Sample records for mars climate database

  1. A Model Based Mars Climate Database for the Mission Design

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A viewgraph presentation on a model based climate database is shown. The topics include: 1) Why a model based climate database?; 2) Mars Climate Database v3.1 Who uses it ? (approx. 60 users!); 3) The new Mars Climate database MCD v4.0; 4) MCD v4.0: what's new ? 5) Simulation of Water ice clouds; 6) Simulation of Water ice cycle; 7) A new tool for surface pressure prediction; 8) Acces to the database MCD 4.0; 9) How to access the database; and 10) New web access

  2. The Mars Climate Database (MCD version 5.2)

    NASA Astrophysics Data System (ADS)

    Millour, E.; Forget, F.; Spiga, A.; Navarro, T.; Madeleine, J.-B.; Montabone, L.; Pottier, A.; Lefevre, F.; Montmessin, F.; Chaufray, J.-Y.; Lopez-Valverde, M. A.; Gonzalez-Galindo, F.; Lewis, S. R.; Read, P. L.; Huot, J.-P.; Desjean, M.-C.; MCD/GCM development Team

    2015-10-01

    The Mars Climate Database (MCD) is a database of meteorological fields derived from General Circulation Model (GCM) numerical simulations of the Martian atmosphere and validated using available observational data. The MCD includes complementary post-processing schemes such as high spatial resolution interpolation of environmental data and means of reconstructing the variability thereof. We have just completed (March 2015) the generation of a new version of the MCD, MCD version 5.2

  3. The Latest Mars Climate Database (MCD v5.1)

    NASA Astrophysics Data System (ADS)

    Millour, Ehouarn; Forget, Francois; Spiga, Aymeric; Navarro, Thomas; Madeleine, Jean-Baptiste; Pottier, Alizée; Montabone, Luca; Kerber, Laura; Lefèvre, Franck; Montmessin, Franck; Chaufray, Jean-Yves; López-Valverde, Miguel; González-Galindo, Francisco; Lewis, Stephen; Read, Peter; Huot, Jean-Paul; Desjean, Marie-Christine; the MCD/GCM development Team

    2014-05-01

    For many years, several teams around the world have developed GCMs (General Circulation Model or Global Climate Model) to simulate the environment on Mars. The GCM developed at the Laboratoire de Météorologie Dynamique in collaboration with several teams in Europe (LATMOS, France, University of Oxford, The Open University, the Instituto de Astrofisica de Andalucia), and with the support of ESA and CNES is currently used for many applications. Its outputs have also regularly been compiled to build a Mars Climate Database, a freely available tool useful for the scientific and engineering communities. The Mars Climate Database (MCD) has over the years been distributed to more than 150 teams around the world. Following the recent improvements inthe GCM, a new series of reference simulations have been run and compiled into a new version (version5.1) of the Mars Climate Database, released in the first half of 2014. To summarize, MCD v5.1 provides: - Climatologies over a series of dust scenarios: standard year, cold (ie: low dust), warm (ie: dusty atmosphere) and dust storm, all topped by various cases of Extreme UV solar inputs (low, mean or maximum). These scenarios differ from those of previous versions of the MCD (version 4.x) as they have been derived from home-made, instrument-derived (TES, THEMIS, MCS, MERs), dust climatology of the last 8 Martian years. - Mean values and statistics of main meteorological variables (atmospheric temperature, density, pressure and winds), as well as surface pressure and temperature, CO2 ice cover, thermal and solar radiative fluxes, dust column opacity and mixing ratio, [H20] vapor and ice columns, concentrations of many species: [CO], [O2], [O], [N2], [H2], [O3], ... - A high resolution mode which combines high resolution (32 pixel/degree) MOLA topography records and Viking Lander 1 pressure records with raw lower resolution GCM results to yield, within the restriction of the procedure, high resolution values of atmospheric variables. - The possibility to reconstruct realistic conditions by combining the provided climatology with additional large scale and small scale perturbations schemes. At EGU, we will report on the latest improvements in the Mars Climate Database, with comparisons with available measurements from orbit (e.g.: TES, MCS) or landers (Viking, Phoenix, MSL).

  4. The Mars Climate Database (MCD version 5.3)

    NASA Astrophysics Data System (ADS)

    Millour, Ehouarn; Forget, Francois; Spiga, Aymeric; Vals, Margaux; Zakharov, Vladimir; Navarro, Thomas; Montabone, Luca; Lefevre, Franck; Montmessin, Franck; Chaufray, Jean-Yves; Lopez-Valverde, Miguel; Gonzalez-Galindo, Francisco; Lewis, Stephen; Read, Peter; Desjean, Marie-Christine; MCD/GCM Development Team

    2017-04-01

    Our Global Circulation Model (GCM) simulates the atmospheric environment of Mars. It is developped at LMD (Laboratoire de Meteorologie Dynamique, Paris, France) in close collaboration with several teams in Europe (LATMOS, France, University of Oxford, The Open University, the Instituto de Astrofisica de Andalucia), and with the support of ESA (European Space Agency) and CNES (French Space Agency). GCM outputs are compiled to build a Mars Climate Database, a freely available tool useful for the scientific and engineering communities. The Mars Climate Database (MCD) has over the years been distributed to more than 300 teams around the world. The latest series of reference simulations have been compiled in a new version (v5.3) of the MCD, released in the first half of 2017. To summarize, MCD v5.3 provides: - Climatologies over a series of synthetic dust scenarios: standard (climatology) year, cold (ie: low dust), warm (ie: dusty atmosphere) and dust storm, all topped by various cases of Extreme UV solar inputs (low, mean or maximum). These scenarios have been derived from home-made, instrument-derived (TES, THEMIS, MCS, MERs), dust climatology of the last 8 Martian years. The MCD also provides simulation outputs (MY24-31) representative of these actual years. - Mean values and statistics of main meteorological variables (atmospheric temperature, density, pressure and winds), as well as surface pressure and temperature, CO2 ice cover, thermal and solar radiative fluxes, dust column opacity and mixing ratio, [H20] vapor and ice columns, concentrations of many species: [CO], [O2], [O], [N2], [H2], [O3], ... - A high resolution mode which combines high resolution (32 pixel/degree) MOLA topography records and Viking Lander 1 pressure records with raw lower resolution GCM results to yield, within the restriction of the procedure, high resolution values of atmospheric variables. - The possibility to reconstruct realistic conditions by combining the provided climatology with additional large scale and small scale perturbations schemes. At EGU, we will report on the latest improvements in the Mars Climate Database, with comparisons with available measurements from orbit (e.g.: TES, MCS) and landers (Viking, Phoenix, MSL).

  5. Estimation of daily reference evapotranspiration (ETo) using artificial intelligence methods: Offering a new approach for lagged ETo data-based modeling

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Saeid

    2018-04-01

    Evapotranspiration (ET) is considered as a key factor in hydrological and climatological studies, agricultural water management, irrigation scheduling, etc. It can be directly measured using lysimeters. Moreover, other methods such as empirical equations and artificial intelligence methods can be used to model ET. In the recent years, artificial intelligence methods have been widely utilized to estimate reference evapotranspiration (ETo). In the present study, local and external performances of multivariate adaptive regression splines (MARS) and gene expression programming (GEP) were assessed for estimating daily ETo. For this aim, daily weather data of six stations with different climates in Iran, namely Urmia and Tabriz (semi-arid), Isfahan and Shiraz (arid), Yazd and Zahedan (hyper-arid) were employed during 2000-2014. Two types of input patterns consisting of weather data-based and lagged ETo data-based scenarios were considered to develop the models. Four statistical indicators including root mean square error (RMSE), mean absolute error (MAE), coefficient of determination (R2), and mean absolute percentage error (MAPE) were used to check the accuracy of models. The local performance of models revealed that the MARS and GEP approaches have the capability to estimate daily ETo using the meteorological parameters and the lagged ETo data as inputs. Nevertheless, the MARS had the best performance in the weather data-based scenarios. On the other hand, considerable differences were not observed in the models' accuracy for the lagged ETo data-based scenarios. In the innovation of this study, novel hybrid models were proposed in the lagged ETo data-based scenarios through combination of MARS and GEP models with autoregressive conditional heteroscedasticity (ARCH) time series model. It was concluded that the proposed novel models named MARS-ARCH and GEP-ARCH improved the performance of ETo modeling compared to the single MARS and GEP. In addition, the external analysis of the performance of models at stations with similar climatic conditions denoted the applicability of nearby station' data for estimation of the daily ETo at target station.

  6. Improved Mars Upper Atmosphere Climatology

    NASA Technical Reports Server (NTRS)

    Bougher, S. W.

    2004-01-01

    The detailed characterization of the Mars upper atmosphere is important for future Mars aerobraking activities. Solar cycle, seasonal, and dust trends (climate) as well as planetary wave activity (weather) are crucial to quantify in order to improve our ability to reasonably depict the state of the Mars upper atmosphere over time. To date, our best information is found in the Mars Global Surveyor (MGS) Accelerometer (ACC) database collected during Phase 1 (Ls = 184 - 300; F10.7 = 70 - 90) and Phase 2 (Ls = 30 - 90; F10.7 = 90 - 150) of aerobraking. This database (100 - 170 km) consists of thermospheric densities, temperatures, and scale heights, providing our best constraints for exercising the coupled Mars General Circulation Model (MGCM) and the Mars Thermospheric General Circulation Model (MTGCM). The Planetary Data System (PDS) contains level 0 and 2 MGS Accelerometer data, corresponding to atmospheric densities along the orbit track. Level 3 products (densities, temperatures, and scale heights at constant altitudes) are also available in the PDS. These datasets provide the primary model constraints for the new MGCM-MTGCM simulations summarized in this report. Our strategy for improving the characterization of the Mars upper atmospheres using these models has been three-fold : (a) to conduct data-model comparisons using the latest MGS data covering limited climatic and weather conditions at Mars, (b) to upgrade the 15-micron cooling and near-IR heating rates in the MGCM and MTGCM codes for ad- dressing climatic variations (solar cycle and seasonal) important in linking the lower and upper atmospheres (including migrating tides), and (c) to exercise the detailed coupled MGCM and MTGCM codes to capture and diagnose the planetary wave (migrating plus non-migrating tidal) features throughout the Mars year. Products from this new suite of MGCM-MTGCM coupled simulations are being used to improve our predictions of the structure of the Mars upper atmosphere for the upcoming MRO aerobraking exercises in 2006. A Michigan website, containing MTGCM output fields from previous climate simulations, is being expanded to include new MGCM-MTGCM simulations addressing planetary wave influences upon thermospheric aerobraking fields (densities and temperatures). In addition, similar MTGCM output fields have been supplied to the MSFC MARSGRAM - 200X empirical model, which will be used in mission operations for conducting aerobraking maneuvers.

  7. Comparing wind directions inferred from Martian dust devil tracks analysis with those predicted by the Mars Climate Database

    NASA Astrophysics Data System (ADS)

    Statella, T.; Pina, P.; Silva, E. A.; Nervis Frigeri, Ary Vinicius; Neto, Frederico Gallon

    2016-10-01

    We have calculated the prevailing dust devil tracks direction as a means of verifying the Mars Climate Database (MCD) predicted wind directions accuracy. For that purpose we have applied an automatic method based on morphological openings for inferring the prevailing tracks direction in a dataset comprising 200 Mars Orbiter Camera (MOC) Narrow Angle (NA) and High Resolution Imaging Science Experiment (HiRISE) images of the Martian surface, depicting regions in the Aeolis, Eridania, Noachis, Argyre and Hellas quadrangles. The prevailing local wind directions were calculated from the MCD predicted speeds for the WE and SN wind components. The results showed that the MCD may not be able to predict accurately the locally dominant wind direction near the surface. In adittion, we confirm that the surface wind stress alone cannot produce dust lifting in the studied sites, since it never exceeds the threshold value of 0.0225 Nm-2 in the MCD.

  8. Study of gravity waves propagation in the thermosphere of Mars based on MAVEN/NGIMS density measurements

    NASA Astrophysics Data System (ADS)

    Vals, M.

    2017-09-01

    We use MAVEN/NGIMS CO2 density measurements to analyse gravity waves in the thermosphere of Mars. In particular the seasonal/latitudinal variability of their amplitude is studied and interpreted. Key background parameters controlling the activity of gravity waves are analysed with the help of the Mars Climate Database (MCD). Gravity waves activity presents a good anti-correlation to the temperature variability retrieved from the MCD. An analysis at pressure levels is ongoing.

  9. Atmospheric studies from the Mars Science Laboratory Entry, Descent and Landing atmospheric structure reconstruction

    NASA Astrophysics Data System (ADS)

    Holstein-Rathlou, C.; Maue, A.; Withers, P.

    2016-01-01

    The Mars Science Laboratory (MSL) entered the martian atmosphere on Aug. 6, 2012 landing in Gale crater (4.6°S, 137.4°E) in the local mid-afternoon. Aerodynamic accelerations were measured during descent and atmospheric density, pressure and temperature profiles have been calculated from this data. Using an averaging technique developed for the NASA Phoenix Mars mission, the profiles are extended to 134.1 km, twice that of the engineering reconstruction. Large-scale temperature oscillations in the MSL temperature profile are suggestive of thermal tides. Comparing the MSL temperature profile with measured Mars Climate Sounder temperature profiles and Mars Climate Database model output highlights the presence of diurnal tides. Derived vertical wavelengths for the diurnal migrating tide are larger than predicted from idealized tidal theory, indicating an added presence of nonmigrating diurnal tides. Sub-CO2 condensation mesospheric temperatures, very similar to the Pathfinder temperature profile, allude to the possibility of CO2 clouds. This is however not supported by recent observations and models.

  10. Nine martian years of dust optical depth observations: A reference dataset

    NASA Astrophysics Data System (ADS)

    Montabone, Luca; Forget, Francois; Kleinboehl, Armin; Kass, David; Wilson, R. John; Millour, Ehouarn; Smith, Michael; Lewis, Stephen; Cantor, Bruce; Lemmon, Mark; Wolff, Michael

    2016-07-01

    We present a multi-annual reference dataset of the horizontal distribution of airborne dust from martian year 24 to 32 using observations of the martian atmosphere from April 1999 to June 2015 made by the Thermal Emission Spectrometer (TES) aboard Mars Global Surveyor, the Thermal Emission Imaging System (THEMIS) aboard Mars Odyssey, and the Mars Climate Sounder (MCS) aboard Mars Reconnaissance Orbiter (MRO). Our methodology to build the dataset works by gridding the available retrievals of column dust optical depth (CDOD) from TES and THEMIS nadir observations, as well as the estimates of this quantity from MCS limb observations. The resulting (irregularly) gridded maps (one per sol) were validated with independent observations of CDOD by PanCam cameras and Mini-TES spectrometers aboard the Mars Exploration Rovers "Spirit" and "Opportunity", by the Surface Stereo Imager aboard the Phoenix lander, and by the Compact Reconnaissance Imaging Spectrometer for Mars aboard MRO. Finally, regular maps of CDOD are produced by spatially interpolating the irregularly gridded maps using a kriging method. These latter maps are used as dust scenarios in the Mars Climate Database (MCD) version 5, and are useful in many modelling applications. The two datasets (daily irregularly gridded maps and regularly kriged maps) for the nine available martian years are publicly available as NetCDF files and can be downloaded from the MCD website at the URL: http://www-mars.lmd.jussieu.fr/mars/dust_climatology/index.html

  11. Planetary Surface Properties, Cratering Physics, and the Volcanic History of Mars from a New Global Martian Crater Database

    NASA Astrophysics Data System (ADS)

    Robbins, Stuart James

    Impact craters are arguably the primary exogenic planetary process contributing to the surface evolution of solid bodies in the solar system. Craters appear across the entire surface of Mars, and they are vital to understanding its crustal properties as well as surface ages and modification events. They allow inferences into the ancient climate and hydrologic history, and they add a key data point for the understanding of impact physics. Previously available databases of Mars impact craters were created from now antiquated datasets, automated algorithms with biases and inaccuracies, were limited in scope, and/or complete only to multikilometer diameters. This work presents a new global database for Mars that contains 378,540 craters statistically complete for diameters D ≳ 1 km. This detailed database includes location and size, ejecta morphology and morphometry, interior morphology and degradation state, and whether the crater is a secondary impact. This database allowed exploration of global crater type distributions, depth, and morphologies in unprecedented detail that were used to re-examine basic crater scaling laws for the planet. The inclusion of hundreds of thousands of small, approximately kilometer-sized impacts facilitated a detailed study of the properties of nearby fields of secondary craters in relation to their primary crater. It also allowed the discovery of vast distant clusters of secondary craters over 5000 km from their primary crater, Lyot. Finally, significantly smaller craters were used to age-date volcanic calderas on the planet to re-construct the timeline of the last primary eruption events from 20 of the major Martian volcanoes.

  12. The MAR databases: development and implementation of databases specific for marine metagenomics

    PubMed Central

    Klemetsen, Terje; Raknes, Inge A; Fu, Juan; Agafonov, Alexander; Balasundaram, Sudhagar V; Tartari, Giacomo; Robertsen, Espen

    2018-01-01

    Abstract We introduce the marine databases; MarRef, MarDB and MarCat (https://mmp.sfb.uit.no/databases/), which are publicly available resources that promote marine research and innovation. These data resources, which have been implemented in the Marine Metagenomics Portal (MMP) (https://mmp.sfb.uit.no/), are collections of richly annotated and manually curated contextual (metadata) and sequence databases representing three tiers of accuracy. While MarRef is a database for completely sequenced marine prokaryotic genomes, which represent a marine prokaryote reference genome database, MarDB includes all incomplete sequenced prokaryotic genomes regardless level of completeness. The last database, MarCat, represents a gene (protein) catalog of uncultivable (and cultivable) marine genes and proteins derived from marine metagenomics samples. The first versions of MarRef and MarDB contain 612 and 3726 records, respectively. Each record is built up of 106 metadata fields including attributes for sampling, sequencing, assembly and annotation in addition to the organism and taxonomic information. Currently, MarCat contains 1227 records with 55 metadata fields. Ontologies and controlled vocabularies are used in the contextual databases to enhance consistency. The user-friendly web interface lets the visitors browse, filter and search in the contextual databases and perform BLAST searches against the corresponding sequence databases. All contextual and sequence databases are freely accessible and downloadable from https://s1.sfb.uit.no/public/mar/. PMID:29106641

  13. The MAR databases: development and implementation of databases specific for marine metagenomics.

    PubMed

    Klemetsen, Terje; Raknes, Inge A; Fu, Juan; Agafonov, Alexander; Balasundaram, Sudhagar V; Tartari, Giacomo; Robertsen, Espen; Willassen, Nils P

    2018-01-04

    We introduce the marine databases; MarRef, MarDB and MarCat (https://mmp.sfb.uit.no/databases/), which are publicly available resources that promote marine research and innovation. These data resources, which have been implemented in the Marine Metagenomics Portal (MMP) (https://mmp.sfb.uit.no/), are collections of richly annotated and manually curated contextual (metadata) and sequence databases representing three tiers of accuracy. While MarRef is a database for completely sequenced marine prokaryotic genomes, which represent a marine prokaryote reference genome database, MarDB includes all incomplete sequenced prokaryotic genomes regardless level of completeness. The last database, MarCat, represents a gene (protein) catalog of uncultivable (and cultivable) marine genes and proteins derived from marine metagenomics samples. The first versions of MarRef and MarDB contain 612 and 3726 records, respectively. Each record is built up of 106 metadata fields including attributes for sampling, sequencing, assembly and annotation in addition to the organism and taxonomic information. Currently, MarCat contains 1227 records with 55 metadata fields. Ontologies and controlled vocabularies are used in the contextual databases to enhance consistency. The user-friendly web interface lets the visitors browse, filter and search in the contextual databases and perform BLAST searches against the corresponding sequence databases. All contextual and sequence databases are freely accessible and downloadable from https://s1.sfb.uit.no/public/mar/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Vertical temperature profile and mesospheric winds retrieval on Mars from CO ;millimeter observations. Comparison with general circulation model predictions

    NASA Astrophysics Data System (ADS)

    Cavalié, T.; Billebaud, F.; Encrenaz, T.; Dobrijevic, M.; Brillet, J.; Forget, F.; Lellouch, E.

    2008-10-01

    Aims: We have recorded high spectral resolution spectra and derived precise atmospheric temperature profiles and wind velocities in the atmosphere of Mars. We have compared observations of the planetary mean thermal profile and mesospheric wind velocities on the disk, obtained with our millimetric observations of CO rotational lines, to predictions from the Laboratoire de Météorologie Dynamique (LMD) Mars General Circulation Model, as provided through the Mars Climate Database (MCD) numerical tool. Methods: We observed the atmosphere of Mars at CO(1-0) and CO(2-1) wavelengths with the IRAM 30-m antenna in June 2001 and November 2005. We retrieved the mean thermal profile of the planet from high and low spectral resolution data with an inversion method detailed here. High spectral resolution spectra were used to derive mesospheric wind velocities on the planetary disk. We also report here the use of 13CO(2-1) line core shifts to measure wind velocities at 40 km. Results: Neither the Mars Year 24 (MY24) nor the Dust Storm scenario from the Mars Climate Database (MCD) provides satisfactory fits to the 2001 and 2005 data when retrieving the thermal profiles. The Warm scenario only provides good fits for altitudes lower than 30 km. The atmosphere is warmer than predicted up to 60 km and then becomes colder. Dust loading could be the reason for this mismatch. The MCD MY24 scenario predicts a thermal inversion layer between 40 and 60 km, which is not retrieved from the high spectral resolution data. Our results are generally in agreement with other observations from 10 to 40 km in altitude, but our results obtained from the high spectral resolution spectra differ in the 40-70 km layer, where the instruments are the most sensitive. The wind velocities we retrieve from our 12CO observations confirm MCD predictions for 2001 and 2005. Velocities obtained from 13CO observations are consistent with MCD predictions in 2001, but are lower than predicted in 2005.

  15. Lunar and Planetary Science XXXV: Special Session: Mars Climate Change

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Mars Climate Change" contained the following reports:Geological Evidence for Climate Change on Mars; A New Astronomical Solution for the Long Term Evolution of the Insolation Quantities of Mars; Interpreting Martian Paleoclimate with a Mars General Circulation Model; History and Progress of GCM Simulations on Recent Mars Climate Change; Northern and Southern Permafrost Regions on Mars with High Content of Water Ice: Similarities and Differences; Periods of Active Permafrost Layer Formation in the Recent Geological History of Mars; Microclimate Zones in the Dry Valleys of Antarctica: Implications for Landscape; Evolution and Climate Change on Mars; Geomorphic Evidence for Martian Ground Ice and Climate Change; Explaining the Mid-Latitude Ice Deposits with a General Circulation Model; Tharsis Montes Cold-based Glaciers: Observations and Constraints for Modeling and Preliminary Results; Ice Sheet Modeling: Terrestrial Background and Application to Arsia Mons Lobate Deposit, Mars; Enhanced Water-Equivalent Hydrogen on the Western Flanks of the Tharsis Montes and Olympus Mons: Remnant Subsurface Ice or Hydrate Minerals?; and New Age Mars.

  16. Lunar and Planetary Science XXXV: Special Session: Mars Climate Change

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Mars Climate Change" included the following topics:Geological Evidence for Climate Change on Mars; A New Astronomical Solution for the Long Term Evolution of the Insolation Quantities of Mars; Interpreting Martian Paleoclimate with a Mars General Circulation Model; History and Progress of GCM Simulations on Recent Mars Climate Change; Northern and Southern Permafrost Regions on Mars with High Content of Water Ice: Similarities and Differences; Periods of Active Permafrost Layer Formation in the Recent Geological History of Mars; Microclimate Zones in the Dry Valleys of Antarctica: Implications for Landscape Evolution and Climate Change on Mars; Geomorphic Evidence for Martian Ground Ice and Climate Change; Explaining the Mid-Latitude Ice Deposits with a General Circulation Model; Tharsis Montes Cold-based Glaciers: Observations and Constraints for Modeling and Preliminary Results; Ice Sheet Modeling: Terrestrial Background and Application to Arsia Mons Lobate Deposit, Mars; Enhanced Water-Equivalent Hydrogen on the Western Flanks of the Tharsis Montes and Olympus Mons: Remnant Subsurface Ice or Hydrate Minerals?; and New Age Mars.

  17. The Mars Climate Orbiter is prepared for launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Technicians carefully maneuver the Mars Climate Orbiter toward its workstand in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket.

  18. The Mars Climate Orbiter is prepared for launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Technicians lower the Mars Climate Orbiter onto its workstand in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket.

  19. The Mars Climate Orbiter is prepared for launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Technicians in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) prepare a lifting device they will use to remove the Mars Climate Orbiter from its container (behind the workers). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket.

  20. The Mars Climate Orbiter is prepared for launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Climate Orbiter (background) is moved toward the workstand being readied by technicians (foreground). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket.

  1. The Mars Climate Orbiter is prepared for launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Mars Climate Orbiter is lifted clear of the top of its container in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket.

  2. The Mars Climate Orbiter is prepared for launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Technicians in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) oversee the removal of the Mars Climate Orbiter from its container. The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket.

  3. The Mars Climate Orbiter is prepared for launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Technicians check the connections on the workstand holding the Mars Climate Orbiter in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket.

  4. Validation of the regional climate model MAR over the CORDEX Africa domain and comparison with other regional models using unpublished data set

    NASA Astrophysics Data System (ADS)

    Prignon, Maxime; Agosta, Cécile; Kittel, Christoph; Fettweis, Xavier; Michel, Erpicum

    2016-04-01

    In the framework of the CORDEX project, we have applied the regional model MAR over the Africa domain at a resolution of 50 km. ERA-Interim and NCEP-NCAR reanalysis have been used as 6 hourly forcing at the MAR boundaries over 1950-2015. While MAR was already been validated over the West Africa, it is the first time that MAR simulations are carried out at the scale of the whole continent. Unpublished daily measurements, covering the Sahel and more areas up South, with a large set of variables, are used as validation of MAR, other CORDEX-Africa RCMs and both reanalyses. Comparisons with the CRU and the ECA&D databases are also performed. The unpublished daily data set covers the period 1884-2006 and comes from 1460 stations. The measured variables are wind, evapotranspiration, relative humidity, insolation, rain, surface pressure, temperature, vapour pressure and visibility. It covers 23 countries: Algeria, Benin, Burkina, Canary Islands, Cap Verde, Central Africa, Chad, Congo, Ivory Coast, Gabon, Gambia, Ghana, Guinea, Guinea-Bissau, Mali, Mauritania, Morocco, Niger, Nigeria, Senegal, Sudan and Togo.

  5. KSC-98pc1082

    NASA Image and Video Library

    1998-09-14

    Technicians carefully maneuver the Mars Climate Orbiter toward its workstand in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket

  6. KSC-98pc1083

    NASA Image and Video Library

    1998-09-14

    Technicians lower the Mars Climate Orbiter onto its workstand in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket

  7. KSC-98pc1350

    NASA Image and Video Library

    1998-10-16

    In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Climate Orbiter is on display for the media. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, aboard a Boeing Delta II 7425 rocket. The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface

  8. A technician works on the Mars Climate Orbiter in SAEF-2

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a technician works on the Mars Climate Orbiter which is scheduled to launch on Dec. 10, 1998, aboard a Boeing Delta II rocket. The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface.

  9. Mars global digital dune database and initial science results

    USGS Publications Warehouse

    Hayward, R.K.; Mullins, K.F.; Fenton, L.K.; Hare, T.M.; Titus, T.N.; Bourke, M.C.; Colaprete, A.; Christensen, P.R.

    2007-01-01

    A new Mars Global Digital Dune Database (MGD3) constructed using Thermal Emission Imaging System (THEMIS) infrared (IR) images provides a comprehensive and quantitative view of the geographic distribution of moderate- to large-size dune fields (area >1 kM2) that will help researchers to understand global climatic and sedimentary processes that have shaped the surface of Mars. MGD3 extends from 65??N to 65??S latitude and includes ???550 dune fields, covering ???70,000 km2, with an estimated total volume of ???3,600 km3. This area, when combined with polar dune estimates, suggests moderate- to large-size dune field coverage on Mars may total ???800,000 km2, ???6 times less than the total areal estimate of ???5,000,000 km2 for terrestrial dunes. Where availability and quality of THEMIS visible (VIS) or Mars Orbiter Camera. narrow-angle (MOC NA) images allow, we classify dunes and include dune slipface measurements, which are derived from gross dune morphology and represent the prevailing wind direction at the last time of significant dune modification. For dunes located within craters, the azimuth from crater centroid to dune field centroid (referred to as dune centroid azimuth) is calculated and can provide an accurate method for tracking dune migration within smooth-floored craters. These indicators of wind direction are compared to output from a general circulation model (GCM). Dune centroid azimuth values generally correlate to regional wind patterns. Slipface orientations are less well correlated, suggesting that local topographic effects may play a larger role in dune orientation than regional winds. Copyright 2007 by the American Geophysical Union.

  10. KSC-98pc1081

    NASA Image and Video Library

    1998-09-14

    In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Climate Orbiter (background) is moved toward the workstand being readied by technicians (foreground). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket

  11. KSC-98pc1084

    NASA Image and Video Library

    1998-09-14

    Technicians check the connections on the workstand holding the Mars Climate Orbiter in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket

  12. KSC-98pc1085

    NASA Image and Video Library

    1998-09-14

    Technicians check the connections on the workstand holding the Mars Climate Orbiter in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket

  13. KSC-98pc1078

    NASA Image and Video Library

    1998-09-14

    Technicians in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) prepare a lifting device they will use to remove the Mars Climate Orbiter from its container (behind the workers). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket

  14. KSC-98pc1080

    NASA Image and Video Library

    1998-09-14

    The Mars Climate Orbiter is lifted clear of the top of its container in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket

  15. KSC-98pc1079

    NASA Image and Video Library

    1998-09-14

    Technicians in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) oversee the removal of the Mars Climate Orbiter from its container. The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket

  16. Extending MGS-TES Temperature Retrievals in the Martian Atmosphere up to 90 Km: Retrieval Approach and Results

    NASA Technical Reports Server (NTRS)

    Feofilov, A. G.; Kutepov, A. A.; Rezac, L.; Smith, M. D.

    2015-01-01

    This paper describes a methodology for performing a temperature retrieval in the Martian atmosphere in the 50-90 km altitude range using spectrally integrated 15 micrometers C02 limb emissions measured by the Thermal Emission Spectrometer (TES), the thermal infrared spectrometer on board the Mars Global Surveyor (MGS). We demonstrate that temperature retrievals from limb observations in the 75-90 km altitude range require accounting for the non-local thermodynamic equilibrium (non-LTE) populations of the C02(v2) vibrational levels. Using the methodology described in the paper, we have retrieved approximately 1200 individual temperature profiles from MGS TES limb observations in the altitude range between 60 and 90 km. 0ur dataset of retrieved temperature profiles is available for download in supplemental materials of this paper. The temperature retrieval uncertainties are mainly caused by radiance noise, and are estimated to be about 2 K at 60 km and below, 4 K at 70 km, 7 K at 80 km, 10 K at 85 km, and 20 K at 90 km. We compare the retrieved profiles to Mars Climate Database temperature profiles and find good qualitative agreement. Quantitatively, our retrieved profiles are in general warmer and demonstrate strong variability with the following values for bias and standard deviations (in brackets) compared to the Martian Year 24 dataset of the Mars Climate Database: 6 (+/-20) K at 60 km, 7.5 (+/-25) K at 65 km, 9 (+/-27) K at 70 km, 9.5 (+/-27) K at 75 km, 10 (+/-28) K at 80 km, 11 (+/-29) K at 85 km, and 11.5 (+/-31) K at 90 km. Possible reasons for the positive temperature bias are discussed. carbon dioxide molecular vibrations

  17. Upgrades, Current Capabilities and Near-Term Plans of the NASA ARC Mars Climate

    NASA Technical Reports Server (NTRS)

    Hollingsworth, J. L.; Kahre, Melinda April; Haberle, Robert M.; Schaeffer, James R.

    2012-01-01

    We describe and review recent upgrades to the ARC Mars climate modeling framework, in particular, with regards to physical parameterizations (i.e., testing, implementation, modularization and documentation); the current climate modeling capabilities; selected research topics regarding current/past climates; and then, our near-term plans related to the NASA ARC Mars general circulation modeling (GCM) project.

  18. The Effect of Impacts on the Early Martian Climate

    NASA Technical Reports Server (NTRS)

    Colaprete, A.; Haberle, R. M.; Segura, T. L.; Toon, O. B.; Zahnle, K.

    2004-01-01

    The first images returned by the Mariner 7 spacecraft of the Martian surface showed a landscape heavily scared by impacts. Mariner 9 imaging revealed geomorphic features including valley networks and outflow channels that suggest liquid water once flowed at the surface of Mars. Further evidence for water erosion and surface modification has come from the Viking Spacecraft, Mars Pathfinder, Mars Global Surveyor's (MGS) Mars Orbiter Camera (MOC), and Mars Odyssey's THEMIS instrument. In addition to network channels, this evidence includes apparent paleolake beds, fluvial fans and sedimentary layers. The estimated erosion rates necessary to explain the observed surface morphologies present a conundrum. The rates of erosion appear to be highest when the early sun was fainter and only 75% as luminous as it is today. All of this evidence points to a very different climate than what exists on Mars today. The most popular paradigm for the formation of the valley networks is that Mars had at one time a warm (T average > 273), wetter and stable climate. Possible warming mechanisms have included increased surface pressures, carbon dioxide clouds and trace greenhouse gasses. Yet to date climate models have not been able to produce a continuously warm and wet early Mars. The rates of erosion appear to correlate with the rate at which Mars was impacted thus an alternate possibility is transient warm and wet conditions initiated by large impacts. It is widely accepted that even relatively small impacts (approx. 10 km) have altered the past climate of Earth to such an extent as to cause mass extinctions. Mars has been impacted with a similar distribution of objects. The impact record at Mars is preserved in the abundance of observable craters on it surface. Impact induced climate change must have occurred on Mars.

  19. Description of the University of Auckland Global Mars Mesoscale Meteorological Model (GM4)

    NASA Astrophysics Data System (ADS)

    Wing, D. R.; Austin, G. L.

    2005-08-01

    The University of Auckland Global Mars Mesoscale Meteorological Model (GM4) is a numerical weather prediction model of the Martian atmosphere that has been developed through the conversion of the Penn State University / National Center for Atmospheric Research fifth generation mesoscale model (MM5). The global aspect of this model is self consistent, overlapping, and forms a continuous domain around the entire planet, removing the need to provide boundary conditions other than at initialisation, yielding independence from the constraint of a Mars general circulation model. The brief overview of the model will be given, outlining the key physical processes and setup of the model. Comparison between data collected from Mars Pathfinder during its 1997 mission and simulated conditions using GM4 have been performed. Diurnal temperature variation as predicted by the model shows very good correspondence with the surface truth data, to within 5 K for the majority of the diurnal cycle. Mars Viking Data is also compared with the model, with good agreement. As a further means of validation for the model, various seasonal comparisons of surface and vertical atmospheric structure are conducted with the European Space Agency AOPP/LMD Mars Climate Database. Selected simulations over regions of interest will also be presented.

  20. A New Formulation for Fresh Snow Density over Antarctica for the regional climate model Modèle Atmosphérique Régionale (MAR).

    NASA Astrophysics Data System (ADS)

    Tedesco, M.; Datta, R.; Fettweis, X.; Agosta, C.

    2015-12-01

    Surface-layer snow density is important to processes contributing to surface mass balance, but is highly variable over Antarctica due to a wide range of near-surface climate conditions over the continent. Formulations for fresh snow density have typically either used fixed values or been modeled empirically using field data that is limited to specific seasons or regions. There is also currently limited work exploring how the sensitivity to fresh snow density in regional climate models varies with resolution. Here, we present a new formulation compiled from (a) over 1600 distinct density profiles from multiple sources across Antarctica and (b) near-surface variables from the regional climate model Modèle Atmosphérique Régionale (MAR). Observed values represent coastal areas as well as the plateau, in both West and East Antarctica (although East Antarctica is dominant). However, no measurements are included from the Antarctic Peninsula, which is both highly topographically variable and extends to lower latitudes than the remainder of the continent. In order to assess the applicability of this fresh snow density formulation to the Antarctic Peninsula at high resolutions, a version of MAR is run for several years both at low-resolution at the continental scale and at a high resolution for the Antarctic Peninsula alone. This setup is run both with and without the new fresh density formulation to quantify the sensitivity of the energy balance and SMB components to fresh snow density. Outputs are compared with near-surface atmospheric variables available from AWS stations (provided by the University of Wisconsin Madison) as well as net accumulation values from the SAMBA database (provided from the Laboratoire de Glaciologie et Géophysique de l'Environnement).

  1. Martian thermal tides from the surface to the atmosphere

    NASA Astrophysics Data System (ADS)

    Holstein-Rathlou, C.; Withers, P.

    2017-12-01

    The presence of observational platforms both in orbit and on the surface of Mars today provides a unique opportunity to simultaneously study the effects of thermal tides at the surface, above that surface location and in the atmosphere. Thermal tides are an important aspect of the atmospheric dynamics on Mars and the unique opportunity to unify landed and orbital measurements can provide a comprehensive understanding of thermal tides. Ideally, pressure measurements from the Curiosity lander and atmospheric temperature profiles from the Mars Climate Sounder (MCS) onboard Mars Reconnaissance Orbiter provide a complimentary pair of surface and atmospheric observations to study. However, the unique landing site of Curiosity, in Gale crater, introduces several complicating factors to the analysis of tidal behavior, two of which are crater circulation and the impact of the dichotomy boundary topography. In order to achieve a baseline understanding of thermal tidal behavior another complimentary pair of observations is necessary. For this purpose, the equatorial and relatively topographically flat landing site of the Viking 1 (VIK1) lander, along with its lengthy record of surface pressures, is the candidate surface dataset. There are no concurrent atmospheric observational data, so atmospheric profiles were obtained from the Mars Climate Database to ensure maximum coverage in space and time. 2-dimensional Fourier analysis in local time and longitude has yielded amplitude and phases for the four major tidal modes on Mars (diurnal and semidiurnal migrating tides, DK1 and DK2). We will present current results regarding amplitude and phase dependence on season and altitude at the VIK1 landing site. These results will (in time) be tied to tidal amplitude and phase behavior from observed MCS atmospheric temperature profiles from "appropriately quiet" Mars years (years without major dust storms). The understanding gathered from this approach will then allow us to return to the pressure measurements from Curiosity in Gale Crater, and assess to what degree the "pure" tidal signatures are muddled by various complicating factors, e.g. topography.

  2. Martian thermal tides from the surface to the atmosphere

    NASA Astrophysics Data System (ADS)

    Holstein-Rathlou, Christina; Withers, Paul

    2017-10-01

    The presence of observational platforms both in orbit and on the surface of Mars today provides a unique opportunity to simultaneously study the effects of thermal tides at the surface, above that surface location and in the atmosphere. Thermal tides are an important aspect of the atmospheric dynamics on Mars and the unique opportunity to unify landed and orbital measurements can provide a comprehensive understanding of thermal tides.Ideally, pressure measurements from the Curiosity lander and atmospheric temperature profiles from the Mars Climate Sounder (MCS) onboard Mars Reconnaissance Orbiter provide a complimentary pair of surface and atmospheric observations to study. However, the unique landing site of Curiosity, in Gale crater, introduces several complicating factors to the analysis of tidal behavior, two of which are crater circulation and the impact of the dichotomy boundary topography.In order to achieve a baseline understanding of thermal tidal behavior another complimentary pair of observations is necessary. For this purpose, the equatorial and relatively topographically flat landing site of the Viking 1 (VIK1) lander, along with its lengthy record of surface pressures, is the candidate surface dataset. There are no concurrent atmospheric observational data, so atmospheric profiles were obtained from the Mars Climate Database to ensure maximum coverage in space and time.2-dimensional Fourier analysis in local time and longitude has yielded amplitude and phases for the four major tidal modes on Mars (diurnal and semidiurnal migrating tides, DK1 and DK2). We will present current results regarding amplitude and phase dependence on season and altitude at the VIK1 landing site. These results will (in time) be tied to tidal amplitude and phase behavior from observed MCS atmospheric temperature profiles from “appropriately quiet” Mars years (years without major dust storms). The understanding gathered from this approach will then allow us to return to the pressure measurements from Curiosity in Gale Crater, and assess to what degree the “pure” tidal signatures are muddled by various complicating factors, e.g. topography.

  3. The Mars Climate Orbiter arrives at KSC to begin final preparations for launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Mars Climate Orbiter spacecraft is moved into the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) in KSC's industrial area. It arrived at the Shuttle Landing Facility aboard an Air Force C-17 cargo plane early this morning following its flight from the Lockheed Martin Astronautics plant in Denver, Colo. When it arrives at the red planet, the Mars Climate Orbiter will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Delta II 7425 rocket.

  4. The Mars Climate Orbiter arrives at KSC to begin final preparations for launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Mars Climate Orbiter spacecraft is moved onto a flatbed for transport to the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). It arrived at KSC's Shuttle Landing Facility aboard an Air Force C-17 cargo plane early this morning following its flight from the Lockheed Martin Astronautics plant in Denver, Colo. When it arrives at the red planet, the Mars Climate Orbiter will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Delta II 7425 rocket.

  5. A Narrowing Target for Early Mars Climate Models: Which Models Survive Confrontation with Improved Hydrology Constraints?

    NASA Astrophysics Data System (ADS)

    Kite, E. S.; Goldblatt, C.; Gao, P.; Mayer, D. P.; Sneed, J.; Wilson, S. A.

    2016-12-01

    The wettest climates in Mars' geologic history represent habitability optima, and also set the tightest constraints on climate models. For lake-forming climates on Early Mars, geologic data constrain discharge, duration, intermittency, and the number of lake-forming events. We synthesise new and existing data to suggest that post-Noachian lake-forming climates were widely separated in time, lasted >10^4 yr individually, were few in number, but cumulatively lasted <10^7 yr (to allow olivine to survive globally). We compare these data against existing models, set out a new model involving methane bursts, and conclude with future directions for Early Mars geologic analysis and modelling work.

  6. KSC-98pc1352

    NASA Image and Video Library

    1998-10-16

    In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Climate Orbiter (foreground) and the Mars Polar Lander are on display for the media. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, aboard a Boeing Delta II rocket. It is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface

  7. Atomic Oxygen Density Retrievals using FUV Observations by the Imaging Ultraviolet Spectrograph on MAVEN

    NASA Astrophysics Data System (ADS)

    Evans, J. Scott; Stevens, Michael H.; Schneider, Nicholas M.; Stewart, Ian; Deighan, Justin; Jain, Sonal Kumar; Eparvier, Francis; Thiemann, E. M.; Bougher, Stephen W.; Jakosky, Bruce

    2016-10-01

    We present the first direct retrievals of neutral atomic oxygen in Mars's upper atmosphere using daytime FUV periapse limb scan observations from 130 - 200 km tangent altitude. Atmospheric composition is inferred using the Atmospheric Ultraviolet Radiance Integrated Code [Strickland et al., 1999] adapted to the Martian atmosphere [Evans et al., 2015]. For our retrievals we use O I 135.6 nm emission observed by IUVS on MAVEN under daytime conditions (solar zenith angle < 60 degrees) over both northern and southern hemispheres (latitudes between -65 and +35 degrees) from October 2014 to August 2016. We investigate the sensitivity of atomic oxygen density retrievals to variability in solar irradiance, solar longitude, and local time. We compare our retrievals to predictions from the Mars Global Ionosphere-Thermosphere Model [MGITM, Bougher et al., 2015] and the Mars Climate Database [MCD, Forget et al., 1999] and quantify the differences throughout the altitude region of interest. The retrieved densities are used to characterize global transport of atomic oxygen in the Martian thermosphere.

  8. Chemical Weathering on a Cold and Wet Ancient Mars: New Insights from a Glacial Mars Analog Site

    NASA Astrophysics Data System (ADS)

    Scudder, N.; Horgan, B. H. N.; Rutledge, A. M.; Rampe, E. B.

    2016-12-01

    If cold climates prevailed on ancient Mars, we should expect to see corroborating mineralogical evidence preserved in the geologic record. However, the extent to which the diverse alteration mineralogy observed on Mars can be explained by cold climate weathering is currently unknown, as the alteration phases that result from weathering by snow and ice are poorly understood. If cold climate weathering produces distinct alteration signatures, they may be a useful climate indicator on Mars. On Earth, poorly crystalline or short order silicates, such as allophane, tend to dominate in alpine and arctic soils where weathering mainly occurs through rapid seasonal melting of ice and snow. This mineralogy is distinct from the crystalline phyllosilicates that are common in more temperate climates. Thus, we hypothesize that high abundances of poorly crystalline material could indicate cold climate weathering. Here we report new results from a field campaign at the mafic and glaciated Three Sisters volcanic complex in Oregon, USA, to determine the mineralogy and chemistry of cold climate weathering in a Mars analog environment. We find that high abundances of poorly crystalline phases are generated in this environment and that these phases may be detectable using orbital spectroscopy. Ongoing chemical and mineralogical analyses of glacial till and sediments from glacier-fed lakes and streams will allow us to determine the specific distribution and composition of mineral phases in Mars-relevant glacial environments. Poorly crystalline phases have been detected on Mars: modeling of TES data suggests a regionally distributed allophane component, while MER and MSL results indicate up to 40-50% amorphous components in rocks and sediments at Gusev and Gale Craters. We hypothesize that these could be the result of weathering by ice and snow. However, it is not clear that more crystalline alteration phases observed elsewhere on Mars could be formed under a globally cold climate.

  9. Sensitivity of simulated Martian atmospheric temperature to prescribed dust opacity distribution: Comparison of model results with reconstructed data from Mars Exploration Rover missions

    NASA Astrophysics Data System (ADS)

    Natarajan, Murali; Dwyer Cianciolo, Alicia; Fairlie, T. Duncan; Richardson, Mark I.; McConnochie, Timothy H.

    2015-11-01

    We use the Mars Weather Research and Forecasting (MarsWRF) general circulation model to simulate the atmospheric structure corresponding to the landing location and time of the Mars Exploration Rovers (MER) Spirit (A) and Opportunity (B) in 2004. The multiscale capability of MarsWRF facilitates high-resolution nested model runs centered near the landing site of each of the rovers. Dust opacity distributions based on measurements by Thermal Emission Spectrometer (TES) aboard the Mars Global Surveyor spacecraft, and those from an old version of the Mars Climate Database (MCD v3.1 released in 2001) are used to study the sensitivity of the model temperature profile to variations in the dust prescription. The reconstructed entry, descent, and landing (EDL) data from the rover missions are used for comparisons. We show that the model using dust opacity from TES limb and nadir data for the year of MER EDL, Mars Year 26 (MY26), yields temperature profiles in closer agreement with the reconstructed data than the prelaunch EDL simulations and models using other dust opacity specifications. The temperature at 100 Pa from the model (MY26) and the reconstruction are within 5°K. These results highlight the role of vertical dust opacity distribution in determining the atmospheric thermal structure. Similar studies involving data from past missions and models will be useful in understanding the extent to which atmospheric variability is captured by the models and in developing realistic preflight characterization required for future lander missions to Mars.

  10. Proceedings of the Fourth International Conference on Mars Polar Science and Exploration

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Sessions in this conference include: Mars polar geology and glaciology; Mars and terrestrial radar investigations; Observations, nature, and evolution of the Martian seasonal polar caps; Mars' residual south polar cap; Climate change, ice core analysis, and the redistribution of volatiles on Mars; errestrial Mars analog environments; The Phoenix Scout mission and the nature of the near-polar environment; Moderated Discussion: Key Issues Regarding Phoenix Scout Mission and the nature of the near-polar environment; Panel Discussion: Key Issues in Mars Polar Science and Exploration; Mars Reconnaissance Orbiter investigations of the Martian polar regions and climate; Mars Polar Scout Mission concepts; and Panel Discussion: New perspectives on Mars polar science and exploration

  11. Warming ancient Mars with water clouds

    NASA Astrophysics Data System (ADS)

    Hartwick, V.; Toon, B.

    2017-12-01

    High clouds in the present day Mars atmosphere nucleate on interplanetary dust particles (IDPs) that burn up on entry into the Mars atmosphere. Clouds form when superstaturated water vapor condenses on suspended aerosols. Radiatively active water ice clouds may play a crucial role in warming the early Mars climate. Urata and Toon (2011) simulate a stable warm paleo-climate for Mars if clouds form high in the atmosphere and if particles are sufficiently large (r > 10 μm). The annual fluence of micrometeoroids at Mars was larger early on in the evolution of our solar system. Additionally, the water vapor budget throughout the middle and high atmosphere was likely heightened . Both factors should contribute to enhanced nucleation and growth of water ice cloud particles at high altitudes. Here, we use the MarsCAM-CARMA general circulation model (GCM) to examine the radiative impact of high altitude water ice clouds on the early Mars climate and as a possible solution to the faint young sun problem for Mars.

  12. Mars Recent Climate Change Workshop

    NASA Astrophysics Data System (ADS)

    Haberle, Robert M.; Owen, Sandra J.

    2012-11-01

    Mars Recent Climate Change Workshop NASA/Ames Research Center May 15-17, 2012 Climate change on Mars has been a subject of great interest to planetary scientists since the 1970's when orbiting spacecraft first discovered fluvial landforms on its ancient surfaces and layered terrains in its polar regions. By far most of the attention has been directed toward understanding how "Early Mars" (i.e., Mars >~3.5 Gya) could have produced environmental conditions favorable for the flow of liquid water on its surface. Unfortunately, in spite of the considerable body of work performed on this subject, no clear consensus has emerged on the nature of the early Martian climate system because of the difficulty in distinguishing between competing ideas given the ambiguities in the available geological, mineralogical, and isotopic records. For several reasons, however, the situation is more tractable for "Recent Mars" (i.e., Mars during past 20 My or so). First, the geologic record is better preserved and evidence for climate change on this time scale has been building since the rejuvenation of the Mars Exploration Program in the late 1990's. The increasing coverage of the planet from orbit and the surface, coupled with accurate measurements of surface topography, increasing spatial resolution of imaging cameras, improved spectral resolution of infrared sensors, and the ability to probe the subsurface with radar, gamma rays, and neutron spectroscopy, has not only improved the characterization of previously known climate features such as polar layered terrains and glacier-related landforms, but has also revealed the existence of many new features related to recent climate change such as polygons, gullies, concentric crater fill, and a latitude dependent mantle. Second, the likely cause of climate change - spin axis/orbital variations - is more pronounced on Mars compared to Earth. Spin axis/orbital variations alter the seasonal and latitudinal distribution of sunlight, which can mobilize and redistribute volatile reservoirs both on and below the surface. And for Mars, these variations are large. In the past 20 My, for example, the obliquity is believed to have varied from a low of 15° to a high of 45° with a regular oscillation time scale of ~10^5 years. These variations are typically less than two degrees on the Earth. Mars, therefore, offers a natural laboratory for the study of orbitally induced climate change on a terrestrial planet. Finally, general circulation models (GCMs) for Mars have reached a level of sophistication that justifies their application to the study of spin axis/orbitally forced climate change. With recent advances in computer technology the models can run at reasonable spatial resolution for many Mars years with physics packages that include cloud microphysics, radiative transfer in scattering/absorbing atmospheres, surface heat budgets, boundary layer schemes, and a host of other processes. To be sure, the models will undergo continual improvement, but with carefully designed experiments they can now provide insights into mechanisms of climate change in the recent past. Thus, the geologic record is better preserved, the forcing function is large, and GCMs have become useful tools. While research efforts in each of these areas have progressed considerably over the past several decades, they have proceeded mostly on independent paths occasionally leading to conflicting ideas. To remedy this situation and accelerate progress in the area, the NASA/Ames Research Center's Mars General Circulation Modeling Group hosted a 3-day workshop on May 15-17, 2012 that brought together the geological and atmospheric science communities to collectively discuss the evidence for recent climate change on Mars, the nature of the change required, and how that change could be brought about. Over 50 researchers, students, and post-docs from the US, Canada, Europe, and Japan attended the meeting. The program and abstracts from the workshop are presented in this NASA/CP and are available to the public at http://spacescience.arc.nasa.gov/mars-climate-workshop-2012/

  13. KSC-98pc1351

    NASA Image and Video Library

    1998-10-16

    KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a technician works on the Mars Climate Orbiter which is scheduled to launch on Dec. 10, 1998, aboard a Boeing Delta II rocket. The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface

  14. Mineralogical Indicators for Climate Change on Mars: Evidence from Landed Missions

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Morris, R. V.; Clark, B. C.

    2015-01-01

    Mineralogical and geochemical data returned by a flotilla of Mars orbiters and landers over the past 10 years has substantially enhanced our understanding on the evolution of the atmosphere and climate. Instruments onboard Mars Express and MRO discovered widespread deposits of phyllosilicates that formed during the Noachian followed by formation of sulfates into the Hesperian. The formation of extensive valley networks along with these layered deposits of phyllosilicates and sulfates during the late Noachian/ early Hesperian indicate a past martian climate that was capable of maintaining liquid water at the surface. The planet's climate changed substantially after these early 'episodes' of water and very little aqueous alteration has occurred over the past 3.5 Gyrs . A key to understanding Mars past climate is to identify, characterize, and age date secondary minerals that have formed by reaction with volatile compounds, e.g., H2O, CO2, SO2. Here, we summarize the detection of secondary minerals at the four landing sites visited over the past 10 years. We also provide potential pathways for their formation and implications for past climate change on Mars.

  15. Mars, Always Cold, Sometimes Wet: New Constraints on Mars Denudation Rates and Climate Evolution from Analog Studies at Haughton Crater, Devon Island, High Arctic

    NASA Technical Reports Server (NTRS)

    Lee, Pascal; Boucher, M.; Desportes, C.; Glass, B. J.; Lim, D.; McKay, C. P.; Osinski, G. R.; Parnell, J.; Schutt, J. W.

    2005-01-01

    Analysis of crater modification on Mars and at Haughton Crater, Devon Island, High Arctic, which was recently shown to be significantly older than previously believed (Eocene age instead of Miocene) [1], suggest that Mars may have never been climatically wet and warm for geological lengths of time during and since the Late Noachian. Impact structures offer particularly valuable records of the evolution of a planet s climate and landscape through time. The state of exposure and preservation of impact structures and their intracrater fill provide clues to the nature, timing, and intensity of the processes that have modified the craters since their formation. Modifying processes include weathering, erosion, mantling, and infilling. In this study, we compare the modification of Haughton through time with that of impact craters in the same size class on Mars. We derive upper limits for time-integrated denudation rates on Mars during and since the Late Noachian. These rates are significantly lower than previously published and provide important constraints for Mars climate evolution.

  16. The Mars Climate Orbiter arrives at KSC to begin final preparations for launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Mars Climate Orbiter spacecraft arrives at KSC's Shuttle Landing Facility aboard an Air Force C-17 cargo plane early this morning following its flight from the Lockheed Martin Astronautics plant in Denver, Colo. When the spacecraft arrives at the red planet, it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Delta II 7425 rocket.

  17. KSC-98pc1048

    NASA Image and Video Library

    1998-09-11

    The Mars Climate Orbiter spacecraft is moved into the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) in KSC's industrial area. It arrived at the Shuttle Landing Facility aboard an Air Force C-17 cargo plane early this morning following its flight from the Lockheed Martin Astronautics plant in Denver, Colo. When it arrives at the red planet, the Mars Climate Orbiter will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Delta II 7425 rocket

  18. KSC-98pc1047

    NASA Image and Video Library

    1998-09-11

    The Mars Climate Orbiter spacecraft is moved onto a flatbed for transport to the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). It arrived at KSC's Shuttle Landing Facility aboard an Air Force C-17 cargo plane early this morning following its flight from the Lockheed Martin Astronautics plant in Denver, Colo. When it arrives at the red planet, the Mars Climate Orbiter will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Delta II 7425 rocket

  19. The Effect of Impacts on the Martian Climate

    NASA Technical Reports Server (NTRS)

    Colaprete, A.; Haberle, R. M.; Segura, T. L.; Toon, O. B.; Zahnle, K.

    2005-01-01

    Evidence for the presence of liquid water early in Mars history continues to accumulate. The most recent evidence for liquid water being pervasive early in Mars history is the discoveries of sulfate and gypsum layers by the Mars Exploration Rovers and Mars Express. However, the presence of liquid water at the surface very early in Mars history presents a conundrum. The early sun was most likely approximately 75% fainter than it is today. About 65-70 degrees of greenhouse warming is needed to bring surface temperatures to the melting point of water. To date climate models have not been able to produce a continuously warm and wet early Mars. This may be a good thing as there is morphological and mineralogical evidence that the warm and wet period had to be relatively short and episodic. The rates of erosion appear to correlate with the rate at which Mars was impacted thus an alternate possibility is transient warm and wet conditions initiated by large impacts. It is widely accepted that even relatively small impacts (approximately 10 km) have altered the past climate of Earth to such an extent as to cause mass extinctions. Mars has been impacted with a similar distribution of objects. The impact record at Mars is preserved in the abundance of observable craters on it surface. Impact induced climate change must have occurred on Mars.

  20. Southern hemisphere sand furrows: spatial patterning and implications for the cryo-venting process.

    NASA Astrophysics Data System (ADS)

    Nash, Ciaran; Bourke, Mary

    2015-04-01

    Carbon dioxide is an important volatile on Mars. Seasonally, atmospheric CO2 condenses as ice on to the Martian surface and sublimates during the spring. Links have been made between a suite of observed surface features and the sublimation of surface CO2 ice; these include spider-like araneiform, gullies, and fans. Sand furrows are one such feature; suggested to form due to the erosive action of pressurised CO2 gas as it escapes through cracks in surficial ice (i.e. cryo-venting, Bourke, 2013). There are significant and important differences between the North and South Hemispheres, particularly in the seasonal CO2 deposits. Previous investigations into the formation and distribution of sand furrows on Mars have concentrated solely on the northern hemisphere. We present a study of furrows in the southern hemisphere which has yielded new data on their distribution and spatial patterning as well as providing insights into the cryo-venting process. A total of 221 dune sites were surveyed over the three Martian years' of available HiRISE data to establish the overall distribution of sand furrows. A more detailed study was carried out at eight sites using data from Mars Year 30. These sites represent a latitudinal sample of dunefields located between 40°S to 72°S. Surficial CO2 ice thickness was estimated using the Mars Climate Database (Millour et al., 2014). Our data show that sand furrows are significantly less numerous in the study region than in the northern hemisphere where data show they occur in 95% of surveyed sites. We found a strong correlation between latitude and furrow distribution. As one progresses polewards from 40°S, furrows become more numerous until 68°S. Furrows were not detected south of 72°S. Carbon dioxide ice thickness has been highlighted as a potentially important factor controlling furrow distribution in the northern hemisphere (Bourke and McGaley-Towle, 2014). Results from our investigation suggest there is a feedback mechanism between CO¬2 ice thickness and furrow formation; indicating a threshold thickness above which geomorphologically effective cryo-venting may not occur. Bourke, M. C., The Formation of Sand Furrows by Cryo-Venting on Martian Dunes. 44th Lunar and Planetary Science Conference. Lunar and Planetary Institute, Houston, 2013, pp. Abstract #2919. Bourke, M. C., McGaley-Towle, Why do sand furrows distributions vary in the North Polar latitudes on Mars? , European Geosciences Union, Vienna, Vol. 16, EGU2014-13626, 2014. Millour, E., et al., The Mars Climate Database (MCD version 5.1). Eighth International Conference on Mars. Lunar and Planetary Institute, Houston, 2014, pp. Abstract #1184.

