Sample records for mars spark source

  1. Mars Spark Source Prototype

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Lindamood, Glenn R.; Weiland, Karen J.; VanderWal, Randall L.

    1999-01-01

    The Mars Spark Source Prototype (MSSP) hardware has been developed as part of a proof of concept system for the detection of trace metals such as lead, cadmium, and arsenic in Martian dusts and soils. A spark discharge produces plasma from a soil sample and detectors measure the optical emission from metals in the plasma that will allow their identification and quantification. Trace metal measurements are vital for the assessment of the potential toxicity of the Martian environment for human exploration. The current method of X-ray fluorescence can yield concentrations only of major species. Other instruments are incompatible with the volume, weight, and power constraints for a Mars mission. The instrument will be developed primarily for use in the Martian environment, but would be adaptable for terrestrial use in environmental monitoring. This paper describes the Mars Spark Source Prototype hardware, the results of the characterization tests, and future plans for hardware development.

  2. Mars Spark Source Prototype Developed

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Lindamood, Glenn R.; VanderWal, Randall L.; Weiland, Karen J.

    2000-01-01

    The Mars Spark Source Prototype (MSSP) hardware was developed as part of a proof of concept system for the detection of trace metals such as lead, cadmium, and arsenic in Martian dusts and soils. A spark discharge produces plasma from a soil sample, and detectors measure the optical emission from metals in the plasma to identify and quantify them. Trace metal measurements are vital in assessing whether or not the Martian environment will be toxic to human explorers. The current method of x-ray fluorescence can yield concentrations of major species only. Other instruments are incompatible with the volume, weight, and power constraints for a Mars mission. The new instrument will be developed primarily for use in the Martian environment, but it would be adaptable for terrestrial use in environmental monitoring. The NASA Glenn Research Center at Lewis Field initiated the development of the MSSP as part of Glenn's Director's Discretionary Fund project for the Spark Analysis Detection of Trace Metal Species in Martian Dusts and Soils. The objective of this project is to develop and demonstrate a compact, sensitive optical instrument for the detection of trace hazardous metals in Martian dusts and soils.

  3. First Imaging of Laser-Induced Spark on Mars

    NASA Image and Video Library

    2014-07-16

    NASA Curiosity Mars rover used the Mars Hand Lens Imager MAHLI camera on its arm to catch the first images of sparks produced by the rover laser being shot at a rock on Mars. The left image is from before the laser zapped this rock, called Nova.

  4. ScienceCast 157: Colliding Atmospheres - Mars vs Comet Siding Spring

    NASA Image and Video Library

    2014-08-06

    Comet Siding Spring is about to fly historically close to Mars. The encounter could spark Martian auroras, a meteor shower, and other unpredictable effects. Whatever happens, NASA's fleet of Mars satellites will have a ringside seat.

  5. The Legend of Joe the Martian.

    ERIC Educational Resources Information Center

    Edgett, Ken

    1998-01-01

    Describes how a fourth-grade homework assignment sparked a lifelong passion to study Mars. A Mars scientist shares how he became interested in his career. Also provides a status report of the agenda of Mars missions and includes information on related resources. (DDR)

  6. Viewing Spark Generated by ChemCam Laser for Mars Rover

    NASA Image and Video Library

    2010-09-21

    The ChemCam instrument for NASA Mars Science Laboratory mission uses a pulsed laser beam to vaporize a pinhead-size target, producing a flash of light from the ionized material plasma that can be analyzed to identify chemical elements in the target.

  7. Don Juan Pond, Antarctica: Near-surface CaCl2-brine feeding Earth's most saline lake and implications for Mars

    PubMed Central

    Dickson, James L.; Head, James W.; Levy, Joseph S.; Marchant, David R.

    2013-01-01

    The discovery on Mars of recurring slope lineae (RSL), thought to represent seasonal brines, has sparked interest in analogous environments on Earth. We report on new studies of Don Juan Pond (DJP), which exists at the upper limit of ephemeral water in the McMurdo Dry Valleys (MDV) of Antarctica, and is adjacent to several steep-sloped water tracks, the closest analog for RSL. The source of DJP has been interpreted to be deep groundwater. We present time-lapse data and meteorological measurements that confirm deliquescence within the DJP watershed and show that this, together with small amounts of meltwater, are capable of generating brines that control summertime water levels. Groundwater input was not observed. In addition to providing an analog for RSL formation, CaCl2 brines and chloride deposits in basins may provide clues to the origin of ancient chloride deposits on Mars dating from the transition period from “warm/wet” to “cold/dry” climates. PMID:23378901

  8. Don Juan Pond, Antarctica: near-surface CaCl(2)-brine feeding Earth's most saline lake and implications for Mars.

    PubMed

    Dickson, James L; Head, James W; Levy, Joseph S; Marchant, David R

    2013-01-01

    The discovery on Mars of recurring slope lineae (RSL), thought to represent seasonal brines, has sparked interest in analogous environments on Earth. We report on new studies of Don Juan Pond (DJP), which exists at the upper limit of ephemeral water in the McMurdo Dry Valleys (MDV) of Antarctica, and is adjacent to several steep-sloped water tracks, the closest analog for RSL. The source of DJP has been interpreted to be deep groundwater. We present time-lapse data and meteorological measurements that confirm deliquescence within the DJP watershed and show that this, together with small amounts of meltwater, are capable of generating brines that control summertime water levels. Groundwater input was not observed. In addition to providing an analog for RSL formation, CaCl(2) brines and chloride deposits in basins may provide clues to the origin of ancient chloride deposits on Mars dating from the transition period from "warm/wet" to "cold/dry" climates.

  9. 40 CFR Table 1b to Subpart Zzzz of... - Operating Limitations for Existing, New, and Reconstructed Spark Ignition 4SRB Stationary RICE...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., and Reconstructed Spark Ignition 4SRB Stationary RICE >500 HP Located at a Major Source of HAP Emissions and Existing Spark Ignition 4SRB Stationary RICE >500 HP Located at an Area Source of HAP... Limitations for Existing, New, and Reconstructed Spark Ignition 4SRB Stationary RICE >500 HP Located at a...

  10. 40 CFR Table 1b to Subpart Zzzz of... - Operating Limitations for Existing, New, and Reconstructed Spark Ignition 4SRB Stationary RICE...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., New, and Reconstructed Spark Ignition 4SRB Stationary RICE >500 HP Located at a Major Source of HAP Emissions and Existing Spark Ignition 4SRB Stationary RICE >500 HP Located at an Area Source of HAP... Limitations for Existing, New, and Reconstructed Spark Ignition 4SRB Stationary RICE >500 HP Located at a...

  11. A liquid hydrocarbon deuteron source for neutron generators

    NASA Astrophysics Data System (ADS)

    Schwoebel, P. R.

    2017-06-01

    Experimental studies of a deuteron spark source for neutron generators using hydrogen isotope fusion reactions are reported. The ion source uses a spark discharge between electrodes coated with a deuterated hydrocarbon liquid, here Santovac 5, to inhibit permanent electrode erosion and extend the lifetime of high-output neutron generator spark ion sources. Thompson parabola mass spectra show that principally hydrogen and deuterium ions are extracted from the ion source. Hydrogen is the chief residual gas phase species produced due to source operation in a stainless-steel vacuum chamber. The prominent features of the optical emission spectra of the discharge are C+ lines, the hydrogen Balmer Hα-line, and the C2 Swan bands. Operation of the ion source was studied in a conventional laboratory neutron generator. The source delivered an average deuteron current of ˜0.5 A nominal to the target in a 5 μs duration pulse at 1 Hz with target voltages of -80 to -100 kV. The thickness of the hydrocarbon liquid in the spark gap and the consistency thereof from spark to spark influences the deuteron yield and plays a role in determining the beam-focusing characteristics through the applied voltage necessary to break down the spark gap. Higher breakdown voltages result in larger ion beam spots on the target and vice-versa. Because the liquid self-heals and thereby inhibits permanent electrode erosion, the liquid-based source provides long life, with 104 pulses to date, and without clear evidence that, in principle, the lifetime could not be much longer. Initial experiments suggest that an alternative cylindrical target-type generator design can extract approximately 10 times the deuteron current from the source. Preliminary data using the deuterated source liquid as a neutron-producing target are also presented.

  12. Development of an impulsive noise source to study the acoustic reflection characteristics of hard-walled wind tunnels

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Burrin, R. H.; Ahuja, K. K.; Bartel, H. W.

    1986-01-01

    Two impulsive sound sources, one using multiple acoustic drivers and the other using a spark discharge were developed to study the acoustic reflection characteristics of hard-walled wind tunnels, and the results of laboratory tests are presented. The analysis indicates that though the intensity of the pulse generated by the spark source was higher than that obtained from the acoustic source, the number of averages needed for a particular test may require an unacceptibly long tunnel-run time due to the low spark generation repeat rate because of capacitor charging time. The additional hardware problems associated with the longevity of electrodes and electrode holders in sustaining the impact of repetitive spark discharges, show the multidriver acoustic source to be more suitable for this application.

  13. Spark Generated by ChemCam Laser During Tests

    NASA Image and Video Library

    2010-09-21

    The ChemCam instrument for NASA Mars Science Laboratory mission uses a pulsed laser beam to vaporize a pinhead-size target, producing a flash of light from the ionized material plasma that can be analyzed to identify chemical elements in the target.

  14. 40 CFR Table 1a to Subpart Zzzz of... - Emission Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., and Reconstructed Spark Ignition, 4SRB Stationary RICE > 500 HP Located at a Major Source of HAP... Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE > 500 HP Located at a... stationary RICE >500 HP located at a major source of HAP emissions: For each . . . You must meet the...

  15. A vacuum spark ion source: High charge state metal ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yushkov, G. Yu., E-mail: gyushkov@mail.ru; Nikolaev, A. G.; Frolova, V. P.

    2016-02-15

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less thanmore » 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.« less

  16. Potential of Spark Ignition Engine, 1979 Summary Source Document

    DOT National Transportation Integrated Search

    1980-03-01

    This report provides an assessment of the potential for spark ignition engines passenger cars and light trucks. The assessment includes: tradeoffs between fuel economy and emissions; improvements in spark ignition engine efficiency; improvements in e...

  17. Nuclear Rocket Ceramic Metal Fuel Fabrication Using Tungsten Powder Coating and Spark Plasma Sintering

    NASA Technical Reports Server (NTRS)

    Barnes, M. W.; Tucker, D. S.; Hone, L.; Cook, S.

    2017-01-01

    Nuclear thermal propulsion is an enabling technology for crewed Mars missions. An investigation was conducted to evaluate spark plasma sintering (SPS) as a method to produce tungsten-depleted uranium dioxide (W-dUO2) fuel material when employing fuel particles that were tungsten powder coated. Ceramic metal fuel wafers were produced from a blend of W-60vol% dUO2 powder that was sintered via SPS. The maximum sintering temperatures were varied from 1,600 to 1,850 C while applying a 50-MPa axial load. Wafers exhibited high density (>95% of theoretical) and a uniform microstructure (fuel particles uniformly dispersed throughout tungsten matrix).

  18. X-Ray Radiography Measurements of the Thermal Energy in Spark Ignition Plasma at Variable Ambient Conditions

    DOE PAGES

    Matusik, Katarzyna E.; Duke, Daniel J.; Kastengren, Alan L.; ...

    2017-04-09

    The sparking behavior in an internal combustion engine affects the fuel efficiency, engine-out emissions, and general drivability of a vehicle. As emissions regulations become progressively stringent, combustion strategies, including exhaust gas recirculation (EGR), lean-burn, and turbocharging are receiving increasing attention as models of higher efficiency advanced combustion engines with reduced emissions levels. Because these new strategies affect the working environment of the spark plug, ongoing research strives to understand the influence of external factors on the spark ignition process. Due to the short time and length scales involved and the harsh environment, experimental quantification of the deposited energy from themore » sparking event is difficult to obtain. We present the results of x-ray radiography measurements of spark ignition plasma generated by a conventional spark plug. Our measurements were performed at the 7-BM beamline of the Advanced Photon Source at Argonne National Laboratory. The synchrotron x-ray source enables time-resolved measurements of the density change due to glow discharge in the spark gap with 153 ns temporal and 5 μm spatial resolutions. We also explore the effects of charging time, EGR-relevant gas compositions, and gas pressure on the sparking behavior. We also quantify the influence of the measurement technique on the obtained results.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matusik, Katarzyna E.; Duke, Daniel J.; Kastengren, Alan L.

    The sparking behavior in an internal combustion engine affects the fuel efficiency, engine-out emissions, and general drivability of a vehicle. As emissions regulations become progressively stringent, combustion strategies, including exhaust gas recirculation (EGR), lean-burn, and turbocharging are receiving increasing attention as models of higher efficiency advanced combustion engines with reduced emissions levels. Because these new strategies affect the working environment of the spark plug, ongoing research strives to understand the influence of external factors on the spark ignition process. Due to the short time and length scales involved and the harsh environment, experimental quantification of the deposited energy from themore » sparking event is difficult to obtain. We present the results of x-ray radiography measurements of spark ignition plasma generated by a conventional spark plug. Our measurements were performed at the 7-BM beamline of the Advanced Photon Source at Argonne National Laboratory. The synchrotron x-ray source enables time-resolved measurements of the density change due to glow discharge in the spark gap with 153 ns temporal and 5 μm spatial resolutions. We also explore the effects of charging time, EGR-relevant gas compositions, and gas pressure on the sparking behavior. We also quantify the influence of the measurement technique on the obtained results.« less

  20. Optical diagnostics integrated with laser spark delivery system

    DOEpatents

    Yalin, Azer [Fort Collins, CO; Willson, Bryan [Fort Collins, CO; Defoort, Morgan [Fort Collins, CO; Joshi, Sachin [Fort Collins, CO; Reynolds, Adam [Fort Collins, CO

    2008-09-02

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  1. Fiber laser coupled optical spark delivery system

    DOEpatents

    Yalin, Azer [Fort Collins, CO; Willson, Bryan [Fort Collins, CO; Defoort, Morgan [Fort Collins, CO; Joshi, Sachin [Fort Collins, CO; Reynolds, Adam [Fort Collins, CO

    2008-03-04

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  2. Mars in situ propellants: Carbon monoxide and oxygen ignition experiments

    NASA Technical Reports Server (NTRS)

    Linne, Diane L.; Roncace, James; Groth, Mary F.

    1990-01-01

    Carbon monoxide and oxygen were tested in a standard spark-torch igniter to identify the ignition characteristics of this potential Mars in situ propellant combination. The ignition profiles were determined as functions of mixture ratio, amount of hydrogen added to the carbon monoxide, and oxygen inlet temperature. The experiments indicated that the carbon monoxide and oxygen combination must have small amounts of hydrogen present to initiate reaction. Once the reaction was started, the combustion continued without the presence of hydrogen. A mixture ratio range was identified where ignition occurred, and this range varied with the oxygen inlet temperature.

  3. High-voltage spark atomic emission detector for gas chromatography

    NASA Technical Reports Server (NTRS)

    Calkin, C. L.; Koeplin, S. M.; Crouch, S. R.

    1982-01-01

    A dc-powered, double-gap, miniature nanosecond spark source for emission spectrochemical analysis of gas chromatographic effluents is described. The spark is formed between two thoriated tungsten electrodes by the discharge of a coaxial capacitor. The spark detector is coupled to the gas chromatograph by a heated transfer line. The gas chromatographic effluent is introduced into the heated spark chamber where atomization and excitation of the effluent occurs upon breakdown of the analytical gap. A microcomputer-controlled data acquisition system allows the implementation of time-resolution techniques to distinguish between the analyte emission and the background continuum produced by the spark discharge. Multiple sparks are computer averaged to improve the signal-to-noise ratio. The application of the spark detector for element-selective detection of metals and nonmetals is reported.

  4. 40 CFR Table 2c to Subpart Zzzz of... - Requirements for Existing Compression Ignition Stationary RICE Located at a Major Source of HAP...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Ignition Stationary RICE Located at a Major Source of HAP Emissions and Existing Spark Ignition Stationary RICE ⤠500 HP Located at a Major Source of HAP Emissions 2c Table 2c to Subpart ZZZZ of Part 63... Stationary RICE Located at a Major Source of HAP Emissions and Existing Spark Ignition Stationary RICE ≤ 500...

  5. Neutron Yield With a Pulsed Surface Flashover Deuterium Source

    NASA Astrophysics Data System (ADS)

    Guethlein, G.; Falabella, S.; Sampayan, S. E.; Meyer, G.; Tang, V.; Kerr, P.

    2009-03-01

    As a step towards developing an ultra compact D-D neutron source for various defense and homeland security applications, a compact, low average power ion source is needed. Towards that end, we are testing a high current, pulsed surface flashover ion source, with deuterated titanium as the spark contacts. Neutron yield and source lifetime data will be presented using a low voltage (<100 kV) deuterated target. With 20 ns spark drive pulses we have shown >106 neutrons/s with 1 kHz PRF

  6. High reliability low jitter pulse generator

    DOEpatents

    Savage, Mark E.; Stoltzfus, Brian S.

    2013-01-01

    A method and concomitant apparatus for generating pulses comprising providing a laser light source, disposing a voltage electrode between ground electrodes, generating laser sparks using the laser light source via laser spark gaps between the voltage electrode and the ground electrodes, and outputting pulses via one or more insulated ground connectors connected to the voltage electrode.

  7. Fiber coupled optical spark delivery system

    DOEpatents

    Yalin, Azer; Willson, Bryan; Defoort, Morgan

    2008-08-12

    A spark delivery system for generating a spark using a laser beam is provided, the spark delivery system including a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. In addition, the laser delivery assembly includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. In accordance with embodiments of the present invention, the assembly may be used to create a spark in a combustion engine. In accordance with other embodiments of the present invention, a method of using the spark delivery system is provided. In addition, a method of choosing an appropriate fiber for creating a spark using a laser beam is also presented.

  8. Characterization of III-V Semiconductors.

    DTIC Science & Technology

    1981-04-01

    Conversion Photoluminescence InP Hall Effect Mass Spectroscopy Ion Implantation Photoconductivity Donor-Acceptor 20. ABSTRACT (Continue on reverse side If...Characteristiss .. 72 10.0 FAR INFRARED STUDIES IN GaAs. ....................... 76I11.0 SPARK-SOURCE MASS SPECTROSCOPY IN GaAs...concen- tration, as measured by spark-source mass spectroscopy (SSMS), and the Hall 7 mobility. However, we found that, unfortunately, commercially

  9. 40 CFR 63.6590 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Existing spark ignition 2 stroke lean burn (2SLB) stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions; (ii) Existing spark ignition 4 stroke lean burn (4SLB... emissions; (4) A new or reconstructed spark ignition 4 stroke rich burn (4SRB) stationary RICE with a site...

  10. 40 CFR 63.6590 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Existing spark ignition 2 stroke lean burn (2SLB) stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions; (ii) Existing spark ignition 4 stroke lean burn (4SLB... emissions; (4) A new or reconstructed spark ignition 4 stroke rich burn (4SRB) stationary RICE with a site...

  11. 40 CFR Table 1b to Subpart Zzzz of... - Operating Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., New, and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a Major Source of HAP... Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a... following operating emission limitations for existing, new and reconstructed 4SRB stationary RICE >500 HP...

  12. 40 CFR Table 1a to Subpart Zzzz of... - Emission Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a Major Source of HAP... Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a... emission limitations for existing, new and reconstructed 4SRB stationary RICE at 100 percent load plus or...

  13. Spark-integrated propellant injector head with flashback barrier

    NASA Technical Reports Server (NTRS)

    Mungas, Gregory Stuart (Inventor); Fisher, David James (Inventor); Mungas, Christopher (Inventor)

    2012-01-01

    High performance propellants flow through specialized mechanical hardware that allows for effective and safe thermal decomposition and/or combustion of the propellants. By integrating a sintered metal component between a propellant feed source and the combustion chamber, an effective and reliable fuel injector head may be implemented. Additionally the fuel injector head design integrates a spark ignition mechanism that withstands extremely hot running conditions without noticeable spark mechanism degradation.

  14. Basaltic Ring Structures as an Analog for Ring Features in Athabasca Valles, Mars

    NASA Technical Reports Server (NTRS)

    Jaeger, W. L.; Keszthelyi, L. P.; Burr, D. M.; Emery, J. P.; Baker, V. R.; McEwen, A. S.; Miyamoto, H.

    2005-01-01

    Basaltic ring structures (BRSs) are enigmatic, quasi-circular landforms in eastern Washington State that were first recognized in 1965. They remained a subject of geologic scrutiny through the 1970 s and subsequently faded from the spotlight, but recent Mars Orbiter Camera (MOC) images showing morphologically similar structures in Athabasca Valles, Mars, have sparked renewed interest in BRSs. The only known BRSs occur in the Channeled Scabland, a region where catastrophic Pleistocene floods from glacial Lake Missoula eroded into the Miocene flood basalts of the Columbia Plateau. The geologic setting of the martian ring structures (MRSs) is similar; Athabasca Valles is a young channel system that formed when catastrophic aqueous floods carved into a volcanic substrate. This study investigates the formation of terrestrial BRSs and examines the extent to which they are appropriate analogs for the MRSs in Athabasca Valles.

  15. Investigation of Luna-20 soil samples, using a mass spectrometer with a spark-discharge ion source

    NASA Technical Reports Server (NTRS)

    Hubbard, N. J.; Ramendik, G. I.; Gronskaia, S. I.; Gubina, I. IA.; Gushchin, V. N.

    1979-01-01

    A method of analyzing soil samples with a mass spectrometer employing a spark-discharge ion source is described, and the effectiveness of the method is demonstrated by applying it to the determination of impurities, in amounts of less than 10 mg, in lunar samples. It is shown that four parts of the Luna-20 lunar highland sample differ in their chemical composition.

  16. Portable spark-gap arc generator

    NASA Technical Reports Server (NTRS)

    Ignaczak, L. R.

    1978-01-01

    Self-contained spark generator that simulates electrical noise caused by discharge of static charge is useful tool when checking sensitive component and equipment. In test set-up, device introduces repeatable noise pulses as behavior of components is monitored. Generator uses only standard commercial parts and weighs only 4 pounds; portable dc power supply is used. Two configurations of generator have been developed: one is free-running arc source, and one delivers spark in response to triggering pulse.

  17. A Experimental Study of the Growth of Laser Spark and Electric Spark Ignited Flame Kernels.

    NASA Astrophysics Data System (ADS)

    Ho, Chi Ming

    1995-01-01

    Better ignition sources are constantly in demand for enhancing the spark ignition in practical applications such as automotive and liquid rocket engines. In response to this practical challenge, the present experimental study was conducted with the major objective to obtain a better understanding on how spark formation and hence spark characteristics affect the flame kernel growth. Two laser sparks and one electric spark were studied in air, propane-air, propane -air-nitrogen, methane-air, and methane-oxygen mixtures that were initially at ambient pressure and temperature. The growth of the kernels was monitored by imaging the kernels with shadowgraph systems, and by imaging the planar laser -induced fluorescence of the hydroxyl radicals inside the kernels. Characteristic dimensions and kernel structures were obtained from these images. Since different energy transfer mechanisms are involved in the formation of a laser spark as compared to that of an electric spark; a laser spark is insensitive to changes in mixture ratio and mixture type, while an electric spark is sensitive to changes in both. The detailed structures of the kernels in air and propane-air mixtures primarily depend on the spark characteristics. But the combustion heat released rapidly in methane-oxygen mixtures significantly modifies the kernel structure. Uneven spark energy distribution causes remarkably asymmetric kernel structure. The breakdown energy of a spark creates a blast wave that shows good agreement with the numerical point blast solution, and a succeeding complex spark-induced flow that agrees reasonably well with a simple puff model. The transient growth rates of the propane-air, propane-air -nitrogen, and methane-air flame kernels can be interpreted in terms of spark effects, flame stretch, and preferential diffusion. For a given mixture, a spark with higher breakdown energy produces a greater and longer-lasting enhancing effect on the kernel growth rate. By comparing the growth rates of the appropriate mixtures, the positive and negative effects of preferential diffusion and flame stretch on the developing flame are clearly demonstrated.

  18. Ignition of Combustible Dust Clouds by Strong Capacitive Electric Sparks of Short Discharge Times

    NASA Astrophysics Data System (ADS)

    Eckhoff, Rolf K.

    2017-10-01

    It has been known for more than half a century that the discharge times of capacitive electric sparks can influence the minimum ignition energies of dust clouds substantially. Experiments by various workers have shown that net electric-spark energies for igniting explosive dust clouds in air were reduced by a factor of the order of 100 when spark discharge times were increased from a few μs to 0.1-1 ms. Experiments have also shown that the disturbance of the dust cloud by the shock/blast wave emitted by "short" spark discharges is a likely reason for this. The disturbance increases with increasing spark energy. In this paper a hitherto unpublished comprehensive study of this problem is presented. The work was performed about 50 years ago, using sparks of comparatively high energies (strong sparks). Lycopodium was used as test dust. The experiments were conducted in a brass vessel of 1 L volume. A transient dust cloud was generated in the vessel by a blast of compressed air. Synchronization of appearance of dust cloud and spark discharge was obtained by breaking the spark gap down by the dust cloud itself. This may in fact also be one possible synchronization mechanism in accidental industrial dust explosions initiated by electrostatic sparks. The experimental results for various spark energies were expressed as the probability of ignition, based on 100 replicate experiments, as a function of the nominal dust concentration. All probabilities obtained were 0%

  19. Heat transfer from an internal combustion (Otto-cycle) engine on the surface of Mars

    NASA Technical Reports Server (NTRS)

    Gwynne, Owen

    1992-01-01

    The cooling requirements for an average car sized engine (spark-ignition, V-6, four-stroke, naturally aspirated, about 200 kg, about 100 kW) were looked at for Mars. Several modes of cooling were considered, including forced convection, exhaust, radiation and closed loop systems. The primary goal was to determine the effect of the thinner Martian atmosphere on the cooling system. The results show that there was only a 6-percent difference in the cooling requirements. This difference was due mostly to the thinner atmosphere during forced convection and the heat capacity of the exhaust. A method using a single pass counter-flow heat exchanger is suggested to offset this difference in cooling requirements.

  20. Heat transfer from an internal combustion (Otto-cycle) engine on the surface of Mars

    NASA Astrophysics Data System (ADS)

    Gwynne, Owen

    1992-05-01

    The cooling requirements for an average car sized engine (spark-ignition, V-6, four-stroke, naturally aspirated, about 200 kg, about 100 kW) were looked at for Mars. Several modes of cooling were considered, including forced convection, exhaust, radiation and closed loop systems. The primary goal was to determine the effect of the thinner Martian atmosphere on the cooling system. The results show that there was only a 6-percent difference in the cooling requirements. This difference was due mostly to the thinner atmosphere during forced convection and the heat capacity of the exhaust. A method using a single pass counter-flow heat exchanger is suggested to offset this difference in cooling requirements.

  1. Large discharge-volume, silent discharge spark plug

    DOEpatents

    Kang, Michael

    1995-01-01

    A large discharge-volume spark plug for providing self-limiting microdischarges. The apparatus includes a generally spark plug-shaped arrangement of a pair of electrodes, where either of the two coaxial electrodes is substantially shielded by a dielectric barrier from a direct discharge from the other electrode, the unshielded electrode and the dielectric barrier forming an annular volume in which self-terminating microdischarges occur when alternating high voltage is applied to the center electrode. The large area over which the discharges occur, and the large number of possible discharges within the period of an engine cycle, make the present silent discharge plasma spark plug suitable for use as an ignition source for engines. In the situation, where a single discharge is effective in causing ignition of the combustible gases, a conventional single-polarity, single-pulse, spark plug voltage supply may be used.

  2. Laser spark distribution and ignition system

    DOEpatents

    Woodruff, Steven [Morgantown, WV; McIntyre, Dustin L [Morgantown, WV

    2008-09-02

    A laser spark distribution and ignition system that reduces the high power optical requirements for use in a laser ignition and distribution system allowing for the use of optical fibers for delivering the low peak energy pumping pulses to a laser amplifier or laser oscillator. An optical distributor distributes and delivers optical pumping energy from an optical pumping source to multiple combustion chambers incorporating laser oscillators or laser amplifiers for inducing a laser spark within a combustion chamber. The optical distributor preferably includes a single rotating mirror or lens which deflects the optical pumping energy from the axis of rotation and into a plurality of distinct optical fibers each connected to a respective laser media or amplifier coupled to an associated combustion chamber. The laser spark generators preferably produce a high peak power laser spark, from a single low power pulse. The laser spark distribution and ignition system has application in natural gas fueled reciprocating engines, turbine combustors, explosives and laser induced breakdown spectroscopy diagnostic sensors.

  3. Games and Simulations for Climate, Weather and Earth Science Education

    NASA Astrophysics Data System (ADS)

    Russell, R. M.

    2013-12-01

    We will demonstrate several interactive, computer-based simulations, games, and other interactive multimedia. These resources were developed for weather, climate, atmospheric science, and related Earth system science education. The materials were created by education groups at NCAR/UCAR in Boulder, primarily Spark and the COMET Program. These materials have been disseminated via Spark's web site (spark.ucar.edu), webinars, online courses, teacher workshops, and large touchscreen displays in weather and Sun-Earth connections exhibits in NCAR's Mesa Lab facility. Spark has also assembled a web-based list of similar resources, especially simulations and games, from other sources that touch upon weather, climate, and atmospheric science topics. We'll briefly demonstrate this directory.

  4. Power measurements of spark discharge experiments.

    PubMed

    Navarro-Gonzalez, R; Romero, A; Honda, Y

    1998-04-01

    An accurate and precise knowledge of the amount of energy introduced into prebiotic discharge experiments is important to understand the relative roles of different energy sources in the synthesis of organic compounds in the primitive Earth's atmosphere and other planetary atmospheres. Two methods widely used to determine the power of spark discharges were evaluated, namely calorimetric and oscilloscopic, using a chemically inert gas. The power dissipated by the spark in argon at 500 Torr was determined to be 2.4 (+12%/-17%) J s-1 by calorimetry and 5.3 (+/- 15%) J s-1 by the oscilloscope. The difference between the two methods was attributed to (1) an incomplete conversion of the electric energy into heat, and (2) heat loss from the spark channel to the connecting cables through the electrodes. The latter contribution leads to an unwanted effect in the spark channel by lowering the spark product yields as the spark channel cools by mixing with surrounding air and by losing heat to the electrodes. Once the concentrations of the spark products have frozen at the freeze-out temperature, any additional loss of heat from the spark channel to the electrodes has no consequence in product yields. Therefore, neither methods accurately determines the net energy transferred to the system. With a lack of a quantitative knowledge of the amount of heat loss from the spark channel during the interval from ignition of the spark to when the freeze-out temperature is reached, it is recommended to derive the energy yields of the spark products from the mean value of the two methods with the uncertainty being their standard deviation. For the case of argon at 500 Torr, this would be 3.8 (+/-50%) J s-1.

  5. Breakdown voltage determination of gaseous and near cryogenic fluids with application to rocket engine ignition

    NASA Astrophysics Data System (ADS)

    Nugent, Nicholas Jeremy

    Liquid rocket engines extensively use spark-initiated torch igniters for ignition. As the focus shifts to longer missions that require multiple starts of the main engines, there exists a need to solve the significant problems associated with using spark-initiated devices. Improving the fundamental understanding of predicting the required breakdown voltage in rocket environments along with reducing electrical noise is necessary to ensure that missions can be completed successfully. To better understand spark ignition systems and add to the fundamental research on spark development in rocket applications, several parameter categories of interest were hypothesized to affect breakdown voltage: (i) fluid, (ii) electrode, and (iii) electrical. The fluid properties varied were pressure, temperature, density and mass flow rate. Electrode materials, insert electrode angle and spark gap distance were the electrode properties varied. Polarity was the electrical property investigated. Testing how breakdown voltage is affected by each parameter was conducted using three different isolated insert electrodes fabricated from copper and nickel. A spark plug commonly used in torch igniters was the other electrode. A continuous output power source connected to a large impedance source and capacitance provided the pulsing potential. Temperature, pressure and high voltage measurements were recorded for the 418 tests that were successfully completed. Nitrogen, being inert and similar to oxygen, a propellant widely used in torch igniters, was used as the fluid for the majority of testing. There were 68 tests completed with oxygen and 45 with helium. A regression of the nitrogen data produced a correction coefficient to Paschen's Law that predicts the breakdown voltage to within 3000 volts, better than 20%, compared to an over prediction on the order of 100,000 volts using Paschen's Law. The correction coefficient is based on the parameters most influencing breakdown voltage: fluid density, spark gap distance, electrode angles, electrode materials and polarity. The research added to the fundamental knowledge of spark development in rocket ignition applications by determining the parameters that most influence breakdown voltage. Some improvements to the research should include better temperature measurements near the spark gap, additional testing with oxygen and testing with fuels of interest such as hydrogen and methane.

  6. Imaging strategies for the study of gas turbine spark ignition

    NASA Astrophysics Data System (ADS)

    Gord, James R.; Tyler, Charles; Grinstead, Keith D., Jr.; Fiechtner, Gregory J.; Cochran, Michael J.; Frus, John R.

    1999-10-01

    Spark-ignition systems play a critical role in the performance of essentially all gas turbine engines. These devices are responsible for initiating the combustion process that sustains engine operation. Demanding applications such as cold start and high-altitude relight require continued enhancement of ignition systems. To characterize advanced ignition systems, we have developed a number of laser-based diagnostic techniques configured for ultrafast imaging of spark parameters including emission, density, temperature, and species concentration. These diagnostics have been designed to exploit an ultrafast- framing charge-coupled-device (CCD) camera and high- repetition-rate laser sources including mode-locked Ti:sapphire oscillators and regenerative amplifiers. Spontaneous-emission and laser-shlieren measurements have been accomplished with this instrumentation and the result applied to the study of a novel Unison Industries spark igniter that shows great promise for improved cold-start and high-altitude-relight capability as compared to that of igniters currently in use throughout military and commercial fleets. Phase-locked and ultrafast real-time imaging strategies are explored, and details of the imaging instrumentation, particularly the CCD camera and laser sources, are discussed.

  7. Method for enhancing low frequency output of impulsive type seismic energy sources and its application to a seismic energy source for use while drilling

    DOEpatents

    Radtke, Robert P; Stokes, Robert H; Glowka, David A

    2014-12-02

    A method for operating an impulsive type seismic energy source in a firing sequence having at least two actuations for each seismic impulse to be generated by the source. The actuations have a time delay between them related to a selected energy frequency peak of the source output. One example of the method is used for generating seismic signals in a wellbore and includes discharging electric current through a spark gap disposed in the wellbore in at least one firing sequence. The sequence includes at least two actuations of the spark gap separated by an amount of time selected to cause acoustic energy resulting from the actuations to have peak amplitude at a selected frequency.

  8. Large-scale virtual screening on public cloud resources with Apache Spark.

    PubMed

    Capuccini, Marco; Ahmed, Laeeq; Schaal, Wesley; Laure, Erwin; Spjuth, Ola

    2017-01-01

    Structure-based virtual screening is an in-silico method to screen a target receptor against a virtual molecular library. Applying docking-based screening to large molecular libraries can be computationally expensive, however it constitutes a trivially parallelizable task. Most of the available parallel implementations are based on message passing interface, relying on low failure rate hardware and fast network connection. Google's MapReduce revolutionized large-scale analysis, enabling the processing of massive datasets on commodity hardware and cloud resources, providing transparent scalability and fault tolerance at the software level. Open source implementations of MapReduce include Apache Hadoop and the more recent Apache Spark. We developed a method to run existing docking-based screening software on distributed cloud resources, utilizing the MapReduce approach. We benchmarked our method, which is implemented in Apache Spark, docking a publicly available target receptor against [Formula: see text]2.2 M compounds. The performance experiments show a good parallel efficiency (87%) when running in a public cloud environment. Our method enables parallel Structure-based virtual screening on public cloud resources or commodity computer clusters. The degree of scalability that we achieve allows for trying out our method on relatively small libraries first and then to scale to larger libraries. Our implementation is named Spark-VS and it is freely available as open source from GitHub (https://github.com/mcapuccini/spark-vs).Graphical abstract.

  9. Development of Augmented Spark Impinging Igniter System for Methane Engines

    NASA Technical Reports Server (NTRS)

    Marshall, William M.; Osborne, Robin J.; Greene, Sandra E.

    2017-01-01

    The Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) program is establishing multiple no-funds-exchanged Space Act Agreement (SAA) partnerships with U.S. private sector entities. The purpose of this program is to encourage the development of robotic lunar landers that can be integrated with U.S. commercial launch capabilities to deliver payloads to the lunar surface. As part of the efforts in Lander Technologies, NASA Marshall Space Flight Center (MSFC) is developing liquid oxygen (LOX) and liquid methane (LCH4) engine technology to share with the Lunar CATALYST partners. Liquid oxygen and liquid methane propellants are attractive owing to their relatively high specific impulse for chemical propulsion systems, modest storage requirements, and adaptability to NASA's Journey to Mars plans. Methane has also been viewed as a possible propellant choice for lunar missions, owing to the performance benefits and as a technology development stepping stone to Martian missions. However, in the development of methane propulsion, methane ignition has historically been viewed as a high risk area in the development of such an engine. A great deal of work has been conducted in the past decade devoted to risk reduction in LOX/CH4 ignition. This paper will review and summarize the history and results of LOX/CH4 ignition programs conducted at NASA. More recently, a NASA-developed Augmented Spark Impinging (ASI) igniter body, which utilizes a conventional spark exciter system, is being tested with LOX/CH4 to help support internal and commercial engine development programs, such as those in Lunar CATALYST. One challenge with spark exciter systems, especially at altitude conditions, is the ignition lead that transmits the high voltage pulse from the exciter to the spark igniter (spark plug). The ignition lead can be prone to corona discharge, reducing the energy delivered by the spark and potentially causing non-ignition events. For the current work, a commercial compact exciter system, which eliminates this high voltage cabling, was tested at altitude conditions. A modified, conventional exciter system with an improved ignition lead was also recently tested at altitude conditions. This test program demonstrated the capability of these exciter systems to operate at altitude. While more extensive testing may be required, these systems or similar ones may be used for future NASA and commercial engine programs.

  10. Composition analyzer for microparticles using a spark ion source

    NASA Technical Reports Server (NTRS)

    Auer, S.; Berg, O. E.

    1975-01-01

    Iron microparticles were fired onto a capacitor-type microparticle detector which responded to an impact with a spark discharge. Ion currents were extracted from the spark and analyzed in a time-of-flight mass spectrometer. The mass spectra showed the elements of both detector and particle materials. The total extracted ion current was typically 10 A within a period of 100 nsec, indicating very efficient vaporization of the particle and ionization of the vapor. Potential applications include research on cosmic dust, atmospheric aerosols and cloud droplets, particles ejected by rocket or jet engines, by machining processes or by nuclear bomb explosions.

  11. Using SPARK as a Solver for Modelica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetter, Michael; Wetter, Michael; Haves, Philip

    Modelica is an object-oriented acausal modeling language that is well positioned to become a de-facto standard for expressing models of complex physical systems. To simulate a model expressed in Modelica, it needs to be translated into executable code. For generating run-time efficient code, such a translation needs to employ algebraic formula manipulations. As the SPARK solver has been shown to be competitive for generating such code but currently cannot be used with the Modelica language, we report in this paper how SPARK's symbolic and numerical algorithms can be implemented in OpenModelica, an open-source implementation of a Modelica modeling and simulationmore » environment. We also report benchmark results that show that for our air flow network simulation benchmark, the SPARK solver is competitive with Dymola, which is believed to provide the best solver for Modelica.« less

  12. SciSpark's SRDD : A Scientific Resilient Distributed Dataset for Multidimensional Data

    NASA Astrophysics Data System (ADS)

    Palamuttam, R. S.; Wilson, B. D.; Mogrovejo, R. M.; Whitehall, K. D.; Mattmann, C. A.; McGibbney, L. J.; Ramirez, P.

    2015-12-01

    Remote sensing data and climate model output are multi-dimensional arrays of massive sizes locked away in heterogeneous file formats (HDF5/4, NetCDF 3/4) and metadata models (HDF-EOS, CF) making it difficult to perform multi-stage, iterative science processing since each stage requires writing and reading data to and from disk. We have developed SciSpark, a robust Big Data framework, that extends ApacheTM Spark for scaling scientific computations. Apache Spark improves the map-reduce implementation in ApacheTM Hadoop for parallel computing on a cluster, by emphasizing in-memory computation, "spilling" to disk only as needed, and relying on lazy evaluation. Central to Spark is the Resilient Distributed Dataset (RDD), an in-memory distributed data structure that extends the functional paradigm provided by the Scala programming language. However, RDDs are ideal for tabular or unstructured data, and not for highly dimensional data. The SciSpark project introduces the Scientific Resilient Distributed Dataset (sRDD), a distributed-computing array structure which supports iterative scientific algorithms for multidimensional data. SciSpark processes data stored in NetCDF and HDF files by partitioning them across time or space and distributing the partitions among a cluster of compute nodes. We show usability and extensibility of SciSpark by implementing distributed algorithms for geospatial operations on large collections of multi-dimensional grids. In particular we address the problem of scaling an automated method for finding Mesoscale Convective Complexes. SciSpark provides a tensor interface to support the pluggability of different matrix libraries. We evaluate performance of the various matrix libraries in distributed pipelines, such as Nd4jTM and BreezeTM. We detail the architecture and design of SciSpark, our efforts to integrate climate science algorithms, parallel ingest and partitioning (sharding) of A-Train satellite observations from model grids. These solutions are encompassed in SciSpark, an open-source software framework for distributed computing on scientific data.

  13. A composition analyzer for microparticles using a spark ion source. [using time of flight spectrometers

    NASA Technical Reports Server (NTRS)

    Auer, S. O.; Berg, O. E.

    1975-01-01

    Iron microparticles were fired onto a capacitor-type microparticle detector which responded to an impact with a spark discharge. Ion currents were extracted from the spark and analyzed in a time-of-flight mass spectrometer. The mass spectra showed the element of both detector and particle materials. The total extracted ion currents was typically 10A within a period of 100ns, indicating very efficient vaporization of the particle and ionization of the vapor. Potential applications include research on cosmic dust, atmospheric aerosols and cloud droplets, particles ejected by rocket or jet engines, by machining processes, or by nuclear bomb explosions.

  14. SparkClouds: visualizing trends in tag clouds.

    PubMed

    Lee, Bongshin; Riche, Nathalie Henry; Karlson, Amy K; Carpendale, Sheelash

    2010-01-01

    Tag clouds have proliferated over the web over the last decade. They provide a visual summary of a collection of texts by visually depicting the tag frequency by font size. In use, tag clouds can evolve as the associated data source changes over time. Interesting discussions around tag clouds often include a series of tag clouds and consider how they evolve over time. However, since tag clouds do not explicitly represent trends or support comparisons, the cognitive demands placed on the person for perceiving trends in multiple tag clouds are high. In this paper, we introduce SparkClouds, which integrate sparklines into a tag cloud to convey trends between multiple tag clouds. We present results from a controlled study that compares SparkClouds with two traditional trend visualizations—multiple line graphs and stacked bar charts—as well as Parallel Tag Clouds. Results show that SparkClouds ability to show trends compares favourably to the alternative visualizations.

  15. A Preliminary Study of Flame Propagation in a Spark-ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Spencer, R C

    1937-01-01

    The N.A.C.A. combustion apparatus was altered to operate as a fuel-injection, spark-ignition engine, and a preliminary study was made of the combustion of gasoline-air mixtures at various air-fuel ratios. Air-fuel ratios ranging from 10 to 21.6 were investigated. Records from an optical indicator and films from a high-speed motion-picture camera were the chief sources of data. Schlieren photography was used for an additional study. The results show that the altered combustion apparatus has characteristics similar to those of a conventional spark-ignition engine and should be useful in studying phenomena in spark-ignition engines. The photographs show the flame front to be irregularly shaped rather than uniformly curved. With a theoretically correct mixture the reaction, as indicated by the photographs, is not completed in the flame front but continues for some time after the combustion front has traversed the mixture.

  16. 33 CFR 127.1605 - Other sources of ignition.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sources of ignition. Each operator of a waterfront facility handling LHG shall ensure that in the marine... is located where sparks may ignite combustible material; and (d) All rubbish, debris, and waste go...

  17. Mobile Source Emissions Regulatory Compliance Data Inventory

    EPA Pesticide Factsheets

    The Mobile Source Emissions Regulatory Compliance Data Inventory data asset contains measured summary compliance information on light-duty, heavy-duty, and non-road engine manufacturers by model, as well as fee payment data required by Title II of the 1990 Amendments to the Clean Air Act, to certify engines for sale in the U.S. and collect compliance certification fees. Data submitted by manufacturers falls into 12 industries: Heavy Duty Compression Ignition, Marine Spark Ignition, Heavy Duty Spark Ignition, Marine Compression Ignition, Snowmobile, Motorcycle & ATV, Non-Road Compression Ignition, Non-Road Small Spark Ignition, Light-Duty, Evaporative Components, Non-Road Large Spark Ignition, and Locomotive. Title II also requires the collection of fees from manufacturers submitting for compliance certification. Manufacturers submit data on an annual basis, to document engine model changes for certification. Manufacturers also submit compliance information on already certified in-use vehicles randomly selected by the EPA (1) year into their life and (4) years into their life to ensure that emissions systems continue to function appropriately over time.The EPA performs targeted confirmatory tests on approximately 15% of vehicles submitted for certification. Confirmatory data on engines is associated with its corresponding submission data to verify the accuracy of manufacturer submission beyond standard business rules.Section 209 of the 1990 Amendments to the Clea

  18. SparkSeq: fast, scalable and cloud-ready tool for the interactive genomic data analysis with nucleotide precision.

    PubMed

    Wiewiórka, Marek S; Messina, Antonio; Pacholewska, Alicja; Maffioletti, Sergio; Gawrysiak, Piotr; Okoniewski, Michał J

    2014-09-15

    Many time-consuming analyses of next -: generation sequencing data can be addressed with modern cloud computing. The Apache Hadoop-based solutions have become popular in genomics BECAUSE OF: their scalability in a cloud infrastructure. So far, most of these tools have been used for batch data processing rather than interactive data querying. The SparkSeq software has been created to take advantage of a new MapReduce framework, Apache Spark, for next-generation sequencing data. SparkSeq is a general-purpose, flexible and easily extendable library for genomic cloud computing. It can be used to build genomic analysis pipelines in Scala and run them in an interactive way. SparkSeq opens up the possibility of customized ad hoc secondary analyses and iterative machine learning algorithms. This article demonstrates its scalability and overall fast performance by running the analyses of sequencing datasets. Tests of SparkSeq also prove that the use of cache and HDFS block size can be tuned for the optimal performance on multiple worker nodes. Available under open source Apache 2.0 license: https://bitbucket.org/mwiewiorka/sparkseq/. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Combustion characteristics in the transition region of liquid fuel sprays

    NASA Technical Reports Server (NTRS)

    Cernansky, N. P.; Namer, I.; Tidona, R. J.

    1986-01-01

    A number of important effects have been observed in the droplet size transition region in spray combustion systems. In this region, where the mechanism of flame propagation is transformed from diffusive to premixed dominated combustion, the following effects have been observed: (1) maxima in burning velocity; (2) extension of flammability limits; (3) minima in ignition energy; and (4) minima in NOx formation. A monodisperse aerosol generator has been used to form and deliver a well controlled liquid fuel spray to the combustion test section where measurements of ignition energy have been made. The ignition studies were performed on monodisperse n-heptane sprays at atmospheric pressure over a range of equivalence ratios and droplet diameters. A capacitive discharge spark ignition system was used as the ignition source, providing independent control of spark energy and duration. Preliminary measurements were made to optimize spark duration and spark gap, optimum conditions being those at which the maximum frequency or probability of ignition was observed. Using the optimum electrode spacing and spark duration, the frequency of ignition was determined as a function of spark energy for three overall equivalence ratios (0.6, 0.8, and 1.0) and for initial droplet diameters of 25, 40, 50, 60, and 70 micro m.

  20. Simultaneous determination of iron, cadmium, zinc, copper, nickel, lead, and uranium in seawater by stable isotope dilution spark source mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mykytiuk, A.P.; Russell, D.S.; Sturgeon, R.E.

    Trace concentrations (ng/mL) of Fe, Cd, Zn, Cu, Ni, Pb, U, and Co have been determined in seawater by stable isotope dilution spark source mass spectrometry. The seawater samples were preconcentrated on the ion exchanger Chelex-100 and the concentrate was evaporated on a graphite or silver electrode. The results are compared with those obtained by graphite furnace atomic absorption spectrometry and inductively coupled plasma emission spectrometry. The technique avoids the use of calibration standards and is capable of producing results in cases where the analyte is only partially recovered. 2 tables.

  1. Plasma X-Ray Sources for Lithography

    DTIC Science & Technology

    1980-05-12

    in evaluating various plasma sources. In addition, a brief analysis is given of three devices, or systems, used to produce such plasmas: the electron beam- sliding spark, the dense plasma focus and the laser produced plasma.

  2. The results of the study of compact gas-puff and vacuum spark plasma sources of SXR with Glass-Capillary Converters (GCC)

    NASA Astrophysics Data System (ADS)

    Shlyaptseva, Alla; Kantsyrev, Victor; Inozemtsev, Andrei; Petrukhin, Oleg

    1994-06-01

    The results are presented dealing with the working out and study of the SXR compact plasma source. The experimental set up included a compact new 'gas-puff' source with parameters being better than the traditional ones and a new type of SXR source - low-inductance vacuum spark (LIVS) with glass-capillary converters (GCC) of SXR. The compact plasma 'gas-puff' source had the high value of the z approx. (1-2) 10(exp -2) (conversion coefficient of initial energy supply into SXR); a small effective size of emission region and greater resource. The characteristics of LIVS with GCC were studied. GCC consisting of about several hundreds of glass capillaries allowed us to focus SXR, to change the cross section of SXR beams to plasma sources, and to change SXR spectrum. The possibility was shown of using of GCC in plasma diagnostics of powerful plasma devices: for X-ray microscopy and to study the influence of SXR on the solid state surface.

  3. Various DC-driven point-to-plain discharges as non-thermal plasma sources and their bactericidal effects

    NASA Astrophysics Data System (ADS)

    Khun, Josef; Scholtz, Vladimír; Hozák, Pavel; Fitl, Přemysl; Julák, Jaroslav

    2018-06-01

    The appearance of several types of ballast serial impedance-stabilized DC-driven electric corona discharges in the point-to-plane configuration is described. In addition to well-known corona discharges, new ones were observed, namely curved transient spark, interrupted channel and branched transient spark. Their properties are described by volt-ampere characteristics and UV-vis emission spectra. Their bactericidal ability for two bacterial species is also given.

  4. The potential contribution of biodiesel with improved properties to an alternative energy mix

    USDA-ARS?s Scientific Manuscript database

    Continuing and increasing world-wide concerns regarding the availability of petroleum and other "conventional" sources of energy have sparked the search for sustainable sources of energy. Fuels derived from renewable biological sources (biomass) play a prominent role among the sustainable energy so...

  5. The Study of Compact Plasma Source of SXR of Vacuum Spark Type with Capillary Concentrator and It's Application

    NASA Astrophysics Data System (ADS)

    Kantsyrev, V. L.; Kopytok, K. I.; Shlyaptseva, A. S.

    1994-03-01

    The results are presented dealing with the working out and study of the plasma source of soft X-ray (SXR) of the new type. Experimental set up included compact low-inductance vacuum spark (LIVS) with initial energy supply equal up to 2.5 kJ and glass-capillary concentrator (GCC) of SXR. The characteristics of SXR of vacuum spark and properties of SXR were studied using diagnostic complex. The coefficient of conversion of initial energy supply into SXR (η) amounted to 0.01 in range 1.2nm. Value η had peak dependence on atomic number of anode Za. The spectra were recorded belonging to Ne-like, F-like ions of Fe, Cu ions and He-like, H-like ions of Al, Ti, Fe. Glass capillary concentrator consists of about several hundreds glass capillaries Flux density of SXR in focusing spot was up to 105-106 Wt/cm, density of energy is up to 20-30 mJ/cm2 at diameter of SXR focusing spot equal to about 2-3mm in the range 0.7-1.0 nm. The plasma source of the new type is intended for X-ray microscopy, study of influence of SXR on the surface of solid state. It allows to carry out experiments making only on electron synchrotronic sources of SXR.

  6. Biospark: scalable analysis of large numerical datasets from biological simulations and experiments using Hadoop and Spark.

    PubMed

    Klein, Max; Sharma, Rati; Bohrer, Chris H; Avelis, Cameron M; Roberts, Elijah

    2017-01-15

    Data-parallel programming techniques can dramatically decrease the time needed to analyze large datasets. While these methods have provided significant improvements for sequencing-based analyses, other areas of biological informatics have not yet adopted them. Here, we introduce Biospark, a new framework for performing data-parallel analysis on large numerical datasets. Biospark builds upon the open source Hadoop and Spark projects, bringing domain-specific features for biology. Source code is licensed under the Apache 2.0 open source license and is available at the project website: https://www.assembla.com/spaces/roberts-lab-public/wiki/Biospark CONTACT: eroberts@jhu.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Effect of flow velocity and temperature on ignition characteristics in laser ignition of natural gas and air mixtures

    NASA Astrophysics Data System (ADS)

    Griffiths, J.; Riley, M. J. W.; Borman, A.; Dowding, C.; Kirk, A.; Bickerton, R.

    2015-03-01

    Laser induced spark ignition offers the potential for greater reliability and consistency in ignition of lean air/fuel mixtures. This increased reliability is essential for the application of gas turbines as primary or secondary reserve energy sources in smart grid systems, enabling the integration of renewable energy sources whose output is prone to fluctuation over time. This work details a study into the effect of flow velocity and temperature on minimum ignition energies in laser-induced spark ignition in an atmospheric combustion test rig, representative of a sub 15 MW industrial gas turbine (Siemens Industrial Turbomachinery Ltd., Lincoln, UK). Determination of minimum ignition energies required for a range of temperatures and flow velocities is essential for establishing an operating window in which laser-induced spark ignition can operate under realistic, engine-like start conditions. Ignition of a natural gas and air mixture at atmospheric pressure was conducted using a laser ignition system utilizing a Q-switched Nd:YAG laser source operating at 532 nm wavelength and 4 ns pulse length. Analysis of the influence of flow velocity and temperature on ignition characteristics is presented in terms of required photon flux density, a useful parameter to consider during the development laser ignition systems.

  8. Focused shock spark discharge drill using multiple electrodes

    DOEpatents

    Moeny, William M.; Small, James G.

    1988-01-01

    A spark discharge focused drill provided with one pulse forming line or a number of pulse forming lines. The pulse forming line is connected to an array of electrodes which would form a spark array. One of the electrodes of each of the array is connected to the high voltage side of the pulse forming line and the other electrodes are at ground potential. When discharged in a liquid, these electrodes produce intense focused shock waves that can pulverize or fracture rock. By delaying the firing of each group of electrodes, the drill can be steered within the earth. Power can be fed to the pulse forming line either downhole or from the surface area. A high voltage source, such as a Marx generator, is suitable for pulse charging the lines.

  9. Martian Methane From a Cometary Source: A Hypothesis

    NASA Technical Reports Server (NTRS)

    Fries, M.; Christou, A.; Archer, D.; Conrad, P.; Cooke, W.; Eigenbrode, J.; ten Kate, I. L.; Matney, M.; Niles, P.; Sykes, M.; hide

    2016-01-01

    In recent years, methane in the martian atmosphere has been detected by Earth-based spectroscopy, the Planetary Fourier Spectrometer on the ESA Mars Express mission, and the NASA Mars Science Laboratory. The methane's origin remains a mystery, with proposed sources including volcanism, exogenous sources like impacts and interplanetary dust, aqueous alteration of olivine in the presence of carbonaceous material, release from ancient deposits of methane clathrates, and/or biological activity. An additional potential source exists: meteor showers from the emission of large comet dust particles could generate martian methane via UV pyrolysis of carbon-rich infall material. We find a correlation between the dates of Mars/cometary orbit encounters and detections of methane on Mars. We hypothesize that cometary debris falls onto Mars during these interactions, generating methane via UV photolysis.

  10. Constraining the Source Craters of the Martian Meteorites: Implications for Prioritiziation of Returned Samples from Mars

    NASA Astrophysics Data System (ADS)

    Herd, C. D. K.; Tornabene, L. L.; Bowling, T. J.; Walton, E. L.; Sharp, T. G.; Melosh, H. J.; Hamilton, J. S.; Viviano, C. E.; Ehlmann, B. L.

    2018-04-01

    We have made advances in constraining the potential source craters of the martian meteorites to a relatively small number. Our results have implications for Mars chronology and the prioritization of samples for Mars Sample Return.

  11. Lunar and Planetary Science XXXV: Missions and Instruments: Hopes and Hope Fulfilled

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The titles in this section include: 1) Mars Global Surveyor Mars Orbiter Camera in the Extended Mission: The MOC Toolkit; 2) Mars Odyssey THEMIS-VIS Calibration; 3) Early Science Operations and Results from the ESA Mars Express Mission: Focus on Imaging and Spectral Mapping; 4) The Mars Express/NASA Project at JPL; 5) Beagle 2: Mission to Mars - Current Status; 6) The Beagle 2 Microscope; 7) Mars Environmental Chamber for Dynamic Dust Deposition and Statics Analysis; 8) Locating Targets for CRISM Based on Surface Morphology and Interpretation of THEMIS Data; 9) The Phoenix Mission to Mars; 10) First Studies of Possible Landing Sites for the Phoenix Mars Scout Mission Using the BMST; 11) The 2009 Mars Telecommunications Orbiter; 12) The Aurora Exploration Program - The ExoMars Mission; 13) Electron-induced Luminescence and X-Ray Spectrometer (ELXS) System Development; 14) Remote-Raman and Micro-Raman Studies of Solid CO2, CH4, Gas Hydrates and Ice; 15) The Compact Microimaging Spectrometer (CMIS): A New Tool for In-Situ Planetary Science; 16) Preliminary Results of a New Type of Surface Property Measurement Ideal for a Future Mars Rover Mission; 17) Electrodynamic Dust Shield for Solar Panels on Mars; 18) Sensor Web for Spatio-Temporal Monitoring of a Hydrological Environment; 19) Field Testing of an In-Situ Neutron Spectrometer for Planetary Exploration: First Results; 20) A Miniature Solid-State Spectrometer for Space Applications - Field Tests; 21) Application of Laser Induced Breakdown Spectroscopy (LIBS) to Mars Polar Exploration: LIBS Analysis of Water Ice and Water Ice/Soil Mixtures; 22) LIBS Analysis of Geological Samples at Low Pressures: Application to Mars, the Moon, and Asteroids; 23) In-Situ 1-D and 2-D Mapping of Soil Core and Rock Samples Using the LIBS Long Spark; 24) Rocks Analysis at Stand Off Distance by LIBS in Martian Conditions; 25) Evaluation of a Compact Spectrograph/Detection System for a LIBS Instrument for In-Situ and Stand-Off Detection; 26) Analysis of Organic Compounds in Mars Analog Samples; 27) Report of the Organic Contamination Science Steering Group; 28) The Water-Wheel IR (WIR) - A Contact Survey Experiment for Water and Carbonates on Mars; 29) Mid-IR Fiber Optic Probe for In Situ Water Detection and Characterization; 30) Effects of Subsurface Sampling & Processing on Martian Simulant Containing Varying Quantities of Water; 31) The Subsurface Ice Probe (SIPR): A Low-Power Thermal Probe for the Martian Polar Layered Deposits; 32) Deploying Ground Penetrating Radar in Planetary Analog Sites to Evaluate Potential Instrument Capabilities on Future Mars Missions; 33) Evaluation of Rock Powdering Methods to Obtain Fine-grained Samples for CHEMIN, a Combined XRD/XRF Instrument; 34) Novel Sample-handling Approach for XRD Analysis with Minimal Sample Preparation; 35) A New Celestial Navigation Method for Mars Landers; 36) Mars Mineral Spectroscopy Web Site: A Resource for Remote Planetary Spectroscopy.

  12. High voltage switch triggered by a laser-photocathode subsystem

    DOEpatents

    Chen, Ping; Lundquist, Martin L.; Yu, David U. L.

    2013-01-08

    A spark gap switch for controlling the output of a high voltage pulse from a high voltage source, for example, a capacitor bank or a pulse forming network, to an external load such as a high gradient electron gun, laser, pulsed power accelerator or wide band radar. The combination of a UV laser and a high vacuum quartz cell, in which a photocathode and an anode are installed, is utilized as triggering devices to switch the spark gap from a non-conducting state to a conducting state with low delay and low jitter.

  13. Surprising synthesis of nanodiamond from single-walled carbon nanotubes by the spark plasma sintering process

    NASA Astrophysics Data System (ADS)

    Mirzaei, Ali; Ham, Heon; Na, Han Gil; Kwon, Yong Jung; Kang, Sung Yong; Choi, Myung Sik; Bang, Jae Hoon; Park, No-Hyung; Kang, Inpil; Kim, Hyoun Woo

    2016-10-01

    Nanodiamond (ND) was successfully synthesized using single-walled carbon nanotubes (SWCNTs) as a pure solid carbon source by means of a spark plasma sintering process. Raman spectra and X-ray diffraction patterns revealed the generation of the cubic diamond phase by means of the SPS process. Lattice-resolved TEM images confirmed that diamond nanoparticles with a diameter of about ˜10 nm existed in the products. The NDs were generated mainly through the gas-phase nucleation of carbon atoms evaporated from the SWCNTs. [Figure not available: see fulltext.

  14. Monitoring Mars for Electrostatic Disturbances

    NASA Technical Reports Server (NTRS)

    Compton, D.

    2011-01-01

    The DSN radio telescope DSS-13 was used to monitor Mars for electrostatic discharges from 17 February to 11 April, 2010, and from 19 April to 4 May, 2011, over a total of 72 sessions. Of these sessions, few showed noteworthy results and no outstanding electrostatic disturbances were observed on Mars from analyzing the kurtosis of radio emission from Mars. Electrostatic discharges on mars were originally detected in June of 2006 by Ruf et al. using DSS-13. he kurtosis (normalized fourth moment of the electrical field strength) is sensitive to non-thermal radiation. Two frequencies bands, either 2.4 and 8.4 GHz or 8.4 and 32 GHz were used. The non-thermal radiation spectrum should have peaks at the lowest three modes of the theoretical Schumann Resonances of Mars. The telescope was pointed away from Mars every 5 minutes for 45 seconds to confirm if Mars was indeed the sources of any events. It was shown that by including a down-link signal in one channel and by observing when the kurtosis changed as the telescope was pointed away from the source that the procedure can monitor Mars without the need of extra equipment monitoring a control source.

  15. Laser induced spark ignition of methane-oxygen mixtures

    NASA Technical Reports Server (NTRS)

    Santavicca, D. A.; Ho, C.; Reilly, B. J.; Lee, T.-W.

    1991-01-01

    Results from an experimental study of laser induced spark ignition of methane-oxygen mixtures are presented. The experiments were conducted at atmospheric pressure and 296 K under laminar pre-mixed and turbulent-incompletely mixed conditions. A pulsed, frequency doubled Nd:YAG laser was used as the ignition source. Laser sparks with energies of 10 mJ and 40 mJ were used, as well as a conventional electrode spark with an effective energy of 6 mJ. Measurements were made of the flame kernel radius as a function of time using pulsed laser shadowgraphy. The initial size of the spark ignited flame kernel was found to correlate reasonably well with breakdown energy as predicted by the Taylor spherical blast wave model. The subsequent growth rate of the flame kernel was found to increase with time from a value less than to a value greater than the adiabatic, unstretched laminar growth rate. This behavior was attributed to the combined effects of flame stretch and an apparent wrinkling of the flame surface due to the extremely rapid acceleration of the flame. The very large laminar flame speed of methane-oxygen mixtures appears to be the dominant factor affecting the growth rate of spark ignited flame kernels, with the mode of ignition having a small effect. The effect of incomplete fuel-oxidizer mixing was found to have a significant effect on the growth rate, one which was greater than could simply be accounted for by the effect of local variations in the equivalence ratio on the local flame speed.

  16. CMS Analysis and Data Reduction with Apache Spark

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutsche, Oliver; Canali, Luca; Cremer, Illia

    Experimental Particle Physics has been at the forefront of analyzing the world's largest datasets for decades. The HEP community was among the first to develop suitable software and computing tools for this task. In recent times, new toolkits and systems for distributed data processing, collectively called "Big Data" technologies have emerged from industry and open source projects to support the analysis of Petabyte and Exabyte datasets in industry. While the principles of data analysis in HEP have not changed (filtering and transforming experiment-specific data formats), these new technologies use different approaches and tools, promising a fresh look at analysis ofmore » very large datasets that could potentially reduce the time-to-physics with increased interactivity. Moreover these new tools are typically actively developed by large communities, often profiting of industry resources, and under open source licensing. These factors result in a boost for adoption and maturity of the tools and for the communities supporting them, at the same time helping in reducing the cost of ownership for the end-users. In this talk, we are presenting studies of using Apache Spark for end user data analysis. We are studying the HEP analysis workflow separated into two thrusts: the reduction of centrally produced experiment datasets and the end-analysis up to the publication plot. Studying the first thrust, CMS is working together with CERN openlab and Intel on the CMS Big Data Reduction Facility. The goal is to reduce 1 PB of official CMS data to 1 TB of ntuple output for analysis. We are presenting the progress of this 2-year project with first results of scaling up Spark-based HEP analysis. Studying the second thrust, we are presenting studies on using Apache Spark for a CMS Dark Matter physics search, comparing Spark's feasibility, usability and performance to the ROOT-based analysis.« less

  17. Estimation of micrometeorites and satellite dust flux surrounding Mars in the light of MAVEN results

    NASA Astrophysics Data System (ADS)

    Pabari, J. P.; Bhalodi, P. J.

