Remote image analysis for Mars Exploration Rover mobility and manipulation operations
NASA Technical Reports Server (NTRS)
Leger, Chris; Deen, Robert G.; Bonitz, Robert G.
2005-01-01
NASA's Mars Exploration Rovers are two sixwheeled, 175-kg robotic vehicles which have operated on Mars for over a year as of March 2005. The rovers are controlled by teams who must understand the rover's surroundings and develop command sequences on a daily basis. The tight tactical planning timeline and everchanging environment call for tools that allow quick assessment of potential manipulator targets and traverse goals, since command sequences must be developed in a matter of hours after receipt of new data from the rovers. Reachability maps give a visual indication of which targets are reachable by each rover's manipulator, while slope and solar energy maps show the rover operator which terrain areas are safe and unsafe from different standpoints.
The Evolution of Three Dimensional Visualization for Commanding the Mars Rovers
NASA Technical Reports Server (NTRS)
Hartman, Frank R.; Wright, John; Cooper, Brian
2014-01-01
NASA's Jet Propulsion Laboratory has built and operated four rovers on the surface of Mars. Two and three dimensional visualization has been extensively employed to command both the mobility and robotic arm operations of these rovers. Stereo visualization has been an important component in this set of visualization techniques. This paper discusses the progression of the implementation and use of visualization techniques for in-situ operations of these robotic missions. Illustrative examples will be drawn from the results of using these techniques over more than ten years of surface operations on Mars.
Autonomous Instrument Placement for Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Leger, P. Chris; Maimone, Mark
2009-01-01
Autonomous Instrument Placement (AutoPlace) is onboard software that enables a Mars Exploration Rover to act autonomously in using its manipulator to place scientific instruments on or near designated rock and soil targets. Prior to the development of AutoPlace, it was necessary for human operators on Earth to plan every motion of the manipulator arm in a time-consuming process that included downlinking of images from the rover, analysis of images and creation of commands, and uplinking of commands to the rover. AutoPlace incorporates image analysis and planning algorithms into the onboard rover software, eliminating the need for the downlink/uplink command cycle. Many of these algorithms are derived from the existing groundbased image analysis and planning algorithms, with modifications and augmentations for onboard use.
Robot Sequencing and Visualization Program (RSVP)
NASA Technical Reports Server (NTRS)
Cooper, Brian K.; Maxwell,Scott A.; Hartman, Frank R.; Wright, John R.; Yen, Jeng; Toole, Nicholas T.; Gorjian, Zareh; Morrison, Jack C
2013-01-01
The Robot Sequencing and Visualization Program (RSVP) is being used in the Mars Science Laboratory (MSL) mission for downlink data visualization and command sequence generation. RSVP reads and writes downlink data products from the operations data server (ODS) and writes uplink data products to the ODS. The primary users of RSVP are members of the Rover Planner team (part of the Integrated Planning and Execution Team (IPE)), who use it to perform traversability/articulation analyses, take activity plan input from the Science and Mission Planning teams, and create a set of rover sequences to be sent to the rover every sol. The primary inputs to RSVP are downlink data products and activity plans in the ODS database. The primary outputs are command sequences to be placed in the ODS for further processing prior to uplink to each rover. RSVP is composed of two main subsystems. The first, called the Robot Sequence Editor (RoSE), understands the MSL activity and command dictionaries and takes care of converting incoming activity level inputs into command sequences. The Rover Planners use the RoSE component of RSVP to put together command sequences and to view and manage command level resources like time, power, temperature, etc. (via a transparent realtime connection to SEQGEN). The second component of RSVP is called HyperDrive, a set of high-fidelity computer graphics displays of the Martian surface in 3D and in stereo. The Rover Planners can explore the environment around the rover, create commands related to motion of all kinds, and see the simulated result of those commands via its underlying tight coupling with flight navigation, motor, and arm software. This software is the evolutionary replacement for the Rover Sequencing and Visualization software used to create command sequences (and visualize the Martian surface) for the Mars Exploration Rover mission.
A Long Range Science Rover For Future Mars Missions
NASA Technical Reports Server (NTRS)
Hayati, Samad
1997-01-01
This paper describes the design and implementation currently underway at the Jet Propulsion Laboratory of a long range science rover for future missions to Mars. The small rover prototype, called Rocky 7, is capable of long traverse. autonomous navigation. and science instrument control, carries three science instruments, and can be commanded from any computer platform and any location using the World Wide Web. In this paper we describe the mobility system, the sampling system, the sensor suite, navigation and control, onboard science instruments. and the ground command and control system.
Vice President Pence Tours Jet Propulsion Laboratory
2018-04-28
U.S. Vice President Mike Pence, his wife Karen, and their daughter Charlotte are shown how to send a command to the Curiosity rover on Mars by Mars Curiosity Mission ACE Walt Hoffman during a tour of NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. Hoffman asked Charlotte Pence if she would do the honors of sending the command to the rover. Photo Credit: (NASA/Bill Ingalls)
Choosing Mars-Time: Analysis of the Mars Exploration Rover Experience
NASA Technical Reports Server (NTRS)
Bass, Deborah S.; Wales,Roxana C.; Shalin, Valerie L.
2004-01-01
This paper focuses on the Mars Exploration Rover (MER) mission decision to work on Mars Time and the implications of that decision on the tactical surface operations process as personnel planned activities and created a new command load for work on each Martian sol. The paper also looks at tools that supported the complexities of Mars Time work, and makes some comparisons between Earth and Mars time scheduling.
(abstract) Telecommunications for Mars Rovers and Robotic Missions
NASA Technical Reports Server (NTRS)
Cesarone, Robert J.; Hastrup, Rolf C.; Horne, William; McOmber, Robert
1997-01-01
Telecommunications plays a key role in all rover and robotic missions to Mars both as a conduit for command information to the mission and for scientific data from the mission. Telecommunications to the Earth may be accomplished using direct-to-Earth links via the Deep Space Network (DSN) or by relay links supported by other missions at Mars. This paper reviews current plans for missions to Mars through the 2005 launch opportunity and their capabilities in support of rover and robotic telecommunications.
Driving on the surface of Mars with the rover sequencing and visualization program
NASA Technical Reports Server (NTRS)
Wright, J.; Hartman, F.; Cooper, B.; Maxwell, S.; Yen, J.; Morrison, J.
2005-01-01
Operating a rover on Mars is not possible using teleoperations due to the distance involved and the bandwith limitations. To operate these rovers requires sophisticated tools to make operators knowledgeable of the terrain, hazards, features of interest, and rover state and limitations, and to support building command sequences and rehearsing expected operations. This paper discusses how the Rover Sequencing and Visualization program and a small set of associated tools support this requirement.
Mission Operations of the Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Bass, Deborah; Lauback, Sharon; Mishkin, Andrew; Limonadi, Daniel
2007-01-01
A document describes a system of processes involved in planning, commanding, and monitoring operations of the rovers Spirit and Opportunity of the Mars Exploration Rover mission. The system is designed to minimize command turnaround time, given that inherent uncertainties in terrain conditions and in successful completion of planned landed spacecraft motions preclude planning of some spacecraft activities until the results of prior activities are known by the ground-based operations team. The processes are partitioned into those (designated as tactical) that must be tied to the Martian clock and those (designated strategic) that can, without loss, be completed in a more leisurely fashion. The tactical processes include assessment of downlinked data, refinement and validation of activity plans, sequencing of commands, and integration and validation of sequences. Strategic processes include communications planning and generation of long-term activity plans. The primary benefit of this partition is to enable the tactical portion of the team to focus solely on tasks that contribute directly to meeting the deadlines for commanding the rover s each sol (1 sol = 1 Martian day) - achieving a turnaround time of 18 hours or less, while facilitating strategic team interactions with other organizations that do not work on a Mars time schedule.
Attitude and position estimation on the Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Ali, Khaled S.; Vanelli, C. Anthony; Biesiadecki, Jeffrey J.; Maimone, Mark W.; Yang Cheng, A.; San Martin, Miguel; Alexander, James W.
2005-01-01
NASA/JPL 's Mars Exploration Rovers acquire their attitude upon command and autonomously propagate their attitude and position. The rovers use accelerometers and images of the sun to acquire attitude, autonomously searching the sky for the sun with a pointable camera. To propagate the attitude and position the rovers use either accelerometer and gyro readings or gyro readings and wheel odometiy, depending on the nature of the movement ground operators are commanding. Where necessary, visual odometry is performed on images to fine tune the position updates, particularly in high slip environments. The capability also exists for visual odometry attitude updates. This paper describes the techniques used by the rovers to acquire and maintain attitude and position knowledge, the accuracy which is obtainable, and lessons learned after more than one year in operation.
Overview of the Mars Exploration Rover Mission
NASA Astrophysics Data System (ADS)
Adler, M.
2002-12-01
The Mars Exploration Rover (MER) Project is an ambitious mission to land two highly capable rovers at different sites in the equatorial region of Mars. The two vehicles are launched separately in May through July of 2003. Mars surface operations begin on January 4, 2004 with the first landing, followed by the second landing three weeks later on January 25. The useful surface lifetime of each rover will be at least 90 sols. The science objectives of exploring multiple locations within each of two widely separated and scientifically distinct landing sites will be accomplished along with the demonstration of key surface exploration technologies for future missions. The two MER spacecraft are planned to be identical. The rovers are landed using the Mars Pathfinder approach of a heatshield and parachute to slow the vehicle relative to the atmosphere, solid rockets to slow the lander near the surface, and airbags to cushion the surface impacts. During entry, descent, and landing, the vehicles will transmit coded tones directly to Earth, and in the terminal descent phase will also transmit telemetry to the MGS orbiter to indicate progress through the critical events. Once the lander rolls to a stop, a tetrahedral structure opens to right the lander and to reveal the folded rover, which then deploys and later by command will roll off of the lander to begin its exploration. Each six-wheeled rover carries a suite of instruments to collect contextual information about the landing site using visible and thermal infrared remote sensing, and to collect in situ information on the composition, mineralogy, and texture of selected Martian soils and rocks using an arm-mounted microscopic imager, rock abrasion tool, and spectrometers. During their surface missions, the rovers will communicate with Earth directly through the Deep Space Network as well as indirectly through the Odyssey and MGS orbiters. The solar-powered rovers will be commanded in the morning of each Sol, with the results returned in the afternoon of that Sol guiding the plans for the following Sol. Between the command sessions, the rover will autonomously execute the requested activities, including as an example traverses of tens of meters using autonomous navigation and hazard avoidance.
NASA Technical Reports Server (NTRS)
Maxwell, Scott A.; Cooper, Brian; Hartman, Frank; Wright, John; Yen, Jeng; Leger, Chris
2005-01-01
A Mars rover is a complex system, and driving one is a complex endeavor. Rover driver must be intimately familiar with the hardware and software of the mobility system and of the robotic arm. They must rapidly assess threats in the terrain, then creatively combine their knowledge o f the vehicle and its environment to achieve each day's science and engineering objective.
Vice President Pence Tours Jet Propulsion Laboratory
2018-04-28
Second Lady Karen Pence gives commands to a rover nicknamed "Scarecrow" as NASA Mars Exploration Manager Li Fuk, left, Mars Curiosity Engineering Operations Team Chief Megan Lin, Vice President Mike Pence, daughter of Mike Pence, Charlotte Pence, and JPL Director Michael Watkins, right, look on, Saturday, April 28, 2018 in Pasadena, California. Scarecrow is used to test mobility of rovers on Mars. Photo Credit: (NASA/Bill Ingalls)
Vice President Pence Tours Jet Propulsion Laboratory
2018-04-28
U.S. Vice President Mike Pence gives commands to a rover nicknamed "Scarecrow" as NASA Mars Exploration Manager Li Fuk, left, Mars Curiosity Engineering Operations Team Chief Megan Lin, JPL Director Michael Watkins, and daughter of Mike Pence, Charlotte Pence, right, look on, Saturday, April 28, 2018 in Pasadena, California. Scarecrow is used to test mobility of rovers on Mars. Photo Credit: (NASA/Bill Ingalls)
NASA Technical Reports Server (NTRS)
2004-01-01
This image taken at NASA's Jet Propulsion Laboratory shows a rover test drive up a manmade slope. The slope simulates one that the Mars Exploration Rover Opportunity will face on Mars if it is sent commands to explore rock outcrop that lies farther into 'Endurance Crater.' Using sand, dirt and rocks, scientists and engineers at JPL constructed the overall platform of the slope at a 25-degree angle, with a 40-degree step in the middle. The test rover successfully descended and climbed the platform, adding confidence that Opportunity could cross a similar hurdle in Endurance Crater.The Mars Exploration Rover/Collaborative Information Portal
NASA Technical Reports Server (NTRS)
Walton, Joan; Filman, Robert E.; Schreiner, John; Koga, Dennis (Technical Monitor)
2002-01-01
Astrology has long argued that the alignment of the planets governs human affairs. Science usually scoffs at this. There is, however, an important exception: sending spacecraft for planetary exploration. In late May and early June, 2003, Mars will be in position for Earth launch. Two Mars Exploration Rovers (MER) will rocket towards the red planet. The rovers will perform a series of geological and meteorological experiments, seeking to examine geological evidence for water and conditions once favorable for life. Back on earth, a small army of surface operations staff will work to keep the rovers running, sending directions for each day's operations and receiving the files encoding the outputs of the Rover's six instruments. (Mars is twenty light minutes from Earth. The rovers must be robots.) The fundamental purpose of the project is, after all, Science. Scientists have experiments they want to run. Ideally, scientists want to be immediately notified when the data products of their experiments have been received, so that they can examine their data and (collaboratively) deduce results. Mars is an unpredictable environment. We may issue commands to the rovers but there is considerable uncertainty in how the commands will be executed and whether what the rovers sense will be worthy of further pursuit. The steps of what is, to a scientist, conceptually an individual experiment may be scattered over a large number of activities. While the scientific staff has an overall strategic idea of what it would like to accomplish, activities are planned daily. The data and surprises of the previous day need to be integrated into the negotiations for the next day's activities, all synchronized to a schedule of transmission windows . Negotiations is the operative term, as different scientists want the resources to run possibly incompatible experiments. Many meetings plan each day's activities.
Autonomous Onboard Science Image Analysis for Future Mars Rover Missions
NASA Technical Reports Server (NTRS)
Gulick, V. C.; Morris, R. L.; Ruzon, M. A.; Roush, T. L.
1999-01-01
To explore high priority landing sites and to prepare for eventual human exploration, future Mars missions will involve rovers capable of traversing tens of kilometers. However, the current process by which scientists interact with a rover does not scale to such distances. Specifically, numerous command cycles are required to complete even simple tasks, such as, pointing the spectrometer at a variety of nearby rocks. In addition, the time required by scientists to interpret image data before new commands can be given and the limited amount of data that can be downlinked during a given command cycle constrain rover mobility and achievement of science goals. Experience with rover tests on Earth supports these concerns. As a result, traverses to science sites as identified in orbital images would require numerous science command cycles over a period of many weeks, months or even years, perhaps exceeding rover design life and other constraints. Autonomous onboard science analysis can address these problems in two ways. First, it will allow the rover to transmit only "interesting" images, defined as those likely to have higher science content. Second, the rover will be able to anticipate future commands. For example, a rover might autonomously acquire and return spectra of "interesting" rocks along with a high resolution image of those rocks in addition to returning the context images in which they were detected. Such approaches, coupled with appropriate navigational software, help to address both the data volume and command cycle bottlenecks that limit both rover mobility and science yield. We are developing fast, autonomous algorithms to enable such intelligent on-board decision making by spacecraft. Autonomous algorithms developed to date have the ability to identify rocks and layers in a scene, locate the horizon, and compress multi-spectral image data. Output from these algorithms could be used to autonomously obtain rock spectra, determine which images should be transmitted to the ground, or to aid in image compression. We will discuss these and other algorithms and demonstrate their performance during a recent rover field test.
Autonomous Science Analyses of Digital Images for Mars Sample Return and Beyond
NASA Technical Reports Server (NTRS)
Gulick, V. C.; Morris, R. L.; Ruzon, M.; Roush, T. L.
1999-01-01
To adequately explore high priority landing sites, scientists require rovers with greater mobility. Therefore, future Mars missions will involve rovers capable of traversing tens of kilometers (vs. tens of meters traversed by Mars Pathfinder's Sojourner). However, the current process by which scientists interact with a rover does not scale to such distances. A single science objective is achieved through many iterations of a basic command cycle: (1) all data must be transmitted to Earth and analyzed; (2) from this data, new targets are selected and the necessary information from the appropriate instruments are requested; (3) new commands are then uplinked and executed by the spacecraft and (4) the resulting data are returned to Earth, starting the process again. Experience with rover tests on Earth shows that this time intensive process cannot be substantially shortened given the limited data downlink bandwidth and command cycle opportunities of real missions. Sending complete multicolor panoramas at several waypoints, for example, is out of the question for a single downlink opportunity. As a result, long traverses requiring many science command cycles would likely require many weeks, months or even years, perhaps exceeding rover design life or other constraints. Autonomous onboard science analyses can address these problems in two ways. First, it will allow the rover to transmit only "interesting" images, defined as those likely to have higher science content. Second, the rover will be able to anticipate future commands, for example acquiring and returning spectra of "interesting" rocks along with the images in which they were detected. Such approaches, coupled with appropriate navigational software, address both the data volume and command cycle bottlenecks that limit both rover mobility and science yield. We are developing algorithms to enable such intelligent decision making by autonomous spacecraft. Reflecting the ultimate level of ability we aim for, this program has been dubbed the "Grad Student on Mars Project". We envision, for example, an appropriately intelligent Athena-like rover at the Pathfinder landing site might be able to traverse over the ridge towards "Twin Peaks" to obtain better information on the stratigraphy of these "streamlined islands" or of the size, composition and morphology of boulders located on them. Along the traverse, the intelligent rover would collect and analyze images and obtain spectra of geologically interesting features or regions. The intelligent rover might also traverse further up Arcs Vallis, and find additional paleoflood stage indicators such as slackwater deposits. Recognizing additional regions where boulders are imbricated, noting changes in their size, distribution, morphology, composition and the associated changes in channel geometry would yield important information on the outflow channel's paleoflood history, Representative images and associated supporting data from these locations could be downlinked to Earth along with the data requested by scientists from the previous uplink opportunity. Our initial work has focused on recognizing geologically interesting portions of images. Here we summarize some of the algorithms to date.
NASA Astrophysics Data System (ADS)
Sherwood, R.; Mutz, D.; Estlin, T.; Chien, S.; Backes, P.; Norris, J.; Tran, D.; Cooper, B.; Rabideau, G.; Mishkin, A.; Maxwell, S.
2001-07-01
This article discusses a proof-of-concept prototype for ground-based automatic generation of validated rover command sequences from high-level science and engineering activities. This prototype is based on ASPEN, the Automated Scheduling and Planning Environment. This artificial intelligence (AI)-based planning and scheduling system will automatically generate a command sequence that will execute within resource constraints and satisfy flight rules. An automated planning and scheduling system encodes rover design knowledge and uses search and reasoning techniques to automatically generate low-level command sequences while respecting rover operability constraints, science and engineering preferences, environmental predictions, and also adhering to hard temporal constraints. This prototype planning system has been field-tested using the Rocky 7 rover at JPL and will be field-tested on more complex rovers to prove its effectiveness before transferring the technology to flight operations for an upcoming NASA mission. Enabling goal-driven commanding of planetary rovers greatly reduces the requirements for highly skilled rover engineering personnel. This in turn greatly reduces mission operations costs. In addition, goal-driven commanding permits a faster response to changes in rover state (e.g., faults) or science discoveries by removing the time-consuming manual sequence validation process, allowing rapid "what-if" analyses, and thus reducing overall cycle times.
Autonomously generating operations sequences for a Mars Rover using AI-based planning
NASA Technical Reports Server (NTRS)
Sherwood, Rob; Mishkin, Andrew; Estlin, Tara; Chien, Steve; Backes, Paul; Cooper, Brian; Maxwell, Scott; Rabideau, Gregg
2001-01-01
This paper discusses a proof-of-concept prototype for ground-based automatic generation of validated rover command sequences from highlevel science and engineering activities. This prototype is based on ASPEN, the Automated Scheduling and Planning Environment. This Artificial Intelligence (AI) based planning and scheduling system will automatically generate a command sequence that will execute within resource constraints and satisfy flight rules.
Mixed-Initiative Constraint-Based Activity Planning for Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Bresina, John; Jonsson, Ari K.; Morris, Paul H.; Rajan, Kanna
2004-01-01
In January, 2004, two NASA rovers, named Spirit and Opportunity, successfully landed on Mars, starting an unprecedented exploration of the Martian surface. Power and thermal concerns constrained the duration of this mission, leading to an aggressive plan for commanding both rovers every day. As part of the process for generating these command loads, the MAPGEN tool provides engineers and scientists an intelligent activity planning tool that allows them to more effectively generate complex plans that maximize the science return each day. The key to'the effectiveness of the MAPGEN tool is an underlying artificial intelligence plan and constraint reasoning engine. In this paper we outline the design and functionality of the MAEPGEN tool and focus on some of the key capabilities it offers to the MER mission engineers.
Mars to earth optical communication link for the proposed Mars Sample Return mission roving vehicle
NASA Astrophysics Data System (ADS)
Sipes, Donald L., Jr.
The Mars Sample Return (MSR) mission planed for 1989 will deploy a rover from its landing craft to survey the Martian surface. During traversals of the rover from one site to the next in search of samples, three-dimensional images from a pair of video cameras will be transmitted to earth; the terrestrial operators will then send back high level direction commands to the rover. Attention is presently given to the effects of wind and dust on communications, the architecture of the optical communications package, and the identification of technological areas requiring further development for MSR incorporation.
Mars Exploration Rover Spirit End of Mission Report
NASA Technical Reports Server (NTRS)
Callas, John L.
2015-01-01
The Mars Exploration Rover (MER) Spirit landed in Gusev crater on Mars on January 4, 2004, for a prime mission designed to last three months (90 sols). After more than six years operating on the surface of Mars, the last communication received from Spirit occurred on Sol 2210 (March 22, 2010). Following the loss of signal, the Mars Exploration Rover Project radiated over 1400 commands to Mars in an attempt to elicit a response from the rover. Attempts were made utilizing Deep Space Network X-Band and UHF relay via both Mars Odyssey and the Mars Reconnaissance Orbiter. Search and recovery efforts concluded on July 13, 2011. It is the MER project's assessment that Spirit succumbed to the extreme environmental conditions experienced during its fourth winter on Mars. Focusing on the time period from the end of the third Martian winter through the fourth winter and end of recovery activities, this report describes possible explanations for the loss of the vehicle and the extent of recovery efforts that were performed. It offers lessons learned and provides an overall mission summary.
Update on Rover Sequencing and Visualization Program
NASA Technical Reports Server (NTRS)
Cooper, Brian; Hartman, Frank; Maxwell, Scott; Yen, Jeng; Wright, John; Balacuit, Carlos
2005-01-01
The Rover Sequencing and Visualization Program (RSVP) has been updated. RSVP was reported in Rover Sequencing and Visualization Program (NPO-30845), NASA Tech Briefs, Vol. 29, No. 4 (April 2005), page 38. To recapitulate: The Rover Sequencing and Visualization Program (RSVP) is the software tool to be used in the Mars Exploration Rover (MER) mission for planning rover operations and generating command sequences for accomplishing those operations. RSVP combines three-dimensional (3D) visualization for immersive exploration of the operations area, stereoscopic image display for high-resolution examination of the downlinked imagery, and a sophisticated command-sequence editing tool for analysis and completion of the sequences. RSVP is linked with actual flight code modules for operations rehearsal to provide feedback on the expected behavior of the rover prior to committing to a particular sequence. Playback tools allow for review of both rehearsed rover behavior and downlinked results of actual rover operations. These can be displayed simultaneously for comparison of rehearsed and actual activities for verification. The primary inputs to RSVP are downlink data products from the Operations Storage Server (OSS) and activity plans generated by the science team. The activity plans are high-level goals for the next day s activities. The downlink data products include imagery, terrain models, and telemetered engineering data on rover activities and state. The Rover Sequence Editor (RoSE) component of RSVP performs activity expansion to command sequences, command creation and editing with setting of command parameters, and viewing and management of rover resources. The HyperDrive component of RSVP performs 2D and 3D visualization of the rover s environment, graphical and animated review of rover predicted and telemetered state, and creation and editing of command sequences related to mobility and Instrument Deployment Device (robotic arm) operations. Additionally, RoSE and HyperDrive together evaluate command sequences for potential violations of flight and safety rules. The products of RSVP include command sequences for uplink that are stored in the Distributed Object Manager (DOM) and predicted rover state histories stored in the OSS for comparison and validation of downlinked telemetry. The majority of components comprising RSVP utilize the MER command and activity dictionaries to automatically customize the system for MER activities.
Autonomous Image Analysis for Future Mars Missions
NASA Technical Reports Server (NTRS)
Gulick, V. C.; Morris, R. L.; Ruzon, M. A.; Bandari, E.; Roush, T. L.
1999-01-01
To explore high priority landing sites and to prepare for eventual human exploration, future Mars missions will involve rovers capable of traversing tens of kilometers. However, the current process by which scientists interact with a rover does not scale to such distances. Specifically, numerous command cycles are required to complete even simple tasks, such as, pointing the spectrometer at a variety of nearby rocks. In addition, the time required by scientists to interpret image data before new commands can be given and the limited amount of data that can be downlinked during a given command cycle constrain rover mobility and achievement of science goals. Experience with rover tests on Earth supports these concerns. As a result, traverses to science sites as identified in orbital images would require numerous science command cycles over a period of many weeks, months or even years, perhaps exceeding rover design life and other constraints. Autonomous onboard science analysis can address these problems in two ways. First, it will allow the rover to preferentially transmit "interesting" images, defined as those likely to have higher science content. Second, the rover will be able to anticipate future commands. For example, a rover might autonomously acquire and return spectra of "interesting" rocks along with a high-resolution image of those rocks in addition to returning the context images in which they were detected. Such approaches, coupled with appropriate navigational software, help to address both the data volume and command cycle bottlenecks that limit both rover mobility and science yield. We are developing fast, autonomous algorithms to enable such intelligent on-board decision making by spacecraft. Autonomous algorithms developed to date have the ability to identify rocks and layers in a scene, locate the horizon, and compress multi-spectral image data. We are currently investigating the possibility of reconstructing a 3D surface from a sequence of images acquired by a robotic arm camera. This would then allow the return of a single completely in focus image constructed only from those portions of individual images that lie within the camera's depth of field. Output from these algorithms could be used to autonomously obtain rock spectra, determine which images should be transmitted to the ground, or to aid in image compression. We will discuss these algorithms and their performance during a recent rover field test.
Rover Sequencing and Visualization Program
NASA Technical Reports Server (NTRS)
Cooper, Brian; Hartman, Frank; Maxwell, Scott; Yen, Jeng; Wright, John; Balacuit, Carlos
2005-01-01
The Rover Sequencing and Visualization Program (RSVP) is the software tool for use in the Mars Exploration Rover (MER) mission for planning rover operations and generating command sequences for accomplishing those operations. RSVP combines three-dimensional (3D) visualization for immersive exploration of the operations area, stereoscopic image display for high-resolution examination of the downlinked imagery, and a sophisticated command-sequence editing tool for analysis and completion of the sequences. RSVP is linked with actual flight-code modules for operations rehearsal to provide feedback on the expected behavior of the rover prior to committing to a particular sequence. Playback tools allow for review of both rehearsed rover behavior and downlinked results of actual rover operations. These can be displayed simultaneously for comparison of rehearsed and actual activities for verification. The primary inputs to RSVP are downlink data products from the Operations Storage Server (OSS) and activity plans generated by the science team. The activity plans are high-level goals for the next day s activities. The downlink data products include imagery, terrain models, and telemetered engineering data on rover activities and state. The Rover Sequence Editor (RoSE) component of RSVP performs activity expansion to command sequences, command creation and editing with setting of command parameters, and viewing and management of rover resources. The HyperDrive component of RSVP performs 2D and 3D visualization of the rover s environment, graphical and animated review of rover-predicted and telemetered state, and creation and editing of command sequences related to mobility and Instrument Deployment Device (IDD) operations. Additionally, RoSE and HyperDrive together evaluate command sequences for potential violations of flight and safety rules. The products of RSVP include command sequences for uplink that are stored in the Distributed Object Manager (DOM) and predicted rover state histories stored in the OSS for comparison and validation of downlinked telemetry. The majority of components comprising RSVP utilize the MER command and activity dictionaries to automatically customize the system for MER activities. Thus, RSVP, being highly data driven, may be tailored to other missions with minimal effort. In addition, RSVP uses a distributed, message-passing architecture to allow multitasking, and collaborative visualization and sequence development by scattered team members.
Tracking Positions and Attitudes of Mars Rovers
NASA Technical Reports Server (NTRS)
Ali, Khaled; vanelli, Charles; Biesiadecki, Jeffrey; Martin, Alejandro San; Maimone, Mark; Cheng, Yang; Alexander, James
2006-01-01
The Surface Attitude Position and Pointing (SAPP) software, which runs on computers aboard the Mars Exploration Rovers, tracks the positions and attitudes of the rovers on the surface of Mars. Each rover acquires data on attitude from a combination of accelerometer readings and images of the Sun acquired autonomously, using a pointable camera to search the sky for the Sun. Depending on the nature of movement commanded remotely by operators on Earth, the software propagates attitude and position by use of either (1) accelerometer and gyroscope readings or (2) gyroscope readings and wheel odometry. Where necessary, visual odometry is performed on images to fine-tune the position updates, particularly on high-wheel-slip terrain. The attitude data are used by other software and ground-based personnel for pointing a high-gain antenna, planning and execution of driving, and positioning and aiming scientific instruments.
International testing of a Mars rover prototype
NASA Astrophysics Data System (ADS)
Kemurjian, Alexsandr Leonovich; Linkin, V.; Friedman, L.
1993-03-01
Tests on a prototype engineering model of the Russian Mars 96 Rover were conducted by an international team in and near Death Valley in the United States in late May, 1992. These tests were part of a comprehensive design and testing program initiated by the three Russian groups responsible for the rover development. The specific objectives of the May tests were: (1) evaluate rover performance over different Mars-like terrains; (2) evaluate state-of-the-art teleoperation and autonomy development for Mars rover command, control and navigation; and (3) organize an international team to contribute expertise and capability on the rover development for the flight project. The range and performance that can be planned for the Mars mission is dependent on the degree of autonomy that will be possible to implement on the mission. Current plans are for limited autonomy, with Earth-based teleoperation for the nominal navigation system. Several types of television systems are being investigated for inclusion in the navigation system including panoramic camera, stereo, and framing cameras. The tests used each of these in teleoperation experiments. Experiments were included to consider use of such TV data in autonomy algorithms. Image processing and some aspects of closed-loop control software were also tested. A micro-rover was tested to help consider the value of such a device as a payload supplement to the main rover. The concept is for the micro-rover to serve like a mobile hand, with its own sensors including a television camera.
Operations concepts for Mars missions with multiple mobile spacecraft
NASA Technical Reports Server (NTRS)
Dias, William C.
1993-01-01
Missions are being proposed which involve landing a varying number (anywhere from one to 24) of small mobile spacecraft on Mars. Mission proposals include sample returns, in situ geochemistry and geology, and instrument deployment functions. This paper discusses changes needed in traditional space operations methods for support of rover operations. Relevant differences include more frequent commanding, higher risk acceptance, streamlined procedures, and reliance on additional spacecraft autonomy, advanced fault protection, and prenegotiated decisions. New methods are especially important for missions with several Mars rovers operating concurrently against time limits. This paper also discusses likely mission design limits imposed by operations constraints .
Supporting Increased Autonomy for a Mars Rover
NASA Technical Reports Server (NTRS)
Estlin, Tara; Castano, Rebecca; Gaines, Dan; Bornstein, Ben; Judd, Michele; Anderson, Robert C.; Nesnas, Issa
2008-01-01
This paper presents an architecture and a set of technology for performing autonomous science and commanding for a planetary rover. The MER rovers have outperformed all expectations by lasting over 1100 sols (or Martian days), which is an order of magnitude longer than their original mission goal. The longevity of these vehicles will have significant effects on future mission goals, such as objectives for the Mars Science Laboratory rover mission (scheduled to fly in 2009) and the Astrobiology Field Lab rover mission (scheduled to potentially fly in 2016). Common objectives for future rover missions to Mars include the handling of opportunistic science, long-range or multi-sol driving, and onboard fault diagnosis and recovery. To handle these goals, a number of new technologies have been developed and integrated as part of the CLARAty architecture. CLARAty is a unified and reusable robotic architecture that was designed to simplify the integration, testing and maturation of robotic technologies for future missions. This paper focuses on technology comprising the CLARAty Decision Layer, which was designed to support and validate high-level autonomy technologies, such as automated planning and scheduling and onboard data analysis.
Post-Flight EDL Entry Guidance Performance of the 2011 Mars Science Laboratory Mission
NASA Technical Reports Server (NTRS)
Mendeck, Gavin F.; McGrew, Lynn Craig
2013-01-01
The 2011 Mars Science Laboratory was the first Mars guided entry which safely delivered the rover to a landing within a touchdown ellipse of 19.1 km x 6.9 km. The Entry Terminal Point Controller guidance algorithm is derived from the final phase Apollo Command Module guidance and, like Apollo, modulates the bank angle to control the range flown. The guided entry performed as designed without any significant exceptions. The Curiosity rover was delivered about 2.2 km from the expected touchdown. This miss distance is attributed to little time to correct the downrange drift from the final bank reversal and a suspected tailwind during heading alignment. The successful guided entry for the Mars Science Laboratory lays the foundation for future Mars missions to improve upon.
Activity Scratchpad Prototype: Simplifying the Rover Activity Planning Cycle
NASA Technical Reports Server (NTRS)
Abramyan, Lucy
2005-01-01
The Mars Exploration Rover mission depends on the Science Activity Planner as its primary interface to the Spirit and Opportunity Rovers. Scientists alternate between a series of mouse clicks and keyboard inputs to create a set of instructions for the rovers. To accelerate planning by minimizing mouse usage, a rover planning editor should receive the majority of inputted commands from the keyboard. Thorough investigation of the Eclipse platform's Java editor has provided the understanding of the base model for the Activity Scratchpad. Desirable Eclipse features can be mapped to specific rover planning commands, such as auto-completion for activity titles and content assist for target names. A custom editor imitating the Java editor's features was created with an XML parser for experimenting purposes. The prototype editor minimized effort for redundant tasks and significantly improved the visual representation of XML syntax by highlighting keywords, coloring rules, folding projections, and providing hover assist, templates and an outline view of the code.
Autonomous Rover Traverse and Precise Arm Placement on Remotely Designated Targets
NASA Technical Reports Server (NTRS)
Felder, Michael; Nesnas, Issa A.; Pivtoraiko, Mihail; Kelly, Alonzo; Volpe, Richard
2011-01-01
Exploring planetary surfaces typically involves traversing challenging and unknown terrain and acquiring in-situ measurements at designated locations using arm-mounted instruments. We present field results for a new implementation of an autonomous capability that enables a rover to traverse and precisely place an arm-mounted instrument on remote targets. Using point-and-click mouse commands, a scientist designates targets in the initial imagery acquired from the rover's mast cameras. The rover then autonomously traverse the rocky terrain for a distance of 10 - 15 m, tracks the target(s) of interest during the traverse, positions itself for approaching the target, and then precisely places an arm-mounted instrument within 2-3 cm from the originally designated target. The rover proceeds to acquire science measurements with the instrument. This work advances what has been previously developed and integrated on the Mars Exploration Rovers by using algorithms that are capable of traversing more rock-dense terrains, enabling tight thread-the-needle maneuvers. We integrated these algorithms on the newly refurbished Athena Mars research rover and fielded them in the JPL Mars Yard. We conducted 43 runs with targets at distances ranging from 5 m to 15 m and achieved a success rate of 93% for placement of the instrument within 2-3 cm.
Rovers as Geological Helpers for Planetary Surface Exploration
NASA Technical Reports Server (NTRS)
Stoker, Carol; DeVincenzi, Donald (Technical Monitor)
2000-01-01
Rovers can be used to perform field science on other planetary surfaces and in hostile and dangerous environments on Earth. Rovers are mobility systems for carrying instrumentation to investigate targets of interest and can perform geologic exploration on a distant planet (e.g. Mars) autonomously with periodic command from Earth. For nearby sites (such as the Moon or sites on Earth) rovers can be teleoperated with excellent capabilities. In future human exploration, robotic rovers will assist human explorers as scouts, tool and instrument carriers, and a traverse "buddy". Rovers can be wheeled vehicles, like the Mars Pathfinder Sojourner, or can walk on legs, like the Dante vehicle that was deployed into a volcanic caldera on Mt. Spurr, Alaska. Wheeled rovers can generally traverse slopes as high as 35 degrees, can avoid hazards too big to roll over, and can carry a wide range of instrumentation. More challenging terrain and steeper slopes can be negotiated by walkers. Limitations on rover performance result primarily from the bandwidth and frequency with which data are transmitted, and the accuracy with which the rover can navigate to a new position. Based on communication strategies, power availability, and navigation approach planned or demonstrated for Mars missions to date, rovers on Mars will probably traverse only a few meters per day. Collecting samples, especially if it involves accurate instrument placement, will be a slow process. Using live teleoperation (such as operating a rover on the Moon from Earth) rovers have traversed more than 1 km in an 8 hour period while also performing science operations, and can be moved much faster when the goal is simply to make the distance. I will review the results of field experiments with planetary surface rovers, concentrating on their successful and problematic performance aspects. This paper will be accompanied by a working demonstration of a prototype planetary surface rover.
'RAT' Hole on 'Pilbara' (pre-RAT)
NASA Technical Reports Server (NTRS)
2004-01-01
The Mars Exploration Rover Opportunity broke its own record for the deepest hole ground into a rock on another planet with a 7.2-millimeter (about 0.28-inch) grind on the rock 'Pilbara,' on the rover's 86th sol on Mars. This image is from the rover's panoramic camera and features Pilbara before the rover ground into it with its rock abrasion tool. After careful examination of the rock, the rock abrasion tool engineers determined that the upper left portion (visible in this image) of Pilbara was the safest area to grind. The now familiar 'blueberries,' or spherules, are present in this rock, however, they do not appear in the same manner as other berries examined during this mission. Reminiscent of a golf tee, the blueberries sit atop a 'stem,' thus making them even more of an obstacle through which to grind. The left side of the rock is relatively berry-free and proved to be an ideal spot for the procedure. The team has developed a new approach to commanding the rock abrasion tool that allows for more aggressive grinding parameters. The tool is now programmed, in the event of a stall, to retreat from its target and attempt to grind again. This allows the grinder to essentially reset itself instead of aborting its sequence altogether and waiting for further commands from rover planners.Adams-Based Rover Terramechanics and Mobility Simulator - ARTEMIS
NASA Technical Reports Server (NTRS)
Trease, Brian P.; Lindeman, Randel A.; Arvidson, Raymond E.; Bennett, Keith; VanDyke, Lauren P.; Zhou, Feng; Iagnemma, Karl; Senatore, Carmine
2013-01-01
The Mars Exploration Rovers (MERs), Spirit and Opportunity, far exceeded their original drive distance expectations and have traveled, at the time of this reporting, a combined 29 kilometers across the surface of Mars. The Rover Sequencing and Visualization Program (RSVP), the current program used to plan drives for MERs, is only a kinematic simulator of rover movement. Therefore, rover response to various terrains and soil types cannot be modeled. Although sandbox experiments attempt to model rover-terrain interaction, these experiments are time-intensive and costly, and they cannot be used within the tactical timeline of rover driving. Imaging techniques and hazard avoidance features on MER help to prevent the rover from traveling over dangerous terrains, but mobility issues have shown that these methods are not always sufficient. ARTEMIS, a dynamic modeling tool for MER, allows planned drives to be simulated before commands are sent to the rover. The deformable soils component of this model allows rover-terrain interactions to be simulated to determine if a particular drive path would take the rover over terrain that would induce hazardous levels of slip or sink. When used in the rover drive planning process, dynamic modeling reduces the likelihood of future mobility issues because high-risk areas could be identified before drive commands are sent to the rover, and drives planned over these areas could be rerouted. The ARTEMIS software consists of several components. These include a preprocessor, Digital Elevation Models (DEMs), Adams rover model, wheel and soil parameter files, MSC Adams GUI (commercial), MSC Adams dynamics solver (commercial), terramechanics subroutines (FORTRAN), a contact detection engine, a soil modification engine, and output DEMs of deformed soil. The preprocessor is used to define the terrain (from a DEM) and define the soil parameters for the terrain file. The Adams rover model is placed in this terrain. Wheel and soil parameter files can be altered in the respective text files. The rover model and terrain are viewed in Adams View, the GUI for ARTEMIS. The Adams dynamics solver calls terramechanics subroutines in FORTRAN containing the Bekker-Wong equations.
