cultures seeded on human marrow adherent cells, which was also true when cytokines were added to the cocultures. However, based on the phenotype of the colonies, progenitors produced in MS-5 cocultures were more mature than those generated on human marrow adherent cells. (2) Hydrocortisone counteracted the stimulatory effect of recombinant human cytokines (interleukin-3, interleukin-6, and steel factor) in assays performed on MS-5 but not on human marrow feeders. (3) Hydrocortisone led to a 50% decrease in the numbers of colony-forming units

  17. Stromal Cell-Derived Factor-1β Potentiates Bone Morphogenetic Protein-2-Stimulated Osteoinduction of Genetically Engineered Bone Marrow-Derived Mesenchymal Stem Cells In Vitro

    PubMed Central

    Herberg, Samuel; Fulzele, Sadanand; Yang, Nianlan; Shi, Xingming; Hess, Matthew; Periyasamy-Thandavan, Sudharsan; Hamrick, Mark W.; Isales, Carlos M.

    2013-01-01

    Skeletal injuries are among the most prevalent clinical problems and bone marrow-derived mesenchymal stem/stromal cells (BMSCs) have successfully been used for the treatment thereof. Stromal cell-derived factor-1 (SDF-1; CXCL12) is a member of the CXC chemokine family with multiple splice variants. The two most abundant variants, SDF-1α and SDF-1β, share identical amino acid sequences, except for four additional amino acids at the C-terminus of SDF-1β, which may mediate surface stabilization via glycosaminoglycans and protect SDF-1β from proteolytic cleavage, rendering it twice as potent as SDF-1α. Increasing evidence suggests that SDF-1 is involved in bone formation through regulation of recruitment, engraftment, proliferation, and differentiation of stem/progenitor cells. The underlying molecular mechanisms, however, have not yet been fully elucidated. In this study, we tested the hypothesis that SDF-1β can potentiate bone morphogenetic protein-2 (BMP-2)-stimulated osteogenic differentiation and chemotaxis of BMSCs in vitro. Utilizing retrovirus-mediated gene transfer to generate novel Tet-Off-SDF-1β BMSCs, we found that conditional SDF-1β expression is tightly regulated by doxycycline in a dose-dependent and temporal fashion, leading to significantly increased SDF-1β mRNA and protein levels. In addition, SDF-1β was found to enhance BMP-2-stimulated mineralization, mRNA and protein expression of key osteogenic markers, and regulate BMP-2 signal transduction via extracellular signal-regulated kinases 1/2 (Erk1/2) phosphorylation in genetically engineered BMSCs in vitro. We also showed that SDF-1β promotes the migratory response of CXC chemokine receptor 4 (CXCR4)-expressing BMSCs in vitro. Taken together, these data support that SDF-1β can play an important role in BMP-2-stimulated osteogenic differentiation of BMSCs and may exert its biological activity in both an autocrine and paracrine fashion. PMID:22779446

  18. NGR-TNF, a novel vascular-targeting agent, does not induce cytokine recruitment of proangiogenic bone marrow-derived cells

    PubMed Central

    Di Matteo, P; Hackl, C; Jedeszko, C; Valentinis, B; Bordignon, C; Traversari, C; Kerbel, R S; Rizzardi, G-P

    2013-01-01

    Background: Administration of certain chemotherapy drugs at the maximum tolerated dose, vascular-disrupting agents (VDAs) and irradiation can induce mobilisation and tumour homing of proangiogenic bone marrow-derived cells (BMDCs). Increases in cytokines and chemokines contribute to such mobilisation that eventually promotes tumour (re)growth. NGR-TNF is a vascular-targeting agent in advanced clinical development, coupling the CNGRCG angiogenic vessel-homing peptide with tumour necrosis factor-alpha (TNF). We investigated whether NGR-TNF mobilises host BMDCs and growth factors. Methods: Blood was obtained from Lewis lung carcinoma and 4T1 tumour-bearing mice at different time points following NGR-TNF, VDA or anti-VEGFR2/flk-1 antibody treatment. Levels of circulating growth factors were assessed by ELISAs. BMDCs were characterised by FACS. Circulating endothelial progenitor cells were defined as CD45−/CD13+/flk-1+/CD117+/7AAD−, Tie2-expressing monocytes as CD45+/CD11b+/Tie2+ and myeloid-derived suppressor cells as CD45+/CD11b+/Gr1+ cells. Results: NGR-TNF decreases tumour blood vessel density-inducing apoptosis of tumour and tumour endothelial cells. Unlike VDAs, or high-dose NGR-TNF, lower doses of NGR-TNF, comparable to those used in clinical trials, neither mobilise nor recruit to the tumour site proangiogenic BMDCs or induce host growth factors. Conclusion: Low-dose NGR-TNF exerts antitumour activity without inducing proangiogenic host responses, conceivably important for preventing/overcoming resistance and designing combination therapeutic strategies. PMID:23828516

  19. Effect of autologous bone marrow-derived cells associated with guided bone regeneration or not in the treatment of peri-implant defects.

    PubMed

    Ribeiro, F V; Suaid, F F; Ruiz, K G S; Rodrigues, T L; Carvalho, M D; Nociti, F H; Sallum, E A; Casati, M Z

    2012-01-01

    This study investigated the effect of bone marrow-derived cells associated with guided bone regeneration in the treatment of dehiscence bone defects around dental implants. Iliac-derived bone marrow cells were harvested from dogs and phenotypically characterized with regard to their osteogenic properties. After teeth extraction, three implant sites were drilled, dehiscences created and implants placed. Dehiscences were randomly assigned to: bone marrow-derived cells, bone marrow-derived cells+guided bone regeneration, and control (no treatment). After 3 months, implants with adjacent tissues were processed histologically, bone-to-implant contact, bone fill within the threads, new bone area in a zone lateral to the implant, new bone height, and new bone weight at the bottom of the defect were determined. Phenotypic characterization demonstrated that bone marrow-derived cells presented osteogenic potential. Statistically higher bone fill within the threads was observed in both bone marrow-derived cells+guided bone regeneration bone marrow-derived cell groups compared with the control group (P<0.05), with no difference between the groups treated with cells (P>0.05). For the other parameters (new bone area, bone-to-implant contact, new bone height and new bone weight), only the bone marrow-derived cells+guided bone regeneration group presented higher values compared with the non-treated control (P<0.05). Bone marrow-derived cells provided promising results for peri-implantar bone regeneration, although the combined approach seems to be relevant, especially to bone formation out of the implant threads.

  20. Beneficial Effects of Autologous Bone Marrow-Derived Mesenchymal Stem Cells in Naturally Occurring Tendinopathy

    PubMed Central

    Smith, Roger Kenneth Whealands; Werling, Natalie Jayne; Dakin, Stephanie Georgina; Alam, Rafiqul; Goodship, Allen E.; Dudhia, Jayesh

    2013-01-01

    Tendon injuries are a common age-related degenerative condition where current treatment strategies fail to restore functionality and normal quality of life. This disease also occurs naturally in horses, with many similarities to human tendinopathy making it an ideal large animal model for human disease. Regenerative approaches are increasingly used to improve outcome involving mesenchymal stem cells (MSCs), supported by clinical data where injection of autologous bone marrow derived MSCs (BM-MSCs) suspended in marrow supernatant into injured tendons has halved the re-injury rate in racehorses. We hypothesized that stem cell therapy induces a matrix more closely resembling normal tendon than the fibrous scar tissue formed by natural repair. Twelve horses with career-ending naturally-occurring superficial digital flexor tendon injury were allocated randomly to treatment and control groups. 1X107 autologous BM-MSCs suspended in 2 ml of marrow supernatant were implanted into the damaged tendon of the treated group. The control group received the same volume of saline. Following a 6 month exercise programme horses were euthanized and tendons assessed for structural stiffness by non-destructive mechanical testing and for morphological and molecular composition. BM-MSC treated tendons exhibited statistically significant improvements in key parameters compared to saline-injected control tendons towards that of normal tendons and those in the contralateral limbs. Specifically, treated tendons had lower structural stiffness (p<0.05) although no significant difference in calculated modulus of elasticity, lower (improved) histological scoring of organisation (p<0.003) and crimp pattern (p<0.05), lower cellularity (p<0.007), DNA content (p<0.05), vascularity (p<0.03), water content (p<0.05), GAG content (p<0.05), and MMP-13 activity (p<0.02). Treatment with autologous MSCs in marrow supernatant therefore provides significant benefits compared to untreated tendon repair in

  1. Paracrine Mechanisms of Intravenous Bone Marrow-Derived Mononuclear Stem Cells in Chronic Ischemic Stroke.

    PubMed

    Bhasin, Ashu; Srivastava, M V Padma; Mohanty, Sujata; Vivekanandhan, Sivasubramaniam; Sharma, Sakshi; Kumaran, Senthil; Bhatia, Rohit

    2016-01-01

    The emerging role of stem cell technology and transplantation has helped scientists to study their potential role in neural repair and regeneration. The fate of stem cells is determined by their niche, consisting of surrounding cells and the secreted trophic growth factors. This interim report evaluates the safety, feasibility and efficacy (if any) of bone marrow-derived mononuclear stem cells (BM-MNC) in chronic ischemic stroke by studying the release of serum vascular endothelial growth factor (VEGF) and brain-derived neurotrophic growth factor (BDNF). Twenty stroke patients and 20 age-matched healthy controls were recruited with the following inclusion criteria: 3 months to 1.5 years from the index event, Medical Research Council (MRC) grade of hand muscles of at least 2, Brunnstrom stage 2-5, conscious, and comprehendible. They were randomized to one group receiving autologous BM-MNC (mean 60-70 million) and to another group receiving saline infusion (placebo). All patients were administered a neuromotor rehabilitation regime for 8 weeks. Clinical assessments [Fugl Meyer scale (FM), modified Barthel index (mBI), MRC grade, Ashworth tone scale] were carried out and serum VEGF and BDNF levels were assessed at baseline and at 8 weeks. No serious adverse events were observed during the study. There was no statistically significant clinical improvement between the groups (FM: 95% CI 15.2-5.35, p = 0.25; mBI: 95% CI 14.3-4.5, p = 0.31). VEGF and BDNF expression was found to be greater in group 1 compared to group 2 (VEGF: 442.1 vs. 400.3 pg/ml, p = 0.67; BDNF: 21.3 vs. 19.5 ng/ml) without any statistically significant difference. Autologous mononuclear stem cell infusion is safe and tolerable by chronic ischemic stroke patients. The released growth factors (VEGF and BDNF) in the microenvironment could be due to the paracrine hypothesis of stem cell niche and neurorehabilitation regime. © 2016 The Author(s) Published by S. Karger AG, Basel.

  2. Bone marrow-derived mesenchymal stem cells promote growth and angiogenesis of breast and prostate tumors

    PubMed Central

    2013-01-01

    Introduction Mesenchymal stem cells (MSCs) are known to migrate to tumor tissues. This behavior of MSCs has been exploited as a tumor-targeting strategy for cell-based cancer therapy. However, the effects of MSCs on tumor growth are controversial. This study was designed to determine the effect of MSCs on the growth of breast and prostate tumors. Methods Bone marrow-derived MSCs (BM-MSCs) were isolated and characterized. Effects of BM-MSCs on tumor cell proliferation were analyzed in a co-culture system with mouse breast cancer cell 4T1 or human prostate cancer cell DU145. Tumor cells were injected into nude mice subcutaneously either alone or coupled with BM-MSCs. The expression of cell proliferation and angiogenesis-related proteins in tumor tissues were immunofluorescence analyzed. The angiogenic effect of BM-MSCs was detected using a tube formation assay. The effects of the crosstalk between tumor cells and BM-MSCs on expression of angiogenesis related markers were examined by immunofluorescence and real-time PCR. Results Both co-culturing with mice BM-MSCs (mBM-MSCs) and treatment with mBM-MSC-conditioned medium enhanced the growth of 4T1 cells. Co-injection of 4T1 cells and mBM-MSCs into nude mice led to increased tumor size compared with injection of 4T1 cells alone. Similar experiments using DU145 cells and human BM-MSCs (hBM-MSCs) instead of 4T1 cells and mBM-MSCs obtained consistent results. Compared with tumors induced by injection of tumor cells alone, the blood vessel area was greater in tumors from co-injection of tumor cells with BM-MSCs, which correlated with decreased central tumor necrosis and increased tumor cell proliferation. Furthermore, both conditioned medium from hBM-MSCs alone and co-cultures of hBM-MSCs with DU145 cells were able to promote tube formation ability of human umbilical vein endothelial cells. When hBM-MSCs are exposed to the DU145 cell environment, the expression of markers associated with neovascularization (macrophage

  3. Paracrine Mechanisms of Intravenous Bone Marrow-Derived Mononuclear Stem Cells in Chronic Ischemic Stroke

    PubMed Central

    Bhasin, Ashu; Srivastava, M.V. Padma; Mohanty, Sujata; Vivekanandhan, Sivasubramaniam; Sharma, Sakshi; Kumaran, Senthil; Bhatia, Rohit

    2016-01-01

    Background The emerging role of stem cell technology and transplantation has helped scientists to study their potential role in neural repair and regeneration. The fate of stem cells is determined by their niche, consisting of surrounding cells and the secreted trophic growth factors. This interim report evaluates the safety, feasibility and efficacy (if any) of bone marrow-derived mononuclear stem cells (BM-MNC) in chronic ischemic stroke by studying the release of serum vascular endothelial growth factor (VEGF) and brain-derived neurotrophic growth factor (BDNF). Methods Twenty stroke patients and 20 age-matched healthy controls were recruited with the following inclusion criteria: 3 months to 1.5 years from the index event, Medical Research Council (MRC) grade of hand muscles of at least 2, Brunnstrom stage 2-5, conscious, and comprehendible. They were randomized to one group receiving autologous BM-MNC (mean 60-70 million) and to another group receiving saline infusion (placebo). All patients were administered a neuromotor rehabilitation regime for 8 weeks. Clinical assessments [Fugl Meyer scale (FM), modified Barthel index (mBI), MRC grade, Ashworth tone scale] were carried out and serum VEGF and BDNF levels were assessed at baseline and at 8 weeks. Results No serious adverse events were observed during the study. There was no statistically significant clinical improvement between the groups (FM: 95% CI 15.2-5.35, p = 0.25; mBI: 95% CI 14.3-4.5, p = 0.31). VEGF and BDNF expression was found to be greater in group 1 compared to group 2 (VEGF: 442.1 vs. 400.3 pg/ml, p = 0.67; BDNF: 21.3 vs. 19.5 ng/ml) without any statistically significant difference. Conclusion Autologous mononuclear stem cell infusion is safe and tolerable by chronic ischemic stroke patients. The released growth factors (VEGF and BDNF) in the microenvironment could be due to the paracrine hypothesis of stem cell niche and neurorehabilitation regime. PMID:27846623

  4. The therapeutic potential of bone marrow-derived mesenchymal stromal cells on hepatocellular carcinoma.

    PubMed

    Bayo, Juan; Marrodán, Mariano; Aquino, Jorge B; Silva, Marcelo; García, Mariana G; Mazzolini, Guillermo

    2014-03-01

    Mesenchymal stromal cells (MSCs) are more often obtained from adult and extraembryonic tissues, with the latter sources being likely better from a therapeutic perspective. MSCs show tropism towards inflamed or tumourigenic sites. Mechanisms involved in MSC recruitment into tumours are comprehensively analysed, including chemoattractant signalling axes, endothelial adhesion and transmigration. In addition, signals derived from hepatocellular carcinoma (HCC) tumour microenvironment and their influence in MSC tropism and tumour recruitment are dissected, as well as the present controversy regarding their influence on tumour growth and/or metastasis. Finally, evidences available on the use of MSCs and other selected progenitor/stem cells as vehicles of antitumourigenic genes are discussed. A better knowledge of the mechanisms involved in progenitor/stem cell recruitment to HCC tumours is proposed in order to enhance their tumour targeting which may result in improvements in cell-based gene therapy strategies.

  5. Activation of Bone Marrow-Derived Microglia Promotes Photoreceptor Survival in Inherited Retinal Degeneration

    PubMed Central

    Sasahara, Manabu; Otani, Atsushi; Oishi, Akio; Kojima, Hiroshi; Yodoi, Yuko; Kameda, Takanori; Nakamura, Hajime; Yoshimura, Nagahisa

    2008-01-01

    The role of microglia in neurodegeneration is controversial, although microglial activation in the retina has been shown to provide an early response against infection, injury, ischemia, and degeneration. Here we show that endogenous bone marrow (BM)-derived microglia play a protective role in vascular and neural degeneration in the retinitis pigmentosa model of inherited retinal degeneration. BM-derived cells were recruited to the degenerating retina where they differentiated into microglia and subsequently localized to the degenerating vessels and neurons. Inhibition of stromal-derived factor-1 in the retina reduced the number of BM-derived microglia and accelerated the rate of neurovascular degeneration. Systemic depletion of myeloid progenitors also accelerated the degenerative process. Conversely, activation of BM-derived myeloid progenitors by systemic administration of both granulocyte colony-stimulating factor and erythropoietin resulted in the deceleration of retinal degeneration and the promotion of cone cell survival. These data indicate that BM-derived microglia may play a protective role in retinitis pigmentosa. Functional activation of BM-derived myeloid progenitors by cytokine therapy may provide a novel strategy for the treatment of inherited retinal degeneration and other neurodegenerative diseases, regardless of the underlying genetic defect. PMID:18483210

  6. Osteogenic differentiation of human bone marrow-derived mesenchymal cells cultured on alumina ceramics.

    PubMed

    Kitamura, Shigeyuki; Ohgushi, Hajime; Hirose, Motohiro; Funaoka, Hiroyuki; Takakura, Yoshinori; Ito, Hiromoto

    2004-01-01

    Alumina ceramics have excellent mechanical and biocompatible properties, but are bioinert and hence have no bone-bonding properties. We took a tissue-engineering approach in an attempt to modify the ceramic surface and so provide an osteogenic/osteoconductive milieu. We obtained human bone marrow mesenchymal cells from four donors and then cultured the cells for two weeks on alumina ceramic in the presence of beta-glycerophosphate, ascorbic acid and dexamethasone. The cells showed extensive alkaline phosphatase staining and mineralization, as evidenced by Alizarin Red S staining and calcein uptake. Biochemical analyses revealed high levels of alkaline phosphatase activity, osteocalcin expression and calcium content. This data indicates the appearance of active osteoblasts that are concomitant with bone matrix formation, i.e., in vitro cultured bone. The cultured bone/alumina composites should prevent the aseptic loosening of all-alumina ceramic joints or the detachment of implanted alumina ceramics, and thus could have clinical significance in orthopedic reconstructive surgery.

  7. Effects of allogeneic bone marrow derived mesenchymal stromal cell therapy on voiding function in a rat model of Parkinson disease.

    PubMed

    Campeau, Lysanne; Soler, Roberto; Sittadjody, Sivanandane; Pareta, Rajesh; Nomiya, Masanori; Zarifpour, Mona; Opara, Emmanuel C; Yoo, James J; Andersson, Karl-Erik

    2014-03-01

    Cellular therapy induced transient urodynamic improvement in a rat model of Parkinson disease in which bladder dysfunction was noted after unilateral injection of 6-hydroxydopamine into the medial forebrain bundle. We sought to prolong the effect by injecting allogeneic rat bone marrow mesenchymal stromal cells before and after microencapsulation into the substantia nigra pars compacta. Female rats underwent unilateral stereotactic injection of 6-hydroxydopamine in the medial forebrain bundle. Injection was performed in the ipsilateral substantia nigra pars compacta using vehicle alone or vehicle with nonmicroencapsulated or microencapsulated rat bone marrow derived mesenchymal stromal cells. Rats were evaluated by cystometry 7, 14, 28 and 42 days after treatment. Brains were extracted for immunostaining. At 42 days the nonmicroencapsulated group had lower threshold and intermicturition pressure, spontaneous activity and AUC than vehicle treated animals. Rats that received microencapsulated cells had lower threshold pressure at 28 days and lower spontaneous activity at 42 days than vehicle treated rats. Microencapsulated and nonmicroencapsulated rat bone marrow derived mesenchymal stromal cells were noted in the substantia nigra pars compacta up to 42 days after transplantation. At 42 days tyrosine hydroxylase positive neurons were more numerous in the substantia nigra pars compacta of the nonmicroencapsulated group, followed by the microencapsulated and vehicle treated groups. Urodynamic effects of the 6-hydroxydopamine lesion persisted up to 42 days after vehicle injection. Transplantation of nonmicroencapsulated rat bone marrow derived mesenchymal stromal cells improved urodynamic pressure by 42 days after treatment more markedly than microencapsulated cells. This was associated with more tyrosine hydroxylase positive neurons in the treated substantia nigra pars compacta of the nonmicroencapsulated group, suggesting that functional improvement requires a

  8. Characterization and Immunomodulatory Effects of Canine Adipose Tissue- and Bone Marrow-Derived Mesenchymal Stromal Cells

    PubMed Central

    Russell, Keith A.; Chow, Natalie H. C.; Dukoff, David; Gibson, Thomas W. G.; LaMarre, Jonathan; Betts, Dean H.; Koch, Thomas G.

    2016-01-01

    Background Mesenchymal stromal cells (MSC) hold promise for both cell replacement and immune modulation strategies owing to their progenitor and non-progenitor functions, respectively. Characterization of MSC from different sources is an important and necessary step before clinical use of these cells is widely adopted. Little is known about the biology and function of canine MSC compared to their mouse or human counterparts. This knowledge-gap impedes development of canine evidence-based MSC technologies. Hypothesis and Objectives We hypothesized that canine adipose tissue (AT) and bone marrow (BM) MSC (derived from the same dogs) will have similar differentiation and immune modulatory profiles. Our objectives were to evaluate progenitor and non-progenitor functions as well as other characteristics of AT- and BM-MSC including 1) proliferation rate, 2) cell surface marker expression, 3) DNA methylation levels, 4) potential for trilineage differentiation towards osteogenic, adipogenic, and chondrogenic cell fates, and 5) immunomodulatory potency in vitro. Results 1) AT-MSC proliferated at more than double the rate of BM-MSC (population doubling times in days) for passage (P) 2, AT: 1.69, BM: 3.81; P3, AT: 1.80, BM: 4.06; P4, AT: 2.37, BM: 5.34; P5, AT: 3.20, BM: 7.21). 2) Canine MSC, regardless of source, strongly expressed cell surface markers MHC I, CD29, CD44, and CD90, and were negative for MHC II and CD45. They also showed moderate expression of CD8 and CD73 and mild expression of CD14. Minor differences were found in expression of CD4 and CD34. 3) Global DNA methylation levels were significantly lower in BM-MSC compared to AT-MSC. 4) Little difference was found between AT- and BM-MSC in their potential for adipogenesis and osteogenesis. Chondrogenesis was poor to absent for both sources in spite of adding varying levels of bone-morphogenic protein to our standard transforming growth factor (TGF-β3)-based induction medium. 5) Immunomodulatory capacity was equal

  9. Chromatin Changes at the PPAR-γ2 Promoter During Bone Marrow-Derived Multipotent Stromal Cell Culture Correlate With Loss of Gene Activation Potential.

    PubMed

    Lynch, Patrick J; Thompson, Elaine E; McGinnis, Kathleen; Rovira Gonzalez, Yazmin I; Lo Surdo, Jessica; Bauer, Steven R; Hursh, Deborah A

    2015-07-01

    Bone marrow-derived multipotent stromal cells (BM-MSCs) display a broad range of therapeutically valuable properties, including the capacity to form skeletal tissues and dampen immune system responses. However, to use BM-MSCs in a clinical setting, amplification is required, which may introduce epigenetic changes that affect biological properties. Here we used chromatin immunoprecipitation to compare post-translationally modified histones at a subset of gene promoters associated with developmental and environmental plasticity in BM-MSCs from multiple donors following culture expansion. At many locations, we observed localization of both transcriptionally permissive (H3K4me3) and repressive (H3K27me3) histone modifications. These chromatin signatures were consistent among BM-MSCs from multiple donors. Since promoter activity depends on the relative levels of H3K4me3 and H3K27me3, we examined the ratio of H3K4me3 to H3K27me3 (K4/K27) at promoters during culture expansion. The H3K4me3 to H3K27me3 ratios were maintained at most assayed promoters over time. The exception was the adipose-tissue specific promoter for the PPAR-γ2 isoform of PPAR-γ, which is a critical positive regulator of adipogenesis. At PPAR-γ2, we observed a change in K4/K27 levels favoring the repressed chromatin state during culture. This change correlated with diminished promoter activity in late passage cells exposed to adipogenic stimuli. In contrast to BM-MSCs and osteoblasts, lineage-restricted preadipocytes exhibited levels of H3K4me3 and H3K27me3 that favored the permissive chromatin state at PPAR-γ2. These results demonstrate that locus-specific changes in H3K4me3 and H3K27me3 levels can occur during BM-MSC culture that may affect their properties. Stem Cells 2015;33:2169-2181. © 2015 AlphaMed Press.

  10. Synergistic effect of recombinant human bone morphogenic protein-7 and osteogenic differentiation medium on human bone-marrow-derived mesenchymal stem cells in vitro.

    PubMed

    Zhi, Lianteng; Chen, Chao; Pang, Xiaoli; Uludag, Hasan; Jiang, Hongxing

    2011-12-01

    The purpose of this study was to investigate the effect of recombinant human bone morphogenetic protein-7 (rhBMP-7) with or without osteogenic differentiation medium (ODM) on osteogenic differentiation of primary human bone-marrow-derived mesenchymal stem cells (hBMSCs) in vitro. The hBMSCs were isolated from medullary reaming tissue. At 80% confluence, hBMSCs were treated with different concentrations of rhBMP-7 with and without ODM. Alkaline phosphatase (ALP) activity, calcium deposition and messenger RNA (mRNA) expression of osteocalcin (OC) and osteopontin (OPN) were examined. ALP activity and calcium deposits in hBMSC culture were significantly increased by rhBMP-7 at 0.1 μg/ml (0.23 ± 0.07 IU and 28.9 ± 4.2 mg/dl) and 1.0 μg/ml (0.32 ± 0.03 IU and 38.7 ± 3.0 mg/dl), respectively, in the presence of ODM, showing a clearly dose-dependent osteoblastic differentiation. However, the same dose of 0.1 μg/ml rhBMP-7 without ODM and ODM alone induced low level of ALP and calcium deposits, indicating a synergistic effect of rhBMP-7 and ODM on committed osteogenic differentiation. Quantitative real-time reverse-transcriptase polymerase chain reaction (RT-PCR) analysis showed up-regulated OC and OPN mRNA levels, corroborating the synergistic effect of rhBMP-7 and ODM. Our study showed that rhBMP-7 with ODM created a synergistic effect on up-regulation of osteogenic genes as well as osteogenic differentiation of primary hBMSCs in vitro. In the presence of ODM, the lowest concentration of rhBMP-7 needed to induce significant osteogenic differentiation of hBMSCs was 0.1 μg/ml.

  11. Insulin resistance and increased lipolysis in bone marrow derived adipocytes stimulated with agonists of Toll-like receptors.