    2017-05-01

    Recently, MAVEN observed dust around Mars from ∼150 km to ∼1000 km and it is a puzzling question to the space scientists about the presence of dust at orbital altitudes and about its source. A continuous supply of dust from various sources could cause existence of dust around Mars and it is expected that the dust could mainly be from either the interplanetary source or the Phobos/Deimos. We have studied incident projectiles or micrometeorites at Mars using the existing model, in this article. Comparison of results with the MAVEN results gives a new value of the population index S, which is reported here. The index S has been referred in a power law model used to describe the number of impacting particles on Mars. In addition, the secondary ejecta from natural satellites of Mars can cause a dust ring or torus around Mars and remain present for its lifetime. The dust particles whose paths are altered by the solar wind over its lifetime, could present a second plausible source of dust around Mars. We have investigated escaping particles from natural satellites of Mars and compared with the interplanetary dust flux estimation. It has been found that flux rate at Mars is dominated (∼2 orders of magnitude higher) by interplanetary particles in comparison with the satellite originated dust. It is inferred that the dust at high altitudes of Mars could be interplanetary in nature and our expectation is in agreement with the MAVEN observation. As a corollary, the mass loss from Martian natural satellites is computed based on the surface erosion by incident projectiles.

  18. Martian methane plume models for defining Mars rover methane source search strategies

    NASA Astrophysics Data System (ADS)

    Nicol, Christopher; Ellery, Alex; Lynch, Brian; Cloutis, Ed

    2018-07-01

    The detection of atmospheric methane on Mars implies an active methane source. This introduces the possibility of a biotic source with the implied need to determine whether the methane is indeed biotic in nature or geologically generated. There is a clear need for robotic algorithms which are capable of manoeuvring a rover through a methane plume on Mars to locate its source. We explore aspects of Mars methane plume modelling to reveal complex dynamics characterized by advection and diffusion. A statistical analysis of the plume model has been performed and compared to analyses of terrestrial plume models. Finally, we consider a robotic search strategy to find a methane plume source. We find that gradient-based techniques are ineffective, but that more sophisticated model-based search strategies are unlikely to be available in near-term rover missions.

  19. Nontronite and Montmorillonite as Nutrient Sources for Life on Mars

    NASA Technical Reports Server (NTRS)

    Craig, P. I.; Mickol, R. L.; Archer, P. D.; Kral, T. A.

    2017-01-01

    Clay minerals have been identified on Mars' oldest (Noachian) terrain and their presence suggests long-term water-rock interactions. The most commonly identified clay minerals on Mars to date are nontronite (Fe-smectite) and montmorillonite (Al-smectite) [1], both of which contain variable amounts of water both adsorbed on their surface and within their structural layers. Over Mars' history, these clay miner-al-water assemblages may have served as nutrient sources for microbial life.

  20. Thickness of the Magnetic Crust of Mars from Magneto-Spectral Analysis

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    2006-01-01

    Previous analysis of the magnetic spectrum of Mars showed only a crustal source field. The observational spectrum was fairly well fitted by the spectrum expected from random dipolar sources scattered on a spherical shell about 46 plus or minus 10 km below Mars' 3389.5 km mean radius. This de-correlation depth overestimates the typical depth of extended magnetized structures, and so was judged closer to mean source layer thickness than twice its value. To better estimate the thickness of the magnetic crust of Mars, six different magnetic spectra were fitted with the theoretical spectrum expected from a novel, bimodal distribution of magnetic sources. This theoretical spectrum represents both compact and extended, laterally correlated sources, so source shell depth is doubled to obtain layer thickness. The typical magnetic crustal thickness is put at 47.8 plus or minus 8.2 km. The extended sources are enormous, typically 650 km across, and account for over half the magnetic energy at low degrees. How did such vast regions form?

  1. Matrix Factorizations at Scale: a Comparison of Scientific Data Analytics in Spark and C+MPI Using Three Case Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gittens, Alex; Devarakonda, Aditya; Racah, Evan

    We explore the trade-offs of performing linear algebra using Apache Spark, compared to traditional C and MPI implementations on HPC platforms. Spark is designed for data analytics on cluster computing platforms with access to local disks and is optimized for data-parallel tasks. We examine three widely-used and important matrix factorizations: NMF (for physical plausibility), PCA (for its ubiquity) and CX (for data interpretability). We apply these methods to 1.6TB particle physics, 2.2TB and 16TB climate modeling and 1.1TB bioimaging data. The data matrices are tall-and-skinny which enable the algorithms to map conveniently into Spark’s data parallel model. We perform scalingmore » experiments on up to 1600 Cray XC40 nodes, describe the sources of slowdowns, and provide tuning guidance to obtain high performance.« less

  2. Biomass as a Sustainable Energy Source: An Illustration of Chemical Engineering Thermodynamic Concepts

    ERIC Educational Resources Information Center

    Mohan, Marguerite A.; May, Nicole; Assaf-Anid, Nada M.; Castaldi, Marco J.

    2006-01-01

    The ever-increasing global demand for energy has sparked renewed interest within the engineering community in the study of sustainable alternative energy sources. This paper discusses a power generation system which uses biomass as "fuel" to illustrate the concepts taught to students taking a graduate level chemical engineering process…

  3. Primary school children and teachers discover the nature and science of planet Earth and Mars

    NASA Astrophysics Data System (ADS)

    Kleinhans, Maarten; Verkade, Alex; Bastings, Mirjam; Reichwein, Maarten

    2016-04-01

    For various reasons primary schools emphasise language and calculus rather than natural sciences. When science is taught at all, examination systems often favour technological tricks and knowledge of the 'right' answer over the process of investigation and logical reasoning towards that answer. Over the long term, this is not conducive to curiosity and scientific attitude in large parts of the population. Since the problem is more serious in primary than in secondary education, and as children start their school career with a natural curiosity and great energy to explore their world, we focus our efforts on primary school teachers in close collaboration with teachers and researchers. Our objective was to spark children's curiosity and their motivation to learn and discover, as well as to help teachers develop self-afficacy in science education. To this end we developed a three-step program with a classroom game and sand-box experiments related to planet Earth and Mars. The classroom game Expedition Mundus simulates science in its focus on asking questions, reasoning towards answers on the basis of multiple sources and collaboration as well as growth of knowledge. Planet Mundus is entirely fictitional to avoid differences in foreknowledge between pupils. The game was tested in hundreds of classes in primary schools and the first years of secondary education and was printed (in Dutch) and distributed over thousands of schools as part of teacher education through university science hubs. Expedition Mundus was developed by the Young Academy of the Royal Netherlands Academy of Arts and Sciences and De Praktijk. The tested translations in English and German are available on http://www.expeditionmundus.org. Following the classroom game, we conducted simple landscape experiments in sand boxes supported by google earth imagery of real rivers, fans and deltas on Earth and Mars. This was loosely based on our fluvial morphodynamics research. This, in the presence of a scientist, evoked questions that were developed by Aristotelian discourse towards researchable empirical questions. Here teachers and scientists closely collaborated to develop effective queries. The final questions were then investigated by couples of pupils following the empirical cycle up to the point of a poster presentation.

  4. Adjustable long duration high-intensity point light source

    NASA Astrophysics Data System (ADS)

    Krehl, P.; Hagelweide, J. B.

    1981-06-01

    A new long duration high-intensity point light source with adjustable light duration and a small light spot locally stable in time has been developed. The principle involved is a stationary high-temperature plasma flow inside a partly constrained capillary of a coaxial spark gap which is viewed end on through a terminating Plexiglas window. The point light spark gap is operated via a resistor by an artificial transmission line. Using two exchangeable inductance sets in the line, two ranges of photoduration 10-130 μs and 100-600 μs can be covered. For a light spot size of 1.5 mm diameter the corresponding peak light output amounts to 5×106 and 1.6×106 candelas, respectively. Within these ranges the duration is controlled by an ignitron crowbar to extinguish the plasma. The adjustable photoduration is very useful for the application of continuous writing rotating mirror cameras, thus preventing multiple exposures. The essentially uniform exposure within the visible spectral range makes the new light source suitable for color cinematography.

  5. Design Patterns to Achieve 300x Speedup for Oceanographic Analytics in the Cloud

    NASA Astrophysics Data System (ADS)

    Jacob, J. C.; Greguska, F. R., III; Huang, T.; Quach, N.; Wilson, B. D.

    2017-12-01

    We describe how we achieve super-linear speedup over standard approaches for oceanographic analytics on a cluster computer and the Amazon Web Services (AWS) cloud. NEXUS is an open source platform for big data analytics in the cloud that enables this performance through a combination of horizontally scalable data parallelism with Apache Spark and rapid data search, subset, and retrieval with tiled array storage in cloud-aware NoSQL databases like Solr and Cassandra. NEXUS is the engine behind several public portals at NASA and OceanWorks is a newly funded project for the ocean community that will mature and extend this capability for improved data discovery, subset, quality screening, analysis, matchup of satellite and in situ measurements, and visualization. We review the Python language API for Spark and how to use it to quickly convert existing programs to use Spark to run with cloud-scale parallelism, and discuss strategies to improve performance. We explain how partitioning the data over space, time, or both leads to algorithmic design patterns for Spark analytics that can be applied to many different algorithms. We use NEXUS analytics as examples, including area-averaged time series, time averaged map, and correlation map.

  6. Microfluidic Flame Barrier

    NASA Technical Reports Server (NTRS)

    Mungas, Gregory S. (Inventor); Fisher, David J. (Inventor); Mungas, Christopher (Inventor)

    2013-01-01

    Propellants flow through specialized mechanical hardware that is designed for effective and safe ignition and sustained combustion of the propellants. By integrating a micro-fluidic porous media element between a propellant feed source and the combustion chamber, an effective and reliable propellant injector head may be implemented that is capable of withstanding transient combustion and detonation waves that commonly occur during an ignition event. The micro-fluidic porous media element is of specified porosity or porosity gradient selected to be appropriate for a given propellant. Additionally the propellant injector head design integrates a spark ignition mechanism that withstands extremely hot running conditions without noticeable spark mechanism degradation.

  7. Flexurally-resisted uplift of the Tharsis Province, Mars

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.; Sleep, N. H.

    1987-01-01

    The tectonic style of Mars is dominated by vertical motion, perhaps more than any of the terrestrial planets. The imprint of this tectonic activity has left a surface widely faulted even though younger volcanism has masked the expression of tectonism in many places. Geological activity associated with the Tharsis and, to a lesser extent, Elysium provinces is responsible for a significant portion of this faulting, while the origins of the remaining features are enigmatic in many cases. The origin and evolution of the Tharsis and Elysium provinces, in terms of their great elevation, volcanic activity, and tectonic style, has sparked intense debate over the last fifteen years. Central to these discussions are the relative roles of structural uplift and volcanic construction in the creation of immense topographic relief. For example, it is argued that the presence of very old and cratered terrain high on the Tharsis rise, in the vicinity of Claritas Fossae, points to structural uplift of an ancient crust. Others have pointed out, however, that there is no reason that this terrain could not be of volcanic origin and thus part of the constructional mechanism.

  8. The delivery of organic matter from asteroids and comets to the early surface of Mars

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.

    1996-01-01

    Carbon delivered to the Earth by interplanetary dust particles may have been an important source of pre-biotic organic matter (Anders, 1989). Interplanetary dust is shown to deliver an order-of-magnitude higher surface concentration of carbon onto Mars than onto Earth, suggesting interplanetary dust may be an important source of carbon on Mars as well.

  9. Atmospheric Modeling of Mars Methane Plumes

    NASA Astrophysics Data System (ADS)

    Mischna, Michael A.; Allen, M.; Lee, S.

    2010-10-01

    We present two complementary methods for isolating and modeling surface source releases of methane in the martian atmosphere. From recent observations, there is strong evidence that periodic releases of methane occur from discrete surface locations, although the exact location and mechanism of release is still unknown. Numerical model simulations with the Mars Weather Research and Forecasting (MarsWRF) general circulation model (GCM) have been applied to the ground-based observations of atmospheric methane by Mumma et al., (2009). MarsWRF simulations reproduce the natural behavior of trace gas plumes in the martian atmosphere, and reveal the development of the plume over time. These results provide constraints on the timing and location of release of the methane plume. Additional detections of methane have been accumulated by the Planetary Fourier Spectrometer (PFS) on board Mars Express. For orbital observations, which generally have higher frequency and resolution, an alternate approach to source isolation has been developed. Drawing from the concept of natural selection within biology, we apply an evolutionary computational model to this problem of isolating source locations. Using genetic algorithms that `reward’ best-fit matches between observations and GCM plume simulations (also from MarsWRF) over many generations, we find that we can potentially isolate source locations to within tens of km, which is within the roving capabilities of future Mars rovers. Together, these methods present viable numerical approaches to restricting the timing, duration and size of methane release events, and can be used for other trace gas plumes on Mars as well as elsewhere in the solar system.

  10. The Martian Dust Devil Electron Avalanche: Laboratory Measurements of the E-Field Fortifying Effects of Dust-Electron Absorption

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; McLain, J. L.; Collier, M. R.; Keller, J. W.

    2017-01-01

    Analogous to terrestrial dust devils, charged dust in Mars dust devils should become vertically stratified in the convective features, creating large scale E-fields. This E-field in a Martian-like atmosphere has been shown to stimulate the development of a Townsend discharge (electron avalanche) that acts to dissipate charge in regions where charge build-up occurs. While the stratification of the charged dust is a source of the electrical energy, the uncharged particulates in the dust population may absorb a portion of these avalanching electrons, thereby inhibiting dissipation and leading to the development of anomalously large E-field values. We performed a laboratory study that does indeed show the presence of enhanced E-field strengths between an anode and cathode when dust-absorbing filaments (acting as particulates) are placed in the avalanching electron flow. Further, the E-field threshold condition to create an impulsive spark discharge increases to larger values as more filaments are placed between the anode and cathode. We conclude that the spatially separated charged dust creates the charge centers and E-fields in a dust devil, but the under-charged portion of the population acts to reduce Townsend electron dissipation currents, further fortifying the development of larger-than-expected E-fields.

  11. Sequential variable fuel injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weglarz, M.W.; Vincent, M.T.; Prestel, J.F.

    This patent describes a fuel injection system for an engine of an automotive vehicle including cylinders, a spark plug for each of the cylinders, a distributor electrically connected to the spark plug, a throttle body having a throttle valve connected to the engine to allow or prevent air to the cylinders, a fuel source at least one fuel line connected to the fuel source, fuel injectors connected to the fuel line for delivering fuel to the cylinders, a sensor located near the distributor for sensing predetermined states of the distributor, and an electronic control unit (ECU) electrically connected to themore » sensor, distributor and fuel injectors. It comprises calculating a desired total injector on time for current engine conditions; calculating a variable injection time (VIT) and a turn on time based on the VIT; and firing the fuel injectors at the calculated turn on time for the calculated total injector on time.« less

  12. Rocket engine injectorhead with flashback barrier

    NASA Technical Reports Server (NTRS)

    Mungas, Gregory S. (Inventor); Fisher, David J. (Inventor); Mungas, Christopher (Inventor)

    2012-01-01

    Propellants flow through specialized mechanical hardware that is designed for effective and safe ignition and sustained combustion of the propellants. By integrating a micro-fluidic porous media element between a propellant feed source and the combustion chamber, an effective and reliable propellant injector head may be implemented that is capable of withstanding transient combustion and detonation waves that commonly occur during an ignition event. The micro-fluidic porous media element is of specified porosity or porosity gradient selected to be appropriate for a given propellant. Additionally the propellant injector head design integrates a spark ignition mechanism that withstands extremely hot running conditions without noticeable spark mechanism degradation.

  13. A closer look at Galileo Thermal data from a Possible Plume Source North of Pwyll, Europa

    NASA Astrophysics Data System (ADS)

    Rathbun, J. A.; Spencer, J. R.

    2017-12-01

    Two different observing techniques, both employing the Hubble Space Telescope, have found evidence for plumes just off Europa's limb (Roth et al., 2014; Sparks et al., 2016). More recent observations using the Jovian transit technique enabled Sparks et al. (2017) to determine that one location was the source of two separate detections: just north of the impact crater Pwyll at 275 W, -16 S, a region we informally call North Pwyll. This source was detected on March 17, 2014 and February 22, 2016. Coinciding with this source is a broad thermal anomaly observed by the Galileo Photopolarimeter-Radiometer (PPR) during the Europan night (Sparks et al., 2017; Spencer et al., 1999). Rathbun et al. (2010) determined detection limits for the PPR observations and found that a 100 km2 hotspot in the vicinity of North Pwyll would have been detected if it had a temperature above about 150 K. We took a closer look at the PPR data and found that there are 5 PPR observations that include the North Pwyll region, at local times varying from midway between midnight and sunrise (the data already published) through midway between sunrise and noon. While at least one observation near noon is required for a complete measurement of the diurnal variation, we were able to fit a thermal model to the available data and found that endogenic heating is not required and that the data can be fit using an albedo of 0.4 and a thermal inertia of 114 in MKS units. Due to the sparseness and noisiness of the data, these values are very uncertain. Rathbun et al. (2010) found Europa's thermal inertias to be in the range of 20-140 MKS and albedos 0.3-0.7, so North Pwyll has a high thermal inertia and low albedo. Unfortunately, the high latitude of the other putative plume source locations (63 S and 75 S) puts them in areas poorly imaged by PPR.

  14. Refinement and application of acoustic impulse technique to study nozzle transmission characteristics

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Brown, W. H.; Ramakrishnan, R.; Tanna, H. K.

    1983-01-01

    An improved acoustic impulse technique was developed and was used to study the transmission characteristics of duct/nozzle systems. To accomplish the above objective, various problems associated with the existing spark-discharge impulse technique were first studied. These included (1) the nonlinear behavior of high intensity pulses, (2) the contamination of the signal with flow noise, (3) low signal-to-noise ratio at high exhaust velocities, and (4) the inability to control or shape the signal generated by the source, specially when multiple spark points were used as the source. The first step to resolve these problems was the replacement of the spark-discharge source with electroacoustic driver(s). These included (1) synthesizing on acoustic impulse with acoustic driver(s) to control and shape the output signal, (2) time domain signal averaging to remove flow noise from the contaminated signal, (3) signal editing to remove unwanted portions of the time history, (4) spectral averaging, and (5) numerical smoothing. The acoustic power measurement technique was improved by taking multiple induct measurements and by a modal decomposition process to account for the contribution of higher order modes in the power computation. The improved acoustic impulse technique was then validated by comparing the results derived by an impedance tube method. The mechanism of acoustic power loss, that occurs when sound is transmitted through nozzle terminations, was investigated. Finally, the refined impulse technique was applied to obtain more accurate results for the acoustic transmission characteristics of a conical nozzle and a multi-lobe multi-tube supressor nozzle.

  15. DESIGN OF A HIGH COMPRESSION, DIRECT INJECTION, SPARK-IGNITION, METHANOL FUELED RESEARCH ENGINE WITH AN INTEGRAL INJECTOR-IGNITION SOURCE INSERT, SAE PAPER 2001-01-3651

    EPA Science Inventory

    A stratified charge research engine and test stand were designed and built for this work. The primary goal of this project was to evaluate the feasibility of using a removal integral injector ignition source insert which allows a convenient method of charging the relative locat...

  16. Camera Test on Curiosity During Flight to Mars

    NASA Image and Video Library

    2012-05-07

    An in-flight camera check produced this out-of-focus image when NASA Mars Science Laboratory spacecraft turned on illumination sources that are part of the Curiosity rover Mars Hand Lens Imager MAHLI instrument.

  17. Martian Atmospheric Methane Plumes from Meteor Shower Infall: A Hypothesis

    NASA Technical Reports Server (NTRS)

    Fries, M.; Christou, A.; Archer, D.; Conrad, P.; Cooke, W.; Eigenbrode, J.; ten Kate, I. L.; Matney, M.; Niles, P.; Sykes, M.

    2016-01-01

    Methane plumes in the martian atmosphere have been detected using Earth-based spectroscopy, the Planetary Fourier Spectrometer on the ESA Mars Express mission, and the NASA Mars Science Laboratory. The methane's origin remains a mystery, with proposed sources including volcanism, exogenous sources like impacts and interplanetary dust, aqueous alteration of olivine in the presence of carbonaceous material, release from ancient deposits of methane clathrates, and/or biological activity. To date, none of these phenomena have been found to reliably correlate with the detection of methane plumes. An additional source exists, however: meteor showers could generate martian methane via UV pyrolysis of carbon-rich infall material. We find a correlation between the dates of Mars/cometary orbit encounters and detections of methane on Mars. We hypothesize that cometary debris falls onto Mars during these interactions, depositing freshly disaggregated meteor shower material in a regional concentration. The material generates methane via UV photolysis, resulting in a localized "plume" of short-lived methane.

  18. Volatile inventory of Mars-2: Primordial sources and fractionating processes

    NASA Technical Reports Server (NTRS)

    Pepin, R. O.

    1987-01-01

    The total volatile inventory of Mars has been modeled using meteoritic and presumed primordial abundances in the early solar system. Evidence is presented which indicates that the elemental abundances of the noble gases on Earth and Mars are similar, and their ratios are comparable to those in average carbonaceous chondrites with the exception of xenon and krypton. In order to account for presently observed variations in gas abundances, two primordial sources were used. One was the solar composition similar to the solar wind, and the other of carbonaceous grains that were the source for trace exotic components. For Mars, a model in which the early, high solar EUV flux with continued hydrogen production by differentiation results in mass fractionation of the primordial atmosphere, early depletion of xenon, and later depletion of gases lighter than krypton. The result is that the primordial Mars water inventory may have been on the order of 20 to 30 km if spread over the planet.

  19. Lunar and Planetary Science XXXV: Ancient Mars Water and Landforms

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Titles in this section include: 1) Giant Lowland Polygons: Relics of an Ancient Martian Ocean? 2) Lake Shorelines: Earth Analogs for Hypothesized Martian Coastal Features; 3) Complex Evolution of Paleolacustrine Systems on Mars: An Example from the Holden Crater; 4) Geomorphology and Hydraulics of Ma'adim Vallis, Mars, During a Noachian/Hesperian Boundary Paleoflood; 5) Geologic Evolution of Dao Vallis, Mars; 6) Advances in Reconstructing the Geologic History of the Chryse Region Outflow Channels on Mars; 7) Ravi Vallis, Mars - Paleoflood Origin and Genesis of Secondary Chaos Zones; 8) Walla Walla Vallis and Wallula Crater: Two Recently Discovered Martian Features Record Aqueous History; 9) Tharsis Recharge: a Source of Groundwater for Martian Outflow Channels; 10) Factors Controlling Water Volumes and Release Rates in Martian Outflow Channels; 11) Significance of Confined Cavernous Systems for Outflow Channel Water Sources, Reactivation Mechanisms and Chaos Formation; 12) Systematic Differences in Topography of Martian and Terrestrial Drainage Basins; 13) Waves on Seas of Mars and Titan: Wind-Tunnel Experiments on Wind-Wave Generation in Extraterrestrial Atmospheres.

  20. Mars Global Reference Atmospheric Model 2010 Version: Users Guide

    NASA Technical Reports Server (NTRS)

    Justh, H. L.

    2014-01-01

    This Technical Memorandum (TM) presents the Mars Global Reference Atmospheric Model 2010 (Mars-GRAM 2010) and its new features. Mars-GRAM is an engineering-level atmospheric model widely used for diverse mission applications. Applications include systems design, performance analysis, and operations planning for aerobraking, entry, descent and landing, and aerocapture. Additionally, this TM includes instructions on obtaining the Mars-GRAM source code and data files as well as running Mars-GRAM. It also contains sample Mars-GRAM input and output files and an example of how to incorporate Mars-GRAM as an atmospheric subroutine in a trajectory code.

  1. Chemistry Related to Possible Outgassing Sources on Mars

    NASA Technical Reports Server (NTRS)

    Wong, A. S.; Atreya, S. K.; Renno, N. O.

    2003-01-01

    An earlier paper, Chemical markers of possible hot spots on Mars by A. S. Wong, S. K. Atreya and Th. Encrenaz, explored the modification of the atmosphere of Mars following an influx of methane, sulfur dioxide and hydrogen sulfide (CH4, SO2, H2S) from any outgassing sources which are referred to as hot spots. The feasibility of detection of the new species by Planetary Fourier Spectrometer on Mars Express is reported in a subsequent paper, Atmospheric photochemistry above possible martian hot spots by A. S. Wong, S. K. Atreya, V. Formisano, Th. Encrenaz and N. Ignatiev. This abstract is a follow-up on the previous two papers. Here we treat the effect of any outgassed halogens rigorously. We also make estimates of dilution factors relative to the source location following convection and meridional transport.

  2. Power considerations for an early manned Mars mission utilizing the space station

    NASA Technical Reports Server (NTRS)

    Valgora, Martin E.

    1987-01-01

    Power requirements and candidate electrical power sources were examined for the supporting space infrastructure for an early (2004) manned Mars mission. This two-year mission (60-day stay time) assumed a single six crew piloted vehicle with a Mars lander for four of the crew. The transportation vehicle was assumed to be a hydrogen/oxygen propulsion design with or without large aerobrakes and assembled and checked out on the LEO Space Station. The long transit time necessitated artificial gravity of the crew by rotating the crew compartments. This rotation complicates power source selection. Candidate power sources were examined for the Lander, Mars Orbiter, supporting Space Station, co-orbiting Propellant Storage Depot, and alternatively, a co-orbiting Propellant Generation (water electrolysis) Depot. Candidates considered were photovoltaics with regenerative fuel cells or batteries, solar dynamics, isotope dynamics, and nuclear power.

  3. Safe arming system for two-explosive munitions

    DOEpatents

    Jaroska, Miles F.; Niven, William A.; Morrison, Jasper J.

    1978-01-01

    A system for safely and positively detonating high-explosive munitions, including a source of electrical signals, a split-phase square-loop transformer responsive solely to a unique series of signals from the source for charging an energy storage circuit through a voltage doubling circuit, and a spark-gap trigger for initiating discharge of the energy in the storage circuit to actuate a detonator and thereby fire the munitions.

  4. Mars Methane Analogue Mission (M3): Analytical Techniques and Operations

    NASA Astrophysics Data System (ADS)

    Cloutis, E.; Vrionis, H.; Qadi, A.; Bell, J. F.; Berard, G.; Boivin, A.; Ellery, A.; Jamroz, W.; Kruzelecky, R.; Mann, P.; Samson, C.; Stromberg, J.; Strong, K.; Tremblay, A.; Whyte, L.; Wing, B.

    2011-03-01

    The Mars Methane Analogue Mission (M3) project is designed to simulate a rover-based search for, and analysis of, methane sources on Mars at a serpentinite open pit mine in Quebec, using a variety of instruments.

  5. Fluvial geomorphology on Earth-like planetary surfaces: A review.

    PubMed

    Baker, Victor R; Hamilton, Christopher W; Burr, Devon M; Gulick, Virginia C; Komatsu, Goro; Luo, Wei; Rice, James W; Rodriguez, J A P

    2015-09-15

    Morphological evidence for ancient channelized flows (fluvial and fluvial-like landforms) exists on the surfaces of all of the inner planets and on some of the satellites of the Solar System. In some cases, the relevant fluid flows are related to a planetary evolution that involves the global cycling of a volatile component (water for Earth and Mars; methane for Saturn's moon Titan). In other cases, as on Mercury, Venus, Earth's moon, and Jupiter's moon Io, the flows were of highly fluid lava. The discovery, in 1972, of what are now known to be fluvial channels and valleys on Mars sparked a major controversy over the role of water in shaping the surface of that planet. The recognition of the fluvial character of these features has opened unresolved fundamental questions about the geological history of water on Mars, including the presence of an ancient ocean and the operation of a hydrological cycle during the earliest phases of planetary history. Other fundamental questions posed by fluvial and fluvial-like features on planetary bodies include the possible erosive action of large-scale outpourings of very fluid lavas, such as those that may have produced the remarkable canali forms on Venus; the ability of exotic fluids, such as methane, to create fluvial-like landforms, as observed on Saturn's moon, Titan; and the nature of sedimentation and erosion under different conditions of planetary surface gravity. Planetary fluvial geomorphology also illustrates fundamental epistemological and methodological issues, including the role of analogy in geomorphological/geological inquiry.

  6. Low pressure spark gap triggered by an ion diode

    DOEpatents

    Prono, Daniel S.

    1985-01-01

    Spark gap apparatus for use as an electric switch operating at high voltage, high current and high repetition rate. Mounted inside a housing are an anode, cathode and ion plate. An ionizable fluid is pumped through the chamber of the housing. A pulse of current to the ion plate causes ions to be emitted by the ion plate, which ions move into and ionize the fluid. Electric current supplied to the anode discharges through the ionized fluid and flows to the cathode. Current stops flowing when the current source has been drained. The ionized fluid recombines into its initial dielectric ionizable state. The switch is now open and ready for another cycle.

  7. Development of μ-PIC with resistive electrodes using sputtered carbon

    NASA Astrophysics Data System (ADS)

    Yamane, Fumiya; Ochi, Atsuhiko; Homma, Yasuhiro; Yamauchi, Satoru; Nagasaka, Noriko; Hasegawa, Hiroaki; Kawamoto, Tatsuo; Kataoka, Yosuke; Masubuchi, Tatsuya

    2018-02-01

    The Micro Pixel Chamber (μ-PIC) has been developed for a hadron-collider experiment. The main purpose is detecting Minimum Ionizing Particles (MIP) under high-rate Highly Ionizing Particles (HIP) environment. In such an environment, sufficient gain to detect MIP is needed, but continuous sparks will be caused by high-rate HIP. To reduce sparks, cathodes are made of resistive material. In this report, sputtered carbon was used as a new resistive cathode. Gas gain >104 was achieved using an 55Fe source. This value is sufficient to detect MIP without GEM or other floating structures. Also, thanks to production improvement, pixels are well aligned in the entire detection area.

  8. Low-pressure spark gap triggered by an ion diode

    DOEpatents

    Prono, D.S.

    1982-08-31

    Spark gap apparatus for use as an electric switch operating at high voltage, high current and high repetition rate. Mounted inside a housing are an anode, cathode and ion plate. An ionizable fluid is pumped through the chamber of the housing. A pulse of current to the ion plate causes ions to be emitted by the ion plate, which ions move into and ionize the fluid. Electric current supplied to the anode discharges through the ionized fluid and flows to the cathode. Current stops flowing when the current source has been drained. The ionized fluid recombines into its initial dielectric ionizable state. The switch is now open and ready for another cycle.

  9. Lagrangian Particle Tracking in a Discontinuous Galerkin Method for Hypersonic Reentry Flows in Dusty Environments

    NASA Astrophysics Data System (ADS)

    Ching, Eric; Lv, Yu; Ihme, Matthias

    2017-11-01

    Recent interest in human-scale missions to Mars has sparked active research into high-fidelity simulations of reentry flows. A key feature of the Mars atmosphere is the high levels of suspended dust particles, which can not only enhance erosion of thermal protection systems but also transfer energy and momentum to the shock layer, increasing surface heat fluxes. Second-order finite-volume schemes are typically employed for hypersonic flow simulations, but such schemes suffer from a number of limitations. An attractive alternative is discontinuous Galerkin methods, which benefit from arbitrarily high spatial order of accuracy, geometric flexibility, and other advantages. As such, a Lagrangian particle method is developed in a discontinuous Galerkin framework to enable the computation of particle-laden hypersonic flows. Two-way coupling between the carrier and disperse phases is considered, and an efficient particle search algorithm compatible with unstructured curved meshes is proposed. In addition, variable thermodynamic properties are considered to accommodate high-temperature gases. The performance of the particle method is demonstrated in several test cases, with focus on the accurate prediction of particle trajectories and heating augmentation. Financial support from a Stanford Graduate Fellowship and the NASA Early Career Faculty program are gratefully acknowledged.

  10. Thinking Like a Wildcatter: Prospecting for Methane in Arabia Terra, Mars

    NASA Technical Reports Server (NTRS)

    Allen, C. C.; Oehler, D. Z.

    2005-01-01

    Methane has been detected in the martian atmosphere at a concentration of approximately 10 ppb. The lifetime of such methane against decomposition by solar radiation is approximately 300 years, strongly suggesting that methane is currently being released to the atmosphere. By analogy to Earth, possible methane sources on Mars include active volcanism, hot springs, frozen methane clathrates, thermally-matured sedimentary organic matter, and extant microbial metabolism. The discovery of any one of these sources would revolutionize our understanding of Mars.

  11. Mars H Escape is potentially dominated by a high-altitude water source

    NASA Astrophysics Data System (ADS)

    Chaffin, Michael; Deighan, Justin; Schneider, Nick; Stewart, Ian

    2017-04-01

    H escape from the Mars atmosphere has removed a large part of Mars' initial water inventory. Until recently, this escape was thought to be slow and steady, sourced from long-lived molecular hydrogen whose lightness and volatility in comparison with water allow it to penetrate the upper atmosphere. Contradicting this thinking, observations from the Hubble Space Telescope and Mars Express, as well as more recent MAVEN measurements, indicate that H escape varies by at least a factor of ten over the Mars year and is largest in Southern Summer near perihelion. At the largest rates, H escape exceeds the ability of molecular hydrogen to supply the escape fluxes observed. At the same time in Southern Summer, Mars Express solar occultations have shown unexpectedly large concentrations of water at high altitude, potentially providing a source of escaping H unaccounted for in standard models. Here we show via photochemical modeling that the presence of this high altitude water can partially explain the large escape rates observed in Southern Summer. We further show that this escaping H is not in immediate balance with O escape, and therefore that short-term atmospheric dynamics can drive long-term variations in the oxidation balance and volatile content of planetary atmospheres. Future simultaneous observations by MAVEN, Mars Express, and the Trace Gas Orbiter may provide a direct test of this mechanism.

  12. New mass-spectrometric facility for the analysis of highly radioactive samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warmack, R.J.; Landau, L.; Christie, W.H.

    A new facility has been completed for the analysis of highly radioactive, gamma-emitting solid samples. A commercial spark-source mass spectrometer was adapted for remote handling and loading. Electrodes are prepared in a hot cell and transported to the adjacent lead-shielded source for analysis. The source was redesigned for ease of shielding, loading, and maintenance. Both solutions and residues from irradiated nuclear fuel dissolutions have been analyzed for elemental concentrations to < 1 ppM; isotopic data have also been obtained.

  13. Point Source X-Ray Lithography System for Sub-0.15 Micron Design Rules

    DTIC Science & Technology

    1998-05-22

    consist of a SAL developed stepper, an SRL developed Dense Plasma Focus , (DPF), X-Ray source, and a CXrL developed beam line. The system will be...existing machine that used spark gap switching, SRL has developed an all solid state driver and improved head electrode assembly for their dense plasma ... focus X-Ray source. Likewise, SAL has used their existing Model 4 stepper installed at CXrL as a design starting point, and has developed an advanced

  14. Chemistry and mineralogy of Martian dust: An explorer's primer

    NASA Technical Reports Server (NTRS)

    Gooding, James L.

    1991-01-01

    A summary of chemical and mineralogical properties of Martian surface dust is offered for the benefit of engineers or mission planners who are designing hardware or strategies for Mars surface exploration. For technical details and specialized explanations, references should be made to literature cited. Four sources used for information about Martian dust composition: (1) Experiments performed on the Mars surface by the Viking Landers 1 and 2 and Earth-based lab experiments attempting to duplicate these results; (2) Infrared spectrophotometry remotely performed from Mars orbit, mostly by Mariner 9; (3) Visible and infrared spectrophotometry remotely performed from Earth; and (4) Lab studies of the shergottite nakhlite chassignite (SNC) clan of meteorites, for which compelling evidence suggests origin on Mars. Source 1 is limited to fine grained sediments at the surface whereas 2 and 3 contain mixed information about surface dust (and associated rock) and atmospheric dust. Source 4 has provided surprisingly detailed information but investigations are still incomplete.

  15. Concept for Mars Volcanic Emission Life Scout

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This artist's rendition depicts a concept for a Mars orbiter that would scrutinize the martian atmosphere for chemical traces of life or environments supportive of life that might be present anywhere on the planet.

    The concept is named the Mars Volcanic Emission and Life Scout, or Marvel. It would equip a Mars orbiter with two types of instruments proven useful in studying Earth's atmosphere from Earth orbit. One, a solar occultation infrared spectrometer, would look sideways through Mars' atmosphere toward the setting or rising Sun for an extremely sensitive reading of what chemicals are in the air that sunlight passes through before hitting the instrument. The other, a submillimeter spectrometer would survey the atmosphere continuously, including during dust storms and polar night, to seek localized surface sources of the chemicals of interest. The infrared spectrometer has very high sensitivity for one chemical of great interest: methane, which is produced by many types of microbes, as well as by some volcanic sources. The submillimeter spectrometer has very high sensitivity for water vapor. Localized concentrations of water vapor in the atmosphere could identify places where subsurface water sources may be venting.

  16. The modification at CSNS ion source

    NASA Astrophysics Data System (ADS)

    Liu, S.; Ouyang, H.; Huang, T.; Xiao, Y.; Cao, X.; Lv, Y.; Xue, K.; Chen, W.

    2017-08-01

    The commissioning of CSNS front end has been finished. Above 15 mA beam intensity is obtained at the end of RFQ. For CSNS ion source, it is a type of penning surface plasma ion source, similar to ISIS ion source. To improve the operation stability and reduce spark rate, some modifications have been performed, including Penning field, extraction optics and post acceleration. PBGUNS is applied to optimize beam extraction. The co-extraction electrons are considered at PBGUNS simulation and various extracted structure are simulated aiming to make the beam through the extracted electrode without loss. The stability of ion source is improved further.

  17. Methanogens and Martian natural resources: Investigations regarding the possibility of biogenic methane on Mars

    NASA Astrophysics Data System (ADS)

    Chastain, Brendon Kelly

    Archaeal methanogens were suggested as terrestrial models of possible subsurface martian microbial life prior to the actual detection of methane in Mars' atmosphere. This idea gained even more interest after the methane on Mars was observed. However, the amount of methane detected was very small, and release of methane was localized and episodic. This led some scientists to doubt that an active or ancient biosphere could be the source of the methane. Moreover, even extremophilic methanogens have not been shown to metabolize in conditions exactly analogous to those known to be available on Mars. The following chapters present a realistic and viable mechanism that allows a large or ancient biosphere to be the original source of the observed methane, and they detail experimental work that was done in order to systematically investigate nutritional and conditional variables related to those that might be available in the martian subsurface. The results of the experimental work indicate that some components of Mars' regolith can support methanogenic metabolism without being detrimental to the organisms, and that certain known components of Mars' regolith can promote periods of methanogenic dormancy without being lethal to the methanogens. The results of the experimental studies also show that material known to exist at and near Mars' surface has the potential to supply electrons for biological methanogenesis and that methanogenic metabolism can occur even when artificial media, buffers, and reductants are omitted in order to create more Mars-relevant conditions. These findings may have implications regarding the viability of methanogenic organisms as a source of the observed methane and should assist future efforts to study methanogenic metabolism in conditions exactly analogous to those available in niches on Mars.

  18. Prospects of lean ignition with the quarter wave coaxial cavity igniter

    NASA Astrophysics Data System (ADS)

    Pertl, Franz Andreas Johannes

    New ignition sources are needed to operate the next generation of lean high efficiency internal combustion engines. A significant environmental and economic benefit could be obtained from these lean engines. Toward this goal, the quarter wave coaxial cavity resonator, QWCCR, igniter was examined. A detailed theoretical analysis of the resonator was performed relating geometric and material parameters to performance characteristics, such as resonator quality factor and developed tip electric field. The analysis provided for the construction and evaluation of a resonator for ignition testing. The evaluation consisted of ignition tests with liquefied-petroleum-gas (LPG) air mixtures of varying composition. The combustion of these mixtures was contained in a closed steel vessel with a precombustion pressure near one atmosphere. The resonator igniter was fired in this vessel with a nominal 150 W microwave pulse of varying duration, to determine ignition energy limits for various mixtures. The mixture compositions were determined by partial pressure measurement and the ideal gas law. Successful ignition was determined through observation of the combustion through a view port. The pulse and reflected microwave power were captured in real time with a high-speed digital storage oscilloscope. Ignition energies and power levels were calculated from these measurements. As a comparison, these ignition experiments were also carried out with a standard non-resistive spark plug, where gap voltage and current were captured for energy calculations. The results show that easily ignitable mixtures around stoichiometric and slightly rich compositions are ignitable with the QWCCR using the similar kinds of energies as the conventional spark plug in the low milli-Joule range. Energies for very lean mixtures could not be determined reliably for the QWCCR for this prototype test, but could be lower than that for a conventional spark. Given the capability of high power, high energy delivery, and opportunity for optimization, the QWCCR has the potential to deliver more energy per unit time than a conventional spark plug and thus should be considered be as a lean ignition source.

  19. Accoustic Localization of Breakdown in Radio Frequency Accelerating Cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, Peter Gwin

    Current designs for muon accelerators require high-gradient radio frequency (RF) cavities to be placed in solenoidal magnetic fields. These fields help contain and efficiently reduce the phase space volume of source muons in order to create a usable muon beam for collider and neutrino experiments. In this context and in general, the use of RF cavities in strong magnetic fields has its challenges. It has been found that placing normal conducting RF cavities in strong magnetic fields reduces the threshold at which RF cavity breakdown occurs. To aid the effort to study RF cavity breakdown in magnetic fields, it wouldmore » be helpful to have a diagnostic tool which can localize the source of breakdown sparks inside the cavity. These sparks generate thermal shocks to small regions of the inner cavity wall that can be detected and localized using microphones attached to the outer cavity surface. Details on RF cavity sound sources as well as the hardware, software, and algorithms used to localize the source of sound emitted from breakdown thermal shocks are presented. In addition, results from simulations and experiments on three RF cavities, namely the Aluminum Mock Cavity, the High-Pressure Cavity, and the Modular Cavity, are also given. These results demonstrate the validity and effectiveness of the described technique for acoustic localization of breakdown.« less

  20. Acoustic localization of breakdown in radio frequency accelerating cavities

    NASA Astrophysics Data System (ADS)

    Lane, Peter

    Current designs for muon accelerators require high-gradient radio frequency (RF) cavities to be placed in solenoidal magnetic fields. These fields help contain and efficiently reduce the phase space volume of source muons in order to create a usable muon beam for collider and neutrino experiments. In this context and in general, the use of RF cavities in strong magnetic fields has its challenges. It has been found that placing normal conducting RF cavities in strong magnetic fields reduces the threshold at which RF cavity breakdown occurs. To aid the effort to study RF cavity breakdown in magnetic fields, it would be helpful to have a diagnostic tool which can localize the source of breakdown sparks inside the cavity. These sparks generate thermal shocks to small regions of the inner cavity wall that can be detected and localized using microphones attached to the outer cavity surface. Details on RF cavity sound sources as well as the hardware, software, and algorithms used to localize the source of sound emitted from breakdown thermal shocks are presented. In addition, results from simulations and experiments on three RF cavities, namely the Aluminum Mock Cavity, the High-Pressure Cavity, and the Modular Cavity, are also given. These results demonstrate the validity and effectiveness of the described technique for acoustic localization of breakdown.

  1. Demonstration of Subscale Cermet Fuel Specimen Fabrication Approach Using Spark Plasma Sintering and Diffusion Bonding

    NASA Technical Reports Server (NTRS)

    Barnes, Marvin W.; Tucker, Dennis S.; Benensky, Kelsa M.

    2018-01-01

    Nuclear thermal propulsion (NTP) has the potential to expand the limits of human space exploration by enabling crewed missions to Mars and beyond. The viability of NTP hinges on the development of a robust nuclear fuel material that can perform in the harsh operating environment (> or = 2500K, reactive hydrogen) of a nuclear thermal rocket (NTR) engine. Efforts are ongoing to develop fuel material and to assemble fuel elements that will be stable during the service life of an NTR. Ceramic-metal (cermet) fuels are being actively pursued by NASA Marshall Space Flight Center (MSFC) due to their demonstrated high-temperature stability and hydrogen compatibility. Building on past cermet fuel development research, experiments were conducted to investigate a modern fabrication approach for cermet fuel elements. The experiments used consolidated tungsten (W)-60vol%zirconia (ZrO2) compacts that were formed via spark plasma sintering (SPS). The consolidated compacts were stacked and diffusion bonded to assess the integrity of the bond lines and internal cooling channel cladding. The assessment included hot hydrogen testing of the manufactured surrogate fuel and pure W for 45 minutes at 2500 K in the compact fuel element environmental test (CFEET) system. Performance of bonded W-ZrO2 rods was compared to bonded pure W rods to access bond line integrity and composite stability. Bonded surrogate fuels retained structural integrity throughout testing and incurred minimal mass loss.

  2. Comparison of aldehyde emissions simulation with FTIR measurements in the exhaust of a spark ignition engine fueled by ethanol

    NASA Astrophysics Data System (ADS)

    Zarante, Paola Helena Barros; Sodré, José Ricardo

    2018-07-01

    This work presents a numerical simulation model for aldehyde formation and exhaust emissions from ethanol-fueled spark ignition engines. The aldehyde simulation model was developed using FORTRAN software, with the input data obtained from the dedicated engine cycle simulation software AVL BOOST. The model calculates formaldehyde and acetaldehyde concentrations from post-flame partial oxidation of methane, ethane and unburned ethanol. The calculated values were compared with experimental data obtained from a mid-size sedan powered by a 1.4-l spark ignition engine, tested on a chassis dynamometer. Exhaust aldehyde concentrations were determined using a Fourier Transform Infrared (FTIR) Spectroscopy analyzer. In general, the results demonstrate that the concentrations of aldehydes and the source elements increased with engine speed and exhaust gas temperature. The measured acetaldehyde concentrations showed values from 3 to 6 times higher than formaldehyde in the range studied. The model could predict reasonably well the qualitative experimental trends, with the quantitative results showing a maximum discrepancy of 39% for acetaldehyde concentration and 21 ppm for exhaust formaldehyde.

  3. Comparison of aldehyde emissions simulation with FTIR measurements in the exhaust of a spark ignition engine fueled by ethanol

    NASA Astrophysics Data System (ADS)

    Zarante, Paola Helena Barros; Sodré, José Ricardo

    2018-02-01

    This work presents a numerical simulation model for aldehyde formation and exhaust emissions from ethanol-fueled spark ignition engines. The aldehyde simulation model was developed using FORTRAN software, with the input data obtained from the dedicated engine cycle simulation software AVL BOOST. The model calculates formaldehyde and acetaldehyde concentrations from post-flame partial oxidation of methane, ethane and unburned ethanol. The calculated values were compared with experimental data obtained from a mid-size sedan powered by a 1.4-l spark ignition engine, tested on a chassis dynamometer. Exhaust aldehyde concentrations were determined using a Fourier Transform Infrared (FTIR) Spectroscopy analyzer. In general, the results demonstrate that the concentrations of aldehydes and the source elements increased with engine speed and exhaust gas temperature. The measured acetaldehyde concentrations showed values from 3 to 6 times higher than formaldehyde in the range studied. The model could predict reasonably well the qualitative experimental trends, with the quantitative results showing a maximum discrepancy of 39% for acetaldehyde concentration and 21 ppm for exhaust formaldehyde.

  4. Mid-IR fiber optic sensors for internal combustion engines

    NASA Astrophysics Data System (ADS)

    Hall, Matthew J.

    1999-12-01

    Environmental regulations are driving development of cleaner spark ignition, diesel, and gas turbine engines. Emissions of unburned hydrocarbons, NOx, and CO can be affected by the characteristics of the mixing of the fuel with air in the engine, and by the amount of exhaust gas recirculated to the engine intake. Fiber optic sensors have been developed that can measure the local fuel concentration in the combustion chamber of a spark ignition engine near the spark plug. The sensors detect the absorption of 3.4 micrometer radiation corresponding to the strongest absorption band common to all hydrocarbons. The sensors have been applied to both liquid and gaseous hydrocarbon fuels, and liquid fuels injected directly into the engine combustion chamber. The sensors use white light sources and are designed to detect the absorption throughout the entire band minimizing calibration problems associated with pressure and temperature broadening. Other sensors can detect the concentration of CO2 in the engine intake manifold providing time-resolved measurement of exhaust gas recirculation (EGR). Proper EGR levels are critical for achieving low engine-out emissions of NOx while maintaining acceptable engine performance.

  5. Apparatus and method for tuned unsteady flow purging of high pulse rate spark gaps

    DOEpatents

    Thayer, III, William J.

    1990-01-01

    A spark gap switch apparatus is disclosed which is capable of operating at a high pulse rate which comprises an insulated housing; a pair of spaced apart electrodes each having one end thereof within a first bore formed in the housing and defining a spark gap therebetween; a pressure wave reflector in the first bore in the housing and spaced from the spark gap and capable of admitting purge flow; and a second enlarged bore contiguous with the first bore and spaced from the opposite side of the spark gap; whereby pressure waves generated during discharge of a spark across the spark gap will reflect off the wave reflector and back from the enlarged bore to the spark gap to clear from the spark gap hot gases residues generated during the discharge and simultaneously restore the gas density and pressure in the spark gap to its initial value.

  6. Measurements of some parameters of thermal sparks with respect to their ability to ignite aviation fuel/air mixtures

    NASA Technical Reports Server (NTRS)

    Haigh, S. J.; Hardwick, C. J.; Baldwin, R. E.

    1991-01-01

    A method used to generate thermal sparks for experimental purposes and methods by which parameters of the sparks, such as speed, size, and temperature, were measured are described. Values are given of the range of such parameters within these spark showers. Titanium sparks were used almost exclusively, since it is particles of this metal which are found to be ejected during simulation tests to carbon fiber composite (CFC) joints. Tests were then carried out in which titanium sparks and spark showers were injected into JP4/(AVTAG F40) mixtures with air. Single large sparks and dense showers of small sparks were found to be capable of causing ignition. Tests were then repeated using ethylene/air mixtures, which were found to be more easily ignited by thermal sparks than the JP4/ air mixtures.

  7. In Situ Resource Utilization (ISRU) Experiments for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Marone, Matt

    2005-01-01

    In situ resource utilization can best be described as living off the land. In our case the land is the planet Mars. ISRU is based on the idea that some fraction of the consumables, life support and propellant materials do not have to be flown from earth. Rather, they can be manufactured or extracted from resources already present on Mars. The primary resources on Mars are the atmosphere, polar caps and regolith. The atmosphere of Mars is mostly carbon dioxide as shown in the table below. The proportion of oxygen on the other hand is quite small. Still, there is quite a bit of oxygen in the Martian atmosphere, but it is unfortunately tied up with carbon. Thus, one of the goals of ISRU is the separation of breathable oxygen from the carbon dioxide. Several means of separation have been proposed. We have begun experiments on another approach for production of oxygen with carbon monoxide as a useful by product. Our work on a CO2 separator is described later in this report. Regolith melting is another means of obtaining materials. Two materials of interest are iron and silicon. Iron oxide is plentiful on Mars and is of obvious importance for structural components. Silicon is the foundation of solid state devices. Power generation on Mars may be accomplished using silicon solar cells. There is discussion of the feasibility of in situ production of solar cells. This would require a means of extracting silicon from the regolith. We have conducted several experiments concerning melting and glassification of the Mars soil simulant. Other summer faculty fellows have tried various means of processing the stimulant material. These include furnace melting, microwave melting and laser ablation. We have conducted several furnace melting experiments in both air and carbon dioxide environments. We have also carried out experiments to test spark melting in a carbon dioxide atmosphere. These experiments suggest the possibility of using arc melting in a reducing atmosphere. It is important to keep in mind that we are working with a soil stimulant. Any simulant, no matter how chemically similar it is to Martian regolith, may differ in mineralogy. The underlying assumption in this work is that once a glass is formed, any differences between simulant and regolith are unimportant. The exact means of forming the glass do, however, depend on the mineralogy of the regolith. A sample return mission is required to help answer these questions.

  8. The early thermal evolution of Mars

    NASA Astrophysics Data System (ADS)

    Bhatia, G. K.; Sahijpal, S.

    2016-01-01

    Hf-W isotopic systematics of Martian meteorites have provided evidence for the early accretion and rapid core formation of Mars. We present the results of numerical simulations performed to study the early thermal evolution and planetary scale differentiation of Mars. The simulations are confined to the initial 50 Myr (Ma) of the formation of solar system. The accretion energy produced during the growth of Mars and the decay energy due to the short-lived radio-nuclides 26Al, 60Fe, and the long-lived nuclides, 40K, 235U, 238U, and 232Th are incorporated as the heat sources for the thermal evolution of Mars. During the core-mantle differentiation of Mars, the molten metallic blobs were numerically moved using Stoke's law toward the center with descent velocity that depends on the local acceleration due to gravity. Apart from the accretion and the radioactive heat energies, the gravitational energy produced during the differentiation of Mars and the associated heat transfer is also parametrically incorporated in the present work to make an assessment of its contribution to the early thermal evolution of Mars. We conclude that the accretion energy alone cannot produce widespread melting and differentiation of Mars even with an efficient consumption of the accretion energy. This makes 26Al the prime source for the heating and planetary scale differentiation of Mars. We demonstrate a rapid accretion and core-mantle differentiation of Mars within the initial ~1.5 Myr. This is consistent with the chronological records of Martian meteorites.

  9. Pressure threshold for shock wave induced renal hemorrhage.

    PubMed

    Mayer, R; Schenk, E; Child, S; Norton, S; Cox, C; Hartman, C; Cox, C; Carstensen, E

    1990-12-01

    Studies were performed with an interest in determining a pressure threshold for extracorporeal shock wave induced renal damage. Histological evidence of intraparenchymal hemorrhage was used as an indicator of tissue trauma. Depilated C3H mice were anesthetized and placed on a special frame to enhance visualization and treatment of the kidneys in situ. A Wolf electrohydraulic generator and 9 French probe designed for endoscopic use were utilized to expose the kidneys to 10 double spherically divergent shock waves. Measurements of the shock waves revealed two positive pressure peaks of similar magnitude for each spark discharge. The kidneys were exposed to different peak pressures by choice of distance from the spark source and were removed immediately after treatment for histologic processing. A dose response was noted with severe corticomedullary damage apparent following 15 to 20 MPa shocks. Hemorrhage was more apparent in the medulla where evidence of damage could be seen following pressures as low as three to five MPa. When a latex membrane was interposed to prevent possible collapse of the initial bubble from the spark source against the skin surface, histological evaluation revealed substantial reduction of severe tissue damage associated with the highest pressures tested, 20 MPa. However, the threshold level for evidence of hemorrhage remained about three to five MPa. Hydrophonic measurements indicated that the membrane allowed transmission of the acoustic shock waves and suggested that collapse of the bubble generated by electrohydraulic probes may have local effects due to a cavitation-like mechanism.

  10. Investigating Causality Between Interacting Brain Areas with Multivariate Autoregressive Models of MEG Sensor Data

    PubMed Central

    Michalareas, George; Schoffelen, Jan-Mathijs; Paterson, Gavin; Gross, Joachim

    2013-01-01

    Abstract In this work, we investigate the feasibility to estimating causal interactions between brain regions based on multivariate autoregressive models (MAR models) fitted to magnetoencephalographic (MEG) sensor measurements. We first demonstrate the theoretical feasibility of estimating source level causal interactions after projection of the sensor-level model coefficients onto the locations of the neural sources. Next, we show with simulated MEG data that causality, as measured by partial directed coherence (PDC), can be correctly reconstructed if the locations of the interacting brain areas are known. We further demonstrate, if a very large number of brain voxels is considered as potential activation sources, that PDC as a measure to reconstruct causal interactions is less accurate. In such case the MAR model coefficients alone contain meaningful causality information. The proposed method overcomes the problems of model nonrobustness and large computation times encountered during causality analysis by existing methods. These methods first project MEG sensor time-series onto a large number of brain locations after which the MAR model is built on this large number of source-level time-series. Instead, through this work, we demonstrate that by building the MAR model on the sensor-level and then projecting only the MAR coefficients in source space, the true casual pathways are recovered even when a very large number of locations are considered as sources. The main contribution of this work is that by this methodology entire brain causality maps can be efficiently derived without any a priori selection of regions of interest. Hum Brain Mapp, 2013. © 2012 Wiley Periodicals, Inc. PMID:22328419

  11. THE BERKELEY DATA ANALYSIS SYSTEM (BDAS): AN OPEN SOURCE PLATFORM FOR BIG DATA ANALYTICS

    DTIC Science & Technology

    2017-09-01

    Evan Sparks, Oliver Zahn, Michael J. Franklin, David A. Patterson, Saul Perlmutter. Scientific Computing Meets Big Data Technology: An Astronomy ...Processing Astronomy Imagery Using Big Data Technology. IEEE Transaction on Big Data, 2016. Approved for Public Release; Distribution Unlimited. 22 [93

  12. [Fire in the operating room].

    PubMed

    Koljonen, Virve; Mäkisalo, Heikki

    2013-01-01

    This article reviews the recent literature on operating room fires. Most of the reported cases have occurred from a spark from an ignition source in an oxygen-enriched atmosphere. Fire requires the presence of three components which all are ample in the operating room: heat, flammable materials or flammable gases.

  13. 50-500 MeV observations of LMC supernova 1987A

    NASA Astrophysics Data System (ADS)

    Summer, T. J.; Rochester, G. K.; Sood, R. K.; Thomas, J.; Waldron, L.; Manchanda, R. K.; Frye, G.; Jenkins, T.; Koga, R.; Staubert, R.; Kendziorra, E.; Ubertini, P.; Bazzano, A.; La Padula, C.

    Since the discovery of the supernova outburst in the LMC in 1987, two attempts (on day 55 and day 407) have been made to measure the high energy gamma-ray flux in the range 50-500 MeV, by using a balloon-borne spark chamber telescope. On day 55, no positive signal was seen from the source. A 3 sigma upper limit of 2.9 x 10 to the -5th ph/sq cm s was obtained after the analysis of the spark chamber data. Preliminary analysis of the quick look data obtained in the second flight shows that the gamma-ray flux even on day 407 was less than 9 x 10 to the -4th ph/sq cm s (3 sigma).

  14. Comparing the contributions of ionospheric outflow and high-altitude production to O+ loss at Mars

    NASA Astrophysics Data System (ADS)

    Liemohn, Michael; Curry, Shannon; Fang, Xiaohua; Johnson, Blake; Fraenz, Markus; Ma, Yingjuan

    2013-04-01

    The Mars total O+ escape rate is highly dependent on both the ionospheric and high-altitude source terms. Because of their different source locations, they appear in velocity space distributions as distinct populations. The Mars Test Particle model is used (with background parameters from the BATS-R-US magnetohydrodynamic code) to simulate the transport of ions in the near-Mars space environment. Because it is a collisionless model, the MTP's inner boundary is placed at 300 km altitude for this study. The MHD values at this altitude are used to define an ionospheric outflow source of ions for the MTP. The resulting loss distributions (in both real and velocity space) from this ionospheric source term are compared against those from high-altitude ionization mechanisms, in particular photoionization, charge exchange, and electron impact ionization, each of which have their own (albeit overlapping) source regions. In subsequent simulations, the MHD values defining the ionospheric outflow are systematically varied to parametrically explore possible ionospheric outflow scenarios. For the nominal MHD ionospheric outflow settings, this source contributes only 10% to the total O+ loss rate, nearly all via the central tail region. There is very little dependence of this percentage on the initial temperature, but a change in the initial density or bulk velocity directly alters this loss through the central tail. However, a density or bulk velocity increase of a factor of 10 makes the ionospheric outflow loss comparable in magnitude to the loss from the combined high-altitude sources. The spatial and velocity space distributions of escaping O+ are examined and compared for the various source terms, identifying features specific to each ion source mechanism. These results are applied to a specific Mars Express orbit and used to interpret high-altitude observations from the ion mass analyzer onboard MEX.

  15. Project SQUID. Annual Program Report

    DTIC Science & Technology

    1949-01-01

    hydrogen had previously been observed by Taylor and Salley, but no similar data on the thermal reaction were available. The use of a spark source of... Brayton cycle. The process a-b is the adiabatic ram compression obtained by virtue of flight speed, and is the same as that experienced by a ram jet

  16. Apparatus Notes.

    ERIC Educational Resources Information Center

    Eaton, Bruce G., Ed.

    1979-01-01

    Describes the following: a low-pressure sodium light source; a design of hot cathodes for plasma and electron physics experiments; a demonstration cart for a physics of sound course; Bernoulli force using coffee cups; a spark recording for the linear air track; and a demonstration of the effect of altering the cavity resonance of a violin. (GA)

  17. Effects of cold temperature and ethanol content on VOC emissions from light-duty gasoline vehicles

    EPA Science Inventory

    Emissions of speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs), were measured in vehicle exhaust from three light-duty spark ignition vehicles operating on summer and winter grade gasoline (E0) and ethanol blended (E10 and E85) fuels. Vehicle...

  18. Enhancing News Literacy

    ERIC Educational Resources Information Center

    Quinn, Lena Consolini

    2009-01-01

    A revolution in media has sparked an explosion of information, thanks largely to the Internet. Despite the apparent gains in diversity of perspective and ease of access to information, the concern over the reliability of sources extends particularly to youth consumers and their ability to decipher the truth amidst this vast array of media…

  19. DECISION-MAKING SPARK CHAMBERS,

    DTIC Science & Technology

    of scattering of a particle and coplanarity of two particles. Decision - making spark chambers are used to trigger an optical spark chamber of two...the position of a spark and the separation of two sparks. Many other kinds of spatial decisions can be made with these devices such as the recognition

  20. Communications with Mars During Periods of Solar Conjunction: Initial Study Results

    NASA Astrophysics Data System (ADS)

    Morabito, D.; Hastrup, R.

    2001-07-01

    During the initial phase of the human exploration of Mars, a reliable communications link to and from Earth will be required. The direct link can easily be maintained during most of the 780-day Earth-Mars synodic period. However, during periods in which the direct Earth-Mars link encounters increased intervening charged particles during superior solar conjunctions of Mars, the resultant effects are expected to corrupt the data signals to varying degrees. The purpose of this article is to explore possible strategies, provide recommendations, and identify options for communicating over this link during periods of solar conjunctions. A significant improvement in telemetry data return can be realized by using the higher frequency 32 GHz (Ka-band), which is less susceptible to solar effects. During the era of the onset of probable human exploration of Mars, six superior conjunctions were identified from 2015 to 2026. For five of these six conjunctions, where the signal source is not occulted by the disk of the Sun, continuous communications with Mars should be achievable. Only during the superior conjunction of 2023 is the signal source at Mars expected to lie behind the disk of the Sun for about one day and within two solar radii (0. 5 deg) for about three days.

  1. Concept for Mars Volcanic Emission Life Scout (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This artist's rendition depicts a concept for a Mars orbiter that would scrutinize the martian atmosphere for chemical traces of life or environments supportive of life that might be present anywhere on the planet. The illustration is presented as a three-dimensional stereo view.

    The concept is named the Mars Volcanic Emission and Life Scout, or Marvel. It would equip a Mars orbiter with two types of instruments proven useful in studying Earth's atmosphere from Earth orbit. One, a solar occultation infrared spectrometer, would look sideways through Mars' atmosphere toward the setting or rising Sun for an extremely sensitive reading of what chemicals are in the air that sunlight passes through before hitting the instrument. The other, a submillimeter spectrometer would survey the atmosphere continuously, including during dust storms and polar night, to seek localized surface sources of the chemicals of interest. The infrared spectrometer has very high sensitivity for one chemical of great interest: methane, which is produced by many types of microbes, as well as by some volcanic sources. The submillimeter spectrometer has very high sensitivity for water vapor. Localized concentrations of water vapor in the atmosphere could identify places where subsurface water sources may be venting.

  2. The Detection of Evolved Oxygen from the Rocknest Eolian Bedform Material by the Sample Analysis at Mars(SAM) instrument at the Mars Curiosity Landing Site

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Archer, D.; Ming, D.; Eigenbrode, J. L.; Franz, H.; Glavin, D. P.; McAdam, A.; Mahaffy, P.; Stern, J.; Navarro-Gonzalex, R.; hide

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover detected an O2 gas release from the Rocknest eolain bedform (Fig. 1). The detection of perchlorate (ClO4-) by the Mars Phoenix Lander s Wet Chemistry Laboratory (WCL) [1] suggests that perchlorate is a possible candidate for evolved O2 release detected by SAM. The perchlorate would also serve as a source of chlorine in the chlorinated hydrocarbons detected by the SAM quadrupole mass spectrometer (QMS) and gas chromatography/mass spectrometer (GCMS) [2,3]. Chlorates (ClO3-) [4,5] and/or superoxides [6] may also be sources of evolved O2 from the Rocknest materials. The work objectives are to 1) evaluate the O2 release temperatures from Rocknest materials, 2) compare these O2 release temperatures with a series of perchlorates and chlorates, and 3) evaluate superoxide O2- sources and possible perchlorate interactions with other Rocknest phases during QMS analysis.

  3. Fluvial geomorphology on Earth-like planetary surfaces: A review

    PubMed Central

    Baker, Victor R.; Hamilton, Christopher W.; Burr, Devon M.; Gulick, Virginia C.; Komatsu, Goro; Luo, Wei; Rice, James W.; Rodriguez, J.A.P.

