Sample records for martian surface composition

  1. Considerations Concerning the Development and Testing of In-situ Materials for Martian Exploration

    NASA Technical Reports Server (NTRS)

    Kim, M.-H. Y.; Heilbronn, L.; Thibeault, S. A.; Simonsen, L. C.; Wilson, J. W.; Chang, K.; Kiefer, R. L.; Maahs, H. G.

    2000-01-01

    Natural Martian surface materials are evaluated for their potential use as radiation shields for manned Mars missions. The modified radiation fluences behind various kinds of Martian rocks and regolith are determined by solving the Boltzmann equation using NASA Langley s HZETRN code along with the 1977 Solar Minimum galactic cosmic ray environmental model. To make structural shielding composite materials from constituents of the Mars atmosphere and from Martian regolith for Martian surface habitats, schemes for synthesizing polyimide from the Mars atmosphere and for processing Martian regolith/polyimide composites are proposed. Theoretical predictions of the shielding properties of these composites are computed to assess their shielding effectiveness. Adding high-performance polymer binders to Martian regolith to enhance structural properties enhances the shielding properties of these composites because of the added hydrogenous constituents. Laboratory testing of regolith simulant/polyimide composites is planned to validate this prediction.

  2. Radiation protection using Martian surface materials in human exploration of Mars

    NASA Technical Reports Server (NTRS)

    Kim, M. H.; Thibeault, S. A.; Wilson, J. W.; Heilbronn, L.; Kiefer, R. L.; Weakley, J. A.; Dueber, J. L.; Fogarty, T.; Wilkins, R.

    2001-01-01

    To develop materials for shielding astronauts from the hazards of GCR, natural Martian surface materials are considered for their potential as radiation shielding for manned Mars missions. The modified radiation fluences behind various kinds of Martian rocks and regolith are determined by solving the Boltzmann equation using NASA Langley's HZETRN code along with the 1977 Solar Minimum galactic cosmic ray environmental model. To develop structural shielding composite materials for Martian surface habitats, theoretical predictions of the shielding properties of Martian regolith/polyimide composites has been computed to assess their shielding effectiveness. Adding high-performance polymer binders to Martian regolith to enhance structural properties also enhances the shielding properties of these composites because of the added hydrogenous constituents. Heavy ion beam testing of regolith simulant/polyimide composites is planned to validate this prediction. Characterization and proton beam tests are performed to measure structural properties and to compare the shielding effects on microelectronic devices, respectively.

  3. A High Resolution Microprobe Study of EETA79001 Lithology C

    NASA Technical Reports Server (NTRS)

    Schrader, Christian M.; Cohen, B. A.; Donovan, J. J.; Vicenzi, E. P.

    2010-01-01

    Antarctic meteorite EETA79001 has received substantial attention for possibly containing a component of Martian soil in its impact glass (Lithology C) [1]. The composition of Martian soil can illuminate near-surface processes such as impact gardening [2] and hydrothermal and volcanic activity [3,4]. Impact melts in meteorites represent our most direct samples of Martian regolith. We present the initial findings from a high-resolution electron microprobe study of Lithology C from Martian meteorite EETA79001. As this study develops we aim to extract details of a potential soil composition and to examine Martian surface processes using elemental ratios and correlations.

  4. Alteration of the Carbon and Nitrogen Isotopic Composition in the Martian Surface Rocks Due to Cosmic Ray Exposure

    NASA Technical Reports Server (NTRS)

    Pavlov, A. A.; Pavlov, A. K.; Ostryakov, V. M.; Vasilyev, G. I.; Mahaffy, P.; Steele, A.

    2014-01-01

    C-13/C-12 and N-15/N-14 isotopic ratios are pivotal for our understanding of the Martian carbon cycle, history of the Martian atmospheric escape, and origin of the organic compounds on Mars. Here we demonstrate that the carbon and nitrogen isotopic composition of the surface rocks on Mars can be significantly altered by the continuous exposure of Martian surface to cosmic rays. Cosmic rays can effectively produce C-13 and N-15 isotopes via spallation nuclear reactions on oxygen atoms in various Martian rocks. We calculate that in the top meter of the Martian rocks, the rates of production of both C-13 and N-15 due to galactic cosmic rays (GCRs) exposure can vary within 1.5-6 atoms/cm3/s depending on rocks' depth and chemical composition. We also find that the average solar cosmic rays can produce carbon and nitrogen isotopes at a rate comparable to GCRs in the top 5-10 cm of the Martian rocks. We demonstrate that if the total carbon content in a surface Martian rock is <10 ppm, then the "light," potentially "biological" C-13/C-12 ratio would be effectively erased by cosmic rays over 3.5 billion years of exposure. We found that for the rocks with relatively short exposure ages (e.g., 100 million years), cosmogenic changes in N-15/N-14 ratio are still very significant. We also show that a short exposure to cosmic rays of Allan Hills 84001 while on Mars can explain its high-temperature heavy nitrogen isotopic composition (N-15/N-14). Applications to Martian meteorites and the current Mars Science Laboratory mission are discussed.

  5. Lunar Mare Basalts as Analogues for Martian Volcanic Compositions: Evidence from Visible, Near-IR, and Thermal Emission Spectroscopy

    NASA Technical Reports Server (NTRS)

    Graff, T. G.; Morris, R. V.; Christensen, P. R.

    2003-01-01

    The lunar mare basalts potentially provide a unique sample suite for understanding the nature of basalts on the martian surface. Our current knowledge of the mineralogical and chemical composition of the basaltic material on Mars comes from studies of the basaltic martian meteorites and from orbital and surface remote sensing observations. Petrographic observations of basaltic martian meteorites (e.g., Shergotty, Zagami, and EETA79001) show that the dominant phases are pyroxene (primarily pigeonite and augite), maskelynite (a diaplectic glass formed from plagioclase by shock), and olivine [1,2]. Pigeonite, a low calcium pyroxene, is generally not found in abundance in terrestrial basalts, but does often occur on the Moon [3]. Lunar samples thus provide a means to examine a variety of pigeonite-rich basalts that also have bulk elemental compositions (particularly low-Ti Apollo 15 mare basalts) that are comparable to basaltic SNC meteorites [4,5]. Furthermore, lunar basalts may be mineralogically better suited as analogues of the martian surface basalts than the basaltic martian meteorites because the plagioclase feldspar in the basaltic Martian meteorites, but not in the lunar surface basalts, is largely present as maskelynite [1,2]. Analysis of lunar mare basalts my also lead to additional endmember spectra for spectral libraries. This is particularly important analysis of martian thermal emission spectra, because the spectral library apparently contains a single pigeonite spectrum derived from a synthetic sample [6].

  6. A DTA/GC for the in Situ Identification of the Martian Surface Material

    NASA Technical Reports Server (NTRS)

    Mancinelli, R. L.; White, M. R.; Orenberg, J. B.

    1993-01-01

    The composition and mineralogy of the Martian surface material remain largely unknown. To determine its composition and mineralogy, several techniques are being considered for in situ analyses of the Martian surface material during missions to Mars. We have successfully developed, constructed, and tested a laboratory DTA/GC. The DTA is a Dupont model 1600 high temperature DTA coupled with a GC equipped with a MID detector. The system is operated by a Sun Sparc 11 workstation. When gas evolves during a thermal chemical event, it is shunted into the GC and the temperature is recorded in association with the specific thermal event. We have used this laboratory instrument to define experimental criteria necessary for determining the composition and mineralogy of the Martian surface in situ (e.g., heating of sample to 1100 C to distinguish clays). Our studies indicate that DTA/GC will provide a broad spectrum of mineralogical and evolved gas data pertinent to exobiology, geochemistry, and geology.

  7. Mars: Past, Present, and Future. Results from the MSATT Program, part 1

    NASA Technical Reports Server (NTRS)

    Haberle, R. M. (Editor)

    1993-01-01

    This volume contains papers that were accepted for presentation at the workshop on Mars: Past, Present, and Future -- Results from the MSATT Program. Topics include, but are not limited to: Martian impact craters; thermal emission measurements of Hawaiian palagonitic soils with implications for Mars; thermal studies of the Martian surface; Martian atmospheric composition studies; temporal and spatial mapping of Mars' atmospheric dust opacity and surface albedo; studies of atmospheric dust from Viking IR thermal mapper data; the distribution of Martian ground ice at other epochs; numerical simulation of thermally induced near-surface flows over Martian terrain; the pH of Mars; the mineralogic evolution of the Martian surface through time; geologic controls of erosion and sedimentation on Mars; and dielectric properties of Mars' surface: proposed measurement on a Mars Lander.

  8. Reflectance spectroscopy of palagonite and iron-rich montmorillonite clay mixtures: Implications for the surface composition of Mars

    NASA Technical Reports Server (NTRS)

    Orenberg, J. B.; Handy, J.

    1991-01-01

    Because of the power of remote sensing reflectance spectroscopy in determining mineralogy, it was used as the major method of identifying possible mineral analogs of the Martian surface. A summary of proposed Martian surface compositions from reflectance spectroscopy before 1979 was presented. Since that time, iron-rich montmorillonite clay, nanocrystalline or nanophase hematite, and palagonite were suggested as Mars soil analog materials.

  9. Composition and Color of Martian Soil from Oxidation of Meteoritic Material

    NASA Technical Reports Server (NTRS)

    Yen, A. S.

    2001-01-01

    Aqueous weathering is not necessary for formation of the martian soils. The chemical composition and oxidation state of the surface fines can be attributed to meteoritic influx. Additional information is contained in the original extended abstract.

  10. Distinct Chlorine Isotopic Reservoirs on Mars: Implications for Character, Extent and Relative Timing of Crustal Interaction with Mantle-Derived Magmas, Evolution of the Martian Atmosphere, and the Building Blocks of an Early Mars

    NASA Technical Reports Server (NTRS)

    Shearer, C. K.; Messenger, S.; Sharp, Z. D.; Burger, P. V.; Nguyen, N.; McCubbin, F. M.

    2017-01-01

    The style, magnitude, timing, and mixing components involved in the interaction between mantle derived Martian magmas and Martian crust have long been a point of debate. Understanding this process is fundamental to deciphering the composition of the Martian crust and its interaction with the atmosphere, the compositional diversity and oxygen fugacity variations in the Martian mantle, the bulk composition of Mars and the materials from which it accreted, and the noble gas composition of Mars and the Sun. Recent studies of the chlorine isotopic composition of Martian meteorites imply that although the variation in delta (sup 37) Cl is limited (total range of approximately14 per mille), there appears to be distinct signatures for the Martian crust and mantle. However, there are potential issues with this interpretation. New Cl isotope data from the SAM (Sample Analysis at Mars) instrument on the Mars Science Lab indicate a very wide range of Cl isotopic compositions on the Martian surface. Recent measurements by [10] duplicated the results of [7,8], but placed them within the context of SAM surface data. In addition, Martian meteorite Chassigny contains trapped noble gases with isotopic ratios similar to solar abundance, and has long been considered a pristine, mantle derived sample. However, previous studies of apatite in Chassigny indicate that crustal fluids have interacted with regions interstitial to the cumulus olivine. The initial Cl isotope measurements of apatite in Chassigny suggest an addition of crustal component to this lithology, apparently contradicting the rare gas data. Here, we examine the Cl isotopic composition of multiple generations and textures of apatite in Chassigny to extricate the crustal and mantle components in this meteorite and to reveal the style and timing of the addition of crustal components to mantle-derived magmas. These data reveal distinct Martian Cl sources whose signatures have their origins linked to both the early Solar System and the evolving Martian atmosphere.

  11. Cosmogenic nuclides in the Martian surface: Constraints for sample recovery and transport

    NASA Technical Reports Server (NTRS)

    Englert, Peter A. J.

    1988-01-01

    Stable and radioactive cosmogenic nuclides and radiation damage effects such as cosmic ray tracks can provide information on the surface history of Mars. A recent overview on developments in cosmogenic nuclide research for historical studies of predominantly extraterrestrial materials was published previously. The information content of cosmogenic nuclides and radiation damage effects produced in the Martian surface is based on the different ways of interaction of the primary galactic and solar cosmic radiation (GCR, SCR) and the secondary particle cascade. Generally the kind and extent of interactions as seen in the products depend on the following factors: (1) composition, energy and intensity of the primary SCR and GCR; (2) composition, energy and intensity of the GCR-induced cascade of secondary particles; (3) the target geometry, i.e., the spatial parameters of Martian surface features with respect to the primary radiation source; (4) the target chemistry, i.e., the chemical composition of the Martian surface at the sampling location down to the minor element level or lower; and (5) duration of the exposure. These factors are not independent of each other and have a major influence on sample taking strategies and techniques.

  12. Viking 1: early results. [Mars atmosphere and surface examinations

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A brief outline of the Viking 1 mission to Mars is followed by descriptions of the Martian landing site and the scientific instrumentation aboard Viking 1 orbiter and lander. Measurements of the Martian atmosphere provided data on its molecular composition, temperature and pressure. The detection of nitrogen in the Martian atmosphere indicates the existence of life. Panoramic photographs of the Martian surface were also obtained and are shown. Preliminary chemical and biological investigations on samples of Martian soil indicated the presence of the elements iron, calcium, silicon, titanium and aluminum as major constituents. Observed biochemical reactions were judged conducive of biological activity.

  13. The Athena Mars Rover Investigation

    NASA Technical Reports Server (NTRS)

    Squyres, S. W.; Arvidson, R. E.; Bell, J. F., III; Carr, M.; Christensen, P.; DesMarais, D.; Economou, T.; Gorevan, S.; Haskin, L.; Herkenhoff, K.

    2000-01-01

    The Mars Surveyor program requires tools for martian surface exploration, including remote sensing, in-situ sensing, and sample collection. The Athena Mars rover payload is a suite of scientific instruments and sample collection tools designed to: (1) Provide color stereo imaging of martian surface environments, and remotely-sensed point discrimination of mineralogical composition; (2) Determine the elemental and mineralogical composition of martian surface materials; (3) Determine the fine-scale textural properties of these materials; and (4) Collect and store samples. The Athena payload is designed to be implemented on a long-range rover such as the one now under consideration for the 2003 Mars opportunity. The payload is at a high state of maturity, and most of the instruments have now been built for flight.

  14. The viability of photovoltaics on the Martian surface

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Perez-Davis, Marla E.

    1994-01-01

    The viability of photovoltaics (PV) on the Martian surface may be determined by their ability to withstand significant degradation in the Martian environment. Probably the greatest threat is posed by fine dust particles which are continually blown about the surface of the planet. In an effort to determine the extent of the threat, and to investigate some abatement strategies, a series of experiments were conducted in the Martian Surface Wind Tunnel (MARSWIT) at NASA Ames Research Center. The effects of dust composition, particle size, wind velocity, angle of attack, and protective coatings on the transmittance of light through PV coverglass were determined. Both initially clear and initially dusted samples were subjected both to clear winds and simulated dust storms in the MARSWIT. It was found that wind velocity, particle size, and angle of attack are important parameters affecting occlusion of PV surfaces, while dust composition and protective coatings were not. Neither induced turbulence nor direct current biasing up to 200 volts were effective abatement techniques. Abrasion diffused the light impinging on the PV cells, but did not reduce total coverglass transmittance by more than a few percent.

  15. MEVTV Workshop on Nature and Composition of Surface Units on Mars

    NASA Technical Reports Server (NTRS)

    Zimbelman, J. R. (Editor); Solomon, S. C. (Editor); Sharpton, V. L. (Editor)

    1987-01-01

    Topics addressed include: SNC meteorites and their potential for providing information about the geochemical evolution of Mars; remote sensing; photogeological inferences of Martian surface compositions; and interactions of the surface with volatiles in either the surface or the atmosphere.

  16. Magnesium isotope systematics in Martian meteorites

    NASA Astrophysics Data System (ADS)

    Magna, Tomáš; Hu, Yan; Teng, Fang-Zhen; Mezger, Klaus

    2017-09-01

    Magnesium isotope compositions are reported for a suite of Martian meteorites that span the range of petrological and geochemical types recognized to date for Mars, including crustal breccia Northwest Africa (NWA) 7034. The δ26Mg values (per mil units relative to DSM-3 reference material) range from -0.32 to -0.11‰; basaltic shergottites and nakhlites lie to the heavier end of the Mg isotope range whereas olivine-phyric, olivine-orthopyroxene-phyric and lherzolitic shergottites, and chassignites have slightly lighter Mg isotope compositions, attesting to modest correlation of Mg isotopes and petrology of the samples. Slightly heavier Mg isotope compositions found for surface-related materials (NWA 7034, black glass fraction of the Tissint shergottite fall; δ26Mg > -0.17‰) indicate measurable Mg isotope difference between the Martian mantle and crust but the true extent of Mg isotope fractionation for Martian surface materials remains unconstrained. The range of δ26Mg values from -0.19 to -0.11‰ in nakhlites is most likely due to accumulation of clinopyroxene during petrogenesis rather than garnet fractionation in the source or assimilation of surface material modified at low temperatures. The rather restricted range in Mg isotope compositions between spatially and temporally distinct mantle-derived samples supports the idea of inefficient/absent major tectonic cycles on Mars, which would include plate tectonics and large-scale recycling of isotopically fractionated surface materials back into the Martian mantle. The cumulative δ26Mg value of Martian samples, which are not influenced by late-stage alteration processes and/or crust-mantle interactions, is - 0.271 ± 0.040 ‰ (2SD) and is considered to reflect δ26Mg value of the Bulk Silicate Mars. This value is robust taking into account the range of lithologies involved in this estimate. It also attests to the lack of the Mg isotope variability reported for the inner Solar System bodies at current analytical precision, also noted for several other major elements.

  17. My Martian Moment - Episode 1 - David Blake and CheMin

    NASA Image and Video Library

    2015-09-25

    Ames' David Blake developed the Chemistry and Mineralogy instrument, or CheMin for short, which is currently operating on NASA's Curiosity Mars rover. It identifies and measures the abundance of various minerals on the Martian surface. The instrument is built around a highly compact X-ray diffraction unit, the first of its kind to operate on a planet besides Earth. CheMin can quickly analyze soil samples, helping scientists understand the composition and history of the Martian surface.

  18. Lunar and Planetary Science XXXV: Weird Martian Minerals: Complex Mars Surface Processes

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Complex Mars Surface" included the following reports:A Reappraisal of Adsorbed Superoxide Ion as the Cause Behind the Reactivity of the Martian Soils; Sub-Surface Deposits of Hydrous Silicates or Hydrated Magnesium Sulfates as Hydrogen Reservoirs near the Martian Equator: Plausible or Not?; Thermal and Evolved Gas Analysis of Smectites: The Search for Water on Mars; Aqueous Alteration Pathways for K, Th, and U on Mars; Temperature Dependence of the Moessbauer Fraction in Mars-Analog Minerals; Acid-Sulfate Vapor Reactions with Basaltic Tephra: An Analog for Martian Surface Processes; Iron Oxide Weathering in Sulfuric Acid: Implications for Mars; P/Fe as an Aquamarker for Mars; Stable Isotope Composition of Carbonates Formed in Low-Temperature Terrestrial Environments as Martian Analogs; Can the Phosphate Sorption and Occlusion Properties Help to Elucidate the Genesis of Specular Hematite on the Mars Surface?; Sulfate Salts, Regolith Interactions, and Water Storage in Equatorial Martian Regolith; Potential Pathways to Maghemite in Mars Soils: The Key Role of Phosphate; and Mineralogy, Abundance, and Hydration State of Sulfates and Chlorides at the Mars Pathfinder Landing Site.

  19. Physical and chemical properties of the Martian soil: Review of resources

    NASA Technical Reports Server (NTRS)

    Stoker, C. R.; Gooding, James L.; Banin, A.; Clark, Benton C.; Roush, Ted

    1991-01-01

    The chemical and physical properties of Martian surface materials are reviewed from the perspective of using these resources to support human settlement. The resource potential of Martian sediments and soils can only be inferred from limited analyses performed by the Viking Landers (VL), from information derived from remote sensing, and from analysis of the SNC meteorites thought to be from Mars. Bulk elemental compositions by the VL inorganic chemical (x ray fluorescence) analysis experiments have been interpreted as evidence for clay minerals (possibly smectites) or mineraloids (palagonite) admixed with sulfate and chloride salts. The materials contained minerals bearing Fe, Ti, Al, Mg and Si. Martian surface materials may be used in many ways. Martian soil, with appropriate preconditioning, can probably be used as a plant growth medium, supplying mechanical support, nutrient elements, and water at optimal conditions to the plants. Loose Martian soils could be used to cover structures and provide radiation shielding for surface habitats. Martian soil could be wetted and formed into abode bricks used for construction. Duricrete bricks, with strength comparable to concrete, can probably be formed using compressed muds made from martian soil.

  20. Nitrogen-Bearing, Indigenous Carbonaceous Matter in the Nakhla Mars Meteorite

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, K. L.; Clemett, S. J.; Messenger, S.; Rahman, Z.; Gibson, E. K.; Wentworth, S. J.; McKay, D. S.

    2017-01-01

    We report the identification of discrete assemblages of nitrogen (N)-rich organic matter entrapped within interior fracture surfaces of the martian meteorite Nakhla. Based on context, composition and isotopic measurements this organic matter is of demonstrably martian origin. The presence of N-bearing organic species is of considerable importance to the habitable potential and chemical evolution of the martian regolith.

  1. Chemical transport during formation and alteration of Martian impact and volcanic deposits

    NASA Technical Reports Server (NTRS)

    Newsom, H. E.

    1992-01-01

    Much of the surface of Mars, including volcanic and cratered terrains, probably experienced alteration and degassing processes. These processes may have depleted or enriched many important elements in surface materials, including bedrock, dust, and soils. The composition of the martian soil may represent the best estimate, for some elements, of the average composition of the martian crust, similar to the composition of loess created by glacial action on the Earth. The martian soil may represent the only convenient, globally or regionally averaged sample of the martian crust. In order to understand the composition of the source material for the soil, however, we need to understand the contributions of volcanic vs. impact sources for this material and the chemical fractionations involved in its production. The processes to be addressed include degassing of volcanic deposits, as observed in the Valley of Ten Thousand Smokes at Katmai, Alaska, and degassing of meltbearing impact ejecta as inferred for suevite ejecta sheets at the Ries Crater, and alteration or palagonitization of volcanic deposits, as documented for volcanos in British Columbia and many other volcanic terrains, and impact crater deposits. The process of palagonitization has been the subject of several studies with reference to Mars, and palagonite is a good analogue for the spectroscopic properties of the martian dust. The role of impact in cratering has not been as well studied, although other researchers have established that both degassing and alteration are common features of impact crater deposits. Other relevant sources of experimental data include the extensive literature on the corrosion of nuclear waste glass and leaching of shocked materials.

  2. Spectroscopic Detection of Minerals in Martian Meteorites using Reflectance and Emittance Spectroscopy and Applications to Surface Mineralogy on Mars

    NASA Astrophysics Data System (ADS)

    Bishop, J. L.; Hamilton, V. E.

    2001-12-01

    Martian meteorites provide direct information about crustal rocks on Mars. In this study we are measuring reflectance and emittance spectra of multiple Martian meteorites in order to characterize the spectral properties of the minerals present and to develop comprehensive criteria for remote detection of rocks and minerals. Previous studies have evaluated mid-IR emittance spectra [Hamilton et al., 1997] and visible/IR reflectance spectra [Bishop et al., 1998a,b] of Martian meteorites independently. The current study includes comparisons of the visible/NIR and mid-IR spectral regions and also involves comparison of mid-IR spectra measured using biconical reflectance and thermal emission techniques. Combining spectral analyses of Martian meteorite chips and powders enables characterization of spectral bands for remote detection of potential source regions for meteorite-like rocks on the surface of Mars using both Thermal Emission Spectrometer (TES) datasets and visible/NIR datasets from past and future missions. Identification of alteration minerals in these meteorites also provides insights into the alteration processes taking place on Mars. Analysis of TES data on Mars has identified global regions of basaltic and andesitic surface material [e.g. Bandfield et al., 2000; Christensen et al., 2000]; however neither of these spectral endmembers corresponds well to the spectra of Martian meteorites. Some preliminary findings suggest that small regions on the surface of Mars may relate to meteorite compositions [e.g. Hoefen et al., 2000; Hamilton et al., 2001]. Part of the difficulty in identifying meteorite compositions on Mars may be due to surface alteration. We hope to apply the results of our spectroscopic analyses of Martian meteorites, as well as fresh and altered basaltic material, toward analysis of composition on Mars using multiple spectral datasets. References: Bandfield J. et al., Science 287, 1626, 2000. Bishop J. et al., MAPS 33, 699, 1998a. Bishop J. et al., MAPS 33, 693, 1998b. Christensen P., et al., JGR 105, 9609, 2000. Hamilton V. et al., JGR 102, 25593, 1997. Hamilton V. et al., LPSC XXXII, #2184, 2001. Hoefen T. et al., Bull. Am. Astron. Soc. 32, 1118, 2000.

  3. Mars Exospheric studies with MENCA on a Mars Orbiter

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Anil; Menca Team

    2012-07-01

    The study of Martian exosphere is important for understanding the escape rate of Martian atmosphere and its impact on Mars' climate change. The neutral density distribution and the composition of Martian exosphere still remain largely unexplored. There are no in-situ measurements of the Martian exosphere; only a few remote sensing measurements have been made and some modelling studies are carried out. We proposed to fly a neutral mass spectrometer, namely "MENCA" (Mars Exospheric Neutral Composition Analyser) to explore the Martian exospheric neutral density and composition at an altitude of ~500 km and above from the surface of Mars, and to study its radial and diurnal variations. MENCA is based on the technique of quadrupole mass spectrometry and has the mass range of 1-300 amu with unit mass resolution. (*) MENCA Team includes: S.V. Mohankumar, T. P. Das, P. Sreelatha, P. Pradeepkumar, B. Sunder, Amarnath Nandi, Neha Naik, G. Supriya, Vipin K. Yadav, M. B. Dhanya, R. Satheesh Thampi, G. P. Padmanabhan

  4. Petrologic Modeling of Magmatic Evolution in The Elysium Volcanic Province

    NASA Astrophysics Data System (ADS)

    Susko, D.; Karunatillake, S.; Hood, D.

    2017-12-01

    The Elysium Volcanic Province (EVP) on Mars is a massive expanse of land made up of many hundreds of lava flows of various ages1. The variable surface ages within this volcanic province have distinct elemental compositions based on the derived values from the Gamma Ray Spectrometer (GRS) suite2. Without seismic data or ophiolite sequences on Mars, the compositions of lavas on the surface provide some of the only information to study the properties of the interior of the planet. The Amazonian surface age and isolated nature of the EVP in the northern lowlands of Mars make it ideal for analyzing the mantle beneath Elysium during the most recent geologic era on Mars. The MELTS algorithm is one of the most commonly used programs for simulating compositions and mineral phases of basaltic melt crystallization3. It has been used extensively for both terrestrial applications4 and for other planetary bodies3,5. The pMELTS calibration of the algorithm allows for higher pressure (10-30 kbars) regimes, and is more appropriate for modeling melt compositions and equilibrium conditions for a source within the martian mantle. We use the pMELTS program to model how partial melting of the martian mantle could evolve magmas into the surface compositions derived from the GRS instrument, and how the mantle beneath Elysium has changed over time. We attribute changes to lithospheric loading by long term, episodic volcanism within the EVP throughout its history. 1. Vaucher, J. et al. The volcanic history of central Elysium Planitia: Implications for martian magmatism. Icarus 204, 418-442 (2009). 2. Susko, D. et al. A record of igneous evolution in Elysium, a major martian volcanic province. Scientific Reports 7, 43177 (2017). 3. El Maarry, M. R. et al. Gamma-ray constraints on the chemical composition of the martian surface in the Tharsis region: A signature of partial melting of the mantle? Journal of Volcanology and Geothermal Research 185, 116-122 (2009). 4. Ding, S. & Dasgupta, R. The fate of sulfide during decompression melting of peridotite - implications for sulfur inventory of the MORB-source depleted upper mantle. Earth and Planetary Science Letters 459, 183-195 (2017). 5. Sakaia, R., Nagaharaa, H., Ozawaa, K. & Tachibanab, S. Composition of the lunar magma ocean constrained by the conditions for the crust formation. Icarus 229, 45-56 (2014).

  5. Soil Components in Heterogeneous Impact Glass in Martian Meteorite EETA79001

    NASA Technical Reports Server (NTRS)

    Schrader, C. M.; Cohen, B. A.; Donovan, J. J.; Vicenzi, E. P.

    2010-01-01

    Martian soil composition can illuminate past and ongoing near-surface processes such as impact gardening [2] and hydrothermal and volcanic activity [3,4]. Though the Mars Exploration Rovers (MER) have analyzed the major-element composition of Martian soils, no soil samples have been returned to Earth for detailed chemical analysis. Rao et al. [1] suggested that Martian meteorite EETA79001 contains melted Martian soil in its impact glass (Lithology C) based on sulfur enrichment of Lithology C relative to the meteorite s basaltic lithologies (A and B) [1,2]. If true, it may be possible to extract detailed soil chemical analyses using this meteoritic sample. We conducted high-resolution (0.3 m/pixel) element mapping of Lithology C in thin section EETA79001,18 by energy dispersive spectrometry (EDS). We use these data for principal component analysis (PCA).

  6. Samples from Martian craters: Origin of the Martian soil by hydrothermal alteration of impact melt deposits and atmospheric interactions with ejecta during crater formation

    NASA Technical Reports Server (NTRS)

    Newsom, Horton E.

    1988-01-01

    The origin of the Martian soil is an important question for understanding weathering processes on the Martian surface, and also for understanding the global geochemistry of Mars. Chemical analyses of the soil will provide an opportunity to examine what may be a crustal average, as studies of loess on the Earth have demonstrated. In this regard the origin of the Martian soil is also important for understanding the chemical fractionations that have affected the composition of the soil. Several processes that are likely to contribute to the Martian soil are examined.

  7. Mars and the remarkable Viking results

    NASA Technical Reports Server (NTRS)

    Soffen, G. A.

    1978-01-01

    It is pointed out that the Viking missions to Mars are the most extraordinary and complex remote effort ever performed by man. Factors which made the Viking results so remarkable are related to the technological engineering accomplishment, the voluminous scientific data about the planet, and the public interest. Quite surprisingly it was found that the Viking 1 landing site was very similar to the California desert. Attention is given to details of spacecraft landing on the Martian surface, aspects of landing site selection, the design and the operation of Lander instruments, the nine different investigations performed by the Lander, the significance of the pictures obtained of Mars, the remarkable heterogeneity of the planet, the extent and variety of volcanism, the presence of water in the solid and gaseous form on the Martian surface, the presence of water in the liquid phase at some time in the past, the two natural Martian satellites, the composition of the Martian polar caps and their changes during the seasons, the composition of the atmosphere, and the biological results, which remain ambiguous.

  8. Martian atmospheric O3 retrieval development for the NOMAD-UVIS spectrometer

    NASA Astrophysics Data System (ADS)

    Hewson, W.; Mason, J. P.; Leese, M.; Hathi, B.; Holmes, J.; Lewis, S. R.; Iriwin, P. G. J.; Patel, M. R.

    2017-09-01

    The composition of atmospheric trace gases and aerosols is a highly variable and poorly constrained component of the martian atmosphere, and by affecting martian climate and UV surface dose, represents a key parameter in the assessment of suitability for martian habitability. The ExoMars Trace Gas Orbiter (TGO) carries the Open University (OU) designed Ultraviolet and VIsible Spectrometer (UVIS) instrument as part of the Belgian-led Nadir and Occultation for MArs Discovery (NOMAD) spectrometer suite. NOMAD will begin transmitting science observations of martian surface and atmosphere back-scattered UltraViolet (UV) and visible radiation in Spring 2018, which will be processed to derive spatially and temporally averaged atmospheric trace gas and aerosol concentrations, intended to provide a better understanding of martian atmospheric photo-chemistry and dynamics, and will also improve models of martian atmospheric chemistry, climate and habitability. Work presented here illustrates initial development and testing of the OU's new retrieval algorithm for determining O3 and aerosol concentrations from the UVIS instrument.

  9. A spectroscopic analysis of Martian crater central peaks: Formation of the ancient crust

    NASA Astrophysics Data System (ADS)

    Skok, J. R.; Mustard, J. F.; Tornabene, L. L.; Pan, C.; Rogers, D.; Murchie, S. L.

    2012-11-01

    The earliest formed crust on a single plate planet such as Mars should be preserved, deeply buried under subsequent surface materials. Mars' extensive cratering history would have fractured and disrupted the upper layers of this ancient crust. Large impacts occurring late in Martian geologic history would have excavated and exposed this deeply buried material. We report the compositional analysis of unaltered mafic Martian crater central peaks with high-resolution spectral data that was used to characterize the presence, distribution and composition of mafic mineralogy. Reflectance spectra of mafic outcrops are modeled with the Modified Gaussian Model (MGM) to determine cation composition of olivine and pyroxene mineral deposits. Observations show that central peaks with unaltered mafic units are only observed in four general regions of Mars. Each mafic unit exhibits spectrally unmixed outcrops of olivine or pyroxene, indicating dunite and pyroxenite dominated compositions instead of basaltic composition common throughout much of the planet. Compositional analysis shows a wide range of olivine Fo# ranging from Fo60 to Fo5. This variation is best explained by a high degree of fractionation in a slowly cooling, differentiating magma body. Pyroxene analysis shows that all the sites in the Southern Highlands are consistent with moderately Fe-rich, low-Ca pyroxene. Mineral segregation in the ancient crust could be caused by cumulate crystallization and settling in a large, potentially global, lava lake or near surface plutons driven by a hypothesized early Martian mantle overturn.

  10. The composition of Martian aeolian sands: Thermal emissivity from Viking IRTM observations

    NASA Technical Reports Server (NTRS)

    Edgett, Kenneth S.; Christensen, Philip R.

    1992-01-01

    Aeolian sands provide excellent surfaces for the remote determination of the mineralogic composition of Martian materials, because such deposits consist of relatively well-sorted, uniform particle sizes and might consist of chemically unaltered, primary mineral grains derived from bedrock. Dark features on the floors of Martian craters are controlled by aeolian processes and many consist largely of unconsolidated, windblown sand. Measurement of the thermal emissivity of geologic materials provides a way to identify mid-infrared absorption bands, the strength and positions of which vary with mineral structure and composition. The Viking Infrared Thermal Mapper (IRTM) had four surface-sensing mid-IR bands, three of which, the 7, 9, and 11 micron channels, correspond to absorption features characteristic of carbonates, sialic, and mafic minerals, respectively. In this study, the highest quality IRTM data were constrained so as to avoid the effects of atmospheric dust, clouds, surface frosts, and particle size variations (the latter using data obtained between 7 and 9 H, and they were selected for dark intracrater features such that only data taken directly from the dark feature were used, so as to avoid thermal contributions from adjacent but unrelated materials. Three-point emissivity spectra of Martian dart intracrater features were compared with laboratory emission spectra of minerals and terrestrial aeolian sands convolved using the IRTM response function to the four IRTM spectral channels.

  11. Noble Gas Analysis for Mars Robotic Missions: Evaluating K-Ar Age Dating for Mars Rock Analogs and Martian Shergottites

    NASA Technical Reports Server (NTRS)

    Park, J.; Ming, D. W.; Garrison, D. H.; Jones, J. H.; Bogard, D. D.; Nagao, K.

    2009-01-01

    The purpose of this noble gas investigation was to evaluate the possibility of measuring noble gases in martian rocks and air by future robotic missions such as the Mars Science Laboratory (MSL). The MSL mission has, as part of its payload, the Sample Analysis at Mars (SAM) instrument, which consists of a pyrolysis oven integrated with a GCMS. The MSL SAM instrument has the capability to measure noble gas compositions of martian rocks and atmosphere. Here we suggest the possibility of K-Ar age dating based on noble gas release of martian rocks by conducting laboratory simulation experiments on terrestrial basalts and martian meteorites. We provide requirements for the SAM instrument to obtain adequate noble gas abundances and compositions within the current SAM instrumental operating conditions, especially, a power limit that prevents heating the furnace above approx.1100 C. In addition, Martian meteorite analyses from NASA-JSC will be used as ground truth to evaluate the feasibility of robotic experiments to constrain the ages of martian surface rocks.

  12. The early Martian environment: Clues from the cratered highlands and the Precambrian Earth

    NASA Technical Reports Server (NTRS)

    Craddock, R. A.; Maxwell, T. A.

    1993-01-01

    There is abundant geomorphic evidence to suggest that Mars once had a much denser and warmer atmosphere than present today. Outflow channel, ancient valley networks, and degraded impact craters in the highlands all suggest that ancient Martian atmospheric conditions supported liquid water on the surface. The pressure, composition, and duration of this atmosphere is largely unknown. However, we have attempted to place some constraints on the nature of the early Martian atmosphere by analyzing morphologic variations of highland impact crater populations, synthesizing results of other investigators, and incorporating what is know about the geologic history of the early Earth. This is important for understanding the climatic evolution of Mars, the relative abundance of martian volatiles, and the nature of highland surface materials.

  13. The Charged Particle Environment on the Surface of Mars induced by Solar Energetic Particles - Five Years of Measurements with the MSL/RAD instrument

    NASA Astrophysics Data System (ADS)

    Ehresmann, B.; Hassler, D.; Zeitlin, C.; Guo, J.; Lee, C. O.; Wimmer-Schweingruber, R. F.; Appel, J. K.; Boehm, E.; Boettcher, S. I.; Brinza, D. E.; Burmeister, S.; Lohf, H.; Martin-Garcia, C.; Matthiae, D.; Rafkin, S. C.; Reitz, G.

    2017-12-01

    NASA's Mars Science Laboratory (MSL) mission has now been operating in Gale crater on the surface of Mars for five years. On board MSL, the Radiation Assessment Detector (MSL/RAD) is measuring the Martian surface radiation environment, providing insights on its intensity and composition. This radiation field is mainly composed of primary Galactic Cosmic Rays (GCRs) and secondary particles created by the GCRs' interactions with the Martian atmosphere and soil. However, on shorter time scales the radiation environment can be dominated by contributions from Solar Energetic Particle (SEP) events. Due to the modulating effect of the Martian atmosphere shape and intensity of these SEP spectra will differ significantly between interplanetary space and the Martian surface. Understanding how SEP events influence the surface radiation field is crucial to assess associated health risks for potential human missions to Mars. Here, we present updated MSL/RAD results for charged particle fluxes measured on the surface during SEP activity from the five years of MSL operations on Mars. The presented results incorporate updated analysis techniques for the MSL/RAD data and yield the most robust particle spectra to date. Furthermore, we compare the MSL/RAD SEP-induced fluxes to measurements from other spacecraft in the inner heliosphere and, in particular, in Martian orbit. Analyzing changes of SEP intensities from interplanetary space to the Martian surface gives insight into the modulating effect of the Martian atmosphere, while comparing timing profiles of SEP events between Mars and different points in interplanetary space can increase our understanding of SEP propagation in the heliosphere.

  14. Martian surface weathering studies

    NASA Technical Reports Server (NTRS)

    Calvin, M.

    1973-01-01

    The nature of the Martian surface was characterized by means of its reflectance properties. The Mariner 9 photography was used to establish terrain units which were crossed by the Mariner 6 and 7 paths. The IR reflectance measured by the IR spectrometers on these spacecraft was to be used to indicate the nature of the surface within these units. There is an indication of physical size and/or compositional variation between units but too many natural parameters can vary (size, shape, composition, adsorbed phases, reradiation, atmospheric absorbtion, temperature gradients, etc.) to be certain what effect is causing those variations observed. It is suggested that the characterization could be fruitfully pursued by a group which was dedicated to peeling back the layers of minutia affecting IR reflectance.

  15. Radiation Transport Properties of Potential In Situ-Developed Regolith-Epoxy Materials for Martian Habitats

    NASA Technical Reports Server (NTRS)

    Miller, Jack; Heilbronn, Lawrence H.; Zeitlin, Cary J.; Wilson, John W.; Singleterry, Robert C., Jr.; Thibeault, Sheila Ann

    2003-01-01

    Mission crews in space outside the Earth s magnetic field will be exposed to high energy heavy charged particles in the galactic cosmic radiation (GCR). These highly ionizing particles will be a source of radiation risk to crews on extended missions to the Moon and Mars, and the biological effects of and countermeasures to the GCR have to be investigated as part of the planning of exploration-class missions. While it is impractical to shield spacecraft and planetary habitats against the entire GCR spectrum, biological and physical studies indicate that relatively modest amounts of shielding are effective at reducing the radiation dose. However, nuclear fragmentation in the shielding materials produces highly penetrating secondary particles, which complicates the problem: in some cases, some shielding is worse than none at all. Therefore the radiation transport properties of potential shielding materials need to be carefully investigated. One intriguing option for a Mars mission is the use of material from the Martian surface, in combination with chemicals carried from Earth and/or fabricated from elements found in the Martian atmosphere, to construct crew habitats. We have measured the transmission properties of epoxy-Martian regolith composites with respect to heavy charged particles characteristic of the GCR ions which bombard the Martian surface. The composites were prepared at NASA Langley Research Center using simulated Martian regolith, in the process also evaluating fabrication methods which could lead to technologies for in situ fabrication on Mars. Initial evaluation of the radiation shielding properties is made using radiation transport models developed at NASA-LaRC, and the results of these calculations are used to select the composites with the most favorable radiation transmission properties. These candidates are then evaluated at particle accelerators which produce beams of heavy charged particles representative in energy and charge of the radiation at the surface of Mars. The ultimate objective is to develop the models into a design tool for use by mission planners, flight surgeons and radiation health specialists.

  16. Hydrogen Isotopic Composition of Apatite in Northwest Africa 7034: A Record of the "Intermediate" H-Isotopic Reservoir in the Martian Crust?

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; Barnes, J. J.; Santos, A. R.; Boyce, J. W.; Anand, M.; Franchi, I. A.; Agee, C. B.

    2016-01-01

    Northwest Africa (NWA) 7034 and its pairings comprise a regolith breccia with a basaltic bulk composition [1] that yields a better match than any other martian meteorite to visible-infrared reflectance spectra of the martian surface measured from orbit [2]. The composition of the fine-grained matrix within NWA 7034 bears a striking resemblance to the major element composition estimated for the martian crust, with several exceptions. The NWA 7034 matrix is depleted in Fe, Ti, and Cr and enriched in Al, Na, and P [3]. The differences in Al and Fe are the most substantial, but the Fe content of NWA 7034 matrix falls within the range reported for the southern highlands crust [6]. It was previously suggested by [4] that NWA 7034 was sourced from the southern highlands based on the ancient 4.4 Ga ages recorded in NWA 7034/7533 zircons [4, 5]. In addition, the NWA 7034 matrix material is enriched in incompatible trace elements by a factor of 1.2-1.5 [7] relative to estimates of the bulk martian crust. The La/Yb ratio of the bulk martian crust is estimated to be approximately 3 [7], and the La/Yb of the NWA 7034 matrix materials ranges from approximately 3.9 to 4.4 [3, 8], indicating a higher degree of LREE enrichment in the NWA 7034 matrix materials. This elevated La/Yb ratio and enrichment in incompatible lithophile trace elements is consistent with NWA 7034 representing a more geochemically enriched crustal terrain than is represented by the bulk martian crust, which would be expected if NWA 7034 represents the bulk crust from the southern highlands. Given the similarities between NWA 7034 and the martian crust, NWA 7034 may represent an important sample for constraining the composition of the martian crust, particularly the ancient highlands. In the present study, we seek to constrain the H isotopic composition of the martian crust using Cl-rich apatite in NWA 7034. Usui et al., [9] recently proposed that a H isotopic reservoir exists within the martian crust that has a H-isotopic composition that is intermediate (dD of 1000-2000per mille) between an isotopically light mantle (Delta D is less than 275per mille [10]) and an isotopically heavy atmosphere (dD of 2500-6100per mille [11, 12]). Apatites in NWA 7034 occur in a number of lithologic domains, however apatites across all lithologic domains have been affected by a Pb-loss event at about 1.5 Ga before present [5], so they are unlikely to have retained a primary composition and are more likely to have equilibrated with fluids within the martian crust that may or may not have exchanged with the martian atmosphere. Equilibration of apatite with crustal fluids is further supported by the chlorine-rich compositions exhibited by apatites in NWA 7034 in comparison to apatites from other martian meteorites (Figure 1; [13]). Cl is more hydrophilic than F, which promotes formation of Cl-rich apatite compositions in fluid-rich systems [e.g., 14, 15-17].

  17. Mars Crust: Made of Basalt

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2009-05-01

    By combining data from several sources, Harry Y. (Hap) McSween (University of Tennessee), G. Jeffrey Taylor (University of Hawaii) and Michael B. Wyatt (Brown University) show that the surface of Mars is composed mostly of basalt not unlike those that make up the Earth's oceanic crust. McSween and his colleagues used data from Martian meteorites, analyses of soils and rocks at robotic landing sites, and chemical and mineralogical information from orbiting spacecraft. The data show that Mars is composed mostly of rocks similar to terrestrial basalts called tholeiites, which make up most oceanic islands, mid-ocean ridges, and the seafloor beneath sediments. The Martian samples differ in some respects that reflect differences in the compositions of the Martian and terrestrial interiors, but in general are a lot like Earth basalts. Cosmochemistst have used the compositions of Martian meteorites to discriminate bulk properties of Mars and Earth, but McSween and coworkers' synthesis shows that the meteorites differ from most of the Martian crust (the meteorites have lower aluminum, for example), calling into question how diagnostic the meteorites are for understanding the Martian interior.

  18. Crystallization Age of NWA 1460 Shergottite: Paradox Revisited

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C-Y.; Reese, Y. D.; Irving, A. J.

    2004-01-01

    We have determined the Rb-Sr age of basaltic shergottite NWA 1460 to be 312 +/- 3 Ma, and the Sm-Nd age to be 352 +/- 30 Ma. The initial Sr and Nd isotopic compositions of NWA 1460 suggest it is an earlier melting product of a Martian mantle source region similar to those of the Iherzolitic shergottites and basaltic shergottite EETA79001, lithology B. The new ages of NWA 1460 and other recently analyzed Martian meteorites leads us to reexamine the paradox that most of the Martian meteorites appear to be younger from the majority of the Martian surface. This paradox continues to pose a challenge to determining a reliable Martian chronology.

  19. Zeolite Formation and Weathering Processes Within the Martian Regolith: An Antarctic Analog

    NASA Technical Reports Server (NTRS)

    Gibson, E. K.; McKay, D. S.; Wentworth, S. J.; Socki, R. A.

    2003-01-01

    As more information is obtained about the nature of the surface compositions and processes operating on Mars, it is clear that significant erosional and depositional features are present on the surface. Apparent aqueous or other fluid activity on Mars has produced many of the erosional and outflow features observed. Evidence of aqueous activity on Mars has been reported by earlier studies. Gooding and colleagues championed the cause of pre-terrestrial aqueous alteration processes recorded in Martian meteorites. Oxygen isotope studies on Martian meteorites by Karlsson et al. and Romenek et al. gave evidence for two separate water reservoirs on Mars. The oxygen isotopic compositions of the host silicate minerals was different from the oxygen isotopic composition of the secondary alteration products within the SNC meteorites. This implied that the oxygen associated with fluids which produced the secondary alteration was from volatiles which were possibly added to the planetary inventory after formation of the primary silicates from which the SNC s were formed. The source of the oxygen may have been from a cometary or volatile-rich veneer added to the planet in its first 600 million years.

  20. Mars Observer Mission: Mapping the Martian World

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The 1992 Mars Observer Mission is highlighted in this video overview of the mission objectives and planning. Using previous photography and computer graphics and simulation, the main objectives of the 687 day (one Martian year) consecutive orbit by the Mars Observer Satellite around Mars are explained. Dr. Arden Albee, the project scientist, speaks about the pole-to-pole mapping of the Martian surface topography, the planned relief maps, the chemical and mineral composition analysis, the gravity fields analysis, and the proposed search for any Mars magnetic fields.

  1. Volcanism on Mars controlled by early oxidation of the upper mantle

    NASA Astrophysics Data System (ADS)

    Tuff, J.; Wade, J.; Wood, B. J.

    2013-06-01

    Detailed information about the chemical composition and evolution of Mars has been derived principally from the SNC (shergottite-nakhlite-chassignite) meteorites, which are genetically related igneous rocks of Martian origin. They are chemically and texturally similar to terrestrial basalts and cumulates, except that they have higher concentrations of iron and volatile elements such as phosphorus and chlorine and lower concentrations of nickel and other chalcophile (sulphur-loving) elements. Most Martian meteorites have relatively young crystallization ages (1.4 billion years to 180 million years ago) and are considered to be derived from young, lightly cratered volcanic regions, such as the Tharsis plateau. Surface rocks from the Gusev crater analysed by the Spirit rover are much older (about 3.7 billion years old) and exhibit marked compositional differences from the meteorites. Although also basaltic in composition, the surface rocks are richer in nickel and sulphur and have lower manganese/iron ratios than the meteorites. This has led to doubts that Mars can be described adequately using the `SNC model'. Here we show, however, that the differences between the compositions of meteorites and surface rocks can be explained by differences in the oxygen fugacity during melting of the same sulphur-rich mantle. This ties the sources of Martian meteorites to those of the surface rocks through an early (>3.7 billion years ago) oxidation of the uppermost mantle that had less influence on the deeper regions, which produce the more recent volcanic rocks.