  1. Proceedings of the Seventh International Conference on Mars

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The oral and poster sessions of the SEVENTH INTERNATIONAL CONFERENCE ON MARS included; The Distribution and Context of Water-related Minerals on Mars; Poster Session: Mars Geology; Geology of the Martian Surface: Lithologic Variation, Composition, and Structure; Water Through Mars' Geologic History; Poster Session: Mars Water and the Martian Interior; Volatiles and Interior Evolution; The Martian Climate and Atmosphere: Variations in Time and Space; Poster Session: The Martian Climate and Current Processes; Modern Mars: Weather, Atmospheric Chemistry, Geologic Processes, and Water Cycle; Public Lecture: Mars Reconnaissance Orbiter's New View of the Red Planet; The North and South Polar Layered Deposits, Circumpolar Regions, and Changes with Time; Poster Session: Mars Polar Science, Astrobiology, Future Missions/Instruments, and Other Mars Science; Mars Astrobiology and Upcoming Missions; and Martian Stratigraphy and Sedimentology: Reading the Sedimentary Record.

  2. Mars Water Ice and Carbon Dioxide Seasonal Polar Caps: GCM Modeling and Comparison with Mars Express Omega Observations

    NASA Technical Reports Server (NTRS)

    Forget, F.; Levrard, B.; Montmessin, F.; Schmitt, B.; Doute, S.; Langevin, Y.; Bibring, J. P.

    2005-01-01

    To better understand the behavior of the Mars CO2 ice seasonal polar caps, and in particular interpret the the Mars Express Omega observations of the recession of the northern seasonal cap, we present some simulations of the Martian Climate/CO2 cycle/ water cycle as modeled by the Laboratoire de Meteorologie Dynamique (LMD) global climate model.

  3. Scientific Results of the Nasa-sponsored Study Project on Mars: Evolution of Its Climate and Atmosphere

    NASA Technical Reports Server (NTRS)

    Clifford, Stephen M.; Greeley, Ronald; Haberle, Robert M.

    1988-01-01

    The scientific highlights of the Mars: Evolution of its Climate and Atmosphere (MECA) study project are reviewed and some of the important issues in Martian climate research that remain unresolved are discussed.

  4. Second Conference on Early Mars: Geologic Hydrologic, and Climatic Evolution and the Implications for Life

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Some of the topics addressed by the conference paper abstracts included in this document include: martian terrain, terrestrial biological activity and mineral deposits with implications for life on Mars, the martian crust and mantle, weathering and erosion on Mars, evidence for ancient martian environmental and climatic conditions, with implications for the existence of surface and ground water on Mars and the possibility for life, martian valleys, and evidence for water and lava flow on the surface of Mars.

  5. Biology and The Future of Mars

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.

    2004-01-01

    It is possible that at some time in the future we might recreate a habitable climate on Mars returning it to the life-bearing state it may have enjoyed early in its history. Our studies of Mars are still in a preliminary state but everything we have learned suggests that it may he possible to restore Mars to a habitable climate. Long part of the intersection of science and fiction (eg. Clarke, 1995), serious studies of planetary ecosynthesis on Mars began after the results of the Viking mission indicated that all the compounds needed for life were present on the surface of Mars is some accessible form (Averner and MacElroy, 1976; McKay et al., 1991; Fogg, 1995). Recent work has focused on the use of climate models to compute the timescales to warm Mars (McKay et al., 1991 ; McKay and Marinova, 2001). Planetary ecosynthesis on Mars has implications for the objectives and conduct of robotic and human exploration. In particular the question of forward contamination must be considered in a new way if we wish to control the introduction of life to Mars in advance of planetary ecosynthesis.

  6. The investigation of active Martian dune fields using very high resolution photogrammetric measurements

    NASA Astrophysics Data System (ADS)

    Kim, Jungrack; Kim, Younghwi; Park, Minseong

    2016-10-01

    At the present time, arguments continue regarding the migration speeds of Martian dune fields and their correlation with atmospheric circulation. However, precisely measuring the spatial translation of Martian dunes has succeeded only a very few times—for example, in the Nili Patera study (Bridges et al. 2012) using change-detection algorithms and orbital imagery. Therefore, in this study, we developed a generic procedure to precisely measure the migration of dune fields with recently introduced 25-cm resolution orbital imagery specifically using a high-accuracy photogrammetric processor. The processor was designed to trace estimated dune migration, albeit slight, over the Martian surface by 1) the introduction of very high resolution ortho images and stereo analysis based on hierarchical geodetic control for better initial point settings; 2) positioning error removal throughout the sensor model refinement with a non-rigorous bundle block adjustment, which makes possible the co-alignment of all images in a time series; and 3) improved sub-pixel co-registration algorithms using optical flow with a refinement stage conducted on a pyramidal grid processor and a blunder classifier. Moreover, volumetric changes of Martian dunes were additionally traced by means of stereo analysis and photoclinometry. The established algorithms have been tested using high-resolution HIRISE time-series images over several Martian dune fields. Dune migrations were iteratively processed both spatially and volumetrically, and the results were integrated to be compared to the Martian climate model. Migrations over well-known crater dune fields appeared to be almost static for the considerable temporal periods and were weakly correlated with wind directions estimated by the Mars Climate Database (Millour et al. 2015). As a result, a number of measurements over dune fields in the Mars Global Dune Database (Hayward et al. 2014) covering polar areas and mid-latitude will be demonstrated. Acknowledgements:The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under iMars grant agreement Nr. 607379.

  7. Obliquity Driven Climate Change in Mars' Recent Past

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.; Montmessin, F.; Forget, F.; Spiga, A.; Colaprete, A.

    2003-01-01

    Mars has a natural mechanism for experiencing significant climate change and redistributing surface ice. Obliquity changes alone are quite capable of moving ice into low latitudes and may provide an explanation for the many geological landforms that strongly indicate recent climate change.

  8. The hydrologic response of Mars to the onset of a colder climate and to the thermal evolution of its early crust

    NASA Technical Reports Server (NTRS)

    Clifford, S. M.

    1993-01-01

    Morphologic similarities between the Martian valley networks and terrestrial runoff channel have been cited as evidence that the early Martian climate was originally more Earth-like, with temperatures and pressures high enough to permit the precipitation of H2O as snow or rain. Although unambiguous evidence that Mars once possessed a warmer, wetter climate is lacking, a study of the transition from such conditions to the present climate can benefit our understanding of both the early development of the cryosphere and the various ways in which the current subsurface hydrology of Mars is likely to differ from that of the Earth. Viewed from this perspective, the early hydrologic evolution of Mars is essentially identical to considering the hydrologic response of the Earth to the onset of a global subfreezing climate.

  9. Lunar and Planetary Science XXXV: Special Session: Mars Climate Change

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The titles in this section include: 1) Mars South Pole CO2 Paleoatmosphere; 2) Do SNC Noble Gas and Deuterium Data Provide Evidence for Large Cometary Impact Between 1300-300 Ma on Mars? 3) Medusae Fossae Formation: Ice-rich Airborne Dust Deposited During Periods of High Obliquity? 4) Ascraeus Mons, Mars: Characterisation and Interpretation of the Fan-shaped Deposit on Its Western Flank; 5) Evidence of Recent Glaciation in Elysium Planitia, Mars; 6) Craters and Other Circular Features in the Northern Circumpolar Area, Mars; 7) Intra-Annual Variations of the Martian Swiss-Cheese Terrain; 8) Drastic Climate Change of Mars Induced by H2O Ice Caps; 9) Modelling the Mass Balance of the North Polar Ice Cap on Mars.

  10. MECA Symposium on Mars: Evolution of its Climate and Atmosphere

    NASA Technical Reports Server (NTRS)

    Baker, Victor (Editor); Carr, Michael (Editor); Fanale, Fraser (Editor); Greeley, Ronald (Editor); Haberle, Robert (Editor); Leovy, Conway (Editor); Maxwell, Ted (Editor)

    1987-01-01

    The geological, atmospheric, and climatic history of Mars is explored in reviews and reports of recent observational and interpretive investigations. Topics addressed include evidence for a warm wet climate on early Mars, volatiles on Earth and on Mars, CO2 adsorption on palagonite and its implications for Martian regolith partitioning, and the effect of spatial resolution on interpretations of Martian subsurface volatiles. Consideration is given to high resolution observations of rampart craters, ring furrows in highland terrains, the interannual variability of the south polar cap, telescopic observations of the north polar cap and circumpolar clouds, and dynamical modeling of a planetary wave polar warming mechanism.

  11. History and Progress of GCM Simulations on Recent Mars Climate Change

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.

    2004-01-01

    The Mars Global Surveyor and Odyssey spacecraft reveal evidence that Mars may have experienced significant climate change in the recent past (105-106 Myr ago). Examples include gullies [1], cold-based tropical glaciers [2], paleolakes [3], and youthful near-surface ice [4]. Except for the gullies, the evidence for recent climate change requires ice and/or liquid water at low latitudes. An obvious question, therefore, is how is it possible for ice and/or liquid water to exist at low latitudes which is not possible in the present climate system? There are several mechanisms to consider. An episode of intense volcanic activity could alter the mean composition of the atmosphere and, therefore, the climate system. Impacts, depending on the size, composition, and velocity of the impactor are another way to dramatically alter the climate system. Polar wander and solar variability are also possibilities. However, the most promising way to change the climate is through changes in orbital properties. Mars, because of its proximity to Jupiter and lack of a large stabilizing moon, experiences much greater changes in its orbit properties than the Earth.

  12. History and Progress of GCM Simulations on Recent Mars Climate Change

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.

    2004-01-01

    The Mars Global Surveyor and Odyssey spacecraft reveal evidence that Mars may have experienced significant climate change in the recent past (10(exp 5) - 10(exp 6) Myr ago). Examples include gullies, cold-based tropical glaciers, paleolakes, and youthful near-surface ice. Except for the gullies, the evidence for recent climate change requires ice and/or liquid water at low latitudes. An obvious question, therefore, is how is it possible for ice and/or liquid water to exist at low latitudes which is not possible in the present climate system? There are several mechanisms to consider. An episode of intense volcanic activity could alter the mean composition of the atmosphere and, therefore, the climate system. Impacts, depending on the size, composition, and velocity of the impactor are another way to dramatically alter the climate system. Polar wander and solar variability are also possibilities. However, the most promising way to change the climate is through changes in orbital properties. Mars, because of its proximity to Jupiter and lack of a large stabilizing moon, experiences much greater changes in its orbit properties than the Earth.

  13. The Mars Climate Orbiter at Launch Complex 17A, CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    At Launch Complex 17A, Cape Canaveral Air Station, workers place aside a piece of the canister surrounding the Mars Climate Orbiter. Targeted for liftoff on Dec. 10, 1998, aboard a Boeing Delta II (7425) rocket, the orbiter will be the first spacecraft to be launched in the pair of Mars '98 missions. After its arrival at the red planet, the Mars Climate Orbiter will be used primarily to support its companion Mars Polar Lander spacecraft, scheduled for launch on Jan. 3, 1999. The orbiter will then monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year, the equivalent of about two Earth years. The spacecraft will observe the appearance and movement of atmospheric dust and water vapor, and characterize seasonal changes on the planet's surface.

  14. The Mars Climate Orbiter at Launch Complex 17A, CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    At Launch Complex 17A, Cape Canaveral Air Station, workers remove the canister surrounding the Mars Climate Orbiter. Targeted for liftoff on Dec. 10, 1998, aboard a Boeing Delta II (7425) rocket, the orbiter will be the first spacecraft to be launched in the pair of Mars '98 missions. After its arrival at the red planet, the Mars Climate Orbiter will be used primarily to support its companion Mars Polar Lander spacecraft, scheduled for launch on Jan. 3, 1999. The orbiter will then monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year, the equivalent of about two Earth years. The spacecraft will observe the appearance and movement of atmospheric dust and water vapor, and characterize seasonal changes on the planet's surface.

  15. Validation of Mars-GRAM and Planned New Features

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Duvall, Aleta; Keller, Vernon W.

    2004-01-01

    For altitudes below 80 km, Mars Global Reference Atmospheric Model (Mars-GRAM 2001) is based on output climatology from NASA Ames Mars General Circulation Model (MGCM). At COSPAR 2002, results were presented of validation tests of Mars-GRAM versus data from Mars Global Surveyor Thermal Emission Spectrometer (TES) and Radio Science (RS) experiment. Further validation tests are presented comparing Mars- GRAM densities with those from the European Mars Climate Database (MCD), and comparing densities from both Mars-GRAM and MCD against TES observations. Throughout most of the height and latitude range of TES data (040 km and 70s to 70N), good agreement is found between atmospheric densities from Mars-GRAM and MCD. However, at the season and latitude zone for Mars Phoenix arrival and landing (Ls = 65 to 80 degrees and latitude 65 to 75N), Mars-GRAM densities are about 30 to 45 percent higher than MCD densities near 40 km altitude. Further evaluation is warranted concerning potential impact of these model differences on planning for Phoenix entry and descent. Three planned features for Mars-GRAM update are also discussed: (1) new MGCM and Thermospheric General Circulation Model data sets to be used as a revised basis for Mars-GRAM mean atmosphere, (2) a new feature to represent planetary-scale traveling waves for upper altitude density variations (such as found during Mars Odyssey aerobraking), and (3) a new model for effects of high resolution topographic slope on winds near the surface (0 to 4.5 km above MOLA topography level). Mars-GRAM slope winds will be computed from a diagnostic (algebraic) relationship based on Ye, Segal, and Pielke (1990). This approach differs from mesoscale models (such as MRAMS and Mars MM5), which use prognostic, full-physics solutions of the time- and space-dependent differential equations of motion. As such, slope winds in Mars-GRAM will be consistent with its "engineering-level" approach, and will be extremely fast and easy to evaluate, compared with mesoscale model solutions. Mars-GRAM slope winds are not being suggested as a replacement for sophisticated, full-physics Mars mesoscale models, but may have value, particularly for preliminary screening of large numbers of candidate landing sites for future Mars missions, such as Phoenix and Mars Science Laboratory. Test output is presented from Mars-GRAM slope winds in the area of Gusev Crater and Valles Marineris.

  16. Mars Secular Obliquity Change Due to Water Ice Caps

    NASA Technical Reports Server (NTRS)

    Rubincam, David P.

    1998-01-01

    Mars may have substantially changed its average axial tilt over geologic time due to the waxing and waning of water ice caps. Depending upon Mars' climate and internal structure, the average obliquity could have increased or decreased through climate friction by tens of degrees. A decrease could account for the apparent youthfulness of the polar layered terrain. Alternatively, Mars' average obliquity may have changed until it became "stuck" at its present value of 24.4 deg.

  17. The Mars Orbital Catalog of Hydrated Alteration Signatures (MOCHAS): keeping track of ancient Mars's blanketing aqueous alteration

    NASA Astrophysics Data System (ADS)

    Carter, John

    2016-04-01

    The orbital and in-situ analysis of aqueous minerals on Mars is a recent research field which has given new momentum to the search for past life on Mars. These minerals, if found in preserved geologic contexts, also have the potential to decipher the past climatic conditions of Early Mars and probe its geological evolution. Despite terabytes of data and refined observations accumulated for over a decade, progress in those fields has been tedious. The highly degraded morphologic context, intrinsic limitations of orbital spectroscopy and highly localized nature of in-situ missions are major issues. Many highly detailed geological studies have been carried out at tens of locations on Mars, which have somewhat refined the global paradigm proposed in [Bibring et al., 2006], but no consensus exists as to the timing for the bulk of alteration (Pre/Noachian to LN/EH) nor the state of the water (meteoritic, climate mediated; or dominantly closed-system). In practice, the paucity of clear trends noticeable from the large datasets of near-infrared instruments (OMEGA, CRISM) has hampered efforts to test specific, global-scale alteration hypotheses. Other major fields of Mars research have tackled this issue by providing comprehensive databases with controlled biases, such as for channel networks, open-basin paleo-lakes or anhydrous chloride salts. Here we propose to apply the same approach to the OMEGA and CRISM datasets by providing a global and detailed compositional map of aqueous minerals on Mars. This catalog (MOCHAS) has several goals: i) provide for the first time a statistically viable approach to aqueous mineral detections on Mars, ii) provide regional context to help interpret and broaden the implications of numerous local-scale studies, iii) identify previously un-observed deposits of minerals of interest coupled to a well-preserved geologic context, iv) identify new candidate landing sites for future rovers and foster complementary/higher-resolution observations with instruments on current and upcoming probes. This new product adopts a mapping approach to all aqueous mineral detections on Mars, moving away from discrete catalogs of points available in previous attempts [Carter et al., 2013], which allows a statistical inference of their distribution, ages and other physical quantities. Classification of the deposits into major spectral classes will provide composition. The first version to be distributed in the near term will be presented, subsequent releases will provide refined characteristics for the deposits (mineralogical, physical and geological), and are foreseen to improve thanks to inputs from the community.

  18. The physics of Martian weather and climate: a review.

    PubMed

    Read, P L; Lewis, S R; Mulholland, D P

    2015-12-01

    The planet Mars hosts an atmosphere that is perhaps the closest in terms of its meteorology and climate to that of the Earth. But Mars differs from Earth in its greater distance from the Sun, its smaller size, its lack of liquid oceans and its thinner atmosphere, composed mainly of CO(2). These factors give Mars a rather different climate to that of the Earth. In this article we review various aspects of the martian climate system from a physicist's viewpoint, focusing on the processes that control the martian environment and comparing these with corresponding processes on Earth. These include the radiative and thermodynamical processes that determine the surface temperature and vertical structure of the atmosphere, the fluid dynamics of its atmospheric motions, and the key cycles of mineral dust and volatile transport. In many ways, the climate of Mars is as complicated and diverse as that of the Earth, with complex nonlinear feedbacks that affect its response to variations in external forcing. Recent work has shown that the martian climate is anything but static, but is almost certainly in a continual state of transient response to slowly varying insolation associated with cyclic variations in its orbit and rotation. We conclude with a discussion of the physical processes underlying these long- term climate variations on Mars, and an overview of some of the most intriguing outstanding problems that should be a focus for future observational and theoretical studies.

  19. Workshop on early Mars: How warm and how wet, part 2?

    NASA Technical Reports Server (NTRS)

    Squyres, S. (Editor); Kasting, J. (Editor)

    1993-01-01

    In 1992 the MSATT program conducted a workshop on modeling of the Martian climate. At that workshop it became clear that a serious problem had arisen concerning the early climate of Mars. Based on the evidence for smallscale fluvial activity, the view had been widely held that early in its history Mars had a climate that was much warmer and wetter than today's. However, most plausible recent climate models have fallen far short of the warm temperatures often inferred from the geologic evidence. Moreover, recent geophysical work has suggested that early geothermal warming may also have played a significant role in allowing fluvial activity. In order to address the issue of just how warm and how wet early Mars was, a workshop was convened in July of 1993, in Breckenridge, Colorado. The results of the workshop are reported here.

  20. Resonant obliquity of Mars?. [climate driven by spin axis and orbit plane precession caused oscillations

    NASA Technical Reports Server (NTRS)

    Ward, William R.; Rudy, Donald J.

    1991-01-01

    The large-scale oscillations generated by the obliquity of Mars through spin-axis and orbit-plane precessions constitute basic climate system drivers with periodicities of 100,000 yrs in differential spin axis-orbit precession rates and of over 1 million yrs in amplitude modulations due to orbital-inclination changes. Attention is presently given to a third time-scale for climate change, which involves a possible spin-spin resonance and whose mechanism operates on a 10-million-yr time-scale: this effect implies an average obliquity increase for Mars of 15 deg only 5 million yrs ago, with important climatic consequences.

  1. The Mars Climate Orbiter at Launch Complex 17A, CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    At Launch Complex 17A, Cape Canaveral Air Station, the Mars Climate Orbiter is free of the protective canister that surrounded it during the move to the pad. Targeted for liftoff on Dec. 10, 1998, aboard a Boeing Delta II (7425) rocket, the orbiter will be the first spacecraft to be launched in the pair of Mars '98 missions. After its arrival at the red planet, the Mars Climate Orbiter will be used primarily to support its companion Mars Polar Lander spacecraft, scheduled for launch on Jan. 3, 1999. The orbiter will then monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year, the equivalent of about two Earth years. The spacecraft will observe the appearance and movement of atmospheric dust and water vapor, and characterize seasonal changes on the planet's surface.

  2. The Mars Climate Orbiter at Launch Complex 17A, CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    At Launch Complex 17A, Cape Canaveral Air Station, workers get ready to remove the last piece of the canister surrounding the Mars Climate Orbiter. Targeted for liftoff on Dec. 10, 1998, aboard a Boeing Delta II (7425) rocket, the orbiter will be the first spacecraft to be launched in the pair of Mars '98 missions. After its arrival at the red planet, the Mars Climate Orbiter will be used primarily to support its companion Mars Polar Lander spacecraft, scheduled for launch on Jan. 3, 1999. The orbiter will then monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year, the equivalent of about two Earth years. The spacecraft will observe the appearance and movement of atmospheric dust and water vapor, and characterize seasonal changes on the planet's surface.

  3. Workshop on the Polar Regions of Mars: Geology, Glaciology, and Climate History, part 1

    NASA Technical Reports Server (NTRS)

    Clifford, S. M. (Editor); Howard, A. D. (Editor); Paterson, W. S. B. (Editor)

    1992-01-01

    Papers and abstract of papers presented at the workshop are presented. Some representative titles are as follows: Glaciation in Elysium; Orbital, rotational, and climatic interactions; Water on Mars; Rheology of water-silicate mixtures at low temperatures; Evolution of the Martian atmosphere (the role of polar caps); Is CO2 ice permanent; Dust transport into Martian polar latitudes; Mars observer radio science (MORS) observations in polar regions; and Wind transport near the poles of Mars (timescales of changes in deposition and erosion).

  4. Seasonal Variations in the CO Line Profile and the Retrieved Thermal/Pressure Structures in the Atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Khayat, Alain; Villanueva, G. L.; Mumma, M. J.; Riesen, T. E.; Tokunaga, A. T.

    2013-10-01

    We report retrievals of temperature vertical profiles up to 100 km over Tharsis and Syrtis regions on Mars obtained by inverting the strong rotational (3-2) line of carbon monoxide (CO) at 346 GHz. Observations of CO were made from mid Northern Spring to early Northern Summer on Mars (Ls= 36°-108°, 23 Nov, 2011 - 13 May, 2012) using the Caltech Submillimeter Observatory's (CSO) high-resolution heterodyne receiver (Barney) on top of Mauna Kea, Hawai'i. The temperature profiles were derived using our radiative transfer model that considers the latest spectroscopic constants for CO collisionally broadened by CO2. We observe notable changes of the line profile for different dates, which are directly related to seasonal variations in the thermal/pressure structure of the atmosphere. The seasonal variability of the martian CO line profile, the extracted temperature profiles, and comparisons with modeled profiles from the Mars Climate Database (Lewis et al, 1999) will be presented. We gratefully acknowledge support from the NASA Planetary Astronomy Program , NASA Astrobiology Institute, Planetary Atmospheres programs. This material is based upon work at the Caltech Submillimeter Observatory, which is operated by the California Institute of Technology under cooperative agreement with the National Science Foundation, grant number AST-0838261.

  5. A new edition of the Mars 1:5,000,000 map series

    NASA Technical Reports Server (NTRS)

    Batson, R. M.; Mcewen, Alfred S.; Wu, Sherman S. C.

    1991-01-01

    A new edition of the Mars 1:5,000,000 scale map series is in preparation. Two sheets will be made for each quadrangle. Sheet one will show shaded relief, contours, and nomenclature. Sheet 2 will be a full-color photomosaic prepared on the Mars digital image model (MDIM) base co-registered with the Mars low-resolution color database. The latter will have an abbreviated graticule (latitude/longitude ticks only) and no other line overprint. The four major databases used to assemble this series are now virtually complete. These are: (1) Viking-revised shaded relief maps at 1:5,000,000 scale; (2) contour maps at 1:2,000,000 scale; (3) the Mars digital image model; and (4) a color image mosaic of Mars. Together, these databases form the most complete planetwide cartographic definition of Mars that can be compiled with existing data. The new edition will supersede the published Mars 1:5,000,000 scale maps, including the original shaded relief and topographic maps made primarily with Mariner 9 data and the Viking-revised shaded relief and controlled photomosaic series. Publication of the new series will begin in late 1991 or early 1992, and it should be completed in two years.

  6. Spiders: water-driven erosive structures in the southern hemisphere of Mars.

    PubMed

    Prieto-Ballesteros, Olga; Fernández-Remolar, David C; Rodríguez-Manfredi, José Antonio; Selsis, Franck; Manrubia, Susanna C

    2006-08-01

    Recent data from space missions reveal that there are ongoing climatic changes and erosive processes that continuously modify surface features of Mars. We have investigated the seasonal dynamics of a number of morphological features located at Inca City, a representative area at high southern latitude that has undergone seasonal processes. By integrating visual information from the Mars Orbiter Camera on board the Mars Global Surveyor and climatic cycles from a Mars' General Circulation Model, and considering the recently reported evidence for the presence of water-ice and aqueous precipitates on Mars, we propose that a number of the erosive features identified in Inca City, among them spiders, result from the seasonal melting of aqueous salty solutions.

  7. Climate-Rotation Feedback on Mars

    NASA Technical Reports Server (NTRS)

    Bills, Bruce G.

    1999-01-01

    A new model is presented for the coupled evolution of climate and rotation, as applied to Mars. It has long been appreciated that changes in the orbital and rotational geometry of Mars will influence the seasonal and latitudinal pattern of insolation, and this will likely dominate climatic fluctuations on time scales of 10(exp 5) to 10(exp 7) years. Equally important, but less widely appreciated, is the influence climatic change can have on rotational dynamics. The primary means by which climate influences rotation is via its influence on transport of mass (volatiles and dust) into and out of the polar regions. Many important issues remain unresolved: What are the ages of the polar caps? What climatic periods are recorded in the polar layered deposits? What is the long term obliquity history? Additional information is contained in the original extended abstract.

  8. Exploring the Cloud Icy Early Mars Hypothesis Through Geochemistry and Mineralogy

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Michalski, J. R.

    2015-01-01

    While ancient fluvial channels have long been considered strong evidence for early surface water on Mars, many aspects of the fluvial morphology and occurrence suggest that they formed in relatively water limited conditions (com-pared to Earth) and that climatic excursions allowing for surface water might have been short-lived. Updated results mapping valley networks at higher resolution have changed this paradigm, showing that channels are much more abundant and wide-spread, and of higher order than was previously recognized, suggesting that Mars had a dense enough atmosphere and warm enough climate to allow channel formation up to 3.6-3.8 Ga. This revised view of the ancient martian climate might be broadly consistent with a climate history of Mars devised from infrared remote sensing of surface minerals, suggesting that widespread clay minerals formed in the Noachian, giving way to a sulfur-dominated surface weathering system by approx. 3.7 Ga.

  9. KSC-98pc1046

    NASA Image and Video Library

    1998-09-11

    The Mars Climate Orbiter spacecraft arrives at KSC's Shuttle Landing Facility aboard an Air Force C-17 cargo plane early this morning following its flight from the Lockheed Martin Astronautics plant in Denver, Colo. When the spacecraft arrives at the red planet, it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Delta II 7425 rocket

  10. Possible Analogs for Small Valleys on Mars at the Haughton Impact Crater Site, Devon Island, Canadian High Arctic

    NASA Technical Reports Server (NTRS)

    Lee, P.; Rice, J. W., Jr.; Bunch, Theodore E.; Grieve, R. A. F.; McKay, C. P.; Schutt, J. W.; Zent, A. P.

    1999-01-01

    Small valleys are perhaps the clearest evidence for an aqueous past on Mars. While small valley formation has occurred even in Amazonian times, most small valleys on Mars are associated with the heavily cratered Noachian terrains. Martian small valleys are often cited as evidence for a putative warmer and wetter climate on Early Mars in which rain and subsequent surface runoff would have acted as significant erosional agents, but the morphology of many small valleys has at the same time been recognized as having several unusual characteristics, making their origin still enigmatic and climatic inferences from them uncertain. Meanwhile, martian climate modeling efforts have been facing difficulties over the past decades with the problem of making the early martian climate warm enough to achieve temperature above 273 K to allow rainfall and the sustained flow of liquid water at the martian surface.

  11. The Role of Atmospheric Pressure on Surface Thermal Inertia for Early Mars Climate Modeling

    NASA Astrophysics Data System (ADS)

    Mischna, M.; Piqueux, S.

    2017-12-01

    On rocky bodies such as Mars, diurnal surface temperatures are controlled by the surface thermal inertia, which is a measure of the ability of the surface to store heat during the day and re-radiate it at night. Thermal inertia is a compound function of the near-surface regolith thermal conductivity, density and specific heat, with the regolith thermal conductivity being strongly controlled by the atmospheric pressure. For Mars, current best maps of global thermal inertia are derived from the Thermal Emission Spectrometer (TES) instrument on the Mars Global Surveyor (MGS) spacecraft using bolometric brightness temperatures of the surface. Thermal inertia is widely used in the atmospheric modeling community to determine surface temperatures and to establish lower boundary conditions for the atmosphere. Infrared radiation emitted from the surface is key in regulating lower atmospheric temperatures and driving overall global circulation. An accurate map of surface thermal inertia is thus required to produce reasonable results of the present-day atmosphere using numerical Mars climate models. Not surprisingly, thermal inertia is also a necessary input into climate models of early Mars, which assume a thicker atmosphere, by as much as one to two orders of magnitude above the present-day 6 mb mean value. Early Mars climate models broadly, but incorrectly, assume the present day thermal inertia surface distribution. Here, we demonstrate that, on early Mars, when pressures were larger than today's, the surface layer thermal inertia was globally higher because of the increased thermal conductivity driven by the higher gas pressure in interstitial pore spaces within the soil. Larger thermal inertia reduces the diurnal range of surface temperature and will affect the size and timing of the modeled seasonal polar ice caps. Additionally, it will globally alter the frequency of when surface temperatures are modeled to exceed the liquid water melting point, and so results may need to be reassessed in light of lower `peak' global temperatures. We shall demonstrate the consequences of using properly calibrated thermal inertia maps for early Mars climate simulations, and propose simplified thermal inertia maps for use in such climate models.

  12. The Mars Climate Orbiter is lifted up the Pad 17A gantry

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Wrapped in a protective covering, the Mars Climate Orbiter with its upper stage booster is lifted up at Launch Complex 17, Pad A, Cape Canaveral Air Station, in preparation for mating to the second stage of a Boeing Delta II (7425) rocket. Targeted for liftoff on Dec. 10, 1998, the orbiter will be the first spacecraft to be launched in the pair of Mars '98 missions. After its arrival at the red planet, the Mars Climate Orbiter will be used primarily to support its companion Mars Polar Lander spacecraft, scheduled for launch on Jan. 3, 1999. The orbiter will then monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year, the equivalent of about two Earth years. The spacecraft will observe the appearance and movement of atmospheric dust and water vapor, and characterize seasonal changes on the planet's surface.

  13. The Mars Climate Orbiter is lifted up the Pad 17A gantry

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Mars Climate Orbiter with its upper stage booster, wrapped in a protective covering, is mated to the second stage of a Boeing Delta II (7425) rocket at Launch Complex 17, Pad A, Cape Canaveral Air Station. Targeted for liftoff on Dec. 10, 1998, the orbiter will be the first spacecraft to be launched in the pair of Mars '98 missions. After its arrival at the red planet, the Mars Climate Orbiter will be used primarily to support its companion Mars Polar Lander spacecraft, scheduled for launch on Jan. 3, 1999. The orbiter will then monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year, the equivalent of about two Earth years. The spacecraft will observe the appearance and movement of atmospheric dust and water vapor, and characterize seasonal changes on the planet's surface.

  14. The Mars Climate Orbiter is lifted up the Pad 17A gantry

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Wrapped in a protective covering, the Mars Climate Orbiter with its upper stage booster is lowered in preparation for mating to the second stage of a Boeing Delta II (7425) rocket at Launch Complex 17, Pad A, Cape Canaveral Air Station. Targeted for liftoff on Dec. 10, 1998, the orbiter will be the first spacecraft to be launched in the pair of Mars '98 missions. After its arrival at the red planet, the Mars Climate Orbiter will be used primarily to support its companion Mars Polar Lander spacecraft, scheduled for launch on Jan. 3, 1999. The orbiter will then monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year, the equivalent of about two Earth years. The spacecraft will observe the appearance and movement of atmospheric dust and water vapor, and characterize seasonal changes on the planet's surface.

  15. An Ancient Valley Network

    NASA Image and Video Library

    2017-05-09

    Most of the oldest terrains on Mars have eroded into branching valleys, as seen here in by NASA's Mars Reconnaisance Orbiter, much like many land regions of Earth are eroded by rain and snowmelt runoff. This is the primary evidence for major climate change on Mars billions of years ago. How the climate of Mars could have supported a warmer and wetter environment has been the subject of scientific debates for 40 years. A full-resolution enhanced color closeup reveals details in the bedrock and dunes on the valley floor (upper left). The bedrock of ancient Mars has been hardened and cemented by groundwater. https://photojournal.jpl.nasa.gov/catalog/PIA21630

  16. Formation of Valley Networks in a Cold and Icy Early Mars Climate: Predictions for Erosion Rates and Channel Morphology

    NASA Astrophysics Data System (ADS)

    Cassanelli, J.

    2017-12-01

    Mars is host to a diverse array of valley networks, systems of linear-to-sinuous depressions which are widely distributed across the surface and which exhibit branching patterns similar to the dendritic drainage patterns of terrestrial fluvial systems. Characteristics of the valley networks are indicative of an origin by fluvial activity, providing among the most compelling evidence for the past presence of flowing liquid water on the surface of Mars. Stratigraphic and crater age dating techniques suggest that the formation of the valley networks occurred predominantly during the early geologic history of Mars ( 3.7 Ga). However, whether the valley networks formed predominantly by rainfall in a relatively warm and wet early Mars climate, or by snowmelt and episodic rainfall in an ambient cold and icy climate, remains disputed. Understanding the formative environment of the valley networks will help distinguish between these warm and cold end-member early Mars climate models. Here we test a conceptual model for channel incision and evolution under cold and icy conditions with a substrate characterized by the presence of an ice-free dry active layer and subjacent ice-cemented regolith, similar to that found in the Antarctic McMurdo Dry Valleys. We implement numerical thermal models, quantitative erosion and transport estimates, and morphometric analyses in order to outline predictions for (1) the precise nature and structure of the substrate, (2) fluvial erosion/incision rates, and (3) channel morphology. Model predictions are compared against morphologic and morphometric observational data to evaluate consistency with the assumed cold climate scenario. In the cold climate scenario, the substrate is predicted to be characterized by a kilometers-thick globally-continuous cryosphere below a 50-100 meter thick desiccated ice-free zone. Initial results suggest that, with the predicted substrate structure, fluvial channel erosion and morphology in a cold early Mars climate exposed to episodic high temperatures will not differ significantly from that in a warm climate. The fundamentally different hydrologic conditions are likely to influence other aspects of valley network morphology and morphometry including: drainage density, drainage pattern, and stream orders.

  17. Solar luminosity variations and the climate of Mars

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Gierasch, P. J.; Sagan, C.

    1975-01-01

    A simple climatological model of Mars indicates that its climate may be more sensitive to luminosity changes than earth's because of strong positive feedback mechanisms at work on Mars. Mariner 9 photographs of Mars show an abundance of large sinuous channels that point to an epoch of higher atmospheric pressures and abundant liquid water. Such an epoch could have been the result of large-scale solar luminosity variations. The climatological model suggests that other less controversial mechanisms, such as obliquity or polar albedo changes, also could have led to such an epoch.

  18. Report on the loss of the Mars Climate Orbiter Mission : JPL special review board

    NASA Technical Reports Server (NTRS)

    Brace, Richard; Casani, John; Farquhar, Robert; Haynes, Norm; Jordan, Frank; Kohlhase, Charles; Mitchell, Robert; Polutchko, Robert J.; Schallenmuller, Al; Slonski, John P.; hide

    1999-01-01

    The Mars Climate Orbiter (MCO) was launched on December 11, 1998. The MCO was to arrive at Mars and begin orbit insertion on September 23, 1999. The Mars Orbit Insertion (MOI) burn, a 16-minute maneuver to slow the spacecraft and enable capture into an orbit around Mars, began on schedule. Five minutes into the maneuver, and approximately 49 seconds before the anticipated time for loss of communication, the MCO was occulted by Mars. Thereafter, no contact with the spacecraft could be established. On September 24, 1999, an internal JPL team (the MCO Peer Review Team) was appointed to help investigate the reason for the loss of spacecraft signal. The Peer Review Team's findings are presented in this report.

  19. Methane bursts as a trigger for intermittent lake-forming climates on post-Noachian Mars

    NASA Astrophysics Data System (ADS)

    Kite, Edwin S.; Gao, Peter; Goldblatt, Colin; Mischna, Michael A.; Mayer, David P.; Yung, Yuk L.

    2017-10-01

    Lakes existed on Mars later than 3.6 billion years ago, according to sedimentary evidence for deltaic deposition. The observed fluviolacustrine deposits suggest that individual lake-forming climates persisted for at least several thousand years (assuming dilute flow). But the lake watersheds’ little-weathered soils indicate a largely dry climate history, with intermittent runoff events. Here we show that these observational constraints, although inconsistent with many previously proposed triggers for lake-forming climates, are consistent with a methane burst scenario. In this scenario, chaotic transitions in mean obliquity drive latitudinal shifts in temperature and ice loading that destabilize methane clathrate. Using numerical simulations, we find that outgassed methane can build up to atmospheric levels sufficient for lake-forming climates, if methane clathrate initially occupies more than 4% of the total volume in which it is thermodynamically stable. Such occupancy fractions are consistent with methane production by water-rock reactions due to hydrothermal circulation on early Mars. We further estimate that photochemical destruction of atmospheric methane curtails the duration of individual lake-forming climates to less than a million years, consistent with observations. We conclude that methane bursts represent a potential pathway for intermittent excursions to a warm, wet climate state on early Mars.

  20. Mars - Epochal climate change and volatile history

    NASA Technical Reports Server (NTRS)

    Fanale, Fraser P.; Postawko, Susan E.; Pollack, James B.; Carr, Michael H.; Pepin, Robert O.

    1992-01-01

    The epochal climate change and volatile history of Mars are examined, with special attention given to evidence for and mechanisms of long-term climate change. Long-term climate change on Mars is indicated most directly by the presence, age, and distribution of the valley networks. They were almost certainly formed by running water, but it seems more likely that they were formed by groundwater sapping than by rainfall. It is argued to be physically plausible that a higher early intensity of surface insolation caused by a CO2 greenhouse effect could have overcompensated for an early weak sun and raised temperatures to the freezing point near the equator under favorable conditions of obliquity and eccentricity. This could account for the morphological changes.

  1. Surface clay formation during short-term warmer and wetter conditions on a largely cold ancient Mars

    NASA Astrophysics Data System (ADS)

    Bishop, Janice L.; Fairén, Alberto G.; Michalski, Joseph R.; Gago-Duport, Luis; Baker, Leslie L.; Velbel, Michael A.; Gross, Christoph; Rampe, Elizabeth B.

    2018-03-01

    The ancient rock record for Mars has long been at odds with climate modelling. The presence of valley networks, dendritic channels and deltas on ancient terrains points towards running water and fluvial erosion on early Mars1, but climate modelling indicates that long-term warm conditions were not sustainable2. Widespread phyllosilicates and other aqueous minerals on the Martian surface3-6 provide additional evidence that an early wet Martian climate resulted in surface weathering. Some of these phyllosilicates formed in subsurface crustal environments5, with no association with the Martian climate, while other phyllosilicate-rich outcrops exhibit layered morphologies and broad stratigraphies7 consistent with surface formation. Here, we develop a new geochemical model for early Mars to explain the formation of these clay-bearing rocks in warm and wet surface locations. We propose that sporadic, short-term warm and wet environments during a generally cold early Mars enabled phyllosilicate formation without requiring long-term warm and wet conditions. We conclude that Mg-rich clay-bearing rocks with lateral variations in mixed Fe/Mg smectite, chlorite, talc, serpentine and zeolite occurrences formed in subsurface hydrothermal environments, whereas dioctahedral (Al/Fe3+-rich) smectite and widespread vertical horizonation of Fe/Mg smectites, clay assemblages and sulphates formed in variable aqueous environments on the surface of Mars. Our model for aluminosilicate formation on Mars is consistent with the observed geological features, diversity of aqueous mineralogies in ancient surface rocks and state-of-the-art palaeoclimate scenarios.

  2. Scientific Goals and Objectives for the Human Exploration of Mars: 1. Biology and Atmosphere/Climate

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.; Garvin, J. B.; Anbar, A. D.; Beaty, D. W.; Bell, M. S.; Clancy, R. T.; Cockell, C. S.; Connerney, J. E.; Doran, P. T.; Delory, G.; hide

    2008-01-01

    To prepare for the exploration of Mars by humans, as outlined in the new national vision for Space Exploration (VSE), the Mars Exploration Program Analysis Group (MEPAG), chartered by NASA's Mars Exploration Program (MEP), formed a Human Exploration of Mars Science Analysis Group (HEM-SAG), in March 2007. HEM-SAG was chartered to develop the scientific goals and objectives for the human exploration of Mars based on the Mars Scientific Goals, Objectives, Investigations, and Priorities.1 The HEM-SAG is one of several humans to Mars scientific, engineering and mission architecture studies chartered in 2007 to support NASA s plans for the human exploration of Mars. The HEM-SAG is composed of about 30 Mars scientists representing the disciplines of Mars biology, climate/atmosphere, geology and geophysics from the U.S., Canada, England, France, Italy and Spain. MEPAG selected Drs. James B. Garvin (NASA Goddard Space Flight Center) and Joel S. Levine (NASA Langley Research Center) to serve as HEMSAG co-chairs. The HEM-SAG team conducted 20 telecons and convened three face-to-face meetings from March through October 2007. The management of MEP and MEPAG were briefed on the HEM-SAG interim findings in May. The HEM-SAG final report was presented on-line to the full MEPAG membership and was presented at the MEPAG meeting on February 20-21, 2008. This presentation will outline the HEM-SAG biology and climate/atmosphere goals and objectives. A companion paper will outline the HEM-SAG geology and geophysics goals and objectives.

  3. Soil Crystallinity As a Climate Indicator: Field Experiments on Earth and Mars

    NASA Technical Reports Server (NTRS)

    Horgan, Briony; Scudder, Noel; Rampe, Elizabeth; Rutledge, Alicia

    2016-01-01

    Soil crystallinity is largely determined by leaching rates, as high leaching rates favor the rapid precipitation of short order or poorly-crystalline phases like the aluminosilicate allophane. High leaching rates can occur due to high precipitation rates, seasonal monsoons, or weathering of glass, but are also caused by the rapid onset of seasonal melting of snow and ice in cold environments. Thus, cold climate soils are commonly dominated by poorly crystalline phases, which mature into kaolin minerals over time. Thus, we hypothesize that, in some contexts, soils with high abundances of poorly crystalline phases could indicate formation under cold climatic conditions. This model could be helpful in interpreting the poorly-constrained paleoclimate of ancient Mars, as the crystallinity of ancient soils and soil-derived sediments appears to be highly variable in time and space. While strong signatures of crystalline phyllosilicates have been identified in possible ancient paleosols on Mars, Mars Science Laboratory rover investigations of diverse ancient sediments at Gale Crater has shown that they can contain very high abundances (40-50 wt%) of poorly crystalline phases. We hypothesize that these poorly crystalline phases could be the result of weathering by ice/snow melt, perhaps providing support for sustained cold climates on early Mars punctuated by more limited warm climates. Furthermore, such poorly crystalline soils could be highly fertile growth media for future human exploration and colonization on Mars. To test this hypothesis, we are currently using rover-like instrumentation to investigate the mineralogy and chemistry of weathering products generated by snow and ice melt in a Mars analog alpine environment: the glaciated Three Sisters volcanic complex in central Oregon. Alteration in this glacial environment generates high abundances of poorly crystalline phases, many of which have compositions distinct from those identified in previous terrestrial investigations, and perhaps more similar to poorly crystalline phases identified on Mars.

  4. Mass and Reliability Source (MaRS) Database

    NASA Technical Reports Server (NTRS)

    Valdenegro, Wladimir

    2017-01-01

    The Mass and Reliability Source (MaRS) Database consolidates components mass and reliability data for all Oribital Replacement Units (ORU) on the International Space Station (ISS) into a single database. It was created to help engineers develop a parametric model that relates hardware mass and reliability. MaRS supplies relevant failure data at the lowest possible component level while providing support for risk, reliability, and logistics analysis. Random-failure data is usually linked to the ORU assembly. MaRS uses this data to identify and display the lowest possible component failure level. As seen in Figure 1, the failure point is identified to the lowest level: Component 2.1. This is useful for efficient planning of spare supplies, supporting long duration crewed missions, allowing quicker trade studies, and streamlining diagnostic processes. MaRS is composed of information from various databases: MADS (operating hours), VMDB (indentured part lists), and ISS PART (failure data). This information is organized in Microsoft Excel and accessed through a program made in Microsoft Access (Figure 2). The focus of the Fall 2017 internship tour was to identify the components that were the root cause of failure from the given random-failure data, develop a taxonomy for the database, and attach material headings to the component list. Secondary objectives included verifying the integrity of the data in MaRS, eliminating any part discrepancies, and generating documentation for future reference. Due to the nature of the random-failure data, data mining had to be done manually without the assistance of an automated program to ensure positive identification.

  5. The Effect of CO2 Ice Cap Sublimation on Mars Atmosphere

    NASA Technical Reports Server (NTRS)

    Batterson, Courtney

    2016-01-01

    Sublimation of the polar CO2 ice caps on Mars is an ongoing phenomenon that may be contributing to secular climate change on Mars. The transfer of CO2 between the surface and atmosphere via sublimation and deposition may alter atmospheric mass such that net atmospheric mass is increasing despite seasonal variations in CO2 transfer. My study builds on previous studies by Kahre and Haberle that analyze and compare data from the Phoenix and Viking Landers 1 and 2 to determine whether secular climate change is happening on Mars. In this project, I use two years worth of temperature, pressure, and elevation data from the MSL Curiosity rover to create a program that allows for successful comparison of Curiosity pressure data to Viking Lander pressure data so a conclusion can be drawn regarding whether CO2 ice cap sublimation is causing a net increase in atmospheric mass and is thus contributing to secular climate change on Mars.

  6. The Mars Climate Orbiter is moved for mating with the third stage of the launch vehicle

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF- 2), the third stage of the Boeing Delta II launch vehicle (left) waits for mating with the Mars Climate Orbiter (right). The third stage is a solid-propellant Thiokol Star 48B booster, the same final stage used in the 1996 launch of Mars Global Surveyor. Targeted for launch on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface.

  7. The Mars Climate Orbiter is moved for mating with the third stage of the launch vehicle

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF- 2), workers check on the fitting between the Mars Climate Orbiter (above) and the third stage of the Boeing Delta II launch vehicle (below). The third stage is a solid-propellant Thiokol Star 48B booster, the same final stage used in the 1996 launch of Mars Global Surveyor. Targeted for launch on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface.

  8. The Mars Climate Orbiter is moved for mating with the third stage of the launch vehicle

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF- 2), the Mars Climate Orbiter (right) is lifted to move it for mating to the third stage of the Boeing Delta II launch vehicle waiting at left. The third stage is a solid-propellant Thiokol Star 48B booster, the same final stage used in the 1996 launch of Mars Global Surveyor. Targeted for launch on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface.

  9. The Mars Climate Orbiter is moved for mating with the third stage of the launch vehicle

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF- 2), the Mars Climate Orbiter (top) is lowered toward the third stage of the Boeing Delta II launch vehicle below it, to which it will be attached. The third stage is a solid-propellant Thiokol Star 48B booster, the same final stage used in the 1996 launch of Mars Global Surveyor. Targeted for launch on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface.

  10. Changes in Tilt of Mars Axis

    NASA Image and Video Library

    2011-11-21

    Modern-day Mars experiences cyclical changes in climate and, consequently, ice distribution. Unlike Earth, the obliquity or tilt of Mars changes substantially on timescales of hundreds of thousands to millions of years.

  11. Mars survival handbook: where to find water

    NASA Astrophysics Data System (ADS)

    Marra, Wouter A.

    2015-04-01

    Most famous observations of Mars are those of Giovianni Schiaparelli in the late 19th century. His maps contain many linear features across the surface of Mars, which he called `canali'. The mis-translation from the Italian `canali', meaning channel, to the English `canal', man-made infrastructure, led to wild speculations of an advanced species struggling to survive on a planet with diminishing natural resources. Later research has proven this is not the case, at least not for Mars. Nevertheless, the possible existence of life and habitability of Mars has inspired further investigations, interplanetary missions and inevitably at some point human exploration. While no canals exist on Mars, there is widespread evidence for occurrence of liquid water a long time ago on this planet far, far away. The ancient landscapes of Mars may provide most valuable clues for answering the ultimate question about life, the universe and everything, but Mars today is a terrible place to be as it is extremely cold and dry; there may be life, but not as we know it. Nevertheless, many humans have volunteered to go there. Some call them mad, some call them heroes, but perhaps they just want to flee from our planet facing floods, droughts and climate change? But unless we find a good source of water for these explorers, the climate on Mars will certainly cause a swift EXTERMINATION! I have written my PhD thesis on groundwater outflow landscapes on Mars. I will review some of the most spectacular landscapes on Mars, experiments I have done in the past years to explain these landscapes and their hydrological and climate implications. Although the outlook is not so hopeful for early colonist, I will share my views on the possible sources of water on Mars today.

  12. Examining Mars at Many Levels (Artist Concept)

    NASA Image and Video Library

    2005-03-23

    This artist's concept represents the "Follow the Water" theme of NASA's Mars Reconnaissance Orbiter mission. The orbiter's science instruments monitor the present water cycle in the Mars atmosphere and the associated deposition and sublimation of water ice on the surface, while probing the subsurface to see how deep the water-ice reservoir detected by Mars Odyssey extends. At the same time, Mars Reconnaissance Orbiter will search for surface features and minerals (such as carbonates and sulfates) that record the extended presence of liquid water on the surface earlier in the planet's history. The instruments involved are the Shallow Subsurface Radar, the Compact Reconnaissance Imaging Spectrometer for Mars, the Mars Color Imager, the High Resolution Imaging Science Experiment, the Context Camera and the Mars Climate Sounder. To the far left, the radar antenna beams down and "sees" into the first few hundred feet (up to 1 kilometer) of Mars' crust. Just to the right of that, the next beam highlights the data received from the imaging spectrometer, which identifies minerals on the surface. The next beam represents the high-resolution camera, which can "zoom in" on local targets, providing the highest-resolution orbital images yet of features such as craters and gullies and rocks. The beam that shines almost horizontally is that of the Mars Climate Sounder. This instrument is critical to analyzing the current climate of Mars since it observes the temperature, humidity, and dust content of the martian atmosphere, and their seasonal and year-to-year variations. Meanwhile, the Mars Color Imager observes ice clouds, dust clouds and hazes, and the ozone distribution, producing daily global maps in multiple colors to monitor daily weather and seasonal changes. The electromagnetic spectrum is represented on the top right and individual instruments are placed where their capability lies. http://photojournal.jpl.nasa.gov/catalog/PIA07241

  13. The Mars Climate Orbiter is prepared for a spin test in the SAEF- 2

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF- 2), the Mars Climate Orbiter is in place for its spin test. Targeted for launch aboard a Delta II rocket on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface.

  14. The Mars Climate Orbiter is prepared for a spin test in the SAEF- 2

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF- 2), workers lower the Mars Climate Orbiter into place on the spin test equipment. Targeted for launch aboard a Delta II rocket on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface.

  15. Geologic Tests for Snowmelt Runoff on Early Mars

    NASA Astrophysics Data System (ADS)

    Kite, E. S.; Sneed, J.; Mayer, D. P.

    2017-12-01

    Data from the Curiosity rover have sharpened the question: was Early Mars climate warm enough for rainfall, or was the climate cold? The hypothesis of a cold (snow-and-ice melt) climate on Early Mars can be tested using runoff production. Runoff production cannot exceed snowmelt rate in a cold climate. Therefore, high runoff production would rule out cold conditions, and would suggest rain (or catastrophic melting of snow). How can runoff production be reliably measured? To constrain runoff production, the lead author is measuring paleochannel widths and meander wavelengths for Early Mars watersheds with well-defined drainage area. The measurement method is the same as in Kite et al., EPSL, 2015. >250 channel-width measurements and 89 meander wavelength measurements are included, representing 158 drainage areas. The catalog emphasizes better-preserved (post-Noachian) paleochannels, but includes a re-survey of previously-reported paleochannel width and wavelength measurement sites. Channel widths and wavelengths are a proxy for paleodischarge. Discharge (m3/s) can be divided by drainage area (m2) to obtain a lower bound on runoff-production (mm/hr). If runoff production >(1-3) mm/hr, then a seasonal melting snow-and-ice climate is strongly disfavored. However, high runoff production would be consistent with rainfall. Initial results will be reported at the conference. The figure shows the locations of measurement sites for Early Mars channel width (black) and meander wavelength (red).

  16. Mars Climate Orbiter's Investigation of the Atmosphere and Polar Caps

    NASA Technical Reports Server (NTRS)

    McCleese, D. J.; Moroz, V.; Schofield, T.; Taylor, F.; Zurek, R.

    1999-01-01

    The Mars Climate Orbiter (MCO) is now on its way to Mars. It carries an atmospheric sounder whose observations will provide a continuous, global data set on weather and climate for a full Martian year. This paper describes the observation strategy and anticipated results from the Pressure Modulator Infrared Radiometer (PMIRR). PMIRR will measure vertical profiles of atmospheric infrared radiance in the 7 to 50 micron wavelength region extending from the surface of Mars to 80-km altitude. The observations have a vertical resolution of 5 km, or one-half the atmospheric scale height. From these radiance profiles we will retrieve profiles of atmospheric temperature, pressure, and the amounts of dust, condensates and water vapor. In addition, PMIRR will measure the radiative balance of the polar regions of Mars in an effort to better understand the short-term climate variability of the planet. The information obtained with PMIRR on MCO will be complementary to data obtained by the Thermal Emission Spectrometer (TES) and Radio Science (RS) experiments on the Mars Global Surveyor. A major emphasis of our research will be the assimilation of PMIRR data into numerical models of the Martian atmosphere. Assimilation schemes, of which several are currently in development, will permit the extension of measurements to spatial and temporal scales and to phenomena (e.g. winds) not observed directly by PMIRR.

  17. Clay Mineralogy and Crystallinity as a Climatic Indicator: Evidence for Both Cold and Temperate Conditions on Early Mars

    NASA Technical Reports Server (NTRS)

    Horgan, B.; Rutledge, A.; Rampe, E. B.

    2015-01-01

    Surface weathering on Earth is driven by precipitation (rain/snow melt). Here we summarize the influence of climate on minerals produced during surface weathering, based on terrestrial literature and our new laboratory analyses of weathering products from glacial analog sites. By comparison to minerals identified in likely surface environments on Mars, we evaluate the implications for early martian climate.

  18. Rhythmic Layering in Danielson Crater on Mars

    NASA Image and Video Library

    2011-11-21

    Rhythmic patterns of sedimentary layering in Danielson Crater on Mars result from periodic changes in climate related to changes in tilt of the planet in this image was taken by NASA Mars Reconnaissance Orbiter.

  19. Climate evolution on the terrestrial planets

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.; Toon, O. B.

    1989-01-01

    The present comparative evaluation of the long-term evolution of the Venus, earth, and Mars climates suggests that the earth's climate has remained temperate over most of its history despite a secular solar luminosity increase in virtue of a negative-feedback cycle based on atmospheric CO2 levels and climate. The examination of planetary climate histories suggests that an earth-sized planet should be able to maintain liquid water on its surface at orbital distances in the 0.9-1.5 AU range, comparable to the orbit of Mars; this, in turn, implies that there may be many other habitable planets within the Galaxy.

  20. The Status of Mars Climate Change Modeling

    NASA Technical Reports Server (NTRS)

    Haberle, Robert M.

    1997-01-01

    Researchers have reviewed the evidence that the climate of Mars has changed throughout its history. In this paper, the discussion focuses on where we stand in terms of modeling these climate changes. For convenience, three distinct types of climate regimes are considered: very early in the planet's history (more than 3.5 Ga), when warm wet conditions are thought to have prevailed; the bulk of the planet's history (3.5-1 Ga), during which episodic ocean formation has been suggested; and relatively recently in the planet's history (less than 1 Ga), when orbitally induced climate change is thought to have occurred.

  1. Limb clouds and dust on Mars from images obtained by the Visual Monitoring Camera (VMC) onboard Mars Express

    NASA Astrophysics Data System (ADS)

    Sánchez-Lavega, A.; Chen-Chen, H.; Ordoñez-Etxeberria, I.; Hueso, R.; del Río-Gaztelurrutia, T.; Garro, A.; Cardesín-Moinelo, A.; Titov, D.; Wood, S.