    PubMed

    Franchini, M; Monnais, E; Seboek, D; Radimerski, T; Zini, E; Kaufmann, K; Lutz, T; Reusch, C; Ackermann, M; Muller, B; Linscheid, P

    2010-09-01

    Our objectives were to identify Toll-like receptors (TLRs) in human bone marrow derived adipocytes, to test specific TLR agonists for their ability to induce a proinflammatory response, and to investigate possible metabolic effects after TLR activation, in particular, those associated with insulin resistance and lipolysis. Mesenchymal stem cells were isolated from human bone marrow and differentiated into adipocytes. Total RNA before or after stimulation with agonists specific for TLR was extracted for analysis of expression of TLRs proinflammatory signals and molecules involved in glucose metabolism (IRS-1 and GLUT4). Furthermore, cytokine protein expression was measured from cell lysates. Finally, insulin induced glucose uptake and lipolysis were measured. Human bone marrow-derived adipocytes express TLR1-10. They react to stimulation with specific ligands with expression of inflammatory markers (IL-1beta, IL-6, TNFalpha, IL-8, MCP-1) at the RNA and protein levels. IRS-1 and GLUT4 expression was downregulated after stimulation with the TLR4 and TLR3 specific ligands LPS and poly (I:C), respectively. Insulin-induced glucose uptake was decreased and lipolysis increased. We conclude that adipocytes express TLR 1-10 and react to agonists specific for TLR 1-6. As a consequence proinflammatory cytokine are induced, in particular, IL-6, IL-8, and MCP-1. Since stimulation is followed by decreased insulin-induced glucose uptake and increased lipolysis we conclude that TLRs may be important linking molecules in the generation of insulin resistance in fat tissue.

  12. Repeated Autologous Bone Marrow-Derived Mesenchymal Stem Cell Injections Improve Radiation-Induced Proctitis in Pigs

    PubMed Central

    Busson, Elodie; Holler, Valerie; Strup-Perrot, Carine; Lacave-Lapalun, Jean-Victor; Lhomme, Bruno; Prat, Marie; Devauchelle, Patrick; Sabourin, Jean-Christophe; Simon, Jean-Marc; Bonneau, Michel; Lataillade, Jean-Jacques; Benderitter, Marc

    2013-01-01

    The management of proctitis in patients who have undergone very-high-dose conformal radiotherapy is extremely challenging. The fibrosis-necrosis, fistulae, and hemorrhage induced by pelvic overirradiation have an impact on morbidity. Augmenting tissue repair by the use of mesenchymal stem cells (MSCs) may be an important advance in treating radiation-induced toxicity. Using a preclinical pig model, we investigated the effect of autologous bone marrow-derived MSCs on high-dose radiation-induced proctitis. Irradiated pigs received repeated intravenous administrations of autologous bone marrow-derived MSCs. Immunostaining and real-time polymerase chain reaction analysis were used to assess the MSCs' effect on inflammation, extracellular matrix remodeling, and angiogenesis, in radiation-induced anorectal and colon damages. In humans, as in pigs, rectal overexposure induces mucosal damage (crypt depletion, macrophage infiltration, and fibrosis). In a pig model, repeated administrations of MSCs controlled systemic inflammation, reduced in situ both expression of inflammatory cytokines and macrophage recruitment, and augmented interleukin-10 expression in rectal mucosa. MSC injections limited radiation-induced fibrosis by reducing collagen deposition and expression of col1a2/col3a1 and transforming growth factor-β/connective tissue growth factor, and by modifying the matrix metalloproteinase/TIMP balance. In a pig model of proctitis, repeated injections of MSCs effectively reduced inflammation and fibrosis. This treatment represents a promising therapy for radiation-induced severe rectal damage. PMID:24068742

  13. Repeated autologous bone marrow-derived mesenchymal stem cell injections improve radiation-induced proctitis in pigs.

    PubMed

    Linard, Christine; Busson, Elodie; Holler, Valerie; Strup-Perrot, Carine; Lacave-Lapalun, Jean-Victor; Lhomme, Bruno; Prat, Marie; Devauchelle, Patrick; Sabourin, Jean-Christophe; Simon, Jean-Marc; Bonneau, Michel; Lataillade, Jean-Jacques; Benderitter, Marc

    2013-11-01

    The management of proctitis in patients who have undergone very-high-dose conformal radiotherapy is extremely challenging. The fibrosis-necrosis, fistulae, and hemorrhage induced by pelvic overirradiation have an impact on morbidity. Augmenting tissue repair by the use of mesenchymal stem cells (MSCs) may be an important advance in treating radiation-induced toxicity. Using a preclinical pig model, we investigated the effect of autologous bone marrow-derived MSCs on high-dose radiation-induced proctitis. Irradiated pigs received repeated intravenous administrations of autologous bone marrow-derived MSCs. Immunostaining and real-time polymerase chain reaction analysis were used to assess the MSCs' effect on inflammation, extracellular matrix remodeling, and angiogenesis, in radiation-induced anorectal and colon damages. In humans, as in pigs, rectal overexposure induces mucosal damage (crypt depletion, macrophage infiltration, and fibrosis). In a pig model, repeated administrations of MSCs controlled systemic inflammation, reduced in situ both expression of inflammatory cytokines and macrophage recruitment, and augmented interleukin-10 expression in rectal mucosa. MSC injections limited radiation-induced fibrosis by reducing collagen deposition and expression of col1a2/col3a1 and transforming growth factor-β/connective tissue growth factor, and by modifying the matrix metalloproteinase/TIMP balance. In a pig model of proctitis, repeated injections of MSCs effectively reduced inflammation and fibrosis. This treatment represents a promising therapy for radiation-induced severe rectal damage.

  14. Native and bone marrow-derived cell mosaicism in gastric carcinoma in H. pylori-infected p27-deficient mice

    PubMed Central

    Zhang, Songhua; Kim, Woojin; Pham, Tu T.; Rogers, Arlin B.; Houghton, Jean Marie; Moss, Steven F.

    2016-01-01

    Objective Chronic Helicobacter pylori (H. pylori) infection promotes non-cardia gastric cancer. Some mouse models suggest that bone marrow derived cells (BMDC) contribute to Helicobacter-associated gastric carcinogenesis. We determined whether this increased susceptibility to Helicobacter-induced gastric carcinogenesis of p27-deficient mice is dependent upon their p27-null BMDC or their p27-null gastric epithelial cells. Design Female mice (recipients) were irradiated and transplanted with BMDC from male donors. Wild type (WT) mice in group 1 (control) received BMDC from male GFP-transgenic mice. Female WT and p27 KO mice were engrafted with male p27KO mice BMDC (Group 2) or GFP-transgenic WT BMDC (Group 3). Recipients were infected with H. pylori SS1 for one year. Results Mice lacking p27 in either the BM pool or gastric epithelium developed significantly more advanced gastric pathology, including high-grade dysplasia. Co-staining of donor BMDC in dysplastic gastric glands was confirmed by immunofluorescence. Gastric expression of IL-1 beta protein was reduced in groups 2 and 3 (p < 0.05 vs control) whereas expression of IFN-γ and chemokines MIP-1 beta, MIG, IP-10 and RANTES in group 2 were significantly higher than group 3. Conclusions Both bone marrow-derived and gastric epithelial cells contribute to the increased gastric cancer susceptibility of p27-deficient H. pylori-infected mice. PMID:27655701

  15. Reversal of Methanol-Induced Blindness in Adults by Autologous Bone Marrow-Derived Stem Cells: A Case Series.

    PubMed

    Bansal, Himanshu; Chaparia, Yogesh; Agrawal, Anupama; Koka, Prasad S

    2015-01-01

    Methanol ingestion leads to severe damage to visual pathways and permanent loss of vision. Current treatment is aimed at removal of methanol from system and prevention of generation of toxic metabolites along with symptomatic management of patient. Autologous bone marrow mononuclear stem cells (MNC) can be used to rejuvenate the damaged retinal cells and restoration of vision. Five patients suffering from methanol induced complete blindness within three months of insult and no known comorbidities during the past 6 months were enrolled to receive autologous bone marrow derived mononuclear cell fraction on compassionate grounds. The visual acuity and visual evoked responses (VER) were done at the time of enrollment and during follow-up visits. Visual acuity of these patients at the time of enrollment: no perception of light. Improvement in visual acuity was recorded by 7 days which reached maximum at 3 weeks after treatment in three patients and three months in two patients. The patients had acuity of 6/9, finger counting and reading with magnifying glasses with no subsequent improvement till 2 years of follow-up. Visual Evoked Responses demonstrated improvements following treatment. No adverse reactions were noticed during follow-up. Treatment with Autologous Bone marrow derived MNC offers a new line of management in patients with loss of vision following methanol ingestion. The efficacy and safety of this line of management needs to be evaluated in controlled clinical trials.

  16. Regeneration of hyaline-like cartilage in situ with SOX9 stimulation of bone marrow-derived mesenchymal stem cells

    PubMed Central

    Naccarato, Ty; Prakash-Damani, Manan; Chou, Yuan; Zhu, Yong

    2017-01-01

    Microfracture, a common procedure for treatment of cartilage injury, induces fibrocartilage repair by recruiting bone marrow derived mesenchymal stem cells (MSC) to the site of cartilage injury. However, fibrocartilage is inferior biomechanically to hyaline cartilage. SRY-type high-mobility group box-9 (SOX9) is a master regulator of chondrogenesis by promoting proliferation and differentiation of MSC into chondrocytes. In this study we aimed to test the therapeutic potential of cell penetrating recombinant SOX9 protein in regeneration of hyaline cartilage in situ at the site of cartilage injury. We generated a recombinant SOX9 protein which was fused with super positively charged green fluorescence protein (GFP) (scSOX9) to facilitate cell penetration. scSOX9 was able to induce chondrogenesis of bone marrow derived MSC in vitro. In a rabbit cartilage injury model, scSOX9 in combination with microfracture significantly improved quality of repaired cartilage as shown by macroscopic appearance. Histological analysis revealed that the reparative tissue induced by microfracture with scSOX9 had features of hyaline cartilage; and collagen type II to type I ratio was similar to that in normal cartilage. This short term in vivo study demonstrated that when administered at the site of microfracture, scSOX9 was able to induce reparative tissue with features of hyaline cartilage. PMID:28666028

  17. Regeneration of hyaline-like cartilage in situ with SOX9 stimulation of bone marrow-derived mesenchymal stem cells.

    PubMed

    Zhang, Xiaowei; Wu, Shili; Naccarato, Ty; Prakash-Damani, Manan; Chou, Yuan; Chu, Cong-Qiu; Zhu, Yong

    2017-01-01

    Microfracture, a common procedure for treatment of cartilage injury, induces fibrocartilage repair by recruiting bone marrow derived mesenchymal stem cells (MSC) to the site of cartilage injury. However, fibrocartilage is inferior biomechanically to hyaline cartilage. SRY-type high-mobility group box-9 (SOX9) is a master regulator of chondrogenesis by promoting proliferation and differentiation of MSC into chondrocytes. In this study we aimed to test the therapeutic potential of cell penetrating recombinant SOX9 protein in regeneration of hyaline cartilage in situ at the site of cartilage injury. We generated a recombinant SOX9 protein which was fused with super positively charged green fluorescence protein (GFP) (scSOX9) to facilitate cell penetration. scSOX9 was able to induce chondrogenesis of bone marrow derived MSC in vitro. In a rabbit cartilage injury model, scSOX9 in combination with microfracture significantly improved quality of repaired cartilage as shown by macroscopic appearance. Histological analysis revealed that the reparative tissue induced by microfracture with scSOX9 had features of hyaline cartilage; and collagen type II to type I ratio was similar to that in normal cartilage. This short term in vivo study demonstrated that when administered at the site of microfracture, scSOX9 was able to induce reparative tissue with features of hyaline cartilage.

  18. Bone marrow-derived mesenchymal stem cells for treatment of heart failure: is it all paracrine actions and immunomodulation?

    PubMed

    Mishra, Pankaj Kumar

    2008-02-01

    Despite significant advances in medical and surgical management of heart failure, mostly of ischaemic origin, the mortality and morbidity associated with it continue to be high. Pluripotent stem cells are being evaluated for treatment of heart failure. Bone marrow-derived mesenchymal stem cells (MSCs) have been extensively studied. Emerging evidence suggests that locally delivered MSCs can lead to an improvement in ventricular function, but the cellular and molecular mechanisms involved remain unclear. Myocardial regeneration, as proposed by many researchers as the underlying mechanism, has failed to convince the scientific community. Recently some authors have ascribed improvement in ventricular function to paracrine actions of MSCs.A lot has been written about the host immune response triggered by embryonic stem cells and the consequent need for immunosuppression. Not enough work has been done on immune interactions involving allogeneic bone marrow cells. Full potential of stem cell therapy can be realised only when we are able to use allogeneic cells. The potential use of MSCs in cellular therapy has recently prompted researchers to look into their interaction with the host immune response. MSCs have immunomodulatory properties. They cause suppression of proliferation of alloreactive T cells in a dose-dependent manner.Tissue injury causes inflammation and release of several chemokines, cytokines and growth factors. They can cause recruitment of bone marrow-derived MSCs to the injured area. We review the literature on paracrine actions and immune interactions of allogeneic MSCs.

  19. TGF-β/Smad3 signalling regulates the transition of bone marrow-derived macrophages into myofibroblasts during tissue fibrosis.

    PubMed

    Wang, Shuang; Meng, Xiao-Ming; Ng, Yee-Yung; Ma, Frank Y; Zhou, Shuang; Zhang, Yang; Yang, Chen; Huang, Xiao-Ru; Xiao, Jun; Wang, Ying-Ying; Ka, Shuk-Man; Tang, Yong-Jiang; Chung, Arthur C K; To, Ka-Fai; Nikolic-Paterson, David J; Lan, Hui-Yao

    2016-02-23

    Myofibroblasts are a main cell-type of collagen-producing cells during tissue fibrosis, but their origins remains controversial. While bone marrow-derived myofibroblasts in renal fibrosis has been reported, the cell origin and mechanisms regulating their transition into myofibroblasts remain undefined. In the present study, cell lineage tracing studies by adoptive transfer of GFP+ or dye-labelled macrophages identified that monocyte/macrophages from bone marrow can give rise to myofibroblasts via the process of macrophage-myofibroblast transition (MMT) in a mouse model of unilateral ureteric obstruction. The MMT cells were a major source of collagen-producing fibroblasts in the fibrosing kidney, accounting for more than 60% of α-SMA+ myofibroblasts. The MMT process occurred predominantly within M2-type macrophages and was regulated by TGF-β/Smad3 signalling as deletion of Smad3 in the bone marrow compartment of GFP+ chimeric mice prevented the M2 macrophage transition into the MMT cells and progressive renal fibrosis. In vitro studies in Smad3 null bone marrow macrophages also showed that Smad3 was required for TGF-β1-induced MMT and collagen production. In conclusion, we have demonstrated that bone marrow-derived fibroblasts originate from the monocyte/macrophage population via a process of MMT. This process contributes to progressive renal tissue fibrosis and is regulated by TGF-β/Smad3 signalling.

  20. Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells

    PubMed Central

    Scott, Charlotte L.; Zheng, Fang; De Baetselier, Patrick; Martens, Liesbet; Saeys, Yvan; De Prijck, Sofie; Lippens, Saskia; Abels, Chloé; Schoonooghe, Steve; Raes, Geert; Devoogdt, Nick; Lambrecht, Bart N.; Beschin, Alain; Guilliams, Martin

    2016-01-01

    Self-renewing tissue-resident macrophages are thought to be exclusively derived from embryonic progenitors. However, whether circulating monocytes can also give rise to such macrophages has not been formally investigated. Here we use a new model of diphtheria toxin-mediated depletion of liver-resident Kupffer cells to generate niche availability and show that circulating monocytes engraft in the liver, gradually adopt the transcriptional profile of their depleted counterparts and become long-lived self-renewing cells. Underlining the physiological relevance of our findings, circulating monocytes also contribute to the expanding pool of macrophages in the liver shortly after birth, when macrophage niches become available during normal organ growth. Thus, like embryonic precursors, monocytes can and do give rise to self-renewing tissue-resident macrophages if the niche is available to them. PMID:26813785

  1. Sertoli cell condition medium can induce germ like cells from bone marrow derived mesenchymal stem cells.

    PubMed

    Monfared, Mahdieh Hajian; Minaee, Bagher; Rastegar, Tayebeh; Khrazinejad, Ebrahim; Barbarestani, Mohammad

    2016-11-01

    Although many researchers have confirmed induction of germ cells from bone marrow mesenchymal stem cells (BMMSCs), there are no reports that confirm spontaneous differentiation of germ cells from BMMSCs. In this study, we have evaluated the effect of adult Sertoli cell condition medium (SCCM) as a mutative factor in the induction of germ cells from BMMSCs. BMMSCs were collected from the bone marrow of 6-8-week old NMRI mice and their mesenchymal entities were proven using superficial markers (expression of CD44 and CD73 and non-expresion of CD45 and CD11b) by fow cytometry. Their multi-potential entities were proved with differentiation to osteogenic and adipogenic cells for 21 days. Also isolated Sertoli cells were enriched using lectin coated plates and Sertoli cell condition medium (SCCM) was collected. Sertoli cells were identified by immunocytochemistry and Vimentin marker. The cells were then differentiated into germ cells with SCCM for 2 weeks. Finally induced cells were evaluated by RT-PCR and immunocytochemistry. Differentiation of mesenchymal stem cells to osteoblast and adipocyte showed their multi-potential property. Expression of CD44 and CD73 and non-expression of CD45 and CD11b confirmed mesenchyme cells. Immunocytochemistry and RT-PCR results showed expression of germ cells specific marker (Mvh). This study confirmed the effect of SCCM as a motivational factor that can used for differentiation of germ cells from BMMSCs.

  2. Sertoli cell condition medium can induce germ like cells from bone marrow derived mesenchymal stem cells

    PubMed Central

    Monfared, Mahdieh Hajian; Minaee, Bagher; Rastegar, Tayebeh; Khrazinejad, Ebrahim; Barbarestani, Mohammad

    2016-01-01

    Objective(s): Although many researchers have confirmed induction of germ cells from bone marrow mesenchymal stem cells (BMMSCs), there are no reports that confirm spontaneous differentiation of germ cells from BMMSCs. In this study, we have evaluated the effect of adult Sertoli cell condition medium (SCCM) as a mutative factor in the induction of germ cells from BMMSCs. Materials and Methods: BMMSCs were collected from the bone marrow of 6-8-week old NMRI mice and their mesenchymal entities were proven using superficial markers (expression of CD44 and CD73 and non-expresion of CD45 and CD11b) by fow cytometry. Their multi-potential entities were proved with differentiation to osteogenic and adipogenic cells for 21 days. Also isolated Sertoli cells were enriched using lectin coated plates and Sertoli cell condition medium (SCCM) was collected. Sertoli cells were identified by immunocytochemistry and Vimentin marker. The cells were then differentiated into germ cells with SCCM for 2 weeks. Finally induced cells were evaluated by RT-PCR and immunocytochemistry. Results: Differentiation of mesenchymal stem cells to osteoblast and adipocyte showed their multi-potential property. Expression of CD44 and CD73 and non-expression of CD45 and CD11b confirmed mesenchyme cells. Immunocytochemistry and RT-PCR results showed expression of germ cells specific marker (Mvh). Conclusion: This study confirmed the effect of SCCM as a motivational factor that can used for differentiation of germ cells from BMMSCs. PMID:27917274

  3. Activation of nervous system development genes in bone marrow derived mesenchymal stem cells following spaceflight exposure.

    PubMed

    Monticone, Massimiliano; Liu, Yi; Pujic, Natalija; Cancedda, Ranieri

    2010-10-01

    Stalled cell division in precursor bone cells and reduced osteoblast function are considered responsible for the microgravity-induced bone loss observed during spaceflight. However, underlying molecular mechanisms remain unraveled. Having overcome technological difficulties associated with flying cells in a space mission, we present the first report on the behavior of the potentially osteogenic murine bone marrow stromal cells (BMSC) in a 3D culture system, flown inside the KUBIK aboard space mission ISS 12S (Soyuz TMA-8 + Increment 13) from March 30 to April 8, 2006 (experiment "Stroma-2"). Flight 1g control cultures were performed in a centrifuge located within the payload. Ground controls were maintained on Earth in another KUBIK payload and in Petri dishes. Half of the cultures were stimulated with osteo-inductive medium. Differences in total RNA extracted suggested that cell proliferation was inhibited in flight samples. Affymetrix technology revealed that 1,599 genes changed expression after spaceflight exposure. A decreased expression of cell-cycle genes confirmed the inhibition of cell proliferation in space. Unexpectedly, most of the modulated expression was found in genes related to various processes of neural development, neuron morphogenesis, transmission of nerve impulse and synapse, raising the question on the lineage restriction in BMSC. © 2010 Wiley-Liss, Inc.

  4. Evaluation of the ability of bone marrow derived cells to engraft the kidney and promote renal tubular regeneration in mice following exposure to cisplatin.

    PubMed

    Bataille, Aurélien; Galichon, Pierre; Wetzstein, Morgane; Legouis, David; Vandermeersch, Sophie; Rondeau, Eric; Hertig, Alexandre

    2016-01-01

    It has been suggested that bone marrow derived stem cells have the ability to engraft the kidney and improve the outcome of severe acute kidney injury (AKI) in mice exposed to high doses of cisplatin, providing hope for cancer patients in whom irreversible renal damage occasionally occurs following the use of this highly effective anti-tumor drug. We tested the therapeutic potential of bone marrow derived cells injected during the acute phase (day 3 after cisplatin administration) of experimentally-induced AKI in C57Bl6/J mice, characterized by massive tubular necrosis, apoptosis, and a low proliferation capacity. We failed to show any benefit of bone marrow derived cells versus a regular homogenate of intact renal cells, or normal saline. Using cell tracers and flow cytometry, we demonstrated that bone marrow derived cells did indeed home to the bone marrow of the recipients but failed to settle in the kidney. Conversely, renal cells homed to injured kidneys. However, neither cell therapy protected the animals against cisplatin-induced death. We therefore question the short-term efficacy of bone marrow derived cells used to repair established injuries of the tubular epithelium.

  5. Induction of a program gene expression during osteoblast differentiation with strontium ranelate

    SciTech Connect

    Zhu Lingling; Zaidi, Samir; Peng Yuanzhen; Zhou Hang; Moonga, Baljit S.; Blesius, Alexia; Dupin-Roger, Isabelle; Zaidi, Mone . E-mail: mone.zaidi@mssm.edu; Sun Li

    2007-04-06

    Strontium ranelate, a new agent for the treatment of osteoporosis, has been shown stimulate bone formation in various experimental models. This study examines the effect of strontium ranelate on gene expression in osteoblasts, as well as the formation of mineralized (von Kossa-positive) colony-forming unit-osteoblasts (CFU-obs). Bone marrow-derived stromal cells cultured for 21 days under differentiating conditions, when exposed to strontium ranelate, displayed a significant time- and concentration-dependent increase in the expression of the master gene, Runx2, as well as bone sialoprotein (BSP), but interestingly without effects on osteocalcin. This was associated with a significant increase in the formation of CFU-obs at day 21 of culture. In U-33 pre-osteoblastic cells, strontium ranelate significantly enhanced the expression of Runx2 and osteocalcin, but not BSP. Late, more mature osteoblastic OB-6 cells showed significant elevations in BSP and osteocalcin, but with only minimal effects on Runx2. In conclusion, strontium ranelate stimulates osteoblast differentiation, but the induction of the program of gene expression appears to be cell type-specific. The increased osteoblastic differentiation is the likely basis underlying the therapeutic bone-forming actions of strontium ranelate.

  6. Effective expansion of human adipose-derived stromal cells and bone marrow-derived mesenchymal stem cells cultured on a fragmin/protamine nanoparticles-coated substratum with human platelet-rich plasma.

    PubMed

    Kishimoto, Satoko; Ishihara, Masayuki; Mori, Yasutaka; Takikawa, Megumi; Hattori, Hidemi; Nakamura, Shingo; Sato, Toshinori

    2013-12-01

    Fragmin/protamine nanoparticles (F/P NPs) can be stably coated onto plastic surfaces and used as a substratum for the absorption and controlled release of growth factors (GFs) secreted from human platelet-rich plasma (PRP). In this study, we investigated the capability of F/P NP-coated plates to act as a substratum for the proliferation of human adipose-derived stromal cells (ASCs) and bone marrow-derived mesenchymal stem cells (BMSCs) with GFs in PRP. Both cell types adhered well to the F/P NP-coated plates and grew optimally, with a doubling time of 30 and 32 h in low-concentration PRP (0.5%) medium supplemented with 5 ng/ml fibroblast growth factor-2 (FGF-2) on the F/P NP-coated plates. These cells maintained their multilineage potential for differentiation into adipocytes or osteoblasts. Furthermore, ASCs and BMSCs grew well in medium without PRP and FGF-2 on F/P NP-coated plates pretreated with PRP and FGF-2 in a concentration-dependent manner. Thus, F/P NP-coated plates are a useful substratum for the adherence and proliferation of ASCs and BMSCs in low-concentration PRP medium supplemented with FGF-2. No xenogeneic serum is required. Copyright © 2012 John Wiley & Sons, Ltd.

  7. The Macrophage Polarization Regulates MSC Osteoblast Differentiation in vitro.

    PubMed

    Gong, Lei; Zhao, Yan; Zhang, Yi; Ruan, Zhi

    2016-01-01

    Bone repair is a complex yet highly organized process involving interactions between various cell types and the extracellular environment. Macrophages are not only activated in inflammation during early phases of repair processes, but they are also present in bone throughout the whole bone repair process. Bone marrow derived mesenchymal stem cells (MSCs) represent an attractive therapeutic for bone fracture with their expansion potential, osteogenic capability, and potential for injury. However, less is known about the interaction between macrophage and MSC during bone repair and regeneration. This study was aimed to investigate whether macrophages in different statuses can regulate MSC osteoblast differentiation in vitro. Using in vitro cell coculture of macrophage and MSC, it was shown that macrophage polarization can regulate MSC osteoblast differentiation. This was evidenced by increased alkaline phosphatase (ALP), osteogenic markers, and bone mineralization in M2 macrophage cocultured MSC but decreased in M1 counterpart. These results might be mediated by pro-regenerative cytokines, such as TGF-β, VEGF, and IFG-1, produced by M2 macrophages and detrimental inflammation cytokines, such as IL-6, IL-12, and TNF-α, produced by M1 macrophages. Taken together, this shows that macrophage polarization could be crucial for maintaining bone homeostasis and promoting bone repair by regulating the MSC osteoblast differentiation. © 2016 by the Association of Clinical Scientists, Inc.

  8. Bone-marrow-derived stem cells--our key to longevity?

    PubMed

    Ratajczak, Mariusz Z; Zuba-Surma, Ewa K; Machalinski, Boguslaw; Kucia, Magdalena

    2007-01-01

    Bone marrow (BM) was for many years primarily regarded as the source of hematopoietic stem cells. In this review we discuss current views of the BM stem cell compartment and present data showing that BM contains not only hematopoietic but also heterogeneous non-hematopoietic stem cells. It is likely that similar or overlapping populations of primitive non-hematopoietic stem cells in BM were detected by different investigators using different experimental strategies and hence were assigned different names (e.g., mesenchymal stem cells, multipotent adult progenitor cells, or marrow-isolated adult multilineage inducible cells). However, the search still continues for true pluripotent stem cells in adult BM, which would fulfill the required criteria (e.g. complementation of blastocyst development). Recently our group has identified in BM a population of very small embryonic-like stem cells (VSELs), which express several markers characteristic for pluripotent stem cells and are found during early embryogenesis in the epiblast of the cylinder-stage embryo.