    2017-01-01

    Morphological evidence for ancient channelized flows (fluvial and fluvial-like landforms) exists on the surfaces of all of the inner planets and on some of the satellites of the Solar System. In some cases, the relevant fluid flows are related to a planetary evolution that involves the global cycling of a volatile component (water for Earth and Mars; methane for Saturn’s moon Titan). In other cases, as on Mercury, Venus, Earth’s moon, and Jupiter’s moon Io, the flows were of highly fluid lava. The discovery, in 1972, of what are now known to be fluvial channels and valleys on Mars sparked a major controversy over the role of water in shaping the surface of that planet. The recognition of the fluvial character of these features has opened unresolved fundamental questions about the geological history of water on Mars, including the presence of an ancient ocean and the operation of a hydrological cycle during the earliest phases of planetary history. Other fundamental questions posed by fluvial and fluvial-like features on planetary bodies include the possible erosive action of large-scale outpourings of very fluid lavas, such as those that may have produced the remarkable canali forms on Venus; the ability of exotic fluids, such as methane, to create fluvial-like landforms, as observed on Saturn’s moon, Titan; and the nature of sedimentation and erosion under different conditions of planetary surface gravity. Planetary fluvial geomorphology also illustrates fundamental epistemological and methodological issues, including the role of analogy in geomorphological/geological inquiry. PMID:29176917

  4. Experimental Investigation of Augmented Spark Ignition of a LO2/LCH4 Reaction Control Engine at Altitude Conditions

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of nontoxic propellants in future exploration vehicles would enable safer, more cost-effective mission scenarios. One promising green alternative to existing hypergols is liquid methane (LCH4) with liquid oxygen (LO2). A 100 lbf LO2/LCH4 engine was developed under the NASA Propulsion and Cryogenic Advanced Development project and tested at the NASA Glenn Research Center Altitude Combustion Stand in a low pressure environment. High ignition energy is a perceived drawback of this propellant combination; so this ignition margin test program examined ignition performance versus delivered spark energy. Sensitivity of ignition to spark timing and repetition rate was also explored. Three different exciter units were used with the engine s augmented (torch) igniter. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks. This suggests that rising pressure and flow rate increase spark impedance and may at some point compromise an exciter s ability to complete each spark. The reduced spark energies of such quenched deliveries resulted in more erratic ignitions, decreasing ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1 to 6 mJ, though multiple, similarly timed sparks of 55 to 75 mJ were required for reliable ignition. Delayed spark application and reduced spark repetition rate both correlated with late and occasional failed ignitions. An optimum time interval for spark application and ignition therefore coincides with propellant introduction to the igniter.

  5. Mars survival handbook: where to find water

    NASA Astrophysics Data System (ADS)

    Marra, Wouter A.

    2015-04-01

    Most famous observations of Mars are those of Giovianni Schiaparelli in the late 19th century. His maps contain many linear features across the surface of Mars, which he called `canali'. The mis-translation from the Italian `canali', meaning channel, to the English `canal', man-made infrastructure, led to wild speculations of an advanced species struggling to survive on a planet with diminishing natural resources. Later research has proven this is not the case, at least not for Mars. Nevertheless, the possible existence of life and habitability of Mars has inspired further investigations, interplanetary missions and inevitably at some point human exploration. While no canals exist on Mars, there is widespread evidence for occurrence of liquid water a long time ago on this planet far, far away. The ancient landscapes of Mars may provide most valuable clues for answering the ultimate question about life, the universe and everything, but Mars today is a terrible place to be as it is extremely cold and dry; there may be life, but not as we know it. Nevertheless, many humans have volunteered to go there. Some call them mad, some call them heroes, but perhaps they just want to flee from our planet facing floods, droughts and climate change? But unless we find a good source of water for these explorers, the climate on Mars will certainly cause a swift EXTERMINATION! I have written my PhD thesis on groundwater outflow landscapes on Mars. I will review some of the most spectacular landscapes on Mars, experiments I have done in the past years to explain these landscapes and their hydrological and climate implications. Although the outlook is not so hopeful for early colonist, I will share my views on the possible sources of water on Mars today.

  6. A Roadmap for using Agile Development in a Traditional System

    NASA Technical Reports Server (NTRS)

    Streiffert, Barbara; Starbird, Thomas

    2006-01-01

    I. Ensemble Development Group: a) Produces activity planning software for in spacecraft; b) Built on Eclipse Rich Client Platform (open source development and runtime software); c) Funded by multiple sources including the Mars Technology Program; d) Incorporated the use of Agile Development. II. Next Generation Uplink Planning System: a) Researches the Activity Planning and Sequencing Subsystem for Mars Science Laboratory (APSS); b) APSS includes Ensemble, Activity Modeling, Constraint Checking, Command Editing and Sequencing tools plus other uplink generation utilities; c) Funded by the Mars Technology Program; d) Integrates all of the tools for APSS.

  7. Design Study for a Mars Geyser Hopper

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Oleson, Steven J.; McGuire, Melissa

    2012-01-01

    The Mars Geyser Hopper is a design reference missions (DRMs) for a Discovery-class spacecraft using Advanced Stirling Radioisotope Generator (ASRG) power source. The Geyser Hopper is a mission concept that will investigate the springtime carbon-dioxide geysers found in regions around the south pole of Mars. The Geyser Hopper design uses Phoenix heritage systems and approach, but uses a single ASRG as the power source, rather than twin solar arrays, and is designed to last over a one-year stay on the South Pole. The spacecraft will land at a target landing area near the south pole of Mars, and have the ability to "hop" after a summertime landing to reposition itself close to a geyser site, and wait through the winter until the first sunlight of spring to witness first-hand the geyser phenomenon.

  8. Spark-Timing Control Based on Correlation of Maximum-Economy Spark Timing, Flame-front Travel, and Cylinder-Pressure Rise

    NASA Technical Reports Server (NTRS)

    Cook, Harvey A; Heinicke, Orville H; Haynie, William H

    1947-01-01

    An investigation was conducted on a full-scale air-cooled cylinder in order to establish an effective means of maintaining maximum-economy spark timing with varying engine operating conditions. Variable fuel-air-ratio runs were conducted in which relations were determined between the spark travel, and cylinder-pressure rise. An instrument for controlling spark timing was developed that automatically maintained maximum-economy spark timing with varying engine operating conditions. The instrument also indicated the occurrence of preignition.

  9. Lifecycle of laser-produced air sparks

    DOE PAGES

    Harilal, S. S.; Brumfield, B. E.; Phillips, M. C.

    2015-06-03

    Here, we investigated the lifecycle of laser-generated air sparks or plasmas using multiple plasma diagnostic tools. The sparks were generated by focusing the fundamental radiation from an Nd:YAG laser in air, and studies included early and late time spark dynamics, decoupling of the shock wave from the plasma core, emission from the spark kernel, cold gas excitation by UV radiation, shock waves produced by the air spark, and the spark's final decay and turbulence formation. The shadowgraphic and self-emission images showed similar spark morphology at earlier and late times of its lifecycle; however, significant differences are seen in the midlifemore » images. Spectroscopic studies in the visible region showed intense blackbody-type radiation at early times followed by clearly resolved ionic, atomic, and molecular emission. The detected spectrum at late times clearly contained emission from both CN and N 2 +. Additional spectral features have been identified at late times due to emission from O and N atoms, indicating some degree of molecular dissociation and excitation. Detailed spatially and temporally resolved emission analysis provides insight about various physical mechanisms leading to molecular and atomic emission by air sparks, including spark plasma excitation, heating of cold air by UV radiation emitted by the spark, and shock-heating.« less

  10. Lifecycle of laser-produced air sparks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harilal, S. S., E-mail: hari@pnnl.gov; Brumfield, B. E.; Phillips, M. C.

    2015-06-15

    We investigated the lifecycle of laser-generated air sparks or plasmas using multiple plasma diagnostic tools. The sparks were generated by focusing the fundamental radiation from an Nd:YAG laser in air, and studies included early and late time spark dynamics, decoupling of the shock wave from the plasma core, emission from the spark kernel, cold gas excitation by UV radiation, shock waves produced by the air spark, and the spark's final decay and turbulence formation. The shadowgraphic and self-emission images showed similar spark morphology at earlier and late times of its lifecycle; however, significant differences are seen in the midlife images.more » Spectroscopic studies in the visible region showed intense blackbody-type radiation at early times followed by clearly resolved ionic, atomic, and molecular emission. The detected spectrum at late times clearly contained emission from both CN and N{sub 2}{sup +}. Additional spectral features have been identified at late times due to emission from O and N atoms, indicating some degree of molecular dissociation and excitation. Detailed spatially and temporally resolved emission analysis provides insight about various physical mechanisms leading to molecular and atomic emission by air sparks, including spark plasma excitation, heating of cold air by UV radiation emitted by the spark, and shock-heating.« less

  11. Noise source and reactor stability estimation in a boiling water reactor using a multivariate autoregressive model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanemoto, S.; Andoh, Y.; Sandoz, S.A.

    1984-10-01

    A method for evaluating reactor stability in boiling water reactors has been developed. The method is based on multivariate autoregressive (M-AR) modeling of steady-state neutron and process noise signals. In this method, two kinds of power spectral densities (PSDs) for the measured neutron signal and the corresponding noise source signal are separately identified by the M-AR modeling. The closed- and open-loop stability parameters are evaluated from these PSDs. The method is applied to actual plant noise data that were measured together with artificial perturbation test data. Stability parameters identified from noise data are compared to those from perturbation test data,more » and it is shown that both results are in good agreement. In addition to these stability estimations, driving noise sources for the neutron signal are evaluated by the M-AR modeling. Contributions from void, core flow, and pressure noise sources are quantitatively evaluated, and the void noise source is shown to be the most dominant.« less

  12. Integration and Utilization of Nuclear Systems on the Moon and Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houts, Michael G.; Schmidt, George R.; Bragg-Sitton, Shannon

    2006-01-20

    Over the past five decades numerous studies have identified nuclear energy as an enhancing or enabling technology for planetary surface exploration missions. This includes both radioisotope and fission sources for providing both heat and electricity. Nuclear energy sources were used to provide electricity on Apollo missions 12, 14, 15, 16, and 17, and on the Mars Viking landers. Very small nuclear energy sources were used to provide heat on the Mars Pathfinder, Spirit, and Opportunity rovers. Research has been performed at NASA MSFC to help assess potential issues associated with surface nuclear energy sources, and to generate data that couldmore » be useful to a future program. Research areas include System Integration, use of Regolith as Radiation Shielding, Waste Heat Rejection, Surface Environmental Effects on the Integrated System, Thermal Simulators, Surface System Integration / Interface / Interaction Testing, End-to-End Breadboard Development, Advanced Materials Development, Surface Energy Source Coolants, and Planetary Surface System Thermal Management and Control. This paper provides a status update on several of these research areas.« less

  13. Mars Global Reference Atmospheric Model 2001 Version (Mars-GRAM 2001): Users Guide

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Johnson, D. L.

    2001-01-01

    This document presents Mars Global Reference Atmospheric Model 2001 Version (Mars-GRAM 2001) and its new features. As with the previous version (mars-2000), all parameterizations fro temperature, pressure, density, and winds versus height, latitude, longitude, time of day, and season (Ls) use input data tables from NASA Ames Mars General Circulation Model (MGCM) for the surface through 80-km altitude and the University of Arizona Mars Thermospheric General Circulation Model (MTGCM) for 80 to 70 km. Mars-GRAM 2001 is based on topography from the Mars Orbiter Laser Altimeter (MOLA) and includes new MGCM data at the topographic surface. A new auxiliary program allows Mars-GRAM output to be used to compute shortwave (solar) and longwave (thermal) radiation at the surface and top of atmosphere. This memorandum includes instructions on obtaining Mars-GRAN source code and data files and for running the program. It also provides sample input and output and an example for incorporating Mars-GRAM as an atmospheric subroutine in a trajectory code.

  14. Ultraviolet radiation induced discharge laser

    DOEpatents

    Gilson, Verle A.; Schriever, Richard L.; Shearer, James W.

    1978-01-01

    An ultraviolet radiation source associated with a suitable cathode-anode electrode structure, disposed in a gas-filled cavity of a high pressure pulsed laser, such as a transverse electric atmosphere (TEA) laser, to achieve free electron production in the gas by photoelectric interaction between ultraviolet radiation and the cathode prior to the gas-exciting cathode-to-anode electrical discharge, thereby providing volume ionization of the gas. The ultraviolet radiation is produced by a light source or by a spark discharge.

  15. A Grazing Incidence Spectrograph as Applied to Vacuum Ultraviolet, Soft X-Ray, Pulsed Plasma Sources.

    DTIC Science & Technology

    A 2.2-meter variable angle of incidence grazing incidence spectrograph is described for photographic recording of spectra down to 10A. Also a method for determining the absolute total fluence from a pulsed plasma source, knowing the absolute sensitivity of the instrument, is described. Spectra are presented from a low-inductance sliding spark gap and a 20-kj dense plasma focus . A program for spectram analysis is included. (Modified author abstract)

  16. The Nitrate/(Per)Chlorate Relationship on Mars

    NASA Technical Reports Server (NTRS)

    Stern, Jennifer C.; Sutter, Brad; Jackson, W. Andrew; Navarro-Gonzalez, Rafael; McKay, Christopher P.; Ming, Douglas W.; Archer, P. Douglas; Mahaffy, Paul R.

    2017-01-01

    Nitrate was recently detected in Gale Crater sediments on Mars at abundances up to approximately 600 mg/kg, confirming predictions of its presence at abundances consistent with models based on impact-generated nitrate and other sources of fixed nitrogen. Terrestrial Mars analogs, Mars meteorites, and other solar system materials help establish a context for interpreting in situ nitrate measurements on Mars, particularly in relation to other cooccuring salts. We compare the relative abundance of nitrates to oxychlorine (chlorate and/or perchlorate, hereafter (per)chlorate) salts on Mars and Earth. The nitrate/(per)chlorate ratio on Mars is greater than 1, significantly lower than on Earth (nitrate/(per)chlorate greater than 10(exp.3)), suggesting not only the absence of biological activity but also different (per)chlorate formation mechanisms on Mars than on Earth.

  17. Low upper limit to methane abundance on Mars.

    PubMed

    Webster, Christopher R; Mahaffy, Paul R; Atreya, Sushil K; Flesch, Gregory J; Farley, Kenneth A

    2013-10-18

    By analogy with Earth, methane in the Martian atmosphere is a potential signature of ongoing or past biological activity. During the past decade, Earth-based telescopic observations reported "plumes" of methane of tens of parts per billion by volume (ppbv), and those from Mars orbit showed localized patches, prompting speculation of sources from subsurface bacteria or nonbiological sources. From in situ measurements made with the Tunable Laser Spectrometer (TLS) on Curiosity using a distinctive spectral pattern specific to methane, we report no detection of atmospheric methane with a measured value of 0.18 ± 0.67 ppbv corresponding to an upper limit of only 1.3 ppbv (95% confidence level), which reduces the probability of current methanogenic microbial activity on Mars and limits the recent contribution from extraplanetary and geologic sources.

  18. Rotating arc spark plug

    DOEpatents

    Whealton, John H.; Tsai, Chin-Chi

    2003-05-27

    A spark plug device includes a structure for modification of an arc, the modification including arc rotation. The spark plug can be used in a combustion engine to reduce emissions and/or improve fuel economy. A method for operating a spark plug and a combustion engine having the spark plug device includes the step of modifying an arc, the modifying including rotating the arc.

  19. The Implementation and Demonstration of Flame Detection and Wireless Communications in a Consumer Appliance to Improve Fire Detection Capabilities

    DTIC Science & Technology

    2007-06-08

    Temperature Detectors (RTDs), thermistors , bimetallic devices, liquid expansion devices, and change-of-state devices. Liquid expansion, change-of...sterilization lamps, halogen lamps, direct or reflected sunlight on the sensor, electrical or welding sparks, radiation sources and high 7 Figure 1, Standard

  20. 75 FR 3183 - Approval and Promulgation of Air Quality Implementation Plan: Kentucky; Approval Section 110(a)(1...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ...) Federal motor vehicle control program; (2) fleet turnover of automobiles; (3) low reid vapor pressure of... vehicles standard; (6) large nonroad diesel engines rule; (7) nonroad spark ignition engines and recreational engines standard; (8) point source emission reductions; (9) Air Products and Chemicals -21-157...

  1. "The Source": An Alternate Reality Game to Spark STEM Interest and Learning among Underrepresented Youth

    ERIC Educational Resources Information Center

    Gilliam, Melissa; Bouris, Alida; Hill, Brandon; Jagoda, Patrick

    2016-01-01

    Alternate Reality Games (ARGs) are multiplayer role-playing games that use the real world as their primary platform and incorporate a range of media, including video, audio, email, mobile technologies, websites, live performance, and social networks. This paper describes the development, implementation, and player reception of "The…

  2. Automation System Marketplace 2008: Opportunity out of Turmoil

    ERIC Educational Resources Information Center

    Breeding, Marshall

    2008-01-01

    This article describes the opportunities out of the 2007 turmoil precipitated by the dramatic shifts that redefined the industry in 2006. The turmoil made companies that avoided major business transitions more attractive and sparked explosive interest in open source alternatives. Some companies held a steady course and benefited from the fallout.…

  3. EFFECTS OF RESIDUAL ORGANIC MATTER ON ELEMENTAL ANALYSES BY SPARK SOURCE MASS SPECTROGRAPHY (SSMS)

    EPA Science Inventory

    The report gives results of research to define the effect of organics in SSMS and to evaluate several sample preparation methods for their removal. Samples of known organic content were fabricated by diluting NBS SRM 1633 fly ash (spiked with several trace elements) with a mixtur...

  4. Modeling of SSME fuel preburner ASI

    NASA Technical Reports Server (NTRS)

    Liang, Pak-Yan

    1992-01-01

    The Augmented Spark Ignitor (ASI) is a LOX/H2/electrical spark system that functions as an ignition source and sustainer for stable combustion. It is used in the Space Shuttle Main Engine (SSME) preburner combustor, the SMME main combustion chamber, the J-1 and J-2 engines, as well as proposed designs of the Space Transportation Main Engine (STME) main combustor and gas generators. An undertaking to characterize the flow of the ASI is documented. The code consists of a marriage of the Implicit-Continuous Eulerian/Arbitrary Lagrangian Code (ICE-ALE) Navier-Stokes solver with the Volume-of-Fluid (VOF) Methodology for tracking of two immiscible fluids with sharp discontinuities. Spray droplets are represented by discrete numerical parcels tracked in a Lagrangian fashion. Numerous physical sub-models are also incorporated to describe the processes of atomization, droplet collision, droplet breakup, evaporation, and droplet and gas phase turbulence. An equilibrium chemistry model accounting for 8 active gaseous species is also used. Taking advantage of this symmetry plane, half of the actual ASI is modeled with a 3-D grid that geometrically resolves the LOX ports, the spark plug locations, and the hydrogen injection slots.

  5. Spark Ignition Characteristics of a L02/LCH4 Engine at Altitude Conditions

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of non-toxic propellants in future exploration vehicles would enable safer, more cost effective mission scenarios. One promising "green" alternative to existing hypergols is liquid methane/liquid oxygen. To demonstrate performance and prove feasibility of this propellant combination, a 100lbf LO2/LCH4 engine was developed and tested under the NASA Propulsion and Cryogenic Advanced Development (PCAD) project. Since high ignition energy is a perceived drawback of this propellant combination, a test program was performed to explore ignition performance and reliability versus delivered spark energy. The sensitivity of ignition to spark timing and repetition rate was also examined. Three different exciter units were used with the engine s augmented (torch) igniter. Propellant temperature was also varied within the liquid range. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks (in quiescent, room air). The escalating pressure and flow environment increases spark impedance and may at some point compromise an exciter s ability to deliver a spark. Reduced spark energies of these sparks result in more erratic ignitions and adversely affect ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1-6mJ, though multiple, similarly timed sparks of 55-75mJ were required for reliable ignition. An optimum time interval for spark application and ignition coincided with propellant introduction to the igniter and engine. Shifts of ignition timing were manifested by changes in the characteristics of the resulting ignition.

  6. Spark Ignition Characteristics of a LO2/LCH4 Engine at Altitude Conditions

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of non-toxic propellants in future exploration vehicles would enable safer, more cost effective mission scenarios. One promising "green" alternative to existing hypergols is liquid methane/liquid oxygen. To demonstrate performance and prove feasibility of this propellant combination, a 100lbf LO2/LCH4 engine was developed and tested under the NASA Propulsion and Cryogenic Advanced Development (PCAD) project. Since high ignition energy is a perceived drawback of this propellant combination, a test program was performed to explore ignition performance and reliability versus delivered spark energy. The sensitivity of ignition to spark timing and repetition rate was also examined. Three different exciter units were used with the engine's augmented (torch) igniter. Propellant temperature was also varied within the liquid range. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks (in quiescent, room air). The escalating pressure and flow environment increases spark impedance and may at some point compromise an exciter.s ability to deliver a spark. Reduced spark energies of these sparks result in more erratic ignitions and adversely affect ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1-6mJ, though multiple, similarly timed sparks of 55-75mJ were required for reliable ignition. An optimum time interval for spark application and ignition coincided with propellant introduction to the igniter and engine. Shifts of ignition timing were manifested by changes in the characteristics of the resulting ignition.

  7. Properties of Ca2+ sparks evoked by action potentials in mouse ventricular myocytes

    PubMed Central

    Bridge, John H B; Ershler, Philip R; Cannell, Mark B

    1999-01-01

    Calcium sparks were examined in enzymatically dissociated mouse cardiac ventricular cells using the calcium indicator fluo-3 and confocal microscopy. The properties of the mouse cardiac calcium spark are generally similar to those reported for other species.Examination of the temporal relationship between the action potential and the time course of calcium spark production showed that calcium sparks are more likely to occur during the initial repolarization phase of the action potential. The latency of their occurrence varied by less than 1·4 ms (s.d.) and this low variability may be explained by the interaction of the gating of L-type calcium channels with the changes in driving force for calcium entry during the action potential.When fixed sites within the cell are examined, calcium sparks have relatively constant amplitude but the amplitude of the sparks was variable among sites. The low variability of the amplitude of the calcium sparks suggests that more than one sarcoplasmic reticulum (SR) release channel must be involved in their genesis. Noise analysis (with the assumption of independent gating) suggests that > 18 SR calcium release channels may be involved in the generation of the calcium spark. At a fixed site, the response is close to ‘all-or-none’ behaviour which suggests that calcium sparks are indeed elementary events underlying cardiac excitation-contraction coupling.A method for selecting spark sites for signal averaging is presented which allows the time course of the spark to be examined with high temporal and spatial resolution. Using this method we show the development of the calcium spark at high signal-to-noise levels. PMID:10381593

  8. MarDRe: efficient MapReduce-based removal of duplicate DNA reads in the cloud.

    PubMed

    Expósito, Roberto R; Veiga, Jorge; González-Domínguez, Jorge; Touriño, Juan

    2017-09-01

    This article presents MarDRe, a de novo cloud-ready duplicate and near-duplicate removal tool that can process single- and paired-end reads from FASTQ/FASTA datasets. MarDRe takes advantage of the widely adopted MapReduce programming model to fully exploit Big Data technologies on cloud-based infrastructures. Written in Java to maximize cross-platform compatibility, MarDRe is built upon the open-source Apache Hadoop project, the most popular distributed computing framework for scalable Big Data processing. On a 16-node cluster deployed on the Amazon EC2 cloud platform, MarDRe is up to 8.52 times faster than a representative state-of-the-art tool. Source code in Java and Hadoop as well as a user's guide are freely available under the GNU GPLv3 license at http://mardre.des.udc.es . rreye@udc.es. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  9. Radiation Environment of Phobos

    NASA Astrophysics Data System (ADS)

    Cooper, John F.; Clark, John H.; Sturner, Steven J.; Stubbs, Timothy; Wang, Yongli; Glenar, David A.; Schwadron, Nathan A.; Joyce, Colin J.; Spence, Harlan E.; Farrell, William M.

    2017-10-01

    The innermost Martian moon Phobos is a potential way station for the human exploration of Mars and the solar system beyond the orbit of Mars. It has a similar radiation environment to that at 1 AU for hot plasma and more energetic particles from solar, heliospheric and galactic sources. In the past two decades there have been many spacecraft measurements at 1 AU, and occasionally in the Mars orbital region around the Sun, that can be used to define a reference model for the time-averaged and time-variable radiation environments at Mars and Phobos. Yearly to hourly variance comes from the eleven-year solar activity cycle and its impact on solar energetic, heliospheric, and solar-modulated galactic cosmic ray particles. We report progress on compilation of the reference model from U.S. and international spacecraft data sources of the NASA Space Physics Data Facility and the Virtual Energetic Particle Observatory (VEPO), and from tissue-equivalent dosage rate measurements by the CRaTER instrument on the Lunar Reconnaissance Observer spacecraft now in lunar orbit. Similar dosage rate data are also available from the Mars surface via the NASA Planetary Data System archive from the Radiation Assessment Detector (RAD) instrument aboard the Mars Science Laboratory (MSL) Curiosity rover. The sub-Mars surface hemisphere of Phobos is slightly blocked from energetic particle irradiation by the body of Mars but there is a greater global variance of interplanetary radiation exposure as we have calculated from the known topography of this irregularly shaped moon. Phobos receives a relatively small flux of secondary radiation from galactic cosmic ray interactions with the Mars surface and atmosphere, and at plasma energies from pickup ions escaping out of the Mars atmosphere. The greater secondary radiation source is from cosmic ray interactions with the moon surface, which we have simulated with the GEANT radiation transport code for various cases of the surface regolith composition. We evaluate the efficiency of these materials relative to water for radiation shielding of human explorers on Phobos. The low-energy plasma environment is also considered for impact on surface charging.

  10. Spark gap with low breakdown voltage jitter

    DOEpatents

    Rohwein, G.J.; Roose, L.D.

    1996-04-23

    Novel spark gap devices and electrodes are disclosed. The novel spark gap devices and electrodes are suitable for use in a variety of spark gap device applications. The shape of the electrodes gives rise to local field enhancements and reduces breakdown voltage jitter. Breakdown voltage jitter of approximately 5% has been measured in spark gaps according the invention. Novel electrode geometries and materials are disclosed. 13 figs.

  11. Non-contact ultrasonic defect imaging in composites

    NASA Astrophysics Data System (ADS)

    Tenoudji, F. Cohen; Citerne, J. M.; Dutilleul, H.; Busquet, D.

    2016-02-01

    In the situations where conventional NDT ultrasonic techniques using immersion of the part under inspection or its contact with the transducers cannot be used, in-air investigation presents an alternative. The huge impedance mismatch between the part material and air (transmission loss in the order of 80 dB for a thin metallic plate) induces having to deal very small signals and unfavorable signal to noise ratios. The approach adopted here is the use of the crack of a spark generated by an induction coil as a sound source and an electrostatic polyethylene membrane microphone as a receiver [1]. The advantage of this source is that the spark power is high (several kilowatts) and its power is directly coupled to air during the energy release. In some difficult situations, an elliptical mirror is used to concentrate the sound beam power on the surface of the part [2,3]. Stability and reproducibility of the sound generated by the spark, which are a necessity in order to perform quantitative evaluations, are achieved in our experiment. This permits also an increase of the signal to noise ratio by signal accumulation. The sound pulse duration of few microseconds allows operating in pulse echo in some circumstances. The bandwidth of the source is large, of several hundred of kilohertz, and that of the microphone above 100 kHz allow the flexibility to address different kinds of materials. The technique allows an easy, in-air, non contact, inspection of structural composite parts, with pulse waves, with an excellent signal to noise ratio. An X-Y ultrasonic scanning ultrasonic system for material inspection using this technique has been realized. Results obtained in transmission and reflection are presented. Defects in carbon composite plates and in honeycomb are imaged in transmission Echographic measurements show that defect detection can be performed in thin plates using Lamb waves propagation when only one sided inspection of the part is possible.

  12. Evidence for recent groundwater seepage and surface runoff on Mars.

    PubMed

    Malin, M C; Edgett, K S

    2000-06-30

    Relatively young landforms on Mars, seen in high-resolution images acquired by the Mars Global Surveyor Mars Orbiter Camera since March 1999, suggest the presence of sources of liquid water at shallow depths beneath the martian surface. Found at middle and high martian latitudes (particularly in the southern hemisphere), gullies within the walls of a very small number of impact craters, south polar pits, and two of the larger martian valleys display geomorphic features that can be explained by processes associated with groundwater seepage and surface runoff. The relative youth of the landforms is indicated by the superposition of the gullies on otherwise geologically young surfaces and by the absence of superimposed landforms or cross-cutting features, including impact craters, small polygons, and eolian dunes. The limited size and geographic distribution of the features argue for constrained source reservoirs.

  13. Open-source web-enabled data management, analyses, and visualization of very large data in geosciences using Jupyter, Apache Spark, and community tools

    NASA Astrophysics Data System (ADS)

    Chaudhary, A.

    2017-12-01

    Current simulation models and sensors are producing high-resolution, high-velocity data in geosciences domain. Knowledge discovery from these complex and large size datasets require tools that are capable of handling very large data and providing interactive data analytics features to researchers. To this end, Kitware and its collaborators are producing open-source tools GeoNotebook, GeoJS, Gaia, and Minerva for geosciences that are using hardware accelerated graphics and advancements in parallel and distributed processing (Celery and Apache Spark) and can be loosely coupled to solve real-world use-cases. GeoNotebook (https://github.com/OpenGeoscience/geonotebook) is co-developed by Kitware and NASA-Ames and is an extension to the Jupyter Notebook. It provides interactive visualization and python-based analysis of geospatial data and depending the backend (KTile or GeoPySpark) can handle data sizes of Hundreds of Gigabytes to Terabytes. GeoNotebook uses GeoJS (https://github.com/OpenGeoscience/geojs) to render very large geospatial data on the map using WebGL and Canvas2D API. GeoJS is more than just a GIS library as users can create scientific plots such as vector and contour and can embed InfoVis plots using D3.js. GeoJS aims for high-performance visualization and interactive data exploration of scientific and geospatial location aware datasets and supports features such as Point, Line, Polygon, and advanced features such as Pixelmap, Contour, Heatmap, and Choropleth. Our another open-source tool Minerva ((https://github.com/kitware/minerva) is a geospatial application that is built on top of open-source web-based data management system Girder (https://github.com/girder/girder) which provides an ability to access data from HDFS or Amazon S3 buckets and provides capabilities to perform visualization and analyses on geosciences data in a web environment using GDAL and GeoPandas wrapped in a unified API provided by Gaia (https://github.com/OpenDataAnalytics/gaia). In this presentation, we will discuss core features of each of these tools and will present lessons learned on handling large data in the context of data management, analyses and visualization.

  14. Fe(II) Oxidation and Sources of Acidity on Mars

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Peretyazkho, T. S.; Sutter, B.

    2017-01-01

    There is an apparent paradox be-tween the evidence that aqueous environments on Mars were predominantly acidic, and the fact that Mars is predominantly a basaltic (and olivine-rich) planet. The problem being that basalt and olivine will act to neutralize acidic solutions they come into contact with, and that there is a lot more basaltic crust on Mars than water or acid. This is especially true if there is an appreciable amount of water available to bring the acid in contact with the basaltic crust. Several hypotheses for ancient mar-tian environments call on long lived groundwater and aqueous systems.

  15. Detection of Allophane on Mars Through Orbital and In-Situ Thermal-Infrared Spectroscopy

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Kraft, M. D.; Sharp, T. G.; Golden, D. C.; Ming, Douglas W.

    2011-01-01

    We have collected laboratory thermal IR spectra of the mineraloid allophane and aluminosilicate gels. Using those spectra to model regional TES spectra, we suggest that several areas of Mars contain significant amounts of allophane-like weathering products. The presence of allophane on Mars indicates that 1) significant Al sources, such as feldspar or glass, were weathered; 2) weathering on Mars produced poorly-crystalline aluminosilicates, rather than easily identifiable crystalline minerals; and 3) some Martian weathering proceeded under moderate pH environments, suggesting acid weathering is not the only major alteration mechanism on Mars.

  16. Use of the mathematical model of the ignition system to analyze the spark discharge, including the destruction of spark plug electrodes

    NASA Astrophysics Data System (ADS)

    Różowicz, Sebastian

    2018-03-01

    The paper presents the results of analytical and experimental studies concerning the influence of different kinds of fuel additives on the quality of the spark discharge for different configurations of the ignition system. The wear of the spark plug electrode and the value of spark discharge were determined for various impurities and configurations of the air-fuel mixture.

  17. Detonating apparatus

    DOEpatents

    Johnston, Lawrence H.

    1976-01-01

    1. Apparatus for detonation of high explosive in uniform timing comprising in combination, an outer case, spark gap electrodes insulatedly supported in spaced relationship within said case to form a spark gap, high explosive of the class consisting of pentaerythritol tetranitrate and trimethylene trinitramine substantially free from material sensitive to detonation by impact compressed in surrounding relation to said electrodes including said spark gap under a pressure from about 100 psi to about 500 psi, said spark gap with said compressed explosive therein requiring at least 1000 volts for sparking, and means for impressing at least 1000 volts on said spark gap.

  18. The effect of electrode temperature on the sparking voltage of short spark gaps

    NASA Technical Reports Server (NTRS)

    Silsbee, F B

    1924-01-01

    This report presents the results of an investigation to determine what effect the temperature of spark plug electrodes might have on the voltage at which a spark occurred. A spark gap was set up so that one electrode could be heated to temperatures up to 700 degrees C., while the other electrode and the air in the gap were maintained at room temperature. The sparking voltages were measured both with direct voltage and with voltage impulse from ignition coil. It was found that the sparking voltage of the gap decreased materially with increase of temperature. This change was more marked when the hot electrode was of negative polarity. The phenomena observed can be explained by the ionic theory of gaseous conduction, and serve to account for certain hitherto unexplained actions in the operation of internal combustion engines. These results indicate that the ignition spark will pass more readily when the spark-plug design is such as to make the electrodes run hot. This possible gain is, however, very closely limited by the danger of producing preignition. These experiments also show that sparking is somewhat easier when the hot electrode (which is almost always the central electrode) is negative than when the polarity is reversed.

  19. Radiation environment and shielding for early manned Mars missions

    NASA Technical Reports Server (NTRS)

    Hall, Stephen B.; Mccann, Michael E.

    1986-01-01

    The problem of shielding a crew during early manned Mars missions is discussed. Requirements for shielding are presented in the context of current astronaut exposure limits, natural ionizing radiation sources, and shielding inherent in a particular Mars vehicle configuration. An estimated range for shielding weight is presented based on the worst solar flare dose, mission duration, and inherent vehicle shielding.

  20. Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars

    PubMed Central

    Stern, Jennifer C.; Sutter, Brad; Freissinet, Caroline; Navarro-González, Rafael; McKay, Christopher P.; Archer, P. Douglas; Buch, Arnaud; Brunner, Anna E.; Coll, Patrice; Eigenbrode, Jennifer L.; Fairen, Alberto G.; Franz, Heather B.; Glavin, Daniel P.; Kashyap, Srishti; McAdam, Amy C.; Ming, Douglas W.; Steele, Andrew; Szopa, Cyril; Wray, James J.; Martín-Torres, F. Javier; Zorzano, Maria-Paz; Conrad, Pamela G.; Mahaffy, Paul R.; Kemppinen, Osku; Bridges, Nathan; Johnson, Jeffrey R.; Minitti, Michelle; Cremers, David; Bell, James F.; Edgar, Lauren; Farmer, Jack; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; King, Penelope; Blank, Jennifer; Weigle, Gerald; Schmidt, Mariek; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Ehlmann, Bethany; Farley, Kenneth; Griffes, Jennifer; Grotzinger, John; Miller, Hayden; Newcombe, Megan; Pilorget, Cedric; Rice, Melissa; Siebach, Kirsten; Stack, Katie; Stolper, Edward; Brunet, Claude; Hipkin, Victoria; Léveillé, Richard; Marchand, Geneviève; Sánchez, Pablo Sobrón; Favot, Laurent; Cody, George; Steele, Andrew; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Armiens-Aparicio, Carlos; Rodríguez, Javier Caride; Blázquez, Isaías Carrasco; Gómez, Felipe Gómez; Gómez-Elvira, Javier; Hettrich, Sebastian; Malvitte, Alain Lepinette; Jiménez, Mercedes Marín; Martínez-Frías, Jesús; Martín-Soler, Javier; - Torres, F. Javier Martín; Jurado, Antonio Molina; Mora-Sotomayor, Luis; Caro, Guillermo Muñoz; López, Sara Navarro; Peinado-González, Verónica; Pla-García, Jorge; Manfredi, José Antonio Rodriguez; Romeral-Planelló, Julio José; Fuentes, Sara Alejandra Sans; Martinez, Eduardo Sebastian; Redondo, Josefina Torres; Urqui-O'Callaghan, Roser; Mier, María-Paz Zorzano; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Manning, Heidi; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Squyres, Steven; Sullivan, Robert; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; DeMarines, Julia; Grinspoon, David; Reitz, Günther; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Kemppinen, Osku; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Fabre, Cécile; Wray, James; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Gupta, Sanjeev; Bish, David; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; d’Uston, Claude; Forni, Olivier; Gasnault, Olivier; Lasue, Jérémie; Lee, Qiu-Mei; Maurice, Sylvestre; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Sutter, Brad; Cabane, Michel; Coscia, David; Israël, Guy; Szopa, Cyril; Dromart, Gilles; Robert, François; Sautter, Violaine; Le Mouélic, Stéphane; Mangold, Nicolas; Nachon, Marion; Buch, Arnaud; Stalport, Fabien; Coll, Patrice; François, Pascaline; Raulin, François; Teinturier, Samuel; Cameron, James; Clegg, Sam; Cousin, Agnès; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Wiens, Roger C.; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Treiman, Allan; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Edgett, Kenneth; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; Malin, Michael; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Van Beek, Tessa; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Summons, Roger; Goesmann, Fred; Goetz, Walter; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Dyar, M. Darby; Fassett, Caleb; Blake, David F.; Bristow, Thomas; DesMarais, David; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Wilhelm, Mary Beth; Bleacher, Lora; Brinckerhoff, William; Choi, David; Conrad, Pamela; Dworkin, Jason P.; Eigenbrode, Jennifer; Floyd, Melissa; Freissinet, Caroline; Garvin, James; Glavin, Daniel; Harpold, Daniel; Jones, Andrea; Mahaffy, Paul; Martin, David K.; McAdam, Amy; Pavlov, Alexander; Raaen, Eric; Smith, Michael D.; Stern, Jennifer; Tan, Florence; Trainer, Melissa; Meyer, Michael; Posner, Arik; Voytek, Mary; Anderson, Robert C; Aubrey, Andrew; Beegle, Luther W.; Behar, Alberto; Blaney, Diana; Brinza, David; Calef, Fred; Christensen, Lance; Crisp, Joy A.; DeFlores, Lauren; Ehlmann, Bethany; Feldman, Jason; Feldman, Sabrina; Flesch, Gregory; Hurowitz, Joel; Jun, Insoo; Keymeulen, Didier; Maki, Justin; Mischna, Michael; Morookian, John Michael; Parker, Timothy; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; Juarez, Manuel de la Torre; Vasavada, Ashwin R.; Webster, Christopher R.; Yen, Albert; Archer, Paul Douglas; Cucinotta, Francis; Jones, John H.; Ming, Douglas; Morris, Richard V.; Niles, Paul; Rampe, Elizabeth; Nolan, Thomas; Fisk, Martin; Radziemski, Leon; Barraclough, Bruce; Bender, Steve; Berman, Daniel; Dobrea, Eldar Noe; Tokar, Robert; Vaniman, David; Williams, Rebecca M. E.; Yingst, Aileen; Lewis, Kevin; Leshin, Laurie; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Grant, John; Vicenzi, Edward; Wilson, Sharon A.; Bullock, Mark; Ehresmann, Bent; Hamilton, Victoria; Hassler, Donald; Peterson, Joseph; Rafkin, Scot; Zeitlin, Cary; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Clark, Benton; Wolff, Michael; McLennan, Scott; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Schwenzer, Susanne P.; Anderson, Ryan B.; Herkenhoff, Kenneth; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Ávalos, Juan José Blanco; Ramos, Miguel; Kim, Myung-Hee; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; Navarro-González, Rafael; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Dietrich, William; Kortmann, Onno; Palucis, Marisa; Sumner, Dawn Y.; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Rubin, David; Jakosky, Bruce; Balic-Zunic, Tonci; Frydenvang, Jens; Jensen, Jaqueline Kløvgaard; Kinch, Kjartan; Koefoed, Asmus; Madsen, Morten Bo; Stipp, Susan Louise Svane; Boyd, Nick; Campbell, John L.; Gellert, Ralf; Perrett, Glynis; Pradler, Irina; VanBommel, Scott; Jacob, Samantha; Owen, Tobias; Rowland, Scott; Atlaskin, Evgeny; Savijärvi, Hannu; Boehm, Eckart; Böttcher, Stephan; Burmeister, Sönke; Guo, Jingnan; Köhler, Jan; García, César Martín; Mueller-Mellin, Reinhold; Wimmer-Schweingruber, Robert; Bridges, John C.; McConnochie, Timothy; Benna, Mehdi; Franz, Heather; Bower, Hannah; Brunner, Anna; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Atreya, Sushil; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Wong, Michael; Pepin, Robert; Elliott, Beverley; Spray, John; Thompson, Lucy; Gordon, Suzanne; Newsom, Horton; Ollila, Ann; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Kah, Linda C.; Moersch, Jeffrey; Tate, Christopher; Day, Mackenzie; Kocurek, Gary; Hallet, Bernard; Sletten, Ronald; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Kuzmin, Ruslan; Arvidson, Raymond; Fraeman, Abigail; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey; Moores, John E.

    2015-01-01

    The Sample Analysis at Mars (SAM) investigation on the Mars Science Laboratory (MSL) Curiosity rover has detected oxidized nitrogen-bearing compounds during pyrolysis of scooped aeolian sediments and drilled sedimentary deposits within Gale crater. Total N concentrations ranged from 20 to 250 nmol N per sample. After subtraction of known N sources in SAM, our results support the equivalent of 110–300 ppm of nitrate in the Rocknest (RN) aeolian samples, and 70–260 and 330–1,100 ppm nitrate in John Klein (JK) and Cumberland (CB) mudstone deposits, respectively. Discovery of indigenous martian nitrogen in Mars surface materials has important implications for habitability and, specifically, for the potential evolution of a nitrogen cycle at some point in martian history. The detection of nitrate in both wind-drifted fines (RN) and in mudstone (JK, CB) is likely a result of N2 fixation to nitrate generated by thermal shock from impact or volcanic plume lightning on ancient Mars. Fixed nitrogen could have facilitated the development of a primitive nitrogen cycle on the surface of ancient Mars, potentially providing a biochemically accessible source of nitrogen. PMID:25831544

  1. Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars.

    PubMed

    Stern, Jennifer C; Sutter, Brad; Freissinet, Caroline; Navarro-González, Rafael; McKay, Christopher P; Archer, P Douglas; Buch, Arnaud; Brunner, Anna E; Coll, Patrice; Eigenbrode, Jennifer L; Fairen, Alberto G; Franz, Heather B; Glavin, Daniel P; Kashyap, Srishti; McAdam, Amy C; Ming, Douglas W; Steele, Andrew; Szopa, Cyril; Wray, James J; Martín-Torres, F Javier; Zorzano, Maria-Paz; Conrad, Pamela G; Mahaffy, Paul R

    2015-04-07

    The Sample Analysis at Mars (SAM) investigation on the Mars Science Laboratory (MSL) Curiosity rover has detected oxidized nitrogen-bearing compounds during pyrolysis of scooped aeolian sediments and drilled sedimentary deposits within Gale crater. Total N concentrations ranged from 20 to 250 nmol N per sample. After subtraction of known N sources in SAM, our results support the equivalent of 110-300 ppm of nitrate in the Rocknest (RN) aeolian samples, and 70-260 and 330-1,100 ppm nitrate in John Klein (JK) and Cumberland (CB) mudstone deposits, respectively. Discovery of indigenous martian nitrogen in Mars surface materials has important implications for habitability and, specifically, for the potential evolution of a nitrogen cycle at some point in martian history. The detection of nitrate in both wind-drifted fines (RN) and in mudstone (JK, CB) is likely a result of N2 fixation to nitrate generated by thermal shock from impact or volcanic plume lightning on ancient Mars. Fixed nitrogen could have facilitated the development of a primitive nitrogen cycle on the surface of ancient Mars, potentially providing a biochemically accessible source of nitrogen.

  2. Big Data Analytics with Datalog Queries on Spark.

    PubMed

    Shkapsky, Alexander; Yang, Mohan; Interlandi, Matteo; Chiu, Hsuan; Condie, Tyson; Zaniolo, Carlo

    2016-01-01

    There is great interest in exploiting the opportunity provided by cloud computing platforms for large-scale analytics. Among these platforms, Apache Spark is growing in popularity for machine learning and graph analytics. Developing efficient complex analytics in Spark requires deep understanding of both the algorithm at hand and the Spark API or subsystem APIs (e.g., Spark SQL, GraphX). Our BigDatalog system addresses the problem by providing concise declarative specification of complex queries amenable to efficient evaluation. Towards this goal, we propose compilation and optimization techniques that tackle the important problem of efficiently supporting recursion in Spark. We perform an experimental comparison with other state-of-the-art large-scale Datalog systems and verify the efficacy of our techniques and effectiveness of Spark in supporting Datalog-based analytics.

  3. Big Data Analytics with Datalog Queries on Spark

    PubMed Central

    Shkapsky, Alexander; Yang, Mohan; Interlandi, Matteo; Chiu, Hsuan; Condie, Tyson; Zaniolo, Carlo

    2017-01-01

    There is great interest in exploiting the opportunity provided by cloud computing platforms for large-scale analytics. Among these platforms, Apache Spark is growing in popularity for machine learning and graph analytics. Developing efficient complex analytics in Spark requires deep understanding of both the algorithm at hand and the Spark API or subsystem APIs (e.g., Spark SQL, GraphX). Our BigDatalog system addresses the problem by providing concise declarative specification of complex queries amenable to efficient evaluation. Towards this goal, we propose compilation and optimization techniques that tackle the important problem of efficiently supporting recursion in Spark. We perform an experimental comparison with other state-of-the-art large-scale Datalog systems and verify the efficacy of our techniques and effectiveness of Spark in supporting Datalog-based analytics. PMID:28626296

  4. Flecainide inhibits arrhythmogenic Ca2+ waves by open state block of ryanodine receptor Ca2+ release channels and reduction of Ca2+ spark mass

    PubMed Central

    Hilliard, Fredrick A.; Steele, Derek S.; Laver, Derek; Yang, Zhaokang; Le Marchand, Sylvain J.; Chopra, Nagesh; Piston, David W.; Huke, Sabine; Knollmann, Björn C.

    2009-01-01

    Catecholaminergic polymorphic ventricular tachycardia (CPVT) is linked to mutations in the cardiac ryanodine receptor (RyR2) or calsequestrin. We recently found that the drug flecainide inhibits RyR2 channels and prevents CPVT in mice and humans. Here we compared the effects of flecainide and tetracaine, a known RyR2 inhibitor ineffective in CPVT myocytes, on arrhythmogenic Ca2+ waves and elementary sarcoplasmic reticulum (SR) Ca2+ release events, Ca2+ sparks. In ventricular myocytes isolated from a CPVT mouse model, flecainide significantly reduced spark amplitude and spark width, resulting in a 40% reduction in spark mass. Surprisingly, flecainide significantly increased spark frequency. As a result, flecainide had no significant effect on spark-mediated SR Ca2+ leak or SR Ca2+ content. In contrast, tetracaine decreased spark frequency and spark-mediated SR Ca2+ leak, resulting in a significantly increased SR Ca2+ content. Measurements in permeabilized rat ventricular myocytes confirmed the different effects of flecainide and tetracaine on spark frequency and Ca2+ waves. In lipid bilayers, flecainide inhibited RyR2 channels by open state block, whereas tetracaine primarily prolonged RyR2 closed times. The differential effects of flecainide and tetracaine on sparks and RyR2 gating can explain why flecainide, unlike tetracaine, does not change the balance of SR Ca2+ fluxes. We suggest that the smaller spark mass contributes to flecainide's antiarrhythmic action by reducing the probability of saltatory wave propagation between adjacent Ca2+ release units. Our results indicate that inhibition of the RyR2 open state provides a new therapeutic strategy to prevent diastolic Ca2+ waves resulting in triggered arrhythmias, such as CPVT. PMID:19835880

  5. Nitrogen spark denoxer

    DOEpatents

    Ng, Henry K.; Novick, Vincent J.; Sekar, Ramanujam R.

    1997-01-01

    A NO.sub.X control system for an internal combustion engine includes an oxygen enrichment device that produces oxygen and nitrogen enriched air. The nitrogen enriched air contains molecular nitrogen that is provided to a spark plug that is mounted in an exhaust outlet of an internal combustion engine. As the nitrogen enriched air is expelled at the spark gap of the spark plug, the nitrogen enriched air is exposed to a pulsating spark that is generated across the spark gap of the spark plug. The spark gap is elongated so that a sufficient amount of atomic nitrogen is produced and is injected into the exhaust of the internal combustion engine. The injection of the atomic nitrogen into the exhaust of the internal combustion engine causes the oxides of nitrogen to be reduced into nitrogen and oxygen such that the emissions from the engine will have acceptable levels of NO.sub.X. The oxygen enrichment device that produces both the oxygen and nitrogen enriched air can include a selectively permeable membrane.

  6. Spark ignited turbulent flame kernel growth. Annual report, January--December 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santavicca, D.A.

    1994-06-01

    An experimental study of the effect of spark power on the growth rate of spark-ignited flame kernels was conducted in a turbulent flow system at 1 atm, 300 K conditions. All measurements were made with premixed, propane-air at a fuel/air equivalence ratio of 0.93, with 0%, 8% or 14% dilution. Two flow conditions were studied: a low turbulence intensity case with a mean velocity of 1.25 m/sec and a turbulence intensity of 0.33 m/sec, and a high turbulence intensity case with a mean velocity of 1.04 m/sec and a turbulence intensity of 0.88 m/sec. The growth of the spark-ignited flamemore » kernel was recorded over a time interval from 83 {mu}sec to 20 msec following the start of ignition using high speed laser shadowgraphy. In order to evaluate the effect of ignition spark power, tests were conducted with a long duration (ca 4 msec) inductive discharge ignition system with an average spark power of ca 14 watts and two short duration (ca 100 nsec) breakdown ignition systems with average spark powers of ca 6 {times} 10{sup 4} and ca 6 {times} 10{sup 5} watts. The results showed that increased spark power resulted in an increased growth rate, where the effect of short duration breakdown sparks was found to persist for times of the order of milliseconds. The effectiveness of increased spark power was found to be less at high turbulence and high dilution conditions. Increased spark power had a greater effect on the 0--5 mm burn time than on the 5--13 mm burn time, in part because of the effect of breakdown energy on the initial size of the flame kernel. And finally, when spark power was increased by shortening the spark duration while keeping the effective energy the same there was a significant increase in the misfire rate, however when the spark power was further increased by increasing the breakdown energy the misfire rate dropped to zero.« less

  7. 40 CFR 60.4239 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... I am a manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that use gasoline or... NEW STATIONARY SOURCES Standards of Performance for Stationary Spark Ignition Internal Combustion... manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that use gasoline or a manufacturer of...

  8. 77 FR 5728 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... between bonding lead and the harness, due to over length of the bonding lead. As the affected wire is not... chafing of the wires, and corrective actions, if necessary. We are proposing this AD to detect and correct contact or chafing of wires and bonding leads which, if not detected could be a source of sparks in the...

  9. When Neurons Meet Electrons: Three Trends That Are Sparking Change in Computer Publishing.

    ERIC Educational Resources Information Center

    Cranney, Charles

    1992-01-01

    Three important trends in desktop publishing include (1) use of multiple media in presentation of information; (2) networking; and (3) "hot links" (integrated file-exchange formats). It is also important for college publications professionals to be familiar with sources of information about technological change and to be able to sort out the…

  10. Measurement of Knock Characteristics in Spark-ignition Engines

    NASA Technical Reports Server (NTRS)

    Schutz, R

    1940-01-01

    This paper presents a discussion of three potential sources of error in recording engine knocking which are: the natural oscillation of the membrane, the shock process between test contacts, and the danger of burned contacts. Following this discussion, the paper calls attention to various results which make the bouncing-pin indicator appear fundamentally unsuitable for recording knock phenomena.

  11. Bridging the Particle Physics and Big Data Worlds

    NASA Astrophysics Data System (ADS)

    Pivarski, James

    2017-09-01

    For decades, particle physicists have developed custom software because the scale and complexity of our problems were unique. In recent years, however, the ``big data'' industry has begun to tackle similar problems, and has developed some novel solutions. Incorporating scientific Python libraries, Spark, TensorFlow, and machine learning tools into the physics software stack can improve abstraction, reliability, and in some cases performance. Perhaps more importantly, it can free physicists to concentrate on domain-specific problems. Building bridges isn't always easy, however. Physics software and open-source software from industry differ in many incidental ways and a few fundamental ways. I will show work from the DIANA-HEP project to streamline data flow from ROOT to Numpy and Spark, to incorporate ideas of functional programming into histogram aggregation, and to develop real-time, query-style manipulations of particle data.

  12. Evidence for methane in Martian meteorites

    PubMed Central

    Blamey, Nigel J. F.; Parnell, John; McMahon, Sean; Mark, Darren F.; Tomkinson, Tim; Lee, Martin; Shivak, Jared; Izawa, Matthew R. M.; Banerjee, Neil R.; Flemming, Roberta L.

    2015-01-01

    The putative occurrence of methane in the Martian atmosphere has had a major influence on the exploration of Mars, especially by the implication of active biology. The occurrence has not been borne out by measurements of atmosphere by the MSL rover Curiosity but, as on Earth, methane on Mars is most likely in the subsurface of the crust. Serpentinization of olivine-bearing rocks, to yield hydrogen that may further react with carbon-bearing species, has been widely invoked as a source of methane on Mars, but this possibility has not hitherto been tested. Here we show that some Martian meteorites, representing basic igneous rocks, liberate a methane-rich volatile component on crushing. The occurrence of methane in Martian rock samples adds strong weight to models whereby any life on Mars is/was likely to be resident in a subsurface habitat, where methane could be a source of energy and carbon for microbial activity. PMID:26079798

  13. Evidence for methane in Martian meteorites.

    PubMed

    Blamey, Nigel J F; Parnell, John; McMahon, Sean; Mark, Darren F; Tomkinson, Tim; Lee, Martin; Shivak, Jared; Izawa, Matthew R M; Banerjee, Neil R; Flemming, Roberta L

    2015-06-16

    The putative occurrence of methane in the Martian atmosphere has had a major influence on the exploration of Mars, especially by the implication of active biology. The occurrence has not been borne out by measurements of atmosphere by the MSL rover Curiosity but, as on Earth, methane on Mars is most likely in the subsurface of the crust. Serpentinization of olivine-bearing rocks, to yield hydrogen that may further react with carbon-bearing species, has been widely invoked as a source of methane on Mars, but this possibility has not hitherto been tested. Here we show that some Martian meteorites, representing basic igneous rocks, liberate a methane-rich volatile component on crushing. The occurrence of methane in Martian rock samples adds strong weight to models whereby any life on Mars is/was likely to be resident in a subsurface habitat, where methane could be a source of energy and carbon for microbial activity.

  14. Alternative Fuels Data Center: Partnerships Spark Biodiesel Success for

    Science.gov Websites

    Essential Baking Company Partnerships Spark Biodiesel Success for Essential Baking Company to Baking Company on Facebook Tweet about Alternative Fuels Data Center: Partnerships Spark Biodiesel Success for Essential Baking Company on Twitter Bookmark Alternative Fuels Data Center: Partnerships Spark

  15. Echo Source Discrimination in Airborne Radar Sounding Data for Mars Analog Studies, Dry Valleys, Antarctica

    NASA Technical Reports Server (NTRS)

    Holt, J. W.; Blankenship, D. D.; Peters, M. E.; Kempf, S. D.; Morse, D. L.; Williams, B. J.

    2003-01-01

    The recent identification of features on Mars exhibiting morphologies consistent with ice/rock mixtures, near-surface ice bodies and near-surface liquid water [1,2], and the importance of such features to the search for water on Mars, highlights the need for appropriate terrestrial analogs in order to prepare for upcoming radar missions targeting these and other water-related features. Climatic, hydrological, and geological conditions in the McMurdo Dry Valleys of Antarctica are analogous in many ways to those on Mars, and a number of ice-related features in the Dry Valleys may have direct morphologic and compositional counterparts on Mars.

  16. Mars Image Collection Mosaic Builder

    NASA Technical Reports Server (NTRS)

    Plesea, Lucian; Hare, Trent

    2008-01-01

    A computer program assembles images from the Mars Global Surveyor (MGS) Mars Observer Camera Narrow Angle (MOCNA) collection to generate a uniform-high-resolution, georeferenced, uncontrolled mosaic image of the Martian surface. At the time of reporting the information for this article, the mosaic covered 7 percent of the Martian surface and contained data from more than 50,000 source images acquired under various light conditions at various resolutions.

  17. Impact erosion of the primordial atmosphere of Mars.

    PubMed

    Melosh, H J; Vickery, A M

    1989-04-06

    Abundant geomorphic evidence for fluvial processes on the surface of Mars suggests that during the era of heavy bombardment, Mars's atmospheric pressure was high enough for liquid water to flow on the surface. Many authors have proposed mechanisms by which Mars could have lost (or sequestered) an earlier, thicker atmosphere but none of these proposals has gained general acceptance. Here we examine the process of atmospheric erosion by impacts and show that it may account for an early episode of atmosphere loss from Mars. On the basis of this model, the primordial atmospheric pressure on Mars must have been in the vicinity of 1 bar, barring other sources or sinks of CO2. Current impact fluxes are too small to erode significantly the present martian atmosphere.

  18. Survival of methanogens during desiccation: implications for life on Mars.

    PubMed

    Kendrick, Michael G; Kral, Timothy A

    2006-08-01

    The relatively recent discoveries that liquid water likely existed on the surface of past Mars and that methane currently exists in the martian atmosphere have fueled the possibility of extant or extinct life on Mars. One possible explanation for the existence of the methane would be the presence of methanogens in the subsurface. Methanogens are microorganisms in the domain Archaea that can metabolize molecular hydrogen as an energy source and carbon dioxide as a carbon source and produce methane. One factor of importance is the arid nature of Mars, at least at the surface. If one is to assume that life exists below the surface, then based on the only example of life that we know, liquid water must be present. Realistically, however, that liquid water may be seasonal just as it is at some locations on our home planet. Here we report on research designed to determine how long certain species of methanogens can survive desiccation on a Mars soil simulant, JSC Mars-1. Methanogenic cells were grown on JSC Mars-1, transferred to a desiccator within a Coy anaerobic environmental chamber, and maintained there for varying time periods. Following removal from the desiccator and rehydration, gas chromatographic measurements of methane indicated survival for varying time periods. Methanosarcina barkeri survived desiccation for 10 days, while Methanobacterium formicicum and Methanothermobacter wolfeii were able to survive for 25 days.

  19. Spark channel propagation in a microbubble liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panov, V. A.; Vasilyak, L. M., E-mail: vasilyak@ihed.ras.ru; Vetchinin, S. P.

    Experimental study on the development of the spark channel from the anode needle under pulsed electrical breakdown of isopropyl alcohol solution in water with air microbubbles has been performed. The presence of the microbubbles increases the velocity of the spark channel propagation and increases the current in the discharge gap circuit. The observed rate of spark channel propagation in microbubble liquid ranges from 4 to 12 m/s, indicating the thermal mechanism of the spark channel development in a microbubble liquid.

  20. Dating Violence Prevention Programming: Directions for Future Interventions

    PubMed Central

    Shorey, Ryan C.; Zucosky, Heather; Brasfield, Hope; Febres, Jeniimarie; Cornelius, Tara L.; Sage, Chelsea; Stuart, Gregory L.

    2012-01-01

    Dating violence among college students is a widespread and destructive problem. The field of dating violence has seen a substantial rise in research over the past several years, which has improved our understanding of factors that increase risk for perpetration. Unfortunately, there has been less attention paid to dating violence prevention programming, and existing programs have been marred with methodological weaknesses and a lack of demonstrated effectiveness in reducing aggression. In hopes of sparking new research on dating violence prevention programs, the current review examines possible new avenues for dating violence prevention programming among college students. We discuss clinical interventions that have shown to be effective in reducing a number of problematic behaviors, including motivational interventions, dialectical behavior therapy, mindfulness, and bystander interventions, and how they could be applied to dating violence prevention. We also discuss methodological issues to consider when implementing dating violence prevention programs. PMID:22773916

  1. Volcanism on Mars

    NASA Astrophysics Data System (ADS)

    Head, J. W.

    1981-11-01

    Characterization of volcanic activity on Mars is reviewed and comparisons are made with knowledge of terrestrial volcanic history. The high frequency of calderas on earth and low abundance on Mars is taken to indicate a lack of plate tectonic subduction zones and silicic volcanism on Mars. Further characterization is noted to depend on remote sensing from Viking orbital and earth-based spectral and albedo data. Theoretical models of causative mechanisms of terrestrial morphology will be used to establish models of similar processes on Mars, including deposits identification, eruptive conditions, and theories of magma ascent, as well as the role of volatiles from both deep and shallow sources. The importance of returning to Mars with appropriately instrumented spacecraft to test the new theories is stressed. The topics were discussed in papers presented at the Mars colloquium at the California Institute of Technology in August, 1981.

  2. The Investigation of Chlorates as a Possible Source of Oxygen and Chlorine Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Archer, D. P.; Ming, D. W.; Niles, P. B.; Eigenbrode, J. L.; Franz, H.; Glavin, D. P.; McAdam, A. C.; Mahaffy, P; Stern, J. C.; hide

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover detect-ed O2 and HCl gas releases from the Rocknest (RN) eolian bedform and the John Klein (JK) and Cumberland (CB) drill hole materials in Gale Crater. Chlorinated hydrocarbons have also been detected by the SAM quadrupole mass spectrometer (QMS) and gas chromatography/mass spectrometer (GCMS). These detections along with the detection of perchlorate (ClO4-) by the Mars Phoenix Lander’s Wet Chemistry Laboratory (WCL) suggesting perchlorate is a possible candidate for evolved O2 and chlorine species. Laboratory thermal analysis of perchlorates has yet to provide an unequivocal temperature match to the SAM O2 and HCl release data. Iron mineralogy found in the Rocknest materials when mixed with Ca-perchlorate does cause O2 release temperatures to be closer match to the SAM O2 release data but more work is required in evaluating the catalytic effects of Fe mineralogy on perchlorate decomposition. Chlorates (ClO3-) are relevant Mars materials and potential O2 and Cl sources. The objective of this work is to evaluate the thermal decomposition of select chlorate (ClO3-) salts as possible sources of the O2 and HCl releases in the Gale Crater materials.

  3. Correlation of Geophysical and Geological Datasets for Mars

    NASA Technical Reports Server (NTRS)

    Martin, P.; Stofan, E. R.; Smrekar, S. E.; Raymond, C. A.

    2002-01-01

    Magnetic and gravity data for Mars have been compared to images of the martian surface, with the aim of determining the sources of the observed pattern of magnetic anomalies. Additional information is contained in the original extended abstract.

  4. Alternative Fuels Data Center: New Mexico Utility Sparks Change with Fleet

    Science.gov Websites

    Electrification New Mexico Utility Sparks Change with Fleet Electrification to someone by E -mail Share Alternative Fuels Data Center: New Mexico Utility Sparks Change with Fleet Electrification on Facebook Tweet about Alternative Fuels Data Center: New Mexico Utility Sparks Change with Fleet

  5. 46 CFR 30.10-63 - Spark arrester-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Spark arrester-TB/ALL. 30.10-63 Section 30.10-63 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-63 Spark arrester—TB/ALL. The term spark arrester means any device, assembly, or method of a...

  6. 46 CFR 30.10-63 - Spark arrester-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Spark arrester-TB/ALL. 30.10-63 Section 30.10-63 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-63 Spark arrester—TB/ALL. The term spark arrester means any device, assembly, or method of a...

  7. 46 CFR 30.10-63 - Spark arrester-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Spark arrester-TB/ALL. 30.10-63 Section 30.10-63 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-63 Spark arrester—TB/ALL. The term spark arrester means any device, assembly, or method of a...

  8. 46 CFR 30.10-63 - Spark arrester-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Spark arrester-TB/ALL. 30.10-63 Section 30.10-63 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-63 Spark arrester—TB/ALL. The term spark arrester means any device, assembly, or method of a...

  9. 46 CFR 30.10-63 - Spark arrester-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Spark arrester-TB/ALL. 30.10-63 Section 30.10-63 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-63 Spark arrester—TB/ALL. The term spark arrester means any device, assembly, or method of a...

  10. Extending lean operating limit and reducing emissions of methane spark-ignited engines using a microwave-assisted spark plug

    DOE PAGES

    Rapp, Vi H.; DeFilippo, Anthony; Saxena, Samveg; ...

    2012-01-01

    Amore » microwave-assisted spark plug was used to extend the lean operating limit (lean limit) and reduce emissions of an engine burning methane-air. In-cylinder pressure data were collected at normalized air-fuel ratios of λ = 1.46, λ = 1.51, λ = 1.57, λ = 1.68, and λ = 1.75. For each λ , microwave energy (power supplied to the magnetron per engine cycle) was varied from 0 mJ (spark discharge alone) to 1600 mJ. At lean conditions, the results showed adding microwave energy to a standard spark plug discharge increased the number of complete combustion cycles, improving engine stability as compared to spark-only operation. Addition of microwave energy also increased the indicated thermal efficiency by 4% at λ = 1.68. At λ = 1.75, the spark discharge alone was unable to consistently ignite the air-fuel mixture, resulting in frequent misfires. Although microwave energy produced more consistent ignition than spark discharge alone at λ = 1.75, 59% of the cycles only partially burned. Overall, the microwave-assisted spark plug increased engine performance under lean operating conditions (λ = 1.68) but did not affect operation at conditions closer to stoichiometric.« less

  11. Automated qualification and analysis of protective spark gaps for DC accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Srutarshi; Rajan, Rehim N.; Dewangan, S.