  2. Lunar and Planetary Science XXXI

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This CD-ROM presents papers presented to the Thirty-first Lunar and Planetary Science Conference, March 13-17, 2000, Houston, Texas. Eighty-one conference sessions, and over one thousand extended abstracts are included. Abstracts cover topics such as Martian surface properties and geology, meteoritic composition, Martian landing sites and roving vehicles, planned Mars Sample Return Missions, and general astrobiology.

  3. Chemistry and mineralogy of Martian dust: An explorer's primer

    NASA Technical Reports Server (NTRS)

    Gooding, James L.

    1991-01-01

    A summary of chemical and mineralogical properties of Martian surface dust is offered for the benefit of engineers or mission planners who are designing hardware or strategies for Mars surface exploration. For technical details and specialized explanations, references should be made to literature cited. Four sources used for information about Martian dust composition: (1) Experiments performed on the Mars surface by the Viking Landers 1 and 2 and Earth-based lab experiments attempting to duplicate these results; (2) Infrared spectrophotometry remotely performed from Mars orbit, mostly by Mariner 9; (3) Visible and infrared spectrophotometry remotely performed from Earth; and (4) Lab studies of the shergottite nakhlite chassignite (SNC) clan of meteorites, for which compelling evidence suggests origin on Mars. Source 1 is limited to fine grained sediments at the surface whereas 2 and 3 contain mixed information about surface dust (and associated rock) and atmospheric dust. Source 4 has provided surprisingly detailed information but investigations are still incomplete.

  4. Mineralogical diversity (spectral reflectance and Moessbauer data) in compositionally similar impact melt rocks from Manicouagan Crater, Canada

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Bell, J. F., III; Golden, D. C.; Lauer, H. V., Jr.

    1993-01-01

    Meteoritic impacts under oxidizing surface conditions occur on both earth and Mars. Oxidative alteration of impact melt sheets is reported at several terrestrial impact structures including Manicouagan, West Clearwater Lake, and the Ries Basin. A number of studies have advocated that a significant fraction of Martian soil may consist of erosional products of oxidatively altered impact melt sheets. If so, the signature of the Fe-bearing mineralogies formed by the process may be present in visible and near infrared reflectivity data for the Martian surface. Of concern is what mineral assemblages form in impact melt sheets produced under oxidizing conditions and what their spectral signatures are. Spectral and Moessbauer data for 19 powder samples of impact melt rock from Manicouagan Crater are reported. Results show for naturally occurring materials that composite hematite-pyroxene bands have minima in the 910-nm region. Thus many of the anomalous Phobos-2 spectra, characterized by a shallow band minimum in the near-IR whose position varies between approximately 850 and 1000 nm, can be explained by assemblages whose endmembers (hematite and pyroxene) are accepted to be present on Mars. Furthermore, results show that a mineralogically diverse suite of rocks can be generated at essentially constant composition, which implies that variations in Martian surface mineralogy do not necessarily imply variations in chemical composition.

  5. The Martian surface as imaged, sampled, and analyzed by the Viking landers

    NASA Technical Reports Server (NTRS)

    Arvidson, Raymond E.; Gooding, James L.; Moore, Henry J.

    1989-01-01

    Data collected by two Viking landers are analyzed. Attention is given to the characteristics of the surface inferred from Lander imaging and meteorology data, physical and magnetic properties experiments, and both inorganic and organic analyses of Martian samples. Viking Lander 1 touched down on Chryse Planitia on July 20, 1976 and continued to operate for 2252 sols, until November 20, 1982. Lander 2 touched down about 6500 km away from Lander 1, on Utopia Planitia on September 3, 1976. The chemical compositions of sediments at the two landing sites are similar, suggesting an aeolian origin. The compositions suggest an iron-rich rock an are matched by various clays and salts.

  6. Early views of the martian surface from the Mars Orbiter Camera of Mars Global Surveyor.

    PubMed

    Malin, M C; Carr, M H; Danielson, G E; Davies, M E; Hartmann, W K; Ingersoll, A P; James, P B; Masursky, H; McEwen, A S; Soderblom, L A; Thomas, P; Veverka, J; Caplinger, M A; Ravine, M A; Soulanille, T A; Warren, J L

    1998-03-13

    High-resolution images of the martian surface at scales of a few meters show ubiquitous erosional and depositional eolian landforms. Dunes, sandsheets, and drifts are prevalent and exhibit a range of morphology, composition (inferred from albedo), and age (as seen in occurrences of different dune orientations at the same location). Steep walls of topographic depressions such as canyons, valleys, and impact craters show the martian crust to be stratified at scales of a few tens of meters. The south polar layered terrain and superposed permanent ice cap display diverse surface textures that may reflect the complex interplay of volatile and non-volatile components. Low resolution regional views of the planet provide synoptic observations of polar cap retreat, condensate clouds, and the lifecycle of local and regional dust storms.

  7. Nonlinear Spectral Mixture Modeling to Estimate Water-Ice Abundance of Martian Regolith

    NASA Astrophysics Data System (ADS)

    Gyalay, Szilard; Chu, Kathryn; Zeev Noe Dobrea, Eldar

    2017-10-01

    We present a novel technique to estimate the abundance of water-ice in the Martian permafrost using Phoenix Surface Stereo Imager multispectral data. In previous work, Cull et al. (2010) estimated the abundance of water-ice in trenches dug by the Mars Phoenix lander by modeling the spectra of the icy regolith using the radiative transfer methods described in Hapke (2008) with optical constants for Mauna Kea palagonite (Clancy et al., 1995) as a substitute for unknown Martian regolith optical constants. Our technique, which uses the radiative transfer methods described in Shkuratov et al. (1999), seeks to eliminate the uncertainty that stems from not knowing the composition of the Martian regolith by using observations of the Martian soil before and after the water-ice has sublimated away. We use observations of the desiccated regolith sample to estimate its complex index of refraction from its spectrum. This removes any a priori assumptions of Martian regolith composition, limiting our free parameters to the estimated real index of refraction of the dry regolith at one specific wavelength, ice grain size, and regolith porosity. We can then model mixtures of regolith and water-ice, fitting to the original icy spectrum to estimate the ice abundance. To constrain the uncertainties in this technique, we performed laboratory measurements of the spectra of known mixtures of water-ice and dry soils as well as those of soils after desiccation with controlled viewing geometries. Finally, we applied the technique to Phoenix Surface Stereo Imager observations and estimated water-ice abundances consistent with pore-fill in the near-surface ice. This abundance is consistent with atmospheric diffusion, which has implications to our understanding of the history of water-ice on Mars and the role of the regolith at high latitudes as a reservoir of atmospheric H2O.

  8. Mars

    NASA Astrophysics Data System (ADS)

    McSween, H. Y., Jr.; McLennan, S. M.

    Of all the planets, Mars is the most Earthlike, inviting geochemical comparisons. Geochemical data for Mars are derived from spacecraft remote sensing, surface measurements and Martian meteorites. These analyses of exposed crustal materials enable estimates of bulk planet composition and inferences about its iron-rich mantle and core, as well as constraints on planetary differentiation and crust-mantle evolution. Mars probably had an early magma ocean, but there is no evidence for plate tectonics or crustal recycling any time in its history. The crust is basaltic in composition and lithologically heterogeneous, with radiometric crystallization ages ranging from ~4 billion years to within the last several hundred million years. Mantle sources for magmas vary considerably in incompatible element abundances. Although Mars is volatile element-rich, estimations of the amount of water delivered to the surface by volcanism are controversial. Low-temperature aqueous alteration affected the ancient Martian surface, producing clay minerals, sulfates, and other secondary minerals. Weathering and diagenetic trends are distinct from terrestrial chemical alteration, indicating different aqueous conditions. Organic matter has been found in Martian meteorites, but no geochemical signal of life has yet been discovered. Dynamic geochemical cycles for some volatile elements are revealed by stable isotope measurements. Long-term secular changes in chemical and mineralogical compositions of igneous rocks and sediments have been documented but are not well understood.

  9. Perchlorate Formation on Mars Through Surface Radiolysis-Initiated Atmospheric Chemistry: A Potential Mechanism

    NASA Technical Reports Server (NTRS)

    Wilson, Eric H.; Atreya, Sushil K.; Kaiser, Ralf I.; Mahaffy, Paul R.

    2016-01-01

    Recent observations of the Martian surface by the Phoenix lander and the Sample Analysis at Mars indicate the presence of perchlorate (ClO4). The abundance and isotopic composition of these perchlorates suggest that the mechanisms responsible for their formation in the Martian environment may be unique in our solar system. With this in mind, we propose a potential mechanism for the production of Martian perchlorate: the radiolysis of the Martian surface by galactic cosmic rays, followed by the sublimation of chlorine oxides into the atmosphere and their subsequent synthesis to form perchloric acid (HClO4) in the atmosphere, and the surface deposition and subsequent mineralization of HClO4 in the regolith to form surface perchlorates. To evaluate the viability of this mechanism, we employ a one-dimensional chemical model, examining chlorine chemistry in the context of Martian atmospheric chemistry. Considering the chlorine oxide, OClO, we find that an OClO flux as low as 3.2 x 10(exp 7) molecules/sq cm/s sublimated into the atmosphere from the surface could produce sufficient HClO4 to explain the perchlorate concentration on Mars, assuming an accumulation depth of 30 cm and integrated over the Amazonian period. Radiolysis provides an efficient pathway for the oxidation of chlorine, bypassing the efficient Cl/HCl recycling mechanism that characterizes HClO4 formation mechanisms proposed for the Earth but not Mars.

  10. The model of the composition of the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Izakov, M. N.; Krasitskiy, O. P.

    1977-01-01

    Global mean distributions of Martian atmospheric components concentrations from the planet's surface up to an altitude of 250 km are calculated. Improved data on the turbulent mixing coefficient, as a function of altitude, on temperature distribution and on chemical and photochemical reaction rates are used. The model data agree well with available measurements of some components concentrations. Variations of composition due to long-period variations of temperature, moisture and turbulent mixing are investigated. The relative significance of different catalytic cycles and the important role of excited atoms 0 (d-1) are revealed.

  11. AOTF near-IR spectrometers for study of Lunar and Martian surface composition

    NASA Astrophysics Data System (ADS)

    Korablev, O.; Kiselev, A.; Vyazovetskiy, N.; Fedorova, A.; Evdokimova, N.; Stepanov, A.; Titov, A.; Kalinnikov, Y.; Kuzmin, R. O.; Bazilevsky, A. T.; Bondarenko, A.; Moiseev, P.

    2013-09-01

    The series of the AOTF near-IR spectrometers is developed in Moscow Space Research Institute for study of Lunar and Martian surface composition in the vicinity of a lander or a rover. Lunar Infrared Spectrometer (LIS) is an experiment onboard Luna-Glob (launch in 2015) and Luna-Resurs (launch in 2017) Russian surface missions. The LIS is mounted on the mechanic arm of landing module in the field of view (45°) of stereo TV camera. Infrared Spectrometer for ExoMars (ISEM) is an experiment onboard ExoMars (launch in 2018) ESARoscosmos rover. The ISEM instrument is mounted on the rover's mast together with High Resolution camera (HRC). Spectrometers will provide measurements of selected surface area in the spectral range of 1.15-3.3 μm. The electrically commanded acousto-optic filter scans sequentially at a desired sampling, with random access, over the entire spectral range.

  12. The role of SO2 on Mars and on the primordial oxygen isotope composition of water on Earth and Mars

    NASA Technical Reports Server (NTRS)

    Waenke, H.; Dreibus, G.; Jagoutz, E.; Mukhin, L. M.

    1992-01-01

    We stress the importance of SO2 on Mars. In the case that water should have been supplied in sufficient quantities to the Martian surface by a late veneer and stored in the near surface layers in form of ice, temporary greenhouse warming by SO2 after large SO2 discharges may have been responsible for melting of ice and break-out of water in areas not directly connected to volcanic activity. Aside from water, liquid SO2 could explain at least some of the erosion features on the Martian surface.

  13. Mars Observer: Mission toward a basic understanding of Mars

    NASA Technical Reports Server (NTRS)

    Albee, Arden L.

    1992-01-01

    The Mars Observer Mission will provide a spacecraft platform about Mars from which the entire Martian surface and atmosphere will be observed and mapped by remote sensing instruments for at least 1 Martian year. The scientific objectives for the Mission emphasize qualitative and quantitative determination of the elemental and mineralogical composition of the surface; measurement of the global surface topography, gravity field, and magnetic field; and the development of a synoptic data base of climatological conditions. The Mission will provide basic global understanding of Mars as it exists today and will provide a framework for understanding its past.

  14. Palagonitic Mars: A Basalt Centric View of Surface Composition and Aqueous Alteration

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Graff, T. G.; Ming, D. W.; Bell, J. F., III; Le, L.; Mertzman, S. A.; Christensen, P. R.

    2004-01-01

    Palagonitic tephra from certain areas on Mauna Kea Volcano (Hawaii) are well-established spectral and magnetic analogues of high-albedo regions on Mars. By definition, palagonite is "a yellow or orange isotropic mineraloid formed by hydration and devitrification of basaltic glass." The yellow to orange pigment is nanometer-sized ferric oxide particles (np-Ox) dispersed throughout the hydrated basaltic glass matrix. The hydration state of the np-Ox particles and the matrix is not known, but the best Martian spectral analogues contain allophane-like materials and not crystalline phyllosilicates. Martian low-albedo regions are also characterized by a palagonite-like ferric absorption edge, but, unlike the highalbedo regions, they also show evidence for absorption by ferrous iron. Thermal emission spectra (TES) obtained by the Mars Global Surveyor Thermal Emission Spectrometer suggest that basaltic (surface Type 1) and andesitic (surface Type 2) volcanic compositions preferentially occur in southern (Syrtis Major) and northern (Acidalia) hemispheres, respectively. The absence of a ferric-bearing component in the modeling of TES spectra is in apparent conflict with VNIR spectra of Martian dark regions, as discussed above. However, the andesitic spectra have also been interpreted as oxidized basalt using phyllosilicates instead of high-SiO2 glass as endmembers in the spectral deconvolution of surface Type 2 TES spectra. We show here that laboratory VNIR and TES spectra of rinds on basaltic rocks are spectral endmembers that provide a consistent explanation for both VNIR and TES data of Martian dark regions.

  15. Properties of the moon, Mars, Martian satellites, and near-earth asteroids

    NASA Technical Reports Server (NTRS)

    Taylor, Jeffrey G.

    1989-01-01

    Environments and surface properties of the moon, Mars, Martian satellites, and near-earth asteroids are discussed. Topics include gravity, atmospheres, surface properties, surface compositions, seismicity, radiation environment, degradation, use of robotics, and environmental impacts. Gravity fields vary from large fractions of the earth's field such as 1/3 on Mars and 1/6 on the moon to smaller fractions of 0.0004 g on an asteroid 1 km in diameter. Spectral data and the analogy with meteor compositions suggest that near-earth asteroids may contain many resources such as water-rich carbonaceous materials and iron-rich metallic bodies. It is concluded that future mining and materials processing operations from extraterrestrial bodies require an investment now in both (1) missions to the moon, Mars, Phobos, Deimos, and near-earth asteroids and (2) earth-based laboratory research in materials and processing.

  16. In situ mineralogical-chemical analysis of Martian materials at landing/roving sites by active and passive remote sensing methods

    NASA Technical Reports Server (NTRS)

    Neukum, G.; Lehmann, F.; Regner, P.; Jaumann, R.

    1988-01-01

    Remote sensing of the Martian surface from the ground and from orbiting spacecraft has provided some first-order insight into the mineralogical-chemical composition and the weathering state of Martian surface materials. Much more detailed information can be gathered from performing such measurements in situ at the landing sites or from a rover in combination with analogous measurements from orbit. Measurements in the wavelength range of approximately 0.3 to 12.0 micrometers appear to be suitable to characterize much of the physical, mineralogical, petrological, and chemical properties of Martian surface materials and the weathering and other alteration processes that have acted on them. It is of particular importance to carry out measurements at the same time over a broad wavelength range since the reflectance signatures are caused by different effects and hence give different and complementing information. It appears particularly useful to employ a combination of active and passive methods because the use of active laser spectroscopy allows the obtaining of specific information on thermal infrared reflectance of surface materials. It seems to be evident that a spectrometric survey of Martian materials has to be focused on the analysis of altered and fresh mafic materials and rocks, water-bearing silicates, and possibly carbonates.

  17. Glycine's radiolytic destruction in ices: first in situ laboratory measurements for Mars.

    PubMed

    Gerakines, Perry A; Hudson, Reggie L

    2013-07-01

    We report new laboratory studies of the radiation-induced destruction of glycine-containing ices for a range of temperatures and compositions that allow extrapolation to martian conditions. In situ infrared spectroscopy was used to study glycine decay rates as a function of temperature (from 15 to 280 K) and initial glycine concentrations in six mixtures whose compositions ranged from dry glycine to H2O+glycine (300:1). Results are presented in several systems of units, with cautions concerning their use. The half-life of glycine under the surface of Mars is estimated as an extrapolation of this data set to martian conditions, and trends in decay rates are described as are applications to Mars' near-surface chemistry.

  18. The Martian surface as imaged, sampled, and analyzed by the Viking landers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arvidson, R.E.; Gooding, J.L.; Moore, H.J.

    1989-02-01

    Data collected by two Viking landers are analyzed. Attention is given to the characteristics of the surface inferred from Lander imaging and meteorology data, physical and magnetic properties experiments, and both inorganic and organic analyses of Martian samples. Viking Lander 1 touched down on Chryse Planitia on July 20, 1976 and continued to operate for 2252 sols, until November 20, 1982. Lander 2 touched down about 6500 km away from Lander 1, on Utopia Planitia on September 3, 1976. The chemical compositions of sediments at the two landing sites are similar, suggesting an aeolian origin. The compositions suggest an iron-richmore » rock an are matched by various clays and salts. 89 refs.« less

  19. Analysis and interpretation of Viking inorganic chemistry data (Mars data analysis program)

    NASA Technical Reports Server (NTRS)

    Clark, B. C.

    1982-01-01

    Soil samples gathered by the Viking Lander from the surface of Mars were analyzed. The Martian fines were lower in aluminum, iron, sulfur, and chlorine than typical terrestrial continental soils or lunar mare fines. Sample variabilities were as great within a few meters as between lander locations (4500 km apart) implying the existence of a universal Martian regolith component of constant average composition.

  20. Proceedings of the Seventh International Conference on Mars

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The oral and poster sessions of the SEVENTH INTERNATIONAL CONFERENCE ON MARS included; The Distribution and Context of Water-related Minerals on Mars; Poster Session: Mars Geology; Geology of the Martian Surface: Lithologic Variation, Composition, and Structure; Water Through Mars' Geologic History; Poster Session: Mars Water and the Martian Interior; Volatiles and Interior Evolution; The Martian Climate and Atmosphere: Variations in Time and Space; Poster Session: The Martian Climate and Current Processes; Modern Mars: Weather, Atmospheric Chemistry, Geologic Processes, and Water Cycle; Public Lecture: Mars Reconnaissance Orbiter's New View of the Red Planet; The North and South Polar Layered Deposits, Circumpolar Regions, and Changes with Time; Poster Session: Mars Polar Science, Astrobiology, Future Missions/Instruments, and Other Mars Science; Mars Astrobiology and Upcoming Missions; and Martian Stratigraphy and Sedimentology: Reading the Sedimentary Record.

  1. A New Method for Evaluating the Carbon Isotope Characteristics of Carbonate Formed Under Cryogenic Conditions Analogous to Mars

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Socki, R. A.; Hredzak, P. L.

    2007-01-01

    The two upcoming robotic missions to Mars, Phoenix and MSL, will both have the capability of measuring the carbon isotopic composition of CO2 in the martian atmosphere, as well as possible CO2 trapped in carbonate minerals in the Martian soil. Results from orbital and landed missions now clearly indicate that no large scale deposits of carbonate materials exist at the surface. However, some results from orbital remote sensing have been interpreted to indicate that carbonate minerals are present as fine particles interspersed at low concentrations (approx. 2%) in the martian dust. One likely mechanism for the production of these carbonates is during the freezing of transient water near the surface. Large deposits of near surface ice and photographic evidence for flowing water on the surface suggest that transient melting and refreezing of H2O is an active process on Mars. Any exposure of these fluids to the CO2 rich atmosphere should al-low the production of HCO3- solutions. Carbonates are likely precipitates from these solutions during freezing as extensive CO2 degassing, driven by the fluid s decreasing volume, drives CO2 out. This rapid CO2 degassing increases the pH of the solution and drives carbonate precipitation. It has been shown in previous studies that this rapid CO2 degassing also results in a kinetic isotopic fractionation where the CO2 gas has a much lighter isotopic composition causing a large isotope enrichment of C-13 in the precipitated carbonate. This kinetic isotope enrichment may be very common in the current martian environment, and may be a very important factor in understanding the very high deltaC-13 values of carbonates found in the martian meteorites. However, while previous studies have succeeded in generally quantifying the magnitude of this effect, detailed studies of the consistency of this effect, and the freezing rates needed to produce it are needed to understand any carbon isotope analyses from carbonate minerals in the martian soil or dust. This study demonstrates an innovative new method for measuring the isotopic composition of gas evolved from the freezing of carbonate solutions in real time, which allows for a much clearer view of the chemical processes involved. This method now sets the stage for detailed analysis of the chemical and isotopic mechanisms that produce cryogenic carbonates.

  2. The chemical effects of the Martian environment on power system component materials: A theoretical approach

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Gaier, James R.

    1990-01-01

    In the foreseeable future, an expedition may be undertaken to explore the planet Mars. Some of the power source options being considered for such a mission are photovoltaics, regenerative fuel cells and nuclear reactors. In addition to electrical power requirements, environmental conditions en route to Mars, in the planetary orbit and on the Martian surface must be simulated and studied in order to anticipate and solve potential problems. Space power systems components such as photovoltaic arrays, radiators, and solar concentrators may be vulnerable to degradation in the Martian environment. Natural characteristics of Mars which may pose a threat to surface power systems include high velocity winds, dust, ultraviolet radiation, large daily variation in temperature, reaction to components of the soil, atmosphere and atmospheric condensates as well as synergistic combinations. Most of the current knowledge of the characteristics of the Martian atmosphere and soil composition was obtained from the Viking 1 and 2 missions in 1976. A theoretical study is presented which was used to assess the effects of the Martian atmospheric conditions on the power systems components. A computer program written at NASA-Lewis for combustion research that uses a free energy minimization technique was used to calculate chemical equilibrium for assigned thermodynamic states of temperature and pressure. The power system component materials selected for this study include: silicon dioxide, silicon, carbon, copper, and titanium. Combinations of environments and materials considered include: (1) Mars atmosphere with power surface material, (2) Mars atmosphere and dust component with power surface material, and (3) Mars atmosphere and hydrogen peroxide or superoxide or superoxide with power system material. The chemical equilibrium calculations were performed at a composition ratio (oxidant to reactant) of 100. The temperature for the silicon dioxide material and silicon, which simulate photovoltaic cells, were 300 and 400 K; for carbon, copper and titanium, which simulate radiator surfaces, 300, 500, and 1000 K. All of the systems were evaluated at pressures of 700, 800, and 900 Pa, which stimulate the Martian atmosphere.

  3. The Effect of Shock on the Amorphous Component in Altered Basalt

    NASA Technical Reports Server (NTRS)

    Eckley, S. A.; Wright, S. P.; Rampe, E. B.; Niles, P. B.

    2017-01-01

    Investigation of the geochemical and mineralogical composition of the Martian surface provides insight into the geologic history of the predominantly basaltic crust. The Chemistry and Mineralogy (CheMin) instrument onboard the Curiosity rover has returned the first X-Ray diffraction data from the Martian surface. However, large proportions (27 +/- 14 with some estimates as high as 50 weight percentage) of an amorphous component have been reported. As a remedy to this problem, mass balance equations using geochemistry, volatile chemistry, and mineralogy have been employed to constrain the geochemistry of the amorphous component. However, "the nature and number of amorphous phases that constitute the amorphous component is not unequivocally known". Multiple hypotheses have been proposed to explain the origin of this amorphous component: Allophane (Al2O); Basaltic glass (Volcanic and impact); Palagonite (Altered basaltic glass); Hisingerite (Fe (sup 3 plus)-bearing phyllosilicate); S/Cl-rich component (sulfates and/or akaganeite); Nanophase ferric oxide component (npOx). Establishing a multi-phase amorphous component from a basaltic precursor that has undergone physical and chemical weathering within geochemical constraints is of paramount importance to better understand the composition of a large portion of the Martian surface (up to 50 weight percentage). Shocked basalts from Lonar Crater in India are valuable analogs for the Martian surface because it is a well-preserved impact crater in a basaltic target. Having undergone pre- and post-shock aqueous alteration, these rocks provide crucial data regarding the effect of shock on the amorphous component in altered basalt. By conducting mass balance equations similar to what has been performed for Gale crater materials, we attempt to calculate the geochemistry of the amorphous component in altered basalts ranging from unshocked to Class 5 (Table 1). This has the potential to reveal the nature and origin (i.e. primary igneous, shock metamorphic, and/or aqueous alteration occurring before or after the impact event) of the amorphous component in shocked basalt with the goal of unravelling the history of the Martian surface.

  4. On the weathering of Martian igneous rocks

    NASA Technical Reports Server (NTRS)

    Dreibus, G.; Waenke, H.

    1992-01-01

    Besides the young crystallization age, one of the first arguments for the martian origin of shergottite, nakhlite, and chassignite (SNC) meteorites came from the chemical similarity of the meteorite Shergotty and the martian soil as measured by Viking XRF analyses. In the meantime, the discovery of trapped rare gas and nitrogen components with element and isotope ratios closely matching the highly characteristic ratios of the Mars atmosphere in the shock glasses of shergottite EETA79001 was further striking evidence that the SNC's are martian surface rocks. The martian soil composition as derived from the Viking mission, with its extremely high S and Cl concentrations, was interpreted as weathering products of mafic igneous rocks. The low SiO2 content and the low abundance of K and other trace elements in the martian soils point to a mafic crust with a considerably smaller degree of fractionation compared to the terrestrial crust. However, the chemical evolution of the martian regolith and soil in respect to surface reaction with the planetary atmosphere or hydrosphere is poorly understood. A critical point in this respect is that the geochemical evidence as derived from the SNC meteorites suggests that Mars is a very dry planet that should have lost almost all its initially large water inventory during its accretion.

  5. Radiation transport simulation of the Martian GCR surface flux and dose estimation using spherical geometry in PHITS compared to MSL-RAD measurements

    NASA Astrophysics Data System (ADS)

    Flores-McLaughlin, John

    2017-08-01

    Planetary bodies and spacecraft are predominantly exposed to isotropic radiation environments that are subject to transport and interaction in various material compositions and geometries. Specifically, the Martian surface radiation environment is composed of galactic cosmic radiation, secondary particles produced by their interaction with the Martian atmosphere, albedo particles from the Martian regolith and occasional solar particle events. Despite this complex physical environment with potentially significant locational and geometric dependencies, computational resources often limit radiation environment calculations to a one-dimensional or slab geometry specification. To better account for Martian geometry, spherical volumes with respective Martian material densities are adopted in this model. This physical description is modeled with the PHITS radiation transport code and compared to a portion of measurements from the Radiation Assessment Detector of the Mars Science Laboratory. Particle spectra measured between 15 November 2015 and 15 January 2016 and PHITS model results calculated for this time period are compared. Results indicate good agreement between simulated dose rates, proton, neutron and gamma spectra. This work was originally presented at the 1st Mars Space Radiation Modeling Workshop held in 2016 in Boulder, CO.

  6. Radiation transport simulation of the Martian GCR surface flux and dose estimation using spherical geometry in PHITS compared to MSL-RAD measurements.

    PubMed

    Flores-McLaughlin, John

    2017-08-01

    Planetary bodies and spacecraft are predominantly exposed to isotropic radiation environments that are subject to transport and interaction in various material compositions and geometries. Specifically, the Martian surface radiation environment is composed of galactic cosmic radiation, secondary particles produced by their interaction with the Martian atmosphere, albedo particles from the Martian regolith and occasional solar particle events. Despite this complex physical environment with potentially significant locational and geometric dependencies, computational resources often limit radiation environment calculations to a one-dimensional or slab geometry specification. To better account for Martian geometry, spherical volumes with respective Martian material densities are adopted in this model. This physical description is modeled with the PHITS radiation transport code and compared to a portion of measurements from the Radiation Assessment Detector of the Mars Science Laboratory. Particle spectra measured between 15 November 2015 and 15 January 2016 and PHITS model results calculated for this time period are compared. Results indicate good agreement between simulated dose rates, proton, neutron and gamma spectra. This work was originally presented at the 1st Mars Space Radiation Modeling Workshop held in 2016 in Boulder, CO. Copyright © 2017. Published by Elsevier Ltd.

  7. Mariner 9 photographs of small-scale volcanic structures on Mars

    NASA Technical Reports Server (NTRS)

    Greeley, R.

    1972-01-01

    Surface features on the flanks of Martian shield volcanoes photographed by Mariner 9 are identified as lava flow channels, rift zones, and partly collapsed lava tubes by comparisons with similar structures on the flanks of Mauna Loa shield volcano, Hawaii. From these identifications, the composition of the Martian lava flows is interpreted to be basaltic, with viscosities ranging from those of fluid pahoehoe to more viscous aa.

  8. Contribution of Organic Material to the Stable Isotope Composition of Some Terrestrial Carbonates as Analogs for Martian Processes

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Gibson, Everett K., Jr.; Bissada, K. K.

    2005-01-01

    Understanding the isotopic geochemistry of terrestrial carbonate formation is essential to understanding the evolution of the Martian atmosphere, hydrosphere, and potential biosphere. Carbonate minerals, in particular, are important secondary minerals for interpreting past aqueous environments, as illustrated by the carbonates present in ALH84001 [1]. Models for the history of Mars suggest that the planet was warmer, wetter, and possessed a greater atmospheric pressure within the first billion years as compared to present conditions [2],[3],[4], and likely had an active hydrologic cycle. Morse and Marion [5] point out that associated with this hydrologic cycle would be the active chemical weathering of silicate minerals and thus consumption of atmospheric CO2 and deposition of carbonate and silica. It is during this warmer and wetter period of Martian history that surface and/or near-surface conditions would be most favorable for harboring possible microbiological life. Carbonates within ALH84001 offer evidence that fluids were present at 3.9 Gy on Mars [6]. A more through understanding of the effects of aqueous weathering and the potential contribution of organic compounds on the isotopic composition of Martian carbonate minerals can be gained by studying some terrestrial occurrences of carbonate rocks.

  9. Mars brine formation experiment

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; Bullock, Mark A.; Stoker, Carol R.

    1993-01-01

    The presence of water-soluble cations and anions in the Martian regolith has been the subject of speculation for some time. Viking lander data provided evidence for salt-cemented crusts on the Martian surface. If the crusts observed at the two Viking landing sites are, in fact, cemented by salts, and these crusts are globally widespread, as IRTM-derived thermal inertia studies of the Martian surface seem to suggest, then evaporite deposits, probably at least in part derived from brines, are a major component of the Martian regolith. The composition of liquid brines in the subsurface, which not only may be major agents of physical weathering but may also presently constitute a major deep subsurface liquid reservoir, is currently unconstrained by experimental work. A knowledge of the chemical identity and rate of production of Martian brines is a critical first-order step toward understanding the nature of both these fluids and their precipitated evaporites. Laboratory experiments are being conducted to determine the identity and production rate of water-soluble ions that form in initially pure liquid water in contact with Mars-mixture gases and unaltered Mars-analog minerals.

  10. Thermal Infrared Emission Spectroscopy of Synthetic Allophane and its Potential Formation on Mars

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Kraft, M. D.; Sharp, T. G.; Golden, D. C.; Ming, Douglas W.

    2010-01-01

    Allophane is a poorly-crystalline, hydrous aluminosilicate with variable Si/Al ratios approx.0.5-1 and a metastable precursor of clay minerals. On Earth, it forms rapidly by aqueous alteration of volcanic glass under neutral to slightly acidic conditions [1]. Based on in situ chemical measurements and the identification of alteration phases [2-4], the Martian surface is interpreted to have been chemically weathered on local to regional scales. Chemical models of altered surfaces detected by the Mars Exploration Rover Spirit in Gusev crater suggest the presence of an allophane-like alteration product [3]. Thermal infrared (TIR) spectroscopy and spectral deconvolution models are primary tools for determining the mineralogy of the Martian surface [5]. Spectral models of data from the Thermal Emission Spectrometer (TES) indicate a global compositional dichotomy, where high latitudes tend to be enriched in a high-silica material [6,7], interpreted as high-silica, K-rich volcanic glass [6,8]. However, later interpretations proposed that the high-silica material may be an alteration product (such as amorphous silica, clay minerals, or allophane) and that high latitude surfaces are chemically weathered [9-11]. A TIR spectral library of pure minerals is available for the public [12], but it does not contain allophane spectra. The identification of allophane on the Martian surface would indicate high water activity at the time of its formation and would help constrain the aqueous alteration environment [13,14]. The addition of allophane to the spectral library is necessary to address the global compositional dichotomy. In this study, we characterize a synthetic allophane by IR spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM) to create an IR emission spectrum of pure allophane for the Mars science community to use in Martian spectral models.

  11. Correlations Between Surficial Sulfur and a REE Crustal Assimilation Signature in Martian Shergottites

    NASA Technical Reports Server (NTRS)

    Jones, J. H.; Franz, H. B.

    2015-01-01

    Compared to terrestrial basalts, the Martian shergottite meteorites have an extraordinary range of Sr and Nd isotopic signatures. In addition, the S isotopic compositions of many shergottites show evidence of interaction with the Martian surface/ atmosphere through mass-independent isotopic fractionations (MIF, positive, non-zero delta(exp 33)S) that must have originated in the Martian atmosphere, yet ultimately were incorporated into igneous sulfides (AVS - acid-volatile sulfur). These positive delta(exp 33)S signatures are thought to be governed by solar UV photochemical processes. And to the extent that S is bound to Mars and not lost to space from the upper atmosphere, a positive delta(exp 33)S reservoir must be mass balanced by a complementary negative reservoir.

  12. Geochemical and mineralogical interpretation of the Viking inorganic chemical results. [for Martian surface materials

    NASA Technical Reports Server (NTRS)

    Toulmin, P., III; Rose, H. J., Jr.; Christian, R. P.; Baird, A. K.; Evans, P. H.; Clark, B. C.; Keil, K.; Kelliher, W. C.

    1977-01-01

    The current status of geochemical, mineralogical, petrological interpretation of refined Viking Lander data is reviewed, and inferences that can be drawn from data on the composition of Martian surface materials are presented. The materials are dominantly fine silicate particles admixed with, or including, iron oxide particles. Both major element and trace element abundances in all samples are indicative of mafic source rocks (rather than more highly differentiated salic materials). The surface fines are nearly identical in composition at the two widely separated Lander sites, except for some lithologic diversity at the 100-m scale. This implies that some agency (presumably aeolian processes) has thoroughly homogenized them on a planetary scale. The most plausible model for the mineralogical constitution of the fine-grained surface materials at the two Lander sites is a fine-grained mixture dominated by iron-rich smectites, or their degradation products, with ferric oxides, probably including maghemite and carbonates (such as calcite), but not such less stable phases as magnesite or siderite.

  13. Candidates source regions of martian meteorites as identified by OMEGA/MEx

    NASA Astrophysics Data System (ADS)

    Ody, A.; Poulet, F.; Quantin, C.; Bibring, J.-P.; Bishop, J. L.; Dyar, M. D.

    2015-09-01

    The objective of this study is to identify and map spectral analogues of some key martian meteorites (basaltic shergottites Los Angeles, Shergotty, QUE 94201, lherzolitic shergottite ALH A77005, Nakhla, Chassigny and the orthopyroxenite ALH 84001) in order to localize terrain candidates for their source regions. We develop a best fit procedure to reproduce the near-infrared (NIR) spectral properties of the martian surface as seen by the hyperspectral imaging spectrometer OMEGA/MEx from the NIR spectra of the martian meteorites. The fitting process is tested and validated, and Root Mean Square (RMS) global maps for each meteorite are obtained. It is found that basaltic shergottites have NIR spectral properties the most representative of the martian surface with the best spectral analogues found in early Hesperian volcanic provinces. Sites with spectral properties similar to those of ALH A77005 are scarce. They are mainly localized in olivine-bearing regions such as Nili Fossae and small Noachian/early Hesperian terrains. The only plausible source region candidate for Chassigny is the Nili Patera caldera dated to 1.6 Ga. Widespread spectral analogues for the ALH 84001 meteorite are found northeast of Syrtis Major and northwest of the Hellas basin. While this distribution is in agreement with the low-calcium-pyroxene-rich composition and old age (4.1 Ga) of this meteorite, the modal mineralogy of these candidates is not consistent with that of this meteorite. No convincing spectral analogue is found for the Amazonian-aged Nakhla meteorite suggesting that its olivine/high-calcium-pyroxene-rich composition could be representative of the Amazonian terrains buried under dust. Finally, some young rayed craters are proposed as possible candidates for source craters of the studied martian meteorites.

  14. Evolution of the martian mantle as recorded by igneous rocks

    NASA Astrophysics Data System (ADS)

    Balta, J. B.; McSween, H. Y.

    2013-12-01

    Martian igneous rocks provide our best window into the current state of the martian mantle and its evolution after accretion and differentiation. Currently, those rocks have been examined in situ by rovers, characterized in general from orbiting spacecraft, and analyzed in terrestrial laboratories when found as meteorites. However, these data have the potential to bias our understanding of martian magmatism, as most of the available meteorites and rover-analyzed rocks come from the Amazonian (<2 Ga) and Hesperian (~3.65 Ga) periods respectively, while igneous rocks from the Noachian (>3.8 Ga) have only been examined by orbiters and as the unique meteorite ALH 84001. After initial differentiation, the main planetary-scale changes in the structure of Mars which impact igneous compositions are cooling of the planet and thickening of the crust with time. As the shergottite meteorites give ages <500 Ma1, they might be expected to represent thick-crust, recent volcanism. Using spacecraft measurements of volcanic compositions and whole rock compositions of meteorites, we demonstrate that the shergottite meteorites do not match the composition of the igneous rocks composing the young volcanoes on Mars, particularly in their silica content, and no crystallization or crustal contamination trend reproduces the volcanoes from a shergottite-like parent magma. However, we show that the shergottite magmas do resemble older martian rocks in composition and mineralogy. The Noachian-aged meteorite ALH 84001 has similar radiogenic-element signatures to the shergottites and may derive from a similar mantle source despite the age difference2. Thus, shergottite-like magmas may represent melting of mantle sources that were much more abundant early in martian history. We propose that the shergottites represent the melting products of an originally-hydrous martian mantle, containing at least several hundred ppm H2O. Dissolved water can increase the silica content of magmas and thus plausibly explains the high silica content of the shergottites. A dehydrating martian mantle with time can explain the decreasing silica contents measured in the young volcanoes and thus fits the measurements from the surface, and producing the high-silica shergottites through a thick crust is difficult without the presence of water. Our model requires that, after differentiation, the martian mantle retained significant water. Much of that water was released early in Mars's history as widespread volcanism allowed for initial dehydration of much of the mantle. The more recent volcanism involved in building the large surface volcanoes was then produced largely from the melting of previously-dehydrated mantle, with possible contributions from crustal rocks and fluids rich in volatiles such as Cl or CO2. Rocks such as the Gusev basalts and the nakhlite and chassignite meteorites also fit into this model and do not require unique circumstances such as a highly-oxidized early martian atmosphere or mantle. Finally, the magmas that eventually became the shergottites were produced when surviving hydrous mantle, similar to that which produced ALH 84001, was entrained in a mantle upwelling such as Tharsis. 1 Nyquist, L. E. et al.. GCA 73, 4288-4309 (2009). 2 Lapen, T. J. et al.. Science 328, 347-351, (2010).

  15. Keeping Mars warm with new super greenhouse gases

    PubMed Central

    Gerstell, M. F.; Francisco, J. S.; Yung, Y. L.; Boxe, C.; Aaltonee, E. T.

    2001-01-01

    Our selection of new super greenhouse gases to fill a putative “window” in a future Martian atmosphere relies on quantum-mechanical calculations. Our study indicates that if Mars could somehow acquire an Earth-like atmospheric composition and surface pressure, then an Earth-like temperature could be sustained by a mixture of five to seven fluorine compounds. Martian mining requirements for replenishing the fluorine could be comparable to current terrestrial extraction. PMID:11226208

  16. Persistence of biomarker ATP and ATP-generating capability in bacterial cells and spores contaminating spacecraft materials under earth conditions and in a simulated martian environment.

    PubMed

    Fajardo-Cavazos, Patricia; Schuerger, Andrew C; Nicholson, Wayne L

    2008-08-01

    Most planetary protection research has concentrated on characterizing viable bioloads on spacecraft surfaces, developing techniques for bioload reduction prior to launch, and studying the effects of simulated martian environments on microbial survival. Little research has examined the persistence of biogenic signature molecules on spacecraft materials under simulated martian surface conditions. This study examined how endogenous adenosine-5'-triphosphate (ATP) would persist on aluminum coupons under simulated martian conditions of 7.1 mbar, full-spectrum simulated martian radiation calibrated to 4 W m(-2) of UV-C (200 to 280 nm), -10 degrees C, and a Mars gas mix of CO(2) (95.54%), N(2) (2.7%), Ar (1.6%), O(2) (0.13%), and H(2)O (0.03%). Cell or spore viabilities of Acinetobacter radioresistens, Bacillus pumilus, and B. subtilis were measured in minutes to hours, while high levels of endogenous ATP were recovered after exposures of up to 21 days. The dominant factor responsible for temporal reductions in viability and loss of ATP was the simulated Mars surface radiation; low pressure, low temperature, and the Mars gas composition exhibited only slight effects. The normal burst of endogenous ATP detected during spore germination in B. pumilus and B. subtilis was reduced by 1 or 2 orders of magnitude following, respectively, 8- or 30-min exposures to simulated martian conditions. The results support the conclusion that endogenous ATP will persist for time periods that are likely to extend beyond the nominal lengths of most surface missions on Mars, and planetary protection protocols prior to launch may require additional rigor to further reduce the presence and abundance of biosignature molecules on spacecraft surfaces.

  17. Elemental composition of the Martian crust.

    PubMed

    McSween, Harry Y; Taylor, G Jeffrey; Wyatt, Michael B

    2009-05-08

    The composition of Mars' crust records the planet's integrated geologic history and provides clues to its differentiation. Spacecraft and meteorite data now provide a global view of the chemistry of the igneous crust that can be used to assess this history. Surface rocks on Mars are dominantly tholeiitic basalts formed by extensive partial melting and are not highly weathered. Siliceous or calc-alkaline rocks produced by melting and/or fractional crystallization of hydrated, recycled mantle sources, and silica-poor rocks produced by limited melting of alkali-rich mantle sources, are uncommon or absent. Spacecraft data suggest that martian meteorites are not representative of older, more voluminous crust and prompt questions about their use in defining diagnostic geochemical characteristics and in constraining mantle compositional models for Mars.

  18. The Radiation Environment on the Surface of Mars and its Implications for Human Exploration: Five Years of Measurements with the MSL/RAD instrument

    NASA Astrophysics Data System (ADS)

    Ehresmann, B.; Zeitlin, C. J.; Hassler, D.; Wimmer-Schweingruber, R. F.; Guo, J.; Appel, J. K.; Boehm, E.; Boettcher, S. I.; Burmeister, S.; Lohf, H.; Martin-Garcia, C.; Matthiae, D.; Rafkin, S. C.; Reitz, G.

    2017-12-01

    NASA's Mars Science Laboratory (MSL) mission has now been operating in Gale Crater on the surface of Mars for five years. Onboard Curiosity, the Radiation Assessment Detector (MSL/RAD) is measuring the Martian surface radiation environment, providing insights into its intensity and composition. This radiation field is mainly composed of primary Galactic Cosmic Rays (GCRs) and secondary particles created by the GCRs' interactions with the Martian atmosphere and soil. On short time scales, the radiation environment can be dominated by contributions from Solar Energetic Particle (SEP) events. Due to the shielding effect of the Martian atmosphere, shapes and intensities of SEP spectra differ significantly between interplanetary space and the Martian surface. Understanding how SEP events influence the surface radiation field is crucial to assess associated health risks for potential human missions to Mars. Even in the absence of SEP events, the surface environment is influenced by solar activity, which determines the strength of the interplanetary magnetic field and modulates GCR intensities. The GCR flux has risen considerably since Curiosity's landing as the solar cycle heads towards minimum. Here, we present updated MSL/RAD results for charged particle fluxes measured on the surface from GCRs and SEP events from the five years of MSL operations on Mars. We will present results that incorporate updated analysis techniques for the MSL/RAD data and yield the most robust particle spectra to date. The GCR results will be compared to simulation results. The SEP-induced fluxes on the surface will be compared to measurements from other spacecraft in the inner heliosphere and, in particular, in Martian orbit.

  19. Surface chemistry and mineralogy. [of planet Mars

    NASA Technical Reports Server (NTRS)

    Banin, A.; Clark, B. C.; Waenke, H.

    1992-01-01

    The accumulated knowledge on the chemistry and mineralogy of Martian surface materials is reviewed. Pertinent information obtained by direct analyses of the soil on Mars by the Viking Landers, by remote sensing of Mars from flyby and orbiting spacecraft, by telescopic observations from earth, and through detailed analyses of the SNC meteorites presumed to be Martian rocks are summarized and analyzed. A compositional model for Mars soil, giving selected average elemental concentrations of major and trace elements, is suggested. It is proposed that the fine surface materials on Mars are a multicomponent mixture of weathered and nonweathered minerals. Smectite clays, silicate mineraloids similar to palagonite, and scapolite are suggested as possible major candidate components among the weathered minerals.

  20. A Study of the Electrostatic Interaction Between Insulators and Martian/Lunar Soil Simulants

    NASA Technical Reports Server (NTRS)

    Mantovani, James G.

    2001-01-01

    Using our previous experience with the Mars Environmental Compatibility Assessment (MECA) electrometer, we have designed a new type of aerodynamic electrometer. The goal of the research was to measure the buildup of electrostatic surface charge on a stationary cylindrical insulator after windborne granular particles have collided with the insulator surface in a simulated dust storm. The experiments are performed inside a vacuum chamber. This allows the atmospheric composition and pressure to be controlled in order to simulate the atmospheric conditions near the equator on the Martian surface. An impeller fan was used to propel the dust particles at a cylindrically shaped insulator under low vacuum conditions. We tested the new electrometer in a 10 mbar CO2 atmosphere by exposing two types of cylindrical insulators, Teflon (1.9 cm diameter) and Fiberglass (2.5 cm diameter), to a variety of windborne granular particulate materials. The granular materials tested were JSC Mars-1 simulant, which is a mixture of coarse and fine (<5microns diameter) particle sizes, and some of the major mineral constituents of the Martian soil. The minerals included Ottawa sand (SiO2), iron oxide (Fe2O3), aluminum oxide (Al2O3) and magnesium oxide (MgO). We also constructed a MECA-like electrometer that contained an insulator capped planar electrode for measuring the amount of electrostatic charge produced by rubbing an insulator surface over Martian and lunar soil simulants. The results of this study indicate that it is possible to detect triboelectric charging of insulator surfaces by windborne Martian soil simulant, and by individual mineral constituents of the soil simulant. We have also found that Teflon and Fiberglass insulator surfaces respond in different ways by developing opposite polarity surface charge, which decays at different rates after the particle impacts cease.

  1. Viking: The exploration of Mars

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Photographs of the planet Mars generated by the Viking Mars program are presented and discussed. The Martian surface and its volcanoes receive particular attention. In addition, the atmosphere, temperature, surface craters, polar regions, and composition of Mars are briefly reviewed. Planetary evolution is considered. The highlights of the Mariner program for Mars are given.

  2. Concordant Rb-Sr and Sm-Nd Ages for NWA 1460: A 340 Ma Old Basaltic Shergottite Related to Lherzolitic Shergottites

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C-Y; Reese, Y. D.; Irving, A. J.