Key Differences in Operating a Rover on the Moon vs. Mars
NASA Technical Reports Server (NTRS)
Trimble, Jay
2017-01-01
The command and control model for spacecraft operations, as well as the distribution of tasks between ground assets and in space assets, whether with a crew or solely robotic, is fundamentally constrained by the round trip light time between the space asset and the control facility (presumably on Earth, though not required). For an asset on Mars, the round trip light time varies, from roughly fourteen minutes to up to forty minutes. For a Lunar asset the round-trip light time is measured in only a few seconds, but current communications systems may more than double the latency with system overhead. For a Lunar Asset the total command latency may range from six seconds to more than forty, depending on communications overhead and data rates. Further, these variables are not always predictable, thus complicating operations. There are several differentiating factors for Lunar vs. Mars operations, Round trip light time/Atmosphere/Lighting and ShadowsTerrain type and knowledge/Round trip light time has implications for the distribution of tasks between ground and in space assets. Even at Lunar Distances, the combination of round trip light time plus communications systems overhead does not enable joy stick driving of a rover. The best that can be done, if driving from Earth, is near real time command and control. By 2030, driving from in space may be possible. Productivity on Mars requires either long operational sequences of commands, as is done for current rovers such as Curiosity, significant autonomous capability or, as may be possible by 2030, command and control support from space. Another implication of the long round trip light time from Earth to Mars, is that flight software functions must be resident on the in space asset. On the Moon, there is considerably more flexibility, enabling processing functions, to be resident on Earth or in space. This provides the opportunity to take advantage of the considerable processing power available on the ground, but may be constrained by data rates. On the Moon, for practical operational purposes, there is no atmosphere. Hence there is no scattering of light in the shadows. This has implications for image interpretation and driving near the poles. The Moon has permanently shadowed regions (PSR), unique terrain with unknown surface properties. With no scattering of light in shadows, driving on the Moon, particularly at the poles, where we have strong evidence of water, may prove to be hazardous and complex, requiring non-optical sensors, such as LIDAR.
AOTF near-IR spectrometers for study of Lunar and Martian surface composition
NASA Astrophysics Data System (ADS)
Korablev, O.; Kiselev, A.; Vyazovetskiy, N.; Fedorova, A.; Evdokimova, N.; Stepanov, A.; Titov, A.; Kalinnikov, Y.; Kuzmin, R. O.; Bazilevsky, A. T.; Bondarenko, A.; Moiseev, P.
2013-09-01
The series of the AOTF near-IR spectrometers is developed in Moscow Space Research Institute for study of Lunar and Martian surface composition in the vicinity of a lander or a rover. Lunar Infrared Spectrometer (LIS) is an experiment onboard Luna-Glob (launch in 2015) and Luna-Resurs (launch in 2017) Russian surface missions. The LIS is mounted on the mechanic arm of landing module in the field of view (45°) of stereo TV camera. Infrared Spectrometer for ExoMars (ISEM) is an experiment onboard ExoMars (launch in 2018) ESARoscosmos rover. The ISEM instrument is mounted on the rover's mast together with High Resolution camera (HRC). Spectrometers will provide measurements of selected surface area in the spectral range of 1.15-3.3 μm. The electrically commanded acousto-optic filter scans sequentially at a desired sampling, with random access, over the entire spectral range.
Opportunity's First Dip into Victoria Crater
NASA Technical Reports Server (NTRS)
2007-01-01
NASA's Mars Exploration Rover Opportunity entered Victoria Crater during the rover's 1,291st Martian day, or sol, (Sept. 11, 2007). The rover team commanded Opportunity to drive just far enough into the crater to get all six wheels onto the inner slope, and then to back out again and assess how much the wheels slipped on the slope. The driving commands for the day included a precaution for the rover to stop driving if the wheels were slipping more than 40 percent. Slippage exceeded that amount on the last step of the drive, so Opportunity stopped with its front pair of wheels still inside the crater. The rover team planned to assess results of the drive, then start Opportunity on an extended exploration inside the crater. This wide-angle view taken by Opportunity's front hazard-identification camera at the end of the day's driving shows the wheel tracks created by the short dip into the crater. The left half of the image looks across an alcove informally named 'Duck Bay' toward a promontory called 'Cape Verde' clockwise around the crater wall. The right half of the image looks across the main body of the crater, which is 800 meters (half a mile) in diameter.From Prime to Extended Mission: Evolution of the MER Tactical Uplink Process
NASA Technical Reports Server (NTRS)
Mishkin, Andrew H.; Laubach, Sharon
2006-01-01
To support a 90-day surface mission for two robotic rovers, the Mars Exploration Rover mission designed and implemented an intensive tactical operations process, enabling daily commanding of each rover. Using a combination of new processes, custom software tools, a Mars-time staffing schedule, and seven-day-a-week operations, the MER team was able to compress the traditional weeks-long command-turnaround for a deep space robotic mission to about 18 hours. However, the pace of this process was never intended to be continued indefinitely. Even before the end of the three-month prime mission, MER operations began evolving towards greater sustainability. A combination of continued software tool development, increasing team experience, and availability of reusable sequences first reduced the mean process duration to approximately 11 hours. The number of workshifts required to perform the process dropped, and the team returned to a modified 'Earth-time' schedule. Additional process and tool adaptation eventually provided the option of planning multiple Martian days of activity within a single workshift, making 5-day-a-week operations possible. The vast majority of the science team returned to their home institutions, continuing to participate fully in the tactical operations process remotely. MER has continued to operate for over two Earth-years as many of its key personnel have moved on to other projects, the operations team and budget have shrunk, and the rovers have begun to exhibit symptoms of aging.
Autonomous Science Decision Making for Mars Sample Return
NASA Technical Reports Server (NTRS)
Roush, Ted L.; Gulick, V.; Morris, R.; Gazis, P.; Benedix, G.; Glymour, C.; Ramsey, J.; Pedersen, L.; Ruzon, M.; Buntine, W.;
1999-01-01
In the near future NASA intends to explore Mars in preparation for a sample return mission using robotic devices such as landers, rovers, orbiters, airplanes, and/or balloons. Such platforms will likely carry imaging devices to characterize the surface morphology, and a variety of analytical instruments intended to evaluate the chemical and mineralogical nature of the environment(s) that they encounter. Historically, mission operations have involved the following sequence of activities: (1) return of scientific data from the vehicle; (2) evaluation of the data by space scientists; (3) recommendations of the scientists regarding future mission activity; (4) transmission of commands to the vehicle to achieve this activity; and (5) new activity by the vehicle in response to those commands. This is repeated for the duration of the mission, with command opportunities once or perhaps twice per day. In a rapidly changing environment, such as might be encountered by a rover traversing hundreds of meters a day or an airplane soaring over several hundred of kilometers, this traditional cycle of data evaluation and commands is not amenable to rapid long range traverses, discovery of novelty, or rapid response to any unanticipated situations. In addition, to issues of response time, the nature of imaging and/or spectroscopic devices are such that tremendous data volumes can be acquired, for example during a traverse. These data volumes can rapidly exceed on-board memory capabilities prior to an opportunity to transmit it to Earth.
Control technique for planetary rover
NASA Technical Reports Server (NTRS)
Nakatani, Ichiro; Kubota, Takashi; Adachi, Tadashi; Saitou, Hiroaki; Okamoto, Sinya
1994-01-01
Beginning next century, several schemes for sending a planetary rover to the moon or Mars are being planned. As part of the development program, autonomous navigation technology is being studied to allow the rover the ability to move autonomously over a long range of unknown planetary surface. In the previous study, we ran the autonomous navigation experiment on an outdoor test terrain by using a rover test-bed that was controlled by a conventional sense-plan-act method. In some cases during the experiment, a problem occurred with the rover moving into untraversable areas. To improve this situation, a new control technique has been developed that gives the rover the ability of reacting to the outputs of the proximity sensors, a reaction behavior if you will. We have developed a new rover test-bed system on which an autonomous navigation experiment was performed using the newly developed control technique. In this outdoor experiment, the new control technique effectively produced the control command for the rover to avoid obstacles and be guided to the goal point safely.
AOTF near-IR spectrometers for study of Lunar and Martian surface composition
NASA Astrophysics Data System (ADS)
Ivanov, A.; Korablev, O.; Mantsevich, S.; Vyazovetskiy, N.; Fedorova, A.; Evdokimova, N.; Stepanov, A.; Titov, A.; Kalinnikov, Y.; Kuzmin, R.; Kiselev, A.; Bazilevsky, A.; Bondarenko, A.; Dokuchaev, I.; Moiseev, P.; Victorov, A.; Berezhnoy, A.; Skorov, Y.; Bisikalo, D.; Velikodsky, Y.
2014-04-01
The series of the AOTF near-IR spectrometers is developed in Moscow Space Research Institute for study of Lunar and Martian surface composition in the vicinity of a lander or a rover. Lunar Infrared Spectrometer (LIS) is an experiment onboard Luna-Glob (launch in 2017) and Luna- Resurs (launch in 2019) Russian surface missions. It's a pencil-beam spectrometer to be pointed by a robotic arm of the landing module. The instrument's field of view (FOV) of 1° is co-aligned with the FOV(45°) of a stereo TV camera. Infrared Spectrometer for ExoMars (ISEM) is an experiment onboard ExoMars (launch in 2018) ESARoscosmos rover. It's spectrometer based on LIS with required redesign for ExoMars mission. The ISEM instrument is mounted on the rover's mast coaligned with the FOV (5°) of High Resolution camera (HRC). Spectrometers and are intended for study of the surface composition in the vicinity of the lander and rover. The spectrometers will provide measurements of selected surface areas in the spectral range of 1.15-3.3 μm. The spectral selection is provided by acoustooptic tunable filter (AOTF), which scans the spectral range sequentially. Electrical command of the AOTF allows selecting the spectral sampling, and permits a random access if needed.
Entry, Descent, and Landing Communications for the 2011 Mars Science Laboratory
NASA Technical Reports Server (NTRS)
Abilleira, Fernando; Shidner, Jeremy D.
2012-01-01
The Mars Science Laboratory (MSL), established as the most advanced rover to land on the surface of Mars to date, launched on November 26th, 2011 and arrived to the Martian Gale Crater during the night of August 5th, 2012 (PDT). MSL will investigate whether the landing region was ever suitable to support carbon-based life, and examine rocks, soil, and the atmosphere with a sophisticated suite of tools. This paper addresses the flight system requirement by which the vehicle transmitted indications of the following events using both X-band tones and UHF telemetry to allow identification of probable root causes should a mission anomaly have occurred: Heat-Rejection System (HRS) venting, completion of the cruise stage separation, turn to entry attitude, atmospheric deceleration, bank angle reversal commanded, parachute deployment, heatshield separation, radar ground acquisition, powered descent initiation, rover separation from the descent stage, and rover release. During Entry, Descent, and Landing (EDL), the flight system transmitted a UHF telemetry stream adequate to determine the state of the spacecraft (including the presence of faults) at 8 kbps initiating from cruise stage separation through at least one minute after positive indication of rover release on the surface of Mars. The flight system also transmitted X-band semaphore tones from Entry to Landing plus one minute although since MSL was occulted, as predicted, by Mars as seen from the Earth, Direct-To-Earth (DTE) communications were interrupted at approximately is approx. 5 min after Entry ( approximately 130 prior to Landing). The primary data return paths were through the Deep Space Network (DSN) for DTE and the existing Mars network of orbiting assets for UHF, which included the Mars Reconnaissance Orbiter (MRO), Mars Odyssey (ODY), and Mars Express (MEX) elements. These orbiters recorded the telemetry data stream and returned it back to Earth via the DSN. The paper also discusses the total power received during EDL and the robustness of the telecom design strategy used to ensure EDL communications coverage.
JPL-20180430-JPLf-0001-Vice President Pence Visits NASA Jet Propulsion Laboratory
2018-04-30
Vice President Mike Pence toured NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California on Saturday, April 28 with his wife, Karen, and their daughter, Charlotte. JPL is the birthplace of numerous past, present and future robotic missions. Pence saw and heard more about JPL missions, which support the nation’s goals of furthering exploration of the Moon and Mars. JPL Director Mike Watkins led the tour for Pence and his guests. Vice President Pence toured JPL’s Mission Control where engineers communicate with spacecraft across the solar system through NASA’s Deep Space Network. While there, Charlotte Pence uplinked commands to the Mars Curiosity rover to execute its next science activities. The signal took about seven minutes to reach the rover, which is about 80-million miles from Earth. Pence also saw the Spacecraft Assembly Facility, where the Mars 2020 mission hardware is being assembled in a giant “clean room.” Mars 2020 will not only look for signs of habitable conditions on Mars in the ancient past, but will also search for signs of past microbial life itself.
Inspection with Robotic Microscopic Imaging
NASA Technical Reports Server (NTRS)
Pedersen, Liam; Deans, Matthew; Kunz, Clay; Sargent, Randy; Chen, Alan; Mungas, Greg
2005-01-01
Future Mars rover missions will require more advanced onboard autonomy for increased scientific productivity and reduced mission operations cost. One such form of autonomy can be achieved by targeting precise science measurements to be made in a single command uplink cycle. In this paper we present an overview of our solution to the subproblems of navigating a rover into place for microscopic imaging, mapping an instrument target point selected by an operator using far away science camera images to close up hazard camera images, verifying the safety of placing a contact instrument on a sample or finding nearby safe points, and analyzing the data that comes back from the rover. The system developed includes portions used in the Multiple Target Single Cycle Instrument Placement demonstration at NASA Ames in October 2004, and portions of the MI Toolkit delivered to the Athena Microscopic Imager Instrument Team for the MER mission still operating on Mars today. Some of the component technologies are also under consideration for MSL mission infusion.
Size Comparison: Three Generations of Mars Rovers
2008-11-19
Full-scale models of three generations of NASA Mars rovers show the increase in size from the Sojourner rover of the Mars Pathfinder project, to the twin Mars Exploration Rovers Spirit and Opportunity, to the Mars Science Laboratory rover.
Newest is Biggest: Three Generations of NASA Mars Rovers
2008-11-19
Full-scale models of three generations of NASA Mars rovers show the increase in size from the Sojourner rover of the Mars Pathfinder project, to the twin Mars Exploration Rovers Spirit and Opportunity, to the Mars Science Laboratory rover.
MAPGEN: Mixed-Initiative Activity Planning for the Mars Exploration Rover Mission
NASA Technical Reports Server (NTRS)
Ai-Chang, Mitchell; Bresina, John; Hsu, Jennifer; Jonsson, Ari; Kanefsky, Bob; McCurdy, Michael; Morris, Paul; Rajan, Kanna; Vera, Alonso; Yglesias, Jeffrey
2004-01-01
This document describes the Mixed initiative Activity Plan Generation system MAPGEN. This system is one of the critical tools in the Mars Exploration Rover mission surface operations, where it is used to build activity plans for each of the rovers, each Martian day. The MAPGEN system combines an existing tool for activity plan editing and resource modeling, with an advanced constraint-based reasoning and planning framework. The constraint-based planning component provides active constraint and rule enforcement, automated planning capabilities, and a variety of tools and functions that are useful for building activity plans in an interactive fashion. In this demonstration, we will show the capabilities of the system and demonstrate how the system has been used in actual Mars rover operations. In contrast to the demonstration given at ICAPS 03, significant improvement have been made to the system. These include various additional capabilities that are based on automated reasoning and planning techniques, as well as a new Constraint Editor support tool. The Constraint Editor (CE) as part of the process for generating these command loads, the MAPGEN tool provides engineers and scientists an intelligent activity planning tool that allows them to more effectively generate complex plans that maximize the science return each day. The key to the effectiveness of the MAPGEN tool is an underlying constraint-based planning and reasoning engine.
Archiving Data From the 2003 Mars Exploration Rover Mission
NASA Astrophysics Data System (ADS)
Arvidson, R. E.
2002-12-01
The two Mars Exploration Rovers will touch down on the red planet in January 2004 and each will operate for at least 90 sols, traversing hundreds of meters across the surface and acquiring data from the Athena Science Payload (mast-based multi-spectral, stereo-imaging data and emission spectra; arm-based in-situ Alpha Particle X-Ray (APXS) and Mössbauer Spectroscopy, microscopic imaging, coupled with use of a rock abrasion tool) at a number of locations. In addition, the rovers will acquire science and engineering data along traverses to characterize terrain properties and perhaps be used to dig trenches. An "Analyst's Notebook" concept has been developed to capture, organize, archive and distribute raw and derived data sets and documentation (http://wufs.wustl.edu/rover). The Notebooks will be implemented in ways that will allow users to "playback" the mission, using executed commands to drive animated views of rover activities, and pop-up windows to show why particular observations were acquired, along with displays of raw and derived data products. In addition, the archive will include standard Planetary Data System files and software for processing to higher-level products. The Notebooks will exist both as an online system and as a set of distributable Digital Video Discs or other appropriate media. The Notebooks will be made available through the Planetary Data System within six months after the end of observations for the relevant rovers.
Accessing Information on the Mars Exploration Rovers Mission
NASA Astrophysics Data System (ADS)
Walton, J. D.; Schreiner, J. A.
2005-12-01
In January 2004, the Mars Exploration Rovers (MER) mission successfully deployed two robotic geologists - Spirit and Opportunity - to opposite sides of the red planet. Onboard each rover is an array of cameras and scientific instruments that send data back to Earth, where ground-based systems process and store the information. During the height of the mission, a team of about 250 scientists and engineers worked around the clock to analyze the collected data, determine a strategy and activities for the next day and then carefully compose the command sequences that would instruct the rovers in how to perform their tasks. The scientists and engineers had to work closely together to balance the science objectives with the engineering constraints so that the mission achieved its goals safely and quickly. To accomplish this coordinated effort, they adhered to a tightly orchestrated schedule of meetings and processes. To keep on time, it was critical that all team members were aware of what was happening, knew how much time they had to complete their tasks, and could easily access the information they need to do their jobs. Computer scientists and software engineers at NASA Ames Research Center worked closely with the mission managers at the Jet Propulsion Laboratory (JPL) to create applications that support the mission. One such application, the Collaborative Information Portal (CIP), helps mission personnel perform their daily tasks, whether they work inside mission control or the science areas at JPL, or in their homes, schools, or offices. With a three-tiered, service-oriented architecture (SOA) - client, middleware, and data repository - built using Java and commercial software, CIP provides secure access to mission schedules and to data and images transmitted from the Mars rovers. This services-based approach proved highly effective for building distributed, flexible applications, and is forming the basis for the design of future mission software systems. Almost two years after the landings on Mars, the rovers are still going strong, and CIP continues to provide data access to mission personnel.
Autonomous Rover Traverse and Precise Arm Placement on Remotely Designated Targets
NASA Technical Reports Server (NTRS)
Nesnas, Issa A.; Pivtoraiko, Mihail N.; Kelly, Alonzo; Fleder, Michael
2012-01-01
This software controls a rover platform to traverse rocky terrain autonomously, plan paths, and avoid obstacles using its stereo hazard and navigation cameras. It does so while continuously tracking a target of interest selected from 10 20 m away. The rover drives and tracks the target until it reaches the vicinity of the target. The rover then positions itself to approach the target, deploys its robotic arm, and places the end effector instrument on the designated target to within 2-3-cm accuracy of the originally selected target. This software features continuous navigation in a fairly rocky field in an outdoor environment and the ability to enable the rover to avoid large rocks and traverse over smaller ones. Using point-and-click mouse commands, a scientist designates targets in the initial imagery acquired from the rover s mast cameras. The navigation software uses stereo imaging, traversability analysis, path planning, trajectory generation, and trajectory execution. It also includes visual target tracking of a designated target selected from 10 m away while continuously navigating the rocky terrain. Improvements in this design include steering while driving, which uses continuous curvature paths. There are also several improvements to the traversability analyzer, including improved data fusion of traversability maps that result from pose estimation uncertainties, dealing with boundary effects to enable tighter maneuvers, and handling a wider range of obstacles. This work advances what has been previously developed and integrated on the Mars Exploration Rovers by using algorithms that are capable of traversing more rock-dense terrains, enabling tight, thread-the-needle maneuvers. These algorithms were integrated on the newly refurbished Athena Mars research rover, and were fielded in the JPL Mars Yard. Forty-three runs were conducted with targets at distances ranging from 5 to 15 m, and a success rate of 93% was achieved for placement of the instrument within 2-3 cm of the target.
Mobile robots IV; Proceedings of the Meeting, Philadelphia, PA, Nov. 6, 7, 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfe, W.J.; Chun, W.H.
1990-01-01
The present conference on mobile robot systems discusses high-speed machine perception based on passive sensing, wide-angle optical ranging, three-dimensional path planning for flying/crawling robots, navigation of autonomous mobile intelligence in an unstructured natural environment, mechanical models for the locomotion of a four-articulated-track robot, a rule-based command language for a semiautonomous Mars rover, and a computer model of the structured light vision system for a Mars rover. Also discussed are optical flow and three-dimensional information for navigation, feature-based reasoning trail detection, a symbolic neural-net production system for obstacle avoidance and navigation, intelligent path planning for robot navigation in an unknown environment,more » behaviors from a hierarchical control system, stereoscopic TV systems, the REACT language for autonomous robots, and a man-amplifying exoskeleton.« less
Preliminary Surface Thermal Design of the Mars 2020 Rover
NASA Technical Reports Server (NTRS)
Novak, Keith S.; Kempenaar, Jason G.; Redmond, Matthew J.; Bhandari, Pradeep
2015-01-01
The Mars 2020 rover, scheduled for launch in July 2020, is currently being designed at NASA's Jet Propulsion Laboratory. The Mars 2020 rover design is derived from the Mars Science Laboratory (MSL) rover, Curiosity, which has been exploring the surface of Mars in Gale Crater for over 2.5 years. The Mars 2020 rover will carry a new science payload made up of 7 instruments. In addition, the Mars 2020 rover is responsible for collecting a sample cache of Mars regolith and rock core samples that could be returned to Earth in a future mission. Accommodation of the new payload and the Sampling Caching System (SCS) has driven significant thermal design changes from the original MSL rover design. This paper describes the similarities and differences between the heritage MSL rover thermal design and the new Mars 2020 thermal design. Modifications to the MSL rover thermal design that were made to accommodate the new payload and SCS are discussed. Conclusions about thermal design flexibility are derived from the Mars 2020 preliminary thermal design experience.
Robust, Flexible Motion Control for the Mars Explorer Rovers
NASA Technical Reports Server (NTRS)
Maimone, Mark; Biesiadecki, Jeffrey
2007-01-01
The Mobility Flight Software, running on computers aboard the Mars Explorer Rover (MER) robotic vehicles Spirit and Opportunity, affords the robustness and flexibility of control to enable safe and effective operation of these vehicles in traversing natural terrain. It can make the vehicles perform specific maneuvers commanded from Earth, and/or can autonomously administer multiple aspects of mobility, including choice of motion, measurement of actual motion, and even selection of targets to be approached. Motion of a vehicle can be commanded by use of multiple layers of control, ranging from motor control at a low level, direct drive operations (e.g., motion along a circular arc, motion along a straight line, or turn in place) at an intermediate level to goal-position driving (that is, driving to a specified location) at a high level. The software can also perform high-level assessment of terrain and selection of safe paths across the terrain: this involves processing of the digital equivalent of a local traversability map generated from images acquired by stereoscopic pairs of cameras aboard the vehicles. Other functions of the software include interacting with the rest of the MER flight software and performing safety checks.
Experiences with operations and autonomy of the Mars Pathfinder Microrover.
NASA Astrophysics Data System (ADS)
Mishkin, A. H.; Morrison, J. C.; Nguyen, T. T.; Stone, H. W.; Cooper, B. K.; Wilcox, B. H.
The Microrover Flight Experiment (MFEX) is a NASA OACT (Office of Advanced Concepts and Technology) flight experiment which, integrated with the Mars Pathfinder (MPF) lander and spacecraft system, landed on Mars on July 4, 1997. In the succeeding 30 sols (1 sol = 1 Martian day), the Sojourner microrover accomplished all of its primary and extended mission objectives. After completion of the originally planned extended mission, MFEX continued to conduct a series of technology experiments, deploy its alpha proton X-ray spectrometer (APXS) on rocks and soil, and image both terrain features and the lander. This mission was conducted under the constraints of a once-per-sol opportunity for command and telemetry transmissions between the lander and Earth operators. As such, the MFEX rover was required to carry out its mission, including terrain navigation and contingency response, under supervised autonomous control. For example, goal locations were specified daily by human operators; the rover then safely traversed to these locations. During traverses, the rover autonomously detected and avoided rock, slope, and drop-off hazards, changing its path as needed before turning back towards its goal. This capability to operate in an unmodeled environment, choosing actions in response to sensor input to accomplish requested objectives, is unique among robotic space missions to date.
Instrument Deployment for Mars Rovers
NASA Technical Reports Server (NTRS)
Pedersen, Liam; Bualat, Maria; Kunz, C.; Lee, Susan; Sargent, Randy; Washington, Rich; Wright, Anne; Clancy, Daniel (Technical Monitor)
2002-01-01
Future Mars rovers, such as the planned 2009 MSL rover, require sufficient autonomy to robustly approach rock targets and place an instrument in contact with them. It took the 1997 Sojourner Mars rover between 3 and 5 communications cycles to accomplish this. This paper describes the technologies being developed and integrated onto the NASA Ames K9 prototype Mars rover to both accomplish this in one cycle, and to extend the complexity and duration of operations that a Mars rover can accomplish without intervention from mission control.
Multi-Target Single Cycle Instrument Placement
NASA Technical Reports Server (NTRS)
Pedersen, Liam; Smith, David E.; Deans, Matthew; Sargent, Randy; Kunz, Clay; Lees, David; Rajagopalan, Srikanth; Bualat, Maria
2005-01-01
This presentation is about the robotic exploration of Mars using multiple targets command cycle, safe instrument placements, safe operation, and K9 Rover which has a 6 wheel steer rocket-bogey chassis (FIDO, MER), 70% MER size, 1.2 GHz Pentium M laptop running Linux OS, Odometry and compass/inclinometer, CLARAty architecture, 5 DOF manipulator w/CHAMP microscopic camera, SciCams, NavCams and HazCams.
Curiosity: The Next Mars Rover Artist Concept
2011-05-19
This artist concept features NASA Mars Science Laboratory Curiosity rover, a mobile robot for investigating Mars past or present ability to sustain microbial life. The rover examines a rock on Mars with a set of tools at the end of the rover arm.
Delivering Images for Mars Rover Science Planning
NASA Technical Reports Server (NTRS)
Edmonds, Karina
2008-01-01
A methodology has been developed for delivering, via the Internet, images transmitted to Earth from cameras on the Mars Explorer Rovers, the Phoenix Mars Lander, the Mars Science Laboratory, and the Mars Reconnaissance Orbiter spacecraft. The images in question are used by geographically dispersed scientists and engineers in planning Rover scientific activities and Rover maneuvers pertinent thereto.
EXPLORING MARS WITH SOLAR-POWERED ROVERS
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
2006-01-01
The Mars Exploration Rover (MER) project landed two solar-powered rovers, "Spirit" and "Opportunity," on the surface of Mars in January of 2003. This talk reviews the history of solar-powered missions to Mars and looks at the science mission of the MER rovers, focusing on the solar energy and array performance.
Jolliff, B.; Knoll, A.; Morris, R.V.; Moersch, J.; McSween, H.; Gilmore, M.; Arvidson, R.; Greeley, R.; Herkenhoff, K.; Squyres, S.
2002-01-01
Blind field tests of the Field Integration Design and Operations (FIDO) prototype Mars rover were carried out 7-16 May 2000. A Core Operations Team (COT), sequestered at the Jet Propulsion Laboratory without knowledge of test site location, prepared command sequences and interpreted data acquired by the rover. Instrument sensors included a stereo panoramic camera, navigational and hazard-avoidance cameras, a color microscopic imager, an infrared point spectrometer, and a rock coring drill. The COT designed command sequences, which were relayed by satellite uplink to the rover, and evaluated instrument data. Using aerial photos and Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data, and information from the rover sensors, the COT inferred the geology of the landing site during the 18 sol mission, including lithologic diversity, stratigraphic relationships, environments of deposition, and weathering characteristics. Prominent lithologic units were interpreted to be dolomite-bearing rocks, kaolinite-bearing altered felsic volcanic materials, and basalt. The color panoramic camera revealed sedimentary layering and rock textures, and geologic relationships seen in rock exposures. The infrared point spectrometer permitted identification of prominent carbonate and kaolinite spectral features and permitted correlations to outcrops that could not be reached by the rover. The color microscopic imager revealed fine-scale rock textures, soil components, and results of coring experiments. Test results show that close-up interrogation of rocks is essential to investigations of geologic environments and that observations must include scales ranging from individual boulders and outcrops (microscopic, macroscopic) to orbital remote sensing, with sufficient intermediate steps (descent images) to connect in situ and remote observations.
NASA Astrophysics Data System (ADS)
Haltigin, T.; Hipkin, V.; Picard, M.
2016-12-01
Mars Sample Return (MSR) remains one of the highest priorities of the international planetary science community. While the overall mission architecture required for MSR is relatively well defined, there remain a number of open questions regarding its implementation. In preparing for an eventual MSR campaign, simulating portions of the sample collection mission can provide important insight to address existing knowledge gaps. In 2015 and 2016, the Canadian Space Agency (CSA) led robotic deployments to address a variety of technical, scientific, operational, and educational objectives. Here we report on the results. The deployments were conducted at a field site near Hanskville, UT, USA, chosen to satisfy scientific, technical, and logistical considerations. The geology of the region is dominated by Jurassic-aged sandstones and mudstones, indicative of an ancient sedimentary environment. Moreover, a series of linear topographically inverted features are present, similar to morphologies observed in particular Martian landscapes. On both Earth and Mars, these features are interpreted as lithified and exhumed river channels. A science operations center was established in London, ON, Canada, at Western University. Here, a science team of > 30 students and professionals - unaware of the rover's actual location - were responsible for generating daily science plans, requesting observations, and interpreting downloaded data, all while respecting Mars-realistic flight rules and constraints for power, scheduling, and data. Rover commanding was performed by an engineering team at CSA headquarters in St. Hubert, QC, Canada, while a small out-of-simulation field team was present on-site to ensure safe operations of the rover and to provide data transfers. Between the 2015 and 2016 campaigns, nearly five weeks of operations were conducted. The team successfully collected scientifically-selected samples to address the group objectives, and the rover demonstrated system integration and a variety of navigational techniques. Forward work involves laboratory-based validation of the returned samples to evaluate the efficiency of the in-simulation operational decision-making.
The Mars Hand Lens Imager (MAHLI) aboard the Mars rover, Curiosity
NASA Astrophysics Data System (ADS)
Edgett, K. S.; Ravine, M. A.; Caplinger, M. A.; Ghaemi, F. T.; Schaffner, J. A.; Malin, M. C.; Baker, J. M.; Dibiase, D. R.; Laramee, J.; Maki, J. N.; Willson, R. G.; Bell, J. F., III; Cameron, J. F.; Dietrich, W. E.; Edwards, L. J.; Hallet, B.; Herkenhoff, K. E.; Heydari, E.; Kah, L. C.; Lemmon, M. T.; Minitti, M. E.; Olson, T. S.; Parker, T. J.; Rowland, S. K.; Schieber, J.; Sullivan, R. J.; Sumner, D. Y.; Thomas, P. C.; Yingst, R. A.
2009-08-01
The Mars Science Laboratory (MSL) rover, Curiosity, is expected to land on Mars in 2012. The Mars Hand Lens Imager (MAHLI) will be used to document martian rocks and regolith with a 2-megapixel RGB color CCD camera with a focusable macro lens mounted on an instrument-bearing turret on the end of Curiosity's robotic arm. The flight MAHLI can focus on targets at working distances of 20.4 mm to infinity. At 20.4 mm, images have a pixel scale of 13.9 μm/pixel. The pixel scale at 66 mm working distance is about the same (31 μm/pixel) as that of the Mars Exploration Rover (MER) Microscopic Imager (MI). MAHLI camera head placement is dependent on the capabilities of the MSL robotic arm, the design for which presently has a placement uncertainty of ~20 mm in 3 dimensions; hence, acquisition of images at the minimum working distance may be challenging. The MAHLI consists of 3 parts: a camera head, a Digital Electronics Assembly (DEA), and a calibration target. The camera head and DEA are connected by a JPL-provided cable which transmits data, commands, and power. JPL is also providing a contact sensor. The camera head will be mounted on the rover's robotic arm turret, the DEA will be inside the rover body, and the calibration target will be mounted on the robotic arm azimuth motor housing. Camera Head. MAHLI uses a Kodak KAI-2020CM interline transfer CCD (1600 x 1200 active 7.4 μm square pixels with RGB filtered microlenses arranged in a Bayer pattern). The optics consist of a group of 6 fixed lens elements, a movable group of 3 elements, and a fixed sapphire window front element. Undesired near-infrared radiation is blocked using a coating deposited on the inside surface of the sapphire window. The lens is protected by a dust cover with a Lexan window through which imaging can be ac-complished if necessary, and targets can be illuminated by sunlight or two banks of two white light LEDs. Two 365 nm UV LEDs are included to search for fluores-cent materials at night. DEA and Onboard Processing. The DEA incorpo-rates the circuit elements required for data processing, compression, and buffering. It also includes all power conversion and regulation capabilities for both the DEA and the camera head. The DEA has an 8 GB non-volatile flash memory plus 128 MB volatile storage. Images can be commanded as full-frame or sub-frame and the camera has autofocus and autoexposure capa-bilities. MAHLI can also acquire 720p, ~7 Hz high definition video. Onboard processing includes options for Bayer pattern filter interpolation, JPEG-based compression, and focus stack merging (z-stacking). Malin Space Science Systems (MSSS) built and will operate the MAHLI. Alliance Spacesystems, LLC, designed and built the lens mechanical assembly. MAHLI shares common electronics, detector, and software designs with the MSL Mars Descent Imager (MARDI) and the 2 MSL Mast Cameras (Mastcam). Pre-launch images of geologic materials imaged by MAHLI are online at: http://www.msss.com/msl/mahli/prelaunch_images/.
Mars Rover Sample Return mission study
NASA Technical Reports Server (NTRS)
Bourke, Roger D.
1989-01-01
The Mars Rover/Sample Return mission is examined as a precursor to a manned mission to Mars. The value of precursor missions is noted, using the Apollo lunar program as an example. The scientific objectives of the Mars Rover/Sample Return mission are listed and the basic mission plans are described. Consideration is given to the options for mission design, launch configurations, rover construction, and entry and lander design. Also, the potential for international cooperation on the Mars Rover/Sample Return mission is discussed.
Curiosity Low-Angle Self-Portrait at Buckskin Drilling Site on Mount Sharp
2015-08-19
This low-angle self-portrait of NASA's Curiosity Mars rover shows the vehicle above the "Buckskin" rock target, where the mission collected its seventh drilled sample. The site is in the "Marias Pass" area of lower Mount Sharp. The scene combines dozens of images taken by Curiosity's Mars Hand Lens Imager (MAHLI) on Aug. 5, 2015, during the 1,065th Martian day, or sol, of the rover's work on Mars. The 92 component images are among MAHLI Sol 1065 raw images at http://mars.nasa.gov/msl/multimedia/raw/?s=1065&camera=MAHLI. For scale, the rover's wheels are 20 inches (50 centimeters) in diameter and about 16 inches (40 centimeters) wide. Curiosity drilled the hole at Buckskin during Sol 1060 (July 30, 2015). Two patches of pale, powdered rock material pulled from Buckskin are visible in this scene, in front of the rover. The patch closer to the rover is where the sample-handling mechanism on Curiosity's robotic arm dumped collected material that did not pass through a sieve in the mechanism. Sieved sample material was delivered to laboratory instruments inside the rover. The patch farther in front of the rover, roughly triangular in shape, shows where fresh tailings spread downhill from the drilling process. The drilled hole, 0.63 inch (1.6 centimeters) in diameter, is at the upper point of the tailings. The rover is facing northeast, looking out over the plains from the crest of a 20-foot (6-meter) hill that it climbed to reach the Marias Pass area. The upper levels of Mount Sharp are visible behind the rover, while Gale Crater's northern rim dominates the horizon on the left and right of the mosaic. A portion of this selfie cropped tighter around the rover is at PIA19808. Another version of the wide view, presented in a projection that shows the horizon as a circle, is at PIA19806. MAHLI is mounted at the end of the rover's robotic arm. For this self-portrait, the rover team positioned the camera lower in relation to the rover body than for any previous full self-portrait of Curiosity. This yielded a view that includes the rover's "belly," as in a partial self-portrait (PIA16137) taken about five weeks after Curiosity's August 2012 landing inside Mars' Gale Crater. Before sending Curiosity the arm-positioning commands for this Buckskin belly panorama, the team previewed the low-angle sequence of camera pointings on a test rover in California. A mosaic from that test is at PIA19810. This selfie at Buckskin does not include the rover's robotic arm beyond a portion of the upper arm held nearly vertical from the shoulder joint. Shadows from the rest of the arm and the turret of tools at the end of the arm are visible on the ground. With the wrist motions and turret rotations used in pointing the camera for the component images, the arm was positioned out of the shot in the frames or portions of frames used in this mosaic. This process was used previously in acquiring and assembling Curiosity self-portraits taken at sample-collection sites "Rocknest" (PIA16468), "John Klein" (PIA16937), "Windjana" (PIA18390) and "Mojave" (PIA19142). MAHLI was built by Malin Space Science Systems, San Diego. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover. http://photojournal.jpl.nasa.gov/catalog/PIA19807
WATER ON MARS: EVIDENCE FROM MER MISSION RESULTS
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
2006-01-01
The Mars Exploration Rover (MER) mission landed two rovers on Mars, equipped with a highly-capable suite of science instruments. The Spirit rover landed on the inside Gusev Crater on January 5, 2004, and the Opportunity rover three weeks later on Meridiani Planum. This paper summarizes some of the findings from the MER rovers related to the NASA science strategy of investigating past and present water on Mars.
Recent Accomplishments in Mars Exploration: The Rover Perspective
NASA Astrophysics Data System (ADS)
McLennan, S. M.; McSween, H. Y.
2018-04-01
Mobile rovers have revolutionized our understanding of Mars geology by identifying habitable environments and addressing critical questions related to Mars science. Both the advances and limitations of rovers set the scene for Mars Sample Return.
NASA Technical Reports Server (NTRS)
2004-01-01
This map of the Mars Exploration Rover Opportunity's new neighborhood at Meridiani Planum, Mars, shows the surface features used to locate the rover. By imaging these 'bumps' on the horizon from the perspective of the rover, mission members were able to pin down the rover's precise location. The image consists of data from the Mars Global Surveyor orbiter, the Mars Odyssey orbiter and the descent image motion estimation system located on the bottom of the rover.
NASA Mars 2020 Rover Mission: New Frontiers in Science
NASA Technical Reports Server (NTRS)
Calle, Carlos I.
2014-01-01
The Mars 2020 rover mission is the next step in NASAs robotic exploration of the red planet. The rover, based on the Mars Science Laboratory Curiosity rover now on Mars, will address key questions about the potential for life on Mars. The mission would also provide opportunities to gather knowledge and demonstrate technologies that address the challenges of future human expeditions to Mars.Like the Mars Science Laboratory rover, which has been exploring Mars since 2012, the Mars 2020 spacecraft will use a guided entry, descent, and landing system which includes a parachute, descent vehicle, and, during the provides the ability to land a very large, heavy rover on the surface of Mars in a more precise landing area. The Mars 2020 mission is designed to accomplish several high-priority planetary science goals and will be an important step toward meeting NASAs challenge to send humans to Mars in the 2030s. The mission will conduct geological assessments of the rover's landing site, determine the habitability of the environment, search for signs of ancient Martian life, and assess natural resources and hazards for future human explorers. The science instruments aboard the rover also will enable scientists to identify and select a collection of rock and soil samples that will be stored for potential return to Earth in the future. The rover also may help designers of a human expedition understand the hazards posed by Martian dust and demonstrate how to collect carbon dioxide from the atmosphere, which could be a valuable resource for producing oxygen and rocket fuel.
Test Rover Aids Preparations in California for Curiosity Rover on Mars
2012-05-11
NASA Mars Science Laboratory mission team members ran mobility tests on the test rover called Scarecrow on sand dunes near Death Valley, Ca. in early May 2012 in preparation for operating the Curiosity rover, currently en route to Mars.
Top of Mars Rover Curiosity Remote Sensing Mast
2011-04-06
The remote sensing mast on NASA Mars rover Curiosity holds two science instruments for studying the rover surroundings and two stereo navigation cameras for use in driving the rover and planning rover activities.
Mars Rover/Sample Return (MRSR) Mission: Mars Rover Technology Workshop
NASA Technical Reports Server (NTRS)
1987-01-01
A return to the surface of Mars has long been an objective of NASA mission planners. The ongoing Mars Rover and Sample Return (MRSR) mission study represents the latest stage in that interest. As part of NASA's preparation for a possible MRSR mission, a technology planning workshop was held to attempt to define technology requirements, options, and preliminary plans for the principal areas of Mars rover technology. The proceedings of that workshop are presented.