  9. ECM microenvironment unlocks brown adipogenic potential of adult human bone marrow-derived MSCs

    PubMed Central

    Lee, Michelle H.; Goralczyk, Anna G.; Kriszt, Rókus; Ang, Xiu Min; Badowski, Cedric; Li, Ying; Summers, Scott A.; Toh, Sue-Anne; Yassin, M. Shabeer; Shabbir, Asim; Sheppard, Allan; Raghunath, Michael

    2016-01-01

    Key to realizing the diagnostic and therapeutic potential of human brown/brite adipocytes is the identification of a renewable, easily accessible and safe tissue source of progenitor cells, and an efficacious in vitro differentiation protocol. We show that macromolecular crowding (MMC) facilitates brown adipocyte differentiation in adult human bone marrow mesenchymal stem cells (bmMSCs), as evidenced by substantially upregulating uncoupling protein 1 (UCP1) and uncoupled respiration. Moreover, MMC also induced ‘browning’ in bmMSC-derived white adipocytes. Mechanistically, MMC creates a 3D extracellular matrix architecture enshrouding maturing adipocytes in a collagen IV cocoon that is engaged by paxillin-positive focal adhesions also at the apical side of cells, without contact to the stiff support structure. This leads to an enhanced matrix-cell signaling, reflected by increased phosphorylation of ATF2, a key transcription factor in UCP1 regulation. Thus, tuning the dimensionality of the microenvironment in vitro can unlock a strong brown potential dormant in bone marrow. PMID:26883894

  10. Effect of endogenous bone marrow derived stem cells induced by AMD-3100 on expanded ischemic flap.

    PubMed

    Jeong, Hii-Sun; Lee, Hye-Kyung; Tark, Kwan-Chul; Lew, Dae-Hyun; Koh, Yoon-Woo; Kim, Chul-Hoon; Seo, In-Suck

    2014-11-01

    The purpose of this study was to devise an expanded ischemic flap model and to investigate the role of AMD-3100 (Plerixafor, chemokine receptor 4 inhibitor) in this model by confirming its effect on mobilization of stem cells from the bone marrow. Male Sprague-Dawley rats were used as an animal research model. The mobilization of stem cells from the bone marrow was confirmed in the AMD-3100-treated group. The fractions of endothelial progenitor cells (EPC) and the vascular endothelial growth factor receptor (VEGFR) 2+ cells in the peripheral blood were increased in groups treated with AMD-3100. The expression of vascular endothelial growth factor (VEGF) was increased in response to expansion or AMD injection. The expression of stromal cell derived factor (SDF)-1 and VEGFR2 were increased only in unexpanded flap treated with AMD-3100. Treatment with AMD-3100 increased both the number and area of blood vessels. However, there were no statistically significant differences in the survival area or physiologic microcirculation in rats from the other groups. This endogenous neovascularization induced by AMD-3100 may be a result of the increase in both the area and number of vessels, as well as paracrine augmentation of the expression of VEGF and EPCs. However, the presence of a tissue expander under the flap could block the neovascularization between the flap and the recipient regardless of AMD-3100 treatment and expansion.

  11. Chondrogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells: Tips and Tricks

    PubMed Central

    Solchaga, Luis A.; Penick, Kitsie J.; Welter, Jean F.

    2011-01-01

    It is well known that adult cartilage lacks the ability to repair itself; this makes articular cartilage a very attractive target for tissue engineering. The majority of articular cartilage repair models attempt to deliver or recruit reparative cells to the site of injury. A number of efforts are directed to the characterization of progenitor cells and the understanding of the mechanisms involved in their chondrogenic differentiation. Our laboratory has focused on cartilage repair using mesenchymal stem cells and studied their differentiation into cartilage. Mesenchymal stem cells are attractive candidates for cartilage repair due to their osteogenic and chondrogenic potential, ease of harvest, and ease of expansion in culture. However, the need for chondrogenic differentiation is superposed on other technical issues associated with cartilage repair; this adds a level of complexity over using mature chondrocytes. This chapter will focus on the methods involved in the isolation and expansion of human mesenchymal stem cells, their differentiation along the chondrogenic lineage, and the qualitative and quantitative assessment of chondrogenic differentiation. PMID:21431525

  12. Characterization of Nestin, a Selective Marker for Bone Marrow Derived Mesenchymal Stem Cells

    PubMed Central

    Xie, Liang; Zeng, Xin; Hu, Jing; Chen, Qianming

    2015-01-01

    Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating into multiple cell lineages and contributing to tissue repair and regeneration. Characterization of the physiological function of MSCs has been largely hampered by lack of unique markers. Nestin, originally found in neuroepithelial stem cells, is an intermediate filament protein expressed in the early stages of development. Increasing studies have shown a particular association between Nestin and MSCs. Nestin could characterize a subset of bone marrow perivascular MSCs which contributed to bone development and closely contacted with hematopoietic stem cells (HSCs). Nestin expressing (Nes+) MSCs also play a role in the progression of various diseases. However, Nes+ cells were reported to participate in angiogenesis as MSCs or endothelial progenitor cells (EPCs) in several tissues and be a heterogeneous population comprising mesenchymal cells and endothelial cells in the developing bone marrow. In this review article, we will summarize the progress of the research on Nestin, particularly the function of Nes+ cells in bone marrow, and discuss the feasibility of using Nestin as a specific marker for MSCs. PMID:26236348

  13. Effect of bone marrow-derived extracellular matrix on cardiac function after ischemic injury

    PubMed Central

    Ravi, Swathi; Caves, Jeffrey M.; Martinez, Adam W.; Xiao, Jiantao; Wen, Jing; Haller, Carolyn A.; Davis, Michael E.; Chaikof, Elliot L.

    2013-01-01

    Ischemic heart disease is a leading cause of death, with few options to retain ventricular function following myocardial infarction. Hematopoietic-derived progenitor cells contribute to angiogenesis and tissue repair following ischemia reperfusion injury. Motivated by the role of bone marrow extracellular matrix (BM-ECM) in supporting the proliferation and regulation of these cell populations, we investigated BM-ECM injection in myocardial repair. In BM-ECM isolated from porcine sternum, we identified several factors important for myocardial healing, including vascular endothelial growth factor, basic fibroblast growth factor-2, and platelet-derived growth factor-BB. We further determined that BM-ECM serves as an adhesive substrate for endothelial cell proliferation. Bone marrow ECM was injected in a rat model of myocardial infarction, with and without a methylcellulose carrier gel. After one day, reduced infarct area was noted in rats receiving BM-ECM injection. After seven days we observed improved fractional shortening, decreased apoptosis, and significantly lower macrophage counts in the infarct border. Improvements in fractional shortening, sustained through 21 days, as well as decreased fibrotic area, enhanced angiogenesis, and greater c-kit-positive cell presence were associated with BM-ECM injection. Notably, the concentrations of BM-ECM growth factors were 103–108 fold lower than typically required to achieve a beneficial effect, as reported in pre-clinical studies that have administered single growth factors alone. PMID:22819498

  14. Bone marrow-derived mesenchymal stem cells differentiate into nerve-like cells in vitro after transfection with brain-derived neurotrophic factor gene.

    PubMed

    Liu, Qianxu; Cheng, Guangui; Wang, Zhiwei; Zhan, Shujie; Xiong, Binbin; Zhao, Xiaoming

    2015-03-01

    Bone marrow-derived mesenchymal stem cells can differentiate into a variety of adult cells. Brain-derived neurotrophic factor (BDNF) is briefly active during differentiation and induces mesenchymal stem cells to differentiate into nerve cells. In this study, we cloned human BDNF to generate a recombinant pcDNA3.1(-)-BDNF vector and transfected the vector into bone marrow-derived mesenchymal stem cells. We selected these cells with Geneticin-418 to obtain BDNF-BMSCs, which were induced with retinoic acid to obtain induced BDNF-BMSCs. The transfected cells displayed the typical morphology and surface antigen profile of fibroblasts and were observed to express clusters of differentiation 29, 44, and 90 (observed in matrix and stromal cells), but not clusters of differentiation 31, 34, and 45 (observed in red blood cells and endothelial cells), via flow cytometry. Enzyme-linked immunosorbent assays showed that transfected bone marrow-derived mesenchymal stem cells secreted more BDNF than non-transfected bone marrow-derived mesenchymal stem cells. Immunocytochemistry and real-time reverse transcription polymerase chain reaction analysis showed that non-induced BDNF-BMSCs maintained a higher proliferative capacity and expressed higher amounts of brain-derived neurotrophic factor, nestin, neuron-specific enolase, and glial fibrillary acid protein than non-transfected bone marrow-derived mesenchymal stem cells. An additional increase was observed in the induced BDNF-BMSCs compared to the non-induced BDNF-BMSCs. This expression profile is characteristic of neurocytes. Our data demonstrate that bone marrow-derived mesenchymal stem cells transfected with the BDNF gene can differentiate into nerve-like cells in vitro, which may enable the generation of sufficient quantities of nerve-like cells for treatment of neuronal diseases.

  15. Bone Marrow Stress Decreases Osteogenic Progenitors.

    PubMed

    Ng, Adeline H; Baht, Gurpreet S; Alman, Benjamin A; Grynpas, Marc D

    2015-11-01

    Age-related bone loss may be a result of declining levels of stem cells in the bone marrow. Using the Col2.3Δtk (DTK) transgenic mouse, osteoblast depletion was used as a source of marrow stress in order to investigate the effects of aging on osteogenic progenitors which reside in the marrow space. Five-month-old DTK mice were treated with one or two cycles of ganciclovir to conditionally ablate differentiated osteoblasts, whereas controls were saline-treated. Treatment cycles were two weeks in length followed by four weeks of recovery. All animals were sacrificed at 8 months of age; bone marrow stromal cells (BMSCs) were harvested for cell culture and whole bones were excised for bone quality assessment. Colony-forming unit (CFU) assays were conducted to investigate the osteogenic potential of BMSC in vitro, and RNA was extracted to assess the expression of osteoblastic genes. Bone quality assessments included bone histomorphometry, TRAP staining, microcomputed tomography, and biomechanical testing. Osteoblast depletion decreased CFU-F (fibroblast), CFU-ALP (alkaline phosphatase), and CFU-VK (von Kossa) counts and BMSC osteogenic capacity in cell culture. Ex vivo, there were no differences in bone mineral density of vertebrae or femurs between treatment groups. Histology showed a decrease in bone volume and bone connectivity with repeated osteoblast depletion; however, this was accompanied by an increase in bone formation rate. There were no notable differences in osteoclast parameters or observed bone marrow adiposity. We have developed a model that uses bone marrow stress to mimic age-related decrease in osteogenic progenitors. Our data suggest that the number of healthy BMSCs and their osteogenic potential decline with repeated osteoblast depletion. However, activity of the remaining osteoblasts increases to compensate for this loss in progenitor osteogenic potential.

  16. Angiotensin converting enzyme versus angiotensin converting enzyme-2 selectivity of MLN-4760 and DX600 in human and murine bone marrow-derived cells

    PubMed Central

    Joshi, Shrinidh; Balasubramanian, Narayanaganesh; Vasam, Goutham; Jarajapu, Yagna PR

    2016-01-01

    Angiotensin-converting enzymes, ACE and ACE2, are key members of renin angiotensin system. Activation of ACE2/Ang-(1-7) pathway enhances cardiovascular protective functions of bone marrow-derived stem/progenitor cells. The current study evaluated the selectivity of ACE2 inhibitors, MLN-4760 and DX-600, and ACE and ACE2 activities in human (hu) and murine (mu) bone marrow cells. Assays were carried out in hu and mu mononuclear cells (MNCs) and huCD34+ cells or mu-lineage-depleted (muLin-) cells, human-recombinant (rh) enzymes, and mu-heart with enzyme-specific substrates. ACE or ACE2 inhibition by racemic MLN-4760, its isomers MLN-4760-A and MLN-4760-B, DX600 and captopril were characterized. MLN-4760-B is relatively less efficacious and less-selective than the racemate or MLN-4760-A at hu-rhACE2, and all three of them inhibited 43% rhACE. In huMNCs, MLN-4760-B detected 63% ACE2 with 28-fold selectivity over ACE. In huCD34+ cells, MLN-4760-B detected 38% of ACE2 activity with 63-fold selectivity. In mu-heart and muMNCs, isomer B was 100- and 228-fold selective for ACE2, respectively. In muLin- cells, MLN-4760-B detected 25% ACE2 activity with a pIC50 of 6.3. The racemic mixture and MLN-4760-A showed lower efficacy and poor selectivity for ACE2 in MNCs and mu-heart. ACE activity detected by captopril was 32 and 19%, respectively, in huCD34+ and muLin- cells. DX600 was less efficacious, and more selective for ACE2 compared to MLN-4760-B in all samples tested. These results suggest that MLN-4760-B is a better antagonist of ACE2 than DX600 at 10μM concentration in human and murine bone marrow cells, and that these cells express more functional ACE2 than ACE. PMID:26851370

  17. Enhancement of the repair of dog alveolar cleft by an autologous iliac bone, bone marrow-derived mesenchymal stem cell, and platelet-rich fibrin mixture.

    PubMed

    Yuanzheng, Chen; Yan, Gao; Ting, Li; Yanjie, Fu; Peng, Wu; Nan, Bai

    2015-05-01

    Autologous bone graft has been regarded as the criterion standard for the repair of alveolar cleft. However, the most prominent issue in alveolar cleft treatment is the high absorption rate of the bone graft. The authors' objective was to investigate the effects of an autologous iliac bone, bone marrow-derived mesenchymal stem cell, and platelet-rich fibrin mixture on the repair of dog alveolar cleft. Twenty beagle dogs with unilateral alveolar clefts created by surgery were divided randomly into four groups: group A underwent repair with an autologous iliac bone, bone marrow-derived mesenchymal stem cell, and platelet-rich fibrin mixture; group B underwent repair with autologous iliac bone and bone marrow-derived mesenchymal stem cells; group C underwent repair with autologous iliac bone and platelet-rich fibrin; and group D underwent repair with autologous iliac bone as the control. One day and 6 months after transplantation, the transplant volumes and bone mineral density were assessed by quantitative computed tomography. All of the transplants were harvested for hematoxylin and eosin staining 6 months later. Bone marrow-derived mesenchymal stem cells and platelet-rich fibrin transplants formed the greatest amounts of new bone among the four groups. The new bone formed an extensive union with the underlying maxilla in groups A, B, and C. Transplants with the bone marrow-derived mesenchymal stem cells, platelet-rich fibrin, and their mixture retained the majority of their initial volume, whereas the transplants in the control group showed the highest absorption rate. Bone mineral density of transplants with the bone marrow-derived mesenchymal stem cells, platelet-rich fibrin, and their mixture 6 months later was significantly higher than in the control group (p < 0.05), and was the highest in bone marrow-derived mesenchymal stem cells and platelet-rich fibrin mixed transplants. Hematoxylin and eosin staining showed that the structure of new bones formed the best

  18. Neural and marrow-derived stromal cell sphere transplantation in a rat model of traumatic brain injury.

    PubMed

    Lu, Dunyue; Li, Ya; Mahmood, Asim; Wang, Lei; Rafiq, Tahir; Chopp, Michael

    2002-10-01

    This study was designed to investigate the effect of treatment with a novel composite material consisting of embryonic neurospheres and bone marrow-derived stromal cell spheres (NMSCSs) in a rat model of traumatic brain injury (TBI). The NMSCS composite was injected into the TBI contusion site 24 hours after injury, and all rats were killed on Day 14 after the transplantation. The Rotarod test and the neurological severity score were used to evaluate neurological function. The transplanted NMSCS was analyzed in recipient rat brains by using histological staining and laser scanning confocal microscopy. The lesion volumes in the brains were also calculated using computer image analysis. Rats that received NMSCS transplants had reduced lesion volume and showed improved motor and neurological function when compared with control groups 14 days after the treatment. These results suggest that transplantation of this novel biological material (NMSCS) may be useful in the treatment of TBI.

  19. [Present status of research in bone marrow-derived mesenchymal stem cells for promoting the healing of diabetic ulcer].

    PubMed

    Zheng, Shu-Juan; Jia, Chi-Yu

    2012-08-01

    The delayed healing of diabetic ulcer has been haunting the surgeons and researchers for a long time. Although we have been researching and exploring the effective therapies for many years, the progress has been limited. Bone marrow-derived mesenchymal stem cells (BMSCs) have gradually won worldwide attention for their characteristics of differentiating into tissue repair cells and secreting multiple cytokines as well as growth factors. In recent years, the role of BMSCs in the treatment of diabetic ulcer has been drawing more and more attention. This article reviewed the advancement in the research of BMSCs in promoting the healing of diabetic ulcer. Through a discussion of the treatment of diabetic ulcer, the related research in BMSCs, as well as its role in diabetic ulcer treatment, the mechanism of BMSCs in promoting healing of diabetic ulcers is discussed. We expect through further research, unified criteria for the quality of BMSCs, application approach and dosage of BMSCs could be established.

  20. Anti-inflammatory and anti-allergic effect of Agaricus blazei extract in bone marrow-derived mast cells.

    PubMed

    Song, Hyuk-Hwan; Chae, Hee-Sung; Oh, Sei-Ryang; Lee, Hyeong-Kyu; Chin, Young-Won

    2012-01-01

    In this study, the anti-inflammatory and anti-allergic effects of the chloroform-soluble extract of Agaricus blazei in mouse bone marrow-derived mast cells (BMMCs) were investigated. The chloroform-soluble extract inhibited IL-6 production in PMA plus A23187-stimulated BMMCs, and down-regulated the phosphorylation of Akt. In addition, this extract demonstrated inhibition of the degranulation of β-hexosaminidase and the production of IL-6, prostaglandin D(2) and leukotriene C(4) in PMA plus A23187-induced BMMCs. In conclusion, the chloroform-soluble extract of Agaricus blazei exerted anti-inflammatory and anti-allergic activities mediated by influencing IL-6, prostaglandin D(2), leukotriene C(4), and the phosphorylation of Akt.

  1. Bone marrow-derived cell therapy in chagasic cardiac disease: a review of pre-clinical and clinical results

    PubMed Central

    Carvalho, Adriana Bastos; Mello, Debora Bastos; Goldenberg, Regina Coeli dos Santos

    2012-01-01

    Chagas disease is caused by a protozoan parasite Trypanosoma cruzi, which infects people through blood sucking insects. It is endemic in Latin America and the disease is being spread to developed countries as a result of the migration of infected individuals. In its chronic stage, Chagas disease can lead to a severe cardiomyopathy for which there is currently no cure. End-stage patients require heart transplantation, thus demanding new therapeutic modalities. Cell-based therapy has been proposed as an alternative for various forms of heart disease. Here we review the experimental evidence that led to the use of bone marrow-derived cells in putative therapy for chronic chagasic cardiomyopathy in animal models and in clinical trials, discussing the reasons for failure of the translation of results from mice to men. PMID:24282718

  2. Novel analysis of maturation of murine bone-marrow-derived dendritic cells induced by Ginkgo Seed Polysaccharides

    PubMed Central

    Chen, Yinghan; Meng, Yiming; Cao, Yan; Wen, Hua; Luo, Hong; Gao, Xinghua; Shan, Fengping

    2015-01-01

    Our understanding of the mechanisms of effect of Ginkgo Seed Polysaccharides (GSPs) on the immune system remains unclear. The aim of this work was to investigate the effect of GSPs on the maturation and function of bone-marrow-derived dendritic cells (BMDCs). The results demonstrate that GSP could exert positive immune modulation on the maturation and functions of BMDCs. This effect was evidenced by decreased changes of phagosome number inside BMDCs, decreased activity of acidic phosphatase (ACP), decreased phagocytosis of BMDCs, and increased changes of key membrane molecules on BMDCs. Upregulated production of cytokines IL-12 and TNF-α also was confirmed. Therefore, it can be concluded that GSPs can efficiently induce the maturation of BMDCs. Our exploration provides direct data and a rationale for potential application of GSPs as an immune enhancer in improving immunity and as a potent adjuvant in the design of DC-based vaccines. PMID:25806792

  3. Role of injured pancreatic extract promotes bone marrow-derived mesenchymal stem cells efficiently differentiate into insulin-producing cells.

    PubMed

    Xie, Hongbin; Wang, Yunshuai; Zhang, Hui; Qi, Hui; Zhou, Hanxin; Li, Fu-Rong

    2013-01-01

    Mesenchymal stem cells (MSCs) can be successfully induced to differentiate into insulin-producing cells (IPCs) by a variety of small molecules and cytokines in vitro. However, problems remain, such as low transdifferentiation efficiency and poor maturity of trans-differentiated cells. The damaged pancreatic cells secreted a large amount of soluble proteins, which were able to promote pancreative islet regeneration and MSCs differentiation. In this study, we utilized the rat injured pancreatic tissue extract to modulate rat bone marrow-derived MSCs differentiation into IPCs by the traditional two-step induction. Our results showed that injured pancreatic tissue extract could effectively promote the trans-differentiation efficiency and maturity of IPCs by the traditional induction. Moreover, IPCs were able to release more insulin in a glucose-dependent manner and ameliorate better the diabetic conditions of streptozotocin (STZ)-treated rats. Our study provides a new strategy to induce an efficient and directional differentiation of MSCs into IPCs.

  4. Hydroxyapatite/regenerated silk fibroin scaffold-enhanced osteoinductivity and osteoconductivity of bone marrow-derived mesenchymal stromal cells.

    PubMed

    Jiang, Jia; Hao, Wei; Li, Yuzhuo; Yao, Jinrong; Shao, Zhengzhong; Li, Hong; Yang, Jianjun; Chen, Shiyi

    2013-04-01

    A novel hydroxyapatite/regenerated silk fibroin scaffold was prepared and investigated for its potential to enhance both osteoinductivity and osteoconductivity of bone marrow-derived mesenchymal stromal cells in vitro. Approx. 12.4 ± 0.06 % (w/w) hydroxyapatite was deposited onto the scaffold, and cell viability and DNA content were significantly increased (18.5 ± 0.6 and 33 ± 1.2 %, respectively) compared with the hydroxyapatite scaffold after 14 days. Furthermore, alkaline phosphatase activity in the novel scaffold increased 41 ± 2.5 % after 14 days compared with the hydroxyapatite scaffold. The data indicate that this novel hydroxyapatite/regenerated silk fibroin scaffold has a positive effect on osteoinductivity and osteoconductivity, and may be useful for bone tissue engineering.

  5. Autologous bone marrow-derived cells with placental extract for healing excisional cutaneous wounds in animal model.

    PubMed

    Akela, Ashok; Nandi, Samit Kumar; Das, Partha; Banerjee, Dibyajyoti; Roy, Subhasis; Datta, Uttam

    2013-04-01

    Topical wound-healing potential of autologous bone marrow-derived nucleated cells along with placental extract was evaluated in comparison with buffy coat of autologous blood on full-thickness cutaneous wounds in the thoracolumbar region of 15 clinically healthy New Zealand rabbits. Three wounds of 2 × 2 cm, one on the right side of the body and two on the left side of the midline were created on the dorsal lumbar region of each rabbit under xylazine-ketamine anaesthesia. The wounds of each animal were randomly assigned to one of the three treatments: topical application of autologous bone marrow-derived cells with placental extract (group I), application of buffy coat in the autologous plasma with placental extract (group II) and autologous plasma with placental extract as control (group III). Wounds were observed for 30 days macroscopically and for granulation tissue formation, histomorphological and histochemical evaluation. Time of appearance of granulation tissues and filling of wound beds were faster in group I followed by group II and group III animals, respectively. Histomorphological findings exhibited an earlier disappearance of inflammatory reaction, better epithelialisation, significantly maximum neovascularisation, fibroplasias and collagenation in group I followed by group II and group III animals, respectively. Histochemical findings also depicted maximum number of robust, thick, interwoven type of collagen fibres, stout, highly tortuous and interwoven network of elastin fibres and numerous mesh war form of reticulin fibres within the dermal component were present in group I when compared with group II and III animals. Experiment conclude that single application of autologous bone marrow-nucleated cells with placental extract topically could be a novel option for faster healing in complicated non healing wounds both in human beings and animals. © 2012 The Authors. International Wound Journal © 2012 Blackwell Publishing Ltd and Medicalhelplines

  6. Crosstalk between bone marrow-derived myofibroblasts and gastric cancer cells regulates cancer stemness and promotes tumorigenesis

    PubMed Central

    Shi, Jindong; Jiacheng, Lin; Chen, Gang; Jin, Huanyu; Liu, Anna B.; Pyo, Hyunseung; Ye, Jing; Zhu, Yanbo; Wang, Hong; Chen, Haoyan; Fang, Jingyuan; Cai, Li; Wang, Timothy C.; Yang, Chung S.; Tu, Shui Ping

    2016-01-01

    Bone marrow-derived cells play important roles in cancer development and progression. Our previous studies demonstrated that murine bone marrow-derived myofibroblasts (BMFs) enhanced tumor growth. In this study, we investigated the mechanisms of BMF actions. We found that co-injection of BMFs with gastric cancer cells markedly promoted tumorigenesis. Co-cultured BMFs or BMF-conditioned medium (BMF-CM) induced the formation of spheres, which expressed stem cell signatures and exhibited features of self-renewal, epithelial-to-mesenchymal transition and tumor initiation. Furthermore, CD44+ fractions in spheres were able to initiate tumorigenesis and reestablish tumors in serially passaged xenografts. In co-culture systems, BMFs secreted high levels of murine interleukin-6 (IL-6) and hepatocyte growth factor (HGF), while cancer cells produced high level of transformation growth factor-β1 (TGF-β1). BMF-CM and IL-6 activated BMFs to produce mHGF, which activated signal transducer and activator of transcription 3 (STAT3) and upregulated TGF-β1 in human cancer cells. In return, cancer cell-CM stimulated BMFs to produce IL-6, which was inhibited by anti-TGF-β1 neutralizing antibody. Blockade of HGF/Met, JAK2/STAT3 and TGF-β1 signaling by specific inhibitors inhibited BMF-induced sphere formation. STAT3 knockdown in cancer cells also inhibited BMF-induced sphere formation and tumorigenesis. Moreover, TGF-β1 overexpression in cancer cells was co-related with IL-6 and HGF overexpression in stromal cells in human gastric cancer tissues. Our results demonstrate that BMF-derived IL-6/HGF and cancer cell-derived TGF-β1 mediate the interactions between BMFs and gastric cancer cells, which regulate cancer stemness and promote tumorigenesis. Targeting inhibition of the interactions between BMFs and cancer cells may be a new strategy for cancer therapy. PMID:27109105

  7. Systematic analysis of reportedly distinct populations of multipotent bone marrow-derived stem cells reveals a lack of distinction.