    2006-01-01

    Preliminary Rb-Sr and Sm-Nd ages reported by [1] for the NWA 1460 basaltic shergottite are refined to 336+/-14 Ma and 345+/-21 Ma, respectively. These concordant ages are interpreted as dating a lava flow on the Martian surface. The initial Sr and Nd isotopic compositions of NWA 1460 suggest it is an earlier melting product of a Martian mantle source region similar to those of the lherzolitic shergottites and basaltic shergottite EETA79001, lithology B. We also examine the suggestion that generally "young" ages for other Martian meteorites should be reinterpreted in light of Pb-207/Pb-206 - Pb-204/Pb-206 isotopic systematics [2]. Published U-Pb isotopic data for nakhlites are consistent with ages of approx.1.36 Ga. The UPb isotopic systematics of some Martian shergottites and lherzolites that have been suggested to be approx.4 Ga old [2] are complex. We nevertheless suggest the data are consistent with crystallization ages of approx.173 Ma when variations in the composition of in situ initial Pb as well as extraneous Pb components are considered.

  3. Compositional variability of the Martian surface

    NASA Technical Reports Server (NTRS)

    Adams, John B.; Smith, Milton O.

    1991-01-01

    Spectral reflectance data from Viking Landers and Orbiters and from telescopic observations were analyzed with the objective of isolating compositional information about the Martian surface and assessing compositional variability. Two approaches were used to calibrate the data to reflectance to permit direct comparisons with laboratory reference spectra of well characterized materials. In Viking Lander multispectral images (six spectral bands) most of the spectral variation is caused by changes in lighting geometry within individual scenes, from scene to scene, and over time. Lighting variations are both wavelength independent and wavelength dependent. By calibrating lander image radiance values to reflectance using spectral mixture analysis, the possible range of compositions was assessed with reference to a collection of laboratory samples, also resampled to the lander spectral bands. All spectra from the lander images studied plot (in six-space) within a planar triangle having at the apexes the respective spectra of tan basaltic palagonite, gray basalt, and shale. Within this plane all lander spectra fit as mixtures of these three endmembers. Reference spectra that plot outside of the triangle are unable to account for the spectral variation observed in the images.

  4. Minor constituents in the Martian atmosphere from the ISM/Phobos experiment

    NASA Astrophysics Data System (ADS)

    Rosenqvist, J.; Drossart, P.; Combes, M.; Encrenaz, T.; Lellouch, E.; Bibring, J. P.; Erard, S.; Langevin, Y.; Chassefière, E.

    1992-08-01

    Global Martian atmospheric results derived from the infrared-imaging spectrometer ISM flown aboard the Phobos 2 Soviet space-craft are presented. Over low altitude regions the expected CO mixing ratio of (8 ± 3) × 10 -4 is measured. Variations of the 2.35-μm feature are inconsistent with this value over the Great Martian Volcanoes. If the 2.35-μm band is entirely attributable to carbon monoxide, the CO mixing ratio is typically depleted by a factor of 3 over these high altitude areas. Orography should play a major role in the existence of this CO "hole." If, however, these spectral variations at 2.35 μm are due to the surface composition, the fraction of the surface covered by the responsible mineral must smoothly decrease as the surface elevation decreases. This phenomenon implies a strong interaction between the surface and the atmosphere for the Great Martian Volcanoes. Diurnal behavior and latitudinal variations of water vapor are globally consistent with Viking measurements. During the Phobos observations, the water vapor amounts over the bright equatorial regions range around 11 pr-μm during the day. These amounts are slightly larger than those inferred from 1976 to 1979. The lack of global dust storms during 1988-1989 could explain the enhancement of H 2O in the atmosphere.

  5. Possible Phosphate Redistribution on the Martian Surface: Implication From Simulation Experiments

    NASA Astrophysics Data System (ADS)

    Dreibus, G.; Haubold, R.; Jagoutz, E.

    2001-12-01

    The chemical composition of Martian rocks and soils as measured with the APXS (Alpha Proton X-ray Spectrometer) of the Mars Pathfinder Mission are very different [1]. Surprisingly, only small differences of the phosphorous concentrations between soils and rocks were found. The P concentration of about 4000 ppm is similar to that measured in basaltic shergottites. Phosphates are the host mineral for the REE, Th and U. Leach experiments with slightly acidified brines on basaltic shergottites easily dissolved more than a half of the REEs and U whereas K remained insoluble. Therefore, we suggested the possibility of alteration and mobilization of phosphates in the Martian environment with the result of an enrichment of U, Th, and consequently P on the surface. However, the APXS measured no P enrichment in rocks and soil of the Martian crust, whereas a high Th concentration on the surface was measured with the gamma-spectroscopy from orbit by Mars-5 and Phobos-2 [2]. With leach experiments on terrestrial samples we studied the solubility of U and Th as in the case of shergottites, but also that of phosphorous. Furthermore, simulation experiments of reactions between slightly acidified calcium-phosphate solution and different terrestrial rock types were performed to clarify the redistribution of P at the Martian surface with its complex weathering history. Ref.: [1] Brueckner J. et al. (2001) Lunar Planet. Science. XXXII, 1293; [2] Surkov Yu. A. et al. (1989) Nature 341, 595.

  6. Transmission electron microscope analyses of alteration phases in martian meteorite MIL 090032

    NASA Astrophysics Data System (ADS)

    Hallis, L. J.; Ishii, H. A.; Bradley, J. P.; Taylor, G. J.

    2014-06-01

    The nakhlite group of martian meteorites found in the Antarctic contain varying abundances of both martian and terrestrial secondary alteration phases. The aim of this study was to use transmission electron microscopy (TEM) to compare martian and terrestrial alteration embodied within a single nakhlite martian meteorite find - MIL 090032. Martian alteration veins in MIL 090032 are composed of poorly ordered Fe-smectite phyllosilicate. This poorly-ordered smectite appears to be equivalent to the nanocrystalline phyllosilicate/hydrated amorphous gel phase previously described in the martian alteration veins of other nakhlites. Chemical differences in this nanocrystalline phyllosilicate between different nakhlites imply localised alteration, which occurred close to the martian surface in MIL 090032. Both structurally and compositionally the nakhlite nanocrystalline phyllosilicate shows similarities to the amorphous/poorly ordered phase recently discovered in martian soil by the Mars Curiosity Rover at Rocknest, Gale Crater. Terrestrially derived alteration phases in MIL 090032 include jarosite and gypsum, amorphous silicates, and Fe-oxides and hydroxides. Similarities between the mineralogy and chemistry of the MIL 090032 terrestrial and martian alteration phases suggest the alteration conditions on Mars were similar to those in the Antarctic. At both sites a small amount of fluid at low temperatures infiltrated the rock and became acidic as a result of the conversion of Fe2+ to Fe3+ under oxidising conditions.

  7. AOTF near-IR spectrometers for study of Lunar and Martian surface composition

    NASA Astrophysics Data System (ADS)

    Ivanov, A.; Korablev, O.; Mantsevich, S.; Vyazovetskiy, N.; Fedorova, A.; Evdokimova, N.; Stepanov, A.; Titov, A.; Kalinnikov, Y.; Kuzmin, R.; Kiselev, A.; Bazilevsky, A.; Bondarenko, A.; Dokuchaev, I.; Moiseev, P.; Victorov, A.; Berezhnoy, A.; Skorov, Y.; Bisikalo, D.; Velikodsky, Y.

    2014-04-01

    The series of the AOTF near-IR spectrometers is developed in Moscow Space Research Institute for study of Lunar and Martian surface composition in the vicinity of a lander or a rover. Lunar Infrared Spectrometer (LIS) is an experiment onboard Luna-Glob (launch in 2017) and Luna- Resurs (launch in 2019) Russian surface missions. It's a pencil-beam spectrometer to be pointed by a robotic arm of the landing module. The instrument's field of view (FOV) of 1° is co-aligned with the FOV(45°) of a stereo TV camera. Infrared Spectrometer for ExoMars (ISEM) is an experiment onboard ExoMars (launch in 2018) ESARoscosmos rover. It's spectrometer based on LIS with required redesign for ExoMars mission. The ISEM instrument is mounted on the rover's mast coaligned with the FOV (5°) of High Resolution camera (HRC). Spectrometers and are intended for study of the surface composition in the vicinity of the lander and rover. The spectrometers will provide measurements of selected surface areas in the spectral range of 1.15-3.3 μm. The spectral selection is provided by acoustooptic tunable filter (AOTF), which scans the spectral range sequentially. Electrical command of the AOTF allows selecting the spectral sampling, and permits a random access if needed.

  8. Composite View from Phoenix Lander

    NASA Image and Video Library

    2009-07-02

    This mosaic of images from the Surface Stereo Imager camera on NASA Phoenix Mars Lander shows several trenches dug by Phoenix, plus a corner of the spacecraft deck and the Martian arctic plain stretching to the horizon.

  9. Composition and Mineralogy of Martian Soils

    NASA Astrophysics Data System (ADS)

    Bell, J. F.

    2007-05-01

    The soils of Mars--the fine-grained, porous, uppermost layer of the planet's regolith--appear to have been created by a combination of physical and chemical weathering processes that can provide insights about the evolution of the martian surface and climate. Remote sensing and in situ measurements and analyses of soils from five different landing sites have revealed both surprising similarities and important (sometimes unexpected) differences among soils across the planet. Among the similarities are the ubiquitous presence and homogeneity of "dust" at widely-separated landing sites. Dust is the finest-grained (less than 5 microns) fraction of the soil, and the fact that it is easily suspended and transported by dust devils and dust storms explains its ubiquity. The reddish color and small size of dust particles had been cited as evidence for its origin as perhaps physically or chemically comminuted and heavily-oxidized (ferric) secondary weathering products. New results from the MER Sprit and Opportunity missions, however, indicate that dust grains may instead be volumetrically mostly unoxidized (ferrous) material, with visual color properties imparted by only a thin rind or coating of ferric oxides/oxyhydroxides. Another fine-grained global-scale unit is dark, silt- to sand-sized soils that occur in dunes, drifts, and ripples. Dark sands exhibit rather homogeneous composition and mineralogy (dominated by olivine and pyroxene) across the landing sites, suggesting that they, too, are globally-transported materials. Examples of the kinds of variability detected in martian soils are the hematite-rich spherules, sulfur/jarosite-rich outcrop- derived soils, and basaltic clastic fragments encountered in Meridiani Planum, the hematite, goethite, and ferric- sulfate bearing soils encountered in Gusev crater, and crusted/armored soils and rinds encountered at both Viking and both MER sites. Much of the observed martian soil variability may result from the action of local-scale weathering processes and/or reflect the diversity of local precursor bedrock sources. This presentation will provide an overview of what we know about the composition and mineralogy of martian soils, will review current models for martian soil formation in light of the currently-available data, and will describe ways that these models might be tested with ongoing and future Mars surface exploration missions.

  10. A Nine Kilometer Impact Crater and Its Central Peak

    NASA Image and Video Library

    2017-02-08

    found across the Martian surface. Each impact crater on Mars possesses a unique origin and composition, which makes the HiRISE team very interested in sampling as many of them as possible! Like the impact of a droplet into fluid, once an impact has occurred on the surface of Mars, an ejecta curtain forms immediately after, contributing to the raised rim visible at the top of the crater's walls. After the formation of the initial crater, if it is large enough, then a central peak appears as the surface rebounds. These central peaks can expose rocks that were previously deeply buried beneath the Martian surface. The blue and red colors in this enhanced-contrast image reflect the effects of post-impact sedimentation and weathering over time. http://photojournal.jpl.nasa.gov/catalog/PIA08395

  11. NanoSIMS analysis of organic carbon from the Tissint Martian meteorite: Evidence for the past existence of subsurface organic-bearing fluids on Mars

    NASA Astrophysics Data System (ADS)

    Lin, Yangting; El Goresy, Ahmed; Hu, Sen; Zhang, Jianchao; Gillet, Philippe; Xu, Yuchen; Hao, Jialong; Miyahara, Masaaki; Ouyang, Ziyuan; Ohtani, Eiji; Xu, Lin; Yang, Wei; Feng, Lu; Zhao, Xuchao; Yang, Jing; Ozawa, Shin

    2014-12-01

    Two petrographic settings of carbonaceous components, mainly filling open fractures and occasionally enclosed in shock-melt veins, were found in the recently fallen Tissint Martian meteorite. The presence in shock-melt veins and the deuterium enrichments (δD up to +1183‰) of these components clearly indicate a pristine Martian origin. The carbonaceous components are kerogen-like, based on micro-Raman spectra and multielemental ratios, and were probably deposited from fluids in shock-induced fractures in the parent rock of Tissint. After precipitation of the organic matter, the rock experienced another severe shock event, producing the melt veins that encapsulated a part of the organic matter. The C isotopic compositions of the organic matter (δ13C = -12.8 to -33.1‰) are significantly lighter than Martian atmospheric CO2 and carbonate, providing a tantalizing hint for a possible biotic process. Alternatively, the organic matter could be derived from carbonaceous chondrites, as insoluble organic matter from the latter has similar chemical and isotopic compositions. The presence of organic-rich fluids that infiltrated rocks near the surface of Mars has significant implications for the study of Martian paleoenvironment and perhaps to search for possible ancient biological activities on Mars.

  12. Glass and Glass-Ceramic Materials from Simulated Composition of Lunar and Martian Soils: Selected Properties and Potential Applications

    NASA Technical Reports Server (NTRS)

    Ray, C. S.; Sen, S.; Reis, S. T.; Kim, C. W.

    2005-01-01

    In-situ resource processing and utilization on planetary bodies is an important and integral part of NASA's space exploration program. Within this scope and context, our general effort is primarily aimed at developing glass and glass-ceramic type materials using lunar and martian soils, and exploring various applications of these materials for planetary surface operations. Our preliminary work to date have demonstrated that glasses can be successfully prepared from melts of the simulated composition of both lunar and martian soils, and the melts have a viscosity-temperature window appropriate for drawing continuous glass fibers. The glasses are shown to have the potential for immobilizing certain types of nuclear wastes without deteriorating their chemical durability and thermal stability. This has a direct impact on successfully and economically disposing nuclear waste generated from a nuclear power plant on a planetary surface. In addition, these materials display characteristics that can be manipulated using appropriate processing protocols to develop glassy or glass-ceramic magnets. Also discussed in this presentation are other potential applications along with a few selected thermal, chemical, and structural properties as evaluated up to this time for these materials.

  13. Cemented Volcanic Soils, Martian Spectra and Implications for the Martian Climate

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Schiffman, P.; Drief, A.; Southard, R. J.

    2004-01-01

    Cemented soils formed via reactions with salts are studied here and provide information about the climate when they formed. Spectroscopic and microprobe studies have been performed on cemented volcanic crusts in order to learn about the composition of these materials, how they formed, and what they can tell us about climatic interactions with surface material on Mars to form cemented soils. These crusts include carbonate, sulfate and opaline components that may all be present in cemented soil units on Mars.

  14. Rind-Like Features at a Meridiani Outcrop

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Annotated image of PIA04189 Rind-Like Features at a Meridiani Outcrop

    After months spent crossing a sea of rippled sands, Opportunity reached an outcrop in August 2005 and began investigating exposures of sedimentary rocks, intriguing rind-like features that appear to cap the rocks, and cobbles that dot the martian surface locally. Opportunity spent several martian days, or sols, analyzing a feature called 'Lemon Rind,' a thin surface layer covering portions of outcrop rocks poking through the sand north of 'Erebus Crater.' In images from the panoramic camera, Lemon Rind appears slightly different in color than surrounding rocks. It also appears to be slightly more resistant to wind erosion than the outcrop's interior. This is an approximately true-color composite produced from frames taken during Opportunity's 552nd martian day, or sol (Aug. 13, 2005).

  15. Mineralogy of the Martian Surface: Crustal Composition to Surface Processes

    NASA Technical Reports Server (NTRS)

    Mustard, John F.

    1999-01-01

    Over the course of this award we have: 1) Completed and published the results of a study of the effects of hyperfine particles on reflectance spectra of olivine and quartz, which included the development of scattering codes. Research has also progressed in the analysis of the effects of fine particle sizes on clay spectra. 2) Completed the analysis of the mineralogy of dark regions, showed the insitu compositions are highly correlated to the SNC meteorites, and determined that the martian mantle was depleted in aluminum prior to 2-3 GA ago; Studies of the mineralogic heterogeneity of surficial materials on Mars have also been conducted. and 3) Performed initial work on the study of the physical and chemical processes likely to form and modify duricrust. This includes assessments of erosion rates, solubility and transport of iron in soil environments, and models of pedogenic crust formation.

  16. Cryogenic Carbonate Formation on Mars: Clues from Stable Isotope Variations Seen in Experimental Studies

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Niles, Paul B.; Fu, Qi; Gibson, Everett K., Jr.

    2010-01-01

    Discoveries of large deposits of sedimentary materials on the planet Mars by landers and orbiters have confirmed the widely held hypothesis that water has played a crucial role in the development of the martian surface. Recent studies have indicated that both water ice and liquid water may have been present and in the case of water ice perhaps is still present on or near the surface of Mars. However, there remains much controversy about the prevailing atmospheric conditions and climate of Mars during its history and whether liquid water existed on the martian surface simply during discrete geological events or whether this water was present over relatively much longer geologic time periods. The recent identification of Ca-rich carbonate by the Phoenix lander as well as its measurement of the isotopic composition of atmospheric CO2 has shown the importance of understanding the carbonates on Mars as an important sink of atmospheric carbon. This work compliments that of our past experiments where we produced cryogenic calcite in open containers, as analogs for terrestrial aufeis formation, and as a means for evaluating the fractionation of C-13 in CO2 during bicarbonate freezing [13]. Unlike our previous experiments in which carbonates were grown in ambient laboratory condition in open containers (atmospheric pressure and composition), this work attempts to quantify the amount of delta C-13 enrichment possible in both fluids and secondary carbonates formed from freezing of bicarbonate fluids under martian-like atmospheric conditions. Morphologic textures of produced carbonates in these experiments are also examined under SEM in order to identify the effect that the cryogenic freezing process has on the mineral's mineralogy. Understanding the role of kinetic isotope fractionation during formation of carbonates under martian-like conditions will aid in our ability to quantify the isotopic composition of the carbonate sink furthering our ability to model the climate history of Mars.

  17. Visible and Near-IR Reflectance Spectra of Mars Analogue Materials Under Arid Conditions for Interpretation of Martian Surface Mineralogy

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Graff, T. G.; Achilles, C. N.; Agresti, D. G.; Ming, D. W.; Golden, D. C.

    2011-01-01

    Visible and near-IR (VNIR) spectra from the hyper-spectral imagers MRO-CRISM and Mars Express OMEGA in martian orbit have signatures from Fe-bearing phases (e.g., olivine, pyroxene, and jarosite), H2O/OH-bearing phases (e.g., smectites and other phyllosilicates, sulfates, and high-SiO2 phases), and carbonate [e.g., 1-5]. Mineralogical assignments of martian spectral features are made on the basis of VNIR spectra acquired in the laboratory under appropriate environmental conditions on samples whose mineralogical composition is known. We report here additional results for our ongoing project [6] to acquire VNIR spectra under arid conditions.

  18. MA_MISS and terrestrial analogues for Mars

    NASA Astrophysics Data System (ADS)

    De Sanctis, M. C.; De Angelis, S.; Ammannito, E.; Di Iorio, T.; Carli, C.; Frigeri, A.; Boccaccini, A.; Battistelli, E.; Mugnolo, R.; MA MISS Team

    2012-09-01

    The MA_MISS instrument (Mars Multispectral Imager for Subsurface Studies) is a VIS-NIR spectrometer devoted to study the Martian subsoil within the ExoMars mission. This miniaturized spectrometer is integrated in drilling system of the ExoMars Pasteur Rover, and will investigate the Martian subsoil down to 2 m, in the spectral range 0.4 - 2.2 μm [1,2]. It will provide important information regarding the composition and mineralogy of the Martian subsoil, whose materials are expected to be less altered by erosion and other exogenous processes than surface rocks. With a view to doing laboratory spectroscopic measurements with the instrument breadboard, we performed preliminary laboratory measurements on Mars analogues using a spectrophotometer coupled with a goniometer.

  19. Characterization of Martian Soil Fines Fraction in SNC Meteorites

    NASA Technical Reports Server (NTRS)

    Rao, M. N.; McKay, D. S.

    2003-01-01

    Some impact-melt glasses in shergottite meteorites contain large abundances of martian atmospheric noble gases with high (129)Xe/(132)Xe ratios, accompanied by varying (87)Sr/(86)Sr (initial) ratios. These glasses contain Martian Soil Fines (MSF) probably from young volcanic terrains such as Tharsis or Elysium Mons. The composition of the MSF bearing samples is different from the average bulk composition of the host rock. These samples show the following charecteristics: a) simultaeneous enrichment of the felsic component and depletion of the mafic component relative to the host phase and b) significant secondary sulfur/sulfate excesses over the host material. The degree of enrichment and associated depletion varies from one sample to another. Earlier, we found large enrichments of felsic (Al, Ca, Na and K) component and depletion of mafic (Fe, Mg, Mn and Ti) component in several impact melt glass veins and pods of samples ,77 ,78 , 18, and ,20A in EET79001 accompanied by large sulfur/sulfate excesses. Based on these results, we proposed a model where the comminution of basaltic rocks takes place by meteoroid bombardment on the martian surface, leading to the generation of fine-grained soil near the impact sites. This fine-grained soil material is subsequently mobilized by saltation and deflation processes on Mars surface due to pervasive aeolian activity. This movement results in mechanical fractionation leading to the felsic enrichment and mafic depletion in the martian dust. We report, here, new data on an impact-melt inclusion ,507 (PAPA) from EET79001, Lith B and ,506 (ALPHA) from EET79001, Lith A and compare the results with those obtained on Shergotty impact melt glass (DBS).

  20. Redox Interactions between Iron and Carbon in Planetary Mantles: Implications for Degassing and Melting Processes

    NASA Technical Reports Server (NTRS)

    Martin, A.; Righter, K.

    2009-01-01

    Carbon stability in planetary mantles has been studied by numerous authors because it is thought to be the source of C-bearing atmospheres and of C-rich lavas observed at the planetary surface. In the Earth, carbonaceous peridotites and eclogites compositions have been experimentally studied at mantle conditions [1] [2] [3]. [4] showed that the fO2 variations observed in martian meteorites can be explained by polybaric graphite-CO-CO2 equilibria in the Martian mantle. Based on thermodynamic calculations [4] and [5] inferred that the stable form of carbon in the source regions of the Martian basalts should be graphite (and/or diamond), and equilibrium with melts would be a source of CO2 for the martian atmosphere. Considering the high content of iron in the Martian mantle (approx.18.0 wt% FeO; [6]), compared to Earth s mantle (8.0 wt% FeO; [7]) Fe/C redox interactions should be studied in more detail.

  1. The Northwest Africa 8159 martian meteorite: Expanding the martian sample suite to the early Amazonian

    NASA Astrophysics Data System (ADS)

    Herd, Christopher D. K.; Walton, Erin L.; Agee, Carl B.; Muttik, Nele; Ziegler, Karen; Shearer, Charles K.; Bell, Aaron S.; Santos, Alison R.; Burger, Paul V.; Simon, Justin I.; Tappa, Michael J.; McCubbin, Francis M.; Gattacceca, Jérôme; Lagroix, France; Sanborn, Matthew E.; Yin, Qing-Zhu; Cassata, William S.; Borg, Lars E.; Lindvall, Rachel E.; Kruijer, Thomas S.; Brennecka, Gregory A.; Kleine, Thorsten; Nishiizumi, Kunihiko; Caffee, Marc W.

    2017-12-01

    Northwest Africa (NWA) 8159 is an augite-rich shergottite, with a mineralogy dominated by Ca-, Fe-rich pyroxene, plagioclase, olivine, and magnetite. NWA 8159 crystallized from an evolved melt of basaltic composition under relatively rapid conditions of cooling, likely in a surface lava flow or shallow sill. Redox conditions experienced by the melt shifted from relatively oxidizing (with respect to known Martian lithologies, ∼QFM) on the liquidus to higher oxygen fugacity (∼QFM + 2) during crystallization of the groundmass, and under subsolidus conditions. This shift resulted in the production of orthopyroxene and magnetite replacing olivine phenocryst rims. NWA 8159 contains both crystalline and shock-amorphized plagioclase (An50-62), often observed within a single grain; based on known calibrations we bracket the peak shock pressure experienced by NWA 8159 to between 15 and 23 GPa. The bulk composition of NWA 8159 is depleted in LREE, as observed for Tissint and other depleted shergottites; however, NWA 8159 is distinct from all other martian lithologies in its bulk composition and oxygen fugacity. We obtain a Sm-Nd formation age of 2.37 ± 0.25 Ga for NWA 8159, which represents an interval in Mars geologic time which, until recently, was not represented in the other martian meteorite types. The bulk rock 147Sm/144Nd value of 0.37 ± 0.02 is consistent with it being derived directly from its source and the high initial ε143Nd value indicates this source was geochemically highly depleted. Cr, Nd, and W isotopic compositions further support a unique mantle source. While the rock shares similarities with the 2.4-Ga NWA 7635 meteorite, there are notable distinctions between the two meteorites that suggest differences in mantle source compositions and conditions of crystallization. Nevertheless, the two samples may be launch-paired. NWA 8159 expands the known basalt types, ages and mantle sources within the Mars sample suite to include a second igneous unit from the early Amazonian.

  2. Formation of Hematite fine crystals by hydrothermal alteration of synthetic Martian basalt, static and fluid flow experiments

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.; Isobe, H.

    2011-12-01

    Exploration made by Martian rovers and probes provided enormous information on the composition of the Martian surface materials. Origin and formation processes of the Martian surface materials should be various depending on topography and history of the Martian crust. Especially, iron minerals in the Martian soil should have essential role to characterize surface environment of the "red planet". In the present study, experimental reproduction of the Martian soil was carried out by hydrothermal alteration of the synthetic iron-rich basaltic rock. Experimental conditions for temperature and fluid composition followed Isobe and Yoshizawa (2010). Static alteration experiments are carried out at 100 °C and 150 °C, and mass ratio of the starting material to the pH1.0 sulfuric acid solution is 1:50. Run durations are 1, 2, 4 or 8 weeks. Appropriate mass of dry ice was sealed in the experimental vessels to expel atmospheric oxygen with CO2. For the static experiments, powdered starting materials were charged in PFA vial to keep textures of the run products. For the fluid flow experiments, we constructed closed loop with Teflon tube inclined approximately 45°. One of the vertical tube is charged with crushed synthetic basalt and heated approximately 150°C by aluminum block with ribbon heater. Surlfuric acid solution flows through the tube from bottom to top and cooled at the end of the aluminum block. Cooled solution returns to the bottom of the heated tube through another vertical tube without heating block. In the static condition run products, characteristic iron mineral particles are formed for 100°C and 150°C concordant with Isobe and Yoshizawa (2010). These iron minerals distributed not only inside the starting material powder but also on the surface of the reaction vessel and the PFA vial in the reactive solution. The surface of the reaction vessel shows orange and reddish color on 100°C and 150°C run products, respectively. By SEM observation, dissolution of melt and olivine grains were observed, and iron mineral particles substituted olivine partly. Diameters of the iron mineral particles are submicron to several micron meters at 100°C, and slowly increase with run durations and temperatures. In the fluid flow experiment, deposition of the characteristic iron minerals occur inside the heated tube. Distribution of iron minerals corresponds to temperature gradient and fluid flow direction. Iron minerals are partially covered by silica phase with submicron meters in thickness. The occurrence of the iron minerals in the run products of this study suggests that characteristic iron mineral fine particles including hematite and goethite were formed by acidic hydrothermal alteration of iron-rich basaltic rock even at remote region from the source materials.

  3. Electrically Conducting, Ca-Rich Brines, Rather Than Water, Expected in the Martian Subsurface

    NASA Technical Reports Server (NTRS)

    Burt, D. M.; Knauth, L. P.

    2003-01-01

    If Mars ever possessed a salty liquid hydrosphere, which later partly evaporated and froze down, then any aqueous fluids left near the surface could have evolved to become dense eutectic brines. Eutectic brines, by definition, are the last to freeze and the first to melt. If CaC12-rich, such brines can remain liquid until temperatures below 220 K, close to the average surface temperature of Mars. In the Martian subsurface, in intimate contact with the Ca-rich basaltic regolith, NaC1-rich early brines should have reacted to become Ca-rich. Fractional crystallization (freezing) and partial melting would also drive brines toward CaC12-rich compositions. In other words, eutectic brine compositions could be present in the shallow subsurface of Mars, for the same reasons that eutectic magma compositions are common on Earth. Don Juan Pond, Antarctica, a CaC12-rich eutectic brine, provides a possible terrestrial analog, particularly because it is fed from a basaltic aquifer. Owing to their relative density and fluid nature, brines in the Martian regolith should eventually become sandwiched between ice above and salts beneath. A thawing brine sandwich provides one explanation (among many) for the young gullies recently attributed to seepage of liquid water on Mars. Whether or not brine seepage explains the gullies phenomenon, dense, CaC12-rich brines are to be expected in the deep subsurface of Mars, although they might be somewhat diluted (temperatures permitting) and of variable salt composition. In any case, they should be good conductors of electricity.

  4. What we know about Mars (but otherwise wouldn't) if it is the shergottite parent body

    NASA Technical Reports Server (NTRS)

    Mcsween, H. Y., Jr.

    1985-01-01

    The evidence that some meteorites may actually be samples of fairly large solar system bodies, specifically the moon and the planet Mars was presented. The proposed martian meteorites, called shergottites are igneous rocks that crystallized from molten magmas. Their crystallization ages are much too young to have formed by internal melting within small asteroids, and the unusual chemical composition of gases trapped when these rocks were severely shocked matches that of the martin atmosphere measured by Viking. The implications of these samples for martian evolution was discussed and suggested, that if Mars is the shergottite parent body, the martian interior is much more like that of the earth than has been previously thought. Shergottites explain presence of small magnetic field indicate that volatileement concentratins in Mars should be similar to the Earth, and explain the great lengths of volcanic flows on the martian surface.

  5. Mars Aeronomy Observer: Report of the Science Working Team

    NASA Technical Reports Server (NTRS)

    Hunten, Donald M.; Slavin, James A.; Brace, Lawrence H.; Deming, Drake; Frank, Louis A.; Grebowsky, Joseph M.; Haberle, Robert M.; Hanson, William B.; Intriligator, Devrie S.; Killeen, Timothy L.; hide

    1986-01-01

    The Mars Aeronomy Observer (MAO) is a candidate follow-on mission to Mars Observer (MO) in the Planetary Observer Program. The four Mariner and two Viking spacecraft sent to Mars between 1965 and 1976 have provided a wealth of information concerning Martian planetology. The Mars Observer, to be launched in 1990, will build on their results by further examining the elemental and mineralogical composition of the surface, the strength and multipolar composition of the planetary magnetic field, the gravitational field and topography, and the circulation of the lower atmosphere. The Mars Aeronomy Observer is intended to address the last major aspects of Martian environment which have yet to be investigated: the upper atmosphere, the ionsphere, and the solar wind interaction region.

  6. Evidence for a Heterogeneous Distribution of Water in the Martian Interior

    NASA Technical Reports Server (NTRS)

    McCubbin, Francis; Boyce, Jeremy W.; Srinvasan, Poorna; Santos, Alison R.; Elardo, Stephen M.; Filiberto, Justin; Steele, Andrew; Shearer, Charles K.

    2016-01-01

    The abundance and distribution of H2O within the terrestrial planets, as well as its timing of delivery, is a topic of vital importance for understanding the chemical and physical evolution of planets and their potential for hosting habitable environments. Analysis of planetary materials from Mars, the Moon, and the eucrite parent body (i.e., asteroid 4Vesta) have confirmed the presence of H2O within their interiors. Moreover, H and N isotopic data from these planetary materials suggests H2O was delivered to the inner solar system very early from a common source, similar in composition to the carbonaceous chondrites. Despite the ubiquity of H2O in the inner Solar System, the only destination with any prospects for past or present habitable environments at this time, outside of the Earth, is Mars. Although the presence of H2O within the martian interior has been confirmed, very little is known regarding its abundance and distribution within the martian interior and how the martian water inventory has changed over time. By combining new analyses of martian apatites within a large number of martian meteorite types with previously published volatile data and recently determined mineral-melt partition coefficients for apatite, we report new insights into the abundance and distribution of volatiles in the martian crust and mantle. Using the subset of samples that did not exhibit crustal contamination, we determined that the enriched shergottite mantle source has 36-73 ppm H2O and the depleted shergottite mantle source has 14-23 ppm H2O. This result is consistent with other observed geochemical differences between enriched and depleted shergottites and supports the idea that there are at least two geochemically distinct reservoirs in the martian mantle. We also estimated the H2O content of the martian crust using the revised mantle H2O abundances and known crust-mantle distributions of incompatible lithophile elements. We determined that the bulk martian crust has approximately 1400 ppm H2O, which is likely distributed toward the martian surface. This crustal water abundance would equate to a global equivalent layer (GEL) of water at a depth of-229 m, which can account for at least some of the surface features on Mars attributed to flowing water and may be sufficient to support the past presence of a shallow sea on Mars' surface.

  7. Lithium isotope constraints on crust-mantle interactions and surface processes on Mars

    NASA Astrophysics Data System (ADS)

    Magna, Tomáš; Day, James M. D.; Mezger, Klaus; Fehr, Manuela A.; Dohmen, Ralf; Aoudjehane, Hasnaa Chennaoui; Agee, Carl B.

    2015-08-01

    Lithium abundances and isotope compositions are reported for a suite of martian meteorites that span the range of petrological and geochemical types recognized to date for Mars. Samples include twenty-one bulk-rock enriched, intermediate and depleted shergottites, six nakhlites, two chassignites, the orthopyroxenite Allan Hills (ALH) 84001 and the polymict breccia Northwest Africa (NWA) 7034. Shergottites unaffected by terrestrial weathering exhibit a range in δ7Li from 2.1 to 6.2‰, similar to that reported for pristine terrestrial peridotites and unaltered mid-ocean ridge and ocean island basalts. Two chassignites have δ7Li values (4.0‰) intermediate to the shergottite range, and combined, these meteorites provide the most robust current constraints on δ7Li of the martian mantle. The polymict breccia NWA 7034 has the lowest δ7Li (-0.2‰) of all terrestrially unaltered martian meteorites measured to date and may represent an isotopically light surface end-member. The new data for NWA 7034 imply that martian crustal surface materials had both a lighter Li isotope composition and elevated Li abundance compared with their associated mantle. These findings are supported by Li data for olivine-phyric shergotitte NWA 1068, a black glass phase isolated from the Tissint meteorite fall, and some nakhlites, which all show evidence for assimilation of a low-δ7Li crustal component. The range in δ7Li for nakhlites (1.8 to 5.2‰), and co-variations with chlorine abundance, suggests crustal contamination by Cl-rich brines. The differences in Li isotope composition and abundance between the martian mantle and estimated crust are not as large as the fractionations observed for terrestrial continental crust and mantle, suggesting a difference in the styles of alteration and weathering between water-dominated processes on Earth versus possibly Cl-S-rich brines on Mars. Using high-MgO shergottites (>15 wt.% MgO) it is possible to estimate the δ7Li of Bulk Silicate Mars (BSM) to be 4.2 ± 0.9‰ (2σ). This value is at the higher end of estimates for the Bulk Silicate Earth (BSE; 3.5 ± 1.0‰, 2σ), but overlaps within uncertainty.

  8. Preliminary design of a universal Martian lander

    NASA Astrophysics Data System (ADS)

    Norman, Timothy L.; Gaskin, David E.; Adkins, Sean; Gunawan, Mary; Johnson, Raquel; Macdonnell, David; Parlock, Andrew; Sarick, John; Bodwell, Charles; Hashimoto, Kouichi

    In the next 25 years, mankind will be undertaking yet another giant leap forward in the exploration of the solar system: a manned mission to Mars. This journey will provide important information on the composition and history of both Mars and the Solar System. A manned mission will also provide the opportunity to study how humans can adapt to long term space flight conditions and the Martian environment. As part of the NASA/USRA program, nineteen West Virginia University students conducted a preliminary design of a manned Universal Martian Lander (UML). The UML's design will provide a 'universal' platform, consisting of four modules for living and laboratory experiments and a liquid-fuel propelled Manned Ascent Return Vehicle (MARV). The distinguishing feature of the UML is the 'universal' design of the modules which can be connected to form a network of laboratories and living quarters for future missions thereby reducing development and production costs. The WVU design considers descent to Mars from polar orbit, a six month surface stay, and ascent for rendezvous. The design begins with an unmanned UML landing at Elysium Mons followed by the manned UML landing nearby. During the six month surface stay, the eight modules will be assembled to form a Martian base where scientific experiments will be performed. The mission will also incorporate hydroponic plant growth into a Controlled Ecological Life Support System (CELSS) for water recycling, food production, and to counteract psychological effects of living on Mars. In situ fuel production for the MARV will be produced from gases in the Martian atmosphere. Following surface operations, the eight member crew will use the MARV to return to the Martian Transfer Vehicle (MTV) for the journey home to Earth.

  9. Preliminary design of a universal Martian lander

    NASA Technical Reports Server (NTRS)

    Norman, Timothy L.; Gaskin, David E.; Adkins, Sean; Gunawan, Mary; Johnson, Raquel; Macdonnell, David; Parlock, Andrew; Sarick, John; Bodwell, Charles; Hashimoto, Kouichi

    1993-01-01

    In the next 25 years, mankind will be undertaking yet another giant leap forward in the exploration of the solar system: a manned mission to Mars. This journey will provide important information on the composition and history of both Mars and the Solar System. A manned mission will also provide the opportunity to study how humans can adapt to long term space flight conditions and the Martian environment. As part of the NASA/USRA program, nineteen West Virginia University students conducted a preliminary design of a manned Universal Martian Lander (UML). The UML's design will provide a 'universal' platform, consisting of four modules for living and laboratory experiments and a liquid-fuel propelled Manned Ascent Return Vehicle (MARV). The distinguishing feature of the UML is the 'universal' design of the modules which can be connected to form a network of laboratories and living quarters for future missions thereby reducing development and production costs. The WVU design considers descent to Mars from polar orbit, a six month surface stay, and ascent for rendezvous. The design begins with an unmanned UML landing at Elysium Mons followed by the manned UML landing nearby. During the six month surface stay, the eight modules will be assembled to form a Martian base where scientific experiments will be performed. The mission will also incorporate hydroponic plant growth into a Controlled Ecological Life Support System (CELSS) for water recycling, food production, and to counteract psychological effects of living on Mars. In situ fuel production for the MARV will be produced from gases in the Martian atmosphere. Following surface operations, the eight member crew will use the MARV to return to the Martian Transfer Vehicle (MTV) for the journey home to Earth.

  10. New Martian Meteorite Is One of the Most Oxidized Found to Date

    NASA Technical Reports Server (NTRS)

    Hui, Hejiu; Peslier, Anne; Lapen, Thomas J.; Shafer, John T.; Brandon, Alan D.; Irving, Anthony J.

    2014-01-01

    As of 2013, about 60 meteorites from the planet Mars have been found and are being studied. Each time a new Martian meteorite is found, a wealth of new information comes forward about the red planet. The most abundant type of Martian meteorite is a shergottite; its lithologies are broadly similar to those of Earth basalts and gabbros; i.e., crustal igneous rocks. The entire suite of shergottites is characterized by a range of trace element, isotopic ratio, and oxygen fugacity values that mainly reflect compositional variations of the Martian mantle from which these magmas came. A newly found shergottite, NWA 5298, was the focus of a study performed by scientists within the Astromaterials Research and Exploration Science (ARES) Directorate at the Johnson Space Center (JSC) in 2012. This sample was found in Morocco in 2008. Major element analyses were performed in the electron microprobe (EMP) laboratory of ARES at JSC, while the trace elements were measured at the University of Houston by laser inductively coupled plasma mass spectrometry (ICPMS). A detailed analysis of this stone revealed that this meteorite is a crystallized magma that comes from the enriched end of the shergottite spectrum; i.e., trace element enriched and oxidized. Its oxidation comes in part from its mantle source and from oxidation during the magma ascent. It represents a pristine magma that did not mix with any other magma or see crystal accumulation or crustal contamination on its way up to the Martian surface. NWA 5298 is therefore a direct, albeit evolved, melt from the Martian mantle and, for its lithology (basaltic shergottite), it represents the oxidized end of the shergottite suite. It is thus a unique sample that has provided an end-member composition for Martian magmas.

  11. Isotopic Analysis and Evolved Gases

    NASA Technical Reports Server (NTRS)

    Swindle, Timothy D.; Boynton, William V.; Chutjian, Ara; Hoffman, John H.; Jordan, Jim L.; Kargel, Jeffrey S.; McEntire, Richard W.; Nyquist, Larry

    1996-01-01

    Precise measurements of the chemical, elemental, and isotopic composition of planetary surface material and gases, and observed variations in these compositions, can contribute significantly to our knowledge of the source(s), ages, and evolution of solar system materials. The analyses discussed in this paper are mostly made by mass spectrometers or some other type of mass analyzer, and address three broad areas of interest: (1) atmospheric composition - isotopic, elemental, and molecular, (2) gases evolved from solids, and (3) solids. Current isotopic data on nine elements, mostly from in situ analysis, but also from meteorites and telescopic observations are summarized. Potential instruments for isotopic analysis of lunar, Martian, Venusian, Mercury, and Pluto surfaces, along with asteroid, cometary and icy satellites, surfaces are discussed.

  12. Mineralogy of the Martian Surface: Crustal Composition to Surface Processes

    NASA Technical Reports Server (NTRS)

    Mustard, John F.

    1997-01-01

    The main results have been published in the refereed literature, and thus this report serves mainly to summarize the main findings and indicate where the detailed papers may be found. Reflectance spectroscopy has been an important tool for determining the mineralogic makeup of the near surface materials on Mars. Analysis of the spectral properties of the surface have demonstrated that these attributes are heterogeneous from the coarse spatial but high spectral resolution spectra obtained with telescopes to the high spatial but coarse spectral resolution Viking data (e.g. Arvidson et al., 1989; McEwen et al., 1989). Low albedo materials show strong evidence for the presence of igneous rock forming minerals while bright materials are generally interpreted as representing heavily altered crustal material. How these materials are physically and genetically related has important implications for understanding martian surface properties and processes, weathering histories and paths, and crustal composition. The goal of this research is to characterize the physical and chemical properties of low albedo materials on Mars and the relationship to intermediate and high albedo materials. Fundamental science questions to be pursued include: (1) the observed distributions of soil, rock, and dust a function of physical processes or weathering and (2) different stages of chemical and physical alteration fresh rock identified. These objectives will be addressed through detailed analyses and modelling of the ISM data from the Phobos-2 mission with corroborating evidence of surface composition and properties provided by data from the Viking mission.

  13. An integrated view of the chemistry and mineralogy of martian soils

    USGS Publications Warehouse

    Yen, A. S.; Gellert, Ralf; Schroder, C.; Morris, R.V.; Bell, J.F.; Knudson, A.T.; Clark, B. C.; Ming, D. W.; Crisp, J.A.; Arvidson, R. E.; Blaney, D.; Brückner, J.; Christensen, P.R.; DesMarais, D.J.; De Souza, P.A.; Economou, T.E.; Ghosh, A.; Hahn, B.C.; Herkenhoff, K. E.; Haskin, L.A.; Hurowitz, J.A.; Joliff, B.L.; Johnson, J. R.; Klingelhofer, G.; Madsen, M.B.; McLennan, S.M.; McSween, H.Y.; Richter, L.; Rieder, R.; Rodionov, D.; Soderblom, L.; Squyres, S. W.; Tosca, N.J.; Wang, A.; Wyatt, M.; Zipfel, J.

    2005-01-01

    The mineralogical and elemental compositions of the martian soil are indicators of chemical and physical weathering processes. Using data from the Mars Exploration Rovers, we show that bright dust deposits on opposite sides of the planet are part of a global unit and not dominated by the composition of local rocks. Dark soil deposits at both sites have similar basaltic mineralogies, and could reflect either a global component or the general similarity in the compositions of the rocks from which they were derived. Increased levels of bromine are consistent with mobilization of soluble salts by thin films of liquid water, but the presence of olivine in analysed soil samples indicates that the extent of aqueous alteration of soils has been limited. Nickel abundances are enhanced at the immediate surface and indicate that the upper few millimetres of soil could contain up to one per cent meteoritic material.

  14. VNIR spectroscopy of Mars Analogues with the ExoMars-Ma_Miss instrument .

    NASA Astrophysics Data System (ADS)

    De Angelis, S.; De Sanctis, M. C.; Ammannito, E.; Di Iorio, T.; Carli, C.; Frigeri, A.; Capria, M. T.; Federico, C.; Boccaccini, A.; Capaccioni, F.; Giardino, M.; Cerroni, P.; Palomba, E.; Piccioni, G.

    The ExoMars 2018 mission will investigate the Martian surface environment with the aim of searching for eventual present or past signs of life, and to obtain a characterization of Martian soil and subsoil. The investigation of the near-surface environment and of the shallow subsurface with complementary techniques, will provide insights on the chemical and mineralogical composition, material grain size, the litotypes, the stratigraphy: these information will help us to understand the geologic processes that characterized the history of the Martian crust. The Ma_Miss (Mars Multispectral Imager for Subsurface Studies) instrument \\citep{coradini01} is a miniaturized visible and near-infrared spectrometer, integrated in the ExoMars Pasteur Rover Drill: it will acquire spectra of the borehole wall performed by the Drill, down to a depth up to two meters. Spectroscopic tests have been performed with the laboratory model (breadboard) on spectral targets and rock samples; furtherly, an activity of VNIR reflectance spectroscopy of Mars analogues has been begun with the breadboard to build a spectral library.

  15. What Can Spectral Properties of Martian Surface and Snc Can Tell Us about the Martian Crust Composition and Evolution

    NASA Astrophysics Data System (ADS)

    Ody, A.; Poulet, F.; Baratoux, D.; Quantin, C.; Bibring, J. P.

    2014-12-01

    While the study of Martian meteorites can provide detailed information about the crust and mantle composition and evolution, remote-sensing observations, through the merging of compositional and geological data, allow highlighting planetary-scale trends of the Martian crustal evolution [1,2]. Recently, the analysis of the global distribution of mafic minerals [3] has put new constraints on the Martian crust formation and evolution. One of the major results is a past global event of olivine-bearing fissural volcanism that has filled craters and low depressions in the southern highlands and a large part of the Northern plains during the late Noachian/early Hesperian. Petrologic models show that this sudden increase of the olivine content at the Noachian-Hesperian boundary could be the result of a rapid thickening of the lithosphere at the end of the Noachian era [4]. A recent study based on the OMEGA/MEx data has shown that the spectral properties of the shergottites are similar to those of some Noachian and Hesperian terrains [5]. To contrary, the Nakhla spectral properties are very different from those of the observable surface and could be representative of Amazonian terrains buried under dust. These results are best explained with an old age of the shergottites [6] and with the present understanding of the evolution of magma composition at a planetary scale [7]. On the other hand, if shergottites are young [8], the similarities between the shergottites and ancient terrains implies that exceptional conditions of melting with respect to the ambient mantle (e.g., hot spots or water-rich mantle source) were responsible for the formation of these samples [9]. References: [1] McSween et al., 2009, Science, 324. [2] Ehlmann & Edwards 2014, AREPS, vol. 42. [3] Ody et al., 2013, JGR,117,E00J14. [4] Ody et al., 2014, 8th Inter. Conf. on Mars,#1190. [5] Ody et al., 2013, 44th LPSC, #1719. [6] Bouvier et al., 2009, EPSL, 280. [7] Baratoux et al., 2013, JGR, 118. [8] Nyquist et al., [2001], Chronology and Evolution of Mars, pp. 105-164. [9] Balta and McSween, 2013, Geology,v. 41, p. 1115-1118. Acknowledgment:The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013)/ERC Grant agreement n°280168 .

  16. Mars. [evolution and surface features

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.

    1975-01-01

    The evolution and physical structure of Mars are discussed primarily on the basis of Mariner 9 observations. The Martian atmosphere, density, and iron abundance are compared with those of earth, and it is noted that the planet was probably formed in less than 100,000 years. Stages in Martian differentiation are described together with the atmospheric composition, condensation and dust clouds, and surface winds. The surface is shown to have a wide diversity of geological landforms resulting from a variety of processes, including meteoroid bombardment, volcanic and tectonic activity, sapping, the action of running water, and wind action. Described landforms include impact craters, volcanic plains and domes, shield volcanoes, sinuous channels and gullies apparently formed by running water, and the enormous canyon system. Mechanisms for climatic change are considered, and questions are posed regarding the possibility of life on Mars.

  17. H-Isotopic Composition of Apatite in Northwest Africa 7034

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; Barnes, J. J.; Santos, A. R.; Boyce, J. W.; Anand, M.; Franchi, I. A.; Agee, C. B.