    2014-07-01

    Protective spark gaps are used in the high voltage multiplier column of a 3 MeV DC Accelerator to prevent excessive voltage build-ups. Precise gap of 5 mm is maintained between the electrodes in these spark gaps for obtaining 120 kV± 5 kV in 6 kg/cm{sup 2} SF{sub 6} environment which is the dielectric medium. There are 74 such spark gaps used in the multiplier. Each spark gap has to be qualified for electrical performance before fitting in the accelerator to ensure reliable operation. As the breakdown voltage stabilizes after a large number of sparks between the electrodes, the qualification processmore » becomes time consuming and cumbersome. For qualifying large number of spark gaps an automatic breakdown analysis setup has been developed. This setup operates in air, a dielectric medium. The setup consists of a flyback topology based high voltage power supply with maximum rating of 25 kV. This setup works in conjunction with spark detection and automated shutdown circuit. The breakdown voltage is sensed using a peak detector circuit. The voltage breakdown data is recorded and statistical distribution of the breakdown voltage has been analyzed. This paper describes details of the diagnostics and the spark gap qualification process based on the experimental data. (author)« less

  12. SciSpark: In-Memory Map-Reduce for Earth Science Algorithms

    NASA Astrophysics Data System (ADS)

    Ramirez, P.; Wilson, B. D.; Whitehall, K. D.; Palamuttam, R. S.; Mattmann, C. A.; Shah, S.; Goodman, A.; Burke, W.

    2016-12-01

    We are developing a lightning fast Big Data technology called SciSpark based on ApacheTM Spark under a NASA AIST grant (PI Mattmann). Spark implements the map-reduce paradigm for parallel computing on a cluster, but emphasizes in-memory computation, "spilling" to disk only as needed, and so outperforms the disk-based Apache Hadoop by 100x in memory and by 10x on disk. SciSpark extends Spark to support Earth Science use in three ways: Efficient ingest of N-dimensional geo-located arrays (physical variables) from netCDF3/4, HDF4/5, and/or OPeNDAP URLS; Array operations for dense arrays in scala and Java using the ND4S/ND4J or Breeze libraries; Operations to "split" datasets across a Spark cluster by time or space or both. For example, a decade-long time-series of geo-variables can be split across time to enable parallel "speedups" of analysis by day, month, or season. Similarly, very high-resolution climate grids can be partitioned into spatial tiles for parallel operations across rows, columns, or blocks. In addition, using Spark's gateway into python, PySpark, one can utilize the entire ecosystem of numpy, scipy, etc. Finally, SciSpark Notebooks provide a modern eNotebook technology in which scala, python, or spark-sql codes are entered into cells in the Notebook and executed on the cluster, with results, plots, or graph visualizations displayed in "live widgets". We have exercised SciSpark by implementing three complex Use Cases: discovery and evolution of Mesoscale Convective Complexes (MCCs) in storms, yielding a graph of connected components; PDF Clustering of atmospheric state using parallel K-Means; and statistical "rollups" of geo-variables or model-to-obs. differences (i.e. mean, stddev, skewness, & kurtosis) by day, month, season, year, and multi-year. Geo-variables are ingested and split across the cluster using methods on the sciSparkContext object including netCDFVariables() for spatial decomposition and wholeNetCDFVariables() for time-series. The presentation will cover the architecture of SciSpark, the design of the scientific RDD (sRDD) data structures for N-dim. arrays, results from the three science Use Cases, example Notebooks, lessons learned from the algorithm implementations, and parallel performance metrics.

  13. An observational study of the nightside ionospheres of Mars and Venus with radio occultation methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, M.H.G.; Luhmann, J.G.; Kliore, A.J.

    1990-10-01

    An analysis of Mars and Venus nightside electron density profiles obtained with radio occultation methods shows how the nightside ionospheres of both planets vary with solar zenith angle. From previous studies it is known that the dayside peak electron densities at Mars and Venus show a basic similarity in that they both exhibit Chapman layer-like behavior. In contrast, the peak altitudes at mars behave like an ideal Chapman layer on the dayside, whereas the altitude of the peak at Venus is fairly constant up to the terminator. The effect of major dust storms can also be seen in the peakmore » altitudes at Mars. All Venus nightside electron density profiles show a distinct main peak for both solar minimum and maximum, whereas many profiles from the nightside of Mars do not show any peak at all. This suggests that the electron density in the Mars nightside ionosphere is frequently too low to be detected by radio occultation. On the Pioneer Venus orbiter, disappearing ionospheres were observed near solar maximum in the in-situ data when the solar wind dynamic pressure was exceptionally high. This condition occurs because the high solar wind dynamic pressure decreases the altitude of the ionopause near the terminator below {approximately}250 km, thus reducing the normal nightward transport of dayside ionospheric plasma. On the basis of the Venus observations, one might predict that if a positive correlation of nightside peak density with dynamic pressure was found, it could mean that transport from the dayside is the only significant source for the nightside ionosphere of Mars. The lack of a correlation would imply that the precipitation source at Mars is quite variable.« less

  14. The Martian Goes To College: Open Inquiry with Science Fiction in the Classroom.

    NASA Astrophysics Data System (ADS)

    Beatty, L.; Patterson, J. D.

    2015-12-01

    Storytelling is an ancient art; one that can get lost in the reams of data available in a typical geology or astronomy classroom. But storytelling draws us to a magical place. Our students, with prior experience in either a geology or astronomy course, were invited to explore Mars in a special topics course at Johnson County Community College through reading The Martian by Andy Weir. As they traveled with astronaut Mark Watney, the students used Google Mars, Java Mission-planning and Analysis for Remote Sensing (JMARS), and learning modules from the Mars for Earthlings web site to investigate the terrain and the processes at work in the past and present on Mars. Our goal was to apply their understanding of processes on Earth in order to explain and predict what they observed on Mars courtesy of the remote sensing opportunities available from Viking, Pathfinder, the Mars Exploration Rovers, and Maven missions; sort of an inter-planetary uniformitarianism. Astronaut Mark Watney's fictional journey from Acidalia Planitia to Schiaparelli Crater was analyzed using learning modules in Mars for Earthlings and exercises that we developed based on Google Mars, JMARS, Rotating Sky Explorer, and Science Friday podcasts. Each student also completed an individual project that either focused on a particular region that Astronaut Mark Watney traveled through or a problem that he faced. Through this open-inquiry learning style, they determined some processes that shaped Mars such as crater impacts, volcanism, fluid flow, mass movement, and groundwater sapping and also investigated the efficacy of solar energy as a power source based on location and the likelihood of regolith potential as a mineral matter source for soil.

  15. Design of Photovoltaic Power System for a Precursor Mission for Human Exploration of Mars

    NASA Technical Reports Server (NTRS)

    Mcnatt, Jeremiah; Landis, Geoffrey; Fincannon, James

    2016-01-01

    This project analyzed the viability of a photovoltaic power source for technology demonstration mission to demonstrate Mars in-situ resource utilization (ISRU) to produce propellant for a future human mission, based on technology available within the next ten years. For this assessment, we performed a power-system design study for a scaled ISRU demonstrator lander on the Mars surface based on existing solar array technologies.

  16. The influence of crustal magnetic sources on the topology of the Martian magnetic environment

    NASA Astrophysics Data System (ADS)

    Brain, David Andrew

    2002-09-01

    In this thesis I use magnetometer data and magnetic field models to explore the morphology of magnetic fields close to Mars, with emphasis on the manner and extent to which crustal magnetic sources affect the magnetic field configuration. I analyze Mars Global Surveyor (MGS) Magnetometer (MAG) data to determine the relative importance of the solar wind and of crustal magnetic sources in the observations. Crustal sources locally modify the solar wind interaction, adding variability to the Martian magnetic environment that depends on planetary rotation. I identify trends in the vector magnetic field with respect to altitude, solar zenith angle, and geographic location. The influence of the strongest crustal source extends to 1300 1400 km. I then use MAG data to evaluate models for the magnetic field associated with Mars' crust and for the solar wind interaction with the Martian ionosphere. A linear superposition of a spherical harmonic crustal model and a gasdynamic solar wind model improves the fit to MAG data over that from either model individually. I use simple pressure balance to calculate the shape and size of the Martian solar wind obstacle under a variety of different conditions. The obstacle is irregularly shaped (“lumpy”) and varies over the course of a Martian rotation, over a Martian year, and with changes in the upstream pressure. The obstacle above strong crustal sources can exceed 1000 km and is always higher than the altitude of the MGS spacecraft in its mapping orbit. I use a superposition model to explore the magnetic field topology at Mars under a variety of conditions. The model field topology is sensitive to changes in the interplanetary magnetic field (IMF) strength and orientation, as well as to Mars' orientation with respect to the solar wind flow. Regions of open magnetic field are located above strong crustal sources in the models, where the magnetic field is radially oriented with respect to the Martian surface. An examination of MAG and electron reflectometer (ER) data above one of these regions reveals a sharp change in the electron energy spectrum coinciding with perturbations in the orientation of the magnetic field.

  17. Geomorphic Mapping of Lava Flows on Mars, Earth, and Mercury

    NASA Astrophysics Data System (ADS)

    Golder, K. B.; Burr, D. M.

    2018-06-01

    To advance understanding of flood basalts, we have mapped lava flows on three planets, Mars, Earth, and Mercury, as part of three projects. The common purpose of each project is to investigate potential magma sources and/or emplacement conditions.

  18. Oxygenic Photosynthesis and the Oxidation State of Mars

    NASA Technical Reports Server (NTRS)

    Hartman, Hyman; McKay, Christopher P.

    1995-01-01

    The oxidation state of the Earth's surface is one of the most obvious indications of the effect of life on this planet. The surface of Mars is highly oxidized, as evidenced by its red color, but the connection to life is less apparent. Two possibilities can be considered. First, the oxidant may be photochemically produced in the atmosphere. In this case the fundamental source of O2 is the loss of H2 to space and the oxidant produced is H2O2. This oxidant would accumulate on the surface and thereby destroy any organic material and other reductants to some depth. Recent models suggest that diffusion limits this depth to a few meters. An alternative source of oxygen is biological oxygen production followed by sequestration of organic material in sediments - as on the Earth. In this case, the net oxidation of the surface was determined billions of years ago when Mars was a more habitable planet and oxidative conditions could persist to great depths, over 100 m. Below this must be a compensating layer of biogenic organic material. Insight into the nature of past sources of oxidation on Mars will require searching for organics in the martian subsurface and sediments.

  19. Sparking Innovative Learning & Creativity. 2007 NMC Summer Conference Proceedings (Indianapolis, IN, Jun 6-9, 2007)

    ERIC Educational Resources Information Center

    Smith, Rachel S., Ed.

    2007-01-01

    The conference proceedings include the following papers: (1) The Arts Metaverse in Open Croquet: Exploring an Open Source 3-D Online Digital World (Ulrich Rauch and Tim Wang); (2) Beyond World of Warcraft: the Universe of MMOGs (Ruben R. Puentedura); (3) ClevelandPlus in Second Life (Wendy Shapiro, Lev Gonick, and Sue Shick); (4) Folksemantic:…

  20. Fast combustion waves and chemi-ionization processes in a flame initiated by a powerful local plasma source in a closed reactor

    PubMed Central

    Artem'ev, K. V.; Berezhetskaya, N. K.; Kazantsev, S. Yu.; Kononov, N. G.; Kossyi, I. A.; Popov, N. A.; Tarasova, N. M.; Filimonova, E. A.; Firsov, K. N.

    2015-01-01

    Results are presented from experimental studies of the initiation of combustion in a stoichiometric methane–oxygen mixture by a freely localized laser spark and by a high-current multispark discharge in a closed chamber. It is shown that, preceding the stage of ‘explosive’ inflammation of a gas mixture, there appear two luminous objects moving away from the initiator along an axis: a relatively fast and uniform wave of ‘incomplete combustion’ under laser spark ignition and a wave with a brightly glowing plasmoid behind under ignition from high-current slipping surface discharge. The gas mixtures in both the ‘preflame’ and developed-flame states are characterized by a high degree of ionization as the result of chemical ionization (plasma density ne≈1012 cm−3) and a high frequency of electron–neutral collisions (νen≈1012 s−1). The role of chemical ionization in constructing an adequate theory for the ignition of a gas mixture is discussed. The feasibility of the microwave heating of both the preflame and developed-flame plasma, supplementary to a chemical energy source, is also discussed. PMID:26170426

  1. MECA Workshop on Dust on Mars 3

    NASA Technical Reports Server (NTRS)

    Lee, Steven (Editor)

    1989-01-01

    Articles and abstracts of articles presented at this workshop are given. It was the goal of the workshop to stimulate cooperative research on, and discussion of, dust related processes on Mars, and to provide background information and help in planning of the Mars Observer mission. These topics are considered: How is dust ejected from the Martian surface into the atmosphere; How does the global atmospheric circulation affect the redistribution of dust on Mars; Are there sources and sinks of dust on Mars, if so, where are they and how do they vary in time; and How many components of dust are there on Mars, and what are their properties. There were four primary discussion sessions: (1) Dust in the atmosphere; (2) Dust on the surface; (3) Dust properties; and (4) Dust observations from future spacecraft missions.

  2. The Nitrate/Perchlorate Ratio on Mars as an Indicator for Habitability

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; Sutter, B.; McKay, C. P.; Navarro-Gonzalex, R.; Freissinet, C.; Conrad, P. G.; Mahaffy, P. R.; Archer, P. D., Jr.; Ming, D. W.; Niles, P. B.; hide

    2015-01-01

    Discovery of indigenous martian nitrogen in Mars surface materials has important implications for habitability and the potential development of a nitrogen cycle at some point in martian history. The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected evolved nitric oxide (NO) gas during pyrolysis of scooped aeolian sediments and drilled mudstone acquired in Gale Crater. The detection of NO suggests an indigenous source of fixed N, and may indicate a mineralogical sink for atmospheric N2 in the form of nitrate. The ratio of nitrate to oxychlorine species (e.g. perchlorate) may provide insight into the extent of development of a nitrogen cycle on Mars.

  3. A Dual Source Ion Trap Mass Spectrometer for the Mars Organic Molecule Analyzer of ExoMars 2018

    NASA Technical Reports Server (NTRS)

    Brickerhoff, William B.; vanAmerom, F. H. W.; Danell, R. M.; Arevalo, R.; Atanassova, M.; Hovmand, L.; Mahaffy, P. R.; Cotter, R. J.

    2011-01-01

    We present details on the objectives, requirements, design and operational approach of the core mass spectrometer of the Mars Organic Molecule Analyzer (MOMA) investigation on the 2018 ExoMars mission. The MOMA mass spectrometer enables the investigation to fulfill its objective of analyzing the chemical composition of organic compounds in solid samples obtained from the near surface of Mars. Two methods of ionization are realized, associated with different modes of MOMA operation, in a single compact ion trap mass spectrometer. The stringent mass and power constraints of the mission have led to features such as low voltage and low frequency RF operation [1] and pulse counting detection.

  4. Hematitic concretions at Meridiani Planum, Mars: Their growth timescale and possible relationship with iron sulfates

    NASA Astrophysics Data System (ADS)

    Sefton-Nash, Elliot; Catling, David C.

    2008-05-01

    Using diffusion-based models for concretion growth, we calculate growth times of hematitic concretions that have been found in the Burns formation at Meridiani Planum, Mars, by NASA's Opportunity Mars Exploration Rover. Growth times of ~ 350-1900 terrestrial years are obtained for the observed size range of the concretions over a range of parameters representing likely diagenetic conditions and allowing for an iron source from diagenetic redistribution. This time scale is consistent with radiometric age constraints for the growth time of iron oxide concretions in sandy sediments of the acid-saline Lake Brown in Western Australia (< 3000 yr) reported elsewhere. We consider the source of the iron for Meridiani concretions by calculating the constraints on the supply of Fe 3+ to growing concretions from the dissolution and oxidation rates of iron minerals on early Mars. Mass balance arguments suggest that acid dissolution of jarosite ((H 3O,K)(Fe 3+3(OH) 6(SO 4) 2) and minor ferric sulfates is probably the most plausible dominant contributor to Fe 3+ in the concretions. Ferrous iron released from melanterite (Fe 2+SO 4·7H 2O) that is subsequently oxidized could also have been an important iron source if melanterite existed prior to diagenesis. Our conclusion that the iron is sourced from iron sulfates may explain the global observation from orbiters that grey crystalline hematite occurs in association with sulfate deposits.

  5. Mars Global Reference Atmospheric Model (Mars-GRAM) Version 3.8: Users Guide

    NASA Astrophysics Data System (ADS)

    Justus, C. G.; James, B. F.

    1999-05-01

    Mars Global Reference Atmospheric Model (Mars-GRAM) Version 3.8 is presented and its new features are discussed. Mars-GRAM uses new values of planetary reference ellipsoid radii, gravity term, and rotation rate (consistent with current JPL values) and includes centrifugal effects on gravity. The model now uses NASA Ames Global Circulation Model low resolution topography. Curvature corrections are applied to winds and limits based on speed of sound are applied. Altitude of the F1 ionization peak and density scale height, including effects of change of molecular weight with altitude are computed. A check is performed to disallow temperatures below CO2 sublimination. This memorandum includes instructions on obtaining Mars-GRAM source code and data files and running the program. Sample input and output are provided. An example of incorporating Mars-GRAM as an atmospheric subroutine in a trajectory code is also given.

  6. Mars Global Reference Atmospheric Model (Mars-GRAM) Version 3.8: Users Guide

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; James, B. F.

    1999-01-01

    Mars Global Reference Atmospheric Model (Mars-GRAM) Version 3.8 is presented and its new features are discussed. Mars-GRAM uses new values of planetary reference ellipsoid radii, gravity term, and rotation rate (consistent with current JPL values) and includes centrifugal effects on gravity. The model now uses NASA Ames Global Circulation Model low resolution topography. Curvature corrections are applied to winds and limits based on speed of sound are applied. Altitude of the F1 ionization peak and density scale height, including effects of change of molecular weight with altitude are computed. A check is performed to disallow temperatures below CO2 sublimination. This memorandum includes instructions on obtaining Mars-GRAM source code and data files and running the program. Sample input and output are provided. An example of incorporating Mars-GRAM as an atmospheric subroutine in a trajectory code is also given.

  7. Human Mars Surface Mission Nuclear Power Considerations

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.

    2018-01-01

    A key decision facing Mars mission designers is how to power a crewed surface field station. Unlike the solar-powered Mars Exploration Rovers (MER) that could retreat to a very low power state during a Martian dust storm, human Mars surface missions are estimated to need at least 15 kilowatts of electrical (kWe) power simply to maintain critical life support and spacecraft functions. 'Hotel' loads alone for a pressurized crew rover approach two kWe; driving requires another five kWe-well beyond what the Curiosity rover’s Radioisotope Power System (RPS) was designed to deliver. Full operation of a four-crew Mars field station is estimated at about 40 kWe. Clearly, a crewed Mars field station will require a substantial and reliable power source, beyond the scale of robotic mission experience. This paper explores the applications for both fission and RPS nuclear options for Mars.

  8. Elemental composition of the Martian crust.

    PubMed

    McSween, Harry Y; Taylor, G Jeffrey; Wyatt, Michael B

    2009-05-08

    The composition of Mars' crust records the planet's integrated geologic history and provides clues to its differentiation. Spacecraft and meteorite data now provide a global view of the chemistry of the igneous crust that can be used to assess this history. Surface rocks on Mars are dominantly tholeiitic basalts formed by extensive partial melting and are not highly weathered. Siliceous or calc-alkaline rocks produced by melting and/or fractional crystallization of hydrated, recycled mantle sources, and silica-poor rocks produced by limited melting of alkali-rich mantle sources, are uncommon or absent. Spacecraft data suggest that martian meteorites are not representative of older, more voluminous crust and prompt questions about their use in defining diagnostic geochemical characteristics and in constraining mantle compositional models for Mars.

  9. Flow Patterns of Lobate Debris Aprons and Lineated Valley Fill North of Ismeniae Fossae, Mars

    NASA Astrophysics Data System (ADS)

    Baker, D. M.; Head, J. W.; Marchant, D. R.

    2009-03-01

    Flow patterns are mapped within lobate debris aprons and lineated valley fill north of Ismeniae Fossae, Mars. Flowlines are sourced in plateau alcoves and form large, well-integrated systems, consistent with a debris-covered glacier interpretation.

  10. The Results of a Randomized Control Trial Evaluation of the SPARK Literacy Program

    ERIC Educational Resources Information Center

    Jones, Curtis J.; Christian, Michael; Rice, Andrew

    2016-01-01

    The purpose of this report is to present the results of a two-year randomized control trial evaluation of the SPARK literacy program. SPARK is an early grade literacy program developed by Boys & Girls Clubs of Greater Milwaukee. In 2010, SPARK was awarded an Investing in Innovation (i3) Department of Education grant to further develop the…

  11. The Interest-Driven Pursuits of 15 Year Olds: "Sparks" and Their Association with Caring Relationships and Developmental Outcomes

    ERIC Educational Resources Information Center

    Ben-Eliyahu, Adar; Rhodes, Jean E.; Scales, Peter

    2014-01-01

    In this study, we examined the characteristics of adolescents' deep interests or "sparks," the role of relationships in supporting the development of sparks, and whether having a spark was associated with positive developmental outcomes. Participants included 1,860 15 years olds from across the United States who participated in the…

  12. Impulse noise generator--design and operation.

    PubMed

    Brinkmann, H

    1991-01-01

    In the seventies PFANDER (Pfander, 1975) proposed a screening test with an impulse noise simulator to check the particular responsivity of soldiers on vulnerability of the inner ear concerning the impulse noise-induced hearing loss. According to a system developed at the University of Oldenburg (Germany) (Klug & Radek, 1987), we have constructed an impulse noise generator designed for our specific requirements that will be presented. The simulator consists of an electrical ignited impulse noise spark gap which is supplied by a 3.5 kV high voltage source. At a distance of 1.10 m from the center of the impulse noise spark gap a peak pressure level of 155 dB with a C-Duration (Pfander, 1975) of .2 msec and with the main energy in the frequency range from 1 kHz to 2 kHz was good reproducible. It would be preferable to shift the impulse noise spectrum to lower frequencies but experimental effort has failed so far.

  13. Effect of the SPARK Program on Physical Activity, Cardiorespiratory Endurance, and Motivation in Middle-School Students.

    PubMed

    Fu, You; Gao, Zan; Hannon, James C; Burns, Ryan D; Brusseau, Timothy A

    2016-05-01

    This study aimed to examine the effect of a 9-week SPARK program on physical activity (PA), cardiorespiratory endurance (Progressive Aerobic Cardiovascular Endurance Run; PACER), and motivation in middle-school students. 174 students attended baseline and posttests and change scores computed for each outcome. A MANOVA was employed to examine change score differences using follow-up ANOVA and Bonferroni post hoc tests. MANOVA yielded a significant interaction for Grade × Gender × Group (Wilks's Λ = 0.89, P < .001). ANOVA for PA revealed significant differences between SPARK grades 6 and 7 (Mean Δ = 8.11, P < .01) and Traditional grades 6 and 8 (Mean Δ = -6.96, P < .01). ANOVA also revealed greater PACER change for Traditional boys in grade 8 (P < .01) and SPARK girls in grade 8 (P < .01). There were significant interactions with perceived competence differences between SPARK grades 6 and 8 (Mean Δ = 0.38, P < .05), Enjoyment differences between SPARK grades 6 and 7 (Mean Δ = 0.67, P < .001), and SPARK grades 6 and 8 (Mean Δ = 0.81, P < .001). Following the intervention, SPARK displayed greater increases on PA and motivation measures in younger students compared with the Traditional program.

  14. Influence of Magnetic Topology on Mars' Ionospheric Structure

    NASA Astrophysics Data System (ADS)

    Adams, D.; Xu, S.; Mitchell, D. L.; Fillingim, M. O.; Lillis, R. J.; Andersson, L.; Fowler, C. M.; Benna, M.; Connerney, J. E. P.; Elrod, M. K.; Girazian, Z.; Vogt, M.

    2017-12-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission has been in Mars' orbit since September 2014 (>1 Mars year), and has collected particle and field data within the ionosphere over wide ranges of altitudes, latitudes, and local times. This study uses MAVEN data to (1) analyze the influence of magnetic topology on the day-side ionosphere and (2) identify the sources of the night-side ionosphere. On the day side, magnetic strength and elevation angle are commonly used as proxies for magnetic topology. In this study, we use pitch-angle-resolved suprathermal electron measurements by the Solar Wind Electron Analyzer (SWEA) to directly deduce the magnetic topology instead of using a proxy. On the night side, the main sources of ionospheric plasma are bulk transport and plasma pressure gradient flow from the day side, as well as in situ production by electron impact ionization (EII). Plasma transport at Mars is complicated by the presence of intense crustal magnetic fields. Closed crustal magnetic fields form isolated plasma environments ("miniature magnetospheres") that inhibit external sources of cold ionospheric plasma as well as suprathermal (ionizing) electrons. Inside these closed magnetic loops, we study how the plasma evolves with bulk flow transport as the only source. By comparing closed and non-closed magnetic configurations, the effects of pressure gradient flow and EII can be distinguished. Finally, the densities of O2+, O+, and NO+, as measured by the Neutral Gas and Ion Mass Spectrometer (NGIMS), are examined. Inside miniature magnetospheres on the night side, the abundances of these species are found to be primarily controlled by the different recombination rates, as there is little plasma created within these regions by EII or transported from the neighboring regions by plasma pressure gradient flow.

  15. Preliminary Investigations of Joining Technologies for Attaching Refractory Metals to Ni-Based Superalloys

    NASA Technical Reports Server (NTRS)

    Gould, Jerry E.; Ritzert, Frank J.; Loewenthal, William S.

    2006-01-01

    In this study, a range of joining technologies has been investigated for creating attachments between refractory metal and Ni-based superalloys. Refractory materials of interest include Mo-47%Re, T-111, and Ta-10%W. The Ni-based superalloys include Hastelloy X and MarM 247. During joining with conventional processes, these materials have potential for a range of solidification and intermetallic formation-related defects. For this study, three non-conventional joining technologies were evaluated. These included inertia welding, electro-spark deposition (ESD) welding, and magnetic pulse welding (MPW). The developed inertia welding practice closely paralleled that typically used for the refractory metals alloys. Metallographic investigations showed that forging during inertia welding occurred predominantly on the nickel base alloy side. It was also noted that at least some degree of forging on the refractory metal side of the joint was necessary to achieve consistent bonding. Both refractory metals were readily weldable to the Hastelloy X material. When bonding to the MarM 247, results were inconsistent. This was related to the higher forging temperatures of the MarM 247, and subsequent reduced deformation on that material during welding. ESD trials using a Hastelloy X filler were successful for all material combinations. ESD places down very thin (5- to 10- m) layers per pass, and interactions between the substrates and the fill were limited (at most) to that layer. For the refractory metals, the fill only appeared to wet the surface, with minimal dilution effects. Microstructures of the deposits showed high weld metal integrity with maximum porosity on the order of a few percent. Some limited success was also obtained with MPW. In these trials, only the T-111 tubes were used. Joints were possible for the T-111 tube to the Hastelloy X bar stock, but the stiffness of the tube (resisting collapse) necessitated the use of very high power levels. These power levels resulted in damage to the equipment (concentrator) during welding. It is of note that the joint made showed the typical wavy bond microstructure associated with magnetic pulse/explosion bond joints. Joints were not possible between the T-111 tube and the MarM 247 bar stock. In this case, the MarM 247 shattered before sufficient impact forces could be developed for bonding.

  16. Downslope transport does not explain higher 230Th inventories in the Panama Basin

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; Marcantonio, F.; Lyle, M. W.

    2009-12-01

    Mass accumulation rates (burial fluxes) in the Panama Basin calculated using oxygen isotope age models differ from those calculated using the 230Th normalized flux method. During the Holocene and the last glacial, the 230Th-derived MARs are consistently lower than age-model-derived MARs. Most importantly, using both methods, glacial MARs are always significantly higher than Holocene MARs. The discrepancy in the calculated MARs may be due to deep-ocean sediment redistribution processes, specifically downslope transport of sediments from nearby topographic highs [1]. We test this hypothesis by analyzing sediment from shallower sites throughout the Panama basin (from 712-2870 meters) and, specifically, from the tops of ridges surrounding the basin (e.g., Carnegie and Cocos Ridges). Based on 230Th methodology we determine ridge-top focusing factors (FF) that are as high as, or higher than those in the deeper parts of the basin, as determined by us or others [1]. The excess inventories of 230Th are also proportionally higher during the glacial versus Holocene in all but one of the nine new sites we have analyzed. If the source of the higher-than-predicted inventory of 230Th is topographic highs in the region, one would expect to see a correlation between 230Th and depth. We find no such correlation. Although our data suggest that within-basin topographic highs are not the source of higher 230Th inventories in the region, extrabasinal sources cannot be ruled out. In addition, there is the possibility that MARs can be underestimated using the 230Th method in Panama Basin sediments. [1] Kienast et al. 2007, Paleoceanography 22, 2213.

  17. Automatic code generation in SPARK: Applications of computer algebra and compiler-compilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nataf, J.M.; Winkelmann, F.

    We show how computer algebra and compiler-compilers are used for automatic code generation in the Simulation Problem Analysis and Research Kernel (SPARK), an object oriented environment for modeling complex physical systems that can be described by differential-algebraic equations. After a brief overview of SPARK, we describe the use of computer algebra in SPARK`s symbolic interface, which generates solution code for equations that are entered in symbolic form. We also describe how the Lex/Yacc compiler-compiler is used to achieve important extensions to the SPARK simulation language, including parametrized macro objects and steady-state resetting of a dynamic simulation. The application of thesemore » methods to solving the partial differential equations for two-dimensional heat flow is illustrated.« less

  18. NASA Exploration Team (NExT) In-Space Transportation Overview

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.; Cooke, Douglas R.; Kos, Larry D.; Brady, Hugh J. (Technical Monitor)

    2002-01-01

    This presentation provides an overview of NASA Exploration Team's (NEXT) vision of in-space transportation in the future. Hurdles facing in-space transportation include affordable power sources, crew health and safety, optimized robotic and human operations and space systems performance. Topics covered include: exploration of Earth's neighborhood, Earth's neighborhood architecture and elements, Mars mission trajectory options, delta-v variations, Mars mission duration options, Mars mission architecture, nuclear electric propulsion advantages and miscellaneous technology needs.

  19. The marbll experiment: towards a martian wind lidar

    NASA Astrophysics Data System (ADS)

    Määttänen, Anni; Ravetta, François; Montmessin, Franck; Bruneau, Didier; Mariscal, Jean-François; Van Haecke, Mathilde; Fayolle, Guillaume; Montaron, Christophe; Coscia, David

    2018-04-01

    Operating a lidar on Mars would fulfill the need of accessing wind and aerosol profiles in the atmospheric boundary layer. This is the purpose of the MARs Boundary Layer Lidar (MARBLL) instrument. We report recent developments of this compact direct-detection wind lidar designed to operate from the surface of Mars. A new laser source has been developed and an azimuthal scanning capability has been added. Preliminary results of a field campaign are presented.

  20. Solar radiation on Mars: Stationary photovoltaic array

    NASA Technical Reports Server (NTRS)

    Appelbaum, J.; Sherman, I.; Landis, G. A.

    1993-01-01

    Solar energy is likely to be an important power source for surface-based operation on Mars. Photovoltaic cells offer many advantages. In this article we have presented analytical expressions and solar radiation data for stationary flat surfaces (horizontal and inclined) as a function of latitude, season and atmospheric dust load (optical depth). The diffuse component of the solar radiation on Mars can be significant, thus greatly affecting the optimal inclination angle of the photovoltaic surface.

  1. Carbon Cycle in South China Sea: Flux, Controls and Global Implications

    NASA Astrophysics Data System (ADS)

    Dai, M.; Cao, Z.; Yang, W.; Guo, X.; Yin, Z.; Gan, J.

    2016-12-01

    The contemporary coastal ocean is generally seen as a significant CO2 sink of 0.2-0.4 Pg C/yr at the global scale. However, mechanistic understanding of the coastal ocean carbon cycle remains limited, leading to the unanswered question of why some coastal systems are sources while others are sinks of atmospheric CO2. As the largest marginal sea of Northern Pacific, the South China Sea (SCS) is a mini-ocean with wide shelves in both its southern and northern parts. Its northern shelf, which receives significant land inputs from the Pearl River, a world major river, can be categorized as a River-Dominated Margin (RioMar) during peak discharges, and is characterized as a CO2 sink to the atmosphere. The SCS basin is identified as an Ocean-Dominated Margin (OceMar) and a CO2 source. OceMar is characterized by exchange with the open ocean via a two-dimensional (at least) process, i.e., the horizontal intrusion of open ocean water and subsequent vertical mixing and upwelling. Depending on the different ratios of dissolved inorganic carbon (DIC) and nutrients from the source waters into the continental margins, the relative consumption or removal bwtween DIC and nutrients, when being transported into the euphotic zones where biogeochemical processes take over, determines the CO2 fluxes. Thus, excess DIC relative to nutrients existing in the upper layer will lead to CO2 degassing. The CO2 fluxes in both RioMars and OceMars can be quantified using a semi-analytical diagnostic approach by coupling the physical dynamics and biogeochemical processes. We extended our mechanistic studies in the SCS to other OceMars including the Caribbean Sea, the Arabian Sea, and the upwelling system off the Oregon-California coast, and RioMars including the East China Sea and Amazon River plume to demonstrate the global implications of our SCS carbon studies.

  2. Carbon Isotopic Composition of CO2, Evolved During Perchlorate-Induced Reactions in Mars Analog Materials: Interpreting SAM/MSL Rocknest Data

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; McAdam, A. C.; Archer, P. D., Jr.; Bower, H.; Buch, A.; Eigenbrode, J.; Freissinet, C.; Franz, H. B.; Glavin, D.; Jones, J. H.; hide

    2013-01-01

    The Sample Analysis at Mars (SAM) Instrument Suite on the Mars Science Laboratory (MSL) Rover Curiosity made its first solid sample evolved gas analysis of unconsolidated material at aeolian bedform Rocknest in Gale Crater. The magnitude of O2 evolved in each run as well as the chlorinated hydrocarbons detected by SAM gas chromatograph/ mass spectrometer (GCMS) [1] suggest a chlorinated oxidant such as perchlorate in Rocknest materials [2]. Perchlorate induced combustion of organics present in the sample would contribute to the CO2 volatile inventory, possibly overlapping with CO2 from inorganic sources. The resulting carbon and oxygen isotopic composition of CO2 sent to the Tunable Laser Spectrometer (TLS) for analysis would represent mixed sources. This work was undertaken to better understand a) how well the carbon isotopic composition ( 13C) of CO2 from partially combusted products represents their source and b) how the 13C of combusted products can be deconvolved from other carbon sources such as thermal decomposition of carbonate.

  3. Last Glacial loess in the conterminous USA

    USGS Publications Warehouse

    Bettis, E. Arthur; Muhs, Daniel R.; Roberts, Helen M.; Wintle, Ann G.

    2003-01-01

    The conterminous United States contains an extensive and generally well-studied record of Last Glacial loess. The loess occurs in diverse physiographic provinces, and under a wide range of climatic and ecological conditions. Both glacial and non-glacia lloess sources are present, and many properties of the loess vary systematically with distance from loess sources. United States' mid-continent Last Glacial loess is probably the thickest in the world, and our calculated mass accumulation rates (MARs) are as high as 17,500 g/m2/yr at the Bignell Hill locality in Nebraska, and many near-source localities have MARs greater than 1500 g/m2/yr. These MARs are high relative to rates calculated in other loess provinces around the world. Recent models of LastGlacial dust sources fail to predict the extent and magnitude of dust flux from the mid-continent of the United States. A better understanding of linkages between climate, ice sheet behaviour, routing of glacial meltwater, land surface processes beyond the ice margin, and vegetation is needed to improve the predictive capabilities of models simulating dust flux from this region.

  4. An onboard navigation system which fulfills Mars aerocapture guidance requirements

    NASA Technical Reports Server (NTRS)

    Brand, Timothy J.; Fuhry, Douglas P.; Shepperd, Stanley W.

    1989-01-01

    The development of a candidate autonomous onboard Mars approach navigation scheme capable of supporting aerocapture into Mars orbit is discussed. An aerocapture guidance and navigation system which can run independently of the preaerocapture navigation was used to define a preliminary set of accuracy requirements at entry interface. These requirements are used to evaluate the proposed preaerocapture navigation scheme. This scheme uses optical sightings on Deimos with a star tracker and an inertial measurement unit for instrumentation as a source for navigation nformation. Preliminary results suggest that the approach will adequately support aerocaputre into Mars orbit.

  5. Solar wind alpha particle capture at Mars and Venus

    NASA Astrophysics Data System (ADS)

    Stenberg, Gabriella; Barabash, Stas; Nilsson, Hans; Fedorov, A.; Brain, David; André, Mats

    Helium is detected in the atmospheres of both Mars and Venus. It is believed that radioactive decay of uranium and thorium in the interior of the planets' is not sufficient to account for the abundance of helium observed. Alpha particles in the solar wind are suggested to be an additional source of helium, especially at Mars. Recent hybrid simulations show that as much as 30We use ion data from the ASPERA-3 and ASPERA-4 instruments on Mars and Venus Express to estimate how efficient solar wind alpha particles are captured in the atmospheres of the two planets.

  6. More on Magnetic Spectra from Correlated Crustal Sources on Mars

    NASA Technical Reports Server (NTRS)

    Voorhies, C. V.

    2005-01-01

    The spectral method for distinguishing crustal from core-source magnetic fields has been re-examined, modified and applied to both a comprehensive geomagnetic field model and an altitude normalized magnetic map of Mars. These observational spectra are fairly fitted by theoretical forms expected from certain elementary classes of magnetic sources. For Earth we found fields from a core of radius 3512 plus or minus 64 km, in accord with the 3480 km seismologic radius, and a crust represented by a shell of random dipolar sources at radius 6367 plus or minus 14 km, just beneath the 6371.0 km mean radius. For Mars we found only a field from a crust represented in same way, but 46 plus or minus 10 km below the planetary mean radius of 3389.5 km, and with sources about 9.6 plus or minus 3.2 times stronger than Earth's. It is remarkable that the same simple theoretical form should fairly fit crustal magnetic spectra for both worlds and return crustal-source depth estimates of plausible magnitude. Evidently, the idea of an ensemble of compact, quasi-independent, magnetized regions within these planetary crusts has some merit. Yet such estimates, at best a kind of average, depend upon both the observational spectrum fitted and the physical basis of the theoretical spectrum.

  7. Plasma spark discharge reactor and durable electrode

    DOEpatents

    Cho, Young I.; Cho, Daniel J.; Fridman, Alexander; Kim, Hyoungsup

    2017-01-10

    A plasma spark discharge reactor for treating water. The plasma spark discharge reactor comprises a HV electrode with a head and ground electrode that surrounds at least a portion of the HV electrode. A passage for gas may pass through the reactor to a location proximate to the head to provide controlled formation of gas bubbles in order to facilitate the plasma spark discharge in a liquid environment.

  8. Modeling of Spark Gap Performance

    DTIC Science & Technology

    1983-06-01

    MODELING OF SPARK GAP PERFORMANCE* A. L. Donaldson, R. Ness, M. Hagler, M. Kristiansen Department of Electrical Engineering and L. L. Hatfield...gas pressure, and chaJ:ging rate on the voltage stability of high energy spark gaps is discussed. Implications of the model include changes in...an extremely useful, and physically reasonable framework, from which the properties of spark gaps under a wide variety of experimental conditions

  9. The Mars Methane Analogue Mission (M3): Results of the 2011 Field Deployment

    NASA Astrophysics Data System (ADS)

    Cloutis, E. A.; Whyte, L.; Qadi, A.; Bell, J. F.; Berard, G.; Boivin, A.; Ellery, A.; Haddad, E.; Jamroz, W.; Kruzelecky, R.; Mann, P.; Olsen, K.; Perrot, M.; Popa, D.; Rhind, T.; Samson, C.; Sharma, R.; Stromberg, J.; Strong, K.; Tremblay, A.; Wilhelm, R.; Wing, B.; Wong, B.

    2012-03-01

    The M3 mission simulated a rover mission to Mars to search for sources of methane. The 2011 campaign found that methane plumes from serpentinite are very localized and target selection based on imagery is preferred over direct methane detection.

  10. Mars Mission Specialist

    ERIC Educational Resources Information Center

    Burton, Bill; Ogden, Kate; Walker, Becky; Bledsoe, Leslie; Hardage, Lauren

    2018-01-01

    For the last several years, the authors have implemented an integrated Mars Colony project for their third-grade classes. Students explored several considerations related to colonizing and inhabiting a new world, including food sources, types of citizens, transportation, and housing design. Nearly everything about the project was open-ended, full…

  11. Agriculture on Mars: Soils for Plant Growth

    NASA Technical Reports Server (NTRS)

    Ming, D. W.

    2016-01-01

    Robotic rovers and landers have enabled the mineralogical, chemical, and physical characterization of loose, unconsolidated materials on the surface of Mars. Planetary scientists refer to the regolith material as "soil." NASA is currently planning to send humans to Mars in the mid 2030s. Early missions may rely on the use of onsite resources to enable exploration and self-sufficient outposts on Mars. The martian "soil" and surface environment contain all essential plant growth elements. The study of martian surface materials and how they might react as agricultural soils opens a new frontier for researchers in the soil science community. Other potential applications for surface "soils" include (i) sources for extraction of essential plant-growth nutrients, (ii) sources of O2, H2, CO2, and H2O, (iii) substrates for microbial populations in the degradation of wastes, and (iv) shielding materials surrounding outpost structures to protect humans, plants, and microorganisms from radiation. There are many challenges that will have to be addressed by soil scientists prior to human exploration over the next two decades.

  12. Decarboxylation of Carbon Compounds as a Potential Source for CO2 and CO Observed by SAM at Yellowknife Bay, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Eigenbrode, J. L.; Bower, H.; Archer, P. Jr.

    2014-01-01

    Martian carbon was detected in the Sheepbed mudtsone at Yellowknife Bay, Gale Crater, Mars by the Sample Analysis at Mars (SAM) instrument onboard Curiosity, the rover of the Mars Science Laboratory missio]. The carbon was detected as CO2 thermally evolved from drilled and sieved rock powder that was delivered to SAM as a <150-micron-particle- size fraction. Most of the CO2 observed in the Cumberland (CB) drill hole evolved between 150deg and 350deg C. In the John Klein (JK) drill hole, the CO2 evolved up to 500deg C. Hypotheses for the source of the the CO2 include the breakdown of carbonate minerals reacting with HCl released from oxychlorine compounds, combustion of organic matter by O2 thermally evolved from the same oxychlorine minerals, and the decarboxylation of organic molecules indigenous to the martian rock sample. Here we explore the potential for the decarboxylation hypothesis.

  13. Measurement of Mars Analog Soil Dielectric Properties for Mars 2020 Radar Science Applications

    NASA Astrophysics Data System (ADS)

    Decrossas, E.; Bell, D. J.; Jin, C.; Steinfeld, D.; Batres, J.

    2017-12-01

    On multiple solar system missions, radar instruments have been used to probe subsurface geomorphology and to infer chemical composition based on the dielectric signature derived from the reflected signal. One important planetary application is the identification of subsurface water ice at Mars. Low frequency, 15 MHz to 25 MHz, instruments like SHARAD have been used from Mars orbit to investigate subsurface features from 10's to 1000's of meters below the surface of Mars with a vertical resolution of 15m and a horizontal resolution of 300 to 3000 meters. SHARAD has been able to identify vast layers of CO2 and water ice. The ground-penetrating RIMFAX instrument that will ride on the back of the Mars 2020 rover will operate over the 150 MHz to 1200 MHz band and penetrate to a depth of 10 meters with a vertical resolution of 15 to 30 cm. RIMFAX will be able to identify near surface water ice if it exists below the travel path of the Mars 2020 rover. Identification of near surface water ice has science application to current and past Mars hydrologic processes and to the potential for finding remnants of past Mars biologic activity. Identification of near surface water ice also has application to future human missions that would benefit from access to a Mars local water source. Recently, JPL investigators have been pursuing a secondary use of telecom signals to capture bistatic radar signatures from subsurface areas surrounding the rover but away from its travel path. A particularly promising potential source would be the telecom signal from a proposed Mars Helicopter back to the Mars 2020 rover. The Mars 2020 rover will be equipped with up to three telecom subsystems. The Rover Relay telecom subsystem operates at UHF receiving at 435 MHz frequency. Anticipating opportunistic collection of near-surface bistatic radar signatures from telecom signals received at the rover, it is valuable to understand the dielectric properties of the Martian soil in each of these three possible frequency bands. In their 2004 paper, Williams and Greely reported on measurements of the dielectric and attenuation properties of Mars soil analogs made in the band of 200 MHz to 1300 MHz. Their results apply directly to the Mars rover telecom links at 435 MHz and 915 MHz. This paper reports on dielectric measurements made on the same Mars soil analogs over the band of 7 GHz to 40 GHz.

  14. A search for a nonbiological explanation of the Viking Labeled Release life detection experiment

    NASA Technical Reports Server (NTRS)

    Levin, G. V.; Straat, P. A.

    1981-01-01

    The possibility of nonbiological reactions involving hydrogen peroxide being the source of the positive response detected by the Viking Labeled Release (LR) life detection experiment on the surface of Mars is assessed. Labeled release experiments were conducted in the LR Test Standards Module which replicates the Viking flight instrument configuration on analog Martian soils prepared to match the Viking inorganic analysis of Mars surface material to which an aqueous solution of hydrogen peroxide had been added. Getter experiments were also conducted to compare several reactions simultaneously in the presence and absence of UV radiation prior to the addition of nutrient. Hydrogen peroxide on certain analog soils is found to be capable of reproducing the kinetics and thermal information contained in the Mars data. The peroxide concentration necessary for this response, however, is shown to require a chemical stability or production rate much greater than seems likely in the Mars environment. As previous experiments have shown hydrogen peroxide to be the most likely nonbiological source of the positive LR response, it is concluded that the presence of a biological agent on Mars must not yet be ruled out.

  15. Underwater spark discharge with long transmission line for cleaning horizontal wells

    NASA Astrophysics Data System (ADS)

    Lee, Kern; Chung, Kyoung-Jae; Hwang, Y. S.; Kim, C. Y.

    2017-06-01

    A transmission line is discussed for application in an underwater spark-discharge technique in the cleaning of a horizontal well by incorporating a power-transmission model into the simulation. The pulsed-spark-discharge technique has been proposed for clogged-well rehabilitation, because it removes incrustations that are attached to well screens by using strong pressure waves that are generated by the rapid expansion of a spark channel. To apply the pulsed-spark-discharge technique to the cleaning of horizontal wells, the coaxial cable between the pulsed power supply and the spark gap as a load needs to be extended to a few hundred meters. Prior to field application, pulsed-spark-discharge experiments were conducted and the role of the transmission line was examined using an improved simulation model. In the model, a non-linear interaction of the spark channel and the capacitor bank is described by the pulse-forming action of the coaxial cable. Based on the accurate physical properties of the water plasma, such as the equation of state and electrical conductivity within the region of interest, the amount of energy contributed to the development of a shock wave was evaluated. The simulation shows that if the initial conditions of the spark channel are the same, no further reduction in strength of the pressure wave occurs, even if the cable length is increased above 50 m. Hence, the degraded peak pressure that was observed in the experiments using the longer cable is attributed to a change in the initial condition of the spark channel. The parametric study suggests that the low initial charging voltage, the high ambient water pressure, and the long cable length yield the low initial spark-channel density, which results in a reduced peak pressure. The simulation of line charging is presented to discuss the principle of disturbing the pre-breakdown process by an extended cable.

  16. Impact Metamorphism of Subsurface Organic Matter on Mars: A Potential Source for Methane and Surface Alteration

    NASA Technical Reports Server (NTRS)

    Oehler, D. Z.; Allen, C. C.; McKay, D. S.

    2005-01-01

    Reports of methane in the Martian atmosphere have spurred speculation about sources for that methane [1-3]. Discussion has centered on cometary/ meteoritic delivery, magmatic/mantle processes, UV-breakdown of organics, serpentinization of basalts, and generation of methane by living organisms. This paper describes an additional possibility: that buried organic remains from past life on Mars may have been generating methane throughout Martian history as a result of heating associated with impact metamorphism.

  17. Anomaly Trends for Missions to Mars: Mars Global Surveyor and Mars Odyssey

    NASA Technical Reports Server (NTRS)

    Green, Nelson W.; Hoffman, Alan R.

    2008-01-01

    The long term flight operations of the Mars Global Surveyor and Mars Odyssey spacecraft give us an excellent chance to examine the operations of two long lived spacecraft in orbit around Mars during overlapping time periods. This study examined the anomalies for each mission maintained for NASA at the Jet Propulsion Laboratory. By examining the anomalies each mission encountered during their multiyear missions, trends were identified related to when anomalies occurred during each mission, the types of anomalies encountered, and corrective actions taken to mitigate the effects of the anomalies. As has been discovered in previous studies the numbers of anomalies directly correlate with mission activity and show a decreasing trend with elapsed mission time. Trend analysis also identified a heavy emphasis on software as the source or solution to anomalies for both missions.

  18. MzJava: An open source library for mass spectrometry data processing.

    PubMed

    Horlacher, Oliver; Nikitin, Frederic; Alocci, Davide; Mariethoz, Julien; Müller, Markus; Lisacek, Frederique

    2015-11-03

    Mass spectrometry (MS) is a widely used and evolving technique for the high-throughput identification of molecules in biological samples. The need for sharing and reuse of code among bioinformaticians working with MS data prompted the design and implementation of MzJava, an open-source Java Application Programming Interface (API) for MS related data processing. MzJava provides data structures and algorithms for representing and processing mass spectra and their associated biological molecules, such as metabolites, glycans and peptides. MzJava includes functionality to perform mass calculation, peak processing (e.g. centroiding, filtering, transforming), spectrum alignment and clustering, protein digestion, fragmentation of peptides and glycans as well as scoring functions for spectrum-spectrum and peptide/glycan-spectrum matches. For data import and export MzJava implements readers and writers for commonly used data formats. For many classes support for the Hadoop MapReduce (hadoop.apache.org) and Apache Spark (spark.apache.org) frameworks for cluster computing was implemented. The library has been developed applying best practices of software engineering. To ensure that MzJava contains code that is correct and easy to use the library's API was carefully designed and thoroughly tested. MzJava is an open-source project distributed under the AGPL v3.0 licence. MzJava requires Java 1.7 or higher. Binaries, source code and documentation can be downloaded from http://mzjava.expasy.org and https://bitbucket.org/sib-pig/mzjava. This article is part of a Special Issue entitled: Computational Proteomics. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Photothermally Activated Motion and Ignition Using Aluminum Nanoparticles

    DTIC Science & Technology

    2013-01-17

    In comparison with alternative sources such as spark ignition,19 laser igni- tion,20 plasma ignition,21 plasma -assisted combustion,22 and combustion...energy-dispersive X-ray spectroscopy measurements of motion-only and afterignition products confirm significant Al oxidation occurs through sintering ...significant Al oxidation occurs through sintering and bursting after the flash exposure. Simulations suggest local heat generation is enhanced by LSPR. The

  20. Capless Annealing of Ion Implanted GaA.

    DTIC Science & Technology

    1980-12-01

    1967). 10. " Thermophysical Properties of Matter," edited by Y. S. Touloukian (Plenum, New York, 1977), v. 13. 11. J. F. Gibbons, W. S. Johnson and S. W...temperatures of 850 C. Using rf spark-source mass spectrometry, an As con- centration in excess of the equilibrium value of As over GaAs at the annealing...38 4.0 SUMMARY AND RECOMMENDATIONS ................... *.* ...... ..... 46 5.0 REFERENCES ..................... *.. o

  1. Correlations Between Variations in Solar EUV and Soft X-Ray Irradiance and Photoelectron Energy Spectra Observed on Mars and Earth

    NASA Technical Reports Server (NTRS)

    Peterson, W. K.; Brain, D. A.; Mitchell, D. L.; Bailey, S. M.; Chamberlin, P. C.

    2013-01-01

    Solar extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F(10.7) index currently used.

  2. Correlations between variations in solar EUV and soft X-ray irradiance and photoelectron energy spectra observed on Mars and Earth

    NASA Astrophysics Data System (ADS)

    Peterson, W. K.; Brain, D. A.; Mitchell, D. L.; Bailey, S. M.; Chamberlin, P. C.

    2013-11-01

    extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F10.7 index currently used.

  3. Prototype detector development for measurement of high altitude Martian dust using a future orbiter platform

    NASA Astrophysics Data System (ADS)

    Pabari, Jayesh; Patel, Darshil; Chokhawala, Vimmi; Bogavelly, Anvesh

    2016-07-01

    Dust devils mostly occur during the mid of Southern hemisphere summer on Mars and play a key role in the background dust opacity. Due to continuous bombardment of micrometeorites, secondary ejecta come out from the Moons of the Mars and can easily escape. This phenomenon can contribute dust around the Moons and therefore, also around the Mars. Similar to the Moons of the Earth, the surfaces of the Martian Moons get charged and cause the dust levitation to occur, adding to the possible dust source. Also, interplanetary dust particles may be able to reach the Mars and contribute further. It is hypothesized that the high altitude Martian dust could be in the form of a ring or tori around the Mars. However, no such rings have been detected to the present day. Typically, width and height of the dust torus is ~5 Mars radii wide (~16950 km) in both the planes as reported in the literature. Recently, very high altitude dust at about 1000 km has been found by MAVEN mission and it is expected that the dust may be concentrated at about 150 to 500 km. However, a langmuir probe cannot explain the source of such dust particles. It is a puzzling question to the space scientist how dust has reached to such high altitudes. A dedicated dust instrument on future Mars orbiter may be helpful to address such issues. To study origin, abundance, distribution and seasonal variation of Martian dust, a Mars Orbit Dust Experiment (MODEX) is proposed. In order to measure the Martian dust from a future orbiter, design of a prototype of an impact ionization dust detector has been initiated at PRL. This paper presents developmental aspects of the prototype dust detector and initial results. The further work is underway.

  4. Cavitation Erosion of Electro Spark Deposited Nitinol vs. Stellite Alloy on Stainless Steel Substrate

    DTIC Science & Technology

    2015-07-15

    EROSION OF ELECTRO SPARK DEPOSITED NITINOL VS. STELLITE® ALLOY ON STAINLESS STEEL SUBSTRATE Theresa A. Hoffard Lean-Miguel San Pedro Mikhail...SUBTITLE 5a. CONTRACT NUMBER CAVITATION EROSION TESTING OF ELECTRO SPARK DEPOSITED NITINOL VS STELLITE® ALLOY ON STAINLESS STEEL SUBTRATE 5b. GRANT...of combining Nitinol (NiTi) superelastic metal alloy with ElectroSpark Deposition (ESD) technology to increase the cavitation erosion resistance of

  5. Reactive Spark Plasma Sintering (SPS) of Nitride Reinforced Titanium Alloy Composites (Postprint)

    DTIC Science & Technology

    2014-08-15

    AFRL-RX-WP-JA-2014-0177 REACTIVE SPARK PLASMA SINTERING (SPS) OF NITRIDE REINFORCED TITANIUM ALLOY COMPOSITES (POSTPRINT) Jaimie S...titanium–vanadium alloys, has been achieved by introducing reactive nitrogen gas during the spark plasma sintering (SPS) of blended titanium and...lcomReactive spark plasma sintering (SPS) of nitride reinforced titanium alloy compositeshttp://dx.doi.org/10.1016/j.jallcom.2014.08.049 0925-8388

  6. Tholins: Can They Provide a Substrate, Carbon and Nitrogen for Plant Production?

    NASA Technical Reports Server (NTRS)

    Wignarajah, Kanapathipillai; Khare, Bishun; Cruikshank, Dale; McKay, Christopher; Arnold, James O. (Technical Monitor)

    1999-01-01

    Tholin is a word coined to describe the entire class of complex organic solids produced in laboratory experiments where pre-biotic gaseous chemicals are subject to bombardment by high energy. The atomic composition of Titan tholin produced from 10 percent CH4 and 90 percent N2 in a simulation of Titan atmosphere irradiated by charged particles trapped in the magnetosphere of Saturn gave 67 percent C and 33 percent N. Hydrolysis of Titan tholin with 6N HCl produced a racemic mixture of biological and non-biological amino acids that was confirmed by GC/MS. Other tholins, that revealed the presence of amino acids, were UV tholin produced under possible primitive Earth conditions by irradiation of a mixture of gases (CH4, C2H6, NH3, H2S and liquid H2O) with long-wavelength ultraviolet light, representing the most abundant useful energy source for prebiological organic synthesis; Spark tholin in a crude simulation of Jupiter atmosphere using electrical discharge through a mixture of CH4, NH3, and H2O vapor. Pyrolytic GC/MS of Titan tholin produced more than one hundred organic compounds including saturated and unsaturated aliphatic hydrocarbons, substituted polycyclic aromatics, nitriles, amines, pyrroles, pyrazines, pyridines, pyrimidines, and the purine, adenine. Similar rich pyrolytic products were obtained with UV as well as Spark tholins. A range of two to four ring PAHs (Polycyclic Aromatic Hydrocarbons) in Spark as well as Titan tholins, some with one to four alkylation sites, were identified by two-step laser desorption/multiphoton ionization mass spectrometry and also confirmed by the synchronous fluorescence technique. Previous studies have demonstrated the potential for use of tholins as a source of carbon and energy by microbes. This paper describes studies that evaluate the potential for using different types of tholins as (a) a substrate for growing plants and (b) a source of carbon and nitrogen for plants. The data are interpreted in terms of the potential for using such tholins to grow plants for food in extraterrestrial habitats and also to speculate on the possibilities of abiotic evolution of plants.

  7. Type 1 Inositol (1,4,5)-Trisphosphate Receptor Activates Ryanodine Receptor 1 to Mediate Calcium Spark Signaling in Adult Mammalian Skeletal Muscle*♦

    PubMed Central

    Tjondrokoesoemo, Andoria; Li, Na; Lin, Pei-Hui; Pan, Zui; Ferrante, Christopher J.; Shirokova, Natalia; Brotto, Marco; Weisleder, Noah; Ma, Jianjie

    2013-01-01

    Functional coupling between inositol (1,4,5)-trisphosphate receptor (IP3R) and ryanodine receptor (RyR) represents a critical component of intracellular Ca2+ signaling in many excitable cells; however, the role of this mechanism in skeletal muscle remains elusive. In skeletal muscle, RyR-mediated Ca2+ sparks are suppressed in resting conditions, whereas application of transient osmotic stress can trigger activation of Ca2+ sparks that are restricted to the periphery of the fiber. Here we show that onset of these spatially confined Ca2+ sparks involves interaction between activation of IP3R and RyR near the sarcolemmal membrane. Pharmacological prevention of IP3 production or inhibition of IP3R channel activity abolishes stress-induced Ca2+ sparks in skeletal muscle. Although genetic ablation of the type 2 IP3R does not appear to affect Ca2+ sparks in skeletal muscle, specific silencing of the type 1 IP3R leads to ablation of stress-induced Ca2+ sparks. Our data indicate that membrane-delimited signaling involving cross-talk between IP3R1 and RyR1 contributes to Ca2+ spark activation in skeletal muscle. PMID:23223241

  8. Seasonal Atmospheric Argon Variability Measured in the Equatorial Region of Mars by the Mars Exploration Rover Alpha Particle X-Ray Spectrometers: Evidence for an Annual Argon-Enriched Front

    NASA Astrophysics Data System (ADS)

    VanBommel, S. J.; Gellert, R.; Clark, B. C.; Ming, D. W.

    2018-02-01

    The Mars Exploration Rover Opportunity (MER-B) has been exploring the surface of Mars since landing in 2004. Its Alpha Particle X-ray Spectrometer (APXS) is primarily used to interrogate the chemical composition of rocks and soil samples in situ. Additionally, the APXS has measured the atmosphere of Mars with a regular cadence, monitoring the change in relative atmospheric argon density. Atmospheric measurements with the MER-B APXS span over six Mars years providing an unprecedented level of statistics for careful study of the ubiquitous APXS spectral background. Several models were applied to high-frequency long-duration Spirit rover atmospheric APXS measurements. The most stable model with the least uncertainty was applied to the MER-B data set. Seasonal variation of 10-15% in equatorial atmospheric argon density was observed - in agreement with existing literature and global climate models. Unseen in previous work and global climate models, an abrupt deviation from the model-predicted annual mixing ratio was measured by the MER-B APXS around Ls 150. The sharp change, 10% over 10° Ls, provides strong evidence for a northward migrating front, enriched in argon, sourced from the south pole at the end of southern winter. A similar weaker front is possibly observed around Ls 325, sourced from the northern polar region.

  9. Elemental Composition of Mars Return Samples Using X-Ray Fluorescence Imaging at the National Synchrotron Light Source II

    NASA Astrophysics Data System (ADS)

    Thieme, J.; Hurowitz, J. A.; Schoonen, M. A.; Fogelqvist, E.; Gregerson, J.; Farley, K. A.; Sherman, S.; Hill, J.

    2018-04-01

    NSLS-II at BNL provides a unique and critical capability to perform assessments of the elemental composition and the chemical state of Mars returned samples using synchrotron radiation X-ray fluorescence imaging and X-ray absorption spectroscopy.

  10. SparkJet Efficiency

    NASA Technical Reports Server (NTRS)

    Golbabaei-Asl, Mona; Knight, Doyle; Anderson, Kellie; Wilkinson, Stephen

    2013-01-01

    A novel method for determining the thermal efficiency of the SparkJet is proposed. A SparkJet is attached to the end of a pendulum. The motion of the pendulum subsequent to a single spark discharge is measured using a laser displacement sensor. The measured displacement vs time is compared with the predictions of a theoretical perfect gas model to estimate the fraction of the spark discharge energy which results in heating the gas (i.e., increasing the translational-rotational temperature). The results from multiple runs for different capacitances of c = 3, 5, 10, 20, and 40 micro-F show that the thermal efficiency decreases with higher capacitive discharges.

  11. Spark ignition of flowing gases I : energies to ignite propane-air mixtures in pressure range of 2 to 4 inches mercury absolute

    NASA Technical Reports Server (NTRS)

    Swett, Clyde C , Jr

    1949-01-01

    Ignition studies of flowing gases were made to obtain information applicable to ignition problems in gas-turbine and ram-jet aircraft propulsion systems operating at altitude conditions.Spark energies required for ignition of a flowing propane-air mixture were determined for pressure of 2 to 4 inches mercury absolute, gas velocities of 5.0 to 54.2 feet per second, fuel-air ratios of 0.0607 to 0.1245, and spark durations of 1.5 to 24,400 microseconds. The results showed that at a pressure of 3 inches mercury absolute the minimum energy required for ignition occurred at fuel-air ratios of 0.08 to 0.095. The energy required for ignition increased almost linearly with increasing gas velocity. Shortening the spark duration from approximately 25,000 to 125 microseconds decreased the amount of energy required for ignition. A spark produced by the discharge of a condenser directly into the spark gap and having a duration of 1.5 microseconds required ignition energies larger than most of the long-duration sparks.

  12. Curiosity at Gale crater, Mars: characterization and analysis of the Rocknest sand shadow.

    PubMed

    Blake, D F; Morris, R V; Kocurek, G; Morrison, S M; Downs, R T; Bish, D; Ming, D W; Edgett, K S; Rubin, D; Goetz, W; Madsen, M B; Sullivan, R; Gellert, R; Campbell, I; Treiman, A H; McLennan, S M; Yen, A S; Grotzinger, J; Vaniman, D T; Chipera, S J; Achilles, C N; Rampe, E B; Sumner, D; Meslin, P-Y; Maurice, S; Forni, O; Gasnault, O; Fisk, M; Schmidt, M; Mahaffy, P; Leshin, L A; Glavin, D; Steele, A; Freissinet, C; Navarro-González, R; Yingst, R A; Kah, L C; Bridges, N; Lewis, K W; Bristow, T F; Farmer, J D; Crisp, J A; Stolper, E M; Des Marais, D J; Sarrazin, P

    2013-09-27

    The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MERs) Spirit and Opportunity. The fraction of sand <150 micrometers in size contains ~55% crystalline material consistent with a basaltic heritage and ~45% x-ray amorphous material. The amorphous component of Rocknest is iron-rich and silicon-poor and is the host of the volatiles (water, oxygen, sulfur dioxide, carbon dioxide, and chlorine) detected by the Sample Analysis at Mars instrument and of the fine-grained nanophase oxide component first described from basaltic soils analyzed by MERs. The similarity between soils and aeolian materials analyzed at Gusev Crater, Meridiani Planum, and Gale Crater implies locally sourced, globally similar basaltic materials or globally and regionally sourced basaltic components deposited locally at all three locations.

  13. The Effect of Gamma Radiation on Mars Mineral Matrices: Implications for Perchlorate Formation on Mars

    NASA Astrophysics Data System (ADS)

    Fox, A. C.; Eigenbrode, J. L.; Pavlov, A.; Lewis, J.