    2018-01-01

    The Visual Monitoring Camera (VMC) onboard the Mars Express (MEx) spacecraft is a simple camera aimed to monitor the release of the Beagle-2 lander on Mars Express and later used for public outreach. Here, we employ VMC as a scientific instrument to study and characterize high altitude aerosols events (dust and condensates) observed at the Martian limb. More than 21,000 images taken between 2007 and 2016 have been examined to detect and characterize elevated layers of dust in the limb, dust storms and clouds. We report a total of 18 events for which we give their main properties (areographic location, maximum altitude, limb projected size, Martian solar longitude and local time of occurrence). The top altitudes of these phenomena ranged from 40 to 85 km and their horizontal extent at the limb ranged from 120 to 2000 km. They mostly occurred at Equatorial and Tropical latitudes (between ∼30°N and 30°S) at morning and afternoon local times in the southern fall and northern winter seasons. None of them are related to the orographic clouds that typically form around volcanoes. Three of these events have been studied in detail using simultaneous images taken by the MARCI instrument onboard Mars Reconnaissance Orbiter (MRO) and studying the properties of the atmosphere using the predictions from the Mars Climate Database (MCD) General Circulation Model. This has allowed us to determine the three-dimensional structure and nature of these events, with one of them being a regional dust storm and the two others water ice clouds. Analyses based on MCD and/or MARCI images for the other cases studied indicate that the rest of the events correspond most probably to water ice clouds.

  2. Ground Ice on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Martineau, N.; Pollard, W.

    2003-12-01

    On Mars, just like on Earth, water exists in various phases and participates in a broad range of key processes. Even though present surface conditions on Mars, as defined by climate and atmospheric pressure, prevents the occurrence of liquid water on the surface, there is strong evidence suggesting that water was an important land-forming agent in the past (Carr 1996). This naturally raises the question, "where has the water gone?" Surficial water reservoirs that are directly observable on Mars include seasonal water ice deposits and permanent water ice deposits at the polar caps (Kieffer and Zent 1992, Clifford et al. 2000). Due to the existence of permafrost landform systems, such as polygonal ground, rootless cones, and frost mounts, it also has been speculated that much more water may be preserved as ground ice (Lucchitta 1981, Squyres and Carr 1986, Lanagan et al. 2001). Nevertheless, comparison of the likely patterns of ground ice on Mars with terrestrial equivalents has been limited. Fortunately, NASA's 2001 Odyssey data lends support to this hypothesis by identifying significant shallow ice-rich sediments by means of flux characteristics of neutrons, and gamma radiation, and spatial correlations to regions where it has been predicted that subsurface ice is stable (Bell 2002). The ice contents and stratigraphic distribution of the subsurface sediments on Mars, derived by the Odyssey Science Team, is not unlike the upper layers of terrestrial permafrost. Terrestrial polar environments, in particular the more stable permafrost and ground ice features like ice wedges and massive ground ice, may thus provide valuable clues in the search for water and ice on Mars. Of importance is the fact that these features of the earth's surface do not owe their origin to the seasonal freezing and thawing of the active layer. Under the cold, dry polar climates of the Arctic and Antarctic, periglacial and permafrost landforms have evolved, giving rise to distinctive landscapes directly related to the aggradation and degradation of ground ice. This paper examines ice stability as a function of climate and geomorphology, and offers suggestions for the exploration of Martian ground ice. It also describes the exploration strategies included in RIGID, a proposal for a capacitive-coupled instrumentation submitted to the Canadian Space Agency's Announcements of Opportunity during the summer of 2003. Bell, J., Tip of the Martian Iceberg? Science, 297, 60-61, 2002. Published online 30 May 2002, 10.1126/science.1074025. Carr, M., Water on Mars, Oxford University Press, New York., 229pp., 1996. Clifford S. M., A Model for the Hydrologic and Climatic Behavior of Water on Mars, J. Geophys. Res., 98, 10 973-11 016, 1993. Clifford et al., The state and future of Mars polar science and exploration, Icarus, 144, 210-242, 2000. Fanale, F.P., J.R. Salvail, A.P. Zentand, and S. E. Postawko, Global Distribution and Migration of Subsurface Ice on Mars, Icarus, 67, 1-18, 1986. Kieffer, H., and A. Zent, Quasi-periodic climate change on Mars, in Mars, edited by H.H. Kieffer et al., pp. 1135-1179, Univ. Arizona Press, Tucson, 1992. Lanagan, P.D., A.S. McEwen, L.P. Keszthelyi, and T. Thordarson, Rootless cones on Mars indicating the presence of shallow equatorial ground ice in recent times, GRL, 28, 2365-2368, 2001. Lucchitta, B., Mars and Earth: Comparison cold climate features. Icarus 45, 264-303, 1981. Squyres, S., and M. Carr, Geomorphic evidence for the distribution of ground ice on Mars, Science, 231, 249-252, 1986.

  3. S/MARt DB: a database on scaffold/matrix attached regions.

    PubMed

    Liebich, Ines; Bode, Jürgen; Frisch, Matthias; Wingender, Edgar

    2002-01-01

    S/MARt DB, the S/MAR transaction database, is a relational database covering scaffold/matrix attached regions (S/MARs) and nuclear matrix proteins that are involved in the chromosomal attachment to the nuclear scaffold. The data are mainly extracted from original publications, but a World Wide Web interface for direct submissions is also available. S/MARt DB is closely linked to the TRANSFAC database on transcription factors and their binding sites. It is freely accessible through the World Wide Web (http://transfac.gbf.de/SMARtDB/) for non-profit research.

  4. Sentence-Based Metadata: An Approach and Tool for Viewing Database Designs.

    ERIC Educational Resources Information Center

    Boyle, John M.; Gunge, Jakob; Bryden, John; Librowski, Kaz; Hanna, Hsin-Yi

    2002-01-01

    Describes MARS (Museum Archive Retrieval System), a research tool which enables organizations to exchange digital images and documents by means of a common thesaurus structure, and merge the descriptive data and metadata of their collections. Highlights include theoretical basis; searching the MARS database; and examples in European museums.…

  5. The Mars Climate Orbiter is prepared for a spin test in the SAEF- 2

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF- 2), a worker maneuvers the Mars Climate Orbiter, suspended by an overhead crane, to the spin test equipment at lower right. Targeted for launch aboard a Delta II rocket on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface.

  6. The Mars Climate Orbiter is prepared for a spin test in the SAEF- 2

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF- 2), workers prepare the Mars Climate Orbiter for a spin test. Targeted for launch aboard a Delta II rocket on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. At the extreme right can be seen the lander in another work area. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface.

  7. The Mars Climate Orbiter is prepared for a spin test in the SAEF- 2

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF- 2), the Mars Climate Orbiter is lifted from the workstand to move it to another site for a spin test. Targeted for launch aboard a Delta II rocket on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface.

  8. Climate Cycling on Early Mars Caused by the Carbonate-Silicate Cycle

    NASA Astrophysics Data System (ADS)

    Kasting, J. F.; Batalha, N. E.; Haqq-Misra, J. D.; Kopparapu, R.

    2016-12-01

    For decades, scientists have tried to explain the evidence for fluvial activity on early Mars, but a consensus has yet to emerge regarding the mechanism for producing it. One hypothesis suggests early Mars was warmed by a thick greenhouse atmosphere [1]. Another suggests early Mars was generally cold but was warmed occasionally by impacts or by episodes of enhanced volcanism [2,3], with warming possibly extended by cirrus clouds [4]. These latter hypotheses struggle to produce the amounts of rainfall needed to form the martian valleys, but are consistent with inferred low rates of weathering compared to Earth. We suggest that both schools of thought are partly correct. Mars experienced dramatic climate cycles with extended periods of glaciation punctuated by warm periods lasting up to 10 Myr [5]. Cycles of repeated glaciation and deglaciation occurred because stellar insolation was low, and because CO2 outgassing could not keep pace with CO2 consumption by silicate weathering followed by deposition of carbonates. In order to deglaciate early Mars, substantial outgassing of molecular hydrogen from Mars' reduced crust and mantle was also required, as our own climate model is unable to do this without adding some greenhouse warming from H2 [6,7]. Our hypothesis can be tested by future Mars exploration that better establishes the time scale for valley formation. References: [1] Pollack JB, Kasting JF, Richardson SM, Poliakoff K. 1987. Icarus 71: 203-24 [2] Halevy I, Head JW. 2014. Nature Geoscience 7: 865-8 [3] Segura TL, Toon OB, Colaprete A, Zahnle K. 2002. Science 298: 1977-80 [4] Urata RA, Toon OB. 2013. Icarus 226: 229-50 [5] Batalha NE, Kopparapu RK, Haqq-Misra JD, Kasting JF. submitted. Climate cycling on early Mars caused by the carbonate-silicate cycle. EPSL [6] Ramirez RM, Kopparapu R, Zugger ME, Robinson TD, Freedman R, Kasting JF. 2014. Nature Geosci 7: 59-63 [7] Batalha N, Domagal-Goldman SD, Ramirez R, Kasting JF. 2015. Icarus 258: 337-49

  9. Search for Remnant Water Ice from Past Glacial Climates on Mars: The Mars Odyssey Neutron Spectrometer

    NASA Astrophysics Data System (ADS)

    Feldman, W. C.; Prettyman, T. H.; Maurice, S.; Lawrence, D. J.; Pathare, A.; Milliken, R. E.; Travis, B. J.

    2011-03-01

    We find at least three likely target locations of presently existing deposits of buried "bulk" water ice that may be remnants of multiple episodes of dirty ice precipitation events at low to mid-martian latitudes driven by climate changes during the last 1 to 10 Ma.

  10. Early Mars Climate Revisited With a Global Probability Map of Martian Valley Network Origin and Distribution

    NASA Astrophysics Data System (ADS)

    Grau Galofre, A.; Jellinek, M.; Osinski, G. R.

    2016-12-01

    Valley networks are among the most arresting features on the surface of Mars. Their provocative morphologic resemblance to river valleys on Earth has lead many scientists to argue for Martian river valleys in a "warm and wet" climate scenario, with conditions similar to the terrestrial mid-to-low latitudes. However, this warm scenario is difficult to reconcile with climate models for an Early Mars receiving radiation from a fainter young Sun. Moreover, recent models suggest a colder scenario, with conditions more similar to present day Greenland or Antarctica. Here we use three independent characterization schemes to show quantitative evidence for fluvial, glacial, groundwater sapping and subglacial meltwater channels to build the first global probability map of Martian valley networks. We distinguish a SW-NE corridor of fluvial drainage networks spanning latitudes from 30ºS to 30ºN. We identify additional widespread patterns related to glaciation, subglacial drainage and channels incised by groundwater springs. This global characterization of Martian valleys has profound implications for the average climate of early Mars as well as its variability in space and time.

  11. A warmer and wetter solution for early Mars and the challenges with transient warming

    NASA Astrophysics Data System (ADS)

    Ramirez, Ramses M.

    2017-11-01

    The climate of early Mars has been hotly debated for decades. Although most investigators believe that the geology indicates the presence of surface water, disagreement has persisted regarding how warm and wet the surface must have been and how long such conditions may have existed. Although the geologic evidence is most easily explained by a persistently warm climate, the perceived difficulty that climate models have in generating warm surface conditions has seeded various models that assume a cold and glaciated early Mars punctuated by transient warming episodes. However, I use a single-column radiative convective climate model to show that it is relatively more straightforward to satisfy warm and relatively non-glaciated early Mars conditions, requiring only ∼1% H2 and 3 bar CO2 or ∼20% H2 and 0.55 bar CO2. In contrast, the reflectivity of surface ice greatly increases the difficulty to transiently warm an initially frozen surface. Surface pressure thresholds required for warm conditions increase ∼10 - 60% for transient warming models, depending on ice cover fraction. No warm solution is possible for ice cover fractions exceeding 40%, 70%, and 85% for mixed snow/ice and 25%, 35%, and 49% for fresher snow/ice at H2 concentrations of 3%, 10%, and 20%, respectively. If high temperatures (298-323 K) were required to produce the observed surface clay amounts on a transiently warm early Mars (Bishop et al), I show that such temperatures would have required surface pressures that exceed available paleopressure constraints for nearly all H2 concentrations considered (1-20%). I then argue that a warm and semi-arid climate remains the simplest and most logical solution to Mars paleoclimate.

  12. The fairing for the Delta II rocket carrying the Mars Polar Lander arrives on Pad 17B, CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander arrives at Pad 17B, Cape Canaveral Air Station. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern- most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998.

  13. The SRBs for the Delta II rocket carrying the Mars Polar Lander arrive on Pad 17B, CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On Pad 17B, Cape Canaveral Air Station, a solid rocket booster is raised to a vertical position for mating with the Delta II rocket carrying the Mars Polar Lander. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar- powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998.

  14. Mars Polar Lander is mated with Boeing Delta II rocket

    NASA Technical Reports Server (NTRS)

    1998-01-01

    At Launch Complex 17B, Cape Canaveral Air Station, workers get ready to remove the protective wrapping on the Mars Polar Lander to be launched aboard a Boeing Delta II rocket on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars Surveyor'98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.

  15. Mars Polar Lander is mated with Boeing Delta II rocket

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Inside the gantry at Launch Complex 17B, Cape Canaveral Air Station, the Mars Polar Lander spacecraft is lowered to mate it with the Boeing Delta II rocket that will launch it on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars Surveyor'98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.

  16. Mars Polar Lander arrives at Pad 17B, CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Mars Polar Landerspacecraft is lifted off the trailer of that transported it to the gantry at Launch Complex 17B, Cape Canaveral Air Station. The lander, which will be launched aboard a Boeing Delta II rocket on Jan. 3, 1999, is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.

  17. The fairing for the Delta II rocket carrying the Mars Polar Lander arrives on Pad 17B, CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander is lifted to a vertical position on Pad 17B, Cape Canaveral Air Station. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998.

  18. The SRBs for the Delta II rocket carrying the Mars Polar Lander arrive on Pad 17B, CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On Pad 17B, Cape Canaveral Air Station, a solid rocket booster waits for mating with the Delta II rocket (in background) carrying the Mars Polar Lander. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar- powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998.

  19. The SRBs for the Delta II rocket carrying the Mars Polar Lander arrive on Pad 17B, CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On Pad 17B, Cape Canaveral Air Station, workers monitor the solid rocket booster before its being lifted to mate with the Delta II rocket carrying the Mars Polar Lander. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998.

  20. The fairing for the Delta II rocket carrying the Mars Polar Lander arrives on Pad 17B, CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander is lifted to the top of the gantry on Pad 17B, Cape Canaveral Air Station. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998.

  1. Mars Polar Lander is mated with Boeing Delta II rocket

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers mate the Mars Polar Lander (top) to the Boeing Delta II rocket at Launch Complex 17B, Cape Canaveral Air Station. The rocket is scheduled to launch Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern- most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars Surveyor '98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.

  2. The SRBs for the Delta II rocket carrying the Mars Polar Lander arrive on Pad 17B, CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On Pad 17B, Cape Canaveral Air Station, a solid rocket booster hangs in place between two other rocket boosters waiting to be mated with the Delta II rocket carrying the Mars Polar Lander. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998.

  3. The SRBs for the Delta II rocket carrying the Mars Polar Lander arrive on Pad 17B, CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On Pad 17B, Cape Canaveral Air Station, the gantry holding the solid rocket boosters is moved into place next to the Delta II rocket carrying the Mars Polar Lander. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998.

  4. Was Early Mars Warmed by CH4?

    NASA Astrophysics Data System (ADS)

    Justh, H. L.; Kasting, J. F.

    2001-12-01

    Images from the Mariner, Viking and Mars Global Surveyor missions have shown geologic features on the Martian surface that seem to indicate an earlier period of hydrologic activity. Many researchers have suggested that the early Martian climate was more Earth-like with a Ts of 273 K or higher. The presence of liquid water would require a greenhouse effect much larger than needed at present since S0 is 25% lower 3.8 billion years ago when the channels are thought to have formed. Research into the effects of CO2 clouds upon the climate of early Mars have yielded results that would not effectively warm the surface to the temperature needed to account for the presence of liquid water. Forget and Pierrehumbert (Science, 1997) showed that large crystals of CO2 ice in clouds that form in the upper troposphere would produce a strong warming effect. Obtaining mean surface temperatures above 273 K would require 100% cloud cover, a condition that is unrealistic for early Mars. It has also been shown that any reduction in cloud cover makes it difficult to achieve warm Martian surface temperatures except at high pressures. CO2 clouds could also cool the Martian surface if they were low and optically thick. CO2 ice may be hard to nucleate, leading to the formation of very large particles (Glandorf, private communication). CH4 has been suggested as an important greenhouse gas on the early Earth. This has led us to look at CH4 as a potential solution to the early Mars climate issue. To investigate the possible warming effect of CH4, we utilized a modified, one-dimensional, radiative-convective climate model that has been used in previous studies of the early Martian climate. New calculations of the effects of CH4 upon the early Martian climate will be presented. The use of CH4 to warm the surface of early Mars does not necessarily imply the presence of life on Mars. Abiotic sources of CH4, such as serpentinization of ultramafic rocks, could supply the concentrations needed to warm the surface.

  5. The heat shield for the Mars Polar Lander is attached

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), workers lower the heat shield onto the Mars Polar Lander. Scheduled to be launched on Jan. 3, 1999, the lander is a solar- powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, which is due to be launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.

  6. The Mars Polar Lander undergoes spin test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), workers maneuver the Mars Polar Lander onto a spin table for testing. The lander, which will be launched on Jan. 3, 1999, is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, which is due to be launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.

  7. The Mars Polar Lander undergoes spin test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Polar Lander is lowered toward a spin table for testing. The lander, which will be launched on Jan. 3, 1999, is a solar- powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, which is due to be launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.

  8. The Coupled Mars Dust and Water Cycles: Understanding How Clouds Affect the Vertical Distribution and Meridional Transport of Dust and Water.

    NASA Technical Reports Server (NTRS)

    Kahre, M. A.

    2015-01-01

    The dust and water cycles are crucial to the current Martian climate, and they are coupled through cloud formation. Dust strongly impacts the thermal structure of the atmosphere and thus greatly affects atmospheric circulation, while clouds provide radiative forcing and control the hemispheric exchange of water through the modification of the vertical distributions of water and dust. Recent improvements in the quality and sophistication of both observations and climate models allow for a more comprehensive understanding of how the interaction between the dust and water cycles (through cloud formation) affects the dust and water cycles individually. We focus here on the effects of clouds on the vertical distribution of dust and water, and how those vertical distributions control the net meridional transport of water. For this study, we utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) combined with the NASA ARC Mars Global Climate Model (MGCM). We demonstrate that the magnitude and nature of the net meridional transport of water between the northern and southern hemispheres during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. We further examine how clouds influence the atmospheric thermal structure and thus the vertical structure of the cloud belt. Our goal is to identify and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  9. The Mars Dust and Water Cycles: Investigating the Influence of Clouds on the Vertical Distribution and Meridional Transport of Dust and Water.

    NASA Technical Reports Server (NTRS)

    Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Brecht, A. S.; Urata, R.

    2015-01-01

    The dust and water cycles are critical to the current Martian climate, and they interact with each other through cloud formation. Dust modulates the thermal structure of the atmosphere and thus greatly influences atmospheric circulation. Clouds provide radiative forcing and control the net hemispheric transport of water through the alteration of the vertical distributions of water and dust. Recent advancements in the quality and sophistication of both climate models and observations enable an increased understanding of how the coupling between the dust and water cycles (through cloud formation) impacts the dust and water cycles. We focus here on the effects of clouds on the vertical distributions of dust and water and how those vertical distributions control the net meridional transport of water. We utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) and the NASA ARC Mars Global Climate Model (MGCM) to show that the magnitude and nature of the hemispheric exchange of water during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. Further, we investigate how clouds influence atmospheric temperatures and thus the vertical structure of the cloud belt. Our goal is to isolate and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  10. The Mars Dust and Water Cycles: Investigating the Influence of Clouds on the Vertical Distribution and Meridional Transport of Dust and Water

    NASA Astrophysics Data System (ADS)

    Kahre, Melinda A.; Haberle, Robert M.; Hollingsworth, Jeffery L.; Brecht, Amanda S.; Urata, Richard A.

    2015-11-01

    The dust and water cycles are critical to the current Martian climate, and they interact with each other through cloud formation. Dust modulates the thermal structure of the atmosphere and thus greatly influences atmospheric circulation. Clouds provide radiative forcing and control the net hemispheric transport of water through the alteration of the vertical distributions of water and dust. Recent advancements in the quality and sophistication of both climate models and observations enable an increased understanding of how the coupling between the dust and water cycles (through cloud formation) impacts the dust and water cycles. We focus here on the effects of clouds on the vertical distributions of dust and water and how those vertical distributions control the net meridional transport of water. We utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) and the NASA ARC Mars Global Climate Model (MGCM) to show that the magnitude and nature of the hemispheric exchange of water during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. Further, we investigate how clouds influence atmospheric temperatures and thus the vertical structure of the cloud belt. Our goal is to isolate and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  11. On the habitability of Mars: An approach to planetary ecosynthesis

    NASA Technical Reports Server (NTRS)

    Averner, M. M. (Editor); Macelroy, R. D. (Editor)

    1976-01-01

    The possibility of utilizing Mars as a habitat for terrestrial life, including man, is examined. Available data, assumptions, and speculations on the climate, physical state, and chemical inventory of Mars are reviewed and compared with the known requirements and environmental limits of terrestrial life. No fundamental, insuperable limitation of the ability of Mars to support a terrestrial ecology is identified. The lack of an oxygen-containing atmosphere would prevent the unaided habitation of Mars by man. The present strong ultraviolet surface irradiation is an additional major barrier. The creation of an adequate oxygen and ozone-containing atmosphere on Mars may be feasible through the use of photosynthetic organisms. The time needed to generate such an atmosphere, however, might be several millions of years. This period might be drastically reduced by the synthesis of novel, Mars-adapted, oxygen producing photosynthetic strains by techniques of genetic engineering, and modifying the present Martian climate by melting of the Martian polar caps and concomitant advective and greenhouse heating effects.

  12. The Mars Climate Orbiter awaits launch from Pad 17A, CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    After launch tower retraction, the Boeing Delta II rocket carrying NASA's Mars Climate Orbiter undergoes final preparations for liftoff on Dec. 11, 1998, at Launch Complex 17A, Cape Canaveral Air Station. The launch was delayed one day when personnel detected a battery-related software problem in the spacecraft. The problem was corrected and the launch was rescheduled for the next day. The first of a pair of spacecraft in the Mars Surveyor '98 Project, the orbiter is heading for Mars where it will first provide support to its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will then monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface.

  13. The Mars Climate Orbiter launches from Pad 17A, CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A Boeing Delta II expendable launch vehicle lifts off with NASA's Mars Climate Orbiter at 1:45:51 p.m. EST, on Dec. 11, 1998, from Launch Complex 17A, Cape Canaveral Air Station. The launch was delayed one day when personnel detected a battery-related software problem in the spacecraft. The problem was corrected and the launch was rescheduled for the next day. The first of a pair of spacecraft to be launched in the Mars Surveyor '98 Project, the orbiter is heading for Mars where it will first provide support to its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will then monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface.

  14. Mapping analysis of scaffold/matrix attachment regions (s/MARs) from two different mammalian cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilus, Nur Shazwani Mohd; Ahmad, Azrin; Yusof, Nurul Yuziana Mohd

    Scaffold/matrix attachment regions (S/MARs) are potential element that can be integrated into expression vector to increase expression of recombinant protein. Many studies on S/MAR have been done but none has revealed the distribution of S/MAR in a genome. In this study, we have isolated S/MAR sequences from HEK293 and Chinese hamster ovary cell lines (CHO DG44) using two different methods utilizing 2 M NaCl and lithium-3,5-diiodosalicylate (LIS). The isolated S/MARs were sequenced using Next Generation Sequencing (NGS) platform. Based on reference mapping analysis against human genome database, a total of 8,994,856 and 8,412,672 contigs of S/MAR sequences were retrieved frommore » 2M NaCl and LIS extraction of HEK293 respectively. On the other hand, reference mapping analysis of S/MAR derived from CHO DG44 against our own CHO DG44 database have generated a total of 7,204,348 and 4,672,913 contigs from 2 M NaCl and LIS extraction method respectively.« less

  15. The "Mars-Sun Connection" and the Impact of Solar Variability on Mars Weather and Climate

    NASA Astrophysics Data System (ADS)

    Hassler, D. M.; Grinspoon, D.

    2004-05-01

    We develop the scientific case to measure simultaneously the UV and near-UV solar irradiance incident on the Mars atmosphere and at the Martian surface, to explore the effects and influence of Solar variability and "Space Weather" on Mars weather and climate, its implications for life, and the implications for astronaut safety on future manned Mars missions. The UV flux at the Martian surface is expected to be highly variable, due to diurnal, daily, and seasonal variations in opacity of atmospheric dust and clouds, as well as diurnal and seasonal variations in ozone, water vapor and other absorbing species. This flux has been modeled (Kuhn and Atreya, 1979), but never measured directly from the Martian surface. By directly observing the UV and near UV solar irradiance both at the top of the atmosphere and at the Martian surface we will be able to directly constrain important model parameters necessary to understand the variations of atmospheric dynamics which drive both Mars weather and climate. Directly measuring the solar UV radiation incident upon the Mars atmosphere and at the Martian surface also has important implications for astronaut safety on future manned Mars missions. The flux at the surface of Mars at 250 nm is also believed to be approximately 3000 times greater than that on Earth. This presents potential hazards to future human explorers as well as challenges for future agriculture such as may be carried out in surface greenhouses to provide food for human colonists. A better understanding of the surface flux will aid in designing appropriate protection against these hazards.

  16. The ``Mars-Sun Connection" and the Impact of Solar Variability on Mars Weather and Climate

    NASA Astrophysics Data System (ADS)

    Hassler, D. M.; Grinspoon, D. H.

    2003-05-01

    We develop the scientific case to measure simultaneously the UV and near-UV solar irradiance incident on the Mars atmosphere and at the Martian surface, to explore the effects and influence of Solar variability and ``Space Weather" on Mars weather and climate, its implications for life, and the implications for astronaut safety on future manned Mars missions. The UV flux at the Martian surface is expected to be highly variable, due to diurnal, daily, and seasonal variations in opacity of atmospheric dust and clouds, as well as diurnal and seasonal variations in ozone, water vapor and other absorbing species. This flux has been modeled (Kuhn and Atreya, 1979), but never measured directly from the Martian surface. By directly observing the UV and near UV solar irradiance both at the top of the atmosphere and at the Martian surface we will be able to directly constrain important model parameters necessary to understand the variations of atmospheric dynamics which drive both Mars weather and climate. Directly measuring the solar UV radiation incident upon the Mars atmosphere and at the Martian surface also has important implications for astronaut safety on future manned Mars missions. The flux at the surface of Mars at 250 nm is also believed to be approximately 3000 times greater than that on Earth. This presents potential hazards to future human explorers as well as challenges for future agriculture such as may be carried out in surface greenhouses to provide food for human colonists. A better understanding of the surface flux will aid in designing appropriate protection against these hazards.

  17. Implications of Martian Phyllosilicate Formation Conditions to the Early Climate on Mars

    NASA Astrophysics Data System (ADS)

    Bishop, J. L.; Baker, L.; Fairén, A. G.; Michalski, J. R.; Gago-Duport, L.; Velbel, M. A.; Gross, C.; Rampe, E. B.

    2017-12-01

    We propose that short-term warmer and wetter environments, occurring sporadically in a generally cold early Mars, enabled formation of phyllosilicate-rich outcrops on the surface of Mars without requiring long-term warm and wet conditions. We are investigating phyllosilicate formation mechanisms including CO2 and H2O budgets to provide constraints on the early martian climate. We have evaluated the nature and stratigraphy of phyllosilicate-bearing surface units on Mars based on i) phyllosilicate-forming environments on Earth, ii) phyllosilicate reactions in the lab, and iii) modeling experiments involving phyllosilicates and short-range ordered (SRO) materials. The type of phyllosilicates that form on Mars depends on temperature, water/rock ratio, acidity, salinity and available ions. Mg-rich trioctahedral smectite mixtures are more consistent with subsurface formation environments (crustal, hydrothermal or alkaline lakes) up to 400 °C and are not associated with martian surface environments. In contrast, clay profiles dominated by dioctahedral Al/Fe-smectites are typically formed in subaqueous or subaerial surface environments. We propose models describing formation of smectite-rich outcrops and laterally extensive vertical profiles of Fe/Mg-smectites, sulfates, and Al-rich clay assemblages formed in surface environments. Further, the presence of abundant SRO materials without phyllosilicates could mark the end of the last warm and wet episode on Mars supporting smectite formation. Climate Implications for Early Mars: Clay formation reactions proceed extremely slowly at cool temperatures. The thick smectite outcrops observed on Mars through remote sensing would require standing water on Mars for hundreds of millions of years if they formed in waters 10-15 °C. However, warmer temperatures could have enabled faster production of these smectite-rich beds. Sporadic warming episodes to 30-40 °C could have enabled formation of these smectites over only tens or hundreds of thousands of years instead. Our analyses of the phyllosilicate record on Mars point to a scenario of brief warm and wet conditions that accounts for formation of substantial smectite clays in many locations, geologic features resulting from liquid water across the planet, and a generally cold and dry climate.

  18. Glacial geomorphic evidence for a late climatic change on Mars

    NASA Technical Reports Server (NTRS)

    Kargel, J. S.; Strom, R. G.

    1992-01-01

    In a series of preliminary reports, we documented evidence of former glacial epochs on Mars. Apparent glacial landforms seemed to be concentrated primarily at middle to high southern latitudes. We now have additional evidence supporting the view that Martian glaciation appears to have been more extensive than previously recognized. The growth and collapse of ice sheets on Mars seems closely analogous to the growth and decline of Earth's great Pleistocene ice sheets. This implies that climate change was probably somewhat comparable on the two planets, although in the case of Mars the entire planet seems to have changed rapidly to a cold, dry present-day environment after the collapse of the ice sheets.

  19. Meter-scale morphology of the north polar region of Mars.

    PubMed

    Herkenhoff, K E; Byrne, S; Russell, P S; Fishbaugh, K E; McEwen, A S

    2007-09-21

    Mars' north pole is covered by a dome of layered ice deposits. Detailed ( approximately 30 centimeters per pixel) images of this region were obtained with the High-Resolution Imaging Science Experiment on board the Mars Reconnaissance Orbiter (MRO). Planum Boreum basal unit scarps reveal cross-bedding and show evidence for recent mass wasting, flow, and debris accumulation. The north polar layers themselves are as thin as 10 centimeters but appear to be covered by a dusty veneer in places, which may obscure thinner layers. Repetition of particular layer types implies that quasi-periodic climate changes influenced the stratigraphic sequence in the polar layered deposits, informing models for recent climate variations on Mars.

  20. Planet-wide sand motion on mars

    USGS Publications Warehouse

    Bridges, N.T.; Bourke, M.C.; Geissler, P.E.; Banks, M.E.; Colon, C.; Diniega, S.; Golombek, M.P.; Hansen, C.J.; Mattson, S.; McEwen, A.S.; Mellon, M.T.; Stantzos, N.; Thomson, B.J.

    2012-01-01

    Prior to Mars Reconnaissance Orbiter data, images of Mars showed no direct evidence for dune and ripple motion. This was consistent with climate models and lander measurements indicating that winds of sufficient intensity to mobilize sand were rare in the low-density atmosphere. We show that many sand ripples and dunes across Mars exhibit movement of as much as a few meters per year, demonstrating that Martian sand migrates under current conditions in diverse areas of the planet. Most motion is probably driven by wind gusts that are not resolved in global circulation models. A past climate with a thicker atmosphere is only required to move large ripples that contain coarse grains. ?? 2012 Geological Society of America.

  1. Meter-scale morphology of the north polar region of mars

    USGS Publications Warehouse

    Herkenhoff, K. E.; Byrne, S.; Russell, P.S.; Fishbaugh, K.E.; McEwen, A.S.

    2007-01-01

    Mars' north pole is covered by a dome of layered ice deposits. Detailed (???30 centimeters per pixel) images of this region were obtained with the High-Resolution Imaging Science Experiment on board the Mars Reconnaissance Orbiter (MRO). Planum Boreum basal unit scarps reveal cross-bedding and show evidence for recent mass wasting, flow, and debris accumulation. The north polar layers themselves are as thin as 10 centimeters but appear to be covered by a dusty veneer in places, which may obscure thinner layers. Repetition of particular layer types implies that quasi-periodic climate changes influenced the stratigraphic sequence in the polar layered deposits, informing models for recent climate variations on Mars.

  2. Intraseasonal and Interannual Variability of Mars Present Climate

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1996-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. The focus of this JRI has been to investigate the nature of intraseasonal and interannual variability of Mars'present climate. We have applied a three-dimensional climate model based on the full hydrostatic primitive equations to determine the spatial, but primarily, the temporal structures of the planet's large-scale circulation as it evolves during a given seasonal advance, and, over multi-annual cycles. The particular climate model applies simplified physical parameterizations and is computationally efficient. It could thus easily be integrated in a perpetual season or advancing season configuration, as well as over many Mars years. We have assessed both high and low-frequency components of the circulation (i.e., motions having periods of Omicron(2-10 days) or greater than Omicron(10 days), respectively). Results from this investigation have explored the basic issue whether Mars' climate system is naturally 'chaotic' associated with nonlinear interactions of the large-scale circulation-regardless of any allowance for year-to-year variations in external forcing mechanisms. Titles of papers presented at scientific conferences and a manuscript to be submitted to the scientific literature are provided. An overview of a areas for further investigation is also presented.

  3. Outflow Channels Influencing Martian Climate: Global Circulation Model Simulations with Emplaced Water

    NASA Technical Reports Server (NTRS)

    Santiago, D. L.; Colaprete, A.; Haberle, R. M.; Sloan, L. C.; Asphaug, E. I.

    2005-01-01

    The existence of surface water on Mars in past geologic epochs is inferred on the basis of geomorphologic interpretation of spaceflight images, and is supported by the recent Mars Odyssey identification of ice-rich soils [1]. The Mars Exploration Rovers have provided further chemical evidence for past surface hydrologic activity [2]. One issue is whether this water-rich climate ever existed in a steady state, or whether it was triggered by catastrophic events such as large impacts [3], and/ or catastrophic outburst floods, the topic of consideration here.

  4. Phoenix Mission Lander on Mars, Artist Concept

    NASA Image and Video Library

    2005-06-01

    NASA Phoenix Mars Lander, landed on May 25, 2008, and explored the history of water and monitored polar climate on Mars until communications ended in November, 2008, about six months after landing, when its solar panels ceased operating in the winter.

  5. Applications of Mars Global Reference Atmospheric Model (Mars-GRAM 2005) Supporting Mission Site Selection for Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.; Justus, Carl G.

    2008-01-01

    The Mars Global Reference Atmospheric Model (Mars-GRAM 2005) is an engineering level atmospheric model widely used for diverse mission applications. An overview is presented of Mars-GRAM 2005 and its new features. One new feature of Mars-GRAM 2005 is the 'auxiliary profile' option. In this option, an input file of temperature and density versus altitude is used to replace mean atmospheric values from Mars-GRAM's conventional (General Circulation Model) climatology. An auxiliary profile can be generated from any source of data or alternate model output. Auxiliary profiles for this study were produced from mesoscale model output (Southwest Research Institute's Mars Regional Atmospheric Modeling System (MRAMS) model and Oregon State University's Mars mesoscale model (MMM5)model) and a global Thermal Emission Spectrometer(TES) database. The global TES database has been specifically generated for purposes of making Mars-GRAM auxiliary profiles. This data base contains averages and standard deviations of temperature, density, and thermal wind components,averaged over 5-by-5 degree latitude-longitude bins and 15 degree L(s) bins, for each of three Mars years of TES nadir data. Results are presented using auxiliary profiles produced from the mesoscale model output and TES observed data for candidate Mars Science Laboratory (MSL) landing sites. Input parameters rpscale (for density perturbations) and rwscale (for wind perturbations) can be used to "recalibrate" Mars-GRAM perturbation magnitudes to better replicate observed or mesoscale model variability.

  6. Multi-temporal database of High Resolution Stereo Camera (HRSC) images - Alpha version

    NASA Astrophysics Data System (ADS)

    Erkeling, G.; Luesebrink, D.; Hiesinger, H.; Reiss, D.; Jaumann, R.

    2014-04-01

    Image data transmitted to Earth by Martian spacecraft since the 1970s, for example by Mariner and Viking, Mars Global Surveyor (MGS), Mars Express (MEx) and the Mars Reconnaissance Orbiter (MRO) showed, that the surface of Mars has changed dramatically and actually is continually changing [e.g., 1-8]. The changes are attributed to a large variety of atmospherical, geological and morphological processes, including eolian processes [9,10], mass wasting processes [11], changes of the polar caps [12] and impact cratering processes [13]. In addition, comparisons between Mariner, Viking and Mars Global Surveyor images suggest that more than one third of the Martian surface has brightened or darkened by at least 10% [6]. Albedo changes can have effects on the global heat balance and the circulation of winds, which can result in further surface changes [14-15]. The High Resolution Stereo Camera (HRSC) [16,17] on board Mars Express (MEx) covers large areas at high resolution and is therefore suited to detect the frequency, extent and origin of Martian surface changes. Since 2003 HRSC acquires highresolution images of the Martian surface and contributes to Martian research, with focus on the surface morphology, the geology and mineralogy, the role of liquid water on the surface and in the atmosphere, on volcanism, as well as on the proposed climate change throughout the Martian history and has improved our understanding of the evolution of Mars significantly [18-21]. The HRSC data are available at ESA's Planetary Science Archive (PSA) as well as through the NASA Planetary Data System (PDS). Both data platforms are frequently used by the scientific community and provide additional software and environments to further generate map-projected and geometrically calibrated HRSC data. However, while previews of the images are available, there is no possibility to quickly and conveniently see the spatial and temporal availability of HRSC images in a specific region, which is important to detect the surface changes that occurred between two or more images.

  7. Geology and insolation-driven climatic history of Amazonian north polar materials on Mars

    USGS Publications Warehouse

    Tanaka, K.L.

    2005-01-01

    Mariner 9 and Viking spacecraft images revealed that the polar regions of Mars, like those of Earth, record the planet's climate history. However, fundamental uncertainties regarding the materials, features, ages and processes constituting the geologic record remained. Recently acquired Mars Orbiter Laser Altimeter data and Mars Orbiter Camera high-resolution images from the Mars Global Surveyor spacecraft and moderately high-resolution Thermal Emission Imaging System visible images from the Mars Odyssey spacecraft permit more comprehensive geologic and climatic analyses. Here I map and show the history of geologic materials and features in the north polar region that span the Amazonian period (???3.0 Gyr ago to present). Erosion and redeposition of putative circumpolar mud volcano deposits (formed by eruption of liquefied, fine-grained material) led to the formation of an Early Amazonian polar plateau consisting of dark layered materials. Crater ejecta superposed on pedestals indicate that a thin mantle was present during most of the Amazonian, suggesting generally higher obliquity and insolation conditions at the poles than at present. Brighter polar layered deposits rest unconformably on the dark layers and formed mainly during lower obliquity over the past 4-5 Myr (ref. 20). Finally, the uppermost layers post-date the latest downtrend in obliquity <20,000 years ago. ?? 2005 Nature Publishing Group.

  8. Geology and insolation-driven climatic history of Amazonian north polar materials on Mars.

    PubMed

    Tanaka, Kenneth L

    2005-10-13

    Mariner 9 and Viking spacecraft images revealed that the polar regions of Mars, like those of Earth, record the planet's climate history. However, fundamental uncertainties regarding the materials, features, ages and processes constituting the geologic record remained. Recently acquired Mars Orbiter Laser Altimeter data and Mars Orbiter Camera high-resolution images from the Mars Global Surveyor spacecraft and moderately high-resolution Thermal Emission Imaging System visible images from the Mars Odyssey spacecraft permit more comprehensive geologic and climatic analyses. Here I map and show the history of geologic materials and features in the north polar region that span the Amazonian period (approximately 3.0 Gyr ago to present). Erosion and redeposition of putative circumpolar mud volcano deposits (formed by eruption of liquefied, fine-grained material) led to the formation of an Early Amazonian polar plateau consisting of dark layered materials. Crater ejecta superposed on pedestals indicate that a thin mantle was present during most of the Amazonian, suggesting generally higher obliquity and insolation conditions at the poles than at present. Brighter polar layered deposits rest unconformably on the dark layers and formed mainly during lower obliquity over the past 4-5 Myr (ref. 20). Finally, the uppermost layers post-date the latest downtrend in obliquity <20,000 years ago.

  9. Cemented Volcanic Soils, Martian Spectra and Implications for the Martian Climate

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Schiffman, P.; Drief, A.; Southard, R. J.

    2004-01-01

    Cemented soils formed via reactions with salts are studied here and provide information about the climate when they formed. Spectroscopic and microprobe studies have been performed on cemented volcanic crusts in order to learn about the composition of these materials, how they formed, and what they can tell us about climatic interactions with surface material on Mars to form cemented soils. These crusts include carbonate, sulfate and opaline components that may all be present in cemented soil units on Mars.

  10. KSC-98pc1822

    NASA Image and Video Library

    1998-12-02

    KENNEDY SPACE CENTER, FLA. -- On Pad 17B, Cape Canaveral Air Station, a solid rocket booster waits for mating with the Delta II rocket (in background) carrying the Mars Polar Lander. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998

  11. KSC-98pc1827

    NASA Image and Video Library

    1998-12-02

    KENNEDY SPACE CENTER, FLA. -- The fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander arrives at Pad 17B, Cape Canaveral Air Station. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998

  12. The Mars Polar Lander undergoes spin test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) lift the Mars Polar Lander to move it to a spin table for testing. The lander, which will be launched on Jan. 3, 1999, is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, which is due to be launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.

  13. Unified Planetary Coordinates System: A Searchable Database of Geodetic Information

    NASA Technical Reports Server (NTRS)

    Becker, K. J.a; Gaddis, L. R.; Soderblom, L. A.; Kirk, R. L.; Archinal, B. A.; Johnson, J. R.; Anderson, J. A.; Bowman-Cisneros, E.; LaVoie, S.; McAuley, M.

    2005-01-01

    Over the past 40 years, an enormous quantity of orbital remote sensing data has been collected for Mars from many missions and instruments. Unfortunately these datasets currently exist in a wide range of disparate coordinate systems, making it extremely difficult for the scientific community to easily correlate, combine, and compare data from different Mars missions and instruments. As part of our work for the PDS Imaging Node and on behalf of the USGS Astrogeology Team, we are working to solve this problem and to provide the NASA scientific research community with easy access to Mars orbital data in a unified, consistent coordinate system along with a wide variety of other key geometric variables. The Unified Planetary Coordinates (UPC) system is comprised of two main elements: (1) a database containing Mars orbital remote sensing data computed using a uniform coordinate system, and (2) a process by which continual maintainance and updates to the contents of the database are performed.

  14. The Future of Planetary Climate Modeling and Weather Prediction

    NASA Technical Reports Server (NTRS)

    Del Genio, A. D.; Domagal-Goldman, S. D.; Kiang, N. Y.; Kopparapu, R. K.; Schmidt, G. A.; Sohl, L. E.

    2017-01-01

    Modeling of planetary climate and weather has followed the development of tools for studying Earth, with lags of a few years. Early Earth climate studies were performed with 1-dimensionalradiative-convective models, which were soon fol-lowed by similar models for the climates of Mars and Venus and eventually by similar models for exoplan-ets. 3-dimensional general circulation models (GCMs) became common in Earth science soon after and within several years were applied to the meteorology of Mars, but it was several decades before a GCM was used to simulate extrasolar planets. Recent trends in Earth weather and and climate modeling serve as a useful guide to how modeling of Solar System and exoplanet weather and climate will evolve in the coming decade.

  15. An Ice-and-Snow Hypothesis for Early Mars, and the Runoff-Production Test

    NASA Astrophysics Data System (ADS)

    Kite, E. S.

    2017-10-01

    Cold (snowmelt) models for Early Mars climate can be tested by measuring paleochannel widths and meander wavelengths for Early Mars watersheds with well-defined drainage area. I will review snowmelt models, and report results of these tests.

  16. Climate Vulnerability of Hydro-power infrastructure in the Eastern African Power Pool

    NASA Astrophysics Data System (ADS)

    Sridharan, Vignesh

    2017-04-01

    At present there is around 6000 MW of installed hydropower capacity in the Eastern African power pool (EAPP)[1]. With countries aggressively planning to achieve the Sustainable development goal (SDG) of ensuring access to affordable electricity for all, a three-fold increase in hydropower capacity is expected by 2040 [1]. Most of the existing and planned infrastructure lie inside the Nile River Basin. The latest assessment report (AR 5) from the Intergovernmental Panel on Climate Change (IPCC) indicates a high level of climatic uncertainty in the Nile Basin. The Climate Moisture index (CMI) for the Eastern Nile region and the Nile Equatorial lakes varies significantly across the different General Circulation Models (GCM)[2]. Such high uncertainty casts a shadow on the plans to expand hydropower capacity, doubting whether hydropower expansion can contribute to the goal of improving access to electricity or end up as sunk investments. In this assessment, we analyze adaptation strategies for national energy systems in the Eastern African Power Pool (EAPP), which minimize the regret that could potentially arise from impacts of a changed climate. An energy systems model of the EAPP is developed representing national electricity supply infrastructure. Cross border transmission and hydropower infrastructure is defined at individual project level. The energy systems model is coupled with a water systems management model of the Nile River Basin that calculates the water availability at different hydropower infrastructures under a range of climate scenarios. The results suggest that a robust adaptation strategy consisting of investments in cross border electricity transmission infrastructure and diversifying sources of electricity supply will require additional investments of USD 4.2 billion by 2050. However, this leads to fuel and operational cost savings of up to USD 22.6 billion, depending on the climate scenario. [1] "Platts, 2016. World Electric Power Plants Database," World Electric Power Plants Database. [Online]. Available: http://www.platts.com/Products/worldelectricpowerplantsdatabase. [Accessed: 01-Mar-2016]. [2] Brent Boehlert, Kenneth M. Strzepek, David Groves, and Bruce Hewitson, Chris Jack, "Climate Change Projections in Africa-Chapter 3," in Enhancing the Climate Resilience of Africa's Infrastructure : The Power and Water Sectors, Washington DC: The World Bank, 2016, p. 219.

  17. Proceedings of the 40th Lunar and Planetary Science Conference

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The 40th Lunar and Planetary Science Conference included sessions on: Phoenix: Exploration of the Martian Arctic; Origin and Early Evolution of the Moon; Comet Wild 2: Mineralogy and More; Astrobiology: Meteorites, Microbes, Hydrous Habitats, and Irradiated Ices; Phoenix: Soil, Chemistry, and Habitability; Planetary Differentiation; Presolar Grains: Structures and Origins; SPECIAL SESSION: Venus Atmosphere: Venus Express and Future Missions; Mars Polar Caps: Past and Present; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part I; 5 Early Nebula Processes and Models; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Cosmic Gymnasts; Mars: Ground Ice and Climate Change; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part II; Chondrite Parent-Body Processes; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Salubrious Surfaces; SNC Meteorites; Ancient Martian Crust: Primary Mineralogy and Aqueous Alteration; SPECIAL SESSION: Messenger at Mercury: A Global Perspective on the Innermost Planet; CAIs and Chondrules: Records of Early Solar System Processes; Small Bodies: Shapes of Things to Come; Sulfur on Mars: Rocks, Soils, and Cycling Processes; Mercury: Evolution and Tectonics; Venus Geology, Volcanism, Tectonics, and Resurfacing; Asteroid-Meteorite Connections; Impacts I: Models and Experiments; Solar Wind and Genesis: Measurements and Interpretation; Mars: Aqueous Processes; Magmatic Volatiles and Eruptive Conditions of Lunar Basalts; Comparative Planetology; Interstellar Matter: Origins and Relationships; Impacts II: Craters and Ejecta Mars: Tectonics and Dynamics; Mars Analogs I: Geological; Exploring the Diversity of Lunar Lithologies with Sample Analyses and Remote Sensing; Chondrite Accretion and Early History; Science Instruments for the Mars Science Lander; . Martian Gullies: Morphology and Origins; Mars: Dunes, Dust, and Wind; Mars: Volcanism; Early Solar System Chronology; Seek Out and Explore: Upcoming and Future Missions; Mars: Early History and Impact Processes; Mars Analogs II: Chemical and Spectral; Achondrites and their Parent Bodies; and Planning for Future Exploration of the Moon The poster sessions were: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1; LRO and LCROSS; Geophysical Analysis of the Lunar Surface and Interior; Remote Observation and Geologic Mapping of the Lunar Surface; Lunar Spectroscopy; Venus Geology, Geophysics, Mapping, and Sampling; Planetary Differentiation; Bunburra and Buzzard Coulee: Recent Meteorite Falls; Meteorites: Terrestrial History; CAIs and Chondrules: Records of Early Solar System Processes; Volatile and Organic Compounds in Chondrites; Crashing Chondrites: Impact, Shock, and Melting; Ureilite Studies; Petrology and Mineralogy of the SNC Meteorites; Martian Meteorites; Phoenix Landing Site: Perchlorate and Other Tasty Treats; Mars Polar Atmospheres and Climate Modeling; Mars Polar Investigations; Mars Near-Surface Ice; Mars: A Volatile-Rich Planet; Mars: Geochemistry and Alteration Processes; Martian Phyllosilicates: Identification, Formation, and Alteration; Astrobiology; Instrument Concepts, Systems, and Probes for Investigating Rocks and Regolith; Seeing is Believing: UV, VIS, IR, X- and Gamma-Ray Camera and Spectrometer Instruments; Up Close and Personal: In Situ Analysis with Laser-Induced Breakdown Spectroscopy and Mass Spectrometry; Jupiter and Inscrutable Io; Tantalizing Titan; Enigmatic Enceladus and Intriguing Iapetus; Icy Satellites: Cryptic Craters; Icy Satellites: Gelid Geology/Geophysics; Icy Satellites: Cool Chemistry and Spectacular Spectroscopy; Asteroids and Comets; Comet Wild 2: Mineralogy and More; Hypervelocity Impacts: Stardust Models, LDEF, and ISPE; Presolar Grains; Early Nebular Processes: Models and Isotopes; Solar Wind and Genesis: Measurements and Interpretation; Education and Public Outreach; Mercury; Pursuing Lunar Exploration; Sources and Eruptionf Lunar Basalts; Chemical and Physical Properties of the Lunar Regolith; Lunar Dust and Transient Surface Phenomena; Lunar Databases and Data Restoration; Meteoritic Samples of the Moon; Chondrites, Their Clasts, and Alteration; Achondrites: Primitive and Not So Primitive; Iron Meteorites; Meteorite Methodology; Antarctic Micrometeorites; HEDs and Vesta; Dust Formation and Transformation; Interstellar Organic Matter; Early Solar System Chronology; Comparative Planetology; Impacts I: Models and Experiments; Impacts II: Craters and Ejecta; Mars: Volcanism; Mars: Tectonics and Dynamics; Martian Stratigraphy: Understanding the Geologic History of Mars Through the Sedimentary Rock Record; Mars: Valleys and Valley Networks; Mars: Aqueous Processes in Valles Marineris and the Southern Highlands; Mars: Aqueous Geomorphology; Martian Gullies: Morphology and Origins; Mars: Dunes, Dust, and Wind; Mars: Remote Sensing; Mars: Geologic Mapping, Photogrammetry, and Cratering; Martian Mineralogy: Constraints from Missions and Laboratory Investigations; Mars Analogs: Chemical and Physical; Mars Analogs: Sulfates and Sulfides; Missions: Approaches, Architectures, Analogs, and Actualities; Not Just Skin Deep: Electron Microscopy, Heat Flow, Radar, and Seismology Instruments and Planetary Data Systems, Techniques, and Interpretation.

  18. The Mars climate for a photovoltaic system operation

    NASA Technical Reports Server (NTRS)

    Appelbaum, Joseph; Flood, Dennis J.

    1989-01-01

    Detailed information on the climatic conditions on Mars are very desirable for the design of photovoltaic systems for establishing outposts on the Martian surface. The distribution of solar insolation (global, direct and diffuse) and ambient temperature is addressed. This data are given at the Viking lander's locations and can also be used, to a first approximation, for other latitudes. The insolation data is based on measured optical depth of the Martian atmosphere derived from images taken of the sun with a special diode on the Viking cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation. The ambient temperature (diurnal and yearly distribution) is based on direct measurements with a thermocouple at 1.6 m above the ground at the Viking lander locations. The insolation and ambient temperature information are short term data. New information about Mars may be forthcoming in the future from new analysis of previously collected data or from future flight missions. The Mars climate data for photovoltaic system operation will thus be updated accordingly.

  19. Early Mars was wet but not warm: Erosion, fluvial features, liquid water habitats, and life below freezing

    NASA Technical Reports Server (NTRS)

    Mckay, C. P.; Davis, W. L.

    1993-01-01

    There is considerable evidence that Mars had liquid water early in its history and possibly at recurrent interval. It has generally been assumed that this implied that the climate was warmer as a result of a thicker CO2 atmosphere than at the present. However, recent models suggest that Mars may have had a thick atmosphere but may not have experienced mean annual temperatures above freezing. In this paper we report on models of liquid water formation and maintenance under temperatures well below freezing. Our studies are based on work in the north and south polar regions of Earth. Our results suggest that early Mars did have a thick atmosphere but precipitation and hence erosion was rare. Transient liquid water, formed under temperature extremes and maintained under thick ice covers, could account for the observed fluvial features. The main difference between the present climate and the early climate was that the total surface pressure was well above the triple point of water.

  20. Reply to Shaw

    NASA Astrophysics Data System (ADS)

    Batalha, N. E.; Kopparapu, R. K.; Haqq-Misra, J.; Kasting, J. F.

    2018-02-01

    We welcome George Shaw's comment on our recent paper on climate limit cycling on early Mars. Those who have been involved in the early Mars' climate debate know that this issue has been contentious for at least three decades. As we will outline below, the reason we have not been able to solve the puzzle may be because we have been missing some of the pieces.

  1. Utilizing Mars Global Reference Atmospheric Model (Mars-GRAM 2005) to Evaluate Entry Probe Mission Sites

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.; Justus, Carl G.

    2008-01-01

    The Mars Global Reference Atmospheric Model (Mars-GRAM 2005) is an engineering-level atmospheric model widely used for diverse mission applications. An overview is presented of Mars-GRAM 2005 and its new features. The "auxiliary profile" option is one new feature of Mars-GRAM 2005. This option uses an input file of temperature and density versus altitude to replace the mean atmospheric values from Mars-GRAM's conventional (General Circulation Model) climatology. Any source of data or alternate model output can be used to generate an auxiliary profile. Auxiliary profiles for this study were produced from mesoscale model output (Southwest Research Institute's Mars Regional Atmospheric Modeling System (MRAMS) model and Oregon State University's Mars mesoscale model (MMM5) model) and a global Thermal Emission Spectrometer (TES) database. The global TES database has been specifically generated for purposes of making Mars-GRAM auxiliary profiles. This data base contains averages and standard deviations of temperature, density, and thermal wind components, averaged over 5-by-5 degree latitude-longitude bins and 15 degree Ls bins, for each of three Mars years of TES nadir data. The Mars Science Laboratory (MSL) sites are used as a sample of how Mars-GRAM' could be a valuable tool for planning of future Mars entry probe missions. Results are presented using auxiliary profiles produced from the mesoscale model output and TES observed data for candidate MSL landing sites. Input parameters rpscale (for density perturbations) and rwscale (for wind perturbations) can be used to "recalibrate" Mars-GRAM perturbation magnitudes to better replicate observed or mesoscale model variability.

  2. I. Climate change on ancient Mars. II. Exoplanet geodynamics and climate

    NASA Astrophysics Data System (ADS)

    Kite, Edwin Stephen

    This thesis describes work related to long-term climate stability, on Mars and exoplanets. Mars is the only planet known to record a major transition in planetary habitability. The evidence for surface temperatures near the melting point of water on Early Mars is difficult to explain, because theory predicts a faint young Sun. Seasonal snowmelt need not require high annual mean temperatures, but surface water ice tends to migrate away from the warmer regions of the planet where melting is energetically possible. In the first part of this thesis I use geological analysis, mesoscale models, and idealized surface energy balance models to examine two possible solutions to this problem. Impacts into icy targets, groundwater outbursts, and phreatic explosions are all expected to inject water vapor into the Mars atmosphere. I use mesoscale models to track the atmospheric response to these transient, localized vapor sources. Using idealized boundary conditions, I show that storms with updraft speeds >50 m/s and localized precipitation are expected near transient lakes >103 km2 in size. Snow deposited in this way is out of equilibrium with orbital forcing, and correspondingly more likely to melt. Canyon paleolakes in the Valles Marineris are frequently associated with streams preserved on the plateaux just downwind of the canyons. Using geologically realistic boundary conditions, I study the atmospheric response to two short-lived paleolakes. In each case, the plateau streams are in the locations expected for localized precipitation. Liquid water availability favors lithification, so the Martian sedimentary rock record is a wet-pass filter. Orbital variability strongly affects liquid water availability, so considering only averaged orbital conditions is neither sufficient not appropriate. To find the likelihood of snow melting, I consider all possible orbital forcings using an idealized but self-consistent model of snowpack energy balance and the CO2 greenhouse effect. Seasonal snowmelt on Early Mars is possible under unusual orbital conditions provided that the snow is dust-contaminated. The predicted distribution of snowmelt can explain the distribution of sedimentary rocks on Mars, but only if Mars had a thin atmosphere when the sedimentary rocks formed. This framework is the first to link upcoming observations by the Mars Science Laboratory Curiosity rover at the lower Gale Crater mound to past global climate on Mars. The model makes predictions about the lower Gale Crater mound that can be tested using Curiosity rover data. Earth is the only example of long term climate stability that is available for study, so long term climate stability is difficult to understand. Extrasolar planets may ameliorate this problem of uniqueness. It is clear that rates of volcanic activity and of surface weathering are important in regulating long term climate. In the second part of this thesis, I model the rate of volcanism on massive Earth-like planets, and the surface weathering rate on planets in 1:1 spin:orbit resonance. "Super-Earths" in the range 1-10 Earth masses have been detected by radial velocity and transit methods. Using an idealized mantle thermal evolution model to drive mantle-melting models, I show that the rate of volcanism on massive Earth like planets is a weak function of planet mass. Planet mass can, however, affect tectonics by changing the mode of mantle convection. Earth's climate stability depends on a negative feedback involving the temperature-dependent rate of weathering and mean surface temperature. I use an idealized model to show that for intermediate surface pressures and for low-opacity atmospheres, nonlinearities in the surface energy balance can reverse the sign of this dependence on tidally-locked planets. This leads to climate instability. I conclude by discussing future observations and research aimed at understanding long-term climate stability.