    2016-01-01

    Northwest Africa (NWA) 7034 and its pairings comprise a regolith breccia with a basaltic bulk composition [1] that yields a better match than any other martian meteorite to estimates of Mars' bulk crust composition [1]. Given the similarities between NWA 7034 and the martian crust, NWA 7034 may represent an important sample for constraining the crustal composition of components that cannot be measured directly by remote sensing. In the present study, we seek to constrain the H isotopic composition of the martian crust using Cl-rich apatite in NWA 7034.

  18. On the original igneous source of Martian fines

    NASA Technical Reports Server (NTRS)

    Baird, A. K.; Clark, B. C.

    1981-01-01

    The composition of the silicate portion of Martian regolith fines indicates derivation of the fines from mafic to ultramafic rocks, probably rich in pyroxene. Rock types similar in chemical and mineralogical composition include terrestrial Archean basalts and certain achondrite meteorites. If these igneous rocks weathered nearly isochemically, the nontronitic clays proposed earlier as an analog to Martian fines could be formed. Flood basalts of pyroxenitic lavas may be widespread and characteristic of early volcanism on Mars, analogous to maria flood basalts on the moon and early Precambrian basaltic komatiites on earth. Compositional differences between lunar, terrestrial, and Martian flood basalts may be related to differences in planetary sizes and mantle compositions of the respective planetary objects.

  19. Martian carbon dioxide: Clues from isotopes in SNC meteorites

    NASA Technical Reports Server (NTRS)

    Karlsson, H. R.; Clayton, R. N.; Mayeda, T. K.; Jull, A. J. T.; Gibson, E. K., Jr.

    1993-01-01

    Attempts to unravel the origin and evolution of the atmosphere and hydrosphere on Mars from isotopic data have been hampered by the impreciseness of the measurements made by the Viking Lander and by Earth-based telescopes. The SNC meteorites which are possibly pieces of the Martian surface offer a unique opportunity to obtain more precise estimates of the planet's volatile inventory and isotopic composition. Recently, we reported results on oxygen isotopes of water extracted by pyrolysis from samples of Shergotty, Zagami, Nakhla, Chassigny, Lafayette, and EETA-79001. Now we describe complementary results on the stable isotopic composition of carbon dioxide extracted simultaneously from those same samples. We will also report on C-14 abundances obtained by accelerator mass spectrometry (AMS) for some of these CO2 samples.

  20. What we have learned about Mars from SNC meteorites

    NASA Technical Reports Server (NTRS)

    Mcsween, Harry Y., Jr.

    1994-01-01

    The SNC meteorites are thought to be igneous martian rocks, based on their young crystallization ages and a close match between the composition of gases implanted in them during shock and the atmosphere of Mars. A related meteorite, ALH84001, may be older and thus may represent ancient martian crust. These petrologically diverse basalts and ultramafic rocks are mostly cumulates, but their parent magmas share geochemical and radiogenic isotopic characteristics that suggest they may have formed by remelting the same mantle source region at different times. Information and inferences about martian geology drawn from these samples include the following: Planetary differentiation occured early at approximately 4.5 GA, probably concurrently with accretion. The martian mantle contains different abundances of moderately volatile and siderophile elements and is more Fe-rich than that of the Earth, which has implications for its mineralogy, density, and origin. The estimated core composition has a S abundance near the threshold value for inner core solidification. The former presence of a core dynamo may be suggested by remanent magnetization in Shergottite-Nakhlite-Chassignite (SNC) meteorites, although these rocks may have been magnetized during shock. The mineralogy of martian surface units, inferred from reflectance spectra, matches that of basaltic shergottites, but SNC lithologies thought to have crystallized in the subsurface are not presently recognized. The rheological properties of martian magmas are more accurately derived form these metorites than from observations of martian flow morphology, although the sampled range of magma compositions islimited. Estimates of planetary water abundance and the amount of outgassed water based on these meteorites are contridictory but overlap estimates based on geological observations and atmospheric measurements. Stable isotope measurements indicate that the martian hydrosphere experienced only limited exchange with the lithosphere, but it is in isotopic equilibrium with the atmosphere and has been since 1.3 Ga. The isotopically heavy atmosphere/hydrosphere composition deduced from these rocks reflects a loss process more severe than current atmospheric evolution models, and the occurence of carbonates in SNC meteorites suggest that they, rather than scapolite or hydrous carbonates, are the major crustal sink for CO2. Weathering products in SNC meteorites support the idea of limited alteration of the lithosphere by small volumes of saline, CO2-bearing water. Atmospheric composition and evolution are further constrained by noble gases in these meteorites, although Xe and Kr isotopes suggest different origins for the atmosphere. Planetary ejection of these rocks has promoted an advance in the understanding of impact physics, which has been accomplished by a model involving spallation during large cratering events. Ejection of all the SNC meteorites (except ALH84001) in one or two events may provide a plausible solution to most constraints imposed by chronology, geochemistry, and cosmic ray exposure, although problems remain with this scenario; ALH84001 may represent older martian crust sampled during a separate impact.

  1. Mars Atmospheric Composition, Isotope Ratios and Seasonal Variations: Overview and Updates of the SAM Measurements at Gale Crater

    NASA Technical Reports Server (NTRS)

    Niles, Paul

    2014-01-01

    We will summarize the in situ measurements of atmospheric composition and the isotopic ratios of D/H in water, C-13/C-12, O-18/O-16, O-17 / O-16, and C-13 O-18 / C-12 O-16 in carbon dioxide, and Ar-38 / Ar-36, Kr-x / Kr-84, and N-15 / N-14 made in the martian atmosphere at Gale Crater from the Curiosity Rover using the Sample Analysis at Mars (SAM)'s Quadrupole Mass Spectrometer (QMS) and Tunable Laser Spectrometer (TLS). With data over 700 sols since the Curiosity landing, we will discuss evidence and implications for changes on seasonal and other timescales. We will also present results for continued methane and methane enrichment experiments over this time period. Comparison between our measurements in the modern atmosphere and those of martian meteorites like ALH 84001 implies that the martian reservoirs of CO2 and H2O were largely established approximately 4 billion years ago, but that atmospheric loss or surface interaction may be still ongoing.

  2. The Northwest Africa 8159 martian meteorite: Expanding the martian sample suite to the early Amazonian

    DOE PAGES

    Herd, Christopher D. K.; Walton, Erin L.; Agee, Carl B.; ...

    2017-09-01

    Northwest Africa (NWA) 8159 is an augite-rich shergottite, with a mineralogy dominated by Ca-, Fe-rich pyroxene, plagioclase, olivine, and magnetite. NWA 8159 crystallized from an evolved melt of basaltic composition under relatively rapid conditions of cooling, likely in a surface lava flow or shallow sill. Redox conditions experienced by the melt shifted from relatively oxidizing (with respect to known Martian lithologies, ~QFM) on the liquidus to higher oxygen fugacity (~QFM + 2) during crystallization of the groundmass, and under subsolidus conditions. This shift resulted in the production of orthopyroxene and magnetite replacing olivine phenocryst rims. NWA 8159 contains both crystallinemore » and shock-amorphized plagioclase (An 50–62), often observed within a single grain; based on known calibrations we bracket the peak shock pressure experienced by NWA 8159 to between 15 and 23 GPa. The bulk composition of NWA 8159 is depleted in LREE, as observed for Tissint and other depleted shergottites; however, NWA 8159 is distinct from all other martian lithologies in its bulk composition and oxygen fugacity. Here, we obtain a Sm-Nd formation age of 2.37 ± 0.25 Ga for NWA 8159, which represents an interval in Mars geologic time which, until recently, was not represented in the other martian meteorite types. The bulk rock 147Sm/ 144Nd value of 0.37 ± 0.02 is consistent with it being derived directly from its source and the high initial ε 143Nd value indicates this source was geochemically highly depleted. Cr, Nd, and W isotopic compositions further support a unique mantle source. While the rock shares similarities with the 2.4-Ga NWA 7635 meteorite, there are notable distinctions between the two meteorites that suggest differences in mantle source compositions and conditions of crystallization. Nevertheless, the two samples may be launch-paired. Finally, NWA 8159 expands the known basalt types, ages and mantle sources within the Mars sample suite to include a second igneous unit from the early Amazonian.« less

  3. The Northwest Africa 8159 martian meteorite: Expanding the martian sample suite to the early Amazonian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herd, Christopher D. K.; Walton, Erin L.; Agee, Carl B.

    Northwest Africa (NWA) 8159 is an augite-rich shergottite, with a mineralogy dominated by Ca-, Fe-rich pyroxene, plagioclase, olivine, and magnetite. NWA 8159 crystallized from an evolved melt of basaltic composition under relatively rapid conditions of cooling, likely in a surface lava flow or shallow sill. Redox conditions experienced by the melt shifted from relatively oxidizing (with respect to known Martian lithologies, ~QFM) on the liquidus to higher oxygen fugacity (~QFM + 2) during crystallization of the groundmass, and under subsolidus conditions. This shift resulted in the production of orthopyroxene and magnetite replacing olivine phenocryst rims. NWA 8159 contains both crystallinemore » and shock-amorphized plagioclase (An 50–62), often observed within a single grain; based on known calibrations we bracket the peak shock pressure experienced by NWA 8159 to between 15 and 23 GPa. The bulk composition of NWA 8159 is depleted in LREE, as observed for Tissint and other depleted shergottites; however, NWA 8159 is distinct from all other martian lithologies in its bulk composition and oxygen fugacity. Here, we obtain a Sm-Nd formation age of 2.37 ± 0.25 Ga for NWA 8159, which represents an interval in Mars geologic time which, until recently, was not represented in the other martian meteorite types. The bulk rock 147Sm/ 144Nd value of 0.37 ± 0.02 is consistent with it being derived directly from its source and the high initial ε 143Nd value indicates this source was geochemically highly depleted. Cr, Nd, and W isotopic compositions further support a unique mantle source. While the rock shares similarities with the 2.4-Ga NWA 7635 meteorite, there are notable distinctions between the two meteorites that suggest differences in mantle source compositions and conditions of crystallization. Nevertheless, the two samples may be launch-paired. Finally, NWA 8159 expands the known basalt types, ages and mantle sources within the Mars sample suite to include a second igneous unit from the early Amazonian.« less

  4. Studies of Magmatic Inclusions in the Basaltic Martian Meteorites Shergotty, Zagami, EETA 79001 and QUE 94201

    NASA Technical Reports Server (NTRS)

    Harvey, Ralph P.; McKay, Gordon A.

    1997-01-01

    Currently there are 12 meteorites thought by planetary scientists to be martian samples, delivered to the Earth after violent impacts on that planet's surface. Of these 12 specimens, 4 are basaltic: Shergotty, Zagami, EETA 79001 and QUE 94201. Basalts are particularly important rocks to planetary geologists- they are the most common rocks found on the surfaces of the terrestrial planets, representing volcanic activity of their parent worlds. In addition, because they are generated by partial melting of the mantle and/or lower crust, they can serve as guide posts to the composition and internal processes of a planet. Consequently these four meteorites can serve as 'ground-truth' representatives of the predominant volcanic surface rocks of Mars, and offer researchers a glimpse of the magmatic history of that planet. Unfortunately, unraveling the parentage of a basaltic rock is not always straightforward. While many basalts are simple, unaltered partial melts of the mantle, others have undergone secondary processes which change the original parental chemistry, such as assimilation of other crustal rocks, mixing with other magmas, accumulation, re-equilibration between mineral species after crystallization, loss of late-stage magmatic fluids and alteration by metamorphic or metasomatic processes. Fortunately, magmatic inclusions can trap the evolving magmatic liquid, isolating it from many of these secondary processes and offering a direct look at the magma during different stages of development. These inclusions form when major or minor phases grow skeletally, surrounding small amounts of the parental magma within pockets in the growing crystal. The inclusion as a whole (usually consisting of glass with enclosed crystals) continues to represent the composition of the parental magma at the time the melt pocket closed, even when the rock as a whole evolves under changing conditions. The four basaltic martian meteorites contain several distinct generations of melt inclusions; those found within early-forming pigeonite, intermediate and late-forming Ti, Fe-oxides and sulfides, and intermediate to late-forming phosphates. In this summer' s study we have made a detailed study of all of the various forms of inclusions found within the 4 basaltic martian meteorites listed above. Glasses and minerals within the inclusions were analyzed using the Camera SX-100 Electron Microprobe in Building 31. The mineralogy and textural context of the inclusions will then be used to explore the crystallization history of these specimens, and to investigate any differences in crystallization history or parental magma compositions between these rocks. In this manner, the magmatic inclusions provide a road map backwards toward the 'parental' compositions for the basaltic martian meteorites and provide significant insight into the igneous processes found within the crust of Mars.

  5. Mars surface based factory. Phase 2, task 1C: Computer control of a water treatment system to support a space colony on Mars

    NASA Technical Reports Server (NTRS)

    Fuller, John; Ali, Warsame; Willis, Danette

    1989-01-01

    In a continued effort to design a surface based factory on Mars for the production of oxygen and water, a preliminary study was made of the surface and atmospheric composition on Mars and determined the mass densities of the various gases in the Martian atmosphere. Based on the initial studies, oxygen and water were determined to be the two products that could be produced economically under the Martian conditions. Studies were also made on present production techniques to obtain water and oxygen. Analyses were made to evaluate the current methods of production that were adaptable to the Martian conditions. Even though the initial effort was the production of oxygen and water, it was found necessary to produce some diluted gases that can be mixed with the oxygen produced to constitute 'breathable' air. The conceptual design of a breathable air manufacturing system, a means of drilling for underground water, and storage of water for future use were completed. The design objective was the conceptual design of an integrated system for the supply of quality water for biological consumption, farming, residential and industrial use.

  6. Chlorine Abundances in Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Bogard, D.D.; Garrison, D.H.; Park, J.

    2009-01-01

    Chlorine measurements made in martian surface rocks by robotic spacecraft typically give Chlorine (Cl) abundances of approximately 0.1-0.8%. In contrast, Cl abundances in martian meteorites appear lower, although data is limited, and martian nakhlites were also subjected to Cl contamination by Mars surface brines. Chlorine abundances reported by one lab for whole rock (WR) samples of Shergotty, ALH77005, and EET79001 range 108-14 ppm, whereas Cl in nakhlites range 73-1900 ppm. Measurements of Cl in various martian weathering phases of nakhlites varied 0.04-4.7% and reveal significant concentration of Cl by martian brines Martian meteorites contain much lower Chlorine than those measured in martian surface rocks and give further confirmation that Cl in these surface rocks was introduced by brines and weathering. It has been argued that Cl is twice as effective as water in lowering the melting point and promoting melting at shallower martian depths, and that significant Cl in the shergottite source region would negate any need for significant water. However, this conclusion was based on experiments that utilized Cl concentrations more analogous to martian surface rocks than to shergottite meteorites, and may not be applicable to shergottites.

  7. Systematic variations in the spectral properties of bright regions on Mars

    NASA Technical Reports Server (NTRS)

    Murchie, Scott; Mustard, John; Bishop, Janice; Head, James; Pieters, Carle; Erard, Stephane

    1992-01-01

    The color and albedo of the martian surface define two basic surface units, dark gray material interpreted as relatively unaltered 'rock' and bright reddish material interpreted as weathered 'soil'. Understanding the processes contributing to soil formation first requires assessment of the soil's composition and compositional diversity. We report first results of an investigation of the character and variability of Fe- and water-bearing phases in bright reddish materials using ISM data. We also explore implications of these results for chemical evolution of martian soil. Information on the composition and distribution of bright reddish material comes from three major sources: Viking images, measurements by the XRF and GCMS instruments on the Viking Landers, and spectroscopic data. The XRF experiment found nearly identical, Fe-rich major-element compositions comparable to weathered basalt. Soil water, amounting to approximately 1-3 wt. percent as measured by the GCMS, was liberated mostly by heating to greater than or equal to 350 C, suggesting that it is present in a chemically bound form. Spectroscopic studies have detected ferric oxide, probably hematite, as well as molecular water. However, the identities of major silicate phases have been controversial, with conflicting evidence regarding phyllosilicates. Two main interpretations of this evidence have been proposed: Weathering of basaltic glasses by H2O and CO2 formed a mixture of oxides, salts, and metastable phyllosilicates such as montmorillonite and 'palagonite' formed when basaltic melt contacted ground ice or water. Palagonite is a hydrated basaltic glass containing dispersed ferric oxide, recrystallized in varying degrees to phyllosilicates. Typically it is aphanitic, although some examples contain phenocrysts. In either case, eolian redistribution is thought to have resulted in the material's global homogenization. Imaging spectroscopic data returned by the ISM instrument on Phobos 2 provide a powerful new basis for evaluating the composition and origin of martian soil because they are indicative of the presence and distribution of water- and Fe-bearing phases whose mineralogy is sensitive to the history of chemical weathering.

  8. Martian dunite NWA 2737: Integrated spectroscopic analyses of brown olivine

    NASA Astrophysics Data System (ADS)

    Pieters, Carle M.; Klima, Rachel L.; Hiroi, Takahiro; Dyar, M. Darby; Lane, Melissa D.; Treiman, Allan H.; Noble, Sarah K.; Sunshine, Jessica M.; Bishop, Janice L.

    2008-06-01

    A second Martian meteorite has been identified that is composed primarily of heavily shocked dunite, Northwest Africa (NWA) 2737. This meteorite has several similarities to the Chassigny dunite cumulate, but the olivine is more Mg rich and, most notably, is very dark and visually brown. Carefully coordinated analyses of NWA 2737 whole-rock and olivine separates were undertaken using visible and near-infrared reflectance, midinfrared emission and reflectance, and Mössbauer spectroscopic studies of the same samples along with detailed petrography, chemistry, scanning electron microscopy, and transmission electron microscopy analyses. Midinfrared spectra of this sample indicate that the olivine is fully crystalline and that its molecular structure remains intact. The unusual color and spectral properties that extend from the visible through the near-infrared part of the spectrum are shown to be due to nanophase metallic iron particles dispersed throughout the olivine during a major shock event on Mars. Although a minor amount of Fe3+ is present, it cannot account for the well-documented unusual optical properties of Martian meteorite NWA 2737. Perhaps unique to the Martian environment, this ``brown'' olivine exhibits spectral properties that can potentially be used to remotely explore the pressure-temperature history of surface geology as well as assess surface composition.

  9. Lead Isotopes in Olivine-Phyric Shergottite Tissint: Implications for the Geochemical Evolution of the Shergottite Source Mantle

    NASA Technical Reports Server (NTRS)

    Moriwaki, R.; Usui, T.; Simon, J. I.; Jones, J. H.; Yokoyama, T.

    2015-01-01

    Geochemically-depleted shergottites are basaltic rocks derived from a martian mantle source reservoir. Geochemical evolution of the martian mantle has been investigated mainly based on the Rb-Sr, Sm-Nd, and Lu-Hf isotope systematics of the shergottites [1]. Although potentially informative, U-Th- Pb isotope systematics have been limited because of difficulties in interpreting the analyses of depleted meteorite samples that are more susceptible to the effects of near-surface processes and terrestrial contamination. This study conducts a 5-step sequential acid leaching experiment of the first witnessed fall of the geochemically-depleted olivinephyric shergottite Tissint to minimize the effect of low temperature distrubence. Trace element analyses of the Tissint acid residue (mostly pyroxene) indicate that Pb isotope compositions of the residue do not contain either a martian surface or terrestrial component, but represent the Tissint magma source [2]. The residue has relatively unradiogenic initial Pb isotopic compositions (e.g., 206Pb/204Pb = 10.8136) that fall within the Pb isotope space of other geochemically-depleted shergottites. An initial µ-value (238U/204Pb = 1.5) of Tissint at the time of crystallization (472 Ma [3]) is similar to a time-integrated mu- value (1.72 at 472 Ma) of the Tissint source mantle calculated based on the two-stage mantle evolution model [1]. On the other hand, the other geochemically-depleted shergottites (e.g., QUE 94201 [4]) have initial µ-values of their parental magmas distinctly lower than those of their modeled source mantle. These results suggest that only Tissint potentially reflects the geochemical signature of the shergottite mantle source that originated from cumulates of the martian magma ocean

  10. Models of Mars' atmosphere (1974)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Atmospheric models for support of design and mission planning of space vehicles that are to orbit the planet Mars, enter its atmosphere, or land on the surface are presented. Quantitative data for the Martian atmosphere were obtained from Earth-base observations and from spacecraft that have orbited Mars or passed within several planetary radii. These data were used in conjunction with existing theories of planetary atmospheres to predict other characteristics of the Martian atmosphere. Earth-based observations provided information on the composition, temperature, and optical properties of Mars with rather coarse spatial resolution, whereas spacecraft measurements yielded data on composition, temperature, pressure, density, and atmospheric structure with moderately good spatial resolution. The models provide the temperature, pressure, and density profiles required to perform basic aerodynamic analyses. The profiles are supplemented by computed values of viscosity, specific heat, and speed of sound.

  11. Soil diversity and hydration as observed by ChemCam at Gale crater, Mars

    USGS Publications Warehouse

    Meslin, P.-Y.; Gasnault, O.; Forni, O.; Schroder, S.; Cousin, A.; Berger, G.; Clegg, S.M.; Lasue, J.; Maurice, S.; Sautter, V.; Le Mouélic, S.; Wiens, R.C.; Fabre, C.; Goetz, W.; Bish, D.L.; Mangold, N.; Ehlmann, B.; Lanza, N.; Harri, A.-M.; Anderson, Ryan Bradley; Rampe, E.; McConnochie, T.H.; Pinet, P.; Blaney, D.; ,; Archer, D.; Barraclough, B.; Bender, S.; Blake, D.; Blank, J.G.; Bridges, N.; Clark, B. C.; DeFlores, L.; Delapp, D.; Dromart, G.; Dyar, M.D.; Fisk, M. R.; Gondet, B.; Grotzinger, J.; Herkenhoff, K.; Johnson, J.; Lacour, J.-L.; Langevin, Y.; Leshin, L.; Lewin, E.; Madsen, M.B.; Melikechi, N.; Mezzacappa, Alissa; Mischna, M.A.; Moores, J.E.; Newsom, H.; Ollila, A.; ,; Renno, N.; Sirven, J.B.; Tokar, R.; de la Torre, M.; d'Uston, L.; Vaniman, D.; Yingst, A.

    2013-01-01

    The ChemCam instrument, which provides insight into martian soil chemistry at the submillimeter scale, identified two principal soil types along the Curiosity rover traverse: a fine-grained mafic type and a locally derived, coarse-grained felsic type. The mafic soil component is representative of widespread martian soils and is similar in composition to the martian dust. It possesses a ubiquitous hydrogen signature in ChemCam spectra, corresponding to the hydration of the amorphous phases found in the soil by the CheMin instrument. This hydration likely accounts for an important fraction of the global hydration of the surface seen by previous orbital measurements. ChemCam analyses did not reveal any significant exchange of water vapor between the regolith and the atmosphere. These observations provide constraints on the nature of the amorphous phases and their hydration.

  12. Soil diversity and hydration as observed by ChemCam at Gale crater, Mars.

    PubMed

    Meslin, P-Y; Gasnault, O; Forni, O; Schröder, S; Cousin, A; Berger, G; Clegg, S M; Lasue, J; Maurice, S; Sautter, V; Le Mouélic, S; Wiens, R C; Fabre, C; Goetz, W; Bish, D; Mangold, N; Ehlmann, B; Lanza, N; Harri, A-M; Anderson, R; Rampe, E; McConnochie, T H; Pinet, P; Blaney, D; Léveillé, R; Archer, D; Barraclough, B; Bender, S; Blake, D; Blank, J G; Bridges, N; Clark, B C; DeFlores, L; Delapp, D; Dromart, G; Dyar, M D; Fisk, M; Gondet, B; Grotzinger, J; Herkenhoff, K; Johnson, J; Lacour, J-L; Langevin, Y; Leshin, L; Lewin, E; Madsen, M B; Melikechi, N; Mezzacappa, A; Mischna, M A; Moores, J E; Newsom, H; Ollila, A; Perez, R; Renno, N; Sirven, J-B; Tokar, R; de la Torre, M; d'Uston, L; Vaniman, D; Yingst, A

    2013-09-27

    The ChemCam instrument, which provides insight into martian soil chemistry at the submillimeter scale, identified two principal soil types along the Curiosity rover traverse: a fine-grained mafic type and a locally derived, coarse-grained felsic type. The mafic soil component is representative of widespread martian soils and is similar in composition to the martian dust. It possesses a ubiquitous hydrogen signature in ChemCam spectra, corresponding to the hydration of the amorphous phases found in the soil by the CheMin instrument. This hydration likely accounts for an important fraction of the global hydration of the surface seen by previous orbital measurements. ChemCam analyses did not reveal any significant exchange of water vapor between the regolith and the atmosphere. These observations provide constraints on the nature of the amorphous phases and their hydration.

  13. Thermal inertia and radar reflectivity of the Martian north polar ERG: Low-density aggregates

    NASA Technical Reports Server (NTRS)

    Herkenhoff, K. E.

    1993-01-01

    The north polar layered deposits on Mars appear to be the source of the dark material that comprises the north polar erg. The physical properties and chemical composition of the erg material therefore have important implications for the origin and evolution of the Martian layered deposits. Viking bistatic radar and infrared thermal mapping (IRTM) data indicate that the bulk density of the erg material is lower than that of the average Martian surface. These data are consistent with hypotheses involving formation of filamentary sublimation residue (FSR) particles from erosion of the layered deposits. The color and albedo of the erg and of the layered deposits, and the presence of magnetic material on Mars, suggest that the dark material is composed of low-density aggregates of magnetic dust grains, perhaps similar to FSR particles created in laboratory experiments.

  14. A Subsurface Soil Composition and Physical Properties Experiment to Address Mars Regolith Stratigraphy

    NASA Technical Reports Server (NTRS)

    Richter, L.; Sims, M.; Economou, T.; Stoker, C.; Wright, I.; Tokano, T.

    2004-01-01

    Previous in-situ measurements of soil-like materials on the surface of Mars, in particular during the on-going Mars Exploration Rover missions, have shown complex relationships between composition, exposure to the surface environment, texture, and local rocks. In particular, a diversity in both compositional and physical properties could be established that is interpreted to be diagnostic of the complex geologic history of the martian surface layer. Physical and chemical properties vary laterally and vertically, providing insight into the composition of rocks from which soils derive, and environmental conditions that led to soil formation. They are central to understanding whether habitable environments existed on Mars in the distant past. An instrument the Mole for Soil Compositional Studies and Sampling (MOCSS) - is proposed to allow repeated access to subsurface regolith on Mars to depths of up to 1.5 meters for in-situ measurements of elemental composition and of physical and thermophysical properties, as well as for subsurface sample acquisition. MOCSS is based on the compact PLUTO (PLanetary Underground TOol) Mole system developed for the Beagle 2 lander and incorporates a small X-ray fluorescence spectrometer within the Mole which is a new development. Overall MOCSS mass is approximately 1.4 kilograms. Taken together, the MOCSS science data support to decipher the geologic history at the landing site as compositional and textural stratigraphy if they exist - can be detected at a number of places if the MOCSS were accommodated on a rover such as MSL. Based on uncovered stratigraphy, the regional sequence of depositional and erosional styles can be constrained which has an impact on understanding the ancient history of the Martian near-surface layer, considering estimates of Mars soil production rates of 0.5... 1.0 meters per billion years on the one hand and Mole subsurface access capability of approximately 1.5 meters. An overview of the MOCSS, XRS instrument accomodation and the impact that these instruments have on Mars science is discussed.

  15. An attempt to comprehend Martian weathering conditions through the analysis of terrestrial palagonite samples

    NASA Technical Reports Server (NTRS)

    Douglas, C.; Wright, I. P.; Bell, J. B.; Morris, R. V.; Golden, D. C.; Pillinger, C. T.

    1993-01-01

    Spectroscopic observations of the Martian surface in the invisible to near infrared (0.4-1.0 micron), coupled with measurements made by Viking, have shown that the surface is composed of a mixture of fine-grained weathered and nonweathered minerals. The majority of the weathered components are thought to be materials like smectite clays, scapolite, or palagonite. Until materials are returned for analysis there are two possible ways of proceeding with an investigation of Martian surface processes: (1) the study of weathering products in meteorites that have a Martian origin (SNC's), and (2) the analysis of certain terrestrial weathering products as analogs to the material found in SNC's, or predicted to be present on the Martian surface. We describe some preliminary measurements of the carbon chemistry of terrestrial palagonite samples that exhibit spectroscopic similarities with the Martian surface. The data should aid the understanding of weathering in SNC's and comparisons between terrestrial palagonites and the Martian surface.

  16. Comparison of Martian Meteorites and Martian Regolith as Shield Materials for Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Thibeault, Sheila A.; Simonsen, Lisa C.; Wilson, John W.

    1998-01-01

    Theoretical calculations of radiation attenuation due to energetic galactic cosmic rays behind Martian rock and Martian regolith material have been made to compare their utilization as shields for advanced manned missions to Mars because the detailed chemical signature of Mars is distinctly different from Earth. The modified radiation fields behind the Martian rocks and the soil model were generated by solving the Boltzmann equation using a HZETRN system with the 1977 Solar Minimum environmental model. For the comparison of the attenuation characteristics, dose and dose equivalent are calculated for the five different subgroups of Martian rocks and the Martian regolith. The results indicate that changes in composition of subgroups of Martian rocks have negligible effects on the overall shielding properties because of the similarity of their constituents. The differences for dose and dose equivalent of these materials relative to those of Martian regolith are within 0.5 and 1 percent, respectively. Therefore, the analysis of Martian habitat construction options using in situ materials according to the Martian regolith model composition is reasonably accurate. Adding an epoxy to Martian regolith, which changes the major constituents of the material, enhances shielding properties because of the added hydrogenous constituents.

  17. Jarosite in the Shergottite Que 94201

    NASA Technical Reports Server (NTRS)

    Ross, D. K.; Ito, M.; Rao, M. N.; Hervig, R.; Williams, L. B.; Nyquist, Laurence E.; Peslier, A.

    2010-01-01

    Veins of the hydroxylated, potassium ferric sulfate mineral jarosite - KFe3(SO4)2(OH)6 - have been identified in the martian meteorite Queen Alexandra Range (QUE) 94201. Iron potassium sulfate had been reported in QUE 94201 by Wentworth and Gooding. Jarosite has been reported in other Martian meteorites - Roberts Massif (RBT) 04262, Miller Range (MIL) 03346, and Yamato 000593 - and it has been identified on the Martian surface by Moessbauer spectroscopy. Given the presence of jarosite on Mars, and the burgeoning interest in water-rock interactions on Mars, the question arises whether jarosite in Martian meteorites is formed by aqueous alteration on Mars, or in Antarctica. Hydrogen isotopes are potentially sensitive indicators of the site of formation or last equilibration of hydrous alteration minerals, because of the large difference between D/H ratio of the Martian atmosphere (and also presumably the cryosphere) and terrestrial hydrogen. The Martian atmospheric delta D(sub SMOW) ratio is approximately +4200%o, igneous minerals with substantial hydrogen (phosphates) have high D, +2000%o to +4700%o versus terrestrial waters with approximately 480%o to +130%o. The crystal chemistry and structure of jarosite are reviewed in Papi ke et al. Here we report hydrogen isotopes measured in jarosite in QUE 94201 by ion microprobe, and also report on the major element composition of jarosite measured by electron microprobe.

  18. Ice-Ridge Pile Up and the Genesis of Martian "Shorelines"

    NASA Technical Reports Server (NTRS)

    Barnhart, C. J.; Tulaczyk, S.; Asphaug, E.; Kraal, E. R.; Moore, J.

    2005-01-01

    Unique geomorphologic features such as basin terraces exhibiting topographic continuity have been found within several Martian craters as shown in Viking, MOC, and THEMIS images. These features, showing similarity to terrestrial shorelines, have been mapped and cataloged with significant effort [1]. Currently, open wave action on the surface of paleolakes has been hypothesized as the geomorphologic agent responsible for the generation of these features [2]. As consequence, feature interpretations, including shorelines, wave-cut benches, and bars are, befittingly, lacustrine. Because such interpretations and their formation mechanisms have profound implications for the climate and potential biological history of Mars, confidence is crucial. The insight acquired through linked quantitative modeling of geomorphologic agents and processes is key to accurately interpreting these features. In this vein, recent studies [3,4] involving the water wave energy in theoretical open water basins on Mars show minimal erosional effects due to water waves under Martian conditions. Consequently, sub-glacial lake flattens the surface, produces a local velocity increase over the lake, and creates a deviation of the ice flow from the main flow direction [11]. These consequences of ice flow are observed at Lake Vostok, Antarctica an excellent Martian analogue [11]. Martian observations include reticulate terrain exhibiting sharp inter-connected ridges speculated to reflect the deposition and reworking of ice blocks at the periphery of ice-covered lakes throughout Hellas [12]. Our model determines to what extent ice, a terrestrial geomorphologic agent, can alter the Martian landscape. Method: We study the evolution of crater ice plugs as the formation mechanism of surface features frequently identified as shorelines. In particular, we perform model integrations involving parameters such as ice slope and purity, atmospheric pressure and temperature, crater shape and composition, and an energy balance between solar flux, geothermal flux, latent heat, and ablation. Our ultimate goal is to understand how an intracrater ice plug could create the observed shoreline features and how these

  19. Experimental constraints on CO2 and H2O in the Martian mantle and primary magmas

    NASA Technical Reports Server (NTRS)

    Holloway, John R.; Domanik, Kenneth J.; Cocheo, Peter A.

    1993-01-01

    We present new data on the stability of hornblende in a Martian mantle composition, on CO2 solubility in iron-rich basaltic magmas, and on the solubility of H2O in an alkalic basaltic magma. These new data are combined with a summary of data from the literature to present a summary of the current state of our estimates of solubilities of H2O and CO2 in probable Martian magmas and the stability of hornblende in a slightly hydrous mantle. The new results suggest that hornblende stability is not sensitive to the Mg/(Mg+Fe) ratio (mg#) of the mantle, that is the results for terrestrial mantle compositions are similar to the more iron-rich Martian composition. Likewise, CO2 solubility in iron-rich tholeiitic basaltic magmas is similar to iron-poor terrestrial compositions. The solubility of H2O has been measured in an alkalic basaltic (basanite) composition for the first time, and it is significantly lower than predicted for models of water solubility in magmas. The lack of mg# dependence observed in hornblende stability and on CO2 solubility that in many cases terrestrial results can be applied to Martian compositions. This conclusion does not apply to other phenomena such as primary magma compositions and major mantle mineral mineralogy.

  20. Dust Accumulation on Mars

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Since landing on Mars a year ago, NASA's pair of six-wheeled geologists have been constantly exposed to martian winds and dust. As a result, the Spirit rover has gradually experienced a slight decline in power as a thin layer of dust has accumulated on the solar panels, blocking some of the sunlight that is converted to electricity. In this enlarged image of a postage-stamp-size (3-centimeter-square, 1.2-inch-square) portion of one of Spirit's solar panels, a fine layer of martian dust coats electrical connections and metal surfaces. Individual silt grains or clumps of dust are visible where sediment has accumulated in crevices between solar cells and circuits. The upper right half of the image shows the edge of one of the rover's solar cells. The lower left half shows electrical wires bonded with silicon adhesive to the underlying composite surface; the circular abrasions are the result of sanding by hand on Earth. The braided wire is connected to a thermocouple used to measure temperature based on electrical resistance. Spirit took this image with its microscopic imager on martian day, or sol, 350 (Dec. 26, 2004).

  1. Ultraviolet-radiation-induced methane emissions from meteorites and the Martian atmosphere.

    PubMed

    Keppler, Frank; Vigano, Ivan; McLeod, Andy; Ott, Ulrich; Früchtl, Marion; Röckmann, Thomas

    2012-05-30

    Almost a decade after methane was first reported in the atmosphere of Mars there is an intensive discussion about both the reliability of the observations--particularly the suggested seasonal and latitudinal variations--and the sources of methane on Mars. Given that the lifetime of methane in the Martian atmosphere is limited, a process on or below the planet's surface would need to be continuously producing methane. A biological source would provide support for the potential existence of life on Mars, whereas a chemical origin would imply that there are unexpected geological processes. Methane release from carbonaceous meteorites associated with ablation during atmospheric entry is considered negligible. Here we show that methane is produced in much larger quantities from the Murchison meteorite (a type CM2 carbonaceous chondrite) when exposed to ultraviolet radiation under conditions similar to those expected at the Martian surface. Meteorites containing several per cent of intact organic matter reach the Martian surface at high rates, and our experiments suggest that a significant fraction of the organic matter accessible to ultraviolet radiation is converted to methane. Ultraviolet-radiation-induced methane formation from meteorites could explain a substantial fraction of the most recently estimated atmospheric methane mixing ratios. Stable hydrogen isotope analysis unambiguously confirms that the methane released from Murchison is of extraterrestrial origin. The stable carbon isotope composition, in contrast, is similar to that of terrestrial microbial origin; hence, measurements of this signature in future Mars missions may not enable an unambiguous identification of biogenic methane.

  2. Evidence about hydrate and solid water in the Martian surface from the 1969 Mariner infrared spectrometer

    NASA Technical Reports Server (NTRS)

    Pimentel, G. C.; Forney, P. B.; Herr, K. C.

    1974-01-01

    Results of laboratory simulation studies and comparative computer analyses of infrared spectral data regarding the presence, distribution, and form of condensed-phase water in the Martian surface. The data were obtained with the aid of the Mariner 6 and 7 spacecraft which were equipped with infrared spectrometers recording the infrared spectrum from 1.9 to 14.4 microns. From the analysis of these data evidence is obtained which signifies some sort of compositional and/or particle size variability of the extent and nature of hydration. Changes are noted which could be due to ice thinly covering a small fraction of the planetary surface in particularly cold spots, possibly on partially shaded slopes. At southerly latitudes, the fraction so covered seems to increase as the polar cap edge is approached. It is therefore concluded that there is strong evidence of ice formation on the planetary surface at the edge of the polar cap.

  3. Magnetite Equation of State: Implications for Mars' Interior and Magnetization

    NASA Astrophysics Data System (ADS)

    Gant, P.; Walsh, J.; Lazarz, J. D.; Jacobsen, S. D.; Jurdy, D. M.

    2017-12-01

    Mars once had a global magnetic field, although it no longer has an active dynamo. Mars Global Surveyor (MGS) unexpectedly measured a strongly magnetized crust. However, the magnetic carrier as well as the nature and depth of magnetization remain unknown. Downward continuation of the surface magnetization suggests the possibility of great depth of magnetization, as much as 100-200 km, far exceeding that of Earth's. The interior composition and structure of Mars remain unknown. Magnetite offers a likely candidate for Martian magnetization. Experiments with magnetite crystals - one naturally-occurring, the other a laboratory-fabricated single domain crystal, determine its equation of state. NASA's upcoming InSight (INterior Exploration using Seismic Investigations, Geodesy, and Heat Transport) mission to Mars will be the first dedicated to study of the Martian interior. It will land in the Elysium Planitia with a 3-component broadband and short period seismometer, heatflow probe, and a magnetometer to monitor the local, atmospheric, and crustal magnetic field. The planned InSight measurements of Martian heatflow will establish its current temperature gradient. The first step in understanding Mars' magnetization requires knowing both temperature and pressure conditions for its interior, along with the equation of state for magnetite - and other possible magnetic minerals. Laboratory experiments with a range of compositions for the Martian interior could provide critical comparisons with the InSight mission's seismic data.

  4. The Solidus of Mar

    NASA Astrophysics Data System (ADS)

    Duncan, M. S.; Schmerr, N. C.; Fei, Y.

    2017-12-01

    Knowledge of the melting behavior of a planetary interior is critical to determine the thermal history of a planet. In particular, the location of the mantle solidus with depth is a key parameter for constraining temperatures of magma ocean crystallization, understanding volcanic and magmatic processes, and inferring mantle rheology. The properties of the martian mantle are experimentally accessible through a combination of piston cylinder and multi-anvil apparatuses. Here we constrain the solidus of martian mantle from the surface to the potential core-mantle boundary by combining previous low pressure experiments with new, high pressure multi-anvil experiments. Experiments were conducted on a simplified anhydrous Dreibus and Wänke composition [Bertka and Fei, JGR, 1997] from 10 to 25 GPa and 1775 to 2300 °C placed in rhenium capsules. The mineralogy and melt phases in each experiment were identified and quantified with an electron microprobe. Experiments spanned 100 to 200 °C at each pressure (10, 16, 20, 23, 25 GPa) and allowed us to constrain the location of the solidus within 50 °C. By combining our data with solidus experiments at lower pressures completed previously with the Dreibus and Wänke composition, we parameterized the solidus of the entire martian mantle. When considering the high pressure experiments, the Fe-rich solidus of the martian mantle is 100 °C lower than the peridotite mantle solidus for the Earth [Hirschmann et al., PEPI, 2009]. These new results provide an experimental determination of the melting temperature of martian mantle that is an essential constraint for modeling the thermal evolution and volcanism on Mars.

  5. Producing Martian Lithologies with Geophysically-Constrained Martian Mantle Compositions

    NASA Astrophysics Data System (ADS)

    Minitti, M. E.; Fei, Y.; Bertka, C. M.

    2008-12-01

    The Martian meteorites, rocks measured by the Mars Exploration Rovers (MER) and lithologies detected by orbital assets represent a diversity of igneous rocks that collectively provide insight into the formation and evolution of Mars. Experimental studies aimed at reproducing the observed igneous lithologies have met with varying degrees of success [e.g., 1,2,3], No study has yet been able to reproduce both Martian meteorite parent magmas and the basalts measured by MER at Gusev Crater [e.g., 1,3]. We attempted a different approach to successfully reproducing Martian igneous lithologies by using geophysical constraints on Martian bulk Fe (wt.%), Fe/Si and mantle Mg# [4,5] to identify mixtures of chondrite compositions that formed plausible Martian mantle compositions. We identified two candidate chondrite mixtures for Mars, CM+L and H+L. We synthesized the CM+L and H+L compositions from oxide, carbonate and phosphate powders and fixed them at an oxygen fugacity below the magnetite-wüstite buffer (MW-1). We conducted experiments at 2 GPa (corresponding to ~150 km in the Martian mantle) between 1300-1600 °C for 4-48 hours in the end-loaded piston cylinder apparatus at the Geophysical Laboratory. Thusfar, we have also conducted experiments at 4 GPa (corresponding to ~320 km in the Martian mantle) between 1425-1475 °C for 210-240 minutes in a Walker-type multi-anvil apparatus at the Geophysical Laboratory. We utilized an 18/11 (octahedron edge length/truncated edge length, in mm) assembly. In both assembly types, the sample was contained within a graphite capsule welded into a Pt tube. We analyzed the experiment products in electron probes at either the Geophysical Laboratory or Arizona State University. Fe and Mg contents of olivine, orthopyroxene and melt were used to assess the attainment of equilibrium for each run product. No significant difference exists between the CM+L and H+L experiment products. The near-solidus phase assemblage of the 2-GPa experiments is ol+opx+cpx. Melts at 2 GPa have MgO, FeO, and Mg# values that either overlap those of Martian meteorite parent melts or are capable of reproducing Martian meteorite parent melt compositions through low-pressure olivine fractionation. The 2- GPa melts do not, however, have CaO/Al2O3 values that intersect those of the Martian meteorite parent magmas. This finding mirrors the inability of previous studies [e.g., 1] to form the Martian meteorites. However, the 2-GPa products can lead to Gusev-like basalts via a two-step process. 20-25% melting yields basalt compositions from which subsequent low pressure olivine fractionation leads to basalts with MgO, FeO, CaO and Al2O3 contents and Mg# and CaO/Al2O3 values like those of the Gusev basalts. The near-solidus phase assemblage of the 4-GPa experiments is ol+opx+cpx+garnet. The melt composition resulting from ~20% melting of the CM+L mantle composition has MgO, FeO, CaO and Al2O3 contents and Mg# and CaO/Al2O3 values that fall among Martian meteorite parent magma compositions. Thus, the geophysically-constrained mantle compositions are capable of producing melts with Gusev and Martian meteorite parent magma affinities by simply shifting the pressure of melting. [1] Bertka C.M. and Holloway J.R. (1994) CMP 115, 313-322. [2] Agee C.B. and Draper D.S. (2005) LPSC XXXVI, #1434. [3] Monders A. et al. (2007) MaPS, 42, 131-148. [4] Bertka C.M. and Fei Y. (1998) Science, 281, 1838-1840. [5] Bertka C.M. and Fei Y. (1998) EPSL, 157:79-88.

  6. History of telescopic observations of the Martian satellites

    NASA Astrophysics Data System (ADS)

    Pascu, D.; Erard, S.; Thuillot, W.; Lainey, V.

    2014-11-01

    This article intends to review the different studies of the Mars satellites Phobos and Deimos realized by means of ground-based telescopic observations as well in the astrometry and dynamics domain as in the physical one. This study spans the first period of investigations of the Martian satellites since their discovery in 1877 through the astrometry and the spectrometry methods, mainly before the modern period of the space era. It includes also some other observations performed thanks to the Hubble Space Telescope. The different techniques used and the main results obtained for the positionning, the size estimate, the albedo and surface composition are described.

  7. Compositions of Bedrock Containing Craters on Mars as Viewed by TES, THEMIS, and CRISM

    NASA Astrophysics Data System (ADS)

    Edwards, C. S.; Rogers, D.; Bandfield, J. L.; Christensen, P. R.

    2009-12-01

    An investigation of Martian high thermal inertia crater surfaces has been made using derived THEMIS thermal inertia data. High thermal inertia surfaces or interpreted bedrock are defined as any pixel in a THEMIS image with a thermal inertia over 1200 J K-1m-2s-1/2 and may refer to in situ rock exposures or rock-dominated surfaces. While three different surface morphologies (valley and crater walls, crater floors, and plains surface) were originally identified [Edwards et al., in press], the focus of this study is to better characterize the compositional, thermophysical, and geological characteristics of the crater floors surface. These surfaces may be related to impact-associated volcanism that often occurs in conjunction with large energetic impacts. These craters are commonly modified, lack a central peak, have shallow sloped walls, and little to no visible ejecta, indicating the relatively old ages of these impacts. They are generally large, ranging in size from 18.5 to 179km in diameter, with an average of ~52km [Edwards et al., in press]. Boulders are also observed in high-resolution imagery (e.g. HiRISE) along with fine scale randomly oriented cracks and fractures. TES spectra for ~60 of the 92 originally identified sites have been examined in detail and can be broken down into two distinctive spectral groups, olivine bearing (~80%, with >10% olivine and often >20%) and non-olivine bearing craters (~20%, with <10% olivine). Additionally, the use of THEMIS and CRISM data provide context and additional compositional information for these exposures. While these locations often occur in low albedo regions on Mars, a clear global spatial correlation between the olivine and non-olivine bearing craters is not observed. The compositional data presented here further support inflationary volcanism associated with large, energetic impacts as the geologic process that formed high thermal inertia crater floors. In this case, magma is likely derived from decompression melting of the mantle due to the removal of overlying material. This magma reaches the surface through fractures and cracks in the basement rock likely caused by the impact event. This is consistent with the observed compositions, as material derived directly from the Martian mantle is expected to be significantly more mafic than the surrounding country rock. These sites are likely locations where the some of the most primitive material on Mars is observed and can be used to illustrate an interesting aspect of alteration processes on the surface. Two possibilities for the observed distributions and compositions are proposed: 1) the types of events where mantle materials erupt onto the surface are rare and occur infrequently, likely early in Mars history; or 2) these surfaces are common but not preserved. They may be the primary source material for the Martian regolith, where olivine-rich materials are readily weathered and altered to other olivine-poor materials commonly observed on Mars. Edwards, C. S., J. L. Bandfield, P. R. Christensen, R. L. Fergason (in press), Journal of Geophys. Res.

  8. The Martian Oasis Detector

    NASA Astrophysics Data System (ADS)

    Smith, P. H.; tomasko, M. G.; McEwen, A.; Rice, J.

    2000-07-01

    The next phase of unmanned Mars missions paves the way for astronauts to land on the surface of Mars. There are lessons to be learned from the unmanned precursor missions to the Moon and the Apollo lunar surface expeditions. These unmanned missions (Ranger, Lunar Orbiter, and Surveyor) provided the following valuable information, useful from both a scientific and engineering perspective, which was required to prepare the way for the manned exploration of the lunar surface: (1) high resolution imagery instrumental to Apollo landing site selection also tremendously advanced the state of Nearside and Farside regional geology; (2) demonstrated precision landing (less than two kilometers from target) and soft landing capability; (3) established that the surface had sufficient bearing strength to support a spacecraft; and (4) examination of the chemical composition and mechanical properties of the surface. The search for extinct or extant life on Mars will follow the water. However, geomorphic studies have shown that Mars has had liquid water on its surface throughout its geologic history. A cornucopia of potential landing sites with water histories (lakes, floodplains, oceans, deltas, hydrothermal regions) presently exist. How will we narrow down site selection and increase the likelihood of finding the signs of life? One way to do this is to identify 'Martian oases.' It is known that the Martian surface is often highly fractured and some areas have karst structures that support underground caves. Much of the water that formed the channels and valley networks is thought to be frozen underground. All that is needed to create the potential for liquid water is a near surface source of heat; recent lava flows and Martian meteorites attest to the potential for volcanic activity. If we can locate even one spot where fracturing, ice, and underground heat are co-located then we have the potential for an oasis. Such a discovery could truly excite the imaginations of both the public and Congress providing an attainable goal for both robotic and manned missions. The instrument required to detect an active oasis is a high spatial resolution (few tens of meters) Short Wavelength Infrared (SWIR) spectrometer coupled with a high resolution camera (five m/pixel). This combination creates too large a data volume to possibly return data for the entire Martian Surface; therefore it has been designed as one of the first in a new generation of 'smart' detectors, called the Mars Oasis Detector (MOD).