    PubMed

    Lodie, Tracey A; Blickarz, Courtney E; Devarakonda, Tara J; He, Chufa; Dash, Ajeeta B; Clarke, Jennifer; Gleneck, Kristen; Shihabuddin, Lamya; Tubo, Ross

    2002-10-01

    Adult human bone marrow-derived stem cells, having the ability to differentiate into cells of multiple lineages, have been isolated and propagated by varied protocols, including positive (CD105(+))/negative (CD45(-)GlyA(-)) selection with immunomagnetic beads, or direct plating into selective culture media. Each substratum-adherent cell population was subjected to a systematic analysis of their cell surface markers and differentiation potential. In the initial stages of culture, each cell population proliferated slowly, reaching confluence in 10-14 days. Adherent cells proliferated at similar rates whether cultured in serum-free medium supplemented with basic fibroblast growth factor, medium containing 2% fetal bovine serum (FBS) supplemented with epidermal growth factor and platelet-derived growth factor, or medium containing 10% FBS alone. Cell surface marker analysis revealed that more than 95% of the cells were positive for CD105/endoglin, a putative mesenchymal stem cell marker, and negative for CD34, CD31, and CD133, markers of hematopoietic, endothelial, and neural stem cells, respectively, regardless of cell isolation and propagation method. CD44 expression was variable, apparently dependent on serum concentration. Functional similarity of the stem cell populations was also observed, with each different cell population expressing the cell type-specific markers beta-tubulin, type II collagen, and desmin, and demonstrating endothelial tube formation when cultured under conditions favoring neural, cartilage, muscle, and endothelial cell differentiation, respectively. On the basis of these data, adult human bone marrow-derived stem cells cultured in adherent monolayer are virtually indistinguishable, both physically and functionally, regardless of the method of isolation or proliferative expansion.

  8. Deletion of bone-marrow-derived receptor for AGEs (RAGE) improves renal function in an experimental mouse model of diabetes.

    PubMed

    Tesch, Greg; Sourris, Karly C; Summers, Shaun A; McCarthy, Domenica; Ward, Micheal S; Borg, Danielle J; Gallo, Linda A; Fotheringham, Amelia K; Pettit, Allison R; Yap, Felicia Y T; Harcourt, Brooke E; Tan, Adeline L Y; Kausman, Joshua Y; Nikolic-Paterson, David; Kitching, Arthur R; Forbes, Josephine M

    2014-09-01

    The AGEs and the receptor for AGEs (RAGE) are known contributors to diabetic complications. RAGE also has a physiological role in innate and adaptive immunity and is expressed on immune cells. The aim of this study was to determine whether deletion of RAGE from bone-marrow-derived cells influences the pathogenesis of experimental diabetic nephropathy. Groups (n = 8/group) of lethally irradiated 8 week old wild-type (WT) mice were reconstituted with bone marrow from WT (WT → WT) or RAGE-deficient (RG) mice (RG → WT). Diabetes was induced using multiple low doses of streptozotocin after 8 weeks of bone marrow reconstitution and mice were followed for a further 24 weeks. Compared with diabetic WT mice reconstituted with WT bone marrow, diabetic WT mice reconstituted with RG bone marrow had lower urinary albumin excretion and podocyte loss, more normal creatinine clearance and less tubulo-interstitial injury and fibrosis. However, glomerular collagen IV deposition, glomerulosclerosis and cortical levels of TGF-β were not different among diabetic mouse groups. The renal tubulo-interstitium of diabetic RG → WT mice also contained fewer infiltrating CD68(+) macrophages that were activated. Diabetic RG → WT mice had lower renal cortical concentrations of CC chemokine ligand 2 (CCL2), macrophage inhibitory factor (MIF) and IL-6 than diabetic WT → WT mice. Renal cortical RAGE ligands S100 calgranulin (S100A)8/9 and AGEs, but not high mobility box protein B-1 (HMGB-1) were also decreased in diabetic RG → WT compared with diabetic WT → WT mice. In vitro, bone-marrow-derived macrophages from WT but not RG mice stimulated collagen IV production in cultured proximal tubule cells. These studies suggest that RAGE expression on haemopoietically derived immune cells contributes to the functional changes seen in diabetic nephropathy by promoting macrophage infiltration and renal tubulo-interstitial damage.

  9. GM-CSF Grown Bone Marrow Derived Cells Are Composed of Phenotypically Different Dendritic Cells and Macrophages

    PubMed Central

    Na, Yi Rang; Jung, Daun; Gu, Gyo Jeong; Seok, Seung Hyeok

    2016-01-01

    Granulocyte-macrophage colony stimulating factor (GM-CSF) has a role in inducing emergency hematopoiesis upon exposure to inflammatory stimuli. Although GM-CSF generated murine bone marrow derived cells have been widely used as macrophages or dendritic cells in research, the exact characteristics of each cell population have not yet been defined. Here we discriminated GM-CSF grown bone marrow derived macrophages (GM-BMMs) from dendritic cells (GM-BMDCs) in several criteria. After C57BL/6J mice bone marrow cell culture for 7 days with GM-CSF supplementation, two main populations were observed in the attached cells based on MHCII and F4/80 marker expressions. GM-BMMs had MHCIIlowF4/80high as well as CD11c+CD11bhighCD80−CD64+MerTK+ phenotypes. In contrast, GM-BMDCs had MHCIIhighF4/80low and CD11chighCD8α− CD11b+CD80+CD64−MerTKlow phenotypes. Interestingly, the GM-BMM population increased but GM-BMDCs decreased in a GM-CSF dose-dependent manner. Functionally, GM-BMMs showed extremely high phagocytic abilities and produced higher IL-10 upon LPS stimulation. GM-BMDCs, however, could not phagocytose as well, but were efficient at producing TNFα, IL-1β, IL-12p70 and IL-6 as well as inducing T cell proliferation. Finally, whole transcriptome analysis revealed that GM-BMMs and GM-BMDCs are overlap with in vivo resident macrophages and dendritic cells, respectively. Taken together, our study shows the heterogeneicity of GM-CSF derived cell populations, and specifically characterizes GM-CSF derived macrophages compared to dendritic cells. PMID:27788572

  10. Cranial irradiation induces bone marrow-derived microglia in adult mouse brain tissue.

    PubMed

    Okonogi, Noriyuki; Nakamura, Kazuhiro; Suzuki, Yoshiyuki; Suto, Nana; Suzue, Kazutomo; Kaminuma, Takuya; Nakano, Takashi; Hirai, Hirokazu

    2014-07-01

    Postnatal hematopoietic progenitor cells do not contribute to microglial homeostasis in adult mice under normal conditions. However, previous studies using whole-body irradiation and bone marrow (BM) transplantation models have shown that adult BM cells migrate into the brain tissue and differentiate into microglia (BM-derived microglia; BMDM). Here, we investigated whether cranial irradiation alone was sufficient to induce the generation of BMDM in the adult mouse brain. Transgenic mice that express green fluorescent protein (GFP) under the control of a murine stem cell virus (MSCV) promoter (MSCV-GFP mice) were used. MSCV-GFP mice express GFP in BM cells but not in the resident microglia in the brain. Therefore, these mice allowed us to detect BM-derived cells in the brain without BM reconstitution. MSCV-GFP mice, aged 8-12 weeks, received 13.0 Gy irradiation only to the cranium, and BM-derived cells in the brain were quantified at 3 and 8 weeks after irradiation. No BM-derived cells were detected in control non-irradiated MSCV-GFP mouse brains, but numerous GFP-labeled BM-derived cells were present in the brain stem, basal ganglia and cerebral cortex of the irradiated MSCV-GFP mice. These BM-derived cells were positive for Iba1, a marker for microglia, indicating that GFP-positive BM-derived cells were microglial in nature. The population of BMDM was significantly greater at 8 weeks post-irradiation than at 3 weeks post-irradiation in all brain regions examined. Our results clearly show that cranial irradiation alone is sufficient to induce the generation of BMDM in the adult mouse.

  11. The role of circulating mesenchymal progenitor cells, fibrocytes, in promoting pulmonary fibrosis.

    PubMed

    Strieter, Robert M; Keeley, Ellen C; Burdick, Marie D; Mehrad, Borna

    2009-01-01

    The resident fibroblast has been traditionally viewed as the primary cell involved in promoting pulmonary fibrosis. However, contemporary findings now support the concept of a circulating cell (fibrocyte) that also contributes to pulmonary fibrosis. Fibrocytes are bone marrow-derived mesenchymal progenitor cells that express a variety of cell surface markers related to leukocytes, hematopoietic progenitor cells and fibroblasts. Fibrocytes are unique in that they are capable of differentiating into fibroblasts and myofibroblasts, as well as adipocytes. In this review, we present data supporting the critical role these cells play in the pathogenesis of pulmonary fibrosis.

  12. Role of Integrin in Mechanical Loading of Osteoblasts

    NASA Technical Reports Server (NTRS)

    Globus, Ruth; Demsky, Caroline

    2000-01-01

    Mechanical forces generated by gravity, weightbearing, and muscle contraction play a key role in the genesis and maintenance of skeletal structure. The molecular mechanisms that mediate changes in osteoblast activity in response to altered patterns of skeletal loading are not known, and a better understanding of these processes may be essential for developing effective treatment strategies to prevent disuse osteoporosis. We have elucidated specific integrin/ECM (extracellular matrix) interactions that are required for osteoblast differentiation and survival and have developed a useful loading system to further explore the molecular basis of mechano-sensitivity of osteoblasts. The long term goal of our collaborative research is to understand how the ECM and cell adhesion proteins and integrins interaction to mediate the response of osteoblasts and their progenitors to mechanical loading. We suggest that integrin/ECM interactions are crucial for basic cellular processes, including differentiation and survival, as well as to participate in detecting and mediating cellular responses to mechanical stimuli.

  13. Vegfa regulates perichondrial vascularity and osteoblast differentiation in bone development.

    PubMed

    Duan, Xuchen; Murata, Yurie; Liu, Yanqiu; Nicolae, Claudia; Olsen, Bjorn R; Berendsen, Agnes D

    2015-06-01

    Vascular endothelial growth factor A (Vegfa) has important roles in endochondral bone formation. Osteoblast precursors, endothelial cells and osteoclasts migrate from perichondrium into primary ossification centers of cartilage templates of future bones in response to Vegfa secreted by (pre)hypertrophic chondrocytes. Perichondrial osteolineage cells also produce Vegfa, but its function is not well understood. By deleting Vegfa in osteolineage cells in vivo, we demonstrate that progenitor-derived Vegfa is required for blood vessel recruitment in perichondrium and the differentiation of osteoblast precursors in mice. Conditional deletion of Vegfa receptors indicates that Vegfa-dependent effects on osteoblast differentiation are mediated by Vegf receptor 2 (Vegfr2). In addition, Vegfa/Vegfr2 signaling stimulates the expression and activity of Indian hedgehog, increases the expression of β-catenin and inhibits Notch2. Our findings identify Vegfa as a regulator of perichondrial vascularity and osteoblast differentiation at early stages of bone development. © 2015. Published by The Company of Biologists Ltd.

  14. Bone Formation by Sheep Stem Cells in an Ectopic Mouse Model: Comparison of Adipose and Bone Marrow Derived Cells and Identification of Donor-Derived Bone by Antibody Staining

    PubMed Central

    Dreyer, Chris H.; Ditzel, Nicholas; Andreasen, Christina M.; Chen, Li; Sheikh, Søren P.; Overgaard, Søren

    2016-01-01

    Background. Scaffolds for bone tissue engineering (BTE) can be loaded with stem and progenitor cells (SPC) from different sources to improve osteogenesis. SPC can be found in bone marrow, adipose tissue, and other tissues. Little is known about osteogenic potential of adipose-derived culture expanded, adherent cells (A-CEAC). This study compares in vivo osteogenic capacity between A-CEAC and bone marrow derived culture expanded, adherent cells (BM-CEAC). Method. A-CEAC and BM-CEAC were isolated from five female sheep and seeded on hydroxyapatite granules prior to subcutaneous implantation in immunodeficient mice. The doses of cells in the implants were 0.5 × 106, 1.0 × 106, or 1.5 × 106 A-CEAC and 0.5 × 106 BM-CEAC, respectively. After eight weeks, bone volume versus total tissue volume (BV/TV) was quantified using histomorphometry. Origin of new bone was assessed using human vimentin (HVIM) antibody staining. Results. BM-CEAC yielded significantly higher BV/TV than any A-CEAC group, and differences between A-CEAC groups were not statistically significant. HVIM antibody stain was successfully used to identify sheep cells in this model. Conclusion. A-CEAC and BM-CEAC were capable of forming bone, and BM-CEAC yielded significantly higher BV/TV than any A-CEAC group. In vitro treatment to enhance osteogenic capacity of A-CEAC is suggested for further research in ovine bone tissue engineering. PMID:27994622

  15. Enhancing osteoblast-affinity of titanium scaffolds for bone engineering by use of ultraviolet light treatment.

    PubMed

    Ishijima, Manabu; Soltanzadeh, Pooya; Hirota, Makoto; Tsukimura, Naoki; Shigami, Tomohiko; Ogawa, Takahiro

    2015-01-01

    Ultraviolet (UV) treatment immediately prior to use is attracting attention as an effective surface conditioning method for titanium to improve osteoblast-affinity. The affinity of titanium to osteoblasts in two-dimensional plate culture has been well studied, but that in three-dimensional cultures remains unclear. Here, we examined the effect of UV treatment on titanium scaffolds, comprising micro-thin titanium fibers, used in bone engineering. Titanium scaffolds, with and without UV treatment, were seeded with rat bone marrow derived osteoblasts, and the number of cells attached to scaffolds and osteoblastic phenotype in the cultures were examined. UV treatment improved the wettability of scaffolds and significantly reduced the percentage of surface carbon. Along with these physicochemical changes in the scaffolds, cell attachment increased by a factor of 1.3 as compared to that of the untreated control. In addition, alkaline phosphatase activity and calcium deposition significantly increased by a factor of 2.3 and 2.0, respectively. Robust formation of mineralized structures consisting of clear peaks of calcium and phosphorus was observed in the UV-treated scaffolds. The observed increase in osteoblast affinity and capability of mineralized matrix formation indicates the potential use of UV-treated titanium scaffolds for bone engineering.

  16. The Role of KV7.3 in Regulating Osteoblast Maturation and Mineralization

    PubMed Central

    Yang, Ji Eun; Song, Min Seok; Shen, Yiming; Ryu, Pan Dong; Lee, So Yeong

    2016-01-01

    KCNQ (KV7) channels are voltage-gated potassium (KV) channels, and the function of KV7 channels in muscles, neurons, and sensory cells is well established. We confirmed that overall blockade of KV channels with tetraethylammonium augmented the mineralization of bone-marrow-derived human mesenchymal stem cells during osteogenic differentiation, and we determined that KV7.3 was expressed in MG-63 and Saos-2 cells at the mRNA and protein levels. In addition, functional KV7 currents were detected in MG-63 cells. Inhibition of KV7.3 by linopirdine or XE991 increased the matrix mineralization during osteoblast differentiation. This was confirmed by alkaline phosphatase, osteocalcin, and osterix in MG-63 cells, whereas the expression of Runx2 showed no significant change. The extracellular glutamate secreted by osteoblasts was also measured to investigate its effect on MG-63 osteoblast differentiation. Blockade of KV7.3 promoted the release of glutamate via the phosphorylation of extracellular signal-regulated kinase 1/2-mediated upregulation of synapsin, and induced the deposition of type 1 collagen. However, activation of KV7.3 by flupirtine did not produce notable changes in matrix mineralization during osteoblast differentiation. These results suggest that KV7.3 could be a novel regulator in osteoblast differentiation. PMID:26999128

  17. Overexpression of FABP3 inhibits human bone marrow derived mesenchymal stem cell proliferation but enhances their survival in hypoxia

    SciTech Connect

    Wang, Suna Zhou, Yifu; Andreyev, Oleg; Hoyt, Robert F.; Singh, Avneesh; Hunt, Timothy; Horvath, Keith A.

    2014-04-15

    Studying the proliferative ability of human bone marrow derived mesenchymal stem cells in hypoxic conditions can help us achieve the effective regeneration of ischemic injured myocardium. Cardiac-type fatty acid binding protein (FABP3) is a specific biomarker of muscle and heart tissue injury. This protein is purported to be involved in early myocardial development, adult myocardial tissue repair and responsible for the modulation of cell growth and proliferation. We have investigated the role of FABP3 in human bone marrow derived mesenchymal stem cells under ischemic conditions. MSCs from 12 donors were cultured either in standard normoxic or modified hypoxic conditions, and the differential expression of FABP3 was tested by quantitative {sup RT}PCR and western blot. We also established stable FABP3 expression in MSCs and searched for variation in cellular proliferation and differentiation bioprocesses affected by hypoxic conditions. We identified: (1) the FABP3 differential expression pattern in the MSCs under hypoxic conditions; (2) over-expression of FABP3 inhibited the growth and proliferation of the MSCs; however, improved their survival in low oxygen environments; (3) the cell growth factors and positive cell cycle regulation genes, such as PCNA, APC, CCNB1, CCNB2 and CDC6 were all down-regulated; while the key negative cell cycle regulation genes TP53, BRCA1, CASP3 and CDKN1A were significantly up-regulated in the cells with FABP3 overexpression. Our data suggested that FABP3 was up-regulated under hypoxia; also negatively regulated the cell metabolic process and the mitotic cell cycle. Overexpression of FABP3 inhibited cell growth and proliferation via negative regulation of the cell cycle and down-regulation of cell growth factors, but enhances cell survival in hypoxic or ischemic conditions. - Highlights: • FABP3 expression pattern was studied in 12 human hypoxic-MSCs. • FABP3 mRNA and proteins are upregulated in the MSCs under hypoxic conditions.

  18. Mouse Mesenchymal Progenitor Cells Expressing Adipogenic and Osteogenic Transcription Factors Suppress the Macrophage Inflammatory Response.

    PubMed

    Fernandez, Natalie; Renna, Heather; McHugh, Lauren; Mazolkova, Katie; Crugnola, William; Evans, Jodi F

    2017-01-01

    Mesenchymal progenitor cell characteristics that can identify progenitor populations with specific functions in immunity are actively being investigated. Progenitors from bone marrow and adipose tissue regulate the macrophage (MΦ) inflammatory response by promoting the switch from an inflammatory to an anti-inflammatory phenotype. Conversely, mesenchymal progenitors from the mouse aorta (mAo) support and contribute to the MΦ response under inflammatory conditions. We used cell lines with purported opposing immune-regulatory function, a bone marrow derived mesenchymal progenitor cell line (D1) and a mouse aorta derived mesenchymal progenitor cell line (mAo). Their interaction and regulation of the MΦ cell response to the inflammatory mediator, lipopolysaccharide (LPS), was examined by coculture. As expected, D1 cells suppressed NO, TNF-α, and IL-12p70 production but MΦ phagocytic activity remained unchanged. The mAo cells enhanced NO and TNF-α production in coculture and enhanced MΦ phagocytic activity. Using flow cytometry and PCR array, we then sought to identify sets of MSC-associated genes and markers that are expressed by these progenitor populations. We have determined that immune-supportive mesenchymal progenitors highly express chondrogenic and tenogenic transcription factors while immunosuppressive mesenchymal progenitors highly express adipogenic and osteogenic transcription factors. These data will be useful for the isolation, purification, and modification of mesenchymal progenitors to be used in the treatment of inflammatory diseases.

  19. Mouse Mesenchymal Progenitor Cells Expressing Adipogenic and Osteogenic Transcription Factors Suppress the Macrophage Inflammatory Response

    PubMed Central

    Fernandez, Natalie; Renna, Heather; McHugh, Lauren; Mazolkova, Katie; Crugnola, William

    2017-01-01

    Mesenchymal progenitor cell characteristics that can identify progenitor populations with specific functions in immunity are actively being investigated. Progenitors from bone marrow and adipose tissue regulate the macrophage (MΦ) inflammatory response by promoting the switch from an inflammatory to an anti-inflammatory phenotype. Conversely, mesenchymal progenitors from the mouse aorta (mAo) support and contribute to the MΦ response under inflammatory conditions. We used cell lines with purported opposing immune-regulatory function, a bone marrow derived mesenchymal progenitor cell line (D1) and a mouse aorta derived mesenchymal progenitor cell line (mAo). Their interaction and regulation of the MΦ cell response to the inflammatory mediator, lipopolysaccharide (LPS), was examined by coculture. As expected, D1 cells suppressed NO, TNF-α, and IL-12p70 production but MΦ phagocytic activity remained unchanged. The mAo cells enhanced NO and TNF-α production in coculture and enhanced MΦ phagocytic activity. Using flow cytometry and PCR array, we then sought to identify sets of MSC-associated genes and markers that are expressed by these progenitor populations. We have determined that immune-supportive mesenchymal progenitors highly express chondrogenic and tenogenic transcription factors while immunosuppressive mesenchymal progenitors highly express adipogenic and osteogenic transcription factors. These data will be useful for the isolation, purification, and modification of mesenchymal progenitors to be used in the treatment of inflammatory diseases. PMID:28191017

  20. Biology and Flow Cytometry of Proangiogenic Hematopoietic Progenitors Cells

    PubMed Central

    Rose, Jonathan A.; Erzurum, Serpil; Asosingh, Kewal

    2015-01-01

    During development hematopoiesis and neovascularization are closely linked to each other via a common bipotent stem cell called the hemangioblast that gives rise to both hematopoietic cells and endothelial cells. In postnatal life this functional connection between the vasculature and hematopoiesis is maintained by a subset of hematopoietic progenitor cells endowed with the capacity to differentiate into potent proangiogenic cells. These proangiogenic hematopoietic progenitors comprise a specific subset of bone marrow-derived cells that homes to sites of neovascularization and possess potent paracrine angiogenic activity. There is emerging evidence that this subpopulation of hematopoietic progenitors plays a critical role in vascular health and disease. Their angiogenic activity is distinct from putative “endothelial progenitor cells” that become structural cells of the endothelium by differentiation into endothelial cells. Proangiogenic hematopoietic progenitor cell research requires multi-disciplinary expertise in flow cytometry, hematology and vascular biology. This review provides a comprehensive overview of proangiogenic hematopoietic progenitor cell biology and flow cytometric methods to detect these cells in the peripheral blood circulation and bone marrow. PMID:25418030

  1. Three-dimensional co-culture of mesenchymal stromal cells and differentiated osteoblasts on human bio-derived bone scaffolds supports active multi-lineage hematopoiesis in vitro: Functional implication of the biomimetic HSC niche.

    PubMed

    Huang, Xiaobing; Zhu, Biao; Wang, Xiaodong; Xiao, Rong; Wang, Chunsen

    2016-10-01

    Recent studies have indicated that the hematopoietic stem/progenitor cell (HSPC) niche, consisting of two major crucial components, namely osteoblasts (OBs) and mesenchymal stromal cells (MSCs), is responsible for the fate of HSPCs. Thus, closely mimicking the HSPC niche ex vivo may be an efficient strategy with which to develop new culture strategies to specifically regulate the balance between HSPC self-renewal and proliferation. The aim of this study was to establish a novel HSPC three-dimensional culture system by co-culturing bone marrow-derived MSCs and OBs differentiated from MSCs without any cytokines as feeder cells and applying bio-derived bone from human femoral metaphyseal portion as the scaffold. Scanning electron microscopy revealed the excellent biocompatibility of bio-derived bone with bone marrow-derived MSCs and OBs differentiated from MSCs. Western blot analysis revealed that many cytokines, which play key roles in HSPC regulation, were comprehensively secreted, while ELISA revealed that extracellular matrix molecules were also highly expressed. Hoechst 33342/propidium iodide fluorescence staining proved that our system could be used to supply a long-term culture of HSPCs. Flow cytometric analysis and qPCR of p21 expression demonstrated that our system significantly promoted the self-renewal and ex vivo expansion of HSPCs. Colony-forming unit (CFU) and long-term culture-initiating cell (LTC-IC) assays confirmed that our system has the ability for both the expansion of CD34+ hematopoietic stem cells (HPCs) and the maintenance of a primitive cell subpopulation of HSCs. The severe-combined immunodeficient mouse repopulating cell assay revealed the promoting effects of our system on the expansion of long-term primitive transplantable HSCs. In conclusion, our system may be a more comprehensive and balanced system which not only promotes the self-renewal and ex vivo expansion of HSPCs, but also maintains primitive HPCs with superior

  2. Dissection of the biphasic nature of hypoxia-induced motogenic action in bone marrow-derived human mesenchymal stem cells.

    PubMed

    Busletta, Chiara; Novo, Erica; Valfrè Di Bonzo, Lorenzo; Povero, Davide; Paternostro, Claudia; Ievolella, Monica; Mareschi, Katia; Ferrero, Ivana; Cannito, Stefania; Compagnone, Alessandra; Bandino, Andrea; Colombatto, Sebastiano; Fagioli, Franca; Parola, Maurizio

    2011-06-01

    Hypoxic conditions have been reported to facilitate preservation of undifferentiated mesenchymal stem cell (MSC) phenotype and positively affect their colony-forming potential, proliferation, and migration/mobilization. In this study, designed to dissect mechanisms underlying hypoxia-dependent migration of bone marrow-derived human MSC (hMSC), signal transduction, and molecular mechanisms were evaluated by integrating morphological, molecular, and cell biology techniques, including the wound healing assay (WHA) and modified Boyden's chamber assay (BCA) to monitor migration. Exposure of hMSCs to moderate hypoxia resulted in a significant increase of migration of hMSCs in both WHA (from 6 to 20 hours) and BCA (within 6 hours). Mechanistic experiments outlined the following sequence of hypoxia-dependent events: (a) very early (15 minutes) increased generation of intracellular reactive oxygen species (ROS), which (b) was sufficient to switch on activation of extracellular regulated kinase 1/2 and c-Jun N-terminal protein kinase 1/2, found to be relevant for the early phase of hMSC migration; (c) hypoxia inducible factor-1 (HIF-1)-dependent increased expression of vascular endothelial growth factor (VEGF) (facilitated by ROS) and its progressive release that was responsible for (d) a delayed and sustained migration of hMSCs. These results suggest that hypoxia-dependent migration relies on a previously unrecognized biphasic scenario involving an early phase, requiring generation of ROS, and a delayed phase sustained by HIF-1-dependent expression and release of VEGF.

  3. An electromagnetic compressive force by cell exciter stimulates chondrogenic differentiation of bone marrow-derived mesenchymal stem cells.

    PubMed

    Park, Sang-Hyug; Sim, Woo Young; Park, Sin Wook; Yang, Sang Sik; Choi, Byung Hyune; Park, So Ra; Park, Kwideok; Min, Byoung-Hyun

    2006-11-01

    In this study, we present a biological micro-electromechanical system and its application to the chondrogenic differentiation of rabbit bone marrow-derived mesenchymal stem cells (MSCs). Actuated by an electromagnetic force, the micro cell exciter was designed to deliver a cyclic compressive load (CCL) with various magnitudes. Two major parts in the system are an actuator and a cartridge-type chamber. The former has a permanent magnet and coil, and the latter is equipped with 7 sample dishes and 7 metal caps. Mixed with a 2.4% alginate solution, the alginate/MSC layers were positioned in the sample dishes; the caps contained chondrogenic defined medium without transforming growth factor-beta (TGF-beta). Once powered, the actuator coil-derived electromagnetic force pulled the metal caps down, compressing the samples. The cyclic load was given at 1-Hz frequency for 10 min twice a day. Samples in the dishes without a cap served as a control. The samples were analyzed at 3, 5, and 7 days after stimulation for cell viability, biochemical assays, histologic features, immunohistochemistry, and gene expression of the chondrogenic markers. Applied to the alginate/MSC layer, the CCL system enhanced the synthesis of cartilage-specific matrix proteins and the chondrogenic markers, such as aggrecan, type II collagen, and Sox9. We found that the micromechanically exerted CCL by the cell exciter was very effective in enhancing the chondrogenic differentiation of MSCs, even without using exogenous TGF-beta.