  3. Preliminary Martian Atmospheric Water Vapour Column Abundances with Mars Climate Sounder

    NASA Astrophysics Data System (ADS)

    Lolachi, Ramin; Irwin, P. G. J.; Teanby, N.; Calcutt, S.; Howett, C. J. A.; Bowles, N. E.; Taylor, F. W.; Schofield, J. T.; Kleinboehl, A.; McCleese, D. J.

    2007-12-01

    Mars Climate Sounder (MCS) is an infra-red radiometer on board NASA's Mars Reconnaissance Orbiter (MRO) launched in August 2005 and now orbiting Mars in a near circular polar orbit. MCS has nine spectral channels in the range 0.3-50 µm. Goals of MCS include global characterization of atmospheric temperature, dust and water profiles observing temporal and spatial variation. Using Oxford University's multivariate retrieval algorithm, NEMESIS, we present preliminary determinations of the water vapour column abundance in the Martian atmosphere during the period September-October 2006 (Ls range 111-129°, i.e. northern hemisphere summer). A combination of spectral channels inside and outside the water vapour rotation band (at 50 µm) are used to retrieve the column abundances mainly using nadir observations (as aerosol opacity is less important relative to water vapour opacity in nadir viewing geometry). We then compare these column abundances to earlier results from the Viking Orbiter Mars Atmospheric Water Detectors (MAWD) and the Thermal Emission Spectrometer (TES) on Mars Global Surveyor.

  4. Mars Polar Lander mated with third stage of rocket

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), workers mate the Mars Polar Lander to the third stage of the Boeing Delta II rocket before it is transported to Launch Pad 17B, Cape Canaveral Air Station. The lander, which will be launched on Jan. 3, 1999, is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.

  5. Mars Polar Lander mated with third stage of rocket

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Polar Lander is lowered onto the third stage of the Boeing Delta II rocket before it is transported to Launch Pad 17B, Cape Canaveral Air Station. The lander, which will be launched on Jan. 3, 1999, is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.

  6. The fairing for the Delta II rocket carrying the Mars Polar Lander arrives on Pad 17B, CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Inside the gantry on Pad 17B, Cape Canaveral Air Station, the fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander waits to be lowered into the white room. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998.

  7. Mars Polar Lander is mated with Boeing Delta II rocket

    NASA Technical Reports Server (NTRS)

    1998-01-01

    At Launch Complex 17B, Cape Canaveral Air Station, the protective covering on the Mars Polar Lander is lifted up and out of the way. The lander, in the opening below, is being mated to the Boeing Delta II rocket that will launch it on Jan. 3, 1999. The lander is a solar- powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars Surveyor'98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.

  8. First Data from Mars Climate Sounder

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The Mars Climate Sounder, an instrument on NASA's Mars Reconnaissance Orbiter designed to monitor daily changes in the global atmosphere of Mars, made its first observations of Mars on March 24, 2006.

    These tests were conducted to demonstrate that the instrument could, if needed, support the mission's aerobraking maneuvers (dips into the atmosphere to change the shape of the orbit) by providing hemisphere-scale coverage of atmospheric activity. The instrument scanned nine arrays of detectors four times across the entire disc of the planet, including the north pole, from an altitude of about 45,000 kilometers (28,000 miles). This is about 150 times farther away than the spacecraft will be during its main science phase. At this great range, the planet appears only 40 pixels wide, as suggested by the pixilation of the images. However, this is sufficient to identify regional dust storms in the lower atmosphere. Regional dust storms could perturb atmospheric densities at the higher altitudes (about 100 kilometers or 60 miles) where the orbiter will conduct more than 500 aerobraking passes during the next six months. Such storms are rare in the current season on Mars, early northern spring, and no large storms are present as the orbiter prepares for the start of aerobraking.

    Each of the Mars Climate Sounder's arrays looks in a different wavelength band, and three of the resulting images are shown here. The view on the left is from data collected in a broad spectral band (wavelengths of 0.3 microns to 3 microns) for reflected sunlight. The view in the center is from data collected in the 12-micron thermal-infrared band. This band was chosen to sense infrared radiation from the surface when the atmosphere is clear and from dust clouds when it is not. The view on the right is from data collected at 15 microns, a longer-wavelength band still in the thermal-infrared part of the spectrum. At this wavelength, carbon dioxide, the main ingredient in Mars' atmosphere, hides the surface emission, and the thermal-infrared radiation comes only from the atmosphere.

    The visible-and-near-infrared image (left) is bright where surface ice and atmospheric hazes reflect sunlight back to space. The view is of the northern half of Mars, with the north polar cap visible as the bright semicircle at upper left. The night half of the planet (lower left) is dark. The 'terminator' boundary between the day side and night side of the planet cuts from lower left to upper right, through the polar area. During the science phase of the mission, after the spacecraft has shrunk its orbit to a nearly circular loop approximately 300 kilometers (186 miles) above the surface, these visible-and-near-infrared readings by the Mars Climate Sounder will track how the amount of solar energy reflected from Mars varies from place-to-place and season-to-season, particularly in the polar regions where absorbed sunlight vaporizes the seasonal carbon-dioxide ice.

    The 12-micron image (center) indicates that heat is being emitted from both the day side and the night side of the planet. The polar cap is dark in this image because it is cold (minus 190 degrees Fahrenheit) and emits less heat than surrounding areas. During the science phase of the mission, the thermal-infrared readings at this wavelength by Mars Climate Sounder will be used to track dust and clouds in the atmosphere. In the current season on Mars, the atmosphere is relatively clear except for an equatorial belt of thin water-ice clouds present in the visible-and-near-infrared image, and so the 12-micron image is dominated by the infrared radiation from the surface on the relatively hot dayside (upper right).

    The 15-micron image (right) indicates the temperatures of the atmosphere at an altitude of about 25 kilometers (15 miles), where there is not much temperature difference even between the night side and the day side of the planet. The polar atmosphere is colder, so it appears darker.

    Once deployed in a low-altitude, nearly circular orbit next fall, the Mars Climate Sounder will systematically alternate views of the surface with views of the atmosphere above the limb (horizon) of the planet from the surface to an altitude of 80 kilometers (50 miles), with a vertical resolution of 5 kilometers (3 miles). In this way it will monitor atmospheric and surface changes through a full annual cycle to characterize the present climate of Mars.

    The Mars Climate Sounder was provided by NASA's Jet Propulsion Laboratory, Pasadena, Calif., which also manages the Mars Reconnaissance Orbiter mission for the NASA Science Mission Directorate.

  9. Post Impact Mars Climate Simulations Using a GCM

    NASA Technical Reports Server (NTRS)

    Colaprete, A.; Haberle, R. M.; Segura, T. L.; Toon, O. B.; Zahnle, K.

    2003-01-01

    The first images returned by the Mariner 7 spacecraft of the Martian surface showed a landscape heavily scared by impacts. Mariner 9 imaging revealed geomorphic features including valley networks and outflow channels that suggest liquid water once flowed at the surface of Mars. Further evidence for water erosion and surface modification has come from the Viking Spacecraft, Mars Pathfinder and Mars Global Surveyor's (MGS) Mars Obiter Camera (MOC). This evidence includes apparent paleolake beds, fluvial fans and sedimentary layers (Cabrol and Grinn, 1999; Heberle et al., 2001). There is evidence for subsurface water as well. Rampart crates suggest an abundance of water in the near surface regolith (Mouginis-Mark, 1986). The estimated erosion rates necessary to explain the observed surface morphologies (Golombek and Bridges, 2000) present a conundrum. The rates of erosion appear to be highest when the early sun was fainter and only 75% as luminous as it is today. Furthermore the rates of erosion appear to correlate with the rate at which Mars was impacted (Carr and Waenke, 1992). All of this evidence suggests to a very different climate than what exists on Mars today.

  10. Dragon Scales of Mars

    NASA Image and Video Library

    2017-07-11

    This intriguing surface texture is the result of rock interacting with water, as observed by NASA's Mars Reconnaissance Orbiter. The rock was then eroded and later exposed to the surface. The pinkish, almost dragon-like scaled texture represents Martian bedrock that has specifically altered into a clay-bearing rock. The nature of the water responsible for the alteration, and how it interacted with the rock to form the clay remains poorly understood. Not surprisingly, the study of such altered rocks on Mars is an area of active investigation by the Mars science community. Understanding such interactions, and how they happened, help scientists to understand the past climate on Mars, and if the red planet ever harbored life. Recent studies indicate that the early Martian climate may not have been as warm, wet, and Earth-like, as previously suggested. This is not a problem for finding life on Mars as one might think. Ongoing studies of dry and cold environments on Earth shows that life finds ways to adapt to such extremes. Such work provides hope for finding evidence for life on other planets, like Mars, someday. https://photojournal.jpl.nasa.gov/catalog/PIA21781

  11. Differentiating Hydrothermal, Pedogenic, and Glacial Weathering in a Cold Volcanic Mars-Analog Environment

    NASA Technical Reports Server (NTRS)

    Scudder, N. A.; Horgan, B.; Havig, J.; Rutledge, A.; Rampe, E. B.; Hamilton, T.

    2016-01-01

    Although the current cold, dry environment of Mars extends back through much of its history, its earliest periods experienced significant water- related surface activity. Both geomorphic features (e.g., paleolakes, deltas, and river valleys) and hydrous mineral detections (e.g., clays and salts) have historically been interpreted to imply a "warm and wet" early Mars climate. More recently, atmospheric modeling studies have struggled to produce early climate conditions with temperatures above 0degC, leading some studies to propose a "cold and icy" early Mars dominated by widespread glaciation with transient melting. However, the alteration mineralogy produced in subglacial environments is not well understood, so the extent to which cold climate glacial weathering can produce the diverse alteration mineralogy observed on Mars is unknown. This summer, we will be conducting a field campaign in a glacial weathering environment in the Cascade Range, OR in order to determine the types of minerals that these environments produce. However, we must first disentangle the effects of glacial weathering from other significant alteration processes. Here we attempt a first understanding of glacial weathering by differentiating rocks and sediments weathered by hydrothermal, pedogenic, and glacial weathering processes in the Cascades volcanic range.

  12. Layered Ice Near the South Pole of Mars

    NASA Image and Video Library

    2017-12-12

    The two largest ice sheets in the inner solar system are here on Earth, Antarctica and Greenland. The third largest is at the South Pole of Mars and a small part of it is shown in this image from NASA's Mars Reconnaissance Orbiter (MRO). Much like the terrestrial examples, this ice sheet is layered and scientists refer to it as the South Polar layered deposits. The ice layers contain information about past climates on Mars and deciphering this record has been a major goal of Mars science for decades. This slope, near the ice sheet's edge, shows the internal layers that have this climate record. With stereo images, we can tell the heights of these layers so we can measure their thickness and try to unravel the climatic information they contain. (Be sure to view the digital terrain model for this observation.) The map is projected here at a scale of 25 centimeters (9.8 inches) per pixel. [The original image scale is 25.0 centimeters (9.8 inches) per pixel (with 1 x 1 binning); objects on the order of 75 centimeters (29.5 inches) across are resolved.] North is up. https://photojournal.jpl.nasa.gov/catalog/PIA22125

  13. Mars: History of Climate Change and Evolution of the Water Cycle (Runcorn-Florensky Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Head, James W.

    2010-05-01

    Atmospheric general circulation models are becoming more and more sophisticated and can now be analyzed at various scales, and include variations in atmospheric water vapor content, orbital parameters and surface properties. A wide variety of geological evidence indicates that the climate on Mars has changed during its past history. We are now approaching the time when synergism is developing between studies of the observed geological record and predictions and results of climate models. Geological evidence for climate change ranges in physical scale from layering in the polar caps and sediments, to meters-thick ice-rich layers extending from high to mid-latitudes, to kilometers-thick polar and circumpolar deposits. Clear temporal changes in the mineralogy and alteration style of surface and subsurface materials signal long-term climate change. Evidence is found throughout the geologic record of Mars, ranging from interpreted Amazonian tropical mountain glaciers to much longer term trends implied by the temporal distribution of geological features such as valley networks and outflow channels. Furthermore, there is strong evidence for changes in the hydrological cycle of Mars that reflect long-term climate change. For the last ~80% of its history (the Hesperian and Amazonian) Mars appears to have been a very cold, hyper-arid polar desert, similar to the McMurdo Dry Valleys of Antarctica. During this time, the hydrologic system on Mars has been horizontally layered, with the near-surface hydrologic cycle involving water movement between the atmosphere, polar caps, the surface and regolith at various latitudes; variations in spin-axis orbital parameters caused significant surface redistribution of ice and dust, and abundant ice has been sequestered beneath glacial debris-cover in the mid-latitudes for several hundred million years. Existing groundwater is sequestered below a globally continuous cryosphere; liquid water occasionally emerged to the surface during magmatic events that cracked or melted the cryosphere, forming outlet channels. In contrast, many believe that Mars was "warm and wet" during the first 20% of its history (the Noachian); in this scenario, there was no global cryosphere, and the hydrological cycle was vertically integrated. Geological evidence for this includes extensive valley network systems, hundreds of closed-basin and open-basin lakes, depositional fans and deltas, and integrated systems that extend for thousands of kilometers across the surface. Major outstanding questions include the causes and the duration of these more clement conditions in the Noachian, whether they led to the formation and evolution of life, why they changed in the late Noachian-Hesperian, the duration of the change, how the climate stabilized to its current state, whether any early-evolving life could survive this transition, and if so, where such life might reside today. The questions raised by the long-term climate history of Mars provide a compelling framework for future robotic and human exploration.

  14. KSC-98pc1831

    NASA Image and Video Library

    1998-12-02

    KENNEDY SPACE CENTER, FLA. -- Inside the gantry on Pad 17B, Cape Canaveral Air Station, the fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander waits to be lowered into the white room. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998

  15. KSC-98pc1824

    NASA Image and Video Library

    1998-12-02

    KENNEDY SPACE CENTER, FLA. -- On Pad 17B, Cape Canaveral Air Station, a solid rocket booster is raised to a vertical position for mating with the Delta II rocket carrying the Mars Polar Lander. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998

  16. KSC-98pc1829

    NASA Image and Video Library

    1998-12-02

    KENNEDY SPACE CENTER, FLA. -- The fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander is lifted to the top of the gantry on Pad 17B, Cape Canaveral Air Station. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998

  17. The climate of Mars

    NASA Astrophysics Data System (ADS)

    Haberle, R. M.

    1986-05-01

    The composition of the primitive Martian atmosphere and its development into the present environment are described. The primitive atmosphere consisted of water vapor, carbon dioxide, and nitrogen released from rocks; the greenhouse effect which maintained the surface temperature above the frost point of water is examined. Volcanic activity reduced the greenhouse effect and along with CO2 removal from the atmosphere caused a lowering of the planet temperature. The global circulation patterns on earth and Mars are compared; the similarities in the circulation patterns and Mars' seasonal variations are studied. The carbon dioxide and water cycles on Mars are analyzed; the carbon dioxide cycle determines seasonal variations in surface pressure and the behavior of the water cycle. The behavior of the atmospheric dust and the relationship between the seasonal dust cycle and Hadley circulation are investigated. The periodic variations in the three orbital parameters of Mars, which affect the climate by changing the seasonal and latitudinal distribution of incoming solar energy are discussed

  18. KSC-98pc1821

    NASA Image and Video Library

    1998-12-02

    KENNEDY SPACE CENTER, FLA. -- On Pad 17B, Cape Canaveral Air Station, workers monitor the solid rocket booster before its being lifted to mate with the Delta II rocket carrying the Mars Polar Lander. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998

  19. KSC-98pc1825

    NASA Image and Video Library

    1998-12-02

    KENNEDY SPACE CENTER, FLA. -- On Pad 17B, Cape Canaveral Air Station, a solid rocket booster hangs in place between two other rocket boosters waiting to be mated with the Delta II rocket carrying the Mars Polar Lander. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998

  20. KSC-98pc1826

    NASA Image and Video Library

    1998-12-02

    KENNEDY SPACE CENTER, FLA. -- On Pad 17B, Cape Canaveral Air Station, the gantry holding the solid rocket boosters is moved into place next to the Delta II rocket carrying the Mars Polar Lander. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998

  1. The fairing for the Delta II rocket carrying the Mars Polar Lander arrives on Pad 17B, CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On Pad 17B, Cape Canaveral Air Station, the fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander is lowered toward the rocket waiting below. The lander, which will be launched on Jan. 3, 1999, is a solar-powered spacecraft designed to touch down on the Martian surface near the northern- most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998.

  2. KSC-98pc1830

    NASA Image and Video Library

    1998-12-02

    KENNEDY SPACE CENTER, FLA. -- Inside the gantry on Pad 17B, Cape Canaveral Air Station, the fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander waits to be lowered into the white room. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998

  3. The fairing for the Delta II rocket carrying the Mars Polar Lander arrives on Pad 17B, CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On Pad 17B, Cape Canaveral Air Station, the fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander is prepared for lowering toward the rocket below. The lander, which will be launched on Jan. 3, 1999, is a solar-powered spacecraft designed to touch down on the Martian surface near the northern- most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998.

  4. KSC-98pc1828

    NASA Image and Video Library

    1998-12-02

    KENNEDY SPACE CENTER, FLA. -- The fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander is lifted to a vertical position on Pad 17B, Cape Canaveral Air Station. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998

  5. The heat shield for the Mars Polar Lander is attached

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), workers get ready to lift the heat shield for the Mars Polar Lander off the workstand before attaching it to the lander. Scheduled to be launched on Jan. 3, 1999, the lander is a solar- powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, which is due to be launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.

  6. KSC-98pc1823

    NASA Image and Video Library

    1998-12-02

    KENNEDY SPACE CENTER, FLA. -- On Pad 17B, Cape Canaveral Air Station, a solid rocket booster is raised to a vertical position for mating with the Delta II rocket carrying the Mars Polar Lander. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998

  7. Mars Program Independent Assessment Team Report

    NASA Technical Reports Server (NTRS)

    Young, Thomas; Arnold, James; Brackey, Thomas; Carr, Michael; Dwoyer, Douglas; Fogleman, Ronald; Jacobson, Ralph; Kottler, Herbert; Lyman, Peter; Maguire, Joanne

    2000-01-01

    The Mars Climate Orbiter failed to achieve Mars orbit on September 23, 1999. On December 3, 1999, Mars Polar Lander and two Deep Space 2 microprobes failed. As a result, the NASA Administrator established the Mars Program Independent Assessment Team (MPIAT) with the following charter: 1) Review and analyze successes and failures of recent Mars and Deep Space Missions which include: a) Mars Global Surveyor, b) Mars Climate Orbiter, c) Pathfinder, d) Mars Polar Lander, e) Deep Space 1, and f) Deep Space 2; 2) Examine the relationship between and among, NASA Jet Propulsion Laboratory (JPL), California Institute of Technology (Caltech), NASA Headquarters, and industry partners; 3) Assess effectiveness of involvement of scientists; 4) Identify lessons learned from successes and failures; 5) Review revised Mars Surveyor Program to assure lessons learned are utilized; 6) Oversee Mars Polar Lander and Deep Space 2 failure reviews; and 7) Complete by March 15, 2000. In-depth reviews were conducted at NASA Headquarters, JPL, and Lockheed Martin Astronautics (LMA). Structured reviews, informal sessions with numerous Mars Program participants, and extensive debate and discussion within the MPIAT establish the basis for this report. The review process began on January 7, 2000, and concluded with a briefing to the NASA Administrator on March 14, 2000. This report represents the integrated views of the members of the MPIAT who are identified in the appendix. In total, three related reports have been produced: a summary report, this report entitled "Mars Program Independent Assessment Team Report," and the "Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions".

  8. Volatiles on Mars

    NASA Astrophysics Data System (ADS)

    Jakosky, Bruce M.

    1988-08-01

    The long-term evolution of both the atmosphere and the surface of Mars can be understood by examining the history of volatiles in the Mars atmosphere, their non-atmospheric reservoirs, and the processes of exchange between the two. Clearly, the present state of both the surface and the atmosphere can only be seen, so that any inferences about the evolution of the climate system are just that, inferences. The processes which control the atmosphere and surface on a seasonal basis, however, are the same processes which can act on longer timescales; only the specific solar and atmospheric forcing will differ. Once the ability of each process to affect the seasonal behavior is understood, the long-timescale forcing may be applied to the various processes in order to clearly identify the ability of the processes to act over the entire history of Mars. The areas of surface-atmospheric interaction of Mars are addressed in the ongoing research. The climate system on Mars is controlled by processes involving the exchange between the surface and atmosphere, so it is important to understand the current behavior of those processes. This is especially so in light of the current interest in understanding Mars; the upcoming Mars Observer mission, and the potential for a future sample-return or human-exploration mission will focus emphasis on this area of Mars science.

  9. Identifying and Interpreting Stratification in Sedimentary Rocks on Mars: Insight from Rover and Orbital Observations and Terrestrial Field Analogs

    NASA Astrophysics Data System (ADS)

    Edgar, Lauren A.

    Sedimentary rocks on Mars provide insight into past aqueous and atmospheric processes, climate regimes, and potential habitability. The stratigraphic architecture of sedimentary rocks on Mars is similar to that of Earth, indicating that the processes that govern deposition and erosion on Mars can be reasonably inferred through reference to analogous terrestrial systems. This dissertation aims to understand Martian surface processes through the use of (1) ground-based observations from the Mars Exploration Rovers, (2) orbital data from the High Resolution Imaging Science Experiment onboard the Mars Reconnaissance Orbiter, and (3) the use of terrestrial field analogs to understand bedforms and sediment transport on Mars. Chapters 1 and 2 trace the history of aqueous activity at Meridiani Planum, through the reconstruction of eolian bedforms at Victoria crater, and the identification of a potential mudstone facies at Santa Maria crater. Chapter 3 uses Terrestrial Laser Scanning to study cross-bedding in pyroclastic surge deposits on Earth in order to understand sediment transport in these events and to establish criteria for their identification on Mars. The final chapter analyzes stratal geometries in the Martian North Polar Layered Deposits using tools for sequence stratigraphic analysis, to better constrain past surface processes and past climate conditions on Mars.

  10. MAVEN/IUVS Apoapse Observations of the Martian FUV Dayglow

    NASA Astrophysics Data System (ADS)

    Correira, J.; Evans, J. S.; Stevens, M. H.; Schneider, N. M.; Stewart, I. F.; Deighan, J.; Jain, S.; Chaffin, M.; Crismani, M. M. J.; McClintock, B.; Holsclaw, G.; Lefèvre, F.; Lo, D.; Stiepen, A.; Clarke, J. T.; Mahaffy, P. R.; Bougher, S. W.; Bell, J. M.; Jakosky, B. M.

    2015-12-01

    We present FUV data (115 - 190 nm) from MAVEN/IUVS apoapse mode observations for the Oct 2014 through Feb 2015 time period. During apoapse mode the highly elliptical orbit of MAVEN allows for up to four apoapse disk images by IUVS per day. Maps of FUV feature intensities and intensity ratios as well as derived CO/CO2 and O/CO2 column density ratios will be shown. Column density ratios are derived from lookup tables created using the Atmospheric Ultraviolet Radiance Integrated Code [Strickland et al., 1999] in conjunction with observed intensity ratios. Column density ratios provide a measure of composition changes in the Martian atmosphere. Due to MAVEN's orbital geometry the observations from this time period focus on the southern hemisphere. The broad view provided by apoapse observations allows for the investigation of spatial and temporal variations (both long term and local time) of the atmospheric composition (via the column density ratios). IUVS FUV intensities and derived column density ratios will also be compared with model results from Mars Global Ionosphere/Thermosphere Model (MGITM) and the Mars Climate Database (MCD).

  11. The Nature, Origin, and Importance of Carbonate-Bearing Samples at the Final Three Candidate Mars 2020 Landing Sites

    NASA Astrophysics Data System (ADS)

    Horgan, B.; Anderson, R. B.; Ruff, S. W.

    2018-04-01

    All three candidate Mars 2020 landing sites contain similar regional olivine/carbonate units, and a carbonate unit of possible lacustrine origin is also present at Jezero. Carbonates are critical for Mars Sample Return as records of climate and biosignatures.

  12. Global warming and climate forcing by recent albedo changes on Mars

    USGS Publications Warehouse

    Fenton, L.K.; Geissler, P.E.; Haberle, R.M.

    2007-01-01

    For hundreds of years, scientists have tracked the changing appearance of Mars, first by hand drawings and later by photographs. Because of this historical record, many classical albedo patterns have long been known to shift in appearance over time. Decadal variations of the martian surface albedo are generally attributed to removal and deposition of small amounts of relatively bright dust on the surface. Large swaths of the surface (up to 56 million km2) have been observed to darken or brighten by 10 per cent or more. It is unknown, however, how these albedo changes affect wind circulation, dust transport and the feedback between these processes and the martian climate. Here we present predictions from a Mars general circulation model, indicating that the observed interannual albedo alterations strongly influence the martian environment. Results indicate enhanced wind stress in recently darkened areas and decreased wind stress in brightened areas, producing a positive feedback system in which the albedo changes strengthen the winds that generate the changes. The simulations also predict a net annual global warming of surface air temperatures by ???0.65 K, enhancing dust lifting by increasing the likelihood of dust devil generation. The increase in global dust lifting by both wind stress and dust devils may affect the mechanisms that trigger large dust storm initiation, a poorly understood phenomenon, unique to Mars. In addition, predicted increases in summertime air temperatures at high southern latitudes would contribute to the rapid and steady scarp retreat that has been observed in the south polar residual ice for the past four Mars years. Our results suggest that documented albedo changes affect recent climate change and large-scale weather patterns on Mars, and thus albedo variations are a necessary component of future atmospheric and climate studies. ??2007 Nature Publishing Group.

  13. Global warming and climate forcing by recent albedo changes on Mars.

    PubMed

    Fenton, Lori K; Geissler, Paul E; Haberle, Robert M

    2007-04-05

    For hundreds of years, scientists have tracked the changing appearance of Mars, first by hand drawings and later by photographs. Because of this historical record, many classical albedo patterns have long been known to shift in appearance over time. Decadal variations of the martian surface albedo are generally attributed to removal and deposition of small amounts of relatively bright dust on the surface. Large swaths of the surface (up to 56 million km2) have been observed to darken or brighten by 10 per cent or more. It is unknown, however, how these albedo changes affect wind circulation, dust transport and the feedback between these processes and the martian climate. Here we present predictions from a Mars general circulation model, indicating that the observed interannual albedo alterations strongly influence the martian environment. Results indicate enhanced wind stress in recently darkened areas and decreased wind stress in brightened areas, producing a positive feedback system in which the albedo changes strengthen the winds that generate the changes. The simulations also predict a net annual global warming of surface air temperatures by approximately 0.65 K, enhancing dust lifting by increasing the likelihood of dust devil generation. The increase in global dust lifting by both wind stress and dust devils may affect the mechanisms that trigger large dust storm initiation, a poorly understood phenomenon, unique to Mars. In addition, predicted increases in summertime air temperatures at high southern latitudes would contribute to the rapid and steady scarp retreat that has been observed in the south polar residual ice for the past four Mars years. Our results suggest that documented albedo changes affect recent climate change and large-scale weather patterns on Mars, and thus albedo variations are a necessary component of future atmospheric and climate studies.

  14. Quasi-periodic climatic changes on Mars and earth

    NASA Technical Reports Server (NTRS)

    Cutts, J. A.; Pollack, J. B.; Toon, O. B.; Howard, A. D.

    1981-01-01

    Evidence of climatic changes on Mars and the earth due to geologic and astronomical variations is discussed. Finely striped ice-free bands in the Martian polar caps have been taken to indicate that long term variations in the orbit and axial tilt of Mars have precipitated these features at the rate of a mm/yr. Photogrammetric and photometric methods have contributed to measurements of the composition and depth of the Martian caps (14-46 m), and observations of higher solar energy absorption in the northern ice cap implies greater dust deposition in that region than on the south cap; however, the transport mechanisms are not well understood. Comparisons of earth and Martian climatic variations data are made, noting a lack of information on the age intervals of marine and nonmarine sediments on the earth. The possibilities of using quantitative data other than layer thickness to constrain climate models are discussed, and the slope or albedo of layers, or the spacing of polar undulations are suggested.

  15. KSC-98pc1818

    NASA Image and Video Library

    1998-11-28

    The first stage of a Delta II rocket is lifted up the gantry at Launch Complex 17B, Cape Canaveral Air Station. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A on Dec. 10, 1998

  16. KSC-98pc1817

    NASA Image and Video Library

    1998-11-28

    KENNEDY SPACE CENTER, FLA. -- The first stage of a Delta II rocket arrives at Launch Complex 17B, Cape Canaveral Air Station. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A on Dec. 10, 1998

  17. KSC-98pc1863

    NASA Image and Video Library

    1998-12-10

    KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), workers maneuver the Mars Polar Lander onto a spin table for testing. The lander, which will be launched on Jan. 3, 1999, is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, which is due to be launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998

  18. KSC-98pc1862

    NASA Image and Video Library

    1998-12-10

    KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Polar Lander is lowered toward a spin table for testing. The lander, which will be launched on Jan. 3, 1999, is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, which is due to be launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998

  19. KSC-98pc1868

    NASA Image and Video Library

    1998-12-14

    In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), workers lower the heat shield onto the Mars Polar Lander. Scheduled to be launched on Jan. 3, 1999, the lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, which is due to be launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998

  20. KSC-98pc1888

    NASA Image and Video Library

    1998-12-21

    KENNEDY SPACE CENTER, FLA. -- Workers mate the Mars Polar Lander (top) to the Boeing Delta II rocket at Launch Complex 17B, Cape Canaveral Air Station. The rocket is scheduled to launch Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars Surveyor '98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998

  1. KSC-98pc1813

    NASA Image and Video Library

    1998-12-01

    KENNEDY SPACE CENTER, FLA. -- At Launch Complex 17A, Cape Canaveral Air Station, workers remove the canister surrounding the Mars Climate Orbiter. Targeted for liftoff on Dec. 10, 1998, aboard a Boeing Delta II (7425) rocket, the orbiter will be the first spacecraft to be launched in the pair of Mars '98 missions. After its arrival at the red planet, the Mars Climate Orbiter will be used primarily to support its companion Mars Polar Lander spacecraft, scheduled for launch on Jan. 3, 1999. The orbiter will then monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year, the equivalent of about two Earth years. The spacecraft will observe the appearance and movement of atmospheric dust and water vapor, and characterize seasonal changes on the planet's surface

  2. KSC-98pc1814

    NASA Image and Video Library

    1998-12-04

    KENNEDY SPACE CENTER, FLA. -- At Launch Complex 17A, Cape Canaveral Air Station, workers place aside a piece of the canister surrounding the Mars Climate Orbiter. Targeted for liftoff on Dec. 10, 1998, aboard a Boeing Delta II (7425) rocket, the orbiter will be the first spacecraft to be launched in the pair of Mars '98 missions. After its arrival at the red planet, the Mars Climate Orbiter will be used primarily to support its companion Mars Polar Lander spacecraft, scheduled for launch on Jan. 3, 1999. The orbiter will then monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year, the equivalent of about two Earth years. The spacecraft will observe the appearance and movement of atmospheric dust and water vapor, and characterize seasonal changes on the planet's surface

  3. Icy Layers in Craters

    NASA Image and Video Library

    2018-02-20

    In this image from NASA's Mars Reconnaissance Rover (MRO) we can see the edge of a mound of ice in one of these mid-latitude craters. Some of it has already been removed, so we can see layering that used to be in the crater's interior. Scientists use ice deposits like these to figure out how the climate has changed on Mars. Another upside of recognizing this ice is that future astronauts will have plenty of drinking water. Scientists now realize that ice is very common on the Martian surface. It often fills up craters and valleys in the mid-latitudes in older climates, although when it's covered in dust it can be hard to recognize. Today the climate on Mars makes this ice unstable and some of it has evaporated away. https://photojournal.jpl.nasa.gov/catalog/PIA22255

  4. Climate Change on Mars: Cloud Greenhouse Effects in the Recent Past

    NASA Astrophysics Data System (ADS)

    Haberle, Robert M.; Kahre, Melinda A.; Hollingsorth, Jeffery L.

    2014-11-01

    The large variations in Mars’ orbit parameters are known to be significant drivers of climate change. We present results from an updated version of the Ames GCM that shows at times of high obliquity it is possible that water ice clouds from a greatly intensified Martian hydrological cycle may have produced a greenhouse effect strong enough to raise global mean surface temperatures by several tens of degrees Kelvin. It is made possible by the ability of the Martian atmosphere to transport water to high altitudes where cold water ice clouds form, reduce the outgoing long wave radiation, and cause surface temperatures to rise to maintain global energy balance. Since Mars spends much of its time at high obliquity, these results suggest that Mars undergoes even more significant climate change due to orbital variations than previously thought.

  5. Mars Color Imager (MARCI) on the Mars Climate Orbiter

    USGS Publications Warehouse

    Malin, M.C.; Bell, J.F.; Calvin, W.; Clancy, R.T.; Haberle, R.M.; James, P.B.; Lee, S.W.; Thomas, P.C.; Caplinger, M.A.

    2001-01-01

    The Mars Color Imager, or MARCI, experiment on the Mars Climate Orbiter (MCO) consists of two cameras with unique optics and identical focal plane assemblies (FPAs), Data Acquisition System (DAS) electronics, and power supplies. Each camera is characterized by small physical size and mass (???6 x 6 x 12 cm, including baffle; <500 g), low power requirements (<2.5 W, including power supply losses), and high science performance (1000 x 1000 pixel, low noise). The Wide Angle (WA) camera will have the capability to map Mars in five visible and two ultraviolet spectral bands at a resolution of better than 8 km/pixel under the worst case downlink data rate. Under better downlink conditions the WA will provide kilometer-scale global maps of atmospheric phenomena such as clouds, hazes, dust storms, and the polar hood. Limb observations will provide additional detail on atmospheric structure at 1/3 scale-height resolution. The Medium Angle (MA) camera is designed to study selected areas of Mars at regional scale. From 400 km altitude its 6?? FOV, which covers ???40 km at 40 m/pixel, will permit all locations on the planet except the poles to be accessible for image acquisitions every two mapping cycles (roughly 52 sols). Eight spectral channels between 425 and 1000 nm provide the ability to discriminate both atmospheric and surface features on the basis of composition. The primary science objectives of MARCI are to (1) observe Martian atmospheric processes at synoptic scales and mesoscales, (2) study details of the interaction of the atmosphere with the surface at a variety of scales in both space and time, and (3) examine surface features characteristic of the evolution of the Martian climate over time. MARCI will directly address two of the three high-level goals of the Mars Surveyor Program: Climate and Resources. Life, the third goal, will be addressed indirectly through the environmental factors associated with the other two goals. Copyright 2001 by the American Geophysical Union.

  6. The Mars Color Imager (MARCI) on the Mars Climate Orbiter

    NASA Astrophysics Data System (ADS)

    Malin, M. C.; Calvin, W.; Clancy, R. T.; Haberle, R. M.; James, P. B.; Lee, S. W.; Thomas, P. C.; Caplinger, M. A.

    2001-08-01

    The Mars Color Imager, or MARCI, experiment on the Mars Climate Orbiter (MCO) consists of two cameras with unique optics and identical focal plane assemblies (FPAs), Data Acquisition System (DAS) electronics, and power supplies. Each camera is characterized by small physical size and mass (~6 × 6 × 12 cm, including baffle; <500 g), low power requirements (<2.5 W, including power supply losses), and high science performance (1000 × 1000 pixel, low noise). The Wide Angle (WA) camera will have the capability to map Mars in five visible and two ultraviolet spectral bands at a resolution of better than 8 km/pixel under the worst case downlink data rate. Under better downlink conditions the WA will provide kilometer-scale global maps of atmospheric phenomena such as clouds, hazes, dust storms, and the polar hood. Limb observations will provide additional detail on atmospheric structure at 13 scale-height resolution. The Medium Angle (MA) camera is designed to study selected areas of Mars at regional scale. From 400 km altitude its 6° FOV, which covers ~40 km at 40 m/pixel, will permit all locations on the planet except the poles to be accessible for image acquisitions every two mapping cycles (roughly 52 sols). Eight spectral channels between 425 and 1000 nm provide the ability to discriminate both atmospheric and surface features on the basis of composition. The primary science objectives of MARCI are to (1) observe Martian atmospheric processes at synoptic scales and mesoscales, (2) study details of the interaction of the atmosphere with the surface at a variety of scales in both space and time, and (3) examine surface features characteristic of the evolution of the Martian climate over time. MARCI will directly address two of the three high-level goals of the Mars Surveyor Program: Climate and Resources. Life, the third goal, will be addressed indirectly through the environmental factors associated with the other two goals.

  7. Martian Atmosphere Profiles

    NASA Image and Video Library

    2010-08-26

    The Mars Climate Sounder instrument on NASA Mars Reconnaissance Orbiter maps the vertical distribution of temperatures, dust, water vapor and ice clouds in the Martian atmosphere as the orbiter flies a near-polar orbit.

  8. The Climate of Early Mars

    NASA Astrophysics Data System (ADS)

    Wordsworth, Robin D.

    2016-06-01

    The nature of the early martian climate is one of the major unanswered questions of planetary science. Key challenges remain, but a new wave of orbital and in situ observations and improvements in climate modeling have led to significant advances over the past decade. Multiple lines of geologic evidence now point to an episodically warm surface during the late Noachian and early Hesperian periods 3-4 Ga. The low solar flux received by Mars in its first billion years and inefficiency of plausible greenhouse gases such as CO2 mean that the steady-state early martian climate was likely cold. A denser CO2 atmosphere would have caused adiabatic cooling of the surface and hence migration of water ice to the higher-altitude equatorial and southern regions of the planet. Transient warming caused melting of snow and ice deposits and a temporarily active hydrological cycle, leading to erosion of the valley networks and other fluvial features. Precise details of the warming mechanisms remain unclear, but impacts, volcanism, and orbital forcing all likely played an important role. The lack of evidence for glaciation across much of Mars's ancient terrain suggests the late Noachian surface water inventory was not sufficient to sustain a northern ocean. Though mainly inhospitable on the surface, early Mars may nonetheless have presented significant opportunities for the development of microbial life.

  9. Reconstructing the past climate at Gale crater, Mars, from hydrological modeling of late-stage lakes

    NASA Astrophysics Data System (ADS)

    Horvath, David G.; Andrews-Hanna, Jeffrey C.

    2017-08-01

    The sedimentary deposits in Gale crater may preserve one of the best records of the early Martian climate during the Late Noachian and Early Hesperian. Surface and orbital observations support the presence of two periods of lake stability in Gale crater—prior to the formation of the sedimentary mound during the Late Noachian and after the formation and erosion of the mound to its present state in the Early Hesperian. Here we use hydrological models and late-stage lake levels at Gale, to reconstruct the climate of Mars after mound formation and erosion to its present state. Using Earth analog climates, we show that the late-stage lakes require wetter interludes characterized by semiarid climates after the transition to arid conditions in the Hesperian. These climates are much wetter than is thought to characterize much of the Hesperian and are more similar to estimates of the Late Noachian climate.

  10. Experimental Evidence for Weathering and Martian Sulfate Formation Under Extremely Cold Weather-Limited Environments

    NASA Technical Reports Server (NTRS)

    Niles, Paul B.; Golden, D. C.; Michalski, J.

    2013-01-01

    High resolution photography and spectroscopy of the martian surface (MOC, HiRISE) from orbit has revolutionized our view of Mars with one of the most important discoveries being wide-spread layered sedimentary deposits associated with sulfate minerals across the low to mid latitude regions of Mars [1, 2]. The mechanism for sulfate formation on Mars has been frequently attributed to playa-like evaporative environments under prolonged warm conditions [3]. However, there are several problems with the presence of prolonged surface temperatures on Mars above 273 K during the Noachian including the faint young Sun [4] and the presence of suitable greenhouse gases [5]. The geomorphic evidence for early warm conditions may instead be explained by periodic episodes of warming rather than long term prolonged warm temperatures [6]. An alternate view of the ancient martian climate contends that prolonged warm temperatures were never present and that the atmosphere and climate has been similar to modern conditions throughout most of its history [6]. This view is more consistent with the climate models, but has had a difficult time explaining the sedimentary history of Mars and in particular the presence of sulfate minerals. We suggest here that mixtures of atmospheric aerosols, ice, and dust have the potential for creating small films of cryo-concentrated acidic solutions that may represent an important unexamined environment for understanding weathering processes on Mars [7, 8]. This study seeks to test whether sulfate formation may be possible at temperatures well below 0 C in water limited environments removing the need for prolonged warm periods to form sulfates on early Mars.

  11. Evidences of Wet Climate on Early Mars from Analysis of HRSC Observations

    NASA Astrophysics Data System (ADS)

    Jaumann, Ralf; Tirschj, Daniela; Adeli, Solmaz

    2017-04-01

    Both Geomorphological and mineralogical evidence point to the episodic availability of liquid water on the surface of early Mars. However, the distribution of water was not uniform over space and time. Considerable environmental and climate variations due to latitudinal or elevation effects combined with a diverse surface geology caused distinctively different of local conditions that influenced the planet`s water content. The history of water on Mars has been constantly revised and refined during the past years. Landforms such as widespread valley networks, fluvial deposits and associated assemblages of hydrated clay minerals support the hypothesis that the Martian climate was to some extend warm and wet during the early history of Mars [e.g.,1,2]. At the boundary between the Late Noachian and the Early Hesperian, environmental and climate conditions changed significantly and resulted in a transition towards a colder and dryer climate. The intensity of aqueous activity decreased throughout the Hesperian, including a transition from long-term and repeated precipitation-induced fluvial activity towards reduced, short-term, spatially isolated and groundwater-dominated fluvial erosion [e.g.,3,4,5,6]. At the end of the Hesperian, fluvial erosion has mostly ceased and volcanic, aeolian and glacial processes are interpreted to be dominant on Mars. The Early Amazonian was characterized most likely by a cold and dry climate that was similar to the conditions on recent Mars. However, Mars' climate and aqueous history, in particular the timing of the termination of fluvial activity and the transition from precipitation-induced toward groundwater-dominated erosion as well as the temperature with time, is still subject to debate. Modeling of flow transport processes revealed that the formation of deltas on Mars geologically requires only brief timespans [7] and, based on discharge estimates, the formation of erosional valleys also needs less than a few million years and seems to have occurred only episodically [4,8]. Recently formed gullies and alluvial fans might have experienced even shorter periods of liquid water (minutes to hours), as shown by the identification of debris flow deposits that were formed by short-lived high-energy mass-wasting events [9]. Even with no adequate global climatic conditions, such as a long lasting warm and wet Mars, water- and ice-related surface processes occurred on an episodic timescale. However, the duration of the episodically appropriate conditions seems to be restricted to geologically relatively short periods. [1] Sagan, C., et al., Science, 181, 1045-1049, 1973. [2] Andrews-Hanna, J.C. and Lewis, K.W., JGR, 116, E02007, doi: 10.1029/2010JE003709, 2011. [3] Harrison, K.P., and Grimm, R.E., JGR, 110, doi: 10.1029/2005JE002455, 2005. [4] Jaumann, R., et al., Earth and Planetary Science Letters, 294, 272-290, 2010. [5] Erkeling, G., et al., Earth and Planetary Science Letters, 294, 291-305, 2010.[6] Carr, M.H., Philosphical Transactions of the Royal Society A, 370, 2193-2215, 2012. [7] Kleinhans, M. G., et al., Earth and Planetary Science Letters, 294, 378-392, 2010. [8] Jaumann, R., et al., GRL, 32, 16203, 2005, doi: 10.1029/2005GL023415. [9] Reiss, D., et al., GRL 37(6), doi: 10.1029/2009gl042192, 2010.

  12. Hydrologic activity during late Noachian and Early Hesperian downwarping of Borealis Basin, Mars

    NASA Technical Reports Server (NTRS)

    Tanaka, Kenneth L.

    1991-01-01

    Pronounced global volcanism as well as fracturing and erosion along the highland/lowland boundary (HLB) during the Late Noachian (LN) and Early Hesperian (EH) led McGill and Dimitriou to conclude that the Borealis basin formed tectonically during this period. This scenario provides a basis for interpretation of the initiation and mode of formation of erosional and collapse features along the HLB. The interpretation, in turn, is integral to hypotheses regarding the development of ancient lakes (or an ocean) and their impact on the climate history of Mars. Hydrologic features of Mars are discussed along with their implications for paleolakes and climate history.

  13. Thermal Tides in the Martian Middle Atmosphere as Seen by the Mars Climate Sounder

    PubMed Central

    Lee, C.; Lawson, W. G.; Richardson, M. I.; Heavens, N. G.; Kleinböhl, A.; Banfield, D.; McCleese, D. J.; Zurek, R.; Kass, D.; Schofield, J. T.; Leovy, C. B.; Taylor, F. W.; Toigo, A. D.

    2016-01-01

    The first systematic observations of the middle atmosphere of Mars (35km–80km) with the Mars Climate Sounder (MCS) show dramatic patterns of diurnal thermal variation, evident in retrievals of temperature and water ice opacity. At the time of writing, the dataset of MCS limb retrievals is sufficient for spectral analysis within a limited range of latitudes and seasons. This analysis shows that these thermal variations are almost exclusively associated with a diurnal thermal tide. Using a Martian General Circulation Model to extend our analysis we show that the diurnal thermal tide dominates these patterns for all latitudes and all seasons. PMID:27630378

  14. The Modern Near-Surface Martian Climate: A Review of In-situ Meteorological Data from Viking to Curiosity

    NASA Astrophysics Data System (ADS)

    Martínez, G. M.; Newman, C. N.; De Vicente-Retortillo, A.; Fischer, E.; Renno, N. O.; Richardson, M. I.; Fairén, A. G.; Genzer, M.; Guzewich, S. D.; Haberle, R. M.; Harri, A.-M.; Kemppinen, O.; Lemmon, M. T.; Smith, M. D.; de la Torre-Juárez, M.; Vasavada, A. R.

    2017-10-01

    We analyze the complete set of in-situ meteorological data obtained from the Viking landers in the 1970s to today's Curiosity rover to review our understanding of the modern near-surface climate of Mars, with focus on the dust, CO2 and H2O cycles and their impact on the radiative and thermodynamic conditions near the surface. In particular, we provide values of the highest confidence possible for atmospheric opacity, atmospheric pressure, near-surface air temperature, ground temperature, near-surface wind speed and direction, and near-surface air relative humidity and water vapor content. Then, we study the diurnal, seasonal and interannual variability of these quantities over a span of more than twenty Martian years. Finally, we propose measurements to improve our understanding of the Martian dust and H2O cycles, and discuss the potential for liquid water formation under Mars' present day conditions and its implications for future Mars missions. Understanding the modern Martian climate is important to determine if Mars could have the conditions to support life and to prepare for future human exploration.

  15. Scanning Martian Atmospheric Temperatures Graphic

    NASA Image and Video Library

    2013-06-12

    This graphic depicts the Mars Climate Sounder instrument on NASA Mars Reconnaissance Orbiter measuring the temperature of a cross section of the Martian atmosphere as the orbiter passes above the south polar region.

  16. Small-Scale Polygons and the History of Ground Ice on Mars

    NASA Technical Reports Server (NTRS)

    Mellon, Michael T.

    2000-01-01

    This research has laid a foundation for continued study of permafrost polygons on Mars using the models and understanding discussed here. Further study of polygonal patterns on Mars is proceeding (under new funding) which is expected to reveal more results about the origin of observed martian polygons and what information they contain regarding the recent history of tile martian climate and of water ice on Mars.

  17. Workshop on Early Mars: How Warm and How Wet?, part 1

    NASA Technical Reports Server (NTRS)

    Squyres, S. (Editor); Kasting, J. (Editor)

    1993-01-01

    This volume contains papers that have been accepted for presentation at the Workshop on Early Mars: How Warm and How Wet?, 26-28 Jul. 1993, in Breckenridge, CO. The following topics are covered: the Martian water cycle; Martian paleoclimatology; CO2/CH4 atmosphere on early Mars; Noachian hydrology; early Martian environment; Martian weathering; nitrogen isotope ratios; CO2 evolution on Mars; and climate change.

  18. Atmosphere and climate studies of Mars using the Mars Observer pressure modulator infrared radiometer

    NASA Technical Reports Server (NTRS)

    Mccleese, D. J.; Haskins, R. D.; Schofield, J. T.; Zurek, R. W.; Leovy, C. B.; Paige, D. A.; Taylor, F. W.

    1992-01-01

    Studies of the climate and atmosphere of Mars are limited at present by a lack of meteorological data having systematic global coverage with good horizontal and vertical resolution. The Mars Observer spacecraft in a low, nearly circular, polar orbit will provide an excellent platform for acquiring the data needed to advance significantly our understanding of the Martian atmosphere and its remarkable variability. The Mars Observer pressure modulator infrared radiometer (PMIRR) is a nine-channel limb and nadir scanning atmospheric sounder which will observe the atmosphere of Mars globally from 0 to 80 km for a full Martian year. PMIRR employs narrow-band radiometric channels and two pressure modulation cells to measure atmospheric and surface emission in the thermal infrared. PMIRR infrared and visible measurements will be combined to determine the radiative balance of the polar regions, where a sizeable fraction of the global atmospheric mass annually condenses onto and sublimes from the surface. Derived meteorological fields, including diabatic heating and cooling and the vertical variation of horizontal winds, are computed from the globally mapped fields retrieved from PMIRR data.

  19. Mars Polar Lander mated with third stage of rocket

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Mars Polar Lander is suspended from a crane in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) before being lowered to a workstand. There it will be mated to the third stage of the Boeing Delta II rocket before it is transported to Launch Pad 17B, Cape Canaveral Air Station. The lander, which will be launched on Jan. 3, 1999, is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.

  20. Very high resolution surface mass balance over Greenland modeled by the regional climate model MAR with a downscaling technique

    NASA Astrophysics Data System (ADS)

    Kittel, Christoph; Lang, Charlotte; Agosta, Cécile; Prignon, Maxime; Fettweis, Xavier; Erpicum, Michel

    2016-04-01

    This study presents surface mass balance (SMB) results at 5 km resolution with the regional climate MAR model over the Greenland ice sheet. Here, we use the last MAR version (v3.6) where the land-ice module (SISVAT) using a high resolution grid (5km) for surface variables is fully coupled while the MAR atmospheric module running at a lower resolution of 10km. This online downscaling technique enables to correct near-surface temperature and humidity from MAR by a gradient based on elevation before forcing SISVAT. The 10 km precipitation is not corrected. Corrections are stronger over the ablation zone where topography presents more variations. The model has been force by ERA-Interim between 1979 and 2014. We will show the advantages of using an online SMB downscaling technique in respect to an offline downscaling extrapolation based on local SMB vertical gradients. Results at 5 km show a better agreement with the PROMICE surface mass balance data base than the extrapolated 10 km MAR SMB results.

  1. Colorful Polar Layered Deposits

    NASA Image and Video Library

    2016-03-23

    The North Polar layered deposits provide a record of recent climate changes on Mars as seen by NASA Mars Reconnaissance Orbiter spacecraft. Color variations between layers are due to differences in composition of the dust.

  2. Mars Blueberry fields for ever

    NASA Astrophysics Data System (ADS)

    Moore, Jeffrey M.

    2004-04-01

    The Mars saga continues. The latest finds -- wide areas covered in balls of haematite, or 'blueberries', and large sulphate deposits in rocks -- enable us to draw in more details of the planet's past climate.

  3. Aeroheating Analysis for the Mars Reconnaissance Orbiter with Comparison to Flight Data

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.

    2007-01-01

    The aeroheating environment of the Mars Reconnaissance Orbiter (MRO) has been analyzed using the direct simulation Monte Carlo and free-molecular techniques. The results of these analyses were used to develop an aeroheating database to be used for the preflight planning and the in-flight operations support for the aerobraking phase of the MRO mission. The aeroheating predictions calculated for the MRO include the heat transfer coefficient (CH) over a range of angles-of-attack, sideslip angles, and number densities. The effects of flow chemistry, surface temperature, and surface grid resolution were also investigated to determine the aeroheating database uncertainties. Flight heat flux data has been calculated from surface temperature sensor data returned to Earth from the MRO in orbit around Mars during the aerobraking phase of its mission. The heat flux data have been compared to the aeroheating database and agree favorably.

  4. Experimental Results of Fractionation of HDO and H2O with simulated Martian Dust: Implications for the interpretation of past climate on Mars

    NASA Astrophysics Data System (ADS)

    Moores, J. E.; Smith, P.; Brown, R.; Lauretta, D.; Boynton, W.

    2009-05-01

    Climate change on Mars has been greatly debated in recent years. This has been motivated by the results from the Mars Reconnaissance Orbiter, Phoenix Lander and ground-based spectroscopic studies which have found mounting evidence that not only may Mars have had a wet and warm past, but those conditions inclement to life may also have been present more recently. On Mars, this is largely a story of water transport and, as on the Earth, isotopic analysis presents a key to understanding and decoding the Martian paleoclimate. For Mars, the major fractionation observed is in HDO, analogous to the Oxygen-18 cycle on Earth, and observations have shown that the D/H ratio of the planet is enriched by a factor of 5 to 6 from comparable terrestrial values. The conventional explanation is that a great deal of water has been lost to space over geologic time. However, previous studies have not taken into account the ability of present-day Mars to fractionate water as it moves from the polar caps to the polar layered deposits through the atmosphere, potentially masking any climate signal which may exist. In this presentation, we shall report on a series of Mars analogue experiments completed at the relevant ranges of pressure and temperature. Two different scenarios were simulated: the sublimation of dusty water ice and the sublimation of clean water ice through a simulated regolith/dust lag. In both cases, we have found that the system is dominated by adsorption of water. However, the simulant dust (JSC-1) appears to be an extremely efficient vehicle for fractionating water at cold temperatures, as different desorption rates have been recorded for HDO and H2O. This, when coupled with the relatively small amount of water exchanging today implies heavy fractionations in the current Mars system without requiring significant water losses to space.

  5. KSC-98pc1887

    NASA Image and Video Library

    1998-12-21

    KENNEDY SPACE CENTER, FLA. -- Inside the gantry at Launch Complex 17B, Cape Canaveral Air Station, the Mars Polar Lander spacecraft is lowered to mate it with the Boeing Delta II rocket that will launch it on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars Surveyor'98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998

  6. KSC-98pc1867

    NASA Image and Video Library

    1998-12-14

    In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), workers get ready to lift the heat shield for the Mars Polar Lander off the workstand before attaching it to the lander. Scheduled to be launched on Jan. 3, 1999, the lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, which is due to be launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998

  7. KSC-98pc1861

    NASA Image and Video Library

    1998-12-10

    KENNEDY SPACE CENTER, FLA. -- Workers in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) lift the Mars Polar Lander to move it to a spin table for testing. The lander, which will be launched on Jan. 3, 1999, is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, which is due to be launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998

  8. KSC-98pc1890

    NASA Image and Video Library

    1998-12-21

    KENNEDY SPACE CENTER, FLA. -- At Launch Complex 17B, Cape Canaveral Air Station, workers get ready to remove the protective wrapping on the Mars Polar Lander to be launched aboard a Boeing Delta II rocket on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars Surveyor'98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998

  9. KSC-98pc1820

    NASA Image and Video Library

    1998-11-28

    KENNEDY SPACE CENTER, FLA. -- The first stage of a Delta II rocket hangs in place in the gantry at Launch Complex 17B, Cape Canaveral Air Station. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A on Dec. 10, 1998

  10. KSC-98pc1886

    NASA Image and Video Library

    1998-12-21

    KENNEDY SPACE CENTER, FLA. -- The Mars Polar Lander spacecraft is lifted off the trailer of that transported it to the gantry at Launch Complex 17B, Cape Canaveral Air Station. The lander, which will be launched aboard a Boeing Delta II rocket on Jan. 3, 1999, is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998

  11. KSC-98pc1819

    NASA Image and Video Library

    1998-11-28

    KENNEDY SPACE CENTER, FLA. -- Workers guide the lifting of the first stage of a Delta II rocket up the gantry at Launch Complex 17B, Cape Canaveral Air Station. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A on Dec. 10, 1998

  12. KSC-98pc1833

    NASA Image and Video Library

    1998-12-02

    KENNEDY SPACE CENTER, FLA. -- On Pad 17B, Cape Canaveral Air Station, the fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander is lowered toward the rocket waiting below. The lander, which will be launched on Jan. 3, 1999, is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998

  13. KSC-98pc1832

    NASA Image and Video Library

    1998-12-02

    KENNEDY SPACE CENTER, FLA. -- On Pad 17B, Cape Canaveral Air Station, the fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander is prepared for lowering toward the rocket below. The lander, which will be launched on Jan. 3, 1999, is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998

  14. KSC-98pc1815

    NASA Image and Video Library

    1998-12-01

    KENNEDY SPACE CENTER, FLA. -- At Launch Complex 17A, Cape Canaveral Air Station, workers get ready to remove the last piece of the canister surrounding the Mars Climate Orbiter. Targeted for liftoff on Dec. 10, 1998, aboard a Boeing Delta II (7425) rocket, the orbiter will be the first spacecraft to be launched in the pair of Mars '98 missions. After its arrival at the red planet, the Mars Climate Orbiter will be used primarily to support its companion Mars Polar Lander spacecraft, scheduled for launch on Jan. 3, 1999. The orbiter will then monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year, the equivalent of about two Earth years. The spacecraft will observe the appearance and movement of atmospheric dust and water vapor, and characterize seasonal changes on the planet's surface

  15. KSC-98pc1816

    NASA Image and Video Library

    1998-12-01

    KENNEDY SPACE CENTER, FLA. -- At Launch Complex 17A, Cape Canaveral Air Station, the Mars Climate Orbiter is free of the protective canister that surrounded it during the move to the pad. Targeted for liftoff on Dec. 10, 1998, aboard a Boeing Delta II (7425) rocket, the orbiter will be the first spacecraft to be launched in the pair of Mars '98 missions. After its arrival at the red planet, the Mars Climate Orbiter will be used primarily to support its companion Mars Polar Lander spacecraft, scheduled for launch on Jan. 3, 1999. The orbiter will then monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year, the equivalent of about two Earth years. The spacecraft will observe the appearance and movement of atmospheric dust and water vapor, and characterize seasonal changes on the planet's surface

  16. KSC-98pc1645

    NASA Image and Video Library

    1998-11-12

    KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), JPL workers mount a Mars microprobe onto the Mars Polar Lander. Two microprobes will hitchhike on the lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars

  17. KSC-98pc1647

    NASA Image and Video Library

    1998-11-12

    KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), JPL workers prepare to mount a Mars microprobe onto the Mars Polar Lander. Two microprobes will hitchhike on the lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars

  18. KSC-98pc1642

    NASA Image and Video Library

    1998-11-12

    KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), Chris Voorhees (front) watches while Satish Krishnan (back) places a Mars microprobe on a workstand. Two microprobes will hitchhike on the Mars Polar Lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars

  19. KSC-98pc1628

    NASA Image and Video Library

    1998-11-10

    KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), Satish Krishnan (right) from the Jet Propulsion Laboratory places a Mars microprobe on a workstand. In the background, Chris Voorhees watches. Two microprobes will hitchhike on the Mars Polar Lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars

  20. KSC-98pc1641

    NASA Image and Video Library

    1998-11-12

    KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), Chris Voorhees (left) and Satish Krishnan (right), from the Jet Propulsion Laboratory, remove the second Mars microprobe from a drum. Two microprobes will hitchhike on the Mars Polar Lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars

  1. Sedimentary Processes on Earth, Mars, Titan, and Venus

    NASA Astrophysics Data System (ADS)

    Grotzinger, J. P.; Hayes, A. G.; Lamb, M. P.; McLennan, S. M.