  9. Isotopic Evidence for a Martian Regolith Component in Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Rao, M. N.; Nyquist, L. E.; Bogard, D. D.; Garrison, D. H.; Sutton, S.

    2009-01-01

    Noble gas measurements in gas-rich impact-melt (GRIM) glasses in EET79001 shergottite showed that their elemental and isotopic composition is similar to that of the Martian atmosphere [1-3]. The GRIM glasses contain large amounts of Martian atmospheric gases. Those measurements further suggested that the Kr isotopic composition of Martian atmosphere is approximately similar to that of solar Kr. The (80)Kr(sub n) - (80)Kr(sub M) mixing ratio in the Martian atmosphere reported here is approximately 3%. These neutron-capture reactions presumably occurred in the glass-precursor regolith materials containing Sm- and Br- bearing mineral phases near the EET79001/ Shergotty sites on Mars. The irradiated materials were mobilized into host rock voids either during shock-melting or possibly by earlier aeolian / fluvial activity.

  10. Composition of Simulated Martian Brines and Implications for the Origin of Martian Salts

    NASA Technical Reports Server (NTRS)

    Bullock, M. A.; Moore, J. M.; Mellon, M. T.

    2004-01-01

    We report on laboratory experiments that have produced dilute brines under controlled conditions meant to simulate past and present Mars. We allowed an SNC-derived mineral mix to react with pure water under a simulated present-Mars atmosphere for seven months. We then subjected the same mineral mix to a similar aqueous environment for one year, but with a simulated Mars atmosphere that contained the added gases SO2, HCl and NO2. The addition of acidic gases was designed to mimic the effects of volcanic gases that may have been present in the martian atmosphere during periods of increased volcanic activity. The experiments were performed at one bar and at two different temperatures in order to simulate subsurface conditions where liquid water and rock are likely to interact on Mars. The dominant cations dissolved in the solutions we produced were Ca(2+), Mg(2+), Al(3+) and Na(+), while the major anions are dissolved C, F(-), SO4(2-) and Cl(-). Typical solution pH was 4.2 to 6.0 for experiments run with a Mars analog atmosphere, and 3.6-5.0 for experiments with acidic gases added. Abundance patterns of elements in the synthetic sulfate-chloride brines produced under acidic conditions were distinctly unlike those of terrestrial ocean water, terrestrial continental waters, and those measured in the martian fines at the Mars Pathfinder and Viking 1 and 2 landing sites. In particular, the S/Cl ratio in these experiments was about 200, compared with an average value of approx. 5 in martian fines. In contrast, abundance patterns of elements in the brines produced under a present day Mars analog atmosphere were quite similar to those measured in the martian fines at the Mars Pathfinder and Viking 1 and 2 landing sites. This suggests that salts present in the martian regolith may have formed over time as a result of the interaction of surface or subsurface liquid water with basalts in the presence of a martian atmosphere similar in composition to that of today, rather than in an atmosphere higher in acidic volatiles.

  11. Heat transfer through particulated media in stagnant gases model and laboratory measurements: Application to Mars

    NASA Astrophysics Data System (ADS)

    Piqueux, Sylvain Loic Lucien

    The physical characterization of the upper few centimeters to meters of the Martian surface has greatly benefited from remote temperature measurements. Typical grain sizes, rock abundances, subsurface layering, soil cementation, bedrock exposures, and ice compositions have been derived and mapped using temperature data in conjunction with subsurface models of heat conduction. Yet, these models of heat conduction are simplistic, precluding significant advances in the characterization of the physical nature of the Martian surface. A new model of heat conduction for homogeneous particulated media accounting for the grain size, porosity, gas pressure and composition, temperature, and the effect of any cementing phase is presented. The incorporation of the temperature effect on the bulk conductivity results in a distortion of the predicted diurnal and seasonal temperatures when compared to temperatures predicted with a temperature-independent conductivity model. Such distortions have been observed and interpreted to result from subsurface heterogeneities, but they may simply be explained by a temperature-dependency of the thermal inertia, with additional implications on the derived grain sizes. Cements are shown to significantly increase the bulk conductivity of a particulated medium and bond fractions <5% per volume are consistent with Martian thermal inertia data previously hypothesized to correspond to a global duricrust. A laboratory setup has been designed, built, calibrated and used to measure the thermal conductivity of particulated samples in order to test and refine the models mentioned above. Preliminary results confirm the influence of the temperature on the bulk conductivity, as well as the effect of changing the gas composition. Cemented samples are shown to conduct heat more efficiently than their uncemented counterparts.

  12. Laboratory simulations of Martian surface parameters and the biological response of terrestrial model organisms to 'extreme' environments

    NASA Astrophysics Data System (ADS)

    Rettberg, P.; Moller, R.; Pogoda de La Vega, U.; Rabbow, E.; Panitz, C.; Mohlmann, D.; Reitz, G.

    For the development of adequate instruments and methods for in situ life detection analysis and for the avoidance of contaminating of Mars by terrestrial life forms introduced to it's surface unintentionally, it is necessary to understand the potential and limits of life on Earth. Whereas it is possible to test most of the environmental parameters of Mars separately in the laboratory, like diurnal and seasonal temperature cyles, pressure, atmospheric composition, and to investigate their biological effects in detail, it is technically more difficult to simulate two or more parameters at the same time. The realistic simulation of a complete Martian surface environment is a considerable technical challenge. It is especially difficult to reproduce the Martian UV climate realistically. Up to now no total Mars simulation was performed in one single experiment which should include diurnal cycles of temperature, UV radiation and humidity in a simulated Martian atmosphere and at Martian pressure, with Martian soil analogues, dust particles, and ionising radiation. However, it is absolutely essential to investigate the biological effects of combined environmental parameters, because it is already known for some cases that biological effects might not necessarily be additive, but can be synergistic or antagonistic. A prominent example is the synergistic effect of vacuum and UV radiation on the survivability of B. subtilis spores. From several investigations in the last decades the Martian UV climate with it's energy-rich short-wavelength radiation down to 200 nm turned out to be the most important deleterious environmental parameter on Mars. Direct UV exposure caused a rapid and nearly complete inactivation of spores. However, thin layers of Martian soil analogue material, like simulated standard Mars JSC-1 or Fe-montmorillonite, are sufficient to shield spores from the deleterious effects of UV radiation. From these results it can be concluded that in spite of the destructive UV climate at least a part of a microbial population might be able to escape the inactiviation by UV radiation, if covered accidentally by Martian dust and soil particles. Up to now the molecular basis of the strong oxidizing properties of Martian soil found 1 by the Viking landers is not completely understood. This chemical reactivity capable of decomposing organic molecules was attributed to the presence of one or more as- yet-unidentified inorganic superoxides or peroxides in the Martian soil. The biological consequences of these photochemical reactions are not yet investigated in detail, although it is known that B. subtilis spores are able to withstand oxidative conditions to a certain degree. The determination of the survival of microorganisms under the physical and chemical `extremes' of Mars will provide detailed insights into the potential for contamination that will allow the development and improvement of planetary protection measures. 2

  13. Microscopic Views of Martian Soils and Evidence for Incipient Diagenesis

    NASA Technical Reports Server (NTRS)

    Goetz, W.; Madsen, M. B.; Bridges, N.; Clark, B.; Edgett, K. S.; Fisk, M.; Grotzinger, J. P.; Hviid, S. F.; Meslin, P.-Y.; Ming, D. W.; hide

    2014-01-01

    Mars landed missions returned im-ages at increasingly higher spatial resolution (Table 1). These images help to constrain the microstructure of Martian soils, i.e. the grain-by-grain association of chemistry and mineralogy with secondary properties, such as albedo, color, magnetic properties, and mor-phology (size, shape, texture). The secondary charac-teristics are controlled by mineralogical composition as well as the geo-setting (transport and weathering modes, e.g. water supply, pH, atmospheric properties, exposure to radiation, etc.). As of today this association is poorly constrained. However, it is important to un-derstand soil-forming processes on the surface of Mars. Here we analyze high-resolution images of soils re-turned by different landed missions. Eventually these images must be combined with other types of data (chemistry and mineralogy at small spatial scale) to nail down the microstructure of Martian soils.

  14. Chemistry of Martian Soils from the Mars Exploration Rover APXS Instruments

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.; Gellert, R.; Yen, A.

    2007-01-01

    The martian surface is covered with debris formed by several mechanisms and mobilized by various processes. Volcanism, impact, physical weathering and chemical alteration combine to produce particles of sizes from dust to boulders composed of primary mineral and rock fragments, partially altered primary materials, alteration minerals and shock-modified materials from all of these. Impacts and volcanism produce localized deposits. Winds transport roughly sand-sized material over intermediate distances, while periodic dust storms deposit a global dust layer of the finest fraction. The compositions of clastic sediments can be used to evaluate regional differences in crustal composition and/or weathering processes. Here we examine the growing body of chemical data on soils in Gusev crater and Meridiani Planum returned by the Alpha Particle X-ray Spectrometer (APXS) instruments on the rovers Spirit (MERA) and Opportunity (MERB), following on earlier results based on smaller data sets [1-4].

  15. Chemistry of Martian Rock Esperance

    NASA Image and Video Library

    2013-06-07

    This triangle plot shows the relative concentrations of some of the major chemical elements in the Martian rock Esperance. The compositions of average Martian crust and of montmorillonite, a common clay mineral, are shown.

  16. Detecting Upward Directed Charged Particle Fluxes in the Mars Science Laboratory Radiation Assessment Detector

    NASA Astrophysics Data System (ADS)

    Appel, J. K.; Köehler, J.; Guo, J.; Ehresmann, B.; Zeitlin, C.; Matthiä, D.; Lohf, H.; Wimmer-Schweingruber, R. F.; Hassler, D.; Brinza, D. E.; Böhm, E.; Böttcher, S.; Martin, C.; Burmeister, S.; Reitz, G.; Rafkin, S.; Posner, A.; Peterson, J.; Weigle, G.

    2018-01-01

    The Mars Science Laboratory rover Curiosity, operating on the surface of Mars, is exposed to radiation fluxes from above and below. Galactic Cosmic Rays travel through the Martian atmosphere, producing a modified spectrum consisting of both primary and secondary particles at ground level. These particles produce an upward directed secondary particle spectrum as they interact with the Martian soil. Here we develop a method to distinguish the upward and downward directed particle fluxes in the Radiation Assessment Detector (RAD) instrument, verify it using data taken during the cruise to Mars, and apply it to data taken on the Martian surface. We use a combination of Geant4 and Planetocosmics modeling to find discrimination criteria for the flux directions. After developing models of the cruise phase and surface shielding conditions, we compare model-predicted values for the ratio of upward to downward flux with those found in RAD observation data. Given the quality of available information on Mars Science Laboratory spacecraft and rover composition, we find generally reasonable agreement between our models and RAD observation data. This demonstrates the feasibility of the method developed and tested here. We additionally note that the method can also be used to extend the measurement range and capabilities of the RAD instrument to higher energies.

  17. Microscopy of Analogs for Martian Dust and Soil

    NASA Technical Reports Server (NTRS)

    Anderson, M. A.; Pike, W. T.; Weitz, C. M.

    1999-01-01

    The upcoming Mars 2001 lander will carry an atomic force microscope (AFM) as part of the Mars Environmental Compatibility Assessment (MECA) payload. By operating in a tapping mode, the AFM is capable of sub-nanometer resolution in three dimensions and can distinguish between substances of different compositions by employing phase-contrast imaging. Phase imaging is an extension of tapping-mode AFM that provides nanometer-scale information about surface composition not revealed in the topography. Phase imaging maps the phase of the cantilever oscillation during the tapping mode scan, hence detecting variations in composition, adhesion, friction, and viscoelasticity. Because phase imaging highlights edges and is not affected by large-scale height differences, it provides for clearer observation of fine features, such as grain edges, which can be obscured by rough topography. To prepare for the Mars 01 mission, we are testing the AFM on a lunar soil and terrestrial basaltic glasses to determine the AFMOs ability to define particle shapes and sizes and grain-surface textures. The test materials include the Apollo 17 soil 79221, which is a mixture of agglutinates, impact and volcanic beads, and mare and highland rock and mineral fragments. The majority of the lunar soil particles are less than 100 microns in size, comparable to the sizes estimated for Martian dust. The terrestrial samples are millimeter size basaltic glasses collected on Black Pointe at Mono Lake, just north of the Long Valley caldera in California. The basaltic glass formed by a phreatomagmatic eruption 13,000 years ago beneath a glacier that covered the Mono Lake region. Because basaltic glass formed by reworking of pyroclastic deposits may represent a likely source for Martian dunes, these basaltic glass samples represent plausible analogs to the types of particles that may be studied in sand dunes by the 01 lander and rover. We have used the AFM to examine several different soil particles at various resolutions. The instrument has demonstrated the ability to identify parallel ridges characteristic of twinning on a 150-micron plagioclase feldspar particle. Extremely small (10-100 nanometer) adhering particles are visible on the surface of the feldspar grain, and appear elongate with smooth surfaces. Phase contrast imaging of the nanometer particles shows several compositions to be present. When the AFM was applied to a 100-micron glass spherule, it was possible to define an extremely smooth surface.E Also visible on the surface of the glass spherule were chains of 100-nanometer- and-smaller impact melt droplets. Additional information is contained in the original extended abstract.

  18. Characterizing Martian Soils: Correlating Orbital Observations with Chemistry and Mineralogy from Landed Missions

    NASA Astrophysics Data System (ADS)

    Bishop, J. L.

    2010-12-01

    Great advances have been achieved recently in our understanding of the surface of Mars at global scales from orbital missions and at local scales from landed missions. This presentation seeks to provide links between the chemistry and mineralogy observed by landed missions with remote detections of minerals from orbit. Spectral data from CRISM, OMEGA and TES characterize a mostly basaltic planet with some outcrops of hematite, clays, sulfates and carbonates at the surface. Recent alteration of these rocks to form soils has likely been dominated by physical processes; however, martian soils probably also contain relicts of early alteration involving aqueous processes. Clays, hydroxides, sulfates, carbonates and perchlorates are examples of surface components that may have formed early in the planet’s history in the presence of liquid water. Some of these minerals have not been detected in the soil, but all have likely contributed to the current soil composition. The grain size, shape, chemistry, mineralogy, and magnetic properties of Martian soils are similar to altered volcanic ash found at many analog sites on Earth. Reflectance and emission spectra of some of these analog soils are consistent with the basic soil spectral properties observed from orbit. The cemented soil units observed by rovers may have formed through interaction of the soil grains with salts, clays, and hydroxides. Lab experiments have shown that cementing of analog grains darkens the VN reflectance, which could explain the low reflectance of Martian soils compared to analog sites. Reflectance spectra of an analog soil mixture containing altered ash and sulfate are shown in Figure 1. A pellet was made by adding water and allowing the sample to dry in air. Finally, the pellet was crushed and ground again to <125 µm. Both the dried pellet spectrum and the crushed pellet spectrum are darker than the original spectrum of the same composition. Erosion and weathering are likely the dominant processes forming the soils on Mars. However, reaction of surface grains with sulfates and perchlorates probably also influenced the soil grains. The perchlorates found by Phoenix are a strong oxidant. Consideration is being given to the interactions of perchlorates with minerals identified in surface rocks (pyroxene, olivine, feldspar, phyllosilicate, iron oxides, sulfate, silica, carbonate) and how perchlorates might be contributing to soil formation from these minerals and what their spectral properties might be.

  19. Isotopic Composition of Carbonates in Antarctic Ordinary Chondrites and Miller Range Nakhlites: Insights into Martian Amazonian Aqueous Alteration

    NASA Technical Reports Server (NTRS)

    Evans, M. E.; Niles, P. B.; Chapman, P.

    2017-01-01

    The martian surface contains features of ancient fluvial systems. Stable isotope analysis of carbonates that form in aqueous systems can reveal their formation conditions. The Nakhlite meteorites originally formed on Mars 1.3 Ga and were later exposed to aqueous fluids that left behind carbonate minerals [1], thus analysis of these carbonates can provide data to understand Amazonian climate conditions on Mars. Carbonates found in the Nakhlite meteorites contain a range of delta(sup 13)C values, which may be either martian carbonates or terrestrial contamination. To better under-stand terrestrial weathering products and martian carbonate formation processes, we conducted a set of carbonate isotope analyses on Antarctic meteorites focusing on Miller Range (MIL) Nakhlites as well as Ordinary Chondrites (OCs) (Figure 1)[1-11] [12]. OCs of petrology type H, L, and LL 3-6 were selected since they are not expected to contain preterrestrial carbonates, yet they have visible evaporite minerals on the fusion crust indicating terrestrial alteration. These cryogenically formed terrestrial carbonates may also provide an analog for cryogenic carbonate formation on Mars.

  20. Formation of a hybrid-type proto-atmosphere on Mars accreting in the solar nebula

    NASA Astrophysics Data System (ADS)

    Saito, Hiroaki; Kuramoto, Kiyoshi

    2018-03-01

    Recent studies of the chronology of Martian meteorites suggest that the growth of Mars was almost complete within a few Myr after the birth of the Solar system. During such rapid accretion, proto-Mars likely gravitationally maintained both the solar nebula component and the impact degassing component, containing H2O vapour and reduced gas species, as a proto-atmosphere to be called a hybrid-type proto-atmosphere. Here we numerically analyse the mass and composition of the degassed component and the atmospheric thermal structure sustained by accretional heating. Our results predict that a growing Mars possibly acquired a massive and hot hybrid-type proto-atmosphere with surface pressure and temperature greater than several kbar and 2000 K, respectively, which is sufficient to produce a deep magma ocean. In such a high-temperature and high-pressure environment, a significant amount of H2O, CH4, CO, and H2 is expected to be partitioned into the planetary interior, although this would strongly depend on the dynamics of the magma ocean and mantle solidification. The dissolved H2O may explain the wet Martian mantle implied from basaltic Martian meteorites. Along with the remnant reduced atmosphere after the hydrodynamic atmospheric escape, dissolved reduced gas species may have maintained an earliest Martian surface environment that allowed prebiotic chemical evolution and liquid H2O activities.

  1. Mineral Abundances in Martian Soils

    NASA Astrophysics Data System (ADS)

    Martel, L. M. V.

    2011-01-01

    Using traditional geochemical calculations with in situ Martian cosmochemical data researchers Harry (Hap) McSween Jr. and Ian McGlynn (University of Tennessee) and Deanne Rogers (SUNY at Stony Brook) have developed a method for identifying the major and minor minerals in soils at the Mars Exploration Rovers (MER) landing sites. The team used information from the MER Athena instrument package operating on Mars since January, 2004. They created two models using MiniTES spectra, Alpha Particle X-ray Spectrometer (APXS) data, and Mossbauer spectrometer data to calculate the mineralogy of average dark soils on the Gusev crater plains and on Meridiani Planum, located on opposite sides of Mars. Soils at both locations are similarly composed of minerals derived from the comminution of basalts (about three quarters by weight) and other minerals derived from rocks altered by chemical weathering (about one quarter by weight). This mixture of possibly unrelated materials (primary and altered) might mean that the alteration of soil did not occur in place and that the basaltic and alteration suites of minerals came from different sources. The nearly identical modal mineralogy at two widely-separated locations on the planet supports a previous hypothesis based on comparable chemical compositions that soils have been homogenized, if not globally then at least over large areas of the Martian surface. Yet, global maps of orbital remote sensing data have not shown surface abundances of alteration minerals as high as those in the Martian soils.

  2. My Martian Moment - Episode 02 - Chris McKay and Perchlorates

    NASA Image and Video Library

    2015-10-06

    NASA Ames' Chris McKay is a planetary scientist, whose research includes planetary atmospheres and on the origins and evolution of life in the Solar System and the Universe. His work also includes planning the next generation of science instruments needed to better understand the chemicals and composition of the dirt on the surface of Mars.

  3. Composition of the atmosphere at the surface of Mars - Detection of argon-36 and preliminary analysis

    NASA Technical Reports Server (NTRS)

    Owen, T.; Biemann, K.

    1976-01-01

    The composition of the Martian atmosphere was determined by the mass spectrometer in the molecular analysis experiment. The presence of argon and nitrogen was confirmed and a value of 1 to 2750 plus or minus 500 for the ratio of argon-36 to argon-40 was established. A preliminary interpretation of these results suggests that Mars had a slightly more massive atmosphere in the past, but that much less total outgassing has occurred on Mars than on earth.

  4. Evidence from Olivine-Hosted Melt Inclusions that the Martian Mantle has a Chondritic D/H Ratio and that Some Young Basalts have Assimilated Old Crust

    NASA Technical Reports Server (NTRS)

    Usui, Tomohiro; Alexander, O'D.; Wang, J.; Simon, J. I.; Jones, J. H.

    2012-01-01

    Magmatic degassing of volatile elements affects the climate and near-surface environment of Mars. Telescopic and meteorite studies have revealed that the Martian atmosphere and near-surface materials have D/H ratios 5-6 times terrestrial values [e.g., 1, 2]. Such high D/H ratios are interpreted to result from the preferential loss of H relative to heavier D from the Martian atmosphere, assuming that the original Martian water inventory had a D/H ratio similar to terrestrial values and to H in primitive meteorites [e.g., 1, 3]. However, the primordial Martian D/H ratio has, until now, not been well constrained. The uncertainty over the Martian primordial D/H ratio has arisen both from the scarcity of primitive Martian meteorites and as a result of contamination by terrestrial and, perhaps, Martian surface waters that obscure the signature of the Martian mantle. This study reports a comprehensive dataset of magmatic volatiles and D/H ratios in Martian primary magmas based on low-contamination, in situ ion microprobe analyses of olivine-hosted melt inclusions from both depleted [Yamato 980459 (Y98)] and enriched [Larkman Nunatak 06319 (LAR06)] Martian basaltic meteorites. Analyses of these primitive melts provide definitive evidence that the Martian mantle has retained a primordial D/H ratio and that young Martian basalts have assimilated old Martian crust.

  5. Measurements of the Charged and Neutral Particle Spectra on the Martian Surface with MSL/RAD

    NASA Astrophysics Data System (ADS)

    Koehler, Jan

    The Radiation Assessment Detector (RAD) onboard Mars Science Laboratory’s rover Curiosity is the first ever instrument to measure the energetic particle radiation environment on the surface of Mars. Charged particles are a major component of this environment, both galactic cosmic rays propagating to the Martian surface and secondary particles created by interactions of these cosmic rays with the atoms of the Martian atmosphere and soil. Another important factor for determining the biological impact of the Martian surface radiation is the specific contribution of neutrons, which possess a high biological effectiveness. In contrast to charged particles, neutrons and gamma rays are generally only measured indirectly. Their measurement is the result of a complex convolution of the incident particle spectrum with the measurement process. We apply an inversion method to calculate the gamma/neutron spectra from the RAD neutral particle measurements. Here we show first surface measurements of the Martian particle spectra and compare them to theoretical predictions. Measuring the Martian particle spectra is an essential step for determining the mutagenic influences to past or present life at or beneath the Martian surface as well as the radiation hazard for future human exploration, including the shielding design of a potential habitat.

  6. The Chlorine Isotope Composition of Martian Meteorites

    NASA Astrophysics Data System (ADS)

    Sharp, Z. D.; Shearer, C. K.; Agee, C.; Burger, P. V.; McKeegan, K. D.

    2014-11-01

    The Cl isotope composition of martian meteorites range from -3.8 to +8.6 per mil. Ol-phyric shergottites are lightest; crustally contaminated samples are heaviest, basaltic shergottites are in-between. The system is explained as two component mixing.

  7. Mars environment and magnetic orbiter scientific and measurement objectives.

    PubMed

    Leblanc, F; Langlais, B; Fouchet, T; Barabash, S; Breuer, D; Chassefière, E; Coates, A; Dehant, V; Forget, F; Lammer, H; Lewis, S; Lopez-Valverde, M; Mandea, M; Menvielle, M; Pais, A; Paetzold, M; Read, P; Sotin, C; Tarits, P; Vennerstrom, S

    2009-01-01

    In this paper, we summarize our present understanding of Mars' atmosphere, magnetic field, and surface and address past evolution of these features. Key scientific questions concerning Mars' surface, atmosphere, and magnetic field, along with the planet's interaction with solar wind, are discussed. We also define what key parameters and measurements should be performed and the main characteristics of a martian mission that would help to provide answers to these questions. Such a mission--Mars Environment and Magnetic Orbiter (MEMO)--was proposed as an answer to the Cosmic Vision Call of Opportunity as an M-class mission (corresponding to a total European Space Agency cost of less than 300 Meuro). MEMO was designed to study the strong interconnection between the planetary interior, atmosphere, and solar conditions, which is essential to our understanding of planetary evolution, the appearance of life, and its sustainability. The MEMO main platform combined remote sensing and in situ measurements of the atmosphere and the magnetic field during regular incursions into the martian upper atmosphere. The micro-satellite was designed to perform simultaneous in situ solar wind measurements. MEMO was defined to conduct: * Four-dimensional mapping of the martian atmosphere from the surface up to 120 km by measuring wind, temperature, water, and composition, all of which would provide a complete view of the martian climate and photochemical system; Mapping of the low-altitude magnetic field with unprecedented geographical, altitude, local time, and seasonal resolutions; A characterization of the simultaneous responses of the atmosphere, magnetic field, and near-Mars space to solar variability by means of in situ atmospheric and solar wind measurements.

  8. Experimental determination of photostability and fluorescence-based detection of PAHs on the Martian surface

    NASA Astrophysics Data System (ADS)

    Dartnell, Lewis R.; Patel, Manish R.; Storrie-Lombardi, Michael C.; Ward, John M.; Muller, Jan-Peter

    2012-05-01

    Even in the absence of any biosphere on Mars, organic molecules, including polycyclic aromatic hydrocarbons (PAHs), are expected on its surface due to delivery by comets and meteorites of extraterrestrial organics synthesized by astrochemistry, or perhaps in situ synthesis in ancient prebiotic chemistry. Any organic compounds exposed to the unfiltered solar ultraviolet spectrum or oxidizing surface conditions would have been readily destroyed, but discoverable caches of Martian organics may remain shielded in the subsurface or within surface rocks. We have studied the stability of three representative polycyclic aromatic hydrocarbons (PAHs) in a Mars chamber, emulating the ultraviolet spectrum of unfiltered sunlight under temperature and pressure conditions of the Martian surface. Fluorescence spectroscopy is used as a sensitive indicator of remaining PAH concentration for laboratory quantification of molecular degradation rates once exposed on the Martian surface. Fluorescence-based instrumentation has also been proposed as an effective surveying method for prebiotic organics on the Martian surface. We find the representative PAHs, anthracene, pyrene, and perylene, to have persistence half-lives once exposed on the Martian surface of between 25 and 60 h of noontime summer UV irradiation, as measured by fluorescence at their peak excitation wavelength. This equates to between 4 and 9.6 sols when the diurnal cycle of UV light intensity on the Martian surface is taken into account, giving a substantial window of opportunity for detection of organic fluorescence before photodegradation. This study thus supports the use of fluorescence-based instrumentation for surveying recently exposed material (such as from cores or drill tailings) for native Martian organic molecules in rover missions.

  9. Laboratory investigations of Mars - Chemical and spectroscopic characteristics of a suite of clays as Mars soil analogs

    NASA Technical Reports Server (NTRS)

    Banin, Amos; Carle, Glenn C.; Chang, Sherwood; Coyne, Lelia M.; Orenberg, James B.

    1988-01-01

    A model system of Mars soil analog materials (MSAMs) was prepared, and the properties of these clays, such as chemical composition, surface-ion composition, water adsorption isotherms, and reflectance spectra, were examined. The results of these studies, performed along with simulations of the Viking Labeled Release Experiement using MSAMs, indicate that surface iron and adsorbed water are important determinants of clay behavior, as evidenced by changes in reflectance, water absorption, and clay surface reactions. The paper discusses the relevance of these results to the two major questions raised by prior explorations of Mars: has there ever been abundant water on Mars, and why is the iron found in the Martian soil not readily seen in the reflectance spectra of the surface?

  10. Analytical techniques for retrieval of atmospheric composition with the quadrupole mass spectrometer of the Sample Analysis at Mars instrument suite on Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    B. Franz, Heather; G. Trainer, Melissa; H. Wong, Michael; L. K. Manning, Heidi; C. Stern, Jennifer; R. Mahaffy, Paul; K. Atreya, Sushil; Benna, Mehdi; G. Conrad, Pamela; N. Harpold, Dan; A. Leshin, Laurie; A. Malespin, Charles; P. McKay, Christopher; Thomas Nolan, J.; Raaen, Eric

    2014-06-01

    The Sample Analysis at Mars (SAM) instrument suite is the largest scientific payload on the Mars Science Laboratory (MSL) Curiosity rover, which landed in Mars' Gale Crater in August 2012. As a miniature geochemical laboratory, SAM is well-equipped to address multiple aspects of MSL's primary science goal, characterizing the potential past or present habitability of Gale Crater. Atmospheric measurements support this goal through compositional investigations relevant to martian climate evolution. SAM instruments include a quadrupole mass spectrometer, a tunable laser spectrometer, and a gas chromatograph that are used to analyze martian atmospheric gases as well as volatiles released by pyrolysis of solid surface materials (Mahaffy et al., 2012). This report presents analytical methods for retrieving the chemical and isotopic composition of Mars' atmosphere from measurements obtained with SAM's quadrupole mass spectrometer. It provides empirical calibration constants for computing volume mixing ratios of the most abundant atmospheric species and analytical functions to correct for instrument artifacts and to characterize measurement uncertainties. Finally, we discuss differences in volume mixing ratios of the martian atmosphere as determined by SAM (Mahaffy et al., 2013) and Viking (Owen et al., 1977; Oyama and Berdahl, 1977) from an analytical perspective. Although the focus of this paper is atmospheric observations, much of the material concerning corrections for instrumental effects also applies to reduction of data acquired with SAM from analysis of solid samples. The Sample Analysis at Mars (SAM) instrument measures the composition of the martian atmosphere. Rigorous calibration of SAM's mass spectrometer was performed with relevant gas mixtures. Calibration included derivation of a new model to correct for electron multiplier effects. Volume mixing ratios for Ar and N2 obtained with SAM differ from those obtained with Viking. Differences between SAM and Viking volume mixing ratios are under investigation.

  11. Bioenergetic and Geobiological Possibilities of Methanotrophy on Mars

    NASA Astrophysics Data System (ADS)

    Marlow, J. J.; LaRowe, D.; Ehlmann, B. L.; Amend, J.; Orphan, V. J.

    2014-12-01

    During its ancient past, Mars exhibited dynamic conditions that facilitated water-rock reactions, bringing unequilibrated chemical constituents into contact with each other. Such interactions have prompted speculation regarding the energetic output of redox reactions. The sulfate-driven anaerobic oxidation of methane (AOM) is one redox reaction that has not been carefully investigated in an ancient martian context, and yet, with recent reports of methane and sulfate-bearing minerals on Mars, it may be one of the more observationally constrained options for a putative metabolism. In this work, we evaluate the Gibbs energies of the AOM metabolism under a range of atmospheric compositions using seven putative martian groundwater compositions. In all scenarios, AOM is exergonic, ranging from -31 to -135 kJ/mol CH4. A reaction transport model was developed to incorporate the advection and diffusion of nutrients, reaction rates, and the feedback between growing organisms' nutrient consumption and downstream concentrations. The extent of crustal volume under exergonic conditions is set primarily by localized reactant concentration, while relative changes within the exergonic zone are driven primarily by product accumulation. In order for AOM to have been an energetically viable metabolism on ancient Mars, co-located reactants would have been necessary. At NE Syrtis Major, serpentinization of the olivine-bearing unit may have produced hydrogen, which could generate methane in the abiotic reduction of CO2. In the overlying jarosite-bearing layer, sulfate and incoming methane provide the reactants for AOM. An alternative scenario for martian AOM involves methane production by subsurface hydrothermal alteration of basaltic crust, and acid sulfate conditions are produced from fluids derived near the surface. Sulfate-bearing waters are formed by aerosol deposition and subsequent dissolution of oxidized sulfur species by water. Finally, continuing work on constraining martian reaction transport models from a microbiological perspective will be discussed. Understanding which parameters can be refined based on orbital or rover observations will aid in producing site-specific models that will help inform the search for signs of past or present life beneath the martian surface.

  12. Isotopic Composition of Trapped and Cosmogenic Noble Gases in Several Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Garrison, Daniel H.; Bogard, Donald D.

    1997-01-01

    Isotopic abundances of the noble gases were measured in the following Martian meteorites: two shock glass inclusions from EET79001, shock vein glass from Shergotty and Y793605, and whole rock samples of ALH84001 and QUE94201. These glass samples, when combined with literature data on a separate single glass inclusion from EET79001 and a glass vein from Zagami, permit examination of the isotopic composition of Ne, Ar, Kr, and Xe trapped from the Martian atmosphere in greater detail. The isotopic composition of Martian Ne, if actually present in these glasses, remains poorly defined. The Ar-40/Ar-36 ratio of Martian atmospheric Ar may be much less than the ratio measured by Viking and possibly as low as approx. 1900. The atmospheric Ar-36/Ar-38 ratio is less than or equal to 4.0. Martian atmospheric Kr appears to be enriched in lighter isotopes by approx. 0.4%/amu compared to both solar wind Kr and to the Martian composition previously reported. The Martian atmospheric Ar-36/Xe-132 and Kr-84/Xe-132 Xe elemental ratios are higher than those reported by Viking by factors of approx. 3.3 and approx. 2.5, respectively. Cosmogenic gases indicate space exposure ages of 13.9 +/- 1 Myr for ALH84001 and 2.7 +/- 0.6 Myr for QUE94201. Small amounts of Ne-21 produced by energetic solar protons may be present in QUE94201, but are not present in ALH84001 or Y793605. The space exposure age for Y793605 is 4.9 +/- 0.6 Myr and appears to be distinctly older than the ages for basaltic shergottites.

  13. Physical abrasion of mafic minerals and basalt grains: application to Martian aeolian deposits

    USGS Publications Warehouse

    Cornwall, Carin; Bandfield, Joshua L.; Titus, Timothy N.; Schreiber, B. C.; Montgomery, D.R.

    2015-01-01

    Sediment maturity, or the mineralogical and physical characterization of sediment deposits, has been used to locate sediment source, transport medium and distance, weathering processes, and paleoenvironments on Earth. Mature terrestrial sands are dominated by quartz, which is abundant in source lithologies on Earth and is physically and chemically stable under a wide range of conditions. Immature sands, such as those rich in feldspars or mafic minerals, are composed of grains that are easily physically weathered and highly susceptible to chemical weathering. On Mars, which is predominately mafic in composition, terrestrial standards of sediment maturity are not applicable. In addition, the martian climate today is cold, dry and sediments are likely to be heavily influenced by physical weathering rather than chemical weathering. Due to these large differences in weathering processes and composition, martian sediments require an alternate maturity index. Abrason tests have been conducted on a variety of mafic materials and results suggest that mature martian sediments may be composed of well sorted, well rounded, spherical basalt grains. In addition, any volcanic glass present is likely to persist in a mechanical weathering environment while chemically altered products are likely to be winnowed away. A modified sediment maturity index is proposed that can be used in future studies to constrain sediment source, paleoclimate, mechanisms for sediment production, and surface evolution. This maturity index may also provide details about erosional and sediment transport systems and preservation processes of layered deposits.

  14. Characteristics of Radiation Emitted by Disturbed Region After Meteoroid Impact Onto Mars

    NASA Astrophysics Data System (ADS)

    Kosarev, I. B.; Losseva, T. V.

    2001-12-01

    Performing spectroscopic measurements during impacts onto Mars we obtain the unique possibility of investigations of the structure and physical properties of the Martian surface and atmosphere, their chemical composition. Many values for various physical parameters may be derived from remote measurements of the radiation emitted during impacts. Radiation absorbed by the surface leads to the losses of volatiles. A thin layer of the Martian air adjacent to the surface being heated may drastically change the gasdynamic flow behind the shock wave due to the 'thermal layer effect". Detection of radiation impulses may be used for searches of fresh impact sites.We have calculated spectral opacity tables for some recognized types of cosmic H-, LL-, C1-chondrites and cometary matter bodies. The chemical composition taken into account in those calculations is based on the extended system of 16 chemical elements: Fe-O-Mg-Si-C-H-S-Al-Ca-Na-K-N-Cr-Mn-Ti-Ni. Similar spectral opacity tables of the Martian soil vapor based on chemical rock analyses of McSween et al., (JGR, V.104E, 8679, 1999) were also generated. A 3D multifrequency radiation transfer code was used to obtain integral and spectral characteristics and angular distributions of radiation emitted by the domain disturbed by the cosmic body impact.We have used gasdynamic parameter distributions after the vertical impacts of 1-100 m radii stony projectiles striking the Martian surface at the velocities of 11-20 km/s obtained by Nemtchinov et al. (AGU Fall Meeting 2001,abstract). The emitted radiation is essentially nonisotropic. To understand what part of disturbed region emits we analyze the spectral directionality diagrams depended on the wavelength range. Some features of the directionality aspect of emitted radiation are connected with the shielding action of dust curtain around the hot ascending cloud. The maximum radiation corresponds to visible and infrared ranges at the onset of impact impulses. The diagrams in visible range show that the main part of radiation belongs to the region inside the shock. Internal part of the disturbed region is opaque. The atmospheric gas mainly screens radiation emitted by the Martian soil vapor. The directionality diagrams in infrared range show that the main part of radiation is emitted by the shock compressed layer on the top of ascending cloud and by narrow dense soil vapor layer near the surface. Radiation of the middle part of vapor is screened by heated atmospheric gas in the cloud. The role of radiation is increased with meteoroid size growing.The work was supported by NASA Grant NRA 98-OSS-08 JURISS.

  15. Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results.

    PubMed

    Christensen, Philip R; Bandfield, Joshua L; Bell, James F; Gorelick, Noel; Hamilton, Victoria E; Ivanov, Anton; Jakosky, Bruce M; Kieffer, Hugh H; Lane, Melissa D; Malin, Michael C; McConnochie, Timothy; McEwen, Alfred S; McSween, Harry Y; Mehall, Greg L; Moersch, Jeffery E; Nealson, Kenneth H; Rice, James W; Richardson, Mark I; Ruff, Steven W; Smith, Michael D; Titus, Timothy N; Wyatt, Michael B

    2003-06-27

    The Thermal Emission Imaging System (THEMIS) on Mars Odyssey has produced infrared to visible wavelength images of the martian surface that show lithologically distinct layers with variable thickness, implying temporal changes in the processes or environments during or after their formation. Kilometer-scale exposures of bedrock are observed; elsewhere airfall dust completely mantles the surface over thousands of square kilometers. Mars has compositional variations at 100-meter scales, for example, an exposure of olivine-rich basalt in the walls of Ganges Chasma. Thermally distinct ejecta facies occur around some craters with variations associated with crater age. Polar observations have identified temporal patches of water frost in the north polar cap. No thermal signatures associated with endogenic heat sources have been identified.

  16. Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results

    USGS Publications Warehouse

    Christensen, P.R.; Bandfield, J.L.; Bell, J.F.; Gorelick, N.; Hamilton, V.E.; Ivanov, A.; Jakosky, B.M.; Kieffer, H.H.; Lane, M.D.; Malin, M.C.; McConnochie, T.; McEwen, A.S.; McSween, H.Y.; Mehall, G.L.; Moersch, J.E.; Nealson, K.H.; Rice, J. W.; Richardson, M.I.; Ruff, S.W.; Smith, M.D.; Titus, T.N.; Wyatt, M.B.

    2003-01-01

    The Thermal Emission Imaging System (THEMIS) on Mars Odyssey has produced infrared to visible wavelength images of the martian surface that show lithologically distinct layers with variable thickness, implying temporal changes in the processes or environments during or after their formation. Kilometer-scale exposures of bedrock are observed; elsewhere airfall dust completely mantles the surface over thousands of square kilometers. Mars has compositional variations at 100-meter scales, for example, an exposure of olivine-rich basalt in the walls of Ganges Chasma. Thermally distinct ejecta facies occur around some craters with variations associated with crater age. Polar observations have identified temporal patches of water frost in the north polar cap. No thermal signatures associated with endogenic heat sources have been identified.

  17. JMSS-1: a new Martian soil simulant

    NASA Astrophysics Data System (ADS)

    Zeng, Xiaojia; Li, Xiongyao; Wang, Shijie; Li, Shijie; Spring, Nicole; Tang, Hong; Li, Yang; Feng, Junming

    2015-05-01

    It is important to develop Martian soil simulants that can be used in Mars exploration programs and Mars research. A new Martian soil simulant, called Jining Martian Soil Simulant (JMSS-1), was developed at the Lunar and Planetary Science Research Center at the Institute of Geochemistry, Chinese Academy of Sciences. The raw materials of JMSS-1 are Jining basalt and Fe oxides (magnetite and hematite). JMSS-1 was produced by mechanically crushing Jining basalt with the addition of small amounts of magnetite and hematite. The properties of this simulant, including chemical composition, mineralogy, particle size, mechanical properties, reflectance spectra, dielectric properties, volatile content, and hygroscopicity, have been analyzed. On the basis of these test results, it was demonstrated that JMSS-1 is an ideal Martian soil simulant in terms of chemical composition, mineralogy, and physical properties. JMSS-1 would be an appropriate choice as a Martian soil simulant in scientific and engineering experiments in China's Mars exploration in the future.

  18. Occultation of Epsilon Geminorum by Mars. II - The structure and extinction of the Martian upper atmosphere

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; French, R. G.; Dunham, E.; Gierasch, P. J.; Veverka, J.; Church, C.; Sagan, C.

    1977-01-01

    The occultation of Epsilon Geminorum by Mars on April 8, 1976, was observed at three wavelengths and 4-ms time resolution with the 91-cm telescope aboard NASA's G. P. Kuiper Airborne Observatory. Temperature, pressure, and number-density profiles of the Martian atmosphere were obtained for both the immersion and emersion events. Within the altitude range 50-80 km above the mean surface, the mean temperature is about 145 K, and the profiles exhibit wavelike structures with a peak-to-peak amplitude of 35 K and a vertical scale of about 20 km. The ratio of the refractivity of the atmosphere at 4500 A and 7500 A is consistent with the atmospheric composition measured by Viking 1. From the 'central flash' - a bright feature in the light curve midway between immersion and emersion - an optical depth at 4500 A of 3.3 + or - 1.7 per km atm (about 0.23 per equivalent Martian air mass) is found for the atmosphere about 25 km above the mean surface near the south polar region. This large value and its weak wavelength dependence rule out Rayleigh scattering as the principal cause of the observed extinction.

  19. Space Radiation Effects in Inflatable and Composite Habitat Materials

    NASA Technical Reports Server (NTRS)

    Waller, Jess; Rojdev, Kristina

    2015-01-01

    This Year 2 project provides much needed risk reduction data to assess solar particle event (SPE) and galactic cosmic ray (GCR) space radiation damage in existing and emerging materials used in manned low-earth orbit, lunar, interplanetary, and Martian surface missions. More specifically, long duration (up to 50 years) space radiation damage is quantified for materials used in inflatable structures (1st priority), and habitable composite structures and space suits materials (2nd priority). The data collected has relevance for nonmetallic materials (polymers and composites) used in NASA missions where long duration reliability is needed in continuous or intermittent radiation fluxes.

  20. Perchlorates on Mars enhance the bacteriocidal effects of UV light.

    PubMed

    Wadsworth, Jennifer; Cockell, Charles S

    2017-07-06

    Perchlorates have been identified on the surface of Mars. This has prompted speculation of what their influence would be on habitability. We show that when irradiated with a simulated Martian UV flux, perchlorates become bacteriocidal. At concentrations associated with Martian surface regolith, vegetative cells of Bacillus subtilis in Martian analogue environments lost viability within minutes. Two other components of the Martian surface, iron oxides and hydrogen peroxide, act in synergy with irradiated perchlorates to cause a 10.8-fold increase in cell death when compared to cells exposed to UV radiation after 60 seconds of exposure. These data show that the combined effects of at least three components of the Martian surface, activated by surface photochemistry, render the present-day surface more uninhabitable than previously thought, and demonstrate the low probability of survival of biological contaminants released from robotic and human exploration missions.

  1. Nitrates in SNCs: Implications for the nitrogen cycle on Mars

    NASA Technical Reports Server (NTRS)

    Grady, Monica M.; Wright, I. P.; Franchi, I. A.; Pillinger, C. T.

    1993-01-01

    Nitrogen is the second most abundant constituent of the Martian atmosphere, after CO2, present at a level of ca. 2.7 percent. Several authors have hypothesized that earlier in the planet's history, nitrogen was more abundant, but has been removed by processes such as exospheric loss from the atmosphere. However, an alternative sink for atmospheric nitrogen is the regolith; model calculations have predicted that, via the formation of NOx, HNO2 and HNO3 in the lower layers of the Martian atmosphere, the regolith might trap nitrite and nitrate anions, leading to the build-up of involatile nitrates. Integrated over 4.5 x 10(exp 9) yr, such a mechanism would contribute the equivalent of a layer of nitrates up to 0.3 cm thick distributed across the Martian surface. Features in thermal emission spectra of the surface of Mars have been interpreted tentatively as emanating from various anions (carbonates, bicarbonates, sulphates, etc.), and the presence of nitrates has also been addressed as a possibility. The identification of carbonates in SCN meteorites has allowed inferences to be drawn concerning the composition and evolution of the Martian atmosphere in terms of its carbon isotope systematics; if nitrites, nitrates, or other nitrogen-bearing salts could be isolated from SNC's, similar conclusions might be possible for an analogous nitrogen cycle. Nitrates are unstable, being readily soluble in water, and decomposed at temperatures between 50 C and 600 C, depending on composition. Any nitrates present in SNC's might be removed during ejection from the planet's surface, passage to Earth, or during the sample's terrestrial history, by weathering etc. The same might have been said for carbonates, but pockets of shock-produced glass (lithology C) from within the EET A79001 shergottite and bulk samples of other SNC contain this mineral, which did apparently survive. Nitrates occurring within the glassy melt pockets of lithology C in EET A79001 might likewise be protected. Lithology C glass was therefore selected for nitrate analysis, first by non-destructive infra red spectroscopy, and then by stepped combustion.

  2. A record of igneous evolution in Elysium, a major martian volcanic province

    PubMed Central

    Susko, David; Karunatillake, Suniti; Kodikara, Gayantha; Skok, J. R.; Wray, James; Heldmann, Jennifer; Cousin, Agnes; Judice, Taylor

    2017-01-01

    A major knowledge gap exists on how eruptive compositions of a single martian volcanic province change over time. Here we seek to fill that gap by assessing the compositional evolution of Elysium, a major martian volcanic province. A unique geochemical signature overlaps with the southeastern flows of this volcano, which provides the context for this study of variability of martian magmatism. The southeastern lava fields of Elysium Planitia show distinct chemistry in the shallow subsurface (down to several decimeters) relative to the rest of the martian mid-to-low latitudes (average crust) and flows in northwest Elysium. By impact crater counting chronology we estimated the age of the southeastern province to be 0.85 ± 0.08 Ga younger than the northwestern fields. This study of the geochemical and temporal differences between the NW and SE Elysium lava fields is the first to demonstrate compositional variation within a single volcanic province on Mars. We interpret the geochemical and temporal differences between the SE and NW lava fields to be consistent with primary magmatic processes, such as mantle heterogeneity or change in depth of melt formation within the martian mantle due to crustal loading. PMID:28233797

  3. Investigating the Martian Ionospheric Conductivity Using MAVEN Key Parameter Data

    NASA Astrophysics Data System (ADS)

    Aleryani, O.; Raftery, C. L.; Fillingim, M. O.; Fogle, A. L.; Dunn, P.; McFadden, J. P.; Connerney, J. E. P.; Mahaffy, P. R.; Ergun, R. E.; Andersson, L.