  4. Characterization of a subset of bone marrow-derived natural killer cells that regulates T cell activation in rats.

    PubMed

    Kheradmand, Taba; Trivedi, Prachi P; Wolf, Norbert A; Roberts, Paul C; Swanborg, Robert H

    2008-05-01

    We report that bone marrow-derived natural killer (BMNK) cells from DA or F344 rats inhibit PMA/ionomycin-induced T cell proliferation. These NK-regulatory cells are NKR-P1A(dim), whereas a minor subpopulation is NKR-P1A(bright). Only the NKR-P1A(dim) BMNK cells inhibit T cell proliferation. If activated with rat Con A supernatant, the NKR-P1A(dim) cells become NKR-P1A(bright) and lose the ability to inhibit T cell proliferation. In contrast to BMNK cells, all DA and F344 rat NK cells isolated from the blood, spleen, cervical, or mesenteric lymph nodes or Peyer's patches are NKR-P1A(bright) and lack the ability to inhibit T cell proliferation. Inhibition of T cell proliferation correlates with significant down-regulation of CD3, suggesting that this may be the mechanism through which the NKR-P1A(dim) cells mediate suppression. The nitric oxide synthase inhibitor N(G)-monomethyl-arginine acetate-abrogated NKR-P1A(dim) cell inhibition of T cell proliferation. We conclude that rat bone marrow NKR-P1A(dim) cells represent a unique population that may play a role in maintaining immune homeostasis by regulating the clonal expansion of activated T cells.

  5. Curcumin-functionalized silk materials for enhancing adipogenic differentiation of bone marrow-derived human mesenchymal stem cells

    PubMed Central

    Li, Chunmei; Luo, Tingting; Zheng, Zhaozhu; Murphy, Amanda R.; Wang, Xiaoqin; Kaplan, David L.

    2014-01-01

    Curcumin, a natural phenolic compound derived from the plant Curcuma longa, was physically entrapped and stabilized in silk hydrogel films and its influence on human bone marrow-derived mesenchymal stem cells (hBMSCs) was assessed related to adipogenic differentiation. The presence of curcumin significantly reduced silk gelation time and changed the porous morphology of gel matrix, but did not change the formation of silk beta-sheet structure. Based on spectrofluorimetric analysis, curcumin likely interacted with hydrophobic residues in silk, interacting with the beta-sheet domains formed in the hydrogels. The antioxidant activity of silk film-associated curcumin remained functional over at least one month in both the dry and hydrated state. Negligible curcumin was released from silk hydrogel films over 48 hours incubation in aqueous solution. For hBMSCs cultured on silk films containing more than 0.25 mg/mL curcumin, cell proliferation was inhibited while adipogenesis was significantly promoted based on transcripts as well as oil red O staining. When hBMSCs were cultured in media containing free curcumin, both proliferation and adipogenesis of hBMSCs were inhibited when curcumin concentrations exceeded 5 μM, which is more than 1,000-times higher than the level of curcumin released from the films in aqueous solution. Thus, silk film-associated curcumin exhibited different effects on hBMSC proliferation and differentiation when compared to curcumin in solution. PMID:25132274

  6. Intravenous transplantation of bone marrow-derived mononuclear cells prevents memory impairment in transgenic mouse models of Alzheimer's disease.

    PubMed

    Kanamaru, Takuya; Kamimura, Naomi; Yokota, Takashi; Nishimaki, Kiyomi; Iuchi, Katsuya; Lee, Hyunjin; Takami, Shinya; Akashiba, Hiroki; Shitaka, Yoshitsugu; Ueda, Masayuki; Katsura, Ken-Ichiro; Kimura, Kazumi; Ohta, Shigeo

    2015-04-24

    Stem cell transplantation therapy is currently in clinical trials for the treatment of ischemic stroke, and several beneficial aspects have been reported. Similarly, in Alzheimer's disease (AD), stem cell therapy is expected to provide an efficient therapeutic approach. Indeed, the intracerebral transplantation of stem cells reduced amyloid-β (Aβ) deposition and rescued memory deficits in AD model mice. Here, we show that intravenous transplantation of bone marrow-derived mononuclear cells (BMMCs) improves cognitive function in two different AD mouse models, DAL and APP mice, and prevents neurodegeneration. GFP-positive BMMCs were isolated from tibiae and femurs of 4-week-old mice and then transplanted intravenously into DAL and APP mice. Transplantation of BMMCs suppressed neuronal loss and restored memory impairment of DAL mice to almost the same level as in wild-type mice. Transplantation of BMMCs to APP mice reduced Aβ deposition in the brain. APP mice treated with BMMCs performed significantly better on behavioral tests than vehicle-injected mice. Moreover, the effects were observed even with transplantation after the onset of cognitive impairment in DAL mice. Together, our results indicate that intravenous transplantation of BMMCs has preventive effects against the cognitive decline in AD model mice and suggest a potential therapeutic effect of BMMC transplantation therapy.

  7. Emergence of signs of neural cells after exposure of bone marrow-derived mesenchymal stem cells to fetal brain extract

    PubMed Central

    Jahromi, Iman Razeghian; Mehrabani, Davood; Mohammadi, Ali; Seno, Mohammad Mahdi Ghahramani; Dianatpour, Mehdi; Zare, Shahrokh; Tamadon, Amin

    2017-01-01

    Objective(s): Nowadays much effort is being invested in order to diagnose the mechanisms involved in neural differentiation. By clarifying this, making desired neural cells in vitro and applying them into diverse neurological disorders suffered from neural cell malfunctions could be a feasible choice. Thus, the present study assessed the capability of fetal brain extract (FBE) to induce rat bone marrow-derived mesenchymal stem cells (BM-MSCs) toward neural cells. Materials and Methods: For this purpose, BM-MSCs were collected from rats and cultured and their mesenchymal properties were confirmed. After exposure of the BM-MSCs to fetal brain extract, the cells were evaluated and harvested at days 3 and 7 after treatment. Results: The BM-MSCs that were exposed to FBE changed their appearance dramatically from spindle shape to cells with dendrite-like processes. Those neural like processes were absent in the control group. In addition, a neural specific marker, vimentin, was expressed significantly in the treatment group but not in the negative control group. Conclusion: This study presented the FBE as a natural neural differentiation agent, which probably has required factors for making neurons. In addition, vimentin overexpression was observed in the treated group which confirms neuron-like cell differentiation of BM-MSCs after induction. PMID:28392903

  8. The role of Hibiscus sabdariffa L. (Roselle) in maintenance of ex vivo murine bone marrow-derived hematopoietic stem cells.

    PubMed

    Abdul Hamid, Zariyantey; Lin Lin, Winnie Hii; Abdalla, Basma Jibril; Bee Yuen, Ong; Latif, Elda Surhaida; Mohamed, Jamaludin; Rajab, Nor Fadilah; Paik Wah, Chow; Wak Harto, Muhd Khairul Akmal; Budin, Siti Balkis

    2014-01-01

    Hematopoietic stem cells- (HSCs-) based therapy requires ex vivo expansion of HSCs prior to therapeutic use. However, ex vivo culture was reported to promote excessive production of reactive oxygen species (ROS), exposing HSCs to oxidative damage. Efforts to overcome this limitation include the use of antioxidants. In this study, the role of Hibiscus sabdariffa L. (Roselle) in maintenance of cultured murine bone marrow-derived HSCs was investigated. Aqueous extract of Roselle was added at varying concentrations (0-1000 ng/mL) for 24 hours to the freshly isolated murine bone marrow cells (BMCs) cultures. Effects of Roselle on cell viability, reactive oxygen species (ROS) production, glutathione (GSH) level, superoxide dismutase (SOD) activity, and DNA damage were investigated. Roselle enhanced the survival (P < 0.05) of BMCs at 500 and 1000 ng/mL, increased survival of Sca-1(+) cells (HSCs) at 500 ng/mL, and maintained HSCs phenotype as shown from nonremarkable changes of surface marker antigen (Sca-1) expression in all experimental groups. Roselle increased (P < 0.05) the GSH level and SOD activity but the level of reactive oxygen species (ROS) was unaffected. Moreover, Roselle showed significant cellular genoprotective potency against H2O2-induced DNA damage. Conclusively, Roselle shows novel property as potential supplement and genoprotectant against oxidative damage to cultured HSCs.

  9. Activation of the germ-cell potential of human bone marrow-derived cells by a chemical carcinogen.

    PubMed

    Liu, Chunfang; Ma, Zhan; Xu, Songtao; Hou, Jun; Hu, Yao; Yu, Yinglu; Liu, Ruilai; Chen, Zhihong; Lu, Yuan

    2014-07-07

    Embryonic/germ cell traits are common in malignant tumors and are thought to be involved in malignant tumor behaviors. The reasons why tumors show strong embryonic/germline traits (displaced germ cells or gametogenic programming reactivation) are controversial. Here, we show that a chemical carcinogen, 3-methyl-cholanthrene (3-MCA), can trigger the germ-cell potential of human bone marrow-derived cells (hBMDCs). 3-MCA promoted the generation of germ cell-like cells from induced hBMDCs that had undergone malignant transformation, whereas similar results were not observed in the parallel hBMDC culture at the same time point. The malignant transformed hBMDCs spontaneously and more efficiently generated into germ cell-like cells even at the single-cell level. The germ cell-like cells from induced hBMDCs were similar to natural germ cells in many aspects, including morphology, gene expression, proliferation, migration, further development, and teratocarcinoma formation. Therefore, our results demonstrate that a chemical carcinogen can reactivate the germline phenotypes of human somatic tissue-derived cells, which might provide a novel idea to tumor biology and therapy.

  10. Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring.

    PubMed

    Li, Zhonghua; Wang, Haiqin; Yang, Bo; Sun, Yukai; Huo, Ran

    2015-12-01

    The regeneration of functional skin remains elusive, due to poor engraftment, deficient vascularization, and excessive scar formation. Aiming to overcome these issues, the present study proposed the combination of a three-dimensional graphene foam (GF) scaffold loaded with bone marrow derived mesenchymal stem cells (MSCs) to improve skin wound healing. The GFs demonstrated good biocompatibility and promoted the growth and proliferation of MSCs. Meanwhile, the GFs loaded with MSCs obviously facilitated wound closure in animal model. The dermis formed in the presence of the GF structure loaded with MSCs was thicker and possessed a more complex structure at day 14 post-surgery. The transplanted MSCs correlated with upregulation of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), which may lead to neo-vascularization. Additionally, an anti-scarring effect was observed in the presence of the 3D-GF scaffold and MSCs, as evidenced by a downregulation of transforming growth factor-beta 1 (TGF-β1) and alpha-smooth muscle actin (α-SMA) together with an increase of TGF-β3. Altogether, the GF scaffold could guide the wound healing process with reduced scarring, and the MSCs were crucial to enhance vascularization and provided a better quality neo-skin. The GF scaffold loaded with MSCs possesses necessary bioactive cues to improve wound healing with reduced scarring, which may be of great clinical significance for skin wound healing. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. The temporal expression of estrogen receptor alpha-36 and runx2 in human bone marrow derived stromal cells during osteogenesis

    SciTech Connect

    Francis, W.R.; Owens, S.E.; Wilde, C.; Pallister, I.; Kanamarlapudi, V.; Zou, W.; Xia, Z.

    2014-10-24

    Highlights: • ERα36 is the predominant ERα isoform involved in bone regulation in human BMSC. • ERα36 mRNA is significantly upregulated during the process of osteogenesis. • The pattern of ERα36 and runx2 mRNA expression is similar during osteogenesis. • ERα36 appears to be co-localised with runx2 during osteogenesis. - Abstract: During bone maintenance in vivo, estrogen signals through estrogen receptor (ER)-α. The objectives of this study were to investigate the temporal expression of ERα36 and ascertain its functional relevance during osteogenesis in human bone marrow derived stromal cells (BMSC). This was assessed in relation to runt-related transcription factor-2 (runx2), a main modulatory protein involved in bone formation. ERα36 and runx2 subcellular localisation was assessed using immunocytochemistry, and their mRNA expression levels by real time PCR throughout the process of osteogenesis. The osteogenically induced BMSCs demonstrated a rise in ERα36 mRNA during proliferation followed by a decline in expression at day 10, which represents a change in dynamics within the culture between the proliferative stage and the differentiative stage. The mRNA expression profile of runx2 mirrored that of ERα36 and showed a degree subcellular co-localisation with ERα36. This study suggests that ERα36 is involved in the process of osteogenesis in BMSCs, which has implications in estrogen deficient environments.

  12. Effects of matrix metalloproteinase-1 on the myogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro

    SciTech Connect

    Zheng, Zhenyang; Leng, Yan; Zhou, Chen; Ma, Zhenyu; Zhong, Zhigang; Shi, Xing-Ming; Zhang, Weixi

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer MMP-1 is a member of the zinc-dependent endopeptidase family. Black-Right-Pointing-Pointer MMP-1 has no cytotoxic effects on BMSCs. Black-Right-Pointing-Pointer MMP-1 can promote the myogenic differentiation of BMSCs. Black-Right-Pointing-Pointer MyoD and desmin were chosen as myogenic markers in this study. -- Abstract: Matrix metalloproteinase-1 (MMP-1) is a member of the family of zinc-dependent endopeptidases that are capable of degrading extracellular matrix (ECM) and certain non-matrix proteins. It has been shown that MMP-1 can enhance muscle regeneration by improving the differentiation and migration of myoblasts. However, it is still not known whether MMP-1 can promote the myogenesis of bone marrow-derived mesenchymal stem cells (BMSCs). To address this question, we isolated BMSCs from C57BL/6J mice and investigated the effects of MMP-1 on their proliferation and myogenic differentiation. Our results showed that MMP-1 treatment, which had no cytotoxic effects on BMSCs, increased the mRNA and protein levels of MyoD and desmin in a dose-dependent manner, indicating that MMP-1 promoted myogenic differentiation of BMSCs in vitro. These results suggest that BMSCs may have a therapeutic potential for treating muscular disorders.

  13. Three-dimensional differentiation of bone marrow-derived mesenchymal stem cells into insulin-producing cells.

    PubMed

    Khorsandi, Layasadat; Nejad-Dehbashi, Fereshteh; Ahangarpour, Akram; Hashemitabar, Mahmoud

    2015-02-01

    Fibrin glue (FG) is used in a variety of clinical applications and in the laboratory for localized and sustained release of factors potentially important for tissue engineering. The aim of this study was to evaluate FG scaffold effect on differentiation of insulin-producing cells (IPCs) from bone marrow-derived mesenchymal stem cells (BM-MSCs). In this experimental study BM-MSCs were cultured and the cells characterized by analysis of cell surface markers using flow cytometry. BM-MSCs were seeded in FG scaffold (3D culture) and then treated with induction media. After induction, the presence of IPCs was demonstrated using gene expression profiles for pancreatic cell differentiation markers (PDX-1, GLUT-2 and insulin) and insulin detection in cytoplasm. Release of insulin by these cells was confirmed by radioimmunoassay. Expression of the islet-associated genes PDX-1, GLUT-2 and Insulin genes in 3D cultured cells was markedly higher than the 2D cultured cells exposure differentiation media. Compared to 2D culture of BM-MSCs-derived IPCs, the insulin release from 3D BM-MSCs-derived IPCs showed a nearly 3 fold (p<0.05) increase when exposed to a high glucose (25 mM) medium. Percentage of insulin positive cells in 3D experimental group showed an approximately 3.5-fold increase in compared to 2D experimental culture cells. The results of this study demonstrated that FG scaffold can enhance the differentiation of IPCs from rats BM-MSCs.

  14. Molecular targeting regulation of proliferation and differentiation of the bone marrow-derived mesenchymal stem cells or mesenchymal stromal cells.

    PubMed

    Chen, Bei-Yu; Wang, Xi; Chen, Liang-Wei; Luo, Zhuo-Jing

    2012-04-01

    The bone marrow-derived mesenchymal stem cells or mesenchymal stromal cells (MSCs), with pluripotent differentiation capacity, present an ideal source for cell transplantation or tissue engineering therapies, but exact understanding of regulating mechanism underling MSC proliferation and differentiation remains a critical issue in securing their safe and efficient clinical application. This review outlines current knowledge regarding MSC cell surface biomarkers and molecular mechanisms of MSC differentiation and proliferation with emphasis on Wnt/β-catenin signaling, Notch signaling pathway, bone morphogenesis proteins and various growth factors functioning in regulation of differentiation and proliferation of MSCs. Possible relation of oncogene and immunosuppressive activities of MSCs with tumorigenicity or tumor generation is also addressed for safe translational clinical application. Fast increase of MSC knowledge and techniques has led to some successful clinical trials and helped devising new tissue engineering therapies for bone and cartilage diseases that severely afflict human health. Production of adult MSC-derived functional neurons can further extend their therapeutic application in nerve injury and neurodegenerative diseases. It is promising that MSCs shall overcome ethical and immunorejection problems appeared in human embryonic stem cells, and specific molecular targeting manipulation may result in practical MSC therapy for personalized treatment of various diseases in the regeneration medicine.

  15. Inhibition of degranulation and cytokine production in bone marrow-derived mast cells by hydrolyzed rice bran.

    PubMed

    Hoshino, Yuka; Hirashima, Naohide; Nakanishi, Mamoru; Furuno, Tadahide

    2010-08-01

    We investigated the effects of hydrolyzed rice bran (HRB), an arabinoxylan extracted from rice bran, on mast cell degranulation and cytokine production. HRB was obtained by treating rice bran with an extract obtained from shiitake mushrooms. Bone marrow-derived mast cells (BMMCs) were prepared by culturing bone marrow cells from BALB/c mice in the presence of interleukin-3 and stem cell factor for 4 weeks. BMMCs were pretreated with HRB (0-3 mg/ml) for 30 min and were then antigen activated. Pretreatment of BMMCs with HRB significantly inhibited antigen-induced degranulation and cytokine production (tumor necrosis factor-alpha and interleukin-4) in a dose-dependent manner. HRB also diminished membrane fusion between liposomes in which soluble N-ethyl maleimide-sensitive factor attachment protein receptors were reconstituted. Phosphorylation of RelA and mitogen-activated kinases after antigen stimulation was suppressed by pretreatment of BMMCs with HRB. These findings suggest that HRB may have an anti-inflammatory effect by inhibiting mast cell degranulation and cytokine production.

  16. Bone Marrow-Derived Heparan Sulfate Potentiates The Osteogenic Activity Of Bone Morphogenetic Protein-2 (BMP-2)

    PubMed Central

    Bramono, Diah S.; Murali, Sadasivam; Rai, Bina; Ling, Ling; Poh, Wei Theng; Lim, Zophia Xuehui; Stein, Gary S.; Nurcombe, Victor; van Wijnen, Andre J.; Cool, Simon M.

    2013-01-01

    Lowering the efficacious dose of bone morphogenetic protein-2 (BMP-2) for the repair of critical-sized bone defects is highly desirable, as supra-physiological amounts of BMP-2 have an increased risk of side effects and a greater economic burden for the healthcare system. To address this need, we explored the use of heparan sulfate (HS), a structural analog of heparin, to enhance BMP-2 activity. We demonstrate that HS isolated from a bone marrow stromal cell line (HS5) and heparin each enhances BMP-2-induced osteogenesis in C2C12 myoblasts, through increased ALP activity and osteocalcin mRNA expression. Commercially available HS variants from porcine kidney and bovine lung failed to generate similar effects. Heparin and HS5 influence BMP-2 activity by (i) prolonging BMP-2 half-life, (ii) reducing interactions between BMP-2 with its antagonist noggin, and (iii) modulating BMP2 distribution on the cell surface. Importantly, long-term supplementation of HS5 but not heparin greatly enhances BMP-2-induced bone formation in vitro and in vivo. These results show that bone marrow-derived HS effectively support bone formation, and suggests its applicability in bone repair by selectively facilitating the delivery and bioavailability of BMP-2. PMID:22227436

  17. Characterization of in vitro expanded bone marrow-derived mesenchymal stem cells from patients with multiple sclerosis.

    PubMed

    Mallam, Elizabeth; Kemp, Kevin; Wilkins, Alastair; Rice, Claire; Scolding, Neil

    2010-08-01

    Recent studies have investigated the potential of autologous bone marrow-derived mesenchymal stem cells (MSCs) as a therapy for multiple sclerosis. Whether MSCs from individuals with multiple sclerosis are functionally and/or phenotypically abnormal has received less attention. Through our Phase I clinical trial, SIAMMS, we were able to isolate and characterize MSCs from individuals with multiple sclerosis. The objective of the study was to demonstrate that MSCs from individuals with multiple sclerosis show no significant differences from MSCs derived from individuals without multiple sclerosis. MSCs were isolated from bone marrow aspirates from four SIAMMS participants. We were also able to isolate MSCs from bone marrow obtained during a total hip replacement operation on an individual with multiple sclerosis. Control MSCs were isolated from bone marrow acquired during total hip replacement operations on five individuals without MS. MSCs were characterized using standard criteria: plastic adherence, differentiation along adipogenic/osteogenic/chondrogenic lineages, and expression of specific cell surface antigens. We also determined their proliferation potential. MSCs from individuals with multiple sclerosis and individuals without multiple sclerosis were similar in proliferation, differentiation potential and cell surface antigen expression. This has relevance to scientific studies investigating the therapeutic potential of autologous MSCs which primarily utilize MSCs from individuals without multiple sclerosis, and relevance to clinical studies extrapolating from these scientific findings.

  18. Chimeric Mouse model to track the migration of bone marrow derived cells in glioblastoma following anti-angiogenic treatments

    PubMed Central

    Achyut, B. R.; Shankar, Adarsh; Iskander, A. S. M.; Ara, Roxan; Knight, Robert A.; Scicli, Alfonso G.; Arbab, Ali S.

    2016-01-01

    ABSTRACT Bone marrow derived cells (BMDCs) have been shown to contribute in the tumor development. In vivo animal models to investigate the role of BMDCs in tumor development are poorly explored. We established a novel chimeric mouse model using as low as 5 × 106 GFP+ BM cells in athymic nude mice, which resulted in >70% engraftment within 14 d. In addition, chimera was established in NOD-SCID mice, which displayed >70% with in 28 d. Since anti-angiogenic therapies (AAT) were used as an adjuvant against VEGF-VEGFR pathway to normalize blood vessels in glioblastoma (GBM), which resulted into marked hypoxia and recruited BMDCs to the tumor microenvironment (TME). We exploited chimeric mice in athymic nude background to develop orthotopic U251 tumor and tested receptor tyrosine kinase inhibitors and CXCR4 antagonist against GBM. We were able to track GFP+ BMDCs in the tumor brain using highly sensitive multispectral optical imaging instrument. Increased tumor growth associated with the infiltration of GFP+ BMDCs acquiring suppressive myeloid and endothelial phenotypes was seen in TME following treatments. Immunofluorescence study showed GFP+ cells accumulated at the site of VEGF, SDF1 and PDGF expression, and at the periphery of the tumors following treatments. In conclusion, we developed a preclinical chimeric model of GBM and phenotypes of tumor infiltrated BMDCs were investigated in context of AATs. Chimeric mouse model could be used to study detailed cellular and molecular mechanisms of interaction of BMDCs and TME in cancer. PMID:26797476

  19. Stem Cell Ophthalmology Treatment Study (SCOTS): improvement in serpiginous choroidopathy following autologous bone marrow derived stem cell treatment

    PubMed Central

    Weiss, Jeffrey N.; Benes, Susan C.; Levy, Steven

    2016-01-01

    We report results in a 77-year-old male patient with visual loss from long-standing serpiginous choroidopathy treated with bone marrow derived stem cells (BMSC) within the Stem Cell Ophthalmology Treatment Study (SCOTS). SCOTS is an Institutional Review Board approved clinical trial and the largest ophthalmology stem cell study registered at the National Institutes of Health to date (ClinicalTrials.gov Identifier: NCT01920867). Eight months after treatment by a combination of retrobulbar, subtenon, intravitreal and intravenous injection of BMSC, the patient's best corrected Snellen acuity improved from 20/80– to 20/60+1 in the right eye and from 20/50– to 20/20–3 in the left eye. The Early Treatment of Diabetic Retinopathy Study (ETDRS) visual acuity continued to improve over the succeeding 8 months and the optical coherence tomography macular volume increased. The increases in visual acuity and macular volume are encouraging and suggest that the use of BMSC as provided in SCOTS may be a viable approach to treating serpiginous choroidopathy. PMID:27857759

  20. Role of Injured Pancreatic Extract Promotes Bone Marrow-Derived Mesenchymal Stem Cells Efficiently Differentiate into Insulin-Producing Cells

    PubMed Central

    Xie, Hongbin; Wang, Yunshuai; Zhang, Hui; Qi, Hui; Zhou, Hanxin; Li, Fu-Rong

    2013-01-01

    Mesenchymal stem cells (MSCs) can be successfully induced to differentiate into insulin-producing cells (IPCs) by a variety of small molecules and cytokines in vitro. However, problems remain, such as low transdifferentiation efficiency and poor maturity of trans-differentiated cells. The damaged pancreatic cells secreted a large amount of soluble proteins, which were able to promote pancreative islet regeneration and MSCs differentiation. In this study, we utilized the rat injured pancreatic tissue extract to modulate rat bone marrow-derived MSCs differentiation into IPCs by the traditional two-step induction. Our results showed that injured pancreatic tissue extract could effectively promote the trans-differentiation efficiency and maturity of IPCs by the traditional induction. Moreover, IPCs were able to release more insulin in a glucose-dependent manner and ameliorate better the diabetic conditions of streptozotocin (STZ)-treated rats. Our study provides a new strategy to induce an efficient and directional differentiation of MSCs into IPCs. PMID:24058711

  1. Bone marrow-derived mesenchymal stem cells promote neuronal networks with functional synaptic transmission after transplantation into mice with neurodegeneration.

    PubMed

    Bae, Jae-Sung; Han, Hyung Soo; Youn, Dong-Ho; Carter, Janet E; Modo, Michel; Schuchman, Edward H; Jin, Hee Kyung

    2007-05-01

    Recent studies have shown that bone marrow-derived MSCs (BM-MSCs) improve neurological deficits when transplanted into animal models of neurological disorders. However, the precise mechanism by which this occurs remains unknown. Herein we demonstrate that BM-MSCs are able to promote neuronal networks with functional synaptic transmission after transplantation into Niemann-Pick disease type C (NP-C) mouse cerebellum. To address the mechanism by which this occurs, we used gene microarray, whole-cell patch-clamp recordings, and immunohistochemistry to evaluate expression of neurotransmitter receptors on Purkinje neurons in the NP-C cerebellum. Gene microarray analysis revealed upregulation of genes involved in both excitatory and inhibitory neurotransmission encoding subunits of the ionotropic glutamate receptors (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, AMPA) GluR4 and GABA(A) receptor beta2. We also demonstrated that BM-MSCs, when originated by fusion-like events with existing Purkinje neurons, develop into electrically active Purkinje neurons with functional synaptic formation. This study provides the first in vivo evidence that upregulation of neurotransmitter receptors may contribute to synapse formation via cell fusion-like processes after BM-MSC transplantation into mice with neurodegenerative disease. Disclosure of potential conflicts of interest is found at the end of this article.