    The production, transport and deposition of sediment occur to varying degrees on Earth, Mars, Venus, and Titan. These sedimentary processes are significantly influenced by climate that affects production of sediment in source regions (weathering), and the mode by which that sediment is transported (wind vs. water). Other, more geological, factors determine where sediments are deposited (topography and tectonics). Fluvial and marine processes dominate Earth both today and in its geologic past, aeolian processes dominate modern Mars although in its past fluvial processes also were important, Venus knows only aeolian processes, and Titan shows evidence of both fluvial and aeolian processes. Earth and Mars also feature vast deposits of sedimentary rocks, spanning billions of years of planetary history. These ancient rocks preserve the long-term record of the evolution of surface environments, including variations in climate state. On Mars, sedimentary rocks record the transition from wetter, neutral-pH weathering, to brine-dominated low-pH weathering, to its dry current state.

  2. KSC-98pc1643

    NASA Image and Video Library

    1998-11-12

    KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), a JPL worker checks the Mars microprobe. Two microprobes will hitchhike on the Mars Polar Lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars

  3. KSC-98pc1648

    NASA Image and Video Library

    1998-11-12

    KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), the two Mars microprobes are shown mounted on opposite sides of the Mars Polar Lander. The two microprobes and the lander are scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars

  4. KSC-98pc1644

    NASA Image and Video Library

    1998-11-12

    KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), two JPL workers measure a Mars microprobe. Two microprobes will hitchhike on the Mars Polar Lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars

  5. KSC-98pc1646

    NASA Image and Video Library

    1998-11-12

    KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), a JPL worker carries a Mars microprobe to the Mars Polar Lander at left. Two microprobes will hitchhike on the lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars

  6. Mechanical Description of the Mars Climate Sounder Instrument

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.

    2008-01-01

    This paper introduces the Mars Climate Sounder (MCS) Instrument of the Mars Reconnaissance Orbiter (MRO) spacecraft. The instrument scans the Martian atmosphere almost continuously to systematically acquire weather and climate observations over time. Its primary components are an optical bench that houses dual telescopes with a total of nine channels for visible and infrared sensing, and a two axis gimbal that provides pointing capabilities. Both rotating joints consist of an integrated actuator with a hybrid planetary/harmonic transmission and a twist cap section that enables the electrical wiring to pass through the rotating joint. Micro stepping is used to reduce spacecraft disturbance torques to acceptable levels while driving the stepper motors. To ensure survivability over its four year life span, suitable mechanical components, lubrication, and an active temperature control system were incorporated. Some life test results and lessons learned are provided to serve as design guidelines for actuator parts and flex cables.

  7. Fluvial valleys in the heavily cratered terrains of Mars: Evidence for paleoclimatic change?

    NASA Technical Reports Server (NTRS)

    Gulick, V. C.; Baker, V. R.

    1993-01-01

    Whether the formation of the Martian valley networks provides unequivocal evidence for drastically different climatic conditions remains debatable. Recent theoretical climate modeling precludes the existence of a temperate climate early in Mars' geological history. An alternative hypothesis suggests that Mars had a globally higher heat flow early in its geological history, bringing water tables to within 350 m of the surface. While a globally higher heat flow would initiate ground water circulation at depth, the valley networks probably required water tables to be even closer to the surface. Additionally, it was previously reported that the clustered distribution of the valley networks within terrain types, particularly in the heavily cratered highlands, suggests regional hydrological processes were important. The case for localized hydrothermal systems is summarized and estimates of both erosion volumes and of the implied water volumes for several Martian valley systems are presented.

  8. Early Mars Climate Modeling and the Faint Young Sun Paradox.

    NASA Technical Reports Server (NTRS)

    Haberle, Robert M.

    2015-01-01

    Today Mars is a cold, dry, desert planet. Liquid water is not stable on its surface. There are no lakes, seas, or oceans, and precipitation falls as snowfall. Yet early in its history during the Noachian epoch, there is geological and mineralogical evidence that liquid water from rainfall flowed on its surface creating drainage systems, lakes, and - possibly - seas and oceans. More recent observations by Curiosity in Gale crater hint that such conditions may have persited into the Hesperian. The implication is that early Mars had a wamer climate than it does today as a result of a thicker atmosphere with a more powerful greenhouse effect capable of producing an active hydrological cycle with rainfall, runoff, and evaporation. Since Mariner 9 began accumulating such evidence, researchers have been trying to understand what kind of a climate system could have created greenhouse conditions favorable for liquid water. Unfortunately, the problem is not yet solved.

  9. Climate Change on Mars

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.; Cuzzi, Jeffrey N. (Technical Monitor)

    1994-01-01

    Today, Mars is cold and dry. With a 7 mbar mean surface pressure, its thin predominantly CO2 atmosphere is not capable of raising global mean surface temperatures significantly above its 217K effective radiating temperature, and the amount of water vapor in the atmosphere is equivalent to a global ocean only 10 microns deep. Has Mars always been in such a deep freeze? There are several lines of evidence that suggest it has not. First, there are the valley networks which are found throughout the heavily cratered terrains. These features are old (3.8 Gyr) and appear to require liquid water to form. A warm climate early in Mars' history has often been invoked to explain them, but the precise conditions required to achieve this have yet to be determined. Second, some of the features seen in orbiter images of the surface have been interpreted in terms of glacial activity associated with an active hydrological cycle some several billion years ago. This interpretation is controversial as it requires the release of enormous quantities of ground water and enough greenhouse warming to raise temperatures to the melting point. Finally, there are the layered terrains that characterize both polar regions. These terrains are geologically young (10 Myr) and are believed to have formed by the slow and steady deposition of dust and water ice from the atmosphere. The individual layers result from the modulation of the deposition rate which is driven by changes in Mars' orbital parameters. The ongoing research into each of these areas of Martian climate change will be reviewed, and similarities to the Earth's climate system will be noted.

  10. The geological and climatological case for a warmer and wetter early Mars

    NASA Astrophysics Data System (ADS)

    Ramirez, Ramses M.; Craddock, Robert A.

    2018-04-01

    The climate of early Mars remains a topic of intense debate. Ancient terrains preserve landscapes consistent with stream channels, lake basins and possibly even oceans, and thus the presence of liquid water flowing on the Martian surface 4 billion years ago. However, despite the geological evidence, determining how long climatic conditions supporting liquid water lasted remains uncertain. Climate models have struggled to generate sufficiently warm surface conditions given the faint young Sun—even assuming a denser early atmosphere. A warm climate could have potentially been sustained by supplementing atmospheric CO2 and H2O warming with either secondary greenhouse gases or clouds. Alternatively, the Martian climate could have been predominantly cold and icy, with transient warming episodes triggered by meteoritic impacts, volcanic eruptions, methane bursts or limit cycles. Here, we argue that a warm and semi-arid climate capable of producing rain is most consistent with the geological and climatological evidence.

  11. Proceedings of the MECA Workshop on The Evoluation of the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Carr, M. (Editor); James, P. (Editor); Conway, L. (Editor); Pepin, R. (Editor); Pollack, J. (Editor)

    1985-01-01

    Topics addressed include: Mars' volatile budget; climatic implications of martian channels; bulk composition of Mars; accreted water inventory; evolution of CO2; dust storms; nonlinear frost albedo feedback on Mars; martian atmospheric evolution; effects of asteroidal and cometary impacts; and water exchange between the regolith and the atmosphere/cap system over obliquity timescales.

  12. A high-resolution, regional analysis of stormwater runoff for managed aquifer recharge site assessment

    NASA Astrophysics Data System (ADS)

    Young, K. S.; Fisher, A. T.; Beganskas, S.; Harmon, R. E.; Teo, E. K.; Weir, W. B.; Lozano, S.

    2016-12-01

    Distributed Stormwater Collection-Managed Aquifer Recharge (DSC-MAR) presents a cost-effective method of aquifer replenishment by collecting runoff and infiltrating it into underlying aquifers, but its successful implementation demands thorough knowledge of the distribution and availability of hillslope runoff. We applied a surface hydrology model to analyze the dynamics of hillslope runoff at high resolution (0.1 to 1.0 km2) across the 350 km2 San Lorenzo River Basin (SLRB) watershed, northern Santa Cruz County, CA. We used a 3 m digital elevation model to create a detailed model grid, which we parameterized with high-resolution geologic, hydrologic, and land use data. To analyze hillslope runoff under a range of precipitation regimes, we developed dry, normal, and wet climate scenarios from historic daily precipitation records (1981-2014). Simulation results show high spatial variability of hillslope runoff generation as a function of differences in precipitation and soil and land use conditions, and reveal a consistent increase in the spatial and temporal variability of runoff under wetter climate scenarios. Our results suggest that there may be opportunities to develop successful DSC-MAR projects that provide benefits during all climate scenarios. In the SLRB, our results indicate that annual hillslope runoff generation achieves a target minimum of 100 acre-ft, per 100 acres of drainage area, in approximately 15% of the region during dry climate scenarios and 60% of the region during wet climate scenarios. The high spatial and temporal resolution of our simulation output enables quantification of hillslope runoff at sub-watershed scales, commensurate with the spacing and operation of DSC-MAR. This study demonstrates a viable tool for screening of potential DSC-MAR project sites and assessing project performance under a range of climate and land use scenarios.

  13. The Ice-Covered Lakes Hypothesis in Gale Crater: Implications for the Early Hesperian Climate

    NASA Technical Reports Server (NTRS)

    Kling, Alexandre M.; Haberle, Robert M.; McKay, Christopher P.; Bristow, Thomas F.; Rivera-Hernandez, Frances

    2017-01-01

    Recent geological discoveries from the Mars Science Laboratory (MSL), including stream and lake sedimentary deposits, provide evidence that Gale crater may have intermittently hosted a fluviol-acustine environment during the Hesperian, with individual lakes lasting for a period of tens to hundreds of thousands of years. Estimates of the CO2 content of the atmosphere at the time the Gale sediments formed are far less than needed by any climate model to warm early Mars, given the low solar energy input available at Mars 3.5 Gya. We have therefore explored the possibility that the lakes in Gale during the Hesperian were perennially covered with ice using the Antarctic lakes as analogs.

  14. Applying a regional hydrology model to evaluate locations for groundwater replenishment with hillslope runoff under different climate and land use scenarios in an agricultural basin, central coastal California

    NASA Astrophysics Data System (ADS)

    Beganskas, S.; Young, K. S.; Fisher, A. T.; Lozano, S.; Harmon, R. E.; Teo, E. K.

    2017-12-01

    We are applying a regional hydrology model, Precipitation-Runoff Modeling System (PRMS), to evaluate locations for groundwater replenishment with hillslope runoff in the Pajaro Valley Groundwater Basin (PVGB), central coastal California. Stormwater managed aquifer recharge (MAR) projects collect hillslope runoff before it reaches a stream and infiltrate it into underlying aquifers, improving groundwater supply. The PVGB is a developed agricultural basin where groundwater provides >85% of water for irrigation and municipal needs; stormwater-MAR projects are being considered to address chronic overdraft and saltwater intrusion. We are applying PRMS to assess on a subwatershed scale (10-100 ha; 25-250 acres) where adequate runoff is generated to supply stormwater-MAR in coincidence with suitable conditions for infiltration and recharge. Data from active stormwater-MAR projects in the PVGB provide ground truth for model results. We are also examining how basinwide hydrology responds to changing land use and climate, and the potential implications for future water management. To prepare extensive input files for PRMS models, we developed ArcGIS and Python tools to delineate a topographic model grid and incorporate high-resolution soil, vegetation, and other physical data into each grid region; we also developed tools to analyze and visualize model output. Using historic climate records, we generated dry, normal, and wet climate scenarios, defined as having approximately 25th, 50th, and 75th percentile annual rainfall, respectively. We also generated multiple land use scenarios by replacing developed areas with native vegetation. Preliminary results indicate that many parts of the PVGB generate significant runoff and have suitable infiltration/recharge conditions. Reducing basinwide overdraft by 10% would require collecting less than 5% of total hillslope runoff, even during the dry scenario; this demonstrates that stormwater-MAR could be an effective water management strategy under a broad range of future climate conditions. The tools we have developed inform the placement and design of stormwater-MAR projects that make effective use of limited resources.

  15. Predicting Martian dune shape and orientation from wind directional variability and sediment availability

    NASA Astrophysics Data System (ADS)

    Fernandez-Cascales, Laura; Lucas, Antoine; Rodriguez, Sébastien; Narteau, Clément; Spiga, Aymeric; Allemand, Pascal

    2016-04-01

    Dunes provide a unique set of information to constrain local climatic regimes on planetary bodies where there is no direct meteorological data. Wind directional variability and sediment availability are known to control the dune growth mechanism (i.e. the bed instability or fingering modes) and the subsequent dune shape and orientation (Courrech du Pont at al., 2014; Gao et al., 2015). Here we provide a quantitative analysis of these dependences on Mars using the output of the Martian General Circulation Models (GCM) and satellite imagery such as the Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) images, at a selection of places where there is a high contrast between the dune material and the non-erodible ground. Dunes, mostly composed of unweathered basaltic and andesitic grains, appear dark, whereas the non-erodible ground has a higher albedo. Such a systematic contrast permits to link dune morphology to the local sediment cover. Dune shape, crest orientation and local sediment cover are extracted from CTX images using an automatic linear segment detection method and the local distribution in albedo. In zones of high sediment supply, dune crest alignments are close to the orientation of the bed instability mode predicted from the local winds from the Martian Climate Database (MCD) where is stored the outputs of the IPSL-GCM for Mars (Millour et al., 2014). Using the same wind data, in zones of low sediment supply, the crest angle is close to the orientation of the fingering mode. In addition, there are continuous transitions in dune shape and orientation as the dunes migrate from zone of high to low sediment availability. These results indicate that the prediction of the IPSL-GCM are in good agreement with the present dune shapes and orientations and shed new light on the dynamics of complex dune fields along sand flow path.

  16. Mars global digital dune database: MC-30

    USGS Publications Warehouse

    Hayward, R.K.; Fenton, L.K.; Titus, T.N.; Colaprete, A.; Christensen, P.R.

    2012-01-01

    The Mars Global Digital Dune Database (MGD3) provides data and describes the methodology used in creating the global database of moderate- to large-size dune fields on Mars. The database is being released in a series of U.S. Geological Survey Open-File Reports. The first report (Hayward and others, 2007) included dune fields from lat 65° N. to 65° S. (http://pubs.usgs.gov/of/2007/1158/). The second report (Hayward and others, 2010) included dune fields from lat 60° N. to 90° N. (http://pubs.usgs.gov/of/2010/1170/). This report encompasses ~75,000 km2 of mapped dune fields from lat 60° to 90° S. The dune fields included in this global database were initially located using Mars Odyssey Thermal Emission Imaging System (THEMIS) Infrared (IR) images. In the previous two reports, some dune fields may have been unintentionally excluded for two reasons: (1) incomplete THEMIS IR (daytime) coverage may have caused us to exclude some moderate- to large-size dune fields or (2) resolution of THEMIS IR coverage (100 m/pixel) certainly caused us to exclude smaller dune fields. In this report, mapping is more complete. The Arizona State University THEMIS daytime IR mosaic provided complete IR coverage, and it is unlikely that we missed any large dune fields in the South Pole (SP) region. In addition, the increased availability of higher resolution images resulted in the inclusion of more small (~1 km2) sand dune fields and sand patches. To maintain consistency with the previous releases, we have identified the sand features that would not have been included in earlier releases. While the moderate to large dune fields in MGD3 are likely to constitute the largest compilation of sediment on the planet, we acknowledge that our database excludes numerous small dune fields and some moderate to large dune fields as well. Please note that the absence of mapped dune fields does not mean that dune fields do not exist and is not intended to imply a lack of saltating sand in other areas. Where availability and quality of THEMIS visible (VIS), Mars Orbiter Camera (MOC) narrow angle, Mars Express High Resolution Stereo Camera, or Mars Reconnaissance Orbiter Context Camera and High Resolution Imaging Science Experiment images allowed, we classified dunes and included some dune slipface measurements, which were derived from gross dune morphology and represent the approximate prevailing wind direction at the last time of significant dune modification. It was beyond the scope of this report to look at the detail needed to discern subtle dune modification. It was also beyond the scope of this report to measure all slipfaces. We attempted to include enough slipface measurements to represent the general circulation (as implied by gross dune morphology) and to give a sense of the complex nature of aeolian activity on Mars. The absence of slipface measurements in a given direction should not be taken as evidence that winds in that direction did not occur. When a dune field was located within a crater, the azimuth from crater centroid to dune field centroid was calculated, as another possible indicator of wind direction. Output from a general circulation model is also included. In addition to polygons locating dune fields, the database includes ~700 of the THEMIS VIS and MOC images that were used to build the database.

  17. Production of Greenhouse Gases in The Atmosphere of Early Mars

    NASA Technical Reports Server (NTRS)

    Kress, Monika E.; McKay, Christopher P.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Mars was much warmer and wetter 3.5 to 4 billion years ago than it is today, suggesting that its climate was able to support life in the distant past. Carbon dioxide and methane are greenhouse gases which may have kept Mars warm during this time. We explore the possibility that these gases were produced via grain-catalyzed reactions in the warm, dusty aftermath of large comet and/or asteroid impacts which delivered Mars, volatile inventory.

  18. KSC-98pc1889

    NASA Image and Video Library

    1998-12-21

    KENNEDY SPACE CENTER, FLA. -- At Launch Complex 17B, Cape Canaveral Air Station, the protective covering on the Mars Polar Lander is lifted up and out of the way. The lander, in the opening below, is being mated to the Boeing Delta II rocket that will launch it on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars Surveyor'98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998

  19. KSC-98pc1885

    NASA Image and Video Library

    1998-12-17

    In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Polar Lander is lowered onto the third stage of the Boeing Delta II rocket before it is transported to Launch Pad 17B, Cape Canaveral Air Station. The lander, which will be launched on Jan. 3, 1999, is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998

  20. KSC-98pc1883

    NASA Image and Video Library

    1998-12-17

    KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), workers mate the Mars Polar Lander to the third stage of the Boeing Delta II rocket before it is transported to Launch Pad 17B, Cape Canaveral Air Station. The lander, which will be launched on Jan. 3, 1999, is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998

  1. KSC-98pc1625

    NASA Image and Video Library

    1998-11-10

    KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), the Mars Polar Lander is prepared to receive a number of microprobes being added to the spacecraft. Scheduled to be launched on Jan. 3, 1999, the solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars

  2. KSC-98pc1767

    NASA Image and Video Library

    1998-12-03

    KENNEDY SPACE CENTER, FLA. -- Wrapped in a protective covering, the Mars Climate Orbiter with its upper stage booster is lowered in preparation for mating to the second stage of a Boeing Delta II (7425) rocket at Launch Complex 17, Pad A, Cape Canaveral Air Station. Targeted for liftoff on Dec. 10, 1998, the orbiter will be the first spacecraft to be launched in the pair of Mars ’98 missions. After its arrival at the red planet, the Mars Climate Orbiter will be used primarily to support its companion Mars Polar Lander spacecraft, scheduled for launch on Jan. 3, 1999. The orbiter will then monitor the Martian atmosphere and image the planet’s surface on a daily basis for one Martian year, the equivalent of about two Earth years. The spacecraft will observe the appearance and movement of atmospheric dust and water vapor, and characterize seasonal changes on the planet’s surface

  3. KSC-98pc1766

    NASA Image and Video Library

    1998-12-03

    KENNEDY SPACE CENTER, FLA. -- Wrapped in a protective covering, the Mars Climate Orbiter with its upper stage booster is lifted up at Launch Complex 17, Pad A, Cape Canaveral Air Station, in preparation for mating to the second stage of a Boeing Delta II (7425) rocket. Targeted for liftoff on Dec. 10, 1998, the orbiter will be the first spacecraft to be launched in the pair of Mars ’98 missions. After its arrival at the red planet, the Mars Climate Orbiter will be used primarily to support its companion Mars Polar Lander spacecraft, scheduled for launch on Jan. 3, 1999. The orbiter will then monitor the Martian atmosphere and image the planet’s surface on a daily basis for one Martian year, the equivalent of about two Earth years. The spacecraft will observe the appearance and movement of atmospheric dust and water vapor, and characterize seasonal changes on the planet’s surface

  4. KSC-98pc1765

    NASA Image and Video Library

    1998-12-03

    KENNEDY SPACE CENTER, FLA. -- Wrapped in a protective covering, the Mars Climate Orbiter with its upper stage booster is lifted up at Launch Complex 17, Pad A, Cape Canaveral Air Station, in preparation for mating to the second stage of a Boeing Delta II (7425) rocket. Targeted for liftoff on Dec. 10, 1998, the orbiter will be the first spacecraft to be launched in the pair of Mars ’98 missions. After its arrival at the red planet, the Mars Climate Orbiter will be used primarily to support its companion Mars Polar Lander spacecraft, scheduled for launch on Jan. 3, 1999. The orbiter will then monitor the Martian atmosphere and image the planet’s surface on a daily basis for one Martian year, the equivalent of about two Earth years. The spacecraft will observe the appearance and movement of atmospheric dust and water vapor, and characterize seasonal changes on the planet’s surface

  5. Development of a database system for near-future climate change projections under the Japanese National Project SI-CAT

    NASA Astrophysics Data System (ADS)

    Nakagawa, Y.; Kawahara, S.; Araki, F.; Matsuoka, D.; Ishikawa, Y.; Fujita, M.; Sugimoto, S.; Okada, Y.; Kawazoe, S.; Watanabe, S.; Ishii, M.; Mizuta, R.; Murata, A.; Kawase, H.

    2017-12-01

    Analyses of large ensemble data are quite useful in order to produce probabilistic effect projection of climate change. Ensemble data of "+2K future climate simulations" are currently produced by Japanese national project "Social Implementation Program on Climate Change Adaptation Technology (SI-CAT)" as a part of a database for Policy Decision making for Future climate change (d4PDF; Mizuta et al. 2016) produced by Program for Risk Information on Climate Change. Those data consist of global warming simulations and regional downscaling simulations. Considering that those data volumes are too large (a few petabyte) to download to a local computer of users, a user-friendly system is required to search and download data which satisfy requests of the users. We develop "a database system for near-future climate change projections" for providing functions to find necessary data for the users under SI-CAT. The database system for near-future climate change projections mainly consists of a relational database, a data download function and user interface. The relational database using PostgreSQL is a key function among them. Temporally and spatially compressed data are registered on the relational database. As a first step, we develop the relational database for precipitation, temperature and track data of typhoon according to requests by SI-CAT members. The data download function using Open-source Project for a Network Data Access Protocol (OPeNDAP) provides a function to download temporally and spatially extracted data based on search results obtained by the relational database. We also develop the web-based user interface for using the relational database and the data download function. A prototype of the database system for near-future climate change projections are currently in operational test on our local server. The database system for near-future climate change projections will be released on Data Integration and Analysis System Program (DIAS) in fiscal year 2017. Techniques of the database system for near-future climate change projections might be quite useful for simulation and observational data in other research fields. We report current status of development and some case studies of the database system for near-future climate change projections.

  6. IMPACT OF CLIMATE VARIATION AND CHANGE ON MID-ATLANTIC REGION HYDROLOGY AND WATER RESOURCES

    EPA Science Inventory

    The sensitivity of hydrology and water resources to climate variation and climate change is assessed for the Mid-Atlantic Region (MAR) of the United States. Observed streamflow, groundwater, and water-quality data are shown to vary in association with climate variation. Projectio...

  7. The seasonal CO2 cycle on Mars - An application of an energy balance climate model

    NASA Technical Reports Server (NTRS)

    James, P. B.; North, G. R.

    1982-01-01

    Energy balance climate models of the Budyko-Sellers variety are applied to the carbon-dioxide cycle on Mars. Recent data available from the Viking mission, in particular the seasonal pressure variations measured by Viking landers, are used to constrain the models. No set of parameters was found for which a one-dimensional model parameterized in terms of ground temperature gave an adequate fit to the observed pressure variations. A modified, two-dimensional model including the effects of dust storms and the polar hood reasonably reproduces the pressure curve, however. The implications of these results for Martian climate changes are discussed.

  8. Climate, atmosphere, and volatile inventory evolution: Polar processes, climate records, volatile inventories

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.

    1988-01-01

    Climate change on Mars was driven by long term changes in the solar luminosity, variations in the partitioning of volatiles between the atmosphere and near-surface reservoirs, and astronomical variations in axial and orbital properties. There are important parallels between these drives for Mars and comparable ones for Earth. In the early history of the solar system, the Sun's luminosity was 25 to 30 percent lower than its current value. It is suggested that an early benign climate on Earth was due to the presence of much more carbon dioxide in its atmosphere at these early times than currently resides there. Such a partitioning of carbon dioxide, at the expense of the carbonate rock reservoir, may have resulted from a more vigorous tectonic and volcanic style at early times. Such a line of reasoning may imply that much more carbon dioxide was present in the Martian atmosphere during the planet's early history than resides there today. It is now widely recognized that astronomical variations of the Earth's axial and orbital characteristics have played a dominant role in causing the succession of glacial and interglacial periods characterizing the last several million years. The magnitude of the axial and eccentricity variations are much larger for Mars than for Earth. Such changes on Mars could result in sizeable variations in atmospheric pressure, dust storm activity, and the stability of perennial carbon dioxide and water ice polar caps. These quasi-periodic climate changes occur on periods of 100,000 to 1,000,000 years and may be recorded in the sedimentary layers of the polar layered terrain.

  9. The dayside ionospheres of Mars and Venus: Comparing a one-dimensional photochemical model with MaRS (Mars Express) and VeRa (Venus Express) observations

    NASA Astrophysics Data System (ADS)

    Peter, Kerstin; Pätzold, Martin; Molina-Cuberos, Gregorio; Witasse, Olivier; González-Galindo, F.; Withers, Paul; Bird, Michael K.; Häusler, Bernd; Hinson, David P.; Tellmann, Silvia; Tyler, G. Leonard

    2014-05-01

    The electron density distributions of the lower ionospheres of Mars and Venus are mainly dependent on the solar X-ray and EUV flux and the solar zenith angle. The influence of an increasing solar flux is clearly seen in the increase of the observed peak electron density and total electron content (TEC) of the main ionospheric layers. The model “Ionization in Atmospheres” (IonA) was developed to compare ionospheric radio sounding observations, which were performed with the radio science experiments MaRS on Mars Express and VeRa on Venus Express, with simulated electron density profiles of the Mars and Venus ionospheres. This was done for actual observation conditions (solar flux, solar zenith angle, planetary coordinates) from the bases of the ionospheres to ∼160 km altitude. IonA uses models of the neutral atmospheres at ionospheric altitudes (Mars Climate Database (MCD) v4.3 for Mars; VenusGRAM/VIRA for Venus) and solar flux information in the 0.5-95 nm wavelength range (X-ray to EUV) from the SOLAR2000 data base. The comparison between the observed electron density profiles and the IonA profiles for Mars, simulated for a selected MCD scenario (background atmosphere), shows that the general behavior of the Mars ionosphere is reproduced by all scenarios. The MCD “low solar flux/clear atmosphere” and “low solar flux/MY24” scenarios agree best (on average) with the MaRS set of observations, although the actual Mars atmosphere seemed to be still slightly colder at ionospheric altitudes. For Venus, the VenusGRAM model, based on VIRA, is too limited to be used for the IonA simulation of electron density profiles. The behavior of the V2 peak electron density and TEC as a function of solar zenith angle are in general reproduced, but the peak densities and the TEC are either over- or underestimated for low or high solar EUV fluxes, respectively. The simulated V2 peak altitudes are systematically underestimated by 5 km on average for solar zenith angles less than 45° and the peak altitudes rise for zenith angles larger than 60°. The latter is the opposite of the observed behavior. The explanation is that VIRA and VenusGRAM are valid only for high solar activity, although there is also very poor agreement with VeRa observations from the recent solar cycle, in which the solar activity increases to high values. The disagreement between the observation and simulation of the Venus electron density profiles proves, that the true encountered Venus atmosphere at ionospheric altitudes was denser but locally cooler than predicted by VIRA.

  10. Spectroscopy of Mars Atmosphere from Orbiting and Ground-based Observatories: Recent Results and Implications for Evolution

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, V. A.

    2003-07-01

    This is a review of the ground-based and Earth-orbiting studies of Mars atmosphere in the last decade that resulted in the detections of HDO, D, H2, He, and detailed mapping of O3, O2(delta), and CO. These studies provide new insights on the history of volatiles and climate on Mars.

  11. Astrobiology through the ages of Mars: the study of terrestrial analogues to understand the habitability of Mars.

    PubMed

    Fairén, Alberto G; Davila, Alfonso F; Lim, Darlene; Bramall, Nathan; Bonaccorsi, Rosalba; Zavaleta, Jhony; Uceda, Esther R; Stoker, Carol; Wierzchos, Jacek; Dohm, James M; Amils, Ricardo; Andersen, Dale; McKay, Christopher P

    2010-10-01

    Mars has undergone three main climatic stages throughout its geological history, beginning with a water-rich epoch, followed by a cold and semi-arid era, and transitioning into present-day arid and very cold desert conditions. These global climatic eras also represent three different stages of planetary habitability: an early, potentially habitable stage when the basic requisites for life as we know it were present (liquid water and energy); an intermediate extreme stage, when liquid solutions became scarce or very challenging for life; and the most recent stage during which conditions on the surface have been largely uninhabitable, except perhaps in some isolated niches. Our understanding of the evolution of Mars is now sufficient to assign specific terrestrial environments to each of these periods. Through the study of Mars terrestrial analogues, we have assessed and constrained the habitability conditions for each of these stages, the geochemistry of the surface, and the likelihood for the preservation of organic and inorganic biosignatures. The study of these analog environments provides important information to better understand past and current mission results as well as to support the design and selection of instruments and the planning for future exploratory missions to Mars.

  12. Extreme temperature events on Greenland in observations and the MAR regional climate model

    NASA Astrophysics Data System (ADS)

    Leeson, Amber A.; Eastoe, Emma; Fettweis, Xavier

    2018-03-01

    Meltwater from the Greenland Ice Sheet contributed 1.7-6.12 mm to global sea level between 1993 and 2010 and is expected to contribute 20-110 mm to future sea level rise by 2100. These estimates were produced by regional climate models (RCMs) which are known to be robust at the ice sheet scale but occasionally miss regional- and local-scale climate variability (e.g. Leeson et al., 2017; Medley et al., 2013). To date, the fidelity of these models in the context of short-period variability in time (i.e. intra-seasonal) has not been fully assessed, for example their ability to simulate extreme temperature events. We use an event identification algorithm commonly used in extreme value analysis, together with observations from the Greenland Climate Network (GC-Net), to assess the ability of the MAR (Modèle Atmosphérique Régional) RCM to reproduce observed extreme positive-temperature events at 14 sites around Greenland. We find that MAR is able to accurately simulate the frequency and duration of these events but underestimates their magnitude by more than half a degree Celsius/kelvin, although this bias is much smaller than that exhibited by coarse-scale Era-Interim reanalysis data. As a result, melt energy in MAR output is underestimated by between 16 and 41 % depending on global forcing applied. Further work is needed to precisely determine the drivers of extreme temperature events, and why the model underperforms in this area, but our findings suggest that biases are passed into MAR from boundary forcing data. This is important because these forcings are common between RCMs and their range of predictions of past and future ice sheet melting. We propose that examining extreme events should become a routine part of global and regional climate model evaluation and that addressing shortcomings in this area should be a priority for model development.

  13. Carl Sagan and the Exploration of Mars and Venus

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Condon, Estelle P. (Technical Monitor)

    1997-01-01

    Inspired by childhood readings of books by Edgar Rice Burroughs, Carl Sagan's first interest in planetary science focused on Mars and Venus. Typical of much of his career he was skeptical of early views about these planets. Early in this century it was thought that the Martian wave of darkening, a seasonal albedo change on the planet, was biological in origin. He suggested instead that it was due to massive dust storms, as was later shown to be the case. He was the first to recognize that Mars has huge topography gradients across its surface. During the spacecraft era, as ancient river valleys were found on the planet, he directed studies of Mars' ancient climate. He suggested that changes in the planets orbit were involved in climate shifts on Mars, just as they are on Earth. Carl had an early interest in Venus. Contradictory observations led to a controversy about the surface temperature, and Carl was one of the first to recognize that Venus has a massive greenhouse effect at work warming its surface. His work on radiative transfer led to an algorithm that was extensively used by modelers of the Earth's climate and whose derivatives still dominate the calculation of radiative transfer in planetary atmospheres today. Carl inspired a vast number of young scientists through his enthusiasm for new ideas and discoveries, his skeptical approach, and his boundless energy. I had the privilege to work in Carl's laboratory during the peak of the era of Mars' initial exploration. It was an exciting time, and place. Carl made it a wonderful experience.

  14. Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions

    NASA Technical Reports Server (NTRS)

    Albee, Arden; Battel, Steven; Brace, Richard; Burdick, Garry; Casani, John; Lavell, Jeffrey; Leising, Charles; MacPherson, Duncan; Burr, Peter; Dipprey, Duane

    2000-01-01

    NASA's Mars Surveyor Program (MSP) began in 1994 with plans to send spacecraft to Mars every 26 months. Mars Global Surveyor (MGS), a global mapping mission, was launched in 1996 and is currently orbiting Mars. Mars Surveyor '98 consisted of Mars Climate Orbiter (MCO) and Mars Polar Lander (MPL). Lockheed Martin Astronautics (LMA) was the prime contractor for Mars Surveyor '98. The Jet Propulsion Laboratory (JPL), California Institute of Technology, manages the Mars Surveyor Program for NASA's Office of Space Science. MPL was developed under very tight funding constraints. The combined development cost of MPL and MCO, including the cost of the two launch vehicles, was approximately the same as the development cost of the Mars Pathfinder mission, including the cost of its single launch vehicle. The MPL project accepted the challenge to develop effective implementation methodologies consistent with programmatic requirements.

  15. Future climate and surface mass balance of Svalbard glaciers in an RCP8.5 climate scenario: a study with the regional climate model MAR forced by MIROC5

    NASA Astrophysics Data System (ADS)

    Lang, C.; Fettweis, X.; Erpicum, M.

    2015-05-01

    We have performed a future projection of the climate and surface mass balance (SMB) of Svalbard with the MAR (Modèle Atmosphérique Régional) regional climate model forced by MIROC5 (Model for Interdisciplinary Research on Climate), following the RCP8.5 scenario at a spatial resolution of 10 km. MAR predicts a similar evolution of increasing surface melt everywhere in Svalbard followed by a sudden acceleration of melt around 2050, with a larger melt increase in the south compared to the north of the archipelago. This melt acceleration around 2050 is mainly driven by the albedo-melt feedback associated with the expansion of the ablation/bare ice zone. This effect is dampened in part as the solar radiation itself is projected to decrease due to a cloudiness increase. The near-surface temperature is projected to increase more in winter than in summer as the temperature is already close to 0 °C in summer. The model also projects a stronger winter west-to-east temperature gradient, related to the large decrease of sea ice cover around Svalbard. By 2085, SMB is projected to become negative over all of Svalbard's glaciated regions, leading to the rapid degradation of the firn layer.

  16. Mars at war

    NASA Astrophysics Data System (ADS)

    2018-04-01

    Whether the climate of early Mars was warm and wet or cold and dry remains unclear, but the debate is overheated. With a growing toolbox and increasing data to tackle the open questions, progress is possible if there is openness to bridging the divide.

  17. Mars' Oceanus Borealis, Ancient Glaciers, and the MEGAOUTFLO Hypothesis

    NASA Technical Reports Server (NTRS)

    Baker, V. R.; Strom, R. G.; Dohm, J. M.; Gulick, V. C.; Kargel, J. S.; Komatsu, G.; Ori, G. G.; Rice, J. W., Jr.

    2000-01-01

    Recent results from Global Surveyor corroborate the hypothesis that episodes of outburst flooding produced ponded water and climate change on Mars. This hypothesis colligates diverse facts concerning the Martian landscape and its history into a unified genetic system.

  18. Evidence for Calcium Carbonate at the Phoenix Landing Site

    NASA Technical Reports Server (NTRS)

    Boynton, W. V.; Ming, D. W.; Sutter, B.; Arvidson, R. E.; Hoffman, J.; Niles, P. B.; Smith, P.

    2009-01-01

    The Phoenix mission has recently finished its study of the north polar environment of Mars with the aim to help understand both the current climate and to put constraints on past climate. An important part of understanding the past climate is the study of secondary minerals, those formed by reaction with volatile compounds such as H2O and CO2. This work describes observations made by the Thermal and Evolved-Gas Analyzer (TEGA) on the Phoenix Lander related to carbonate minerals. Carbonates are generally considered to be products of aqueous processes. A wet and warmer climate during the early history of Mars coupled with a much denser CO2 atmosphere are ideal conditions for the aqueous alteration of basaltic materials and the subsequent formation of carbonates. Carbonates (Mg- and Ca-rich) are predicted to be thermodynamically stable minerals in the present martian environment, however, there have been only a few indications of carbonates on the surface by a host of orbiting and landed missions to Mars. Carbonates (Mg-rich) have been suggested to be a component (2-5 wt %) of the martian global dust based upon orbital thermal emission spectroscopy. The identifications, based on the presence of a 1480 cm-1 absorption feature, are consistent with Mgcarbonates. A similar feature is observed in brighter, undisturbed soils by Mini-TES on the Gusev plains. Recently, Mg-rich carbonates have been identified in the Nili Fossae region by the CRISM instrument onboard the Mars Reconnaissance Orbiter. Carbonates have also been confirmed as aqueous alteration phases in martian meteorites so it is puzzling why there have not been more discoveries of carbonates by landers, rovers, and orbiters. Carbonates may hold important clues about the history of liquid water and aqueous processes on the surface of Mars.

  19. Workshop on the Martian Northern Plains: Sedimentological, Periglacial, and Paleoclimatic Evolution

    NASA Technical Reports Server (NTRS)

    Kargel, Jeffrey S. (Editor); Moore, Jeffrey (Editor); Parker, Timothy (Editor)

    1993-01-01

    Papers that have been accepted for presentation at the Workshop on the Martian Northern Plains: Sedimentological, Periglacial, and Paleoclimatic Evolution, on 12-14 Aug. 1993 in Fairbanks, Alaska are included. Topics covered include: hydrological consequences of ponded water on Mars; morphological and morphometric studies of impact craters in the Northern Plains of Mars; a wet-geology and cold-climate Mars model: punctuation of a slow dynamics approach to equilibrium; the distribution of ground ice on Mars; and stratigraphy of the Martian Northern Plains.

  20. Polar Crater Deposits as a Probe for Ancient Climate Change on Mars

    NASA Astrophysics Data System (ADS)

    Armstrong, John

    2006-10-01

    Dynamical studies of the Martian orbit suggest a planet that has undergone extreme orbital change. How has this affected the planet's climate? Is there a record of this orbit-induced climate change written in the geology that is expressed on the surface? If so, such a record would provide insight into Mars' climate history, and shed light on the types of habitats for life that may have existed in the past. We are exploring how the current seasonal polar caps interact with polar craters in an effort to identify modification that can be linked to the proximity of the polar cap. Ice deposits within the craters are evident in both thermal spectra and imagery from Mars orbiters. We have linked these ice deposits to morphological deposits that can be identified in other craters that are further from the pole. These deposits may act as a probe of the variations suggested by orbital calculations, as well as provide an indicator of the extent of the sub-surface ice table. We will present preliminary results from a sample of northern craters, and explain how this can be extended to southern craters, and possibly mid-latitude craters, in an effort to understand more fully the martian climate through time.

  1. International exploration of Mars. A special bibliography

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This bibliography lists 173 reports, articles, and other documents introduced into the NASA Scientific and Technical Information Database on the exploration of Mars. Historical references are cited for background. The bibliography was created for the 1991 session of the International Space University.

  2. Aerodynamic Database Development for Mars Smart Lander Vehicle Configurations

    NASA Technical Reports Server (NTRS)

    Bobskill, Glenn J.; Parikh, Paresh C.; Prabhu, Ramadas K.; Tyler, Erik D.

    2002-01-01

    An aerodynamic database has been generated for the Mars Smart Lander Shelf-All configuration using computational fluid dynamics (CFD) simulations. Three different CFD codes, USM3D and FELISA, based on unstructured grid technology and LAURA, an established and validated structured CFD code, were used. As part of this database development, the results for the Mars continuum were validated with experimental data and comparisons made where applicable. The validation of USM3D and LAURA with the Unitary experimental data, the use of intermediate LAURA check analyses, as well as the validation of FELISA with the Mach 6 CF(sub 4) experimental data provided a higher confidence in the ability for CFD to provide aerodynamic data in order to determine the static trim characteristics for longitudinal stability. The analyses of the noncontinuum regime showed the existence of multiple trim angles of attack that can be unstable or stable trim points. This information is needed to design guidance controller throughout the trajectory.

  3. KSC-98pc1626

    NASA Image and Video Library

    1998-11-10

    KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), workers from the Jet Propulsion Laboratory open the drums containing the Mars microprobes that will hitchhike on the Mars Polar Lander. From left, they are Satish Krishnan, Charles Cruzan, Chris Voorhees and Arden Acord. Scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket, the solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars

  4. KSC-98pc1629

    NASA Image and Video Library

    1998-11-10

    KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), Tandy Bianco, with Lockheed Martin, and Satish Krishnan (foreground) and Chris Voorhees (behind him), from the Jet Propulsion Laboratory, observe a Mars microprobe on the workstand. Two microprobes will hitchhike on the Mars Polar Lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millelnnium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars

  5. Mars Climate Orbiter

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The purpose of this mission is to study the climate history and the water distribution of Mars. Beautiful panoramic views of the shuttle on the launch pad, engine ignition, Rocket launch, and the separation and burnout of the Solid Rocket Boosters are shown. The footage also includes an animation of the mission. Detailed views of the path that the Orbiter traversed were shown. Once the Orbiter lands on the surface of Mars, it will dig a six to eight inch hole and collect samples from the planets' surface. The animation also included the prospective return of the Orbiter to Earth over the desert of Utah. The remote sensor on the Orbiter helps in finding the exact location of the Orbiter so that scientists may collect the sample and analyze it.

  6. KSC-98pc1652

    NASA Image and Video Library

    1998-11-03

    The second stage of a Delta II rocket arrives at pad 17A at Cape Canaveral Air Station. The rocket is scheduled to be launched on Dec. 10, 1998, heading for Mars and carrying the Mars Climate Orbiter. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 657 days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The orbiter will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999

  7. Planetary science: are there active glaciers on Mars?

    PubMed

    Gillespie, Alan R; Montgomery, David R; Mushkin, Amit

    2005-12-08

    Head et al. interpret spectacular images from the Mars Express high-resolution stereo camera as evidence of geologically recent rock glaciers in Tharsis and of a piedmont ('hourglass') glacier at the base of a 3-km-high massif east of Hellas. They attribute growth of the low-latitude glaciers to snowfall during periods of increased spin-axis obliquity. The age of the hourglass glacier, considered to be inactive and slowly shrinking beneath a debris cover in the absence of modern snowfall, is estimated to be more than 40 Myr. Although we agree that the maximum glacier extent was climatically controlled, we find evidence in the images to support local augmentation of accumulation from snowfall through a mechanism that does not require climate change on Mars.

  8. New Martian climate constraints from radar reflectivity within the north polar layered deposits

    NASA Astrophysics Data System (ADS)

    Lalich, D. E.; Holt, J. W.

    2017-01-01

    The north polar layered deposits (NPLD) of Mars represent a global climate record reaching back millions of years, potentially recorded in visible layers and radar reflectors. However, little is known of the specific link between those layers, reflectors, and the global climate. To test the hypothesis that reflectors are caused by thick and indurated layers known as "marker beds," the reflectivity of three reflectors was measured, mapped, and compared to a reflectivity model. The measured reflectivities match the model and show a strong sensitivity to layer thickness, implying that radar reflectivity may be used as a proxy for short-term accumulation patterns and that regional climate plays a strong role in layer thickness variations. Comparisons to an orbitally forced NPLD accumulation model show a strong correlation with predicted marker bed formation, but dust content is higher than expected, implying a stronger role for dust in Mars polar climate than previously thought.

  9. CORDEX.be: COmbining Regional climate Downscaling EXpertise in Belgium

    NASA Astrophysics Data System (ADS)

    Termonia, P.

    2015-12-01

    The main objective of the ongoing project CORDEX.be, "COmbining Regional Downscaling EXpertise in Belgium: CORDEX and Beyond", is to gather existing and ongoing Belgian research activities in the domain of climate modelling to create a coherent scientific basis for future climate services in Belgium. The project regroups 8 Belgian Institutes under a single research program of the Belgian Science Policy (BELSPO). The project involves three regional climate models: the ALARO model, the COSMO-CLM model and the MAR model running according to the guidelines of the CORDEX project and at convection permitting resolution on small domains over Belgium. The project creates a framework to address four objectives/challenges. First, this projects aims to contribute to the EURO-CORDEX project. Secondly, RCP simulations are executed at convection-permitting resolutions (3 to 5 km) on small domains. Thirdly, the output of the atmospheric models is used to drive land surface models (the SURFEX model and the Urbclim model) with urban modules, a crop model (REGCROP), a tides and storm model (COHERENS) and the MEGAN-MOHYCAN model that simulates the fluxes emitted by vegetation. Finally, one work package will translate the uncertainty present in the CORDEX database to the high-resolution output of the CORDEX.be project. The organization of the project will be presented and first results will be shown, demonstrating that convection-permitting models can add extra skill to the mesoscale version of the regional climate models, in particular regarding the extreme value statistics and the diurnal cycle.

  10. CORDEX.be: COmbining Regional climate Downscaling EXpertise in Belgium

    NASA Astrophysics Data System (ADS)

    Termonia, Piet; Van Schaeybroeck, Bert; De Ridder, Koen; Fettweis, Xavier; Gobin, Anne; Luyten, Patrick; Marbaix, Philippe; Pottiaux, Eric; Stavrakou, Trissevgeni; Van Lipzig, Nicole; van Ypersele, Jean-Pascal; Willems, Patrick

    2016-04-01

    The main objective of the ongoing project CORDEX.be, "COmbining Regional Downscaling EXpertise in Belgium: CORDEX and Beyond" is to gather existing and ongoing Belgian research activities in the domain of climate modelling to create a coherent scientific basis for future climate services in Belgium. The project regroups eight Belgian Institutes under a single research program of the Belgian Science Policy (BELSPO). The project involves three regional climate models: the ALARO model, the COSMO-CLM model and the MAR model running according to the guidelines of the CORDEX project and at convection permitting resolution on small domains over Belgium. The project creates a framework to address four objectives/challenges. First, this projects aims to contribute to the EURO-CORDEX project. Secondly, RCP simulations are executed at convection-permitting resolutions (3 to 5 km) on small domains. Thirdly, the output of the atmospheric models is used to drive land surface models (the SURFEX model and the Urbclim model) with urban modules, a crop model (REGCROP), a tides and storm model (COHERENS) and the MEGAN-MOHYCAN model that simulates the fluxes emitted by vegetation. Finally, one work package will translate the uncertainty present in the CORDEX database to the high-resolution output of the CORDEX.be project. The organization of the project will be presented and first results will be shown, demonstrating that convection-permitting models can add extra skill to the mesoscale version of the regional climate models, in particular regarding the extreme value statistics and the diurnal cycle.

  11. Workshop on Evolution of Martian Volatiles. Part 1

    NASA Technical Reports Server (NTRS)

    Jakosky, B. (Editor); Treiman, A. (Editor)

    1996-01-01

    This volume contains papers that were presented on February 12-14, 1996 at the Evolution for Martian Volatiles Workshop. Topics in this volume include: returned Martian samples; acidic volatiles and the Mars soil; solar EUV Radiation; the ancient Mars Thermosphere; primitive methane atmospheres on Earth and Mars; the evolution of Martian water; the role of SO2 for the climate history of Mars; impact crater morphology; the formation of the Martian drainage system; atmospheric dust-water ice Interactions; volatiles and volcanos; accretion of interplanetary dust particles; Mars' ionosphere; simulations with the NASA Ames Mars General Circulation Model; modeling the Martian water cycle; the evolution of Martian atmosphere; isotopic composition; solar occultation; magnetic fields; photochemical weathering; NASA's Mars Surveyor Program; iron formations; measurements of Martian atmospheric water vapor; and the thermal evolution Models of Mars.

  12. Approximating uncertainty of annual runoff and reservoir yield using stochastic replicates of global climate model data

    NASA Astrophysics Data System (ADS)

    Peel, M. C.; Srikanthan, R.; McMahon, T. A.; Karoly, D. J.

    2015-04-01

    Two key sources of uncertainty in projections of future runoff for climate change impact assessments are uncertainty between global climate models (GCMs) and within a GCM. Within-GCM uncertainty is the variability in GCM output that occurs when running a scenario multiple times but each run has slightly different, but equally plausible, initial conditions. The limited number of runs available for each GCM and scenario combination within the Coupled Model Intercomparison Project phase 3 (CMIP3) and phase 5 (CMIP5) data sets, limits the assessment of within-GCM uncertainty. In this second of two companion papers, the primary aim is to present a proof-of-concept approximation of within-GCM uncertainty for monthly precipitation and temperature projections and to assess the impact of within-GCM uncertainty on modelled runoff for climate change impact assessments. A secondary aim is to assess the impact of between-GCM uncertainty on modelled runoff. Here we approximate within-GCM uncertainty by developing non-stationary stochastic replicates of GCM monthly precipitation and temperature data. These replicates are input to an off-line hydrologic model to assess the impact of within-GCM uncertainty on projected annual runoff and reservoir yield. We adopt stochastic replicates of available GCM runs to approximate within-GCM uncertainty because large ensembles, hundreds of runs, for a given GCM and scenario are unavailable, other than the Climateprediction.net data set for the Hadley Centre GCM. To date within-GCM uncertainty has received little attention in the hydrologic climate change impact literature and this analysis provides an approximation of the uncertainty in projected runoff, and reservoir yield, due to within- and between-GCM uncertainty of precipitation and temperature projections. In the companion paper, McMahon et al. (2015) sought to reduce between-GCM uncertainty by removing poorly performing GCMs, resulting in a selection of five better performing GCMs from CMIP3 for use in this paper. Here we present within- and between-GCM uncertainty results in mean annual precipitation (MAP), mean annual temperature (MAT), mean annual runoff (MAR), the standard deviation of annual precipitation (SDP), standard deviation of runoff (SDR) and reservoir yield for five CMIP3 GCMs at 17 worldwide catchments. Based on 100 stochastic replicates of each GCM run at each catchment, within-GCM uncertainty was assessed in relative form as the standard deviation expressed as a percentage of the mean of the 100 replicate values of each variable. The average relative within-GCM uncertainties from the 17 catchments and 5 GCMs for 2015-2044 (A1B) were MAP 4.2%, SDP 14.2%, MAT 0.7%, MAR 10.1% and SDR 17.6%. The Gould-Dincer Gamma (G-DG) procedure was applied to each annual runoff time series for hypothetical reservoir capacities of 1 × MAR and 3 × MAR and the average uncertainties in reservoir yield due to within-GCM uncertainty from the 17 catchments and 5 GCMs were 25.1% (1 × MAR) and 11.9% (3 × MAR). Our approximation of within-GCM uncertainty is expected to be an underestimate due to not replicating the GCM trend. However, our results indicate that within-GCM uncertainty is important when interpreting climate change impact assessments. Approximately 95% of values of MAP, SDP, MAT, MAR, SDR and reservoir yield from 1 × MAR or 3 × MAR capacity reservoirs are expected to fall within twice their respective relative uncertainty (standard deviation/mean). Within-GCM uncertainty has significant implications for interpreting climate change impact assessments that report future changes within our range of uncertainty for a given variable - these projected changes may be due solely to within-GCM uncertainty. Since within-GCM variability is amplified from precipitation to runoff and then to reservoir yield, climate change impact assessments that do not take into account within-GCM uncertainty risk providing water resources management decision makers with a sense of certainty that is unjustified.

  13. Mars Energy Spectrum studies from Assimilated MCS data using the UK MGCM

    NASA Astrophysics Data System (ADS)

    Valeanu, Alexandru; Read, Peter; Wang, Yixiong; Lewis, Stephen; Montabone, Luca; Tabataba-Vakili, Fachreddin

    2015-04-01

    Introduction The energy spectrum (ES) analysis is a renowned tool for understanding the driving mechanisms behind atmospheric turbulence (Lindborg, 1998). We aim to investigate whether energy and enstrophy inertial ranges exist in the kinetic energy spectrum (KES), and to quantify the corresponding cascades (with their ranges), and relationship with the atmospheric forcing and energy dissipation scales. The calculation of the ES from observational data is known to be highly non-trivial due to the lack of global coverage in space and time. Gage and Nastrom (1984) were the first to overcome this problem for Earth but this has not so far been attempted for Mars. Our approach is to take the sparse observational data and assimilate it using a global numerical model. We present preliminary results using the Mars Climate Sounder (MCS) retrievals and the LMD-UK Mars GCM (MGCM). This was pioneered by Lewis and Read (1999). Methodology The equations we used to calculate the Eddy and Zonal Mean kinetic energies are derived from total KES formula presented in Lindborg and Augier (2013). Hence, adding the two spectra together, we obtain the full KES spectrum as presented in their paper. For the Available Potential Energy Spectrum (APES), we have used a preliminary simplified version of the approach presented in Lindborg and Augier (2013). The Energy Spectra To date we have assimilated the MCS data at the resolution of T31 (triangular truncation), hence the ES only spans up to total wavenumber 31. This encompasses a portion of the energy inertial range, which might be expected to manifest the -3 exponential law by analogy with the Earth (Gage & Nastrom, 1984). Features: - velocities and corresponding KEs are higher with increasing height compared to Earth, - "-3" slope is restricted to ~30 km altitude, suggesting an early departure from the enstrophy inertial range, - boundary layer velocities are similar to Earth References 1. Gage and Nastrom, A Climatology of Atmospheric Wavenumber Spectra of Wind and Temperature Observed by Commercial Aircraft. J. Atmosph. Sci., 42, pp. 950-960 (1984). 2. Lewis, S.R., Collins, M.,Read, P.L., Forget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O. and Huot, J.-P., A climate database for Mars. J. Geophys. Res., 104, pp. 24177-24194 (1999). 3. Lindborg, E., Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence? J. Fluid. Mech, 338, pp. 259-288 (1999). 4. Lindborg and Augier, A new Formulation of the Spectral Energy Budget of the Atmosphere, with Application to Two High-Resolution General Circulation Models J. Atmos. Sci., 70, pp.2293-2308 (2013).

  14. The Pascal Mars Scout Mission

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.; Fonda, Mark (Technical Monitor)

    2002-01-01

    Except for Earth, Mars is the planet most amenable to surface-based climate studies. Its surface is accessible, and the kind of observations that are needed, such as meteorological measurements from a long-lived global network, are readily achievable. Weather controls the movement of dust, the exchange of water between the surface and atmosphere, and the cycling of CO2 between the poles. We know there is a weather signal, we know how to measure it, and we know how to interpret it. Pascal seeks to understand the long-term global behavior of near-surface weather systems on Mars, how they interact with its surface, and, therefore, how they control its climate system. To achieve this, Pascal delivers 18 Science Stations to the surface of the planet that operate for three Mars years (5.6 Earth years). The network has stations operating in the tropics, midlatitudes, and polar regions of both hemispheres. During entry, descent, and landing, each Pascal probe acquires deceleration measurements to determine thermal structure, and descent images to characterize local terrain. On the surface, each Science Station takes daily measurements of pressure, opacity, temperature, wind speed, and water vapor concentration and monthly panoramic images of the landing environment. These data will characterize the planet's climate system and how atmosphere-surface interactions control it. The Pascal mission is named after 17th century French Scientist, Blaise Pascal, who pioneered measurements of atmospheric pressure. Pressure is the most critical measurement because it records the "heartbeat" of the planet's general circulation and climate system.

  15. The methane sink associated to soils of natural and agricultural ecosystems in Italy.

    PubMed

    Castaldi, Simona; Costantini, Massimo; Cenciarelli, Pietro; Ciccioli, Paolo; Valentini, Riccardo

    2007-01-01

    In the present work, the CH4 sink associated to Italian soils was calculated by using a process-based model controlled by gas diffusivity and microbial activity, which was run by using a raster-based geographical information system. Georeferenced data included land cover CLC2000, soil properties from the European Soil Database, climatic data from the MARS-STAT database, plus several derived soils properties based on published algorithms applied to the above mentioned databases. Overall CH4 consumption from natural and agricultural sources accounted for a total of 43.3 Gg CH4 yr(-1), with 28.1 Gg CH4 yr(-1) removed in natural ecosystems and 15.1 Gg CH4 yr(-1) in agricultural ecosystems. The highest CH4 uptake rates were obtained for natural areas of Southern Apennines and islands of Sardinia and Sicily, and were mainly associated to areas covered by sclerophyllous vegetation (259.7+/-30.2 mg CH4 m(-2) yr(-1)) and broad-leaved forest (237.5 mg CH4 m(-2) yr(-1)). In terms of total sink strength broad-leaved forests were the dominant ecosystem. The overall contribution of each ecosystem type to the whole CH4 sink depended on the total area covered by the specific ecosystem and on its exact geographic distribution. The latter determines the type of climate present in the area and the dominant soil type, both factors which showed to have a strong influence on CH4 uptake rates. The aggregated CH4 sink, calculated for natural ecosystems present in the Italian region, is significantly higher than previously reported estimates, which were extrapolated from fluxes measured in other temperate ecosystems.