    2015-12-01

    Since the Viking orbiters and landers in 1976, the Martian atmospheric composition has scarcely been investigated. New data from the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, launched in 2013, allows for a thorough study of the electrically conductive nature of the Martian ionosphere. Determinations of the electrical conductivity will be made using in-situ atmospheric and ionospheric measurements, rather than scientific models for the first time. The objective of this project is to calculate the conductivity of the Martian atmosphere, whenever possible, throughout the trajectory of the MAVEN spacecraft. MAVEN instrumentation used includes the Neutral Gas and Ion Mass Spectrometer (NGIMS) for neutral species density, the Suprathermal and Thermal Ion Compositions (STATIC) for ion composition, temperature and density, the Magnetometer (MAG) for the magnetic field strength and the Langmuir Probe and Waves (LPW) for electron temperature and density. MAVEN key parameter data are used for these calculations. We compare our results with previous, model-based estimates of the conductivity. These results will allow us to quantify the flow of atmospheric electric currents which can be analyzed further for a deeper understanding of the Martian ionospheric electrodynamics, bringing us closer to understanding the mystery of the loss of the Martian atmosphere.

  4. Computer modeling of the mineralogy of the Martian surface, as modified by aqueous alteration

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Bourcier, W. L.; Gooding, J. L.

    1988-01-01

    Mineralogical constraints can be placed on the Martian surface by assuming chemical equilibria among the surface rocks, atmosphere and hypothesized percolating groundwater. A study was made of possible Martian surface mineralogy, as modified by the action of aqueous alteration, using the EQ3/6 computer codes. These codes calculate gas fugacities, aqueous speciation, ionic strength, pH, Eh and concentration and degree of mineral saturation for complex aqueous systems. Thus, these codes are also able to consider mineralogical solid solutions. These codes are able to predict the likely alteration phases which will occur as the result of weathering on the Martian surface. Knowledge of the stability conditions of these phases will then assist in the definition of the specifications for the sample canister of the proposed Martian sample return mission. The model and its results are discussed.

  5. Meteorite Dust and Health - A Novel Approach for Determining Bulk Compositions for Toxicological Assessments of Precious Materials

    NASA Technical Reports Server (NTRS)

    Vander Kaaden, K. E.; Harrington, A. D.; McCubbin, F. M.

    2017-01-01

    With the resurgence of human curiosity to explore planetary bodies beyond our own, comes the possibility of health risks associated with the materials covering the surface of these planetary bodies. In order to mitigate these health risks and prepare ourselves for the eventuality of sending humans to other planetary bodies, toxicological evaluations of extraterrestrial materials is imperative (Harrington et al. 2017). Given our close proximity, as well as our increased datasets from various missions (e.g., Apollo, Mars Exploration Rovers, Dawn, etc…), the three most likely candidates for initial human surface exploration are the Moon, Mars, and asteroid 4Vesta. Seven samples, including lunar mare basalt NWA 4734, lunar regolith breccia NWA 7611, martian basalt Tissint, martian regolith breccia NWA 7034, a vestian basalt Berthoud, a vestian regolith breccia NWA 2060, and a terrestrial mid-ocean ridge basalt, were examined for bulk chemistry, mineralogy, geochemical reactivity, and inflammatory potential. In this study, we have taken alliquots from these samples, both the fresh samples and those that underwent iron leaching (Tissint, NWA 7034, NWA 4734, MORB), and performed low pressure, high temperature melting experiments to determine the bulk composition of the materials that were previously examined.

  6. Microscopic Image of Martian Surface Material on a Silicone Substrate

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for larger version of Figure 1

    This image taken by the Optical Microscope on NASA's Phoenix Mars Lander shows soil sprinkled from the lander's Robot Arm scoop onto a silicone substrate. The substrate was then rotated in front of the microscope. This is the first sample collected and delivered for instrumental analysis onboard a planetary lander since NASA's Viking Mars missions of the 1970s. It is also the highest resolution image yet seen of Martian soil.

    The image is dominated by fine particles close to the resolution of the microscope. These particles have formed clumps, which may be a smaller scale version of what has been observed by Phoenix during digging of the surface material.

    The microscope took this image during Phoenix's Sol 17 (June 11), or the 17th Martian day after landing. The scale bar is 1 millimeter (0.04 inch).

    Zooming in on the Martian Soil

    In figure 1, three zoomed-in portions are shown with an image of Martian soil particles taken by the Optical Microscope on NASA's Phoenix Mars Lander.

    The left zoom box shows a composite particle. The top of the particle has a green tinge, possibly indicating olivine. The bottom of the particle has been reimaged at a different focus position in black and white (middle zoom box), showing that this is a clump of finer particles.

    The right zoom box shows a rounded, glassy particle, similar to those which have also been seen in an earlier sample of airfall dust collected on a surface exposed during landing.

    The shadows at the bottom of image are of the beams of the Atomic Force Microscope.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  7. Evaluating the Historical Importance of Impact Induced Hydrothermal Systems on Mars Using the Stable Isotopic Composition of Martian Water

    NASA Technical Reports Server (NTRS)

    Niles, Paul B.

    2010-01-01

    The importance of impact events during the early history of Mars is obvious through a simple examination of the character of the martian surface. This ancient, heavily cratered terrain has been shown to be associated with extensive phyllosilicate deposits. This geologic link could suggest that the extensive phyllosilicate-forming alteration may have occurred during early martian history through impact-induced hydrothermal alteration. However, examination of the oxygen isotopic composition of water on Mars suggests that the extensive phyllosilicate deposits were formed primarily through low temperature (<30 C) interactions, and that high temperature weathering in impact-induced hydrothermal systems have not been a dominant process on Mars. The average oxygen isotopic composition of water on Earth is dictated by the nature of water-rock interactions. If these interactions occur at higher temperatures then the water will contain a higher proportion of 18O, while lower temperature interactions will result in water with a lower proportion of 18O. Water on Earth today contains a higher proportion of 18O because of plate tectonics and hydrothermal interaction at mid-ocean ridges. The oxygen isotopic composition of water on early earth, however, may have been quite different, containing a smaller proportion of 18O suggesting much less hydrothermal interaction. Because there are not yet any direct measurements of the oxygen isotopic composition of water on Mars, it needs to be inferred through examination of carbonates preserved in martian meteorites and the isotopic composition of atmospheric CO2. This can be done because the oxygen incorporated into carbonates and CO2 is easily exchanged with liquid water if it is present. Independently, both measurements provide an estimate for the (Sigma)18O of water on Mars to be near -16%. This composition is consistent with low temperature weathering of the silicate crust, and indicates that impact hydrothermal systems did not play an important role in the early alteration of the planet. However, our understanding of impact-induced hydrothermal systems remains unclear. If most of the water mobilized by an impact event remained at relatively low temperatures (<30deg), low-temperature interactions could predominate in these environments. These conditions would be consistent with the isotopic constraints suggested in this study.

  8. Chemical modeling constraints on Martian surface mineralogies formed in an early, warm, wet climate, and speculations on the occurrence of phosphate minerals in the Martian regolith

    NASA Technical Reports Server (NTRS)

    Plumlee, Geoffrey S.; Ridley, W. Ian; Debraal, Jeffrey D.

    1992-01-01

    This is one in a series of reports summarizing our chemical modeling studies of water-rock-gas interactions at the martian surface through time. The purpose of these studies is to place constraints on possible mineralogies formed at the martian surface and to model the geochemical implications of martian surficial processes proposed by previous researchers. Plumlee and Ridley summarize geochemical processes that may have occurred as a result of inferred volcano- and impact-driven hydrothermal activity on Mars. DeBraal et al. model the geochemical aspects of water-rock interactions and water evaporation near 0 C, as a prelude to future calculations that will model sub-0 C brine-rock-clathrate interactions under the current martian climate. In this report, we discuss reaction path calculations that model chemical processes that may have occurred at the martian surface in a postulated early, warm, wet climate. We assume a temperature of 25 C in all our calculations. Processes we model here include (1) the reaction of rainwater under various ambient CO2 and O2 pressures with basaltic rocks at the martian surface, (2) the formation of acid rain by volcanic gases such as HCl and SO2, (3) the reactions of acid rain with basaltic surficial materials, and (4) evaporation of waters resulting from rainwater-basalt interactions.

  9. Experimental facility for testing nuclear instruments for planetary landing missions

    NASA Astrophysics Data System (ADS)

    Golovin, Dmitry; Mitrofanov, Igor; Litvak, Maxim; Kozyrev, Alexander; Sanin, Anton; Vostrukhin, Andrey

    2017-04-01

    The experimental facility for testing and calibration of nuclear planetology instruments has been built in the frame of JINR and Space Research Institute (Moscow) cooperation. The Martian soil model from silicate glass with dimensions 3.82 x 3.21 m and total weight near 30 tons has been assembled in the facility. The glass material was chosen for imitation of dry Martian regolith. The heterogeneous model has been proposed and developed to achieve the most possible similarity with Martian soil in part of the average elemental composition by adding layers of necessary materials, such as iron, aluminum, and chlorine. The presence of subsurface water ice is simulated by adding layers of polyethylene at different depths inside glass model assembly. Neutron generator was used as a neutron source to induce characteristic gamma rays for testing active neutron and gamma spectrometers to define elements composition of the model. The instrumentation was able to detect gamma lines attributed to H, O, Na, Mg, Al, Si, Cl, K, Ca and Fe. The identified elements compose up to 95 wt % of total mass of the planetary soil model. This results will be used for designing scientific instruments to performing experiments of active neutron and gamma ray spectroscopy on the surface of the planets during Russian and international missions Luna-Glob, Luna-Resource and ExoMars-2020.

  10. Compositions of Magmatic and Impact Melt Sulfides in Tissint And EETA79001: Precursors of Immiscible Sulfide Melt Blebs in Shergottite Impact Melts

    NASA Technical Reports Server (NTRS)

    Ross, D. K.; Rao, M. N.; Nyquist, L.; Agee, C.; Sutton, S.

    2013-01-01

    Immiscible sulfide melt spherules are locally very abundant in shergottite impact melts. These melts can also contain samples of Martian atmospheric gases [1], and cosmogenic nuclides [2] that are present in impact melt, but not in the host shergottite, indicating some components in the melt resided at the Martian surface. These observations show that some regolith components are, at least locally, present in the impact melts. This view also suggests that one source of the over-abundant sulfur in these impact melts could be sulfates that are major constituents of Martian regolith, and that the sulfates were reduced during shock heating to sulfide. An alternative view is that sulfide spherules in impact melts are produced solely by melting the crystalline sulfide minerals (dominantly pyrrhotite, Fe(1-x)S) that are present in shergottites [3]. In this abstract we report new analyses of the compositions of sulfide immiscible melt spherules and pyrrhotite in the shergottites Tissint, and EETA79001,507, and we use these data to investigate the possible origins of the immiscible sulfide melt spherules. In particular, we use the metal/S ratios determined in these blebs as potential diagnostic criteria for tracking the source material from which the numerous sulfide blebs were generated by shock in these melts.

  11. Is EETA79001 Lithology B A True Melt Composition?

    NASA Technical Reports Server (NTRS)

    Arauza, S. J.; Jones, John H.; Mittlefehldt, D. W.; Le, L.

    2010-01-01

    EETA79001 is a member of the SNC (shergottite, nakhlite, chassignite) group of Martian meteorites. Most SNC meteorites are cumulates or partial cumulates [1] inhibiting calculation of parent magma compositions; only two (QUE94201 and Y- 980459) have been previously identified as true melt compositions. The goal of this study is to test whether EETA79001-B may also represent an equilibrium melt composition, which could potentially expand the current understanding of martian petrology.

  12. Miniaturized Laser-Induced Breakdown Spectroscopy for the in-situ analysis of the Martian surface: Calibration and quantification

    NASA Astrophysics Data System (ADS)

    Rauschenbach, I.; Jessberger, E. K.; Pavlov, S. G.; Hübers, H.-W.

    2010-08-01

    We report on our ongoing studies to develop Laser-Induced Breakdown Spectroscopy (LIBS) for planetary surface missions to Mars and other planets and moons, like Jupiter's moon Europa or the Earth's moon. Since instruments for space missions are severely mass restricted, we are developing a light-weight miniaturized close-up LIBS instrument to be installed on a lander or rover for the in-situ geochemical analysis of planetary surface rocks and coarse fines. The total mass of the instrument will be ≈ 1 kg in flight configuration. Here we report on a systematic performance study of a LIBS instrument equipped with a prototype laser of 216 g total mass and an energy of 1.8 mJ. The LIBS measurements with the prototype laser and the comparative measurements with a regular 40 mJ laboratory laser were both performed under Martian atmospheric conditions. We calibrated 14 major and minor elements by analyzing 18 natural samples of certified composition. The calibration curves define the limits of detection that are > 5 ppm for the lab laser and > 400 ppm for the prototype laser, reflecting the different analyzed sample masses of ≈ 20 µg and ≈ 2 µg, respectively. To test the accuracy we compared the LIBS compositions, determined with both lasers, of Mars analogue rocks with certified or independently measured compositions and found agreements typically within 10-20%. In addition we verified that dust coverage is effectively removed from rock surfaces by the laser blast. Our study clearly demonstrates that a close-up LIBS instrument (spot size ≈ 50 µm) will decisively enhance the scientific output of planetary lander missions by providing a very large number of microscopic elemental analyses.

  13. The mineralogic evolution of the Martian surface through time: Implications from chemical reaction path modeling studies

    NASA Technical Reports Server (NTRS)

    Plumlee, G. S.; Ridley, W. I.; Debraal, J. D.; Reed, M. H.

    1993-01-01

    Chemical reaction path calculations were used to model the minerals that might have formed at or near the Martian surface as a result of volcano or meteorite impact driven hydrothermal systems; weathering at the Martian surface during an early warm, wet climate; and near-zero or sub-zero C brine-regolith reactions in the current cold climate. Although the chemical reaction path calculations carried out do not define the exact mineralogical evolution of the Martian surface over time, they do place valuable geochemical constraints on the types of minerals that formed from an aqueous phase under various surficial and geochemically complex conditions.

  14. Early stages in the evolution of the atmosphere and climate on the Earth-group planets

    NASA Technical Reports Server (NTRS)

    Moroz, V. I.; Mukhin, L. M.

    1977-01-01

    The early evolution of the atmospheres and climate of the Earth, Mars and Venus is discussed, based on a concept of common initial conditions and main processes (besides known differences in chemical composition and outgassing rate). It is concluded that: (1) liquid water appeared on the surface of the earth in the first few hundred million years; the average surface temperature was near the melting point for about the first two eons; CO2 was the main component of the atmosphere in the first 100-500 million years; (2) much more temperate outgassing and low solar heating led to the much later appearance of liquid water on the Martian surface, only one to two billion years ago; the Martian era of rivers, relatively dense atmosphere and warm climate ended as a result of irreversible chemical bonding of CO2 by Urey equilibrium processes; (3) a great lack of water in the primordial material of Venus is proposed; liquid water never was present on the surface of the planet, and there was practically no chemical bonding of CO2; the surface temperature was over 600 K four billion years ago.

  15. First X-Ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest Aeolian Bedform at Gale Crater

    NASA Technical Reports Server (NTRS)

    Bish, D. L.; Blake, D. F.; Vaniman, D. T.; Chipera, S. J.; Sarrazin, P.; Morris, R. V.; Ming, D. W.; Treiman, A. H.; Downs, R. T.; Morrison, S. M.; hide

    2013-01-01

    Numerous orbital and landed observations of the martian surface suggest a reasonably uniform martian soil composition, likely as a result of global aeolian mixing [1, 2]. Chemical data for martian soils are abundant [e.g., 2, 3], and phase information has been provided by lander thermal emission and Moessbauer spectroscopic measurements [3, 4, 5, 6]. However, until now no X-ray diffraction (XRD) data were available for martian soil nor has XRD ever been used on another body apart from Earth. XRD is generally considered the most definitive method for determining the crystalline phases in solid samples, and it is the method of choice for determining mineralogy. CheMin s first XRD analysis on Mars coincided with the 100th anniversary of the discovery of X-ray diffraction by von Laue. Curiosity delivered scooped samples of loose, unconsolidated material ("soil") acquired from an aeolian bedform at the Rocknest locality to instruments in the body of the rover (the laboratory). Imaging shows that the soil has a range of particle sizes, of 1-2 mm and smaller, presumably representing contributions from global, regional, and local sources.

  16. On the Impact Origin of Phobos and Deimos. IV. Volatile Depletion

    NASA Astrophysics Data System (ADS)

    Hyodo, Ryuki; Genda, Hidenori; Charnoz, Sébastien; Pignatale, Francesco C. F.; Rosenblatt, Pascal

    2018-06-01

    Recent works have shown that the Martian moons Phobos and Deimos may have accreted within a giant impact-generated disk whose composition is about an equal mixture of Martian material and impactor material. Just after the giant impact, the Martian surface heated up to ∼3000–6000 K and the building blocks of moons, including volatile-rich vapor, were heated up to ∼2000 K. In this paper, we investigate the volatile loss from the building blocks of Phobos and Deimos by hydrodynamic escape of vapor and radiation pressure on condensed particles. We show that a non-negligible amount of volatiles (>10% of the vapor with temperature >1000 K via hydrodynamic escape, and moderately volatile dusts that condense at ∼700–2000 K via radiation pressure) could be removed just after the impact during their first single orbit from their pericenters to apocenters. Our results indicate that bulk Phobos and Deimos are depleted in volatile elements. Together with future explorations such as the Japan Aerospace eXploration Agency’s Martian Moons eXploration mission, our results could be used to constrain the origin of Phobos and Deimos.

  17. GCR and SPE Radiation Effects in Materials

    NASA Technical Reports Server (NTRS)

    Waller, Jess; Rojdev, Kristina; Nichols, Charles

    2016-01-01

    This Year 3 project provides risk reduction data to assess galactic cosmic ray (GCR) and solar particle event (SPE) space radiation damage in materials used in manned low-earth orbit, lunar, interplanetary, and Martian surface missions. Long duration (up to 50 years) space radiation damage is being quantified for materials used in inflatable structures (1st priority), and space suit and habitable composite materials (2nd priority). The data collected has relevance for nonmetallic materials (polymers and composites) used in NASA missions where long duration reliability is needed in continuous or intermittent space radiation fluxes.

  18. Review of dust transport and mitigation technologies in lunar and Martian atmospheres

    NASA Astrophysics Data System (ADS)

    Afshar-Mohajer, Nima; Wu, Chang-Yu; Curtis, Jennifer Sinclair; Gaier, James R.

    2015-09-01

    Dust resuspension and deposition is a ubiquitous phenomenon in all lunar and Martian missions. The near-term plans to return to the Moon as a stepping stone to further exploration of Mars and beyond bring scientists' attention to development and evaluation of lunar and Martian dust mitigation technologies. In this paper, different lunar and Martian dust transport mechanisms are presented, followed by a review of previously developed dust mitigation technologies including fluidal, mechanical, electrical and passive self-cleaning methods for lunar/Martian installed surfaces along with filtration for dust control inside cabins. Key factors in choosing the most effective dust mitigation technology are recognized to be the dust transport mechanism, energy consumption, environment, type of surface materials, area of the surface and surface functionality. While electrical methods operating at higher voltages are identified to be suitable for small but light sensitive surfaces, pre-treatment of the surface is effective for cleaning thermal control surfaces, and mechanical methods are appropriate for surfaces with no concerns of light blockage, surface abrasion and 100% cleaning efficiency. Findings from this paper can help choose proper surface protection/cleaning for future space explorations. Hybrid techniques combining the advantages of different methods are recommended.

  19. Survival of endospores of Bacillus subtilis on spacecraft surfaces under simulated martian environments: implications for the forward contamination of Mars

    NASA Technical Reports Server (NTRS)

    Schuerger, Andrew C.; Mancinelli, Rocco L.; Kern, Roger G.; Rothschild, Lynn J.; McKay, Christopher P.

    2003-01-01

    Experiments were conducted in a Mars simulation chamber (MSC) to characterize the survival of endospores of Bacillus subtilis under high UV irradiation and simulated martian conditions. The MSC was used to create Mars surface environments in which pressure (8.5 mb), temperature (-80, -40, -10, or +23 degrees C), gas composition (Earth-normal N2/O2 mix, pure N2, pure CO2, or a Mars gas mix), and UV-VIS-NIR fluence rates (200-1200 nm) were maintained within tight limits. The Mars gas mix was composed of CO2 (95.3%), N2 (2.7%), Ar (1.7%), O2 (0.2%), and water vapor (0.03%). Experiments were conducted to measure the effects of pressure, gas composition, and temperature alone or in combination with Mars-normal UV-VIS-NIR light environments. Endospores of B. subtilis, were deposited on aluminum coupons as monolayers in which the average density applied to coupons was 2.47 x 10(6) bacteria per sample. Populations of B. subtilis placed on aluminum coupons and subjected to an Earth-normal temperature (23 degrees C), pressure (1013 mb), and gas mix (normal N2/O2 ratio) but illuminated with a Mars-normal UV-VIS-NIR spectrum were reduced by over 99.9% after 30 sec exposure to Mars-normal UV fluence rates. However, it required at least 15 min of Mars-normal UV exposure to reduce bacterial populations on aluminum coupons to non-recoverable levels. These results were duplicated when bacteria were exposed to Mars-normal environments of temperature (-10 degrees C), pressure (8.5 mb), gas composition (pure CO2), and UV fluence rates. In other experiments, results indicated that the gas composition of the atmosphere and the temperature of the bacterial monolayers at the time of Mars UV exposure had no effects on the survival of bacterial endospores. But Mars-normal pressures (8.5 mb) were found to reduce survival by approximately 20-35% compared to Earth-normal pressures (1013 mb). The primary implications of these results are (a) that greater than 99.9% of bacterial populations on sun-exposed surfaces of spacecraft are likely to be inactivated within a few tens of seconds to a few minutes on the surface of Mars, and (b) that within a single Mars day under clear-sky conditions bacterial populations on sun-exposed surfaces of spacecraft will be sterilized. Furthermore, these results suggest that the high UV fluence rates on the martian surface can be an important resource in minimizing the forward contamination of Mars. c2003 Elsevier Inc. All rights reserved.

  20. From Aeolis Palus to the Bagnold Dunes field: Overview of martian soil analyses performed by ChemCam in Gale Crater

    NASA Astrophysics Data System (ADS)

    Cousin, A.; Meslin, P. Y.; Dehouck, E.; David, G.; Rapin, W.; Schröder, S.; Forni, O.; Gasnault, O.; Williams, A. J.; Lasue, J.; Stein, N.; Ehlmann, B. L.; Payre, V.; Anderson, R. B.; Blaney, D. L.; Bridges, N. T.; Clark, B. C.; Frydenvang, J.; Gasda, P. J.; Johnson, J. R.; Lanza, N.; l'Haridon, J.; Mangold, N.; Maurice, S.; Newsom, H. E.; Ollila, A.; Pinet, P. C.; Sautter, V.; Thomas, N. H.; Wiens, R. C.

    2017-12-01

    In situ analysis of the chemical and mineralogical composition of the martian soil, and the determination of its volatile inventory, can provide important constraints on the bulk composition of the martian crust, on its igneous diversity, but also on the physical and chemical weathering processes that have altered its primary igneous constituents. Transport processes that have occurred over long geological time scales, however, make this analysis quite complex, as constituents from different unknown sources are mixed together, and may have been sorted according to grain size or density. A meteoritic contribution is also present. Disentangling the influence of each of these processes requires the use of different analytical techniques, at different spatial scales, and at different locations over the planet. We will present an overview of the soil analyses obtained over the past 5 years by the ChemCam instrument on board MSL/Curiosity. Their specificity lies in their small spatial scale ( 300 μm), close to the average grains' size. At this scale, chemical trends are observed, resulting from the mixing of different end-members with different grain sizes: coarse felsic grains of likely local origin, fine grains with a basaltic composition close to soil compositions observed at other landing sites, but distinct from local rocks, and a fine-grained, Si-poor, volatile-rich component probably associated with the XRD-amorphous component detected by the CheMin instrument. The thin ablation depth associated with each laser shot ( 1 μm) enables us to analyse the surface of the grains, which is characterized by a strong, but variable hydrogen signal. These analyses provide constraints on the composition of a possible alteration rind or coating present at their surface. An extensive, multi-instrument investigation of active dunes (barchan and linear dunes) has also been carried out, revealing slight chemical differences with surrounding soils, and a more homogeneous composition, although chemical variations as a function of grain size are observed, with coarser grains enriched in mafic minerals. These results illustrate the still ongoing influence of aeolian transport on the physical sorting of loose, unconsolidated sediments. These results also provide ground truth for orbital IR observations of aeolian bedforms.

  1. Hydrogen Isotopic Systematics of Nominally Anhydrous Phases in Martian Meteorites

    NASA Astrophysics Data System (ADS)

    Tucker, Kera

    Hydrogen isotope compositions of the martian atmosphere and crustal materials can provide unique insights into the hydrological and geological evolution of Mars. While the present-day deuterium-to-hydrogen ratio (D/H) of the Mars atmosphere is well constrained (~6 times that of terrestrial ocean water), that of its deep silicate interior (specifically, the mantle) is less so. In fact, the hydrogen isotope composition of the primordial martian mantle is of great interest since it has implications for the origin and abundance of water on that planet. Martian meteorites could provide key constraints in this regard, since they crystallized from melts originating from the martian mantle and contain phases that potentially record the evolution of the H 2O content and isotopic composition of the interior of the planet over time. Examined here are the hydrogen isotopic compositions of Nominally Anhydrous Phases (NAPs) in eight martian meteorites (five shergottites and three nakhlites) using Secondary Ion Mass Spectrometry (SIMS). This study presents a total of 113 individual analyses of H2O contents and hydrogen isotopic compositions of NAPs in the shergottites Zagami, Los Angeles, QUE 94201, SaU 005, and Tissint, and the nakhlites Nakhla, Lafayette, and Yamato 000593. The hydrogen isotopic variation between and within meteorites may be due to one or more processes including: interaction with the martian atmosphere, magmatic degassing, subsolidus alteration (including shock), and/or terrestrial contamination. Taking into consideration the effects of these processes, the hydrogen isotope composition of the martian mantle may be similar to that of the Earth. Additionally, this study calculated upper limits on the H2O contents of the shergottite and nakhlite parent melts based on the measured minimum H2O abundances in their maskelynites and pyroxenes, respectively. These calculations, along with some petrogenetic assumptions based on previous studies, were subsequently used to infer the H2O contents of the mantle source reservoirs of the depleted shergottites (200-700 ppm) and the nakhlites (10-100 ppm). This suggests that mantle source of the nakhlites is systematically drier than that of the depleted shergottites, and the upper mantle of Mars may have preserved significant heterogeneity in its H2O content. Additionally, this range of H2O contents is not dissimilar to the range observed for the Earth's upper mantle.

  2. Opportunity Examining Composition of 'Cook Islands' Outcrop

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This image taken by the front hazard-avoidance camera on NASA's Mars Exploration Rover Opportunity shows the rover's arm extended to examine the composition of a rock using the alpha particle X-ray spectrometer.

    Opportunity took this image during the 1,826th Martian day, or sol, of the rover's Mars-surface mission (March 13, 2009).

    The spectrometer is at a target called 'Penrhyn,' on a rock called 'Cook Islands.' As Opportunity makes its way on a long journey from Victoria Crater toward Endeavour Crater, the team is stopping the drive occasionally on the route to check whether the rover finds a trend in the composition of rock exposures.

  3. The Preliminary Design of a Universal Martian Lander

    NASA Technical Reports Server (NTRS)

    Norman, Timothy L.; Gaskin, David; Adkins, Sean; MacDonnell, David; Ross, Enoch; Hashimoto, Kouichi; Miller, Loran; Sarick, John; Hicks, Jonathan; Parlock, Andrew; hide

    1993-01-01

    As part of the NASA/USRA program, nineteen West Virginia University students conducted a preliminary design of a manned Universal Martian Lander (UML). The WVU design considers descent to Mars from polar orbit, a six month surface stay, and ascent for rendezvous. The design begins with an unmanned UML landing at Elysium Mons followed by the manned UML landing nearby. During the six month surface stay, the eight modules are assembled to form a Martian base where scientific experiments are performed. The mission also incorporates hydroponic plant growth into a Controlled Ecological Life Support System (CELSS) for water recycling, food production, and to counteract psycho-logical effects of living on Mars. In situ fuel production for the Martian Ascent and Rendezvous Vehicle (MARV) is produced From gases in the Martian atmosphere. Following surface operations, the eight member crew uses the MARV to return to the Martian Transfer Vehicle (MTV) for the journey home to Earth.

  4. Ferrate (IV) as a Possible Oxidant on the Martian Surface

    NASA Astrophysics Data System (ADS)

    Tsapin, Alexandre; Goldfeld, M. G.; McDonald, G. D.; Nealson, K. H.; Mohnke, J.; Moskovitz, B.; Solheid, P.; Kemner, K. H.; Orlandini, K.

    Viking experiments showed that Martian soil has a very strong oxidant, which could be responsible for the results of experiments performed on Viking landers. These experiments were designed specifically to detect life on Mars. The nature of that oxidant was not determined during Viking mission. Later several groups tried to reconstruct Viking experiments and find out the nature of Martian oxidant. None of these attempts were completely successful. The general perception was that there are several chemically different oxidants on Martian surface. In this study we suggested that potassium ferrate K_2FeO_4 can be Martian oxidant responsible at least partially for the results of experiments on Viking landers. We characterized liquid and powder preparation of Fe (VI) with EPR, optical spectroscopy, Mossbauer spectroscopy, and by Fe-XANES. All properties of our preparations of (FeVI) are consistent with the proposal role of that compound as a strong oxidant on Martian surface.

  5. A New Spinel-Olivine Oxybarometer: Near-Liquidus Partitioning of V between Olivine-Melt, Spinel-Melt, and Spinel-Olivine in Martian Basalt Composition Y980459 as a Function of Oxygen Fugacity

    NASA Technical Reports Server (NTRS)

    Papike, J. J.; Le, L.; Burger, P. V.; Shearer, C. K.; Bell, A. S.; Jones, J.

    2013-01-01

    Our research on valence state partitioning began in 2005 with a review of Cr, Fe, Ti, and V partitioning among crystallographic sites in olivine, pyroxene, and spinel [1]. That paper was followed by several on QUE94201 melt composition and specifically on Cr, V, and Eu partitioning between pyroxene and melt [2-5]. This paper represents the continuation of our examination of the partitioning of multivalent V between olivine, spinel, and melt in martian olivine-phyric basalts of Y980459 composition [6, 7]. Here we introduce a new, potentially powerful oxybarometer, V partitioning between spinel and olivine, which can be used when no melt is preserved in the meteorite. The bulk composition of QUE94201 was ideal for our study of martian pyroxene-phyric basalts and specifically the partitioning between pyroxene-melt for Cr, V, and Eu. Likewise, bulk composition Y980459 is ideal for the study of martian olivine-phyric basalts and specifically for olivine-melt, spinel-melt, and spinel-olivine partitioning of V as a function of oxygen fugacity.

  6. Mars

    NASA Technical Reports Server (NTRS)

    Kieffer, Hugh H. (Editor); Jakosky, Bruce M. (Editor); Snyder, Conway W. (Editor); Matthews, Mildred S. (Editor)

    1992-01-01

    The present volume on Mars discusses visual, photographic and polarimetric telescopic observations, spacecraft exploration of Mars, the origin and thermal evolution of Mars, and the bulk composition, mineralogy, and internal structure of the planet. Attention is given to Martian gravity and topography, stress and tectonics on Mars, long-term orbital and spin dynamics of Mars, and Martian geodesy and cartography. Topics addressed include the physical volcanology of Mars, the canyon system on planet, Martian channels and valley networks, and ice in the Martian regolith. Also discussed are Martian aeolian processes, sediments, and features, polar deposits of Mars, dynamics of the Martian atmosphere, and the seasonal behavior of water on Mars.

  7. Origin of the Martian Moons and Their Volatile Abundances

    NASA Astrophysics Data System (ADS)

    Nakajima, M.; Canup, R. M.

    2017-12-01

    The origin of the Martian moons, Phobos and Deimos, has been actively debated. These moons were initially thought to have been gravitationally captured asteroids given that their spectra appeared to be similar to those of D-type asteroids. However, intact capture is difficult to reconcile with their nearly circular, co-planar orbits. Their orbits may be better explained by recent dynamical studies that suggest that the moons may have instead formed from a disk generated by a large impact, as was likely the case for Earth's Moon. Phobos and Deimos' bulk volatile contents, which are currently very uncertain, would also provide key constraints on their origin. If the moons were captured, their bulk compositions may be similar to those of asteroids, and their sub-surfaces could be volatile-rich. We are here exploring the implications of the alternative impact origin on the moon volatile abundances. We perform numerical simulations to estimate the extent of volatile loss from the moon-forming ejecta produced by a large impact with Mars. We find that hydrogen and water vapor escape hydrodynamically from the disk, leading to moons with dry, hydrogen-depleted bulk compositions. It is thus possible that the moons' mode of origin may be determined by knowledge of their volatile contents, because detection of a substantial (non-exogenically delivered) water content would argue strongly against formation by impact. JAXA's Martian Moons eXploration Mission (MMX) will conduct detailed remote sensing of the moons, including a gamma ray and neutron spectrometer that will for the first time probe their sub-surface elemental compositions, and will return samples from Phobos for laboratory analysis. This should allow for characterization of the moon volatile abundances. We also discuss that the inferred high porosities of these moons could be explained if they are rubble piles formed during accretion from impact-produced ejecta.

  8. A model of Martian surface chemistry

    NASA Technical Reports Server (NTRS)

    Oyama, V. I.; Berdahl, B. J.

    1979-01-01

    Alkaline earth and alkali metal superoxides and peroxides, gamma-Fe2O3 and carbon suboxide polymer, are proposed to be constituents of the Martian surface material. These reactive substances explain the water modified reactions and thermal behaviors of the Martian samples demonstrated by all of the Viking Biology Experiments. It is also proposed that the syntheses of these substances result mainly from electrical discharges between wind-mobilized particles at Martian pressures; plasmas are initiated and maintained by these discharges. Active species in the plasma either combine to form or react with inorganic surfaces to create the reactive constituents.

  9. Simulation and Comparison of Martian Surface Ionization Radiation

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Zeitlin, Cary; Hassler, Donald M.; Cucinotta, Francis A.

    2013-01-01

    The spectrum of energetic particle radiation and corresponding doses at the surface of Mars is being characterized by the Radiation Assessment Detector (RAD), one of ten science instruments on the Mars Science Laboratory (MSL) Curiosity Rover. The time series of dose rate for the first 300 Sols after landing on Mars on August 6, 2012 is presented here. For the comparison to RAD measurements of dose rate, Martian surface ionization radiation is simulated by utilizing observed space quantities. The GCR primary radiation spectrum is calculated by using the Badhwar-O'Neill 2011 (BO11) galactic cosmic ray (GCR) model, which has been developed by utilizing all balloon and satellite GCR measurements since 1955 and the newer 1997-2012 Advanced Composition Explorer (ACE) measurements. In the BO11 model, solar modulation of the GCR primary radiation spectrum is described in terms of the international smoothed sunspot number and a time delay function. For the transport of the impingent GCR primary radiation through Mars atmosphere, a vertical distribution of atmospheric thickness at each elevation is calculated using the vertical profiles of atmospheric temperature and pressure made by Mars Global Surveyor measurements. At Gale Crater in the southern hemisphere, the seasonal variation of atmospheric thickness is accounted for the daily atmospheric pressure measurements of the MSL Rover Environmental Monitoring Station (REMS) by using low- and high-density models for cool- and warm-season, respectively. The spherically distributed atmospheric distance is traced along the slant path, and the resultant directional shielding by Martian atmosphere is coupled with Curiosity vehicle for dose estimates. We present predictions of dose rate and comparison to the RAD measurements. The simulation agrees to within +/- 20% with the RAD measurements showing clearly the variation of dose rate by heliospheric conditions, and presenting the sensitivity of dose rate by atmospheric pressure, which has been found from the RAD experiments and driven by thermal tides on Martian surface.

  10. A new Mars radiation environment model with visualization

    NASA Technical Reports Server (NTRS)

    De Angelis, G.; Clowdsley, M. S.; Singleterry, R. C.; Wilson, J. W.

    2004-01-01

    A new model for the radiation environment to be found on the planet Mars due to Galactic Cosmic Rays (OCR) has been developed at the NASA Langley Research Center. Solar modulated primary particles rescaled for Mars conditions are transported through the Martian atmosphere, with temporal properties modeled with variable timescales, down to the surface, with altitude and backscattering patterns taken into account. The Martian atmosphere has been modeled by using the Mars Global Reference Atmospheric Model--version 2001 (Mars-GRAM 2001). The altitude to compute the atmospheric thickness profile has been determined by using a model for the topography based on the data provided by the Mars Orbiter Laser Altimeter (MOLA) instrument on board the Mars Global Surveyor (MGS) spacecraft. The Mars surface composition has been modeled based on averages over the measurements obtained from orbiting spacecraft and at various landing sites, taking into account the possible volatile inventory (e.g., CO2 ice, H2O ice) along with its time variation throughout the Martian year. Particle transport has been performed with the HZETRN heavy ion code. The Mars Radiation Environment Model has been made available worldwide through the Space Ionizing Radiation Effects and Shielding Tools (SIREST) website, a project of NASA Langley Research Center. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  11. Two Sizes of Ripples on Surface of Martian Sand Dune

    NASA Image and Video Library

    2016-06-30

    Two sizes of wind-sculpted ripples are evident in this view of the top surface of a Martian sand dune. Sand dunes and the smaller type of ripples also exist on Earth. The larger ripples -- roughly 10 feet (3 meters) apart -- are a type not seen on Earth nor previously recognized as a distinct type on Mars. The Mast Camera (Mastcam) on NASA's Curiosity Mars rover took the multiple component images of this scene on Dec. 13, 2015, during the 1,192nd Martian day, or sol, of the rover's work on Mars. That month, Curiosity was conducting the first close-up investigation ever made of active sand dunes anywhere other than Earth. The larger ripples have distinctive sinuous crest lines, compared to the smaller ripples. The location is part of "Namib Dune" in the Bagnold Dune Field, which forms a dark band along the northwestern flank of Mount Sharp. The component images were taken in early morning at this site, with the camera looking in the direction of the sun. This mosaic combining the images has been processed to brighten it and make the ripples more visible. The sand is very dark, both from the morning shadows and from the intrinsic darkness of the minerals that dominate its composition. http://photojournal.jpl.nasa.gov/catalog/PIA20755

  12. Description of Light Ion Production Cross Sections and Fluxes on the Mars Surface using the QMSFRG Model

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Kim, Myung-Hee; Schneider, Irene; Hassler, Donald M.

    2006-01-01

    The atmosphere of Mars significantly attenuates the heavy ion component of the primary galactic cosmic rays (GCR), however increases the fluence of secondary light ions (neutrons, and hydrogen and helium isotopes) because of particle production processes. We describe results of the quantum multiple scattering fragmentation (QMSFRG) model for the production of light nuclei through the distinct mechanisms of nuclear abrasion and ablation, coalescence, and cluster knockout. The QMSFRG model is shown to be in excellent agreement with available experimental data for nuclear fragmentation cross sections. We use the QMSFRG model and the space radiation transport code, HZETRN to make predictions of the light particle environment on the Martian surface at solar minimum and maximum. The radiation assessment detector (RAD) experiment will be launched in 2009 as part of the Mars Science Laboratory (MSL). We make predictions of the expected results for time dependent count-rates to be observed by RAD experiment. Finally, we consider sensitivity assessments of the impact of the Martian atmospheric composition on particle fluxes at the surface.

  13. Martian neutron leakage spectra

    NASA Astrophysics Data System (ADS)

    Drake, D. M.; Feldman, W. C.; Jakosky, B. M.

    1988-06-01

    A high-energy nucleon-meson transport code is used to calculate energy spectra of Martian leakage neutrons. Four calculations are used to simulate a uniform surface layer containing various amounts of water, different burial depths of a 50 percent water layer underneath a 1 percent water layer, changing atmospheric pressure, and a thick carbon dioxide ice sheet overlying a "dirty" water ice sheet. Calculated spectra at energies less than about 1000 eV were fitted by a superposition of thermal and epithermal functions having four free parameters, two of which (thermal and epithermal amplitudes) were found to vary systematically and to specify uniquely the configuration in each of the series. Parameter variations depend on the composition of the assumed surface layers through the average atomic mass and the macroscopic scattering and absorption cross sections. It is concluded that measurements of leakage neutron spectra should allow determination of the hydrogen content of surface layers buried to depths up to about 100 g/sq. cm and determination of the thickness of a polar dry ice cap up to a thickness of about 250 g/sq. cm.

  14. APXS-derived chemistry of the Bagnold dune sands: Comparisons with Gale Crater soils and the global Martian average

    NASA Astrophysics Data System (ADS)

    O'Connell-Cooper, C. D.; Spray, J. G.; Thompson, L. M.; Gellert, R.; Berger, J. A.; Boyd, N. I.; Desouza, E. D.; Perrett, G. M.; Schmidt, M.; VanBommel, S. J.

    2017-12-01

    We present Alpha-Particle X-ray Spectrometer (APXS) data for the active Bagnold dune field within the Gale impact crater (Mars Science Laboratory (MSL) mission). We derive an APXS-based average basaltic soil (ABS) composition for Mars based on past and recent data from the MSL and Mars Exploration Rover (MER) missions. This represents an update to the Taylor and McLennan (2009) average Martian soil and facilitates comparison across Martian data sets. The active Bagnold dune field is compositionally distinct from the ABS, with elevated Mg, Ni, and Fe, suggesting mafic mineral enrichment and uniformly low levels of S, Cl, and Zn, indicating only a minimal dust component. A relationship between decreasing grain size and increasing felsic content is revealed. The Bagnold sands possess the lowest S/Cl of all Martian unconsolidated materials. Gale soils exhibit relatively uniform major element compositions, similar to Meridiani Planum and Gusev Crater basaltic soils (MER missions). However, they show minor enrichments in K, Cr, Mn, and Fe, which may signify a local contribution. The lithified eolian Stimson Formation within the Gale impact crater is compositionally similar to the ABS and Bagnold sands, which provide a modern analogue for these ancient eolian deposits. Compilation of APXS-derived soil data reveals a generally homogenous global composition for Martian soils but one that can be locally modified due to past or extant geologic processes that are limited in both space and time.

  15. Liquid Water in the Extremely Shallow Martian Subsurface

    NASA Technical Reports Server (NTRS)

    Pavlov, A.; Shivak, J. N.

    2012-01-01

    Availability of liquid water is one of the major constraints for the potential Martian biosphere. Although liquid water is unstable on the surface of Mars due to low atmospheric pressures, it has been suggested that liquid films of water could be present in the Martian soil. Here we explored a possibility of the liquid water formation in the extremely shallow (1-3 cm) subsurface layer under low atmospheric pressures (0.1-10 mbar) and low ("Martian") surface temperatures (approx.-50 C-0 C). We used a new Goddard Martian simulation chamber to demonstrate that even in the clean frozen soil with temperatures as low as -25C the amount of mobile water can reach several percents. We also showed that during brief periods of simulated daylight warming the shallow subsurface ice sublimates, the water vapor diffuses through porous surface layer of soil temporarily producing supersaturated conditions in the soil, which leads to the formation of additional liquid water. Our results suggest that despite cold temperatures and low atmospheric pressures, Martian soil just several cm below the surface can be habitable.

  16. Variability in radar returns from Martian debris-covered glaciers attributed to surface debris layer roughness and composition: implications for the regional distribution of massive subsurface ice and near-surface pore-filling ice.

    NASA Astrophysics Data System (ADS)

    Petersen, E.; Holt, J. W.; Levy, J. S.; Lalich, D.

    2017-12-01

    Lobate debris aprons, lineated valley fill, and concentric crater fill are a class of Martian landform thought to be glaciers blanketed by a lithic debris layer. They are found in the mid latitudes (roughly 30-50°N and S) where surface ice is presently unstable. Shallow Radar (SHARAD) sounder observations are in many cases able to resolve the basal contact between the glacier and underlying bedrock, showing that the bulk composition of these features is water ice with < 20% lithic debris; they are thus often referred to as debris-covered glaciers (DCG). The basal contact of candidate glaciers is not always present in SHARAD radargrams, and variable reflection power between glacier sites suggests that non-detections may be due to a reduction of echo power below the noise floor. A likely candidate for signal loss is the variable roughness of different glacial surface textures. We test this mechanism of signal reduction via analysis of SHARAD reflections augmented by surface roughness analyses generated from HiRISE stereo DEMs. This method provides a means of constraining the electrical properties of the surface debris. We show that measured surface roughness is sufficient to explain basal reflection signal loss for five glacier sites in the region of Deuteronilus/Protonilus Mensae (R2 = 0.90), with the dielectric constant for the surface debris layer constrained to 4.9 ± 0.3. Assuming debris formed of basalt rock, this value is consistent with a porous debris layer containing up to 64% ice, or an ice-free debris layer with porosity of 28-34%. From this work, we conclude that (1) weak or non-existent basal reflections at these sites are due to roughness-induced radar signal loss and not due to differing properties of the basal interface, (2) all DCG candidates in this study exhibit similar bulk compositions of relatively pure water ice, and (3) the surface debris layer is formed of porous lithic debris which may contain a significant fraction of pore ice.

  17. Detection of oxygen isotopic anomaly in terrestrial atmospheric carbonates and its implications to Mars.

    PubMed

    Shaheen, R; Abramian, A; Horn, J; Dominguez, G; Sullivan, R; Thiemens, Mark H

    2010-11-23

    The debate of life on Mars centers around the source of the globular, micrometer-sized mineral carbonates in the ALH84001 meteorite; consequently, the identification of Martian processes that form carbonates is critical. This paper reports a previously undescribed carbonate formation process that occurs on Earth and, likely, on Mars. We identified micrometer-sized carbonates in terrestrial aerosols that possess excess (17)O (0.4-3.9‰). The unique O-isotopic composition mechanistically describes the atmospheric heterogeneous chemical reaction on aerosol surfaces. Concomitant laboratory experiments define the transfer of ozone isotopic anomaly to carbonates via hydrogen peroxide formation when O(3) reacts with surface adsorbed water. This previously unidentified chemical reaction scenario provides an explanation for production of the isotopically anomalous carbonates found in the SNC (shergottites, nakhlaites, chassignites) Martian meteorites and terrestrial atmospheric carbonates. The anomalous hydrogen peroxide formed on the aerosol surfaces may transfer its O-isotopic signature to the water reservoir, thus producing mass independently fractionated secondary mineral evaporites. The formation of peroxide via heterogeneous chemistry on aerosol surfaces also reveals a previously undescribed oxidative process of utility in understanding ozone and oxygen chemistry, both on Mars and Earth.

  18. Detection of oxygen isotopic anomaly in terrestrial atmospheric carbonates and its implications to Mars

    PubMed Central

    Shaheen, R.; Abramian, A.; Horn, J.; Dominguez, G.; Sullivan, R.; Thiemens, Mark H.

    2010-01-01

    The debate of life on Mars centers around the source of the globular, micrometer-sized mineral carbonates in the ALH84001 meteorite; consequently, the identification of Martian processes that form carbonates is critical. This paper reports a previously undescribed carbonate formation process that occurs on Earth and, likely, on Mars. We identified micrometer-sized carbonates in terrestrial aerosols that possess excess 17O (0.4–3.9‰). The unique O-isotopic composition mechanistically describes the atmospheric heterogeneous chemical reaction on aerosol surfaces. Concomitant laboratory experiments define the transfer of ozone isotopic anomaly to carbonates via hydrogen peroxide formation when O3 reacts with surface adsorbed water. This previously unidentified chemical reaction scenario provides an explanation for production of the isotopically anomalous carbonates found in the SNC (shergottites, nakhlaites, chassignites) Martian meteorites and terrestrial atmospheric carbonates. The anomalous hydrogen peroxide formed on the aerosol surfaces may transfer its O-isotopic signature to the water reservoir, thus producing mass independently fractionated secondary mineral evaporites. The formation of peroxide via heterogeneous chemistry on aerosol surfaces also reveals a previously undescribed oxidative process of utility in understanding ozone and oxygen chemistry, both on Mars and Earth. PMID:21059939

  19. Troughs in Ice Sheets and Other Icy Deposits on Mars: Analysis of Their Radiative Balance

    NASA Technical Reports Server (NTRS)

    Fountain, A.; Kargel, J.; Lewis, K.; MacAyeal, D.; Pfeffer, T.; Zwally, H. J.