Mars Exploration Rover, Vertical Artist Concept
2003-12-15
An artist's concept portrays a NASA Mars Exploration Rover on the surface of Mars. Two rovers, Spirit and Opportunity, will reach Mars in January 2004. Each has the mobility and toolkit to function as a robotic geologist. http://photojournal.jpl.nasa.gov/catalog/PIA04928
Promoting Real-Time Science in the Classroom using Wireless PDA Technology
NASA Technical Reports Server (NTRS)
Matusow, David; Sparmo, Joe; Weidow, Dave; Obenschain, Arthur F. (Technical Monitor)
2002-01-01
The year is 2004, NASA has landed and deployed a fleet of rovers on the surface of Mars to continue the exploration of that planet and prepare the way for human visitors. Middle school students at Milton Elementary have been following the mission through the media and Internet as part of Mr. Johnson's Earth and space sciences class. The kids have been working in teams to track the rovers as they move across the surface of Mars on a scale model of the landing site they built from sand and rocks using pictures and video downloaded from the Internet. They also built their own version of a rover that can be driven around the model. The time is 3:36pm. Jim and a couple of his fellow students from class are sitting in the cafeteria waiting for a student council meeting to begin. Mary and several others are on the bus riding home. Kathy is in her father's car waiting to leave the parking lot. On Mars, Rover-3 has just stopped and issued an alert to ground control at NASA's Jet Propulsion Laboratory (JPL). Back at Milton Elementary chimes can be heard going off in the cafeteria, on the school bus, and in Kathy's car. The students are familiar with the drill and each brings up the Mars mission status display on their hand-held PDA device. They've been using their PDAs (those Palm devices that seem to be everywhere today) to obtain real-time position information for each of the rovers throughout the mission. The mission status display tells them that Rover-3 has stopped on the edge of a small gully and isn't quite sure what to do. The students begin considering the options amongst themselves. Should the rover just drive through the gully? If it does, what happens if it gets stuck? Maybe it should turnaround and look for away around the gully? Trough questions. Real questions. Real problems. The students know they will need to be prepared to discuss the options and conduct their own simulations using the models they built in Mr. Johnson's class tomorrow. Much the same way engineers and scientists will be working to solve the problem at NASA. It's a couple of days later, NASA has made a decision on what to do and has issued new commands for Rover-3 to execute at 9:15am Milton Elementary time. Interestingly, NASA's solution to the problem differs from the one favored by the students. 9:16am, chimes can be heard going off throughout Milton Elementary.
Mars Science Laboratory Frame Manager for Centralized Frame Tree Database and Target Pointing
NASA Technical Reports Server (NTRS)
Kim, Won S.; Leger, Chris; Peters, Stephen; Carsten, Joseph; Diaz-Calderon, Antonio
2013-01-01
The FM (Frame Manager) flight software module is responsible for maintaining the frame tree database containing coordinate transforms between frames. The frame tree is a proper tree structure of directed links, consisting of surface and rover subtrees. Actual frame transforms are updated by their owner. FM updates site and saved frames for the surface tree. As the rover drives to a new area, a new site frame with an incremented site index can be created. Several clients including ARM and RSM (Remote Sensing Mast) update their related rover frames that they own. Through the onboard centralized FM frame tree database, client modules can query transforms between any two frames. Important applications include target image pointing for RSM-mounted cameras and frame-referenced arm moves. The use of frame tree eliminates cumbersome, error-prone calculations of coordinate entries for commands and thus simplifies flight operations significantly.
The MITy micro-rover: Sensing, control, and operation
NASA Technical Reports Server (NTRS)
Malafeew, Eric; Kaliardos, William
1994-01-01
The sensory, control, and operation systems of the 'MITy' Mars micro-rover are discussed. It is shown that the customized sun tracker and laser rangefinder provide internal, autonomous dead reckoning and hazard detection in unstructured environments. The micro-rover consists of three articulated platforms with sensing, processing and payload subsystems connected by a dual spring suspension system. A reactive obstacle avoidance routine makes intelligent use of robot-centered laser information to maneuver through cluttered environments. The hazard sensors include a rangefinder, inclinometers, proximity sensors and collision sensors. A 486/66 laptop computer runs the graphical user interface and programming environment. A graphical window displays robot telemetry in real time and a small TV/VCR is used for real time supervisory control. Guidance, navigation, and control routines work in conjunction with the mapping and obstacle avoidance functions to provide heading and speed commands that maneuver the robot around obstacles and towards the target.
Simulation of Hazards and Poses for a Rocker-Bogie Rover
NASA Technical Reports Server (NTRS)
Backes, Paul; Norris, Jeffrey; Powell, Mark; Tharp, Gregory
2004-01-01
Provisions for specification of hazards faced by a robotic vehicle (rover) equipped with a rocker-bogie suspension, for prediction of collisions between the vehicle and the hazards, and for simulation of poses of the vehicle at selected positions on the terrain have been incorporated into software that simulates the movements of the vehicle on planned paths across the terrain. The software in question is that of the Web Interface for Telescience (WITS), selected aspects of which have been described in a number of prior NASA Tech Briefs articles. To recapitulate: The WITS is a system of computer software that enables scientists, located at geographically dispersed computer terminals connected to the World Wide Web, to command instrumented robotic vehicles (rovers) during exploration of Mars and perhaps eventually of other planets. The WITS also has potential for adaptation to terrestrial use in telerobotics and other applications that involve computer-based remote monitoring, supervision, control, and planning.
Mars Mission Surface Operation Simulation Testing of Lithium-Ion Batteries
NASA Technical Reports Server (NTRS)
Smart, M. C.; Bugga, R.; Whitcanack, L. D.; Chin, K. B.; Davies, E. D.; Surampudi, S.
2003-01-01
The objectives of this program are to 1) Assess viability of using lithium-ion technology for future NASA applications, with emphasis upon Mars landers and rovers which will operate on the planetary surface; 2) Support the JPL 2003 Mars Exploration Rover program to assist in the delivery and testing of a 8 AHr Lithium-Ion battery (Lithion/Yardney) which will power the rover; 3) Demonstrate applicability of using lithium-ion technologyfor future Mars applications: Mars 09 Science Laboratory (Smart Lander) and Future Mars Surface Operations (General). Mission simulation testing was carried out for cells and batteries on the Mars Surveyor 2001 Lander and the 2003 Mars Exploration Rover.
2003-06-10
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and Mars Exploration Rover 2 (MER-A) are ready for the third launch attempt after weather concerns postponed earlier attempts. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.
2003-05-10
The backshell for the Mars Exploration Rover 1 (MER-1) is moved toward the rover (foreground, left). The backshell is a protective cover for the rover. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.
Mars Science Laboratory Rover System Thermal Test
NASA Technical Reports Server (NTRS)
Novak, Keith S.; Kempenaar, Joshua E.; Liu, Yuanming; Bhandari, Pradeep; Dudik, Brenda A.
2012-01-01
On November 26, 2011, NASA launched a large (900 kg) rover as part of the Mars Science Laboratory (MSL) mission to Mars. The MSL rover is scheduled to land on Mars on August 5, 2012. Prior to launch, the Rover was successfully operated in simulated mission extreme environments during a 16-day long Rover System Thermal Test (STT). This paper describes the MSL Rover STT, test planning, test execution, test results, thermal model correlation and flight predictions. The rover was tested in the JPL 25-Foot Diameter Space Simulator Facility at the Jet Propulsion Laboratory (JPL). The Rover operated in simulated Cruise (vacuum) and Mars Surface environments (8 Torr nitrogen gas) with mission extreme hot and cold boundary conditions. A Xenon lamp solar simulator was used to impose simulated solar loads on the rover during a bounding hot case and during a simulated Mars diurnal test case. All thermal hardware was exercised and performed nominally. The Rover Heat Rejection System, a liquid-phase fluid loop used to transport heat in and out of the electronics boxes inside the rover chassis, performed better than predicted. Steady state and transient data were collected to allow correlation of analytical thermal models. These thermal models were subsequently used to predict rover thermal performance for the MSL Gale Crater landing site. Models predict that critical hardware temperatures will be maintained within allowable flight limits over the entire 669 Sol surface mission.
Targeting and Localization for Mars Rover Operations
NASA Technical Reports Server (NTRS)
Powell, Mark W.; Crockett, Thomas; Fox, Jason M.; Joswig, Joseph C.; Norris, Jeffrey S.; Rabe, Kenneth J.; McCurdy, Michael; Pyrzak, Guy
2006-01-01
In this work we discuss how the quality of localization knowledge impacts the remote operation of rovers on the surface of Mars. We look at the techniques of localization estimation used in the Mars Pathfinder and Mars Exploration Rover missions. We examine the motivation behind the modes of targeting for different types of activities, such as navigation, remote science, and in situ science. We discuss the virtues and shortcomings of existing approaches and new improvements in the latest operations tools used to support the Mars Exploration Rover missions and rover technology development tasks at the Jet Propulsion Laboratory. We conclude with future directions we plan to explore in improving the localization knowledge available for operations and more effective targeting of rovers and their instrument payloads.
Thermal Performance of the Mars Science Laboratory Rover During Mars Surface Operations
NASA Technical Reports Server (NTRS)
Novak, Keith S.; Kempenaar, Joshua E.; Liu, Yuanming; Bhandari, Pradeep; Lee, Chern-Jiin
2013-01-01
On November 26, 2011, NASA launched a large (900 kg) rover as part of the Mars Science Laboratory (MSL) mission to Mars. Eight months later, on August 5, 2012, the MSL rover (Curiosity) successfully touched down on the surface of Mars. As of the writing of this paper, the rover had completed over 200 Sols of Mars surface operations in the Gale Crater landing site (4.5 deg S latitude). This paper describes the thermal performance of the MSL Rover during the early part of its two Earth-0.year (670 Sols) prime surface mission. Curiosity landed in Gale Crater during early Spring (Ls=151) in the Southern Hemisphere of Mars. This paper discusses the thermal performance of the rover from landing day (Sol 0) through Summer Solstice (Sol 197) and out to Sol 204. The rover surface thermal design performance was very close to pre-landing predictions. The very successful thermal design allowed a high level of operational power dissipation immediately after landing without overheating and required a minimal amount of survival heating. Early morning operations of cameras and actuators were aided by successful heating activities. MSL rover surface operations thermal experiences are discussed in this paper. Conclusions about the rover surface operations thermal performance are also presented.
Thermal Performance of the Mars Science Laboratory Rover During Mars Surface Operations
NASA Technical Reports Server (NTRS)
Novak, Keith S.; Kempenaar, Joshua E.; Liu, Yuanming; Bhandari, Pradeep; Lee, Chern-Jiin
2013-01-01
On November 26, 2011, NASA launched a large (900 kg) rover as part of the Mars Science Laboratory (MSL) mission to Mars. Eight months later, on August 5, 2012, the MSL rover (Curiosity) successfully touched down on the surface of Mars. As of the writing of this paper, the rover had completed over 200 Sols of Mars surface operations in the Gale Crater landing site (4.5 degrees South latitude). This paper describes the thermal performance of the MSL Rover during the early part of its two Earth-0.year (670 Sols) prime surface mission. Curiosity landed in Gale Crater during early Spring (Solar longitude=151) in the Southern Hemisphere of Mars. This paper discusses the thermal performance of the rover from landing day (Sol 0) through Summer Solstice (Sol 197) and out to Sol 204. The rover surface thermal design performance was very close to pre-landing predictions. The very successful thermal design allowed a high level of operational power dissipation immediately after landing without overheating and required a minimal amount of survival heating. Early morning operations of cameras and actuators were aided by successful heating activities. MSL rover surface operations thermal experiences are discussed in this paper. Conclusions about the rover surface operations thermal performance are also presented.
Opportunity Late Afternoon View of Mars
2012-02-03
NASA Mars Exploration Rover Opportunity captured this low-light raw image during the late afternoon of the rover 2,847th Martian sol Jan. 27, 2012. The rover is positioned for the Mars winter at Greeley Haven.
The use of harmonic drives on NASA's Mars Exploration Rover
NASA Technical Reports Server (NTRS)
Krishnan, S.; Voorhees, C.
2001-01-01
The Mars Exploration Rover (MER) mission will send two 185 kg rovers to Mars in 2003 to continue the scientific community's search for evidence of past water on Mars. These twin robotic vehicles will carry harmonic drives and their performance will be characterized at various temperatures, speeds and loads.
NASA to Launch Mars Rover in 2020 Artist Concept
2016-07-14
NASA's Mars 2020 Project will re-use the basic engineering of NASA's Mars Science Laboratory/Curiosity to send a different rover to Mars, with new objectives and instruments. This artist's concept depicts the top of the 2020 rover's mast. http://photojournal.jpl.nasa.gov/catalog/PIA20760
The Athena Mars Rover Science Payload
NASA Technical Reports Server (NTRS)
Squyes, S. W.; Arvidson, R.; Bell, J. F., III; Carr, M.; Christensen, P.; DesMarais, D.; Economou, T.; Gorevan, S.; Klingelhoefer, G.; Haskin, L.
1998-01-01
The Mars Surveyor missions that will be launched in April of 2001 will include a highly capable rover that is a successor to the Mars Pathfinder mission's Sojourner rover. The design goals for this rover are a total traverse distance of at least 10 km and a total lifetime of at least one Earth year. The rover's job will be to explore a site in Mars' ancient terrain, searching for materials likely to preserve a record of ancient martian water, climate, and possibly biology. The rover will collect rock and soil samples, and will store them for return to Earth by a subsequent Mars Surveyor mission in 2005. The Athena Mars rover science payload is the suite of scientific instruments and sample collection tools that will be used to perform this job. The specific science objectives that NASA has identified for the '01 rover payload are to: (1) Provide color stereo imaging of martian surface environments, and remotely-sensed point discrimination of mineralogical composition. (2) Determine the elemental and mineralogical composition of martian surface materials. (3) Determine the fine-scale textural properties of these materials. (4) Collect and store samples. The Athena payload has been designed to meet these objectives. The focus of the design is on field operations: making sure the rover can locate, characterize, and collect scientifically important samples in a dusty, dirty, real-world environment. The topography, morphology, and mineralogy of the scene around the rover will be revealed by Pancam/Mini-TES, an integrated imager and IR spectrometer. Pancam views the surface around the rover in stereo and color. It uses two high-resolution cameras that are identical in most respects to the rover's navigation cameras. The detectors are low-power, low-mass active pixel sensors with on-chip 12-bit analog-to-digital conversion. Filters provide 8-12 color spectral bandpasses over the spectral region from 0.4 to 1.1 micron Narrow-angle optics provide an angular resolution of 0.28 mrad/pixel, nearly a factor of four higher than that of the Mars Pathfinder and Mars Surveyor '98 cameras. Image compression will be performed using a wavelet compression algorithm. The Mini-Thermal Emission Spectrometer (Mini-TES) is a point spectrometer operating in -the thermal IR. It produces high spectral resolution (5 /cm) image cubes with a wavelength range of 5-40 gm, a nominal signal/noise ratio of 500:1, and a maximum angular resolution of 7 mrad (7 cm at a distance of 10 in). The wavelength region over which it operates samples the diagnostic fundamental absorption features of rockforming minerals, and also provides some capability to see through dust coatings that could tend to obscure spectral features. The mineralogical information that Mini-TES provides will be used to select from a distance the rocks and soils that will be investigated in more detail and ultimately sampled. Mini-TES is derived from the MO/MGS TES instrument, but is significantly smaller and simpler. The instrument uses an 8-cm Cassegrain telescope, a Michelson interferometer, and uncooled pyroelectric detectors. Along with its mineralogical capabilities, Mini-TES can provide information on the thermophysical properties of rocks and soils. Viewing upward, it can also provide temperature profiles through the martian atmospheric boundary layer. Elemental and Mineralogical Composition: Once promising samples have been identified from a distance using Pancam/Mini-TES, they will be studied in detail using up to three compositional sensors that can be placed directly against them by an Instrument Arm. The two compositional sensors, presently on the payload are an Alpha-Proton-X-Ray Spectrometer (APXS), and a Mossbauer Spectrometer. The APXS is derived closely from the instrument that flew on Mars Pathfinder. Radioactive alpha sources and three detection modes (alpha, proton, and x-ray) provide elemental abundances of rocks and soils to complement and constrain mineralogical data. The Athena APXS will have a revised mechanical design that will cut down significantly on backscattering of alpha particles from martian atmospheric carbon. It will also include a target of known elemental composition that will be used for calibration purposes. The Athena Mossbauer Spectrometer is a diagnostic instrument for the mineralogy and oxidation state of Fe-bearing phases, which are particularly important on Mars. The instrument measures the resonant absorption of gamma rays produced by a Co-57 source to determine splitting of nuclear energy levels in Fe atoms that is related to the electronic environment surrounding them. It has been under development for space flight for many years at the Technical University of Darmstadt. The Mossbauer Spectrometer (and the other arm instruments) will be able to view a small permanent magnet array that will attract magnetic particles in the martian soil. The payload may also include a Raman Spectrometer. If included, the Raman Spectrometer will provide precise identification of major and minor mineral phases. It requires no sample preparation, and is also sensitive to organics. Fine-Scale Texture: The Instrument Arm a also carries a Microscopic Imager that will obtain high-resolution monochromatic images of the same materials for which compositional data will be obtained. Its spatial resolution is 20 micron/pixel over a 1 cm depth of field, and 40 micron/pixel over a 1-cm depth of field. Like Pancam, it uses the same active pixel sensor detectors and electronics as the rover's navigation cameras. The Instrument Arm is a three degree-of-freedom arm that uses designs and components from the Mars Pathfinder and Mars Surveyor '98 projects. Its primary function is instrument positioning. Along with the instruments noted above, it also carries a brush that can be used to remove dust and other loose coatings from rocks. Sample Collection and Storage: Martian rock and soil samples will be collected using a low-power rotary coring drill called the Mini-Corer. An important characteristic of this device is that it can obtain intact samples of rock from up to 5 cm within strong boulders and bedrock, Nominal core dimensions are 8xl7 mm. The Mini-Corer drills a core to the commanded depth in a rock, shears it off, retains it, and extracts it. It can also acquire samples of loose soil, using soil sample cups that are pressed downward into loose material. The Mini-Corer can drill at angles from vertical to 45' off vertical. It has six interchangeable bits for long life. Mechanical damage to the sample during drilling is minimal, and heating is negligible. After acquisition, the sample may be viewed by the arm instruments, and/or placed in one of 104 compartments in the Sample Container. A subset of the acquired samples may be replaced with other samples obtained later if desired. The Sample Container has no moving parts, and is mounted external to the rover for easy removal by the Mars Surveyor 2005 flight system. Operation of the rover will make extensive use of automated onboard navigation and hazard avoidance capabilities. Otherwise, use of onboard autonomy is minimal. Data downlink capability is about 40 Mbit/sol, and the use of the Mars Surveyor '01 orbiter for data relay imposes a limit of at most two command cycles per sol. Because of the significant amount of time available between command cycles, all payload elements will be operated sequentially, rather than in parallel.; this approach also significantly simplifies operations and minimizes peak power usage. The landing site for the '01 rover has not been selected yet. Site selection will make as full use as possible of Mars Global Surveyor data, and will involve substantial input from the broad Mars science community. Summary: The following table describes the mass, power, providers, and key scientific objectives of all the major elements of the Athena payload. Additional Athena payload information may be found at: http://astrosun.tn.cornell.edu/ athena/index.html. Additional information contained in the original.
Bright Days Ahead for Curiosity Mars Rover
2011-03-18
This image shows preparation for March 2011 testing of the Mars Science Laboratory rover, Curiosity, in a space-simulation chamber; the rover will go through operational sequences in environmental conditions similar to what it will experience on Mars.
Opportunity Rover Nears Mars Marathon Feat
2015-02-10
In February 2015, NASA Mars Exploration Rover Opportunity is approaching a cumulative driving distance on Mars equal to the length of a marathon race. This map shows the rover position relative to where it could surpass that distance.
A Mars Rover Mission Simulation on Kilauea Volcano
NASA Technical Reports Server (NTRS)
Stoker, Carol; Cuzzi, Jeffery N. (Technical Monitor)
1995-01-01
A field experiment to simulate a rover mission on Mars was performed using the Russian Marsokhod rover deployed on Kilauea Volcano HI in February, 1995. A Russian Marsokhod rover chassis was equipped with American avionics equipment, stereo cameras on a pan and tilt platform, a digital high resolution body-mounted camera, and a manipulator arm on which was mounted a camera with a close-up lens. The six wheeled rover is 2 meters long and has a mass of 120 kg. The imaging system was designed to simulate that used on the planned "Mars Together" mission. The rover was deployed on Kilauea Volcano HI and operated from NASA Ames by a team of planetary geologists and exobiologists. Two modes of mission operations were simulated for three days each: (1) long time delay, low data bandwidth (simulating a Mars mission), and (2) live video, wide-bandwidth data (allowing active control simulating a Lunar rover mission or a Mars rover mission controlled from on or near the Martian surface). Simulated descent images (aerial photographs) were used to plan traverses to address a detailed set of science questions. The actual route taken was determined by the science team and the traverse path was frequently changed in response to the data acquired and to unforeseen operational issues. Traverses were thereby optimized to efficiently answer scientific questions. During the Mars simulation, the rover traversed a distance of 800 m. Based on the time delay between Earth and Mars, we estimate that the same operation would have taken 30 days to perform on Mars. This paper will describe the mission simulation and make recommendations about incorporating rovers into the Mars surveyor program.
Computer-Design Drawing for NASA 2020 Mars Rover
2016-07-15
NASA's 2020 Mars rover mission will go to a region of Mars thought to have offered favorable conditions long ago for microbial life, and the rover will search for signs of past life there. It will also collect and cache samples for potential return to Earth, for many types of laboratory analysis. As a pioneering step toward how humans on Mars will use the Red Planet's natural resources, the rover will extract oxygen from the Martian atmosphere. This 2016 image comes from computer-assisted-design work on the 2020 rover. The design leverages many successful features of NASA's Curiosity rover, which landed on Mars in 2012, but it adds new science instruments and a sampling system to carry out the new goals for the mission. http://photojournal.jpl.nasa.gov/catalog/PIA20759
NASA Technical Reports Server (NTRS)
2003-01-01
January 28, 2003The Mars Exploration Rover -2 is moved to a workstand in the Payload Hazardous Servicing Facility. Set to launch in 2003, the Mars. Exploration Rover Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, 2003, and the second rover a window opening June 25, 2003.Curiosity Mars Rover Drilling Into Its Second Rock
2013-06-05
This frame from an animation from NASA Mars rover Curiosity shows the rover drilling into rock target Cumberland. The drilling was performed during the 279th Martian day, or sol, of the Curiosity work on Mars May 19, 2013.
JPL-20170801-MSLf-0001-Rover POV Five Years of Curiosity on Mars
2017-08-02
Five years of images from the Mars Science Laboratory rover Curiosity's Hazard Avoidance Camera (Hazcam) were used to create this time-lapse movie. An inset map shows the rover's location in Mars' Gale Crater.
Preparing for Solar and Thermal Testing of Curiosity Mars Rover
2011-03-18
This image shows preparation for March 2011 testing of the Mars Science Laboratory rover, Curiosity, in a space-simulation chamber; the rover will go through operational sequences in environmental conditions similar to what it will experience on Mars.
2003-05-15
KENNEDY SPACE CENTER, FLA. - Assembly of the backshell and heat shield surrounding the Mars Exploration Rover 1 (MER-1) is complete. The resulting aeroshell will protect the rover on its journey to Mars. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.
NASA Technical Reports Server (NTRS)
Wales, Roxana C.
2005-01-01
This viewgraph presentation summarizes the scheduling and planning difficulties inherent in operating the Mars Exploration Rovers (MER) during the overlapping terrestrial day and Martian sol. The presentation gives special empahsis to communication between the teams controlling the rovers from Earth, and keeping track of time on the two planets.
Design of a Mars rover and sample return mission
NASA Technical Reports Server (NTRS)
Bourke, Roger D.; Kwok, Johnny H.; Friedlander, Alan
1990-01-01
The design of a Mars Rover Sample Return (MRSR) mission that satisfies scientific and human exploration precursor needs is described. Elements included in the design include an imaging rover that finds and certifies safe landing sites and maps rover traverse routes, a rover that operates the surface with an associated lander for delivery, and a Mars communications orbiter that allows full-time contact with surface elements. A graph of MRSR candidate launch vehice performances is presented.
Rover-based visual target tracking validation and mission infusion
NASA Technical Reports Server (NTRS)
Kim, Won S.; Steele, Robert D.; Ansar, Adnan I.; Ali, Khaled; Nesnas, Issa
2005-01-01
The Mars Exploration Rovers (MER'03), Spirit and Opportunity, represent the state of the art in rover operations on Mars. This paper presents validation experiments of different visual tracking algorithms using the rover's navigation camera.
A Rover Mobility Platform with Autonomous Capability to Enable Mars Sample Return
NASA Astrophysics Data System (ADS)
Fulford, P.; Langley, C.; Shaw, A.
2018-04-01
The next step in understanding Mars is sample return. In Fall 2016, the CSA conducted an analogue deployment using the Mars Exploration Science Rover. An objective was to demonstrate the maturity of the rover's guidance, navigation, and control.
Using Planning, Scheduling and Execution for Autonomous Mars Rover Operations
NASA Technical Reports Server (NTRS)
Estlin, Tara A.; Gaines, Daniel M.; Chouinard, Caroline M.; Fisher, Forest W.; Castano, Rebecca; Judd, Michele J.; Nesnas, Issa A.
2006-01-01
With each new rover mission to Mars, rovers are traveling significantly longer distances. This distance increase raises not only the opportunities for science data collection, but also amplifies the amount of environment and rover state uncertainty that must be handled in rover operations. This paper describes how planning, scheduling and execution techniques can be used onboard a rover to autonomously generate and execute rover activities and in particular to handle new science opportunities that have been identified dynamically. We also discuss some of the particular challenges we face in supporting autonomous rover decision-making. These include interaction with rover navigation and path-planning software and handling large amounts of uncertainty in state and resource estimations. Finally, we describe our experiences in testing this work using several Mars rover prototypes in a realistic environment.
Entry Guidance for the 2011 Mars Science Laboratory Mission
NASA Technical Reports Server (NTRS)
Mendeck, Gavin F.; Craig, Lynn E.
2011-01-01
The 2011 Mars Science Laboratory will be the first Mars mission to attempt a guided entry to safely deliver the rover to a touchdown ellipse of 25 km x 20 km. The Entry Terminal Point Controller guidance algorithm is derived from the final phase Apollo Command Module guidance and, like Apollo, modulates the bank angle to control the range flown. For application to Mars landers which must make use of the tenuous Martian atmosphere, it is critical to balance the lift of the vehicle to minimize the range error while still ensuring a safe deploy altitude. An overview of the process to generate optimized guidance settings is presented, discussing improvements made over the last nine years. Key dispersions driving deploy ellipse and altitude performance are identified. Performance sensitivities including attitude initialization error and the velocity of transition from range control to heading alignment are presented.
2003-06-09
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the launch tower begins to roll back from the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload in preparation for a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.
2003-06-09
KENNEDY SPACE CENTER, FLA. - The launch tower on Launch Complex 17-A, Cape Canaveral Air Force Station, clears the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload in preparation for a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.
2003-06-09
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are in the clear after tower rollback in preparation for a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.
2003-06-10
KENNEDY SPACE CENTER, FLA. - The Delta II rocket with its Mars Exploration Rover (MER-A) payload leaps off the launch pad into the blue sky to begin its journey to Mars. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.
2003-06-10
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are free of the tower and ready for launch. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.
2003-06-10
KENNEDY SPACE CENTER, FLA. - With smoke and steam billowing beneath, the Delta II rocket with its Mars Exploration Rover (MER-A) payload leaps off the launch pad into the blue sky to begin its journey to Mars. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.
2003-06-10
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are free of the tower (right) and ready for launch. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.
2003-06-10
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the launch tower begins to roll back from the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload in preparation for another launch attempt. The first two attempts were postponed due to weather concerns. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.
2003-06-10
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are viewed as the launch tower overhead rolls back. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.
2003-06-10
KENNEDY SPACE CENTER, FLA. - The Delta II rocket with its Mars Exploration Rover (MER-A) payload breaks forth from the smoke and steam into the blue sky to begin its journey to Mars. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25
2003-06-09
KENNEDY SPACE CENTER, FLA. - The Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload is viewed from under the launch tower as it moves away on Launch Complex 17-A, Cape Canaveral Air Force Station. This will be a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.
2003-06-09
KENNEDY SPACE CENTER, FLA. - The launch tower (right) on Launch Complex 17-A, Cape Canaveral Air Force Station, has been rolled back from the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload (left) in preparation for a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.
2003-06-09
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload waits for rollback of the launch tower in preparation for a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.
2003-06-10
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the launch tower rolls back from the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload in preparation for another launch attempt. The first two attempts, June 8 and June 9, were postponed due to weather concerns. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.
2003-07-07
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the rover "Opportunity" for the second Mars Exploration Rover mission launches at 11:18:15 p.m. EDT. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rover’s prime mission is planned to last three months on Mars.
2003-01-28
KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers lift the cover from the Mars Exploration Rover -2. Set to launch in 2003, the Mars Exploration Rover Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, 2003, and the second rover a window opening June 25, 2003.
Mars Exploration Rover (MER) aeroshell
2003-01-31
In the Payload Hazardous Servicing Facility, workers prepare the Mars Exploration Rover (MER) aeroshell for transfer to a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.
2003-01-28
KENNEDY SPACE CENTER, FLA. -- The Mars Exploration Rover -2 is moved to a workstand in the Payload Hazardous Servicing Facility. Set to launch in 2003, the Mars Exploration Rover Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, 2003, and the second rover a window opening June 25, 2003.
2003-01-28
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, workers get ready to remove the plastic covering from the Mars Exploration Rover -2. Set to launch in 2003, the Mars Exploration Rover Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, 2003, and the second rover a window opening June 25, 2003.
2003-01-28
KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility move the Mars Exploration Rover -2 to a workstand in the high bay. Set to launch in 2003, the Mars Exploration Rover Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, 2003, and the second rover a window opening June 25, 2003.
Automatic Command Sequence Generation
NASA Technical Reports Server (NTRS)
Fisher, Forest; Gladded, Roy; Khanampompan, Teerapat
2007-01-01
Automatic Sequence Generator (Autogen) Version 3.0 software automatically generates command sequences for the Mars Reconnaissance Orbiter (MRO) and several other JPL spacecraft operated by the multi-mission support team. Autogen uses standard JPL sequencing tools like APGEN, ASP, SEQGEN, and the DOM database to automate the generation of uplink command products, Spacecraft Command Message Format (SCMF) files, and the corresponding ground command products, DSN Keywords Files (DKF). Autogen supports all the major multi-mission mission phases including the cruise, aerobraking, mapping/science, and relay mission phases. Autogen is a Perl script, which functions within the mission operations UNIX environment. It consists of two parts: a set of model files and the autogen Perl script. Autogen encodes the behaviors of the system into a model and encodes algorithms for context sensitive customizations of the modeled behaviors. The model includes knowledge of different mission phases and how the resultant command products must differ for these phases. The executable software portion of Autogen, automates the setup and use of APGEN for constructing a spacecraft activity sequence file (SASF). The setup includes file retrieval through the DOM (Distributed Object Manager), an object database used to store project files. This step retrieves all the needed input files for generating the command products. Depending on the mission phase, Autogen also uses the ASP (Automated Sequence Processor) and SEQGEN to generate the command product sent to the spacecraft. Autogen also provides the means for customizing sequences through the use of configuration files. By automating the majority of the sequencing generation process, Autogen eliminates many sequence generation errors commonly introduced by manually constructing spacecraft command sequences. Through the layering of commands into the sequence by a series of scheduling algorithms, users are able to rapidly and reliably construct the desired uplink command products. With the aid of Autogen, sequences may be produced in a matter of hours instead of weeks, with a significant reduction in the number of people on the sequence team. As a result, the uplink product generation process is significantly streamlined and mission risk is significantly reduced. Autogen is used for operations of MRO, Mars Global Surveyor (MGS), Mars Exploration Rover (MER), Mars Odyssey, and will be used for operations of Phoenix. Autogen Version 3.0 is the operational version of Autogen including the MRO adaptation for the cruise mission phase, and was also used for development of the aerobraking and mapping mission phases for MRO.
NASA Technical Reports Server (NTRS)
2004-01-01
This image taken at Meridiani Planum, Mars by the panoramic camera on the Mars Exploration Rover Opportunity shows the rover's microscopic imager (circular device in center), located on its instrument deployment device, or 'arm.' The image was acquired on the ninth martian day or sol of the rover's mission.
Test Rover at JPL During Preparation for Mars Rover Low-Angle Selfie
2015-08-19
This view of a test rover at NASA's Jet Propulsion Laboratory, Pasadena, California, results from advance testing of arm positions and camera pointings for taking a low-angle self-portrait of NASA's Curiosity Mars rover. This rehearsal in California led to a dramatic Aug. 5, 2015, selfie of Curiosity, online at PIA19807. Curiosity's arm-mounted Mars Hand Lens Imager (MAHLI) camera took 92 of component images that were assembled into that mosaic. The rover team positioned the camera lower in relation to the rover body than for any previous full self-portrait of Curiosity. This practice version was taken at JPL's Mars Yard in July 2013, using the Vehicle System Test Bed (VSTB) rover, which has a test copy of MAHLI on its robotic arm. MAHLI was built by Malin Space Science Systems, San Diego. JPL, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover. http://photojournal.jpl.nasa.gov/catalog/PIA19810
2017-06-05
The scientifically-themed Mars rover concept vehicle operates on an electric motor, powered by solar panels and a 700-volt battery. The back section opens and serves as a laboratory which can disconnect for autonomous research. While this exact rover is not expected to operate on Mars, one or more of its elements could make its way into a rover astronauts will drive on the Red Planet. The "Summer of Mars" promotion is designed to provide guests with a better understanding of NASA's studies of the Red Planet. The builders of the rover, Parker Brothers Concepts of Port Canaveral, Florida, incorporated input into its design from NASA subject matter experts.
2003-05-15
KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers lower the backshell with the Mars Exploration Rover 1 (MER-1) onto the heat shield. The two components form the aeroshell that will protect the rover on its journey to Mars. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.
2003-05-15
KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers check the attachment between the backshell (above) and heat shield (below) surrounding the Mars Exploration Rover 1 (MER-1). The aeroshell will protect the rover on its journey to Mars. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.
2003-05-31
KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2) is installed around the Mars Exploration Rover 2 (MER-2). MER-2 is one of NASA's twin Mars Exploration Rovers designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-2 is scheduled to launch no earlier than June 8 as MER-A, with two launch opportunities each day during the launch period that closes on June 19.
Mars Exploration Rovers: 4 Years on Mars
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
2008-01-01
This January, the Mars Exploration Rovers "Spirit" and "Opportunity" are starting their fifth year of exploring the surface of Mars, well over ten times their nominal 90-day design lifetime. This lecture discusses the Mars Exploration Rovers, presents the current mission status for the extended mission, some of the most results from the mission and how it is affecting our current view of Mars, and briefly presents the plans for the coming NASA missions to the surface of Mars and concepts for exploration with robots and humans into the next decade, and beyond.
NASA Mars Rover Curiosity at JPL, Side View
2011-04-06
The rover for NASA Mars Science Laboratory mission, named Curiosity, is about 3 meters 10 feet long, not counting the additional length that the rover arm can be extended forward. The front of the rover is on the left in this side view.
Dust Spectra from Above and Below
NASA Technical Reports Server (NTRS)
2004-01-01
Spectra of martian dust taken by the Mars Exploration Rover Spirit's mini-thermal emission spectrometer are compared to that of the orbital Mars Global Surveyor's thermal emission spectrometer. The graph shows that the two instruments are in excellent agreement.
Rover Senses Carbon Dioxide [figure removed for brevity, see original site] Click on image for larger view This graph, consisting of data acquired on Mars from the Mars Exploration Rover Spirit's mini-thermal emission spectrometer, shows the light, or spectral, signature of carbon dioxide. Carbon dioxide makes up the bulk of the thin martian atmosphere. Rover Senses Silicates [figure removed for brevity, see original site] Click on image for larger view This graph, consisting of data acquired on Mars by the Mars Exploration Rover Spirit's mini-thermal emission spectrometer, shows the light, or spectral, signature of silicates - a group of minerals that form the majority of Earth's crust. Minerals called feldspars and zeolites are likely candidates responsible for this feature. Rover Senses Bound Water [figure removed for brevity, see original site] Click on image for larger view This graph, consisting of data acquired on Mars from the Mars Exploration Rover Spirit's mini-thermal emission spectrometer, shows the light, or spectral, signature of an as-of-yet unidentified mineral that contains bound water in its crystal structure. Minerals such as gypsum and zeolites are possible candidates. Rover Senses Carbonates [figure removed for brevity, see original site] Click on image for larger view This graph, consisting of data from the Mars Exploration Rover Spirit's mini-thermal emission spectrometer, shows the light, or spectral, signatures of carbonates - minerals common to Earth that form only in water. The detection of trace amounts of carbonates on Mars may be due to an interaction between the water vapor in the atmosphere and minerals on the surface.Drill Bit Tip on Mars Rover Curiosity, Side View
2013-02-04
The shape of the tip of the bit in the drill of NASA Mars rover Curiosity is apparent in this view recorded by the remote micro-imager in the rover ChemCam instrument on Mars. Jan. 29, 2012; the bit is about 0.6 inch 1.6 centimeters wide.
The ExoMars Rover Science Archive: Status and Plans
NASA Astrophysics Data System (ADS)
Heather, D.; Lim, T.; Metcalfe, L.
2017-09-01
The ExoMars program is a co-operation between ESA and Roscosmos comprising two missions: the first, launched on 14 March 2016, included the Trace Gas Orbiter and Schiaparelli lander; the second, due for launch in 2020, will be a Rover and Surface Platform (RSP). The ExoMars Rover and Surface Platform deliveries will be among the first data in the PSA to be formatted according to the new PDS4 Standards, and will be the first rover data to be hosted within the archive at all. The archiving and management of the science data to be returned from ExoMars will require a significant development effort for the new Planetary Science Archive (PSA). This presentation will outline the current plans for archiving of the ExoMars Rover and Surface Platform science data.
2003-01-28
KENNEDY SPACE CENTER, FLA. - After being cleaned up, the Mars Exploration Rover -2 is ready to be moved to a workstand in the Payload Hazardous Servicing Facility. Set to launch in 2003, the Mars Exploration Rover Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, 2003, and the second rover a window opening June 25, 2003.
Using RSVP for analyzing state and previous activities for the Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Cooper, Brian K.; Hartman, Frank; Maxwell, Scott; Wright, John; Yen, Jeng
2004-01-01
Current developments in immersive environments for mission planning include several tools which make up a system for performing and rehearsing missions. This system, known as the Rover Sequencing and Visualization Program (RSVP), includes tools for planning long range sorties for highly autonomous rovers, tools for planning operations with robotic arms, and advanced tools for visualizing telemetry from remote spacecraft and landers. One of the keys to successful planning of rover activities is knowing what the rover has accomplished to date and understanding the current rover state. RSVP builds on the lessons learned and the heritage of the Mars Pathfinder mission This paper will discuss the tools and methodologies present in the RSVP suite for examining rover state, reviewing previous activities, visually comparing telemetered results to rehearsed results, and reviewing science and engineering imagery. In addition we will present how this tool suite was used on the Mars Exploration Rovers (MER) project to explore the surface of Mars.
Mars rover local navigation and hazard avoidance
NASA Technical Reports Server (NTRS)
Wilcox, B. H.; Gennery, D. B.; Mishkin, A. H.
1989-01-01
A Mars rover sample return mission has been proposed for the late 1990's. Due to the long speed-of-light delays between earth and Mars, some autonomy on the rover is highly desirable. JPL has been conducting research in two possible modes of rover operation, Computer-Aided Remote Driving and Semiautonomous Navigation. A recently-completed research program used a half-scale testbed vehicle to explore several of the concepts in semiautonomous navigation. A new, full-scale vehicle with all computational and power resources on-board will be used in the coming year to demonstrate relatively fast semiautonomous navigation. The computational and power requirements for Mars rover local navigation and hazard avoidance are discussed.
Mars Rover Local Navigation And Hazard Avoidance
NASA Astrophysics Data System (ADS)
Wilcox, B. H.; Gennery, D. B.; Mishkin, A. H.
1989-03-01
A Mars rover sample return mission has been proposed for the late 1990's. Due to the long speed-of-light delays between Earth and Mars, some autonomy on the rover is highly desirable. JPL has been conducting research in two possible modes of rover operation, Computer-Aided Remote Driving and Semiautonomous Navigation. A recently-completed research program used a half-scale testbed vehicle to explore several of the concepts in semiautonomous navigation. A new, full-scale vehicle with all computational and power resources on-board will be used in the coming year to demonstrate relatively fast semiautonomous navigation. The computational and power requirements for Mars rover local navigation and hazard avoidance are discussed.