  16. Venus-Earth-Mars: comparative climatology and the search for life in the solar system.

    PubMed

    Launius, Roger D

    2012-09-19

    Both Venus and Mars have captured the human imagination during the twentieth century as possible abodes of life. Venus had long enchanted humans-all the more so after astronomers realized it was shrouded in a mysterious cloak of clouds permanently hiding the surface from view. It was also the closest planet to Earth, with nearly the same size and surface gravity. These attributes brought myriad speculations about the nature of Venus, its climate, and the possibility of life existing there in some form. Mars also harbored interest as a place where life had or might still exist. Seasonal changes on Mars were interpreted as due to the possible spread and retreat of ice caps and lichen-like vegetation. A core element of this belief rested with the climatology of these two planets, as observed by astronomers, but these ideas were significantly altered, if not dashed during the space age. Missions to Venus and Mars revealed strikingly different worlds. The high temperatures and pressures found on Venus supported a "runaway greenhouse theory," and Mars harbored an apparently lifeless landscape similar to the surface of the Moon. While hopes for Venus as an abode of life ended, the search for evidence of past life on Mars, possibly microbial, remains a central theme in space exploration. This survey explores the evolution of thinking about the climates of Venus and Mars as life-support systems, in comparison to Earth.

  17. The Mars Analysis Correction Data Assimilation (MACDA): A reference atmospheric reanalysis

    NASA Astrophysics Data System (ADS)

    Montabone, Luca; Read, Peter; Lewis, Stephen; Steele, Liam; Holmes, James; Valeanu, Alexandru

    2016-07-01

    The Mars Analysis Correction Data Assimilation (MACDA) dataset version 1.0 contains the reanalysis of fundamental atmospheric and surface variables for the planet Mars covering a period of about three Martian years (late MY 24 to early MY 27). This has been produced by data assimilation of retrieved thermal profiles and column dust optical depths from NASA's Mars Global Surveyor/Thermal Emission Spectrometer (MGS/TES), which have been assimilated into a Mars global climate model (MGCM) using the Analysis Correction scheme developed at the UK Meteorological Office. The MACDA v1.0 reanalysis is publicly available, and the NetCDF files can be downloaded from the archive at the Centre for Environmental Data Analysis/British Atmospheric Data Centre (CEDA/BADC). The variables included in the dataset can be visualised using an ad-hoc graphical user interface (the "MACDA Plotter") at the following URL: http://macdap.physics.ox.ac.uk/ MACDA is an ongoing collaborative project, and work is currently undertaken to produce version 2.0 of the Mars atmospheric reanalysis. One of the key improvements is the extension of the reanalysis period to nine martian years (MY 24 through MY 32), with the assimilation of NASA's Mars Reconnaissance Orbiter/Mars Climate Sounder (MRO/MCS) retrievals of thermal and dust opacity profiles. MACDA 2.0 is also going to be based on an improved version of the underlying MGCM and an updated scheme to fully assimilate (radiative active) tracers, such as dust and water ice.

  18. Venus-Earth-Mars: Comparative Climatology and the Search for Life in the Solar System

    PubMed Central

    Launius, Roger D.

    2012-01-01

    Both Venus and Mars have captured the human imagination during the twentieth century as possible abodes of life. Venus had long enchanted humans—all the more so after astronomers realized it was shrouded in a mysterious cloak of clouds permanently hiding the surface from view. It was also the closest planet to Earth, with nearly the same size and surface gravity. These attributes brought myriad speculations about the nature of Venus, its climate, and the possibility of life existing there in some form. Mars also harbored interest as a place where life had or might still exist. Seasonal changes on Mars were interpreted as due to the possible spread and retreat of ice caps and lichen-like vegetation. A core element of this belief rested with the climatology of these two planets, as observed by astronomers, but these ideas were significantly altered, if not dashed during the space age. Missions to Venus and Mars revealed strikingly different worlds. The high temperatures and pressures found on Venus supported a “runaway greenhouse theory,” and Mars harbored an apparently lifeless landscape similar to the surface of the Moon. While hopes for Venus as an abode of life ended, the search for evidence of past life on Mars, possibly microbial, remains a central theme in space exploration. This survey explores the evolution of thinking about the climates of Venus and Mars as life-support systems, in comparison to Earth. PMID:25371106

  19. Venus-Earth-Mars: Comparative Climatology and the Search for Life in the Solar System

    NASA Astrophysics Data System (ADS)

    Launius, Roger D.

    2012-09-01

    Both Venus and Mars have captured the human imagination during the twentieth century as possible abodes of life. Venus had long enchanted humans - all the more so after astronomers realized it was shrouded in a mysterious cloak of clouds permanently hiding the surface from view. It was also the closest planet to Earth, with nearly the same size and surface gravity. These attributes brought myriad speculations about the nature of Venus, its climate, and the possibility of life existing there in some form. Mars also harbored interest as a place where life had or might still exist. Seasonal changes on Mars were interpreted as due to the possible spread and retreat of ice caps and lichen-like vegetation. A core element of this belief rested with the climatology of these two planets, as observed by astronomers, but these ideas were significantly altered, if not dashed during the space age. Missions to Venus and Mars revealed strikingly different worlds. The high temperatures and pressures found on Venus supported a "runaway greenhouse theory," and Mars harbored an apparently lifeless landscape similar to the surface of the Moon. While hopes for Venus as an abode of life ended, the search for evidence of past life on Mars, possibly microbial, remains a central theme in space exploration. This survey explores the evolution of thinking about the climates of Venus and Mars as life-support systems, in comparison to Earth.

  20. Wet Mars, Dry Mars

    NASA Astrophysics Data System (ADS)

    Fillingim, M. O.; Brain, D. A.; Peticolas, L. M.; Yan, D.; Fricke, K. W.; Thrall, L.

    2012-12-01

    The magnetic fields of the large terrestrial planets, Venus, Earth, and Mars, are all vastly different from each other. These differences can tell us a lot about the interior structure, interior history, and even give us clues to the atmospheric history of these planets. This poster highlights the third in a series of presentations that target school-age audiences with the overall goal of helping the audience visualize planetary magnetic field and understand how they can impact the climatic evolution of a planet. Our first presentation, "Goldilocks and the Three Planets," targeted to elementary school age audiences, focuses on the differences in the atmospheres of Venus, Earth, and Mars and the causes of the differences. The second presentation, "Lost on Mars (and Venus)," geared toward a middle school age audience, highlights the differences in the magnetic fields of these planets and what we can learn from these differences. Finally, in the third presentation, "Wet Mars, Dry Mars," targeted to high school age audiences and the focus of this poster, the emphasis is on the long term climatic affects of the presence or absence of a magnetic field using the contrasts between Earth and Mars. These presentations are given using visually engaging spherical displays in conjunction with hands-on activities and scientifically accurate 3D models of planetary magnetic fields. We will summarize the content of our presentations, discuss our lessons learned from evaluations, and show (pictures of) our hands-on activities and 3D models.

  1. The climate of early Mars: New insights from climate modeling and geological intercomparisons

    NASA Astrophysics Data System (ADS)

    Wordsworth, R. D.

    2016-12-01

    Early Mars has abundant evidence for running water 3-4 Ga, but the extent to which it was continuously warm and wet, with a northern ocean, remains a continuing source of controversy. Although large uncertainties remain, advances in orbital and rover observations and climate modeling over the last decade have led to important new insights. Here, the geological evidence for both fluvial and fluvoglacial erosion is first reviewed. A phase space approach is then taken that considers the surface H2O inventory and steady-state mean surface temperature as separate variables. Based on this, it is argued that a fairly cold climate state with limited H2O inventory provides the best fit to the geological observations. In particular, a 'top-down' hydrological cycle where ice deposits form on the south pole, equatorial highlands and Tharsis allows significant fluvial erosion via episodic melting. Importantly, it also avoids the buildup of the thick, wet-based icesheets across the southern hemisphere that would appear following the wet scenario where early Mars had a northern ocean. At the end of the talk, the most likely mechanisms to explain the episodic melting events in the mainly cold, 'icy highlands' state are also discussed.

  2. Triggering a Wet Climate on Mars: The Role of Outflow Channels in Martian Water Cycles

    NASA Astrophysics Data System (ADS)

    Santiago, D.; Asphaug, E. I.; Colaprete, A.

    2011-12-01

    The triggering of a robust water cycle on Mars has been hypothesized to be caused by gigantic flooding events evidenced by outflow channels. Here we use the Ames Mars General Circulation Model (MGCM) to study how these presumably abrupt eruptions of water (Carr,1996) affected the climate of Mars. We model where the water ultimately went as part of a transient hydrologic cycle. Chryse Planitia, east of Tharsis, has evidence for multiple water outflow channels. One of the largest channels is Ares Valles, which was carved by floods with estimated water volumes of order 10^5 km^2 (Andrews-Hanna, 2007 & Carr, 1996). Outflow discharge rate estimates range from 10^6 to 10^7 m^3/seconds or greater (Andrews-Hanna & Phillips, 2007, Harrison & Grimm, 2008). Studies suggest that outflow channels formed with smaller, successive floods instead of a single large flood (Wilson, et al.,2004). Warner et al. (2009) suggest up to six outflow events for the formation of Ares Valles, while estimates for another large outflow, Kasei Valles, might have been flooded by over two thousand floods with a total water volume of 5.5 x 10^5 km^3 (Harrison & Grimm, 2008). By adding water to the surface of Mars at the given outflow rate, as an expanding one-layer lake, we are able to study quantitatively how these outflow events influenced Mars climate, particularly the hydrologic cycle. In particular: Could sudden introductions of large amounts of water on the Martian surface lead to a new equilibrated water cycle? Can we tie certain fluvial surface features to transient or sustained water cycles? What are the roles of water vapor and water ice clouds to sudden changes in the water cycle on Mars? How are radiative feedbacks involved with this? What is the ultimate fate of the outflow water? This work uses the NASA Ames MGCM version 2.1 and other schemes that are part of the NASA Ames MGCM suite of tools. Various versions of the MGCM developed at Ames have been used extensively to examine dust and volatile distributions on Mars (e.g., Kahre et al., 2006, 2008). The MGCM 2.1 currently has a well-developed water ice cloud formation scheme (Montmessin et al., 2002, 2004a), which includes calculation of cloud particle concentrations, nucleation, growth, and gravitational sedimentation. For examining the effect of a large water outflow on the climate of Mars, we include water tracers, with an advanced cloud particle scheme Preliminary results suggest that water may have been transported globally for years post-outflow. Post-outflow water cloud formation increases dramatically, with water ice clouds and water vapor potentially transporting water globally. The global mass of water vapor and of water ice clouds increases substantially, with the post-outflow patterns settling into annual cycles, with increasing water entering the atmosphere from the surface over time. Future work will examine the radiative effects of the water vapor and water ice clouds, and the longer-term persistence of a new hydrological or climate regime Detailed comparisons of post-outflow precipitation locations with fluvial features on Mars will be done.

  3. [MaRS Project

    NASA Technical Reports Server (NTRS)

    Aruljothi, Arunvenkatesh

    2016-01-01

    The Space Exploration Division of the Safety and Mission Assurances Directorate is responsible for reducing the risk to Human Space Flight Programs by providing system safety, reliability, and risk analysis. The Risk & Reliability Analysis branch plays a part in this by utilizing Probabilistic Risk Assessment (PRA) and Reliability and Maintainability (R&M) tools to identify possible types of failure and effective solutions. A continuous effort of this branch is MaRS, or Mass and Reliability System, a tool that was the focus of this internship. Future long duration space missions will have to find a balance between the mass and reliability of their spare parts. They will be unable take spares of everything and will have to determine what is most likely to require maintenance and spares. Currently there is no database that combines mass and reliability data of low level space-grade components. MaRS aims to be the first database to do this. The data in MaRS will be based on the hardware flown on the International Space Stations (ISS). The components on the ISS have a long history and are well documented, making them the perfect source. Currently, MaRS is a functioning excel workbook database; the backend is complete and only requires optimization. MaRS has been populated with all the assemblies and their components that are used on the ISS; the failures of these components are updated regularly. This project was a continuation on the efforts of previous intern groups. Once complete, R&M engineers working on future space flight missions will be able to quickly access failure and mass data on assemblies and components, allowing them to make important decisions and tradeoffs.

  4. Unraveling the Diversity of Early Aqueous Environments and Climate on Mars Through the Phyllosilicate Record

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Baker, L. L.; Fairén, A. G.; Gross, C.; Velbel, M. A.; Rampe, E. B.; Michalski, J. R.

    2017-01-01

    Were Martian phyllosilicates formed on the surface or subsurface? Was early Mars warm or cold? How long was liquid water present on the surface of Mars? These are some of the many open questions about our neighboring planet. We propose that the mineralogy of the clay-bearing outcrops on Mars can help address these questions. Abundant phyllosilicates and aqueous minerals are observed nearly everywhere we can see the ancient rocks on Mars. Most bountiful among these is Fe/Mg-smectite. In this study we evaluate the nature and stratigraphy of clay outcrops observed on Mars and the presence of mixtures of other clays or other minerals with the ubiquitous Fe/Mg-smectite.

  5. The Meteorological Experiment on the Mars Surveyor '98 Polar Lander

    NASA Technical Reports Server (NTRS)

    Crisp, D.

    1999-01-01

    When it lands on Mars on December 3, 1999, the Mars Surveyor '98 Mars Polar Lander (MPL) will provide the first opportunity to make in-situ measurements of the near-surface weather climate, and volatile inventory in the Martian south polar region. To make the most of this opportunity, the MPL's Mars Volatiles and Climate Surveyor (MVACS) payload includes the most comprehensive complement of meteorological instruments ever sent to Mars. Like the Viking and the Mars Pathfinder Lander, the MVACS Meteorological (Met) package includes sensors for measuring atmospheric pressures, temperatures, and wind velocities. This payload also includes a 2-channel tunable diode laser spectrometer for in-situ measurements of the atmospheric water vapor abundance near the ground, and improved instruments for measuring the relative abundances of oxygen isotopes (in water vapor and CO2) and a surface temperature probe for measuring the surface and sub-surface temperatures. This presentation will provide a brief overview of the environmental conditions anticipated at the surface in the Martian regions. We will then provide an over-view of the MVACS Met instrument and describe the MET sensors in detail, including their principle of operation, range, resolution, accuracy, sampling strategy, heritage, accommodation on the Lander, and their control and data handling system. Finally, we will describe the operational sequences, resource requirements, and the anticipated data volumes for each of the Met instruments.

  6. Temperature and dust profiles of Mars' atmosphere derived from Mars Climate Sounder (Mars Reconnaissance Orbiter)

    NASA Astrophysics Data System (ADS)

    Teanby, N. A.; Irwin, P. G.; Howett, C.; Calcutt, S. B.; Lolachi, R.; Bowles, N. E.; Taylor, F. W.; Schofield, J. T.; Kleinboehl, A.; McCleese, D. J.

    2007-12-01

    Mars Climate Sounder (MCS) on board NASA's Mars Reconnaissance Orbiter (MRO) primarily operates as a limb sounding infrared radiometer. The small field of view and limb scanning mode allow retrieval of atmospheric temperature and dust properties from the surface up to approximately 80km with 5km vertical resolution. The polar orbit of MRO gives coverage of all latitudes at 3pm and 3am Mars local-time. The ability of MCS to sounds these altitudes at high spatial and temporal resolution gives a unique dataset with which to test our understanding of the Martian atmosphere. It also complements and extends upon previous climatalogical datasets (for example TES). Measured mid-infrared radiances from MCS were analysed using the correlated-k approximation with Oxford's NEMESIS retrieval software. The correlated-k approximation was compared with a line-by-line model to confirm its accuracy under Martian atmospheric conditions. Dust properties were taken from analysis of TES data by Wolff and Clancy (2003). We present profiles of temperature and dust for data covering September to December 2006. During this period Mars' north pole was experiencing summer and the south pole was in winter. Preliminary results show that high altitude warming over the southern winter pole is greater than that predicted by models. Our results will be compared to numerical models of the Martian atmosphere and the implications discussed.

  7. Accurate spin axes and solar system dynamics: Climatic variations for the Earth and Mars

    NASA Astrophysics Data System (ADS)

    Edvardsson, S.; Karlsson, K. G.; Engholm, M.

    2002-03-01

    Celestial mechanical simulations from a purely classical point of view of the solar system, including our Moon and the Mars moons - Phobos and Deimos - are carried out for 2 millions of years before present. Within the classical approximation, the results are derived at a very high level of accuracy. Effects from general relativity for a number of variables are investigated and found to be small. For climatic studies of about 1 Myr, general relativity can safely be ignored. Three different and independent integration schemes are used in order to exclude numerical anomalies. The converged results from all methods are found to be in complete agreement. For verification, a number of properties such as spin axis precession, nutation, and orbit inclination for Earth and Mars have been calculated. Times and positions of equinoxes and solstices are continously monitored. As also observed earlier, the obliquity of the Earth is stabilized by the Moon. On the other hand, the obliquity of Mars shows dramatic variations. Climatic influences due to celestial variables for the Earth and Mars are studied. Instead of using mean insolation as in the usual applications of Milankovitch theory, the present approach focuses on the instantaneous solar radiation power (insolation) at each summer solstice. Solar radiation power is compared to the derivative of the icevolume and these quantities are found to be in excellent agreement. Orbital precessions for the inner planets are studied as well. In the case of Mercury, it is investigated in detail.

  8. Geographic Information Systems and Martian Data: Compatibility and Analysis

    NASA Technical Reports Server (NTRS)

    Jones, Jennifer L.

    2005-01-01

    Planning future landed Mars missions depends on accurate, informed data. This research has created and used spatially referenced instrument data from NASA missions such as the Thermal Emission Imaging System (THEMIS) on the Mars Odyssey Orbiter and the Mars Orbital Camera (MOC) on the Mars Global Surveyor (MGS) Orbiter. Creating spatially referenced data enables its use in Geographic Information Systems (GIS) such as ArcGIS. It has then been possible to integrate this spatially referenced data with global base maps and build and populate location based databases that are easy to access.

  9. Study on Interaction Between Diurnal Tide and Atmospheric Aerosols Observed by Mars Climate Sounder

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Li, T.

    2016-12-01

    The increased local time coverage observed by Mars Climate Sounder (MCS) on board Mars Reconnaissance Orbiter (MRO) can enable direct extraction of thermal tides in Mars middle atmosphere with reduced aliasing. Using temperature profiles from Mars year (MY) 30 to 32, we study the latitudinal and seasonal variations of tides and stationary planetary waves with zonal wave numbers s = 1-3. The amplitude of the migrating diurnal tide (DW1) has strong semiannual variations both in the equatorial region and in the Southern Hemisphere (SH) middle latitudes. Aerosols widely distributed in the atmosphere of Mars, namely, dust and water ice also show apparent diurnal variations, which may be caused by a dynamical process of tidal vertical wind. Tidal response in dust abundance indicates an annual variation with maximum amplitude in aphelion seasons while the background abundance of dust peaks in perihelion seasons when global dust storm occurs frequently, which suggests that extremely large abundance of dust may restrain its own tidal response. Water ice abundance in the middle latitudes has a semiannual variation which is similar to the thermal diurnal tide. In addition, the diurnal heating rate of aerosols is calculated and Hough decomposition is performed to estimate the radiative effect of aerosols on diurnal tide.

  10. Radiative transfer in CO2-rich atmospheres: 1. Collisional line mixing implies a colder early Mars

    NASA Astrophysics Data System (ADS)

    Ozak, N.; Aharonson, O.; Halevy, I.

    2016-06-01

    Fast and accurate radiative transfer methods are essential for modeling CO2-rich atmospheres, relevant to the climate of early Earth and Mars, present-day Venus, and some exoplanets. Although such models already exist, their accuracy may be improved as better theoretical and experimental constraints become available. Here we develop a unidimensional radiative transfer code for CO2-rich atmospheres, using the correlated k approach and with a focus on modeling early Mars. Our model differs from existing models in that it includes the effects of CO2 collisional line mixing in the calculation of the line-by-line absorption coefficients. Inclusion of these effects results in model atmospheres that are more transparent to infrared radiation and, therefore, in colder surface temperatures at radiative-convective equilibrium, compared with results of previous studies. Inclusion of water vapor in the model atmosphere results in negligible warming due to the low atmospheric temperatures under a weaker early Sun, which translate into climatically unimportant concentrations of water vapor. Overall, the results imply that sustained warmth on early Mars would not have been possible with an atmosphere containing only CO2 and water vapor, suggesting that other components of the early Martian climate system are missing from current models or that warm conditions were not long lived.

  11. On the icy edge at Louth and Korolev craters

    NASA Astrophysics Data System (ADS)

    Bapst, Jonathan; Byrne, Shane; Brown, Adrian J.

    2018-07-01

    The modern climate of Mars has been well characterized from over a decade of orbiting spacecraft, in situ measurements via landers/rovers, and theoretical advances in climate modeling. Nonetheless, important questions remain unanswered, including the present-day mass balance of the north polar residual cap and its icy outliers. Exposed water-ice mounds are found in craters, and extend as far equatorward as 70.2°N. Due to their southerly location, these ice mounds are likely more sensitive to ongoing changes in climate. We analyze high-resolution images of the Louth crater ice mound, and employ a coupled 1-D thermal and atmospheric model to estimate annual mass balance of both Louth and Korolev water ice. We incorporate the effects of shallowly-sloping surfaces and seasonally-dependent water ice albedo. No clear trend in the advance or retreat of Louth crater water ice is observed in over 4 Mars years of repeat, high-resolution images. Secular changes are either sufficiently small as to not be detected, or the ice is in equilibrium. Modeled mass balance ranges from -6 to +2 mm of water ice per Mars year at both sites, with nominal cases being in near-equilibrium (<0.5 mm of ice loss per Mars year).

  12. The Greenhouse Effect and Climate Feedbacks

    NASA Astrophysics Data System (ADS)

    Covey, C.; Haberle, R. M.; McKay, C. P.; Titov, D. V.

    2012-06-01

    We review the theory of the greenhouse effect and climate feedback. We also compare the theory with observations, using examples taken from all four known terrestrial worlds with substantial atmospheres: Venus, Earth, Mars, and Titan.

  13. Science Driven Human Exploration of Mars

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.

    2004-01-01

    Mars appears to be cold dry and dead world. However there is good evidence that early in its history it had liquid water, more active volcanism, and a thicker atmosphere. Mars had this earth-like environment over three and a half billion years ago, during the same time that life appeared on Earth. The main question in the exploration of Mars then is the search for a independent origin of life on that planet. Ecosystems in cold, dry locations on Earth - such as the Antarctic - provide examples of how life on Mars might have survived and where to look for fossils. Fossils are not enough. We will want to determine if life on Mars was a separate genesis from life on Earth. For this determination we need to access intact martian life; possibly frozen in the deep old permafrost. Human exploration of Mars will probably begin with a small base manned by a temporary crew, a necessary first start. But exploration of the entire planet will require a continued presence on the Martian surface and the development of a self sustaining community in which humans can live and work for very long periods of time. A permanent Mars research base can be compared to the permanent research bases which several nations maintain in Antarctica at the South Pole, the geomagnetic pole, and elsewhere. In the long run, a continued human presence on Mars will be the most economical way to study that planet in detail. It is possible that at some time in the future we might recreate a habitable climate on Mars, returning it to the life-bearing state it may have enjoyed early in its history. Our studies of Mars are still in a preliminary state but everything we have learned suggests that it may be possible to restore Mars to a habitable climate. Additional information is contained in the original extended abstract.

  14. A revised surface age for the North Polar Layered Deposits of Mars

    USGS Publications Warehouse

    Landis, Margaret E.; Byrne, Shane; Daubar, Ingrid J.; Herkenhoff, Kenneth E.; Dundas, Colin M.

    2016-01-01

    The North Polar Layered Deposits (NPLD) of Mars contain a complex stratigraphy that has been suggested to retain a record of past eccentricity- and obliquity-forced climate changes. The surface accumulation rate in the current climate can be constrained by the crater retention age. We scale NPLD crater diameters to account for icy target strength and compare surface age using a new production function for recent small impacts on Mars to the previously used model of Hartmann (2005). Our results indicate that ice is accumulating in these craters several times faster than previously thought, with a 100 m diameter crater being completely infilled within centuries. Craters appear to have a diameter-dependent lifetime, but the data also permit a complete resurfacing of the NPLD at ~1.5 ka.

  15. Climate Change from the Mars Exploration Rover Landing Sites: From Wet in the Noachian to Dry and Desiccating Since the Hesperian

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.; Grant, J. A.; Crumpler, L. S.; Greeley, R.; Arvidson, R. E.

    2005-01-01

    Mars Exploration Rover Opportunity discovered sedimentary dirty evaporites in Meridiani Planum that were deposited in salt-water playas or sabkhas in the Noachian, roughly coeval with a variety of geomorphic indicators (valley networks, degraded craters and highly eroded terrain) of a possible early warmer and wetter environment. In contrast, the cratered plains of Gusev that Spirit has traversed (exclusive of the Columbia Hills) have been dominated by impact and eolian processes and a gradation history that argues for a dry and desiccating environment since the Late Hesperian. This paper reviews the surficial geology and gradation history of the plains in Gusev crater as observed along the traverse by Spirit that supports this climate change from the two landing sites on Mars.

  16. KSC-98pc1657

    NASA Image and Video Library

    1998-11-03

    At pad 17A at Cape Canaveral Air Station, the second stage of a Delta II rocket is lowered into the first stage. The rocket is scheduled to be launched on Dec. 10, 1998, heading for Mars and carrying the Mars Climate Orbiter. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 657 days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The orbiter will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999

  17. KSC-98pc1654

    NASA Image and Video Library

    1998-11-03

    Workers at pad 17A at Cape Canaveral Air Station begin lifting the second stage of a Delta II rocket up the gantry . The rocket is scheduled to be launched on Dec. 10, 1998, heading for Mars and carrying the Mars Climate Orbiter. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 657 days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The orbiter will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999

  18. KSC-98pc1655

    NASA Image and Video Library

    1998-11-03

    At pad 17A, Cape Canaveral Air Station, the second stage of a Delta II rocket is lifted up the gantry . The rocket is scheduled to be launched on Dec. 10, 1998, heading for Mars and carrying the Mars Climate Orbiter. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 657 days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The orbiter will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999

  19. KSC-98pc1656

    NASA Image and Video Library

    1998-11-03

    Workers at pad 17A at Cape Canaveral Air Station maneuver the second stage of a Delta II rocket inside the gantry. The rocket is scheduled to be launched on Dec. 10, 1998, heading for Mars and carrying the Mars Climate Orbiter. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 657 days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The orbiter will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999

  20. KSC-98pc1653

    NASA Image and Video Library

    1998-11-03

    The second stage of a Delta II rocket is prepared for its shift to vertical alongside the gantry at pad 17A at Cape Canaveral Air Station. The rocket is scheduled to be launched on Dec. 10, 1998, heading for Mars and carrying the Mars Climate Orbiter. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 657 days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The orbiter will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999

  1. KSC-98pc1620

    NASA Image and Video Library

    1998-10-30

    KENNEDY SPACE CENTER, FLA. -- On Pad 17A at Cape Canaveral Air Station, a Delta II rocket is maneuvered into position for launch on Dec. 10, 1998. The rocket is carrying the Mars Climate Orbiter which will head for Mars primarily to support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface

  2. KSC-98pc1723

    NASA Image and Video Library

    1998-11-16

    KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), the Mars Climate Orbiter is in place for its spin test. Targeted for launch aboard a Delta II rocket on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface

  3. KSC-98pc1722

    NASA Image and Video Library

    1998-11-16

    KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), workers lower the Mars Climate Orbiter into place on the spin test equipment. Targeted for launch aboard a Delta II rocket on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface

  4. CO2 condensation and the climate of early Mars.

    PubMed

    Kasting, J F

    1991-01-01

    A one-dimensional, radiative-convective climate model was used to reexamine the question of whether early Mars could have been kept warm by the greenhouse effect of a dense, CO2 atmosphere. The new model differs from previous models by considering the influence of CO2 clouds on the convective lapse rate and on the the planetary radiation budget. Condensation of CO2 decreases the lapse rate and, hence, reduces the magnitude of the greenhouse effect. This phenomenon becomes increasingly important at low solar luminosities and may preclude warm (0 degree C), globally averaged surface temperatures prior to approximately 2 billion years ago unless other greenhouse gases were present in addition to CO2 and H2O. Alternative mechanisms for warming early Mars and explaining channel formation are discussed.

  5. Possible climate-related signals in high-resolution topography of lobate debris aprons in Tempe Terra, Mars

    NASA Astrophysics Data System (ADS)

    Grindrod, Peter M.; Fawcett, Stephen A.

    2011-10-01

    Lobate debris aprons are common features in the mid-latitudes of Mars that are assumed to be the result of the flow of ice-rich material. We produce high-resolution digital elevation models of two of these features in the Tempe Terra region of Mars using HiRISE stereo images. We identify two main topographic features of different wavelength using a power spectrum analysis approach. Short wavelength features, between approximately 10 and 20 m in length, correspond to a polygonal surface texture present throughout our study area. Long wavelength features, between approximately 700 and 1800 m in length, correspond to broad ridges that are up to 20 m in amplitude. We interpret both topographic signals to be the likely result of climate change affecting the debris contribution and/or the flow regime of the lobate debris aprons. The apparent surface age of about 300 Ma could be evidence of an astronomical forcing mechanism recorded in these lobate debris aprons at this time in Mars' history.

  6. KSC-98pc1627

    NASA Image and Video Library

    1998-11-10

    KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), Chris Voorhees and Satish Krishnan from the Jet Propulsion Laboratory remove a microprobe which will hitchhike on the Mars Polar Lander. Scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket, the solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars

  7. KSC-98pc1884

    NASA Image and Video Library

    1998-12-17

    KENNEDY SPACE CENTER, FLA. -- The Mars Polar Lander is suspended from a crane in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) before being lowered to a workstand. There it will be mated to the third stage of the Boeing Delta II rocket before it is transported to Launch Pad 17B, Cape Canaveral Air Station. The lander, which will be launched on Jan. 3, 1999, is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998

  8. KSC-98pc1733

    NASA Image and Video Library

    1998-11-24

    KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), the third stage of the Boeing Delta II launch vehicle (left) waits for mating with the Mars Climate Orbiter (right). The third stage is a solid-propellant Thiokol Star 48B booster, the same final stage used in the 1996 launch of Mars Global Surveyor. Targeted for launch on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface

  9. KSC-98pc1734

    NASA Image and Video Library

    1998-11-24

    KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), the Mars Climate Orbiter (right) is lifted to move it for mating to the third stage of the Boeing Delta II launch vehicle waiting at left. The third stage is a solid-propellant Thiokol Star 48B booster, the same final stage used in the 1996 launch of Mars Global Surveyor. Targeted for launch on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. ; ;

  10. KSC-98pc1735

    NASA Image and Video Library

    1998-11-24

    KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), the Mars Climate Orbiter (top) is lowered toward the third stage of the Boeing Delta II launch vehicle below it, to which it will be attached. The third stage is a solid-propellant Thiokol Star 48B booster, the same final stage used in the 1996 launch of Mars Global Surveyor. Targeted for launch on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface

  11. KSC-98pc1736

    NASA Image and Video Library

    1998-11-24

    KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), workers check on the fitting between the Mars Climate Orbiter (above) and the third stage of the Boeing Delta II launch vehicle (below). The third stage is a solid-propellant Thiokol Star 48B booster, the same final stage used in the 1996 launch of Mars Global Surveyor. Targeted for launch on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface

  12. Martian water: are there extant halobacteria on Mars?

    NASA Technical Reports Server (NTRS)

    Landis, G. A.

    2001-01-01

    On Earth, life exists in all niches where water exists in liquid form for at least a portion of the year. On Mars, any liquid water would have to be a highly concentrated brine solution. It is likely, therefore, that any present-day Martian microorganisms would be similar to terrestrial halophiles. Even if present-day life does not exist on Mars, it is an interesting speculation that ancient bacteria preserved in salt deposits could be retrieved from an era when the climate of Mars was more conducive to life.

  13. Mars atmospheric CO2 condensation above the north and south poles as revealed by radio occultation, climate sounder, and laser ranging observations

    NASA Astrophysics Data System (ADS)

    Hu, Renyu; Cahoy, Kerri; Zuber, Maria T.

    2012-07-01

    We study the condensation of CO2 in Mars' atmosphere using temperature profiles retrieved from radio occultation measurements from Mars Global Surveyor (MGS) as well as the climate sounding instrument onboard the Mars Reconnaissance Orbiter (MRO), and detection of reflective clouds by the MGS Mars Orbiter Laser Altimeter (MOLA). We find 11 events in 1999 where MGS temperature profiles indicate CO2 condensation and MOLA simultaneously detects reflective clouds. We thus provide causal evidence that MOLA non-ground returns are associated with CO2 condensation, which strongly indicates their nature being CO2 clouds. The MGS and MRO temperature profiles together reveal the seasonal expansion and shrinking of the area and the vertical extent of atmospheric saturation. The occurrence rate of atmospheric saturation is maximized at high latitudes in the middle of winter. The atmospheric saturation in the northern polar region exhibits more intense seasonal variation than in the southern polar region. In particular, a shrinking of saturation area and thickness from LS ˜ 270° to ˜300° in 2007 is found; this is probably related to a planet-encircling dust storm. Furthermore, we integrate the condensation area and the condensation occurrence rate to estimate cumulative masses of CO2 condensates deposited onto the northern and southern seasonal polar caps. The precipitation flux is approximated by the particle settling flux which is estimated using the impulse responses of MOLA filter channels. With our approach, the total atmospheric condensation mass can be estimated from these observational data sets with average particle size as the only free parameter. By comparison with the seasonal polar cap masses inferred from the time-varying gravity of Mars, our estimates indicate that the average condensate particle radius is 8-22 μm in the northern hemisphere and 4-13 μm in the southern hemisphere. Our multi-instrument data analysis provides new constraints on modeling the global climate of Mars.

  14. MAVEN observations of the Mars upper atmosphere, ionosphere, and solar wind interactions

    NASA Astrophysics Data System (ADS)

    Jakosky, Bruce M.

    2017-09-01

    The Mars Atmosphere and Volatile Evolution (MAVEN) mission to Mars has been operating in orbit for more than a full Martian year. Observations are dramatically changing our view of the Mars upper atmosphere system, which includes the upper atmosphere, ionosphere, coupling to the lower atmosphere, magnetosphere, and interactions with the Sun and the solar wind. The data are allowing us to understand the processes controlling the present-day structure of the upper atmosphere and the rates of escape of gas to space. These will tell us the role that escape to space has played in the evolution of the Mars atmosphere and climate.

  15. Echo Source Discrimination in Airborne Radar Sounding Data for Mars Analog Studies, Dry Valleys, Antarctica

    NASA Technical Reports Server (NTRS)

    Holt, J. W.; Blankenship, D. D.; Peters, M. E.; Kempf, S. D.; Morse, D. L.; Williams, B. J.

    2003-01-01

    The recent identification of features on Mars exhibiting morphologies consistent with ice/rock mixtures, near-surface ice bodies and near-surface liquid water [1,2], and the importance of such features to the search for water on Mars, highlights the need for appropriate terrestrial analogs in order to prepare for upcoming radar missions targeting these and other water-related features. Climatic, hydrological, and geological conditions in the McMurdo Dry Valleys of Antarctica are analogous in many ways to those on Mars, and a number of ice-related features in the Dry Valleys may have direct morphologic and compositional counterparts on Mars.

  16. Scenario Analysis With Economic-Energy Systems Models Coupled to Simple Climate Models

    NASA Astrophysics Data System (ADS)

    Hanson, D. A.; Kotamarthi, V. R.; Foster, I. T.; Franklin, M.; Zhu, E.; Patel, D. M.

    2008-12-01

    Here, we compare two scenarios based on Stanford University's Energy Modeling Forum Study 22 on global cooperative and non-cooperative climate policies. In the former, efficient transition paths are implemented including technology Research and Development effort, energy conservation programs, and price signals for greenhouse gas (GHG) emissions. In the non-cooperative case, some countries try to relax their regulations and be free riders. Total emissions and costs are higher in the non-cooperative scenario. The simulations, including climate impacts, run to the year 2100. We use the Argonne AMIGA-MARS economic-energy systems model, the Texas AM University's Forest and Agricultural Sector Optimization Model (FASOM), and the University of Illinois's Integrated Science Assessment Model (ISAM), with offline coupling between the FASOM and AMIGA-MARS and an online coupling between AMIGA-MARS and ISAM. This set of models captures the interaction of terrestrial systems, land use, crops and forests, climate change, human activity, and energy systems. Our scenario simulations represent dynamic paths over which all the climate, terrestrial, economic, and energy technology equations are solved simultaneously Special attention is paid to biofuels and how they interact with conventional gasoline/diesel fuel markets. Possible low-carbon penetration paths are based on estimated costs for new technologies, including cellulosic biomass, coal-to-liquids, plug-in electric vehicles, solar and nuclear energy. We explicitly explore key uncertainties that affect mitigation and adaptation scenarios.

  17. MSATT Workshop on Innovative Instrumentation for the In Situ Study of Atmosphere-Surface Interactions on Mars

    NASA Technical Reports Server (NTRS)

    Fegley, Bruce, Jr. (Editor); Waenke, Heinrich (Editor)

    1992-01-01

    Papers accepted for the Mars Surface and Atmosphere Through Time (MSATT) Workshop on Innovative Instruments for the In Situ Study of Atmosphere-Surface Interaction of Mars, 8-9 Oct. 1992 in Mainz, Germany are included. Topics covered include: a backscatter Moessbauer spectrometer (BaMS) for use on Mars; database of proposed payloads and instruments for SEI missions; determination of martian soil mineralogy and water content using the Thermal Analyzer for Planetary Soils (TAPS); in situ identification of the martian surface material and its interaction with the martian atmosphere using DTA/GC; mass spectrometer-pyrolysis experiment for atmospheric and soil sample analysis on the surface of Mars; and optical luminescence spectroscopy as a probe of the surface mineralogy of Mars.

  18. Space transfer concepts and analysis for exploration missions

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The progress and results are summarized for mission/system requirements database; mission analysis; GN and C (Guidance, Navigation, and Control), aeroheating, Mars landing; radiation protection; aerobrake mass analysis; Shuttle-Z, TMIS (Trans-Mars Injection Stage); Long Duration Habitat Trade Study; evolutionary lunar and Mars options; NTR (Nuclear Thermal Rocket); NEP (Nuclear Electric Propulsion) update; SEP (Solar Electric Propulsion) update; orbital and space-based requirements; technology; piloted rover; programmatic task; and evolutionary and innovative architecture.

  19. Real-Time Climate Simulations in the Interactive 3D Game Universe Sandbox ²

    NASA Astrophysics Data System (ADS)

    Goldenson, N. L.

    2014-12-01

    Exploration in an open-ended computer game is an engaging way to explore climate and climate change. Everyone can explore physical models with real-time visualization in the educational simulator Universe Sandbox ² (universesandbox.com/2), which includes basic climate simulations on planets. I have implemented a time-dependent, one-dimensional meridional heat transport energy balance model to run and be adjustable in real time in the midst of a larger simulated system. Universe Sandbox ² is based on the original game - at its core a gravity simulator - with other new physically-based content for stellar evolution, and handling collisions between bodies. Existing users are mostly science enthusiasts in informal settings. We believe that this is the first climate simulation to be implemented in a professionally developed computer game with modern 3D graphical output in real time. The type of simple climate model we've adopted helps us depict the seasonal cycle and the more drastic changes that come from changing the orbit or other external forcings. Users can alter the climate as the simulation is running by altering the star(s) in the simulation, dragging to change orbits and obliquity, adjusting the climate simulation parameters directly or changing other properties like CO2 concentration that affect the model parameters in representative ways. Ongoing visuals of the expansion and contraction of sea ice and snow-cover respond to the temperature calculations, and make it accessible to explore a variety of scenarios and intuitive to understand the output. Variables like temperature can also be graphed in real time. We balance computational constraints with the ability to capture the physical phenomena we wish to visualize, giving everyone access to a simple open-ended meridional energy balance climate simulation to explore and experiment with. The software lends itself to labs at a variety of levels about climate concepts including seasons, the Greenhouse effect, reservoirs and flows, albedo feedback, Snowball Earth, climate sensitivity, and model experiment design. Climate calculations are extended to Mars with some modifications to the Earth climate component, and could be used in lessons about the Mars atmosphere, and exploring scenarios of Mars climate history.

  20. The investigation of terrestrial analogs for the paleoclimate of Mars

    NASA Astrophysics Data System (ADS)

    Thorpe, M.; Hurowitz, J.; Dehouck, E.

    2016-12-01

    The paleoclimate of Mars is recorded in sedimentary rocks and deposits, with geochemical and mineralogical lines of evidence illustrating an active hydrologic cycle and aqueous weathering environment. The nature of this paleoclimate remains a debatable subject, with several competing hypothesis existing from warm and wet to cold and icy. However, sedimentary processes in basaltic terrains are understudied, leading to an inadequate reference frame for the sedimentary record of Mars. Therefore, investigating the effects of climate on basaltic terrestrial analogs will help in establishing a context for understanding the ancient conditions of Mars. The Columbia River Basalts in Idaho, USA will serve as conditions in a warm and wet climate, while the weathering of Icelandic Basalts in southwestern Iceland will provide a cold and wet climate scenario. In the warm and wet conditions of Idaho, Miocene basaltic source rock is broken down by physical and chemical weathering, transported by streams and deposited locally as small deltas. The sediment that accumulates preserves the basaltic provenance mineralogy in grain sizes as small as silt. The major elemental geochemistry displays chemical weathering trends that are consistent with decreasing grain size, and interpreted as mafic mineral dissolution (i.e., olivine and pyroxenes). Clay mineral phases are separated into the finest grain size fraction during the sedimentation process and are identified as smectite clays. A similar story of preserving basaltic mineralogy is illustrated by Icelandic deposits, except mechanical breakdown of the sediment appears to have a larger impact. Primary mafic minerals are identified in even the clay size fraction of the Icelandic fluvial delta deposits. Additionally, there are limited abundances of clay mineral phases, with more obvious contributions of poorly crystalline phases in the less than 2 micron fraction. The preservation of basaltic provenance in the mineralogy of sediments generated in two contrasting climates is important to Mars were sedimentary rocks display a primary igneous mineralogy. Weathering trends and the formation of secondary clay and(or) poorly crystalline phases may be the defining tracers for climatic influence on sedimentary processes in basaltic environments.

  1. A topographically forced asymmetry in the martian circulation and climate.

    PubMed

    Richardson, Mark I; Wilson, R John

    2002-03-21

    Large seasonal and hemispheric asymmetries in the martian climate system are generally ascribed to variations in solar heating associated with orbital eccentricity. As the orbital elements slowly change (over a period of >104 years), characteristics of the climate such as dustiness and the vigour of atmospheric circulation are thought to vary, as should asymmetries in the climate (for example, the deposition of water ice at the northern versus the southern pole). Such orbitally driven climate change might be responsible for the observed layering in Mars' polar deposits by modulating deposition of dust and water ice. Most current theories assume that climate asymmetries completely reverse as the angular distance between equinox and perihelion changes by 180 degrees. Here we describe a major climate mechanism that will not precess in this way. We show that Mars' global north-south elevation difference forces a dominant southern summer Hadley circulation that is independent of perihelion timing. The Hadley circulation, a tropical overturning cell responsible for trade winds, largely controls interhemispheric transport of water and the bulk dustiness of the atmosphere. The topography therefore imprints a strong handedness on climate, with water ice and the active formation of polar layered deposits more likely in the north.

  2. Mars Aerocapture and Validation of Mars-GRAM with TES Data

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Duvall, Aleta; Keller, Vernon W.

    2005-01-01

    Mars Global Reference Atmospheric Model (Mars-GRAM) is a widely-used engineering- level Mars atmospheric model. Applications include systems design, performance analysis, and operations planning for aerobraking, entry descent and landing, and aerocapture. Typical Mars aerocapture periapsis altitudes (for systems with rigid-aeroshell heat shields) are about 50 km. This altitude is above the 0-40 km height range covered by Mars Global Surveyor Thermal Emission Spectrometer (TES) nadir observations. Recently, TES limb sounding data have been made available, spanning more than two Mars years (more than 200,000 data profiles) with altitude coverage up to about 60 km, well within the height range of interest for aerocapture. Results are presented comparing Mars-GRAM atmospheric density with densities from TES nadir and limb sounding observations. A new Mars-GRAM feature is described which allows individual TES nadir or limb profiles to be extracted from the large TES databases, and to be used as an optional replacement for standard Mars-GRAM background (climatology) conditions. For Monte-Carlo applications such as aerocapture guidance and control studies, Mars-GRAM perturbations are available using these TES profile background conditions.

  3. South polar residual cap of Mars: Features, stratigraphy, and changes

    NASA Astrophysics Data System (ADS)

    Thomas, P. C.; Malin, M. C.; James, P. B.; Cantor, B. A.; Williams, R. M. E.; Gierasch, P.

    2005-04-01

    The south residual polar cap of Mars, rich in CO 2 ice, is compositionally distinct from the north residual cap which is dominantly H 2O ice. The south cap is also morphologically distinct, displaying a bewildering variety of depressions formed in thin layered deposits, which have been observed to change by scarp retreat over an interval of one Mars year (Malin et al., 2001, Science 294, 2146-2148). The climatically sensitive locale of the residual caps suggests that their behavior may help in the interpretation of recent fluctuations or repeatability of the Mars climate. We have used Mars Global Surveyor Mars Orbiter Camera (MOC) images obtained in three southern summers to map the variety of features in the south residual cap and to evaluate changes over two Mars years (Mars y). The images show that there are two distinct layered units which were deposited at different times separated by a period of degradation. The older unit, ˜10 m thick, has layers approximately 2 m thick. The younger unit has variable numbers of layers, each ˜1 m thick. The older unit is eroding by scarp retreat averaging 3.6 m/Mars y, a rate greater than the retreat of 2.2 m/Mars y observed for the younger unit. The rates of scarp retreat and sizes of the different types of depressions indicate that the history of the residual cap has been short periods of deposition interspersed with longer erosional periods. Erosion of the older unit probably occupied ˜100-150 Mars y. One layer may have been deposited after the Mariner 9 observations in 1972. Residual cap layers appear to differ from normal annual winter deposits by having a higher albedo and perhaps by having higher porosities. These properties might be produced by differences in the depositional meteorology that affect the fraction of high porosity snow included in the winter deposition.

  4. Orbital Drivers of Climate Change on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Zent, A. P.

    Oscillations of orbital elements and spin axis orientation affect the climate of both Earth and Mars by redistributing solar power both latitudinally and seasonally, often resulting in secondary changes in reflected and emitted radiation (radiative forcing). Multiple feedback loops between different climatic elements operate on both planets, with the result that climate response is generally nonlinear with simple changes in solar energy. Both insolation history and geochemical climate proxies can be treated as time series data, and analyzed in terms of component frequencies. The correspondence between frequencies measured in climate proxies and orbital oscillations is the key to relating orbital cause and climatic effect. Discussions of both Earth and Mars focus on the last 5-10 m.y., because this is the period in which the orbital history and geologic record are best understood. The terrestrial climate is an extraordinarily complex system, and a vast amount of data is available for analysis. While the geologic record strongly supports the role of Milankovitch cycles as the underlying cause of glacial cycles, orbitally driven insolation changes alone cannot explain the observations in detail. Early Pleistocene glacial cycles responded linearly to the 41-k.y. oscillations in obliquity. However, over the last 1 m.y., glacial/interglacial oscillations have become more extreme as the climate has cooled. Long cooling intervals marked by an oscillating buildup of ice sheets are now followed by brief, intense periods of warming. At the same time, glacial/interglacial cycles have shifted from 41 k.y. to ~100 k.y. No such changes occurred in the solar forcing due to orbital oscillations. While orbital oscillations still appear to pace glacial cycles, their subtle interplay with ice-sheet dynamics and shifts in ocean circulation have come to dominate the late Pleistocene climate system. In contrast to Earth, the martian climate is ostensibly a much simpler system about which we have almost no quantitative data. Lacking climate proxies and chronological data, we are forced to rely on climate modeling and whatever constraints can be extracted from the predominantly remote sensing data available. Obliquity oscillations account for most of the power in historical insolation. Unfortunately, the last 5 m.y. are an anomalous period in Mars' climate history due to a secular decrease in Mars' obliquity. Subsequent to that, however, models and observations are consistent with the hypothesis that during periods of higher obliquity, enhanced polar summer insolation increases atmospheric water vapor and dust content, and ice stability shifted toward the equator. Polar caps become thermodynamically unstable, and much of the surface H2O inventory migrates from high latitudes to the tropics. As obliquity decreases, ice returns to the poles, leaving unstable ice-rich deposits in the mid latitudes that are mantled by dust. Low-obliquity periods entail — at least on occasion — collapse of the atmosphere onto the poles and high-latitude CO2 glaciers. During protracted nodes in obliquity, mid-latitude ice undergoes slow but sustained sublimation and redistribution to the poles. Because of the tremendous breadth of the subject matter, this chapter necessarily presents a high-level overview, and the reader will be compelled to investigate the copious references for a more rigorous explanation of most topics.

  5. Extratropical Weather Systems on Mars: Radiatively-Active Water Ice Effects

    NASA Technical Reports Server (NTRS)

    Hollingsworth, J. L.; Kahre, M. A.; Haberle, R. M.; Urata, R. A.; Montmessin, F.

    2017-01-01

    Extratropical, large-scale weather disturbances, namely transient, synoptic-period,baroclinic barotropic eddies - or - low- (high-) pressure cyclones (anticyclones), are components fundamental to global circulation patterns for rapidly rotating, differentially heated, shallow atmospheres such as Earth and Mars. Such "wave-like" disturbances that arise via (geophysical) fluid shear instability develop, mature and decay, and travel west-to-east in the middle and high latitudes within terrestrial-like planetary atmospheres. These disturbances serve as critical agents in the transport of heat and momentum between low and high latitudes of the planet. Moreover, they transport trace species within the atmosphere (e.g., water vapor/ice, other aerosols (dust), chemical species, etc). Between early autumn through early spring, middle and high latitudes on Mars exhibit strong equator-to-pole mean temperature contrasts (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that such strong baroclinicity supports vigorous, large-scale eastward traveling weather systems [Banfield et al., 2004; Barnes et al., 1993]. A good example of traveling weather systems, frontal wave activity and sequestered dust activity from MGS/MOC image analyses is provided in Figure 1 (cf. Wang et al. [2005]). Utilizing an upgraded and evolving version of the NASA Ames Research Center (ARC) Mars global climate model, investigated here are key dynamical and physical aspects of simulated northern hemisphere (NH) large-scale extratropica lweather systems,with and without radiatively-active water ice clouds. Mars Climate Model:

  6. Wet-based glaciation in Phlegra Montes, Mars.

    NASA Astrophysics Data System (ADS)

    Gallagher, Colman; Balme, Matt

    2016-04-01

    Eskers are sinuous landforms composed of sediments deposited from meltwaters in ice-contact glacial conduits. This presentation describes the first definitive identification of eskers on Mars still physically linked with their parent system (1), a Late Amazonian-age glacier (~150 Ma) in Phlegra Montes. Previously described Amazonian-age glaciers on Mars are generally considered to have been dry based, having moved by creep in the absence of subglacial water required for sliding, but our observations indicate significant sub-glacial meltwater routing. The confinement of the Phlegra Montes glacial system to a regionally extensive graben is evidence that the esker formed due to sub-glacial melting in response to an elevated, but spatially restricted, geothermal heat flux rather than climate-induced warming. Now, however, new observations reveal the presence of many assemblages of glacial abrasion forms and associated channels that could be evidence of more widespread wet-based glaciation in Phlegra Montes, including the collapse of several distinct ice domes. This landform assemblage has not been described in other glaciated, mid-latitude regions of the martian northern hemisphere. Moreover, Phlegra Montes are flanked by lowlands displaying evidence of extensive volcanism, including contact between plains lava and piedmont glacial ice. These observations provide a rationale for investigating non-climatic forcing of glacial melting and associated landscape development on Mars, and can build on insights from Earth into the importance of geothermally-induced destabilisation of glaciers as a key amplifier of climate change. (1) Gallagher, C. and Balme, M. (2015). Eskers in a complete, wet-based glacial system in the Phlegra Montes region, Mars, Earth and Planetary Science Letters, 431, 96-109.

  7. Paleoproductivity in the northwestern Pacific Ocean during the Pliocene-Pleistocene climate transition (3.0-1.8 Ma)

    NASA Astrophysics Data System (ADS)

    Venti, Nicholas L.; Billups, Katharina; Herbert, Timothy D.

    2017-02-01

    Alkenone mass accumulation rates (MARs) provide a proxy for export productivity in the northwestern Pacific (Ocean Drilling Program Site 1208) spanning the late Pliocene through early Pleistocene (3.0-1.8 Ma). We investigate changes in productivity associated with global cooling during the onset and expansion of Northern Hemisphere glaciation (NHG). Alkenone MARs vary on obliquity timescales throughout, but the amplitude increases at 2.75 Ma concurrent with the intensification of NHG and cooling of the sea surface by 3°C. The obliquity-scale variations in alkenone MARs parallel shipboard measurements of sediment color reflectance (%) with higher MARs significantly correlated (>95%) with darker (opal-rich) intervals. Variations in both lead benthic foraminiferal δ18O values by 1.5-2 kyr suggesting that export productivity may be a contributing factor, rather than a response, to the extent of continental glaciation. The biological pump is therefore a plausible mechanism for transferring atmospheric CO2 into the deep ocean during the onset of NHG and the ensuing obliquity-dominated climate regime. Obliquity-scale correlation between productivity and magnetic susceptibility is consistent with a link via westerly winds delivering terrigenous sediments and mixing the upper water column. Alkenone MARs also contain a 400 kyr modulation. Because this periodicity is a multiple of the residence time of carbon in the ocean, it may reflect inputs of new nutrients associated with eccentricity-forced changes in the terrestrial biosphere and weathering. We ascribe these findings to interactions between the East Asian winter monsoon and productivity in the North Pacific Ocean, perhaps contributing to Plio-Pleistocene climate change.

  8. North-south geological differences between the residual polar caps on Mars

    USGS Publications Warehouse

    Thomas, P.C.; Malin, M.C.; Edgett, K.S.; Carr, M.H.; Hartmann, W.K.; Ingersoll, A.P.; James, P.B.; Soderblom, L.A.; Veverka, J.; Sullivan, R.

    2000-01-01

    Polar processes can be sensitive indicators of global climate, and the geological features associated with polar ice caps can therefore indicate evolution of climate with time. The polar regions on Mars have distinctive morphologic and climatologic features: thick layered deposits, seasonal CO2 frost caps extending to mid latitudes, and near-polar residual frost deposits that survive the summer. The relationship of the seasonal and residual frost caps to the layered deposits has been poorly constrained, mainly by the limited spatial resolution of the available data. In particular, it has not been known if the residual caps represent simple thin frost cover or substantial geologic features. Here we show that the residual cap on the south pole is a distinct geologic unit with striking collapse and erosional topography; this is very different from the residual cap on the north pole, which grades into the underlying layered materials. These findings indicate that the differences between the caps are substantial (rather than reflecting short-lived differences in frost cover), and so support the idea of long-term asymmetry in the polar climates of Mars.

  9. Mars Science with Small Aircraft

    NASA Technical Reports Server (NTRS)

    Calvin, W. M.; Miralles, C.; Clark, B. C.; Wilson, G. R.

    2000-01-01

    The Mars program has articulated a strategy to answer the question "Could Life have arisen on Mars?" by pursuing an in depth understanding of the location, persistence and expression of water in the surface and sub-surface environments. In addition to the need to understand the role of water in climate and climate history, detailed understanding of the surface and interior of the planet is required as well. Return of samples from the Martian surface is expected to provide key answers and site selection to maximize the science gleaned from samples becomes critical. Current and past orbital platforms have revealed a surface and planetary history of surprising complexity. While these remote views significantly advance our understanding of the planet it is clear that detailed regional surveys can both answer specific open questions as well as provide initial reconnaissance for subsequent landed operations.

  10. KSC-98pc1616

    NASA Image and Video Library

    1998-10-30

    KENNEDY SPACE CENTER, FLA. -- On Pad 17A at Cape Canaveral Air Station, cables lift the Delta II rocket into position for launch. Scheduled for launch on Dec. 10, 1998, the rocket is carrying the Mars Climate Orbiter. The orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface

  11. KSC-98pc1618

    NASA Image and Video Library

    1998-10-30

    KENNEDY SPACE CENTER, FLA. -- On Pad 17A at Cape Canaveral Air Station, workers on the ground watch as cables lift a Delta II rocket into vertical position. Scheduled for launch on Dec. 10, 1998, the rocket is carrying the Mars Climate Orbiter. The orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface

  12. KSC-98pc1617

    NASA Image and Video Library

    1998-10-30

    KENNEDY SPACE CENTER, FLA. -- On Pad 17A at Cape Canaveral Air Station, workers on the gantry watch as cables lift a Delta II rocket into position for launch. Scheduled for launch on Dec. 10, 1998, the rocket is carrying the Mars Climate Orbiter. The orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface

  13. KSC-98pc1721

    NASA Image and Video Library

    1998-11-16

    KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), a worker maneuvers the Mars Climate Orbiter, suspended by an overhead crane, to the spin test equipment at lower right. Targeted for launch aboard a Delta II rocket on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface

  14. KSC-98pc1720

    NASA Image and Video Library

    1998-11-16

    KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), the Mars Climate Orbiter is lifted from the workstand to move it to another site for a spin test. Targeted for launch aboard a Delta II rocket on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface

  15. Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data

    NASA Astrophysics Data System (ADS)

    Bibring, Jean-Pierre; Langevin, Yves; Mustard, John F.; Poulet, François; Arvidson, Raymond; Gendrin, Aline; Gondet, Brigitte; Mangold, Nicolas; Pinet, P.; Forget, F.; OMEGA Team; Berthé, Michel; Gomez, Cécile; Jouglet, Denis; Soufflot, Alain; Vincendon, Mathieu; Combes, Michel; Drossart, Pierre; Encrenaz, Thérèse; Fouchet, Thierry; Merchiorri, Riccardo; Belluci, GianCarlo; Altieri, Francesca; Formisano, Vittorio; Capaccioni, Fabricio; Cerroni, Pricilla; Coradini, Angioletta; Fonti, Sergio; Korablev, Oleg; Kottsov, Volodia; Ignatiev, Nikolai; Moroz, Vassilli; Titov, Dimitri; Zasova, Ludmilla; Loiseau, Damien; Pinet, Patrick; Doute, Sylvain; Schmitt, Bernard; Sotin, Christophe; Hauber, Ernst; Hoffmann, Harald; Jaumann, Ralf; Keller, Uwe; Arvidson, Ray; Duxbury, Tom; Neukum, G.