    2000-01-01

    It has long been known that groove-like structures in glaciers and ice sheets can trap more incoming solar radiation than is the case for a 'normal' flat, smooth surface. In this presentation, we shall describe the radiative regimes of typical scarps and troughs on icy surfaces of Mars, and suggest how these features originate and evolve through time. The basis of our analysis is the radiation balance model presented by Pfeffer and Bretherton. Their model considers the visible band radiation regime of a V-shaped groove on a terrestrial ice surface, and shows that absorbed energy can be enhanced by up to 50 percent for grooves with small opening angles and with typical polar values of the solar zenith angle. Our work extends this model by considering: (a) departures from V-shaped geometry, (b) both englacial and surficial dust and debris, and (c) the infrared spectrum. We apply the extended model to various features on the Martian surface, including the spiral-like scarps on the Northern and Southern ice sheets, the large-scale chasms (e.g., Chasm Borealis), and groove-like lineations on valley floors thought to be filled with mixtures of dust and icy substances. In conjunction with study of valley-closure experiments, we suggest that spiral-like scarps and chasms are stable features of the Martian climate regime. We also suggest that further study of scarps and chasms may shed light on the composition (i.e., relative proportions of water ice, carbon-dioxide ice and dust) of the Martian ice sheets and valley fills.

  20. The Search for Sustainable Subsurface Habitats on Mars, and the Sampling of Impact Ejecta

    NASA Astrophysics Data System (ADS)

    Ivarsson, Magnus; Lindgren, Paula

    2010-07-01

    On Earth, the deep subsurface biosphere of both the oceanic and the continental crust is well known for surviving harsh conditions and environments characterized by high temperatures, high pressures, extreme pHs, and the absence of sunlight. The microorganisms of the terrestrial deep biosphere have an excellent capacity for adapting to changing geochemistry, as the alteration of the crust proceeds and the conditions of their habitats slowly change. Despite an almost complete isolation from surface conditions and the surface biosphere, the deep biosphere of the crustal rocks has endured over geologic time. This indicates that the deep biosphere is a self-sufficient system, independent of the global events that occur at the surface, such as impacts, glaciations, sea level fluctuations, and climate changes. With our sustainable terrestrial subsurface biosphere in mind, the subsurface on Mars has often been suggested as the most plausible place to search for fossil Martian life, or even present Martian life. Since the Martian surface is more or less sterile, subsurface settings are the only place on Mars where life could have been sustained over geologic time. To detect a deep biosphere in the Martian basement, drilling is a requirement. However, near future Mars sample return missions are limited by the mission's payload, which excludes heavy drilling equipment and restrict the missions to only dig the topmost meter of the Martian soil. Therefore, the sampling and analysis of Martian impact ejecta has been suggested as a way of accessing the deeper Martian subsurface without using heavy drilling equipment. Impact cratering is a natural geological process capable of excavating and exposing large amounts of rock material from great depths up to the surface. Several studies of terrestrial impact deposits show the preservation of pre-impact biosignatures, such as fossilized organisms and chemical biological markers. Therefore, if the Martian subsurface contains a record of life, it is reasonable to assume that biosignatures derived from the Martian subsurface could also be preserved in the Martian impact ejecta.

  1. Large sulfur isotope fractionations in Martian sediments at Gale crater

    NASA Astrophysics Data System (ADS)

    Franz, H. B.; McAdam, A. C.; Ming, D. W.; Freissinet, C.; Mahaffy, P. R.; Eldridge, D. L.; Fischer, W. W.; Grotzinger, J. P.; House, C. H.; Hurowitz, J. A.; McLennan, S. M.; Schwenzer, S. P.; Vaniman, D. T.; Archer, P. D., Jr.; Atreya, S. K.; Conrad, P. G.; Dottin, J. W., III; Eigenbrode, J. L.; Farley, K. A.; Glavin, D. P.; Johnson, S. S.; Knudson, C. A.; Morris, R. V.; Navarro-González, R.; Pavlov, A. A.; Plummer, R.; Rampe, E. B.; Stern, J. C.; Steele, A.; Summons, R. E.; Sutter, B.

    2017-09-01

    Variability in the sulfur isotopic composition in sediments can reflect atmospheric, geologic and biological processes. Evidence for ancient fluvio-lacustrine environments at Gale crater on Mars and a lack of efficient crustal recycling mechanisms on the planet suggests a surface environment that was once warm enough to allow the presence of liquid water, at least for discrete periods of time, and implies a greenhouse effect that may have been influenced by sulfur-bearing volcanic gases. Here we report in situ analyses of the sulfur isotopic compositions of SO2 volatilized from ten sediment samples acquired by NASA’s Curiosity rover along a 13 km traverse of Gale crater. We find large variations in sulfur isotopic composition that exceed those measured for Martian meteorites and show both depletion and enrichment in 34S. Measured values of δ34S range from -47 +/- 14‰ to 28 +/- 7‰, similar to the range typical of terrestrial environments. Although limited geochronological constraints on the stratigraphy traversed by Curiosity are available, we propose that the observed sulfur isotopic signatures at Gale crater can be explained by equilibrium fractionation between sulfate and sulfide in an impact-driven hydrothermal system and atmospheric processing of sulfur-bearing gases during transient warm periods.

  2. Melt Inclusion Analysis of RBT 04262 with Relationship to Shergottites and Mars Surface Compositions

    NASA Technical Reports Server (NTRS)

    Potter, S. A.; Brandon, A. D.; Peslier, A. H.

    2015-01-01

    Martian meteorite RBT 04262 is in the shergottite class. It displays the two lithologies typically found in "lherzolitic shergottites": one with a poikilitic texture of large pyroxene enclosing olivine and another with non-poikilitic texture. In the case of RBT 04262, the latter strongly ressembles an olivine- phyric shergottite which led the initial classification of this meteorite in that class. RBT 04262 has been studied with regards to its petrology, geochemistry and cosmic ray exposure and belongs to the enriched oxidized end-member of the shergottites. Studies on RBT 04262 have primarily focused on the bulk rock composition or each of the lithologies independently. To further elucidate RBT 04262's petrology and use it to better understand Martian geologic history, an in-depth study of its melt inclusions (MI) is being conducted. The MI chosen for this study are found within olivine grains. MI are thought to be trapped melts of the crystallizing magma preserved by the encapsulating olivine and offer snapshots of the composition of the magma as it evolves. Some MI, in the most Mg-rich part of the olivine of olivine-pyric shergottites, may even be representative of the meteorite parent melt.

  3. The development of a Martian atmospheric Sample collection canister

    NASA Astrophysics Data System (ADS)

    Kulczycki, E.; Galey, C.; Kennedy, B.; Budney, C.; Bame, D.; Van Schilfgaarde, R.; Aisen, N.; Townsend, J.; Younse, P.; Piacentine, J.

    The collection of an atmospheric sample from Mars would provide significant insight to the understanding of the elemental composition and sub-surface out-gassing rates of noble gases. A team of engineers at the Jet Propulsion Laboratory (JPL), California Institute of Technology have developed an atmospheric sample collection canister for Martian application. The engineering strategy has two basic elements: first, to collect two separately sealed 50 cubic centimeter unpressurized atmospheric samples with minimal sensing and actuation in a self contained pressure vessel; and second, to package this atmospheric sample canister in such a way that it can be easily integrated into the orbiting sample capsule for collection and return to Earth. Sample collection and integrity are demonstrated by emulating the atmospheric collection portion of the Mars Sample Return mission on a compressed timeline. The test results achieved by varying the pressure inside of a thermal vacuum chamber while opening and closing the valve on the sample canister at Mars ambient pressure. A commercial off-the-shelf medical grade micro-valve is utilized in the first iteration of this design to enable rapid testing of the system. The valve has been independently leak tested at JPL to quantify and separate the leak rates associated with the canister. The results are factored in to an overall system design that quantifies mass, power, and sensing requirements for a Martian atmospheric Sample Collection (MASC) canister as outlined in the Mars Sample Return mission profile. Qualitative results include the selection of materials to minimize sample contamination, preliminary science requirements, priorities in sample composition, flight valve selection criteria, a storyboard from sample collection to loading in the orbiting sample capsule, and contributions to maintaining “ Earth” clean exterior surfaces on the orbiting sample capsule.

  4. Lunar and Planetary Science XXXVI, Part 6

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Contents include the following: A Model for Multiple Populations of Presolar Diamonds. Characterization of Martian North Polar Geologic Units Using Mars Odyssey THEMIS Data. Effect of Flow on the Internal Structure of the Martian North Polar Layered Deposits. Elemental Abundance Distributions in Basalt Clays and Meteorites: Is It a Biosignature? Early Results on the Saturn System from the Composite Infrared Spectrometer. NanoSIMS D/H Imaging of Isotopically Primitive Interplanetary Dust Particles. Presolar (Circumstellar and Interstellar) Phases in Renazzo: The Effects of Parent Body Processing. Catastrophic Disruption of Hydrated Targets: Implications for the Hydrated Asteroids and for the Production of Interplanetary Dust Particles. Chemical and Mineralogical Analyses of Particles from the Stratospheric Collections Coinciding with the 2002 Leonid Storm and the 2003 Comet Grigg-Skjellerup Trail Passage. An Analysis of the Solvus in the CaS-MnS System. ESA s SMART-1 Mission at the Moon: First Results, Status and Next Steps. Europa Analog Ice-splitting Measurements and Experiments with Ice-Hunveyor on the Frozen Balaton-Lake, Hungary. Chromium on Eros: Further Evidence of Ordinary Chondrite Composition. Dust Devil Tracks on Mars: Observation and Analysis from Orbit and the Surface. Spatial Variation of Methane and Other Trace Gases Detected on Mars: Interpretation with a General Circulation Model. Mars Water Ice and Carbon Dioxide Seasonal Polar Caps: GCM Modeling and Comparison with Mars Express Omega Observations. Component Separation of OMEGA Spectra with ICA. Clathrate Formation in the Near-Surface Environment of Titan. Space Weathering: A Proposed Laboratory Approach to Explaining the Sulfur Depletion on Eros. Sample Collection from Small Airless Bodies: Examination of Temperature Constraints for the TGIP. Sample Collector for the Hera Near-Earth Asteroid Sample Return Mission. A Rugged Miniature Mass-Spectrometer for Measuring Aqueous Geochemistry on Mars. Martian and Lunar Pyroxene Microstructures Studied by Single-Crystal X-Ray Diffraction.

  5. In Situ Detection of Organic Molecules on the Martian Surface With the Mars Organic Molecule Analyzer (MOMA) on Exomars 2018

    NASA Technical Reports Server (NTRS)

    Li, Xiang; Brinckerhoff, William B.; Pinnick, Veronica T; van Amerom, Friso H. W.; Danell, Ryan M.; Arevalo, Ricardo D., Jr.; Getty, Stephanie; Mahaffy, Paul R.

    2015-01-01

    The Mars Organic Molecule Analyzer (MOMA) investigation on the 2018 ExoMars rover will examine the chemical composition of samples acquired from depths of up to two meters below the martian surface, where organics may be protected from radiative and oxidative degradation. The MOMA instrument is centered around a miniaturized linear ion trap (LIT) that facilitates two modes of operation: i) pyrolysisgas chromatography mass spectrometry (pyrGC-MS); and, ii) laser desorptionionization mass spectrometry (LDI-MS) at ambient Mars pressures. The LIT also enables the structural characterization of complex molecules via complementary analytical capabilities, such as multi-frequency waveforms (i.e., SWIFT) and tandem mass spectrometry (MSMS). When combined with the complement of instruments in the rovers Pasteur Payload, MOMA has the potential to reveal the presence of a wide range of organics preserved in a variety of mineralogical environments, and to begin to understand the structural character and potential origin of those compounds.

  6. Developing OSL Geological Dating Techniques for Use on Future Missions to Mars

    NASA Technical Reports Server (NTRS)

    Blair, M. W.; Kalchgruber, R.; Deo, S.; McKeever, S. W. S.

    2005-01-01

    The surface of Mars has been subject to aeolian, fluvial, and periglacial activity in the (relatively) recent past. Unfortunately, chronological dating of recent events on Mars is difficult as the errors associated with crater counting are comparable to younger ages (approx. 1 Ma). Consequently, techniques to quantify the ages of geological processes on Mars have become an important area of research. Optically stimulated luminescence (OSL) dating is one candidate technique for in-situ dating of the deposition of Martian surface sediments. This method can aid in developing a geological and climatic history of the last million years on Mars. The current paper addresses some of the challenges and progress associated with developing OSL as a viable in-situ dating technique for Mars. Some of the challenges include the mineral composition, the effectiveness of solar resetting under Martian conditions, the temperature regime, and determining the natural dose rate on Mars. All of these topics are currently under investigation, and some preliminary results are presented.

  7. Chlorine Isotopes: As a Possible Tracer of Fluid/Bio-Activities on Mars and a Progress Report on Chlorine Isotope Analysis by TIMs

    NASA Technical Reports Server (NTRS)

    Nakamura, N.; Nyquist, L.E.; Reese, Y.; Shih, C-Y.; Numata, M.; Fujitani, T.; Okano, O.

    2009-01-01

    Significantly large mass fractionations between chlorine isotopes (Cl-35, Cl-37) have been reported for terrestrial materials including both geological samples and laboratory materials. Also, the chlorine isotopic composition can be used as a tracer for early solar system processes. Moreover, chlorine is ubiquitous on the Martian surface. Typical chlorine abundances in Gusev soils are approx.0.5 %. The global surface average chlorine abundance also is approx.0.5 %. Striking variations among outcrop rocks at Meridiani were reported with some chlorine abundances as high as approx.2%. Characterizing conditions under which chlorine isotopic fractionation may occur is clearly of interest to planetary science. Thus, we have initiated development of a chlorine isotopic analysis technique using TIMS at NASA-JSC. We present here a progress report on the current status of development at JSC and discuss the possible application of chlorine isotopic analysis to Martian meteorites in a search for fluid- and possibly biological activity on Mars.

  8. Second Conference on Early Mars: Geologic Hydrologic, and Climatic Evolution and the Implications for Life

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Some of the topics addressed by the conference paper abstracts included in this document include: martian terrain, terrestrial biological activity and mineral deposits with implications for life on Mars, the martian crust and mantle, weathering and erosion on Mars, evidence for ancient martian environmental and climatic conditions, with implications for the existence of surface and ground water on Mars and the possibility for life, martian valleys, and evidence for water and lava flow on the surface of Mars.

  9. Workshop on Evolution of Martian Volatiles. Part 1

    NASA Technical Reports Server (NTRS)

    Jakosky, B. (Editor); Treiman, A. (Editor)

    1996-01-01

    This volume contains papers that were presented on February 12-14, 1996 at the Evolution for Martian Volatiles Workshop. Topics in this volume include: returned Martian samples; acidic volatiles and the Mars soil; solar EUV Radiation; the ancient Mars Thermosphere; primitive methane atmospheres on Earth and Mars; the evolution of Martian water; the role of SO2 for the climate history of Mars; impact crater morphology; the formation of the Martian drainage system; atmospheric dust-water ice Interactions; volatiles and volcanos; accretion of interplanetary dust particles; Mars' ionosphere; simulations with the NASA Ames Mars General Circulation Model; modeling the Martian water cycle; the evolution of Martian atmosphere; isotopic composition; solar occultation; magnetic fields; photochemical weathering; NASA's Mars Surveyor Program; iron formations; measurements of Martian atmospheric water vapor; and the thermal evolution Models of Mars.

  10. The Gulliver sample return mission to Deimos

    NASA Astrophysics Data System (ADS)

    Britt, D. T.; Robinson, M.; Gulliver Team

    The Martian moon Deimos presents a unique opportunity for a sample return mission. Deimos is spectrally analogous to type D asteroids, which are thought to be composed of highly primitive carbonaceous material that originated in the outer asteroid belt. It also is in orbit around Mars and has been accumulating material ejected from the Martian surface ever since the earliest periods of Martian history, over 4.4 Gyrs ago. There are a number of factors that make sample return from Deimos extremely attractive. It is Better: Deimos is a repository for two kinds of extremely significant and scientifically exciting ancient samples: (1) Primitive spectral D-type material that may have accreted in the outer asteroid belt and Trojan swarm. This material samples the composition of solar nebula well outside the zone of terrestrial planets and provides a direct sample of primitive material so common past 3 AU but so uncommon in the meteorite collection. (2) Ancient Mars, which could include the full range of Martian crustal and upper mantle material from the early differentiation and crustal-forming epoch as well as samples from the era of high volatile flux, thick atmosphere, and possible surface water. The Martian material on Deimos would be dominated by ejecta from the ancient crust of Mars, delivered during the Noachian Period of basin-forming impacts and heavy bombardment. It is Closer: Compared to other primitive D-type asteroids, Deimos is by far the most accessible. Because of its orbit around Mars, Deimos is far closer than any other D asteroid. It is Safer: Deimos is also by far the safest small body for sample return yet imaged. It is an order of magnitude less rocky than Eros and the NEAR-Shoemaker mission succeeded in landing on Eros with a spacecraft not designed for landing and proximity maneuvering. Because of Viking imagery we already know a great deal about the surface roughness of Deimos. It is known to be very smooth and have moderate topography and gravitational slopes. It is Easier: Deimos is farther from Mars and smaller than Phobos. This location minimizes the delta-V penalties from entering the Martian gravity well; minimizes the energy requirements for sampling maneuvers; and minimizes Martian tidal effects on S/C operations. After initial processing these samples will be made available as soon as possible to the international cosmochemistry community for detailed analysis. The mission management team includes Lockheed Martin Astronautics (flight system, I&T) and JPL (payload, mission ops, and mission management).

  11. Optimization of thermochemolysis analysis conditions for the in situ detection of organic compounds in Martian soil with the Mars Organic Molecule Analyzer (MOMA) experiment

    NASA Astrophysics Data System (ADS)

    Morisson, Marietta; Buch, Arnaud; Szopa, Cyril; Raulin, François; Stambouli, Moncef

    2017-04-01

    Martian surface is exposed to harsh radiative and oxidative conditions which are destructive for organic molecules. That is why the future ExoMars rover will examine the molecular composition of samples acquired from depths down to two meters below the Martian surface, where organics may have been protected from radiative and oxidative degradation. The samples will then be analyzed by the Pyrolysis-Gas Chromatography-Mass Spectrometry (Pyr-GC-MS) operational mode of the Mars Organic Molecule Analyzer (MOMA) instrument. To prevent thermal alteration of organic molecules during pyrolysis, thermochemolysis with tetramethylammonium hydroxide (TMAH) will extract the organics from the mineral matrix and methylate the polar functional groups, allowing the volatilization of molecules at lower temperatures and protecting the most labile chemical groups from thermal degradation. This study has been carried out on a Martian regolith analogue (JSC-Mars-1) with a high organic content with the aim of optimizing the thermochemolysis temperature within operating conditions similar to the MOMA experiment ones. We also performed Pyrolysis-GC-MS analysis as a comparison. The results show that, unlike pyrolysis alone - which mainly produces aromatics, namely thermally altered molecules - thermochemolysis allows the extraction and identification of numerous organic molecules of astrobiological interest. They also show that the main compounds start to be detectable at low thermochemolysis temperatures ranging from 400°C to 600°C. However, we noticed that the more the temperature increases, the more the chromatograms are saturated with thermally evolved molecules leading to many coelutions and making identification difficult.

  12. The Mars atmosphere as seen from Curiosity

    NASA Astrophysics Data System (ADS)

    Mischna, Michael

    Study of the Mars atmosphere by the Mars Science Laboratory (MSL) has been ongoing since immediately after landing on August 6, 2012 (UTC) at the bottom of Gale Crater. The MSL Rover Environmental Monitoring Station (REMS) has been the primary payload for atmospheric monitoring, while additional observations from the ChemCam, Mastcam, Navcam and Sample Analysis at Mars (SAM) instruments have augmented our understanding of the local martian environment at Gale. The REMS instrument consists of six separate sensor types, observing air and ground temperature, near-surface winds, relative humidity, surface pressure and UV radiation. The standard cadence of REMS observations consists of five-minute observations of 1 Hz frequency at the top of each hour, augmented by several one-hour “extended blocks” each sol, also at 1 Hz frequency, together yielding one of the most richly diverse and detailed samplings of the martian atmosphere. Among the intriguing atmospheric phenomena observed during the first 359 sols of the mission is a substantially greater (˜12% of the diurnal mean) diurnal pressure cycle than found in previous surface measurements by Viking at a similar season (˜3-4%), likely due to the topography of the crater environment. Measurements of air and ground temperature by REMS are seen to reflect both changes in atmospheric opacity as well as transitions in the surface geology (and surface thermal properties) along the rover’s traverse. The REMS UV sensor has provided the first measurements of ultraviolet flux at the martian surface, and identified dust events that reduce solar insolation at the surface. The REMS RH sensor has observed a seasonal change in humidity in addition to the expected diurnal variations in relative humidity; however, no surface frost has been detected through the first 360 sols of the mission. With a weekly cadence, Navcam images the local zenith for purposes of tracking cloud motion and wind direction, and likewise observes the horizon to search (thus far unsuccessfully) for visible dust devil activity. The Mastcam operates with a similar observing frequency for quantifying atmospheric opacity, while ChemCam is used in its ‘passive’ mode, while pointed at the sky, to measure atmospheric water vapor abundance. Lastly, the SAM suite has provided information about atmospheric composition, including trace species abundances and isotopic ratios, which may be used to infer the history and evolution of the martian atmosphere.

  13. Martian Surface Compositions and Spectral Unit Mapping From the Thermal Emission Imaging System

    NASA Astrophysics Data System (ADS)

    Bandfield, J. L.; Christensen, P. R.; Rogers, D.

    2005-12-01

    The Thermal Emission Imaging System (THEMIS) on board the Mars Odyssey spacecraft observes Mars at nine spectral intervals between 6 and 15 microns and at 100 meter spatial sampling. This spectral and spatial resolution allows for mapping of local spectral units and coarse compositional determination of a variety of rock-forming materials such as carbonates, sulfates, and silicates. A number of data processing and atmospheric correction techniques have been developed to ease and speed the interpretation of multispectral THEMIS infrared images. These products and techniques are in the process of being made publicly available via the THEMIS website and were used to produce the results presented here. Spectral variability at kilometer scales in THEMIS data is more common in the southern highlands than in the northern lowlands. Many of the spectral units are associated with a mobile surface layer such as dune fields and mantled dust. However, a number of spectral units appear to be directly tied to the local geologic rock units. These spectral units are commonly associated with crater walls, floors, and ejecta blankets. Other surface compositions are correlated with layered volcanic materials and knobby remnant terrains. Most of the spectral variability observed to date appears to be tied to a variation in silicate mineralogy. Olivine rich units that have been previously reported in Nili Fossae, Ares Valles, and the Valles Marineris region appear to be sparse but common in a number of regions in the southern highlands. Variations in silica content consistent with previously reported global surface units also appear to be present in THEMIS images, allowing for an examination of their local geologic context. Previously reported quartz and feldspar rich exposures in northern Syrtis Major appear more extensive in the region than previously reported. A coherent global and local picture of the mineralogy of the Martian surface is emerging from THEMIS measurements along with other orbital thermal and near infrared spectroscopy measurements from the Mars Express and Mars Global Surveyor spacecraft.

  14. Comparison of Martian meteorites with earth composition: Study of effective atomic numbers in the energy range 1 keV-100 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ün, Adem, E-mail: ademun25@yahoo.com; Han, İbrahim, E-mail: ibrahimhan25@hotmail.com; Ün, Mümine, E-mail: mun@agri.edu.tr

    2016-04-18

    Effective atomic (Z{sub eff}) and electron numbers (N{sub eff}) for 24 Martian meteorites have been determined in the energy range from 1 keV to 100 GeV and also for sixteen significant energies of commonly used radioactive sources. The values of Z{sub eff} and N{sub eff} for all sample were obtained from the DirectZeff program. The obtained results for Martian meteorites have been compared with the results for Earth composition and similarities or differences also evaluated.

  15. Warming Early Mars With CH4

    NASA Astrophysics Data System (ADS)

    Justh, H. L.; Kasting, J. F.

    2002-12-01

    The nature of the ancient climate of Mars remains one of the fundamental unresolved problems in martian research. While the present environment is hostile to life, images from the Mariner, Viking and Mars Global Surveyor missions, have shown geologic features on the martian surface that seem to indicate an earlier period of hydrologic activity. The fact that ancient valley networks and degraded craters have been seen on the martian surface indicates that the early martian climate may have been more Earth-like, with a warmer surface temperature. The presence of liquid water would require a greenhouse effect much larger than needed at present, as the solar constant, S0, was 25% lower 3.8 billion years ago when the channels are thought to have formed (1,2). Previous calculations have shown that gaseous CO2 and H2O alone could not have warmed the martian surface to the temperature needed to account for the presence of liquid water (3). It has been hypothesized that a CO2-H2O atmosphere could keep early Mars warm if it was filled with CO2 ice clouds in the upper martian troposphere (4). Obtaining mean martian surface temperatures above 273 K would require nearly 100% cloud cover, a condition that is unrealistic for condensation clouds on early Mars. Any reduction in cloud cover makes it difficult to achieve warm martian surface temperatures except at high pressures and CO2 clouds could cool the martian surface if they were low and optically thick (5). CO2 and CH4 have been suggested as important greenhouse gases on the early Earth. Our research focuses on the effects of increased concentrations of atmospheric greenhouse gases on the surface temperature of early Mars, with emphasis on the reduced greenhouse gas, CH4. To investigate the possible warming effect of CH4, we modified a one-dimensional, radiative-convective climate model used in previous studies of the early martian climate (5). New cloud-free temperature profiles for various surface pressures and CH4 mixing ratios will be presented. This use of climate modeling is important since it is the fundamental way that the magnitude of possible geochemical and biological CH4 sources can be related to predicted CH4 concentrations in the early martian atmosphere. References: 1) Gough, D. O. Solar Physics 74, 21-34 (1981). 2) Carr, M. H. Water on Mars (1996). 3) Kasting, J. F. Icarus 94, 1-13 (1991). 4) Forget, F., and Pierrehumbert R. T. Science 278, 1273-1276 (1997). 5) Mischna, M. A., Kasting J. F., Pavlov A., and Freedman R. Icarus 145, 546-554 (2000).

  16. Transmission Electron Microscope Studies of Martian 'Iddingsite' in the Nakhlite Meteorite MIL 090032

    NASA Astrophysics Data System (ADS)

    Hallis, L.; Ishii, H.; Bradley, J. P.; Taylor, J.

    2012-12-01

    As with the other nakhlites, MIL 090032 contains iddingsite-like alteration veins in the olivine phenocrysts that reportedly originated on Mars[1]. These 'iddingsite' veins have been analysed in a number of the nakhlite meteorites[2], and the presence of hydrous silicate gel, smectite clays, siderite, Fe-oxides, gypsum and carbonate have been reported. The presence and proportion of these phases in the different nakhlites appears to relate to the composition and concentration of the martian brine that flowed through each, thus supporting the theory that the nakhlite secondary alteration phases were produced by an evaporation sequence on the surface of Mars[3]. We analyzed these martian 'iddingsite' veins in MIL 090032 with the aim of placing it and its three paired meteorites within the nakhlite alteration sequence. By expanding our knowledge of this alteration sequence, we will gain extra insight into the conditions on the martian surface at the time these 'iddingsite' veins formed (<1.3 Ga). We utilized the 80-300 kV aberration-corrected FEI Titan (Scanning) Transmission Electron Microscope (S-TEM) system at Lawrence Livermore National Laboratory to analyse a ~15×8μm Focused Ion Beam (FIB) section of an 'iddingsite' vein in MIL 090032. To allow the electrons to be transmitted through the FIB section, it was milled down to ~150 nm thickness. Our initial TEM data indicate this FIB section contains hydrous amorphous silicate gel towards the center, with areas of phyllosilicate (possibly nontronite) interspersed within this central zone. Towards the outer edge of the vein jarosite and then gypsum sulfates were present. At the very edge only partially broken down olivine was observed. The presence of phyllosilicate and silicate gel in this vein suggests the 'iddingsite' in MIL 090032 was produced by water-rich brine, and the abundance of sulfates suggests the brine was enriched in sulfur. This assemblage of minerals is most in line with that of the 'iddingsite' veins in the meteorite Lafayette, which is thought to have been exposed to the most aqueous brine in the nakhlite alteration sequence[2,3]. MIL 090032 is a meteorite find, and contains areas of terrestrially derived sulfate-rich alteration which appear to have similar compositions to the martian 'iddingsite' veins (although texturally the two are easily distinguishable). Therefore, in addition to our analysis of the above 'iddignsite' FIB section, we aim to analyze a similar FIB section of this terrestrial sulfate-rich alteration and compare the two. This comparison could not only determine if terrestrial weathering has affected the mineralogy and petrology of the pre-terrestrial alteration, but also whether the conditions on the martian surface were similar to those in the Antarctic valleys at the time the 'iddingsite' veins formed. [1]Gooding et al. (1991) Meteoritics 26, 135-143. [2]Changela and Bridges (2011) MAPS 45, 1847-1867. [3]Bridges et al. (2001) Space Sci. Rev. 96, 365-392.

  17. The Gulliver mission: Sample return from Deimos

    NASA Astrophysics Data System (ADS)

    Britt, D.

    The Martian moon Deimos has been accumulating material ejected from the Martian surface ever since the earliest periods of Martian history, over 4.4 Gyrs ago. Analysis of Martian ejecta, material accumulation, capture cross-section, regolith overturn, and Deimos's albedo suggest that Mars material may make up as much as 5-10% of Deimos's regolith. The Martian material on Deimos would be dominated by ejecta from the ancient crust of Mars, delivered during the Noachian Period of basin-forming impacts and heavy bombardment. Deimos is essentially a repository of samples from ancient Mars, which would include the full range of Martian crustal and upper mantle material from the early differentiation and crustal-forming epoch as well as samples from the era of high volatile flux, thick atmosphere, and possible surface water. The Gulliver Mission proposes to directly collect up to 10 kilograms of Deimos regolith and return it to Earth. This sample will contain up to 1000 grams of Martian material. Because of stochastic processes of regolith mixing over 4.4 Gyrs, the rock fragments, grains, and pebble-sized materials will likely sample the diversity of the Martian ancient surface. In addition to Martian ejecta, 90% of the Deimos sample will be spectral type D asteroidal material, thought to be highly primitive and originate in the outer asteroid belt. In essence, Gulliver represents two shortcuts, to Mars sample return and to the outer asteroid belt.

  18. Effect of particle size of Martian dust on the degradation of photovoltaic cell performance

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Perez-Davis, Marla E.

    1991-01-01

    Glass coverglass and SiO2 covered and uncovered silicon photovoltaic (PV) cells were subjected to conditions simulating a Mars dust storm, using the Martian Surface Wind Tunnel, to assess the effect of particle size on the performance of PV cells in the Martian environment. The dust used was an artificial mineral of the approximate elemental composition of Martian soil, which was sorted into four different size ranges. Samples were tested both initially clean and initially dusted. The samples were exposed to clear and dust laden winds, wind velocities varying from 23 to 116 m/s, and attack angles from 0 to 90 deg. It was found that transmittance through the coverglass approximates the power produced by a dusty PV cell. Occultation by the dust was found to dominate the performance degradation for wind velocities below 50 m/s, whereas abrasion dominates the degradation at wind velocities above 85 m/s. Occultation is most severe at 0 deg (parallel to the wind), is less pronounced from 22.5 to 67.5 deg, and is somewhat larger at 90 deg (perpendicular to the wind). Abrasion is negligible at 0 deg, and increases to a maximum at 90 deg. Occultation is more of a problem with small particles, whereas large particles (unless they are agglomerates) cause more abrasion.

  19. Chemistry and Mineralogy of Martian Soils from In-Situ Analyses

    NASA Astrophysics Data System (ADS)

    Yen, A. S.

    2017-12-01

    In-situ analyses of typical martian soils by the Spirit, Opportunity and Curiosity rovers have shown remarkable planet-scale similarities in composition. The Alpha Particle X-ray Spectrometer data indicate that fine-grained, basaltic soils analyzed at Gusev Crater, Meridiani Planum and Gale Crater are nearly identical when cross-calibration uncertainties between the individual instruments are considered. Martian soils generally exhibit correlated increases in S, Cl and Zn with finer grain sizes, balanced by decreasing Si and Al from the feldspar component. The trends in S, Cl and Zn are consistent with condensates of volcanic exhalations and indicate minimal aqueous alteration of the soil samples after the accumulation of the volcanic volatiles. The mineralogy established by the CheMin X-ray diffractometer on the Curiosity rover show that soils are dominated by plagioclase feldspar, pyroxenes, olivine, and amorphous material. Minor phases include hematite, magnetite and anhydrite. These results are consistent with the Mössbauer spectrometer data from Spirit and Opportunity which indicate that the iron is contained in olivine, pyroxene, hematite, magnetite, and a nanophase ferric iron oxide/hydroxide. With the exception of the nanophase/amorphous component, typical martian soils are fundamentally basaltic in nature and remain relatively unaltered. Variations from typical basaltic soils have also been observed: Local contributions to the soil are evident in a number of samples which contain characteristic chemical signatures of nearby rocks. Larger sand grains on surfaces of aeolian bedforms have distinct compositions consistent with greater proportions of olivine, and in some cases, magnetite. Extensively altered fine-grained deposits dominated by sulfates and silica at Gusev Crater are distinct from basaltic soils and are consistent with fumarolic origins.

  20. Formation Conditions of Basalts at Gale Crater, Mars from ChemCam Analyses

    NASA Astrophysics Data System (ADS)

    Filiberto, J.; Bridges, J.; Dasgupta, R.; Edwards, P.; Schwenzer, S. P.; Wiens, R. C.

    2015-12-01

    Surface igneous rocks shed light onto the chemistry, tectonic, and thermal state of planetary interiors. For the purpose of comparative planetology, therefore, it is critical to fully utilize the compositional diversity of igneous rocks for different terrestrial planets. For Mars, igneous float rocks and conglomerate clasts at Gale Crater, as analyzed by ChemCam [1] using a new calibration [2], have a larger range in chemistry than have been analyzed at any other landing site or within the Martian meteorite collection [3, 4]. These rocks may reflect different conditions of melting within the Martian interior than any previously analyzed basalts. Here we present new formation conditions for basaltic and trachybasalt/dioritic rocks at Gale Crater from ChemCam analyses following previous procedures [5, 6]. We then compare these estimates of basalt formation with previous estimates for rocks from the Noachian (Gusev Crater, Meridiani Planum, and a clast in the NWA 7034 meteorite [5, 6]), Hesperian (surface volcanics [7]), and Amazonian (surface volcanics and shergottites [7-8]), to calculate an average mantle potential temperature for different Martian epochs and investigate how the interior of Mars has changed through time. Finally, we will compare Martian mantle potential temperatures with petrologic estimate of cooling for the Earth. Our calculated estimate for the mantle potential temperature (TP) of rocks at Gale Crater is 1450 ± 45 °C which is within error of previous estimates for Noachian aged rocks [5, 6]. The TP estimates for the Hesperian and Amazonian, based on orbital analyses of the crust [7], are lower in temperature than the estimates for the Noachian. Our results are consistent with simple convective cooling of the Martian interior. [1] Wiens R. et al. (2012) Space Sci Rev 170. 167-227. [2] Anderson R. et al. (2015) LPSC. Abstract #7031. [3] Schmidt M.E. et al. (2014) JGRP 2013JE004481. [4] Sautter V. et al. (2014) JGRP 2013JE004472. [5] Filiberto J. and Dasgupta R. (2011) EPSL 304. 527-537. [6] Filiberto J. and Dasgupta R. (2015) JGRP 2014JE004745. [7] Baratoux D. et al. (2011) Nature 472. 338-341. [8] Musselwhite D.S. et al. (2006) MaPS 41. 1271-1290.

  1. Adaptation of an Antarctic lichen to Martian niche conditions can occur within 34 days

    NASA Astrophysics Data System (ADS)

    de Vera, Jean-Pierre; Schulze-Makuch, Dirk; Khan, Afshin; Lorek, Andreas; Koncz, Alexander; Möhlmann, Diedrich; Spohn, Tilman

    2014-08-01

    Stresses occurring on the Martian surface were simulated in a Mars Simulation Chamber (MSC) and included high UV fluxes (Zarnecki and Catling, 2002), low temperatures, low water activity, high atmospheric CO2 concentrations, and an atmospheric pressure of about 800 Pa (Kasting, 1991; Head et al., 2003). The lichen Pleopsidium chlorophanum is an extremophile that lives in very cold, dry, high-altitude habitats, which are Earth's best approximation of the Martian surface. Samples with P. chlorophanum were exposed uninterruptedly to simulated conditions of the unprotected Martian surface (i.e. 6344 kJ m-2) and protected niche conditions (269 kJ m-2) for 34 days. Under unprotected Martian surface conditions the fungal symbiont decreases its metabolic activity and it was unclear if the algal symbiont of the lichen was still actively photosynthesizing. However, under "protected site" conditions, the entire lichen not only survived and remained photosynthetically active, it even adapted physiologically by increasing its photosynthetic activity over 34 days.

  2. Proceedings of the MECA Workshop on The Evoluation of the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Carr, M. (Editor); James, P. (Editor); Conway, L. (Editor); Pepin, R. (Editor); Pollack, J. (Editor)

    1985-01-01

    Topics addressed include: Mars' volatile budget; climatic implications of martian channels; bulk composition of Mars; accreted water inventory; evolution of CO2; dust storms; nonlinear frost albedo feedback on Mars; martian atmospheric evolution; effects of asteroidal and cometary impacts; and water exchange between the regolith and the atmosphere/cap system over obliquity timescales.

  3. Surface composition of Mars: A Viking multispectral view

    NASA Technical Reports Server (NTRS)

    Adams, John B.; Smith, Milton O.; Arvidson, Raymond E.; Dale-Bannister, Mary; Guinness, Edward A.; Singer, Robert; Adams, John B.

    1987-01-01

    A new method of analyzing multispectral images takes advantage of the spectral variation from pixel to pixel that is typical for natural planetary surfaces, and treats all pixels as potential mixtures of spectrally distinct materials. For Viking Lander images, mixtures of only three spectral end members (rock, soil, and shade) are sufficient to explain the observed spectral variation to the level of instrumental noise. It was concluded that a large portion of the Martian surface consists of only two spectrally distinct materials, basalt and palgonitic soil. It is emphasized, however, that as viewed through the three broad bandpasses of Viking Orbiter, other materials cannot be distinguished from the mixtures.

  4. Mars vertical axis wind machines: The design of a tornado vortex machine for use on Mars

    NASA Technical Reports Server (NTRS)

    Carlin, Daun; Dyhr, Amy; Kelly, Jon; Schmirler, J. Eric; Carlin, Mike; Hong, Won E.; Mahoney, Kamin

    1994-01-01

    Ever since Viking 1 and 2 landed on the surface of Mars in the summer of 1976, man has yearned to go back. But before man steps foot upon the surface of Mars, unmanned missions such as the Martian Soft Lander and Martian Subsurface Penetrator will precede him. Alternative renewable power sources must be developed to supply the next generation of surface exploratory spacecraft, since RTG's, solar cells, and long-life batteries all have their significant drawbacks. One such alternative is to take advantage of the unique Martian atmospheric conditions by designing a small scale, Martian wind power generator, capable of surviving impact and fulfilling the long term (2-5 years), low-level power requirements (1-2 Watts) of an unmanned surface probe. After investigation of several wind machines, a tornado vortex generator was chosen based upon its capability of theoretically augmenting and increasing the available power that may be extracted from average Martian wind speeds of approximately 7.5 m/s. The Martian Tornado Vortex Wind Generator stands 1 meter high and has a diameter of 0.5 m. Martian winds enter the base and shroud of the Tornado Vortex Generator at 7.5 m/s and are increased to an exit velocity of 13.657 m/s due to the vortex that is created. This results in a rapid pressure drop of 4.56 kg/s(exp 2) m across the vortex core which aids in producing a net power output of 1.1765 Watts. The report contains the necessary analysis and requirements needed to feasibly operate a low-level powered, unmanned, Martian surface probe.

  5. Mars vertical axis wind machines: The design of a tornado vortex machine for use on Mars

    NASA Astrophysics Data System (ADS)

    Carlin, Daun; Dyhr, Amy; Kelly, Jon; Schmirler, J. Eric; Carlin, Mike; Hong, Won E.; Mahoney, Kamin; Ralston, Michael

    1994-06-01

    Ever since Viking 1 and 2 landed on the surface of Mars in the summer of 1976, man has yearned to go back. But before man steps foot upon the surface of Mars, unmanned missions such as the Martian Soft Lander and Martian Subsurface Penetrator will precede him. Alternative renewable power sources must be developed to supply the next generation of surface exploratory spacecraft, since RTG's, solar cells, and long-life batteries all have their significant drawbacks. One such alternative is to take advantage of the unique Martian atmospheric conditions by designing a small scale, Martian wind power generator, capable of surviving impact and fulfilling the long term (2-5 years), low-level power requirements (1-2 Watts) of an unmanned surface probe. After investigation of several wind machines, a tornado vortex generator was chosen based upon its capability of theoretically augmenting and increasing the available power that may be extracted from average Martian wind speeds of approximately 7.5 m/s. The Martian Tornado Vortex Wind Generator stands 1 meter high and has a diameter of 0.5 m. Martian winds enter the base and shroud of the Tornado Vortex Generator at 7.5 m/s and are increased to an exit velocity of 13.657 m/s due to the vortex that is created. This results in a rapid pressure drop of 4.56 kg/s(exp 2) m across the vortex core which aids in producing a net power output of 1.1765 Watts. The report contains the necessary analysis and requirements needed to feasibly operate a low-level powered, unmanned, Martian surface probe.

  6. MODELING THE VARIATIONS OF DOSE RATE MEASURED BY RAD DURING THE FIRST MSL MARTIAN YEAR: 2012–2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Jingnan; Wimmer-Schweingruber, Robert F.; Heber, Bernd

    2015-09-01

    The Radiation Assessment Detector (RAD), on board Mars Science Laboratory’s (MSL) rover Curiosity, measures the energy spectra of both energetic charged and neutral particles along with the radiation dose rate at the surface of Mars. With these first-ever measurements on the Martian surface, RAD observed several effects influencing the galactic cosmic-ray (GCR) induced surface radiation dose concurrently: (a) short-term diurnal variations of the Martian atmospheric pressure caused by daily thermal tides, (b) long-term seasonal pressure changes in the Martian atmosphere, and (c) the modulation of the primary GCR flux by the heliospheric magnetic field, which correlates with long-term solar activitymore » and the rotation of the Sun. The RAD surface dose measurements, along with the surface pressure data and the solar modulation factor, are analyzed and fitted to empirical models that quantitatively demonstrate how the long-term influences ((b) and (c)) are related to the measured dose rates. Correspondingly, we can estimate dose rate and dose equivalents under different solar modulations and different atmospheric conditions, thus allowing empirical predictions of the Martian surface radiation environment.« less

  7. Assessment of shock effects on amphibole water contents and hydrogen isotope compositions: 1. Amphibolite experiments

    NASA Astrophysics Data System (ADS)

    Minitti, Michelle E.; Rutherford, Malcolm J.; Taylor, Bruce E.; Dyar, M. Darby; Schultz, Peter H.

    2008-02-01

    Kaersutitic amphiboles found within a subset of the Martian meteorites have low water contents and variably heavy hydrogen isotope compositions. In order to assess if impact shock-induced devolatilization and hydrogen isotope fractionation were determining factors in these water and isotopic characteristics of the Martian kaersutites, we conducted impact shock experiments on samples of Gore Mountain amphibolite in the Ames Vertical Gun Range (AVGR). A parallel shock experiment conducted on an anorthosite sample indicated that contamination of shocked samples by the AVGR hydrogen propellant was unlikely. Petrographic study of the experimental amphibolite shock products indicates that only ˜ 10% of the shock products experienced levels of damage equivalent to those found in the most highly shocked kaersutite-bearing Martian meteorites (30-35 GPa). Ion microprobe studies of highly shocked hornblende from the amphibolite exhibited elevated water contents (ΔH 2O ˜ 0.1 wt.%) and enriched hydrogen isotope compositions (Δ D ˜ + 10‰) relative to unshocked hornblende. Water and hydrogen isotope analyses of tens of milligrams of unshocked, moderately shocked, and highly shocked hornblende samples by vacuum extraction/uranium reduction and isotope ratio mass spectrometry (IRMS), respectively, are largely consistent with analyses of single grains from the ion microprobe. The mechanisms thought to have produced the excess water in most of the shocked hornblendes are shock-induced reduction of hornblende Fe and/or irreversible adsorption of hydrogen. Addition of the isotopically enriched Martian atmosphere to the Martian meteorite kaersutites via these mechanisms could explain their enriched and variable isotopic compositions. Alternatively, regrouping the water extraction and IRMS analyses on the basis of isotopic composition reveals a small, but consistent, degree of impact-induced devolatilization (˜ 0.1 wt.% H 2O) and H isotope enrichment (Δ D ˜ + 10‰). Extrapolating the shock signature of the regrouped data to grains that experienced Martian meteorite-like shock pressures suggests that shock-induced water losses and hydrogen isotope enrichments could approach 1 wt.% H 2O and Δ D = + 100‰, respectively. If these values are valid, then impact shock effects could explain a substantial fraction of the low water contents and variable hydrogen isotope compositions of the Martian meteorite kaersutites.

  8. Optimization of Martian regolith and ultra-high molecular weight polyethylene composites for radiation shielding and habitat structures

    NASA Astrophysics Data System (ADS)

    Wilkins, Richard; Gersey, Brad; Baburaj, Abhijit; Barnett, Milan; Zhou, Xianren

    2012-07-01

    In preparation for long duration missions to the moon, Mars or, even near earth asteroids, one challenge, amongst many others, that the space program faces is shielding against space radiation. It is difficult to effectively shield all sources of space radiation because of the broad range of types and high energies found in space, so the most important goal is to minimize the damaging effects that may occur to humans and electronics during long duration space flight. For a long duration planetary habitat, a shielding option is to use in situ resources such as the native regolith. A possible way to utilize regolith on a planet is to combine it with a binder to form a structural material that also exhibits desirable shielding properties. In our studies, we explore Martian regolith and ultra-high molecular weight polyethylene (UHMWPE) composites. We selected UHMWPE as the binder in our composites due to its high hydrogen content; a desirable characteristic for shielding materials in a space environment. Our initial work has focused on the process of developing the right ratio of simulated Martian regolith and UHMWPE to yield the best results in material endurance and strength, while retaining good shielding characteristics. Another factor in our optimization process is to determine the composite ratio that minimizes the amount of ex situ UHMWPE while retaining desirable structural and shielding properties. This consideration seeks to minimize mission weight and costs. Mechanical properties such as tensile strength of the Martian regolith/UHMWPE composite as a function of its grain size, processing parameters, and different temperature variations used are discussed. The radiation shielding effectiveness of loose mixtures of Martian regolith/ UHMWPE is evaluated using a 200 MeV proton beam and a tissue equivalent proportional counter. Preliminary results show that composites with an 80/20 ratio percent weight of regolith to UHMWPE can be fabricated with potentially useful structural strength. I n addition, Martian regolith, while not as efficient as polyethylene at reducing proton energy as a function of shield thickness, compares well with polyethylene at shielding the 200 MeV protons. These preliminary results indicate that native Martian regolith has promising properties as a habitat material for future human missions. Future work studying the shielding effectiveness and radiation tolerance will also be discussed.

  9. Smectite clays in Mars soil - Evidence for their presence and role in Viking biology experimental results

    NASA Technical Reports Server (NTRS)

    Banin, A.; Rishpon, J.

    1979-01-01

    Evidence for the presence of smectite clays in Martian soils is reviewed and results of experiments with certain active clays simulating the Viking biology experiments are reported. Analyses of Martian soil composition by means of X-ray fluorescence spectrometry and dust storm spectroscopy and Martian geological history strongly suggest the presence of a mixture of weathered ferro-silicate minerals, mainly nontronite and montmorillonite, accompanied by soluble sulphate salts, as major constituents. Samples of montmorillonite and nontronite incubated with (C-14)-formate or the radioactive nutrient medium solution used in the Viking Labeled Release experiment, were found to produce patterns of release of radioactive gas very similar to those observed in the Viking experiments, indicating the iron-catalyzed decomposition of formate as the reaction responsible for the Viking results. The experimental results of Hubbard (1979) simulating the results of the Viking Pyrolytic Release experiment using iron montmorillonites are pointed out, and it is concluded that many of the results of the Viking biology experiments can be explained in terms of the surface activity of smectite clays in catalysis and adsorption.

  10. Mars surface weathering products and spectral analogs: Palagonites and synthetic iron minerals

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, D. W.; Morris, R. V.; Lauer, H. V., Jr.