Evolution of the Scope and Capabilities of Uplink Support Software for Mars Surface Operations
NASA Technical Reports Server (NTRS)
Pack, Marc; Laubach, Sharon
2014-01-01
In January of 2004 both of the Mars Exploration Rover spacecraft landed safely, initiating daily surface operations at the Jet Propulsion Laboratory for what was anticipated to be approximately three months of mobile exploration. The longevity of this mission, still ongoing after ten years, has provided not only a tremendous return of scientific data but also the opportunity to refine and improve the methodology by which robotic Mars surface missions are commanded. Since the landing of the Mars Science Laboratory spacecraft in August of 2012, this methodology has been successfully applied to operate a Martian rover which is both similar to, and quite different from, its predecessors. For MER and MSL, daily uplink operations can be most broadly viewed as converting the combined interests of both the science and engineering teams into a spacecraft-safe set of transmittable command files. In order to accomplish these ends a discrete set of mission-critical software tools were developed which not only allowed for conformation to established JPL standards and practices but also enabled innovative technologies specific to each mission. Although these primary programs provided the requisite capabilities for meeting the high-level goals of each distinct phase of the uplink process, there was little in the way of secondary software to support the smooth flow of data from one phase to the next. In order to address this shortcoming a suite of small software tools was developed to aid in phase transitions, as well as to automate some of the more laborious and error-prone aspects of uplink operations. This paper describes the evolution of this software suite, from its initial attempts to merely shorten the duration of the operator's shift, to its current role as an indispensable tool enforcing workflow of the uplink operations process and agilely responding to the new and unexpected challenges of missions which can, and have, lasted many years longer than originally anticipated.
Converting CSV Files to RKSML Files
NASA Technical Reports Server (NTRS)
Trebi-Ollennu, Ashitey; Liebersbach, Robert
2009-01-01
A computer program converts, into a format suitable for processing on Earth, files of downlinked telemetric data pertaining to the operation of the Instrument Deployment Device (IDD), which is a robot arm on either of the Mars Explorer Rovers (MERs). The raw downlinked data files are in comma-separated- value (CSV) format. The present program converts the files into Rover Kinematics State Markup Language (RKSML), which is an Extensible Markup Language (XML) format that facilitates representation of operations of the IDD and enables analysis of the operations by means of the Rover Sequencing Validation Program (RSVP), which is used to build sequences of commanded operations for the MERs. After conversion by means of the present program, the downlinked data can be processed by RSVP, enabling the MER downlink operations team to play back the actual IDD activity represented by the telemetric data against the planned IDD activity. Thus, the present program enhances the diagnosis of anomalies that manifest themselves as differences between actual and planned IDD activities.
2003-04-23
KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 2 (MER-A) is ready for final closure of the petals on the lander. The lander and rover will be enclosed within an aeroshell for launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for this first of NASA's two Mars Exploration Rover missions is scheduled no earlier than June 6.
2003-04-23
KENNEDY SPACE CENTER, FLA. - While workers watch the process, the petals on the lander close up around the Mars Exploration Rover 2 (MER-A). The lander and rover will be enclosed within an aeroshell for launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for this first of NASA's two Mars Exploration Rover missions is scheduled no earlier than June 6.
United States planetary rover status: 1989
NASA Technical Reports Server (NTRS)
Pivirotto, Donna L. S.; Dias, William C.
1990-01-01
A spectrum of concepts for planetary rovers and rover missions, is covered. Rovers studied range from tiny micro rovers to large and highly automated vehicles capable of traveling hundreds of kilometers and performing complex tasks. Rover concepts are addressed both for the Moon and Mars, including a Lunar/Mars common rover capable of supporting either program with relatively small modifications. Mission requirements considered include both Science and Human Exploration. Studies include a range of autonomy in rovers, from interactive teleoperated systems to those requiring and onboard System Executive making very high level decisions. Both high and low technology rover options are addressed. Subsystems are described for a representative selection of these rovers, including: Mobility, Sample Acquisition, Science, Vehicle Control, Thermal Control, Local Navigation, Computation and Communications. System descriptions of rover concepts include diagrams, technology levels, system characteristics, and performance measurement in terms of distance covered, samples collected, and area surveyed for specific representative missions. Rover development schedules and costs are addressed for Lunar and Mars exploration initiatives.
Mars Science Laboratory Engineering Cameras
NASA Technical Reports Server (NTRS)
Maki, Justin N.; Thiessen, David L.; Pourangi, Ali M.; Kobzeff, Peter A.; Lee, Steven W.; Dingizian, Arsham; Schwochert, Mark A.
2012-01-01
NASA's Mars Science Laboratory (MSL) Rover, which launched to Mars in 2011, is equipped with a set of 12 engineering cameras. These cameras are build-to-print copies of the Mars Exploration Rover (MER) cameras, which were sent to Mars in 2003. The engineering cameras weigh less than 300 grams each and use less than 3 W of power. Images returned from the engineering cameras are used to navigate the rover on the Martian surface, deploy the rover robotic arm, and ingest samples into the rover sample processing system. The navigation cameras (Navcams) are mounted to a pan/tilt mast and have a 45-degree square field of view (FOV) with a pixel scale of 0.82 mrad/pixel. The hazard avoidance cameras (Haz - cams) are body-mounted to the rover chassis in the front and rear of the vehicle and have a 124-degree square FOV with a pixel scale of 2.1 mrad/pixel. All of the cameras utilize a frame-transfer CCD (charge-coupled device) with a 1024x1024 imaging region and red/near IR bandpass filters centered at 650 nm. The MSL engineering cameras are grouped into two sets of six: one set of cameras is connected to rover computer A and the other set is connected to rover computer B. The MSL rover carries 8 Hazcams and 4 Navcams.
Mars Exploration Rover surface operations: driving spirit at Gusev Crater
NASA Technical Reports Server (NTRS)
Leger, Chris; Trebi-Ollennu, Ashitey; Wright, John; Maxwell, Scott; Bonitz, Bob; Biesiadecki, Jeff; Hartman, Frank; Cooper, Brian; Baumgartner, Eric; Maimone, Mark
2005-01-01
Spirit is one of two rovers, that landed on Mars in January 2004 as part of NASA's Mars Exploration Rovers mission. Since then, Spirit has traveled over 4 kilometers accross the Martian surface while investigating rocks and soils, digging trenches to examine the subsurface environment, and climbing hills to reach outcrops of bedrock.
The Mars Surveyor '01 Rover and Robotic Arm
NASA Technical Reports Server (NTRS)
Bonitz, Robert G.; Nguyen, Tam T.; Kim, Won S.
1999-01-01
The Mars Surveyor 2001 Lander will carry with it both a Robotic Arm and Rover to support various science and technology experiments. The Marie Curie Rover, the twin sister to Sojourner Truth, is expected to explore the surface of Mars in early 2002. Scientific investigations to determine the elemental composition of surface rocks and soil using the Alpha Proton X-Ray Spectrometer (APXS) will be conducted along with several technology experiments including the Mars Experiment on Electrostatic Charging (MEEC) and the Wheel Abrasion Experiment (WAE). The Rover will follow uplinked operational sequences each day, but will be capable of autonomous reactions to the unpredictable features of the Martian environment. The Mars Surveyor 2001 Robotic Arm will perform rover deployment, and support various positioning, digging, and sample acquiring functions for MECA (Mars Environmental Compatibility Assessment) and Mossbauer Spectrometer experiments. The Robotic Arm will also collect its own sensor data for engineering data analysis. The Robotic Arm Camera (RAC) mounted on the forearm of the Robotic Arm will capture various images with a wide range of focal length adjustment during scientific experiments and rover deployment
Mars Exploration Rover Entry, Descent, and Landing: A Thermal Perspective
NASA Technical Reports Server (NTRS)
Tsuyuki, Glenn T.; Sunada, Eric T.; Novak, Keith S.; Kinsella, Gary M.; Phillip, Charles J.
2005-01-01
Perhaps the most challenging mission phase for the Mars Exploration Rovers was the Entry, Descent, and Landing (EDL). During this phase, the entry vehicle attached to its cruise stage was transformed into a stowed tetrahedral Lander that was surrounded by inflated airbags through a series of complex events. There was only one opportunity to successfully execute an automated command sequence without any possible ground intervention. The success of EDL was reliant upon the system thermal design: 1) to thermally condition EDL hardware from cruise storage temperatures to operating temperature ranges; 2) to maintain the Rover electronics within operating temperature ranges without the benefit of the cruise single phase cooling loop, which had been evacuated in preparation for EDL; and 3) to maintain the cruise stage propulsion components for the critical turn to entry attitude. Since the EDL architecture was inherited from Mars Pathfinder (MPF), the initial EDL thermal design would be inherited from MPF. However, hardware and implementation differences from MPF ultimately changed the MPF inheritance approach for the EDL thermal design. With the lack of full inheritance, the verification and validation of the EDL thermal design took on increased significance. This paper will summarize the verification and validation approach for the EDL thermal design along with applicable system level thermal testing results as well as appropriate thermal analyses. In addition, the lessons learned during the system-level testing will be discussed. Finally, the in-flight EDL experiences of both MER-A and -B missions (Spirit and Opportunity, respectively) will be presented, demonstrated how lessons learned from Spirit were applied to Opportunity.
2013-02-20
This frame from an animation of NASA Curiosity rover shows the complicated suite of operations involved in conducting the rover first rock sample drilling on Mars and transferring the sample to the rover scoop for inspection.
Relay Telecommunications for the Coming Decade of Mars Exploration
NASA Technical Reports Server (NTRS)
Edwards, C.; DePaula, R.
2010-01-01
Over the past decade, an evolving network of relay-equipped orbiters has advanced our capabilities for Mars exploration. NASA's Mars Global Surveyor, 2001 Mars Odyssey, and Mars Reconnaissance Orbiter (MRO), as well as ESA's Mars Express Orbiter, have provided telecommunications relay services to the 2003 Mars Exploration Rovers, Spirit and Opportunity, and to the 2007 Phoenix Lander. Based on these successes, a roadmap for continued Mars relay services is in place for the coming decade. MRO and Odyssey will provide key relay support to the 2011 Mars Science Laboratory (MSL) mission, including capture of critical event telemetry during entry, descent, and landing, as well as support for command and telemetry during surface operations, utilizing new capabilities of the Electra relay payload on MRO and the Electra-Lite payload on MSL to allow significant increase in data return relative to earlier missions. Over the remainder of the decade a number of additional orbiter and lander missions are planned, representing new orbital relay service providers and new landed relay users. In this paper we will outline this Mars relay roadmap, quantifying relay performance over time, illustrating planned support scenarios, and identifying key challenges and technology infusion opportunities.
2003-06-10
KENNEDY SPACE CENTER, FLA. - With a glimpse of the Atlantic Ocean over the horizon, the Delta II rocket with its Mars Exploration Rover (MER-A) payload leaps off the launch pad into the blue sky to begin its journey to Mars. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25
2003-06-10
KENNEDY SPACE CENTER, FLA. - With a glimpse of the Atlantic Ocean over the horizon, the Delta II rocket with its Mars Exploration Rover (MER-A) payload leaps off the launch pad into the blue sky to begin its journey to Mars. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.
2003-04-28
KENNEDY SPACE CENTER, FLA. - The second stage of the Delta II rocket is raised off the transporter for its lift up the launch tower on Pad 17-A, Cape Canaveral Air Force Station. It will be mated to the first stage in preparation for the launch of the Mars Exploration Rover 2 (MER-A). The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet’s past. Identical to each other, the rovers will land at different regions of Mars. Launch date for this first of NASA’s two Mars Exploration Rover missions is scheduled June 5.
Unmanned surface traverses of Mars and Moon: Science objectives, payloads, operations
NASA Technical Reports Server (NTRS)
Jaffe, L. D.; Choate, R.
1973-01-01
Science objectives and properties to be measured are outlined for long surface traverse missions on Mars and the Moon, with remotely-controlled roving vehicles. A series of candidate rover payloads is proposed for each planet, varying in weight, cost, purpose, and development needed. The smallest weighs 35 kg; the largest almost 300 kg. A high degree of internal control will be needed on the Mars rover, including the ability to carry out complex science sequences. Decision-making by humans in the Mars mission includes supervisory control of rover operations and selection of features and samples of geological and biological interest. For the lunar mission, less control on the rover and more on earth is appropriate. Science portions of the rover mission profile are outlined, with timelines and mileage breakdowns. Operational problem areas for Mars include control, communications, data storage, night operations, and the mission operations system. For the moon, science data storage on the rover would be unnecessary and control much simpler.
Expedition 52-52 Launches to the Space Station on This Week @NASA - April 21, 2017
2017-04-21
On April 20, Expedition 51-52 Flight Engineer Jack Fischer of NASA and Soyuz Commander Fyodor Yurchikhin of the Russian Space Agency, Roscosmos launched to the International Space Station aboard a Soyuz spacecraft, from the Baikonur Cosmodrome in Kazakhstan. About six-hours later, the pair arrived at the orbital outpost and were greeted by station Commander Peggy Whitson of NASA and other members of the crew. Fischer and Yurchikhin will spend four and a half months conducting research aboard the station. Also, U.S. Resupply Mission Heads to the Space Station, Time Magazine Recognizes Planet-Hunting Scientists, Landslides on Ceres Reflect Ice Content, Mars Rover Opportunity Leaves 'Tribulation', and Earth Day in the Nation’s Capital!
2003-04-24
KENNEDY SPACE CENTER, FLA. - This closeup shows the size of the computer chip that holds about 35,000 laser-engraved signatures of visitors to the Mars Exploration Rovers at the Jet Propulsion Laboratory. It will be placed on the second rover to be launched to Mars; the first rover already has one. The signatures include those of senators, artists, and John Glenn. The identical Mars rovers are scheduled to launch June 5 and June 25 from Cape Canaveral Air Force Station.
2003-04-24
KENNEDY SPACE CENTER, FLA. - Jim Lloyd, with the Mars Exploration Rover program, holds a computer chip with about 35,000 laser-engraved signatures of visitors to the Jet Propulsion Laboratory. The chip will be placed on the second rover to be launched to Mars (MER-1/MER-B); the first rover already has one. The signatures include those of senators, artists, and John Glenn. The identical Mars rovers are scheduled to launch June 5 and June 25 from Cape Canaveral Air Force Station.
Mars Pathfinder Rover-Lewis Research Center Technology Experiments Program
NASA Technical Reports Server (NTRS)
Stevenson, Steven M.
1997-01-01
An overview of NASA's Mars Pathfinder Program is given and the development and role of three technology experiments from NASA's Lewis Research Center and carried on the Mars Pathfinder rover is described. Two recent missions to Mars were developed and managed by the Jet Propulsion Laboratory, and launched late last year: Mars Global Surveyor in November 1996 and Mars Pathfinder in December 1996. Mars Global Surveyor is an orbiter which will survey the planet with a number of different instruments, and will arrive in September 1997, and Mars Pathfinder which consists of a lander and a small rover, landing on Mars July 4, 1997. These are the first two missions of the Mars Exploration Program consisting of a ten year series of small robotic martian probes to be launched every 26 months. The Pathfinder rover will perform a number of technology and operational experiments which will provide the engineering information necessary to design and operate more complex, scientifically oriented surface missions involving roving vehicles and other machinery operating in the martian environment. Because of its expertise in space power systems and technologies, space mechanisms and tribology, Lewis Research Center was asked by the Jet Propulsion Laboratory, which is heading the Mars Pathfinder Program, to contribute three experiments concerning the effects of the martian environment on surface solar power systems and the abrasive qualities of the Mars surface material. In addition, rover static charging was investigated and a static discharge system of several fine Tungsten points was developed and fixed to the rover. These experiments and current findings are described herein.
2017-06-05
Crowds gather around the scientifically-themed Mars rover concept vehicle at the Kennedy Space Center Visitor Complex. It is a part of the "Summer of Mars" program designed to provide a survey of NASA's studies of the Red Planet. The builders of the rover, Parker Brothers Concepts of Port Canaveral, Florida, incorporated input into its design from NASA subject matter experts.
NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2
This digital elevation map shows the topography of the 'Columbia Hills,' just in front of the Mars Exploration Rover Spirit's current position. Rover planners have plotted the safest route for Spirit to climb to the front hill, called 'West Spur.' The black line in the middle of the image represents the rover's traverse path, which starts at 'Hank's Hollow' and ends at the top of 'West Spur.' Scientists are sending Spirit up the hill to investigate the interesting rock outcrops visible in images taken by the rover. Data from the Mars Orbital Camera on the orbiting Mars Global Surveyor were used to create this 3-D map. In figure 1, the digital map shows the slopes of the 'Columbia Hills,' just in front of the Mars Exploration Rover Spirit's current position. Colors indicate the slopes of the hills, with red areas being the gentlest and blue the steepest. Rover planners have plotted the safest route for Spirit to climb the front hill, called 'West Spur.' The path is indicated here with a curved black line. Stereo images from the Mars Orbital Camera on the orbiting Mars Global Surveyor were used to create this 3-D map. In figure 2, the map shows the north-facing slopes of the 'Columbia Hills,' just in front of the Mars Exploration Rover Spirit's current position. Bright areas indicate surfaces sloping more toward the north than dark areas. To reach the rock outcrop at the top of the hill, engineers will aim to drive the rover around the dark areas, which would yield less solar power. The curved black line in the middle represents the rover's planned traverse path.2003-05-10
KENNEDY SPACE CENTER, FLA. - On Mars Exploration Rover 1 (MER-1) , air bags are installed on the lander. The airbags will inflate to cushion the landing of the spacecraft on the surface of Mars. When it stops bouncing and rolling, the airbags will deflate and retract, the petals will open to bring the lander to an upright position, and the rover will be exposed. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.
2003-05-10
KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 1 (MER-1) is seen after installation of the air bags on the outside of the lander. The airbags will inflate to cushion the landing of the spacecraft on the surface of Mars. When it stops bouncing and rolling, the airbags will deflate and retract, the petals will open to bring the lander to an upright position, and the rover will be exposed. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.
2003-04-23
KENNEDY SPACE CENTER, FLA. - Workers check different areas of the lander as the petals close in around the Mars Exploration Rover 2 (MER-A). The lander and rover will subsequently be enclosed within an aeroshell for launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for this first of NASA's two Mars Exploration Rover missions is scheduled no earlier than June 6.
2003-04-23
KENNEDY SPACE CENTER, FLA. - Workers check different areas of the lander as the petals close in around the Mars Exploration Rover 2 (MER-A). The lander and rover will subsequently be enclosed within an aeroshell for launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for this first of NASA's two Mars Exploration Rover missions is scheduled no earlier than June 6.
2003-07-07
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the second Mars Exploration Rover, Opportunity, is poised for launch after rollback of the Mobile Service Tower. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rover’s prime mission is planned to last three months on Mars.
2003-06-08
KENNEDY SPACE CENTER, FLA. - The Mobile Service Tower is rolled back at Launch Complex 17A to reveal a Delta II rocket ready to launch the Mars Exploration Rover-A mission. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.
A propulsion and steering control system for the Mars rover
NASA Technical Reports Server (NTRS)
Turner, J. M.
1980-01-01
The design of a propulsion and steering control system for the Rensselaer Polytechnic Institute prototype autonomous Mars roving vehicle is presented. The vehicle is propelled and steered by four independent electric motors. The control system must regulate the speeds of the motors so they work in unison during turns and on irregular terrain. An analysis of the motor coordination problem on irregular terrain, where each motor must supply a different torque at a different speed is presented. A procedure was developed to match the output of each motor to the varying load. A design for the control system is given. The controller uses a microprocessor which interprets speed and steering commands from an off-board computer, and produces the appropriate drive voltages for the motors.
2003-02-19
KENNEDY SPACE CENTER, FLA. - At NASA's Family & Community Mars Exploration Day, held in Cape Canaveral, Fla., James Garvin, lead scientist for the Mars Exploration Program, talks to students about the Mars Exploration Rover. Garvin is standing next to a replica of the Rover. The event informed students and the general public about Florida's key role as NASA's "Gateway to Mars" and offered an opportunity to meet with scientists, engineers, educators and others working Mars exploration missions. The Mars Exploration Rovers are being prepared for launch this spring aboard Boeing Delta II rockets from the Cape Canaveral Air Force Station. They will land on Mars and start exploring in January 2004.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - At NASA's Family & Community Mars Exploration Day, held in Cape Canaveral, Fla., James Garvin, lead scientist for the Mars Exploration Program, talks to students about the Mars Exploration Rover. Garvin is standing next to a replica of the Rover. The event informed students and the general public about Florida's key role as NASA's 'Gateway to Mars' and offered an opportunity to meet with scientists, engineers, educators and others working Mars exploration missions. The Mars Exploration Rovers are being prepared for launch this spring aboard Boeing Delta II rockets from the Cape Canaveral Air Force Station. They will land on Mars and start exploring in January 2004.
Mars Rover Studies Soil on Mars
NASA Technical Reports Server (NTRS)
2004-01-01
Both out on the plains of Gusev Crater and in the 'Columbia Hills,' NASA's Mars Exploration Rover Spirit has encountered a thin (approximately 1 millimeter or 0.04 inch thick), light-colored, fine-grained layer of material on top of a dark-colored, coarser layer of soil. In the hills, Spirit stopped to take a closer look at soil compacted by one of the rover's wheels. Spirit took this image with the front hazard-avoidance camera during the rover's 314th martian day, or sol (Nov. 19, 2004).Cumberland Target for Drilling by Curiosity Mars Rover
2013-05-09
Cumberland has been selected as the second target for drilling by NASA Mars rover Curiosity. The rover has the capability to collect powdered material from inside the target rock and analyze that powder with laboratory instruments.
2017-10-31
This image presents a selection of the 23 cameras on NASA's 2020 Mars rover. Many are improved versions of the cameras on the Curiosity rover, with a few new additions as well. https://photojournal.jpl.nasa.gov/catalog/PIA22103
Signs of a Whirlwind in Gale Crater
2012-11-15
Twenty-one times during the first 12 weeks that NASA Mars rover Curiosity worked on Mars, the rover Rover Environmental Monitoring Station REMS detected brief dips in air pressure that could be caused by a passing whirlwind.
2003-04-30
KENNEDY SPACE CENTER, FLA. - The overhead crane settles the Mars Exploration Rover 2 (MER-2) entry vehicle onto a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the rover 'Opportunity' for the second Mars Exploration Rover mission is poised for launch after rollback of the Mobile Service Tower. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rovers prime mission is planned to last three months on Mars.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the rover 'Opportunity' for the second Mars Exploration Rover mission launches at 11:18:15 p.m. EDT. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rovers prime mission is planned to last three months on Mars.
Delta II Heavy launch of "Opportunity" MER-B Rover
2003-07-07
On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the rover "Opportunity" for the second Mars Exploration Rover mission launches at 11:18:15 p.m. EDT. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rover’s prime mission is planned to last three months on Mars.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the rover 'Opportunity' for the second Mars Exploration Rover mission launches at 11:18:15 p.m. EDT. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rovers prime mission is planned to last three months on Mars.
2003-06-10
KENNEDY SPACE CENTER, FLA. - Leaving smoke and steam behind, the Delta II rocket with its Mars Exploration Rover (MER-A) payload lifts off the pad on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.
2003-06-10
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are free of the tower and ready for launch. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.
2003-06-10
KENNEDY SPACE CENTER, FLA. - Amid billows of smoke and steam, the Delta II rocket with its Mars Exploration Rover (MER-A) payload lifts off the pad on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.
2003-06-10
KENNEDY SPACE CENTER, FLA. - Blue sky and sun give a dramatic backdrop for the launch of the Delta II rocket with its Mars Exploration Rover (MER-A) payload. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.
2003-05-09
KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 2 (MER-2) undergoes a weight and center of gravity determination in the Payload Hazardous Servicing Facility. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. Launch of MER-2 is scheduled for June 5 from Cape Canaveral Air Force Station.
2003-05-09
KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility prepare the Mars Exploration Rover 2 (MER-2) for a weight and center of gravity determination. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. Launch of MER-2 is scheduled for June 5 from Cape Canaveral Air Force Station.
2003-05-09
KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility are preparing to determine weight and center of gravity for the Mars Exploration Rover 2 (MER-2). NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. Launch of MER-2 is scheduled for June 5 from Cape Canaveral Air Force Station.
2003-05-23
KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers prepare to mate the Mars Exploration Rover-2 (MER-2) to the third stage of a Delta II rocket for launch on June 5. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-1 (MER-B) will launch June 25.
2003-05-19
KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, the Mars Exploration Rover 2 (MER-2) is moved to a spin table. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. The MER-2 is scheduled to launch June 5 from Launch Pad 17-A, Cape Canaveral Air Force Station.
2003-05-23
KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers mate the Mars Exploration Rover-2 (MER-2) to the third stage of a Delta II rocket for launch on June 5. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-1 (MER-B) will launch June 25.
AEGIS Automated Targeting for the MSL ChemCam Instrument
NASA Astrophysics Data System (ADS)
Estlin, T.; Anderson, R. C.; Blaney, D. L.; Bornstein, B.; Burl, M. C.; Castano, R.; Gaines, D.; Judd, M.; Thompson, D. R.; Wiens, R. C.
2013-12-01
The Autonomous Exploration for Gathering Increased Science (AEGIS) system enables automated science data collection by a planetary rover. AEGIS has been in use on the Mars Exploration Rover (MER) mission Opportunity rover since 2010 to provide onboard targeting of the MER Panoramic Camera based on scientist-specified objectives. AEGIS is now being applied for use with the Mars Science Laboratory (MSL) mission ChemCam spectrometer. ChemCam uses a Laser Induced Breakdown Spectrometer (LIBS) to analyze the elemental composition of rocks and soil from up to seven meters away. ChemCam's tightly-focused laser beam (350-550 um) enables targeting of very fine-scale terrain features. AEGIS is being applied in two ways to help ChemCam collect valuable science data. The first application is to enable automated targeting of ChemCam during or after or in the middle of long drives. The majority of ChemCam measurements are collected by allowing the science team to select specific targets in rover images. However this requires the rover to stay in the same area while images are downlinked, analyzed for targets, and new commands uplinked. The only data that can be acquired without this communication cycle is via blind targeting, where measurements are often of soil patches vs. instead of more valuable targets such as rocks with specific properties. AEGIS is being applied to automatically analyze images onboard and select targets for ChemCam analysis. This approach allows the rover to autonomously select and sequence targeted measurements in an opportunistic fashion at different points along the rover's drive path. Rock targets can be prioritized for measurement based on various geologically relevant features, including size, shape and albedo. A second application is to enable intelligent pointing refinement of ChemCam when acquiring data of small targets, such as veins or concretions that are only a few millimeters wide. Due to backlash and other pointing challenges, it can often require several downlink cycles for LIBS measurements to be acquired on small targets. Often targets must first be imaged using the high resolution ChemCam Remote Micro Imager (RMI) and then ground analysis performed to enable a fine-tuned pointing correction on the next commanding cycle. AEGIS is being applied to analyze RMI images onboard and automatically determine the pointing refinement necessary to acquire LIBS data on small targets. This significantly decreases the amount of time and resources required to acquire ChemCam data on such targets. Work is currently in progress to adapt AEGIS algorithm for these applications and integrate the system with MSL flight software. Once integration and testing is complete, AEGIS will be uploaded to the spacecraft for operational use.
2003-03-06
In the Payload Hazardous Servicing Facility resides one of the Mars Exploration Rovers, MER-2. MER-1 and MER-2, their aeroshells and landers will undergo a full mission simulation before being integrated. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers are identical to each other, but will land at different regions of Mars. Launch of the first rover is scheduled for May 30 from Cape Canaveral Air Force Station. The second will follow June 25.
2003-03-06
Technicians in the Payload Hazardous Servicing Facility look over the Mars Exploration Rover -2. MER-1 and MER-2, their aeroshells and landers will undergo a full mission simulation before being integrated. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers are identical to each other, but will land at different regions of Mars. Launch of the first rover is scheduled for May 30 from Cape Canaveral Air Force Station. The second will follow June 25.
Drill Bit Tip on Mars Rover Curiosity, Head-on View
2013-02-04
This head-on view shows the tip of the drill bit on NASA Mars rover Curiosity. The view merges two exposures taken by the remote micro-imager in the rover ChemCam instrument at different focus settings.
2012-11-15
This graph shows the atmospheric pressure at the surface of Mars, as measured by the Rover Environmental Monitoring Station on NASA Curiosity rover. Pressure is a measure of the amount of air in the whole column of atmosphere sitting above the rover.
Signs of Perchlorates and Sulfur Containing Compounds
2012-12-03
NASA Mars rover Curiosity has detected sulfur, chlorine, and oxygen compounds in fine grains scooped by the rover at a wind drift site called Rocknest. The grains were heated and analyzed using the rover Sample Analysis at Mars instrument suite.
Lowering SAM Instrument into Curiosity Mars Rover
2011-01-18
In this photograph, technicians and engineers inside a clean room at NASA Jet Propulsion Laboratory, Pasadena, Calif., position NASA Sample Analysis at Mars SAM above the mission Mars rover, Curiosity, for installing the instrument.
Installing SAM Instrument into Curiosity Mars Rover
2011-01-18
In this photograph, technicians and engineers inside a clean room at NASA Jet Propulsion Laboratory, Pasadena, Calif., position NASA Sample Analysis at Mars SAM above the mission Mars rover, Curiosity, for installing the instrument.
Bringing Terramechanics to bear on Planetary Rover Design
NASA Astrophysics Data System (ADS)
Richter, L.
2007-08-01
Thus far, planetary rovers have been successfully operated on the Earth's moon and on Mars. In particular, the two NASA Mars Exploration Rovers (MERs) ,Spirit' and ,Opportunity' are still in sustained daily operations at two sites on Mars more than 3 years after landing there. Currently, several new planetary rover missions are in development targeting Mars (the US Mars Science Lab vehicle for launch in 2009 and ESA's ExoMars rover for launch in 2013), with lunar rover missions under study by China and Japan for launches around 2012. Moreover, the US Constellation program is preparing pre-development of lunar rovers for initially unmanned and, subsequently, human missions to the Moon with a corresponding team dedicated to mobility system development having been set up at the NASA Glenn Research Center. Given this dynamic environment, it was found timely to establish an expert group on off-the-road mobility as relevant for robotic vehicles that would involve individuals representing the various on-going efforts on the different continents. This was realized through the International Society of Terrain-Vehicle Systems (ISTVS), a research organisation devoted to terramechanics and to the ,science' of off-the-road vehicle development which as a result is just now establishing a Technical Group on Terrestrial and Planetary Rovers. Members represent space-related as well as military research institutes and universities from the US, Germany, Italy, and Japan. The group's charter for 2007 is to define its objectives, functions, organizational structure and recommended research objectives to support planetary rover design and development. Expected areas of activity of the ISTVS-sponsored group include: the problem of terrain specification for planetary rovers; identification of limitations in modelling of rover mobility; a survey of existing rover mobility testbeds; the consolidation of mobility predictive models and their state of validation; sensing and real-time processing issues; improvements in modelling of vehicle slippage and traction; study of methods to achieve rover design robustness. This paper will present the charter of the ISTVS Rovers Technical Group and its upcoming activities and therefore will be of a programmatic nature.
Opportunity View on Sols 1803 and 1804 Stereo
2009-03-03
NASA Mars Exploration Rover Opportunity combined images into this full-circle view of the rover surroundings. Tracks from the rover drive recede northward across dark-toned sand ripples in the Meridiani Planum region of Mars. You need 3D glasses.
Opportunity View After Drive on Sol 1806 Stereo
2009-03-03
NASA Mars Exploration Rover Opportunity combined images into this full-circle view of the rover surroundings. Tracks from the rover drive recede northward across dark-toned sand ripples in the Meridiani Planum region of Mars. You need 3D glasses.
Low Cost Mars Surface Exploration: The Mars Tumbleweed
NASA Technical Reports Server (NTRS)
Antol, Jeffrey; Calhoun, Philip; Flick, John; Hajos, Gregory; Kolacinski, Richard; Minton, David; Owens, Rachel; Parker, Jennifer
2003-01-01
The "Mars Tumbleweed," a rover concept that would utilize surface winds for mobility, is being examined as a low cost complement to the current Mars exploration efforts. Tumbleweeds carrying microinstruments would be driven across the Martian landscape by wind, searching for areas of scientific interest. These rovers, relatively simple, inexpensive, and deployed in large numbers to maximize coverage of the Martian surface, would provide a broad scouting capability to identify specific sites for exploration by more complex rover and lander missions.
Opportunity Surroundings After 25 Miles on Mars
2014-08-14
This July 29, 2014, panorama combines several images from the navigation camera on NASA Mars Exploration Rover Opportunity to show the rover surroundings after surpassing 25 miles 40.23 kilometers of total driving on Mars.
NASA's Mars 2020 Rover Artist's Concept #1
2017-05-23
This artist's concept depicts NASA's Mars 2020 rover on the surface of Mars. The mission takes the next step by not only seeking signs of habitable conditions on Mars in the ancient past, but also searching for signs of past microbial life itself. The Mars 2020 rover introduces a drill that can collect core samples of the most promising rocks and soils and set them aside on the surface of Mars. A future mission could potentially return these samples to Earth. Mars 2020 is targeted for launch in July/August 2020 aboard an Atlas V 541 rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. https://photojournal.jpl.nasa.gov/catalog/PIA21635
2003-02-19
KENNEDY SPACE CENTER, FLA. -- In a demonstration of the agility of the Mars Exploration Rover, a model of the Rover rolls over the prone bodies of two volunteer students during NASA's Family & Community Mars Exploration Day held in Cape Canaveral, Fla. The event informed students and the general public about Florida's key role as NASA's "Gateway to Mars" and offered an opportunity to meet with scientists, engineers, educators and others working Mars exploration missions. The Mars Exploration Rovers are being prepared for launch this spring aboard Boeing Delta II rockets from the Cape Canaveral Air Force Station. They will land on Mars and start exploring in January 2004.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- In a demonstration of the agility of the Mars Exploration Rover, a model of the Rover rolls over the prone bodies of two volunteer students during NASA's Family & Community Mars Exploration Day held in Cape Canaveral, Fla. The event informed students and the general public about Florida's key role as NASA's 'Gateway to Mars' and offered an opportunity to meet with scientists, engineers, educators and others working Mars exploration missions. The Mars Exploration Rovers are being prepared for launch this spring aboard Boeing Delta II rockets from the Cape Canaveral Air Force Station. They will land on Mars and start exploring in January 2004.
First Imaging of Laser-Induced Spark on Mars
2014-07-16
NASA Curiosity Mars rover used the Mars Hand Lens Imager MAHLI camera on its arm to catch the first images of sparks produced by the rover laser being shot at a rock on Mars. The left image is from before the laser zapped this rock, called Nova.
Measurement of Mars Analog Soil Dielectric Properties for Mars 2020 Radar Science Applications
NASA Astrophysics Data System (ADS)
Decrossas, E.; Bell, D. J.; Jin, C.; Steinfeld, D.; Batres, J.
2017-12-01
On multiple solar system missions, radar instruments have been used to probe subsurface geomorphology and to infer chemical composition based on the dielectric signature derived from the reflected signal. One important planetary application is the identification of subsurface water ice at Mars. Low frequency, 15 MHz to 25 MHz, instruments like SHARAD have been used from Mars orbit to investigate subsurface features from 10's to 1000's of meters below the surface of Mars with a vertical resolution of 15m and a horizontal resolution of 300 to 3000 meters. SHARAD has been able to identify vast layers of CO2 and water ice. The ground-penetrating RIMFAX instrument that will ride on the back of the Mars 2020 rover will operate over the 150 MHz to 1200 MHz band and penetrate to a depth of 10 meters with a vertical resolution of 15 to 30 cm. RIMFAX will be able to identify near surface water ice if it exists below the travel path of the Mars 2020 rover. Identification of near surface water ice has science application to current and past Mars hydrologic processes and to the potential for finding remnants of past Mars biologic activity. Identification of near surface water ice also has application to future human missions that would benefit from access to a Mars local water source. Recently, JPL investigators have been pursuing a secondary use of telecom signals to capture bistatic radar signatures from subsurface areas surrounding the rover but away from its travel path. A particularly promising potential source would be the telecom signal from a proposed Mars Helicopter back to the Mars 2020 rover. The Mars 2020 rover will be equipped with up to three telecom subsystems. The Rover Relay telecom subsystem operates at UHF receiving at 435 MHz frequency. Anticipating opportunistic collection of near-surface bistatic radar signatures from telecom signals received at the rover, it is valuable to understand the dielectric properties of the Martian soil in each of these three possible frequency bands. In their 2004 paper, Williams and Greely reported on measurements of the dielectric and attenuation properties of Mars soil analogs made in the band of 200 MHz to 1300 MHz. Their results apply directly to the Mars rover telecom links at 435 MHz and 915 MHz. This paper reports on dielectric measurements made on the same Mars soil analogs over the band of 7 GHz to 40 GHz.
NASA Technical Reports Server (NTRS)
Darnell, W. L.; Wessel, V. W.
1974-01-01
The feasibility of a small Mars rover for use on a 1979 or 1981 Viking mission was studied and a preliminary design concept was developed. Three variations of the concept were developed to provide comparisons in mobility and science capability of the rover. Final masses of the three rover designs were approximately 35 kg, 40 kg, and 69 kg. The smallest rover is umbilically connected to the lander for power and communications purposes whereas the larger two rovers have secondary battery power and a 2-way very high frequency communication link to the lander. The capability for carrying Viking rovers (including development system) to the surface of Mars was considered first. It was found to be feasible to carry rovers of over 100 kg. Virtually all rover systems were then studied briefly to determine a feasible system concept and a practical interface with the comparable system of a 1979 or 1981 lander vehicle.
2003-04-24
KENNEDY SPACE CENTER, FLA. - Tom Shain, the MER ATLO logistics manager, holds a computer chip with about 35,000 laser-engraved signatures of visitors to the Mars Exploration Rovers at the Jet Propulsion Laboratory. He and Jim Lloyd, also with the program, will place the chip on the second rover to be launched to Mars (MER-1/MER-B); the first rover already has one. The signatures include those of senators, artists, and John Glenn. The identical Mars rovers are scheduled to launch June 5 and June 25 from Cape Canaveral Air Force Station.
Kerney, Krystal R; Schuerger, Andrew C
2011-06-01
Endospores of Bacillus subtilis HA101 were applied to a simulated Mars Exploration Rover (MER) wheel and exposed to Mars-normal UV irradiation for 1, 3, or 6 h. The experiment was designed to simulate a contaminated rover wheel sitting on its landing platform before rolling off onto the martian terrain, as was encountered during the Spirit and Opportunity missions. When exposed to 1 h of Mars UV, a reduction of 81% of viable endospores was observed compared to the non-UV irradiated controls. When exposed for 3 or 6 h, reductions of 94.6% and 96.6%, respectively, were observed compared to controls. In a second experiment, the contaminated rover wheel was rolled over a bed of heat-sterilized Mars analog soil; then the analog soil was exposed to full martian conditions of UV irradiation, low pressure (6.9 mbar), low temperature (-10°C), and an anaerobic CO(2) martian atmosphere for 24 h to determine whether endospores of B. subtilis on the contaminated rover wheel could be transferred to the surface of the analog soil and survive martian conditions. The experiment simulated conditions in which a rover wheel might come into contact with martian regolith immediately after landing, such as is designed for the upcoming Mars Science Laboratory (MSL) rover. The contaminated rover wheel transferred viable endospores of B. subtilis to the Mars analog soil, as demonstrated by 31.7% of samples showing positive growth. However, when contaminated soil samples were exposed to full martian conditions for 24 h, only 16.7% of samples exhibited positive growth-a 50% reduction in the number of soil samples positive for the transferred viable endospores.
Close-Up After Preparatory Test of Drilling on Mars
2013-02-07
After an activity called the mini drill test by NASA Mars rover Curiosity, the rover MAHLI camera recorded this view of the results. The test generated a ring of powdered rock for inspection in advance of the rover first full drilling.
Mars Rover Curiosity in Artist Concept, Tall
2011-05-26
This artist concept features NASA Mars Science Laboratory Curiosity rover, a mobile robot for investigating Mars past or present ability to sustain microbial life. Curiosity is being tested in preparation for launch in the fall of 2011.
Mars Rover Curiosity in Artist Concept, Wide
2011-05-26
This artist concept features NASA Mars Science Laboratory Curiosity rover, a mobile robot for investigating Mars past or present ability to sustain microbial life. Curiosity is being tested in preparation for launch in the fall of 2011.
2003-03-06
Technicians in the Payload Hazardous Servicing Facility work on components of the Mars Exploration Rovers. In the center is a lander. MER-1 and MER-2, their aeroshells and landers will undergo a full mission simulation before being integrated. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers are identical to each other, but will land at different regions of Mars. Launch of the first rover is scheduled for May 30 from Cape Canaveral Air Force Station. The second will follow June 25.
Terrain Modelling for Immersive Visualization for the Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Wright, J.; Hartman, F.; Cooper, B.; Maxwell, S.; Yen, J.; Morrison, J.