  2. Galectin-9 is Involved in Immunosuppression Mediated by Human Bone Marrow-derived Clonal Mesenchymal Stem Cells.

    PubMed

    Kim, Si-Na; Lee, Hyun-Joo; Jeon, Myung-Shin; Yi, TacGhee; Song, Sun U

    2015-10-01

    Bone marrow-derived mesenchymal stem cells (MSCs) have immunomodulatory properties and can suppress exaggerated pro-inflammatory immune responses. Although the exact mechanisms remain unclear, a variety of soluble factors are known to contribute to MSC-mediated immunosuppression. However, functional redundancy in the immunosuppressive properties of MSCs indicates that other uncharacterized factors could be involved. Galectin-9, a member of the β-galactoside binding galectin family, has emerged as an important regulator of innate and adaptive immunity. We examined whether galectin-9 contributes to MSC-mediated immunosuppression. Galectin-9 was strongly induced and secreted from human MSCs upon stimulation with pro-inflammatory cytokines. An in vitro immunosuppression assay using a knockdown approach revealed that galectin-9-deficient MSCs do not exert immunosuppressive activity. We also provided evidence that galectin-9 may contribute to MSC-mediated immunosuppression by binding to its receptor, TIM-3, expressed on activated lymphocytes, leading to apoptotic cell death of activated lymphocytes. Taken together, our findings demonstrate that galectin-9 is involved in MSC-mediated immunosuppression and represents a potential therapeutic factor for the treatment of inflammatory diseases.

  3. Does bone marrow-derived mesenchymal stem cell transfusion prevent antisperm antibody production after traumatic testis rupture?

    PubMed

    Aghamir, Seyyed Mohammad Kazem; Salavati, Alborz; Yousefie, Reza; Tootian, Zahra; Ghazaleh, Noushin; Jamali, Mostafa; Azimi, Pourya

    2014-07-01

    To determine whether transfusion of mesenchymal stem cells (MSCs) could prevent humoral immune response and autoimmunization against sperms after traumatic testis rupture. Immunomodulatory properties of MSCs have been evaluated by a prospective cohort on 50 adult BALB/c mice. In each interventional arms of study, controlled testis rupture and surgical repair were exerted. In addition to tissue repair, single dose of 5×10(5) MSCs labeled by green fluorescent protein was delivered intravenously to 20 cases (cell therapy group). After euthanizing, seroconversion of antisperm antibody (ASA) was compared between 2 interventional groups as response of humoral immune system. Lung and testis tissues were examined for green fluorescent protein-positive cells to assess whether presence of stem cells is correlated with seroconversion rates. Six cases had been lost during the study. Fourteen of 16 mice in cell therapy control group formed ASA (87.5%) but 6 of 18 mice (33.3%) in cell therapy group were immunized and formed ASA (P=.002). Transplanted cells were traced in lungs of 55% (n=10) of cell therapy group and none were found in trauma site. Small volume of mice blood was our main limitation to trace seroconversion or quantitative measurement of ASA in each case. In this in vivo model of autoimmune infertility, bone marrow-derived MSC transfusion showed immunosuppressive effects on antibody production. Considering immunomodulatory properties of MSCs even in allogeneic settings, novel clinical application should be investigated further. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Malignant Transformation in Glioma Steered by an Angiogenic Switch: Defining a Role for Bone Marrow-Derived Cells

    PubMed Central

    Pisapia, David; Greenfield, Jeffrey P

    2016-01-01

    Low-grade gliomas, such as pilocytic astrocytoma and subependymoma, are often characterized as benign tumors due to their relative circumscription radiologically and typically non-aggressive biologic behavior. In contrast, low-grades that are by their nature diffusely infiltrative, such as diffuse astrocytomas and oligodendrogliomas, have the potential to transform into malignant high-grade counterparts and, given sufficient time, invariably do so. These high-grade gliomas carry very poor prognoses and are largely incurable, warranting a closer look at what causes this adverse transition. A key characteristic that distinguishes low- and high-grade gliomas is neovascularization: it is absent in low-grade gliomas, but prolific in high-grade gliomas, providing the tumor with ample blood supply for exponential growth. It has been well described in the literature that bone marrow-derived cells (BMDCs) may contribute to the angiogenic switch that is responsible for malignant transformation of low-grade gliomas. In this review, we will summarize the current literature on BMDCs and their known contribution to angiogenesis-associated tumor growth in gliomas. PMID:26973806

  5. Bone Marrow-Derived Mesenchymal Stem Cells Enhance Angiogenesis via their α6β1 Integrin Receptor

    PubMed Central

    Carrion, Bita; Kong, Yen P.; Kaigler, Darnell; Putnam, Andrew J

    2013-01-01

    Bone marrow-derived mesenchymal stem cells (BMSCs) facilitate the angiogenic response of endothelial cells (ECs) within three-dimensional (3D) matrices in vivo and in engineered tissues in vitro in part through paracrine mediators and by acting as stabilizing pericytes. However, the molecular interactions between BMSCs and nascent tubules during the process of angiogenesis are not fully understood. In this study, we have used a tractable 3D co-culture model to explore the functional role of the α6β1 integrin adhesion receptor on BMSCs in sprouting angiogenesis. We report that knockdown of the α6 integrin subunit in BMSCs significantly reduces capillary sprouting, and causes their failure to associate with the nascent vessels. Furthermore, we demonstrate that the BMSCs with attenuated α6 integrin proliferate at a significantly lower rate relative to either control cells expressing non-targeting shRNA or wild type BMSCs; however, despite adding more cells to compensate for this deficit in proliferation, deficient sprouting persists. Collectively, our findings demonstrate that the α6 integrin subunit in BMSCs is important for their ability to stimulate vessel morphogenesis. This conclusion may have important implications in the optimization of cell-based strategies to promote angiogenesis. PMID:24056178

  6. Bone marrow-derived mesenchymal stem cells enhance angiogenesis via their α6β1 integrin receptor.

    PubMed

    Carrion, Bita; Kong, Yen P; Kaigler, Darnell; Putnam, Andrew J

    2013-11-15

    Bone marrow-derived mesenchymal stem cells (BMSCs) facilitate the angiogenic response of endothelial cells (ECs) within three-dimensional (3D) matrices in vivo and in engineered tissues in vitro in part through paracrine mediators and by acting as stabilizing pericytes. However, the molecular interactions between BMSCs and nascent tubules during the process of angiogenesis are not fully understood. In this study, we have used a tractable 3D co-culture model to explore the functional role of the α6β1 integrin adhesion receptor on BMSCs in sprouting angiogenesis. We report that knockdown of the α6 integrin subunit in BMSCs significantly reduces capillary sprouting, and causes their failure to associate with the nascent vessels. Furthermore, we demonstrate that the BMSCs with attenuated α6 integrin proliferate at a significantly lower rate relative to either control cells expressing non-targeting shRNA or wild type BMSCs; however, despite adding more cells to compensate for this deficit in proliferation, deficient sprouting persists. Collectively, our findings demonstrate that the α6 integrin subunit in BMSCs is important for their ability to stimulate vessel morphogenesis. This conclusion may have important implications in the optimization of cell-based strategies to promote angiogenesis.

  7. Marrow-derived stromal cell delivery on fibrin microbeads can correct radiation-induced wound-healing deficits.

    PubMed

    Xie, Michael W; Gorodetsky, Raphael; Micewicz, Ewa D; Micevicz, Ewa D; Mackenzie, Natalia C; Gaberman, Elena; Levdansky, Lilia; McBride, William H

    2013-02-01

    Skin that is exposed to radiation has an impaired ability to heal wounds. This is especially true for whole-body irradiation, where even moderate nonlethal doses can result in wound-healing deficits. Our previous attempts to administer dermal cells locally to wounds to correct radiation-induced deficits were hampered by poor cell retention. Here we improve the outcome by using biodegradable fibrin microbeads (FMBs) to isolate a population of mesenchymal marrow-derived stromal cells (MSCs) from murine bone marrow by their specific binding to the fibrin matrix, culture them to high density in vitro, and deliver them as MSCs on FMBs at the wound site. MSCs are retained locally, proliferate in site, and assist wounds in gaining tensile strength in whole-body irradiated mice with or without additional skin-only exposure. MSC-FMBs were effective in two different mouse strains but were ineffective across a major histocompatability barrier. Remarkably, irradiated mice whose wounds were treated with MSC-FMBs showed enhanced hair regrowth, suggesting indirect effect on the correction of radiation-induced follicular damage. Further studies showed that additional wound-healing benefit could be gained by administration of granulocyte colony-stimulating factor and AMD3100. Collagen strips coated with haptides and MSCs were also highly effective in correcting radiation-induced wound-healing deficits.

  8. Systemically Transplanted Bone Marrow-derived Cells Contribute to Dental Pulp Regeneration in a Chimeric Mouse Model.

    PubMed

    Xu, Wenan; Jiang, Shan; Chen, Qiuyue; Ye, Yanyan; Chen, Jiajing; Heng, Boon Chin; Jiang, Qianli; Wu, Buling; Ding, Zihai; Zhang, Chengfei

    2016-02-01

    Migratory cells via blood circulation or cells adjacent to the root apex may potentially participate in dental pulp tissue regeneration or renewal. This study investigated whether systemically transplanted bone marrow cells can contribute to pulp regeneration in a chimeric mouse model. A chimeric mouse model was created through the injection of bone marrow cells from green fluorescent protein (GFP) transgenic C57BL/6 mice into the tail veins of recipient wild-type C57BL/6 mice that had been irradiated with a lethal dose of 8.5 Gy from a high-frequency linear accelerator. These mice were subjected to pulpectomy and pulp revascularization. At 1, 4, and 8 weeks after surgery, in vivo animal imaging and histologic analyses were conducted. In vivo animal imaging showed that the green biofluorescence signal from the transplanted GFP+ cells increased significantly and was maintained at a high level during the first 4 weeks after surgery. Immunofluorescence analyses of tooth specimens collected at 8 weeks postsurgery showed the presence of nestin+/GFP+, α smooth muscle actin (α-SMA)/GFP+, and NeuN/GFP+ cells within the regenerated pulplike tissue. These data confirm that transplanted bone marrow-derived cells can contribute to dental pulp regeneration. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Response of murine bone marrow-derived mesenchymal stromal cells to dry-etched porous silicon scaffolds.

    PubMed

    Hajj-Hassan, Mohamad; Khayyat-Kholghi, Maedeh; Wang, Huifen; Chodavarapu, Vamsy; Henderson, Janet E

    2011-11-01

    Porous silicon shows great promise as a bio-interface material due to its large surface to volume ratio, its stability in aqueous solutions and to the ability to precisely regulate its pore characteristics. In the current study, porous silicon scaffolds were fabricated from single crystalline silicon wafers by a novel xenon difluoride dry etching technique. This simplified dry etch fabrication process allows selective formation of porous silicon using a standard photoresist as mask material and eliminates the post-formation drying step typically required for the wet etching techniques, thereby reducing the risk of damaging the newly formed porous silicon. The porous silicon scaffolds supported the growth of primary cultures of bone marrow derived mesenchymal stromal cells (MSC) plated at high density for up to 21 days in culture with no significant loss of viability, assessed using Alamar Blue. Scanning electron micrographs confirmed a dense lawn of cells at 9 days of culture and the presence of MSC within the pores of the porous silicon scaffolds. Copyright © 2011 Wiley Periodicals, Inc.

  10. Intratracheal therapy with autologous bone marrow-derived mononuclear cells reduces airway inflammation in horses with recurrent airway obstruction.

    PubMed

    Barussi, Fernanda C M; Bastos, Fernanda Z; Leite, Lidiane M B; Fragoso, Felipe Y I; Senegaglia, Alexandra C; Brofman, Paulo R S; Nishiyama, Anita; Pimpão, Cláudia T; Michelotto, Pedro V

    2016-10-01

    This research evaluated the effects of bone marrow-derived mononuclear cells (BMMCs) on the inflammatory process in the equine recurrent airway obstruction (RAO). Eight horses in RAO clinical score were divided into cell therapy group (Gcel) treated with a single intratracheal dose of BMMCs, and dexamethasone group (Gdex) treated with 21days of oral dexamethasone. The horses were clinically revaluated on days 7 and 21, together with cytological evaluation of the BALF, and detection of inflammatory markers (interleukins [IL]-10, -4, and -17, and interferon γ and α). There were decreases in respiratory effort and clinical score on days 7 and 21(p<0.05) for both groups. The percentage of neutrophils decreased and macrophages increased on days 7 and 21 (p<0.005) in both groups. IL-10 levels increased in the Gcel group on day 21 compared to days 0 and 7 (p<0.05), but this was not observed in the Gdex group. The quantification of IL-4, IL-17, IFN-γ, and IFN-α did not change between evaluations in both groups. These preliminary results suggest that BMMCs may ameliorate the inflammatory response of RAO. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Development of a rapid culture method to induce adipocyte differentiation of human bone marrow-derived mesenchymal stem cells

    SciTech Connect

    Ninomiya, Yuichi; Sugahara-Yamashita, Yzumi; Nakachi, Yutaka; Tokuzawa, Yoshimi; Okazaki, Yasushi; Nishiyama, Masahiko

    2010-04-02

    Human mesenchymal stem cells (hMSCs) derived from bone marrow are multipotent stem cells that can regenerate mesenchymal tissues such as adipose, bone or muscle. It is thought that hMSCs can be utilized as a cell resource for tissue engineering and as human models to study cell differentiation mechanisms, such as adipogenesis, osteoblastogenesis and so on. Since it takes 2-3 weeks for hMSCs to differentiate into adipocytes using conventional culture methods, the development of methods to induce faster differentiation into adipocytes is required. In this study we optimized the culture conditions for adipocyte induction to achieve a shorter cultivation time for the induction of adipocyte differentiation in bone marrow-derived hMSCs. Briefly, we used a cocktail of dexamethasone, insulin, methylisobutylxanthine (DIM) plus a peroxisome proliferator-activated receptor {gamma} agonist, rosiglitazone (DIMRo) as a new adipogenic differentiation medium. We successfully shortened the period of cultivation to 7-8 days from 2-3 weeks. We also found that rosiglitazone alone was unable to induce adipocyte differentiation from hMSCs in vitro. However, rosiglitazone appears to enhance hMSC adipogenesis in the presence of other hormones and/or compounds, such as DIM. Furthermore, the inhibitory activity of TGF-{beta}1 on adipogenesis could be investigated using DIMRo-treated hMSCs. We conclude that our rapid new culture method is very useful in measuring the effect of molecules that affect adipogenesis in hMSCs.

  12. Development of a rapid culture method to induce adipocyte differentiation of human bone marrow-derived mesenchymal stem cells.

    PubMed

    Ninomiya, Yuichi; Sugahara-Yamashita, Yzumi; Nakachi, Yutaka; Tokuzawa, Yoshimi; Okazaki, Yasushi; Nishiyama, Masahiko

    2010-04-02

    Human mesenchymal stem cells (hMSCs) derived from bone marrow are multipotent stem cells that can regenerate mesenchymal tissues such as adipose, bone or muscle. It is thought that hMSCs can be utilized as a cell resource for tissue engineering and as human models to study cell differentiation mechanisms, such as adipogenesis, osteoblastogenesis and so on. Since it takes 2-3weeks for hMSCs to differentiate into adipocytes using conventional culture methods, the development of methods to induce faster differentiation into adipocytes is required. In this study we optimized the culture conditions for adipocyte induction to achieve a shorter cultivation time for the induction of adipocyte differentiation in bone marrow-derived hMSCs. Briefly, we used a cocktail of dexamethasone, insulin, methylisobutylxanthine (DIM) plus a peroxisome proliferator-activated receptor gamma agonist, rosiglitazone (DIMRo) as a new adipogenic differentiation medium. We successfully shortened the period of cultivation to 7-8days from 2-3weeks. We also found that rosiglitazone alone was unable to induce adipocyte differentiation from hMSCs in vitro. However, rosiglitazone appears to enhance hMSC adipogenesis in the presence of other hormones and/or compounds, such as DIM. Furthermore, the inhibitory activity of TGF-beta1 on adipogenesis could be investigated using DIMRo-treated hMSCs. We conclude that our rapid new culture method is very useful in measuring the effect of molecules that affect adipogenesis in hMSCs. 2010 Elsevier Inc. All rights reserved.

  13. Genetic control of eosinophilia in mice: gene(s) expressed in bone marrow-derived cells control high responsiveness

    SciTech Connect

    Vadas, M.A.

    1982-02-01

    A heterogeneity in the capacity of strains of mice to mount eosinophilia is described. BALB/c and C3H are eosinophil high responder strains (EO-HR) and CBA and A/J are eosinophil low responder strains (EO-LR), judged by the response of blood eosinophils to Ascaris suum, and the response of blood, bone marrow, and spleen eosinophils to keyhole limpet hemocyanin given 2 days after 150 mg/kg cyclophosphamide. Some of the gene(s) for high responsiveness appear to be dominant because (EO-HR x EO-LR)F/sub 1/ mice were intermediate to high responders. This gene is expressed in bone marrow-derived cells because radiation chimeras of the type EO-HR..-->..F/sub 1/ were high responders and EO-LR..-->..F/sub 1/ were low responders. This description of a genetic control of eosinophilia in mice may be useful in understanding the role of this cell in parasite immunity and allergy.

  14. Stem Cell Ophthalmology Treatment Study (SCOTS): bone marrow-derived stem cells in the treatment of Leber's hereditary optic neuropathy

    PubMed Central

    Weiss, Jeffrey N.; Levy, Steven; Benes, Susan C.

    2016-01-01

    The Stem Cell Ophthalmology Treatment Study (SCOTS) is currently the largest-scale stem cell ophthalmology trial registered at ClinicalTrials.gov (identifier: NCT01920867). SCOTS utilizes autologous bone marrow-derived stem cells (BMSCs) to treat optic nerve and retinal diseases. Treatment approaches include a combination of retrobulbar, subtenon, intravitreal, intra-optic nerve, subretinal, and intravenous injection of autologous BMSCs according to the nature of the disease, the degree of visual loss, and any risk factors related to the treatments. Patients with Leber's hereditary optic neuropathy had visual acuity gains on the Early Treatment Diabetic Retinopathy Study (ETDRS) of up to 35 letters and Snellen acuity improvements from hand motion to 20/200 and from counting fingers to 20/100. Visual field improvements were noted. Macular and optic nerve head nerve fiber layer typically thickened. No serious complications were seen. The increases in visual acuity obtained in our study were encouraging and suggest that the use of autologous BMSCs as provided in SCOTS for ophthalmologic mitochondrial diseases including Leber's hereditary optic neuropathy may be a viable treatment option. PMID:27904503

  15. Transplantation of Aire-overexpressing bone marrow-derived dendritic cells delays the onset of type 1 diabetes.

    PubMed

    Li, Dongbei; Zhao, Bo; Luo, Yadong; Limbara, Steven; Zhao, Bingjie; Zou, Xueyang; Yang, Wei; Li, Yi

    2017-08-01

    Autoimmune regulator (Aire) plays an indispensable role in maintaining central immune tolerance by promoting the ectopic expression of tissue-restricted antigens (TRAs) in medullary thymic epithelial cells (mTECs) and dendritic cells (DCs), which lead to the deletion of autoreactive T cells or the induction of Tregs and consequently prevent autoimmune disease development. Curing autoimmune diseases has always been a challenge. DC-based immunotherapy represents a new and effective method to establish tolerance. We attempted to transplant Aire-overexpressing bone marrow-derived DCs (Aire-BMDCs) to treat type 1 diabetes (T1D) and to explore a new strategy for autoimmune disease treatment. We observed that the onset of T1D in recipient mice was delayed; insulin autoantibody (IAA) production was significantly decreased; the structure of islets was protected; and the degree of inflammatory infiltration was lower. Furthermore, we found that Aire-BMDCs can promote apoptosis and induce autoreactive CD4(+) T cell clonal anergy, inhibit Th1 and Th17 production, and induce Treg production. These results suggest that transplantation of Aire-BMDCs will be a manipulation and effective method for preventing or treating T1D. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Bone-marrow-derived mesenchymal stem cells attenuate cognitive deficits in an endothelin-1 rat model of stroke.

    PubMed

    Lowrance, S A; Fink, K D; Crane, A; Matyas, J; Dey, N D; Matchynski, J J; Thibo, T; Reinke, T; Kippe, J; Hoffman, C; Sandstrom, M; Rossignol, J; Dunbar, G L

    2015-01-01

    Stroke is the third leading cause of death and permanent disability in the United States, often producing long-term cognitive impairments, which are not easily recapitulated in animal models. The goals of this study were to assess whether: (1) the endothelin-1 (ET-1) model of chronic stroke produced discernable cognitive deficits; (2) a spatial operant reversal task (SORT) would accurately measure memory deficits in this model; and (3) bone-marrow-derived mesenchymal stem cells (BMMSCs) could reduce any observed deficits. Rats were given unilateral intracerebral injections of vehicle or ET-1, a stroke-inducing agent, near the middle cerebral artery. Seven days later, they were given intrastriatal injections of BMMSCs or vehicle, near the ischemic penumbra. The cognitive abilities of the rats were assessed on a novel SORT, which was designed to efficiently distinguish cognitive deficits from potential motoric confounds. Rats given ET-1 had significantly more cognitive errors at six weeks post-stroke on the SORT, and that these deficits were attenuated by BMMSC transplants. These findings indicate that: (1) the ET-1 model produces chronic cognitive deficits; (2) the SORT efficiently measures cognitive deficits that are not confounded by motoric impairment; and (3) BMMSCs may be a viable treatment for stroke-induced cognitive dysfunction.

  17. Bone marrow-derived mesenchymal stem cells reduce immune reaction in a mouse model of allergic rhinitis

    PubMed Central

    Zhao, Ning; Liu, Yanjuan; Liang, Hongfeng; Jiang, Xuejun

    2016-01-01

    Object: To determine the potential of bone marrow-derived mesenchymal stem cells (BMSCs) for immunomodulatory mechanism in mice model of allergic rhinitis (AR). Methods: BMSCs were isolated and the surface markers and stemness were analyzed. The effect of BMSCs was evaluated in BALB/c mice that were randomly divided into three groups (control group, ovalbumin (OVA) group, OVA+BMSCs group). BMSCs were administered intravenously to OVA sensitized mice on days 1, 7, 14 and 21, and subsequent OVA challenge was conducted daily from days 22 to 35. Several parameters of allergic inflammation were assessed. Results: Mesenchymal stem cells can be successfully isolated from bone marrow of mice. Intravenous injection of BMSCs significantly reduced allergic symptoms, eosinophil infiltration, OVA-specific immunoglobulin E (IgE), T-helper 2 (Th2) cytokine profile (interleukin (IL)-4, IL-5 and IL-13) and regulatory cytokines (IL-10). In addition, level of Th1 (IFN-γ) was significantly increased. Conclusion: Administration of BMSCs effectively reduced allergic symptoms and inflammatory parameters in the mice model of AR. BMSCs treatment is potentially an alternative therapeutic modality in AR. PMID:28078033

  18. Therapeutic effects of mouse bone marrow-derived clonal mesenchymal stem cells in a mouse model of inflammatory bowel disease

    PubMed Central

    Park, Jin Seok; Yi, Tac-Ghee; Park, Jong-Min; Han, Young Min; Kim, Jun-Hyung; Shin, Dong-Hee; Tak, Seon Ji; Lee, Kyuheon; Lee, Youn Sook; Jeon, Myung-Shin; Hahm, Ki-Baik; Song, Sun U; Park, Seok Hee

    2015-01-01

    Mouse bone marrow-derived clonal mesenchymal stem cells (mcMSCs), which were originated from a single cell by a subfractionation culturing method, are recognized as new paradigm for stem cell therapy featured with its homogenous cell population. Next to proven therapeutic effects against pancreatitis, in the current study we demonstrated that mcMSCs showed significant therapeutic effects in dextran sulfate sodium (DSS)-induced experimental colitis model supported with anti-inflammatory and restorative activities. mcMSCs significantly reduced the disease activity index (DAI) score, including weight loss, stool consistency, and intestinal bleeding and significantly increased survival rates. The pathological scores were also significantly improved with mcMSC. We have demonstrated that especial mucosal regeneration activity accompanied with significantly lowered level of apoptosis as beneficiary actions of mcMSCs in UC models. The levels of inflammatory cytokines including TNF-α, IFN-γ, IL-1β, IL-6, and IL-17 were all significantly concurrent with significantly repressed NF-κB activation compared to the control group and significantly decreased infiltrations of responsible macrophage and neutrophil. Conclusively, our findings provide the rationale that mcMSCs are applicable as a potential source of cell-based therapy in inflammatory bowel diseases, especially contributing either to prevent relapse or to accelerate healing as solution to unmet medical needs in IBD therapy. PMID:26566304

  19. Administration of tauroursodeoxycholic acid enhances osteogenic differentiation of bone marrow-derived mesenchymal stem cells and bone regeneration.

    PubMed

    Cha, Byung-Hyun; Jung, Moon-Joo; Moon, Bo-Kyung; Kim, Jin-Su; Ma, Yoonji; Arai, Yoshie; Noh, Myungkyung; Shin, Jung-Youn; Kim, Byung-Soo; Lee, Soo-Hong

    2016-02-01

    It is known that osteogenic differentiation of mesenchymal stem cells (MSCs) can be promoted by suppression of adipogenesis of MSCs. We have recently found that the chemical chaperone tauroursodeoxycholic acid (TUDCA) significantly reduces adipogenesis of MSCs. In the present study, we examined whether TUDCA can promote osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMMSCs) by regulating Integrin 5 (ITGA5) associated with activation of ERK1/2 signal pathway and thereby enhance bone tissue regeneration by reducing apoptosis and the inflammatory response. TUDCA treatment promoted in vitro osteogenic differentiation of BMMSCs and in vivo bone tissue regeneration in a calvarial defect model, as confirmed by micro-computed tomography, histological staining, and immunohistochemistry for osteocalcin. In addition, TUDCA treatment significantly decreased apoptosis and the inflammatory response in vivo and in vitro, which is important to enhance bone tissue regeneration. These results indicate that TUDCA plays a critical role in enhancing osteogenesis of BMMSCs, and is therefore a potential alternative drug for bone tissue regeneration.

  20. In Situ Recruitment of Human Bone Marrow-Derived Mesenchymal Stem Cells Using Chemokines for Articular Cartilage Regeneration.

    PubMed

    Park, Min Sung; Kim, Yun Hee; Jung, Youngmee; Kim, Soo Hyun; Park, Jong Chul; Yoon, Dong Suk; Kim, Sung-Hwan; Lee, Jin Woo

    2015-01-01

    Bone marrow-derived mesenchymal stem cells (BMSCs) are a good cell source for regeneration of cartilage as they can migrate directly to the site of cartilage injury and differentiate into articular chondrocytes. Articular cartilage defects do not heal completely due to the lack of chondrocytes or BMSCs at the site of injury. In this study, the chemotaxis of BMSCs toward chemokines, which may give rise to a complete regeneration of the articular cartilage, was investigated. CCR2, CCR4, CCR6, CXCR1, and CXCR2 were expressed in normal BMSCs and were increased significantly upon treatment with proinflammatory cytokines. BMSC migration was increased by MIP-3α and IL-8 more than by MCP-1 or SDF-1α. IL-8 and MIP-3α significantly enhanced the chemotaxis of BMSCs compared with MCP-1, SDF-1α, or PBS. Human BMSC recruitment to transplanted scaffolds containing either IL-8 or MIP-3α significantly increased in vivo compared to scaffolds containing PBS. Furthermore, IL-8- and MIP-3α-containing scaffolds enhanced tissue regeneration of an osteochondral defect site in beagle knee articular cartilage. Therefore, this study suggests that IL-8 and MIP-3α are the candidates that induce the regeneration of damaged articular cartilage.