    2017-12-01

    Observations by the Phoenix Wet Chemistry Lab of the Martian surface indicate the presence of perchlorate in high concentrations. Additional observations by the Sample Analysis at Mars and the Viking Landers indirectly support the presence of perchlorate at other localities on Mars. The evidence for perchlorate at several localities on Mars coupled with its detection in Martian meteorite EETA79001 suggests that perchlorate is present globally on Mars. The presence of perchlorate on Mars further complicates the search for organic molecules indicative of past life. While perchlorate is kinetically limited in Martian conditions, the intermediate species associated with its formation or decomposition, such as chlorate or chlorite, could oxidize Martian organic species. As a result, it is vital to understand the mechanism of perchlorate formation on Mars in order to determine its role in the degradation of organics. Here, we explore an alternate mechanism of formation of perchlorate by bombarding Cl-salts and Mars-relevant mineral mixtures with gamma radiation both with and without the presence of liquid water, under vacuum. Previous work has shown that OClO can form from both UV radiation and energetic electrons bombardment of Cl-ices or Cl-salts, which then reacts with either OH- or O-radicals to produce perchlorate. Past research has suggested that liquid water or ice is the source of these hydroxyl and oxygen radicals, which limits the location of perchlorate formation on Mars. We demonstrate that trace amounts of perchlorate are potentially formed in samples containing silica dioxide or iron oxide and Cl-salts both with and without liquid water. Perchlorate was also detected in a portion of samples that were not irradiated, suggesting possible contamination. We did not detect perchlorate in samples that contained sulfate minerals. If perchlorate was formed without liquid water, it is possible that oxide minerals could be a potential source of oxygen radicals required to produce perchlorate. This finding could help explain the global presence of perchlorate and has implications for the survival of organic molecules on Mars.

  14. Paleohydrology on Mars constrained by mass balance and mineralogy of pre-Amazonian sodium chloride lakes

    NASA Astrophysics Data System (ADS)

    Melwani Daswani, M.; Kite, E. S.

    2017-09-01

    Chloride-bearing deposits on Mars record high-elevation lakes during the waning stages of Mars' wet era (mid-Noachian to late Hesperian). The water source pathways, seasonality, salinity, depth, lifetime, and paleoclimatic drivers of these widespread lakes are all unknown. Here we combine reaction-transport modeling, orbital spectroscopy, and new volume estimates from high-resolution digital terrain models, in order to constrain the hydrologic boundary conditions for forming the chlorides. Considering a T = 0°C system, we find that (1) individual lakes were >100 m deep and lasted decades or longer; (2) if volcanic degassing was the source of chlorine, then the water-to-rock ratio or the total water volume were probably low, consistent with brief excursions above the melting point and/or arid climate; (3) if the chlorine source was igneous chlorapatite, then Cl-leaching events would require a (cumulative) time of >10 years at the melting point; and (4) Cl masses, divided by catchment area, give column densities 0.1-50 kg Cl/m2, and these column densities bracket the expected chlorapatite-Cl content for a seasonally warm active layer. Deep groundwater was not required. Taken together, our results are consistent with Mars having a usually cold, horizontally segregated hydrosphere by the time chlorides formed.

  15. Liquid-Arc/Spark-Excitation Atomic-Emission Spectroscopy

    NASA Technical Reports Server (NTRS)

    Schlagen, Kenneth J.

    1992-01-01

    Constituents of solutions identified in situ. Liquid-arc/spark-excitation atomic-emission spectroscopy (LAES) is experimental variant of atomic-emission spectroscopy in which electric arc or spark established in liquid and spectrum of light from arc or spark analyzed to identify chemical elements in liquid. Observations encourage development of LAES equipment for online monitoring of process streams in such industries as metal plating, electronics, and steel, and for online monitoring of streams affecting environment.

  16. Simultaneous dual mode combustion engine operating on spark ignition and homogenous charge compression ignition

    DOEpatents

    Fiveland, Scott B.; Wiggers, Timothy E.

    2004-06-22

    An engine particularly suited to single speed operation environments, such as stationary power generators. The engine includes a plurality of combustion cylinders operable under homogenous charge compression ignition, and at least one combustion cylinder operable on spark ignition concepts. The cylinder operable on spark ignition concepts can be convertible to operate under homogenous charge compression ignition. The engine is started using the cylinders operable under spark ignition concepts.

  17. Energy loss in spark gap switches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oreshkin, V. I., E-mail: oreshkin@ovpe.hcei.tsc.ru; Lavrinovich, I. V.; National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk

    2014-04-15

    The paper reports on numerical study of the energy loss in spark gap switches. The operation of the switches is analyzed using the Braginsky model which allows calculation of the time dependence of the spark channel resistance. The Braginsky equation is solved simultaneously with generator circuit equations for different load types. Based on the numerical solutions, expressions which determine both the energy released in a spark gap switch and the switching time are derived.

  18. ANTIMICROBIAL RESISTANCE AMONG ENTERIC BACTERIA ISOLATED FROM HUMAN AND ANIMAL WASTES AND IMPACTED SURFACE WATERS: COMPARISON WITH NARMS FINDINGS

    EPA Science Inventory

    Human infection with bacteria exhibiting mono or multiple antimicrobial resistance (MAR) has been a growing problem in the US, and studies have implicated livestock as a source of MAR bacteria primarily through foodborne transmission routes. However, waterborne transmission of...

  19. Constraints on Sources of Strong Crustal Magnetism in the Southern Highlands of Mars

    NASA Technical Reports Server (NTRS)

    Raymond, C. A.; Smrekar, S. E.

    2001-01-01

    Magnetic models, guided by results of gravity-topography admittance studies, suggest that the anomaly pattern in the central southern highlands of Mars results from large blocks of coherently magnetized crust separated by 'non-magnetic' areas. Additional information is contained in the original extended abstract.

  20. Applications of Mars Global Reference Atmospheric Model (Mars-GRAM 2005) Supporting Mission Site Selection for Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.; Justus, Carl G.

    2008-01-01

    The Mars Global Reference Atmospheric Model (Mars-GRAM 2005) is an engineering level atmospheric model widely used for diverse mission applications. An overview is presented of Mars-GRAM 2005 and its new features. One new feature of Mars-GRAM 2005 is the 'auxiliary profile' option. In this option, an input file of temperature and density versus altitude is used to replace mean atmospheric values from Mars-GRAM's conventional (General Circulation Model) climatology. An auxiliary profile can be generated from any source of data or alternate model output. Auxiliary profiles for this study were produced from mesoscale model output (Southwest Research Institute's Mars Regional Atmospheric Modeling System (MRAMS) model and Oregon State University's Mars mesoscale model (MMM5)model) and a global Thermal Emission Spectrometer(TES) database. The global TES database has been specifically generated for purposes of making Mars-GRAM auxiliary profiles. This data base contains averages and standard deviations of temperature, density, and thermal wind components,averaged over 5-by-5 degree latitude-longitude bins and 15 degree L(s) bins, for each of three Mars years of TES nadir data. Results are presented using auxiliary profiles produced from the mesoscale model output and TES observed data for candidate Mars Science Laboratory (MSL) landing sites. Input parameters rpscale (for density perturbations) and rwscale (for wind perturbations) can be used to "recalibrate" Mars-GRAM perturbation magnitudes to better replicate observed or mesoscale model variability.

  1. Imager for Mars Pathfinder (IMP) image calibration

    USGS Publications Warehouse

    Reid, R.J.; Smith, P.H.; Lemmon, M.; Tanner, R.; Burkland, M.; Wegryn, E.; Weinberg, J.; Marcialis, R.; Britt, D.T.; Thomas, N.; Kramm, R.; Dummel, A.; Crowe, D.; Bos, B.J.; Bell, J.F.; Rueffer, P.; Gliem, F.; Johnson, J. R.; Maki, J.N.; Herkenhoff, K. E.; Singer, Robert B.

    1999-01-01

    The Imager for Mars Pathfinder returned over 16,000 high-quality images from the surface of Mars. The camera was well-calibrated in the laboratory, with <5% radiometric uncertainty. The photometric properties of two radiometric targets were also measured with 3% uncertainty. Several data sets acquired during the cruise and on Mars confirm that the system operated nominally throughout the course of the mission. Image calibration algorithms were developed for landed operations to correct instrumental sources of noise and to calibrate images relative to observations of the radiometric targets. The uncertainties associated with these algorithms as well as current improvements to image calibration are discussed. Copyright 1999 by the American Geophysical Union.

  2. Reduced and Oxidized Sulfur Compounds Detected by Evolved Gas Analyses of Materials from Yellowknife Bay, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    McAdam, A. C.; Franz, H. B.; Archer, P. D., Jr.; Sutter, B.; Eigenbrode, J. L.; Freissinet, C.; Atreya, S. K.; Bish, D. L.; Blake, D. F.; Brunner, A.; hide

    2014-01-01

    Sulfate minerals have been directly detected or strongly inferred from several Mars datasets and indicate that aqueous alteration of martian surface materials has occurred. Indications of reduced sulfur phases (e.g., sulfides) from orbital and in situ investigations of martian materials have been fewer in number, but these phases are observed in martian meteorites and are likely because they are common minor phases in basaltic rocks. Here we discuss potential sources for the S-bearing compounds detected by the Mars Science Laboratory (MSL) Sample Analysis at Mars (SAM) instrument’s evolved gas analysis (EGA) experiments.

  3. The search for an identification of amino acids, nucleobases and nucleosides in samples returned from Mars

    NASA Technical Reports Server (NTRS)

    Gehrke, Charles W.; Ponnamperuma, Cyril; Kuo, Kenneth C.; Stalling, David L.; Zumwalt, Robert W.

    1988-01-01

    The Mars Sample Return mission will provide us with a unique source of material from our solar system; material which could advance our knowledge of the processes of chemical evolution. As has been pointed out, Mars geological investigations based on the Viking datasets have shown that primordial Mars was in many biologically important ways similar to the primordial Earth; the presence of surface liquid water, moderate surface temperatures, and atmosphere of carbon dioxide and nitrogen, and high geothermal heat flow. Indeed, it would seem that conditions on Earth and Mars were fundamentally similar during the first one billion years or so. As has been pointed out, Mars may well contain the best preserved record of the events that transpired on the early planets. Examination of that early record will involve searching for many things, from microfossils to isotopic abundance data. We propose an investigation of the returned Mars samples for biologically important organic compounds, with emphases on amino acids, the purine and pyrimidine bases, and nucleosides.

  4. Carbon and hydrogen isotopic composition of methane and C2+ alkanes in electrical spark discharge: implications for identifying sources of hydrocarbons in terrestrial and extraterrestrial settings.

    PubMed

    Telling, Jon; Lacrampe-Couloume, Georges; Sherwood Lollar, Barbara

    2013-05-01

    The low-molecular-weight alkanes--methane, ethane, propane, and butane--are found in a wide range of terrestrial and extraterrestrial settings. The development of robust criteria for distinguishing abiogenic from biogenic alkanes is essential for current investigations of Mars' atmosphere and for future exobiology missions to other planets and moons. Here, we show that alkanes synthesized during gas-phase radical recombination reactions in electrical discharge experiments have values of δ(2)H(methane)>δ(2)H(ethane)>δ(2)H(propane), similar to those of the carbon isotopes. The distribution of hydrogen isotopes in gas-phase radical reactions is likely due to kinetic fractionations either (i) from the preferential incorporation of (1)H into longer-chain alkanes due to the more rapid rate of collisions of the smaller (1)H-containing molecules or (ii) by secondary ion effects. Similar δ(13)C(C1-C2+) and δ(2)H(C1-C2+) patterns may be expected in a range of extraterrestrial environments where gas-phase radical reactions dominate, including interstellar space, the atmosphere and liquid hydrocarbon lakes of Saturn's moon Titan, and the outer atmospheres of Jupiter, Saturn, Neptune, and Uranus. Radical recombination reactions at high temperatures and pressures may provide an explanation for the combined reversed δ(13)C(C1-C2+) and δ(2)H(C1-C2+) patterns of terrestrial alkanes documented at a number of high-temperature/pressure crustal sites.

  5. Biogenic catalysis of soil formation on Mars?

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.

    1998-01-01

    The high iron abundance and the weak ferric iron spectral features of martian surface material are consistent with nanophase (nm-sized) iron oxide minerals as a major source of iron in the bright region soil on Mars. Nanophase iron oxide minerals, such as ferrihydrite and schwertmannite, and nanophase forms of hematite and goethite are formed by both biotic and abiotic processes on Earth. The presence of these minerals on Mars does not indicate biological activity on Mars, but it does raise the possibility. This work includes speculation regarding the possibility of biogenic soils on Mars based on previous observations and analyses. A remote sensing goal of upcoming missions should be to determine if nanophase iron oxide minerals, clay silicates and carbonates are present in the martian surface material. These minerals are important indicators for exobiology and their presence on Mars would invoke a need for further investigation and sample return from these sites.

  6. Dual Spark Plugs For Stratified-Charge Rotary Engine

    NASA Technical Reports Server (NTRS)

    Abraham, John; Bracco, Frediano V.

    1996-01-01

    Fuel efficiency of stratified-charge, rotary, internal-combustion engine increased by improved design featuring dual spark plugs. Second spark plug ignites fuel on upstream side of main fuel injector; enabling faster burning and more nearly complete utilization of fuel.

  7. Source-to-sink cycling of aeolian sediment in the north polar region of Mars

    NASA Astrophysics Data System (ADS)

    Ewing, R. C.; Kocurek, G.

    2012-12-01

    Aeolian sand dunes are prominent features on the landscapes of Earth, Mars, Venus and Titan and sedimentary deposits interpreted as aeolian in origin are found in the rock records of Earth and Mars. The widespread occurrence of aeolian dunes on the surface of these worlds and within their deep-time depositional records suggests that aeolian systems are and likely have been a default depositional environment for the Solar System. Within an aeolian source-to-sink context, we hypothesize that planet-specific boundary conditions strongly impact production, transport, accumulation and preservation of aeolian sediment, whereas dunes and dune-field patterns remain largely similar. This hypothesis is explored within the north polar region of Mars, which hosts the most extensive aeolian dune fields and aeolian sedimentary deposits yet recognized on Mars and appears to be a region of dynamic source-to-sink cycling of aeolian sediments. The Planum Boreum Cavi Unit rests beneath north polar ice cap of Mars and is composed of several hundred meters of niveo-aeolian dune cross-stratification. The overall architecture of the unit consists of sets of preserved dune topography with an upward increase in the abundance of ice. Dune sets are defined by stabilized, polygonally fractured bounding surfaces, erosional bounding surfaces and typical internal lee foresets made of sediment and ice. The accumulation of the Cavi Unit is interpreted as occurring through freezing and serves as an example of a cold temperature boundary condition on aeolian sediment accumulation. Preservation of the Cavi Unit arises because of deposition of the overlying ice cap and contrasts with preservation of aeolian sediment on Earth, which is largely driven by eustasy and tectonics. The Cavi Unit is thought to be one source of sediment for the north polar Olympia Undae Dune Field. The region of Olympia Undae near the Cavi Unit shows a reticulate dune field pattern composed of two sets of nearly orthogonal dune crestlines, with slipfaces on the primary crests, wind ripples, coarse-grained ripples and deflated interdune areas with exposed dune stratigraphy. Wind transport directions interpreted from wind ripple orientations show that the interaction between dune topography and wind flow on Mars are largely the same as on Earth giving rise to basic types of lee-slope processes - grain flow, grain fall and wind ripples. Using wind flow reconstruction and pattern analysis the pattern is interpreted as complex in which a younger pattern superposes a larger, older pattern. The younger pattern may have emerged with the development of the retreat of the Cavi reentrant into the Cavi Unit and ice cap, which acted to channel katabatic winds and inject a new sediment source into Olympia Undae. The similarity of the Olympia Undae dune-field pattern to dune-field patterns on other planets shows the robustness of pattern formation across different planetary boundary conditions and the applicability of pattern-analysis methods for paleoenvironmental reconstruction. The aeolian source-to-sink system of Mars' north polar region demonstrates how the stratigraphic and geomorphic principles of aeolian systems may differ because of different planetary boundary conditions and provides a framework for analysis of aeolian systems on other worlds.

  8. Active and Recent Volcanism and Hydrogeothermal Activity on Mars

    NASA Astrophysics Data System (ADS)

    Edgett, Kenneth S.; Cantor, B. A.; Harrison, T. N.; Kennedy, M. R.; Lipkaman, L. J.; Malin, M. C.; Posiolova, L. V.; Shean, D. E.

    2010-10-01

    There are no active volcanoes or geysers on Mars today, nor in the very recent past. Since 1997, we have sought evidence from targeted narrow angle camera images and daily, global wide angle images for active or very recent (decades to < 10 Ma) volcanism or hydrogeothermal events on Mars. Despite > 11 years of daily global imaging and coverage of > 60% of Mars at ≤ 6 m/pixel (with the remaining < 40% largely outside of volcanic regions), we have found no such evidence, although one lava field in Aeolis (5°N, 220°W) stands out as possibly the site of the most recent volcanism. Authors of impact crater size-frequency studies suggest some volcanic landforms on Mars are as young as tens to hundreds of Ma. This interpreted youth has implications for understanding the internal geophysical state of Mars and has encouraged those seeking sources for trace gases (methane) in the atmosphere and those seeking "warm havens for life” (Jakosky 1996, New Scientist 150, 38-42). We targeted thousands of Mars Global Surveyor (MGS) MOC and Mars Reconnaissance Orbiter (MRO) CTX (and HiRISE) images to examine volcanic regions; we also studied every MGS MOC and MRO MARCI wide angle image. For evidence of active volcanism, we sought eruption plumes, new vents, new tephra deposits, and new volcanogenic flows not observed in earlier images. For recent volcanism, we sought volcanogenic flows with zero or few superposed impact craters and minimal regolith development or superposed eolian sediment. Targets included all volcanic landforms identified in research papers as "recent” as well as areas speculated to have exhibited eruptive plumes. An independent search for endogenic heat sources, a key Mars Odyssey THEMIS objective, has also not produced a positive result (Christensen et al. 2005, P24A-01, Eos, Trans. Am. Geophys. Union 86/52).

  9. Reference Mission Version 3.0 Addendum to the Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team. Addendum; 3.0

    NASA Technical Reports Server (NTRS)

    Drake, Bret G. (Editor)

    1998-01-01

    This Addendum to the Mars Reference Mission was developed as a companion document to the NASA Special Publication 6107, "Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team." It summarizes changes and updates to the Mars Reference Missions that were developed by the Exploration Office since the final draft of SP 6107 was printed in early 1999. The Reference Mission is a tool used by the exploration community to compare and evaluate approaches to mission and system concepts that could be used for human missions to Mars. It is intended to identify and clarify system drivers, significant sources of cost, performance, risk, and schedule variation. Several alternative scenarios, employing different technical approaches to solving mission and technology challenges, are discussed in this Addendum. Comparing alternative approaches provides the basis for continual improvement to technology investment plan and a general understanding of future human missions to Mars. The Addendum represents a snapshot of work in progress in support of planning for future human exploration missions through May 1998.

  10. Lunar and Planetary Science XXXVI, Part II

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Some topics covered: Implications of internal fragmentation on the structure of comets; Atmospheric excitation of mars polar motion; Dunite viscosity dependence on oxygen fugacity; Cross profile and volume analysis of bahram valles on mars; Calculations of the fluxes of 10-250 kV lunar leakage gamma rays; Alluvian fans on mars; Investigating the sources of the apollo 14 high-Al mare basalts; Relationship of coronae, regional plains and rift zones on venus; and Chemical differentiation and internal structure of europa and callisto.

  11. An anomalous subdiffusion model for calcium spark in cardiac myocytes

    NASA Astrophysics Data System (ADS)

    Tan, Wenchang; Fu, Chaoqi; Fu, Ceji; Xie, Wenjun; Cheng, Heping

    2007-10-01

    The elementary events of excitation-contraction coupling in heart muscle are Ca2+ sparks, which arise from ryanodine receptors in the sarcoplasmic reticulum (SR). Here, an anomalous subdiffusion model is developed to explore Ca2+ spark formation in cardiac myocytes. Numerical simulations reproduce the brightness, the time course, and spatial size of a typical cardiac Ca2+ spark. It is suggested that the diffusion of Ca2+ spark in the cytoplasm may no longer obey Fickian second law, but the anomalous space subdiffusion. The physical reason is perhaps due to the effects of the electric field of the calcium ions and the viscoelasticity of the cytoplasm and its complex structures.

  12. The Formation of Fe/Mg Smectite Under Mildly Acidic Conditions on Early Mars

    NASA Technical Reports Server (NTRS)

    Sutter, Brad; Golden, D. C.; Ming, Douglas W.; Niles, P. B.

    2011-01-01

    The detection of Fe/Mg smectites and carbonate in Noachian and early Hesperian terrain of Mars has been used to suggest that neutral to mildly alkaline conditions prevailed during the early history of Mars. However, if early Mars was neutral to moderately alkaline with a denser CO2 atmosphere than today, then large carbonates deposits should be more widely detected in Noachian terrain. The critical question is: Why have so few carbonate deposits been detected compared to Fe/Mg smectites? We suggest that Fe/Mg smectites on early Mars formed under mildly acidic conditions, which would inhibit the extensive formation of carbonate deposits. The goal of this work is to evaluate the formation of Fe/Mg smectites under mildly acidic conditions. The stability of smectites under mildly acidic conditions is attributed to elevated Fe/Mg activities that inhibit smectite dissolution. Beidelite and saponite have been shown to form from hydrothermal alteration of basaltic glass at pH 3.5-4.0 in seawater solutions. Nontronite is also known to be stable in mildly acidic systems associated with mafic and ultramafic rock. Nontronite was shown to form in acid sulfate soils in the Bangkok Plain, Thailand due to oxidation of Fe-sulfides that transformed saponite to nontronite. Smectite is known to transform to kaolinite in naturally acid soils due to selective leaching of Mg. However, if Mg removal is limited, then based on equilibrium relationships, the dissolution of smectite should be minimized. If Fe and Mg solution activities are sufficiently high, such as might be found in a low water/rock ratio system that is poorly drained, smectite could form and remain stable under mildly acidic conditions on Mars. The sources of mild acidity on early Mars includes elevated atmospheric CO2 levels, Fe-hydrolysis reactions, and the presence of volcanic SO2 aerosols. Equilibrium calculations dictate that water equilibrated with an early Mars CO2 atmosphere at 1 to 4 bar yields a pH of 3.6 to 3.9. Fe hydrolysis reactions on Mars is another source of protons that would have contributed to acidity. The presence of SO2 from volcanic processes could also have contributed to geochemical acidification. These sources of acidity competed with base-forming cations that resulted in mildly acidic solutions that were not favorable for carbonate formation but may have allowed for Fe/Mg smectite formation. Noachian to early Hesperian Mars could have been mildly acidic, allowing Fe/Mg smectite formation but preventing widespread carbonate deposition. This paradigm shift from an early Mars that was neutral-alkaline to mildly acidic may possibly explain why there is a disparity between the occurrence of carbonate and Fe/Mg smectites. Potential microbiological activity would not be eliminated under a mildly acidic Mars; however, there could be tighter constraints as to the type and species of microbiology that could exist.

  13. Utilizing Mars Global Reference Atmospheric Model (Mars-GRAM 2005) to Evaluate Entry Probe Mission Sites

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.; Justus, Carl G.

    2008-01-01

    The Mars Global Reference Atmospheric Model (Mars-GRAM 2005) is an engineering-level atmospheric model widely used for diverse mission applications. An overview is presented of Mars-GRAM 2005 and its new features. The "auxiliary profile" option is one new feature of Mars-GRAM 2005. This option uses an input file of temperature and density versus altitude to replace the mean atmospheric values from Mars-GRAM's conventional (General Circulation Model) climatology. Any source of data or alternate model output can be used to generate an auxiliary profile. Auxiliary profiles for this study were produced from mesoscale model output (Southwest Research Institute's Mars Regional Atmospheric Modeling System (MRAMS) model and Oregon State University's Mars mesoscale model (MMM5) model) and a global Thermal Emission Spectrometer (TES) database. The global TES database has been specifically generated for purposes of making Mars-GRAM auxiliary profiles. This data base contains averages and standard deviations of temperature, density, and thermal wind components, averaged over 5-by-5 degree latitude-longitude bins and 15 degree Ls bins, for each of three Mars years of TES nadir data. The Mars Science Laboratory (MSL) sites are used as a sample of how Mars-GRAM' could be a valuable tool for planning of future Mars entry probe missions. Results are presented using auxiliary profiles produced from the mesoscale model output and TES observed data for candidate MSL landing sites. Input parameters rpscale (for density perturbations) and rwscale (for wind perturbations) can be used to "recalibrate" Mars-GRAM perturbation magnitudes to better replicate observed or mesoscale model variability.

  14. Mars-GRAM Applications for Mars Science Laboratory Mission Site Selection Processes

    NASA Technical Reports Server (NTRS)

    Justh, Hilary; Justus, C. G.

    2007-01-01

    An overview is presented of the Mars-Global Reference Atmospheric Model (Mars-GRAM 2005) and its new features. One important new feature is the "auxiliary profile" option, whereby a simple input file is used to replace mean atmospheric values from Mars-GRAM's conventional (General Circulation Model) climatology. An auxiliary profile can be generated from any source of data or alternate model output. Results are presented using auxiliary profiles produced from mesoscale model output (Southwest Research Institute's Mars Regional Atmospheric Modeling System (MRAMS) model and Oregon State University's Mars mesoscale model (MMM5) model) for three candidate Mars Science Laboratory (MSL) landing sites (Terby Crater, Melas Chasma, and Gale Crater). A global Thermal Emission Spectrometer (TES) database has also been generated for purposes of making 'Mars-GRAM auxiliary profiles. This data base contains averages and standard deviations of temperature, density, and thermal wind components, averaged over 5-by-5 degree latitude bins and 15 degree L(sub S) bins, for each of three Mars years of TES nadir data. Comparisons show reasonably good consistency between Mars-GRAM with low dust optical depth and both TES observed and mesoscale model simulated density at the three study sites. Mean winds differ by a more significant degree. Comparisons of mesoscale and TES standard deviations' with conventional Mars-GRAM values, show that Mars-GRAM density perturbations are somewhat conservative (larger than observed variability), while mesoscale-modeled wind variations are larger than Mars-GRAM model estimates. Input parameters rpscale (for density perturbations) and rwscale (for wind perturbations) can be used to "recalibrate" Mars-GRAM perturbation magnitudes to better replicate observed or mesoscale model variability.

  15. Combustion and operating characteristics of spark-ignition engines

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Keck, J. C.; Beretta, G. P.; Watts, P. A.

    1980-01-01

    The spark-ignition engine turbulent flame propagation process was investigated. Then, using a spark-ignition engine cycle simulation and combustion model, the impact of turbocharging and heat transfer variations or engine power, efficiency, and NO sub x emissions was examined.

  16. 75 FR 19368 - Foreign-Trade Zone 126-Reno, NV; Site Renumbering Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-14

    ... at 728 Spice Island Drive, Sparks; Site 2 (9 acres)--located at 450-475 Lillard Drive, Sparks; Site 3..., 700 South Rock Boulevard, Reno; Site 14 (0.4 acres)--located at 1095 Spice Island Drive, Sparks; Site...

  17. Properties of low power spark ablation in aqueous solution for dissolution of precious metals and alloys

    NASA Astrophysics Data System (ADS)

    Goltz, Douglas; Boileau, Michael; Plews, Ian; Charleton, Kimberly; Hinds, Michael W.

    2006-07-01

    Spark ablation or electric dispersion of metal samples in aqueous solution can be a useful approach for sample preparation. The ablated metal forms a stable suspension that has been described as colloidal, which is easily dissolved with a small amount of concentrated (16 M) HNO 3. In this study, we have examined some of the properties of the spark ablation process for a variety of metals (Rh and Au) and alloys (stainless steel) using a low power spark (100-300 W). Particle size distributions and conductivity measurements were carried out on selected metals to characterize the stable suspensions. A LASER diffraction particle size analyzer was useful for showing that ablated particles varied in size from 1 to 30 μm for both the silver and the nickel alloy, Inconel. In terms of weight percent most of the particles were between 10 and 30 μm. Conductivity of the spark ablation solution was found to increase linearly for approximately 3 min before leveling off at approximately 300 S cm 3. These measurements suggest that a significant portion of the ablated metal is also ionic in nature. Scanning electron microscope measurements revealed that a low power spark is much less damaging to the metal surface than a high power spark. Crater formation of the low power spark was found in a wider area than expected with the highest concentration where the spark was directed. The feasibility of using spark ablation for metal dissolution of a valuable artifact such as gold was also performed. Determinations of Ag (4-12%) and Cu (1-3%) in Bullion Reference Material (BRM) gave results that were in very good agreement with the certified values. The precision was ± 0.27% for Ag at 4.15% (RSD = 6.5%) and ± 0.09% for Cu at 1% (RSD = 9.0%).

  18. Effects of rogue ryanodine receptors on Ca2+ sparks in cardiac myocytes

    PubMed Central

    Chen, Xudong; Feng, Yundi; Tan, Wenchang

    2018-01-01

    Ca2+ sparks and Ca2+ quarks, arising from clustered and rogue ryanodine receptors (RyRs), are significant Ca2+ release events from the junctional sarcoplasmic reticulum (JSR). Based on the anomalous subdiffusion of Ca2+ in the cytoplasm, a mathematical model was developed to investigate the effects of rogue RyRs on Ca2+ sparks in cardiac myocytes. Ca2+ quarks and sparks from the stochastic opening of rogue and clustered RyRs are numerically reproduced and agree with experimental measurements. It is found that the stochastic opening Ca2+ release units (CRUs) of clustered RyRs are regulated by free Ca2+ concentration in the JSR lumen (i.e. [Ca2+]lumen). The frequency of spontaneous Ca2+ sparks is remarkably increased by the rogue RyRs opening at high [Ca2+]lumen, but not at low [Ca2+]lumen. Hence, the opening of rogue RyRs contributes to the formation of Ca2+ sparks at high [Ca2+]lumen. The interplay of Ca2+ sparks and Ca2+ quarks has been discussed in detail. This work is of significance to provide insight into understanding Ca2+ release mechanisms in cardiac myocytes. PMID:29515864

  19. Effects of rogue ryanodine receptors on Ca2+ sparks in cardiac myocytes.

    PubMed

    Chen, Xudong; Feng, Yundi; Huo, Yunlong; Tan, Wenchang

    2018-02-01

    Ca 2+ sparks and Ca 2+ quarks, arising from clustered and rogue ryanodine receptors (RyRs), are significant Ca 2+ release events from the junctional sarcoplasmic reticulum (JSR). Based on the anomalous subdiffusion of Ca 2+ in the cytoplasm, a mathematical model was developed to investigate the effects of rogue RyRs on Ca 2+ sparks in cardiac myocytes. Ca 2+ quarks and sparks from the stochastic opening of rogue and clustered RyRs are numerically reproduced and agree with experimental measurements. It is found that the stochastic opening Ca 2+ release units (CRUs) of clustered RyRs are regulated by free Ca 2+ concentration in the JSR lumen (i.e. [Ca 2+ ] lumen ). The frequency of spontaneous Ca 2+ sparks is remarkably increased by the rogue RyRs opening at high [Ca 2+ ] lumen , but not at low [Ca 2+ ] lumen . Hence, the opening of rogue RyRs contributes to the formation of Ca 2+ sparks at high [Ca 2+ ] lumen . The interplay of Ca 2+ sparks and Ca 2+ quarks has been discussed in detail. This work is of significance to provide insight into understanding Ca 2+ release mechanisms in cardiac myocytes.

  20. Development of Terahertz Rayleigh Scattering Diagnostics for a Solid Rocket Exhaust Plume

    DTIC Science & Technology

    2010-10-28

    experiment. Many of these experiments involve a diagnostic of a plasma which while different from strictly particles, still provides insight into the...investigate the properties of small plasma objects. Their study developed a method that could be used as a diagnostic for small scale plasmas such...as laser sparks, avalanche-streamer transitions, and resonance-enhanced multi- photon ionizations processes. They treated a plasma as a source of

  1. Transnational Crime and Security Threats in Indonesia

    DTIC Science & Technology

    2010-03-01

    archipelagos, while the region’s climate and cultures have also made it highly attractive to leisure activities. Piracy has been a traditional way of...coordinated patrols by Indonesia, Malaysia , and Singapore, along with increased security on vessels have sparked a dramatic downturn in piracy according to...just local but also international. Some sources believe that the network route runs from Cambodia to Southern Philippines to Malaysia then enters

  2. Characteristics of cold atmospheric plasma source based on low-current pulsed discharge with coaxial electrodes

    NASA Astrophysics Data System (ADS)

    Bureyev, O. A.; Surkov, Yu S.; Spirina, A. V.

    2017-05-01

    This work investigates the characteristics of the gas discharge system used to create an atmospheric pressure plasma flow. The plasma jet design with a cylindrical graphite cathode and an anode rod located on the axis of the system allows to realize regularly reproducible spark breakdowns mode with a frequency ∼ 5 kHz and a duration ∼ 40 μs. The device generates a cold atmospheric plasma flame with 1 cm in diameter in the flow of various plasma forming gases including nitrogen and air at about 100 mA average discharge current. In the described construction the cathode spots of individual spark channels randomly move along the inner surface of the graphite electrode creating the secondary plasma stream time-average distributed throughout the whole exit aperture area after the decay of numerous filamentary discharge channels. The results of the spectral diagnostics of plasma in the discharge gap and in the stream coming out of the source are presented. Despite the low temperature of atoms and molecules in plasma stream the cathode spots operation with temperature of ∼ 4000 °C at a graphite electrode inside a discharge system enables to saturate the plasma by CN-radicals and atomic carbon in the case of using nitrogen as the working gas.

  3. Tool grinding and spark testing

    NASA Technical Reports Server (NTRS)

    Widener, Edward L.

    1993-01-01

    The objectives were the following: (1) to revive the neglected art of metal-sparking; (2) to promote quality-assurance in the workplace; (3) to avoid spark-ignited explosions of dusts or volatiles; (4) to facilitate the salvage of scrap metals; and (5) to summarize important references.

  4. Damping Resonant Current in a Spark-Gap Trigger Circuit to Reduce Noise

    DTIC Science & Technology

    2009-06-01

    DAMPING RESONANT CURRENT IN A SPARK- GAP TRIGGER CIRCUIT TO REDUCE NOISE E. L. Ruden Air Force Research Laboratory, Directed Energy Directorate, AFRL...REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Damping Resonant Current In A Spark- Gap Trigger Circuit To Reduce Noise 5a...thereby triggering 2 after delay 0, is 1. Each of the two rail- gaps (represented by 2) is trig- gered to close after the spark- gap (1) in the

  5. Evidence of solar wind energy deposition into the ionosphere of Mars

    NASA Technical Reports Server (NTRS)

    Mantas, G. P.; Hanson, W. B.

    1985-01-01

    Suprathermal electron fluxes measured in the ionosphere of Mars by the retarding potential analyzer (RPA) on Viking lander 1 are presented and compared with the photoelectron flux that is produced by the absorption of the solar EUV. The calculation of the equilibrium photoelectron population on Mars is based on the multistream electron transport theory and a model neutral atmosphere and ionosphere that was actually observed by Viking lander 1. From the theoretical equilibrium photoelectron population, the expected RPA volt-ampere characteristic curves are computed and compared with those recorded by the instrument. The theoretical and the observed RPA currents below about 170 km are in agreement, confirming that the solar EUV is the main source of suprathermal electrons at these altitudes. Above about 170 km an additional source of suprathermal electrons is required to explain the observations.

  6. Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow

    NASA Technical Reports Server (NTRS)

    Blake, David F.; Morris, Richard V.; Kocurek, G.; Morrison, S. M.; Downs, R. T.; Bish, D.; Ming, D. W.; Edgett, K. S.; Rubin, D.; Goetz, W.; hide

    2013-01-01

    The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MER) Spirit and Opportunity. The fraction of sand <150 micron in size contains approx. 55% crystalline material consistent with a basaltic heritage, and approx. 45% X-ray amorphous material. The amorphous component of Rocknest is Fe-rich and Si-poor, and is the host of the volatiles (H2O, O2, SO2, CO2, and Cl) detected by the Surface Analysis at Mars (SAM) instrument and of the fine-grained nanophase oxide (npOx) component first described from basaltic soils analyzed by MER. The similarity between soils and aeolian materials analyzed at Gusev crater, Meridiani Planum and Gale crater implies locally sourced, globally similar basaltic materials, or globally and regionally sourced basaltic components deposited locally at all three locations.

  7. Development, Integration and Utilization of Surface Nuclear Energy Sources for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Schmidt, George R.; Bragg-Sitton, Shannon; Hickman, Robert; Hissam, Andy; Houston, Vance; Martin, Jim; Mireles, Omar; Reid, Bob; Schneider, Todd

    2005-01-01

    Throughout the past five decades numerous studies have identified nuclear energy as an enhancing or enabling technology for human surface exploration missions. Nuclear energy sources were used to provide electricity on Apollo missions 12, 14, 15, 16, and 17, and on the Mars Viking landers. Nuclear energy sources were used to provide heat on the Pathfinder; Spirit, and Discovery rovers. Scenarios have been proposed that utilize -1 kWe radioisotope systems for early missions, followed by fission systems in the 10 - 30 kWe range when energy requirements increase. A fission energy source unit size of approximately 150 kWt has been proposed based on previous lunar and Mars base architecture studies. Such a unit could support both early and advanced bases through a building block approach.

  8. Availability of Heat to Drive Hydrothermal Systems in Large Martian Impact Craters

    NASA Technical Reports Server (NTRS)

    Thorsos, I. E.; Newsom, H. E.; Davies, A. G.

    2001-01-01

    The central uplift in large craters on Mars can provide a substantial source of heat, equivalent to heat produced by the impact melt sheet. The heat generated in large impacts could play a significant role in hydrothermal systems on Mars. Additional information is contained in the original extended abstract.

  9. Evaluating the Impact of Data Placement to Spark and SciDB with an Earth Science Use Case

    NASA Technical Reports Server (NTRS)

    Doan, Khoa; Oloso, Amidu; Kuo, Kwo-Sen; Clune, Thomas; Yu, Hongfeng; Nelson, Brian; Zhang, Jian

    2016-01-01

    We investigate the impact of data placement for two Big Data technologies, Spark and SciDB, with a use case from Earth Science where data arrays are multidimensional. Simultaneously, this investigation provides an opportunity to evaluate the performance of the technologies involved. Two datastores, HDFS and Cassandra, are used with Spark for our comparison. It is found that Spark with Cassandra performs better than with HDFS, but SciDB performs better yet than Spark with either datastore. The investigation also underscores the value of having data aligned for the most common analysis scenarios in advance on a shared nothing architecture. Otherwise, repartitioning needs to be carried out on the fly, degrading overall performance.

  10. A Water Rich Mars Surface Mission Scenario

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.; Andrews, Alida; Joosten, B. Kent; Watts, Kevin

    2017-01-01

    In an on-going effort to make human Mars missions more affordable and sustainable, NASA continues to investigate the innovative leveraging of technological advances in conjunction with the use of accessible Martian resources directly applicable to these missions. One of the resources with the broadest utility for human missions is water. Many past studies of human Mars missions assumed a complete lack of water derivable from local sources. However, recent advances in our understanding of the Martian environment provides growing evidence that Mars may be more "water rich" than previously suspected. This is based on data indicating that substantial quantities of water are mixed with surface regolith, bound in minerals located at or near the surface, and buried in large glacier-like forms. This paper describes an assessment of what could be done in a "water rich" human Mars mission scenario. A description of what is meant by "water rich" in this context is provided, including a quantification of the water that would be used by crews in this scenario. The different types of potential feedstock that could be used to generate these quantities of water are described, drawing on the most recently available assessments of data being returned from Mars. This paper specifically focuses on sources that appear to be buried quantities of water ice. (An assessment of other potential feedstock materials is documented in another paper.) Technologies and processes currently used in terrestrial Polar Regions are reviewed. One process with a long history of use on Earth and with potential application on Mars - the Rodriguez Well - is described and results of an analysis simulating the performance of such a well on Mars are presented. These results indicate that a Rodriguez Well capable of producing the quantities of water identified for a "water rich" human mission are within the capabilities assumed to be available on the Martian surface, as envisioned in other comparable Evolvable Mars Campaign assessments. The paper concludes by capturing additional findings and describing additional simulations and tests that should be conducted to better characterize the performance of the identified terrestrial technologies for accessing subsurface ice, as well as the Rodriguez Well, under Mars environmental conditions.

  11. A Water Rich Mars Surface Mission Scenario

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.; Andrews, Alida; Joosten, B. Kent; Watts, Kevin

    2017-01-01

    In an on-going effort to make human Mars missions more affordable and sustainable, NASA continues to investigate the innovative leveraging of technological advances in conjunction with the use of accessible Martian resources directly applicable to these missions. One of the resources with the broadest utility for human missions is water. Many past studies of human Mars missions assumed a complete lack of water derivable from local sources. However, recent advances in our understanding of the Martian environment provides growing evidence that Mars may be more "water rich" than previously suspected. This is based on data indicating that substantial quantities of water are mixed with surface regolith, bound in minerals located at or near the surface, and buried in large glacier-like forms. This paper describes an assessment of what could be done in a "water rich" human Mars mission scenario. A description of what is meant by "water rich" in this context is provided, including a quantification of the water that would be used by crews in this scenario. The different types of potential feedstock that could be used to generate these quantities of water are described, drawing on the most recently available assessments of data being returned from Mars. This paper specifically focuses on sources that appear to be buried quantities of water ice. (An assessment of other potential feedstock materials is documented in another paper.) Technologies and processes currently used in terrestrial polar regions is reviewed. One process with a long history of use on Earth and with potential application on Mars - the Rodriguez Well - is described and results of an analysis simulating the performance of such a well on Mars are presented. These results indicate that a Rodriguez Well capable of producing the quantities of water identified for a "water rich" human mission are within the capabilities assumed to be available on the Martian surface, as envisioned in other comparable Evolvable Mars Campaign assessments. The paper concludes by capturing additional findings and describing additional simulations and tests that should be conducted to better characterize the performance of the identified terrestrial technologies for accessing subsurface ice, as well as the Rodriguez Well, under Mars environmental conditions.

  12. Spark alloying of VK8 and T15K6 hard alloys

    NASA Astrophysics Data System (ADS)

    Kuptsov, S. G.; Fominykh, M. V.; Mukhinov, D. V.; Magomedova, R. S.; Nikonenko, E. A.; Pleshchev, V. P.

    2015-08-01

    A method is developed to restore the service properties of VK hard alloy plates using preliminary carburizing followed by spark alloying with a VT1-0 alloy. The phase composition is studied as a function of the spark treatment time.

  13. 75 FR 21594 - Foreign-Trade Zone 126-Reno, NV, Application for Reorganization/Expansion Under Alternative Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-26

    ... 1 (13.9 acres)--728 Spice Island Drive, Sparks; Site 2 (9 acres)--450-475 Lillard Drive, Sparks... 700 South Rock Boulevard, Reno; Site 14 (0.4 acres)--1095 Spice Island Drive, Sparks; Site 15 (0.7...

  14. The Nitrate/Perchlorate Ratio on Mars As an Indicator for Habitability

    NASA Astrophysics Data System (ADS)

    Stern, J. C.; Sutter, B.; McKay, C. P.; Navarro-Gonzalez, R.; Freissinet, C.; Conrad, P. G.; Mahaffy, P. R.; Archer, P. D., Jr.; Ming, D. W.; Martín-Torres, J.; Zorzano, M. P.

    2014-12-01

    Discovery of indigenous martian nitrogen in Mars surface materials has important implications for habitability and the potential development of a nitrogen cycle at some point in martian history. The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected evolved nitric oxide (NO) gas during pyrolysis of scooped aeolian sediments and drilled mudstone acquired in Gale Crater. The detection of NO suggests an indigenous source of fixed nitrogen, and may indicate a mineralogical sink for atmospheric N2 in the form of nitrate. The ratio of nitrate to oxychlorine species (e.g. perchlorate) may provide insight into the extent of development of a nitrogen cycle on Mars. Nitrate and perchlorate on Earth are geochemically related in arid environments such as the Atacama Desert and the Dry Valleys of Antarctica due to their similar mobilities and deposition mechanisms [1,2]. Here, low NO3-/ClO4- molar ratios (~1000) dominate, in comparison to other places on Earth, where the main nitrate source is biological fixation of N2 to NO3-, and there is no corresponding biological source of perchlorate, resulting in much higher NO3-/ClO4- molar ratios (~10,000). The NO3-/ClO4- molar ratio is estimated to be ~ 0.05 on Mars based on SAM measurements at Gale Crater [3]. The possibility exists that perchlorate brines could leach and increase nitrate concentrations at depth, increasing the martian NO3-/ClO4- ratio in the subsurface. However, it is unknown whether terrestrial NO3-/ClO4- molar ratios could be achieved by this mechanism. Nevertheless, the low NO3-/ClO4- the ratio detected by SAM suggests that N fixation to nitrate on Mars, whether biologically mediated or abiotic, was extremely limited compared to the potentially ongoing abiotic formation and deposition of oxychlorine species on the martian surface. [1] Kounaves, S.P. et al. "Discovery of natural perchlorate in the Antarctic dry valleys and its global implications." ES&T44, no. 7 (2010): 2360-2364. [2] Lybrand, R.A., et al. "The geochemical associations of nitrate and naturally formed perchlorate in the Mojave Desert, California, USA." GCA104 (2013): 136-147. [3] Ming, D. W. et al. "Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale crater, Mars." Science 343, no. 6169 (2014): 1245267.

  15. The fast algorithm of spark in compressive sensing

    NASA Astrophysics Data System (ADS)

    Xie, Meihua; Yan, Fengxia

    2017-01-01

    Compressed Sensing (CS) is an advanced theory on signal sampling and reconstruction. In CS theory, the reconstruction condition of signal is an important theory problem, and spark is a good index to study this problem. But the computation of spark is NP hard. In this paper, we study the problem of computing spark. For some special matrixes, for example, the Gaussian random matrix and 0-1 random matrix, we obtain some conclusions. Furthermore, for Gaussian random matrix with fewer rows than columns, we prove that its spark equals to the number of its rows plus one with probability 1. For general matrix, two methods are given to compute its spark. One is the method of directly searching and the other is the method of dual-tree searching. By simulating 24 Gaussian random matrixes and 18 0-1 random matrixes, we tested the computation time of these two methods. Numerical results showed that the dual-tree searching method had higher efficiency than directly searching, especially for those matrixes which has as much as rows and columns.

  16. Nanosecond repetitively pulsed discharges in air at atmospheric pressure—the spark regime

    NASA Astrophysics Data System (ADS)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-12-01

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N2 (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 1015 cm-3 towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 1011 cm-3 produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 108 cm-3.

  17. Nanophase Carbonates on Mars: Does Evolved Gas Analysis of Nanophase Carbonates Reveal a Large Organic Carbon Budget in Near-Surface Martian Materials?

    NASA Technical Reports Server (NTRS)

    Archer, P. Douglas, Jr.; Niles, Paul B.; Ming, Douglas W.; Sutter, Brad; Eigenbrode, Jen

    2015-01-01

    Evolved Gas Analysis (EGA), which involves heating a sample and monitoring the gases released, has been performed on Mars by the Viking gas chromatography/mass spectrometry instruments, the Thermal and Evolved Gas Analyzer (TEGA) on the Phoenix lander, and the Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory. All of these instruments detected CO2 released during sample analysis at abundances of approx. 0.1 to 5 wt% assuming a carbonate source. The source of the CO2 can be constrained by evaluating the temperature of the gas release, a capability of both the TEGA and SAM instruments. The samples analyzed by SAM show that the majority of the CO2 is released below 400C, much lower than traditional carbonate decomposition temperatures which can be as low as 400C for some siderites, with magnesites and calcites decomposing at even higher temperatures. In addition to mineralogy, decomposition temperature can depend on particle size (among other factors). If carbonates formed on Mars under low temperature and relative humidity conditions, the resulting small particle size (nanophase) carbonates could have low decomposition temperatures. We have found that calcite can be synthesized by exposing CaO to water vapor and CO2 and that the resulting mineral has an EGA peak of approx. 550C for CO2, which is about 200C lower than for other calcites. Work is ongoing to produce Fe and Mg-bearing carbonates using the same process. Current results suggest that nanophase calcium carbonates cannot explain the CO2 released from martian samples. If the decomposition temperatures of Mg and Fe-bearing nanophase carbonates are not significantly lower than 400C, other candidate sources include oxalates and carboxylated organic molecules. If present, the abundance of organic carbon in these samples could be greater than 0.1 wt % (1000s of ppm), a signficant departure from the paradigm of the organic-poor Mars based on Viking results.

  18. Model of the dust-loaded ionospheres of Mars and Titan

    NASA Astrophysics Data System (ADS)

    Witasse, Olivier; Cardnell, Sandy; Molina-Cuberos, Gregorio; Michael, Mary; Tripathi, Sachi; Deprez, Gregoire; Montmessin, Franck; O'Brien, Keran

    2016-10-01

    The ionization of lower atmospheres of celestial bodies and the presence of charged species are fundamental in the understanding of atmospheric electricity phenomena, such as electric discharges, large scale electric currents and Schumann resonances. On January 14, 2005, the Huygens Probe measured the electric conductivity of Titan's atmosphere from 140 km down to the surface. Micro-ARES, the electric field and conductivity sensor on board the ExoMars 2016 Schiaparelli lander, will conduct the very first measurement and characterization of Martian atmospheric electricity. The landing is scheduled for October 19, 2016 and the measurements will be performed over 2-4 sols.The present photochemical model is developed to compute the concentration of the most abundant charged species (cluster-ions, electrons and charged aerosols) and electric conductivity in the lower atmospheres of Mars (0-70 km) and Titan (0-145 km). For both cases, the main source of ionization is galactic cosmic rays. In addition, during daytime, photoionization of aerosols due to solar UV radiation is important at Mars. Ion and electron attachment to aerosols is another major source of aerosol charging, which can vary between -50 and +200 elementary charges for Mars and -55 and -25 for Titan. The steady state concentration of charged species is computed by solving the respective balance equations, which include the source and sink terms of the photochemical reactions. Since the amount of suspended dust in the Martian atmosphere can vary considerably and it has an important effect on the atmospheric properties, several dust scenarios, in addition to the day-night variations, are considered to characterize the variability of the concentration of charged species.The agreement between with the results of the model for Titan and the Huygens data suggests an improvement with respect to previous models. This gives confidence in the results of the model for Mars, which characterize the predicted electric environment in which Micro-ARES will operate, being essential to its data analysis and interpretation.

  19. Primary Science Interview: Science Sparks

    ERIC Educational Resources Information Center

    Bianchi, Lynne

    2016-01-01

    In this "Primary Science" interview, Lynne Bianchi talks with Emma Vanstone about "Science Sparks," which is a website full of creative, fun, and exciting science activity ideas for children of primary-school age. "Science Sparks" started with the aim of inspiring more parents to do science at home with their…

  20. Petrology and Physics of Magma Ocean Crystallization

    NASA Technical Reports Server (NTRS)

    Elkins-Tanton, Linda T.; Parmentier, E. M.; Hess, P. C.

    2003-01-01

    Early Mars is thought to have been melted significantly by the conversion of kinetic energy to heat during accretion of planetesimals. The processes of solidification of a magma ocean determine initial planetary compositional differentiation and the stability of the resulting mantle density profile. The stability and compositional heterogeneity of the mantle have significance for magmatic source regions, convective instability, and magnetic field generation. Significant progress on the dynamical problem of magma ocean crystallization has been made by a number of workers. The work done under the 2003 MFRP grant further explored the implications of early physical processes on compositional heterogeneity in Mars. Our goals were to connect early physical processes in Mars evolution with the present planet's most ancient observable characteristics, including the early, strong magnetic field, the crustal dichotomy, and the compositional characteristics of the SNC meteorite's source regions as well as their formation as isotopically distinct compositions early in Mars's evolution. We had already established a possible relationship between the major element compositions of SNC meteorite sources and processes of Martian magma ocean crystallization and overturn, and under this grant extended the analysis to the crucial trace element and isotopic SNC signatures. This study then demonstrated the ability to create and end the magnetic field through magma ocean cumulate overturn and subsequent cooling, as well as the feasibility of creating a compositionally- and volumetrically-consistent crustal dichotomy through mode-1 overturn and simultaneous adiabatic melting.

  1. Growth of methanogens on a Mars soil simulant.

    PubMed

    Kral, Timothy A; Bekkum, Curtis R; McKay, Christopher P

    2004-12-01

    Currently, the surface of Mars is probably too cold, too dry, and too oxidizing for life, as we know it, to exist. But the subsurface is another matter. Life forms that might exist below the surface could not obtain their energy from photosynthesis, but rather they would have to utilize chemical energy. Methanogens are one type of microorganism that might be able to survive below the surface of Mars. A potential habitat for existence of methanogens on Mars might be a geothermal source of hydrogen, possibly due to volcanic or hydrothermal activity, or the reaction of basalt and anaerobic water, carbon dioxide, which is abundant in the martian atmosphere, and of course, subsurface liquid water. We report here that certain methanogens can grow on a Mars soil simulant when supplied with carbon dioxide, molecular hydrogen, and varying amounts of water.

  2. Styles and Timing of Volatile-driven Activity in the Eastern Hellas Region of Mars

    NASA Technical Reports Server (NTRS)

    Crown, David A.; Bleamaster, Leslie F., III; Mest, Scott C.; Teneva, Lida T.

    2005-01-01

    Hellas basin, the largest well-preserved impact structure on the Martian surface, is Mars deepest depositional sink and has long been recognized as a source for global dust storms. The basin and surrounding highlands span a wide range in latitude and elevation, exhibit landforms shaped by a diversity of geologic processes, and preserve exposures of Noachian, Hesperian, and Amazonian units. Geologically contemporaneous volcanism and volatile-driven activity in the circum-Hellas highlands provide resources for potential Martian life. Hellas is a geologically significant region for evaluating volatile abundance, distribution and cycling and changes in surface conditions on Mars. Current work integrates geologic studies of the basin floor and east rim using Viking Orbiter, Mars Global Surveyor, and Mars Odyssey datasets to provide a synthesis of the history of volatiles in the region.

  3. Aircraft Engine Sump Fire Mitigation

    NASA Technical Reports Server (NTRS)

    Rosenlieb, J. W.

    1973-01-01

    An investigation was performed of the conditions in which fires can result and be controlled within the bearing sump simulating that of a gas turbine engine; Esso 4040 Turbo Oil, Mobil Jet 2, and Monsanto MCS-2931 lubricants were used. Control variables include the oil inlet temperature, bearing temperature, oil inlet and scavenge rates, hot air inlet temperature and flow rate, and internal sump baffling. In addition to attempting spontaneous combustion, an electric spark and a rub (friction) mechanism were employed to ignite fires. Spontaneous combustion was not obtained; however, fires were readily ignited with the electric spark while using each of the three test lubricants. Fires were also ignited using the rub mechanism with the only test lubricant evaluated, Esso 4040. Major parameters controlling ignitions were: Sump configuration; Bearing and oil temperatures, hot air temperature and flow and bearing speed. Rubbing between stationary parts and rotating parts (eg. labyrinth seal and mating rub strip) is a very potent fire source suggesting that observed accidental fires in gas turbine sumps may well arise from this cause.

  4. The effect of the configuration of a single electrode corona discharge on its acoustic characteristics

    NASA Astrophysics Data System (ADS)

    Zhu, Xinlei; Zhang, Liancheng; Huang, Yifan; Wang, Jin; Liu, Zhen; Yan, Keping

    2017-07-01

    A new sparker system based on pulsed spark discharge with a single electrode has already been utilized for oceanic seismic exploration. However, the electro-acoustic energy efficiency of this system is lower than that of arc discharge based systems. A simple electrode structure was investigated in order to improve the electro-acoustic energy efficiency of the spark discharge. Experiments were carried out on an experimental setup with discharge in water driven by a pulsed power source. The voltage-current waveform, acoustic signal and bubble oscillation were recorded when the relative position of the electrode varied. The electro-acoustic energy efficiency was also calculated. The load voltage had a saltation for the invaginated electrode tip, namely an obvious voltage remnant. The more the electrode tip was invaginated, the larger the pressure peaks and first period became. The results show that electrode recessing into the insulating layer is a simple and effective way to improve the electro-acoustic energy efficiency from 2% to about 4%.

  5. Investigation of a compact coaxially fed switched oscillator.

    PubMed

    Wang, Yuwei; Chen, Dongqun; Zhang, Jiande; Cao, Shengguang; Li, Da; Liu, Chebo

    2013-09-01

    To generate a relative high frequency mesoband microwave, a compact coaxially fed transmission line switched oscillator with high voltage capability is investigated. The characteristic impedance and voltage capability of the low impedance transmission line (LITL) have been analyzed. It is shown that the working voltage of the oscillator can reach up to 200 kV when it is filled by pressurized nitrogen and charged by a nanosecond driving source. By utilizing a commercial electromagnetic simulation code, the transient performance of the switched oscillator with a lumped resistance load is simulated. It is illustrated that the center frequency of the output signal reaches up to ~0.6 GHz when the spark gap practically closes with a single channel. Besides, the influence of the closing mode and rapidity of the spark gap, the permittivity of the insulator at the output end of the LITL, and the load impedance on the transient performance of the designed oscillator has been analyzed in quantification. Finally, the good transient performance of the switched oscillator has been preliminarily proved by the experiment.

  6. A simple high-voltage high current spark gap with subnanosecond jitter triggered by femtosecond laser filamentation

    NASA Astrophysics Data System (ADS)

    Arantchouk, L.; Houard, A.; Brelet, Y.; Carbonnel, J.; Larour, J.; André, Y.-B.; Mysyrowicz, A.

    2013-04-01

    We describe a simple, sturdy, and reliable spark gap operating with air at atmospheric pressure and able to switch currents in excess of 10 kA with sub-nanosecond jitter. The spark gap is remotely triggered by a femtosecond laser filament.

  7. Observation of a spark channel generated in water with shock wave assistance in plate-to-plate electrode configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stelmashuk, V., E-mail: vitalij@ipp.cas.cz

    2014-01-15

    When a high voltage pulse with an amplitude of 30 kV is applied to a pair of disk electrodes at a time when a shock wave is passing between them, an electrical spark is generated. The dynamic changes in the spark morphology are studied here using a high-speed framing camera. The primary result of this work is the provision of experimental evidence of plasma instability that was observed in the channel of the electric spark.

  8. Automatic code generation in SPARK: Applications of computer algebra and compiler-compilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nataf, J.M.; Winkelmann, F.

    We show how computer algebra and compiler-compilers are used for automatic code generation in the Simulation Problem Analysis and Research Kernel (SPARK), an object oriented environment for modeling complex physical systems that can be described by differential-algebraic equations. After a brief overview of SPARK, we describe the use of computer algebra in SPARK's symbolic interface, which generates solution code for equations that are entered in symbolic form. We also describe how the Lex/Yacc compiler-compiler is used to achieve important extensions to the SPARK simulation language, including parametrized macro objects and steady-state resetting of a dynamic simulation. The application of thesemore » methods to solving the partial differential equations for two-dimensional heat flow is illustrated.« less

  9. Spark discharge trace element detection system

    DOEpatents

    Adler-Golden, Steven; Bernstein, Lawrence S.; Bien, Fritz

    1988-01-01

    A spark discharge trace element detection system is provided which includes a spark chamber including a pair of electrodes for receiving a sample of gas to be analyzed at no greater than atmospheric pressure. A voltage is provided across the electrodes for generating a spark in the sample. The intensity of the emitted radiation in at least one primary selected narrow band of the radiation is detected. Each primary band corresponds to an element to be detected in the gas. The intensity of the emission in each detected primary band is integrated during the afterglow time interval of the spark emission and a signal representative of the integrated intensity of the emission in each selected primary bond is utilized to determine the concentration of the corresponding element in the gas.

  10. Spark discharge trace element detection system

    DOEpatents

    Adler-Golden, S.; Bernstein, L.S.; Bien, F.

    1988-08-23

    A spark discharge trace element detection system is provided which includes a spark chamber including a pair of electrodes for receiving a sample of gas to be analyzed at no greater than atmospheric pressure. A voltage is provided across the electrodes for generating a spark in the sample. The intensity of the emitted radiation in at least one primary selected narrow band of the radiation is detected. Each primary band corresponds to an element to be detected in the gas. The intensity of the emission in each detected primary band is integrated during the afterglow time interval of the spark emission and a signal representative of the integrated intensity of the emission in each selected primary bond is utilized to determine the concentration of the corresponding element in the gas. 12 figs.

  11. SPARK: A Framework for Multi-Scale Agent-Based Biomedical Modeling.

    PubMed

    Solovyev, Alexey; Mikheev, Maxim; Zhou, Leming; Dutta-Moscato, Joyeeta; Ziraldo, Cordelia; An, Gary; Vodovotz, Yoram; Mi, Qi

    2010-01-01

    Multi-scale modeling of complex biological systems remains a central challenge in the systems biology community. A method of dynamic knowledge representation known as agent-based modeling enables the study of higher level behavior emerging from discrete events performed by individual components. With the advancement of computer technology, agent-based modeling has emerged as an innovative technique to model the complexities of systems biology. In this work, the authors describe SPARK (Simple Platform for Agent-based Representation of Knowledge), a framework for agent-based modeling specifically designed for systems-level biomedical model development. SPARK is a stand-alone application written in Java. It provides a user-friendly interface, and a simple programming language for developing Agent-Based Models (ABMs). SPARK has the following features specialized for modeling biomedical systems: 1) continuous space that can simulate real physical space; 2) flexible agent size and shape that can represent the relative proportions of various cell types; 3) multiple spaces that can concurrently simulate and visualize multiple scales in biomedical models; 4) a convenient graphical user interface. Existing ABMs of diabetic foot ulcers and acute inflammation were implemented in SPARK. Models of identical complexity were run in both NetLogo and SPARK; the SPARK-based models ran two to three times faster.

  12. Regulation of Ca2+ Sparks by Ca2+ and Mg2+ in Mammalian and Amphibian Muscle. An RyR Isoform-specific Role in Excitation–Contraction Coupling?

    PubMed Central

    Zhou, Jingsong; Launikonis, Bradley S.; Ríos, Eduardo; Brum, Gustavo

    2004-01-01

    Ca2+ and Mg2+ are important mediators and regulators of intracellular Ca2+ signaling in muscle. The effects of changes of cytosolic [Ca2+] or [Mg2+] on elementary Ca2+ release events were determined, as functions of concentration and time, in single fast-twitch permeabilized fibers of rat and frog. Ca2+ sparks were identified and their parameters measured in confocal images of fluo-4 fluorescence. Solutions with different [Ca2+] or [Mg2+] were rapidly exchanged while imaging. Faster and spatially homogeneous changes of [Ca2+] (reaching peaks >100 μM) were achieved by photolysing Ca NP-EGTA with laser flashes. In both species, incrementing cytosolic [Ca2+] caused a steady, nearly proportional increase in spark frequency, reversible upon [Ca2+] reduction. A greater change in spark frequency, usually transient, followed sudden increases in [Ca2+] after a lag of 100 ms or more. The nonlinearity, lag, and other features of this delayed effect suggest that it requires increase of [Ca2+] inside the SR. In the frog only, increases in cytosolic [Ca2+] often resulted, after a lag, in sparks that propagated transversally. An increase in [Mg2+] caused a fall of spark frequency, but with striking species differences. In the rat, but not the frog, sparks were observed at 4–40 mM [Mg2+]. Reducing [Mg2+] below 2 mM, which should enable the RyR channel's activation (CICR) site to bind Ca2+, caused progressive increase in spark frequency in the frog, but had no effect in the rat. Spark propagation and enhancement by sub-mM Mg2+ are hallmarks of CICR. Their absence in the rat suggests that CICR requires RyR3 para-junctional clusters, present only in the frog. The observed frequency of sparks corresponds to a channel open probability of 10−7 in the frog or 10−8 in the rat. Together with the failure of photorelease to induce activation directly, this indicates a basal inhibition of channels in situ. It is proposed that relief of this inhibition could be the mechanism by which increased SR load increases spark frequency. PMID:15452201

  13. Welcome to Outer Space

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This video gives a brief history of the Jet Propulsion Laboratory, current missions and what the future may hold. Scenes includes various planets in the solar system, robotic exploration of space, discussions on the Hubble Space Telescope, the source of life, and solar winds. This video was narrated by Jodie Foster. Animations include: close-up image of the Moon; close-up images of the surface of Mars; robotic exploration of Mars; the first mapping assignment of Mars; animated views of Jupiter; animated views of Saturn; and views of a Giant Storm on Neptune called the Great Dark Spot.

  14. Feasibility of an integrated X-ray instrument for Mars exobiology and geology. [Abstract only

    NASA Technical Reports Server (NTRS)

    Fonda, M. L.; Schwartz, D. E.; Koppel, L. N.; Franco, E. D.; Kerner, J. A.

    1994-01-01

    By employing an integrated X-ray instrument on a future Mars mission, data obtained will greatly augment those returned by Viking; details relevant to the possibility of the origin and evolution of life on Mars will be acquired. An integrated combined X Ray Fluorescence/X Ray Detection (XRF/XRD) instrument has been breadboarded and demonstrated to accommodate important exobiology and geology experiment objectives outlined for Mars Environmental Survey (MESUR) and future Mars missions. Among others, primary objectives for the exploration of Mars include: the intense study of local areas on Mars to 'establish the chemical, mineralogical, and petrological character of different components of the surface material; to determine the distribution, abundance and sources and sinks of volatile materials, including an assessment of the biologic potential, now and during past epochs; and to establish the global chemical and physical characteristics of the Martian surface'. The XRF/XRD breadboard instrument identifies and quantifies soil surface elemental, mineralogical, and petrological characteristics and acquires data necessary to address questions on volatile abundance and distribution. Additionally, the breadboard is able to characterize the biogenic element constituents of soil samples providing information on the biologic potential of the Mars environment.