    2006-04-01

    Global mineralogical mapping of Mars by the Observatoire pour la Mineralogie, l'Eau, les Glaces et l'Activité (OMEGA) instrument on the European Space Agency's Mars Express spacecraft provides new information on Mars' geological and climatic history. Phyllosilicates formed by aqueous alteration very early in the planet's history (the ``phyllocian'' era) are found in the oldest terrains; sulfates were formed in a second era (the ``theiikian'' era) in an acidic environment. Beginning about 3.5 billion years ago, the last era (the ``siderikian'') is dominated by the formation of anhydrous ferric oxides in a slow superficial weathering, without liquid water playing a major role across the planet.

  16. The Search for Life from Antarctica to Mars

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.; Cuzzi, Jeffrey N. (Technical Monitor)

    1995-01-01

    Although the Viking results may indicate that Mars has no life today, the possibility exists that Mars may hold the best record of the events that led to the origin of life. There is direct geomorphological evidence that in the past Mars had large amounts of liquid water on its surface. Atmospheric models would suggest that this early period of hydrological activity was due to the presence of a thick atmosphere and the resulting warmer temperatures. From a biological perspective the existence of liquid water, by itself motivates the question of the origin of life on Mars. From studies of the Earth's earliest biosphere we know that by 3.5 Gyr. ago, life had originated on Earth and reached a fair degree of biological sophistication. Surface activity and erosion on Earth make it difficult to trace the history of life before the 3.5 Gyr timeframe. If Mars did maintain a clement environment for longer than it took for life to originate on Earth, then the question of the origin of life on Mars follows naturally. Human exploration of Mars will probably begin with a small base manned by a temporary crew, a necessary first start. But exploration of the entire planet win require a continued presence on the Martian surface and the development of a self sustaining community in which humans can live and work for very long periods of time. A permanent Mars research base can be compared to the permanent research bases which several nations maintain in Antarctica at the South Pole, the geomagnetic pole, and elsewhere. In the long run, a continued human presence on Mars will be t he most economical way to study that planet in detail. It is possible that at some time in the future we might recreate a habitable climate on Mars, returning it to the life-bearing state it may have enjoyed early in its history. Our studies of Mars are still in a preliminary state but everything we have learned suggests that it may be possible to restore Mars to a habitable climate.

  17. Desert landforms of southwest Egypt: A basis for comparison with Mars

    NASA Technical Reports Server (NTRS)

    El-Baz, F. (Editor); Maxwell, T. A. (Editor)

    1982-01-01

    Geologic interpretations of The Gilf Kebir-Uweinat of Apollo-Soyuz photographs were verified. The photographs and LANDSAT images showed features reminiscent of those depicted by Mariner and Viking missions to Mars. These features were to better understand their morphologic analogs on Mars. It is indicated that climate change played a significant role in the formation of the eastern Sahara. It is also revealed that correlations between the eolian features in southwestern Egypt and the wind blown patterns on the surface of Mars result in a better understanding of eolian activity on both planets.

  18. South Polar Region of Mars: Topography and Geology

    NASA Technical Reports Server (NTRS)

    Schenk, P. M.; Moore, J. M.

    1999-01-01

    The polar layered deposits of Mars represent potentially important volatile reservoirs and tracers for the planet's geologically recent climate history. Unlike the north polar cap, the uppermost surface of the bright residual south polar deposit is probably composed of carbon dioxide ice. It is unknown whether this ice extends through the entire thickness of the deposit. The Mars Polar Lander (MPL), launched in January 1999, is due to arrive in December 1999 to search for water and carbon dioxide on layered deposits near the south pole (SP) of Mars. Additional information is contained in the original extended abstract.

  19. KSC-07pd2176

    NASA Image and Video Library

    2007-08-04

    KENNEDY SPACE CENTER, FLA. - NASA's Phoenix spacecraft begins its journey to Mars aboard a Delta II 7925 rocket at 5:26 a.m. EDT from Pad 17A at Cape Canaveral Air Force Station. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Tony Gray and Robert Murray

  20. KSC-07pd1910

    NASA Image and Video Library

    2007-07-17

    KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, workers secure the Phoenix Mars Lander spacecraft onto the upper stage booster. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/Dimitri Gerondidakis

  1. KSC-07pd2178

    NASA Image and Video Library

    2007-08-04

    KENNEDY SPACE CENTER, FLA. - The Delta II 7925 rocket carrying NASA's Phoenix Mars lander roars off Pad 17A on Cape Canaveral Air Force Station at 5:26 a.m. EDT. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Sandra Joseph and John Kechele

  2. KSC-07pd2015

    NASA Image and Video Library

    2007-07-19

    KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander spacecraft rests with its heat shield installed. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Troy Cryder

  3. KSC-07pd2011

    NASA Image and Video Library

    2007-07-19

    KENNEDY SPACE CENTER, Fla. --In the Payload Hazardous Servicing Facility, the heat shield for the Phoenix Mars Lander spacecraft is moved toward the spacecraft. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Troy Cryder

  4. KSC-07pd2012

    NASA Image and Video Library

    2007-07-19

    KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, the heat shield for the Phoenix Mars Lander spacecraft is lowered onto the spacecraft. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Troy Cryder

  5. KSC-07pd2171

    NASA Image and Video Library

    2007-08-04

    KENNEDY SPACE CENTER, FLA. - NASA's Phoenix Mars lander lifts off from Pad 17A aboard a Delta II 7925 rocket at Cape Canaveral Air Force Station at 5:26 a.m. EDT. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Regina Mitchell-Ryall and Jerry Cannon

  6. KSC-07pd2170

    NASA Image and Video Library

    2007-08-04

    KENNEDY SPACE CENTER, FLA. -- The Delta II 7925 rocket carrying NASA's Phoenix Mars lander lifts off amid billows of smoke from Pad 17A at Cape Canaveral Air Force Station at 5:26 a.m. EDT. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/George Shelton

  7. KSC-07pd2177

    NASA Image and Video Library

    2007-08-04

    KENNEDY SPACE CENTER, FLA. - The Delta II 7925 rocket carrying NASA's Phoenix Mars lander thunders to life at 5:26 a.m. EDT at Pad 17A on Cape Canaveral Air Force Station. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Sandra Joseph and John Kechele

  8. KSC-07pd1647

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- The Phoenix Mars Lander is on display in the Payload Hazardous Servicing Facility. Phoenix is scheduled to launch Aug. 3 from Launch Pad 17-A at Cape Canaveral Air Force Station. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Kim Shiflett

  9. KSC-07pd2005

    NASA Image and Video Library

    2007-07-19

    KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, the heat shield (foreground) for the Phoenix Mars Lander spacecraft is ready for installation. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Troy Cryder

  10. KSC-07pd1648

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- A closeup of the Phoenix Mars Lander on display in the Payload Hazardous Servicing Facility. Phoenix is scheduled to launch Aug. 3 from Launch Pad 17-A at Cape Canaveral Air Force Station. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Kim Shiflett

  11. KSC-07pd2013

    NASA Image and Video Library

    2007-07-19

    KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, workers guide the heat shield onto the Phoenix Mars Lander spacecraft. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Troy Cryder

  12. KSC-07pd1901

    NASA Image and Video Library

    2007-07-17

    KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, workers prepare the upper stage booster to be mated to the Phoenix Mars Lander spacecraft. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/Dimitri Gerondidakis

  13. KSC-07pd1902

    NASA Image and Video Library

    2007-07-17

    KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, workers rotate the Phoenix Mars Lander spacecraft to move it for mating to the upper stage booster. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/Dimitri Gerondidakis

  14. KSC-07pd1909

    NASA Image and Video Library

    2007-07-17

    KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, workers attach the Phoenix Mars Lander spacecraft onto the upper stage booster. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/Dimitri Gerondidakis

  15. KSC-07pd2014

    NASA Image and Video Library

    2007-07-19

    KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, workers observe the installation of the heat shield onto the Phoenix Mars Lander spacecraft. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Troy Cryder

  16. KSC-07pd2179

    NASA Image and Video Library

    2007-08-04

    KENNEDY SPACE CENTER, FLA. - The Delta II 7925 rocket carrying NASA's Phoenix Mars lander bounds off Pad 17A on Cape Canaveral Air Force Station at 5:26 a.m. EDT. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Sandra Joseph and John Kechele

  17. Warming Early Mars With CH4

    NASA Astrophysics Data System (ADS)

    Justh, H. L.; Kasting, J. F.

    2002-12-01

    The nature of the ancient climate of Mars remains one of the fundamental unresolved problems in martian research. While the present environment is hostile to life, images from the Mariner, Viking and Mars Global Surveyor missions, have shown geologic features on the martian surface that seem to indicate an earlier period of hydrologic activity. The fact that ancient valley networks and degraded craters have been seen on the martian surface indicates that the early martian climate may have been more Earth-like, with a warmer surface temperature. The presence of liquid water would require a greenhouse effect much larger than needed at present, as the solar constant, S0, was 25% lower 3.8 billion years ago when the channels are thought to have formed (1,2). Previous calculations have shown that gaseous CO2 and H2O alone could not have warmed the martian surface to the temperature needed to account for the presence of liquid water (3). It has been hypothesized that a CO2-H2O atmosphere could keep early Mars warm if it was filled with CO2 ice clouds in the upper martian troposphere (4). Obtaining mean martian surface temperatures above 273 K would require nearly 100% cloud cover, a condition that is unrealistic for condensation clouds on early Mars. Any reduction in cloud cover makes it difficult to achieve warm martian surface temperatures except at high pressures and CO2 clouds could cool the martian surface if they were low and optically thick (5). CO2 and CH4 have been suggested as important greenhouse gases on the early Earth. Our research focuses on the effects of increased concentrations of atmospheric greenhouse gases on the surface temperature of early Mars, with emphasis on the reduced greenhouse gas, CH4. To investigate the possible warming effect of CH4, we modified a one-dimensional, radiative-convective climate model used in previous studies of the early martian climate (5). New cloud-free temperature profiles for various surface pressures and CH4 mixing ratios will be presented. This use of climate modeling is important since it is the fundamental way that the magnitude of possible geochemical and biological CH4 sources can be related to predicted CH4 concentrations in the early martian atmosphere. References: 1) Gough, D. O. Solar Physics 74, 21-34 (1981). 2) Carr, M. H. Water on Mars (1996). 3) Kasting, J. F. Icarus 94, 1-13 (1991). 4) Forget, F., and Pierrehumbert R. T. Science 278, 1273-1276 (1997). 5) Mischna, M. A., Kasting J. F., Pavlov A., and Freedman R. Icarus 145, 546-554 (2000).

  18. Estimating future burned areas under changing climate in the EU-Mediterranean countries.

    PubMed

    Amatulli, Giuseppe; Camia, Andrea; San-Miguel-Ayanz, Jesús

    2013-04-15

    The impacts of climate change on forest fires have received increased attention in recent years at both continental and local scales. It is widely recognized that weather plays a key role in extreme fire situations. It is therefore of great interest to analyze projected changes in fire danger under climate change scenarios and to assess the consequent impacts of forest fires. In this study we estimated burned areas in the European Mediterranean (EU-Med) countries under past and future climate conditions. Historical (1985-2004) monthly burned areas in EU-Med countries were modeled by using the Canadian Fire Weather Index (CFWI). Monthly averages of the CFWI sub-indices were used as explanatory variables to estimate the monthly burned areas in each of the five most affected countries in Europe using three different modeling approaches (Multiple Linear Regression - MLR, Random Forest - RF, Multivariate Adaptive Regression Splines - MARS). MARS outperformed the other methods. Regression equations and significant coefficients of determination were obtained, although there were noticeable differences from country to country. Climatic conditions at the end of the 21st Century were simulated using results from the runs of the regional climate model HIRHAM in the European project PRUDENCE, considering two IPCC SRES scenarios (A2-B2). The MARS models were applied to both scenarios resulting in projected burned areas in each country and in the EU-Med region. Results showed that significant increases, 66% and 140% of the total burned area, can be expected in the EU-Med region under the A2 and B2 scenarios, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Evolving Technologies for In-Situ Studies of Mars Ice

    NASA Technical Reports Server (NTRS)

    Carsey, F. D.; Hecht, M. H.

    2003-01-01

    Icy sites on Mars continue to be of high scientific importance. These sites include the polar caps, the southern mid-latitude subsurface permafrost, and the seasonal frost. These sites have interest due to their roles in climate processes, past climates, surface and near-surface water, astrobiology, geomorphology, and other topics. As is the case for many planetary features, remote sensing, while of great value, cannot answer all questions; in-situ examination is essential, and the motivation for in-situ observations generally leads to the subsurface, which, fortunately, is accessible on Mars. It is clear in fact that a Mars polar cap subsurface mission is both scientifically compelling and practical. Recent data from orbiting platforms has provided a remarkable level of information about the Mars ice caps; we know, for example, the size, shape and annual cycle of the cap topography as well as we know that of Earth, and we have more information on stratification that we have of, for example, the ice of East Antarctica. To understand the roles that the Mars polar caps play, it is necessary to gather information on the ice cap surface, strata, composition and bed. In this talk the status of in-situ operations and observations will be summarized, and, since we have conveniently at hand another planet with polar caps, permafrost and ice, the role of testing and validation of experimental procedures on Earth will be addressed.

  20. Seasonal Atmospheric Argon Variability Measured in the Equatorial Region of Mars by the Mars Exploration Rover Alpha Particle X-Ray Spectrometers: Evidence for an Annual Argon-Enriched Front

    NASA Astrophysics Data System (ADS)

    VanBommel, S. J.; Gellert, R.; Clark, B. C.; Ming, D. W.

    2018-02-01

    The Mars Exploration Rover Opportunity (MER-B) has been exploring the surface of Mars since landing in 2004. Its Alpha Particle X-ray Spectrometer (APXS) is primarily used to interrogate the chemical composition of rocks and soil samples in situ. Additionally, the APXS has measured the atmosphere of Mars with a regular cadence, monitoring the change in relative atmospheric argon density. Atmospheric measurements with the MER-B APXS span over six Mars years providing an unprecedented level of statistics for careful study of the ubiquitous APXS spectral background. Several models were applied to high-frequency long-duration Spirit rover atmospheric APXS measurements. The most stable model with the least uncertainty was applied to the MER-B data set. Seasonal variation of 10-15% in equatorial atmospheric argon density was observed - in agreement with existing literature and global climate models. Unseen in previous work and global climate models, an abrupt deviation from the model-predicted annual mixing ratio was measured by the MER-B APXS around Ls 150. The sharp change, 10% over 10° Ls, provides strong evidence for a northward migrating front, enriched in argon, sourced from the south pole at the end of southern winter. A similar weaker front is possibly observed around Ls 325, sourced from the northern polar region.

  1. Low Hesperian PCO2 constrained from in situ mineralogical analysis at Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Bristow, Thomas F.; Haberle, Robert M.; Blake, David F.; Des Marais, David J.; Eigenbrode, Jennifer L.; Fairén, Alberto G.; Grotzinger, John P.; Stack, Kathryn M.; Mischna, Michael A.; Rampe, Elizabeth B.; Siebach, Kirsten L.; Sutter, Brad; Vaniman, David T.; Vasavada, Ashwin R.

    2017-02-01

    Carbon dioxide is an essential atmospheric component in martian climate models that attempt to reconcile a faint young sun with planetwide evidence of liquid water in the Noachian and Early Hesperian. In this study, we use mineral and contextual sedimentary environmental data measured by the Mars Science Laboratory (MSL) Rover Curiosity to estimate the atmospheric partial pressure of CO2 (PCO2) coinciding with a long-lived lake system in Gale Crater at ˜3.5 Ga. A reaction-transport model that simulates mineralogy observed within the Sheepbed member at Yellowknife Bay (YKB), by coupling mineral equilibria with carbonate precipitation kinetics and rates of sedimentation, indicates atmospheric PCO2 levels in the 10s mbar range. At such low PCO2 levels, existing climate models are unable to warm Hesperian Mars anywhere near the freezing point of water, and other gases are required to raise atmospheric pressure to prevent lake waters from being lost to the atmosphere. Thus, either lacustrine features of Gale formed in a cold environment by a mechanism yet to be determined, or the climate models still lack an essential component that would serve to elevate surface temperatures, at least locally, on Hesperian Mars. Our results also impose restrictions on the potential role of atmospheric CO2 in inferred warmer conditions and valley network formation of the late Noachian.

  2. Evidence of water vapor in excess of saturation in the atmosphere of Mars.

    PubMed

    Maltagliati, L; Montmessin, F; Fedorova, A; Korablev, O; Forget, F; Bertaux, J-L

    2011-09-30

    The vertical distribution of water vapor is key to the study of Mars' hydrological cycle. To date, it has been explored mainly through global climate models because of a lack of direct measurements. However, these models assume the absence of supersaturation in the atmosphere of Mars. Here, we report observations made using the SPICAM (Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars) instrument onboard Mars Express that provide evidence of the frequent presence of water vapor in excess of saturation, by an amount far surpassing that encountered in Earth's atmosphere. This result contradicts the widespread assumption that atmospheric water on Mars cannot exist in a supersaturated state, directly affecting our long-term representation of water transport, accumulation, escape, and chemistry on a global scale.

  3. The rocky Soviet road to Mars

    NASA Astrophysics Data System (ADS)

    Klaes, Larry

    1990-08-01

    The history of the Soviet space program is reviewed with particular attention given to the Soviet Mars exploration program. Missions of the Mars and Zond series and their exploration of Mars are described in detail, and the progress of the Soviet Mars exploration program is compared and contrasted with that of U.S. programs. Soviet space exploration in the 1980s is reviewed, noting that changes in political climate enabled more open discussion of the Phobos mission, which facilitated both international cooperation in assembling the craft and extensive U.S.-Soviet cooperation in the communications aspect of the probe through use of NASA's Deep Space Network of radio telescopes. The Phobos 1 and Phobos 2 missions are discussed and reasons for difficulties are analyzed; the future of the Soviet Mars program is reviewed.

  4. Assessment of the Reconstructed Aerodynamics of the Mars Science Laboratory Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Schoenenberger, Mark; Van Norman, John W.; Dyakonov, Artem A.; Karlgaard, Christopher D.; Way, David W.; Kutty, Prasad

    2013-01-01

    On August 5, 2012, the Mars Science Laboratory entry vehicle successfully entered Mars atmosphere, flying a guided entry until parachute deploy. The Curiosity rover landed safely in Gale crater upon completion of the Entry Descent and Landing sequence. This paper compares the aerodynamics of the entry capsule extracted from onboard flight data, including Inertial Measurement Unit (IMU) accelerometer and rate gyro information, and heatshield surface pressure measurements. From the onboard data, static force and moment data has been extracted. This data is compared to preflight predictions. The information collected by MSL represents the most complete set of information collected during Mars entry to date. It allows the separation of aerodynamic performance from atmospheric conditions. The comparisons show the MSL aerodynamic characteristics have been identified and resolved to an accuracy better than the aerodynamic database uncertainties used in preflight simulations. A number of small anomalies have been identified and are discussed. This data will help revise aerodynamic databases for future missions and will guide computational fluid dynamics (CFD) development to improved prediction codes.

  5. Airborne Particles: What We Have Learned About Their Role in Climate from Remote Sensing, and Prospects for Future Advances

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2013-01-01

    Desert dust, wildfire smoke, volcanic ash, biogenic and urban pollution particles, all affect the regional-scale climate of Earth in places and at times; some have global-scale impacts on the column radiation balance, cloud properties, atmospheric stability structure, and circulation patterns. Remote sensing has played a central role in identifying the sources and transports of airborne particles, mapping their three-dimensional distribution and variability, quantifying their amount, and constraining aerosol air mass type. The measurements obtained from remote sensing have strengths and limitations, and their value for characterizing Earths environment is enhanced immensely when they are combined with direct, in situ observations, and used to constrain aerosol transport and climate models. A similar approach has been taken to study the role particles play in determining the climate of Mars, though based on far fewer observations. This presentation will focus what we have learned from remote sensing about the impacts aerosol have on Earths climate; a few points about how aerosols affect the climate of Mars will also be introduced, in the context of how we might assess aerosol-climate impacts more generally on other worlds.

  6. Mass breakdown model of solar-photon sail shuttle: The case for Mars

    NASA Astrophysics Data System (ADS)

    Vulpetti, Giovanni; Circi, Christian

    2016-02-01

    The main aim of this paper is to set up a many-parameter model of mass breakdown to be applied to a reusable Earth-Mars-Earth solar-photon sail shuttle, and analyze the system behavior in two sub-problems: (1) the zero-payload shuttle, and (2) given the sailcraft sail loading and the gross payload mass, find the sail area of the shuttle. The solution to the subproblem-1 is of technological and programmatic importance. The general analysis of subproblem-2 is presented as a function of the sail side length, system mass, sail loading and thickness. In addition to the behaviors of the main system masses, useful information for future work on the sailcraft trajectory optimization is obtained via (a) a detailed mass model for the descent/ascent Martian Excursion Module, and (b) the fifty-fifty solution to the sailcraft sail loading breakdown equation. Of considerable importance is the evaluation of the minimum altitude for the rendezvous between the ascent rocket vehicle and the solar-photon sail propulsion module, a task performed via the Mars Climate Database 2014-2015. The analysis shows that such altitude is 300 km; below it, the atmospheric drag prevails over the solar-radiation thrust. By this value, an example of excursion module of 1500 kg in total mass is built, and the sailcraft sail loading and the return payload are calculated. Finally, the concept of launch opportunity-wide for a shuttle driven by solar-photon sail is introduced. The previous fifty-fifty solution may be a good initial guess for the trajectory optimization of this type of shuttle.

  7. Annual mean mixing ratios of N2, Ar, O2, and CO in the martian atmosphere

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, V.

    2017-09-01

    The precise mixing ratios of N2, Ar, O2, and CO measured by the MSL Curiosity quadrupole mass spectrometer must be corrected for the seasonal variations of the atmospheric pressure to reproduce annual mean mixing ratios on Mars. The corrections are made using measurements the Viking Landers and the Mars Climate Database data. The mean correction factor is 0.899 ± 0.006 resulting in annual mean mixing ratios of (1.83 ± 0.03)% for N2, (1.86 ± 0.02)% for Ar, (1.56 ± 0.06)×10-3 for O2, and 673 ± 2.6 ppm for CO. The O2 mixing ratio agrees with the Herschel value within its uncertainty, the ground-based observations corrected for the dust extinction, and photochemical models by Nair et al. (1994) and Krasnopolsky (2010). The CO mixing ratio is in excellent agreement with the MRO/CRISM value of 700 ppm and with 667, 693, and 684 ppm recently observed at LS = 60, 89, and 110° and corrected to the annual mean conditions. Lifetimes of N2 and Ar are very long in the martian atmosphere, and differences between the MSL and Viking data on these species cannot be attributed to their variations.

  8. Annual mean mixing ratios of N2, Ar, O2, and CO in the martian atmosphere

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, Vladimir A.

    2017-09-01

    The precise mixing ratios of N2, Ar, O2, and CO measured by the MSL Curiosity quadrupole mass spectrometer must be corrected for the seasonal variations of the atmospheric pressure to reproduce annual mean mixing ratios on Mars. The corrections are made using measurements for the first year of the Viking Landers 1 and 2 and the Mars Climate Database data. The mean correction factor is 0.899 ± 0.006 resulting in annual mean mixing ratios of (1.83 ± 0.03)% for N2, (1.86 ± 0.02)% for Ar, (1.56 ± 0.06) × 10-3 for O2, and 673 ± 2.6 ppm for CO. The O2 mixing ratio agrees with the Herschel value within its uncertainty, the ground-based observations corrected for the dust extinction, and photochemical models by Nair et al. (1994) and Krasnopolsky (2010). The CO mixing ratio is in excellent agreement with the MRO/CRISM value of 700 ppm and with 667, 693, and 684 ppm recently observed at LS = 60, 89, and 110° and corrected to the annual mean conditions. Lifetimes of N2 and Ar are very long in the martian atmosphere, and differences between the MSL and Viking data on these species cannot be attributed to their variations.

  9. Background sampling and transferability of species distribution model ensembles under climate change

    NASA Astrophysics Data System (ADS)

    Iturbide, Maialen; Bedia, Joaquín; Gutiérrez, José Manuel

    2018-07-01

    Species Distribution Models (SDMs) constitute an important tool to assist decision-making in environmental conservation and planning. A popular application of these models is the projection of species distributions under climate change conditions. Yet there are still a range of methodological SDM factors which limit the transferability of these models, contributing significantly to the overall uncertainty of the resulting projections. An important source of uncertainty often neglected in climate change studies comes from the use of background data (a.k.a. pseudo-absences) for model calibration. Here, we study the sensitivity to pseudo-absence sampling as a determinant factor for SDM stability and transferability under climate change conditions, focusing on European wide projections of Quercus robur as an illustrative case study. We explore the uncertainty in future projections derived from ten pseudo-absence realizations and three popular SDMs (GLM, Random Forest and MARS). The contribution of the pseudo-absence realization to the uncertainty was higher in peripheral regions and clearly differed among the tested SDMs in the whole study domain, being MARS the most sensitive - with projections differing up to a 40% for different realizations - and GLM the most stable. As a result we conclude that parsimonious SDMs are preferable in this context, avoiding complex methods (such as MARS) which may exhibit poor model transferability. Accounting for this new source of SDM-dependent uncertainty is crucial when forming multi-model ensembles to undertake climate change projections.

  10. A Cloud Greenhouse Effect on Mars: Significant Climate Change in the Recent Past

    NASA Technical Reports Server (NTRS)

    Haberle, Robert M.; Kahre, Melinda A.; Schaeffer, James R.; Montmessin, Frank; Phillips, R J.

    2012-01-01

    The large variations in Mars orbit parameters are known to be significant drivers of climate change on the Red planet. The recent discovery of buried CO2 ice at the South Pole adds another dimension to climate change studies. In this paper we present results from the Ames GCM that show within the past million years it is possible that clouds from a greatly intensified Martian hydrological cycle may have produced a greenhouse effect strong enough to raise global mean surface temperatures by several tens of degrees Kelvin. It is made possible by the ability of the Martian atmosphere to transport water to high altitudes where cold clouds form, reduce the outgoing longwave radiation, and drive up surface temperatures to maintain global energy balance.

  11. The investigation of Martian dune fields using very high resolution photogrammetric measurements and time series analysis

    NASA Astrophysics Data System (ADS)

    Kim, J.; Park, M.; Baik, H. S.; Choi, Y.

    2016-12-01

    At the present time, arguments continue regarding the migration speeds of Martian dune fields and their correlation with atmospheric circulation. However, precisely measuring the spatial translation of Martian dunes has rarely conducted only a very few times Therefore, we developed a generic procedure to precisely measure the migration of dune fields with recently introduced 25-cm resolution High Resolution Imaging Science Experimen (HIRISE) employing a high-accuracy photogrammetric processor and sub-pixel image correlator. The processor was designed to trace estimated dune migration, albeit slight, over the Martian surface by 1) the introduction of very high resolution ortho images and stereo analysis based on hierarchical geodetic control for better initial point settings; 2) positioning error removal throughout the sensor model refinement with a non-rigorous bundle block adjustment, which makes possible the co-alignment of all images in a time series; and 3) improved sub-pixel co-registration algorithms using optical flow with a refinement stage conducted on a pyramidal grid processor and a blunder classifier. Moreover, volumetric changes of Martian dunes were additionally traced by means of stereo analysis and photoclinometry. The established algorithms have been tested using high-resolution HIRISE images over a large number of Martian dune fields covering whole Mars Global Dune Database. Migrations over well-known crater dune fields appeared to be almost static for the considerable temporal periods and were weakly correlated with wind directions estimated by the Mars Climate Database (Millour et al. 2015). Only over a few Martian dune fields, such as Kaiser crater, meaningful migration speeds (>1m/year) compared to phtotogrammetric error residual have been measured. Currently a technical improved processor to compensate error residual using time series observation is under developing and expected to produce the long term migration speed over Martian dune fields where constant HIRISE image acquisitions are available. ACKNOWLEDGEMENTS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under iMars grant agreement Nr. 607379.

  12. Workshop on Innovative Instrumentation for the In Situ Study of Atmosphere-Surface Interactions on Mars

    NASA Technical Reports Server (NTRS)

    Fegley, Bruce, Jr. (Editor); Waenke, Heinrich (Editor)

    1992-01-01

    The speakers in the first session of the workshop addressed some of the continuing enigmas regarding the atmospheric composition, surface composition, and atmosphere-surface interactions on Mars; provided a description of a database of proposed payloads and instruments for SEI missions that is scheduled to be accessible in 1993; discussed potential uses of atmospheric imaging from landed stations on Mars; and advocated the collection and employment of high-spectral-resolution reflectance and emission data.

  13. In-Situ Dating on Mars: The Potential of OSL Dating

    NASA Technical Reports Server (NTRS)

    Blair, M. W.; Kalchgruber, R.; Yukihara, E. G.; Bulur, E.; Kim, S. S.; McKeever, W. S.

    2004-01-01

    More and more evidence is being accumulated that Mars has experienced aeolian, fluvial, and periglacial activity in the (relatively) recent past [1, 2, 3]. However, the temporal scale on which these processes took place is very poorly constrained since crater counting has errors comparable to the age for younger terrains (approx. 1 Ma). Consequently, many researchers have called for methods to establish the climatic and geomorphic history of Mars [4]. Lepper and McKeever [5] suggested developing optically stimulated luminescence (OSL) dating techniques for in-situ dating of martian sediments. Electron paramagnetic resonance (EPR) is closely related to OSL and could easily be incorporated on the same instrument platform [6]. These two methods can aid in developing a geological and climatic history of Mars over the last approx. one million years. Since the initial investigations, work has been carried out to develop OSL instrumentation and dating procedures that are suitable to the unique challenges of the martian environment. In this paper, we highlight the advances made in this project, focusing on OSL dating principles, assumptions, and procedures.

  14. Recent ice ages on Mars

    NASA Astrophysics Data System (ADS)

    Head, James W.; Mustard, John F.; Kreslavsky, Mikhail A.; Milliken, Ralph E.; Marchant, David R.

    2003-12-01

    A key pacemaker of ice ages on the Earth is climatic forcing due to variations in planetary orbital parameters. Recent Mars exploration has revealed dusty, water-ice-rich mantling deposits that are layered, metres thick and latitude dependent, occurring in both hemispheres from mid-latitudes to the poles. Here we show evidence that these deposits formed during a geologically recent ice age that occurred from about 2.1 to 0.4 Myr ago. The deposits were emplaced symmetrically down to latitudes of ~30°-equivalent to Saudi Arabia and the southern United States on the Earth-in response to the changing stability of water ice and dust during variations in obliquity (the angle between Mars' pole of rotation and the ecliptic plane) reaching 30-35°. Mars is at present in an `interglacial' period, and the ice-rich deposits are undergoing reworking, degradation and retreat in response to the current instability of near-surface ice. Unlike the Earth, martian ice ages are characterized by warmer polar climates and enhanced equatorward transport of atmospheric water and dust to produce widespread smooth deposits down to mid-latitudes.

  15. The effect of polar caps on obliquity

    NASA Technical Reports Server (NTRS)

    Lindner, B. L.

    1993-01-01

    Rubincam has shown that the Martian obliquity is dependent on the seasonal polar caps. In particular, Rubincam analytically derived this dependence and showed that the change in obliquity is directly proportional to the seasonal polar cap mass. Rubincam concludes that seasonal friction does not appear to have changed Mars' climate significantly. Using a computer model for the evolution of the Martian atmosphere, Haberle et al. have made a convincing case for the possibility of huge polar caps, about 10 times the mass of the current polar caps, that exist for a significant fraction of the planet's history. Since Rubincam showed that the effect of seasonal friction on obliquity is directly proportional to polar cap mass, a scenario with a ten-fold increase in polar cap mass over a significant fraction of the planet's history would result in a secular increase in Mars' obliquity of perhaps 10 degrees. Hence, the Rubincam conclusion of an insignificant contribution to Mars' climate by seasonal friction may be incorrect. Furthermore, if seasonal friction is an important consideration in the obliquity of Mars, this would significantly alter the predictions of past obliquity.

  16. Recent ice ages on Mars.

    PubMed

    Head, James W; Mustard, John F; Kreslavsky, Mikhail A; Milliken, Ralph E; Marchant, David R

    2003-12-18

    A key pacemaker of ice ages on the Earth is climatic forcing due to variations in planetary orbital parameters. Recent Mars exploration has revealed dusty, water-ice-rich mantling deposits that are layered, metres thick and latitude dependent, occurring in both hemispheres from mid-latitudes to the poles. Here we show evidence that these deposits formed during a geologically recent ice age that occurred from about 2.1 to 0.4 Myr ago. The deposits were emplaced symmetrically down to latitudes of approximately 30 degrees--equivalent to Saudi Arabia and the southern United States on the Earth--in response to the changing stability of water ice and dust during variations in obliquity (the angle between Mars' pole of rotation and the ecliptic plane) reaching 30-35 degrees. Mars is at present in an 'interglacial' period, and the ice-rich deposits are undergoing reworking, degradation and retreat in response to the current instability of near-surface ice. Unlike the Earth, martian ice ages are characterized by warmer polar climates and enhanced equatorward transport of atmospheric water and dust to produce widespread smooth deposits down to mid-latitudes.

  17. KSC-98pc1838

    NASA Image and Video Library

    1998-12-11

    KENNEDY SPACE CENTER, FLA. -- A Boeing Delta II expendable launch vehicle lifts off with NASA's Mars Climate Orbiter at 1:45:51 p.m. EST, on Dec. 11, 1998, from Launch Complex 17A, Cape Canaveral Air Station. The launch was delayed one day when personnel detected a battery-related software problem in the spacecraft. The problem was corrected and the launch was rescheduled for the next day. The first of a pair of spacecraft to be launched in the Mars Surveyor '98 Project, the orbiter is heading for Mars where it will first provide support to its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will then monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface

  18. KSC-98pc1839

    NASA Image and Video Library

    1998-12-11

    KENNEDY SPACE CENTER, FLA. -- A Boeing Delta II expendable launch vehicle lifts off with NASA's Mars Climate Orbiter at 1:45:51 p.m. EST, on Dec. 11, 1998, from Launch Complex 17A, Cape Canaveral Air Station. The launch was delayed one day when personnel detected a battery-related software problem in the spacecraft. The problem was corrected and the launch was rescheduled for the next day. The first of a pair of spacecraft to be launched in the Mars Surveyor '98 Project, the orbiter is heading for Mars where it will first provide support to its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will then monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface

  19. KSC-98pc1840

    NASA Image and Video Library

    1998-12-11

    KENNEDY SPACE CENTER, FLA. -- A Boeing Delta II expendable launch vehicle lifts off with NASA's Mars Climate Orbiter at 1:45:51 p.m. EST, on Dec. 11, 1998, from Launch Complex 17A, Cape Canaveral Air Station. The launch was delayed one day when personnel detected a battery-related software problem in the spacecraft. The problem was corrected and the launch was rescheduled for the next day. The first of a pair of spacecraft to be launched in the Mars Surveyor '98 Project, the orbiter is heading for Mars where it will first provide support to its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will then monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface

  20. KSC-98pc1837

    NASA Image and Video Library

    1998-12-11

    KENNEDY SPACE CENTER, FLA. -- After launch tower retraction, the Boeing Delta II rocket carrying NASA's Mars Climate Orbiter undergoes final preparations for liftoff on Dec. 11, 1998, at Launch Complex 17A, Cape Canaveral Air Station. The launch was delayed one day when personnel detected a battery-related software problem in the spacecraft. The problem was corrected and the launch was rescheduled for the next day. The first of a pair of spacecraft in the Mars Surveyor '98 Project, the orbiter is heading for Mars where it will first provide support to its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will then monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface

  1. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the second Mars Exploration Rover, Opportunity, is poised for launch after rollback of the Mobile Service Tower. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rover’s prime mission is planned to last three months on Mars.

    NASA Image and Video Library

    2003-07-07

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the second Mars Exploration Rover, Opportunity, is poised for launch after rollback of the Mobile Service Tower. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rover’s prime mission is planned to last three months on Mars.

  2. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the rover "Opportunity" for the second Mars Exploration Rover mission launches at 11:18:15 p.m. EDT. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rover’s prime mission is planned to last three months on Mars.

    NASA Image and Video Library

    2003-07-07

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the rover "Opportunity" for the second Mars Exploration Rover mission launches at 11:18:15 p.m. EDT. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rover’s prime mission is planned to last three months on Mars.

  3. Alteration processes in volcanic soils and identification of exobiologically important weathering products on Mars using remote sensing.

    PubMed

    Bishop, J L; Froschl, H; Mancinelli, R L

    1998-12-25

    Determining the mineralogy of the Martian surface material provides information about the past and present environments on Mars which are an integral aspect of whether or not Mars was suitable for the origin of life. Mineral identification on Mars will most likely be achieved through visible-infrared remote sensing in combination with other analyses on landed missions. Therefore, understanding the visible and infrared spectral properties of terrestrial samples formed via processes similar to those thought to have occurred on Mars is essential to this effort and will facilitate site selection for future exobiology missions to Mars. Visible to infrared reflectance spectra are presented here for the fine-grained fractions of altered tephra/lava from the Haleakala summit basin on Maui, the Tarawera volcanic complex on the northern island of New Zealand, and the Greek Santorini island group. These samples exhibit a range of chemical and mineralogical compositions, where the primary minerals typically include plagioclase, pyroxene, hematite, and magnetite. The kind and abundance of weathering products varied substantially for these three sites due, in part, to the climate and weathering environment. The moist environments at Santorini and Tarawera are more consistent with postulated past environments on Mars, while the dry climate at the top of Haleakala is more consistent with the current Martian environment. Weathering of these tephra is evaluated by assessing changes in the leachable and immobile elements, and through detection of phyllosilicates and iron oxide/oxyhydroxide minerals. Identifying regions on Mars where phyllosilicates and many kinds of iron oxides/oxyhydroxides are present would imply the presence of water during alteration of the surface material. Tephra samples altered in the vicinity of cinder cones and steam vents contain higher abundances of phyllosilicates, iron oxides, and sulfates and may be interesting sites for exobiology.

  4. KSC-05PD-0820

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. At Kennedy Space Centers Shuttle Landing Facility, the second of two containers with the Mars Reconnaissance Orbiter (MRO) equipment is lifted onto a flatbed truck for transport to the Payload Hazardous Servicing Facility. The MRO was built by Lockheed-Martin for NASAs Jet Propulsion Laboratory in California. It is the next major step in Mars exploration and scheduled for launch from Cape Canaveral Air Force Station in a window opening Aug. 10. The MRO carries six primary instruments: the High Resolution Imaging Science Experiment, Context Camera, Mars Color Imager, Compact Reconnaissance Imaging Spectrometer for Mars, Mars Climate Sounder and Shallow Radar. By 2007, the MRO will begin a series of global mapping, regional survey and targeted observations from a near-polar, low-altitude Mars orbit. It will observe the atmosphere and surface of Mars while probing its shallow subsurface as part of a follow the water strategy.

  5. Inter-comparison of Methods for Extracting Subsurface Layers from SHARAD Radargrams over Martian polar regions

    NASA Astrophysics Data System (ADS)

    Xiong, S.; Muller, J.-P.; Carretero, R. C.

    2017-09-01

    Subsurface layers are preserved in the polar regions on Mars, representing a record of past climate changes on Mars. Orbital radar instruments, such as the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) onboard ESA Mars Express (MEX) and the SHAllow RADar (SHARAD) onboard the Mars Reconnaissance Orbiter (MRO), transmit radar signals to Mars and receive a set of return signals from these subsurface regions. Layering is a prominent subsurface feature, which has been revealed by both MARSIS and SHARAD radargrams over both polar regions on Mars. Automatic extraction of these subsurface layering is becoming increasingly important as there is now over ten years' of data archived. In this study, we investigate two different methods for extracting these subsurface layers from SHARAD data and compare the results against delineated layers derived manually to validate which methods is better for extracting these layers automatically.

  6. Sojourner Sits Near Rock Garden

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Mars Pathfinder Rover Sojourner is images by the Imager for Mars Pathfinder as it nears the rock 'Wedge.' Part of the Rock Garden is visible in the upper right of the image.

    Pathfinder, a low-cost Discovery mission, is the first of a new fleet of spacecraft that are planned to explore Mars over the next ten years. Mars Global Surveyor, already en route, arrives at Mars on September 11 to begin a two year orbital reconnaissance of the planet's composition, topography, and climate. Additional orbiters and landers will follow every 26 months.

    The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  7. An ESA Robotic Package to Search for Life on Mars

    NASA Technical Reports Server (NTRS)

    Westall, F.; Brack, A.; Clancy, P.; Hofmann, B.; Horneck, G.; Kurat, G.; Maxwell, J.; Ori, G. G.; Pillinger, C.; Raulin, F.

    1999-01-01

    Similarities in the early histories of Mars and Earth suggest that life may have arisen on Mars as it did on Earth. The early life forms on Mars were probably simple organisms, similar to terrestrial prokaryotes. In fact, given the early deterioration of the Martian climate, it is unlikely that life on Mars could ever have reached more sophisticated evolution. Based on the present knowledge of Mars, the possibility of extant life at the surface is small. However, given the adaptability of terrestrial prokaryotes under adverse conditions, it is not excluded. Any extant life is hypothesized to reside in the permafrost in a dormant state until "reanimated" by impact-caused hydrothermal activity. Using this rationale, a group of European scientists worked together to conceive a hypothetical strategy to search for life on Mars. A possible configuration for a lander/rover is outlined.

  8. The Science from Spirit and Opportunity

    NASA Technical Reports Server (NTRS)

    Haldemann, Albert

    2006-01-01

    This slide presentation shows views from the Mars rovers, Spirit and Opportunity. Included are views of the takeoff, and descent on to Mars. The science objective of these missions are to determine the water, climate, and geologic history of two sites on Mars where evidence has been preserved for past and persistent liquid water activity that may have supported biotic or pre-biotic processes. There are also shots of the Athena Science Payload with views of the instrumentation. Also presented are graphs showing Mossbauer Spectra of varions martian rocks.

  9. Remote sensing of the atmosphere of Mars using infrared pressure modulation and filter radiometry

    NASA Technical Reports Server (NTRS)

    Mccleese, D. J.; Schofield, J. T.; Zurek, R. W.; Martonchik, J. V.; Haskins, R. D.

    1986-01-01

    The study of the atmosphere and climate of Mars will soon be advanced considerably by the Mars Observer mission. This paper describes the atmospheric sounder for this mission and how it will measure key Martian atmospheric parameters using IR gas correlation and filter radiometry. The instrument now under development will provide high-resolution vertical profiles of atmospheric temperature, pressure, water vapor, dust, and clouds using limb sounding techniques as well as nadir observations of surface thermal properties and polar radiative balance.

  10. Remote science support during MARS2013: testing a map-based system of data processing and utilization for future long-duration planetary missions.

    PubMed

    Losiak, Anna; Gołębiowska, Izabela; Orgel, Csilla; Moser, Linda; MacArthur, Jane; Boyd, Andrea; Hettrich, Sebastian; Jones, Natalie; Groemer, Gernot

    2014-05-01

    MARS2013 was an integrated Mars analog field simulation in eastern Morocco performed by the Austrian Space Forum between February 1 and 28, 2013. The purpose of this paper is to discuss the system of data processing and utilization adopted by the Remote Science Support (RSS) team during this mission. The RSS team procedures were designed to optimize operational efficiency of the Flightplan, field crew, and RSS teams during a long-term analog mission with an introduced 10 min time delay in communication between "Mars" and Earth. The RSS workflow was centered on a single-file, easy-to-use, spatially referenced database that included all the basic information about the conditions at the site of study, as well as all previous and planned activities. This database was prepared in Google Earth software. The lessons learned from MARS2013 RSS team operations are as follows: (1) using a spatially referenced database is an efficient way of data processing and data utilization in a long-term analog mission with a large amount of data to be handled, (2) mission planning based on iterations can be efficiently supported by preparing suitability maps, (3) the process of designing cartographical products should start early in the planning stages of a mission and involve representatives of all teams, (4) all team members should be trained in usage of cartographical products, (5) technical problems (e.g., usage of a geological map while wearing a space suit) should be taken into account when planning a work flow for geological exploration, (6) a system that helps the astronauts to efficiently orient themselves in the field should be designed as part of future analog studies.

  11. Mars Global Digital Dune Database; MC-1

    USGS Publications Warehouse

    Hayward, R.K.; Fenton, L.K.; Tanaka, K.L.; Titus, T.N.; Colaprete, A.; Christensen, P.R.

    2010-01-01

    The Mars Global Digital Dune Database presents data and describes the methodology used in creating the global database of moderate- to large-size dune fields on Mars. The database is being released in a series of U.S. Geological Survey (USGS) Open-File Reports. The first release (Hayward and others, 2007) included dune fields from 65 degrees N to 65 degrees S (http://pubs.usgs.gov/of/2007/1158/). The current release encompasses ~ 845,000 km2 of mapped dune fields from 65 degrees N to 90 degrees N latitude. Dune fields between 65 degrees S and 90 degrees S will be released in a future USGS Open-File Report. Although we have attempted to include all dune fields, some have likely been excluded for two reasons: (1) incomplete THEMIS IR (daytime) coverage may have caused us to exclude some moderate- to large-size dune fields or (2) resolution of THEMIS IR coverage (100m/pixel) certainly caused us to exclude smaller dune fields. The smallest dune fields in the database are ~ 1 km2 in area. While the moderate to large dune fields are likely to constitute the largest compilation of sediment on the planet, smaller stores of sediment of dunes are likely to be found elsewhere via higher resolution data. Thus, it should be noted that our database excludes all small dune fields and some moderate to large dune fields as well. Therefore, the absence of mapped dune fields does not mean that such dune fields do not exist and is not intended to imply a lack of saltating sand in other areas. Where availability and quality of THEMIS visible (VIS), Mars Orbiter Camera narrow angle (MOC NA), or Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) images allowed, we classified dunes and included some dune slipface measurements, which were derived from gross dune morphology and represent the prevailing wind direction at the last time of significant dune modification. It was beyond the scope of this report to look at the detail needed to discern subtle dune modification. It was also beyond the scope of this report to measure all slipfaces. We attempted to include enough slipface measurements to represent the general circulation (as implied by gross dune morphology) and to give a sense of the complex nature of aeolian activity on Mars. The absence of slipface measurements in a given direction should not be taken as evidence that winds in that direction did not occur. When a dune field was located within a crater, the azimuth from crater centroid to dune field centroid was calculated, as another possible indicator of wind direction. Output from a general circulation model (GCM) is also included. In addition to polygons locating dune fields, the database includes THEMIS visible (VIS) and Mars Orbiter Camera Narrow Angle (MOC NA) images that were used to build the database. The database is presented in a variety of formats. It is presented as an ArcReader project which can be opened using the free ArcReader software. The latest version of ArcReader can be downloaded at http://www.esri.com/software/arcgis/arcreader/download.html. The database is also presented in an ArcMap project. The ArcMap project allows fuller use of the data, but requires ESRI ArcMap(Registered) software. A fuller description of the projects can be found in the NP_Dunes_ReadMe file (NP_Dunes_ReadMe folder_ and the NP_Dunes_ReadMe_GIS file (NP_Documentation folder). For users who prefer to create their own projects, the data are available in ESRI shapefile and geodatabase formats, as well as the open Geography Markup Language (GML) format. A printable map of the dunes and craters in the database is available as a Portable Document Format (PDF) document. The map is also included as a JPEG file. (NP_Documentation folder) Documentation files are available in PDF and ASCII (.txt) files. Tables are available in both Excel and ASCII (.txt)

  12. Simulating the Current Water Cycle with the NASA Ames Mars Global Climate Model

    NASA Astrophysics Data System (ADS)

    Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Brecht, A. S.; Urata, R. A.; Montmessin, F.

    2017-12-01

    The water cycle is a critical component of the current Mars climate system, and it is now widely recognized that water ice clouds significantly affect the nature of the simulated water cycle. Two processes are key to implementing clouds in a Mars global climate model (GCM): the microphysical processes of formation and dissipation, and their radiative effects on atmospheric heating/cooling rates. Together, these processes alter the thermal structure, change the atmospheric dynamics, and regulate inter-hemispheric transport. We have made considerable progress using the NASA Ames Mars GCM to simulate the current-day water cycle with radiatively active clouds. Cloud fields from our baseline simulation are in generally good agreement with observations. The predicted seasonal extent and peak IR optical depths are consistent MGS/TES observations. Additionally, the thermal response to the clouds in the aphelion cloud belt (ACB) is generally consistent with observations and other climate model predictions. Notably, there is a distinct gap in the predicted clouds over the North Residual Cap (NRC) during local summer, but the clouds reappear in this simulation over the NRC earlier than the observations indicate. Polar clouds are predicted near the seasonal CO2 ice caps, but the column thicknesses of these clouds are generally too thick compared to observations. Our baseline simulation is dry compared to MGS/TES-observed water vapor abundances, particularly in the tropics and subtropics. These areas of disagreement appear to be a consistent with other current water cycle GCMs. Future avenues of investigation will target improving our understanding of what controls the vertical extent of clouds and the apparent seasonal evolution of cloud particle sizes within the ACB.

  13. In Situ Atmospheric Pressure Measurements in the Martian Southern Polar Region: Mars Volatiles and Climate Surveyor Meteorology Package on the Mars Polar Lander

    NASA Technical Reports Server (NTRS)

    Harri, A.-M.; Polkko, J.; Siili, T.; Crisp, D.

    1998-01-01

    Pressure observations are crucial for the success of the Mars Volatiles and Climate Surveyor (MVACS) Meteorology (MET) package onboard the Mars Polar Lander (MPL), due for launch early next year. The spacecraft is expected to land in December 1999 (L(sub s) = 256 degrees) at a high southern latitude (74 degrees - 78 degrees S). The nominal period of operation is 90 sols but may last up to 210 sols. The MVACS/MET experiment will provide the first in situ observations of atmospheric pressure, temperature, wind, and humidity in the southern hemisphere of Mars and in the polar regions. The martian atmosphere goes through a large-scale atmospheric pressure cycle due to the annual condensation/sublimation of the atmospheric CO2. Pressure also exhibits short period variations associated with dust storms, tides, and other atmospheric events. A series of pressure measurements can hence provide us with information on the large-scale state and dynamics of the atmosphere, including the CO2 and dust cycles as well as local weather phenomena. The measurements can also shed light on the shorter time scale phenomena (e.g., passage of dust devils) and hence be important in contributing to our understanding of mixing and transport of heat, dust, and water vapor.

  14. KSC-98pc1614

    NASA Image and Video Library

    1998-10-31

    KENNEDY SPACE CENTER, FLA. -- The gantry on Pad 17A at Cape Canaveral Air Station appears to straddle the Delta II rocket below it that is being moved into position for lifting. The rocket is scheduled for launch on Dec. 10, 1998, carrying the Mars Climate Orbiter. The orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface

  15. KSC-98pc1719

    NASA Image and Video Library

    1998-11-16

    KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), workers prepare the Mars Climate Orbiter for a spin test. Targeted for launch aboard a Delta II rocket on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. At the extreme right can be seen the lander in another work area. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface

  16. KSC-98pc1619

    NASA Image and Video Library

    1998-10-30

    KENNEDY SPACE CENTER, FLA. -- On Pad 17A at Cape Canaveral Air Station, a Delta II rocket appears to float just above the pad as it is lifted up the gantry. Scheduled for launch on Dec. 10, 1998, the rocket is carrying the Mars Climate Orbiter. The orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface

  17. KSC-98pc1615

    NASA Image and Video Library

    1998-10-31

    KENNEDY SPACE CENTER, FLA. -- On Pad 17A at Cape Canaveral Air Station, cables from the top of the gantry are attached to the Delta II rocket to lift it into position for launch. Scheduled to launch Dec. 10, 1998, the rocket will be carrying the Mars Climate Orbiter. The orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface

  18. Seasonal Water Transport in the Atmosphere of Mars: Applications of a Mars General Circulation Model Using Mars Global Surveyor Data

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1999-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. We present below a summary of progress made during the duration of this JRI. The focus of this JRI has been to investigate seasonal water vapor transport in the atmosphere of Mars and its effects on the planet's present climate. To this end, the primary task has been to adapt a new dynamical processor for the adiabatic tendencies of the atmospheric circulation into the NASA Ames Mars general circulation model (MGCM). Using identical boundary and initial conditions, several comparative tests between the new and old MGCMs have been performed and the nature of the simulated circulations have been diagnosed. With confidence that the updated version of the Ames MGCM produces quite similar mean and eddy circulation statistics, the new climate model is well poised as a tool to pursue fundamental questions related to the spatial and seasonal variations of atmospheric water vapor on Mars, and to explore exchanges of water with non-atmospheric reservoirs and transport within its atmosphere. In particular, the role of surface sources and sinks can be explored, the range of water-vapor saturation altitudes can be investigated, and plausible precipitation mechanisms can be studied, for a range of atmospheric dust loadings. Such future investigations can contribute to a comprehensive study of surface inventories, exchange mechanisms, and the relative importance of atmospheric transport Mars' water cycle. A listing of presentations made and manuscripts submitted during the course of this project is provided.

  19. Seasonal Water Transport in the Atmosphere of Mars: Applications of a Mars General Circulation Model Using Mars Global Surveyor Data

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1999-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. We present below a summary of progress made during the duration of this JRI. The focus of this JRI has been to investigate seasonal water vapor transport in the atmosphere of Mars and its effects on the planet's present climate. To this end, the primary task has been to adapt a new dynamical processor for the adiabatic tendencies of the atmospheric circulation into the NASA Ames Mars general circulation model (MGCM). Using identical boundary and initial conditions, several comparative tests between the new and old MGCMs have been performed and the nature of the simulated circulations have been diagnosed. With confidence that the updated version of the Ames MGCM produces quite similar mean and eddy circulation statistics, the new climate model is well poised as a tool to pursue fundamental questions related to the spatial and seasonal variations of atmospheric water vapor on Mars, and to explore exchanges of water with non-atmospheric reservoirs and transport within its atmosphere. In particular, the role of surface sources and sinks can be explored, the range of water-vapor saturation altitudes can be investigated, and plausible precipitation mechanisms can be studied, for a range of atmospheric dust loadings, such future investigations can contribute to a comprehensive study of surface inventories, exchange mechanisms, and the relative importance of atmospheric transport Mars' water cycle. A listing of presentations made and manuscripts submitted during the course of this project is provided.

  20. Thermophysical Properties of Mars' North Polar Layered Deposits and Related Materials from Mars Odyssey THEMIS

    NASA Technical Reports Server (NTRS)

    Vasavada, A. R.; Richardson, M. I.; Byrne, S.; Ivanov, A. B.; Christensen, P. R.

    2003-01-01

    The presence of a thick sequence of horizontal layers of ice-rich material at Mars north pole, dissected by troughs and eroding at its margins, is undoubtedly telling us something about the evolution of Mars climate [1,2] we just don t know what yet. The North Polar Layered Deposits (NPLD) most likely formed as astronomically driven climate variations led to the deposition of conformable, areally extensive layers of ice and dust over the polar region. More recently, the balance seems to have fundamentally shifted to net erosion, as evidenced by the many troughs within the NPLD and the steep, arcuate scarps present near its margins, both of which expose layering. We defined a number of Regions of Interest ROI) for THEMIS to target as part of the Mars Odyssey Participating Scientist program. We use these THEMIS data in order to understand the morphology and color/thermal properties of the NPLD and related materials over relevant (i.e., m to km) spatial scales. We have assembled color mosaics of our ROIs in order to map the distribution of ices, the different layered units, dark material, and underlying basement. The color information from THEMIS is crucial for distinguishing these different units which are less distinct on Mars Orbiter Camera images. We wish to understand the nature of the marginal scarps and their relationship to the dark material. Our next, more ambitious goal is to derive the thermophysical properties of the different geologic materials using THEMIS and Mars Global Surveyor Thermal Emission Spectrometer TES) data.

  1. Secular Climate Change on Mars: An Update Using MSL Pressure Data

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.; Gomez-Elvira, J.; Juarez, M. de la Torre; Harri, A.-M.; Hollingsworth, J. L.; Kahanpaa, H.; Kahre, M. A.; Lemmon, M.; Martin-Torres, F. J.; Mischna, M.; hide

    2013-01-01

    The South Polar Residual Cap (SPRC) on Mars is an icy reservoir of CO2. If all the CO2 trapped in the SPRC were released to the atmosphere the mean annual global surface pressure would rise by approx. 20 Pa. Repeated MOC and HiRISE imaging of scarp retreat rates within the SPRC have led to the suggestion that the SPRC is losing mass. Estimates for the loss rate vary between 0.5 Pa per Mars Deacde to 13 Pa per Mars Decade. Assuming 80% of this loss goes directly to the atmosphere, and that the loss is monotonic, the global annual mean surface pressure should have increased between approx. 1-20 Pa since the Viking mission (19 Mars years ago).