  1. Functional signature of human islet-derived precursor cells compared to bone marrow-derived mesenchymal stem cells.

    PubMed

    Limbert, Catarina; Ebert, Regina; Schilling, Tatjana; Path, Gunter; Benisch, Peggy; Klein-Hitpass, Ludger; Seufert, Jochen; Jakob, Franz

    2010-05-01

    Pancreatic islet beta-cell replenishment can be driven by epithelial cells from exocrine pancreas via epithelial-mesenchymal transition (EMT) and the reverse process MET, while specified pancreatic mesenchymal cells control islet cell development and maintenance. The role of human islet-derived precursor cells (hIPCs) in regeneration and support of endocrine islets is under investigation. Here, we analyzed hIPCs as to their immunophenotype, multilineage differentiation capacity, and gene profiling, in comparison to human bone marrow-derived mesenchymal stem cells (hBM-MSCs). hIPCs and hBM-MSCs display a common mesenchymal character and express lineage-specific marker genes upon induction toward pancreatic endocrine and mesenchymal pathways of differentiation. hIPCs can go further along endocrine pathways while lacking some core mesenchymal differentiation attributes. Significance analysis of microarray (SAM) from 5 hBM-MSC and 3 hIPC donors mirrored such differences. Candidate gene cluster analysis disclosed differential expression of key lineage regulators, indicated a HoxA gene-associated positional memory in hIPCs and hBM-MSCs, and showed as well a clear transition state from mesenchyme to epithelium or vice versa in hIPCs. Our findings raise new research platforms to further clarify the potential of hIPCs to undergo complete MET thus contributing to islet cell replenishment, maintenance, and function.

  2. Endoplasmic reticulum stress in bone marrow-derived cells prevents acute cardiac inflammation and injury in response to angiotensin II.

    PubMed

    Li, T-T; Jia, L-X; Zhang, W-M; Li, X-Y; Zhang, J; Li, Y-L; Li, H-H; Qi, Y-F; Du, J

    2016-06-09

    Inflammation plays an important role in hypertensive cardiac injury. The endoplasmic reticulum (ER) stress pathway is involved in the inflammatory response. However, the role of ER stress in elevated angiotensin II (Ang II)-induced cardiac injury remains unclear. In this study, we investigated the role of ER stress in Ang II-induced hypertensive cardiac injury. Transcriptome analysis and quantitative real-time PCR showed that Ang II infusion in mice increased ER stress-related genes expression in the heart. C/EBP homologous protein (CHOP) deficiency, a key mediator of ER stress, increased infiltration of inflammatory cells, especially neutrophils, the production of inflammatory cytokines, chemokines in Ang II-infused mouse hearts. CHOP deficiency increased Ang II-induced cardiac fibrotic injury: (1) Masson trichrome staining showed increased fibrotic areas, (2) immunohistochemistry staining showed increased expression of α-smooth muscle actin, transforming growth factor β1 and (3) quantitative real-time PCR showed increased expression of collagen in CHOP-deficient mouse heart. Bone marrow transplantation experiments indicated that CHOP deficiency in bone marrow cells was responsible for Ang II-induced cardiac fibrotic injury. Moreover, TUNEL staining and flow cytometry revealed that CHOP deficiency decreased neutrophil apoptosis in response to Ang II. Taken together, our study demonstrated that hypertension induced ER stress after Ang II infusion. ER stress in bone marrow-derived cells protected acute cardiac inflammation and injury in response to Ang II.

  3. Comparison of autogenic and allogenic bone marrow derived mesenchymal stem cells for repair of segmental bone defects in rabbits.

    PubMed

    Udehiya, Rahul Kumar; Amarpal; Aithal, H P; Kinjavdekar, P; Pawde, A M; Singh, Rajendra; Taru Sharma, G

    2013-06-01

    Autogenic and allogenic bone marrow derived mesenchymal stem cells (BM-MSCs) were compared for repair of bone gap defect in rabbits. BM-MSCs were isolated from bone marrow aspirates and cultured in vitro for allogenic and autogenic transplantation. A 5mm segmental defect was created in mid-diaphysis of the radius bone. The defect was filled with hydroxyapatite alone, hydroxyapatite with autogeneic BM-MSCs and hydroxyapatite with allogenic BM-MSCs in groups A, B and C, respectively. On an average 3.45×10(6) cells were implanted at each defect site. Complete bridging of bone gap with newly formed bone was faster in both treatment groups as compared to control group. Histologically, increased osteogenesis, early and better reorganization of cancellous bone and more bone marrow formation were discernible in treatment groups as compared to control group. It was concluded that in vitro culture expanded allogenic and autogenic BM-MSCs induce similar, but faster and better healing as compared to control.

  4. Sonic Hedgehog Produced by Bone Marrow-Derived Mesenchymal Stromal Cells Supports Cell Survival in Myelodysplastic Syndrome

    PubMed Central

    Zou, Jixue; Hong, Yan; Tong, Yin; Wei, Ju; Qin, Youwen; Shao, Shan; Wang, Chun; Zhou, Kun

    2015-01-01

    The role of marrow microenvironment in the pathogenesis of myelodysplastic syndrome (MDS) remains controversial. Therefore, we studied the influence of bone marrow-derived mesenchymal stromal cells (BMSCs) from patients with different risk types of MDS on the survival of the MDS cell lines SKM-1 and MUTZ-1. We first demonstrated that the expression of Sonic hedgehog (Shh), smoothened (Smo), and glioma-associated oncogene homolog 1 (Gli1) was increased in MDS patients (n = 23); the increase in expression was positively correlated with the presence of high-risk factors. The Shh signaling inhibitor, cyclopamine, inhibited high-risk MDS BMSC-induced survival of SKM-1 and MUTZ-1 cells, suggesting a role for Shh signaling in MDS cell survival. Furthermore, cyclopamine-mediated inhibition of Shh signaling in SKM-1 and MUTZ-1 cells resulted in decreased DNMT1 expression and cell survival; however, exogenous Shh peptide had the opposite effect, suggesting that Shh signaling could regulate the expression of DNMT1, thereby modulating cell survival in MDS. In addition, the apoptosis of SKM-1 and MUTZ-1 cell increased significantly when cultured with cyclopamine and a demethylation agent, 5-Aza-2′-deoxycytidine. These findings suggest that Shh signaling from BMSCs is important in the pathogenesis of MDS and could play a role in disease progression by modulating methylation. PMID:25861282

  5. Comparative study of adipose-derived stem cells and bone marrow-derived stem cells in similar microenvironmental conditions.

    PubMed

    Guneta, Vipra; Tan, Nguan Soon; Chan, Soon Kiat Jeremy; Tanavde, Vivek; Lim, Thiam Chye; Wong, Thien Chong Marcus; Choong, Cleo

    2016-11-01

    Mesenchymal stem cells (MSCs), which were first isolated from the bone marrow, are now being extracted from various other tissues in the body, including the adipose tissue. The current study presents systematic evidence of how the adipose tissue-derived stem cells (ASCs) and bone marrow-derived mesenchymal stem cells (Bm-MSCs) behave when cultured in specific pro-adipogenic microenvironments. The cells were first characterized and identified as MSCs in terms of their morphology, phenotypic expression, self-renewal capabilities and multi-lineage potential. Subsequently, the proliferation and gene expression profiles of the cell populations cultured on two-dimensional (2D) adipose tissue extracellular matrix (ECM)-coated tissue culture plastic (TCP) and in three-dimensional (3D) AlgiMatrix® microenvironments were analyzed. Overall, it was found that adipogenesis was triggered in both cell populations due to the presence of adipose tissue ECM. However, in 3D microenvironments, ASCs and Bm-MSCs were predisposed to the adipogenic and osteogenic lineages respectively. Overall, findings from this study will contribute to ongoing efforts in adipose tissue engineering as well as provide new insights into the role of the ECM and cues provided by the immediate microenvironment for stem cell differentiation. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The therapeutic effect of bone marrow-derived stem cell implantation after epiphyseal plate injury is abrogated by chondrogenic predifferentiation.

    PubMed

    Coleman, Rhima M; Schwartz, Zvi; Boyan, Barbara D; Guldberg, Robert E

    2013-02-01

    The goal of this study was to determine the effects of chondrogenic predifferentiation on the ability of bone marrow-derived stromal cells (BMSCs) delivered to growth plate defects to restore growth function. Chondrogenesis was induced with transforming growth factor (TGF)-β1 treatment in high-density monolayer cultures of BMSCs in vitro. The predifferentiated or undifferentiated BMSCs were either seeded into agarose gels for continued in vitro culture, or injected into growth plate defects via an in situ gelling agarose. Predifferentiated BMSCs had higher Sox-9, type II collagen, and aggrecan mRNA levels compared to undifferentiated cells after high-density monolayer culture. After transfer to agarose gels, predifferentiated cells did not produce a cartilaginous matrix, even with continued TGF-β1 stimulation, whereas undifferentiated cells produced a cartilaginous matrix in this system. Three-dimensional images of the growth plate created from microcomputed tomography scans showed that delivery of either predifferentiated or undifferentiated cells to defects resulted in a decrease in mineralized tether formation (fusion) in the growth plate tissue surrounding the defect to normal levels. Limb length discrepancy between injured and control limbs was corrected after treatment with undifferentiated, but not predifferentiated, cells. These results indicate that cell therapy may be an effective treatment to reduce growth dysfunction after growth plate injury, perhaps by maintaining the health of the uninjured growth plate tissue, and that the cell differentiation state plays a role in restoring the growth potential of the injured limb.

  7. Combined delivery of bone marrow-derived mononuclear cells in chronic ischemic heart disease: rationale and study design.

    PubMed

    Sürder, Daniel; Radrizzani, Marina; Turchetto, Lucia; Cicero, Viviana Lo; Soncin, Sabrina; Muzzarelli, Stefano; Auricchio, Angelo; Moccetti, Tiziano

    2013-08-01

    Treatment with bone marrow-derived mononuclear cells (BM-MNC) may improve left ventricular (LV) function in patients with chronic ischemic heart disease (IHD). Delivery method of the cell product may be crucial for efficacy. We aimed to demonstrate that the combination of intramyocardial and intracoronary injection of BM-MNC is safe and improves LV function in patients with chronic IHD. After a safety/feasibility phase of 10 patients, 54 patients will be randomly assigned in a 1:1:1 pattern to 1 control and 2 BM-MNC treatment groups. The control group will be treated with state-of-the-art medical management. The treatment groups will receive either exclusively intramyocardial injection or a combination of intramyocardial and intracoronary injection of autologous BM-MNC. Left ventricular function as well as scar size, transmural extension, and regional wall-motion score will be assessed by cardiac magnetic resonance imaging studies at baseline and after 6 months. The primary endpoint is the change in global LV ejection fraction by cardiac magnetic resonance from 6 months to baseline. The results, it is hoped, will have important clinical impact and provide essential information to improve the design of future regenerative-medicine protocols in cardiology. As cell delivery may play an important role in chronic IHD, we aim to demonstrate feasibility and efficacy of a combined cell-delivery approach in patients with decreased LV function. © 2013 Wiley Periodicals, Inc.

  8. Application of Autologous Bone Marrow Derived Mesenchymal Stem Cells to an Ovine Model of Growth Plate Cartilage Injury

    PubMed Central

    McCarty, Rosa C; Xian, Cory J; Gronthos, Stan; Zannettino, Andrew C.W; Foster, Bruce K

    2010-01-01

    Injury to growth plate cartilage in children can lead to bone bridge formation and result in bone growth deformities, a significant clinical problem currently lacking biological treatment. Mesenchymal stem/stromal cells (MSC) offer a promising therapeutic option for regeneration of damaged cartilage, due to their self renewing and multi-lineage differentiation attributes. Although some small animal model studies highlight the therapeutic potential of MSC for growth plate repair, translational research in large animal models, which more closely resemble the human condition, are lacking. Our laboratory has recently characterised MSCs derived from ovine bone marrow, and demonstrated these cells form cartilage-like tissue when transplanted within the gelatin sponge, Gelfoam, in vivo. In the current study, autologous bone marrow MSC were seeded into Gelfoam scaffold containing TGF-β1, and transplanted into a surgically created defect of the proximal ovine tibial growth plate. Examination of implants at 5 week post-operatively revealed transplanted autologous MSC failed to form new cartilage structure at the defect site, but contributed to an increase in formation of a dense fibrous tissue. Importantly, the extent of osteogenesis was diminished, and bone bridge formation was not accelerated due to transplantation of MSCs or the gelatin scaffold. The current study represents the first work that has utilised this ovine large animal model to investigate whether autologous bone marrow derived MSC can be used to initiate regeneration at the injured growth plate. PMID:20721323

  9. The Role of Hibiscus sabdariffa L. (Roselle) in Maintenance of Ex Vivo Murine Bone Marrow-Derived Hematopoietic Stem Cells

    PubMed Central

    Abdul Hamid, Zariyantey; Lin Lin, Winnie Hii; Abdalla, Basma Jibril; Bee Yuen, Ong; Latif, Elda Surhaida; Mohamed, Jamaludin; Rajab, Nor Fadilah; Paik Wah, Chow; Budin, Siti Balkis

    2014-01-01

    Hematopoietic stem cells- (HSCs-) based therapy requires ex vivo expansion of HSCs prior to therapeutic use. However, ex vivo culture was reported to promote excessive production of reactive oxygen species (ROS), exposing HSCs to oxidative damage. Efforts to overcome this limitation include the use of antioxidants. In this study, the role of Hibiscus sabdariffa L. (Roselle) in maintenance of cultured murine bone marrow-derived HSCs was investigated. Aqueous extract of Roselle was added at varying concentrations (0–1000 ng/mL) for 24 hours to the freshly isolated murine bone marrow cells (BMCs) cultures. Effects of Roselle on cell viability, reactive oxygen species (ROS) production, glutathione (GSH) level, superoxide dismutase (SOD) activity, and DNA damage were investigated. Roselle enhanced the survival (P < 0.05) of BMCs at 500 and 1000 ng/mL, increased survival of Sca-1+ cells (HSCs) at 500 ng/mL, and maintained HSCs phenotype as shown from nonremarkable changes of surface marker antigen (Sca-1) expression in all experimental groups. Roselle increased (P < 0.05) the GSH level and SOD activity but the level of reactive oxygen species (ROS) was unaffected. Moreover, Roselle showed significant cellular genoprotective potency against H2O2-induced DNA damage. Conclusively, Roselle shows novel property as potential supplement and genoprotectant against oxidative damage to cultured HSCs. PMID:25405216

  10. Magnetic Nanocomposite Hydrogel for Potential Cartilage Tissue Engineering: Synthesis, Characterization, and Cytocompatibility with Bone Marrow Derived Mesenchymal Stem Cells.

    PubMed

    Zhang, Naiyin; Lock, Jaclyn; Sallee, Amy; Liu, Huinan

    2015-09-23

    Hydrogels possess high water content and closely mimic the microenvironment of extracellular matrix. In this study, we created a hybrid hydrogel containing type II collagen, hyaluronic acid (HA), and polyethylene glycol (PEG) and incorporated magnetic nanoparticles into the hybrid hydrogels of type II collagen-HA-PEG to produce a magnetic nanocomposite hydrogel (MagGel) for cartilage tissue engineering. The results showed that both the MagGel and hybrid gel (Gel) were successfully cross-linked and the MagGel responded to an external magnet while maintaining structural integrity. That is, the MagGel could travel to the tissue defect sites in physiological fluids under remote magnetic guidance. The adhesion density of bone marrow derived mesenchymal stem cells (BMSCs) on the MagGel group in vitro was similar to the control group and greater than the Gel group. The morphology of BMSCs was normal and consistent in all groups. We also found that BMSCs engulfed magnetic nanoparticles in culture and the presence of magnetic nanoparticles did not affect BMSC adhesion and morphology. We hypothesized that the ingested nanoparticles may be eventually broken down by lysosome and excreted through exocytosis; further studies are necessary to confirm this. This study reports a promising magnetic responsive nanocomposite hydrogel for potential cartilage tissue engineering applications, which should be further studied for its effects on cell functions when combined with electromagnetic stimulation.

  11. Administration of Autologous Bone Marrow-Derived Stem Cells for Treatment of Cerebral Palsy Patients: A Proof of Concept.

    PubMed

    Bansal, Himanshu; Singh, Lipi; Verma, Poonam; Agrawal, Anupama; Leon, Jerry; Sundell, I Birgitta; Koka, Prasad S

    Stem cell therapy is a promising treatment for cerebral palsy, which refers to a category of brain diseases that are associated with chronic motor disability in children. Autologous bone marrow stem cells may be a better cell source and have been studied for the treatment of cerebral palsy because of their functions in tissue repair and the regulation of immunological processes. To assess autologous marrow stem cells as a novel treatment for patients with moderate-to-severe cerebral palsy, a total of 10 cerebral palsy patients were enrolled in this clinical study with 24 months follow-up. A total of 10 cerebral palsy patients received autologous bone marrow cells transplantation (4.5 × 10(8) mononuclear cells; 90% viability) into the subarachnoid cavity and rehabilitation. We recorded the gross motor function measurement scores, manual ability function measurement score, and adverse events up to 24 months post-treatment. The gross motor function measurement scores were significantly higher at month 6 post-treatment compared with the baseline scores and were stable up to 24 months follow-up. The increase in manual ability and communication function measurement scores at 6 months were not significant when compared to the baseline score. All the 10 patients survived and none of the patients experienced any serious adverse events or complications. Our results indicated that bone marrow derived MNCs are safe and effective for the treatment of motor deficits related to cerebral palsy. Further randomized clinical trials are necessary to establish the efficacy of this procedure.

  12. Mitochondrial calcium uniporter inhibition attenuates mouse bone marrow-derived mast cell degranulation induced by beta-1,3-glucan

    PubMed Central

    Cuong, Dang Van; Kim, Hyoung Kyu; Marquez, Jubert; Kim, Nari; Ko, Kyung Soo; Rhee, Byoung Doo

    2016-01-01

    Mast cells are primary mediators of allergic inflammation. Beta-1,3-glucan (BG) protects against infection and shock by activating immune cells. Activation of the BG receptor induces an increase in intracellular Ca2+, which may induce exocytosis. However, little is known about the precise mechanisms underlying BG activation of immune cells and the possible role of mitochondria in this process. The present study examined whether BG induced mast cell degranulation, and evaluated the role of calcium transients during mast cell activation. Our investigation focused on the role of the mitochondrial calcium uniporter (MCU) in BG-induced degranulation. Black mouse (C57) bone marrow-derived mast cells were stimulated with 0.5 µg/ml BG, 100 µg/ml peptidoglycan (PGN), or 10 µM A23187 (calcium ionophore), and dynamic changes in cytosolic and mitochondrial calcium and membrane potential were monitored. BG-induced mast cell degranulation occurred in a time-dependent manner, and was significantly reduced under calcium-free conditions. Ruthenium red, a mitochondrial Ca2+ uniporter blocker, significantly reduced mast cell degranulation induced by BG, PGN, and A23187. These results suggest that the mitochondrial Ca2+ uniporter has an important regulatory role in BG-induced mast cell degranulation. PMID:26937218

  13. Identification of Rorβ targets in cultured osteoblasts and in human bone

    SciTech Connect

    Roforth, Matthew M. Khosla, Sundeep Monroe, David G.

    2013-11-01

    Highlights: •We examine the gene expression patterns controlled by Rorβ in osteoblasts. •Genes involved in extracellular matrix regulation and proliferation are affected. •Rorβ mRNA levels increase in aged, human bone biopsies. •Rorβ may affect osteoblast activity by modulation of these pathways. -- Abstract: Control of osteoblastic bone formation involves the cumulative action of numerous transcription factors, including both activating and repressive functions that are important during specific stages of differentiation. The nuclear receptor retinoic acid receptor-related orphan receptor β (Rorβ) has been recently shown to suppress the osteogenic phenotype in cultured osteoblasts, and is highly upregulated in bone marrow-derived osteogenic precursors isolated from aged osteoporotic mice, suggesting Rorβ is an important regulator of osteoblast function. However the specific gene expression patterns elicited by Rorβ are unknown. Using microarray analysis, we identified 281 genes regulated by Rorβ in an MC3T3-E1 mouse osteoblast cell model (MC3T3-Rorβ-GFP). Pathway analysis revealed alterations in genes involved in MAPK signaling, genes involved in extracellular matrix (ECM) regulation, and cytokine-receptor interactions. Whereas the identified Rorβ-regulated ECM genes normally decline during osteoblastic differentiation, they were highly upregulated in this non-mineralizing MC3T3-Rorβ-GFP model system, suggesting that Rorβ may exert its anti-osteogenic effects through ECM disruption. Consistent with these in vitro findings, the expression of both RORβ and a subset of RORβ-regulated genes were increased in bone biopsies from postmenopausal women (73 ± 7 years old) compared to premenopausal women (30 ± 5 years old), suggesting a role for RORβ in human age-related bone loss. Collectively, these data demonstrate that Rorβ regulates known osteogenic pathways, and may represent a novel therapeutic target for age-associated bone loss.

  14. Human serine protease HTRA1 positively regulates osteogenesis of human bone marrow-derived mesenchymal stem cells and mineralization of differentiating bone-forming cells through the modulation of extracellular matrix protein.

    PubMed

    Tiaden, André N; Breiden, Maike; Mirsaidi, Ali; Weber, Fabienne A; Bahrenberg, Gregor; Glanz, Stephan; Cinelli, Paolo; Ehrmann, Michael; Richards, Peter J

    2012-10-01

    Mammalian high-temperature requirement serine protease A1 (HTRA1) is a secreted member of the trypsin family of serine proteases which can degrade a variety of bone matrix proteins and as such has been implicated in musculoskeletal development. In this study, we have investigated the role of HTRA1 in mesenchymal stem cell (MSC) osteogenesis and suggest a potential mechanism through which it controls matrix mineralization by differentiating bone-forming cells. Osteogenic induction resulted in a significant elevation in the expression and secretion of HTRA1 in MSCs isolated from human bone marrow-derived MSCs (hBMSCs), mouse adipose-derived stromal cells (mASCs), and mouse embryonic stem cells. Recombinant HTRA1 enhanced the osteogenesis of hBMSCs as evidenced by significant changes in several osteogenic markers including integrin-binding sialoprotein (IBSP), bone morphogenetic protein 5 (BMP5), and sclerostin, and promoted matrix mineralization in differentiating bone-forming osteoblasts. These stimulatory effects were not observed with proteolytically inactive HTRA1 and were abolished by small interfering RNA against HTRA1. Moreover, loss of HTRA1 function resulted in enhanced adipogenesis of hBMSCs. HTRA1 Immunofluorescence studies showed colocalization of HTRA1 with IBSP protein in osteogenic mASC spheroid cultures and was confirmed as being a newly identified HTRA1 substrate in cell cultures and in proteolytic enzyme assays. A role for HTRA1 in bone regeneration in vivo was also alluded to in bone fracture repair studies where HTRA1 was found localized predominantly to areas of new bone formation in association with IBSP. These data therefore implicate HTRA1 as having a central role in osteogenesis through modification of proteins within the extracellular matrix.

  15. Brazilian minipig as a large-animal model for basic research and stem cell-based tissue engineering. Characterization and in vitro differentiation of bone marrow-derived mesenchymal stem cells.

    PubMed

    Stramandinoli-Zanicotti, Roberta Targa; Carvalho, André Lopes; Rebelatto, Carmen Lúcia Kuniyoshi; Sassi, Laurindo Moacir; Torres, Maria Fernanda; Senegaglia, Alexandra Cristina; Boldrinileite, Lidiane Maria; Correa-Dominguez, Alejandro; Kuligovsky, Crisciele; Brofman, Paulo Roberto Slud

    2014-06-01

    Stem cell-based regenerative medicine is one of the most intensively researched medical issues. Pre-clinical studies in a large-animal model, especially in swine or miniature pigs, are highly relevant to human applications. Mesenchymal stem cells (MSCs) have been isolated and expanded from different sources. This study aimed at isolating and characterizing, for the first time, bone marrow-derived MSCs (BM-MSCs) from a Brazilian minipig (BR1). Also, this aimed to validate a new large-animal model for stem cell-based tissue engineering. Bone marrow (BM) was aspirated from the posterior iliac crest of twelve adult male BR1 under general anesthesia. MSCs were selected by plastic-adherence as originally described by Friedenstein. Cell morphology, surface marker expression, and cellular differentiation were examined. The immunophenotypic profile was determined by flow cytometry. The differentiation potential was assessed by cytological staining and by RT-PCR. MSCs were present in all minipig BM samples. These cells showed fibroblastic morphology and were positive for the surface markers CD90 (88.6%), CD29 (89.8%), CD44 (86.9%) and negative for CD34 (1.61%), CD45 (1.83%), CD14 (1.77%) and MHC-II (2.69%). MSCs were differentiated into adipocytes, osteoblasts, and chondroblasts as demonstrated by the presence of lipidic-rich vacuoles, the mineralized extracellular matrix, and the great presence of glycosaminoglycans, respectively. The higher gene expression of adipocyte fatty-acid binding protein (AP2), alkaline phosphatase (ALP) and collagen type 2 (COLII) also confirmed the trilineage differentiation (p<0.001, p<0.001, p=0.031; respectively). The isolation, cultivation, and differentiation of BM-MSCs from BR1 makes this animal eligible as a useful large-animal model for stem cell-based studies in Brazil.

  16. Angiogenesis and vasculogenesis: inducing the growth of new blood vessels and wound healing by stimulation of bone marrow-derived progenitor cell mobilization and homing.

    PubMed

    Velazquez, Omaida C

    2007-06-01

    During embryonic development, the vasculature is among the first organs to form and is in charge of maintaining metabolic homeostasis by supplying oxygen and nutrients and removing waste products. As one would expect, blood vessels are critical not only for organ growth in the embryo but also for repair of wounded tissue in the adult. An imbalance in angiogenesis (a time-honored term that globally refers to the growth of new blood vessels) contributes to the pathogenesis of numerous malignant, inflammatory, ischemic, infectious, immune, and wound-healing disorders. This review focuses on the central role of the growth of new blood vessels in ischemic and diabetic wound healing and defines the most current nomenclature that describes the neovascularization process in wounds. There are now two well-defined, distinct, yet interrelated processes for the formation of postnatal new blood vessels, angiogenesis, and vasculogenesis. Reviewed are recent new data on vasculogenesis that promise to advance the field of wound healing.

  17. Growth factors/chemokines in diabetic vitreous and aqueous alter the function of bone marrow-derived progenitor (CD34⁺) cells in humans.