  15. Transportation: Destination Mars

    NASA Technical Reports Server (NTRS)

    Eoff, Bill

    1998-01-01

    As the agency space transportation lead center, Marshall Space Flight Center has been conducting transportation assessments for future robotic and human Mars missions to identify critical technologies. Five human Mars options are currently under assessment with each option including all transportation requirements from Earth to Mars and return. The primary difference for each option is the propulsion source from Earth to Mars. In case any of the options require heavy launch capability that is not currently projected as available, an in-house study has been initiated to determine the most cost effective means of providing such launch capability. This assessment is only considering launch architectures that support the overall human Mars mission cost goal of $25B. The guidelines for the launch capability study included delivery of 80 metric ton (176 KLB) payloads, 25 feet diameter x 92 feet long, to 220 nmi orbits at 28.5 degrees. The launch vehicle concept of the study was designated "Magnum" to differentiate from prior heavy launch vehicle assessments. This assessment along with the assessment of options for all transportation phases of a Mars mission are on-going.

  16. Mars Global Reference Atmospheric Model (Mars-GRAM 2005) Applications for Mars Science Laboratory Mission Site Selection Processes

    NASA Technical Reports Server (NTRS)

    Justh, H. L.; Justus, C. G.

    2007-01-01

    The new Mars-GRAM auxiliary profile capability, using data from TES observations, mesoscale model output, or other sources, allows a potentially higher fidelity representation of the atmosphere, and a more accurate way of estimating inherent uncertainty in atmospheric density and winds. Figure 3 indicates that, with nominal value rpscale=1, Mars-GRAM perturbations would tend to overestimate observed or mesoscale-modeled variability. To better represent TES and mesoscale model density perturbations, rpscale values as low as about 0.4 could be used. Some trajectory model implementations of Mars-GRAM allow the user to dynamically change rpscale and rwscale values with altitude. Figure 4 shows that an mscale value of about 1.2 would better replicate wind standard deviations from MRAMS or MMM5 simulations at the Gale, Terby, or Melas sites. By adjusting the rpscale and rwscale values in Mars-GRAM based on figures such as Figure 3 and 4, we can provide more accurate end-to-end simulations for EDL at the candidate MSL landing sites.

  17. On- and off-axis spectral emission features from laser-produced gas breakdown plasmas

    NASA Astrophysics Data System (ADS)

    Harilal, S. S.; Skrodzki, P. J.; Miloshevsky, A.; Brumfield, B. E.; Phillips, M. C.; Miloshevsky, G.

    2017-06-01

    Laser-heated gas breakdown plasmas or sparks emit profoundly in the ultraviolet and visible region of the electromagnetic spectrum with contributions from ionic, atomic, and molecular species. Laser created kernels expand into a cold ambient with high velocities during their early lifetime followed by confinement of the plasma kernel and eventually collapse. However, the plasma kernels produced during laser breakdown of gases are also capable of exciting and ionizing the surrounding ambient medium. Two mechanisms can be responsible for excitation and ionization of the surrounding ambient: photoexcitation and ionization by intense ultraviolet emission from the sparks produced during the early times of their creation and/or heating by strong shocks generated by the kernel during its expansion into the ambient. In this study, an investigation is made on the spectral features of on- and off-axis emission of laser-induced plasma breakdown kernels generated in atmospheric pressure conditions with an aim to elucidate the mechanisms leading to ambient excitation and emission. Pulses from an Nd:YAG laser emitting at 1064 nm with a pulse duration of 6 ns are used to generate plasma kernels. Laser sparks were generated in air, argon, and helium gases to provide different physical properties of expansion dynamics and plasma chemistry considering the differences in laser absorption properties, mass density, and speciation. Point shadowgraphy and time-resolved imaging were used to evaluate the shock wave and spark self-emission morphology at early and late times, while space and time resolved spectroscopy is used for evaluating the emission features and for inferring plasma physical conditions at on- and off-axis positions. The structure and dynamics of the plasma kernel obtained using imaging techniques are also compared to numerical simulations using the computational fluid dynamics code. The emission from the kernel showed that spectral features from ions, atoms, and molecules are separated in time with early time temperatures and densities in excess of 35 000 K and 4 × 1018/cm3 with an existence of thermal equilibrium. However, the emission from the off-kernel positions from the breakdown plasmas showed enhanced ultraviolet radiation with the presence of N2 bands and is represented by non-local thermodynamic equilibrium (non-LTE) conditions. Our results also highlight that the ultraviolet radiation emitted during the early time of spark evolution is the predominant source of the photo-excitation of the surrounding medium.

  18. On- and off-axis spectral emission features from laser-produced gas breakdown plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harilal, S. S.; Skrodzki, P. J.; Miloshevsky, A.

    Laser-heated gas breakdown plasmas or sparks emit profoundly in the ultraviolet and visible region of the electromagnetic spectrum with contributions from ionic, atomic, and molecular species. Laser created kernels expand into a cold ambient with high velocities during its early lifetime followed by confinement of the plasma kernel and eventually collapse. However, the plasma kernels produced during laser breakdown of gases are also capable of exciting and ionizing the surrounding ambient medium. Two mechanisms can be responsible for excitation and ionization of surrounding ambient: viz. photoexcitation and ionization by intense ultraviolet emission from the sparks produced during the early timesmore » of its creation and/or heating by strong shocks generated by the kernel during its expansion into the ambient. In this study, an investigation is made on the spectral features of on- and off-axis emission features of laser-induced plasma breakdown kernels generated in atmospheric pressure conditions with an aim to elucidate the mechanisms leading to ambient excitation and emission. Pulses from an Nd:YAG laser emitting at 1064 nm with 6 ns pulse duration are used to generate plasma kernels. Laser sparks were generated in air, argon, and helium gases to provide different physical properties of expansion dynamics and plasma chemistry considering the differences in laser absorption properties, mass density and speciation. Point shadowgraphy and time-resolved imaging were used to evaluate the shock wave and spark self-emission morphology at early and late times while space and time resolved spectroscopy is used for evaluating the emission features as well as for inferring plasma fundaments at on- and off-axis. Structure and dynamics of the plasma kernel obtained using imaging techniques are also compared to numerical simulations using computational fluid dynamics code. The emission from the kernel showed that spectral features from ions, atoms and molecules are separated in time with an early time temperatures and densities in excess of 35000 K and 4×10 18 /cm 3 with an existence of thermal equilibrium. However, the emission from the off-kernel positions from the breakdown plasmas showed enhanced ultraviolet radiation with the presence of N 2 bands and represented by non-LTE conditions. Finally, our results also highlight that the ultraviolet radiation emitted during early time of spark evolution is the predominant source of the photo-excitation of the surrounding medium.« less

  19. On- and off-axis spectral emission features from laser-produced gas breakdown plasmas

    DOE PAGES

    Harilal, S. S.; Skrodzki, P. J.; Miloshevsky, A.; ...

    2017-06-01

    Laser-heated gas breakdown plasmas or sparks emit profoundly in the ultraviolet and visible region of the electromagnetic spectrum with contributions from ionic, atomic, and molecular species. Laser created kernels expand into a cold ambient with high velocities during its early lifetime followed by confinement of the plasma kernel and eventually collapse. However, the plasma kernels produced during laser breakdown of gases are also capable of exciting and ionizing the surrounding ambient medium. Two mechanisms can be responsible for excitation and ionization of surrounding ambient: viz. photoexcitation and ionization by intense ultraviolet emission from the sparks produced during the early timesmore » of its creation and/or heating by strong shocks generated by the kernel during its expansion into the ambient. In this study, an investigation is made on the spectral features of on- and off-axis emission features of laser-induced plasma breakdown kernels generated in atmospheric pressure conditions with an aim to elucidate the mechanisms leading to ambient excitation and emission. Pulses from an Nd:YAG laser emitting at 1064 nm with 6 ns pulse duration are used to generate plasma kernels. Laser sparks were generated in air, argon, and helium gases to provide different physical properties of expansion dynamics and plasma chemistry considering the differences in laser absorption properties, mass density and speciation. Point shadowgraphy and time-resolved imaging were used to evaluate the shock wave and spark self-emission morphology at early and late times while space and time resolved spectroscopy is used for evaluating the emission features as well as for inferring plasma fundaments at on- and off-axis. Structure and dynamics of the plasma kernel obtained using imaging techniques are also compared to numerical simulations using computational fluid dynamics code. The emission from the kernel showed that spectral features from ions, atoms and molecules are separated in time with an early time temperatures and densities in excess of 35000 K and 4×1018 /cm3 with an existence of thermal equilibrium. However, the emission from the off-kernel positions from the breakdown plasmas showed enhanced ultraviolet radiation with the presence of N2 bands and represented by non-LTE conditions. Our results also highlight that the ultraviolet radiation emitted during early time of spark evolution is the predominant source of the photo-excitation of the surrounding medium.« less

  20. Lunar and Planetary Science XXXV: Mars: Hydrology, Drainage, and Valley Systems

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The titles in this section include: 1) Analysis of Orientation Dependence of Martian Gullies; 2) A Preliminary Relationship between the Depth of Martian Gullies and the Abundance of Hydrogen on Near-Surface Mars; 3) Water Indicators in Sirenum Terra and around the Argyre Impact Basin, Mars; 4) The Distribution of Gullies and Tounge-shaped Ridges and Their Role in the Degradation of Martian Craters; 5) A Critical Evaluation of Crater Lake Systems in Memnonia Quadrangle, Mars; 6) Impact-generated Hydrothermal Activity at Gusev Crater: Implications for the Spirit Mission; 7) Characterization of the Distributary Fan in Holden NE Crater using Stereo Analysis; 8) Computational Analysis of Drainage Basins on Mars: Appraising the Drainage Density; 9) Hypsometric Analyses of Martian Basins: A Comparison to Terrestrial, Lunar, and Venusian Hypsometry; 10) Morphologic Development of Harmakhis Vallis, Mars; 11) Mangala Valles, Mars: Investigations of the source of Flood Water and Early Stages of Flooding; 12) The Formation of Aromatum Chaos and the Water Discharge Rate at Ravi Vallis; 13) Inferring Hydraulics from Geomorphology for Athabasca Valles, Mars; 14) The Origin and Evolution of Dao Vallis: Formation and Modification of Martian Channels by Structural Collapse and Glaciation; 15) Snowmelt and the Formation of Valley Networks on Martian Volcanoes; 16) Extent of Floating Ice in an Ancient Echus Chasma/Kasei Valley System, Mars.

  1. Mars Global Reference Atmospheric Model 2000 Version (Mars-GRAM 2000): Users Guide

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; James, B. F.

    2000-01-01

    This report presents Mars Global Reference Atmospheric Model 2000 Version (Mars-GRAM 2000) and its new features. All parameterizations for temperature, pressure, density, and winds versus height, latitude, longitude, time of day, and L(sub s) have been replaced by input data tables from NASA Ames Mars General Circulation Model (MGCM) for the surface through 80-km altitude and the University of Arizona Mars Thermospheric General Circulation Model (MTGCM) for 80 to 170 km. A modified Stewart thermospheric model is still used for higher altitudes and for dependence on solar activity. "Climate factors" to tune for agreement with GCM data are no longer needed. Adjustment of exospheric temperature is still an option. Consistent with observations from Mars Global Surveyor, a new longitude-dependent wave model is included with user input to specify waves having 1 to 3 wavelengths around the planet. A simplified perturbation model has been substituted for the earlier one. An input switch allows users to select either East or West longitude positive. This memorandum includes instructions on obtaining Mars-GRAM source code and data files and for running the program. It also provides sample input and output and an example for incorporating Mars-GRAM as an atmospheric subroutine in a trajectory code.

  2. The Water-Wheel IR (WIR): A Contact Survey Experiment for Water and Carbonates on Mars

    NASA Technical Reports Server (NTRS)

    Wang, Alian; Haskin, Larry A.; Freeman, John; Dong, Edward X.; Kuebler, Karla E.

    2004-01-01

    Minimum requirements for life include water and accessible carbon. Mars has both in its polar caps and atmosphere. Water (or water-equivalent hydrogen) is present at shallow depths (approx. 10-20 cm) at latitudes =60 and is heterogeneously distributed in other parts of Mars [1]. Mars may have once had surface water that could plausibly have produced carbonate deposits [2-5]. Mars shows signs of hydrothermal activity [6-8] that may have affected soil composition [9, 10]. The Thermal Emission Spectrometer on the Mars Global Surveyor found large and small patches of hematite that may have been water-borne or water-derived [11, 12]. Current orbiting spacecraft (MGS & Odyssey) have not found massive carbonate deposits, however [13]. Shales and limestones, which we associate with moist and benign environments on Earth, are apparently not abundant on Mars. Both carbonate and organic carbon occur as alteration products in Martian meteorites of igneous origin [14]. One study of MGS-TES data suggests 2-5 wt% carbonates (mainly MgCO3) in surface dust, but found no concentrated source [15]. Carbonates and H2O/OH bearing minerals will be sought by the mini-TES and Mossbauer experiments on the Mars Exploration Rovers, one of which landed successfully on Mars on January 3.

  3. Impact-Induced Liquid-Water Environments on Mars

    NASA Astrophysics Data System (ADS)

    Daubar, I. J.; Kring, D. A.

    2001-11-01

    The origin and evolution of life on Earth were likely associated with hydrothermal systems (e.g., Corliss et al. 1980, Baross and Hoffman 1985, Holm and Andersson 1995, Shock 1996). Although research has been concentrated on volcanic hydrothermal systems on Earth (e.g., Norton 1984, Farmer 2000) and on Mars (e.g., Allen et al. 1982, Gulick and Baker 1989, Farmer 1996), we suggest that large impacts can, and did, drive similar systems. Impacts are a significant source of thermal energy: melt rock produced in impacts, and hot rock uplifted from depth both provide sources of heat to drive hydrothermal systems. On Mars, these heat sources could provide enough energy to melt an underlying layer of permafrost and perhaps even initiate long-lived crater lakes (Newsom et al. 1996, Cabrol et al. 1999). In terms of the production of heat and the habitable volume incorporated in hydrothermal systems, impacts might have been at least as important as volcanic systems early in planetary development. The oldest (Noachian) surfaces on Mars support this hypothesis: they show very little evidence of volcanism (Carr 1996) and are instead dominated by impact cratering processes. Kring and Cohen (2001, submitted) estimate that more than 6400 craters with diameters greater than 20 km were produced on Mars 3.9 Ga. We present estimates of the lifetimes of hydrothermal systems in Martian craters with sizes ranging from 20 km to 200 km in diameter. Lifetimes calculated assuming convective cooling are 105 years for 100-km craters and several 106 years for 180-km craters (Daubar and Kring 2001, cf. Thorsos et al. 2001). These results may be influenced by an insulating breccia layer, shock heating, and convection of water; these factors are currently being evaluated.

  4. Conditions on Early Mars Might Have Fostered Rapid and Early Development of Life

    NASA Technical Reports Server (NTRS)

    Gibson, Everett K.; McKay, David S.; Thomas-Keprta, Kathie L.; Clemett, Simon J.; Wentworth, Susan J.

    2007-01-01

    The exploration of Mars during the past decades has begun to unveil the history of the planet. The combinations of remote sensing, in situ geochemical compositional measurements and photographic observations from both above and on the surface have shown Mars to have a dynamic and active geologic evolution. Mars geologic evolution clearly had conditions that were suitable for supporting life. For a planet to be able to be habitable, it must have water, carbon sources, energy sources and a dynamic geologic past. Mars meets all of these requirements. The first 600 My of Martian history were ripe for life to develop because of the abundance of (i) Water-carved canyons and oceans or lakes with the early presence of near surface water shown by precipitated carbonates in ALH84001 well-dated at approx.3.9 Gy., (ii) Energy from the original accretional processes, a molten core which generated a strong magnetic field leaving a permanent record in the early crust, early active volcanism continuing throughout Martian history, and, and continuing impact processes, (iii) Carbon and water from possibly extensive volcanic outgassing (i.e. H2O, CO2, CH4, CO, O2, N2, H2S, SO2, etc.) and (iv) some crustal tectonics as revealed by faulting and possible plate movement reflected by the magnetic pattern in the crust. The question arises: "Why would life not evolve from these favorable conditions on early Mars in its first 600 My?" During this period, it seems likely that environmental near-surface conditions on Mars were more favorable to life than at any later time. Standing bodies of water, precipitation and flowing surface water, and possibly abundant hydrothermal energy would all favor the formation of early life. Even if life developed elsewhere (on Earth, Venus, or on other solar systems) and was transported to Mars, the surface conditions were likely very hospitable for that introduced life to multiply and evolve.

  5. Comparative pick-up ion distributions at Mars and Venus: Consequences for atmospheric deposition and escape

    NASA Astrophysics Data System (ADS)

    Curry, Shannon M.; Luhmann, Janet; Ma, Yingjuan; Liemohn, Michael; Dong, Chuanfei; Hara, Takuya

    2015-09-01

    Without the shielding of a substantial intrinsic dipole magnetic field, the atmospheres of Mars and Venus are particularly susceptible to similar atmospheric ion energization and scavenging processes. However, each planet has different attributes and external conditions controlling its high altitude planetary ion spatial and energy distributions. This paper describes analogous test particle simulations in background MHD fields that allow us to compare the properties and fates, precipitation or escape, of the mainly O+ atmospheric pick-up ions at Mars and Venus. The goal is to illustrate how atmospheric and planetary scales affect the upper atmospheres and space environments of our terrestrial planet neighbors. The results show the expected convection electric field-related hemispheric asymmetries in both precipitation and escape, where the degree of asymmetry at each planet is determined by the planetary scale and local interplanetary field strength. At Venus, the kinetic treatment of O+ reveals a strong nightside source of precipitation while Mars' crustal fields complicate the simple asymmetry in ion precipitation and drive a dayside source of precipitation. The pickup O+ escape pattern at both Venus and Mars exhibits low energy tailward escape, but Mars exhibits a prominent, high energy 'polar plume' feature in the hemisphere of the upward convection electric field while the Venus ion wake shows only a modest poleward concentration. The overall escape is larger at Venus than Mars (2.1 ×1025 and 4.3 ×1024 at solar maximum, respectively), but the efficiency (likelihood) of O+ escaping is 2-3 times higher at Mars. The consequences of these comparisons for pickup ion related atmospheric energy deposition, loss rates, and detection on spacecraft including PVO, VEX, MEX and MAVEN are considered. In particular, both O+ precipitation and escape show electric field controlled asymmetries that grow with energy, while the O+ fluxes and energy spectra at selected spatial locations show characteristic signatures of the pickup related acceleration and precipitation.

  6. MAST Propellant and Delivery System Design Methods

    NASA Technical Reports Server (NTRS)

    Nadeem, Uzair; Mc Cleskey, Carey M.

    2015-01-01

    A Mars Aerospace Taxi (MAST) concept and propellant storage and delivery case study is undergoing investigation by NASA's Element Design and Architectural Impact (EDAI) design and analysis forum. The MAST lander concept envisions landing with its ascent propellant storage tanks empty and supplying these reusable Mars landers with propellant that is generated and transferred while on the Mars surface. The report provides an overview of the data derived from modeling between different methods of propellant line routing (or "lining") and differentiate the resulting design and operations complexity of fluid and gaseous paths based on a given set of fluid sources and destinations. The EDAI team desires a rough-order-magnitude algorithm for estimating the lining characteristics (i.e., the plumbing mass and complexity) associated different numbers of vehicle propellant sources and destinations. This paper explored the feasibility of preparing a mathematically sound algorithm for this purpose, and offers a method for the EDAI team to implement.

  7. Experimental verification of the capillary plasma triggered long spark gap under the extremely low working coefficient in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, D.; Yang, L. J., E-mail: yanglj@mail.xjtu.edu.cn; Ma, J. B.

    The paper has proposed a new triggering method for long spark gap based on capillary plasma ejection and conducted the experimental verification under the extremely low working coefficient, which represents that the ratio of the spark gap charging voltage to the breakdown voltage is particularly low. The quasi-neutral plasma is ejected from the capillary and develops through the axial direction of the spark gap. The electric field in the spark gap is thus changed and its breakdown is incurred. It is proved by the experiments that the capillary plasma ejection is effective in triggering the long spark gap under themore » extremely low working coefficient in air. The study also indicates that the breakdown probabilities, the breakdown delay, and the delay dispersion are all mainly determined by the characteristics of the ejected plasma, including the length of the plasma flow, the speed of the plasma ejection, and the ionization degree of the plasma. Moreover, the breakdown delay and the delay dispersion increase with the length of the long spark gap, and the polarity effect exists in the triggering process. Lastly, compared with the working patterns of the triggering device installed in the single electrode, the working pattern of the devices installed in both the two electrodes, though with the same breakdown process, achieves the ignition under longer gap distance. To be specific, at the gap length of 14 cm and the working coefficient of less than 2%, the spark gap is still ignited accurately.« less

  8. Small-size controlled vacuum spark-gap in an external magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asyunin, V. I., E-mail: asvi@mail.ru; Davydov, S. G.; Dolgov, A. N., E-mail: alnikdolgov@mail.ru

    2015-02-15

    It is demonstrated that the operation of a small-size controlled spark-gap can be controlled by applying a uniform external magnetic field. It is shown that the magnetic field of such a simple configuration efficiently suppresses the effect of localization of the discharge current after multiple actuations of the spark-gap.

  9. Military Assistance to Mexico: Use of Special Operations Forces

    DTIC Science & Technology

    2010-03-31

    91 Donald Sparks, " Jackal Stone 2009; Special Opcmti011s Forces Multinational Training in Croatia", Tt/J of the Spear, USSCOM, Tampa FL, 92 Sparks...Data Analysis from 2001-2009" Justice in Mexico Project, Trans Border Institute, University of San Diego, January 2009. Sparks, Donald " Jackal Stone

  10. Gas mixtures for spark gap closing switches

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Hunter, S.R.

    1987-02-20

    Gas mixtures for use in spark gap closing switches comprised of fluorocarbons and low molecular weight, inert buffer gases. To this can be added a third gas having a low ionization potential relative to the buffer gas. The gas mixtures presented possess properties that optimized the efficiency spark gap closing switches. 6 figs.

  11. 30 CFR 18.50 - Protection against external arcs and sparks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Protection against external arcs and sparks. 18... and Design Requirements § 18.50 Protection against external arcs and sparks. Provision shall be made... of that of one power conductor unless a ground-fault tripping relay is used, in which case the...

  12. 30 CFR 18.50 - Protection against external arcs and sparks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection against external arcs and sparks. 18... and Design Requirements § 18.50 Protection against external arcs and sparks. Provision shall be made... of that of one power conductor unless a ground-fault tripping relay is used, in which case the...

  13. Evidence of Plume on Europa from Galileo Magnetic and Plasma Density Signatures

    NASA Astrophysics Data System (ADS)

    Jia, X.; Kivelson, M.; Khurana, K. K.; Kurth, W. S.

    2017-12-01

    The icy surface of Jupiter's moon, Europa, is thought to lie on top of a global ocean [Khurana et al., 1998; Kivelson et al., 2000]. Water plumes rising 200 kilometers above the disk of the solid body in some Hubble Space Telescope images have been identified through emission spectra of hydrogen and oxygen [Roth et al., 2016] and through absorption in the far ultraviolet of sunlight reflected off of Jupiter [Sparks et al., 2016, 2017]. Plume activity appears to be intermittent, although Sparks et al. [2017] identified a plume at a location where one had been detected in an earlier study. While the detections appear to be valid within statistical uncertainty, they are all close to the limit of detection, making it desirable to find other evidence of the presence of localized vapor above Europa's surface. In this presentation, we examine magnetometer and electromagnetic wave data acquired by the Galileo spacecraft on a close encounter with Europa on December 16, 1997. We identify distinct features in the data that have the characteristics expected if the spacecraft went through magnetic flux tubes that pass around a plume, close to the location proposed for one of the plumes observed by Sparks et al. [2016]. 3D magnetohydrodynamic simulations have been conducted to model the interaction of plume with Europa's plasma and magnetic environment. Our simulations confirm that the magnetic and plasma signatures identified in the Galileo data are consistent with perturbations associated with a localized plume source.

  14. LLNL small-scale static spark machine: static spark sensitivity test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foltz, M F; Simpson, L R

    1999-08-23

    Small-scale safety testing of explosives and other energetic materials is done in order to determine their sensitivity to various stimuli, such as friction, static spark, and impact. Typically this testing is done to discover potential handling problems that may exist for either newly synthesized materials of unknown behavior, or materials that have been stored for long periods of time. This report describes the existing ''Static Spark Test Apparatus'' at Lawrence Livermore National Laboratory (LLNL), as well as the method used to evaluate the relative static spark sensitivity of energetic materials. The basic design, originally developed by the Picatinny Arsenal inmore » New Jersey, is discussed. The accumulated data for the materials tested to date is not included here, with the exception of specific examples that have yielded interesting or unusual results during the tests.« less

  15. Spark ignition timing control system for internal combustion engine with feature of suppression of jerking during engine acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomisawa, N.

    1989-07-04

    This patent describes a spark ignition timing control system for an internal combustion engine, it comprises: sensor means monitoring preselected parameters for producing a sensor signal; first means for deriving a spark ignition timing on the basis of data contained in the sensor signal; second means for detecting an engine acceleration demand for producing an accelerating condition indicative signal; and third means, responsive to the accelerating condition indicative signal, for modifying the spark ignition timing derived by the first means after expiration of a first predetermined period of time of occurence of the accelerating condition indicative signal, in such amore » manner that the spark ignition timing is advanced and retarded for suppressing cycle-to-cycle fluctuation of engine speed and for smoothly increasing engine speed.« less

  16. SPARK: Adapting Keyword Query to Semantic Search

    NASA Astrophysics Data System (ADS)

    Zhou, Qi; Wang, Chong; Xiong, Miao; Wang, Haofen; Yu, Yong

    Semantic search promises to provide more accurate result than present-day keyword search. However, progress with semantic search has been delayed due to the complexity of its query languages. In this paper, we explore a novel approach of adapting keywords to querying the semantic web: the approach automatically translates keyword queries into formal logic queries so that end users can use familiar keywords to perform semantic search. A prototype system named 'SPARK' has been implemented in light of this approach. Given a keyword query, SPARK outputs a ranked list of SPARQL queries as the translation result. The translation in SPARK consists of three major steps: term mapping, query graph construction and query ranking. Specifically, a probabilistic query ranking model is proposed to select the most likely SPARQL query. In the experiment, SPARK achieved an encouraging translation result.

  17. Titian: Data Provenance Support in Spark

    PubMed Central

    Interlandi, Matteo; Shah, Kshitij; Tetali, Sai Deep; Gulzar, Muhammad Ali; Yoo, Seunghyun; Kim, Miryung; Millstein, Todd; Condie, Tyson

    2015-01-01

    Debugging data processing logic in Data-Intensive Scalable Computing (DISC) systems is a difficult and time consuming effort. Today’s DISC systems offer very little tooling for debugging programs, and as a result programmers spend countless hours collecting evidence (e.g., from log files) and performing trial and error debugging. To aid this effort, we built Titian, a library that enables data provenance—tracking data through transformations—in Apache Spark. Data scientists using the Titian Spark extension will be able to quickly identify the input data at the root cause of a potential bug or outlier result. Titian is built directly into the Spark platform and offers data provenance support at interactive speeds—orders-of-magnitude faster than alternative solutions—while minimally impacting Spark job performance; observed overheads for capturing data lineage rarely exceed 30% above the baseline job execution time. PMID:26726305

  18. Technology of fast spark gaps

    NASA Astrophysics Data System (ADS)

    Standler, Ronald B.

    1989-09-01

    To protect electronic systems from the effects of electromagnetic pulse (EMP) form nuclear weapons and high-power microwave (HPM) weapons, it is desirable to have fast responding protection components. The gas-filled spark gap appears to be an attractive protection component, except that it can be slow to conduct under certain conditions. This report reviews the literature and presents ideas for construction of a spark gap that will conduct in less than one nanosecond. The key concept to making a fast-responding spark gap is to produce a large number of free electrons quickly. Seven different mechanisms for production of free electrons are reviewed, and several that are relevant to miniature spark gaps for protective applications are discussed in detail. These mechanisms include: inclusion of radioactive materials, photoelectric effect, secondary electrode emission from the anode, and field emission from the cathode.

  19. Apparatus and method for the spectrochemical analysis of liquids using the laser spark

    DOEpatents

    Cremers, David A.; Radziemski, Leon J.; Loree, Thomas R.

    1990-01-01

    A method and apparatus for the qualitative and quantitative spectroscopic investigation of elements present in a liquid sample using the laser spark. A series of temporally closely spaced spark pairs is induced in the liquid sample utilizing pulsed electromagnetic radiation from a pair of lasers. The light pulses are not significantly absorbed by the sample so that the sparks occur inside of the liquid. The emitted light from the breakdown events is spectrally and temporally resolved, and the time period between the two laser pulses in each spark pair is adjusted to maximize the signal-to-noise ratio of the emitted signals. In comparison with the single pulse technique, a substantial reduction in the limits of detectability for many elements has been demonstrated. Narrowing of spectral features results in improved discrimination against interfering species.

  20. Apparatus and method for the spectrochemical analysis of liquids using the laser spark

    DOEpatents

    Cremers, D.A.; Radziemski, L.J.; Loree, T.R.

    1984-05-01

    A method and apparatus are disclosed for the qualitative and quantitative spectroscopic investigation of elements present in a liquid sample using the laser spark. A series of temporally closely spaced spark pairs is induced in the liquid sample utilizing pulsed electromagnetic radiation from a pair of lasers. The light pulses are not significantly absorbed by the sample so that the sparks occur inside of the liquid. The emitted light from the breakdown events is spectrally and temporally resolved, and the time period between the two laser pulses in each spark pair is adjusted to maximize the signal-to-noise ratio of the emitted signals. In comparison with the single pulse technique, a substantial reduction in the limits of detectability for many elements has been demonstrated. Narrowing of spectral features results in improved discrimination against interfering species.

  1. Slumps and Fog in Valles Marineris

    NASA Astrophysics Data System (ADS)

    Ojha, L.; Chojnacki, M.; Toigo, A. D.; McDonald, G. D.; Wolff, M. J.; Leung, C. W. S.

    2016-12-01

    The first spectral evidence for H2O ice clouds on Mars came from the interferometer spectrometer on board the Mariner 9 spacecraft. Water ice clouds on Mars form by freezing of atmospheric water vapor, of which the main surface source is the seasonal sublimation of the polar caps, and have been observed around the Tharsis volcanoes, Olympus Mons, Alba Patera, Valles Marineris (VM) and the southern highlands. Cloud activity in some of these regions display a seasonal trend, where the cloud area increases in warmer seasons, and decreases during colder seasons. The atmospheric hazes in VM are relatively small in areal extent, confined within canyon topography, and are difficult to replicate in models of global or regional vapor transport, indicating that they may be locally sourced. This distinguishes the VM hazes from the global-scale clouds. Spectral data from the Planetary Fourier Spectrometer onboard the Mars Express orbiter have been reported as consistent with water ice in the atmospheric fog, however results from Mars Express favored dust as responsible for low-elevation hazes. Here we report observations and spectroscopic analyses of low elevation haze in Juventae Chasma, which are spatially correlated with locations of seasonal flows thought to be caused by briny liquid water. Furthermore, we report the seasonality of the haze and explore its potential role in the creation of contemporary mass-wasting features on Mars.

  2. X-Ray Diffraction on Mars: Scientific Discoveries Made by the CheMin Instrument

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Blake, D. F.; Ming, D. W.; Bristow, T. F.

    2017-01-01

    The Mars Science Laboratory Curiosity landed in Gale crater in August 2012 with the goal to identify and characterize habitable environments on Mars. Curiosity has been studying a series of sedimentary rocks primarily deposited in fluviolacustrine environments approximately 3.5 Ga. Minerals in the rocks and soils on Mars can help place further constraints on these ancient aqueous environments, including pH, salinity, and relative duration of liquid water. The Chemistry and Mineralogy (CheMin) X-ray diffraction and X-ray fluorescence instrument on Curiosity uses a Co X-ray source and charge-coupled device detector in transmission geometry to collect 2D Debye-Scherrer ring patterns of the less than 150 micron size fraction of drilled rock powders or scooped sediments. With an angular range of approximately 2.52deg 20 and a 20 resolution of approximately 0.3deg, mineral abundances can be quantified with a detection limit of approximately 1-2 wt. %. CheMin has returned quantitative mineral abundances from 16 mudstone, sandstone, and aeolian sand samples so far. The mineralogy of these samples is incredibly diverse, suggesting a variety of depositional and diagenetic environments and different source regions for the sediments. Results from CheMin have been essential for reconstructing the geologic history of Gale crater and addressing the question of habitability on ancient Mars.

  3. Hydrogen escape from Mars enhanced by deep convection in dust storms

    NASA Astrophysics Data System (ADS)

    Heavens, Nicholas G.; Kleinböhl, Armin; Chaffin, Michael S.; Halekas, Jasper S.; Kass, David M.; Hayne, Paul O.; McCleese, Daniel J.; Piqueux, Sylvain; Shirley, James H.; Schofield, John T.

    2018-02-01

    Present-day water loss from Mars provides insight into Mars's past habitability1-3. Its main mechanism is thought to be Jeans escape of a steady hydrogen reservoir sourced from odd-oxygen reactions with near-surface water vapour2, 4,5. The observed escape rate, however, is strongly variable and correlates poorly with solar extreme-ultraviolet radiation flux6-8, which was predicted to modulate escape9. This variability has recently been attributed to hydrogen sourced from photolysed middle atmospheric water vapour10, whose vertical and seasonal distribution is only partly characterized and understood11-13. Here, we report multi-annual observational estimates of water content and dust and water transport to the middle atmosphere from Mars Climate Sounder data. We provide strong evidence that the transport of water vapour and ice to the middle atmosphere by deep convection in Martian dust storms can enhance hydrogen escape. Planet-encircling dust storms can raise the effective hygropause (where water content rapidly decreases to effectively zero) from 50 to 80 km above the areoid (the reference equipotential surface). Smaller dust storms contribute to an annual mode in water content at 40-50 km that may explain seasonal variability in escape. Our results imply that Martian atmospheric chemistry and evolution can be strongly affected by the meteorology of the lower and middle atmosphere of Mars.

  4. Chloromethane release from carbonaceous meteorite affords new insight into Mars lander findings

    NASA Astrophysics Data System (ADS)

    Keppler, Frank; Harper, David B.; Greule, Markus; Ott, Ulrich; Sattler, Tobias; Schöler, Heinz F.; Hamilton, John T. G.

    2014-11-01

    Controversy continues as to whether chloromethane (CH3Cl) detected during pyrolysis of Martian soils by the Viking and Curiosity Mars landers is indicative of organic matter indigenous to Mars. Here we demonstrate CH3Cl release (up to 8 μg/g) during low temperature (150-400°C) pyrolysis of the carbonaceous chondrite Murchison with chloride or perchlorate as chlorine source and confirm unequivocally by stable isotope analysis the extraterrestrial origin of the methyl group (δ2H +800 to +1100‰, δ13C -19.2 to +10‰,). In the terrestrial environment CH3Cl released during pyrolysis of organic matter derives from the methoxyl pool. The methoxyl pool in Murchison is consistent both in magnitude (0.044%) and isotope signature (δ2H +1054 +/- 626‰, δ13C +43.2 +/- 38.8‰,) with that of the CH3Cl released on pyrolysis. Thus CH3Cl emissions recorded by Mars lander experiments may be attributed to methoxyl groups in undegraded organic matter in meteoritic debris reaching the Martian surface being converted to CH3Cl with perchlorate or chloride in Martian soil. However we cannot discount emissions arising additionally from organic matter of indigenous origin. The stable isotope signatures of CH3Cl detected on Mars could potentially be utilized to determine its origin by distinguishing between terrestrial contamination, meteoritic infall and indigenous Martian sources.

  5. Chloromethane release from carbonaceous meteorite affords new insight into Mars lander findings.

    PubMed

    Keppler, Frank; Harper, David B; Greule, Markus; Ott, Ulrich; Sattler, Tobias; Schöler, Heinz F; Hamilton, John T G

    2014-11-13

    Controversy continues as to whether chloromethane (CH3Cl) detected during pyrolysis of Martian soils by the Viking and Curiosity Mars landers is indicative of organic matter indigenous to Mars. Here we demonstrate CH3Cl release (up to 8 μg/g) during low temperature (150-400°C) pyrolysis of the carbonaceous chondrite Murchison with chloride or perchlorate as chlorine source and confirm unequivocally by stable isotope analysis the extraterrestrial origin of the methyl group (δ(2)H +800 to +1100‰, δ(13)C -19.2 to +10‰,). In the terrestrial environment CH3Cl released during pyrolysis of organic matter derives from the methoxyl pool. The methoxyl pool in Murchison is consistent both in magnitude (0.044%) and isotope signature (δ(2)H +1054 ± 626‰, δ(13)C +43.2 ± 38.8‰,) with that of the CH3Cl released on pyrolysis. Thus CH3Cl emissions recorded by Mars lander experiments may be attributed to methoxyl groups in undegraded organic matter in meteoritic debris reaching the Martian surface being converted to CH3Cl with perchlorate or chloride in Martian soil. However we cannot discount emissions arising additionally from organic matter of indigenous origin. The stable isotope signatures of CH3Cl detected on Mars could potentially be utilized to determine its origin by distinguishing between terrestrial contamination, meteoritic infall and indigenous Martian sources.

  6. Martian Surface Boundary Layer Characterization: Enabling Environmental Data for Science, Engineering and Human Exploration

    NASA Technical Reports Server (NTRS)

    England, C.

    2000-01-01

    For human or large robotic exploration of Mars, engineering devices such as power sources will be utilized that interact closely with the Martian environment. Heat sources for power production, for example, will use the low ambient temperature for efficient heat rejection. The Martian ambient, however, is highly variable, and will have a first order influence on the efficiency and operation of all large-scale equipment. Diurnal changes in temperature, for example, can vary the theoretical efficiency of power production by 15% and affect the choice of equipment, working fluids, and operating parameters. As part of the Mars Exploration program, missions must acquire the environmental data needed for design, operation and maintenance of engineering equipment including the transportation devices. The information should focus on the variability of the environment, and on the differences among locations including latitudes, altitudes, and seasons. This paper outlines some of the WHY's, WHAT's and WHERE's of the needed data, as well as some examples of how this data will be used. Environmental data for engineering design should be considered a priority in Mars Exploration planning. The Mars Thermal Environment Radiator Characterization (MTERC), and Dust Accumulation and Removal Technology (DART) experiments planned for early Mars landers are examples of information needed for even small robotic missions. Large missions will require proportionately more accurate data that encompass larger samples of the Martian surface conditions. In achieving this goal, the Mars Exploration program will also acquire primary data needed for understanding Martian weather, surface evolution, and ground-atmosphere interrelationships.

  7. Carbon monoxide as a metabolic energy source for extremely halophilic microbes: implications for microbial activity in Mars regolith.

    PubMed

    King, Gary M

    2015-04-07

    Carbon monoxide occurs at relatively high concentrations (≥800 parts per million) in Mars' atmosphere, where it represents a potentially significant energy source that could fuel metabolism by a localized putative surface or near-surface microbiota. However, the plausibility of CO oxidation under conditions relevant for Mars in its past or at present has not been evaluated. Results from diverse terrestrial brines and saline soils provide the first documentation, to our knowledge, of active CO uptake at water potentials (-41 MPa to -117 MPa) that might occur in putative brines at recurrent slope lineae (RSL) on Mars. Results from two extremely halophilic isolates complement the field observations. Halorubrum str. BV1, isolated from the Bonneville Salt Flats, Utah (to our knowledge, the first documented extremely halophilic CO-oxidizing member of the Euryarchaeota), consumed CO in a salt-saturated medium with a water potential of -39.6 MPa; activity was reduced by only 28% relative to activity at its optimum water potential of -11 MPa. A proteobacterial isolate from hypersaline Mono Lake, California, Alkalilimnicola ehrlichii MLHE-1, also oxidized CO at low water potentials (-19 MPa), at temperatures within ranges reported for RSL, and under oxic, suboxic (0.2% oxygen), and anoxic conditions (oxygen-free with nitrate). MLHE-1 was unaffected by magnesium perchlorate or low atmospheric pressure (10 mbar). These results collectively establish the potential for microbial CO oxidation under conditions that might obtain at local scales (e.g., RSL) on contemporary Mars and at larger spatial scales earlier in Mars' history.

  8. Mass and Reliability Source (MaRS) Database

    NASA Technical Reports Server (NTRS)

    Valdenegro, Wladimir

    2017-01-01

    The Mass and Reliability Source (MaRS) Database consolidates components mass and reliability data for all Oribital Replacement Units (ORU) on the International Space Station (ISS) into a single database. It was created to help engineers develop a parametric model that relates hardware mass and reliability. MaRS supplies relevant failure data at the lowest possible component level while providing support for risk, reliability, and logistics analysis. Random-failure data is usually linked to the ORU assembly. MaRS uses this data to identify and display the lowest possible component failure level. As seen in Figure 1, the failure point is identified to the lowest level: Component 2.1. This is useful for efficient planning of spare supplies, supporting long duration crewed missions, allowing quicker trade studies, and streamlining diagnostic processes. MaRS is composed of information from various databases: MADS (operating hours), VMDB (indentured part lists), and ISS PART (failure data). This information is organized in Microsoft Excel and accessed through a program made in Microsoft Access (Figure 2). The focus of the Fall 2017 internship tour was to identify the components that were the root cause of failure from the given random-failure data, develop a taxonomy for the database, and attach material headings to the component list. Secondary objectives included verifying the integrity of the data in MaRS, eliminating any part discrepancies, and generating documentation for future reference. Due to the nature of the random-failure data, data mining had to be done manually without the assistance of an automated program to ensure positive identification.

  9. Methane storage capacity of the early martian cryosphere

    NASA Astrophysics Data System (ADS)

    Lasue, Jeremie; Quesnel, Yoann; Langlais, Benoit; Chassefière, Eric

    2015-11-01

    Methane is a key molecule to understand the habitability of Mars due to its possible biological origin and short atmospheric lifetime. Recent methane detections on Mars present a large variability that is probably due to relatively localized sources and sink processes yet unknown. In this study, we determine how much methane could have been abiotically produced by early Mars serpentinization processes that could also explain the observed martian remanent magnetic field. Under the assumption of a cold early Mars environment, a cryosphere could trap such methane as clathrates in stable form at depth. The extent and spatial distribution of these methane reservoirs have been calculated with respect to the magnetization distribution and other factors. We calculate that the maximum storage capacity of such a clathrate cryosphere is about 2.1 × 1019-2.2 × 1020 moles of CH4, which can explain sporadic releases of methane that have been observed on the surface of the planet during the past decade (∼1.2 × 109 moles). This amount of trapped methane is sufficient for similar sized releases to have happened yearly during the history of the planet. While the stability of such reservoirs depends on many factors that are poorly constrained, it is possible that they have remained trapped at depth until the present day. Due to the possible implications of methane detection for life and its influence on the atmospheric and climate processes on the planet, confirming the sporadic release of methane on Mars and the global distribution of its sources is one of the major goals of the current and next space missions to Mars.

  10. Superresolution Modeling of Calcium Release in the Heart

    PubMed Central

    Walker, Mark A.; Williams, George S.B.; Kohl, Tobias; Lehnart, Stephan E.; Jafri, M. Saleet; Greenstein, Joseph L.; Lederer, W.J.; Winslow, Raimond L.

    2014-01-01

    Stable calcium-induced calcium release (CICR) is critical for maintaining normal cellular contraction during cardiac excitation-contraction coupling. The fundamental element of CICR in the heart is the calcium (Ca2+) spark, which arises from a cluster of ryanodine receptors (RyR). Opening of these RyR clusters is triggered to produce a local, regenerative release of Ca2+ from the sarcoplasmic reticulum (SR). The Ca2+ leak out of the SR is an important process for cellular Ca2+ management, and it is critically influenced by spark fidelity, i.e., the probability that a spontaneous RyR opening triggers a Ca2+ spark. Here, we present a detailed, three-dimensional model of a cardiac Ca2+ release unit that incorporates diffusion, intracellular buffering systems, and stochastically gated ion channels. The model exhibits realistic Ca2+ sparks and robust Ca2+ spark termination across a wide range of geometries and conditions. Furthermore, the model captures the details of Ca2+ spark and nonspark-based SR Ca2+ leak, and it produces normal excitation-contraction coupling gain. We show that SR luminal Ca2+-dependent regulation of the RyR is not critical for spark termination, but it can explain the exponential rise in the SR Ca2+ leak-load relationship demonstrated in previous experimental work. Perturbations to subspace dimensions, which have been observed in experimental models of disease, strongly alter Ca2+ spark dynamics. In addition, we find that the structure of RyR clusters also influences Ca2+ release properties due to variations in inter-RyR coupling via local subspace Ca2+ concentration ([Ca2+]ss). These results are illustrated for RyR clusters based on super-resolution stimulated emission depletion microscopy. Finally, we present a believed-novel approach by which the spark fidelity of a RyR cluster can be predicted from structural information of the cluster using the maximum eigenvalue of its adjacency matrix. These results provide critical insights into CICR dynamics in heart, under normal and pathological conditions. PMID:25517166

  11. Comparing the biocidal properties of non-thermal plasma sources by reference protocol

    NASA Astrophysics Data System (ADS)

    Khun, Josef; Jirešová, Jana; Kujalová, Lucie; Hozák, Pavel; Scholtz, Vladimír

    2017-10-01

    The previously proposed reference protocol enabling easy comparison of biocidal properties of different non-thermal plasma sources has been followed and discussed. For inactivation tests the reference protocol has used spores of Gram positive bacterium Bacillus subtilis (ATCC 6633) deposited on a polycarbonate membrane as reference sample. In this work, biocidal properties of a negative glow corona, positive streamer corona, positive transient spark and cometary discharges are being compared in both open air and closed apparatus. Despite the total number of bacteria surviving 1 h exposure has decreased by up to 7 orders in closed apparatus, in open one, only weak inhibition bactericidal effect has been observed.

  12. Formation of organic compounds from simulated Titan atmosphere: perspectives of the Cassini mission.

    PubMed

    Koike, Toshiyuki; Kaneko, Takeo; Kobayashi, Kensei; Miyakawa, Shin; Takano, Yoshinori

    2003-10-01

    Gas mixtures of methane and nitrogen were subjected to proton irradiation (PI), gamma irradiation (GI), UV irradiation (UV) or spark discharges (SD), and the products were analyzed to compare possible energy sources for synthesis of organics in Titan. SD mainly gave unsaturated hydrocarbons, while PI gave saturated hydrocarbons. N-containing organics were detected in PI, GI and SD, but not in UV. The formers yielded amino acids after acid-hydrolysis of solid phase products (tholin). Comparison of the present results with those by Cassini-Huygens [correction of Heygens] mission will make it possible to prove major energy sources for organic synthesis in Titan atmosphere.

  13. Relation between inflammables and ignition sources in aircraft environments

    NASA Technical Reports Server (NTRS)

    Scull, Wilfred E

    1951-01-01

    A literature survey was conducted to determine the relation between aircraft ignition sources and inflammables. Available literature applicable to the problem of aircraft fire hazards is analyzed and discussed. Data pertaining to the effect of many variables on ignition temperatures, minimum ignition pressures, minimum spark-ignition energies of inflammables, quenching distances of electrode configurations, and size of openings through which flame will not propagate are presented and discussed. Ignition temperatures and limits of inflammability of gasoline in air in different test environments, and the minimum ignition pressures and minimum size of opening for flame propagation in gasoline-air mixtures are included; inerting of gasoline-air mixtures is discussed.

  14. Contributions of Optical and Non-Optical Blur to Variation in Visual Acuity

    PubMed Central

    McAnany, J. Jason; Shahidi, Mahnaz; Applegate, Raymond A.; Zelkha, Ruth; Alexander, Kenneth R.

    2011-01-01

    Purpose To determine the relative contributions of optical and non-optical sources of intrinsic blur to variations in visual acuity (VA) among normally sighted subjects. Methods Best-corrected VA of sixteen normally sighted subjects was measured using briefly presented (59 ms) tumbling E optotypes that were either unblurred or blurred through convolution with Gaussian functions of different widths. A standard model of intrinsic blur was used to estimate each subject’s equivalent intrinsic blur (σint) and VA for the unblurred tumbling E (MAR0). For 14 subjects, a radially averaged optical point spread function due to higher-order aberrations was derived by Shack-Hartmann aberrometry and fit with a Gaussian function. The standard deviation of the best-fit Gaussian function defined optical blur (σopt). An index of non-optical blur (η) was defined as: 1-σopt/σint. A control experiment was conducted on 5 subjects to evaluate the effect of stimulus duration on MAR0 and σint. Results Log MAR0 for the briefly presented E was correlated significantly with log σint (r = 0.95, p < 0.01), consistent with previous work. However, log MAR0 was not correlated significantly with log σopt (r = 0.46, p = 0.11). For subjects with log MAR0 equivalent to approximately 20/20 or better, log MAR0 was independent of log η, whereas for subjects with larger log MAR0 values, log MAR0 was proportional to log η. The control experiment showed a statistically significant effect of stimulus duration on log MAR0 (p < 0.01) but a non-significant effect on σint (p = 0.13). Conclusions The relative contributions of optical and non-optical blur to VA varied among the subjects, and were related to the subject’s VA. Evaluating optical and non-optical blur may be useful for predicting changes in VA following procedures that improve the optics of the eye in patients with both optical and non-optical sources of VA loss. PMID:21460756

  15. How Mars lost its atmosphere

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin

    1992-01-01

    There is a widespread suspicion that Mars thin atmosphere is in some way attributable to the planet's size. Another possibility is that the atmosphere was never degassed or outgassed in the first place. I prefer escape. Hydrodynamic escape (vigorous thermal escape) and impact erosion (expulsion of atmosphere by impacts) are two processes that should have been operative early. Although in principle hydrodynamic escape could have shrunk Mars atmosphere a hundredfold while leaving the composition of the remnant atmosphere nearly unaltered, very high escape fluxes are required. The implicated escape mechanism must have been efficient, nearly non-fractionating, and vastly more potent for Mars than for Earth or Venus. Impact erosion is an appealing candidate. Noble gases are the obvious first test. Noble gases are the most volatile elements and so are the most likely to have been affected by impact erosion and the easiest to address quantitatively. Xenon in particular imposes three constraints on how Mars lost its atmosphere: (1) the very low abundance of nonradiogenic Xe abundance of nonradiogenic Xe compared to Earth, Venus, and likely meteoritic sources; (2) its nonradiogenic isotopes distinct from likely meteoritic sources; and (3) the relatively high absolute abundance of radiogenic daughter of the extinct radionuclide I-129 (half-life 17 Myr). In impact erosion, the first two become constraints on the composition, mass distribution, and orbital elements of the impactors. The third requires that Mars lost its nonradiogenic Xe early, probably before it was 100 Myr old. Impact erosion can explain Mars by any of three stories. (1) Mars in unlikely. In a sort of planetary brinkmanship, impact erosion almost removed the entire atmosphere but was arrested just in time. (2) Martian noble gases are cometary and cometary Xe is as isotopically mass fractionated as Martian and terrestrial Xe. This is most easily accomplished if a relatively thick geochemically controlled CO2 atmosphere protected trace atmophiles against escape. (3) Mars was indeed stripped of its early atmosphere but a small remnant was safely stored in the regolith, later released as a byproduct of water mobilization.

  16. Planetary Protection for Polar Mars Missions

    NASA Technical Reports Server (NTRS)

    Rummel, J. D.

    2003-01-01

    The picture of Mars that is emerging from the Mars Global Surveyor and Odyssey results contrasts markedly from that portrayed shortly after the Viking missions ended. Particularly intriguing is the abundance of water ice seen both in the polar caps themselves, and in lower latitudes outside of the polar regions. Along with the new data comes a heightened consideration of the potential for biological contamination that may be carried by future missions, and its possible effects. Particularly challenging are scenarios where missions carrying perennial heat sources of high capacity and longevity (e.g., Radioisotope Thermoelectric Generators) could, by non-nominal landings or other mission operations be introduced to close contact with water ice on Mars - potentially forming Earthlike environments that could accommodate the growth of contaminant organisms.

  17. Radiation hazard during a manned mission to Mars.

    PubMed

    Jäkel, Oliver

    2004-01-01

    The radiation hazard of interplanetary flights is currently one of the major obstacles to manned missions to Mars. Highly energetic, heavy-charged particles from galactic cosmic radiation can not be sufficiently shielded in space vehicles. The long-term radiation effects to humans of these particles are largely unknown. In addition, unpredictable storms of solar particles may expose the crew to doses that lead to acute radiation effects. A manned flight to Mars currently seems to be a high-risk adventure. This article provides an overview on the radiation sources and risks for a crew on a manned flight to Mars, as currently estimated by scientists of the US National Administration for Space and Aeronautics (NASA) and the Space Studies Board (SSB) of the US National Research Council.

  18. Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results.

    PubMed

    Christensen, Philip R; Bandfield, Joshua L; Bell, James F; Gorelick, Noel; Hamilton, Victoria E; Ivanov, Anton; Jakosky, Bruce M; Kieffer, Hugh H; Lane, Melissa D; Malin, Michael C; McConnochie, Timothy; McEwen, Alfred S; McSween, Harry Y; Mehall, Greg L; Moersch, Jeffery E; Nealson, Kenneth H; Rice, James W; Richardson, Mark I; Ruff, Steven W; Smith, Michael D; Titus, Timothy N; Wyatt, Michael B

    2003-06-27

    The Thermal Emission Imaging System (THEMIS) on Mars Odyssey has produced infrared to visible wavelength images of the martian surface that show lithologically distinct layers with variable thickness, implying temporal changes in the processes or environments during or after their formation. Kilometer-scale exposures of bedrock are observed; elsewhere airfall dust completely mantles the surface over thousands of square kilometers. Mars has compositional variations at 100-meter scales, for example, an exposure of olivine-rich basalt in the walls of Ganges Chasma. Thermally distinct ejecta facies occur around some craters with variations associated with crater age. Polar observations have identified temporal patches of water frost in the north polar cap. No thermal signatures associated with endogenic heat sources have been identified.

  19. Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results

    USGS Publications Warehouse

    Christensen, P.R.; Bandfield, J.L.; Bell, J.F.; Gorelick, N.; Hamilton, V.E.; Ivanov, A.; Jakosky, B.M.; Kieffer, H.H.; Lane, M.D.; Malin, M.C.; McConnochie, T.; McEwen, A.S.; McSween, H.Y.; Mehall, G.L.; Moersch, J.E.; Nealson, K.H.; Rice, J. W.; Richardson, M.I.; Ruff, S.W.; Smith, M.D.; Titus, T.N.; Wyatt, M.B.

    2003-01-01

    The Thermal Emission Imaging System (THEMIS) on Mars Odyssey has produced infrared to visible wavelength images of the martian surface that show lithologically distinct layers with variable thickness, implying temporal changes in the processes or environments during or after their formation. Kilometer-scale exposures of bedrock are observed; elsewhere airfall dust completely mantles the surface over thousands of square kilometers. Mars has compositional variations at 100-meter scales, for example, an exposure of olivine-rich basalt in the walls of Ganges Chasma. Thermally distinct ejecta facies occur around some craters with variations associated with crater age. Polar observations have identified temporal patches of water frost in the north polar cap. No thermal signatures associated with endogenic heat sources have been identified.

  20. In-situ propellant rocket engines for Mars missions ascent vehicle

    NASA Technical Reports Server (NTRS)

    Roncace, Elizabeth A.

    1991-01-01

    When contemplating the human exploration of Mars, many scenarios using various propulsion systems have been considered. One propulsion option among them is a vehicle stage with multiple, pump fed rocket engines capable of operating on propellants available on Mars. This reduces the earth launch mass requirements, resulting in economic and payload benefits. No plentiful sources of hydrogen on Mars have been identified on the surface of Mars, so most commonly used high performance liquid fuels, such as hydrogen and hydrocarbons, can be eliminated as possible in situ propellants. But 95 pct of the Martian atmosphere consists of carbon dioxide, which can be converted into carbon monoxide and oxygen. The carbon monoxide oxygen propellant combination is a candidate for a Martian in situ propellant rocket engine. The feasibility is analyzed of a pump fed engine cycle using the propellant combination of carbon monoxide and oxygen.

  1. In-situ propellant rocket engines for Mars mission ascent vehicle

    NASA Technical Reports Server (NTRS)

    Roncace, Elizabeth A.

    1991-01-01

    When comtemplating the human exploration of Mars, many scenarios using various propulsion systems have been considered. One propulsion option among them is a vehicle stage with multiple, pump fed rocket engines capable of operating on propellants available on Mars. This reduces the Earth launch mass requirements, resulting in economic and payload benefits. No plentiful sources of hydrogen on Mars have been identified on the surface of Mars, so most commonly used high performance liquid fuels, such as hydrogen and hydrocarbons, can be eliminated as possible in-situ propellants. But 95 pct. of the Martian atmosphere consists of carbon dioxide, which can be converted into carbon monoxide and oxygen. The carbon monoxide oxygen propellant conbination is a candidate for a Martian in-situ propellant rocket engine. The feasibility is analyzed of a pump fed engine cycle using the propellant combination of carbon monoxide and oxygen.

  2. Mass loss from the region of Mars and the asteroid belt

    NASA Technical Reports Server (NTRS)

    Weidenschilling, S. J.

    1975-01-01

    Models of the solar nebula suggest that the mass of solid matter which condensed in the region of Mars and the asteroids was much greater than the amount now present. Bombardment by a primordial population of asteroidal bodies originating near Jupiter's orbit could preferentially remove matter from this region, without significant effects in the earth's zone. A critical velocity exists, for which they can be ejected from the solar system by Jupiter. The minimum perihelion attainable at this velocity lies between the orbits of Mars and the earth. The lifetimes of Mars-crossing bodies are limited by collisions with Jupiter; earth-crossers are ejected on a much shorter time scale. The total bombardment flux was at least two orders of magnitude greater in the zone of Mars than in that of the earth. The flux at Venus and Mercury from this source was negligible.

  3. Precise and Scalable Static Program Analysis of NASA Flight Software

    NASA Technical Reports Server (NTRS)

    Brat, G.; Venet, A.

    2005-01-01

    Recent NASA mission failures (e.g., Mars Polar Lander and Mars Orbiter) illustrate the importance of having an efficient verification and validation process for such systems. One software error, as simple as it may be, can cause the loss of an expensive mission, or lead to budget overruns and crunched schedules. Unfortunately, traditional verification methods cannot guarantee the absence of errors in software systems. Therefore, we have developed the CGS static program analysis tool, which can exhaustively analyze large C programs. CGS analyzes the source code and identifies statements in which arrays are accessed out of bounds, or, pointers are used outside the memory region they should address. This paper gives a high-level description of CGS and its theoretical foundations. It also reports on the use of CGS on real NASA software systems used in Mars missions (from Mars PathFinder to Mars Exploration Rover) and on the International Space Station.

  4. Formation of Equiaxed Alpha and Titanium Nitride Precipitates in Spark Plasma Sintered TiB/Ti-6Al-4V Composites (Preprint)

    DTIC Science & Technology

    2012-08-01

    AFRL-RX-WP-TP-2012-0372 FORMATION OF EQUIAXED ALPHA AND TITANIUM NITRIDE PRECIPITATES IN SPARK PLASMA SINTERED TiB/Ti-6Al-4V COMPOSITES...ALPHA AND TITANIUM NITRIDE PRECIPITATES IN SPARK PLASMA SINTERED TiB/Ti-6Al-4V COMPOSITES (PREPRINT) 5a. CONTRACT NUMBER FA8650-08-C-5226 5b...distribution of TiN precipitates, as revealed by TEM studies. 15. SUBJECT TERMS Ti-6Al-4V; TiB; TiN; Spark Plasma Sintering ; Composite; α/β phase

  5. Application of microplasma discharge in a spark gap for high repetitive switching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahaman, Hasibur; Nam, Sang Hoon; Nam, Jong Woo

    2010-04-05

    The electrical breakdown in a spark gap for repetitive switching has been a long research interest. For this purpose, microplasma discharge is implemented in the spark gap which is further integrated inside a coaxial transmission line. This work addresses important physical properties and insights of the microplasma discharge, to be optimized, such as plasma generation in a spark channel, dielectric recovery process, and residual plasma in the postspark discharge period. Although understanding the microplasma discharge is the primary goal, considerable attention has been focused on an external circuit scheme to drive the discharge system at a high repetition rate.

  6. The sparking voltage of spark plugs

    NASA Technical Reports Server (NTRS)

    Silsbee, F B

    1925-01-01

    This report has been prepared in order to collect and correlate into convenient and useful form the available data on this subject. The importance of the subject lies in the fact that it forms the common meeting ground for studies of the performance of spark generators and spark plugs on the one hand and of the internal combustion engines on the other hand. While much of the data presented was obtained from various earlier publications, numerous places were found where necessary data were lacking, and these have been provided by experiments in gasoline engines at the Bureau of Standards.

  7. Formation of a spark discharge in an inhomogeneous electric field with current limitation by a large ballast Resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldanov, B. B., E-mail: baibat@mail.ru

    2016-01-15

    Results of studies of a spark discharge initiated in argon in a point–plane electrode gap with limitation of the discharge current by a large ballast resistance are presented. It is shown that the current flowing through the plasma channel of such a low-current spark has the form of periodic pulses. It is experimentally demonstrated that, when a low-current spark transforms into a constricted glow discharge, current pulses disappear, the spatial structure of the cathode glow changes abruptly, and a brightly glowing positive plasma column forms in the gap.

  8. New method of a "point-like" neutron source creation based on sharp focusing of high-current deuteron beam onto deuterium-saturated target for neutron tomography

    NASA Astrophysics Data System (ADS)

    Golubev, S.; Skalyga, V.; Izotov, I.; Sidorov, A.

    2017-02-01

    A possibility of a compact powerful point-like neutron source creation is discussed. Neutron yield of the source based on deuterium-deuterium (D-D) reaction is estimated at the level of 1011 s-1 (1013 s-1 for deuterium-tritium reaction). The fusion takes place due to bombardment of deuterium- (or tritium) loaded target by high-current focused deuterium ion beam with energy of 100 keV. The ion beam is formed by means of high-current quasi-gasdynamic ion source of a new generation based on an electron cyclotron resonance (ECR) discharge in an open magnetic trap sustained by powerful microwave radiation. The prospects of proposed generator for neutron tomography are discussed. Suggested method is compared to the point-like neutron sources based on a spark produced by powerful femtosecond laser pulses.

  9. Experimental study of the vidicon system for information recording using the wide-gap spark chamber of gamma - telescope gamma-I

    NASA Technical Reports Server (NTRS)

    Akimov, V. V.; Bazer-Bashv, R.; Voronov, S. A.; Galper, A. M.; Gro, M.; Kalinkin, L. F.; Kerl, P.; Kozlov, V. D.; Koten, F.; Kretol, D.

    1979-01-01

    The development of the gamma ray telescope is investigated. The wide gap spark chambers, used to identify the gamma quanta and to determine the directions of their arrival, are examined. Two systems of information recording with the spark chambers photographic and vidicon system are compared.

  10. Final Rule for Phase 2 Emission Standards for New Nonroad Spark-Ignition Handheld Engines At or Below 19 Kilowatts and Minor Amendments to Emission Requirements Applicable to Small Spark-Ignition Engines and Marine Spark-Ignition Engines

    EPA Pesticide Factsheets

    Rule summary, rule history, CFR citations and additional resources concerning emissions standards for engines principally used in handheld lawn and garden equipment such as trimmers, leaf blowers, and chainsaws.

  11. Mars Science Laboratory Entry, Descent, and Landing Trajectory and Atmosphere Reconstruction

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Kutty, Prasad; Schoenenberer, Mark; Shidner, Jeremy D.

    2013-01-01

    On August 5th 2012, The Mars Science Laboratory entry vehicle successfully entered Mars atmosphere and landed the Curiosity rover on its surface. A Kalman filter approach has been implemented to reconstruct the entry, descent, and landing trajectory based on all available data. The data sources considered in the Kalman filtering approach include the inertial measurement unit accelerations and angular rates, the terrain descent sensor, the measured landing site, orbit determination solutions for the initial conditions, and a new set of instrumentation for planetary entry reconstruction consisting of forebody pressure sensors, known as the Mars Entry Atmospheric Data System. These pressure measurements are unique for planetary entry, descent, and landing reconstruction as they enable a reconstruction of the freestream atmospheric conditions without any prior assumptions being made on the vehicle aerodynamics. Moreover, the processing of these pressure measurements in the Kalman filter approach enables the identification of atmospheric winds, which has not been accomplished in past planetary entry reconstructions. This separation of atmosphere and aerodynamics allows for aerodynamic model reconciliation and uncertainty quantification, which directly impacts future missions. This paper describes the mathematical formulation of the Kalman filtering approach, a summary of data sources and preprocessing activities, and results of the reconstruction.

  12. Olivine-respiring bacteria isolated from the rock-ice interface in a lava-tube cave, a Mars analog environment.

    PubMed

    Popa, Radu; Smith, Amy R; Popa, Rodica; Boone, Jane; Fisk, Martin

    2012-01-01

    The boundary between ice and basalt on Earth is an analogue for some near-surface environments of Mars. We investigated neutrophilic iron-oxidizing microorganisms from the basalt-ice interface in a lava tube from the Oregon Cascades with perennial ice. One of the isolates (Pseudomonas sp. HerB) can use ferrous iron Fe(II) from the igneous mineral olivine as an electron donor and O(2) as an electron acceptor. The optimum growth temperature is ∼12-14°C, but growth also occurs at 5°C. Bicarbonate is a facultative source of carbon. Growth of Pseudomonas sp. HerB as a chemolithotrophic iron oxidizer with olivine as the source of energy is favored in low O(2) conditions (e.g., 1.6% O(2)). Most likely, microbial oxidation of olivine near pH 7 requires low O(2) to offset the abiotic oxidation of iron. The metabolic capabilities of this bacterium would allow it to live in near-surface, icy, volcanic environments of Mars in the present or recent geological past and make this type of physiology a prime candidate in the search for life on Mars.