2004-01-01
Immersive environments are being used to support mission operations at the Jet Propulsion Laboratory. This technology contributed to the Mars Pathfinder Mission in planning sorties for the Sojourner rover and is being used for the Mars Exploration Rover (MER) missions. The stereo imagery captured by the rovers is used to create 3D terrain models, which can be viewed from any angle, to provide a powerful and information rich immersive visualization experience. These technologies contributed heavily to both the mission success and the phenomenal level of public outreach achieved by Mars Pathfinder and MER. This paper will review the utilization of terrain modelling for immersive environments in support of MER.
Mars Weather-Station Tools on Rover Mast
2015-04-13
The Rover Environmental Monitoring Station (REMS) on NASA's Curiosity Mars rover includes temperature and humidity sensors mounted on the rover's mast. One of the REMS booms extends to the left from the mast in this view. Spain provided REMS to NASA's Mars Science Laboratory Project. The monitoring station has provided information about air pressure, relative humidity, air temperature, ground temperature, wind and ultraviolet radiation in all Martian seasons and at all times of day or night. This view is a detail from a January 2015 Curiosity self-portrait. The self-portrait, at PIA19142, was assembled from images taken by Curiosity's Mars Hand Lens Imager. http://photojournal.jpl.nasa.gov/catalog/PIA19164
NASA Technical Reports Server (NTRS)
2004-01-01
Two views of a sundial called the MarsDial can be seen in this image taken on Mars by the Mars Exploration Rover Spirit's panoramic camera. These calibration instruments, positioned on the solar panels of both Spirit and the Mars Exploration Rover Opportunity, are tools for both scientists and educators. Scientists use the sundial to adjust the rovers' panoramic cameras, while students participating in NASA's Red Rover Goes to Mars program will monitor the dial to track time on Mars. Students worldwide will also have the opportunity to build their own Earth sundial and compare it to that on Mars.The left image was captured near martian noon when the Sun was very high in the sky. The right image was acquired later in the afternoon when the Sun was lower in sky, casting longer shadows. The colored blocks in the corners of the sundial are used to fine-tune the panoramic camera's sense of color. Shadows cast on the sundial help scientists adjust the brightness of images.The sundial is embellished with artwork from children, and displays the word Mars in 17 different languages.2003-04-30
KENNEDY SPACE CENTER, FLA. - An overhead crane lifts the Mars Exploration Rover 2 (MER-2) entry vehicle from its stand to move it to a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.
2003-04-30
KENNEDY SPACE CENTER, FLA. - With help from workers, the overhead crane lowers the Mars Exploration Rover 2 (MER-2) entry vehicle onto a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.
2003-04-30
KENNEDY SPACE CENTER, FLA. - An overhead crane moves the Mars Exploration Rover 2 (MER-2) entry vehicle across the Payload Hazardous Servicing Facility toward a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.
2003-04-30
KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility help guide the Mars Exploration Rover 2 (MER-2) entry vehicle toward a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.
2003-04-30
KENNEDY SPACE CENTER, FLA. - An overhead crane is in place to lift the Mars Exploration Rover 2 (MER-2) entry vehicle to move it to a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.
An Overview of a Regenerative Fuel Cell Concept for a Mars Surface Mobile Element (Mars Rover)
NASA Astrophysics Data System (ADS)
Andersson, T.
2018-04-01
This paper outlines an overview of a regenerative fuel cell concept for a Mars rover. The objectives of the system are to provide electrical and thermal power during the Mars night and to provide electrical power for the operational cycles.
2003-05-15
KENNEDY SPACE CENTER, FLA. - In the foreground, three solid rocket boosters (SRBs) suspended in the launch tower flank the Delta II rocket (in the background) that will launch Mars Exploration Rover 2 (MER-2). NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.
2003-05-10
KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility prepare to lift and move the backshell that will cover the Mars Exploration Rover 1 (MER-1) and its lander. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.
Pancam Imaging of the Mars Exploration Rover Landing Sites in Gusev Crater and Meridiani Planum
NASA Technical Reports Server (NTRS)
Bell, J. F., III; Squyres, S. W.; Arvidson, R. E.; Arneson, H. M.; Bass, D.; Cabrol, N.; Calvin, W.; Farmer, J.; Farrand, W. H.
2004-01-01
The Mars Exploration Rovers carry four Panoramic Camera (Pancam) instruments (two per rover) that have obtained high resolution multispectral and stereoscopic images for studies of the geology, mineralogy, and surface and atmospheric physical properties at both rover landing sites. The Pancams are also providing significant mission support measurements for the rovers, including Sun-finding for rover navigation, hazard identification and digital terrain modeling to help guide long-term rover traverse decisions, high resolution imaging to help guide the selection of in situ sampling targets, and acquisition of education and public outreach imaging products.
2014-08-05
Guest attending the National Geographic “Mars Up Close” panel discussion, look at full scale models of the Spirit/Opportunity, left, and Curiosity, Mars rovers, Tuesday, August 5, 2014, at the National Geographic Society headquarters in Washington. Guest listened to a panel of distinguished space scientists and Mars experts involved in current Mars exploration that shared what we’ve learned from Curiosity and the other Mars rovers. Photo Credit: (NASA/Bill Ingalls)
Preparatory Test for First Rock Drilling by Mars Rover Curiosity
2013-02-04
The bit in the rotary-percussion drill of NASA Mars rover Curiosity left its mark in a target patch of rock called John Klein during a test on Feb. 2, 2013, in preparation for the first drilling of a rock by the rover.
Approaching Endeavour Crater, Sol 2,680
2011-10-10
This image from the navigation camera on NASA Mars Exploration Rover Opportunity shows the view ahead on the day before the rover reached the rim of Endeavour crater. It was taken during the 2,680th Martian day, or sol, of the rover work on Mars.
High Martian Viewpoint for 11-Year-Old Rover False-Color Landscape
2015-01-22
NASA Mars Exploration Rover Opportunity obtained this view from the top of the Cape Tribulation segment of the rim of Endeavour Crater. The rover reached this point three weeks before the 11th anniversary of its January 2004 landing on Mars.
Curiosity Mars Rover First Image of Earth and Earth Moon
2014-02-06
The two bodies in this portion of an evening-sky view by NASA Mars rover Curiosity are Earth and Earth moon. The rover Mast Camera Mastcam imaged them in the twilight sky of Curiosity 529th Martian day, or sol Jan. 31, 2014.
2015-06-10
This diagram, superimposed on a photo of Martian landscape, illustrates a concept called "adaptive caching," which is in development for NASA's 2020 Mars rover mission. In addition to the investigations that the Mars 2020 rover will conduct on Mars, the rover will collect carefully selected samples of Mars rock and soil and cache them to be available for possible return to Earth if a Mars sample-return mission is scheduled and flown. Each sample will be stored in a sealed tube. Adaptive caching would result in a set of samples, up to the maximum number of tubes carried on the rover, being placed on the surface at the discretion of the mission operators. The tubes holding the collected samples would not go into a surrounding container. In this illustration, green dots indicate "regions of interest," where samples might be collected. The green diamond indicates one region of interest serving as the depot for the cache. The green X at upper right represents the landing site. The solid black line indicates the rover's route during its prime mission, and the dashed black line indicates its route during an extension of the mission. The base image is a portion of the "Everest Panorama" taken by the panoramic camera on NASA's Mars Exploration Rover Spirit at the top of Husband Hill in 2005. http://photojournal.jpl.nasa.gov/catalog/PIA19150
2003-06-17
KENNEDY SPACE CENTER, FLA. - On Launch Pad 17-B, Cape Canaveral Air Force Station, the Mars Exploration Rover 1 (MER-B) is moved toward the opening above the Delta rocket. The rover will then be mated with the rocket for launch. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.
Mineralogy Considerations for 2003 MER Site Selection and the Importance for Astrobiology
NASA Technical Reports Server (NTRS)
Bishop, J. L.
2001-01-01
Much of the discussion of site selection on Mars is based on interesting images of the surface combined with safety issues. I argue that the two rovers should be sent to mineralogically distinct regions. Compositional information is still poorly constrained on Mars; however, the instruments on the 2003 Mars Exploration Rovers (MERs) will provide a unique opportunity for detailed characterization including mineral identification. There is strong motivation for sending one rover to a "typical" region on Mars to be used as a ground truth for the Thermal Emission Spectrometer (TES), while the other rover should be sent to a site where water and chemical alteration are likely to have occurred. Determining the mineralogy of the Martian surface material provides information about the past and present environments on Mars which are an integral aspect of whether or not Mars was suitable for the origin of life. Understanding the mineralogy of terrestrial samples from potentially Mars-like environments is essential to this effort.
Microbiological cleanliness of the Mars Exploration Rover spacecraft
NASA Technical Reports Server (NTRS)
Newlin, L.; Barengoltz, J.; Chung, S.; Kirschner, L.; Koukol, R.; Morales, F.
2002-01-01
Planetary protection for Mars missions is described, and the approach being taken by the Mars Exploration Rover Project is discussed. Specific topics include alcohol wiping, dry heat microbial reduction, microbiological assays, and the Kennedy Space center's PHSF clean room.
Magnified Look at a Meteorite on Mars
2009-08-06
NASA Mars Exploration Rover Opportunity used its microscopic imager to get this view of the surface of a rock called Block Island during the 1,963rd Martian day, or sol, of the rover mission on Mars Aug. 1, 2009.
Mars Science Laboratory Rover Taking Shape
2008-11-19
This image taken in August 2008 in a clean room at NASA JPL, Pasadena, Calif., shows NASA next Mars rover, the Mars Science Laboratory, in the course of its assembly, before additions of its arm, mast, laboratory instruments and other equipment.
2003-04-23
KENNEDY SPACE CENTER, FLA. - On Pad 17-A, Cape Canaveral Air Force Station, the first stage of the Delta II rocket is lifted up the launch tower. The Delta will launch the Mars Exploration Rover (MER-A) vehicle. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for this first of NASA's two Mars Exploration Rover missions is scheduled no earlier than June 6.
2003-04-23
KENNEDY SPACE CENTER, FLA. - On Pad 17-A, Cape Canaveral Air Force Station, the first stage of the Delta II rocket is nearly vertical in the launch tower. The Delta will launch the Mars Exploration Rover (MER-A) vehicle. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for this first of NASA's two Mars Exploration Rover missions is scheduled no earlier than June 6.
2003-04-23
KENNEDY SPACE CENTER, FLA. - On Pad 17-A, Cape Canaveral Air Force Station, the first stage of the Delta II rocket is lifted up the launch tower. The Delta will launch the Mars Exploration Rover (MER-A) vehicle. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for this first of NASA's two Mars Exploration Rover missions is scheduled no earlier than June 6.
2003-04-23
KENNEDY SPACE CENTER, FLA. - On Pad 17-A, Cape Canaveral Air Force Station, the first stage of the Delta II rocket is lifted to vertical at the launch tower. The Delta will launch the Mars Exploration Rover (MER-A) vehicle. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for this first of NASA's two Mars Exploration Rover missions is scheduled no earlier than June 6.
Implementing Strategic Planning Capabilities Within the Mars Relay Operations Service
NASA Technical Reports Server (NTRS)
Hy, Franklin; Gladden, Roy; Allard, Dan; Wallick, Michael
2011-01-01
Since the Mars Exploration Rovers (MER), Spirit and Opportunity, began their travels across the Martian surface in January of 2004, orbiting spacecraft such as the Mars 2001 Odyssey orbiter have relayed the majority of their collected scientific and operational data to and from Earth. From the beginning of those missions, it was evident that using orbiters to relay data to and from the surface of Mars was a vastly more efficient communications strategy in terms of power consumption and bandwidth compared to direct-to-Earth means. However, the coordination between the various spacecraft, which are largely managed independently and on differing commanding timelines, has always proven to be a challenge. Until recently, the ground operators of all these spacecraft have coordinated the movement of data through this network using a collection of ad hoc human interfaces and various, independent software tools. The Mars Relay Operations Service (MaROS) has been developed to manage the evolving needs of the Mars relay network, and specifically to standardize and integrate the relay planning and coordination data into a centralized infrastructure. This paper explores the journey of developing the MaROS system, from inception to delivery and acceptance by the Mars mission users.
Students, Teachers, and Scientists Partner to Explore Mars
NASA Astrophysics Data System (ADS)
Bowman, C. D.; Bebak, M.; Curtis, K.; Daniel, C.; Grigsby, B.; Herman, T.; Haynes, E.; Lineberger, D. H.; Pieruccini, S.; Ransom, S.; Reedy, K.; Spencer, C.; Steege, A.
2003-12-01
The Mars Exploration Rovers began their journey to the red planet in the summer of 2003 and, in early 2004, will begin an unprecedented level of scientific exploration on Mars, attracting the attention of scientists and the public worldwide. In an effort to engage students and teachers in this exciting endeavor, NASA's Mars Public Engagement Office, partnering with the Athena Science Investigation, coordinates a student-scientist research partnership program called the Athena Student Interns Program. The Athena Student Interns Program \\(ASIP\\) began in early 1999 as the LAPIS program, a pilot hands-on educational effort associated with the FIDO prototype Mars rover field tests \\(Arvidson, 2000\\). In ASIP, small groups of students and teachers selected through a national application process are paired with mentors from the mission's Athena Science Team to carry out an aspect of the mission. To prepare for actual operations during the landed rover mission, the students and teachers participate in one of the Science Team's Operational Readiness Tests \\(ORTs\\) at JPL using a prototype rover in a simulated Mars environment \\(Crisp, et al., in press. See also http://mars.jpl.nasa.gov/mer/fido/\\). Once the rovers have landed, each ASIP group will spend one week at JPL in mission operations, working as part of their mentor's own team to help manage and interpret data coming from Mars. To reach other teachers and students, each group gives school and community presentations, contributes to publications such as web articles and conference abstracts, and participates in NASA webcasts and webchats. Partnering with other groups and organizations, such as NASA's Solar System Ambassadors and the Housing and Urban Development Neighborhood Networks helps reach an even broader audience. ASIP is evaluated through the use of empowerment evaluation, a technique that actively involves participants in program assessment \\(Fetterman and Bowman, 2002\\). With the knowledge they gain through the ASIP program and their participation in the empowerment evaluation, ASIP members will help refine the current program and provide a model for student-scientist research partnerships associated with future space missions to Mars and beyond. Arvidson, R.E., et al. \\(2000\\) Students participate in Mars Sample Return Rover field tests. Eos, 81(11). Crisp, J.A., et al. \\(in press\\) The Mars Exploration Rover Mission. J. Geophys. Research-Planets. Fetterman, D. and C.D. Bowman. \\(2002\\) Experiential Education and Empowerment Evaluation: Mars Rover Educational Program Case Example. J. Experiential Education, 25(2).
Electrostatic Charging of the Pathfinder Rover
NASA Technical Reports Server (NTRS)
Siebert, Mark W.; Kolecki, Joseph C.
1996-01-01
The Mars Pathfinder mission will send a lander and a rover to the martian surface. Because of the extremely dry conditions on Mars, electrostatic charging of the rover is expected to occur as it moves about. Charge accumulation may result in high electrical potentials and discharge through the martian atmosphere. Such discharge could interfere with the operation of electrical elements on the rover. A strategy was sought to mitigate this charge accumulation as a precautionary measure. Ground tests were performed to demonstrate charging in laboratory conditions simulating the surface conditions expected at Mars. Tests showed that a rover wheel, driven at typical rover speeds, will accumulate electrical charge and develop significant electrical potentials (average observed, 110 volts). Measurements were made of wheel electrical potential, and wheel capacitance. From these quantities, the amount of absolute charge was estimated. An engineering solution was developed and recommended to mitigate charge accumulation. That solution has been implemented on the actual rover.
NASA Technical Reports Server (NTRS)
2000-01-01
This paper presents, in viewgraph form, the 2005 Earth-Mars Round Trip. The contents include: 1) Lander; 2) Mars Sample Return Project; 3) Rover; 4) Rover Size Comparison; 5) Mars Ascent Vehicle; 6) Return Orbiter; 7) A New Mars Surveyor Program Architecture; 8) Definition Study Summary Result; 9) Mars Surveyor Proposed Architecture 2003, 2005 Opportunities; 10) Mars Micromissions Using Ariane 5; 11) Potential International Partnerships; 12) Proposed Integrated Architecture; and 13) Mars Exploration Program Report of the Architecture Team.
Long Range Navigation for Mars Rovers Using Sensor-Based Path Planning and Visual Localisation
NASA Technical Reports Server (NTRS)
Laubach, Sharon L.; Olson, Clark F.; Burdick, Joel W.; Hayati, Samad
1999-01-01
The Mars Pathfinder mission illustrated the benefits of including a mobile robotic explorer on a planetary mission. However, for future Mars rover missions, significantly increased autonomy in navigation is required in order to meet demanding mission criteria. To address these requirements, we have developed new path planning and localisation capabilities that allow a rover to navigate robustly to a distant landmark. These algorithms have been implemented on the JPL Rocky 7 prototype microrover and have been tested extensively in the JPL MarsYard, as well as in natural terrain.
NASA Mars Science Laboratory Rover
NASA Technical Reports Server (NTRS)
Olson, Tim
2017-01-01
Since August 2012, the NASA Mars Science Laboratory (MSL) rover Curiosity has been operating on the Martian surface. The primary goal of the MSL mission is to assess whether Mars ever had an environment suitable for life. MSL Science Team member Dr. Tim Olson will provide an overview of the rover's capabilities and the major findings from the mission so far. He will also share some of his experiences of what it is like to operate Curiosity's science cameras and explore Mars as part of a large team of scientists and engineers.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. In the Payload Hazardous Servicing Facility, workers lower the backshell with the Mars Exploration Rover 1 (MER-1) onto the heat shield. The two components form the aeroshell that will protect the rover on its journey to Mars. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. In the Payload Hazardous Servicing Facility, workers lower the backshell with the Mars Exploration Rover 1 (MER-1) onto the heat shield. The two components form the aeroshell that will protect the rover on its journey to Mars. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.
Ground Processing of Data From the Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Wright, Jesse; Sturdevant, Kathryn; Noble, David
2006-01-01
A computer program implements the Earth side of the protocol that governs the transfer of data files generated by the Mars Exploration Rovers. It also provides tools for viewing data in these files and integrating data-product files into automated and manual processes. It reconstitutes files from telemetry data packets. Even if only one packet is received, metadata provide enough information to enable this program to identify and use partial data products. This software can generate commands to acknowledge received files and retransmit missed parts of files, or it can feed a manual process to make decisions about retransmission. The software uses an Extensible Markup Language (XML) data dictionary to provide a generic capability for displaying files of basic types, and uses external "plug-in" application programs to provide more sophisticated displays. This program makes data products available with very low latency, and can trigger automated actions when complete or partial products are received. The software is easy to install and use. The only system requirement for installing the software is a Java J2SE 1.4 platform. Several instances of the software can be executed simultaneously on the same machine.
Autonomous Hazard Checks Leave Patterned Rover Tracks on Mars Stereo
2011-05-18
A dance-step pattern is visible in the wheel tracks near the left edge of this scene recorded by NASA Mars Exploration Rover Opportunity on Mars on April 1, 2011. 3D glasses are necessary to view this image.
Arm and Mast of NASA Mars Rover Curiosity
2011-04-06
The arm and the remote sensing mast of the Mars rover Curiosity each carry science instruments and other tools for NASA Mars Science Laboratory mission. This image shows the arm on the left and the mast just right of center.
Moon-Mars Analogue Mission (EuroMoonMars 1 at the Mars Desert Research Station)
NASA Astrophysics Data System (ADS)
Lia Schlacht, Irene; Voute, Sara; Irwin, Stacy; Foing, Bernard H.; Stoker, Carol R.; Westenberg, Artemis
The Mars Desert Research Station (MDRS) is situated in an analogue habitat-based Martian environment, designed for missions to determine the knowledge and equipment necessary for successful future planetary exploration. For this purpose, a crew of six people worked and lived together in a closed-system environment. They performed habitability experiments within the dwelling and conducted Extra-Vehicular Activities (EVAs) for two weeks (20 Feb to 6 Mar 2010) and were guided externally by mission support, called "Earth" within the simulation. Crew 91, an international, mixed-gender, and multidisciplinary group, has completed several studies during the first mission of the EuroMoonMars campaign. The crew is composed of an Italian designer and human factors specialist, a Dutch geologist, an American physicist, and three French aerospace engineering students from Ecole de l'Air, all with ages between 21 and 31. Each crewmember worked on personal research and fulfilled a unique role within the group: commander, executive officer, engineer, health and safety officer, scientist, and journalist. The expedition focused on human factors, performance, communication, health and safety pro-tocols, and EVA procedures. The engineers' projects aimed to improve rover manoeuvrability, far-field communication, and data exchanges between the base and the rover or astronaut. The crew physicist evaluated dust control methods inside and outside the habitat. The geologist tested planetary geological sampling procedures. The crew designer investigated performance and overall habitability in the context of the Mars Habitability Experiment from the Extreme-Design group. During the mission the crew also participated in the Food Study and in the Ethospace study, managed by external groups. The poster will present crew dynamics, scientific results and daily schedule from a Human Factors perspective. Main co-sponsors and collaborators: ILEWG, ESA ESTEC, NASA Ames, Ecole de l'Air, SKOR, Extreme-Design, Universit` di Torino, MMS TU-Berlin, Space Florida, DAAD, Uni-a versity of Utrecht, The Mars Society.
Hole at Buckskin Drilled Days Before Landing Anniversary
2015-08-05
NASA's Curiosity Mars Rover drilled this hole to collect sample material from a rock target called "Buckskin" on July 30, 2015, during the 1060th Martian day, or sol, of the rover's work on Mars. The diameter is slightly smaller than a U.S. dime. Curiosity landed on Mars on Aug. 6, 2012, Universal Time (evening of Aug. 5, PDT). The rover took this image with the Mars Hand Lens Imager (MAHLI) camera, which is mounted on the same robotic arm as the sample-collecting drill. Rock powder from the collected sample was subsequently delivered to a laboratory inside the rover for analysis. The rover's drill did not experience any sign during this sample collection of an intermittent short-circuiting issue that was detected earlier in 2015. The Buckskin target is in an area near "Marias Pass" on lower Mount Sharp where Curiosity had detected unusually high levels of silica and hydrogen. MAHLI was built by Malin Space Science Systems, San Diego. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover. http://photojournal.jpl.nasa.gov/catalog/PIA19804
2010-03-01
This report documents the work of the Mid-Range Rover Science Analysis Group (MRR-SAG), which was assigned to formulate a concept for a potential rover mission that could be launched to Mars in 2018. Based on programmatic and engineering considerations as of April 2009, our deliberations assumed that the potential mission would use the Mars Science Laboratory (MSL) sky-crane landing system and include a single solar-powered rover. The mission would also have a targeting accuracy of approximately 7 km (semimajor axis landing ellipse), a mobility range of at least 10 km, and a lifetime on the martian surface of at least 1 Earth year. An additional key consideration, given recently declining budgets and cost growth issues with MSL, is that the proposed rover must have lower cost and cost risk than those of MSL--this is an essential consideration for the Mars Exploration Program Analysis Group (MEPAG). The MRR-SAG was asked to formulate a mission concept that would address two general objectives: (1) conduct high priority in situ science and (2) make concrete steps toward the potential return of samples to Earth. The proposed means of achieving these two goals while balancing the trade-offs between them are described here in detail. We propose the name Mars Astrobiology Explorer-Cacher(MAX-C) to reflect the dual purpose of this potential 2018 rover mission.
Delta II Heavy MER-B Prelaunch
2003-07-07
On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the rover "Opportunity" for the second Mars Exploration Rover mission is poised for launch after rollback of the Mobile Service Tower. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rover’s prime mission is planned to last three months on Mars.
Delta II Heavy MER-B - MST Rollback
2003-07-07
The Mobile Service Tower is ready to be rolled back at Launch Complex 17-B, Cape Canaveral Air Force Station, to launch the Delta II Heavy launch vehicle carrying the rover "Opportunity" on the second Mars Exploration Rover mission. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rover’s prime mission is planned to last three months on Mars.
2003-07-07
KENNEDY SPACE CENTER, FLA. - The Mobile Service Tower begins to roll back at Launch Complex 17-B, Cape Canaveral Air Force Station, revealing the Delta II Heavy launch vehicle carrying the rover "Opportunity" on the second Mars Exploration Rover mission. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rover’s prime mission is planned to last three months on Mars.
Operation and performance of the mars exploration rover imaging system on the martian surface
Maki, J.N.; Litwin, T.; Schwochert, M.; Herkenhoff, K.
2005-01-01
The Imaging System on the Mars Exploration Rovers has successfully operated on the surface of Mars for over one Earth year. The acquisition of hundreds of panoramas and tens of thousands of stereo pairs has enabled the rovers to explore Mars at a level of detail unprecedented in the history of space exploration. In addition to providing scientific value, the images also play a key role in the daily tactical operation of the rovers. The mobile nature of the MER surface mission requires extensive use of the imaging system for traverse planning, rover localization, remote sensing instrument targeting, and robotic arm placement. Each of these activity types requires a different set of data compression rates, surface coverage, and image acquisition strategies. An overview of the surface imaging activities is provided, along with a summary of the image data acquired to date. ?? 2005 IEEE.
2003-03-06
Components of the two Mars Exploration Rovers (MER) reside in the Payload Hazardous Servicing Facility. At right MER-2. At left is a lander. In the background is one of the aeroshells. MER-1 and MER-2, their aeroshells and landers will undergo a full mission simulation before being integrated. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers are identical to each other, but will land at different regions of Mars. Launch of the first rover is scheduled for May 30 from Cape Canaveral Air Force Station. The second will follow June 25.
Curiosity Rover's First Anniversary
2013-08-06
A small-scaled model of NASA's Curiosity rover is seen at a public event observing the first anniversary of the Curiosity rover's landing on Mars, Tuesday, August 6th, 2013 in Washington. The Mars Science Laboratory mission successfully placed the one-ton Curiosity rover on the surface of Mars on Aug. 6, 2012, about 1 mile from the center of its 12-mile-long target area. Within the first eight months of a planned 23-months primary mission, Curiosity met its major science objective of finding evidence of a past environment well-suited to support microbial life. Photo Credit: (NASA/Carla Cioffi)
2017-06-05
The scientifically-themed Mars rover concept vehicle operates on an electric motor, powered by solar panels and a 700-volt battery. The rover separates in the middle with the front area designed for scouting and equipped with a radio and navigation provided by the Global Positioning System. The back section serves as a full laboratory which can disconnect for autonomous research. The "Summer of Mars" promotion is designed to provide guests with a better understanding of NASA's studies of the Red Planet. The builders of the rover, Parker Brothers Concepts of Port Canaveral, Florida, incorporated input into its design from NASA subject matter experts.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. The backshell is in place over the Mars Exploration Rover 1 (MER-1). The backshell is a protective cover for the rover. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.
Curiosity: How to Boldly Go...
NASA Technical Reports Server (NTRS)
Pyrzak, Guy
2013-01-01
Operating a one-ton rover on the surface of Mars requires more than just a joystick and an experiment. With 10 science instruments, 17 cameras, a radioisotope thermoelectric generator and lasers, Curiosity is the largest and most complex rover NASA has sent to Mars. Combined with a 1 way light time of 4 to 20 minutes and a distributed international science and engineering team, it takes a lot of work to operate this mega-rover. The Mars Science Lab's operations team has developed an organization and process that maximizes science return and safety of the spacecraft. These are the voyages of the rover Curiosity, its 2 year mission, to determine the habitability of Gale Crater, to understand the role of water, to study the climate and geology of Mars.
The NASA Langley Mars Tumbleweed Rover Prototype
NASA Technical Reports Server (NTRS)
Antol, Jeffrey; Chattin, Richard L.; Copeland, Benjamin M.; Krizann, Shawn A.
2005-01-01
Mars Tumbleweed is a concept for an autonomous rover that would achieve mobility through use of the natural winds on Mars. The wind-blown nature of this vehicle make it an ideal platform for conducting random surveys of the surface, scouting for signs of past or present life as well as examining the potential habitability of sites for future human exploration. NASA Langley Research Center (LaRC) has been studying the dynamics, aerodynamics, and mission concepts of Tumbleweed rovers and has recently developed a prototype Mars Tumbleweed Rover for demonstrating mission concepts and science measurement techniques. This paper will provide an overview of the prototype design, instrumentation to be accommodated, preliminary test results, and plans for future development and testing of the vehicle.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. Workers in the Payload Hazardous Servicing Facility lower the backshell over the Mars Exploration Rover 1 (MER-1). The backshell is a protective cover for the rover. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.
NASA Astrophysics Data System (ADS)
Bell, J. F.; Godber, A.; McNair, S.; Caplinger, M. A.; Maki, J. N.; Lemmon, M. T.; Van Beek, J.; Malin, M. C.; Wellington, D.; Kinch, K. M.; Madsen, M. B.; Hardgrove, C.; Ravine, M. A.; Jensen, E.; Harker, D.; Anderson, R. B.; Herkenhoff, K. E.; Morris, R. V.; Cisneros, E.; Deen, R. G.
2017-07-01
The NASA Curiosity rover Mast Camera (Mastcam) system is a pair of fixed-focal length, multispectral, color CCD imagers mounted 2 m above the surface on the rover's remote sensing mast, along with associated electronics and an onboard calibration target. The left Mastcam (M-34) has a 34 mm focal length, an instantaneous field of view (IFOV) of 0.22 mrad, and a FOV of 20° × 15° over the full 1648 × 1200 pixel span of its Kodak KAI-2020 CCD. The right Mastcam (M-100) has a 100 mm focal length, an IFOV of 0.074 mrad, and a FOV of 6.8° × 5.1° using the same detector. The cameras are separated by 24.2 cm on the mast, allowing stereo images to be obtained at the resolution of the M-34 camera. Each camera has an eight-position filter wheel, enabling it to take Bayer pattern red, green, and blue (RGB) "true color" images, multispectral images in nine additional bands spanning 400-1100 nm, and images of the Sun in two colors through neutral density-coated filters. An associated Digital Electronics Assembly provides command and data interfaces to the rover, 8 Gb of image storage per camera, 11 bit to 8 bit companding, JPEG compression, and acquisition of high-definition video. Here we describe the preflight and in-flight calibration of Mastcam images, the ways that they are being archived in the NASA Planetary Data System, and the ways that calibration refinements are being developed as the investigation progresses on Mars. We also provide some examples of data sets and analyses that help to validate the accuracy and precision of the calibration.
Microrover Nanokhod enhancing the scientific output of the ExoMars Lander
NASA Astrophysics Data System (ADS)
Klinkner, Sabine; Bernhardt, Bodo; Henkel, Hartmut; Rodionov, Daniel; Klingelhoefer, Goestar
The Nanokhod rover is a small and mobile exploration platform carrying out in-situ exploration by transporting and operating scientific instruments to interesting samples beyond the landing point. The microrover has a volume of 160x65x250mm (3) it weighs 3.2kg including a payload mass of 1kg and it has a peak power of 5W. The scientific model payload of the rover is a Geochemistry Instrument Package Facility (GIPF), which analyses the chemical and mineralogical composition of planetary surfaces. It consists of: An Alpha-Particle-Xray-spectrometer, a Mößbauer spectrometer and a miniature imaging system. The amount of science which can be performed within the operating range of the lander is limited since there are only few reachable, scientific interesting objects. By travelling to new sites with the aid of a microrover, the additional reach enhances the mission output and provides a significant increase in scientific return. The implementation of the Nanokhod rover on the ExoMars Lander increases its operating range by a radius of several meters, requiring only a minor mass impact of few kilograms. The Nanokhod rover is a tethered vehicle based on a Russian concept. It stays connected to the Lander via thin cables throughout the mission. This connection is used for power supply to the rover as well as the transmission of commands and scientific data. This solution minimises the communication unit and eliminates the power subsystems on the rover side, saving valuable mass and thus improving the payload to system mass ratio. By removing the power storage subsystem on the rover side, the mobile system provides a high thermal robustness and allows the system to easily survive Martian nights. The locomotion of the rover is provided by tracks. This is the optimised locomotion method on a soft and sandy surface for such a small, low-mass system, allowing even to negotiate steep slopes. The tracks enable a large contact surface of the vehicle, thus reducing its contact pressure. The sinkage is minimised reducing the bulldozing effect and increasing the traction. The central Payload Cabine has 2 (Degree of Freedom) DOF, allowing inherently robust deployment and precise payload positioning. The two drives for lifting and rotating the Payload Cabine (PLC) provides a robust and repetitive accuracy for a congruent positioning of all payload instruments on the same sample. Furthermore the PLC drives can be used for climbing and overcoming obstacles. The latest developments on the Nanokhod rover have prepared the concept for a mission scenario on the Mercury surface. The mechanical design of the Nanokhod rover was developed from a conceptual stage to an engineering model which is able to withstand the demanding conditions of the Mercury mission such as: Surface temperature of -180(°) °C, significant mass restrictions, limited power and energy supply, operational surface covered with fine dust, shock loads of 200g for 20ms and high Vacuum. With the building and testing of the engineering model the concept achieved a Technical Readiness Level (TRL) of 5 to 6, and solutions were found for a set of requirements with a high complexity. With these design requirements exceeding most mission conditions of the ExoMars lander, the current design is well-prepared for the Mars scenario.
2003-03-29
KENNEDY SPACE CENTER, FLA. - A worker makes the final launch preparations on the rover equipment deck (RED) for the Mars Exploration Rover 2 (MER-2). Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. The rovers will be identical to each other, but will land at different regions of Mars. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening May 30, and the second rover a window opening June 25.
2003-03-21
KENNEDY SPACE CENTER, Fla. - Workers in the Payload Hazardous Servicing Facility check different parts of the Mars Exploration Rover-2 (MER-2) after testing the rover's mobility and maneuverability. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.
2003-05-15
KENNEDY SPACE CENTER, FLA. - Workers watch as an overhead crane begins to lift the backshell with the Mars Exploration Rover 1 (MER-1) inside. The backshell will be moved and attached to the lower heat shield. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.
2003-05-06
KENNEDY SPACE CENTER, FLA. - A closeup of the cruise stage to be mated to the Mars Exploration Rover 2 (MER-2) entry vehicle. The cruise stage includes fuel tanks, thruster clusters and avionics for steering and propulsion. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-2 is scheduled to launch June 5 as MER-A aboard a Delta rocket from Cape Canaveral Air Force Station.
2003-05-14
KENNEDY SPACE CENTER, FLA. - A solid rocket booster arrives at Launch Complex 17-A, Cape Canaveral Air Force Station. It is one of nine that will be mated to the Delta rocket to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.
2003-05-15
KENNEDY SPACE CENTER, FLA. - Workers walk with the suspended backshell/ Mars Exploration Rover 1 (MER-1) as it travels across the floor of the Payload Hazardous Servicing Facility. The backshell will be attached to the lower heat shield. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.
2003-06-08
KENNEDY SPACE CENTER, FLA. - Nine-year-old Sofi Collis is introduced to the media at a press conference. The Siberian-born Arizona resident wrote the winning entry in the Name the Rovers Contest sponsored by NASA and the Lego Co., a Denmark-based toymaker, with collaboration from the Planetary Society, Pasadena, Calif. The names she selected for the Mars Exploration Rovers are "Spirit" and "Opportunity." The third grader's essay was chosen from more than 10,000 American student entries. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.
2003-06-08
KENNEDY SPACE CENTER, FLA. - Nine-year-old Sofi Collis (left) shares a light moment with NASA Administrator Sean O'Keefe at a press conference. The Siberian-born Arizona resident wrote the winning entry in the Name the Rovers Contest sponsored by NASA and the Lego Co., a Denmark-based toymaker, with collaboration from the Planetary Society, Pasadena, Calif. The names she selected for the Mars Exploration Rovers are "Spirit" and "Opportunity." The third grader's essay was chosen from more than 10,000 American student entries. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.
2003-06-08
KENNEDY SPACE CENTER, FLA. - Nine-year-old Sofi Collis (left) is introduced to the media by NASA Administrator Sean O'Keefe at a press conference. The Siberian-born Arizona resident wrote the winning entry in the Name the Rovers Contest sponsored by NASA and the Lego Co., a Denmark-based toymaker, with collaboration from the Planetary Society, Pasadena, Calif. The names she selected for the Mars Exploration Rovers are "Spirit" and "Opportunity." The third grader's essay was chosen from more than 10,000 American student entries. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.
A Well-Traveled 'Eagle Crater' (left-eye)
NASA Technical Reports Server (NTRS)
2004-01-01
This is the left-eye version of the Mars Exploration Rover Opportunity's view on its 56th sol on Mars, before it left its landing-site crater. To the right, the rover tracks are visible at the original spot where the rover attempted unsuccessfully to exit the crater. After a one-sol delay, Opportunity took another route to the plains of Meridiani Planum. This image was taken by the rover's navigation camera.
Dynamic Modeling and Soil Mechanics for Path Planning of the Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Trease, Brian
2011-01-01
To help minimize risk of high sinkage and slippage during drives and to better understand soil properties and rover terramechanics from drive data, a multidisciplinary team was formed under the Mars Exploration Rover project to develop and utilize dynamic computer-based models for rover drives over realistic terrains. The resulting system, named ARTEMIS (Adams-based Rover Terramechanics and Mobility Interaction System), consists of the dynamic model, a library of terramechanics subroutines, and the high-resolution digital elevation maps of the Mars surface. A 200-element model of the rovers was developed and validated for drop tests before launch, using Adams dynamic modeling software. The external library was built in Fortran and called by Adams to model the wheel-soil interactions include the rut-formation effect of deformable soils, lateral and longitudinal forces, bull-dozing effects, and applied wheel torque. The paper presents the details and implementation of the system. To validate the developed system, one study case is presented from a realistic drive on Mars of the Opportunity rover. The simulation results match well from the measurement of on-board telemetry data. In its final form, ARTEMIS will be used in a predictive manner to assess terrain navigability and will become part of the overall effort in path planning and navigation for both Martian and lunar rovers.
2003-04-30
KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, a crane is in place to lift the fairing for the Mars Exploration Rover 2 (MER-2/MER-A). The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.
2003-04-30
KENNEDY SPACE CENTER, FLA. - The fairing for the Mars Exploration Rover 2 (MER-2/MER-A) arrives at Launch Complex 17-A, Cape Canaveral Air Force Station. It will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.
2003-06-13
KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, the cylindrical payload canister is lowered around Mars Exploration Rover 1 (MER-B). Once secure inside the canister, the rover will be transported to Launch Complex 17-B, Cape Canaveral Air Force Station, for mating with the Delta rocket. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch from Pad 17-B June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.
Spirit Ascent Movie, Rover's-Eye View
NASA Technical Reports Server (NTRS)
2005-01-01
A movie assembled from frames taken by the rear hazard-identification camera on NASA's Mars Exploration Rover Spirit shows the last few days of the rover's ascent to the crest of 'Husband Hill' inside Mars' Gusev Crater. The rover was going in reverse. Rover planners often drive Spirit backwards to keep wheel lubrication well distributed. The images in this clip span a timeframe from Spirit's 573rd martian day, or sol (Aug, 13, 2005) to sol 582 (Aug. 22, 2005), the day after the rover reached the crest. During that period, Spirit drove 136 meters (446 feet),NASA Technical Reports Server (NTRS)
Blake, David F.
2014-01-01
The CheMin instrument (short for "Chemistry and Mineralogy") on the Mars Science Laboratory rover Curiosity is one of two "laboratory quality" instruments on board the Curiosity rover that is exploring Gale crater, Mars. CheMin is an X-ray diffractometer that has for the first time returned definitive and fully quantitative mineral identifications of Mars soil and drilled rock. I will describe CheMin's 23-year development from an idea to a spacecraft qualified instrument, and report on some of the discoveries that Curiosity has made since its entry, descent and landing on Aug. 6, 2012, including the discovery and characterization of the first habitable environment on Mars.
Spirit Rover on 'Husband Hill'
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Figure 1: Location of Spirit Two Earth years ago, NASA's Mars Exploration Rover Spirit touched down in Gusev Crater. The rover marked its first Mars-year (687 Earth days) anniversary in November 2005. Shortly before Spirit's Martian anniversary, the Mars Orbiter Camera on NASA's Mars Global Surveyor acquired an image covering approximately 3 kilometers by 3 kilometers (1.9 miles by 1.9 miles) centered on the rover's location at that time in the 'Columbia Hills.' 'Husband Hill,' the tallest in the range, is just below the center of the image. The image has a resolution of about 50 centimeters (1.6 feet) per pixel. North is up; illumination is from the left. The location is near 14.8 degrees south latitude, 184.6 degrees west longitude. The image was acquired on Nov. 2, 2005. A white box (see Figure 1) indicates the location of an excerpted portion on which the location of Spirit on that date is marked. Dr. Timothy J. Parker of the Mars Exploration Rover team at the NASA's Jet Propulsion Laboratory, Pasadena, Calif., confirmed the location of the rover in the image. The region toward the bottom of the image shows the area where the rover is currently headed. The large dark patch and other similar dark patches are accumulations of windblown sand and granules.Lincoln Penny on Mars in Camera Calibration Target
2012-09-10
The penny in this image is part of a camera calibration target on NASA Mars rover Curiosity. The MAHLI camera on the rover took this image of the MAHLI calibration target during the 34th Martian day of Curiosity work on Mars, Sept. 9, 2012.