  2. KSC-07pd2072

    NASA Image and Video Library

    2007-07-23

    KENNEDY SPACE CENTER, FLA. — The Phoenix Mars Lander, on its transporter, is escorted out of the Payload Hazardous Servicing Facility for its transfer to Launch Pad 17-A at Cape Canaveral Air Force Station. Launch of NASA's Phoenix Mars Lander is scheduled for Aug. 3. There are two instantaneous launch times, 5:35:18 and 6:11:24 a.m. EDT. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/George Shelton

  3. Parameterization of Rocket Dust Storms on Mars in the LMD Martian GCM: Modeling Details and Validation

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Forget, François; Bertrand, Tanguy; Spiga, Aymeric; Millour, Ehouarn; Navarro, Thomas

    2018-04-01

    The origin of the detached dust layers observed by the Mars Climate Sounder aboard the Mars Reconnaissance Orbiter is still debated. Spiga et al. (2013, https://doi.org/10.1002/jgre.20046) revealed that deep mesoscale convective "rocket dust storms" are likely to play an important role in forming these dust layers. To investigate how the detached dust layers are generated by this mesoscale phenomenon and subsequently evolve at larger scales, a parameterization of rocket dust storms to represent the mesoscale dust convection is designed and included into the Laboratoire de Météorologie Dynamique (LMD) Martian Global Climate Model (GCM). The new parameterization allows dust particles in the GCM to be transported to higher altitudes than in traditional GCMs. Combined with the horizontal transport by large-scale winds, the dust particles spread out and form detached dust layers. During the Martian dusty seasons, the LMD GCM with the new parameterization is able to form detached dust layers. The formation, evolution, and decay of the simulated dust layers are largely in agreement with the Mars Climate Sounder observations. This suggests that mesoscale rocket dust storms are among the key factors to explain the observed detached dust layers on Mars. However, the detached dust layers remain absent in the GCM during the clear seasons, even with the new parameterization. This implies that other relevant atmospheric processes, operating when no dust storms are occurring, are needed to explain the Martian detached dust layers. More observations of local dust storms could improve the ad hoc aspects of this parameterization, such as the trigger and timing of dust injection.

  4. Metacatalog of Planetary Surface Features for Multicriteria Evaluation of Surface Evolution: the Integrated Planetary Feature Database

    NASA Astrophysics Data System (ADS)

    Hargitai, Henrik

    2016-10-01

    We have created a metacatalog, or catalog or catalogs, of surface features of Mars that also includes the actual data in the catalogs listed. The goal is to make mesoscale surface feature databases available in one place, in a GIS-ready format. The databases can be directly imported to ArcGIS or other GIS platforms, like Google Mars. Some of the catalogs in our database are also ingested into the JMARS platform.All catalogs have been previously published in a peer-reviewed journal, but they may contain updates of the published catalogs. Many of the catalogs are "integrated", i.e. they merge databases or information from various papers on the same topic, including references to each individual features listed.Where available, we have included shapefiles with polygon or linear features, however, most of the catalogs only contain point data of their center points and morphological data.One of the unexpected results of the planetary feature metacatalog is that some features have been described by several papers, using different, i.e., conflicting designations. This shows the need for the development of an identification system suitable for mesoscale (100s m to km sized) features that tracks papers and thus prevents multiple naming of the same feature.The feature database can be used for multicriteria analysis of a terrain, thus enables easy distribution pattern analysis and the correlation of the distribution of different landforms and features on Mars. Such catalog makes a scientific evaluation of potential landing sites easier and more effective during the selection process and also supports automated landing site selections.The catalog is accessible at https://planetarydatabase.wordpress.com/.

  5. Icy Layers and Climate Fluctuations near the Martian North Pole

    NASA Image and Video Library

    2010-03-31

    The Martian north polar layered deposits are an ice sheet much like the Greenland ice sheet on the Earth in this image from NASA Mars Reconnaissance Orbiter. This Martian ice sheet contains many layers that record variations in the Martian climate.

  6. KSC-07pd1649

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, photographers dressed in clean-room suits, are able to get closeup shots of the Phoenix Mars Lander. Phoenix is scheduled to launch Aug. 3 from Launch Pad 17-A at Cape Canaveral Air Force Station. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Kim Shiflett

  7. KSC-07pd1651

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, photographers dressed in clean-room suits are able to get closeup shots of the Phoenix Mars Lander. Phoenix is scheduled to launch Aug. 3 from Launch Pad 17-A at Cape Canaveral Air Force Station. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Kim Shiflett

  8. Difference in the wind speeds required for initiation versus continuation of sand transport on mars: implications for dunes and dust storms.

    PubMed

    Kok, Jasper F

    2010-02-19

    Much of the surface of Mars is covered by dunes, ripples, and other features formed by the blowing of sand by wind, known as saltation. In addition, saltation loads the atmosphere with dust aerosols, which dominate the Martian climate. We show here that saltation can be maintained on Mars by wind speeds an order of magnitude less than required to initiate it. We further show that this hysteresis effect causes saltation to occur for much lower wind speeds than previously thought. These findings have important implications for the formation of dust storms, sand dunes, and ripples on Mars.

  9. KSC-07pd2006

    NASA Image and Video Library

    2007-07-19

    KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, workers remove the covering over the heat shield (foreground) for the Phoenix Mars Lander spacecraft before installation. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Troy Cryder

  10. KSC-07pd2173

    NASA Image and Video Library

    2007-08-04

    KENNEDY SPACE CENTER, FLA. - NASA's Phoenix Mars lander lifts off from Pad 17A aboard a Delta II 7925 rocket at 5:26 a.m. EDT, illuminating the night sky over Cape Canaveral Air Force Station. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Regina Mitchell-Ryall and Jerry Cannon

  11. KSC-07pd2098

    NASA Image and Video Library

    2007-07-23

    KENNEDY SPACE CENTER, FLA. -- Inside the mobile service tower of Launch Pad 17-A at Cape Canaveral Air Force Station in Florida, workers removed the plastic covering from NASA's Phoenix Mars Lander. Phoenix is scheduled to launch on the Delta II launch vehicle no earlier than Aug. 3. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, detected high concentrations of ice just beneath the top layer of soil. NASA/George Shelton

  12. KSC-07pd2182

    NASA Image and Video Library

    2007-08-04

    KENNEDY SPACE CENTER, FLA. - NASA's Phoenix Mars lander illuminates Launch Pad 17A as it lifts off aboard a Delta II 7925 rocket at 5:26 a.m. EDT from Cape Canaveral Air Force Station. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Tony Gray and Robert Murray

  13. KSC-07pd2010

    NASA Image and Video Library

    2007-07-19

    KENNEDY SPACE CENTER, Fla. --In the Payload Hazardous Servicing Facility, the heat shield for the Phoenix Mars Lander spacecraft is moved toward the spacecraft, in the background. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Troy Cryder

  14. KSC-07pd2172

    NASA Image and Video Library

    2007-08-04

    KENNEDY SPACE CENTER, FLA. - NASA's Phoenix Mars lander lifts off from Pad 17A aboard a Delta II 7925 rocket amid billows of smoke at Cape Canaveral Air Force Station at 5:26 a.m. EDT. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Regina Mitchell-Ryall and Jerry Cannon

  15. KSC-07pd1549

    NASA Image and Video Library

    2007-06-18

    KENNEDY SPACE CENTER, FLA. -- The first stage of a Delta II rocket arrives on Launch Pad 17-A at Cape Canaveral Air Force Station. The rocket is the launch vehicle for the Phoenix spacecraft, targeted for launch on Aug. 3 heading for Mars. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Amanda Diller

  16. KSC-07pd1904

    NASA Image and Video Library

    2007-07-17

    KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander spacecraft is lifted from its stand. The Phoenix will be moved to the upper stage booster for mating. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Dimitri Gerondidakis

  17. KSC-07pd2181

    NASA Image and Video Library

    2007-08-04

    KENNEDY SPACE CENTER, FLA. - The Delta II 7925 rocket carrying NASA's Phoenix Mars lander lifts off at 5:26 a.m. EDT amid billows of smoke on Pad 17A at Cape Canaveral Air Force Station. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Tony Gray and Robert Murray

  18. KSC-07pd2180

    NASA Image and Video Library

    2007-08-04

    KENNEDY SPACE CENTER, FLA. - NASA's Phoenix spacecraft makes an auspicious start on its journey to Mars aboard a Delta II 7925 rocket at 5:26 a.m. EDT from Pad 17A at Cape Canaveral Air Force Station. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Tony Gray and Robert Murray

  19. KSC-07pd2174

    NASA Image and Video Library

    2007-08-04

    KENNEDY SPACE CENTER, FLA. - NASA's Phoenix Mars lander lifts off from Pad 17A aboard a Delta II 7925 rocket at 5:26 a.m. EDT, illuminating the pad at Cape Canaveral Air Force Station. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Regina Mitchell-Ryall and Jerry Cannon

  20. KSC-07pd1908

    NASA Image and Video Library

    2007-07-17

    KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, workers guide the Phoenix Mars Lander spacecraft onto the upper stage booster. The spacecraft and booster will be mated for launch. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/Dimitri Gerondidakis

  1. KSC-07pd1903

    NASA Image and Video Library

    2007-07-17

    KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, workers attach an overhead crane to the Phoenix Mars Lander spacecraft. The Phoenix will be lifted and moved to the upper stage booster for mating. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/Dimitri Gerondidakis

  2. KSC-07pd2175

    NASA Image and Video Library

    2007-08-04

    KENNEDY SPACE CENTER, FLA. - NASA's Phoenix spacecraft makes a dramatic start on its mission to Mars aboard a Delta II 7925 rocket at 5:26 a.m. EDT from Pad 17A at Cape Canaveral Air Force Station. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Tony Gray and Robert Murray

  3. KSC-07pd1900

    NASA Image and Video Library

    2007-07-17

    KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, workers prepare the Phoenix Mars Lander spacecraft for rotation. After rotation, the Phoenix will be mated with the upper stage booster. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/Dimitri Gerondidakis

  4. The LatHyS database for planetary plasma environment investigations: Overview and a case study of data/model comparisons

    NASA Astrophysics Data System (ADS)

    Modolo, R.; Hess, S.; Génot, V.; Leclercq, L.; Leblanc, F.; Chaufray, J.-Y.; Weill, P.; Gangloff, M.; Fedorov, A.; Budnik, E.; Bouchemit, M.; Steckiewicz, M.; André, N.; Beigbeder, L.; Popescu, D.; Toniutti, J.-P.; Al-Ubaidi, T.; Khodachenko, M.; Brain, D.; Curry, S.; Jakosky, B.; Holmström, M.

    2018-01-01

    We present the Latmos Hybrid Simulation (LatHyS) database, which is dedicated to the investigations of planetary plasma environment. Simulation results of several planetary objects (Mars, Mercury, Ganymede) are available in an online catalogue. The full description of the simulations and their results is compliant with a data model developped in the framework of the FP7 IMPEx project. The catalogue is interfaced with VO-visualization tools such AMDA, 3DView, TOPCAT, CLweb or the IMPEx portal. Web services ensure the possibilities of accessing and extracting simulated quantities/data. We illustrate the interoperability between the simulation database and VO-tools using a detailed science case that focuses on a three-dimensional representation of the solar wind interaction with the Martian upper atmosphere, combining MAVEN and Mars Express observations and simulation results.

  5. The Hydrological Evolution of Mars as Recorded at Gale Crater

    NASA Astrophysics Data System (ADS)

    Andrews-Hanna, J. C.; Horvath, D. G.

    2017-12-01

    The sedimentary deposits making up the Aeolis Mons sedimentary mound within Gale Crater preserve a record of the evolving hydrology and climate of Mars during the Late Noachian and Hesperian epochs. Aqueous sedimentary deposits including mudstones, deltaic deposits, and sulfate-cemented sediments indicate the past presence of liquid water on the surface. However, these observations alone do not strictly constrain the nature of the hydrology and climate at the time of deposition. We use models of the subsurface and surface hydrology to shed light on the conditions required to reproduce the observed deposits. Changes in the nature and composition of the deposits reflect changes in the balance between the surface and subsurface components of the hydrological cycle, driven by climate changes. Mudstones observed by the MSL rover at the base of the crater reflect lacustrine deposition under semi-arid conditions, with substantial fluid supply from both the surface (overland flow and direct precipitation) and subsurface. A transition at higher stratigraphic levels to sulfate-cemented sandstones required a change to a more arid climate, with the hydrology dominated by long-distance subsurface transport. Near the top of the mound, unaltered deposits indicate deposition under dry conditions, though this transition coincides with the natural limit on the rise of the water table imposed by the surrounding topography and does not require a change in climate. Erosion of the crater-filling sedimentary deposits to their present mound shape required a dramatic drop in the water table under hyper-arid conditions. Evidence for later lake stands in the Hesperian indicates transient returns to semi-arid conditions similar to those that prevailed during the Late Noachian. By coupling surface and orbital observations with hydrological modeling, we are able to make more specific constraints on the evolving climate and aridity of early Mars.

  6. The Distribution of Subsurface Water at Hadriaca and Tyrrhena Paterae and Surrounding Areas on Mars from Impact Crater Morphology

    NASA Astrophysics Data System (ADS)

    Lancaster, M. G.; Guest, J. E.

    1996-03-01

    It is well established that the surface of Mars exhibits abundant evidence for the presence of either liquid or frozen water during the course of Martian history. The origin, location, extent and transport of this water is of critical importance in the understanding of Martian geology and climate. In particular, the fluid appearance of rampart crater ejecta has been cited as evidence for subsurface ice at the time of impact. Ejecta morphology has proven to be a useful tool for studying the distribution of subsurface ice on Mars. It is possible that in some regions the concentration and distribution of subsurface ice has been affected by volcanic processes, either in the melting and/or mobilisation of existing subsurface water, and/or in the injection of juvenile water into the martian crust. The presence of water may also have affected the style of volcanic eruptions on Mars, increasing the volatile content of rising magmas and generating explosive activity. We are currently investigating the abundance and role of water in the evolution of the volcanoes Hadriaca and Tyrrhena Patera and surrounding highlands northeast of the Hellas Basin. The morphology of these volcanoes has been attributed to explosive volcanism, and to the presence of substantial amounts of water in the regolith at the time of their eruption. The location of Hadriaca Patera in a region containing channelled plains, debris flows, and pitted plains, together with the style of erosion of the volcano flanks suggests presence of volatile-rich surface materials or fluvial or periglacial activity. This work is a continuation of research undertaken by Cave in the Elysium Mons Region, where ice was found to be enriched at depth in the Elysium Lavas. We are performing a similar analysis for the volcanics of Hadriaca and Tyrrhena Paterae. A database containing information on the location, size, morphology, ejecta characteristics and degradation state of several hundred impact craters displaying ejecta in the region of Mars between the equator and 40 degrees S, and from 225 degrees to 275 degrees W is therefore being compiled.

  7. The role of impact events play in redistributing and sequestering water on Early Mars

    NASA Astrophysics Data System (ADS)

    Osinski, G.; Tornabene, L. L.

    2017-12-01

    Impact cratering is one of the most fundamental geological process in the Solar System. Several workers have considered the effect that impact events may have had on the climate of Early Mars. The proposed effects range from impact-induced precipitation to the production of runaway stable climates to the impact delivery of climatically active gases. The role of impact events in forming hydrated minerals has been touched upon but remains debated. In this contribution, we focus on the role that impact events may have played in redistributing and sequestering water on Early Mars; a record that may still be preserved in the Noachian crust. It has been previously proposed that the sequestration of significant quantities of water may have occurred within various hydrated minerals, in particular clays, in the martian crust. There is undoubtedly no single origin for clay-bearing rocks on Mars and the purpose of this contribution is not to review all the possible formation mechanisms. What we do propose, however, is that it is theoretically possible for impact events to create all known occurrences of clays on Mars. We show that clays can form within and around impact craters in two main ways: through the solid-state devitrification of hydrous impact melts and/or impact-generated hydrothermal alteration. Neither of these mechanisms requires a warmer or wetter climate scenario on Early Mars. Notwithstanding the original origin of clays, any clays may be widely redistributed over the Martian surface in the ejecta deposits of large impact craters. However, ejecta deposits are much more complex than commonly thought, with evidence in many instances for two different types of ejecta deposits around martian craters. The first is a ballistic ejecta layer that is low-shock, melt-poor and low-temperature; it will likely not induce the formation of new clays through the mechanisms described above, but could redistribute pre-impact clays over 100's and 1000's of km over the martian surface. Overlying ballistic ejecta deposits is a second ejecta type that is more melt-rich and higher temperature and that has been shown (on Earth) to form new primary clays and other hydrated minerals. This potential to form clays in situ many 100's of km away from the source crater in melt-rich ejecta deposits should be considered in any study of the Noachian crust.

  8. Liquid water on Mars - an energy balance climate model for CO2/H2O atmospheres

    NASA Astrophysics Data System (ADS)

    Hoffert, M. I.; Callegari, A. J.; Hsieh, T.; Ziegler, W.

    1981-07-01

    A simple climatic model is developed for a Mars atmosphere containing CO2 and sufficient liquid water to account for the observed hydrologic surface features by the existence of a CO2/H2O greenhouse effect. A latitude-resolved climate model originally devised for terrestrial climate studies is applied to Martian conditions, with the difference between absorbed solar flux and emitted long-wave flux to space per unit area attributed to the divergence of the meridional heat flux and the poleward heat flux assumed to equal the atmospheric eddy heat flux. The global mean energy balance is calculated as a function of atmospheric pressure to assess the CO2/H2O greenhouse liquid water hypothesis, and some latitude-resolved cases are examined in detail in order to clarify the role of atmospheric transport and temperature-albedo feedback. It is shown that the combined CO2/H2O greenhouse at plausible early surface pressures may account for climates hot enough to support a hydrological cycle and running water at present-day insolation and visible albedo levels.

  9. Liquid water on Mars - An energy balance climate model for CO2/H2O atmospheres

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.; Callegari, A. J.; Hsieh, C. T.; Ziegler, W.

    1981-01-01

    A simple climatic model is developed for a Mars atmosphere containing CO2 and sufficient liquid water to account for the observed hydrologic surface features by the existence of a CO2/H2O greenhouse effect. A latitude-resolved climate model originally devised for terrestrial climate studies is applied to Martian conditions, with the difference between absorbed solar flux and emitted long-wave flux to space per unit area attributed to the divergence of the meridional heat flux and the poleward heat flux assumed to equal the atmospheric eddy heat flux. The global mean energy balance is calculated as a function of atmospheric pressure to assess the CO2/H2O greenhouse liquid water hypothesis, and some latitude-resolved cases are examined in detail in order to clarify the role of atmospheric transport and temperature-albedo feedback. It is shown that the combined CO2/H2O greenhouse at plausible early surface pressures may account for climates hot enough to support a hydrological cycle and running water at present-day insolation and visible albedo levels.

  10. Mars Exploration Rover Field Observations of Impact Craters at Gusev Crater and Meridiani Planum and Implications for Climate Change

    NASA Technical Reports Server (NTRS)

    Golombek, M.; Grant, J. A.; Crumpler, L. S.

    2005-01-01

    The Mars Exploration Rovers have provided a field geologist's perspective of impact craters in various states of degradation along their traverses at Gusev crater and Meridiani Planum. This abstract will describe the craters observed and changes to the craters that constrain the erosion rates and the climate [l]. Changes to craters on the plains of Gusev argue for a dry and desiccating environment since the Late Hesperian in contrast to the wet and likely warm environment in the Late Noachian at Meridiani in which the sulfate evaporites were deposited in salt-water playas or sabkhas.

  11. Remote Sensing Studies Of The Current Martian Climate

    NASA Astrophysics Data System (ADS)

    Taylor, F. W.; McCleese, D. J.; Schofield, J. T.; Calcutt, S. B.; Moroz, V. I.

    A systematic and detailed experimental study of the Martian atmosphere remains to be carried out, despite many decades of intense interest in the nature of the Martian climate system, its interactions, variability and long-term stability. Such a study is planned by the 2005 Mars Reconnaissance Orbiter, using limb-scanning infrared radiometric techniques similar to those used to study trace species in the terrestrial stratosphere. For Mars, the objectives are temperature, humidity, dust and condensate abundances with high vertical resolution and global coverage in the 0 to 80 km height range. The paper will discuss the experiment and its methodology and expectations for the results.

  12. Could cirrus clouds have warmed early Mars?

    NASA Astrophysics Data System (ADS)

    Ramirez, Ramses M.; Kasting, James F.

    2017-01-01

    The presence of the ancient valley networks on Mars indicates that the climate at 3.8 Ga was warm enough to allow substantial liquid water to flow on the martian surface for extended periods of time. However, the mechanism for producing this warming continues to be debated. One hypothesis is that Mars could have been kept warm by global cirrus cloud decks in a CO2sbnd H2O atmosphere containing at least 0.25 bar of CO2 (Urata and Toon, 2013). Initial warming from some other process, e.g., impacts, would be required to make this model work. Those results were generated using the CAM 3-D global climate model. Here, we use a single-column radioactive-convective climate model to further investigate the cirrus cloud warming hypothesis. Our calculations indicate that cirrus cloud decks could have produced global mean surface temperatures above freezing, but only if cirrus cloud cover approaches ∼75 - 100% and if other cloud properties (e.g., height, optical depth, particle size) are chosen favorably. However, at more realistic cirrus cloud fractions, or if cloud parameters are not optimal, cirrus clouds do not provide the necessary warming, suggesting that other greenhouse mechanisms are needed.

  13. In Situ Sedimentological Evidence for Climate Change in Early Mars Provided by the Curiosity Rover in Gale Crater

    NASA Astrophysics Data System (ADS)

    Heydari, Ezat; Fairen, Alberto G.

    2016-10-01

    The Striated formation is one of the rock units that was deposited in Gale crater, Mars, during the Late Noachian to Hesperian time (4.2 to 3.6 billion years ago). It crops out for 3 km along the Curiosity's traverse. The Striated formation strikes N65○E and has a depositional dip of 10○ - 20○ to SE. It consists of 500 m to 1000 m of highly rhythmic layers each 1 m to 4 m in thickness. Study of MAHLI and MastCam images provided by the Curiosity Rover indicates that layers form fining-upward cycles consisting of thick-bedded to massive conglomerate at the base that grades upward to thinly bedded conglomerate, then to pebbly sandstone, and topped by laminated, fine grained sandstone. Layers show slump folds, soft sediment deformation, and cross-beddings.The highly rhythmic occurrence and the fining-upward grain size characteristic indicate that each layer within the Striated formation is a coarse-grained turbidite: a type of rock that forms when sediments move down-hill by gravity-driven turbidity flows and deposit in deep waters. We propose that turbidite layers of the Striated formation are related to delivery of sediments to Gale crater by megafloods through its northern rim. Upon entering Gale crater, sediments moved down-hill and deposited as turbidite layers when the crater may have been filled to the rim with water. About 1000 to 3000 turbidite layers are present suggesting the occurrences of as many megafloods during hothouse climatic intervals when Mars was warmer than the Present and had plenty of liquid water. Floods were generated by one or a combination of the following processes: (1) torrential rain along the margins of Mars's Northern Ocean, 500 km to 1000 km to the north, (2) rapid melting of ice in highland areas, and (3) tsunamis formed by impacts on the Northern Ocean. Cold and/or dry climate of icehouse intervals may have followed each warming episode. Mars's climate forcing mechanism and periodicities of climate change are not clear at this point. However, the highly regular and rhythmic nature of turbidite layers point to an orbital triggering mechanism, possibly driven by changes in obliquity.

  14. Mars

    NASA Astrophysics Data System (ADS)

    McSween, H. Y., Jr.

    2003-12-01

    More than any other planet, Mars has captured our attention and fueled our speculations. Much of this interest relates to the possibility of martian life, as championed by Percival Lowell in the last century and subsequently in scientific papers and science fiction. Lowell's argument for life on Mars was based partly on geochemistry, in that his assessmentof the planet's hospitable climate was dependent on the identification of H2O ice rather than frozen CO2 in the polar caps. Although this reasoning was refuted by Alfred Wallace in 1907, widespread belief in extant martian life persisted within the scientific community until the mid-twentieth century (Zahnle, 2001). In 1965 the Mariner 4 spacecraft flyby suddenly chilled this climate, by demonstrating that the martian atmosphere was thin and the surface was a cratered moonscape devoid of canals. This view of Mars was overturned again in 1971, when the Mariner 9 spacecraft discovered towering volcanoes and dry riverbeds, implying a complex geologic history. The first geochemical measurements on Mars, made by two Viking landers in 1976, revealed soils enriched in salts suggesting exposure to water, but lacking organic compounds which virtually ended discussion of martian life.The suggestion that a small group of achondritic meteorites were martian samples (McSween and Stolper, 1979; Walker et al., 1979; Wasson and Wetherill, 1979) found widespread acceptance when trapped gases in them were demonstrated to be compositionally similar to the Mars atmosphere ( Bogard and Johnson, 1983; Becker and Pepin, 1984). The ability to perform laboratory measurements of elements and isotopes present in trace quantities in meteorites has invigorated the subject of martian geochemistry. Indeed, because of these samples, we now know more about the geochemistry of Mars than of any other planet beyond the Earth-Moon system. Some studies of martian meteorites have prompted a renewed search for extraterrestrial life using chemical biomarkers.Recent Mars spacecraft, including the Mars Pathfinder lander/rover in 1997 and Mars Global Surveyor and Mars Odyssey now orbiting the planet, have provided significant new geochemical findings. These missions have also generated geophysical data with which to constrain geochemical models of the martian interior.

  15. Fine-grained quartz OSL dating chronology of loess sequence from southern Tajikistan: Implications for climate change in arid central Asia during MIS 2

    NASA Astrophysics Data System (ADS)

    Wang, Leibin; Jia, Jia; Li, Guoqiang; Li, Zaijun; Wang, Xin; Chen, Fahu

    2018-04-01

    The desert and semi-desert region of arid central Asia is one of the most important areas of middle-latitude dust emission and deposition in the Northern Hemisphere. Marine isotope stage 2 (MIS 2) was the latest and one of the most representative intervals of dust emission from the region, and it is especially important for research into processes of dust transportation and deposition. Here, we report the results of an optically stimulated luminescence study of the Hoalin section in southern Tajikistan, which was deposited during MIS 2. The fine-grained quartz single aliquot regeneration (SAR) approach was used and its reliability was verified by internal checks. In addition, grain-size analyses, calculated dust accumulation rates (DARs) and mass accumulation rates (MARs) were used to reconstruct the pattern of climate change during MIS 2. The mean DAR for southern Tajikistan during MIS 2 was 0.43 m/ka, and the corresponding average MAR was 673 g/cm2/a for a non-river-terrace site, which is higher than the average MARs estimated for the central and southern Chinese Loess Plateau (CLP). In contrast to previous suggestions, the high dust DARs and MARs during the LGM indicate a 'cold-dry' climatic pattern, rather than a 'cold-humid' pattern. Our results also confirm that the patterns of high dust emission and deposition during the LGM in the mid-latitude arid zone of Asia were synchronous.

  16. Newer classification and regression tree techniques: Bagging and Random Forests for ecological prediction

    Treesearch

    Anantha M. Prasad; Louis R. Iverson; Andy Liaw; Andy Liaw

    2006-01-01

    We evaluated four statistical models - Regression Tree Analysis (RTA), Bagging Trees (BT), Random Forests (RF), and Multivariate Adaptive Regression Splines (MARS) - for predictive vegetation mapping under current and future climate scenarios according to the Canadian Climate Centre global circulation model.

  17. Understanding mechanisms behind intense precipitation events in East Antarctica: merging modeling and remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Gorodetskaya, Irina V.; Maahn, Maximilian; Gallée, Hubert; Kneifel, Stefan; Souverijns, Niels; Gossart, Alexandra; Crewell, Susanne; Van Lipzig, Nicole P. M.

    2016-04-01

    Large interannual variability has been found in surface mass balance (SMB) over the East Antarctic ice sheet coastal and escarpment zones, with the total yearly SMB strongly depending on occasional intense precipitation events. Thus for correct prediction of the ice sheet climate and SMB, climate models should be capable to represent such events. Not less importantly, models should also correctly represent the relevant mechanisms behind. The coupled land-atmosphere non-hydrostatic regional climate model MAR (Modèle Atmosphérique Régional) is used to simulate climate and SMB of Dronning Maud Land (DML), East Antarctica. DML has shown a significant increase in SMB during the last years attributed to only few occasional very intense snowfall events. MAR is run at 5km horizontal resolution using initial and boundary conditions from the European Centre for Medium-range Weather Forecasts (ECMWF) Interim re-analysis atmospheric and oceanic fields. The MAR microphysical scheme predicts the evolution of the mixing ratios of five water species: specific humidity, cloud droplets and ice crystals, raindrops and snow particles. Additional prognostic equation describes the number concentration of cloud ice crystals. The mass and terminal velocity of snow particles are defined as for the graupel-like snowflakes of hexagonal type. These definitions are important to determine single scattering properties for snow hydrometeors used as input (along with cloud particle properties and atmospheric parameters) into the Passive and Active Microwave radiative TRAnsfer model (PAMTRA). PAMTRA allows direct comparison of the radar-measured and climate model-based vertical profiles of the radar reflectivity and Doppler velocity for particular precipitation events. The comparison is based on the measurements from the vertically profiling 24-GHz MRR radar operating as part of the cloud-precipitation-meteorological observatory at Princess Elisabeth (PE) base in DML escarpment zone, from 2010 through now. Preliminary results show that MAR simulates well the timing of major synoptic-scale precipitation events, while a bias exists towards higher radar reflectivities using MAR snowfall properties compared to PE MRR measurements. This bias can be related to the differences both in the amount and type of snowflakes reaching the surface. The spatial extent of precipitation also matters as PE provides only vertical profiling. PAMTRA is used to evaluate specific intense snowfall events at PE-centered grid, while MAR-simulated atmospheric fields are further analyzed for understanding the large- and meso-scale atmospheric circulation and moisture transport patterns, together with cloud properties responsible for these events. PE measurements showed that the most intense precipitation events at PE (up to 30 mm water equivalent per day) have been associated with atmospheric rivers, where enhanced tropospheric integrated water vapor amounts are concentrated in narrow long bands stretching from subtropical latitudes to the East Antarctic coast. We analyze representation of such events in MAR, including their extent, intensity, as well as time and location of where such moisture bands are reaching the Antarctic coast.

  18. Observations of the Proton Aurora on Mars With SPICAM on Board Mars Express

    NASA Astrophysics Data System (ADS)

    Ritter, B.; Gérard, J.-C.; Hubert, B.; Rodriguez, L.; Montmessin, F.

    2018-01-01

    We report observations of the proton aurora at Mars, obtained with the Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars (SPICAM) ultraviolet spectrograph on board Mars Express between 2004 and 2011. This is a third type of UV aurora that is discovered on Mars, in addition to the discrete and diffuse nightside aurora. It is observed only on the dayside as it is produced by the direct interaction of solar wind protons with the upper atmosphere. The auroral signature is an enhancement of the Lyman-α emission in the order of a few kilorayleighs. The proton aurora features peak emissions around 120 to 150 km. From the full SPICAM database, limb observations have been investigated and six clear cases have been found. We identify either coronal mass ejections and/or corotating interaction regions as triggers for each of these events.

  19. Marie Curie during ORT4

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Marie Curie rover drives down the rear ramp during Operational Readiness Test (ORT) 4.

    Pathfinder, a low-cost Discovery mission, is the first of a new fleet of spacecraft that are planned to explore Mars over thenext ten years. Mars Global Surveyor, already en route, arrives at Mars on September 11 to begin a two year orbital reconnaissance of the planet's composition, topography, and climate. Additional orbiters and landers will follow every 26 months.

    The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  20. Water Ice Clouds over the Northern Plains

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 14 May 2002) The Science This image, centered near 48.5 N and 240.5 W, displays splotchy water ice clouds that obscure the northern lowland plains in the region where the Viking 2 spacecraft landed. This image is far enough north to catch the edge of the north polar hood that develops during the northern winter. This is a cap of water and carbon dioxide ice clouds that form over the Martian north pole. As Mars progresses into northern spring, the persistent north polar hood ice clouds will dissipate and the surface viewing conditions will improve greatly. As the season develops, an equatorial belt of water ice clouds will form. This belt of water ice clouds is as characteristic of the Martian climate as the southern hemisphere summer dust storm season. Seasons on Mars have a dramatic effect on the state of the dynamic Martian atmosphere. The Story Muted in an almost air-brushed manner, this image doesn't have the crispness that most THEMIS images have. That's because clouds were rising over the surface of the red planet on the day this picture was taken. Finding clouds on Mars might remind us of conditions here on Earth, but these Martian clouds are made of frozen water and frozen carbon dioxide -- in other words, clouds of ice and 'dry ice.' Strange as that may sound, the clouds seen here form on a pretty regular basis at the north Martian pole during its winter season. As springtime comes to the northern hemisphere of Mars (and fall comes to the southern), these clouds will slowly disappear, and a nice belt of water ice clouds will form around the equator. So, if you were a THEMIS camera aimer, that might tell you when your best viewing conditions for different areas on Mars would be. As interesting as clear pictures of Martian landforms are, however, you wouldn't want to bypass the weather altogether. Pictures showing seasonal shifts are great for scientists to study, because they reveal a lot about the patterns of the Martian climate and the circulation of the atmosphere. There are a lot of interesting global climate relationships to study. For example, when it's winter in the north of Mars and clouds like the ones in this image form, dust storms rage in the south of Mars, where it's summer. So why does Mars have these wild seasons? Like the Earth, Mars is tilted on its axis. As it travels in its orbit around the sun, the angle between the Earth's axis and the Earth-Sun line changes. That's true for Mars as well. As each point on Mars spins on the rotating red planet each day, the part of the cycle spent in sunlight (day) and shadow (night) just aren't equal because of these angles. When day is longer than night (summer) in the north, night is longer than day (winter) in the south. Half a year later, when Mars has traveled in its orbit to the other side of the sun, the situation is exactly reversed. All this sounds familiar to Earthlings, but there's yet one more difference. Mars is farther away from the sun than the Earth. That means it takes longer for Mars to make a trip around the sun in its orbit than the Earth does -- about twice as long, in fact. That means that the seasons on Mars also last twice as long!

  1. Seasonal erosion and restoration of Mars' northern polar dunes.

    PubMed

    Hansen, C J; Bourke, M; Bridges, N T; Byrne, S; Colon, C; Diniega, S; Dundas, C; Herkenhoff, K; McEwen, A; Mellon, M; Portyankina, G; Thomas, N

    2011-02-04

    Despite radically different environmental conditions, terrestrial and martian dunes bear a strong resemblance, indicating that the basic processes of saltation and grainfall (sand avalanching down the dune slipface) operate on both worlds. Here, we show that martian dunes are subject to an additional modification process not found on Earth: springtime sublimation of Mars' CO(2) seasonal polar caps. Numerous dunes in Mars' north polar region have experienced morphological changes within a Mars year, detected in images acquired by the High-Resolution Imaging Science Experiment on the Mars Reconnaissance Orbiter. Dunes show new alcoves, gullies, and dune apron extension. This is followed by remobilization of the fresh deposits by the wind, forming ripples and erasing gullies. The widespread nature of these rapid changes, and the pristine appearance of most dunes in the area, implicates active sand transport in the vast polar erg in Mars' current climate.

  2. Seasonal erosion and restoration of Mars' northern polar dunes

    USGS Publications Warehouse

    Hansen, C.J.; Bourke, M.; Bridges, N.T.; Byrne, S.; Colon, C.; Diniega, S.; Dundas, C.; Herkenhoff, K.; McEwen, A.; Mellon, M.; Portyankina, G.; Thomas, N.

    2011-01-01

    Despite radically different environmental conditions, terrestrial and martian dunes bear a strong resemblance, indicating that the basic processes of saltation and grainfall (sand avalanching down the dune slipface) operate on both worlds. Here, we show that martian dunes are subject to an additional modification process not found on Earth: springtime sublimation of Mars' CO 2 seasonal polar caps. Numerous dunes in Mars' north polar region have experienced morphological changes within a Mars year, detected in images acquired by the High-Resolution Imaging Science Experiment on the Mars Reconnaissance Orbiter. Dunes show new alcoves, gullies, and dune apron extension. This is followed by remobilization of the fresh deposits by the wind, forming ripples and erasing gullies. The widespread nature of these rapid changes, and the pristine appearance of most dunes in the area, implicates active sand transport in the vast polar erg in Mars' current climate.

  3. Life On Mars: Past, Present and Future

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Mars appears to be cold dry and dead world. However there is good evidence that early in its history it had liquid water, more active volcanism, and a thicker atmosphere. Mars had this earth-like environment over three and a half billion years ago, during the same time that life appeared on Earth. The main question in the exploration of Mars then is the search for a independent origin of life on that planet. Ecosystems in cold, dry locations on Earth - such as the Antarctic - provide examples of how life on Mars might have survived and where to look for fossils. Although the Viking results may indicate that Mars has no life today, there is direct geomorphological evidence that, in the past, Mars had large amounts of liquid water on its surface - possibly due to a thicker atmosphere. From a biological perspective the existence of liquid water, by itself motivates the question of the origin of life on Mars. One of the martian meteorites dates back to this early period and may contain evidence consistent with life. From studies of the Earth's earliest biosphere we know that by 3.5 Cyr. ago, life had originated on Earth and reached a fair degree of biological sophistication. Surface activity and erosion on Earth make it difficult to trace the history of life before the 3.5 Cyr timeframe. Ecosystems in cold, dry locations on Earth - such as the Antarctic - provide examples of how life on Mars might have survived and where to look for fossils. Human exploration of Mars will probably begin with a small base manned by a temporary crew, a necessary first start. But exploration of the entire planet will require a continued presence on the Martian surface and the development of a self sustaining community in which humans can live and work for very long periods of time. A permanent Mars research base can be compared to the permanent research bases which several nations maintain in Antarctica at the South Pole, the geomagnetic pole, and elsewhere. In the long run, a continued human presence on Mars will be the most economical way to study that planet in detail. It is possible that at some time in the future we might recreate a habitable climate on Mars, returning it to the life-bearing state it may have enjoyed early in its history. Our studies of Mars are still in a preliminary state but everything we have learned suggests that it may be possible to restore Mars to a habitable climate.

  4. Radar evidence for ice in lobate debris aprons in the mid-northern latitudes of Mars

    NASA Astrophysics Data System (ADS)

    Plaut, Jeffrey J.; Safaeinili, Ali; Holt, John W.; Phillips, Roger J.; Head, James W.; Seu, Roberto; Putzig, Nathaniel E.; Frigeri, Alessandro

    2009-01-01

    Subsurface radar sounding data indicate that lobate debris aprons found in Deuteronilus Mensae in the mid-northern latitudes of Mars are composed predominantly of water ice. The position in time delay and the relatively low amount of signal loss of the apparent basal reflectors below the debris aprons indicate that aprons contain only a minor component of lithic material. The current presence of large ice masses at these latitudes has important implications for the climate evolution of Mars, and for future targets for in situ exploration.

  5. Particle Size of CO2 Condensates in Mars Atmosphere Revealed by Climate Sounder and Laser Ranging Observations

    NASA Astrophysics Data System (ADS)

    Hu, Renyu

    Current-generation Mars Climate Sounder (MCS) onboard the Mars Reconnaissance Orbiter (MRO) offers extensive coverage of the latitudinal and seasonal distribution of CO_2 condensation in Mars’s atmosphere. The atmospheric temperature profiles measured by MCS reveal that the thickness of CO_2 condensation layer reaches a maximum of 10-15 km (north) or ˜20 km (south) during the middle of winter. There is a shrinking of the CO_2 condensation layer from L_S ˜270(°) to ˜300(°) in 2007, probably related to a planet-encircling dust storm. We integrate the condensation area and the condensation occurrence rate synthesized from the MCS observations to estimate cumulative masses of CO2 condensates deposited onto the northern and southern seasonal polar caps. The mass loading of CO_2 condensate particles, when condensation occurs, can be independently inferred from the detections of reflective clouds by the Mars Orbiter Laser Altimetry (MOLA) onboard the Mars Global Surveyor (MGS). Therefore, we approximate the precipitation flux by the particle settling flux, which is estimated using the impulse responses of MOLA filter channels. With our approach, the total atmospheric condensation mass can be estimated from these observational data sets, with average particle size as the only free parameter. By comparison with the seasonal polar cap masses inferred from the time-varying gravity of Mars, our estimates indicate that the average condensate particle radius is 8 - 22 mum in the northern hemisphere and 4 - 13 mum in the southern hemisphere. This multi-instrument data analysis provides new constraints on modeling the microphysics of CO_2 clouds on Mars.

  6. Overland flow erosion inferred from Martian channel network geometry

    NASA Astrophysics Data System (ADS)

    Seybold, Hansjörg; Kirchner, James

    2016-04-01

    The controversy about the origin of Mars' channel networks is almost as old as their discovery 150 years ago. Over the last few decades, new Mars probes have revealed more detailed structures in Martian The controversy about the origin of Mars' channel networks is almost as old as their discovery 150 years ago. Over the last few decades, new Mars probes have revealed more detailed structures in Martian drainage networks, and new studies suggest that Mars once had large volumes of surface water. But how this water flowed, and how it could have carved the channels, remains unclear. Simple scaling arguments show that networks formed by similar mechanisms should have similar branching angles on Earth and Mars, suggesting that Earth analogues can be informative here. A recent analysis of high-resolution data for the continental United States shows that climate leaves a characteristic imprint in the branching geometry of stream networks. Networks growing in humid regions have an average branching angle of α = 2π/5 = 72° [1], which is characteristic of network growth by groundwater sapping [2]. Networks in arid regions, where overland flow erosion is more dominant, show much smaller branching angles. Here we show that the channel networks on Mars have branching angles that resemble those created by surficial flows on Earth. This result implies that the growth of Martian channel networks was dominated by near-surface flow, and suggests that deeper infiltration was inhibited, potentially by permafrost or by impermeable weathered soils. [1] Climate's Watermark in the Geometry of River Networks, Seybold et al.; under review [2] Ramification of stream networks, Devauchelle et al.; PNAS (2012)

  7. Large-Scale Traveling Weather Systems in Mars Southern Extratropics

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.; Kahre, Melinda A.

    2017-01-01

    Between late fall and early spring, Mars' middle- and high-latitude atmosphere supports strong mean equator-to-pole temperature contrasts and an accompanying mean westerly polar vortex. Observations from both the MGS Thermal Emission Spectrometer (TES) and the MRO Mars Climate Sounder (MCS) indicate that a mean baroclinicity-barotropicity supports intense, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). Such extratropical weather disturbances are critical components of the global circulation as they serve as agents in the transport of heat and momentum, and generalized scalar/tracer quantities (e.g., atmospheric dust, water-vapor and ice clouds). The character of such traveling extratropical synoptic disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a moderately high-resolution Mars global climate model (Mars GCM). This Mars GCM imposes interactively-lifted and radiatively-active dust based on a threshold value of the surface stress. The model exhibits a reasonable "dust cycle" (i.e., globally averaged, a dustier atmosphere during southern spring and summer occurs). Compared to the northern-hemisphere counterparts, the southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather are investigated, in addition to large-scale up-slope/down-slope flows and the diurnal cycle. A southern storm zone in late winter and early spring presents in the western hemisphere via orographic influences from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate dynamical differences amongst the simulations and these are presented.

  8. Olivine Weathering aud Sulfate Formation Under Cryogenic Conditions

    NASA Technical Reports Server (NTRS)

    Niles, Paul B.; Golden, D. C.; Michalski, J.

    2013-01-01

    High resolution photography and spectroscopy of the martian surface (MOC, HiRISE) from orbit has revolutionized our view of Mars with one of the most important discoveries being wide-spread layered sedimentary deposits associated with sulfate minerals across the low to mid latitude regions of Mars. The mechanism for sulfate formation on Mars has been frequently attributed to playa-like evaporative environments under prolonged warm conditions. An alternate view of the ancient martian climate contends that prolonged warm temperatures were never present and that the atmosphere and climate has been similar to modern conditions throughout most of its history. This view has had a difficult time explaining the sedimentary history of Mars and in particular the presence of sulfate minerals which seemingly need more water. We suggest here that mixtures of atmospheric aerosols, ice, and dust have the potential for creating small films of cryo-concentrated acidic solutions that may represent an important unexamined environment for understanding weathering processes on Mars. This study seeks to test whether sulfate formation may be possible at temperatures well below 0degC in water limited environments removing the need for prolonged warm periods to form sulfates on early Mars. To test this idea we performed laboratory experiments to simulate weathering of mafic minerals under Mars-like conditions. The weathering rates measured in this study suggest that fine grained olivine on Mars would weather into sulfate minerals in short time periods if they are exposed to H2SO4 aerosols at temperatures at or above -40degC. In this system, the strength of the acidic solution is maximized through eutectic freezing in an environment where the silicate minerals are extremely fine grained and have high surface areas. This provides an ideal environment despite the very low temperatures. On Mars the presence of large deposits of mixed ice and dust is undisputed. The presence of substantial sulfur-rich volcanism, and sulfur-rich surface deposits also makes it very likely that sulfate aerosols have also been an important component of the martian atmosphere. Thus mixtures of ice, dust, and sulfate aerosols are likely to have been common on the martian surface. Given the fact that it is not difficult to achieve surface temperatures above -40degC on Mars throughout its history, it seems likely that sulfate formation on Mars is controlled by the availability of sulfate aerosols and not by the martian climate. The current polar regions of Mars and Earth provide interesting analogs. Large regions of sulfaterich material have been detected on and around the modern north polar region of Mars. The prevalence of ice-dust mixtures in this region and the existence of sulfates within the ice cap itself are strong evidence for the origin of the sulfates from inside the ice deposits. In addition sulfates have been found in ice deposits in Greenland and Mount Fuji on Earth that have been attributed to forming within the ice deposit. These sulfates can form either through interaction with dust particles in the atmosphere or through weathering inside the ice itself.

  9. Science in Exploration: From the Moon to Mars and Back Home to Earth

    NASA Technical Reports Server (NTRS)

    Garvin, James B.

    2007-01-01

    NASA is embarking on a grand journey of exploration that naturally integrates the past successes of the Apollo missions to the Moon, as well as robotic science missions to Mars, to Planet Earth, and to the broader Universe. The US Vision for Space Exporation (VSE) boldly lays out a plan for human and robotic reconnaissance of the accessible Universe, starting with the surface of the Moon, and later embracing the surface of Mars. Sustained human and robotic access to the Moon and Mars will enable a new era of scientific investigation of our planetary neighbors, tied to driving scientific questions that pertain to the evolution and destiny of our home planet, but which also can be related to the search habitable worlds across the nearby Universe. The Apollo missions provide a vital legacy for what can be learned from the Moon, and NASA is now poised to recapture the lunar frontier starting with the flight of the Lunar Reconnaissance Orbiter (LRO) in late 2008. LRO will provide a new scientific context from which joint human and robotic exploration will ensue, guided by objectives some of which are focused on the grandest scientific challenges imaginable : Where did we come from? Are we alone? and Where are we going? The Moon will serve as an essential stepping stone for sustained human access and exploration of deep space and as a training ground while robotic missions with ever increasing complexity probe the wonders of Mars. As we speak, an armada of spacecraft are actively investigating the red planet both from orbit (NASA's Mars Reconnaissance Orbiter and Mars Odyssey Orbiter, plus ESA's Mars Express) and from the surface (NASA's twin Mars Exploration Rovers, and in 2008 NASA's Phoenix polar lander). The dramatically changing views of Mars as a potentially habitable world, with its own flavor of global climate change and unique climate records, provides a new vantage point from which to observe and question the workings of our own planet Earth. By 2010 NASA will have its first mobile analytical laboratory operating on the surface of Mars (Mars Science Laboratory) in search of potentially subtle expressions of past life or at least of life-hospitable environments. Meanwhile back here on Planet Earth, NASA will be continuing to implement an increasingly comprehensive program of robotic missions that address major issues associated with global climate variability, and the "state variables" that affect the quality of human life on our home planet. Ultimately, the fmits of NASA's emergent program of Exploration (VSE) will provide never-beforepossible opportunities for scientific leadership and advancement, culminating in a new state of awareness from which to better plan for the sustainability of life on Earth and for extending Earth life to the Moon and eventually to Mars. As NASA nears its 50th anniversary, the unimaginable and unexpected wealth of strategic knowledge its missions have generated about Earth, the Universe, and our local Solar System boggles the mind and serves as a legacy of knowledge for Educators to inspire future generations.

  10. The case for a modern multiwavelength, polarization-sensitive LIDAR in orbit around Mars

    USGS Publications Warehouse

    Brown, Adrian J.; Michaels, Timothy I.; Byrne, Shane; Sun, Wenbo; Titus, Timothy N.; Colaprete, Anthony; Wolff, Michael J.; Videen, Gorden; Grund, Christian J.

    2014-01-01

    We present the scientific case to build a multiple-wavelength, active, near-infrared (NIR) instrument to measure the reflected intensity and polarization characteristics of backscattered radiation from planetary surfaces and atmospheres. We focus on the ability of such an instrument to enhance, perhaps revolutionize, our understanding of climate, volatiles and astrobiological potential of modern-day Mars.

  11. Luminescence Dating of Martian Polar Deposits: Concepts and Preliminary Measurements Using Martian Soil Analogs

    NASA Astrophysics Data System (ADS)

    Lepper, K.; Kuhns, C. K.; McKeever, S. W. S.; Sears, D. W. G.

    2000-08-01

    Martian polar deposits have the potential to reveal a wealth of information about the evolution of Mars' climate and surface environment. However, as pointed out by Clifford et al. in the summary of the First International Conference on Mars Polar Science and Exploration, 'The single greatest obstacle to unlocking and interpreting the geologic and climatic record preserved at the [martian] poles is the need for absolute dating.' At that same conference Lepper and McKeever proposed development of luminescence dating as a remote in-situ technique for absolute dating of silicate mineral grains incorporated in polar deposits. Clifford et al. have also acknowledged that luminescence dating is more practical from cost, engineering, and logistical perspectives than other isotope-based methods proposed for in-situ dating on Mars. We report here the results of ongoing experiments with terrestrial analogs of martian surface materials to establish a broad fundamental knowledge base from which robust dating procedures for robotic missions may be developed. This broad knowledge base will also be critical in determining the engineering requirements of remote in-situ luminescence dating equipment intended for use on Mars. Additional information can be found in the original extended abstract.

  12. Meteorite constraints on Martian atmospheric loss and paleoclimate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cassata, William S.

    The evolution of Mars' atmosphere to its currently thin state incapable of supporting liquid water remains poorly understood and has important implications for Martian climate history. Martian meteorites contain trapped atmospheric gases that can be used to constrain both the timing and effectiveness of atmospheric escape processes. Here in this article, measurements of xenon isotopes in two ancient Martian meteorites, ALH 84001 and NWA 7034, are reported. The data indicate an early episode of atmospheric escape that mass fractionated xenon isotopes culminated within a few hundred million years of planetary formation, and little change to the atmospheric xenon isotopic compositionmore » has occurred since this time. In contrast, on Earth atmospheric xenon fractionation continued for at least two billion years (Pujol et al., 2011). Such differences in atmospheric Xe fractionation between the two planets suggest that climate conditions on Mars may have differed significantly from those on Archean Earth. For example, the hydrogen escape flux may not have exceeded the threshold required for xenon escape on Mars after 4.2–4.3 Ga, which indicates that Mars may have been significantly drier than Earth after this time.« less

  13. After the Mars Polar Lander: Where to Next?

    NASA Technical Reports Server (NTRS)

    Paige, D. A.; Boynton, W. V.; Crisp, D.; DeJong, E.; Hansen, C. J.; Harri, A. M.; Keller, H. U.; Leshin, L. A.; May, R. D.; Smith, P. H.

    2000-01-01

    The recent loss of the Mars Polar Lander (MPL) mission represents a serious setback to Mars science and exploration. Targeted to land on the Martian south polar layered deposits at 76 degrees south latitude and 195 degrees west longitude, it would have been the first mission to study the geology, atmospheric environment, and volatiles at a high-latitude landing site. Since the conception of the MPL mission, a Mars exploration strategy has emerged which focuses on Climate, Resources and Life, with the behavior and history of water as the unifying theme. A successful MPL mission would have made significant contributions towards these goals, particularly in understanding the distribution and behavior of near-surface water, and the nature and climate history of the south polar layered deposits. Unfortunately, due to concerns regarding the design of the MPL spacecraft, the rarity of direct trajectories that enable high-latitude landings, and funding, an exact reflight of MPL is not feasible within the present planning horizon. However, there remains significant interest in recapturing the scientific goals of the MPL mission. The following is a discussion of scientific and strategic issues relevant to planning the next polar lander mission, and beyond.

  14. Meteorite constraints on Martian atmospheric loss and paleoclimate

    DOE PAGES

    Cassata, William S.

    2017-10-06

    The evolution of Mars' atmosphere to its currently thin state incapable of supporting liquid water remains poorly understood and has important implications for Martian climate history. Martian meteorites contain trapped atmospheric gases that can be used to constrain both the timing and effectiveness of atmospheric escape processes. Here in this article, measurements of xenon isotopes in two ancient Martian meteorites, ALH 84001 and NWA 7034, are reported. The data indicate an early episode of atmospheric escape that mass fractionated xenon isotopes culminated within a few hundred million years of planetary formation, and little change to the atmospheric xenon isotopic compositionmore » has occurred since this time. In contrast, on Earth atmospheric xenon fractionation continued for at least two billion years (Pujol et al., 2011). Such differences in atmospheric Xe fractionation between the two planets suggest that climate conditions on Mars may have differed significantly from those on Archean Earth. For example, the hydrogen escape flux may not have exceeded the threshold required for xenon escape on Mars after 4.2–4.3 Ga, which indicates that Mars may have been significantly drier than Earth after this time.« less

  15. Independent Verification of Mars-GRAM 2010 with Mars Climate Sounder Data

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.; Burns, Kerry L.

    2014-01-01

    The Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model widely used for diverse mission and engineering applications. Applications of Mars-GRAM include systems design, performance analysis, and operations planning for aerobraking, entry, descent and landing, and aerocapture. Atmospheric influences on landing site selection and long-term mission conceptualization and development can also be addressed utilizing Mars-GRAM. Mars-GRAM's perturbation modeling capability is commonly used, in a Monte Carlo mode, to perform high-fidelity engineering end-to-end simulations for entry, descent, and landing. Mars-GRAM is an evolving software package resulting in improved accuracy and additional features. Mars-GRAM 2005 has been validated against Radio Science data, and both nadir and limb data from the Thermal Emission Spectrometer (TES). From the surface to 80 km altitude, Mars-GRAM is based on the NASA Ames Mars General Circulation Model (MGCM). Above 80 km, Mars-GRAM is based on the University of Michigan Mars Thermospheric General Circulation Model (MTGCM). The most recent release of Mars-GRAM 2010 includes an update to Fortran 90/95 and the addition of adjustment factors. These adjustment factors are applied to the input data from the MGCM and the MTGCM for the mapping year 0 user-controlled dust case. The adjustment factors are expressed as a function of height (z), latitude and areocentric solar longitude (Ls).

  16. Developing OSL Geological Dating Techniques for Use on Future Missions to Mars

    NASA Technical Reports Server (NTRS)

    Blair, M. W.; Kalchgruber, R.; Deo, S.; McKeever, S. W. S.

    2005-01-01

    The surface of Mars has been subject to aeolian, fluvial, and periglacial activity in the (relatively) recent past. Unfortunately, chronological dating of recent events on Mars is difficult as the errors associated with crater counting are comparable to younger ages (approx. 1 Ma). Consequently, techniques to quantify the ages of geological processes on Mars have become an important area of research. Optically stimulated luminescence (OSL) dating is one candidate technique for in-situ dating of the deposition of Martian surface sediments. This method can aid in developing a geological and climatic history of the last million years on Mars. The current paper addresses some of the challenges and progress associated with developing OSL as a viable in-situ dating technique for Mars. Some of the challenges include the mineral composition, the effectiveness of solar resetting under Martian conditions, the temperature regime, and determining the natural dose rate on Mars. All of these topics are currently under investigation, and some preliminary results are presented.

  17. Following the water, the new program for Mars exploration.

    PubMed

    Hubbard, G Scott; Naderi, Firouz M; Garvin, James B

    2002-01-01

    In the wake of the loss of Mars Climate Orbiter and Mars Polar Lander in late 1999, NASA embarked on a major review of the failures and subsequently restructured all aspects of what was then called the Mars Surveyor Program--now renamed the Mars Exploration Program. This paper presents the process and results of this reexamination and defines a new approach which we have called "Program System Engineering". Emphasis is given to the scientific, technological, and programmatic strategies that were used to shape the new Program. A scientific approach known as "follow the water" is described, as is an exploration strategy we have called "seek--in situ--sample". An overview of the mission queue from continuing Mars Global Surveyor through a possible Mars Sample Return Mission launch in 2011 is provided. In addition, key proposed international collaborations, especially those between NASA, CNES and ASI are outlined, as is an approach for a robust telecommunications infrastructure. c2002 Published by Elsevier Science Ltd.

  18. Following the water, the new program for Mars exploration

    NASA Technical Reports Server (NTRS)

    Hubbard, G. Scott; Naderi, Firouz M.; Garvin, James B.

    2002-01-01

    In the wake of the loss of Mars Climate Orbiter and Mars Polar Lander in late 1999, NASA embarked on a major review of the failures and subsequently restructured all aspects of what was then called the Mars Surveyor Program--now renamed the Mars Exploration Program. This paper presents the process and results of this reexamination and defines a new approach which we have called "Program System Engineering". Emphasis is given to the scientific, technological, and programmatic strategies that were used to shape the new Program. A scientific approach known as "follow the water" is described, as is an exploration strategy we have called "seek--in situ--sample". An overview of the mission queue from continuing Mars Global Surveyor through a possible Mars Sample Return Mission launch in 2011 is provided. In addition, key proposed international collaborations, especially those between NASA, CNES and ASI are outlined, as is an approach for a robust telecommunications infrastructure. c2002 Published by Elsevier Science Ltd.

  19. Observational evidence for an active surface reservoir of solid carbon dioxide on Mars.

    PubMed

    Malin, M C; Caplinger, M A; Davis, S D

    2001-12-07

    High-resolution images of the south polar residual cap of Mars acquired in 1999 and 2001 show changes in the configuration of pits, intervening ridges, and isolated mounds. Escarpments have retreated 1 to 3 meters in 1 martian year, changes that are an order of magnitude larger than can be explained by the sublimation of water ice, but close to what is expected for sublimation of carbon dioxide ice. These observations support a 35-year-old conjecture that Mars has a large surface reservoir of solid carbon dioxide. The erosion implies that this reservoir is not in equilibrium with the present environment and that global climate change is occurring on Mars.

  20. KSC-07pd2092

    NASA Image and Video Library

    2007-07-23

    KENNEDY SPACE CENTER, FLA. -- Inside the mobile service tower of Launch Pad 17-A at Cape Canaveral Air Force Station in Florida, workers remove the container lid from NASA's Phoenix Mars Lander. Launch of Phoenix is scheduled to launch on the Delta II launch vehicle no earlier than Aug. 3. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, detected high concentrations of ice just beneath the top layer of soil. NASA/George Shelton

Top