  13. Comparison of the mineral composition of the sediment found in two Mars dunefields: Ogygis Undae and Gale crater - three distinct endmembers identified

    NASA Astrophysics Data System (ADS)

    Charles, Heather; Titus, Timothy; Hayward, Rosalyn; Edwards, Christopher; Ahrens, Caitlin

    2017-01-01

    The composition of two dune fields, Ogygis Undae and the NE-SW trending dune field in Gale crater (the "Bagnold Dune Field" and "Western Dune Field"), were analyzed using thermal emission spectra from the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) and the Mars Odyssey Thermal Emission Imaging System (THEMIS). The Gale crater dune field was used as a baseline as other orbital compositional analyses have been conducted, and in situ sampling results will soon be available. Results from unmixing thermal emission spectra showed a spatial variation between feldspar mineral abundances and pyroxene mineral abundances in Ogygis Undae. Other datasets, including nighttime thermal inertia values, also showed variation throughout the dune field. One explanation proposed for this variation is a bimodal distribution of two sand populations. This distribution is seen in some terrestrial dune fields. The two dune fields varied in both mineral types present and in uniformity of composition. These differences point to different source lithologies and different distances travelled from source material. Examining these differences further will allow for a greater understanding of aeolian processes on Mars.

  14. Comparison of the mineral composition of the sediment found in two Mars dunefields: Ogygis Undae and Gale crater – three distinct endmembers identified

    USGS Publications Warehouse

    Charles, Heather; Titus, Timothy N.; Hayward, Rosalyn; Edwards, Christopher; Ahrens, Caitlin

    2016-01-01

    The composition of two dune fields, Ogygis Undae and the NE–SW trending dune field in Gale crater (the “Bagnold Dune Field” and “Western Dune Field”), were analyzed using thermal emission spectra from the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) and the Mars Odyssey Thermal Emission Imaging System (THEMIS). The Gale crater dune field was used as a baseline as other orbital compositional analyses have been conducted, and in situ sampling results will soon be available.Results from unmixing thermal emission spectra showed a spatial variation between feldspar mineral abundances and pyroxene mineral abundances in Ogygis Undae. Other datasets, including nighttime thermal inertia values, also showed variation throughout the dune field. One explanation proposed for this variation is a bimodal distribution of two sand populations. This distribution is seen in some terrestrial dune fields.The two dune fields varied in both mineral types present and in uniformity of composition. These differences point to different source lithologies and different distances travelled from source material. Examining these differences further will allow for a greater understanding of aeolian processes on Mars.

  15. Massive stereo-based DTM production for Mars on cloud computers

    NASA Astrophysics Data System (ADS)

    Tao, Y.; Muller, J.-P.; Sidiropoulos, P.; Xiong, Si-Ting; Putri, A. R. D.; Walter, S. H. G.; Veitch-Michaelis, J.; Yershov, V.

    2018-05-01

    Digital Terrain Model (DTM) creation is essential to improving our understanding of the formation processes of the Martian surface. Although there have been previous demonstrations of open-source or commercial planetary 3D reconstruction software, planetary scientists are still struggling with creating good quality DTMs that meet their science needs, especially when there is a requirement to produce a large number of high quality DTMs using "free" software. In this paper, we describe a new open source system to overcome many of these obstacles by demonstrating results in the context of issues found from experience with several planetary DTM pipelines. We introduce a new fully automated multi-resolution DTM processing chain for NASA Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) and High Resolution Imaging Science Experiment (HiRISE) stereo processing, called the Co-registration Ames Stereo Pipeline (ASP) Gotcha Optimised (CASP-GO), based on the open source NASA ASP. CASP-GO employs tie-point based multi-resolution image co-registration, and Gotcha sub-pixel refinement and densification. CASP-GO pipeline is used to produce planet-wide CTX and HiRISE DTMs that guarantee global geo-referencing compliance with respect to High Resolution Stereo Colour imaging (HRSC), and thence to the Mars Orbiter Laser Altimeter (MOLA); providing refined stereo matching completeness and accuracy. All software and good quality products introduced in this paper are being made open-source to the planetary science community through collaboration with NASA Ames, United States Geological Survey (USGS) and the Jet Propulsion Laboratory (JPL), Advanced Multi-Mission Operations System (AMMOS) Planetary Data System (PDS) Pipeline Service (APPS-PDS4), as well as browseable and visualisable through the iMars web based Geographic Information System (webGIS) system.

  16. From plasma to nanoparticles: optical and particle emission of a spark discharge generator.

    PubMed

    Kohut, A; Ludvigsson, L; Meuller, B O; Deppert, K; Messing, M E; Galbács, G; Geretovszky, Zs

    2017-11-24

    The increased demand for high purity nanoparticles (NPs) of defined geometry necessitates the continuous development of generation routes. One of the most promising physical techniques for producing metal, semiconductor or alloy NPs in the gas phase is spark discharge NP generation. The technique has a great potential for up-scaling without altering the particles. Despite the simplicity of the setup, the formation of NPs in a spark discharge takes place via complex multi-scale processes, which greatly hinders the investigation via conventional NP measurement techniques. In the present work, time-resolved optical emission spectroscopy (OES) was used to provide information on the species present in the spark from as early as approximately 100 ns after the initiation of the discharge. We demonstrate that operando emission spectroscopy can deliver valuable insights into NP formation. The emission spectra of the spark are used to identify, among others, the main stages of material erosion and to calculate the quenching rate of the generated metal vapour. We demonstrate that the alteration of key control parameters, that are typically used to optimize NP generation, clearly affect the emission spectra. We report for Cu and Au NPs that the intensity of spectral lines emitted by metal atoms levels off when spark energy is increased above an energy threshold, suggesting that the maximum concentration of metal vapour produced in the generator is limited. This explains the size variation of the generated NPs. We report a strong correlation between the optical and particle emission of the spark discharge generator, which demonstrate the suitability of OES as a valuable characterization tool that will allow for the more deliberate optimization of spark-based NP generation.

  17. Sorcin modulation of Ca2+ sparks in rat vascular smooth muscle cells

    PubMed Central

    Rueda, Angélica; Song, Ming; Toro, Ligia; Stefani, Enrico; Valdivia, Héctor H

    2006-01-01

    Spontaneous, local Ca2+ release events or Ca2+ sparks by ryanodine receptors (RyRs) are important determinants of vascular tone and arteriolar resistance, but the mechanisms that modulate their properties in smooth muscle are poorly understood. Sorcin, a Ca2+-binding protein that associates with cardiac RyRs and quickly stops Ca2+ release in the heart, provides a potential mechanism to modulate Ca2+ sparks in vascular smooth muscle, but little is known about the functional role of sorcin in this tissue. In this work, we characterized the expression and intracellular location of sorcin in aorta and cerebral artery and gained mechanistic insights into its functional role as a modulator of Ca2+ sparks. Sorcin is present in endothelial and smooth muscle cells, as assessed by immunocytochemical and Western blot analyses. Smooth muscle sorcin translocates from cytosolic to membranous compartments in a Ca2+-dependent manner and associates with RyRs, as shown by coimmunoprecipitation and immunostaining experiments. Ca2+ sparks recorded in saponin-permeabilized vascular myocytes have increased frequency, duration and spatial spread but reduced amplitude with respect to Ca2+ sparks in intact cells, suggesting that permeabilization disrupts the normal organization of RyRs and releases diffusible substances that control Ca2+ spark properties. Perfusion of 2 μm sorcin onto permeabilized myocytes reduced the amplitude, duration and spatial spread of Ca2+ sparks, demonstrating that sorcin effectively regulates Ca2+ signalling in vascular smooth muscle. Together with a dense distribution in the perimeter of the cell along a pool of RyRs, these properties make sorcin a viable candidate to modulate vascular tone in smooth muscle. PMID:16931553

  18. Cardiovascular effects of SPARK conducted electrical weapon in healthy subjects.

    PubMed

    Scherr, Carlos; de Carvalho, Antonio Carlos; Belem, Luciano Juaçaba; Loyola, Luiz Henrique; Guerra, Renata Leborato; Blanco, Fernanda; Mangia, Claudio

    2016-12-15

    The increasing use of conducted electronic weapons (CEW) cause concern regarding its secure application, specially regarding the implications in the cardiovascular system. The objective was to determine Spark CEW safety through cardiovascular parameters analysis of healthy volunteers subjected to its use. Volunteers over 18years without cardiovascular disease or recent use of illegal drugs were submitted, before and after being affected with Spark CEW, to clinical evaluation; blood collection for serum laboratory tests; transthoracic electrocardiography at rest, transthoracic echodopplercardiogram and 24hour Holter. All 71 patients reported being incapable of any voluntary reaction during the shock of the application time. No arrhythmia or myocardial necrosis was related to the use of non-lethal weapon SPARK. Reported adverse events were self-limited, and mostly mild. SPARK brand CEW is effective in incapacitating individuals by the shock of the application time, without causing. Copyright © 2016. Published by Elsevier Ireland Ltd.

  19. Ignition of an automobile engine by high-peak power Nd:YAG/Cr⁴⁺:YAG laser-spark devices.

    PubMed

    Pavel, Nicolaie; Dascalu, Traian; Salamu, Gabriela; Dinca, Mihai; Boicea, Niculae; Birtas, Adrian

    2015-12-28

    Laser sparks that were built with high-peak power passively Q-switched Nd:YAG/Cr(4+):YAG lasers have been used to operate a Renault automobile engine. The design of such a laser spark igniter is discussed. The Nd:YAG/Cr(4+):YAG laser delivered pulses with energy of 4 mJ and 0.8-ns duration, corresponding to pulse peak power of 5 MW. The coefficients of variability of maximum pressure (COV(Pmax)) and of indicated mean effective pressure (COV(IMEP)) and specific emissions like hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NO(x)) and carbon dioxide (CO2) were measured at various engine speeds and high loads. Improved engine stability in terms of COV(Pmax) and COV(Pmax) and decreased emissions of CO and HC were obtained for the engine that was run by laser sparks in comparison with classical ignition by electrical spark plugs.

  20. Pulse-actuated fuel-injection spark plug

    DOEpatents

    Murray, Ian; Tatro, Clement A.

    1978-01-01

    A replacement spark plug for reciprocating internal combustion engines that functions as a fuel injector and as a spark plug to provide a "stratified-charge" effect. The conventional carburetor is retained to supply the main fuel-air mixture which may be very lean because of the stratified charge. The replacement plug includes a cylindrical piezoelectric ceramic which contracts to act as a pump whenever an ignition pulse is applied to a central rod through the ceramic. The rod is hollow at its upper end for receiving fuel, it is tapered along its lower length to act as a pump, and it is flattened at its lower end to act as a valve for fuel injection from the pump into the cylinder. The rod also acts as the center electrode of the plug, with the spark jumping from the plug base to the lower end of the rod to thereby provide spark ignition that has inherent proper timing with the fuel injection.

  1. Handling Big Data in Medical Imaging: Iterative Reconstruction with Large-Scale Automated Parallel Computation

    PubMed Central

    Lee, Jae H.; Yao, Yushu; Shrestha, Uttam; Gullberg, Grant T.; Seo, Youngho

    2014-01-01

    The primary goal of this project is to implement the iterative statistical image reconstruction algorithm, in this case maximum likelihood expectation maximum (MLEM) used for dynamic cardiac single photon emission computed tomography, on Spark/GraphX. This involves porting the algorithm to run on large-scale parallel computing systems. Spark is an easy-to- program software platform that can handle large amounts of data in parallel. GraphX is a graph analytic system running on top of Spark to handle graph and sparse linear algebra operations in parallel. The main advantage of implementing MLEM algorithm in Spark/GraphX is that it allows users to parallelize such computation without any expertise in parallel computing or prior knowledge in computer science. In this paper we demonstrate a successful implementation of MLEM in Spark/GraphX and present the performance gains with the goal to eventually make it useable in clinical setting. PMID:27081299

  2. Handling Big Data in Medical Imaging: Iterative Reconstruction with Large-Scale Automated Parallel Computation.

    PubMed

    Lee, Jae H; Yao, Yushu; Shrestha, Uttam; Gullberg, Grant T; Seo, Youngho

    2014-11-01

    The primary goal of this project is to implement the iterative statistical image reconstruction algorithm, in this case maximum likelihood expectation maximum (MLEM) used for dynamic cardiac single photon emission computed tomography, on Spark/GraphX. This involves porting the algorithm to run on large-scale parallel computing systems. Spark is an easy-to- program software platform that can handle large amounts of data in parallel. GraphX is a graph analytic system running on top of Spark to handle graph and sparse linear algebra operations in parallel. The main advantage of implementing MLEM algorithm in Spark/GraphX is that it allows users to parallelize such computation without any expertise in parallel computing or prior knowledge in computer science. In this paper we demonstrate a successful implementation of MLEM in Spark/GraphX and present the performance gains with the goal to eventually make it useable in clinical setting.

  3. Evidence for Seismogenic Hydrogen Gas, a Potential Microbial Energy Source on Earth and Mars.

    PubMed

    McMahon, Sean; Parnell, John; Blamey, Nigel J F

    2016-09-01

    The oxidation of molecular hydrogen (H2) is thought to be a major source of metabolic energy for life in the deep subsurface on Earth, and it could likewise support any extant biosphere on Mars, where stable habitable environments are probably limited to the subsurface. Faulting and fracturing may stimulate the supply of H2 from several sources. We report the H2 content of fluids present in terrestrial rocks formed by brittle fracturing on fault planes (pseudotachylites and cataclasites), along with protolith control samples. The fluids are dominated by water and include H2 at abundances sufficient to support hydrogenotrophic microorganisms, with strong H2 enrichments in the pseudotachylites compared to the controls. Weaker and less consistent H2 enrichments are observed in the cataclasites, which represent less intense seismic friction than the pseudotachylites. The enrichments agree quantitatively with previous experimental measurements of frictionally driven H2 formation during rock fracturing. We find that conservative estimates of current martian global seismicity predict episodic H2 generation by Marsquakes in quantities useful to hydrogenotrophs over a range of scales and recurrence times. On both Earth and Mars, secondary release of H2 may also accompany the breakdown of ancient fault rocks, which are particularly abundant in the pervasively fractured martian crust. This study strengthens the case for the astrobiological investigation of ancient martian fracture systems. Deep biosphere-Faults-Fault rocks-Seismic activity-Hydrogen-Mars. Astrobiology 16, 690-702.

  4. Solidification rate influence on orientation and mechanical properties of MAR-M-246+Hf

    NASA Technical Reports Server (NTRS)

    Hamilton, D.

    1983-01-01

    The influence of solidification rates on the orientation and mechanical properties of MAR-M-246+Hf was studied. The preferred orientation was found to be (001) for single crystals, with all samples with 45 degrees of (001). Tensile tests were performed at room temperature. The anisotropy of directionally solidified MAR-M-246+Hf was demonstrated by gage section deformation. Dendrite arm spacing and crystal growth were found to depend on solidification rates and source material conditions. The greatest strength occurred at lower solidification rates. Some single crystals were grown by control of growth rates without seeding.

  5. Gullied Depression

    NASA Technical Reports Server (NTRS)

    2006-01-01

    26 February 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows gullies formed in the wall of a depression located on the floor of Rabe Crater west of the giant impact basin, Hellas Planitia. Gullies such as these are common features on Mars, but the process by which they are formed is not fully understood. The debate centers on the role and source of fluids in the genesis of these features.

    Location near: 44.1oS, 325.9oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  6. 21 CFR 520.2087 - Roxarsone soluble powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... throughout growing period. Withdraw 5 days before slaughter. Use as sole source of organic arsenic. (2) Swine.... Use as sole source of organic arsenic. [46 FR 41039, Aug. 14, 1981, as amended at 55 FR 8460, Mar. 8...

  7. 21 CFR 520.2087 - Roxarsone soluble powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... throughout growing period. Withdraw 5 days before slaughter. Use as sole source of organic arsenic. (2) Swine.... Use as sole source of organic arsenic. [46 FR 41039, Aug. 14, 1981, as amended at 55 FR 8460, Mar. 8...

  8. Effects of cold temperature and ethanol content on VOC ...

    EPA Pesticide Factsheets

    Emissions of speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs), were measured in vehicle exhaust from three light-duty spark ignition vehicles operating on summer and winter grade gasoline (E0) and ethanol blended (E10 and E85) fuels. Vehicle testing was conducted using a three-phase LA92 driving cycle in a temperature-controlled chassis dynamometer at two ambient temperatures (-7 °C and 24 °C). The cold start phase and cold ambient temperature increased VOC and MSAT emissions dramatically by up to several orders of magnitude compared to emissions during other phases and warm ambient temperature testing, respectively. As a result, calculated ozone formation potentials during the cold starts were significantly higher during cold temperature tests by 7 to 21 times the warm temperature values. The use of E85 fuel generally led to substantial reductions in hydrocarbons and increases in oxygenates such as ethanol and acetaldehyde compared to E0 and E10 fuels. However, the VOC emissions from E0 and E10 fuels were not significantly different. Cold temperature effects on cold start MSAT emissions varied by individual MSAT compound, but were consistent over a range of modern spark ignition vehicles. This manuscript communicates APPCD research activities on air toxics VOC emissions from mobile sources from the EPAct dynamometer study. Speciated VOC emissions from light-duty vehicles running on gasoline and ethanol blends at cold tem

  9. Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale crater, Mars.

    PubMed

    Ming, D W; Archer, P D; Glavin, D P; Eigenbrode, J L; Franz, H B; Sutter, B; Brunner, A E; Stern, J C; Freissinet, C; McAdam, A C; Mahaffy, P R; Cabane, M; Coll, P; Campbell, J L; Atreya, S K; Niles, P B; Bell, J F; Bish, D L; Brinckerhoff, W B; Buch, A; Conrad, P G; Des Marais, D J; Ehlmann, B L; Fairén, A G; Farley, K; Flesch, G J; Francois, P; Gellert, R; Grant, J A; Grotzinger, J P; Gupta, S; Herkenhoff, K E; Hurowitz, J A; Leshin, L A; Lewis, K W; McLennan, S M; Miller, K E; Moersch, J; Morris, R V; Navarro-González, R; Pavlov, A A; Perrett, G M; Pradler, I; Squyres, S W; Summons, R E; Steele, A; Stolper, E M; Sumner, D Y; Szopa, C; Teinturier, S; Trainer, M G; Treiman, A H; Vaniman, D T; Vasavada, A R; Webster, C R; Wray, J J; Yingst, R A

    2014-01-24

    H2O, CO2, SO2, O2, H2, H2S, HCl, chlorinated hydrocarbons, NO, and other trace gases were evolved during pyrolysis of two mudstone samples acquired by the Curiosity rover at Yellowknife Bay within Gale crater, Mars. H2O/OH-bearing phases included 2:1 phyllosilicate(s), bassanite, akaganeite, and amorphous materials. Thermal decomposition of carbonates and combustion of organic materials are candidate sources for the CO2. Concurrent evolution of O2 and chlorinated hydrocarbons suggests the presence of oxychlorine phase(s). Sulfides are likely sources for sulfur-bearing species. Higher abundances of chlorinated hydrocarbons in the mudstone compared with Rocknest windblown materials previously analyzed by Curiosity suggest that indigenous martian or meteoritic organic carbon sources may be preserved in the mudstone; however, the carbon source for the chlorinated hydrocarbons is not definitively of martian origin.

  10. Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale crater, Mars

    USGS Publications Warehouse

    Ming, D. W.; Archer, P.D.; Glavin, D.P.; Eigenbrode, J.L.; Franz, H.B.; Sutter, B.; Brunner, A.E.; Stern, J.C.; Freissinet, C.; McAdam, A.C.; Mahaffy, P.R.; Cabane, M.; Coll, P.; Campbell, J.L.; Atreya, S.K.; Niles, P.B.; Bell, J.F.; Bish, D.L.; Brinckerhoff, W.B.; Buch, A.; Conrad, P.G.; Des Marais, D.J.; Ehlmann, B.L.; Fairén, A.G.; Farley, K.; Flesch, G.J.; Francois, P.; Gellert, Ralf; Grant, J. A.; Grotzinger, J.P.; Gupta, S.; Herkenhoff, K. E.; Hurowitz, J.A.; Leshin, L.A.; Lewis, K.W.; McLennan, S.M.; Miller, Karl E.; Moersch, J.; Morris, R.V.; Navarro- González, R.; Pavlov, A.A.; Perrett, G.M.; Pradler, I.; Squyres, S. W.; Summons, Roger E.; Steele, A.; Stolper, E.M.; Sumner, D.Y.; Szopa, C.; Teinturier, S.; Trainer, M.G.; Treiman, A.H.; Vaniman, D.T.; Vasavada, A.R.; Webster, C.R.; Wray, J.J.; Yingst, R.A.

    2014-01-01

    H2O, CO2, SO2, O2, H2, H2S, HCl, chlorinated hydrocarbons, NO, and other trace gases were evolved during pyrolysis of two mudstone samples acquired by the Curiosity rover at Yellowknife Bay within Gale crater, Mars. H2O/OH-bearing phases included 2:1 phyllosilicate(s), bassanite, akaganeite, and amorphous materials. Thermal decomposition of carbonates and combustion of organic materials are candidate sources for the CO2. Concurrent evolution of O2 and chlorinated hydrocarbons suggests the presence of oxychlorine phase(s). Sulfides are likely sources for sulfur-bearing species. Higher abundances of chlorinated hydrocarbons in the mudstone compared with Rocknest windblown materials previously analyzed by Curiosity suggest that indigenous martian or meteoritic organic carbon sources may be preserved in the mudstone; however, the carbon source for the chlorinated hydrocarbons is not definitively of martian origin.

  11. Space Colonization Using Space-Elevators from Phobos

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M.

    2003-01-01

    A novel approach is examined for creating an industrial civilization beyond Earth. The approach would take advantage of the unique configuration of Mars and its moon Phobos to make a transportation system capable of raising mass from the surface of Mars to space at a low cost. Mars would be used as the primary location for support personnel and infrastructure. Phobos would be used as a source of raw materials for space-based activity, and as an anchor for tethered carbon-nanotube-based space-elevators. One space-elevator would terminate at the upper edge of Mars' atmosphere. Small craft would be launched from Mars' surface to rendezvous with the moving elevator tip and their payloads detached and raised with solar powered loop elevators to Phobos. Another space-elevator would be extended outward from Phobos to launch craft toward the Earth/Moon system or the asteroid belt. The outward tip would also be used to catch arriving craft. This approach would allow Mars to be colonized, and allow transportation of people and supplies from Mars to support the space industry. In addition, large quantities of material obtained from Phobos could be used to construct space habitats and also supply propellant and material for space industry in the Earth/Moon system as well as around Mars.

  12. X-Ray Diffraction and Fluorescence Measurements for In Situ Planetary Instruments

    NASA Astrophysics Data System (ADS)

    Hansford, G.; Hill, K. S.; Talboys, D.; Vernon, D.; Ambrosi, R.; Bridges, J.; Hutchinson, I.; Marinangeli, L.

    2011-12-01

    The ESA/NASA ExoMars mission, due for launch in 2018, has a combined X-ray fluorescence/diffraction instrument, Mars-XRD, as part of the onboard analytical laboratory. The results of some XRF (X-ray fluorescence) and XRD (X-ray diffraction) tests using a laboratory chamber with representative performance are reported. A range of standard geological reference materials and analogues were used in these tests. The XRD instruments are core components of the forthcoming NASA Mars Science Laboratory (MSL) and ESA/NASA ExoMars missions and will provide the first demonstrations of the capabilities of combined XRD/XRF instrumentation in situ on an extraterrestrial planetary surface. The University of Leicester team is part of the Italy-UK collaboration that is responsible for building the ExoMars X-ray diffraction instrument, Mars-XRD [1,2]. Mars-XRD incorporates an Fe-55 radioisotope source and three fixed-position charge-coupled devices (CCDs) to simultaneously acquire an X-ray fluorescence spectrum and a diffraction pattern providing a measurement of both elemental and mineralogical composition. The CCDs cover an angular range of 2θ = 6° to 73° enabling the analysis of a wide range of geologically important minerals including phyllosilicates, feldspars, oxides, carbonates and evaporites. The identification of hydrous minerals may help identify past Martian hydrothermal systems capable of preserving traces of life. Here we present some initial findings from XRF and XRD tests carried out at the University of Leicester using an Fe-55 source and X-ray sensitive CCD. The XRF/XRD test system consists of a single CCD on a motorised arm, an Fe-55 X-ray source, a collimator and a sample table which approximately replicate the reflection geometry of the Mars-XRD instrument. It was used to test geological reference standard materials and Martian analogues. This work was funded by the Science and Technology Facilities Council, UK. References [1] Marinangeli, L., Hutchinson, I., Baliva, A., Stevoli, A., Ambrosi, R., Critani, F., Delhez, R., Scandelli, L., Holland, A., Nelms, N. & the Mars-XRD Team, Proceedings of the 38th Lunar and Planetary Science Conference, 12 - 16 March 2007, League City, Texas, USA. [2] L. Marinangeli, I. B. Hutchinson, A. Stevoli, G. Adami, R. Ambrosi, R. Amils, V. Assis Fernandes, A. Baliva, A. T. Basilevsky, G. Benedix, P. Bland, A. J. Böttger, J. Bridges, G. Caprarelli, G. Cressey, F. Critani, N. d'Alessandro, R. Delhez, C. Domeneghetti, D. Fernandez-Remolar, R. Filippone, A. M. Fioretti, J. M. Garcia Ruiz, M. Gilmore, G. M. Hansford, G. Iezzi, R. Ingley, M. Ivanov, G. Marseguerra, L. Moroz, C. Pelliciari, P. Petrinca, E. Piluso, L. Pompilio, J. Sykes, F. Westall and the MARS-XRD Team, EPSC-DPS Joint Meeting 2011, 3 - 7 October 2011, La Cité Internationale des Congrès Nantes Métropole, Nantes, France.

  13. Modeling Planetary Atmospheric Energy Deposition By Energetic Ions

    NASA Astrophysics Data System (ADS)

    Parkinson, Christopher; Bougher, Stephen; Gronoff, Guillaume; Barthelemy, Mathieu

    2016-07-01

    The structure, dynamics, chemistry, and evolution of planetary upper atmospheres are in large part determined by the available sources of energy. In addition to the solar EUV flux, the solar wind and solar energetic particle (SEP) events are also important sources. Both of these particle populations can significantly affect an atmosphere, causing atmospheric loss and driving chemical reactions. Attention has been paid to these sources from the standpoint of the radiation environment for humans and electronics, but little work has been done to evaluate their impact on planetary atmospheres. At unmagnetized planets or those with crustal field anomalies, in particular, the solar wind and SEPs of all energies have direct access to the atmosphere and so provide a more substantial energy source than at planets having protective global magnetic fields. Additionally, solar wind and energetic particle fluxes should be more significant for planets orbiting more active stars, such as is the case in the early history of the solar system for paleo-Venus and Mars. Therefore quantification of the atmospheric energy input from the solar wind and SEP events is an important component of our understanding of the processes that control their state and evolution. We have applied a full Lorentz motion particle transport model to study the effects of particle precipitation in the upper atmospheres of Mars and Venus. Such modeling has been previously done for Earth and Mars using a guiding center precipitation model. Currently, this code is only valid for particles with small gyroradii in strong uniform magnetic fields. There is a clear necessity for a Lorentz formulation, hence, a systematic study of the ionization, excitation, and energy deposition has been conducted, including a comparison of the influence relative to other energy sources (namely EUV photons). The result is a robust examination of the influence of energetic ion transport on the Venus and Mars upper atmosphere which will be discussed in this presentation.

  14. Transverse Aeolian Ridges on Mars: Sediment sources, volumes, and ages.

    NASA Astrophysics Data System (ADS)

    Berman, D. C.; Balme, M. R.

    2014-12-01

    Transverse Aeolian Ridges (TARs) are aeolian bedforms that are morphologically and dimensionally distinct from Large Dark Dune (LDD) fields, being generally brighter than, or of similar albedo to, the surrounding terrain. These features are significantly smaller than the LDDs, appear to form normal to local winds, and tend to have simple, transverse, ripple-like morphologies. Whether these small martian bedforms represent large granule ripples, small transverse dunes, or something else entirely is currently under debate. The spatial distribution of TARs provides important information about where on Mars aeolian sediments are concentrated, and determining their volume can help us constrain the sediment transport regime on Mars. Also, if we can determine if TARs were active only in the past, or whether TARs are mobile under today's wind conditions, then we can begin to assess when and where TARs are/were active over Mars' recent geological history. Thus TARs have the potential for being indicators/records of climate change on Mars. In this work we build on previous work [1,2] and focus on the local/regional scale. We have identified six regional study areas, each 5° by 5°, to investigate the behavior of TARs in detail; one in the northern hemisphere, three in the equatorial band, and two in the southern hemisphere. We have systematically mapped TAR and LDD deposits in each study area to constrain sediment transport pathways and identify sediment sources. In general, TAR sediments appear to be tied to local sources such as LDDs or layered terrains. HiRISE DTMs were utilized to measure TAR heights, widths, wavelengths, and lengths to calculate sediment volumes and estimate volumes over entire study areas based on mapping. Crater count analyses on contiguous TAR fields in the equatorial regions, where the bedforms appear more lithified, reveal ages of several million years. Mid-latitude TAR fields do not show any superposed craters, suggesting much younger deposits. References: [1] Balme, M.R., D.C. Berman, M.C. Bourke, and J.R. Zimbelman, Transverse Aeolian Ridges (TARs) on Mars, Geomorphology, 101, 703-720, 2008. [2] Berman, D.C., M.R. Balme, S. Rafkin, and J.R. Zimbelman, Transverse Aeolian Ridges (TARs) on Mars II: Distributions, orientations, and ages, Icarus 213, 116-130, 2011

  15. Water Mass Variability at the Mid-Atlantic Ridge and in the Eastern North Atlantic

    NASA Astrophysics Data System (ADS)

    Köllner, Manuela; Klein, Birgit; Kieke, Dagmar; Klein, Holger; Roessler, Achim; Rhein, Monika

    2017-04-01

    The strong warming and salinification of the Eastern North Atlantic starting in the mid 1990s has been attributed to a westward contraction of the sub-polar gyre and stronger inflow of waters from the sub-tropical gyre. Temporal changes in the shape and strength of the two gyres have been related to the major mode of atmospheric variability in the Atlantic sector, the NAO. Hydrographic conditions along the Northwest European shelf are thus the result of different processes such as variations in transports, varying relative contributions of water masses from the two gyres and property trends in the source water masses. The North Atlantic Current (NAC) can be regarded as the southern border of the sub-polar gyre transporting water from the tropical regions northward. On its way towards the Mid Atlantic Ridge (MAR) the NAC has partly mixed with waters from the sub-polar gyre and crosses the MAR split into several branches. For the study we analyzed data of water mass variability and transport fluctuations from the RACE (Regional circulation and Global change) project (2012-2015) which provided time series of transports and hydrographic anomalies from moored instruments at the western flank of the MAR. The time depending positions of the NAC branches over the MAR were obtained from mooring time series and compared to sea surface velocities from altimeter data. The results show a high variability of NAC pathways over the MAR. Transition regimes with strong meandering and eddies could be observed as well as periods of strong NAC branches over the Fracture Zones affecting water mass exchange at all depth levels. A positive temperature trend at depths between 1000-2000 m was found at the Faraday Fracture Zone (FFZ). This warming trend was also detected by Argo floats crossing the MAR close to the FFZ region. During the second phase of RACE (RACE-II, 2016-2018) a mooring array across the eastern shelf break at Goban Spur was deployed to monitor the poleward Eastern Boundary Current transport and hydrographic property anomalies from the sub-tropical source region. Together with the information about the water mass variability at the MAR it is possible to assess the sources of water mass variations being advected into the Nordic Seas and the Arctic Ocean.

  16. 40 CFR 63.6590 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... initial notification requirements: (i) Existing spark ignition 2 stroke lean burn (2SLB) stationary RICE... spark ignition 4 stroke lean burn (4SLB) stationary RICE with a site rating of more than 500 brake HP... spark ignition 4 stroke rich burn (4SRB) stationary RICE with a site rating of less than or equal to 500...

  17. Interorganizational Relationships in the Heart and Stroke Foundation's Spark Together for Healthy Kids™: Insights from Using Network Analysis

    ERIC Educational Resources Information Center

    Yessis, Jennifer; Riley, Barbara; Stockton, Lisa; Brodovsky, Sharon; Von Sychowski, Shirley

    2013-01-01

    The Heart and Stroke Foundation's Spark Together for Healthy Kids™ (Spark) is a multiyear initiative in Ontario, Canada, that takes a population approach to obesity prevention. It focuses on creating healthy environments by improving access to healthy foods and physical activity, with an emphasis on strengthening the advocacy capacity of…

  18. Design of a New Superconducting Magnet System for High Strength Minimum-B Fields for ECRIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, D. Z.; Benitez, J. Y.; Hodgkinson, A.

    A novel Mixed Axial and Radial field System (MARS) seeks to enhance the B fields inside the plasma chamber within the limits of a given conductor, thereby making it possible to raise the operating fields for Electron Cyclotron Resonance Ion Sources (ECRISs). The MARS concept consists of a hexagonally shaped closed-loop coil and a set of auxiliary solenoids. The application of MARS will be combined with a hexagonal plasma chamber to maximize the use of the radial fields at the chamber inner surfaces. Calculations using Opera's TOSCA-3D solver have shown that MARS can potentially generate up to 50% higher fieldsmore » and use of only about one half of the same superconducting wire, as compared with existing magnet designs in ECRISs. A MARS magnet system built with Nb 3 Sn coils could generate a high strength minimum-B field of maxima of ≥ 10 T on axis and ~6 T radially in an ECRIS plasma chamber. Following successful development, the MARS magnet system will be the best magnet scheme for the next generation of ECRISs. This paper will present the MARS concept, magnet design, prototyping a copper closed-loop coil, and discussions.« less

  19. Design of a New Superconducting Magnet System for High Strength Minimum-B Fields for ECRIS

    DOE PAGES

    Xie, D. Z.; Benitez, J. Y.; Hodgkinson, A.; ...

    2016-06-01

    A novel Mixed Axial and Radial field System (MARS) seeks to enhance the B fields inside the plasma chamber within the limits of a given conductor, thereby making it possible to raise the operating fields for Electron Cyclotron Resonance Ion Sources (ECRISs). The MARS concept consists of a hexagonally shaped closed-loop coil and a set of auxiliary solenoids. The application of MARS will be combined with a hexagonal plasma chamber to maximize the use of the radial fields at the chamber inner surfaces. Calculations using Opera's TOSCA-3D solver have shown that MARS can potentially generate up to 50% higher fieldsmore » and use of only about one half of the same superconducting wire, as compared with existing magnet designs in ECRISs. A MARS magnet system built with Nb 3 Sn coils could generate a high strength minimum-B field of maxima of ≥ 10 T on axis and ~6 T radially in an ECRIS plasma chamber. Following successful development, the MARS magnet system will be the best magnet scheme for the next generation of ECRISs. This paper will present the MARS concept, magnet design, prototyping a copper closed-loop coil, and discussions.« less

  20. The provenance, formation, and implications of reduced carbon phases in Martian meteorites

    NASA Astrophysics Data System (ADS)

    Steele, Andrew; McCubbin, Francis M.; Fries, Marc D.

    2016-11-01

    This review is intended to summarize the current observations of reduced carbon in Martian meteorites, differentiating between terrestrial contamination and carbon that is indigenous to Mars. Indeed, the identification of Martian organic matter is among the highest priority targets for robotic spacecraft missions in the next decade, including the Mars Science Laboratory and Mars 2020. Organic carbon compounds are essential building blocks of terrestrial life, so the occurrence and origin (biotic or abiotic) of organic compounds on Mars is of great significance; however, not all forms of reduced carbon are conducive to biological systems. This paper discusses the significance of reduced organic carbon (including methane) in Martian geological and astrobiological systems. Specifically, it summarizes current thinking on the nature, sources, and sinks of Martian organic carbon, a key component to Martian habitability. Based on this compilation, reduced organic carbon on Mars, including detections of methane in the Martian atmosphere, is best described through a combination of abiotic organic synthesis on Mars and infall of extraterrestrial carbonaceous material. Although conclusive signs of Martian life have yet to be revealed, we have developed a strategy for life detection on Mars that can be utilized in future life-detection studies.

  1. [Significance of various implantate localizations of Sparks prostheses, experimental studies in rats].

    PubMed

    Brieler, H S; Parwaresch, R; Thiede, A

    1976-01-01

    Our investigations show that Sparks prostheses after subcutaneous implantation are suitable for vascular grafting. At the end of the organization period the connective tissue becomes strong, and after the third and fourth weeks collagenous and elastic fibers can be seen. Ten weeks after s.c. implantation, collagenous fibers predominate. After this the Sparks prostheses can be used as a vascular graft. Intraperitoneal implantation, however, shows a histologically different picture with characteristic findings: only fat cells can be observed, a strong granulation tissue with elastic and collagenous fibers is not present. After intraperitoneal implantation Sparks prostheses are therefore unsuitable for vascular grafts.

  2. A Spark Chamber With Thin Electrodes and a Study of the Position of the Alignment Point; KAMERA S TONKIMI ELEKTRODAMI IZUCHENIE POLOZHENIYA TOCHKI SPRYAMLENIYA ISKRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Legar, F.; Nikanorov, V.I.; Peter, G.

    1964-01-01

    A technique for making the foil electrodes with twosided working surface for spark chambers is described. Some characteristics of spark chambers with thin electrodes are given. The variation of the distance from the negative electrode to the alignment point of a spark with the energy of the detected particles and the angie of their passage through the charaber was studied. It is shown that with the increasing initial density of the gas ionization in the chamber the Townsend coefficient a becomes greater due to the charge interaction of avalanches. (auth)

  3. SPARK GAP SWITCH

    DOEpatents

    Neal, R.B.

    1957-12-17

    An improved triggered spark gap switch is described, capable of precisely controllable firing time while switching very large amounts of power. The invention in general comprises three electrodes adjustably spaced and adapted to have a large potential impressed between the outer electrodes. The central electrode includes two separate elements electrically connected togetaer and spaced apart to define a pair of spark gaps between the end electrodes. Means are provided to cause the gas flow in the switch to pass towards the central electrode, through a passage in each separate element, and out an exit disposed between the two separate central electrode elements in order to withdraw ions from the spark gap.

  4. ClimateSpark: An in-memory distributed computing framework for big climate data analytics

    NASA Astrophysics Data System (ADS)

    Hu, Fei; Yang, Chaowei; Schnase, John L.; Duffy, Daniel Q.; Xu, Mengchao; Bowen, Michael K.; Lee, Tsengdar; Song, Weiwei

    2018-06-01

    The unprecedented growth of climate data creates new opportunities for climate studies, and yet big climate data pose a grand challenge to climatologists to efficiently manage and analyze big data. The complexity of climate data content and analytical algorithms increases the difficulty of implementing algorithms on high performance computing systems. This paper proposes an in-memory, distributed computing framework, ClimateSpark, to facilitate complex big data analytics and time-consuming computational tasks. Chunking data structure improves parallel I/O efficiency, while a spatiotemporal index is built for the chunks to avoid unnecessary data reading and preprocessing. An integrated, multi-dimensional, array-based data model (ClimateRDD) and ETL operations are developed to address big climate data variety by integrating the processing components of the climate data lifecycle. ClimateSpark utilizes Spark SQL and Apache Zeppelin to develop a web portal to facilitate the interaction among climatologists, climate data, analytic operations and computing resources (e.g., using SQL query and Scala/Python notebook). Experimental results show that ClimateSpark conducts different spatiotemporal data queries/analytics with high efficiency and data locality. ClimateSpark is easily adaptable to other big multiple-dimensional, array-based datasets in various geoscience domains.

  5. Cross-correlation spectroscopy study of the transient spark discharge in atmospheric pressure air

    NASA Astrophysics Data System (ADS)

    Janda, Mário; Hoder, Tomáš; Sarani, Abdollah; Brandenburg, Ronny; Machala, Zdenko

    2017-05-01

    A streamer-to-spark transition in a self-pulsing transient spark (TS) discharge of positive polarity in air was investigated using cross-correlation spectroscopy. The entire temporal evolution of the TS was recorded for several spectral bands and lines: the second positive system of N2 (337.1 nm), the first negative system of {{{{N}}}2}+ (391.4 nm), and atomic oxygen (777.1 nm). The results enable the visualization of the different phases of discharge development including the primary streamer, the secondary streamer, and the transition to the spark. The spatio-temporal distribution of the reduced electric field strength during the primary streamer phase of the TS was determined and discussed. The transition from the streamer to the spark proceeds very fast within about 10 ns for the TS with a current pulse repetition rate in the range 8-10 kHz. This is attributed to memory effects, leading to a low net electron attachment rate and faster propagation of the secondary streamer. Gas heating, accumulation of species such as oxygen atoms from the previous TS pulses, as well as generation of charged particles by stepwise ionization seem to play important roles contributing to this fast streamer-to-spark transition.

  6. Modeling of high speed chemically reacting flow-fields

    NASA Technical Reports Server (NTRS)

    Drummond, J. P.; Carpenter, Mark H.; Kamath, H.

    1989-01-01

    The SPARK3D and SPARK3D-PNS computer programs were developed to model 3-D supersonic, chemically reacting flow-fields. The SPARK3D code is a full Navier-Stokes solver, and is suitable for use in scramjet combustors and other regions where recirculation may be present. The SPARK3D-PNS is a parabolized Navier-Stokes solver and provides an efficient means of calculating steady-state combustor far-fields and nozzles. Each code has a generalized chemistry package, making modeling of any chemically reacting flow possible. Research activities by the Langley group range from addressing fundamental theoretical issues to simulating problems of practical importance. Algorithmic development includes work on higher order and upwind spatial difference schemes. Direct numerical simulations employ these algorithms to address the fundamental issues of flow stability and transition, and the chemical reaction of supersonic mixing layers and jets. It is believed that this work will lend greater insight into phenomenological model development for simulating supersonic chemically reacting flows in practical combustors. Currently, the SPARK3D and SPARK3D-PNS codes are used to study problems of engineering interest, including various injector designs and 3-D combustor-nozzle configurations. Examples, which demonstrate the capabilities of each code are presented.

  7. Effects of variation in solar conditions and crustal sources' orientation on the Martian magnetic field topology

    NASA Astrophysics Data System (ADS)

    Ulusen, D.; Luhmann, J. G.; Ma, Y.; Brain, D. A.

    2013-12-01

    Strong crustal magnetic sources on the surface of Mars directly interact with the solar magnetic field and plasma, resulting a very dynamic environment near the planet. Effects of the orientation of these remnant magnetic sources with respect to the sun and variation of the solar conditions on the Martian plasma interaction have been investigated in a previous paper. In this previous study, magnetic topology maps obtained from ~7 years of Mars Global Surveyor (MGS) directional electron observations (obtained by Dave Brain) were compared with the topology maps obtained from a set of BATS-R-US MHD simulations for Mars. One conclusion from this study was that although the MHD model is consistent with the data and provides insight about the global magnetic field topology variation with changing crustal field orientation and solar parameters, detailed investigation of local effects is difficult due to MGS orbital bias. Moreover, proper comparison of the observations with the model requires more careful data selection rather than using 7 years time averages. In this paper, we readdress the study to tackle the problems of our previous work by performing more detailed data analysis and present the results of the updated model-data comparison.

  8. Bright Sparks of Our Future!

    NASA Astrophysics Data System (ADS)

    Riordan, Naoimh

    2016-04-01

    My name is Naoimh Riordan and I am the Vice Principal of Rockboro Primary School in Cork City, South of Ireland. I am a full time class primary teacher and I teach 4th class, my students are aged between 9-10 years. My passion for education has developed over the years and grown towards STEM (Science, Technology, Engineering and Mathematics) subjects. I believe these subjects are the way forward for our future. My passion and beliefs are driven by the unique after school programme that I have developed. It is titled "Sparks" coming from the term Bright Sparks. "Sparks" is an after school programme with a difference where the STEM subjects are concentrated on through lessons such as Science, Veterinary Science Computer Animation /Coding, Eco engineering, Robotics, Magical Maths, Chess and Creative Writing. All these subjects are taught through activity based learning and are one-hour long each week for a ten-week term. "Sparks" is fully inclusive and non-selective which gives all students of any level of ability an opportunity to engage into these subjects. "Sparks" is open to all primary students in County Cork. The "Sparks" after school programme is taught by tutors from the different Universities and Colleges in Cork City. It works very well because the tutor brings their knowledge, skills and specialised equipment from their respective universities and in turn the tutor gains invaluable teaching practise, can trial a pilot programme in a chosen STEM subject and gain an insight into what works in the physical classroom.

  9. The Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution Mission

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul R.; Benna, Mehdi; King, Todd; Harpold, Daniel N.; Arvey, Robert; Barciniak, Michael; Bendt, Mirl; Carrigan, Daniel; Errigo, Therese; Holmes, Vincent; hide

    2014-01-01

    The Neutral Gas and Ion Mass Spectrometer (NGIMS) of the Mars Atmosphere and Volatile Evolution Mission (MAVEN) is designed to measure the composition, structure, and variability of the upper atmosphere of Mars. The NGIMS complements two other instrument packages on the MAVEN spacecraft designed to characterize the neutral upper atmosphere and ionosphere of Mars and the solar wind input to this region of the atmosphere. The combined measurement set is designed to quantify atmosphere escape rates and provide input to models of the evolution of the martian atmosphere. The NGIMS is designed to measure both surface reactive and inert neutral species and ambient ions along the spacecraft track over the 125-500 km altitude region utilizing a dual ion source and a quadrupole analyzer.

  10. Seismic generated infrasounds on Telluric Planets: Modeling and comparisons between Earth, Venus and Mars

    NASA Astrophysics Data System (ADS)

    Lognonne, P. H.; Rolland, L.; Karakostas, F. G.; Garcia, R.; Mimoun, D.; Banerdt, W. B.; Smrekar, S. E.

    2015-12-01

    Earth, Venus and Mars are all planets in which infrasounds can propagate and interact with the solid surface. This leads to infrasound generation for internal sources (e.g. quakes) and to seismic waves generations for atmospheric sources (e.g. meteor, impactor explosions, boundary layer turbulences). Both the atmospheric profile, surface density, atmospheric wind and viscous/attenuation processes are however greatly different, including major differences between Mars/Venus and Earth due to the CO2 molecular relaxation. We present modeling results and compare the seismic/acoustic coupling strength for Earth, Mars and Venus. This modeling is made through normal modes modelling for models integrating the interior, atmosphere, both with realistic attenuation (intrinsic Q for solid part, viscosity and molecular relaxation for the atmosphere). We complete these modeling, made for spherical structure, by integration of wind, assuming the later to be homogeneous at the scale of the infrasound wavelength. This allows us to compute either the Seismic normal modes (e.g. Rayleigh surface waves), or the acoustic or the atmospheric gravity modes. Comparisons are done, for either a seismic source or an atmospheric source, on the amplitude of expected signals as a function of distance and frequency. Effects of local time are integrated in the modeling. We illustrate the Rayleigh waves modelling by Earth data (for large quakes and volcanoes eruptions). For Venus, very large coupling can occur at resonance frequencies between the solid part and atmospheric part of the planet through infrasounds/Rayleigh waves coupling. If the atmosphere reduced the Q (quality coefficient) of Rayleigh waves in general, the atmosphere at these resonance soffers better propagation than Venus crust and increases their Q. For Mars, Rayleigh waves excitations by atmospheric burst is shown and discussed for the typical yield of impacts. The new data of the Nasa INSIGHT mission which carry both seismic and infrasound sensors will offer a unique confirmation in 2016-2017. We conclude with the seismic/infrasounds coupling on Venus which make the detection from space of seismic waves possible through the perturbation of the infrared airglow by infrassounds. Detection threshold as low as Magnitude 5.5 can be reached with existing technologies.

  11. Estimating different eruptive style volcanic areas of Mars from NASA Martian Meteorites Compendium data

    NASA Astrophysics Data System (ADS)

    Mari, Nicola; Verrino, Miriam

    2016-04-01

    The geomorphological characteristics of the Martian surface suggest that both effusive and explosive eruptive behaviour occurred. We investigated whether data about magma viscosity could be extrapolated from Mars SNCs (Shergotty, Nakhla, and Chassigny classes) meteorites, by using available geochemical and petrographic data from the NASA Martian Meteorites Compendium. Viscosity was used to characterize how eruptive style could change in different volcanic regions of planet Mars. Data about composition and crystallinity of 41 SNCs meteorites were used and classified, avoiding meteorites with poor/incomplete database. We assumed Mars as a one-plate planet, fO2 = QFM, and H2O wt% = 0 for each sample. Collected data from the Mars Global Surveyor Thermal Emission Spectrometer (MGS TES) identified the source regions for almost all the studied SNCs meteorites. As input for thermodynamic simulations we first needed to find the depth and pressure of the magmatic source for each meteorite sample through available Thermal Emission Imaging System (THEMIS). Data about average surface temperatures was used to establish whether a magmatic source is shallow or deep. Successively, we found the magma source depth (and pressure) by using the relationship with the heights of the volcanic edifice. The subsolidus equilibration temperatures found through petrologic softwares were used to calculate viscosity. Results indicate a crystallization temperature in a range from 1,120°C to 843°C, follow by a variation in viscosity from 101,43 to 105,97 Pa s. Viscosity seems to be higher in Tharsis, Elysium, Amazonis, and Syrtis Major regions than the remnant areas. According to past experimental studies about magma viscosity, we classified the eruptive style into effusive (101-103,5 Pa s), intermediate (103,5-104,5 Pa s), and explosive (104,5-106 Pa s). The Hellas Basin, Argyre Basin, Ganges Chasma, Eos Chasma, and Nili Fossae regions show an eruptive behaviour between effusive and intermediate, while the Tharsis, Elysium, Amazonis, Syrtis Major, and Terra Tyrrhena regions have a more explosive eruptive style, even if effusive/intermediate activity also occur. Our results seems to be in accord with the Martian geomorphology of the cited areas.

  12. Biosignature Preservation and Detection in Mars Analog Environments.

    PubMed

    Hays, Lindsay E; Graham, Heather V; Des Marais, David J; Hausrath, Elisabeth M; Horgan, Briony; McCollom, Thomas M; Parenteau, M Niki; Potter-McIntyre, Sally L; Williams, Amy J; Lynch, Kennda L

    2017-04-01

    This review of material relevant to the Conference on Biosignature Preservation and Detection in Mars Analog Environments summarizes the meeting materials and discussions and is further expanded upon by detailed references to the published literature. From this diverse source material, there is a detailed discussion on the habitability and biosignature preservation potential of five primary analog environments: hydrothermal spring systems, subaqueous environments, subaerial environments, subsurface environments, and iron-rich systems. Within the context of exploring past habitable environments on Mars, challenges common to all of these key environments are laid out, followed by a focused discussion for each environment regarding challenges to orbital and ground-based observations and sample selection. This leads into a short section on how these challenges could influence our strategies and priorities for the astrobiological exploration of Mars. Finally, a listing of urgent needs and future research highlights key elements such as development of instrumentation as well as continued exploration into how Mars may have evolved differently from Earth and what that might mean for biosignature preservation and detection. Key Words: Biosignature preservation-Biosignature detection-Mars analog environments-Conference report-Astrobiological exploration. Astrobiology 17, 363-400.

  13. Water on Mars - Volatile history and resource availability

    NASA Technical Reports Server (NTRS)

    Jakosky, Bruce M.

    1990-01-01

    An attempt is made to define the available deposits of water in the near-surface region of Mars which will be available to human exploration missions. The Martian seasonal water cycle is reviewed, and geochemical and geological constraints on the availability of water are examined. It is concluded that the only sure source of water in amounts significant as a resource are in the polar ice deposits.

  14. Human Forward Contamination Strategic Plan

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle

    2015-01-01

    When we send humans to search for life on Mars, we'll need to know what we brought with us versus what may already be there. Unlike the Mars rovers that we cleaned once and sent on their way, humans will provide a constantly regenerating contaminant source. Are we prepared to certify that we can meet forward contamination protocols as we search for life at new destinations?

  15. Anoxic atmospheres on Mars driven by volcanism: Implications for past environments and life

    NASA Astrophysics Data System (ADS)

    Sholes, Steven F.; Smith, Megan L.; Claire, Mark W.; Zahnle, Kevin J.; Catling, David C.

    2017-07-01

    Mars today has no active volcanism and its atmosphere is oxidizing, dominated by the photochemistry of CO2 and H2O. Mars experienced widespread volcanism in the past and volcanic emissions should have included reducing gases, such as H2 and CO, as well as sulfur-bearing gases. Using a one-dimensional photochemical model, we consider whether plausible volcanic gas fluxes could have switched the redox-state of the past martian atmosphere to reducing conditions. In our model, the total quantity and proportions of volcanic gases depend on the water content, outgassing pressure, and oxygen fugacity of the source melt. We find that, with reasonable melt parameters, the past martian atmosphere (∼3.5 Gyr to present) could have easily reached reducing and anoxic conditions with modest levels of volcanism, >0.14 km3 yr-1, which are well within the range of estimates from thermal evolution models or photogeological studies. Counter-intuitively we also find that more reducing melts with lower oxygen fugacity require greater amounts of volcanism to switch a paleo-atmosphere from oxidizing to reducing. The reason is that sulfur is more stable in such melts and lower absolute fluxes of sulfur-bearing gases more than compensate for increases in the proportions of H2 and CO. These results imply that ancient Mars should have experienced periods with anoxic and reducing atmospheres even through the mid-Amazonian whenever volcanic outgassing was sustained at sufficient levels. Reducing anoxic conditions are potentially conducive to the synthesis of prebiotic organic compounds, such as amino acids, and are therefore relevant to the possibility of life on Mars. Also, anoxic reducing conditions should have influenced the type of minerals that were formed on the surface or deposited from the atmosphere. We suggest looking for elemental polysulfur (S8) as a signature of past reducing atmospheres. Finally, our models allow us to estimate the amount of volcanically sourced atmospheric sulfate deposited over Mars' history, approximately ∼106-109 Tmol, with a spread depending on assumed outgassing rate history and magmatic source conditions.

  16. Nanophase Carbonates on Mars: Does Evolved Gas Analysis of Nanophase Carbonates Reveal a Large Organic Carbon Budget in Near-surface Martian Materials?

    NASA Astrophysics Data System (ADS)

    Archer, P. D., Jr.; Ming, D. W.; Sutter, B.; Niles, P. B.; Eigenbrode, J. L.

    2015-12-01

    Evolved Gas Analysis (EGA), which involves heating a sample and monitoring the gases released, has been performed on Mars by the Viking gas chromatography/mass spectrometry instruments, the Thermal and Evolved Gas Analyzer (TEGA) on the Phoenix lander, and the Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory. All of these instruments detected CO2 released during sample analysis at abundances of ~0.1 to 5 wt% assuming a carbonate source. The source of the CO2 can be constrained by evaluating the temperature of the gas release, a capability of both the TEGA and SAM instruments. The samples analyzed by SAM show that the majority of the CO2is released below 400 °C, much lower than traditional carbonate decomposition temperatures which can be as low as 400 °C for some siderites, with magnesites and calcites decomposing at even higher temperatures. In addition to mineralogy, decomposition temperature can depend on particle size (among other factors). If carbonates formed on Mars under low temperature and relative humidity conditions, the resulting small particle size (nanophase) carbonates could have low decomposition temperatures. We have found that calcite can be synthesized by exposing CaO to water vapor and CO2 and that the resulting mineral has an EGA peak of ~550 °C for CO2, which is about 200 °C lower than for other calcites. Work is ongoing to produce Fe and Mg-bearing carbonates using the same process. Current results suggest that nanophase calcium carbonates cannot explain the CO2 released from martian samples. If the decomposition temperatures of Mg and Fe-bearing nanophase carbonates are not significantly lower than 400 °C, other candidate sources include oxalates and carboxylated organic molecules. If present, the abundance of organic carbon in these samples could be > 0.1 wt % (1000s of ppm), a signficant departure from the paradigm of the organic-poor Mars based on Viking results.

  17. MARSOL: Demonstrating Managed Aquifer Recharge as a Solution to Water Scarcity and Drought

    NASA Astrophysics Data System (ADS)

    Schueth, Christoph

    2014-05-01

    Southern Europe and the Mediterranean region are facing the challenge of managing its water resources under conditions of increasing scarcity and concerns about water quality. Already, the availability of fresh water in sufficient quality and quantity is one of the major factors limiting socio economic development. Innovative water management strategies such as the storage of reclaimed water or excess water from different sources in Managed Aquifer Recharge (MAR) schemes can greatly increase water availability and therefore improve water security. Main objective of the proposed project MARSOL is to demonstrate that MAR is a sound, safe and sustainable strategy that can be applied with great confidence and therefore offering a key approach for tackling water scarcity in Southern Europe. For this, eight field sites were selected that will demonstrate the applicability of MAR using various water sources, ranging from treated wastewater to desalinated seawater, and a variety of technical solutions. Targets are the alleviation of the effect of climate change on water resources, the mitigation of droughts, to countermeasure temporal and spatial misfit of water availability, to sustain agricultural water supply and rural socio-economic development, to combat agricultural related pollutants, to sustain future urban and industrial water supply and to limit seawater intrusion in coastal aquifers. Results of the demonstration sites will be used to develop guidelines for MAR site selection, technical realization, monitoring strategies, and modeling approaches, to offer stakeholders a comprehensive, state of the art and proven toolbox for MAR implementation. Further, the economic and legal aspects of MAR will be analyzed to enable and accelerate market penetration. The MARSOL consortium combines the expertise of consultancies, water suppliers, research institutions, and public authorities, ensuring high practical relevance and market intimacy.

  18. Selection of Portable Spectrometers for Planetary Exploration: A Comparison of 532 nm and 785 nm Raman Spectroscopy of Reduced Carbon in Archean Cherts

    PubMed Central

    Hutchinson, Ian B.; Ingley, Richard; Marshall, Craig P.; Olcott Marshall, Alison; Edwards, Howell G.M.

    2015-01-01

    Abstract Knowledge and understanding of the martian environment has advanced greatly over the past two decades, beginning with NASA's return to the surface of Mars with the Pathfinder mission and its rover Sojourner in 1997 and continuing today with data being returned by the Curiosity rover. Reduced carbon, however, is yet to be detected on the martian surface, despite its abundance in meteorites originating from the planet. If carbon is detected on Mars, it could be a remnant of extinct life, although an abiotic source is much more likely. If the latter is the case, environmental carbonaceous material would still provide a source of carbon that could be utilized by microbial life for biochemical synthesis and could therefore act as a marker for potential habitats, indicating regions that should be investigated further. For this reason, the detection and characterization of reduced or organic carbon is a top priority for both the ESA/Roscosmos ExoMars rover, currently due for launch in 2018, and for NASA's Mars 2020 mission. Here, we present a Raman spectroscopic study of Archean chert Mars analog samples from the Pilbara Craton, Western Australia. Raman spectra were acquired with a flight-representative 532 nm instrument and a 785 nm instrument with similar operating parameters. Reduced carbon was successfully detected with both instruments; however, its Raman bands were detected more readily with 785 nm excitation, and the corresponding spectra exhibited superior signal-to-noise ratios and reduced background levels. Key Words: Raman spectroscopy—Archean—Organic matter—Planetary science—Mars. Astrobiology 15, 420–429. PMID:26060980

  19. Alteration of immature sedimentary rocks on Earth and Mars. Recording Aqueous and Surface-atmosphere Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, Kenneth M.; Mustard, John F.; Salvatore, Mark R.

    The rock alteration and rind formation in analog environments like Antarctica may provide clues to rock alteration and therefore paleoclimates on Mars. Clastic sedimentary rocks derived from basaltic sources have been studied in situ by martian rovers and are likely abundant on the surface of Mars. Moreover, how such rock types undergo alteration when exposed to different environmental conditions is poorly understood compared with alteration of intact basaltic flows. Here we characterize alteration in the chemically immature Carapace Sandstone from Antarctica, a terrestrial analog for martian sedimentary rocks. We employ a variety of measurements similar to those used on previousmore » and current Mars missions. Laboratory techniques included bulk chemistry, powder X-ray diffraction (XRD), hyperspectral imaging and X-ray absorption spectroscopy. Through these methods we find that primary basaltic material in the Carapace Sandstone is pervasively altered to hydrated clay minerals and palagonite as a result of water–rock interaction. A thick orange rind is forming in current Antarctic conditions, superimposing this previous aqueous alteration signature. The rind exhibits a higher reflectance at visible-near infrared wavelengths than the rock interior, with an enhanced ferric absorption edge likely due to an increase in Fe 3+ of existing phases or the formation of minor iron (oxy)hydroxides. This alteration sequence in the Carapace Sandstone results from decreased water–rock interaction over time, and weathering in a cold, dry environment, mimicking a similar transition early in martian history. This transition may be recorded in sedimentary rocks on Mars through a similar superimposition mechanism, capturing past climate changes at the hand sample scale. These results also suggest that basalt-derived sediments could have sourced significant volumes of hydrated minerals on early Mars due to their greater permeability compared with intact igneous rocks.« less

  20. The Lost City Hydrothermal Field: A Spectroscopic and Astrobiological Analogue for Nili Fossae, Mars.

    PubMed

    Amador, Elena S; Bandfield, Joshua L; Brazelton, William J; Kelley, Deborah

    2017-11-01

    Low-temperature serpentinization is a critical process with respect to Earth's habitability and the Solar System. Exothermic serpentinization reactions commonly produce hydrogen as a direct by-product and typically produce short-chained organic compounds indirectly. Here, we present the spectral and mineralogical variability in rocks from the serpentine-driven Lost City Hydrothermal Field on Earth and the olivine-rich region of Nili Fossae on Mars. Near- and thermal-infrared spectral measurements were made from a suite of Lost City rocks at wavelengths similar to those for instruments collecting measurements of the martian surface. Results from Lost City show a spectrally distinguishable suite of Mg-rich serpentine, Ca carbonates, talc, and amphibole minerals. Aggregated detections of low-grade metamorphic minerals in rocks from Nili Fossae were mapped and yielded a previously undetected serpentine exposure in the region. Direct comparison of the two spectral suites indicates similar mineralogy at both Lost City and in the Noachian (4-3.7 Ga) bedrock of Nili Fossae, Mars. Based on mapping of these spectral phases, the implied mineralogical suite appears to be extensive across the region. These results suggest that serpentinization was once an active process, indicating that water and energy sources were available, as well as a means for prebiotic chemistry during a time period when life was first emerging on Earth. Although the mineralogical assemblages identified on Mars are unlikely to be directly analogous to rocks that underlie the Lost City Hydrothermal Field, related geochemical processes (and associated sources of biologically accessible energy) were once present in the subsurface, making Nili Fossae a compelling candidate for a once-habitable environment on Mars. Key Words: Mars-Habitability-Serpentinization-Analogue. Astrobiology 17, 1138-1160.

  1. MARSOL: Demonstrating Managed Aquifer Recharge as a Solution to Water Scarcity and Drought

    NASA Astrophysics Data System (ADS)

    Kurtzman, D.; Schüth, C.; Kallioras, A.; Rossetto, R.; Lobo-Ferreira, J.; Escalante, E.; Sanchez-Vila, X.; Foglia, L.

    2013-12-01

    Southern Europe and the Mediterranean region are facing the challenge of managing its water resources under conditions of increasing scarcity and concerns about water quality. Already, the availability of fresh water in sufficient quality and quantity is one of the major factors limiting socio-economic development. Innovative water management strategies such as the storage of reclaimed water or excess water from different sources in Managed Aquifer Recharge (MAR) schemes can greatly increase water availability and therefore improve water security. Main objective of the proposed project MARSOL is to demonstrate that MAR is a sound, safe and sustainable strategy that can be applied with great confidence and therefore offering a key approach for tackling water scarcity in Southern Europe. For this, eight field sites were selected that will demonstrate the applicability of MAR using various water sources, ranging from treated wastewater to desalinated seawater, and a variety of technical solutions. Targets are the alleviation of the effect of climate change on water resources, the mitigation of droughts, to countermeasure temporal and spatial misfit of water availability, to sustain agricultural water supply and rural socio-economic development, to combat agricultural related pollutants, to sustain future urban and industrial water supply and to limit seawater intrusion in coastal aquifers. Results of the demonstration sites will be used to develop guidelines for MAR site selection, technical realization, monitoring strategies, and modeling approaches, to offer stakeholders a comprehensive, state of the art and proven toolbox for MAR implementation. Further, the economic and legal aspects of MAR will be analyzed to enable and accelerate market penetration. The MARSOL consortium combines the expertise of consultancies, water suppliers, research institutions, and public authorities, ensuring high practical relevance and market intimacy.

  2. Development of High-Strength Nanostructured Magnesium Alloys for Light-Weight Weapon Systems and Vehicles

    DTIC Science & Technology

    2014-01-13

    strength nanocrystalline Mg-alloys via cryomilling and spark - plasma - sintering , 2) demonstrate the unveil evidence of nanotwins in nanocrystalline...Christopher Melnyk, Wei H. Kao, Jenn-Ming Yang. Cryomilling and spark plasma sintering of nanocrystalline magnesium-based alloy, Journal of Materials...accomplished several important milestones: 1) manufacture of high strength nanocrystalline Mg-alloys via cryomilling and spark plasma sintering (SPS

  3. Ultra-high Strength Nanostructured Mg

    DTIC Science & Technology

    2014-03-31

    27709-2211 Nanostructured Mg and Mg alloys, Mg metallic glass, Cryomilling, Powder consolidation, Spark plasma sintering , Deformation mechanisms REPORT...mechanically milled powder and high pressure on spark plasma sintering of Mg-Cu-Gd metallic glasses; (9) microstructure and mechanical behavior of Mg-10Li-3Al...pressure on spark plasma sintering of Mg– Cu–Gd metallic glasses, Acta Materialia , (07 2013): 4414. doi: Baolong Zheng, Ying Li, Weizong Xu

  4. The Contribution of Water Ice Clouds to the Water Cycle in the North Polar Region of Mars: Preliminary Analysis

    NASA Technical Reports Server (NTRS)

    Bass, D. S.; Tamppari, L. K.