Contact Instrument Calibration Targets on Mars Rover Curiosity
2012-02-07
Two instruments at the end of the robotic arm on NASA Mars rover Curiosity will use calibration targets attached to a shoulder joint of the arm. The penny is a size reference giving the public a familiar object for perceiving size on Mars easily.
Creating an Immersive Mars Experience Using Unity3D
NASA Technical Reports Server (NTRS)
Miles, Sarah
2011-01-01
Between the two Mars Exploration Rovers, Spirit and Opportunity, NASA has collected over 280,000 images while studying the Martian surface. This number will continue to grow, with Opportunity continuing to send images and with another rover, Curiosity, launching soon. Using data collected by and for these Mars rovers, I am contributing to the creation of virtual experiences that will expose the general public to Mars. These experiences not only work to increase public knowledge, but they attempt to do so in an engaging manner more conducive to knowledge retention by letting others view Mars through the rovers' eyes. My contributions include supporting image viewing (for example, allowing users to click on panoramic images of the Martian surface to access closer range photos) as well as enabling tagging of points of interest. By creating a more interactive way of viewing the information we have about Mars, we are not just educating the public about a neighboring planet. We are showing the importance of doing such research.
True 3-D View of 'Columbia Hills' from an Angle
NASA Technical Reports Server (NTRS)
2004-01-01
This mosaic of images from NASA's Mars Exploration Rover Spirit shows a panorama of the 'Columbia Hills' without any adjustment for rover tilt. When viewed through 3-D glasses, depth is much more dramatic and easier to see, compared with a tilt-adjusted version. This is because stereo views are created by producing two images, one corresponding to the view from the panoramic camera's left-eye camera, the other corresponding to the view from the panoramic camera's right-eye camera. The brain processes the visual input more accurately when the two images do not have any vertical offset. In this view, the vertical alignment is nearly perfect, but the horizon appears to curve because of the rover's tilt (because the rover was parked on a steep slope, it was tilted approximately 22 degrees to the west-northwest). Spirit took the images for this 360-degree panorama while en route to higher ground in the 'Columbia Hills.' The highest point visible in the hills is 'Husband Hill,' named for space shuttle Columbia Commander Rick Husband. To the right are the rover's tracks through the soil, where it stopped to perform maintenance on its right front wheel in July. In the distance, below the hills, is the floor of Gusev Crater, where Spirit landed Jan. 3, 2004, before traveling more than 3 kilometers (1.8 miles) to reach this point. This vista comprises 188 images taken by Spirit's panoramic camera from its 213th day, or sol, on Mars to its 223rd sol (Aug. 9 to 19, 2004). Team members at NASA's Jet Propulsion Laboratory and Cornell University spent several weeks processing images and producing geometric maps to stitch all the images together in this mosaic. The 360-degree view is presented in a cylindrical-perspective map projection with geometric seam correction.Looking Up at Mars Rover Curiosity in Buckskin Selfie
2015-08-19
This low-angle self-portrait of NASA's Curiosity Mars rover shows the vehicle at the site from which it reached down to drill into a rock target called "Buckskin" on lower Mount Sharp. The selfie combines several component images taken by Curiosity's Mars Hand Lens Imager (MAHLI) on Aug. 5, 2015, during the 1,065th Martian day, or sol, of the rover's work on Mars. For scale, the rover's wheels are 20 inches (50 centimeters) in diameter and about 16 inches (40 centimeters) wide. This view is a portion of a larger panorama available at PIA19807. A close look reveals a small rock stuck onto Curiosity's left middle wheel (on the right in this head-on view). The rock had been seen previously during periodic monitoring of wheel condition about three weeks earlier, in the MAHLI raw image at http://mars.nasa.gov/msl/multimedia/raw/?rawid=1046MH0002640000400290E01_DXXX&s=1046. MAHLI is mounted at the end of the rover's robotic arm. For this self-portrait, the rover team positioned the camera lower in relation to the rover body than for any previous full self-portrait of Curiosity. This yielded a view that includes the rover's "belly," as in a partial self-portrait (/catalog/PIA16137) taken about five weeks after Curiosity's August 2012 landing inside Mars' Gale Crater. The selfie at Buckskin does not include the rover's robotic arm beyond a portion of the upper arm held nearly vertical from the shoulder joint. With the wrist motions and turret rotations used in pointing the camera for the component images, the arm was positioned out of the shot in the frames or portions of frames used in this mosaic. This process was used previously in acquiring and assembling Curiosity self-portraits taken at sample-collection sites "Rocknest" (PIA16468), "John Klein" (PIA16937), "Windjana" (PIA18390) and "Mojave" (PIA19142). MAHLI was built by Malin Space Science Systems, San Diego. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover. MAHLI was built by Malin Space Science Systems, San Diego. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover. http://photojournal.jpl.nasa.gov/catalog/PIA19808
Spirit on 'Husband Hill,' with 2004 Comparison
NASA Technical Reports Server (NTRS)
2006-01-01
Two Earth years ago, NASA's Mars Exploration Rover Spirit touched down in Gusev Crater. The rover marked its first Mars-year (687 Earth days) anniversary in November 2005. On Nov. 2, 2005, shortly before Spirit's Martian anniversary, the Mars Orbiter Camera on NASA's Mars Global Surveyor acquired an image centered on the rover's location in the 'Columbia Hills.' The location of Spirit on that date is circled on the image on the right. On the left, for comparison, is an image from Jan. 10, 2004, when few dreamed that the Spirit would ever reach the hills from its landing site about three kilometers (two miles) away. The newer image has a resolution of about 50 centimeters (1.6 feet) per pixel. North is up; illumination is from the left. The location is near 14.8 degrees south latitude, 184.6 degrees west longitude. Dr. Timothy J. Parker of the Mars Exploration Rover team at NASA's Jet Propulsion Laboratory, Pasadena, Calif., confirmed the location of the rover in the 2005 image. The scale bar is 50 meters (164 feet).NASA Technical Reports Server (NTRS)
2004-01-01
This image of the martian sundial onboard the Mars Exploration Rover Spirit was processed by students in the Red Rover Goes to Mars program to impose hour markings on the face of the dial. The position of the shadow of the sundial's post within the markings indicates the time of day and the season, which in this image is 12:17 p.m. local solar time, late summer. A team of 16 students from 12 countries were selected by the Planetary Society to participate in this program. This image was taken on Mars by the rover's panoramic camera.NASA Technical Reports Server (NTRS)
Bhandari, Pradeep; Birur, Gajanana; Bame, David; Mastropietro, A. J.; Miller, Jennifer; Karlmann, Paul; Liu, Yuanming; Anderson, Kevin
2013-01-01
The challenging range of landing sites for which the Mars Science Laboratory Rover was designed, required a rover thermal management system that is capable of keeping temperatures controlled across a wide variety of environmental conditions. On the Martian surface where temperatures can be as cold as -123 C and as warm as 38 C, the Rover relies upon a Mechanically Pumped Fluid Loop (MPFL) Rover Heat Rejection System (RHRS) and external radiators to maintain the temperature of sensitive electronics and science instruments within a -40 C to +50 C range. The RHRS harnesses some of the waste heat generated from the Rover power source, known as the Multi Mission Radioisotope Thermoelectric Generator (MMRTG), for use as survival heat for the rover during cold conditions. The MMRTG produces 110 Watts of electrical power while generating waste heat equivalent to approximately 2000 Watts. Heat exchanger plates (hot plates) positioned close to the MMRTG pick up this survival heat from it by radiative heat transfer and supply it to the rover. This design is the first instance of use of a RHRS for thermal control of a rover or lander on the surface of a planet. After an extremely successful landing on Mars (August 5), the rover and the RHRS have performed flawlessly for close to an earth year (half the nominal mission life). This paper will share the performance of the RHRS on the Martian surface as well as compare it to its predictions.
Artist Concept of Mars 2020 Rover
2013-07-09
Planning for NASA 2020 Mars rover envisions a basic structure that capitalizes on existing design and engineering, but with new science instruments selected through competition for accomplishing different science objectives.
NASA Astrophysics Data System (ADS)
Balme, Matt; Robson, Ellen; Barnes, Rob; Butcher, Frances; Fawdon, Peter; Huber, Ben; Ortner, Thomas; Paar, Gerhard; Traxler, Christoph; Bridges, John; Gupta, Sanjeev; Vago, Jorge L.
2018-04-01
Recent aeolian bedforms comprising loose sand are common on the martian surface and provide a mobility hazard to Mars rovers. The ExoMars rover will launch in 2020 to one of two candidate sites: Mawrth Vallis or Oxia Planum. Both sites contain numerous aeolian bedforms with simple ripple-like morphologies. The larger examples are 'Transverse Aeolian Ridges' (TARs), which stereo imaging analyses have shown to be a few metres high and up to a few tens of metres across. Where they occur, TARs therefore present a serious, but recognized and avoidable, rover mobility hazard. There also exists a population of smaller bedforms of similar morphology, but it is unknown whether these bedforms will be traversable by the ExoMars rover. We informally refer to these bedforms as "mini-TARs", as they are about an order of magnitude smaller than most TARs observed to date. They are more abundant than TARs in the Oxia Planum site, and can be pervasive in areas. The aim of this paper is to estimate the heights of these features, which are too small to measured using High Resolution Imaging Science Experiment (HiRISE) Digital Elevation Models (DEMs), from orbital data alone. Thereby, we aim to increase our knowledge of the hazards in the proposed ExoMars landing sites. We propose a methodology to infer the height of these mini-TARs based on comparisons with similar features observed by previous Mars rovers. We use rover-based stereo imaging from the NASA Mars Exploration Rover (MER) Opportunity and PRo3D software, a 3D visualisation and analysis tool, to measure the size and height of mini-TARs in the Meridiani Planum region of Mars. These are good analogues for the smaller bedforms at the ExoMars rover candidate landing sites. We show that bedform height scales linearly with length (as measured across the bedform, perpendicular to the crest ridge) with a ratio of about 1:15. We also measured the lengths of many of the smaller aeolian bedforms in the ExoMars rover Oxia Planum candidate landing site, and find that they are similar to those of the Meridiani Planum mini-TARs. Assuming that the Oxia Planum bedforms have the same length/height ratio as the MER Opportunity mini-TARs, we combine these data to provide a probabilistic method of inferring the heights of bedforms at the Oxia Planum site. These data can then be used to explore the likely traversability of this site. For example, our method suggests that most of the bedforms studied in Oxia Planum have ridge crests higher than 15 cm, but lower than 25 cm. Hence, if the tallest bedforms the ExoMars rover will be able to safely cross are only 15 cm high, then the Oxia Planum sites studied here contain mostly impassable bedforms. However, if the rover can safely traverse 25 cm high bedforms, then most bedforms here will be smaller than this threshold. As an additional outcome, our results show that the mini-TARs have length/height ratios similar to TARs in general. Hence, these bedforms could probably be classified simply as "small TARs", rather than forming a discrete population or sub-type of aeolian bedforms.
Operation and performance of the Mars Exploration Rover imaging system on the Martian surface
NASA Technical Reports Server (NTRS)
Maki, Justin N.; Litwin, Todd; Herkenhoff, Ken
2005-01-01
The Imaging System on the Mars Exploration Rovers has successfully operated on the surface of Mars for over one Earth year. An overview of the surface imaging activities is provided, along with a summary of the image data acquired to date.
A Possible Landing Site in Aram Dorsum for the ExoMars Rover
2014-08-27
This image captured by NASA Mars Reconnaissance Orbiter is of an area called Aram Dorsum also known by its old name, Oxia Palus that has been suggested for the 2018/2020 ExoMars Rover because it contains an ancient, exhumed alluvial system.
Mars Lander/Rover vehicle development: An advanced space design project for USRA and NASA/OAST
NASA Technical Reports Server (NTRS)
1987-01-01
The results of the studies on one particular part of the Mars Lander/Rover (MLR) system are contained: the Balloon Rover. This component vehicle was selected for further research and design because of the lack of technical literature on this subject, as compared to surface rover technology. Landing site selection; balloon system development and deployment; optics and communications; and the payload power supply are described.
NASA Technical Reports Server (NTRS)
2004-01-01
The Mars Exploration Rover Opportunity finished observations of the prominent rock outcrop it has been studying during its 51 martian days, or sols, on Mars, and is currently on the hunt for new discoveries. This image from the rover's navigation camera atop its mast features Opportunity's lander--its temporary home for the six-month cruise to Mars. The rover's soil survey traverse plan involves arcing around its landing site, called the Challenger Memorial Station, and over the trench it made on sol 23. In this image, Opportunity is situated about 6.2 meters (about 20.3 feet) from the lander. Rover tracks zig-zag along the surface. Bounce marks and airbag retraction marks are visible around the lander. The calibration target or sundial, which both rover panoramic cameras use to verify the true colors and brightness of the red planet, is visible on the back end of the rover.
2003-03-17
KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers align the Rover Equipment Deck (RED) on one of the Mars Exploration Rovers (MER) with the Warm Electronics Box (WEB). Processing of the rovers, plus cruise stage, lander and heat shield elements, is ongoing. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.
2003-02-24
KENNEDY SPACE CENTER, FLA. -- The cruise stage, aeroshell and lander for the Mars Exploration Rover-1 mission and the MER-2 rover arrive at KSC. The same flight hardware for the MER-2 rover arrived Jan. 27; however, the MER-2 rover is scheduled to arrive at KSC in March. While at KSC, each of the two rovers, the aeroshells and the landers will undergo a full mission simulation. All of these flight elements will then be integrated together. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers will be identical to each other, but will land at different regions of Mars. Launch of the MER-1 is scheduled for May 30. MER-2 will follow June 25.
Artist Concept of Mars 2020 Rover, Annotated
2013-07-09
Planning for NASA 2020 Mars rover envisions a basic structure that capitalizes on existing design and engineering, but with new science instruments selected through competition for accomplishing different science objectives.
2003-04-04
KENNEDY SPACE CENTER, FLA. - Workers prepare the shrouded Mars Exploration Rover 2 (MER-2) for mating to the lander. Set to launch in Spring 2003, the MER Mission consists of two identical rovers, landing at different regions of Mars, designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening May 30, and the second rover a window opening June 25.
Design Concept for a Nuclear Reactor-Powered Mars Rover
NASA Technical Reports Server (NTRS)
Elliott, John; Poston, Dave; Lipinski, Ron
2007-01-01
A report presents a design concept for an instrumented robotic vehicle (rover) to be used on a future mission of exploration of the planet Mars. The design incorporates a nuclear fission power system to provide long range, long life, and high power capabilities unachievable through the use of alternative solar or radioisotope power systems. The concept described in the report draws on previous rover designs developed for the 2009 Mars Science laboratory (MSL) mission to minimize the need for new technology developments.
2013-08-26
USING ADVANCED COMPUTING IN APPLIED DYNAMICS : FROM THE DYNAMICS OF GRANULAR MATERIAL TO THE MOTION OF THE MARS ROVER Dan Negrut NVIDIA CUDA...USING ADVANCED COMPUTING IN APPLIED DYNAMICS : FROM THE DYNAMICS OF GRANULAR MATERIAL TO THE MOTION OF THE MARS ROVER 5a. CONTRACT NUMBER W911NF-11-F...University of Parma, Italy • Drs. Paramsothy Jayakumar & David Lamb, US Army TARDEC • Mihai Anitescu, University of Chicago & Argonne National Lab
2003-03-20
KENNEDY SPACE CENTER, Fla. - With cables released, this Mars Exploration Rover sits on the floor of the Payload Hazardous Servicing Facility. Processing of the rovers, cruise stage, lander and heat shield elements is ongoing. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.
2003-03-20
KENNEDY SPACE CENTER, Fla. - With cables released, this Mars Exploration Rover (MER) sits on the floor of the Payload Hazardous Servicing Facility. Processing of the rovers, cruise stage, lander and heat shield elements is ongoing. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.
2003-03-20
KENNEDY SPACE CENTER, Fla. - A worker in the Payload Hazardous Servicing Facility makes adjustments on one of the Mars Exploration Rovers (MER). Processing of the rovers, cruise stage, lander and heat shield elements is ongoing. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.
2003-03-21
KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facility, the Mars Exploration Rover-2 (MER-2) has rotated. Atop the rover can be seen the cameras, mounted on a Pancam Mast Assembly (PMA). Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.
2003-03-20
KENNEDY SPACE CENTER, Fla. - Workers in the Payload Hazardous Servicing Facility look over one of the Mars Exploration Rovers (MER). Processing of the rovers, cruise stage, lander and heat shield elements is ongoing. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.
2003-03-20
KENNEDY SPACE CENTER, FLA. - One of the Mars Exploration Rovers (MER) sits on a stand in the Payload Hazardous Servicing Facility. Processing of the rovers, cruise stage, lander and heat shield elements is ongoing. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.
Dynamic Modeling and Soil Mechanics for Path Planning of the Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Trease, Brian; Arvidson, Raymond; Lindemann, Randel; Bennett, Keith; Zhou, Feng; Iagnemma, Karl; Senatore, Carmine; Van Dyke, Lauren
2011-01-01
To help minimize risk of high sinkage and slippage during drives and to better understand soil properties and rover terramechanics from drive data, a multidisciplinary team was formed under the Mars Exploration Rover (MER) project to develop and utilize dynamic computer-based models for rover drives over realistic terrains. The resulting tool, named ARTEMIS (Adams-based Rover Terramechanics and Mobility Interaction Simulator), consists of the dynamic model, a library of terramechanics subroutines, and the high-resolution digital elevation maps of the Mars surface. A 200-element model of the rovers was developed and validated for drop tests before launch, using MSC-Adams dynamic modeling software. Newly modeled terrain-rover interactions include the rut-formation effect of deformable soils, using the classical Bekker-Wong implementation of compaction resistances and bull-dozing effects. The paper presents the details and implementation of the model with two case studies based on actual MER telemetry data. In its final form, ARTEMIS will be used in a predictive manner to assess terrain navigability and will become part of the overall effort in path planning and navigation for both Martian and lunar rovers.
Mars Science Laboratory Rover Closeout
2011-11-10
The Mars Science Laboratory mission rover, Curiosity, is prepared for final integration into the complete NASA spacecraft in this photograph taken inside the Payload Hazardous Servicing Facility at NASA Kennedy Space Center, Fla.
2003-05-15
KENNEDY SPACE CENTER, FLA. - At right is the Delta II rocket on Launch Complex 17-A, Cape Canaveral Air Force Station, that will launch Mars Exploration Rover 2 (MER-2) on June 5. In the center are three more solid rocket boosters that will be added to the Delta, which will carry nine in all. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch as MER-A. MER-1 (MER-B) will launch June 25.
2003-05-15
KENNEDY SPACE CENTER, FLA. - The Delta II rocket on Launch Complex 17-A, Cape Canaveral Air Force Station, is having solid rocket boosters (SRBs) installed that will help launch Mars Exploration Rover 2 (MER-2) on June 5. In the center are three more solid rocket boosters that will be added to the Delta, which will carry nine in all. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch as MER-A. MER-1 (MER-B) will launch June 25.
2003-05-14
KENNEDY SPACE CENTER, FLA. - A third solid rocket booster (SRB) is lifted up the launch tower on Launch Complex 17-A, Cape Canaveral Air Force Station. They are three of nine SRBs that will be mated to the Delta rocket to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.
2003-05-14
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, workers complete raising a solid rocket booster to a vertical position. It will be lifted up the launch tower and mated to the Delta rocket to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.
2003-05-14
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, a solid rocket booster is raised off the transporter. When vertical, it will be lifted up the launch tower and mated to the Delta rocket (in the background) to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.
2003-05-14
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, a solid rocket booster is moved into position to raise to vertical and lift up the launch tower. It is one of nine that will be mated to the Delta rocket to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.
2003-05-15
KENNEDY SPACE CENTER, FLA. - Workers on the launch tower of Complex 17-A, Cape Canaveral Air Force Station, stand by while a solid rocket booster (SRB) is lifted to vertical. It is one of nine that will help launch Mars Exploration Rover 2 (MER-2). NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.
2003-06-12
KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility prepare Mars Exploration Rover 1 (MER-B) to be mated with the third stage of the Delta rocket that will launch it to Mars. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch from Launch Pad 17-B, Cape Canaveral Air Force Station, June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.
1997-07-05
This image shows that the Mars Pathfinder airbags have been successfully retracted, allowing safe deployment of the rover ramps. The Sojourner rover is at lower right, and rocks are visible in the background. Mars Pathfinder landed successfully on the surface of Mars today at 10:07 a.m. PDT. http://photojournal.jpl.nasa.gov/catalog/PIA00618
Post-Flight EDL Entry Guidance Performance of the 2011 Mars Science Laboratory Mission
NASA Technical Reports Server (NTRS)
Mendeck, Gavin F.; McGrew, Lynn Craig
2012-01-01
The 2011 Mars Science Laboratory was the first successful Mars mission to attempt a guided entry which safely delivered the rover to a final position approximately 2 km from its target within a touchdown ellipse of 19.1 km x 6.9 km. The Entry Terminal Point Controller guidance algorithm is derived from the final phase Apollo Command Module guidance and, like Apollo, modulates the bank angle to control the range flown. For application to Mars landers which must make use of the tenuous Martian atmosphere, it is critical to balance the lift of the vehicle to minimize the range error while still ensuring a safe deploy altitude. An overview of the process to generate optimized guidance settings is presented, discussing improvements made over the last nine years. Key dispersions driving deploy ellipse and altitude performance are identified. Performance sensitivities including attitude initialization error and the velocity of transition from range control to heading alignment are presented. Just prior to the entry and landing of MSL in August 2012, the EDL team examined minute tuning of the reference trajectory for the selected landing site, analyzed whether adjustment of bank reversal deadbands were necessary, the heading alignment velocity trigger was in union with other parameters to balance the EDL risks, and the vertical L/D command limits. This paper details a preliminary postflight assessment of the telemetry and trajectory reconstruction that is being performed, and updates the information presented in the former paper Entry Guidance for the 2011 Mars Science Laboratory Mission (AIAA Atmospheric Flight Mechanics Conference; 8-11 Aug. 2011; Portland, OR; United States)
Rover Team Decides: Safety First
NASA Technical Reports Server (NTRS)
2006-01-01
NASA's Mars Exploration Rover Spirit recorded this view while approaching the northwestern edge of 'Home Plate,' a circular plateau-like area of bright, layered outcrop material roughly 80 meters (260 feet) in diameter. The images combined into this mosaic were taken by Spirit's navigation camera during the rover's 746th, 748th and 750th Martian days, or sols (Feb. 7, 9 and 11, 2006). With Martian winter closing in, engineers and scientists working with NASA's Mars Exploration Rover Spirit decided to play it safe for the time being rather than attempt to visit the far side of Home Plate in search of rock layers that might show evidence of a past watery environment. This feature has been one of the major milestones of the mission. Though it's conceivable that rock layers might be exposed on the opposite side, sunlight is diminishing on the rover's solar panels and team members chose not to travel in a counterclockwise direction that would take the rover to the west and south slopes of the plateau. Slopes in that direction are hidden from view and team members chose, following a long, thorough discussion, to have the rover travel clockwise and remain on north-facing slopes rather than risk sending the rover deeper into unknown terrain. In addition to studying numerous images from Spirit's cameras, team members studied three-dimensional models created with images from the Mars Orbiter Camera on NASA's Mars Globel Surveyor orbiter. The models showed a valley on the southern side of Home Plate, the slopes of which might cause the rover's solar panels to lose power for unknown lengths of time. In addition, images from Spirit's cameras showed a nearby, talus-covered section of slope on the west side of Home Plate, rather than exposed rock layers scientists eventually hope to investigate. Home Plate has been on the rover's potential itinerary since the early days of the mission, when it stood out in images taken by the Mars Orbiter Camera shortly after the rover landed on Mars. Spirit arrived at Home Plate after traveling 4 miles (6.4 kilometers) across the plains of Gusev Crater, up the slopes of 'West Spur' and 'Husband Hill,' and down again. Scientists are studying the origin of the layering in the outcrop using the Athena science instruments on the rover's arm.Peeling Back the Layers of Mars
NASA Technical Reports Server (NTRS)
2004-01-01
This is a 3-D model of the trench excavated by the Mars Exploration Rover Opportunity on the 23rd day, or sol, of its mission. An oblique view of the trench from a bit above and to the right of the rover's right wheel is shown. The model was generated from images acquired by the rover's front hazard-avoidance cameras.
Mars Science Laboratory Rover and Descent Stage
2008-11-19
In this February 17, 2009, image, NASA Mars Science Laboratory rover is attached to the spacecraft descent stage. The image was taken inside the Spacecraft Assembly Facility at NASA JPL, Pasadena, Calif.
2003-04-25
KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility help guide the Mars Exploration Rover 1 (MER-1) as it is moved to the lander base petal for installation. The MER Mission consists of two identical rovers, landing at different regions of Mars, designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening June 5, and the second rover a window opening June 25. The rovers will be launched from Cape Canaveral Air Force Station.
2003-04-25
KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility guide the Mars Exploration Rover 1 (MER-1) as it is lowered onto the lander base petal for installation. The MER Mission consists of two identical rovers, landing at different regions of Mars, designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening June 5, and the second rover a window opening June 25. The rovers will be launched from Cape Canaveral Air Force Station.
2003-04-25
KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility guide the Mars Exploration Rover 1 (MER-1) as it is lowered onto the lander base petal for installation. The MER Mission consists of two identical rovers, landing at different regions of Mars, designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening June 5, and the second rover a window opening June 25. The rovers will be launched from Cape Canaveral Air Force Station.
NASA Technical Reports Server (NTRS)
2003-01-01
January 31, 2003In the Payload Hazardous Servicing Facility, an overhead crane lowers the Mars Exploration Rover (MER) aeroshell toward a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.2003-03-20
KENNEDY SPACE CENTER, Fla. - The solar arrays on the Mars Exploration Rover-2 (MER-2) are fully opened during a test in the Payload Hazardous Servicing Facility. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.
2003-04-02
KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 1 (MER-1) is seen in the foreground after the science boom was deployed. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.
2003-03-29
KENNEDY SPACE CENTER, FLA. - Workers gather around the Mars Exploration Rover 2 (MER-2) before flight stow of the solar panels, still extended. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. The rovers will be identical to each other, but will land at different regions of Mars. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening May 30, and the second rover a window opening June 25.
2003-01-31
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, an overhead crane lifts the Mars Exploration Rover (MER) aeroshell for transfer to a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.
2003-03-29
KENNEDY SPACE CENTER, FLA. - Workers begin closing the solar panels on the Mars Exploration Rover 2 (MER-2) for flight stow. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. The rovers will be identical to each other, but will land at different regions of Mars. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening May 30, and the second rover a window opening June 25.
2003-02-04
KENNEDY SPACE CENTER, FLA. -- The aeroshell for Mars Exploration Rover 2 rests on a rotation stand in the Payload Hazardous Servicing Facility. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.
2003-01-31
KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, the Mars Exploration Rover (MER) aeroshell is being prepared for transfer to a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.
2003-03-20
KENNEDY SPACE CENTER, FLA. -- The Mars Exploration Rover-2 (MER-2) is ready for solar array testing in the Payload Hazardous Servicing Facility. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.
2003-03-21
KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facility, the Mars Exploration Rover-2 (MER-2) is tested for mobility and maneuverability. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.
2003-01-31
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, an overhead crane lowers the Mars Exploration Rover (MER) aeroshell toward a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.
2003-02-06
KENNEDY SPACE CENTER, FLA. -- Technicians secure the aeroshell for Mars Exploration Rover 2 to a workstand in the Payload Hazardous Servicing Facility. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover, a window opening June 25, 2003.
2003-02-04
KENNEDY SPACE CENTER, FLA. -- The aeroshell for Mars Exploration Rover 2 rests on end after rotation in the Payload Hazardous Servicing Facility. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.
2003-01-31
KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Hazardous Servicing Facility help guide the Mars Exploration Rover (MER) aeroshell onto a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.
2003-01-31
KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility help guide the Mars Exploration Rover (MER) aeroshell as it is lowered toward a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.
2003-02-04
KENNEDY SPACE CENTER, FLA. - During processing, workers in the Payload Hazardous Servicing Facility work on part of the aeroshell for Mars Exploration Rover 2. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.
2003-04-02
KENNEDY SPACE CENTER, FLA. - A worker examines the Mars Exploration Rover 1 (MER-1) after the science boom was deployed. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.
2003-03-29
KENNEDY SPACE CENTER, FLA. - A worker checks a component of the Mars Exploration Rover 2 (MER-2) before flight stow of the solar panels, still extended. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. The rovers will be identical to each other, but will land at different regions of Mars. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening May 30, and the second rover a window opening June 25.
2003-03-28
KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, the Mars Exploration Rover-2 (MER-2) rests on the base petal of its lander assembly. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover, a window opening June 25.
2003-04-02
KENNEDY SPACE CENTER, FLA. - On the Mars Exploration Rover 1 (MER-1), the science boom, below the front petal, is deployed. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.
2003-03-29
KENNEDY SPACE CENTER, FLA. - Workers make additional checks of the Mars Exploration Rover 2 (MER-2) before flight stow of the solar panels, still extended. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. The rovers will be identical to each other, but will land at different regions of Mars. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening May 30, and the second rover a window opening June 25.
2003-03-21
KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facility, the Mars Exploration Rover-2 (MER-2) rolls over ramps to test its mobility and maneuverability. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.
2003-03-29
KENNEDY SPACE CENTER, FLA. - After closing the solar panels for flight stow, workers examine the Mars Exploration Rover 2 (MER-2). Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. The rovers will be identical to each other, but will land at different regions of Mars. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening May 30, and the second rover a window opening June 25.
NASA Technical Reports Server (NTRS)
Pivirotto, Donna Shirley; Penn, Thomas J.; Dias, William C.
1989-01-01
Results of FY88 studies of a sample-collecting Mars rover are presented. A variety of rover concepts are discussed which include different technical approaches to rover functions. The performance of rovers with different levels of automation is described and compared to the science requirement for 20 to 40 km to be traversed on the Martian surface and for 100 rock and soil samples to be collected. The analysis shows that a considerable amount of automation in roving and sampling is required to meet this requirement. Additional performance evaluation shows that advanced RTG's producing 500 W and 350 WHr of battery storage are needed to supply the rover.
2003-04-30
KENNEDY SPACE CENTER, FLA. - After arriving at Launch Complex 17-A, Cape Canaveral Air Force Station, the second half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is lifted off its transporter. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.
2003-04-30
KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is lifted up the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.
2003-04-30
KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) reaches the top of the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.
2003-04-30
KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is lifted off the transporter. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.
2003-04-30
KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is moved inside the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5..
NASA Technical Reports Server (NTRS)
2002-01-01
Members of the Mars Exploration Rovers Assembly, Test and Launch Operations team gather around Rover 2 and its predecessor, a flight spare of the Pathfinder mission's Sojourner rover, named Marie Curie.2003-02-26
Members of the Mars Exploration Rovers Assembly, Test and Launch Operations team gather around NASA Rover 2 and its predecessor, a flight spare of the Pathfinder mission Sojourner rover, named Marie Curie.
NASA Astrophysics Data System (ADS)
Nieser, K.; Carlson, C.; Bering, E. A.; Slagle, E.
2012-12-01
Part of preparing the next generation of STEM researchers requires arming these students with the requisite literacy and research skills they will need. In a unique collaboration, the departments of Physics (ECE) and Psychology at the University of Houston have teamed up with NASA in a grant to develop a supplemental curriculum for elementary (G3-5) and middle school (G6-8) science teachers called Mars Rover. During this six week project, students work in teams to research the solar system, the planet Mars, design a research mission to Mars, and create a model Mars Rover to carry out this mission. Targeted Language Arts skills are embedded in each lesson so that students acquire the requisite academic vocabulary and research skills to enable them to successfully design their Mars Rover. Students learn academic and scientific vocabulary using scientifically based reading research. They receive direct instruction in research techniques, note-taking, summarizing, writing and other important language skills. The interdisciplinary collaboration empowers students as readers, writers and scientists. After the curriculum is completed, a culminating Mars Rover event is held at a local university, bringing students teams in contact with real-life scientists who critique their work, ask questions, and generate excite about STEM careers. Students have the opportunity to showcase their Mars Rover and to orally demonstrate their knowledge of Mars. Students discover the excitement of scientific research, STEM careers, important research and writing tools in a practical, real-life setting.
Ultraviolet Instrument for Mars 2020 Rover is SHERLOC
2014-07-31
This illustration depicts the mechanism and conceptual research targets for an instrument named SHERLOC, which has been selected as one of seven investigations for the payload of NASA Mars 2020 rover mission.
Lander Trench Dug by Opportunity
2015-01-27
On March 20, 2004, NASA Mars Exploration Rover Opportunity used a wheel to dig a trench revealing subsurface material beside the lander hardware that carried the rover to the surface of Mars 55 Martian days earlier.
2004-01-06
KENNEDY SPACE CENTER, FLA. --Shown upside down to read the names, this plaque commemorating the STS-107 Space Shuttle Columbia crew now looks over the Mars landscape after the successful landing and deployment of the Mars Exploration Rover “Spirit” Jan. 4 onto the red planet. The plaque, mounted on the high-gain antenna, is shown while the rover underwent final checkout March 28, 2003, in the Payload Hazardous Servicing Facility at KSC.
2003-06-17
KENNEDY SPACE CENTER, FLA. - On Launch Pad 17-B, Cape Canaveral Air Force Station, the Mars Exploration Rover 1 (MER-B) arrives at the tower landing where it will be mated with the Delta rocket. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.
2003-06-17
KENNEDY SPACE CENTER, FLA. - Workers on Launch Pad 17-B, Cape Canaveral Air Force Station, complete mating of the Mars Exploration Rover 1 (MER-B), above, to the Delta rocket below. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.
2003-06-17
KENNEDY SPACE CENTER, FLA. - On Launch Pad 17-B, Cape Canaveral Air Force Station, the Mars Exploration Rover 1 (MER-B) is lifted up the tower for mating with the Delta rocket. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.
2003-06-17
KENNEDY SPACE CENTER, FLA. - In the gantry on Launch Complex 17-B, Cape Canaveral Air Force Station, workers start removing the canister from around the Mars Exploration Rover 1 (MER-B). The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.
2003-06-17
KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 1 (MER-B) arrives at Launch Pad 17-B, Cape Canaveral Air Force Station, where it will be mated with the Delta rocket for launch. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.
2003-06-17
KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 1 (MER-B) is moved out of the Payload Hazardous Servicing Facility for transfer to Launch Pad 17-B, Cape Canaveral Air Force Station. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.
An Assessment of Smallsat Technology to Future Exploration Missions
NASA Technical Reports Server (NTRS)
Chan, Steve
1997-01-01
This reports the results of a general study for NASA Lewis in relation to the use of small satellites for a Mars Relay Satellite (MRS) that supports communications between Mars and Earth: commands to, and telemetry from, Mars Landers and Rover. The scope of the study encompasses a survey of small satellites, those that are lower than 800 kg in mass, by NASA, DoD, and commercial companies. Additionally, surveys in advanced technologies in the area of composite materials, propulsion subsystems, battery subsystems, communications components and subsystems, and ground operations are also provided, A summary of NASA Mars Programs and their status as relevant to MRS is also included. Attempts to draw detailed cost conclusion is generally not possible due to its proprietary nature. In any event, cost is driven by market demands rather than new technologies. A preliminary comparison with the cost estimate of the S-Tel/OSC report did suggest the possibility of cost savings for the MRS by the use of production busses. On the other hand, cost savings in normalized terms from the use of automated ground systems were obtained with some degree of details.
2003-03-17
KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facility, workers check alignment of the Rover Equipment Deck (RED) on one of the Mars Exploration Rovers (MER) with the Warm Electronics Box (WEB). Processing of the rovers, plus cruise stage, lander and heat shield elements, is ongoing. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.
2003-03-17
KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facility, the Rover Equipment Deck (RED) on one of the Mars Exploration Rovers (MER) is integrated to the Warm Electronics Box (WEB) on the WEB cart. Processing of the rovers, plus cruise stage, lander and heat shield elements, is ongoing. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.
2003-03-17
KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facility, the Rover Equipment Deck (RED) on one of the Mars Exploration Rovers (MER) is integrated to the Warm Electronics Box (WEB) on the WEB cart. Processing of the rovers, plus cruise stage, lander and heat shield elements, is ongoing. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.
Opportunity on 'Cabo Frio' (Simulated)
NASA Technical Reports Server (NTRS)
2006-01-01
This image superimposes an artist's concept of the Mars Exploration Rover Opportunity atop the 'Cabo Frio' promontory on the rim of 'Victoria Crater' in the Meridiani Planum region of Mars. It is done to give a sense of scale. The underlying image was taken by Opportunity's panoramic camera during the rover's 952nd Martian day, or sol (Sept. 28, 2006). This synthetic image of NASA's Opportunity Mars Exploration Rover at Victoria Crater was produced using 'Virtual Presence in Space' technology. Developed at NASA's Jet Propulsion Laboratory, Pasadena, Calif., this technology combines visualization and image processing tools with Hollywood-style special effects. The image was created using a photorealistic model of the rover and an approximately full-color mosaic.Mechanically Pumped Fluid Loop (MPFL) Technologies for Thermal Control of Future Mars Rovers
NASA Technical Reports Server (NTRS)
Birur, Gaj; Bhandari, Pradeep; Prina, Mauro; Bame, Dave; Yavrouian, Andre; Plett, Gary
2006-01-01
Mechanically pumped fluid loop has been the basis of thermal control architecture for the last two Mars lander and rover missions and is the key part of the MSL thermal architecture. Several MPFL technologies are being developed for the MSL rover include long-life pumps, thermal control valves, mechanical fittings for use with CFC-11 at elevated temperatures of approx.100 C. Over three years of life tests and chemical compatibility tests on these MPFL components show that MPFL technology is mature for use on MSL. The advances in MPFL technologies for MSL Rover will benefit any future MPFL applications on NASA s Moon, Mars and Beyond Program.
The Panoramic Camera (Pancam) Investigation on the NASA 2003 Mars Exploration Rover Mission
NASA Technical Reports Server (NTRS)
Bell, J. F., III; Squyres, S. W.; Herkenhoff, K. E.; Maki, J.; Schwochert, M.; Dingizian, A.; Brown, D.; Morris, R. V.; Arneson, H. M.; Johnson, M. J.
2003-01-01
The Panoramic Camera System (Pancam) is part of the Athena science payload to be launched to Mars in 2003 on NASA's twin Mars Exploration Rover (MER) missions. The Pancam imaging system on each rover consists of two major components: a pair of digital CCD cameras, and the Pancam Mast Assembly (PMA), which provides the azimuth and elevation actuation for the cameras as well as a 1.5 meter high vantage point from which to image. Pancam is a multispectral, stereoscopic, panoramic imaging system, with a field of regard provided by the PMA that extends across 360 of azimuth and from zenith to nadir, providing a complete view of the scene around the rover.
Mars Exploration Rover: Launch, Cruise, Entry, Descent, and Landing
NASA Technical Reports Server (NTRS)
Erickson, James K.; Manning, Robert M.; Adler, M.
2004-01-01
The Mars Exploration Rover Project was an ambitious effort to land two highly capable rovers on Mars and concurrently explore the Martian surface for three months each. Launched in June and July of 2003, cruise operations were conducted through January 4, 2004 with the first landing, followed by the second landing on January 25. The prime mission for the second rover ended on April 27, 2004. This paper will provide an overview of the launch, cruise, and landing phases of the mission, including the engineering and science objectives and challenges involved in the selection and targeting of the landing sites, as well as the excitement and challenges of atmospheric entry, descent and landing execution.