    PubMed

    Balaiya, Sankarathi; Grant, Maria B; Priluck, Joshua; Chalam, Kakarla V

    2014-10-15

    Ocular ischemic microenvironment plays a critical role in the progression of diabetic retinopathy (DR). In this study, we investigated the effect of vitreous and aqueous obtained from proliferative DR patients on the function of CD34⁺ cells derived from healthy humans. Human CD34⁺ cells were incubated with vitreous or aqueous of subjects with PDR. After incubation, cell migration of CD34⁺ was evaluated with CXCL12. Intracellular levels of nitric oxide (NO) were measured with DAF-FM. Tube formation assay was used to evaluate the effect of treated CD34⁺ cells on in vitro angiogenesis. Angiogenic protein array and mass spectrometry (MS) were performed to ascertain the factors secreted by healthy nondiabetic CD34⁺ cells exposed to diabetic vitreous or aqueous. PDR vitreous/aqueous reduced migration of CD34⁺ cells (672.45 ± 42.1/736.75 ± 101.7 AFU; P < 0.01) and attenuated intracellular NO levels (182 ± 1.4/184.5 ± 6.3 AFU, P = 0.002). Pretreatment with PDR vitreous suppressed tube formation of human retinal endothelial cells (64 ± 1.6 vs. 80 ± 2.5). CD34⁺ exposed to PDR vitreous resulted in the increased expression of CXCL4 and serpin F1, whereas CD34⁺ exposed to PDR aqueous showed increased expression of CXCL4, serpin F1, and endothelin-1 (ET-1). MS analysis of CD34⁺ (exposed to PDR vitreous) expressed J56 gene segment, isoform 2 of SPARC-related modular calcium-binding protein 2, isoform 1 of uncharacterized protein c1 orf167, integrin α-M, and 40s ribosomal protein s21. Exposure of healthy nondiabetic CD34⁺ cells to PDR vitreous and aqueous resulted in decreased migration, reduced generation of NO, and altered paracrine secretory function. Our results suggest that the contribution of CD34⁺ cells to the aberrant neovascularization observed in PDR is driven more by the proangiogenic effects of the retinal cells rather than the influence of the vitreous. Copyright © 2014 the American Physiological Society.

  18. Growth factors/chemokines in diabetic vitreous and aqueous alter the function of bone marrow-derived progenitor (CD34+) cells in humans

    PubMed Central

    Balaiya, Sankarathi; Grant, Maria B.; Priluck, Joshua

    2014-01-01

    Ocular ischemic microenvironment plays a critical role in the progression of diabetic retinopathy (DR). In this study, we investigated the effect of vitreous and aqueous obtained from proliferative DR patients on the function of CD34+ cells derived from healthy humans. Human CD34+ cells were incubated with vitreous or aqueous of subjects with PDR. After incubation, cell migration of CD34+ was evaluated with CXCL12. Intracellular levels of nitric oxide (NO) were measured with DAF-FM. Tube formation assay was used to evaluate the effect of treated CD34+ cells on in vitro angiogenesis. Angiogenic protein array and mass spectrometry (MS) were performed to ascertain the factors secreted by healthy nondiabetic CD34+ cells exposed to diabetic vitreous or aqueous. PDR vitreous/aqueous reduced migration of CD34+ cells (672.45 ± 42.1/736.75 ± 101.7 AFU; P < 0.01) and attenuated intracellular NO levels (182 ± 1.4/184.5 ± 6.3 AFU, P = 0.002). Pretreatment with PDR vitreous suppressed tube formation of human retinal endothelial cells (64 ± 1.6 vs. 80 ± 2.5). CD34+ exposed to PDR vitreous resulted in the increased expression of CXCL4 and serpin F1, whereas CD34+ exposed to PDR aqueous showed increased expression of CXCL4, serpin F1, and endothelin-1 (ET-1). MS analysis of CD34+ (exposed to PDR vitreous) expressed J56 gene segment, isoform 2 of SPARC-related modular calcium-binding protein 2, isoform 1 of uncharacterized protein c1 orf167, integrin α-M, and 40s ribosomal protein s21. Exposure of healthy nondiabetic CD34+ cells to PDR vitreous and aqueous resulted in decreased migration, reduced generation of NO, and altered paracrine secretory function. Our results suggest that the contribution of CD34+ cells to the aberrant neovascularization observed in PDR is driven more by the proangiogenic effects of the retinal cells rather than the influence of the vitreous. PMID:25159325

  19. Angiogenesis & Vasculogenesis: Inducing the growth of new blood vessels and wound healing by stimulation of Bone Marrow Derived Progenitor Cell Mobilization and Homing

    PubMed Central

    Velazquez, Omaida C.

    2009-01-01

    During embryonic development, the vasculature is among the first organs to form and is in charge of maintaining metabolic homeostasis by supplying oxygen and nutrients and removing waste products. As one would expect, blood vessels are critical not only for organ growth in the embryo, but also for repair of wounded tissue in the adult. An imbalance in ‘Angiogenesis’ (a time-honored term that globally refers to the growth of new blood vessels) contributes to the pathogenesis of numerous malignant, inflammatory, ischemic, infectious, immune, and wound healing disorders. In this review, we will focus on the central role of the growth of new blood vessels in ischemic and diabetic wound healing. We define the most current nomenclature that describes the neovascularization process in wounds. There are now two well defined, distinct, yet interrelated processes for the formation of post-natal new blood vessels, angiogenesis and vasculogenesis. We review recent new data on vasculogenesis that promises to advance the field of wound healing. PMID:17544023

  20. Id4, a New Candidate Gene for Senile Osteoporosis, Acts as a Molecular Switch Promoting Osteoblast Differentiation

    PubMed Central

    Yamashita, Yzumi; Nakachi, Yutaka; Nikaido, Itoshi; Bono, Hidemasa; Ninomiya, Yuichi; Kanesaki-Yatsuka, Yukiko; Akita, Masumi; Motegi, Hiromi; Wakana, Shigeharu; Noda, Tetsuo; Sablitzky, Fred; Arai, Shigeki; Kurokawa, Riki; Fukuda, Toru; Katagiri, Takenobu; Schönbach, Christian; Suda, Tatsuo; Mizuno, Yosuke; Okazaki, Yasushi

    2010-01-01

    Excessive accumulation of bone marrow adipocytes observed in senile osteoporosis or age-related osteopenia is caused by the unbalanced differentiation of MSCs into bone marrow adipocytes or osteoblasts. Several transcription factors are known to regulate the balance between adipocyte and osteoblast differentiation. However, the molecular mechanisms that regulate the balance between adipocyte and osteoblast differentiation in the bone marrow have yet to be elucidated. To identify candidate genes associated with senile osteoporosis, we performed genome-wide expression analyses of differentiating osteoblasts and adipocytes. Among transcription factors that were enriched in the early phase of differentiation, Id4 was identified as a key molecule affecting the differentiation of both cell types. Experiments using bone marrow-derived stromal cell line ST2 and Id4-deficient mice showed that lack of Id4 drastically reduces osteoblast differentiation and drives differentiation toward adipocytes. On the other hand knockdown of Id4 in adipogenic-induced ST2 cells increased the expression of Pparγ2, a master regulator of adipocyte differentiation. Similar results were observed in bone marrow cells of femur and tibia of Id4-deficient mice. However the effect of Id4 on Pparγ2 and adipocyte differentiation is unlikely to be of direct nature. The mechanism of Id4 promoting osteoblast differentiation is associated with the Id4-mediated release of Hes1 from Hes1-Hey2 complexes. Hes1 increases the stability and transcriptional activity of Runx2, a key molecule of osteoblast differentiation, which results in an enhanced osteoblast-specific gene expression. The new role of Id4 in promoting osteoblast differentiation renders it a target for preventing the onset of senile osteoporosis. PMID:20628571

  1. Transplantation of umbilical cord and bone marrow-derived mesenchymal stem cells in a patient with relapsing-remitting multiple sclerosis

    PubMed Central

    Hou, Zong-liu; Liu, Ying; Mao, Xi-Hong; Wei, Chuan-yu; Meng, Ming-yao; Liu, Yun-hong; Zhuyun Yang, Zara; Zhu, Hongmei; Short, Martin; Bernard, Claude; Xiao, Zhi-cheng

    2013-01-01

    There is currently great interest in the use of mesenchymal stem cells as a therapy for multiple sclerosis with potential to both ameliorate inflammatory processes as well as improve regeneration and repair. Although most clinical studies have used autologous bone marrow-derived mesenchymal stem cells, other sources such as allogeneic umbilical cord-derived cells may provide a more accessible and practical supply of cells for transplantation. In this case report we present the treatment of aggressive multiple sclerosis with multiple allogenic human umbilical cord-derived mesenchymal stem cell and autologous bone marrow-derived mesenchymal stem cells over a 4 y period. The treatments were tolerated well with no significant adverse events. Clinical and radiological disease appeared to be suppressed following the treatments and support the expansion of mesenchymal stem cell transplantation into clinical trials as a potential novel therapy for patients with aggressive multiple sclerosis. PMID:24192520

  2. Transplantation of umbilical cord and bone marrow-derived mesenchymal stem cells in a patient with relapsing-remitting multiple sclerosis.

    PubMed

    Hou, Zong-liu; Liu, Ying; Mao, Xi-Hong; Wei, Chuan-yu; Meng, Ming-yao; Liu, Yun-hong; Zhuyun Yang, Zara; Zhu, Hongmei; Short, Martin; Bernard, Claude; Xiao, Zhi-cheng

    2013-01-01

    There is currently great interest in the use of mesenchymal stem cells as a therapy for multiple sclerosis with potential to both ameliorate inflammatory processes as well as improve regeneration and repair. Although most clinical studies have used autologous bone marrow-derived mesenchymal stem cells, other sources such as allogeneic umbilical cord-derived cells may provide a more accessible and practical supply of cells for transplantation. In this case report we present the treatment of aggressive multiple sclerosis with multiple allogenic human umbilical cord-derived mesenchymal stem cell and autologous bone marrow-derived mesenchymal stem cells over a 4 y period. The treatments were tolerated well with no significant adverse events. Clinical and radiological disease appeared to be suppressed following the treatments and support the expansion of mesenchymal stem cell transplantation into clinical trials as a potential novel therapy for patients with aggressive multiple sclerosis.

  3. Increased recruitment of bone marrow-derived cells into the brain associated with altered brain cytokine profile in senescence-accelerated mice.

    PubMed

    Hasegawa-Ishii, Sanae; Inaba, Muneo; Li, Ming; Shi, Ming; Umegaki, Hiroyuki; Ikehara, Susumu; Shimada, Atsuyoshi

    2016-04-01

    Bone marrow-derived cells enter the brain in a non-inflammatory condition through the attachments of choroid plexus and differentiate into ramified myeloid cells. Neurodegenerative conditions may be associated with altered immune-brain interaction. The senescence-accelerated mouse prone 10 (SAMP10) undergoes earlier onset neurodegeneration than C57BL/6 (B6) strain. We hypothesized that the dynamics of immune cells migrating from the bone marrow to the brain is perturbed in SAMP10 mice. We created 4 groups of radiation chimeras by intra-bone marrow-bone marrow transplantation using 2-month-old (2 mo) and 10 mo SAMP10 and B6 mice as recipients with GFP transgenic B6 mice as donors, and analyzed histologically 4 months later. In the [B6 → 10 mo SAMP10] chimeras, more ramified marrow-derived cells populated a larger number of discrete brain regions than the other chimeras, especially in the diencephalon. Multiplex cytokine assays of the diencephalon prepared from non-treated 3 mo and 12 mo SAMP10 and B6 mice revealed that 12 mo SAMP10 mice exhibited higher tissue concentrations of CXCL1, CCL11, G-CSF, CXCL10 and IL-6 than the other groups. Immunohistologically, choroid plexus epithelium and ependyma produced CXCL1, while astrocytic processes in the attachments of choroid plexus expressed CCL11 and G-CSF. The median eminence produced CXCL10, hypothalamic neurons G-CSF and tanycytes CCL11 and G-CSF. These brain cytokine profile changes in 12 mo SAMP10 mice were likely to contribute to acceleration of the dynamics of marrow-derived cells to the diencephalon. Further studies on the functions of ramified marrow-derived myeloid cells would enhance our understanding of the brain-bone marrow interaction.

  4. Deletion of EP4 on bone marrow-derived cells enhances inflammation and angiotensin II-induced abdominal aortic aneurysm formation.

    PubMed

    Tang, Eva H C; Shvartz, Eugenia; Shimizu, Koichi; Rocha, Viviane Z; Zheng, Chunyu; Fukuda, Daiju; Shi, Guo-Ping; Sukhova, Galina; Libby, Peter

    2011-02-01

    To examine whether a lack of prostaglandin E receptor 4 (EP4) on bone marrow-derived cells would increase local inflammation and enhance the formation of abdominal aortic aneurysm (AAA) in vivo. Prostaglandin E(2) (PGE(2)) through activation of EP4, can mute inflammation. Hypercholesterolemic low-density lipoprotein receptor knockout (LDLR(-/-)) mice transplanted with either EP4(+/+) (EP4(+/+)/LDLR(-/-)) or EP4(-/-) (EP4(-/-)/LDLR(-/-)) bone marrow received infusions of angiotensin II to induce AAA. Deficiency of EP4 on bone marrow-derived cells increased the incidence (50% of male EP4(+/+)/LDLR(-/-) mice versus 88.9% of male EP4(-/-)/LDLR(-/-) mice developed AAA; and 22% of female EP4(+/+)/LDLR(-/-) mice versus 83.3% of female EP4(-/-)/LDLR(-/-) mice developed AAA) and severity of AAA, increased monocyte chemoattractant protein-1 (2.72-fold in males and 1.64-fold in females), and enhanced infiltration of macrophages (3.8-fold in males and 2.44-fold in females) and T cells (1.88-fold in males and 1.66-fold in females) into AAA lesions. Lack of EP4 on bone marrow-derived cells augmented elastin fragmentation, increased apoptotic markers, and decreased smooth muscle cell accumulation within AAA lesions. Deficiency of EP4 on bone marrow-derived cells boosted inflammation and AAA formation induced by angiotensin II in hyperlipidemic mice. This study affirms the pathophysiologic importance of PGE(2) signaling through EP4 as an endogenous anti-inflammatory pathway involved in experimental aneurysm formation.

  5. Prostacyclin Suppresses Twist Expression in the Presence of Indomethacin in Bone Marrow-Derived Mesenchymal Stromal Cells

    PubMed Central

    Kemper, Oliver; Herten, Monika; Fischer, Johannes; Haversath, Marcel; Beck, Sascha; Classen, Tim; Warwas, Sebastian; Tassemeier, Tjark; Landgraeber, Stefan; Lensing-Höhn, Sabine; Krauspe, Rüdiger; Jäger, Marcus

    2014-01-01

    Background Iloprost, a stable prostacyclin I2 analogue, seems to have an osteoblast-protective potential, whereas indomethacin suppresses new bone formation. The aim of this study was to investigate human bone marrow stromal cell (BMSC) proliferation and differentiation towards the osteoblastic lineage by administration of indomethacin and/or iloprost. Material/Methods Human bone marrow cells were obtained from 3 different donors (A=26 yrs/m; B=25 yrs/f, C=35 yrs/m) via vacuum aspiration of the iliac crest followed by density gradient centrifugation and flow cytometry with defined antigens (CD105+/73+/45−/14−). The cells were seeded and incubated as follows: without additives (Group 0; donor A/B/C), with 10−7 M iloprost only (Group 0+ilo; A/B), with indomethacin only in concentrations of 10−6 M (Group 1, A), 10−5 M (Group 2, B), 10−4 M (Group 3, A/B), and together with 10−7 M iloprost (Groups 4–6, A/B/C). On Day 10 and 28, UV/Vis spectrometric and immunocytochemical assays (4 samples per group and donor) were performed to investigate cell proliferation (cell count measurement) and differentiation towards the osteoblastic lineage (CD34−, CD45−, CD105+, type 1 collagen (Col1), osteocalcin (OC), alkaline phosphatase (ALP), Runx2, Twist, specific ALP-activity). Results Indomethacin alone suppressed BMSC differentiation towards the osteoblastic lineage by downregulation of Runx2, Col1, and ALP. In combination with indomethacin, iloprost increased cell proliferation and differentiation and it completely suppressed Twist expression at Day 10 and 28. Iloprost alone did not promote cell proliferation, but moderately enhanced Runx2 and Twist expression. However, the proliferative effects and the specific ALP-activity varied donor-dependently. Conclusions Iloprost partially antagonized the suppressing effects of indomethacin on BMSC differentiation towards the osteoblast lineage. It enhanced the expression of Runx2 and, only in the presence of indomethacin

  6. Cytokine response in mouse bone marrow derived macrophages after infection with pathogenic and non-pathogenic Rift Valley fever virus.

    PubMed

    Roberts, Kimberly K; Hill, Terence E; Davis, Melissa N; Holbrook, Michael R; Freiberg, Alexander N

    2015-07-01

    Rift Valley fever virus (RVFV) is the most pathogenic member of the genus Phlebovirus within the family Bunyaviridae, and can cause severe disease in humans and livestock. Until recently, limited information has been published on the cellular host response elicited by RVFV, particularly in macrophages and dendritic cells, which play critical roles in stimulating adaptive and innate immune responses to viral infection. In an effort to define the initial response of host immunomodulatory cells to infection, primary mouse bone marrow derived macrophages (BMDM) were infected with the pathogenic RVFV strain ZH501, or attenuated strains MP-12 or MP-12 based Clone13 type (rMP12-C13 type), and cytokine secretion profiles examined. The secretion of T helper (Th)1-associated antiviral cytokines, chemokines and various interleukins increased rapidly after infection with the attenuated rMP12-C13 type RVFV, which lacks a functional NSs virulence gene. In comparison, infection with live-attenuated MP-12 encoding a functional NSs gene appeared to cause a delayed immune response, while pathogenic ZH501 ablates the immune response almost entirely. These data demonstrate that NSs can inhibit components of the BMDM antiviral response and supports previous work indicating that NSs can specifically regulate the type I interferon response in macrophages. Furthermore, our data demonstrate that genetic differences between ZH501 and MP-12 reduce the ability of MP-12 to inhibit antiviral signalling and subsequently reduce virulence in BMDM, demonstrating that viral components other than NSs play a critical role in regulating the host response to RVFV infection.

  7. Cytokine response in mouse bone marrow derived macrophages after infection with pathogenic and non-pathogenic Rift Valley fever virus

    PubMed Central

    Roberts, Kimberly K.; Hill, Terence E.; Davis, Melissa N.; Holbrook, Michael R.

    2015-01-01

    Rift Valley fever virus (RVFV) is the most pathogenic member of the genus Phlebovirus within the family Bunyaviridae, and can cause severe disease in humans and livestock. Until recently, limited information has been published on the cellular host response elicited by RVFV, particularly in macrophages and dendritic cells, which play critical roles in stimulating adaptive and innate immune responses to viral infection. In an effort to define the initial response of host immunomodulatory cells to infection, primary mouse bone marrow derived macrophages (BMDM) were infected with the pathogenic RVFV strain ZH501, or attenuated strains MP-12 or MP-12 based Clone13 type (rMP12-C13 type), and cytokine secretion profiles examined. The secretion of T helper (Th)1-associated antiviral cytokines, chemokines and various interleukins increased rapidly after infection with the attenuated rMP12-C13 type RVFV, which lacks a functional NSs virulence gene. In comparison, infection with live-attenuated MP-12 encoding a functional NSs gene appeared to cause a delayed immune response, while pathogenic ZH501 ablates the immune response almost entirely. These data demonstrate that NSs can inhibit components of the BMDM antiviral response and supports previous work indicating that NSs can specifically regulate the type I interferon response in macrophages. Furthermore, our data demonstrate that genetic differences between ZH501 and MP-12 reduce the ability of MP-12 to inhibit antiviral signalling and subsequently reduce virulence in BMDM, demonstrating that viral components other than NSs play a critical role in regulating the host response to RVFV infection. PMID:25759029

  8. Effects of Tricalcium Silicate Cements on Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells In Vitro

    PubMed Central

    Eid, Ashraf A.; Hussein, Khalid A.; Niu, Li-na; Li, Guo-hua; Watanabe, Ikuya; Al-Shabrawey, Mohamed; Pashley, David H.; Tay, Franklin R.

    2014-01-01

    Tricalcium silicate cements have been successfully employed in the biomedical field as bioactive bone and dentin substitutes, with widely acclaimed osteoactive properties. This research analyzed the effects of different tricalcium silicate cement formulations on the temporal osteoactivity profile of human bone marrow-derived mesenchymal stem cells (hMW-MSCs). These cells were exposed to 4 commercially-available tricalcium silicate cement formulations in osteogenic differentiation medium. After 1, 3, 7 and 10 days, quantitative real time-polymerase chain reaction and Western blotting were performed to detect the expression of target osteogenic markers ALP, RUNX2, OSX, OPN, MSX2, and OCN. After 3, 7, 14 and 21 days, alkaline phosphatase assay was performed to detect changes in intracellular enzyme level. Alizarin Red S assay was performed after 28 days to detect extracellular matrix mineralization. In the presence of tricalcium silicate cements, target osteogenic markers were downregulated at the mRNA and protein levels at all time-points. Intracellular alkaline phosphatase enzyme levels and extracellular mineralization of the experimental groups were not significantly different from the untreated control. Quantitative polymerase chain reaction results showed increases in downregulation of RUNX2, OSX, MSX2 and OCN with increase in time of exposure to the tricalcium silicate cements, while ALP showed peak downregulation at day 7. For Western blotting, OSX, OPN, MSX2 and OCN showed increased downregulation with increased exposure time to the tested cements. Alkaline phosphatase enzyme levels generally declined after day 7. Based on these results, it is concluded that tricalcium silicate cements do not induce osteogenic differentiation of hBM-MSCs in vitro. PMID:24726977

  9. The Effect of Extended First Passage Culture on the Proliferation and Differentiation of Human Marrow-Derived Mesenchymal Stem Cells

    PubMed Central

    Lennon, Donald P.; Schluchter, Mark D.

    2012-01-01

    Human marrow-derived mesenchymal stem cells (hMSCs) have been investigated for more than 20 years. They have been shown to be therapeutic in a number of animal models and are currently in use in more than 200 clinical trials, thus documenting their importance in the field of translational medicine. Standard protocols for the passage and collection of hMSCs involve trypsinization of preconfluent cultures. This practice is based, at least in part, on concerns that the multipotency of these cells would be diminished if the cultures became confluent. To test this concern, hMSCs were isolated and maintained in standard culture conditions in primary culture and were then subcultured after 2 weeks. The resulting first passage cultures were divided into two groups: those that were subcultured at the normal frequency, usually at 7 days for each passage (referred to as standard conditions [SC]), and those that were maintained for up to 53 days without being further subcultured (extended first passage [EFP]). At the end of the second passage and each of five subsequent subcultures for cells in SC (i.e., through passage 7), complementary EFP cultures were also trypsinized. Cells from each group were counted, resuspended in serum-free medium, and assayed to determine the ability of the cells to differentiate along osteogenic, chondrogenic, and adipogenic lineages. Cells in SC experienced an average of 27 population doublings through seven passages, whereas hMSCs in EFP achieved approximately 16 population doublings after 34 days but demonstrated very little increase in cell number after that time. The ability of hMSCs in EFP to produce bone in ceramic cubes implanted subcutaneously in immunocompromised mice and to differentiate into cartilage in pellet or aggregate culture was at least equivalent to that of the cells in SC through seven passages, whereas the capacity of the EFP hMSCs to produce lipid droplets in adipogenic conditions was maintained but was diminished relative

  10. Effects of Portulaca oleracea L. Polysaccharides on Phenotypic and Functional Maturation of Murine Bone Marrow Derived Dendritic Cells.

    PubMed

    Zhao, Rui; Zhang, Tao; Zhao, Hui; Cai, Yaping

    2015-01-01

    Portulaca oleracea L. is an annual plant widely distributed from the temperate to the tropical zones. POL-P3b, a polysaccharide fraction purified from Portulaca oleracea L., is able to enhance immunity and inhibit tumor formation. Induction of antitumor immunity by dendritic-tumor fusion cells can be modulated by their activation status. Mature dendritic cells are significantly better than immature dendritic cells at cytotoxic T-lymphocyte induction. In this study, we analyzed the effects of POL-P3b on the maturation and function of murine bone-marrow-derived dendritic cells (DCs) and relevant mechanisms. The phenotypic maturation of DCs was confirmed by flow cytometry. We found that POL-P3b upregulated the expression of CD80, CD86, CD83, and major histocompatibility complex class II molecules on DCs, stimulated production of more interleukin (IL)-12, tumor necrosis factor-α, and less IL-10. Also, DCs pulsed POL-P3b and freeze-thaw antigen increased DCs-driven T cells' proliferation and promoted U14 cells' apoptosis. Furthermore, the expression of TLR-4 was significantly increased on DCs treated by POL-P3b. These results suggested that POL-P3b may induce DCs maturation through TLR-4. Taken together, our results may have important implications for the molecular mechanisms of immunopotentiation of POL-P3b, and provide direct evidence to suggest that POL-P3b should be considered as a potent adjuvant nutrient supplement for DC-based vaccines.

  11. Bone marrow-derived mesenchymal stem cells enhance angiogenesis via their α6β1 integrin receptor

    SciTech Connect

    Carrion, Bita; Kong, Yen P.; Kaigler, Darnell; Putnam, Andrew J.

    2013-11-15

    Bone marrow-derived mesenchymal stem cells (BMSCs) facilitate the angiogenic response of endothelial cells (ECs) within three-dimensional (3D) matrices in vivo and in engineered tissues in vitro in part through paracrine mediators and by acting as stabilizing pericytes. However, the molecular interactions between BMSCs and nascent tubules during the process of angiogenesis are not fully understood. In this study, we have used a tractable 3D co-culture model to explore the functional role of the α6β1 integrin adhesion receptor on BMSCs in sprouting angiogenesis. We report that knockdown of the α6 integrin subunit in BMSCs significantly reduces capillary sprouting, and causes their failure to associate with the nascent vessels. Furthermore, we demonstrate that the BMSCs with attenuated α6 integrin proliferate at a significantly lower rate relative to either control cells expressing non-targeting shRNA or wild type BMSCs; however, despite adding more cells to compensate for this deficit in proliferation, deficient sprouting persists. Collectively, our findings demonstrate that the α6 integrin subunit in BMSCs is important for their ability to stimulate vessel morphogenesis. This conclusion may have important implications in the optimization of cell-based strategies to promote angiogenesis. Highlights: • BMSCs stimulate angiogenesis, but the mechanisms remain unclear. • We silenced the expression of the α6 integrin subunit in BMSCs. • Silencing this receptor subunit significantly inhibited angiogenic sprouting. • Knocking down α6 integrin affected laminin and αSMA expression. • Silencing α6 integrin expression also reduced BMSC proliferation.

  12. The Effect of EPO Gene Overexpression on Proliferation and Migration of Mouse Bone Marrow-Derived Mesenchymal Stem Cells.

    PubMed

    Lin, Haihong; Luo, Xinping; Jin, Bo; Shi, Haiming; Gong, Hui

    2015-04-01

    The aim of this study is to investigate the effect of erythropoietin (EPO) gene overexpression on proliferation and migration of mouse bone marrow-derived mesenchymal stem cells (MSCs), and to determine the underlying signaling pathway. Mouse MSCs were cultured in vitro and EPO gene was transfected into the 6th generation of MSCs via lentivirus vector. The transfected cells were identified by flow cytometry and the EPO levels in supernatant were measured with ELISA. In addition, cell proliferation was assessed by CCK-8 assay and cell migration was evaluated by Transwell assay. The activation of Akt, ERK1/2, and p38MAPK signaling was detected by western blotting. The lentivirus vector containing EPO was successfully constructed and transfected into MSCs. No remarkable change was found in the cell surface markers after transfection while a significant increase of EPO level in supernatant was noticed in transfected MSCs compared to controls (P < 0.01). In addition, transfected MSCs showed a significantly enhanced proliferation (P < 0.01) as well as a notable increase in migration (P < 0.01) compared to controls. Furthermore, we also found that EPO modification enhanced the phosphorylation of PI3K/Akt and ERK signaling pathway, and suppressed the phosphorylation of p38MAPK without aff