    2000-01-01

    While it has long been known that Mars' north residual polar cap and the Martian regolith are significant sources of atmospheric water vapor, the amount of water vapor observed in the northern spring season by the Viking Mars Atmospheric Water Detector instrument (MAWD) cannot be attributed to cap and regolith sources alone. Kahn suggested that ice hazes may be the mechanism by which additional water is supplied to the Martian atmosphere. Additionally, a significant decrease in atmospheric water vapor was observed in the late northern summer that could not be correlated with the return of the cold seasonal C02 ice. While the detection of water ice clouds on Mars indicate that water exists in Mars' atmosphere in several different phases, the extent to which water ice clouds play a role in moving water through the Martian atmosphere remains uncertain. Work by Bass et. al. suggested that the time dependence of water ice cap seasonal variability and the increase in atmospheric water vapor depended on the polar cap center reaching 200K, the night time saturation temperature. Additionally, they demonstrated that a decrease in atmospheric water vapor may be attributed to deposition of water ice onto the surface of the polar cap; temperatures were still too warm at this time in the summer for the deposition of carbon dioxide. However, whether water ice clouds contribute significantly to this variability is unknown. Additional information is contained in original extended abstract.

  5. Chloromethane release from carbonaceous meteorite affords new insight into Mars lander findings

    PubMed Central

    Keppler, Frank; Harper, David B.; Greule, Markus; Ott, Ulrich; Sattler, Tobias; Schöler, Heinz F.; Hamilton, John T. G.

    2014-01-01

    Controversy continues as to whether chloromethane (CH3Cl) detected during pyrolysis of Martian soils by the Viking and Curiosity Mars landers is indicative of organic matter indigenous to Mars. Here we demonstrate CH3Cl release (up to 8 μg/g) during low temperature (150–400°C) pyrolysis of the carbonaceous chondrite Murchison with chloride or perchlorate as chlorine source and confirm unequivocally by stable isotope analysis the extraterrestrial origin of the methyl group (δ2H +800 to +1100‰, δ13C −19.2 to +10‰,). In the terrestrial environment CH3Cl released during pyrolysis of organic matter derives from the methoxyl pool. The methoxyl pool in Murchison is consistent both in magnitude (0.044%) and isotope signature (δ2H +1054 ± 626‰, δ13C +43.2 ± 38.8‰,) with that of the CH3Cl released on pyrolysis. Thus CH3Cl emissions recorded by Mars lander experiments may be attributed to methoxyl groups in undegraded organic matter in meteoritic debris reaching the Martian surface being converted to CH3Cl with perchlorate or chloride in Martian soil. However we cannot discount emissions arising additionally from organic matter of indigenous origin. The stable isotope signatures of CH3Cl detected on Mars could potentially be utilized to determine its origin by distinguishing between terrestrial contamination, meteoritic infall and indigenous Martian sources. PMID:25394222

  6. An Alpha Proton X-Ray Spectrometer for Mars-96 and Mars Pathfinder

    NASA Astrophysics Data System (ADS)

    Rieder, R.; Wanke, H.; Economou, T.

    1996-09-01

    Mars Pathfinder and the Russian Mars-96 will carry an Alpha Proton X-Ray Spectrometer (APXS) for the determination of the chemical composition of Martian rocks and soil. The instrument will measure the concentration of all major and many minor elements, including C,N and O, at levels above typically 1%. The method employed consist of bombarding a sample of 50 mm diameter with alpha particles from a radioactive source (50 mCi of Cm-244) and measuring: (i) backscattered alpha particles (alpha mode) (ii) protons from (a,p) reactions with some light elements (proton mode) (iii) characteristic X-rays emitted from the sample (X-ray mode). The APXS has a long standing space heritage, going back to Surveyor V,VI and VII (1967/68) and the Soviet Phobos (1988) missions. The present design is the result of an endeavour to reduce mass and power consumption to 600g/ 300mW. It consist of a sensor head containing the alpha sources, a telescope of a silicon detectors for the detection of the alpha particles and protons and a separate X-ray detector with its preamplifier, and an electronics box (80x70x60 mm) containing a microcontroller based multichannel spectrometer. The paper will describe the APXS flight hardware and present results obtained with the flight instrument that will show the instrument capabili- ties and the expected results to be obtained during surface operations on Mars.

  7. The Early Differentiation History of Mars from W-182-Nd-142 Isotope Systematics in the SNC Meteorites

    NASA Technical Reports Server (NTRS)

    Foley, C. Nicole; Wadhwa, M.; Borg, L. E.; Janney, P. E.; Hines, R.; Grove, T. L.

    2005-01-01

    We report here the results of an investigation of W and Nd isotopes in the SNC (Shergottite-Nakhlite-Chassignite (martian)) meteorites. We have determined that epsilon W-182 values in the nakhlites are uniform within analytical uncertainties and have an average value of approx. 3. Also, while epsilon W-182 values in the shergottites have a limited range (from 0.3-0.7), their epsilon Nd-142 values vary considerably (from -0.2-0.9). There appears to be no correlation between epsilon W-182 and epsilon Nd-142 in the nakhlites and shergottites. These results shed new light on early differentiation processes on Mars, particularly on the timing and nature of fractionation in silicate reservoirs. Assuming a two-stage model, the metallic core is estimated to have formed at approx. 12 Myr after the beginning of the solar system. Major silicate differentiation established the nakhlite source reservoir before approx. 4542 Ma and the shergottite source reservoirs at 4525 [sup +19 sub -21] Ma. These ages imply that, within the uncertainties afforded by the Hf-182-W-182 and Sm-146-Nd-142 chronometers, the silicate differentiation events that established the source reservoirs of the nakhlites and shergottites may have occurred contemporaneously, possibly during crystallization of a global magma ocean. The distinct W-182-Nd-142 isotope systematics in the nakhlites and the shergottites imply the presence of at least three isotopically distinct silicate reservoirs on Mars, two of which are depleted in incompatible lithophile elements relative to chondrites, and the third is enriched. The two depleted silicate reservoirs most likely reside in the Martian mantle, while the enriched reservoir could be either in the crust or the mantle. Therefore, the W-182-Nd-142 isotope systematics indicate that the nakhlites and the shergottites originated from distinct source reservoirs and cannot be petrogenetically related. A further implication is that the source reservoirs of the nakhlites and shergottites on Mars have been isolated since their establishment before approx. 4.5 Ga. Therefore, there has been no giant impact or efficient global mantle convection to thoroughly homogenize the Martian mantle following the establishment of the SNC source reservoirs.

  8. The secular and the supernatural: madness and psychiatry in the short stories of Muriel Spark.

    PubMed

    Beveridge, A W

    2015-01-01

    Edinburgh-born Muriel Spark is one of modern Scotland's greatest writers. Examination of her work reveals that the subjects of madness and psychiatry are recurrent themes in her writing. She herself had a mental breakdown when she was a young woman and she took an interest in the world of psychiatry and psychoanalysis. In her short stories, Spark approaches the subject of madness in a variety of ways: she relates it to the supernatural; to writing fiction; and to religion. She frequently juxtaposes secular and supernatural explanations of mental disturbance. Spark adopts a sceptical and, at times, mocking view of psychiatrists and psychiatric treatment. Both psychoanalysis and pills are seen as problematic.

  9. Photochemical Escape of Atomic Carbon from Mars

    NASA Astrophysics Data System (ADS)

    Fox, J. L.; Hac, A. B.

    2009-12-01

    Determining the escape rate of C over time is necessary to reconstructing the time-dependent history of volatiles on Mars. We report initial results from a one-dimensional spherical Monte Carlo calculation of photochemical escape fluxes and rates of atomic carbon from the Martian atmosphere. This model has recently been used to estimate the photochemical escape flux of O from Mars. We include as sources photodissociation of CO, dissociative recombination of CO+, photoelectron-impact dissociation of CO, photodissociative ionization and photoelectron impact dissociative ionization. Dissociative recombination of CO2+ has been suggested as a source of C (in the channel that produces C + O2) but later studies have found that the yield of this channel is negligible. We test the potential importance of this reaction by comparing the final results produced by including it and excluding it. Finally we compare the range of the escape rate to that of C in ions that have been modeled or measured by ASPERA instruments on MEX and Phobos.

  10. Wind-Eroded Silicate as a Source of Hydrogen Peroxide on Mars

    NASA Astrophysics Data System (ADS)

    Bak, E. N.; Merrison, J. P.; Jensen, S. K.; Nørnberg, P.; Finster, K.

    2014-07-01

    Laboratory simulations show that wind-eroded silicate can be a source of hydrogen peroxide. The ubiquitous, fine-grained silicate dust might thus explain the oxidizing properties of the martian soil and affect the preservation of organic compounds.

  11. Imaging alpha particle detector

    DOEpatents

    Anderson, David F.

    1985-01-01

    A method and apparatus for detecting and imaging alpha particles sources is described. A conducting coated high voltage electrode (1) and a tungsten wire grid (2) constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source (3) to be quantitatively or qualitatively analyzed. A thin polyester film window (4) allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

  12. Status of the RF-driven H{sup −} ion source for J-PARC linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oguri, H., E-mail: oguri.hidetomo@jaea.go.jp; Ohkoshi, K.; Ikegami, K.

    2016-02-15

    For the upgrade of the Japan Proton Accelerator Research Complex linac beam current, a cesiated RF-driven negative hydrogen ion source was installed during the 2014 summer shutdown period, with subsequent operations commencing on September 29, 2014. The ion source has been successfully operating with a beam current and duty factor of 33 mA and 1.25% (500 μs and 25 Hz), respectively. The result of recent beam operation has demonstrated that the ion source is capable of continuous operation for approximately 1100 h. The spark rate at the beam extractor was observed to be at a frequency of less than oncemore » a day, which is an acceptable level for user operation. Although an antenna failure occurred during operation on October 26, 2014, no subsequent serious issues have occurred since then.« less

  13. Imaging alpha particle detector

    DOEpatents

    Anderson, D.F.

    1980-10-29

    A method and apparatus for detecting and imaging alpha particles sources is described. A dielectric coated high voltage electrode and a tungsten wire grid constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source to be quantitatively or qualitatively analyzed. A thin polyester film window allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

  14. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Que, Emily L.; Bleher, Reiner; Duncan, Francesca E.

    2014-12-15

    Fertilization of a mammalian egg initiates a series of 'zinc sparks' that are necessary to induce the egg-to-embryo transition. Despite the importance of these zinc-efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches that resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy-dispersive spectroscopy, X-ray fluorescence microscopy and three-dimensional elemental tomography for high-resolution elemental mapping. We show that the zinc spark arises from a system of thousands of zinc-loaded vesicles, each ofmore » which contains, on average, 10(6) zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. The discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes« less

  15. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks.

    PubMed

    Que, Emily L; Bleher, Reiner; Duncan, Francesca E; Kong, Betty Y; Gleber, Sophie C; Vogt, Stefan; Chen, Si; Garwin, Seth A; Bayer, Amanda R; Dravid, Vinayak P; Woodruff, Teresa K; O'Halloran, Thomas V

    2015-02-01

    Fertilization of a mammalian egg initiates a series of 'zinc sparks' that are necessary to induce the egg-to-embryo transition. Despite the importance of these zinc-efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches that resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy-dispersive spectroscopy, X-ray fluorescence microscopy and three-dimensional elemental tomography for high-resolution elemental mapping. We show that the zinc spark arises from a system of thousands of zinc-loaded vesicles, each of which contains, on average, 10(6) zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. The discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes.

  16. Influence of repetition frequency on streamer-to-spark breakdown mechanism in transient spark discharge

    NASA Astrophysics Data System (ADS)

    Janda, M.; Martišovitš, V.; Buček, A.; Hensel, K.; Molnár, M.; Machala, Z.

    2017-10-01

    Streamer-to-spark transition in a self-pulsing positive transient spark (TS) discharge was investigated at different repetition frequencies. The temporal evolution of the TS was recorded, showing the primary streamer and the secondary streamer phases. A streak camera-like images were obtained using spatio-temporal reconstruction of the discharge emission detected by a photomultiplier tube with light collection system placed on a micrometric translation stage. With increasing TS repetition frequency f (from ~1 to 6 kHz), the increase of the propagation velocity of both the primary and the secondary streamer was observed. Acceleration of the primary and secondary streamers, and shortening of streamer-to-spark transition time τ with increasing f was attributed to the memory effect composed of pre-heating and gas composition changes induced by the previous TS pulses. Fast propagation of the secondary streamer through the entire gap and fast gas heating could explain the short τ (~100 ns) at f above ~3 kHz.

  17. A comparison of electrochemically pre-treated and spark-platinized carbon fiber microelectrode. Measurement of 8-oxo-7,8-dihydro-2'-deoxyguanosine in human urine and plasma.

    PubMed

    Bartosova, Z; Riman, D; Halouzka, V; Vostalova, J; Simanek, V; Hrbac, J; Jirovsky, D

    2016-09-07

    A novel method of carbon fiber microelectrode activation using spark discharge was demonstrated and compared to conventional electrochemical pretreatment by potential cycling. The spark discharge was performed at 800 V between the microelectrode connected to positive pole of the power supply and platinum counter electrode. Spark discharge led both to trimming of the fiber tip into conical shape and to the modification of carbon fiber microelectrode with platinum, as proven by scanning electron microscopy and electron dispersive X-ray spectroscopy. After the characterization of electrochemical properties using ferricyanide voltammetry, the activated electrodes were used for electrochemical analysis of 8-oxo-7,8-dihydro-2'-deoxyguanosine, an oxidative stress marker. Subnanomolar detection limits (0.55 nmol L(-1)) in high-performance liquid chromatography were achieved for spark platinized electrodes incorporated into the flow detection cell. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Relation Between Inflammables and Ignition Sources in Aircraft Environments

    NASA Technical Reports Server (NTRS)

    Scull, Wilfred E

    1950-01-01

    A literature survey was conducted to determine the relation between aircraft ignition sources and inflammables. Available literature applicable to the problem of aircraft fire hazards is analyzed and, discussed herein. Data pertaining to the effect of many variables on ignition temperatures, minimum ignition pressures, and minimum spark-ignition energies of inflammables, quenching distances of electrode configurations, and size of openings incapable of flame propagation are presented and discussed. The ignition temperatures and the limits of inflammability of gasoline in air in different test environments, and the minimum ignition pressure and the minimum size of openings for flame propagation of gasoline - air mixtures are included. Inerting of gasoline - air mixtures is discussed.

  19. Cyclic variations of fuel-droplet distribution during the early intake stroke of a lean-burn stratified-charge spark-ignition engine

    NASA Astrophysics Data System (ADS)

    Aleiferis, P. G.; Hardalupas, Y.; Taylor, A. M. K. P.; Ishii, K.; Urata, Y.

    2005-11-01

    Lean-burn spark-ignition engines exhibit higher efficiency and lower specific emissions in comparison with stoichiometrically charged engines. However, as the air-to-fuel (A/F) ratio of the mixture is made leaner than stoichiometric, cycle-by-cycle variations in the early stages of in-cylinder combustion, and subsequent indicated mean effective pressure (IMEP), become more pronounced and limit the range of lean-burn operation. Viable lean-burn engines promote charge stratification, the mixture near the spark plug being richer than the cylinder volume averaged value. Recent work has shown that cycle-by-cycle variations in the early stages of combustion in a stratified-charge engine can be associated with variations in both the local value of A/F ratio near the spark plug around ignition timing, as well as in the volume averaged value of the A/F ratio. The objective of the current work was to identify possible sources of such variability in A/F ratio by studying the in-cylinder field of fuel-droplet distribution during the early intake stroke. This field was visualised in an optical single-cylinder 4-valve pentroof-type spark-ignition engine by means of laser-sheet illumination in planes parallel to the cylinder head gasket 6 and 10 mm below the spark plug. The engine was run with port-injected isooctane at 1500 rpm with 30% volumetric efficiency and air-to-fuel ratio corresponding to both stoichiometric firing (A/F=15, Φ =1.0) and mixture strength close to the lean limit of stable operation (A/F=22, Φ =0.68). Images of Mie intensity scattered by the cloud of fuel droplets were acquired on a cycle-by-cycle basis. These were studied in order to establish possible correlations between the cyclic variations in size, location and scattered-light intensity of the cloud of droplets with the respective variations in IMEP. Because of the low level of Mie intensity scattered by the droplets and because of problems related to elastic scattering on the walls of the combustion chamber, as well as problems related to engine “rocking” at the operating conditions close to the misfire limit, the acquired images were processed for background subtraction by using a PIV-based data correction algorithm. After this processing, the arrival and leaving timings of fuel droplets into the illuminated plane were found not to vary significantly on a cycle-by-cycle basis but the recorded cycle-by-cycle variations in Mie intensity suggested that the amount of fuel in the cylinder could have been 6 26% greater for the “strong” cycles with IMEP 115% higher than the average IMEP, than the ones imaged for “weak” cycles at less than 85% the average IMEP. This would correspond to a maximum cyclic variability in the in-cylinder equivalence ratio Φ of the order of 0.17.

  20. Investigation of a compact coaxially fed switched oscillator

    NASA Astrophysics Data System (ADS)

    Wang, Yuwei; Chen, Dongqun; Zhang, Jiande; Cao, Shengguang; Li, Da; Liu, Chebo

    2013-09-01

    To generate a relative high frequency mesoband microwave, a compact coaxially fed transmission line switched oscillator with high voltage capability is investigated. The characteristic impedance and voltage capability of the low impedance transmission line (LITL) have been analyzed. It is shown that the working voltage of the oscillator can reach up to 200 kV when it is filled by pressurized nitrogen and charged by a nanosecond driving source. By utilizing a commercial electromagnetic simulation code, the transient performance of the switched oscillator with a lumped resistance load is simulated. It is illustrated that the center frequency of the output signal reaches up to ˜0.6 GHz when the spark gap practically closes with a single channel. Besides, the influence of the closing mode and rapidity of the spark gap, the permittivity of the insulator at the output end of the LITL, and the load impedance on the transient performance of the designed oscillator has been analyzed in quantification. Finally, the good transient performance of the switched oscillator has been preliminarily proved by the experiment.

  1. EGRET observations of bursts at MeV energies

    NASA Astrophysics Data System (ADS)

    Catelli, J. R.; Dingus, B. L.; Schneid, E. J.

    1998-05-01

    We present preliminary results from the analysis of 16 bright bursts that have been observed by the EGRET NaI calorimeter, or TASC. Seven bursts have been imaged in the EGRET spark chamber above 30 MeV, but in most cases the TASC data gives the highest energy spectra available for these bursts. The TASC can obtain spectral and rate information for bursts well outside the field of view of the EGRET spark chambers, and is sensitive in the energy range from 1 to 200 MeV. The spectra for these bursts are mostly consistent with a simple power law with spectral index in the range from 1.7 to 3.7, with several of the brighter bursts showing emission past 100 MeV. No high energy cutoff has been observed. These high energy photons offer important clues to the physical processes involved at the origin of burst emission. For bursts at cosmological distances extremely high bulk Lorentz factors are implied by the presence of MeV and GeV photons which have not been attenuated by pair production with the lower energy photons from the source.

  2. Reconstructing evolutionary trees in parallel for massive sequences.

    PubMed

    Zou, Quan; Wan, Shixiang; Zeng, Xiangxiang; Ma, Zhanshan Sam

    2017-12-14

    Building the evolutionary trees for massive unaligned DNA sequences is challenging and crucial. However, reconstructing evolutionary tree for ultra-large sequences is hard. Massive multiple sequence alignment is also challenging and time/space consuming. Hadoop and Spark are developed recently, which bring spring light for the classical computational biology problems. In this paper, we tried to solve the multiple sequence alignment and evolutionary reconstruction in parallel. HPTree, which is developed in this paper, can deal with big DNA sequence files quickly. It works well on the >1GB files, and gets better performance than other evolutionary reconstruction tools. Users could use HPTree for reonstructing evolutioanry trees on the computer clusters or cloud platform (eg. Amazon Cloud). HPTree could help on population evolution research and metagenomics analysis. In this paper, we employ the Hadoop and Spark platform and design an evolutionary tree reconstruction software tool for unaligned massive DNA sequences. Clustering and multiple sequence alignment are done in parallel. Neighbour-joining model was employed for the evolutionary tree building. We opened our software together with source codes via http://lab.malab.cn/soft/HPtree/ .

  3. Development and Testing of a Green Monopropellant Ignition System

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Merkley, Daniel P.; Eilers, Shannon D.; Judson, Michael I.; Taylor, Terry L.

    2013-01-01

    This paper will detail the development and testing of a "green" monopropellant booster ignition system. The proposed booster ignition technology eliminates the need for a pre-heated catalyst bed, a high wattage power source, toxic pyrophoric ignition fluids, or a bi-propellant spark ignitor. The design offers the simplicity of a monopropellant feed system features non-hazardous gaseous oxygen (GOX) as the working fluid. The approach is fundamentally different from all other "green propellant" solutions in the aerospace in the industry. Although the proposed system is more correctly a "hybrid" rocket technology, since only a single propellant feed path is required, it retains all the simple features of a monopropellant system. The technology is based on the principle of seeding an oxidizing flow with a small amount of hydrocarbon.1 The ignition is initiated electrostatically with a low-wattage inductive spark. Combustion gas byproducts from the hydrocarbon-seeding ignition process can exceed 2400 C and the high exhaust temperature ensures reliable main propellant ignition. The system design is described in detail in the Hydrocarbon-Seeded Ignition System Design subsection.

  4. The subsidiary gap as a means for improving ignition

    NASA Technical Reports Server (NTRS)

    Gorton, W S

    1920-01-01

    This report was prepared at the Bureau of Standards for the National Advisory Committee for Aeronautics. Additional or subsidiary gaps have frequently been used in jump-spark ignition systems, in order to cause the resumption of sparking in fouled spark plugs. The series gap, to which the greater part of this report is devoted, is a subsidiary gap in the connection between the high tension terminal of the plug and that of the magneto or coil. A brief account is given of the use of this gap up to the present time and also of the statements concerning it which have gained some currency, most of which are shown to be erroneous. The simple theory of the action of the series gap is discussed and a detailed account given of the effect upon the sparking ability of the plug produced by changes in the values of the electrical resistance of the fouling and of the capacities in parallel with the plug and with the magneto or coil. This report presents the results of an investigation into the utility, action, and design of the auxiliary spark gap as a means for insuring freedom from spark plug failure due to fouling, and also to enable the restarting of fouled plugs.

  5. Comparative study of INPIStron and spark gap

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Lee, Ja H.

    1993-01-01

    An inverse pinch plasma switch, INPIStron, was studied in comparison to a conventional spark gap. The INPIStron is under development for high power switching applications. The INPIStron has an inverse pinch dynamics, opposed to Z-pinch dynamics in the spark gap. The electrical, plasma dynamics and radiative properties of the closing plasmas have been studied. Recently the high-voltage pulse transfer capabilities or both the INPIStron and the spark gap were also compared. The INPIStron with a low impedance Z = 9 ohms transfers 87 percent of an input pulse with a halfwidth of 2 mu s. For the same input pulse the spark gap of Z = 100 ohms transfers 68 percent. Fast framing and streak photography, taken with an TRW image converter camera, was used to observe the discharge uniformity and closing plasma speed in both switches. In order to assess the effects of closing plasmas on erosion of electrode material, emission spectra of two switches were studied with a spectrometer-optical multi channel analyzer (OMA) system. The typical emission spectra of the closing plasmas in the INPIStron and the spark gap showed that there were comparatively weak carbon line emission in 658.7 nm and copper (electrode material) line emissions in the INPIStron, indicating low erosion of materials in the INPIStron.

  6. Mars Analog Rio Tinto Experiment (MARTE): 2003 Drilling Campaign to Search for a Subsurface Biosphere at Rio Tinto Spain

    NASA Technical Reports Server (NTRS)

    Stoker, Carol; Dunagan, Stephen; Stevens, Todd; Amils, Ricardo; Gomez-Elvira, Javier; Fernandez, David; Hall, James; Lynch, Kennda; Cannon, Howard; Zavaleta, Jhony

    2004-01-01

    The MARTE (Mars Astrobiology Research and Technology Experiment) project, an ASTEP field experiment, is exploring for a hypothesized subsurface anaerobic chemoautotrophic biosphere in the region of the Tinto River- or Rio Tinto- in southwestern Spain. It is also demonstrating technology needed to search for a subsurface biosphere on Mars. The project has three primary objectives: (1) search for and characterize subsurface life at Rio Tinto along with the physical and chemical properties and sustaining energy sources of its environment, (2) perform a high fidelity simulation of a robotic Mars drilling mission to search for life, and (3) demonstrate the drilling, sample handling, and instrument technologies relevant to searching for life on Mars. The simulation of the robotic drilling mission is guided by the results of the aseptic drilling campaign to search for life at Rio Tinto. This paper describes results of the first phase of the aseptic drilling campaign.

  7. 3D Reconstruction of the Source and Scale of Buried Young Flood Channels on Mars

    NASA Astrophysics Data System (ADS)

    Morgan, Gareth A.; Campbell, Bruce A.; Carter, Lynn M.; Plaut, Jeffrey J.; Phillips, Roger J.

    2013-05-01

    Outflow channels on Mars are interpreted as the product of gigantic floods due to the catastrophic eruption of groundwater that may also have initiated episodes of climate change. Marte Vallis, the largest of the young martian outflow channels (<500 million years old), is embayed by lava flows that hinder detailed studies and comparisons with older channel systems. Understanding Marte Vallis is essential to our assessment of recent Mars hydrologic activity during a period otherwise considered to be cold and dry. Using data from the Shallow Radar sounder on the Mars Reconnaissance Orbiter, we present a three-dimensional (3D) reconstruction of buried channels on Mars and provide estimates of paleohydrologic parameters. Our work shows that Cerberus Fossae provided the waters that carved Marte Vallis, and it extended an additional 180 kilometers to the east before the emplacement of the younger lava flows. We identified two stages of channel incision and determined that channel depths were more than twice those of previous estimates.

  8. Lunar and Planetary Science Conference, 21st, Houston, TX, Mar. 12-16, 1990, Proceedings

    NASA Technical Reports Server (NTRS)

    Ryder, Graham (Editor); Sharpton, Virgil L. (Editor)

    1991-01-01

    The present conference on lunar and planetary science discusses the geology and geophysics of Venus; the lunar highlands and regolith; magmatic processes of the moon and meteorites; remote sensing of the moon and Mars; chondrites, cosmic dust, and comets; ammonia-water mixtures; and the evolution of volcanism, tectonics, and volatiles on Mars. Attention is given to volcanism on Venus, pristine moon rocks, the search for Crisium Basin ejecta, Apollo 14 glasses, lunar anorthosites, the sources of mineral fragments in impact melts 15445 and 15455, and argon adsorption in the lunar atmosphere. Also discussed are high-pressure experiments on magnesian eucrite compositions, the early results of thermal diffusion in metal-sulfide liquids, preliminary results of imaging spectroscopy of the Humorum Basin region of the moon, high-resolution UV-visible spectroscopy of lunar red spots, and a radar-echo model for Mars. Other topics addressed include nitrogen isotopic signatures in the Acapulco Meteorite, tridymite and maghemite formation in an Fe-SiO smoke, and the enigma of mottled terrain on Mars.

  9. 3D reconstruction of the source and scale of buried young flood channels on Mars.

    PubMed

    Morgan, Gareth A; Campbell, Bruce A; Carter, Lynn M; Plaut, Jeffrey J; Phillips, Roger J

    2013-05-03

    Outflow channels on Mars are interpreted as the product of gigantic floods due to the catastrophic eruption of groundwater that may also have initiated episodes of climate change. Marte Vallis, the largest of the young martian outflow channels (<500 million years old), is embayed by lava flows that hinder detailed studies and comparisons with older channel systems. Understanding Marte Vallis is essential to our assessment of recent Mars hydrologic activity during a period otherwise considered to be cold and dry. Using data from the Shallow Radar sounder on the Mars Reconnaissance Orbiter, we present a three-dimensional (3D) reconstruction of buried channels on Mars and provide estimates of paleohydrologic parameters. Our work shows that Cerberus Fossae provided the waters that carved Marte Vallis, and it extended an additional 180 kilometers to the east before the emplacement of the younger lava flows. We identified two stages of channel incision and determined that channel depths were more than twice those of previous estimates.

  10. Sedimentary Processes on Earth, Mars, Titan, and Venus

    NASA Astrophysics Data System (ADS)

    Grotzinger, J. P.; Hayes, A. G.; Lamb, M. P.; McLennan, S. M.

    The production, transport and deposition of sediment occur to varying degrees on Earth, Mars, Venus, and Titan. These sedimentary processes are significantly influenced by climate that affects production of sediment in source regions (weathering), and the mode by which that sediment is transported (wind vs. water). Other, more geological, factors determine where sediments are deposited (topography and tectonics). Fluvial and marine processes dominate Earth both today and in its geologic past, aeolian processes dominate modern Mars although in its past fluvial processes also were important, Venus knows only aeolian processes, and Titan shows evidence of both fluvial and aeolian processes. Earth and Mars also feature vast deposits of sedimentary rocks, spanning billions of years of planetary history. These ancient rocks preserve the long-term record of the evolution of surface environments, including variations in climate state. On Mars, sedimentary rocks record the transition from wetter, neutral-pH weathering, to brine-dominated low-pH weathering, to its dry current state.

  11. Accuracy Analysis and Validation of the Mars Science Laboratory (MSL) Robotic Arm

    NASA Technical Reports Server (NTRS)

    Collins, Curtis L.; Robinson, Matthew L.

    2013-01-01

    The Mars Science Laboratory (MSL) Curiosity Rover is currently exploring the surface of Mars with a suite of tools and instruments mounted to the end of a five degree-of-freedom robotic arm. To verify and meet a set of end-to-end system level accuracy requirements, a detailed positioning uncertainty model of the arm was developed and exercised over the arm operational workspace. Error sources at each link in the arm kinematic chain were estimated and their effects propagated to the tool frames.A rigorous test and measurement program was developed and implemented to collect data to characterize and calibrate the kinematic and stiffness parameters of the arm. Numerous absolute and relative accuracy and repeatability requirements were validated with a combination of analysis and test data extrapolated to the Mars gravity and thermal environment. Initial results of arm accuracy and repeatability on Mars demonstrate the effectiveness of the modeling and test program as the rover continues to explore the foothills of Mount Sharp.

  12. Core formation, wet early mantle, and H2O degassing on early Mars

    NASA Technical Reports Server (NTRS)

    Kuramoto, K.; Matsui, T.

    1993-01-01

    Geophysical and geochemical observations strongly suggest a 'hot origin of Mars,' i.e., the early formation of both the core and the crust-mantle system either during or just after planetary accretion. To consider the behavior of H2O in the planetary interior it is specifically important to determine by what mechanism the planet is heated enough to cause melting. For Mars, the main heat source is probably accretional heating. Because Mars is small, the accretion energy needs to be effectively retained in its interior. Therefore, the three candidates of heat retention mechanism are discussed first: (1) the blanketing effect of the primordial H2-He atmosphere; (2) the blanketing effect of the impact-induced H2O-CO2 atmosphere; and (3) the higher deposition efficiency of impact energy due to larger impacts. It was concluded that (3) the is the most plausible mechanism for Mars. Then, its possible consequence on how wet the early martian mantle was is discussed.

  13. A compact led lidar system fitted for a mars rover - design and ground experiment

    NASA Astrophysics Data System (ADS)

    Ong, Prane Mariel B.; Shiina, Tatsuo; Manago, Naohiro; Kuze, Hiroaki; Senshu, Hiroki; Otobe, Naohito; Hashimoto, George; Kawabata, Yasuhiro

    2018-04-01

    A compact LED lidar was constructed and fieldtested with the aim to observe the Mars' dust devils. To be able to fit it on the Mars rover, a specialized Cassegrain telescope was designed to be within a 10 cm-cube, with a field of view of 3mrad. The transmitter has 385 nm LED light source with 3 cmϕ opening, 70mrad divergence, 0.75W (7.5nJ/10ns) pulse power, and 500 kHz repetition frequency. The configuration of the optical system is biaxial to easily configure the overlap between their optical axes.

  14. Glucose sensing on graphite screen-printed electrode modified by sparking of copper nickel alloys.

    PubMed

    Riman, Daniel; Spyrou, Konstantinos; Karantzalis, Alexandros E; Hrbac, Jan; Prodromidis, Mamas I

    2017-04-01

    Electric spark discharge was employed as a green, fast and extremely facile method to modify disposable graphite screen-printed electrodes (SPEs) with copper, nickel and mixed copper/nickel nanoparticles (NPs) in order to be used as nonenzymatic glucose sensors. Direct SPEs-to-metal (copper, nickel or copper/nickel alloys with 25/75, 50/50 and 75/25wt% compositions) sparking at 1.2kV was conducted in the absence of any solutions under ambient conditions. Morphological characterization of the sparked surfaces was performed by scanning electron microscopy, while the chemical composition of the sparked NPs was evaluated with energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The performance of the various sparked SPEs towards the electro oxidation of glucose in alkaline media and the critical role of hydroxyl ions were evaluated with cyclic voltammetry and kinetic studies. Results indicated a mixed charge transfer- and hyroxyl ion transport-limited process. Best performing sensors fabricated by Cu/Ni 50/50wt% alloy showed linear response over the concentration range 2-400μM glucose and they were successfully applied to the amperometric determination of glucose in blood. The detection limit (S/N 3) and the relative standard deviation of the method were 0.6µM and <6% (n=5, 2µM glucose), respectively. Newly devised sparked Cu/Ni graphite SPEs enable glucose sensing with distinct advantages over existing glucose chemical sensors in terms of cost, fabrication simplicity, disposability, and adaptation of green methods in sensor's development. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Water System Architectures for Moon and Mars Bases

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Hodgson, Edward W.; Kliss, Mark H.

    2015-01-01

    Water systems for human bases on the moon and Mars will recycle multiple sources of wastewater. Systems for both the moon and Mars will also store water to support and backup the recycling system. Most water system requirements, such as number of crew, quantity and quality of water supply, presence of gravity, and surface mission duration of 6 or 18 months, will be similar for the moon and Mars. If the water system fails, a crew on the moon can quickly receive spare parts and supplies or return to Earth, but a crew on Mars cannot. A recycling system on the moon can have a reasonable reliability goal, such as only one unrecoverable failure every five years, if there is enough stored water to allow time for attempted repairs and for the crew to return if repair fails. The water system that has been developed and successfully operated on the International Space Station (ISS) could be used on a moon base. To achieve the same high level of crew safety on Mars without an escape option, either the recycling system must have much higher reliability or enough water must be stored to allow the crew to survive the full duration of the Mars surface mission. A three loop water system architecture that separately recycles condensate, wash water, and urine and flush can improve reliability and reduce cost for a Mars base.

  16. Starting Conditions for Hydrothermal Systems Underneath Martian Craters: Hydrocode Modeling

    NASA Technical Reports Server (NTRS)

    Pierazzo, E.; Artemieva, N. A.; Ivanov, B. A.

    2004-01-01

    Mars is the most Earth-like of the Solar System s planets, and the first place to look for any sign of present or past extraterrestrial life. Its surface shows many features indicative of the presence of surface and sub-surface water, while impact cratering and volcanism have provided temporary and local surface heat sources throughout Mars geologic history. Impact craters are widely used ubiquitous indicators for the presence of sub-surface water or ice on Mars. In particular, the presence of significant amounts of ground ice or water would cause impact-induced hydrothermal alteration at Martian impact sites. The realization that hydrothermal systems are possible sites for the origin and early evolution of life on Earth has given rise to the hypothesis that hydrothermal systems may have had the same role on Mars. Rough estimates of the heat generated in impact events have been based on scaling relations, or thermal data based on terrestrial impacts on crystalline basements. Preliminary studies also suggest that melt sheets and target uplift are equally important heat sources for the development of a hydrothermal system, while its lifetime depends on the volume and cooling rate of the heat source, as well as the permeability of the host rocks. We present initial results of two-dimensional (2D) and three-dimensional (3D) simulations of impacts on Mars aimed at constraining the initial conditions for modeling the onset and evolution of a hydrothermal system on the red planet. Simulations of the early stages of impact cratering provide an estimate of the amount of shock melting and the pressure-temperature distribution in the target caused by various impacts on the Martian surface. Modeling of the late stage of crater collapse is necessary to characterize the final thermal state of the target, including crater uplift, and distribution of the heated target material (including the melt pool) and hot ejecta around the crater.

  17. Searching for Reduced Carbon on the Surface of Mars: The SAM Combustion Experiment

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; Malespin, C. A.; Mahaffy, P. R.; Webster, C. R.; Eigenbrode, J. L.; Archer, P. D., Jr.; Brunner, A. E.; Freissinet, C.; Franz, H. B.; Glavin, D. P.; hide

    2014-01-01

    The search for reduced carbon has been a major focus of past and present missions to Mars. Thermal evolved gas analysis was used by the Viking and Phoenix landers and is currently in use by the Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) to characterize volatiles evolved from solid samples, including those associated with reduced organic species. SAM has the additional capability to perform a combustion experiment, in which a sample of Mars regolith is heated in the presence of oxygen and the composition of the evolved gases is measured using quadrupole mass spectrometry (QMS) and tunable laser spectrometry (TLS) [1]. Organics detection on the Martian surface has been complicated by oxidation and destruction during heating by soil oxidants [2], including oxychlorine compounds, and terrestrial organics in the SAM background contributed by one of the SAM wet chemistry reagents MTBSTFA (N-Methyl-N-tertbutyldimethylsilyl- trifluoroacetamide) [3,4]. Thermal Evolved Gas Analysis (TEGA) results from Phoenix show a mid temperature CO2 release between 400 C - 680 C speculated to be carbonate, CO2 adsorbed to grains, or combustion of organics by soil oxidants [5]. Low temperature CO2 evolutions (approx. 200 C - 400 C) were also present at all three sites in Gale Crater where SAM Evolved Gas Analysis (EGA) was performed, and potential sources include combustion of terrestrial organics from SAM, as well as combustion and/or decarboxylation either indigenous martian or exogenous organic carbon [4,6]. By performing an experiment to intentionally combust all reduced materials in the sample, we hope to compare the bulk abundance of CO2 and other oxidized species evolved by combustion to that evolved during an EGA experiment to estimate how much CO2 could be contributed by reduced carbon sources. In addition, C, O, and H isotopic compositions of CO2 and H2O measured by TLS can contribute information regarding the potential sources of these volatiles.

  18. Using Terrestrial Sulfate Efflorescences as an Analogue of Hydrated Sulfate Formation in Valles Marineris on Mars

    NASA Astrophysics Data System (ADS)

    Smith, P. C.; Szynkiewicz, A.

    2015-12-01

    Hydrated sulfate minerals provide conclusive evidence that a hydrologic cycle was once active on the surface of Mars. Two classes of hydrated sulfate minerals have been detected by robotic instruments on Mars: monohydrated sulfate minerals comprised of kieserite and gypsum, and various polyhydrated sulfates with Fe-Ca-Na-Mg-rich compositions. These minerals are found in various locations on Mars, including large surface exposures in valley settings of Valles Marineris. However, the sulfate sources and formation mechanisms of these minerals are not yet well understood.Recently, it has been suggested that the sulfate minerals in Valles Marineris might have formed in a manner similar to sulfate efflorescences found in dry environments on Earth. In this study, we use sulfate effloresences from the Rio Puerco Watershed, New Mexico as a terrestrial analogue to assess major factors that might have led to deposition of sulfate minerals in Valles Marineris. In different seasons indicative of dry and wet conditions, we collected field photographs and sediment samples for chemical and stable isotopic analyses (sulfur content, δ34S) to determine major sources of sulfate ions for efflorescences and to assess how the seasonal changes in surface/groundwater activity affect their formation. Preliminary sulfur isotope results suggest that oxidation of bedrock sulfides (0.01-0.05 wt. S %) is a major source of sulfate ion for efflorescences formation because their δ34S varied in negative range (-28 to -20‰) similar to sulfides (average -32‰). Using field photographs collected in Oct 2006, Feb and Nov 2012, May 2013, Mar and Oct 2014, we infer that the highest surface accumulation of sulfate efflorescences in the studied analog site was observed after summer monsoon seasons when more water was available for surface and subsurface transport of solutes from chemical weathering. Conversely, spring snow melt led to enhanced dissolution of sulfate efflorescences.

  19. Mud Volcanoes - A New Class of Sites for Geological and Astrobiological Exploration of Mars

    NASA Technical Reports Server (NTRS)

    Allen, C.C.; Oehler, D.Z.; Baker, D.M.

    2009-01-01

    Mud volcanoes provide a unique low-temperature window into the Earth s subsurface - including the deep biosphere - and may prove to be significant sources of atmospheric methane. The identification of analogous features on Mars would provide an important new class of sites for geological and astrobiological exploration. We report new work suggesting that features in Acidalia Planitia are most consistent with their being mud volcanoes.

  20. Reduction of metal artifacts: beam hardening and photon starvation effects

    NASA Astrophysics Data System (ADS)

    Yadava, Girijesh K.; Pal, Debashish; Hsieh, Jiang

    2014-03-01

    The presence of metal-artifacts in CT imaging can obscure relevant anatomy and interfere with disease diagnosis. The cause and occurrence of metal-artifacts are primarily due to beam hardening, scatter, partial volume and photon starvation; however, the contribution to the artifacts from each of them depends on the type of hardware. A comparison of CT images obtained with different metallic hardware in various applications, along with acquisition and reconstruction parameters, helps understand methods for reducing or overcoming such artifacts. In this work, a metal beam hardening correction (BHC) and a projection-completion based metal artifact reduction (MAR) algorithms were developed, and applied on phantom and clinical CT scans with various metallic implants. Stainless-steel and Titanium were used to model and correct for metal beam hardening effect. In the MAR algorithm, the corrupted projection samples are replaced by the combination of original projections and in-painted data obtained by forward projecting a prior image. The data included spine fixation screws, hip-implants, dental-filling, and body extremity fixations, covering range of clinically used metal implants. Comparison of BHC and MAR on different metallic implants was used to characterize dominant source of the artifacts, and conceivable methods to overcome those. Results of the study indicate that beam hardening could be a dominant source of artifact in many spine and extremity fixations, whereas dental and hip implants could be dominant source of photon starvation. The BHC algorithm could significantly improve image quality in CT scans with metallic screws, whereas MAR algorithm could alleviate artifacts in hip-implants and dentalfillings.

  1. Quantifying Apparent Groundwater Ages near Managed Aquifer Recharge Operations Using Radio-Sulfur ( 35S) as an Intrinsic Tracer

    DOE PAGES

    Clark, Jordan; Urióstegui, Stephanie; Bibby, Richard; ...

    2016-10-25

    The application of the cosmogenic radioisotope sulfur-35 ( 35S) as a chronometer near spreading basins is evaluated at two well-established Managed Aquifer Recharge (MAR) sites: the Atlantis facility (South Africa) and Orange County Water District’s (OCWD’s) Kraemer Basin (Northern Orange County, CA, USA). Source water for both of these sites includes recycled wastewater. Despite lying nearer to the outlet end of their respective watersheds than to the headwaters, 35S was detected in most of the water sampled, including from wells found close to the spreading ponds and in the source water. Dilution with 35S-dead continental SO 4 was minimal, amore » surprising finding given its short ~3 month half-life. The initial work at the Atlantis MAR site demonstrated that remote laboratories could be set up and that small volume samples—saline solutions collected after the resin elution step from the recently developed batch method described below—can be stored and transported to the counting laboratory. This study also showed that the batch method needed to be altered to remove unknown compounds eluted from the resin along with SO 4. Using the improved batch method, times series measurements of both source and well water from OCWD’s MAR site showed significant temporal variations. Finally, this result indicates that during future studies, monthly to semi-monthly sampling should be conducted. Nevertheless, both of these initial studies suggest the 35S chronometer may become a valuable tool for managing MAR sites where regulations require minimum retention times.« less

  2. Quantifying Apparent Groundwater Ages near Managed Aquifer Recharge Operations Using Radio-Sulfur ( 35S) as an Intrinsic Tracer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Jordan; Urióstegui, Stephanie; Bibby, Richard

    The application of the cosmogenic radioisotope sulfur-35 ( 35S) as a chronometer near spreading basins is evaluated at two well-established Managed Aquifer Recharge (MAR) sites: the Atlantis facility (South Africa) and Orange County Water District’s (OCWD’s) Kraemer Basin (Northern Orange County, CA, USA). Source water for both of these sites includes recycled wastewater. Despite lying nearer to the outlet end of their respective watersheds than to the headwaters, 35S was detected in most of the water sampled, including from wells found close to the spreading ponds and in the source water. Dilution with 35S-dead continental SO 4 was minimal, amore » surprising finding given its short ~3 month half-life. The initial work at the Atlantis MAR site demonstrated that remote laboratories could be set up and that small volume samples—saline solutions collected after the resin elution step from the recently developed batch method described below—can be stored and transported to the counting laboratory. This study also showed that the batch method needed to be altered to remove unknown compounds eluted from the resin along with SO 4. Using the improved batch method, times series measurements of both source and well water from OCWD’s MAR site showed significant temporal variations. Finally, this result indicates that during future studies, monthly to semi-monthly sampling should be conducted. Nevertheless, both of these initial studies suggest the 35S chronometer may become a valuable tool for managing MAR sites where regulations require minimum retention times.« less

  3. Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars

    PubMed Central

    Freissinet, C; Glavin, D P; Mahaffy, P R; Miller, K E; Eigenbrode, J L; Summons, R E; Brunner, A E; Buch, A; Szopa, C; Archer, P D; Franz, H B; Atreya, S K; Brinckerhoff, W B; Cabane, M; Coll, P; Conrad, P G; Des Marais, D J; Dworkin, J P; Fairén, A G; François, P; Grotzinger, J P; Kashyap, S; ten Kate, I L; Leshin, L A; Malespin, C A; Martin, M G; Martin-Torres, F J; McAdam, A C; Ming, D W; Navarro-González, R; Pavlov, A A; Prats, B D; Squyres, S W; Steele, A; Stern, J C; Sumner, D Y; Sutter, B; Zorzano, M-P

    2015-01-01

    The Sample Analysis at Mars (SAM) instrument on board the Mars Science Laboratory Curiosity rover is designed to conduct inorganic and organic chemical analyses of the atmosphere and the surface regolith and rocks to help evaluate the past and present habitability potential of Mars at Gale Crater. Central to this task is the development of an inventory of any organic molecules present to elucidate processes associated with their origin, diagenesis, concentration, and long-term preservation. This will guide the future search for biosignatures. Here we report the definitive identification of chlorobenzene (150–300 parts per billion by weight (ppbw)) and C2 to C4 dichloroalkanes (up to 70 ppbw) with the SAM gas chromatograph mass spectrometer (GCMS) and detection of chlorobenzene in the direct evolved gas analysis (EGA) mode, in multiple portions of the fines from the Cumberland drill hole in the Sheepbed mudstone at Yellowknife Bay. When combined with GCMS and EGA data from multiple scooped and drilled samples, blank runs, and supporting laboratory analog studies, the elevated levels of chlorobenzene and the dichloroalkanes cannot be solely explained by instrument background sources known to be present in SAM. We conclude that these chlorinated hydrocarbons are the reaction products of Martian chlorine and organic carbon derived from Martian sources (e.g., igneous, hydrothermal, atmospheric, or biological) or exogenous sources such as meteorites, comets, or interplanetary dust particles. Key Points First in situ evidence of nonterrestrial organics in Martian surface sediments Chlorinated hydrocarbons identified in the Sheepbed mudstone by SAM Organics preserved in sample exposed to ionizing radiation and oxidative condition PMID:26690960

  4. Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars.

    PubMed

    Freissinet, C; Glavin, D P; Mahaffy, P R; Miller, K E; Eigenbrode, J L; Summons, R E; Brunner, A E; Buch, A; Szopa, C; Archer, P D; Franz, H B; Atreya, S K; Brinckerhoff, W B; Cabane, M; Coll, P; Conrad, P G; Des Marais, D J; Dworkin, J P; Fairén, A G; François, P; Grotzinger, J P; Kashyap, S; Ten Kate, I L; Leshin, L A; Malespin, C A; Martin, M G; Martin-Torres, F J; McAdam, A C; Ming, D W; Navarro-González, R; Pavlov, A A; Prats, B D; Squyres, S W; Steele, A; Stern, J C; Sumner, D Y; Sutter, B; Zorzano, M-P

    2015-03-01

    The Sample Analysis at Mars (SAM) instrument on board the Mars Science Laboratory Curiosity rover is designed to conduct inorganic and organic chemical analyses of the atmosphere and the surface regolith and rocks to help evaluate the past and present habitability potential of Mars at Gale Crater. Central to this task is the development of an inventory of any organic molecules present to elucidate processes associated with their origin, diagenesis, concentration, and long-term preservation. This will guide the future search for biosignatures. Here we report the definitive identification of chlorobenzene (150-300 parts per billion by weight (ppbw)) and C 2 to C 4 dichloroalkanes (up to 70 ppbw) with the SAM gas chromatograph mass spectrometer (GCMS) and detection of chlorobenzene in the direct evolved gas analysis (EGA) mode, in multiple portions of the fines from the Cumberland drill hole in the Sheepbed mudstone at Yellowknife Bay. When combined with GCMS and EGA data from multiple scooped and drilled samples, blank runs, and supporting laboratory analog studies, the elevated levels of chlorobenzene and the dichloroalkanes cannot be solely explained by instrument background sources known to be present in SAM. We conclude that these chlorinated hydrocarbons are the reaction products of Martian chlorine and organic carbon derived from Martian sources (e.g., igneous, hydrothermal, atmospheric, or biological) or exogenous sources such as meteorites, comets, or interplanetary dust particles. First in situ evidence of nonterrestrial organics in Martian surface sediments Chlorinated hydrocarbons identified in the Sheepbed mudstone by SAM Organics preserved in sample exposed to ionizing radiation and oxidative condition.

  5. Olivine-Respiring Bacteria Isolated from the Rock-Ice Interface in a Lava-Tube Cave, a Mars Analog Environment

    PubMed Central

    Smith, Amy R.; Popa, Rodica; Boone, Jane; Fisk, Martin

    2012-01-01

    Abstract The boundary between ice and basalt on Earth is an analogue for some near-surface environments of Mars. We investigated neutrophilic iron-oxidizing microorganisms from the basalt-ice interface in a lava tube from the Oregon Cascades with perennial ice. One of the isolates (Pseudomonas sp. HerB) can use ferrous iron Fe(II) from the igneous mineral olivine as an electron donor and O2 as an electron acceptor. The optimum growth temperature is ∼12–14°C, but growth also occurs at 5°C. Bicarbonate is a facultative source of carbon. Growth of Pseudomonas sp. HerB as a chemolithotrophic iron oxidizer with olivine as the source of energy is favored in low O2 conditions (e.g., 1.6% O2). Most likely, microbial oxidation of olivine near pH 7 requires low O2 to offset the abiotic oxidation of iron. The metabolic capabilities of this bacterium would allow it to live in near-surface, icy, volcanic environments of Mars in the present or recent geological past and make this type of physiology a prime candidate in the search for life on Mars. Key Words: Extremophiles—Mars—Olivine—Iron-oxidizing bacteria—Redox. Astrobiology 12, 9–18. PMID:22165996

  6. Provision of water by halite deliquescence for Nostoc commune biofilms under Mars relevant surface conditions

    NASA Astrophysics Data System (ADS)

    Jänchen, Jochen; Feyh, Nina; Szewzyk, Ulrich; de Vera, Jean-Pierre P.

    2016-04-01

    Motivated by findings of new mineral related water sources for organisms under extremely dry conditions on Earth we studied in an interdisciplinary approach the water sorption behaviour of halite, soil component and terrestrial Nostoc commune biofilm under Mars relevant environmental conditions. Physicochemical methods served for the determination of water sorption equilibrium data and survival of heterotrophic bacteria in biofilm samples with different water contents was assured by recultivation. Deliquescence of halite provides liquid water at temperatures <273 K and may serve as water source on Mars during the morning stabilized by the CO2 atmosphere for a few hours. The protecting biofilm of N. commune is rather hygroscopic and tends to store water at lower humidity values. Survival tests showed that a large proportion of the Alphaproteobacteria dominated microbiota associated to N. commune is very desiccation tolerant and water uptake from saturated NaCl solutions (either by direct uptake of brine or adsorption of humidity) did not enhance recultivability in long-time desiccated samples. Still, a minor part can grow under highly saline conditions. However, the salinity level, although unfavourable for the host organism, might be for parts of the heterotrophic microbiota no serious hindrance for growing in salty Mars-like environments.

  7. Northern hemisphere dust storms on Mars

    NASA Technical Reports Server (NTRS)

    James, P. B.

    1993-01-01

    Dust storms in the northern hemisphere of Mars appear to be less common than the more familiar southern hemisphere storms, and essentially, no activity north of about 30 latittude has been documented. The data are, however, subject to an observational bias because Mars is near aphelion during oppositions, which occur during the most likely seasons for dust activity in the north. The amount of dust activity in the northern hemisphere is clearly very relevant to the role of atmospheric transport in the dust cycle. The classic global storms that occur during spring in the southern hemisphere are observed to transport dust from sources in the southern hemisphere to sinks or temporary depositories in the north. The question of whether atmospheric transport can close the dust cycle, i.e., return the dust to the southern hemisphere sources on some timescale, is clearly relevant to the solution of the puzzle of how the dust storm cycle is modulated, i.e., why storms occur in some years but not in others. There are data that suggest that the spring/early summer season in the northern hemisphere of Mars during the year following the major 1977 storms observed by Viking was very dusty. A number of observations of the vicinity of the receding north polar cap showed clear evidence of substantial dust activity in the sub-Arctic region.

  8. Detection Limit of Smectite by Chemin IV Laboratory Instrument: Preliminary Implications for Chemin on the Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Archilles, Cherie; Ming, D. W.; Morris, R. V.; Blake, D. F.

    2011-01-01

    The CheMin instrument on the Mars Science Laboratory (MSL) is an miniature X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument capable of detecting the mineralogical and elemental compositions of rocks, outcrops and soils on the surface of Mars. CheMin uses a microfocus-source Co X-ray tube, a transmission sample cell, and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D XRD patterns and energy-dispersive X-ray histograms from powdered samples. CRISM and OMEGA have identified the presence of phyllosilicates at several locations on Mars including the four candidate MSL landing sites. The objective of this study was to conduct preliminary studies to determine the CheMin detection limit of smectite in a smectite/olivine mixed mineral system.

  9. Complete Subsurface Elemental Composition Measurements With PING

    NASA Technical Reports Server (NTRS)

    Parsons, A. M.

    2012-01-01

    The Probing In situ with Neutrons and Gamma rays (PING) instrument will measure the complete bulk elemental composition of the subsurface of Mars as well as any other solid planetary body. PING can thus be a highly effective tool for both detailed local geochemistry science investigations and precision measurements of Mars subsurface reSOurces in preparation for future human exploration. As such, PING is thus fully capable of meeting a majority of both ncar and far term elements in Challenge #1 presented for this conference. Measuring the ncar subsurface composition of Mars will enable many of the MEPAG science goals and will be key to filling an important Strategic Knowledge Gap with regard to In situ Resources Utilization (ISRU) needs for human exploration. [1, 2] PING will thus fill an important niche in the Mars Exploration Program.

  10. An Integrated XRF/XRD Instrument for Mars Exobiology and Geology Experiments

    NASA Technical Reports Server (NTRS)

    Koppel, L. N.; Franco, E. D.; Kerner, J. A.; Fonda, M. L.; Schwartz, D. E.; Marshall, J. R.

    1993-01-01

    By employing an integrated x-ray instrument on a future Mars mission, data obtained will greatly augment those returned by Viking; details characterizing the past and present environment on Mars and those relevant to the possibility of the origin and evolution of life will be acquired. A combined x-ray fluorescence/x-ray diffraction (XRF/XRD) instrument was breadboarded and demonstrated to accommodate important exobiology and geology experiment objectives outlined for MESUR and future Mars missions. Among others, primary objectives for the exploration of Mars include the intense study of local areas on Mars to establish the chemical, mineralogical, and petrological character of different components of the surface material; to determine the distribution, abundance, and sources and sinks of volatile materials, including an assessment of the biologic potential, now and during past epoches; and to establish the global chemical and physical characteristics of the Martian surface. The XRF/XRD breadboard instrument identifies and quantifies soil surface elemental, mineralogical, and petrological characteristics and acquires data necessary to address questions on volatile abundance and distribution. Additionally, the breadboard is able to characterize the biogenic element constituents of soil samples providing information on the biologic potential of the Mars environment. Preliminary breadboard experiments confirmed the fundamental instrument design approach and measurement performance.

  11. Trade studies for nuclear space power systems

    NASA Technical Reports Server (NTRS)

    Smith, John M.; Bents, David J.; Bloomfield, Harvey S.

    1991-01-01

    As human visions of space applications expand and as we probe further out into the universe, our needs for power will also expand, and missions will evolve which are enabled by nuclear power. A broad spectrum of missions which are enhanced or enabled by nuclear power sources have been defined. These include Earth orbital platforms, deep space platforms, planetary exploration, and terrestrial resource exploration. The recently proposed Space Exploration Initiative (SEI) to the Moon and Mars has more clearly defined these missions and their power requirements. Presented here are results of recent studies of radioisotope and nuclear reactor energy sources, combined with various energy conversion devices for Earth orbital applications, SEI lunar/Mars rovers, surface power, and planetary exploration.

  12. Properties of thermospheric gravity waves on earth, Venus and Mars

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Harris, I.; Pesnell, W. D.

    1992-01-01

    A spectral model with spherical harmonics and Fourier components that can simulate atmospheric perturbations in the global geometry of a multiconstituent atmosphere is presented. The boundaries are the planetary surface where the transport velocities vanish and the exobase where molecular heat conduction and viscosity dominate. The time consuming integration of the conservation equations is reduced to computing the transfer function (TF) which describes the dynamic properties of the medium divorced from the complexities in the temporal and horizontal variations of the excitation source. Given the TF, the atmospheric response to a chosen source distribution is then obtained in short order. Theoretical studies are presented to illuminate some properties of gravity waves on earth, Venus and Mars.

  13. Spark Plug Defects and Tests

    NASA Technical Reports Server (NTRS)

    Silsbee, F B; Loeb, L B; Sawyer, L G; Fonseca, E L; Dickinson, H C; Agnew, P G

    1920-01-01

    The successful operation of the spark plug depends to a large extent on the gas tightness of the plug. Part 1 of this report describes the method used for measuring the gas tightness of aviation spark plugs. Part 2 describes the methods used in testing the electrical conductivity of the insulation material when hot. Part 3 describes the testing of the cold dielectric strength of the insulation material, the resistance to mechanical shock, and the final engine test.

  14. Processing and Characterization of Porous Ti2AlC with Controlled Porosity and Pore Size

    DTIC Science & Technology

    2012-09-11

    fabricated by spark plasma sintering , were also characterized. The effects of porosity and/or pore size on the room temperature elastic moduli...pressureless- sintered without NaCl pore former, or fabricated by spark plasma sintering , were also characterized. The effects of porosity and/or pore size...as well as several samples sintered using spark plasma sintering (SPS). Furthermore, we demon- strate that the developed methodology can be implemented

  15. Spark Gap Electrode Erosion

    DTIC Science & Technology

    1984-12-01

    N~JFOSR-TR- 85-0282 o ~FINAL REPORT S SPARK GAP ELECTRODE EROSION 00i Air Force Office of Scientific Research Grant No. 84-0015- Approve", t’r p...OF MONITORING ORGANIZATION Texas Tech University IDibj Air Office of Scientific Research it- ADORESS rCat.. State and ZIP CG*, 7b. ADONESS ’CitY...spark gap was measured for various electrode, gas, and pressure combinations. A previously developed model of self breakdown voltage distribution was

  16. Ultra Fast, High Rep Rate, High Voltage Spark Gap Pulser

    DTIC Science & Technology

    1995-07-01

    current rise time. The spark gap was designed to have a coaxial geometry reducing its inductance. Provisions were made to pass flowing gas between the...ULTRA FAST, HIGH REP RATE, HIGH VOLTAGE SPARK GAP PULSER Robert A. Pastore Jr., Lawrence E. Kingsley, Kevin Fonda, Erik Lenzing Electrophysics and...Modeling Branch AMSRL-PS-EA Tel.: (908)-532-0271 FAX: (908)-542-3348 U.S. Army Research Laboratory Physical Sciences Directorate Ft. Monmouth

  17. Effect of Water-Alcohol Injection and Maximum Economy Spark Advance on Knock-Limited Performance and Fuel Economy of a Large Air-Cooled Cylinder

    NASA Technical Reports Server (NTRS)

    Heinicke, Orville H.; Vandeman, Jack E.

    1945-01-01

    An investigation was conducted to determine the effect of a coolant solution of 25 percent ethyl alcohol, 25 percent methyl alcohol, and 50 percent water by volume and maximum-economy spark advance on knock-limited performance and fuel economy of a large air-cooled cylinder. The knock-limited performance of the cylinder at engine speeds of 2100 and 2500 rpm was determined for coolant-fuel ratios of 0.0, 0.2, and 0.4. The effect of water-alcohol injection on fuel economy was determined in constant charge-air flow tests. The tests were conducted at a spark advance of 20 deg B.T.C. and maximum-economy spark advance.

  18. MULTIPLE SPARK GAP SWITCH

    DOEpatents

    Schofield, A.E.

    1958-07-22

    A multiple spark gap switch of unique construction is described which will permit controlled, simultaneous discharge of several capacitors into a load. The switch construction includes a disc electrode with a plurality of protuberances of generally convex shape on one surface. A firing electrode is insulatingly supponted In each of the electrode protuberances and extends substantially to the apex thereof. Individual electrodes are disposed on an insulating plate parallel with the disc electrode to form a number of spark gaps with the protuberances. These electrodes are each connected to a separate charged capacitor and when a voltage ls applied simultaneously between the trigger electrodes and the dlsc electrode, each spark gap fires to connect its capacitor to the disc electrode and a subsequent load.

  19. Mars Dust and LETKF Data Assimilation of TES Observations

    NASA Astrophysics Data System (ADS)

    Greybush, S. J.; Hoffman, R. N.; Wilson, R.; Kang, J.; Zhao, Y.; Hoffman, M. J.; Kalnay, E.; Miyoshi, T.

    2012-12-01

    Simulation and prediction of dust storms remains one of the greatest challenges in Martian meteorology. Large-scale dust storms impact all Mars operations including spacecraft observations. What makes the difference between a regional event and a planet-encircling event? What are the predictability characteristics of these events and of the transition from regional to global? We examine the meteorology, including dustiness, in the Mars reanalysis created with the GFDL Mars Global Climate Model (MGCM) Local Ensemble Transform Kalman Filter (LETKF) data assimilation system (DAS). Characterizing the distribution and temporal evolution of dust in the Martian atmosphere is a considerable challenge. Spacecraft observations are sparse and have limitations in vertical coverage, dust physical properties are not well known, and model parameterizations of surface lifting have limited success in reproducing observed variability. Methods for generating a dust reanalysis begin with satellite inferred dust information in the form of column opacities, dust profile retrievals, or the original radiances. Opacities may be estimated from a formal retrieval of the satellite data or inferred through surface brightness temperatures. The opacities have been ingested via ad hoc adjustments to model tracer fields (Conrath vertical distributions, changes to the boundary layer dust only, etc.), but could also be assimilated by the LETKF or other advanced DAS. We will present dust distributions in the most recent version of the MGCM-LETKF Mars reanalysis. Current results are from two DASs, one assuming a fixed dust distribution and one using TES opacities and updating the boundary layer dust only. In these reanalyses, a full year of Thermal Emission Spectrometer (TES) temperature profiles have been assimilated. Since an accurate characterization of the sources and sinks of dust would greatly improve our understanding of the Martian dust cycle and its representation in numerical weather prediction models, we will examine two advanced DAS techniques that have been demonstrated in terrestrial DASs and could be applied to the problem -- surface dust flux estimation and estimating the surface parameters that control the source of dust (roughness, inventories). The surface dust flux method requires no a priori information about the fluxes, and uses only atmospheric observations. For the terrestrial CO2 problem, surface sources and sinks of CO2 have been estimated using only time-dependent measurements of atmospheric CO2, temperatures, and winds, and without a priori information on the surface fluxes. This scenario is very analogous to the case of Mars. On Mars we have only information on temperature and dust opacities at spacecraft overpass locations. Results for terrestrial CO2 and plans for Mars dust will be presented. However, to improve model parameterizations of dust lifting, we need to understand not only the planetary distribution of dust but also the evolution of its sources and sinks and their relation to meteorology. The surface parameters method assumes the physical properties have a persistence or damped persistence evolution equation. These are then treated as part of the model state vector in the LETKF. This approach is then analogous to the bias correction method used in LETKF to improve the atmospheric state estimation.

  20. 40 CFR 62.5103 - Identification of sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Identification of sources. 62.5103 Section 62.5103 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS..., Frederick, Maryland. [50 FR 9628, Mar. 11, 1985] Metals, Acid Gases, Organic Compounds and Nitrogen Oxide...

Top