Relays from Mars demonstrate international interplanetary networking
NASA Astrophysics Data System (ADS)
2004-08-01
On 4 August at 14:24 CEST, as Mars Express flew over one of NASA’s Mars exploration rovers, Opportunity, it successfully received data previously collected and stored by the rover. The data, including 15 science images from the rover's nine cameras, were then downlinked to ESA’s European Space Operations Centre in Darmstadt (Germany) and immediately relayed to the Mars Exploration Rovers team based at the Jet Propulsion Laboratory in Pasadena, USA. NASA orbiters Mars Odyssey and Mars Global Surveyor have so far relayed most of the data produced by the rovers since they landed in January. Communication compatibility between Mars Express and the rovers had already been demonstrated in February, although at a low rate that did not convey much data. The 4 August session, at a transmit rate of 42.6 megabits in about six minutes, set a new mark for international networking around another planet. The success of this demonstration is the result of years of groundwork and was made possible because both Mars Express and the Mars rovers use the same communication protocol. This protocol, called Proximity-1, was developed by the international Consultative Committee for Space Data Systems, an international partnership for standardising techniques for handling space data. Mars Express was 1400 kilometres above the Martian surface during the 4 August session with Opportunity, with the goal of a reliable transfer of lots of data. Engineers for both agencies plan to repeat this display of international cooperation today, 10 August, with another set of Opportunity images. “We're delighted how well this has been working, and thankful to have Mars Express in orbit,” said Richard Horttor of NASA's Jet Propulsion Laboratory, Pasadena, California, project manager for NASA's role in Mars Express. JPL engineer Gary Noreen of the Mars Network Office said: “the capabilities that our international teamwork is advancing this month could be important in future exploration of Mars.” In addition, Mars Express is verifying two other operating modes with Opportunity and the twin rover, Spirit, from a greater distance. On 3 and 6 August, when Mars Express listened to Spirit, it was about 6000 kilometres above the surface. At this range it successfully tracked a beacon from Spirit, demonstrating a capability that can be used to locate another craft during critical events, such as the descent to a planet’s surface, or for orbital rendez-vous manoeuvres. “Establishing a reliable communication network around Mars or other planets is crucial for future exploration missions, as it will allow improved coverage and also an increase in the amount of data that can be brought back to Earth,” said Con McCarthy, from ESA’s Mars Express project, “the tracking mode will enable ESA and NASA to pinpoint a spacecraft’s position more accurately during critical mission phases.” The final session of the series, scheduled for 13 August with Opportunity, will demonstrate a mode for gaining navigational information from the ‘Doppler shift’ in the radio signal.
Exomars 2018 Rover Pasteur Payload
NASA Astrophysics Data System (ADS)
Debus, Andre; Bacher, M.; Ball, A.; Barcos, O.; Bethge, B.; Gaubert, F.; Haldemann, A.; Lindner, R.; Pacros, A.; Trautner, R.; Vag, J.
ars programme is a joint ESA-NASA program having exobiology as one of the key science objectives. It is divided into 2 missions: the first mission is ESA-led with an ESA orbiter and an ESA Entry, Descent and Landing (EDL) demonstrator, launched in 2016 by NASA, and the second mission is NASA-led, launched in 2018 by NASA carrying an ESA rover and a NASA rover both deployed by a single NASA EDL system. For ESA, the ExoMars programme will demonstrate key flight and in situ enabling technologies in support of the European ambitions for future exploration missions, as outlined in the Aurora Declaration. While the ExoMars 2016 mission will accomplish a technological objective (Entry, Descent and Landing of a payload on the surface) and a Scientific objective (investigation of Martian atmospheric trace gases and their sources, focussing particularly on methane), the ExoMars 2018 ESA Rover will carry a comprehensive and coherent suite of analytical instruments dedicated to exobiology and geology research: the Pasteur Payload (PPL). This payload includes a selection of complementary instruments, having the following goals: to search for signs of past and present life on Mars and to investigate the water/geochemical environment as a function of depth in the shallow subsurface. The ExoMars Rover includes a drill for accessing underground materials, and a Sample Preparation and Distribution System. The Rover will travel several kilometres looking for sites warranting further investigation, where it will collect and analyse samples from within outcrops and from the subsurface for traces of complex organic molecules. In addition to further details on this Exomars 2018 rover mission, this presentation will focus on the scientific objectives and the instruments needed to achieve them, including details of how the Pasteur Payload as a whole addresses Mars research objectives.
Amazonian chemical weathering rate derived from stony meteorite finds at Meridiani Planum on Mars
NASA Astrophysics Data System (ADS)
Schröder, Christian; Bland, Phil A.; Golombek, Matthew P.; Ashley, James W.; Warner, Nicholas H.; Grant, John A.
2016-11-01
Spacecraft exploring Mars such as the Mars Exploration Rovers Spirit and Opportunity, as well as the Mars Science Laboratory or Curiosity rover, have accumulated evidence for wet and habitable conditions on early Mars more than 3 billion years ago. Current conditions, by contrast, are cold, extremely arid and seemingly inhospitable. To evaluate exactly how dry today's environment is, it is important to understand the ongoing current weathering processes. Here we present chemical weathering rates determined for Mars. We use the oxidation of iron in stony meteorites investigated by the Mars Exploration Rover Opportunity at Meridiani Planum. Their maximum exposure age is constrained by the formation of Victoria crater and their minimum age by erosion of the meteorites. The chemical weathering rates thus derived are ~1 to 4 orders of magnitude slower than that of similar meteorites found in Antarctica where the slowest rates are observed on Earth.
Amazonian chemical weathering rate derived from stony meteorite finds at Meridiani Planum on Mars.
Schröder, Christian; Bland, Phil A; Golombek, Matthew P; Ashley, James W; Warner, Nicholas H; Grant, John A
2016-11-11
Spacecraft exploring Mars such as the Mars Exploration Rovers Spirit and Opportunity, as well as the Mars Science Laboratory or Curiosity rover, have accumulated evidence for wet and habitable conditions on early Mars more than 3 billion years ago. Current conditions, by contrast, are cold, extremely arid and seemingly inhospitable. To evaluate exactly how dry today's environment is, it is important to understand the ongoing current weathering processes. Here we present chemical weathering rates determined for Mars. We use the oxidation of iron in stony meteorites investigated by the Mars Exploration Rover Opportunity at Meridiani Planum. Their maximum exposure age is constrained by the formation of Victoria crater and their minimum age by erosion of the meteorites. The chemical weathering rates thus derived are ∼1 to 4 orders of magnitude slower than that of similar meteorites found in Antarctica where the slowest rates are observed on Earth.
Amazonian chemical weathering rate derived from stony meteorite finds at Meridiani Planum on Mars
Schröder, Christian; Bland, Phil A.; Golombek, Matthew P.; Ashley, James W.; Warner, Nicholas H.; Grant, John A.
2016-01-01
Spacecraft exploring Mars such as the Mars Exploration Rovers Spirit and Opportunity, as well as the Mars Science Laboratory or Curiosity rover, have accumulated evidence for wet and habitable conditions on early Mars more than 3 billion years ago. Current conditions, by contrast, are cold, extremely arid and seemingly inhospitable. To evaluate exactly how dry today's environment is, it is important to understand the ongoing current weathering processes. Here we present chemical weathering rates determined for Mars. We use the oxidation of iron in stony meteorites investigated by the Mars Exploration Rover Opportunity at Meridiani Planum. Their maximum exposure age is constrained by the formation of Victoria crater and their minimum age by erosion of the meteorites. The chemical weathering rates thus derived are ∼1 to 4 orders of magnitude slower than that of similar meteorites found in Antarctica where the slowest rates are observed on Earth. PMID:27834377
Viking '79 Rover study. Volume 1: Summary report
NASA Technical Reports Server (NTRS)
1974-01-01
The results of a study to define a roving vehicle suitable for inclusion in a 1979 Viking mission to Mars are presented. The study focused exclusively on the 1979 mission incorporating a rover that would be stowed on and deployed from a modified Viking lander. The overall objective of the study was to define a baseline rover, the lander/rover interfaces, a mission operations concept, and a rover development program compatible with the 1979 launch opportunity. During the study, numerous options at the rover system and subsystem levels were examined and a baseline configuration was selected. Launch vehicle, orbiter, and lander performance capabilities were examined to ensure that the baseline rover could be transported to Mars using minimum-modified Viking '75 hardware and designs.
NASA Technical Reports Server (NTRS)
2003-01-01
May 10, 2003Prelaunch at Kennedy Space CenterOn Mars Exploration Rover 1 (MER-1) , air bags are installed on the lander. The airbags will inflate to cushion the landing of the spacecraft on the surface of Mars. When it stops bouncing and rolling, the airbags will deflate and retract, the petals will open to bring the lander to an upright position, and the rover will be exposed. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.2012-12-03
This collage shows the variety of soils found at landing sites on Mars. The elemental composition of the typical, reddish soils were investigated by NASA Viking, Pathfinder and Mars Exploration Rover missions, and now with the Curiosity rover.
X-Ray Instrument for Mars 2020 Rover is PIXL
2014-07-31
This diagram depicts the sensor head of the Planetary Instrument for X-RAY Lithochemistry, or PIXL, which has been selected as one of seven investigations for the payload of NASA Mars 2020 rover mission.
Cumberland Target Drilled by Curiosity
2013-05-20
NASA Mars rover Curiosity drilled into this rock target, Cumberland, during the 279th Martian day, or sol, of the rover work on Mars May 19, 2013 and collected a powdered sample of material from the rock interior.
President Obama Phones Mars Rover Team
2012-08-13
President Barack Obama talks on the phone with NASA Curiosity Mars rover team aboard Air Force One during a flight to Offutt Air Force Base in Nebraska, Aug. 13, 2012. Official White House Photo by Pete Souza
Visual Target Tracking on the Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Kim, Won; Biesiadecki, Jeffrey; Ali, Khaled
2008-01-01
Visual target tracking (VTT) software has been incorporated into Release 9.2 of the Mars Exploration Rover (MER) flight software, now running aboard the rovers Spirit and Opportunity. In the VTT operation (see figure), the rover is driven in short steps between stops and, at each stop, still images are acquired by actively aimed navigation cameras (navcams) on a mast on the rover (see artistic rendition). The VTT software processes the digitized navcam images so as to track a target reliably and to make it possible to approach the target accurately to within a few centimeters over a 10-m traverse.
Optomechanical Design of Ten Modular Cameras for the Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Ford, Virginia G.; Karlmann, Paul; Hagerott, Ed; Scherr, Larry
2003-01-01
This viewgraph presentation reviews the design and fabrication of the modular cameras for the Mars Exploration Rovers. In the 2003 mission there were to be 2 landers and 2 rovers, each were to have 10 cameras each. Views of the camera design, the lens design, the lens interface with the detector assembly, the detector assembly, the electronics assembly are shown.
NASA Technical Reports Server (NTRS)
2004-01-01
The wheel tracks seen above and to the left of the lander trace the path the Mars Exploration Rover Opportunity has traveled since landing in a small crater at Meridiani Planum, Mars. After this picture was taken, the rover excavated a trench near the soil seen at the lower left corner of the image. This image mosaic was taken by the rover's navigation camera.
2003-04-24
KENNEDY SPACE CENTER, FLA. - Jim Lloyd, with the Mars Exploration Rover (MER) program, places on MER-1 a computer chip with about 35,000 laser-engraved signatures of visitors to the rovers at the Jet Propulsion Laboratory. The signatures include those of senators, artists, and John Glenn. The identical Mars rovers are scheduled to launch June 5 and June 25 from Cape Canaveral Air Force Station.
NASA Astrophysics Data System (ADS)
Richter, L.; Ellery, A.; Gao, Y.; Michaud, S.; Schmitz, N.; Weiss, S.
Successful designs of vehicles intended for operations on planetary objects outside the Earth demand, just as for terrestrial off-the-road vehicles, a careful assessment of the terrain relevant for the vehicle mission and predictions of the mobility performance to allow rational trade-off's to be made for the choice of the locomotion concept and sizing. Principal issues driving the chassis design for rovers are the stress-strain properties of the planetary surface soil, the distribution of rocks in the terrain representing potential obstacles to movement, and the gravity level on the celestial object in question. Thus far, planetary rovers have been successfully designed and operated for missions to the Earth's moon and to the planet Mars, including NASA's Mars Exploration Rovers (MER's) `Spirit' and `Opportunity' being in operation on Mars since their landings in January 2004. Here we report on the development of a wheel-soil interaction model with application to wheel sizes and wheel loads relevant to current and near-term robotic planetary rovers, i.e. wheel diameters being between about 200 and 500 mm and vertical quasistatic wheel loads in operation of roughly 100 to 200 N. Such a model clearly is indispensable for sizings of future rovers to analyse the aspect of rover mobility concerned with motion across soils. This work is presently funded by the European Space Agency (ESA) as part of the `Rover Chassis Evaluation Tools' (RCET) effort which has developed a set of S/W-implemented models for predictive mobility analysis of rovers in terms of movement on soils and across obstacles, coupled with dedicated testbeds to validate the wheel-soil models. In this paper, we outline the details of the wheel-soil modelling performed within the RCET work and present comparisons of predictions of wheel performance (motion resistance, torque vs. slip and drawbar pull vs. slip) for specific test cases with the corresponding measurements performed in the RCET single wheel testbed and in the RCET system-level testbed, the latter permitting drawbar pull vs. slip measurements for complete rover development vehicles under controlled and homogeneous soil conditions. Required modifications of the wheel-soil model, in particular related to modelling the effect of wheel slip, are discussed. To strengthen the model validation base, we have run single wheel measurements using a spare MER Mars rover wheel and have performed comparisons with MER actual mobility performance data, available through one of us (LR) who is a member of the MER Athena science team. Corresponding results will be presented. Keywords: rovers, wheel, soil, mobility, vehicle performance, RCET (Rover Chassis Evaluation Tools), MER (Mars Exploration Rover mission) 2
NASA Technical Reports Server (NTRS)
2004-01-01
This false-color image from NASA's Mars Exploration Rover Opportunity panoramic camera shows a downward view from the rover as it sits at the edge of 'Endurance' crater. The gradual, 'blueberry'-strewn slope before the rover contains an exposed dark layer of rock that wraps around the upper section of the crater. Scientists suspect that this rock layer will provide clues about Mars' distant past. This mosaic image comprises images taken from 10 rover positions using 750, 530 and 430 nanometer filters, acquired on sol 131 (June 6, 2004).Toward remotely controlled planetary rovers.
NASA Technical Reports Server (NTRS)
Moore, J. W.
1972-01-01
Studies of unmanned planetary rovers have emphasized a Mars mission. Relatively simple rovers, weighing about 50 kg and tethered to the lander, may precede semiautonomous roving vehicles. It is conceivable that the USSR will deploy a rover on Mars before Viking lands. The feasibility of the roving vehicle as an explorational tool hinges on its ability to operate for extended periods of time relatively independent of earth, to withstand the harshness of the Martian environment, and to travel hundreds of kilometers independent of the spacecraft that delivers it.
NASA Technical Reports Server (NTRS)
2004-01-01
This 3-D stereo anaglyph image was taken by the Mars Exploration Rover Spirit front hazard-identification camera after the rover's first post-egress drive on Mars Sunday. Engineers drove the rover approximately 3 meters (10 feet) from the Columbia Memorial Station toward the first rock target, seen in the foreground. The football-sized rock was dubbed Adirondack because of its mountain-shaped appearance. Scientists plan to use instruments at the end of the rover's robotic arm to examine the rock and understand how it formed.
Adirondack Under the Microscope
NASA Technical Reports Server (NTRS)
2004-01-01
This image was taken by the Mars Exploration Rover Spirit front hazard-identification camera after the rover's first post-egress drive on Mars Sunday, Jan. 15, 2004. Engineers drove the rover approximately 3 meters (10 feet) from the Columbia Memorial Station toward the first rock target, seen in the foreground. The football-sized rock was dubbed Adirondack because of its mountain-shaped appearance. Scientists have begun using the microscopic imager instrument at the end of the rover's robotic arm to examine the rock and understand how it formed.
NASA Technical Reports Server (NTRS)
Edwards, Charles D., Jr.; Barbieri, A.; Brower, E.; Estabrook, P.; Gibbs, R.; Horttor, R.; Ludwinski, J.; Mase, R.; McCarthy, C.; Schmidt, R.;
2004-01-01
NASA and ESA have established an international network of Mars orbiters, outfitted with relay communications payloads, to support robotic exploration of the red planet. Starting in January, 2004, this network has provided the Mars Exploration Rovers with telecommunications relay services, significantly increasing rover engineering and science data return while enhancing mission robustness and operability. Augmenting the data return capabilities of their X-band direct-to-Earth links, the rovers are equipped with UHF transceivers allowing data to be relayed at high rate to the Mars Global Surveyor (MGS), Mars Odyssey, and Mars Express orbiters. As of 21 July, 2004, over 50 Gbits of MER data have been obtained, with nearly 95% of that data returned via the MGS and Odyssey UHF relay paths, allowing a large increase in science return from the Martian surface relative to the X-band direct-to-Earth link. The MGS spacecraft also supported high-rate UHF communications of MER engineering telemetry during the critical period of entry, descent, and landing (EDL), augmenting the very low-rate EDL data collected on the X-band direct-to-Earth link. Through adoption of the new CCSDS Proximity-1 Link Protocol, NASA and ESA have achieved interoperability among these Mars assets, as validated by a successful relay demonstration between Spirit and Mars Express, enabling future interagency cross-support and establishing a truly international relay network at Mars.
NASA Technical Reports Server (NTRS)
Tran, Sarah Diem
2015-01-01
This project stems from the Exploration, Research, and Technology Directorate (UB) Projects Division, and one of their main initiatives is the "Journey to Mars". Landing on the surface of Mars which is millions of miles away is an incredibly large challenge. The terrain is covered in boulders, deep canyons, volcanic mountains, and spotted with sand dunes. The robotic lander is a kind of spacecraft with multiple purposes. One purpose is to be the protective shell for the Martian rover and absorb the impact from the landing forces; another purpose is to be a place where the rovers can come back to, actively communicate with, and recharge their batteries from. Rovers have been instrumental to the Journey to Mars initiative. They have been performing key research on the terrain of the red planet, trying to unlock the mysteries of the land for over a decade. The rovers that will need charging will not all have the same kind of internal battery either. RASSOR batteries may differ from the PbAC batteries inside Red Rover's chassis. NASA has invested heavily in the exploration of the surface of Mars. A driving force behind further exploration is the need for a more efficient operation of Martian rovers. One way is to reduce the weight as much as possible to reduce power consumption given the same mission parameters. In order to reduce the mass of the rovers, power generation, communication, and sample analysis systems currently onboard Martian rovers can be moved to a stationary lander deck. Positioning these systems from the rover to the Lander deck allows a taskforce of smaller, lighter rovers to perform the same tasks currently performed by or planned for larger rovers. A major task in transferring these systems to a stationary lander deck is ensuring that power can be transferred to the rovers.
The Collaborative Information Portal and NASA's Mars Exploration Rover Mission
NASA Technical Reports Server (NTRS)
Mak, Ronald; Walton, Joan
2005-01-01
The Collaborative Information Portal was enterprise software developed jointly by the NASA Ames Research Center and the Jet Propulsion Laboratory for NASA's Mars Exploration Rover mission. Mission managers, engineers, scientists, and researchers used this Internet application to view current staffing and event schedules, download data and image files generated by the rovers, receive broadcast messages, and get accurate times in various Mars and Earth time zones. This article describes the features, architecture, and implementation of this software, and concludes with lessons we learned from its deployment and a look towards future missions.
Mars Rover imaging systems and directional filtering
NASA Technical Reports Server (NTRS)
Wang, Paul P.
1989-01-01
Computer literature searches were carried out at Duke University and NASA Langley Research Center. The purpose is to enhance personal knowledge based on the technical problems of pattern recognition and image understanding which must be solved for the Mars Rover and Sample Return Mission. Intensive study effort of a large collection of relevant literature resulted in a compilation of all important documents in one place. Furthermore, the documents are being classified into: Mars Rover; computer vision (theory); imaging systems; pattern recognition methodologies; and other smart techniques (AI, neural networks, fuzzy logic, etc).
2003-03-28
KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers adjust the position of the Mars Exploration Rover-2 (MER-2) on the base petal of its lander assembly. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover, a window opening June 25.
2003-03-21
KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facility, workers watch as the Mars Exploration Rover-2 (MER-2) rolls over ramps to test its mobility and maneuverability. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.
2003-03-21
KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facility, workers watch as the Mars Exploration Rover-2 (MER-2) rolls over ramps to test its mobility and maneuverability. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.
2003-03-21
KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facility, workers watch as the Mars Exploration Rover-2 (MER-2) rolls over ramps to test its mobility and maneuverability. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.
2003-03-28
KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers move the Mars Exploration Rover-2 (MER-2) into position over the base petal of its lander assembly. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover, a window opening June 25.
2003-03-28
KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers lower the Mars Exploration Rover-2 (MER-2) onto the base petal of its lander assembly. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover, a window opening June 25.
2003-03-28
KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers prepare the base petal of a lander assembly to receive the Mars Exploration Rover-2 (MER-2). Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover, a window opening June 25.
2003-03-28
KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers move the Mars Exploration Rover-2 (MER-2) towards the base petal of its lander assembly. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover, a window opening June 25.
2003-01-31
KENNEDY SPACE CENTER, FLA. - Suspended by an overhead crane in the Payload Hazardous Servicing Facility, the Mars Exploration Rover (MER) aeroshell is guided by workers as it moves to a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.
Exomars 2018 Rover Pasteur Payload Sample Analysis
NASA Astrophysics Data System (ADS)
Debus, Andre; Bacher, M.; Ball, A.; Barcos, O.; Bethge, B.; Gaubert, F.; Haldemann, A.; Kminek, G.; Lindner, R.; Pacros, A.; Rohr, T.; Trautner, R.; Vago, J.
The ExoMars programme is a joint ESA-NASA program having exobiology as one of the key science objectives. It is divided into 2 missions: the first mission is ESA-led with an ESA orbiter and an ESA Entry, Descent and Landing (EDL) demonstrator, launched in 2016 by NASA, and the second mission is NASA-led, launched in 2018 by NASA including an ESA rover and a NASA rover both deployed by a single NASA EDL system. For ESA, the ExoMars programme will demonstrate key flight and in situ enabling technologies in support of the European ambitions for future exploration missions, as outlined in the Aurora Declaration. The ExoMars 2018 ESA Rover will carry a comprehensive and coherent suite of analytical instruments dedicated to exobiology and geology research: the Pasteur Payload (PPL). This payload includes a selection of complementary instruments, having the following goals: to search for signs of past and present life on Mars and to investigate the water/geochemical environment as a function of depth in the shallow subsurface. The ExoMars Rover will travel several kilometres searching for sites warranting further investigation. The Rover includes a drill and a Sample Preparation and Distribution System which will be used to collect and analyse samples from within outcrops and from the subsurface. The Rover systems and instruments, in particular those located inside the Analytical Laboratory Drawer must meet many stringent requirements to be compatible with exobiologic investigations: the samples must be maintained in a cold and uncontaminated environment, requiring sterile and ultraclean preparation of the instruments, to preserve volatile materials and to avoid false positive results. The value of the coordinated observations suggests that a significant return on investment is to be expected from this complex development. We will present the challenges facing the ExoMars PPL, and the plans for sending a robust exobiology laboratory to Mars in 2018.
2003-02-24
KENNEDY SPACE CENTER, FLA. -- The cruise stage, aeroshell and lander for the Mars Exploration Rover-1 mission and the MER-2 rover arrive at KSC's Multi-Payload Processing Facility. The same flight hardware for the MER-2 rover arrived Jan. 27; however, the MER-2 rover is scheduled to arrive at KSC in March. While at KSC, each of the two rovers, the aeroshells and the landers will undergo a full mission simulation. All of these flight elements will then be integrated together. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers will be identical to each other, but will land at different regions of Mars. Launch of the MER-1 is scheduled for May 30. MER-2 will follow June 25.
NASA Ames Celebrates Curiosity Rover's Landing on Mars (Reporter Package)
2012-08-08
Nearly 7,000 people came to NASA Ames Research Center, Moffett Field, Calif., to watch the Mars Science Laboratory rover Curiosity land on Mars. A full day's worth of activities and discussions with local Mars experts informed attendees about the contributions NASA Ames made to the mission. The highlight of the event was the live NASA TV broadcast of MSL's entry, descent and landing on the Martian surface.
2004-07-21
This 360-degree stereo anaglyph of the terrain surrounding NASA Mars Exploration Rover Opportunity was taken on the rover 171st sol on Mars. Opportunity had driven 11 meters 36 feet into Endurance Crater. 3D glasses are necessary.
Laser Hits on Martian Drill Tailings
2013-02-13
A day after NASA Mars rover Curiosity drilled the first sample-collection hole into a rock on Mars, the rover Chemistry and Camera ChemCam instrument shot laser pulses into the fresh rock powder that the drilling generated.
The Mars 2020 Rover Mission Landing Site Candidates
NASA Astrophysics Data System (ADS)
Schulte, M.; Meyer, M.; Grant, J.; Golombek, M.
2018-04-01
The number of suitable landing sites for the Mars 2020 rover mission has been narrowed to three leading candidates: Jezero Crater, NE Syrtis, and Columbia Hills. Each offers geologic settings with the potential for preservation of biosignatures.
Watching Test Drives in California for Rover Mission to Mars
2012-05-11
Michael Malin, left, principal investigator for three science cameras on NASA Curiosity Mars rover, comments to a news reporter during tests with Curiosity mobility-test stand-in, Scarecrow, on Dumont Dunes in California Mojave Desert.
Sealed Organic Check Material on Curiosity
2012-09-10
NASA Mars rover Curiosity carries five cylindrical blocks of organic check material for use in a control experiment if the rover Sample Analysis at Mars SAM laboratory detects any organic compounds in samples of Martian soil or powdered rock.
First Sampling Hole in Mount Sharp
2014-09-25
This image from the Mars Hand Lens Imager MAHLI camera on NASA Curiosity Mars rover shows the first sample-collection hole drilled in Mount Sharp, the layered mountain that is the science destination of the rover extended mission.
ExoMars 2018 Landing Site Selection Process
NASA Astrophysics Data System (ADS)
Vago, Jorge L.; Kminek, Gerhard; Rodionov, Daniel
The ExoMars 2018 mission will include two science elements: a Rover and a Surface Platform. The ExoMars Rover will carry a comprehensive suite of instruments dedicated to geology and exobiology research named after Louis Pasteur. The Rover will be able to travel several kilometres searching for traces of past and present signs of life. It will do this by collecting and analysing samples from outcrops, and from the subsurface—down to 2-m depth. The very powerful combination of mobility with the ability to access locations where organic molecules can be well preserved is unique to this mission. After the Rover will have egressed, the ExoMars Surface Platform will begin its science mission to study the surface environment at the landing location. This talk will describe the landing site selection process and introduce the scientific, planetary protection, and engineering requirements that candidate landing sites must comply with in order to be considered for the mission.
Mars Lander/Rover vehicle development: An advanced space design project for USRA and NASA/OAST
NASA Technical Reports Server (NTRS)
1987-01-01
The accomplishments of the Utah State University (USU) Mars Lander/Rover (MLR) design class during the Winter Quarter are delineated and explained. Environment and trajectory, ground systems, balloon system, and payload system are described. Results from this effort will provide a valid and useful basis for further studies of Mars exploratory vehicles.
1997-07-05
This image shows that the Mars Pathfinder airbags have been successfully retracted, allowing safe deployment of the rover ramps. The Sojourner rover, still in its deployed position, is at center image, and rocks are visible in the background. Mars Pathfinder landed successfully on the surface of Mars today at 10:07 a.m. PDT. http://photojournal.jpl.nasa.gov/catalog/PIA00617
2003-04-30
KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is raised to a vertical position for its lift up the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.
2003-04-30
KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the second half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is raised to a vertical position for its lift up the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.
2003-04-30
KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the second half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) nears the top of the launch tower. The fairing will be installed around the payload for protection during launch on a Delta II rocket. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - At NASA's Family & Community Mars Exploration Day held in Cape Canaveral, Fla., students look at a remote-controlled model of the Mars Exploration Rover. The event informed students and the general public about Florida's key role as NASA's 'Gateway to Mars' and offered an opportunity to meet with scientists, engineers, educators and others working Mars exploration missions. The Mars Exploration Rovers are being prepared for launch this spring aboard Boeing Delta II rockets from the Cape Canaveral Air Force Station. They will land on Mars and start exploring in January 2004.
2003-02-19
KENNEDY SPACE CENTER, FLA. - At NASA's Family & Community Mars Exploration Day held in Cape Canaveral, Fla., students look at a remote-controlled model of the Mars Exploration Rover. The event informed students and the general public about Florida's key role as NASA's "Gateway to Mars" and offered an opportunity to meet with scientists, engineers, educators and others working Mars exploration missions. The Mars Exploration Rovers are being prepared for launch this spring aboard Boeing Delta II rockets from the Cape Canaveral Air Force Station. They will land on Mars and start exploring in January 2004.
NASA Technical Reports Server (NTRS)
2004-01-01
This image mosaic illustrates how scientists use the color calibration targets (upper left) located on both Mars Exploration Rovers to fine-tune the rovers' sense of color. In the center, spectra, or light signatures, acquired in the laboratory of the colored chips on the targets are shown as lines. Actual data from Mars Exploration Rover Spirit's panoramic camera is mapped on top of these lines as dots. The plot demonstrates that the observed colors of Mars match the colors of the chips, and thus approximate the red planet's true colors. This finding is further corroborated by the picture taken on Mars of the calibration target, which shows the colored chips as they would appear on Earth.
Mars Science Laboratory Rover Taking Shape
NASA Technical Reports Server (NTRS)
2008-01-01
This image taken in August 2008 in a clean room at NASA's Jet Propulsion Laboratory, Pasadena, Calif., shows NASA's next Mars rover, the Mars Science Laboratory, in the course of its assembly, before additions of its arm, mast, laboratory instruments and other equipment. The rover is about 9 feet wide and 10 feet long. Viewing progress on the assembly are, from left: NASA Associate Administrator for Science Ed Weiler, California Institute of Technology President Jean-Lou Chameau, JPL Director Charles Elachi, and JPL Associate Director for Flight Projects and Mission Success Tom Gavin. JPL, a division of Caltech, manages the Mars Science Laboratory project for the NASA Science Mission Directorate, Washington.NASA Technical Reports Server (NTRS)
1997-01-01
This Imager for Mars Pathfinder (IMP) image taken near the end of daytime operations on Sol 50 shows the Sojourner rover between the rocks 'Wedge' (foreground) and 'Shark' (behind rover). The rover successfully deployed its Alpha Proton X-Ray Spectrometer on Shark on Sol 52.
Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover
NASA Astrophysics Data System (ADS)
Vago, Jorge L.; Westall, Frances; Pasteur Instrument Team; Pasteur Landing Team; Coates, Andrew J.; Jaumann, Ralf; Korablev, Oleg; Ciarletti, Valérie; Mitrofanov, Igor; Josset, Jean-Luc; De Sanctis, Maria Cristina; Bibring, Jean-Pierre; Rull, Fernando; Goesmann, Fred; Steininger, Harald; Goetz, Walter; Brinckerhoff, William; Szopa, Cyril; Raulin, François; Westall, Frances; Edwards, Howell G. M.; Whyte, Lyle G.; Fairén, Alberto G.; Bibring, Jean-Pierre; Bridges, John; Hauber, Ernst; Ori, Gian Gabriele; Werner, Stephanie; Loizeau, Damien; Kuzmin, Ruslan O.; Williams, Rebecca M. E.; Flahaut, Jessica; Forget, François; Vago, Jorge L.; Rodionov, Daniel; Korablev, Oleg; Svedhem, Håkan; Sefton-Nash, Elliot; Kminek, Gerhard; Lorenzoni, Leila; Joudrier, Luc; Mikhailov, Viktor; Zashchirinskiy, Alexander; Alexashkin, Sergei; Calantropio, Fabio; Merlo, Andrea; Poulakis, Pantelis; Witasse, Olivier; Bayle, Olivier; Bayón, Silvia; Meierhenrich, Uwe; Carter, John; García-Ruiz, Juan Manuel; Baglioni, Pietro; Haldemann, Albert; Ball, Andrew J.; Debus, André; Lindner, Robert; Haessig, Frédéric; Monteiro, David; Trautner, Roland; Voland, Christoph; Rebeyre, Pierre; Goulty, Duncan; Didot, Frédéric; Durrant, Stephen; Zekri, Eric; Koschny, Detlef; Toni, Andrea; Visentin, Gianfranco; Zwick, Martin; van Winnendael, Michel; Azkarate, Martín; Carreau, Christophe; ExoMars Project Team
2017-07-01
The second ExoMars mission will be launched in 2020 to target an ancient location interpreted to have strong potential for past habitability and for preserving physical and chemical biosignatures (as well as abiotic/prebiotic organics). The mission will deliver a lander with instruments for atmospheric and geophysical investigations and a rover tasked with searching for signs of extinct life. The ExoMars rover will be equipped with a drill to collect material from outcrops and at depth down to 2 m. This subsurface sampling capability will provide the best chance yet to gain access to chemical biosignatures. Using the powerful Pasteur payload instruments, the ExoMars science team will conduct a holistic search for traces of life and seek corroborating geological context information.
NASA Astrophysics Data System (ADS)
Lyness, E.; Franz, H. B.; Prats, B.
2017-12-01
The Sample Analysis at Mars (SAM) instrument is a suite of instruments on Mars aboard the Mars Science Laboratory rover. Centered on a mass spectrometer, SAM delivers its data to the PDS Atmosphere's node in PDS3 format. Over five years on Mars the process of operating SAM has evolved and extended significantly from the plan in place at the time the PDS3 delivery specification was written. For instance, SAM commonly receives double or even triple sample aliquots from the rover's drill. SAM also stores samples in spare cups for long periods of time for future analysis. These unanticipated operational changes mean that the PDS data deliveries are absent some valuable metadata without which the data can be confusing. The Mars Organic Molecule Analyzer (MOMA) instrument is another suite of instruments centered on a mass spectrometer bound for Mars. MOMA is part of the European ExoMars rover mission schedule to arrive on Mars in 2021. While SAM and MOMA differ in some important scientific ways - MOMA uses an linear ion trap compared to the SAM quadropole mass spectrometer and MOMA has a laser desorption experiment that SAM lacks - the data content from the PDS point of view is comparable. Both instruments produce data containing mass spectra acquired from solid samples collected on the surface of Mars. The MOMA PDS delivery will make use of PDS4 improvements to provide a metadata context to the data. The MOMA PDS4 specification makes few assumptions of the operational processes. Instead it provides a means for the MOMA operators to provide the important contextual metadata that was unanticipated during specification development. Further, the software tools being developed for instrument operators will provide a means for the operators to add this crucial metadata at the time it is best know - during operations.
Twelve Months in Two Minutes Curiositys First Year on Mars
2013-08-01
A series of 548 images shows the view from a fisheye camera on the front of NASA's Mars rover Curiosity from the day the rover landed in August 2012 through July 2013. The camera is the rover's front Hazard-Avoidance Camera. The scenes include Curiosity collecting its first scoops of Martian soil and collecting a drilled sample form inside a Martian rock.
Opportunity Egress Aid Contacts Soil
NASA Technical Reports Server (NTRS)
2004-01-01
This image from the navigation camera on the Mars Exploration Rover Opportunity shows the rover's egress aid touching the martian soil at Meridiani Planum, Mars. The image was taken after the rear lander petal hyperextended in a manuever to tilt the lander forward. The maneuver pushed the front edge lower, placing the tips of the egress aids in the soil. The rover will drive straight ahead to exit the lander.
NASA Astrophysics Data System (ADS)
Pla-Garcia, Jorge; Rafkin, Scot C. R.; Kahre, Melinda; Gomez-Elvira, Javier; Hamilton, Victoria E.; Navarro, Sara; Torres, Josefina; Marín, Mercedes; Vasavada, Ashwin R.
2016-12-01
Air temperature, ground temperature, pressure, and wind speed and direction data obtained from the Rover Environmental Monitoring Station onboard the Mars Science Laboratory rover Curiosity are compared to data from the Mars Regional Atmospheric Modeling System. A full diurnal cycle at four different seasons (Ls 0, 90, 180 and 270) is investigated at the rover location within Gale crater, Mars. Model results are shown to be in good agreement with observations when considering the uncertainties in the observational data set. The good agreement provides justification for utilizing the model results to investigate the broader meteorological environment of the Gale crater region, which is described in the second, companion paper.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. Nine-year-old Sofi Collis is introduced to the media at a press conference. The Siberian-born Arizona resident wrote the winning entry in the Name the Rovers Contest sponsored by NASA and the Lego Co., a Denmark-based toymaker, with collaboration from the Planetary Society, Pasadena, Calif. The names she selected for the Mars Exploration Rovers are 'Spirit' and 'Opportunity.' The third grader's essay was chosen from more than 10,000 American student entries. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. Sofi Collis, the third grade student winner of the 'Name the Rovers' contest, poses with a model of a rover. The names she proposed -- Spirit and Opportunity -- were announced today in a press conference held by NASA Administrator Sean O'Keefe. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.
NASA Technical Reports Server (NTRS)
Buhler, C. R.; Calle, C. I.; Mantovani, J. G.; Buehler, M. G.; Nowicki, A. W.; Ritz, M.
2004-01-01
The success of the recent rover missions to Mars has stressed the importance of acquiring the maximum amount of geological information with the least amount of data possible. We have designed, tested and implemented special sensors mounted on a rover s wheel capable of detecting minute changes in surface topology thus eliminating the need for specially- made science platforms. These sensors, based on the previously designed, flight qualified Mars Environmental Compatibility Assessment (MECA) Electrometer, measure the static electricity (triboelectricity) generated between polymer materials and the Martian regolith during rover transverses. The sensors are capable of detecting physical changes in the soil that may not be detectable by other means, such as texture, size and moisture content. Although triboelectricity is a surface phenomenon, the weight of a rover will undoubtedly protrude the sensors below the dust covered layers, exposing underlying regolith whose properties may not be detectable through other means.
The Challenges of Designing the Rocker-Bogie Suspension for the Mars Exploration Rover
NASA Technical Reports Server (NTRS)
Harrington, Brian D.; Voorhees, Chris
2004-01-01
Over the past decade, the rocker-bogie suspension design has become a proven mobility application known for its superior vehicle stability and obstacle-climbing capability. Following several technology and research rover implementations, the system was successfully flown as part of Mars Pathfinder s Sojourner rover. When the Mars Exploration Rover (MER) Project was first proposed, the use of a rocker-bogie suspension was the obvious choice due to its extensive heritage. The challenge posed by MER was to design a lightweight rocker-bogie suspension that would permit the mobility to stow within the limited space available and deploy into a configuration that the rover could then safely use to egress from the lander and explore the Martian surface. This paper will describe how the MER rocker-bogie suspension subsystem was able to meet these conflicting design requirements while highlighting the variety of deployment and latch mechanisms employed in the design.
The Preparation for and Execution of Engineering Operations for the Mars Curiosity Rover Mission
NASA Technical Reports Server (NTRS)
Samuels, Jessica A.
2013-01-01
The Mars Science Laboratory Curiosity Rover mission is the most complex and scientifically packed rover that has ever been operated on the surface of Mars. The preparation leading up to the surface mission involved various tests, contingency planning and integration of plans between various teams and scientists for determining how operation of the spacecraft (s/c) would be facilitated. In addition, a focused set of initial set of health checks needed to be defined and created in order to ensure successful operation of rover subsystems before embarking on a two year science journey. This paper will define the role and responsibilities of the Engineering Operations team, the process involved in preparing the team for rover surface operations, the predefined engineering activities performed during the early portion of the mission, and the evaluation process used for initial and day to day spacecraft operational assessment.
NASA Technical Reports Server (NTRS)
Birur, Gajanana C.; Bhandari, Pradeep; Bame, David; Karlmann, Paul; Mastropietro, A. J.; Liu, Yuanming; Miller, Jennifer; Pauken, Michael; Lyra, Jacqueline
2012-01-01
The Mars Science Laboratory (MSL) rover, Curiosity, which was launched on November 26, 2011, incorporates a novel active thermal control system to keep the sensitive electronics and science instruments at safe operating and survival temperatures. While the diurnal temperature variations on the Mars surface range from -120 C to +30 C, the sensitive equipment are kept within -40 C to +50 C. The active thermal control system is based on a single-phase mechanically pumped fluid loop (MPFL) system which removes or recovers excess waste heat and manages it to maintain the sensitive equipment inside the rover at safe temperatures. This paper will describe the entire process of developing this active thermal control system for the MSL rover from concept to flight implementation. The development of the rover thermal control system during its architecture, design, fabrication, integration, testing, and launch is described.
Lessons Learned from Coordinating Relay Activities at Mars
NASA Technical Reports Server (NTRS)
Gladden, Roy E.; Hwang, Pauline; Waggoner, Bruce; McLaughlin, Bruce; Fieseler, Paul; Thomas, Reid; Bigwood, Maria; Herrera, Paul
2005-01-01
The Mission Management Office at the Jet Propulsion Laboratory was tasked with coordinating the relay of data between multiple spacecraft at Mars in support of the Mars Exploration Rover Missions in early 2004. The confluence of three orbiters (Mars Global Surveyor, Mars Odyssey, and Mars Express), two rovers (Spirit and Opportunity), and one lander (Beagle 2) has provided a challenging operational scenario that required careful coordination between missions to provide the necessary support and to avoid potential interference during simultaneous relay sessions. As these coordination efforts progressed, several important lessons were learned that should be applied to future Mars relay activities.
Drive Direction Image by Opportunity After Surpassing 20 Miles
2011-07-19
NASA Mars Exploration Rover Opportunity used its navigation camera to record this view in the eastward driving direction after completing a drive on July 17, 2011, that took the rover total driving distance on Mars beyond 20 miles.
Mars Orbiter Sees Rover Opportunity at Crater Edge
2011-01-04
NASA Mars Reconnaissance Orbiter acquired this image of the Opportunity rover on the southwest rim of Santa Maria crater on New Year Eve 2010. Opportunity is imaging the crater interior to better reveal the geometry of rock layers.
The Mars Exploration Rover Project : 2005 surface operations results
NASA Technical Reports Server (NTRS)
Erickson, James K.; Callas, John L.; Haldemann, Albert F. C.
2005-01-01
The intent of this paper is to provide the aerospace community a status report of the progress of the Mars Rovers exploration of the Martian surface, picking up after the landings and continuing through fiscal year 2005.
2012-08-07
This close-up view shows the rover Curiosity parachute and back shell strewn across the surface of Mars. The image was captured by NASA Mars Reconnaissance Orbiter about 24 hours after the parachute helped guide the rover to the surface.
West Rim of Endeavour Crater on Mars
2011-08-10
A portion of the west rim of Endeavour crater sweeps southward in this color view from NASA Mars Exploration Rover Opportunity. The rover first destination on the rim, called Spirit Point in tribute to Opportunity now-inactive twin, Spirit.
Candidate Drilling Target on Mars Doesnt Pass Exam
2014-08-22
This image from the front Hazcam on NASA Curiosity Mars rover shows the rover drill in place during a test of whether the rock beneath it, Bonanza King, would be an acceptable target for drilling to collect a sample.
Methane Measurements by NASA Curiosity in Mars Gale Crater
2014-12-16
This graphic shows tenfold spiking in the abundance of methane in the Martian atmosphere surrounding NASA Curiosity Mars rover, as detected by a series of measurements made with the Tunable Laser Spectrometer instrument in the rover laboratory suite.
First Image from a Mars Rover Choosing a Target
2010-03-23
This true-color image is the result of the first observation of a target selected autonomously by NASA Mars Exploration Rover Opportunity using newly developed and uploaded software named Autonomous Exploration for Gathering Increased Science, or AEGIS.
Curiosity Mars Rover Flexes its Robotic Arm
2010-09-16
Test operators in a clean room at NASA Jet Propulsion Laboratory monitor some of the first motions by the robotic arm on the Mars rover Curiosity after installation in August 2010. The arm is shown in a partially extended position.
Seeking Signs of Life Preserved in Martian Silica
NASA Astrophysics Data System (ADS)
Ruff, S. W.; Farmer, J. D.; Van Kranendonk, M. J.; Campbell, K. A.; Djokic, T.; Damer, B.; Deamer, D. W.
2018-04-01
Hot spring nodular silica deposits on Earth, which resemble those discovered with the Spirit rover, preserve concentrated organics and fine-scale structures that could be searched for on Mars with the Mars 2020 rover and in returned samples.
2004-01-11
This still image illustrates what the Mars Exploration Rover Spirit will look like as it rolls off the northeastern side of the lander on Mars. The image was taken from footage of rover testing at JPL In-Situ Instruments Laboratory, or Testbed.
Mars Rover Curiosity Arm Held High
2011-06-13
This photograph of the NASA Mars Science Laboratory rover, Curiosity, was taken during testing on June 3, 2011. The turret at the end of Curiosity robotic arm holds five devices. In this view, the drill is at the six oclock position.
In Situ Resource Utilization For Mobility In Mars Exploration
NASA Astrophysics Data System (ADS)
Hartman, Leo
There has been considerable interest in the unmanned exploration of Mars for quite some time but the current generation of rovers can explore only a small portion of the total planetary surface. One approach to addressing this deficiency is to consider a rover that has greater range and that is cheaper so that it can be deployed in greater numbers. The option explored in this paper uses the wind to propel a rover platform, trading off precise navigation for greater range. The capabilities of such a rover lie between the global perspective of orbiting satellites and the detailed local analysis of current-generation rovers. In particular, the design includes two inflatable wheels with an unspun payload platform suspended between then. Slightly deflating one of the wheels enables steering away from the direction of the wind and sufficiently deflating both wheels will allow the rover to stop. Current activities revolve around the development of a prototype with a wheel cross-sectional area that is scaled by 1/100 to enable terrestrial trials to provide meaningful insight into the performance and behavior of a full-sized rover on Mars. The paper will discuss the design and its capabilities in more detail as well as current efforts to build a prototype suitable for deployment at a Mars analogue site such as Devon Island in the Canadian arctic.
Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover
Westall, Frances; Coates, Andrew J.; Jaumann, Ralf; Korablev, Oleg; Ciarletti, Valérie; Mitrofanov, Igor; Josset, Jean-Luc; De Sanctis, Maria Cristina; Bibring, Jean-Pierre; Goesmann, Fred; Steininger, Harald; Brinckerhoff, William; Szopa, Cyril; Raulin, François; Westall, Frances; Edwards, Howell G. M.; Whyte, Lyle G.; Fairén, Alberto G.; Bibring, Jean-Pierre; Bridges, John; Hauber, Ernst; Ori, Gian Gabriele; Werner, Stephanie; Loizeau, Damien; Kuzmin, Ruslan O.; Williams, Rebecca M. E.; Flahaut, Jessica; Forget, François; Rodionov, Daniel; Korablev, Oleg; Svedhem, Håkan; Sefton-Nash, Elliot; Kminek, Gerhard; Lorenzoni, Leila; Joudrier, Luc; Mikhailov, Viktor; Zashchirinskiy, Alexander; Alexashkin, Sergei; Calantropio, Fabio; Merlo, Andrea; Poulakis, Pantelis; Witasse, Olivier; Bayle, Olivier; Bayón, Silvia; Meierhenrich, Uwe; Carter, John; García-Ruiz, Juan Manuel; Baglioni, Pietro; Haldemann, Albert; Ball, Andrew J.; Debus, André; Lindner, Robert; Haessig, Frédéric; Monteiro, David; Trautner, Roland; Voland, Christoph; Rebeyre, Pierre; Goulty, Duncan; Didot, Frédéric; Durrant, Stephen; Zekri, Eric; Koschny, Detlef; Toni, Andrea; Visentin, Gianfranco; Zwick, Martin; van Winnendael, Michel; Azkarate, Martín; Carreau, Christophe
2017-01-01
Abstract The second ExoMars mission will be launched in 2020 to target an ancient location interpreted to have strong potential for past habitability and for preserving physical and chemical biosignatures (as well as abiotic/prebiotic organics). The mission will deliver a lander with instruments for atmospheric and geophysical investigations and a rover tasked with searching for signs of extinct life. The ExoMars rover will be equipped with a drill to collect material from outcrops and at depth down to 2 m. This subsurface sampling capability will provide the best chance yet to gain access to chemical biosignatures. Using the powerful Pasteur payload instruments, the ExoMars science team will conduct a holistic search for traces of life and seek corroborating geological context information. Key Words: Biosignatures—ExoMars—Landing sites—Mars rover—Search for life. Astrobiology 17, 471–510.
2003-04-04
KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility examine the Mars Exploration Rover 2 (MER-2) as it is lowered onto the base petal of the lander. Set to launch in Spring 2003, the MER Mission consists of two identical rovers. Landing at different regions of Mars, they are designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening May 30, and the second rover a window opening June 25.
2003-04-04
KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility check the Mars Exploration Rover 2 (MER-2) before it is lifted and moved to the lander where it will be mated to the base petal. Set to launch in Spring 2003, the MER Mission consists of two identical rovers, landing at different regions of Mars, designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening May 30, and the second rover a window opening June 25.
2003-04-04
KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility release the overhead crane used to lower the Mars Exploration Rover 2 (MER-2) onto the base petal of the lander. Set to launch in Spring 2003, the MER Mission consists of two identical rovers. Landing at different regions of Mars, they are designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening May 30, and the second rover a window opening June 25.
1997-07-05
This image from the Imager for Mars Pathfinder (IMP) camera shows the rear part of the Sojourner rover, the rolled-up rear ramp, and portions of the partially deflated airbags. The Alpha Proton X-ray Spectrometer instrument is protruding from the rear (right side) of the rover. The airbags behind the rover are presently blocking the ramp from being safely unfurled. The ramps are a pair of deployable metal reels that will provide a track for the rover as it slowly rolls off the lander, and onto the surface of Mars, once Pathfinder scientists determine it is safe to do so. http://photojournal.jpl.nasa.gov/catalog/PIA00614
Geologic Measurements using Rover Images: Lessons from Pathfinder with Application to Mars 2001
NASA Technical Reports Server (NTRS)
Bridges, N. T.; Haldemann, A. F. C.; Herkenhoff, K. E.
1999-01-01
The Pathfinder Sojourner rover successfully acquired images that provided important and exciting information on the geology of Mars. This included the documentation of rock textures, barchan dunes, soil crusts, wind tails, and ventifacts. It is expected that the Marie Curie rover cameras will also successfully return important information on landing site geology. Critical to a proper analysis of these images will be a rigorous determination of rover location and orientation. Here, the methods that were used to compute rover position for Sojourner image analysis are reviewed. Based on this experience, specific recommendations are made that should improve this process on the '01 mission.
1997-08-28
NASA's Sojourner rover is seen next to the rock "Shark," in this image taken by the Imager for Mars Pathfinder (IMP) near the end of daytime operations on Sol 52. The rover's Alpha Proton X-Ray Spectrometer is deployed against the rock. The rock "Wedge" is in the foreground. The Sojourner rover is seen next to the rock "Shark," in this image taken by the Imager for Mars Pathfinder (IMP) near the end of daytime operations on Sol 52. The rover's Alpha Proton X-Ray Spectrometer is deployed against the rock. The rock "Wedge" is in the foreground.
Weather Sensors from Spain on Mars Rover Curiosity
2010-11-30
Sensors on two finger-like mini-booms extending horizontally from the mast of NASA Mars rover Curiosity will monitor wind speed, wind direction and air temperature; image taken during installation of the instrument inside a clean room at NASA JPL.
Outcrop on Murray Ridge Section of Martian Crater Rim False Color
2014-01-03
This false color image from NASA Mars Exploration Rover Opportunity is of the outcrop on the Murray Ridge portion of the rim of Endeavour Crater as the rover approached the 10th anniversary of its landing on Mars.
2012-09-10
This image taken by the MAHLI camera shows a sample of basaltic rock from a lava flow in New Mexico serves as a calibration target carried on the front of NASA Mars rover Curiosity for the rover Canadian-made APXS instrument.
Looking Back Across the Plains
NASA Technical Reports Server (NTRS)
2005-01-01
NASA's Mars Exploration Rover Opportunity looks through its navigation camera as it leaves the home it has known for over 200 sols. The rover spent 181 sols inside 'Endurance Crater,' furthering our knowledge of ancient water on Mars. After that challenging work, it spent 25 sols investigating the heat shield that protected it on its way through the martian atmosphere and the nearby meteorite that was the first discovered on another planet. Opportunity is saying 'so long' and heading south for a small crater referred to as 'Argo.' This image was taken on the rover's 359th sol on Mars (January 26, 2005).Entry trajectory and atmosphere reconstruction methodologies for the Mars Exploration Rover mission
NASA Astrophysics Data System (ADS)
Desai, Prasun N.; Blanchard, Robert C.; Powell, Richard W.
2004-02-01
The Mars Exploration Rover (MER) mission will land two landers on the surface of Mars, arriving in January 2004. Both landers will deliver the rovers to the surface by decelerating with the aid of an aeroshell, a supersonic parachute, retro-rockets, and air bags for safely landing on the surface. The reconstruction of the MER descent trajectory and atmosphere profile will be performed for all the phases from hypersonic flight through landing. A description of multiple methodologies for the flight reconstruction is presented from simple parameter identification methods through a statistical Kalman filter approach.
Curiosity Rover's First Anniversary
2013-08-06
Prasun Desai, acting director, Strategic Integration, NASA's Space Technology Mission Directorate, speaks at a public event at NASA Headquarters observing the first anniversary of the Curiosity rover's landing on Mars, Tuesday, August 6th, 2013 in Washington. The Mars Science Laboratory mission successfully placed the one-ton Curiosity rover on the surface of Mars on Aug. 6, 2012, about 1 mile from the center of its 12-mile-long target area. Within the first eight months of a planned 23-months primary mission, Curiosity met its major science objective of finding evidence of a past environment well-suited to support microbial life. Photo Credit: (NASA/Carla Cioffi)
Curiosity Rover's First Anniversary
2013-08-06
NASA Administrator Charles Bolden speaks at a public event at NASA Headquarters observing the first anniversary of the Curiosity rover's landing on Mars, Tuesday, August 6th, 2013 in Washington. The Mars Science Laboratory mission successfully placed the one-ton Curiosity rover on the surface of Mars on Aug. 6, 2012, about 1 mile from the center of its 12-mile-long target area. Within the first eight months of a planned 23-months primary mission, Curiosity met its major science objective of finding evidence of a past environment well-suited to support microbial life. Photo Credit: (NASA/Carla Cioffi)
Curiosity Rover's First Anniversary
2013-08-06
Jim Green, director, Planetary Division, NASA's Science Mission Directorate, speaks at a public event at NASA Headquarters observing the first anniversary of the Curiosity rover's landing on Mars, Tuesday, August 6th, 2013 in Washington. The Mars Science Laboratory mission successfully placed the one-ton Curiosity rover on the surface of Mars on Aug. 6, 2012, about 1 mile from the center of its 12-mile-long target area. Within the first eight months of a planned 23-months primary mission, Curiosity met its major science objective of finding evidence of a past environment well-suited to support microbial life. Photo Credit: (NASA/Carla Cioffi)
Curiosity Rover's First Anniversary
2013-08-06
Jim Green, director, Planetary Division, NASA's Science Mission Directorate, answers a question at a public event at NASA Headquarters observing the first anniversary of the Curiosity rover's landing on Mars, Tuesday, August 6th, 2013 in Washington. The Mars Science Laboratory mission successfully placed the one-ton Curiosity rover on the surface of Mars on Aug. 6, 2012, about 1 mile from the center of its 12-mile-long target area. Within the first eight months of a planned 23-months primary mission, Curiosity met its major science objective of finding evidence of a past environment well-suited to support microbial life. Photo Credit: (NASA/Carla Cioffi)
Curiosity Rover's First Anniversary
2013-08-06
Sam Scimemi, director, NASA's International Space Station Program, speaks at a public event at NASA Headquarters observing the first anniversary of the Curiosity rover's landing on Mars, Tuesday, August 6th, 2013 in Washington. The Mars Science Laboratory mission successfully placed the one-ton Curiosity rover on the surface of Mars on Aug. 6, 2012, about 1 mile from the center of its 12-mile-long target area. Within the first eight months of a planned 23-months primary mission, Curiosity met its major science objective of finding evidence of a past environment well-suited to support microbial life. Photo Credit: (NASA/Carla Cioffi)
High Gain Antenna Gimbal for the 2003-2004 Mars Exploration Rover Program
NASA Technical Reports Server (NTRS)
Sokol, Jeff; Krishnan, Satish; Ayari, Laoucet
2004-01-01
The High Gain Antenna Assemblies built for the 2003-2004 Mars Exploration Rover (MER) missions provide the primary communication link for the Rovers once they arrive on Mars. The High Gain Antenna Gimbal (HGAG) portion of the assembly is a two-axis gimbal that provides the structural support, pointing, and tracking for the High Gain Antenna (HGA). The MER mission requirements provided some unique design challenges for the HGAG. This paper describes all the major subsystems of the HGAG that were developed to meet these challenges, and the requirements that drove their design.
Bounce Rock - A shergottite-like basalt encountered at Meridiani Planum, Mars
NASA Astrophysics Data System (ADS)
Zipfel, Jutta; Schräder, Christian; Jolliff, Bradley L.; Gellert, Ralf; Herkenhoff, Kenneth E.; Rieder, Rudolf; Anderson, Robert; Bell, James F., III; Brückner, Johannes; Crisp, Joy A.; Christensen, Philip R.; Clark, Benton C.; de Souza, Paulo A., Jr.; Dreibus, Gerlind; D'Uston, Claude; Economou, Thanasis; Gorevan, Steven P.; Hahn, Brian C.; Klingelhäfer, Göstar; McCoy, Timothy J.; McSween, Harry Y., Jr.; Ming, Douglas W.; Morris, Richard V.; Rodionov, Daniel S.; Squyres, Steven W.; Wńnke, Heinrich; Wright, Shawn P.; Wyatt, Michael B.; Yen, Albert S.
2011-01-01
Abstract- The Opportunity rover of the Mars Exploration Rover mission encountered an isolated rock fragment with textural, mineralogical, and chemical properties similar to basaltic shergottites. This finding was confirmed by all rover instruments, and a comprehensive study of these results is reported here. Spectra from the miniature thermal emission spectrometer and the Panoramic Camera reveal a pyroxene-rich mineralogy, which is also evident in Mössbauer spectra and in normative mineralogy derived from bulk chemistry measured by the alpha particle X-ray spectrometer. The correspondence of Bounce Rock’s chemical composition with the composition of certain basaltic shergottites, especially Elephant Moraine (EET) 79001 lithology B and Queen Alexandra Range (QUE) 94201, is very close, with only Cl, Fe, and Ti exhibiting deviations. Chemical analyses further demonstrate characteristics typical of Mars such as the Fe/Mn ratio and P concentrations. Possible shock features support the idea that Bounce Rock was ejected from an impact crater, most likely in the Meridiani Planum region. Bopolu crater, 19.3 km in diameter, located 75 km to the southwest could be the source crater. To date, no other rocks of this composition have been encountered by any of the rovers on Mars. The finding of Bounce Rock by the Opportunity rover provides further direct evidence for an origin of basaltic shergottite meteorites from Mars.
2016 Summer Series - Bethany Ehlmann - Early Mars: A View from Rovers and Orbiters
2016-08-18
Water signatures include geological changes and life. Surface and orbital interplanetary robotic missions are critical for obtaining knowledge on atmospheric, surface and subsurface conditions of planets in our solar system. Ehlmann will talk about Mars data collected from orbital and rover missions and their implication for our understating of Mars past and present water environments.
2003-04-24
KENNEDY SPACE CENTER, FLA. - Jim Lloyd, with the Mars Exploration Rover (MER) program, points to the place on MER-1 where he will place a computer chip with about 35,000 laser-engraved signatures of visitors to the rovers at the Jet Propulsion Laboratory. The signatures include those of senators, artists, and John Glenn. The identical Mars rovers are scheduled to launch June 5 and June 25 from Cape Canaveral Air Force Station.
2003-04-24
KENNEDY SPACE CENTER, FLA. - This hand points to the place on the Mars Exploration Rover 1 where a computer chip with about 35,000 laser-engraved signatures of visitors to the Jet Propulsion Laboratory will be placed. The first rover already has one. The signatures include those of senators, artists, and John Glenn. The identical Mars rovers are scheduled to launch June 5 and June 25 from Cape Canaveral Air Force Station.
NASA Astrophysics Data System (ADS)
Stack, K. M.; Edwards, C. S.; Grotzinger, J. P.; Gupta, S.; Sumner, D. Y.; Calef, F. J.; Edgar, L. A.; Edgett, K. S.; Fraeman, A. A.; Jacob, S. R.; Le Deit, L.; Lewis, K. W.; Rice, M. S.; Rubin, D.; Williams, R. M. E.; Williford, K. H.
2016-12-01
This study provides the first systematic comparison of orbital facies maps with detailed ground-based geology observations from the Mars Science Laboratory (MSL) Curiosity rover to examine the validity of geologic interpretations derived from orbital image data. Orbital facies maps were constructed for the Darwin, Cooperstown, and Kimberley waypoints visited by the Curiosity rover using High Resolution Imaging Science Experiment (HiRISE) images. These maps, which represent the most detailed orbital analysis of these areas to date, were compared with rover image-based geologic maps and stratigraphic columns derived from Curiosity's Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI). Results show that bedrock outcrops can generally be distinguished from unconsolidated surficial deposits in high-resolution orbital images and that orbital facies mapping can be used to recognize geologic contacts between well-exposed bedrock units. However, process-based interpretations derived from orbital image mapping are difficult to infer without known regional context or observable paleogeomorphic indicators, and layer-cake models of stratigraphy derived from orbital maps oversimplify depositional relationships as revealed from a rover perspective. This study also shows that fine-scale orbital image-based mapping of current and future Mars landing sites is essential for optimizing the efficiency and science return of rover surface operations.
Stack, Kathryn M.; Edwards, Christopher; Grotzinger, J. P.; Gupta, S.; Sumner, D.; Edgar, Lauren; Fraeman, A.; Jacob, S.; LeDeit, L.; Lewis, K.W.; Rice, M.S.; Rubin, D.; Calef, F.; Edgett, K.; Williams, R.M.E.; Williford, K.H.
2016-01-01
This study provides the first systematic comparison of orbital facies maps with detailed ground-based geology observations from the Mars Science Laboratory (MSL) Curiosity rover to examine the validity of geologic interpretations derived from orbital image data. Orbital facies maps were constructed for the Darwin, Cooperstown, and Kimberley waypoints visited by the Curiosity rover using High Resolution Imaging Science Experiment (HiRISE) images. These maps, which represent the most detailed orbital analysis of these areas to date, were compared with rover image-based geologic maps and stratigraphic columns derived from Curiosity’s Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI). Results show that bedrock outcrops can generally be distinguished from unconsolidated surficial deposits in high-resolution orbital images and that orbital facies mapping can be used to recognize geologic contacts between well-exposed bedrock units. However, process-based interpretations derived from orbital image mapping are difficult to infer without known regional context or observable paleogeomorphic indicators, and layer-cake models of stratigraphy derived from orbital maps oversimplify depositional relationships as revealed from a rover perspective. This study also shows that fine-scale orbital image-based mapping of current and future Mars landing sites is essential for optimizing the efficiency and science return of rover surface operations.
NASA Technical Reports Server (NTRS)
Blaney, D. L.
2002-01-01
The next stage of Mars exploration will include the use of rovers to seek out specific mineralogies. Understanding the mineralogical diversity of the locale will be used to determining which targets should be investigated with the full suite of in situ capability on the rover. Visible to Short Wavelength Infrared (VSWIR) spectroscopy is critical in evaluating the mineralogical diversity and to validate the global remote sensing data sets to be collected by Mars Express and the Mars Reconnaissance Orbiter. However, spectroscopy on mobile platforms present challenges in both the design of instruments and in the efficient operation of the instrument and mission. Field-testing and validation on Earth can be used to develop instrument requirements analysis tools needed for used on Mars.
Arvidson, R. E.; Acton, C.; Blaney, D.; Bowman, J.; Kim, S.; Klingelhofer, G.; Marshall, J.; Niebur, C.; Plescia, J.; Saunders, R.S.; Ulmer, C.T.
1998-01-01
Experiments with the Rocky 7 rover were performed in the Mojave Desert to better understand how to conduct rover-based, long-distance (kilometers) geological traverses on Mars. The rover was equipped with stereo imaging systems for remote sensing science and hazard avoidance and 57Fe Mo??ssbauer and nuclear magnetic resonance spectrometers for in situ determination of mineralogy of unprepared rock and soil surfaces. Laboratory data were also obtained using the spectrometers and an X ray diffraction (XRD)/XRF instrument for unprepared samples collected from the rover sites. Simulated orbital and descent image data assembled for the test sites were found to be critical for assessing the geologic setting, formulating hypotheses to be tested with rover observations, planning traverses, locating the rover, and providing a regional context for interpretation of rover-based observations. Analyses of remote sensing and in situ observations acquired by the rover confirmed inferences made from orbital and simulated descent images that the Sunshine Volcanic Field is composed of basalt flows. Rover data confirmed the idea that Lavic Lake is a recharge playa and that an alluvial fan composed of sediments with felsic compositions has prograded onto the playa. Rover-based discoveries include the inference that the basalt flows are mantled with aeolian sediment and covered with a dense pavement of varnished basalt cobbles. Results demonstrate that the combination of rover remote sensing and in situ analytical observations will significantly increase our understanding of Mars and provide key connecting links between orbital and descent data and analyses of returned samples. Copyright 1998 by the American Geophysical Union.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. Workers in the Payload Hazardous Servicing Facility prepare to lift and move the backshell that will cover the Mars Exploration Rover 1 (MER-1) and its lander. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.
First Grinding of a Rock on Mars
NASA Technical Reports Server (NTRS)
2004-01-01
The round, shallow depression in this image resulted from history's first grinding of a rock on Mars. The rock abrasion tool on NASA's Spirit rover ground off the surface of a patch 45.5 millimeters (1.8 inches) in diameter on a rock called Adirondack during Spirit's 34th sol on Mars, Feb. 6, 2004. The hole is 2.65 millimeters (0.1 inch) deep, exposing fresh interior material of the rock for close inspection with the rover's microscopic imager and two spectrometers on the robotic arm. This image was taken by Spirit's panoramic camera, providing a quick visual check of the success of the grinding. The rock abrasion tools on both Mars Exploration Rovers were supplied by Honeybee Robotics, New York, N.Y.
The Athena Mars Rover Investigation
NASA Technical Reports Server (NTRS)
Squyres, S. W.; Arvidson, R. E.; Bell, J. F., III; Carr, M.; Christensen, P.; DesMarais, D.; Economou, T.; Gorevan, S.; Haskin, L.; Herkenhoff, K.
2000-01-01
The Mars Surveyor program requires tools for martian surface exploration, including remote sensing, in-situ sensing, and sample collection. The Athena Mars rover payload is a suite of scientific instruments and sample collection tools designed to: (1) Provide color stereo imaging of martian surface environments, and remotely-sensed point discrimination of mineralogical composition; (2) Determine the elemental and mineralogical composition of martian surface materials; (3) Determine the fine-scale textural properties of these materials; and (4) Collect and store samples. The Athena payload is designed to be implemented on a long-range rover such as the one now under consideration for the 2003 Mars opportunity. The payload is at a high state of maturity, and most of the instruments have now been built for flight.
Off-Earth Driving Champs in Miles
2011-12-07
The total distance driven on Mars by NASA Mars Exploration Rover, 21.35 miles by early December 2011, is approaching the record total for off-Earth driving, held by the robotic Lunokhod 2 rover operated on Earth moon by the Soviet Union in 1973.
Student Participation in Mars Sample Return Rover Field Tests, Silver Lake, California
NASA Technical Reports Server (NTRS)
Anderson, R. C.; Arvidson, R. E.; Bowman, J. D.; Dunham, C. D.; Backes, P.; Baumgartner, E. T.; Bell, J.; Dworetzky, S. C.; Klug, S.; Peck, N.
2000-01-01
An integrated team of students and teachers from four high schools across the country developed and implemented their own mission of exploration and discovery using the Mars Sample Return prototype rover, FIDO, at Silver Lake in the Mojave Desert.
NASA Technical Reports Server (NTRS)
Maimone, Mark W.
2009-01-01
Scripts Providing a Cool Kit of Telemetry Enhancing Tools (SPACKLE) is a set of software tools that fill gaps in capabilities of other software used in processing downlinked data in the Mars Exploration Rovers (MER) flight and test-bed operations. SPACKLE tools have helped to accelerate the automatic processing and interpretation of MER mission data, enabling non-experts to understand and/or use MER query and data product command simulation software tools more effectively. SPACKLE has greatly accelerated some operations and provides new capabilities. The tools of SPACKLE are written, variously, in Perl or the C or C++ language. They perform a variety of search and shortcut functions that include the following: Generating text-only, Event Report-annotated, and Web-enhanced views of command sequences; Labeling integer enumerations with their symbolic meanings in text messages and engineering channels; Systematic detecting of corruption within data products; Generating text-only displays of data-product catalogs including downlink status; Validating and labeling of commands related to data products; Performing of convenient searches of detailed engineering data spanning multiple Martian solar days; Generating tables of initial conditions pertaining to engineering, health, and accountability data; Simplified construction and simulation of command sequences; and Fast time format conversions and sorting.
2003-04-30
KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the second half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is lifted up the outside of the launch tower. Visible on another side is the Delta II rocket that will carry the payload into space. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.
Centralized Planning for Multiple Exploratory Robots
NASA Technical Reports Server (NTRS)
Estlin, Tara; Rabideau, Gregg; Chien, Steve; Barrett, Anthony
2005-01-01
A computer program automatically generates plans for a group of robotic vehicles (rovers) engaged in geological exploration of terrain. The program rapidly generates multiple command sequences that can be executed simultaneously by the rovers. Starting from a set of high-level goals, the program creates a sequence of commands for each rover while respecting hardware constraints and limitations on resources of each rover and of hardware (e.g., a radio communication terminal) shared by all the rovers. First, a separate model of each rover is loaded into a centralized planning subprogram. The centralized planning software uses the models of the rovers plus an iterative repair algorithm to resolve conflicts posed by demands for resources and by constraints associated with the all the rovers and the shared hardware. During repair, heuristics are used to make planning decisions that will result in solutions that will be better and will be found faster than would otherwise be possible. In particular, techniques from prior solutions of the multiple-traveling- salesmen problem are used as heuristics to generate plans in which the paths taken by the rovers to assigned scientific targets are shorter than they would otherwise be.
Uncovering the Mysteries of Mars Habitability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiens, Roger; Lanza, Nina; Clegg, Sam
Los Alamos scientists are uncovering clues about the habitability of ancient Mars using the ChemCam instrument that sits atop NASA’s Mars Curiosity rover. ChemCam has discovered 25 different elements on Mars—including manganese and boron—providing important information about conditions that could potentially have supported life on the Red Planet. Los Alamos is now developing a new instrument called SuperCam that will ride aboard the Mars 2020 rover and provide greater detail about the mineralogy and the presence of compounds related to the possibility of life on the surface of Mars.
In-Situ Mosaic Production at JPL/MIPL
NASA Technical Reports Server (NTRS)
Deen, Bob
2012-01-01
Multimission Image Processing Lab (MIPL) at JPL is responsible for (among other things) the ground-based operational image processing of all the recent in-situ Mars missions: (1) Mars Pathfinder (2) Mars Polar Lander (3) Mars Exploration Rovers (MER) (4) Phoenix (5) Mars Science Lab (MSL) Mosaics are probably the most visible products from MIPL (1) Generated for virtually every rover position at which a panorama is taken (2) Provide better environmental context than single images (3) Valuable to operations and science personnel (4) Arguably the signature products for public engagement
Orbital and Rover-based Exploration of Perseverance Valley, Endeavour Crater, Mars
NASA Astrophysics Data System (ADS)
Morgan, A. M.; Arvidson, R. E.; Duran Vinent, O.; Craddock, R. A.; Holo, S.; Gadal, C.; Blois, G.; Palucis, M. C.; Goudge, T. A.; Morgan, A. M.; Day, M.; Sullivan, R. J., Jr.; Umurhan, O. M.; Pähtz, T.; Birch, S.; Morgan, A. M.; Goudge, T. A.; Palucis, M. C.; Arvidson, R. E.; Duran Vinent, O.; Craddock, R. A.; Holo, S.; Blois, G.; Gadal, C.; Morgan, A. M.; Sullivan, R. J., Jr.; Day, M.; Arvidson, R. E.
2017-12-01
Perseverance Valley, based on orbital observations from the Mars Reconnaisance Orbiter HiRISE image data, is a 180 m long, 20 m wide anastomosing shallow channel system superimposed on the Cape Byron rim segment of the 22 km diameter Noachian-age Endeavour Crater on Mars. Several impact craters are superimposed on the valley system, indicating antiquity, although the valley's high degree of preservation indicates that it formed after significant regional-scale fluvial erosion and diffusive smoothing of Endeavour and its rim segments. The valley cuts into the inner, eastern rim on a 10˚ to 15˚ slope, and starts at a local low area on the rim crest. A set of shallow channels, some lined with perimeter rocks, extends from the west to meet the entrance to the valley. The western rim tilts to the west 0.8˚ and thus the channels tilt away from the valley entrance. The Mars Rover Opportunity has explored the western shallow channels leading up to the entrance to the valley. As of this writing Opportunity is located on the southern side of the valley entrance, with the Athena Science Team waiting until after solar conjunction to command the rover to descend into the valley to search for geomorphic and sedimentologic evidence related to valley formation. Wind erosion along radial fractures extending into and down Cape Byron is a possibility. Debris flows are also under consideration, perhaps enabled by melting ice at the rim crest. Dry avalanches are unlikely due to the low slopes. A fluvial origin is a strong contender based on models that show it is possible to have had a western catchment present when the Burns formation hydrated sulfates were being emplaced, followed by self-compaction of these sediments that tilted the western plains away from the rim crest. The key to testing among the various hypotheses for formation of the valley and shallow channels leading into the entrance will be the detailed stereo and multispectral imaging observations Opportunity will make of morphology and deposits at 20 m intervals during its descent along the valley floor. This will in fact be the first ground-based exploration of a candidate fluvial valley system on Mars, and will provide unique information on formation processes, including the role of water in shaping valley landforms.
Curiosity Rover on Mount Sharp, Seen from Mars Orbit
2017-06-20
The feature that appears bright blue at the center of this scene is NASA's Curiosity Mars rover on the northwestern flank of Mount Sharp, viewed by NASA's Mars Reconnaissance Orbiter. Curiosity is approximately 10 feet long and 9 feet wide (3.0 meters by 2.8 meters). The view is a cutout from observation ESP_050897_1750 taken by the High Resolution Imaging Science Experiment (HiRISE) camera on the orbiter on June 5, 2017. HiRISE has been imaging Curiosity about every three months, to monitor the surrounding features for changes such as dune migration or erosion. When the image was taken, Curiosity was partway between its investigation of active sand dunes lower on Mount Sharp, and "Vera Rubin Ridge," a destination uphill where the rover team intends to examine outcrops where hematite has been identified from Mars orbit. The rover's surroundings include tan rocks and patches of dark sand. As in previous HiRISE color images of Curiosity since the rover was at its landing site, the rover appears bluer than it really is. HiRISE color observations are recorded in a red band, a blue-green band and an infrared band, and displayed in red, green and blue. This helps make differences in Mars surface materials apparent, but does not show natural color as seen by the human eye. Lower Mount Sharp was chosen as a destination for the Curiosity mission because the layers of the mountain offer exposures of rocks that record environmental conditions from different times in the early history of the Red Planet. Curiosity has found evidence for ancient wet environments that offered conditions favorable for microbial life, if Mars has ever hosted life. https://photojournal.jpl.nasa.gov/catalog/PIA21710
NASA Technical Reports Server (NTRS)
Smart, Marshall C.; Ratnakumar, B. V.; Ewell, R. C.; Whitcanack, L. D.; Surampudi, S.; Puglia, F.; Gitzendanner, R.
2007-01-01
In early 2004, JPL successfully landed two Rovers, named Spirit and Opportunity, on the surface of Mars after traveling > 300 million miles over a 6-7 month period. In order to operate for extended duration on the surface of Mars, both Rovers are equipped with rechargeable Lithium-ion batteries, which were designed to aid in the launch, correct anomalies during cruise, and support surface operations in conjunction with a triple-junction deployable solar arrays. The requirements of the Lithium-ion battery include the ability to provide power at least 90 sols on the surface of Mars, operate over a wide temperature range (-20(super 0)C to +40(super 0)C), withstand long storage periods (e.g., including pre-launch and cruise period), operate in an inverted position, and support high currents (e.g., firing pyro events). In order to determine the inability of meeting these requirements, ground testing was performed on a Rover Battery Assembly Unit RBAU), consisting of two 8-cell 8 Ah lithium-ion batteries connected in parallel. The RBAU upon which the performance testing was performed is nearly identical to the batteries incorporated into the two Rovers currently on Mars. The primary focus of this paper is to communicate the latest results regarding Mars surface operation mission simulation testing, as well as, the corresponding performance capacity loss and impedance characteristics as a function of temperature and life. As will be discussed, the lithium-ion batteries (fabricated by Yardney Technical Products, Inc.) have been demonstrated to far exceed the requirements defined by the mission, being able to support the operation of the rovers for over three years, and are projected to support an even further extended mission.
2003-06-12
KENNEDY SPACE CENTER, FLA. - In the background, right, workers in the Payload Hazardous Servicing Facility get ready to lift Mars Exploration Rover 1 (MER-B) to the third stage of the Delta rocket (foreground) for mating. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch from Launch Pad 17-B, Cape Canaveral Air Force Station, June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.
2003-06-12
KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers check the connections after the Mars Exploration Rover 1 (MER-B) above was mated with the third stage of the Delta rocket below. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch from Launch Pad 17-B, Cape Canaveral Air Force Station, June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.
Mars Exploration Rover engineering cameras
Maki, J.N.; Bell, J.F.; Herkenhoff, K. E.; Squyres, S. W.; Kiely, A.; Klimesh, M.; Schwochert, M.; Litwin, T.; Willson, R.; Johnson, Aaron H.; Maimone, M.; Baumgartner, E.; Collins, A.; Wadsworth, M.; Elliot, S.T.; Dingizian, A.; Brown, D.; Hagerott, E.C.; Scherr, L.; Deen, R.; Alexander, D.; Lorre, J.
2003-01-01
NASA's Mars Exploration Rover (MER) Mission will place a total of 20 cameras (10 per rover) onto the surface of Mars in early 2004. Fourteen of the 20 cameras are designated as engineering cameras and will support the operation of the vehicles on the Martian surface. Images returned from the engineering cameras will also be of significant importance to the scientific community for investigative studies of rock and soil morphology. The Navigation cameras (Navcams, two per rover) are a mast-mounted stereo pair each with a 45?? square field of view (FOV) and an angular resolution of 0.82 milliradians per pixel (mrad/pixel). The Hazard Avoidance cameras (Hazcams, four per rover) are a body-mounted, front- and rear-facing set of stereo pairs, each with a 124?? square FOV and an angular resolution of 2.1 mrad/pixel. The Descent camera (one per rover), mounted to the lander, has a 45?? square FOV and will return images with spatial resolutions of ???4 m/pixel. All of the engineering cameras utilize broadband visible filters and 1024 x 1024 pixel detectors. Copyright 2003 by the American Geophysical Union.
Russian contribution to the ExoMars project
NASA Astrophysics Data System (ADS)
Zelenyi, L.; Korablev, O.; Rodionov, D.; Khartov, V.; Martynov, M.; Lukyanchikov, A.
2014-04-01
The ExoMars ESA-led mission is dedicated to study of Mars and in particular its habitability. It consists of two launches, one planned in 2016 to deliver to Mars a telecommunication and science orbiter Trace Gas Orbiter (TGO) and a demonstrator of entry into the atmosphere and landing on the Mars surface, Entry, Descent and Landing Demonstrator Module (EDM). In 2018 a rover with drilling capability will be delivered to the surface of Mars. Since 2012 this mission, previously planned in cooperation with NASA is being developed in cooperation with Roscosmos. Both launches are planned with Proton-Breeze. In 2016 Russia contributes a significant part of the TGO science payload. In 2018 the landing will be provided by a joint effort capitalizing on the EDM technology. Russia contributes few science instruments for the rover, and leads the development of a long-living geophysical platform on the surface of Mars. Russian science instruments for TGO, the Atmospheric Chemistry Suite (ACS) and the Fine Resolution Epithermal Neutrons Detector (FREND) constituent a half of its scientific payload, European instrument being NOMAD for mapping and detection of trace species, and CASSIS camera for high-resolution mapping of target areas. The ACS package consists of three spectrometers covering spectral range from 0.7 to 17 μm with spectral resolving power reaching 50000. It is dedicated to studies of the composition of the Martian atmosphere and the Martian climate. FREND is a neutron detector with a collimation module, which significantly narrows the field of view of the instrument, allowing to create higher resolution maps of hydrogen-abundant regions on Mars. The spatial resolution of FREND will be ~40 km from the 400- km TGO orbit that is ~10 times better than HEND on Mars-Odyssey. Additionally, FREND includes a dosimeter module for monitoring radiation levels in orbit around Mars. In the 2018 mission, Russia takes the major responsibility of the descent module. The primary goal of the descent module consists of the delivery of the 300-kg rover on the surface. The full mass of the module should not exceed 2000 kg. An aerodynamic shield and a parachute system assure the entry phase. A descent scenario with integrated retro-propulsion engines and landing on feet is being developed. Subsystems of the descend module are supplied by both Roscosmos and ESA. On the rover, Russia contributes two science instruments. ADRON-RM is a passive neutron detector to assess water contents in the Mars surface along the rover track. ISEM is a pencil-beam infrared spectrometer mounted at the mast of the rover and is primarily dedicated for the assessment of mineralogical composition, operating in coordination with high-resolution channel of PANCAM. Both instruments will assist with planning rover traverse, rover targeting operations, and sample selection. A major effort of the Russian science is concentrated on the 2018 landing platform. This is the part of the descent module remaining immobile after the rover egress. The platform, or the longliving geophysical station shall have guaranteed lifetime of one Martian year, and will be able to accommodate up to 50 kg of science payload. The final list of science investigations, which is yet to be finalized, includes the meteorological station, instruments to analyse atmospheric composition, geophysical instruments. Other investigations will provide analyses of the surface/shallow subsurface material complimentary to these on the rover, and other experiments, if resources permit. Current status of the project and the developments will be presented