    1992-01-01

    There are several hypotheses regarding the formation of Martian surface fines. These surface fines are thought to be products of weathering processes occurring on Mars. Four major weathering environments of igneous rocks on Mars have been proposed; (1) impact induced hydrothermal alterations; (2) subpermafrost igneous intrusion; (3) solid-gas surface reactions; and (4) subaerial igneous intrusion over permafrost. Although one or more of these processes may be important on the Martian surface, one factor in common for all these processes is the reaction of solid or molten basalt with water (solid, liquid, or gas). These proposed processes, with the exception of solid-gas surface reactions, are transient processes. The most likely product of transient hydrothermal processes are layer silicates, zeolites, hydrous iron oxides and palagonites. The long-term instability of hydrous clay minerals under present Martian conditions has been predicted; however, the persistence of such minerals due to slow kinetics of dehydration, or entrapment in permafrost, where the activity of water is high, can not be excluded. Anhydrous oxides of iron (e.g., hematite and maghemite) are thought to be stable under present Martian surface conditions. Oxidative weathering of sulfide minerals associated with Martian basalts has been proposed. Weathering of sulfide minerals leads to a potentially acidic permafrost and the formation of Fe(3) oxides and sulfates. Weathering of basalts under acidic conditions may lead to the formation of kaolinite through metastable halloysite and metahalloysite. Kaolinite, if present, is thought to be a thermodynamically stable phase at the Martian surface. Fine materials on Mars are important in that they influence the surface spectral properties; these fines are globally distributed on Mars by the dust storms and this fraction will have the highest surface area which should act as a sink for most of the absorbed volatiles near the surface of Mars. Therefore, the objectives of this study were to: (1) examine the fine fraction mineralogy of several palagonitic materials from Hawaii; and (2) compare spectral properties of palagonites and submicron sized synthetic iron oxides with the spectral properties of the Martian surface.

  11. Investigations in Martian Sedimentology

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.

    1998-01-01

    The purpose of this report is to investigate and discuss the Martian surface. This report was done in specific tasks. The tasks were: characterization of Martian fluids and chemical sediments; mass wasting and ground collapse in terrains of volatile-rich deposits; Mars Rover terrestrial field investigations; Mars Pathfinder operations support; and Martian subsurface water instrument.

  12. MARS: The Viking discoveries

    NASA Technical Reports Server (NTRS)

    French, B. M.

    1977-01-01

    The Viking spacecraft are described as well as the instruments carried to accomplish the combined goal of studying the atmosphere and geology of the entire planet, and to analyze the Martian soil and search for life in two specific locations. Imagery received from the spacecraft illustrate discussions of the planetary surface, composition, and winds. Suggestions for further reading are included along with a list of available NASA film. Experiments and activities for classroom use are described.

  13. Near-infrared spectra of the Martian surface: Reading between the lines

    NASA Technical Reports Server (NTRS)

    Crisp, D.; Bell, J. F., III

    1993-01-01

    Moderate-resolution near-infrared (NIR) spectra of Mars have been widely used in studies of the Martian surface because many candidate surface materials have distinctive absorption features at these wavelengths. Recent advances in NIR detector technology and instrumentation have also encouraged studies in this spectral region. The use of moderate spectral resolution has often been justified for NIR surface observations because the spectral features produced by most surface materials are relatively broad, and easily discriminated at this resolution. In spite of this, NIR spectra of Mars are usually very difficult to interpret quantitatively. One problem is that NIR surface absorption features are often only a few percent deep, requiring observations with great signal-to-noise ratios. A more significant problem is that gases in the Martian atmosphere contribute numerous absorption features at these wavelengths. Ground-based observers must also contend with variable absorption by several gases in the Earth's atmosphere (H2O, CO2, O3, N2O, CH4, O2). The strong CO2 bands near 1.4, 1.6, 2.0, 2.7, 4.3, and 4.8 micrometers largely preclude the analysis of surface spectral features at these wavelengths. Martian atmospheric water vapor also contributes significant absorption near 1.33, 1.88, and 2.7 micrometers, but water vapor in the Earth's atmosphere poses a much larger problem to ground-based studies of these spectral regions. The third most important NIR absorber in the Martian atmosphere is CO. This gas absorbs most strongly in the relatively-transparent spectral windows near 4.6 and 2.3 micrometers. It also produces 1-10 percent absorption in the solar spectrum at these NIR wavelengths. This solar CO absorption cannot be adequately removed by dividing the Martian spectrum by that of a star, as is commonly done to calibrate ground-based spectroscopic observations, because most stars do not have identical amounts of CO absorption in their spectra. Here, we describe tow effective methods for eliminating contamination of Martian surface spectra by absorption in the solar, terrestrial, and Martian atmospheres. Both methods involve the use of very-high-resolution spectra that completely resolve the narrow atmospheric absorption lines.

  14. Crustal Heat Production and the Thermal Evolution of Mars. Revision

    NASA Technical Reports Server (NTRS)

    McLennan, Scott M.

    2001-01-01

    The chemical compositions of soils and rocks from the Pathfinder site and Phobos-2 orbital gamma-ray spectroscopy indicate that the Martian crust has a bulk composition equivalent to large-ion lithophile (LIL) and heat-producing element (HPE) enriched basalt, with a potassium content of about 0.5%. A variety of radiogenic isotopic data also suggest that separation of LIL-enriched crustal and depleted mantle reservoirs took place very early in Martian history (greater than 4.0 Ga). Accordingly, if the enriched Martian crust is greater than 30km thick it is likely that a large fraction (up to at least 50%) of the heat-producing elements in Mars was transferred into the crust very early in the planet's history. This would greatly diminish the possibility of early widespread melting of the Martian mantle.

  15. Highest Resolution Image of Dust and Sand Yet Acquired on Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Click on image for Figure 1Click on image for Figure 2Click on image for Figure 3

    This mosaic of four side-by-side microscope images (one a color composite) was acquired by the Optical Microscope, a part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument suite on NASA's Phoenix Mars Lander. Taken on the ninth Martian day of the mission, or Sol 9 (June 3, 2008), the image shows a 3 millimeter (0.12 inch) diameter silicone target after it has been exposed to dust kicked up by the landing. It is the highest resolution image of dust and sand ever acquired on Mars. The silicone substrate provides a sticky surface for holding the particles to be examined by the microscope.

    Martian Particles on Microscope's Silicone Substrate In figure 1, the particles are on a silcone substrate target 3 millimeters (0.12 inch) in diameter, which provides a sticky surface for holding the particles while the microscope images them. Blow-ups of four of the larger particles are shown in the center. These particles range in size from about 30 microns to 150 microns (from about one one-thousandth of an inch to six one-thousandths of an inch).

    Possible Nature of Particles Viewed by Mars Lander's Optical Microscope In figure 2, the color composite on the right was acquired to examine dust that had fallen onto an exposed surface. The translucent particle highlighted at bottom center is of comparable size to white particles in a Martian soil sample (upper pictures) seen two sols earlier inside the scoop of Phoenix's Robotic Arm as imaged by the lander's Robotic Arm Camera. The white particles may be examples of the abundant salts that have been found in the Martian soil by previous missions. Further investigations will be needed to determine the white material's composition and whether translucent particles like the one in this microscopic image are found in Martian soil samples.

    Scale of Phoenix Optical Microscope Images This set of pictures in figure 3 gives context for the size of individual images from the Optical Microscope on NASA's Mars Phoenix Lander.

    The picture in the upper left was taken on Mars by the Surface Stereo Imager on Phoenix. It shows a portion of the microscope's sample stage exposed to accept a sample. In this case, the sample was of dust kicked up by the spacecraft thrusters during landers. Later samples will include soil delivered by the Robotic Arm.

    The other pictures were taken on Earth. They show close-ups of circular substrates on which the microscopic samples rest when the microscope images them. Each circular substrate target is 3 millimeters (about one-tenth of an inch) in diameter. Each image taken by the microscope covers and area 2 millimeters by 1 millimeter (0.08 inch by 0.04 inch), the size of a large grain of sand.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  16. A Petrographic History of Martian Meteorite ALH84001: Two Shocks and an Ancient Age

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.

    1995-01-01

    ALH84001 is an igneous meteorite, an orthopyroxenite of martian origin. It contains petrographic evidence of two shock metamorphic events, separated by thermal and chemical events. The evidence for two shock events suggests that ALH84001 is ancient and perhaps a sample of the martian highlands. From petrography and mineral chemistry, the history of ALH84001 must include: crystallization from magma, a first shock (impact) metamorphism, thermal metamorphism, low-temperature chemical alteration, and a second shock (impact) metamorphism. Originally, ALH84001 was igneous, an orthopyroxene-chromite cumulate. In the first shock event, the igneous rock was cut by melt-breccia or cataclastic veinlets, now bands of equigranular fine-grained pyroxene and other minerals (crush zones). Intact fragments of the cumulate were fractured and strained (now converted to polygonized zones). The subsequent thermal metamorphism (possibly related to the first shock) annealed the melt-breccia or cataclastic veinlets to their present granoblastic texture and permitted chemical homogenization of all mineral species present. The temperature of metamorphism was at least 875 C, based on mineral thermometers. Next, Mg-Fe-Ca carbonates and pyrite replaced plagioclase in both clasts and granular bands, producing ellipsoidal carbonate globules with sub-micron scale compositional stratigraphy, repeated identically in all globules, The second shock event produced microfault offsets of carbonate stratigraphy and other mineral contacts, radial fractures around chromite and maskelynite, and strain birefringence in pyroxene. Maskelynite could not have been preserved from the first shock event, because it would have crystallized back to plagioclase. The martian source area for ALH84001 must permit this complex, multiple impact history. Very few craters on young igneous surfaces are on or near earlier impact features. It is more likely that ALH84001 was ejected from an old igneous unit (Hesperian or Noachian age), pocked by numerous impact craters over its long exposure at the martian surface.

  17. Martian Colors Provide Clues About Martian Water

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA Hubble Space Telescope images of Mars taken in visible and infrared light detail a rich geologic history and provide further evidence for water-bearing minerals on the planet's surface.

    LEFT

    This 'true-color' image of Mars shows the planet as it would look to human eyes. It is clearly more Earth-toned than usually depicted in other astronomical images, including earlier Hubble pictures. The slightly bluer shade along the edges of the disk is due to atmospheric hazes and wispy water ice clouds (like cirrus clouds) in the early morning and late evening Martian sky. The yellowish-pink color of the northern polar cap indicates the presence of small iron-bearing dust particles. These particles are covering or are suspended in the air above the blue-white water ice and carbon dioxide ice, which make up the polar cap.

    Accurate colors are needed to determine the composition and mineralogy of Mars. This can tell how water has influenced the formation of rocks and minerals found on Mars today, as well as the distribution and abundance of ice and subsurface liquid water. Confirmation of the presence of certain oxidized (rusted) minerals (processed by heat or water action) would imply the possibility of different, perhaps much more Earth-like, past Martian climate periods. Because the smallest features visible in this image are only about 14 miles (22 km) across, Hubble can track small-scale variations in the distribution of minerals that do not follow global trends. The image was generated from three separate Wide Field and Planetary Camera 2 images acquired at wavelengths of 410, 502, and 673 nanometers, in March 1997.

    RIGHT

    A false-color picture taken in infrared light reveals features that cannot be seen in visible light. Hubble's unique infrared view pinpoints variations in the abundance and distribution of unknown water-bearing minerals on the planet. While it has been known for decades that small amounts of water-bearing minerals exist on the planet's surface, the reddish regions in this image indicate areas of enhanced concentrations of these as-yet-unidentified deposits. They are perhaps related to the water-rich history of this part of Mars. In particular, the large reddish region known as Mare Acidalium was the site of massive flooding early in Martian history. (NASA's Pathfinder spacecraft landed at the southern edge of this region in 1997.) This composite image was taken in July 1997 with Hubble's Near Infrared Camera and Multi-Object Spectrometer. Red corresponds to the strength of an absorption band detected near 1450 nanometers; green to the brightness of the surface in the near-infrared; and blue to topographic elevation, determined from Viking Orbiter data.

  18. Seasonal and diurnal variations in Martian surface ultraviolet irradiation: biological and chemical implications for the Martian regolith

    NASA Astrophysics Data System (ADS)

    Patel, M. R.; Bérces, A.; Kolb, C.; Lammer, H.; Rettberg, P.; Zarnecki, J. C.; Selsis, F.

    2003-01-01

    The issue of the variation of the surface ultraviolet (UV) environment on Mars was investigated with particular emphasis being placed on the interpretation of data in a biological context. A UV model has been developed to yield the surface UV irradiance at any time and place over the Martian year. Seasonal and diurnal variations were calculated and dose rates evaluated. Biological interpretation of UV doses is performed through the calculation of DNA damage effects upon phage T7 and Uracil, used as examples for biological dosimeters. A solar UV "hotspot" was revealed towards perihelion in the southern hemisphere, with a significant damaging effect upon these species. Diurnal profiles of UV irradiance are also seen to vary markedly between aphelion and perihelion. The effect of UV dose is also discussed in terms of the chemical environment of the Martian regolith, since UV irradiance can reach high enough levels so as to have a significant effect upon the soil chemistry. We show, by assuming that H2O is the main source of hydrogen in the Martian atmosphere, that the stoichiometrically desirable ratio of 2:1 for atmospheric H and O loss rates to space are not maintained and at present the ratio is about 20:1. A large planetary oxygen surface sink is therefore necessary, in contrast with escape to space. This surface oxygen sink has important implications for the oxidation potential and the toxicology of the Martian soil. UV-induced adsorption of O_{2}^{-} super-radicals plays an important role in the oxidative environment of the Martian surface, and the biologically damaging areas found in this study are also shown to be regions of high subsurface oxidation. Furthermore, we briefly cover the astrobiological implications for landing sites that are planned for future Mars missions

  19. Tracking the Martian Mantle Signature in Olivine-Hosted Melt Inclusions of Basaltic Shergottites Yamato 980459 and Tissint

    NASA Technical Reports Server (NTRS)

    Peters, T. J.; Simon, J. I.; Jones, J. H.; Usui, T.; Moriwaki, R.; Economos, R.; Schmitt, A.; McKeegan, K.

    2014-01-01

    The Martian shergottite meteorites are basaltic to lherzolitic igneous rocks that represent a period of relatively young mantle melting and volcanism, approximately 600-150 Ma (e.g. [1,2]). Their isotopic and elemental composition has provided important constraints on the accretion, evolution, structure and bulk composition of Mars. Measurements of the radiogenic isotope and trace element concentrations of the shergottite meteorite suite have identified two end-members; (1) incompatible trace element enriched, with radiogenic Sr and negative epsilon Nd-143, and (2) incompatible traceelement depleted, with non-radiogenic Sr and positive epsilon 143-Nd(e.g. [3-5]). The depleted component represents the shergottite martian mantle. The identity of the enriched component is subject to debate, and has been proposed to be either assimilated ancient martian crust [3] or from enriched domains in the martian mantle that may represent a late-stage magma ocean crystallization residue [4,5]. Olivine-phyric shergottites typically have the highest Mg# of the shergottite group and represent near-primitive melts having experienced minimal fractional crystallization or crystal accumulation [6]. Olivine-hosted melt inclusions (MI) in these shergottites represent the most chemically primitive components available to understand the nature of their source(s), melting processes in the martian mantle, and origin of enriched components. We present trace element compositions of olivine hosted melt inclusions in two depleted olivinephyric shergottites, Yamato 980459 (Y98) and Tissint (Fig. 1), and the mesostasis glass of Y98, using Secondary Ionization Mass Spectrometry (SIMS). We discuss our data in the context of understanding the nature and origin of the depleted martian mantle and the emergence of the enriched component.

  20. A Parent Magma for the Nakhla Martian Meteorite: Reconciliation of Estimates from 1-Bar Experiments, Magmatic Inclusions in Olivine, and Magmatic Inclusions in Augite

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.; Goodrich, Cyrena Anne

    2001-01-01

    The composition of the parent magma for the Nakhla (martian) meteorite has been estimated from mineral-melt partitioning and from magmatic inclusions in olivine and in augite. These independent lines of evidence have converged on small range of likely compositions. Additional information is contained in the original extended abstract.

  1. Particulate Removal Using a CO2 Composite Spray Cleaning System

    NASA Technical Reports Server (NTRS)

    Chen, Nicole; Lin, Ying; Jackson, David; Chung, Shirley

    2016-01-01

    The Planetary Protection surface cleanliness requirements for potential Mars Sample Return hardware that would come in contact with Martian samples may be stricter than previous missions. The Jet Propulsion Laboratory has developed a new technology that will enable us to remove sub-micron size particles from critical hardware surfaces. A hand-held CO2 composite cleaning system was tested to verify its cleaning capabilities. This convenient, portable device can be used in cleanrooms for cleaning after rework or during spacecraft integration and assembly. It is environmentally safe and easy to use. This cleaning concept has the potential to be further developed into a robotic cleaning device on a Mars Lander to be used to clean sample acquisition or sample handling devices in situ. Contaminants of known sizes and concentrations, such as fluorescent microspheres and spores were deposited on common spacecraft material surfaces. The cleaning efficiency results will be presented and discussed.

  2. Mariner 6 and 7 picture analysis

    NASA Technical Reports Server (NTRS)

    Leighton, R. B.

    1975-01-01

    Analysis of Mariner 6 and 7 far-encounter (FE) pictures is discussed. The purpose of the studies was to devise ways to combine digital data from the full set of FE pictures so as to improve surface resolution, distinguish clouds and haze patches from permanent surface topographic markings, deduce improved values for radius, oblateness, and spin-axis orientation, and produce a composite photographic map of Mars. Attempts to measure and correct camera distortions, locate each image in the frame, and convert image coordinates to martian surface coordinates were highly successful; residual uncertainties in location were considerably less than one pixel. However, analysis of the data to improve the radius, figure, and axial tilt and to produce a composite map was curtailed because of the superior data provided by Mariner 9. The data, programs, and intermediate results are still available (1976), and the project could be resumed with little difficulty.

  3. Dust Ejection Induced by Small Meteoroids Impacting Martian Surface

    NASA Technical Reports Server (NTRS)

    Shuvalov, Valery

    2001-01-01

    The objective of this study is numerical modeling of meteoroid impact on the martian surface and determination of the resulting dust cloud parameters. Additional information is contained in the original extended abstract.

  4. Electrical Resistivity of natural Marcasite at High-pressures

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Gopalakrishnarao

    2013-06-01

    Marcasite is considered to be a common iron sulfide in reducing Martian sediments and may enclose microbial remains during growth and hence study of marcasite may have significance in the search for fossil life on Mars. The high-pressure phase stability investigations of marcasite are useful in understanding the sulfide mineralogy of Martian surface, affected by meteorite impacts. The sulfides were characterized by electron microprobe micro analyses (EPMA), powder X-ray diffraction, DTA, and FTIR spectroscopic measurements. The samples were powdered using a porcelain mortar and pestle. The chemical composition of the sample was determined by an electron probe micro-analyzer (EPMA). High-pressure electrical resistivity measurements were carried out on natural marcasite, and marcasite rich samples (Marcasite 95 mol % pyrite 5 mol %) up to 7 GPa. Marcasite sample shows a discontinuous decrease in the electrical resistivity at 5. 2 (+/- 0.5) GPa indicating a first order phase transition. The Differential thermal analyses and the Fourier transform infrared spectroscopic measurements on the pressure quenched sample shows the characteristics of pyrite, indicating the pressure induced marcasite-to -pyrite transition of the natural marcasite at 5. 2 (+/- 0.5) GPa. The observation of marcasite to pyrite phase transition may be useful in estimating the pressure experienced by shock events on the Martian surface as well as the meteorites where marcasite- pyrite phases coexist. Financial support from CSIR-SHORE-PSC0205.

  5. Solar Particle Event Exposures and Local Tissue Environments in Free Space and on Martian Surface

    NASA Technical Reports Server (NTRS)

    Kim, M. Y.; Shinn, J. L.; Singleterry, R. C.; Atwell, W.; Wilson, J. W.

    1999-01-01

    Solar particle events (SPEs) are a concern to space missions outside Earth s geomagnetic field. The September 29, 1989 SPE is the largest ground-level event since February 23, 1956. It is an iron-rich event for which the spectra are well measured. Because ten times this event matches the ground level data of the February 1956 SPE, it is suggested that an event with ten-times the scaled spectra of the September 29, 1989 SPE be used as a worst case SPE for spacecraft design. For the worst case SPE, the input spectra were reconstructed using Nymmik's (1995) model for protons, the O and Fe ion spectra of Tylka et al. (1997) to evaluate the iron enhancement ratio, and the Solar Energetic Particle Baseline (SEPB) composition of McGuire et al. (1986) for the heavy ions. The necessary transport properties of the shielding materials and the astronaut s body tissues are evaluated using the HZETRN code. Three shield configurations (assumed to be aluminum) are considered: space suit taken as 0.3 g/sq cm, helmet/pressure vessel as 1 g/sq cm, and equipment room of 5 g/sq cm. A shelter is taken as 10 g/sq cm on the Martian surface. The effect of shielding due to the Martian atmosphere is included. The astronaut geometry is taken from the computerized anatomical man (CAM) model.

  6. Photovoltaic array for Martian surface power

    NASA Technical Reports Server (NTRS)

    Appelbaum, J.; Landis, G. A.

    1992-01-01

    Missions to Mars will require electric power. A leading candidate for providing power is solar power produced by photovoltaic arrays. To design such a power system, detailed information on solar-radiation availability on the Martian surface is necessary. The variation of the solar radiation on the Martian surface is governed by three factors: (1) variation in Mars-Sun distance; (2) variation in solar zenith angle due to Martian season and time of day; and (3) dust in the Martian atmosphere. A major concern is the dust storms, which occur on both local and global scales. However, there is still appreciable diffuse sunlight available even at high opacity, so that solar array operation is still possible. Typical results for tracking solar collectors are also shown and compared to the fixed collectors. During the Northern Hemisphere spring and summer the isolation is relatively high, 2-5 kW-hr/sq m-day, due to the low optical depth of the Martian atmosphere. These seasons, totalling a full terrestrial year, are the likely ones during which manned mission will be carried out.

  7. Geochemistry of Martian Meteorites and the Petrologic Evolution of Mars

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.

    2002-01-01

    Mafic igneous rocks serve as probes of the interiors of their parent bodies - the compositions of the magmas contain an imprint of the source region composition and mineralogy, the melting and crystallization processes, and mixing and assimilation. Although complicated by their multifarious history, it is possible to constrain the petrologic evolution of an igneous province through compositional study of the rocks. Incompatible trace elements provide one means of doing this. I will use incompatible element ratios of martian meteorites to constrain the early petrologic evolution of Mars. Incompatible elements are strongly partitioned into the melt phase during igneous processes. The degree of incompatibility will differ depending on the mineral phases in equilibrium with the melt. Most martian meteorites contain some cumulus grains, but nevertheless, incompatible element ratios of bulk meteorites will be close to those of their parent magmas. ALH 84001 is an exception, and it will not be discussed. The martian meteorites will be considered in two groups; a 1.3 Ga group composed of the clinopyroxenites and dunite, and a younger group composed of all others.

  8. Modeling aqueous ferrous iron chemistry at low temperatures with application to Mars

    USGS Publications Warehouse

    Marion, G.M.; Catling, D.C.; Kargel, J.S.

    2003-01-01

    Major uncertainties exist with respect to the aqueous geochemical evolution of the Martian surface. Considering the prevailing cryogenic climates and the abundance of salts and iron minerals on Mars, any attempt at comprehensive modeling of Martian aqueous chemistry should include iron chemistry and be valid at low temperatures and high solution concentrations. The objectives of this paper were to (1) estimate ferrous iron Pitzer-equation parameters and iron mineral solubility products at low temperatures (from < 0 ??C to 25 ??C), (2) incorporate these parameters and solubility products into the FREZCHEM model, and (3) use the model to simulate the surficial aqueous geochemical evolution of Mars. Ferrous iron Pitzer-equation parameters were derived in this work or taken from the literature. Six new iron minerals [FeCl2??4H2O, FeCl2??6H2O, FeSO4??H2O, FeSO4??7H2O, FeCO3, and Fe(OH)3] were added to the FREZCHEM model bringing the total solid phases to 56. Agreement between model predictions and experimental data are fair to excellent for the ferrous systems: Fe-Cl, Fe-SO4, Fe-HCO3, H-Fe-Cl, and H-Fe-SO4. We quantified a conceptual model for the aqueous geochemical evolution of the Martian surface. The five stages of the conceptual model are: (1) carbonic acid weathering of primary ferromagnesian minerals to form an initial magnesium-iron-bicarbonate-rich solution; (2) evaporation and precipitation of carbonates, including siderite (FeCO3), with evolution of the brine to a concentrated NaCl solution; (3) ferrous/ferric iron oxidation; (4) either evaporation or freezing of the brine to dryness; and (5) surface acidification. What began as a dilute Mg-Fe-HCO3 dominated leachate representing ferromagnesian weathering evolved into an Earth-like seawater composition dominated by NaCl, and finally into a hypersaline Mg-Na-SO4-Cl brine. Weathering appears to have taken place initially under conditions that allowed solution of ferrous iron [low O2(g)], but later caused oxidation of iron [high O2(g)]. Surface acidification and/or sediment burial can account for the minor amounts of Martian surface carbonates. This model rests on a large number of assumptions and is therefore speculative. Nevertheless, the model is consistent with current understanding concerning surficial salts and minerals based on Martian meteorites, Mars lander data, and remotely-sensed spectral analyses. ?? 2003 Elsevier Ltd.

  9. Selective weathering of shocked minerals and chondritic enrichment of the Martian fines

    NASA Technical Reports Server (NTRS)

    Boslough, M. B.

    1987-01-01

    In a recent paper, Boslough and Cygan reported the observation of shock-enhanced chemical weathering kinetics of three silicate minerals. Based on the experimental data and on those of Tyburczy and Ahrens for enhanced dehydration kinetics of shocked serpentine, a mechnaism is proposed by which shock-activated minerals are selectively weathered on the surface of Mars. The purpose of the present abstract is to argue on the basis of relative volumes of shocked materials that, as a direct consequence of selective weathering, the composition of the weathered surface units on Mars should be enriched in meteoritic material.

  10. Reflectance spectroscopy of palagonite and iron-rich montmorillonite clay mixtures - Implications for the surface composition of Mars

    NASA Technical Reports Server (NTRS)

    Orenberg, James; Handy, Jonathan

    1992-01-01

    The diffuse reflectance spectra of Hawaiian palagonite mixtures with an Fe-rich montmorillonite have prompted their present use as spectral analogs of the Martian surface. Like the Mars spectrum and unlike clays, the 2.2-micron reflectance spectrum absorption band is not present in the palagonite sample; neither is the 2.2-micron Al-OH clay lattice band seen in palagonite-montmorillonite mixtures, where the latter component remains below 15 wt pct. Fe-rich montmorillonite clay may therefore be present in Mars, in combination with palagonite, while remaining undetected in remotely sensed spectra.

  11. Preliminary Estimates of the Possibilities for Developing a Deployable Greenhouse for a Planetary Surface (Mars)

    NASA Technical Reports Server (NTRS)

    Rygalov, V. Y.; Bucklin, R. A.; Fowler, P. A.; Wheeler, R. M.

    2000-01-01

    Two of the main conditions for plant growth and development on the Martian surface are irradiation (optimal range from 80 W/sq m to 180 W/sq m of photosynthetically active radiation) and temperature (optimal range from 20 C to 27 C). The only known natural source of energy on Mars is sunlight, with a general intensity of 589 +/- 142 W/sq m (Martian Solar Constant). Comparisons of plant growth requirements with conditions on the Martian surface are presented in Table 1, while some basic considerations for implementing plant growth in a Martian DG are presented in Table 2. The general scenario and approximate schedule of startup and development of operations in DG are shown in Table 3.

  12. Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data

    USGS Publications Warehouse

    Christensen, P.R.; Bandfield, J.L.; Smith, M.D.; Hamilton, V.E.; Clark, R.N.

    2000-01-01

    The Mars Global Surveyor Thermal Emission Spectrometer (TES) instrument collected 4.8 ?? 106 spectra of Mars during the initial aerobraking and science-phasing periods of the mission (September 14, 1997, through April 29, 1998). Two previously developed atmosphere-removal models were applied to data from Cimmeria Terra (25?? S, 213?? W). The surface spectra derived for these two models agree well, indicating that the surface and atmosphere emission can be separated and that the exact atmosphere-removal model used has little effect on the derived surface composition. The Cimmeria spectra do not match terrestrial high-silica igneous rocks (granite and rhyolite), ultramafic igneous rocks, limestone, or quartz- and clay-rich sandstone and siltstone. A particulate (sand-sized) sample of terrestrial flood basalt does provide an excellent match in both spectral shape and band depth to the Cimmeria spectrum over the entire TES spectral range. No unusual particle size effects are required to account for the observed spectral shape and depth. The implied grain size is consistent with the thermal inertia and albedo of this region, which indicate a sand-sized surface with little dust. The identification of basalt is consistent with previous indications of pyroxene and basalt-like compositions from visible/ near-infrared and thermal-infrared spectral measurements. A linear spectral deconvolution model was applied to both surface-only Cimmeria spectra using a library of 60 minerals to determine the composition and abundance of the component minerals. Plagioclase feldspar (45%; 53%) and clinopyroxene (26%; 19%) were positively identified above an estimated detection threshold of 10-15% for these minerals. The TES observations provide the first identification of feldspars on Mars. The best fit to the Mars data includes only clinopyroxene compositions; no orthopyroxene compositions are required to match the Cimmeria spectra. Olivine (12%; 12%) and sheet silicate (15%; 11%) were identified with lower confidence. Carbonates, quartz, and sulfates were not identified in Cimmeria at detection limits of ???5, 5, and 10%, respectively. Their presence elsewhere, however, remains open. The Cimmeria spectra are not well matched by any one SNC meteorite spectrum, indicating that this region is not characterized by a single SNC lithology. The occurrence of unweathered feldspar and pyroxene in Cimmeria, together with the inferred presence of pyroxene and unweathered basalts in other dark regions and at the Viking and Pathfinder landing sites, provides evidence that extensive global chemical weathering of materials currently exposed on the Martian surface has not occurred. Copyright 2000 by the American Geophysical Union.

  13. Evidence that the reactivity of the martian soil is due to superoxide ions

    NASA Technical Reports Server (NTRS)

    Yen, A. S.; Kim, S. S.; Hecht, M. H.; Frant, M. S.; Murray, B.

    2000-01-01

    The Viking Landers were unable to detect evidence of life on Mars but, instead, found a chemically reactive soil capable of decomposing organic molecules. This reactivity was attributed to the presence of one or more as-yet-unidentified inorganic superoxides or peroxides in the martian soil. Using electron paramagnetic resonance spectroscopy, we show that superoxide radical ions (O2-) form directly on Mars-analog mineral surfaces exposed to ultraviolet radiation under a simulated martian atmosphere. These oxygen radicals can explain the reactive nature of the soil and the apparent absence of organic material at the martian surface.

  14. Characteristics of the Martian atmosphere surface layer

    NASA Technical Reports Server (NTRS)

    Clow, G. D.; Haberle, R. M.

    1991-01-01

    Researchers extend elements of various terrestrial boundary layer models to Mars in order to estimate sensible heat, latent heat, and momentum fluxes within the Martian atmospheric surface layer. To estimate the molecular viscosity and thermal conductivity of a CO2-H2O gas mixture under Martian conditions, parameterizations were developed. Parameterizations for specific heat and and binary diffusivity were also determined. The Prandtl and Schmidt numbers derived from these thermophysical properties were found to range from 0.78 - 1.0 and 0.47 - 0.70, respectively, for Mars. Brutsaert's model for sensible and latent heat transport within the interfacial sublayer for both aerodynamically smooth and rough airflow was experimentally tested under similar conditions, validating its application to Martian conditions. For the surface sublayer, the researchers modified the definition of the Monin-Obukhov length to properly account for the buoyancy forces arising from water vapor gradients in the Martian atmospheric boundary layer. This length scale was then utilized with similarity theory turbulent flux profiles with the same form as those used by Businger et al. and others. It was found that under most Martian conditions, the interfacial and surface sublayers offer roughly comparable resistance to sensible heat and water vapor transport and are thus both important in determining the associated fluxes.

  15. Indigenous Carbonaceous Matter in the Nakhla Mars Meteorite

    NASA Technical Reports Server (NTRS)

    Clemett, S. J.; Thomas-Keprta, K. L.; Rahman, Z.; Le, L.; Wentworth, S. J.; Gibson, E. K.; McKay, D. S.

    2016-01-01

    Detailed microanalysis of the Martian meteorite Nakhla has shown there are morphologically distinct carbonaceous features spatially associated with low-T aqueous alteration phases including salts and id-dingsite. A comprehensive suite of analytical instrumentation including optical microscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) spectroscopy, focused ion beam (FIB) microscopy, transmission electron microscopy (TEM), two-step laser mass spectrometry (mu-L(sup 2)MS), laser mu-Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and nanoscale secondary ion mass spectrometry (NanoSIMS) are being used to characterize the carbonaceous matter and host mineralogy. The search for carbonaceous matter on Mars has proved challenging. Viking Landers failed to unambiguously detect simple organics at either of the two landing sites although the Martian surface is estimated to have acquired at least 10(exp15) kg of C as a consequence of meteoritic accretion over the last several Ga. The dearth of organics at the Martian surface has been attributed to various oxidative processes including UV photolysis and peroxide activity. Consequently, investigations of Martian organics need to be focused on the sub-surface regolith where such surface processes are either severely attenuated or absent. Fortuitously since Martian meteorites are derived from buried regolith materials they provide a unique opportunity to study Martian organic geochemistry.

  16. Merits of a Locality Sample for Accomplishing Mars Exploration Goals: The First Sample Return Mission

    NASA Astrophysics Data System (ADS)

    Draper, D. S.; Bogard, D. D.; Agee, C. B.; McKay, G. A.; Jones, J. H.

    2002-05-01

    A major stumbling block to a Mars sample return (MSR) mission is the seemingly prohibitive cost of maximizing sample diversity. The use of rovers, sophisticated on-board instrumentation, and various sample selection techniques are perceived by some to be necessary to maximize the scientific return by making it possible to acquire as diverse a suite of samples as possible. Here, we argue that many key science goals of the Mars Exploration Program may be accomplished by returning only a "locality sample" at a well-chosen landing site. A locality sample would be local regolith consisting of soil, windblown fines, and lithic fragments (plus Martian atmosphere). We argue that even the simplest sample return mission could revolutionize our understanding of the planet, without requiring the large outlays for technology development currently envisioned. By the time a MSR mission could realistically be flown, it is reasonable to expect that information from the Mars Odyssey, Mars Express, 2003 Mars Exploration Rovers, and 2005 Mars Reconnaissance Orbiter will be sufficient to make a good choice of landing site. Returned samples of Martian regolith have the potential to answer key questions of fundamental importance to the Mars Exploration Program: The search for life; understanding the role and history of water and other volatiles; helping to interpret remotely-sensed spectral data; and understanding the planet as a system. The value of such samples has been studied exhaustively for decades and detailed in publications dating back at least to 1974. A locality sample can further the search for life by identifying, among other things, trace quantities of surface organics, biogenic elements and their isotopic compositions, evidence for water in the form of hydrous minerals and/or cements, the nature of the Martian soil oxidant, trace biomarkers, and evidence for clay-forming processes. The role of water will be better understood by revealing, in addition, whether interactions between soil/rocks and the Martian atmosphere have recently occurred, and whether there are currently pathways among cyclic reservoirs (e.g. for carbon). Fundamental information regarding the current atmosphere is certain to be gained as well. Interpreting remotely-sensed data will be greatly strengthened by providing ground truth in the form of mineralogy and lithology of sample materials and by allowing an estimate of the extent of regolith gardening by impacts, the nature and thickness of dust coatings and/or alteration rinds, the nature of Martian layered deposits, and the extent to which materials like the Martian meteorites are present at the surface. Basic planetology questions that might be answered include the compositions and ages of the highlands or lowlands, and how wet Mars was, and at what time in its history. The much-discussed alternative, a mission built around a very capable rover, has several large drawbacks. First, the mass and expense of making the rover highly autonomous diminishes science return. Second, the rover represents a single-point failure; if the rover is stranded, the samples cannot be returned. Third, there is no demonstrable positive correlation between roving ability/range and sampling diversity. A simple locality-sample MSR mission provides the foundation for later, targeted return missions. Such a mission "follows the water" down into surface minerals and soils, and uniquely provides understanding of the surface environment that will best enable us to target the most promising sites to look for life.

  17. Tissint martian meteorite: a fresh look at the interior, surface, and atmosphere of Mars.

    PubMed

    Aoudjehane, H Chennaoui; Avice, G; Barrat, J-A; Boudouma, O; Chen, G; Duke, M J M; Franchi, I A; Gattacceca, J; Grady, M M; Greenwood, R C; Herd, C D K; Hewins, R; Jambon, A; Marty, B; Rochette, P; Smith, C L; Sautter, V; Verchovsky, A; Weber, P; Zanda, B

    2012-11-09

    Tissint (Morocco) is the fifth martian meteorite collected after it was witnessed falling to Earth. Our integrated mineralogical, petrological, and geochemical study shows that it is a depleted picritic shergottite similar to EETA79001A. Highly magnesian olivine and abundant glass containing martian atmosphere are present in Tissint. Refractory trace element, sulfur, and fluorine data for the matrix and glass veins in the meteorite indicate the presence of a martian surface component. Thus, the influence of in situ martian weathering can be unambiguously distinguished from terrestrial contamination in this meteorite. Martian weathering features in Tissint are compatible with the results of spacecraft observations of Mars. Tissint has a cosmic-ray exposure age of 0.7 ± 0.3 million years, consistent with those of many other shergottites, notably EETA79001, suggesting that they were ejected from Mars during the same event.

  18. NWA 8114: Analysis of Xenon in this Unique Martian Meteorite

    NASA Astrophysics Data System (ADS)

    Crowther, S. A.; Jastrzebski, N. D.; Nottingham, M.; Theis, K. J.; Gilmour, J. D.

    2014-09-01

    The Xe composition of NWA 8114 is dominated by martian atmospheric xenon, with contributions from terrestrial atmospheric contamination at low temperature and fissiogenic xenon at high temperature. The overall systematics are similar to Nakhla.

  19. A TEM Investigation of the Fine-Grained Matrix of the Martian Basaltic Breccia NWA 7034

    NASA Technical Reports Server (NTRS)

    Muttik, N.; Keller, L. P.; Agee, C. B.; McCubbin, F. M.; Santos, A. R.; Rahman, Z.

    2014-01-01

    The martian basaltic breccia NWA 7034 is characterized by fine-grained groundmass containing several different types of mineral grains and lithologic clasts. The matrix composition closely resembles Martian crustal rock and soil composition measured by recent rover and orbiter missions. The first results of NWA 7034 suggest that the brecciation of this martian meteorite may have formed due to eruptive volcanic processes; however, impact related brecciation processes have been proposed for paired meteorites NWA 7533 and NWA 7475]. Due to the very fine grain size of matrix, its textural details are difficult to resolve by optical and microprobe observations. In order to examine the potential nature of brecciation, transmission electron microscopy (TEM) studies combined with focused ion-beam technique (FIB) has been undertaken. Here we present the preliminary observations of fine-grained groundmass of NWA 7034 from different matrix areas by describing its textural and mineralogical variations and micro-structural characteristics.

  20. MSATT Workshop on Innovative Instrumentation for the In Situ Study of Atmosphere-Surface Interactions on Mars

    NASA Technical Reports Server (NTRS)

    Fegley, Bruce, Jr. (Editor); Waenke, Heinrich (Editor)

    1992-01-01

    Papers accepted for the Mars Surface and Atmosphere Through Time (MSATT) Workshop on Innovative Instruments for the In Situ Study of Atmosphere-Surface Interaction of Mars, 8-9 Oct. 1992 in Mainz, Germany are included. Topics covered include: a backscatter Moessbauer spectrometer (BaMS) for use on Mars; database of proposed payloads and instruments for SEI missions; determination of martian soil mineralogy and water content using the Thermal Analyzer for Planetary Soils (TAPS); in situ identification of the martian surface material and its interaction with the martian atmosphere using DTA/GC; mass spectrometer-pyrolysis experiment for atmospheric and soil sample analysis on the surface of Mars; and optical luminescence spectroscopy as a probe of the surface mineralogy of Mars.

  1. Performance of the future MOMA GC-ITMS instrument

    NASA Astrophysics Data System (ADS)

    Grand, Noel; Buch, Arnaud; Veronica, Pinnick; Szopa, Cyril; Danell, Ryan; Van Amerom, Friso H. W.; Glavin, Daniel P.; Freissinet, Caroline; Arevalo, Ricardo; Stalport, Fabien; Getty, Stephanie; Coll, Patrice; Steinninger, Harald; Brinckerhoff, William; Mahaffy, Paul; Goesmann, Fred; Raulin, F.; Goetz, Walter; MOMA Team

    2016-10-01

    The Mars Organic Molecule Analyzer (MOMA) experiment aboard the future ExoMars mission will be the continuation of the SAM expirement aboard the Curiosity rover, with the search for the organic composition of the Mars surface. With ExoMars the sample will be extracted as deep as 2 meters below the martian surface to minimize effects of radiation and oxidation on organic materials. To analyze the wide range of organic composition (volatile and non-volatiles compounds) of the Martian soil MOMA is composed with an UV laser desorption / ionization (LDI) and a pyrolysis gas chromatography ion trap mass spectrometry (pyr-GC-ITMS). In order to analyze refractory organic compounds and chirality samples which undergo GC-ITMS analysis may be submitted to a derivatization process, consisting of the reaction of the sample components with specific reactants (MTBSTFA [1], DMF-DMA [2] or TMAH [3]).To optimize and test the performance of the GC-ITMS instrument we have performed several coupling tests campaigns between the GC, providing by the French team (LISA, LATMOS, CentraleSupelec), and the MS, providing by the US team (NASA, GSFC). Last campaign has been done with the ETU models which is similar to the flight model and which include the oven and the taping station providing by the German team (MPS).The results obtained demonstrate the current status of the end-to-end performance of the gas chromatography-mass spectrometry mode of operation.

  2. Amorphous Phases on the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Morris, R. V.; Ruff, S. W.; Horgan, B.; Dehouck, E.; Achilles, C. N.; Ming, D. W.; Bish, D. L.; Chipera, S. J.

    2014-01-01

    Both primary (volcanic/impact glasses) and secondary (opal/silica, allophane, hisingerite, npOx, S-bearing) amorphous phases appear to be major components of martian surface materials based on orbital and in-situ measurements. A key observation is that whereas regional/global scale amorphous components include altered glass and npOx, local scale amorphous phases include hydrated silica/opal. This suggests widespread alteration at low water-to-rock ratios, perhaps due to snow/ice melt with variable pH, and localized alteration at high water-to-rock ratios. Orbital and in-situ measurements of the regional/global amorphous component on Mars suggests that it is made up of at least three phases: npOx, amorphous silicate (likely altered glass), and an amorphous S-bearing phase. Fundamental questions regarding the composition and the formation of the regional/global amorphous component(s) still remain: Do the phases form locally or have they been homogenized through aeolian activity and derived from the global dust? Is the parent glass volcanic, impact, or both? Are the phases separate or intimately mixed (e.g., as in palagonite)? When did the amorphous phases form? To address the question of source (local and/or global), we need to look for variations in the different phases within the amorphous component through continued modeling of the chemical composition of the amorphous phases in samples from Gale using CheMin and APXS data. If we find variations (e.g., a lack of or enrichment in amorphous silicate in some samples), this may imply a local source for some phases. Furthermore, the chemical composition of the weathering products may give insight into the formation mechanisms of the parent glass (e.g., impact glasses contain higher Al and lower Si [30], so we might expect allophane as a weathering product of impact glass). To address the question of whether these phases are separate or intimately mixed, we need to do laboratory studies of naturally altered samples made up of mixed phases (e.g., palagonite) and synthetic single phases to determine their short-range order structures and calculate their XRD patterns to use in models of CheMin data. Finally, to address the timing of the alteration, we need to study rocks on the martian surface of different ages that may contain glass (volcanic or impact) with MSL and future rovers to better understand how glass alters on the martian surface, if that alteration mechanism is universal, and if alteration spans across long periods of time or if there is a time past which unaltered glass remains.

  3. Effects of geochemical composition on neutron die-away measurements: Implications for Mars Science Laboratory's Dynamic Albedo of Neutrons experiment

    NASA Astrophysics Data System (ADS)

    Hardgrove, C.; Moersch, J.; Drake, D.

    2011-12-01

    The Dynamic Albedo of Neutrons (DAN) experiment, part of the scientific payload of the Mars Science Laboratory (MSL) rover mission, will have the ability to assess both the abundance and the burial depth of subsurface hydrogen as the rover traverses the Martian surface. DAN will employ a method of measuring neutron fluxes called “neutron die-away” that has not been used in previous planetary exploration missions. This method requires the use of a pulsed neutron generator that supplements neutrons produced via spallation in the subsurface by the cosmic ray background. It is well established in neutron remote sensing that low-energy (thermal) neutrons are sensitive not only to hydrogen content, but also to the macroscopic absorption cross-section of near-surface materials. To better understand the results that will be forthcoming from DAN, we model the effects of varying abundances of high absorption cross-section elements that are likely to be found on the Martian surface (Cl, Fe) on neutron die-away measurements made from a rover platform. Previously, the Mars Exploration Rovers (MER) Spirit and Opportunity found that elevated abundances of these two elements are commonly associated with locales that have experienced some form of aqueous activity in the past, even though hydrogen-rich materials are not necessarily still present. By modeling a suite of H and Cl compositions, we demonstrate that (for abundance ranges reasonable for Mars) both the elements will significantly affect DAN thermal neutron count rates. Additionally, we show that the timing of thermal neutron arrivals at the detector can be used together with the thermal neutron count rates to independently determine the abundances of hydrogen and high neutron absorption cross-section elements (the most important being Cl). Epithermal neutron die-away curves may also be used to separate these two components. We model neutron scattering in actual Martian compositions that were determined by the MER Alpha Proton X-Ray Spectrometer (APXS), as examples of local geochemical anomalies that DAN would be sensitive to if they were present at the MSL landing site. These MER targets, named “Eileen Dean,” “Jack Russell,” and “Kenosha Comets,” all have unusually high or low Cl or Fe abundances as a result of geochemical interactions involving water. Using these examples we demonstrate that DAN can be used not only to assess the amount of present-day hydrogen in the near-surface but also to identify locations that may preserve a geochemical record of past aqueous processes.

  4. Manganese, Metallogenium, and Martian Microfossils

    NASA Technical Reports Server (NTRS)

    Stein, L. Y.; Nealson, K. H.

    1999-01-01

    Manganese could easily be considered an abundant element in the Martian regolith, assuming that the composition of martian meteorites reflects the composition of the planet. Mineralogical analyses of 5 SNC meteorites have revealed an average manganese oxide concentration of 0.48%, relative to the 0.1% concentration of manganese found in the Earth's crust. On the Earth, the accumulation of manganese oxides in oceans, soils, rocks, sedimentary ores, fresh water systems, and hydrothermal vents can be largely attributed to microbial activity. Manganese is also a required trace nutrient for most life forms and participates in many critical enzymatic reactions such as photosynthesis. The wide-spread process of bacterial manganese cycling on Earth suggests that manganese is an important element to both geology and biology. Furthermore, there is evidence that bacteria can be fossilized within manganese ores, implying that manganese beds may be good repositories for preserved biomarkers. A particular genus of bacteria, known historically as Metallogenium, can form star-shaped manganese oxide minerals (called metallogenium) through the action of manganese oxide precipitation along its surface. Fossilized structures that resemble metallogenium have been found in Precambrian sedimentary formations and in Cretaceous-Paleogene cherts. The Cretaceous-Paleogene formations are highly enriched in manganese and have concentrations of trace elements (Fe, Zn, Cu, and Co) similar to modern-day manganese oxide deposits in marine environments. The appearance of metallogenium-like fossils associated with manganese deposits suggests that bacteria may be preserved within the minerals that they form. Additional information is contained in the original extended abstract.

  5. The value of Phobos sample return

    NASA Astrophysics Data System (ADS)

    Murchie, Scott L.; Britt, Daniel T.; Pieters, Carle M.

    2014-11-01

    Phobos occupies a unique position physically, scientifically, and programmatically on the road to exploration of the solar system. It is a low-gravity object moderately inside the gravity well of Mars. Scientifically, it is both an enigma and an opportunity: an enigma because the origins of both it and Deimos are uncertain, and provide insights into formation of the terrestrial planets; and an opportunity because Phobos may be a waypoint or staging point for future human exploration of the Mars system. Phobos is a low albedo, spectrally bland body with a red-sloped continuum. It appears similar to D-type objects more commonly found in the outer asteroid belt and Jovian space (Rivkin et al., 2002), but occurs in an orbit that is difficult to explain by capture (Burns, 1992). It might have a primitive composition like that inferred for outer solar system objects or it could be related to Mars and, for example, be composed of Martian basin ejecta. Regardless, Phobos has acted as a witness plate to Martian debris over the age of the solar system. The moons may possibly be a source of in situ resources that could support future human exploration in circum-Mars space or on the Martian surface. in situ compositional analyses can address many questions relevant to preparation for future human exploration. Sample return resolves those questions while also enabling detailed analyses in terrestrial laboratories to address higher order questions, many of which have not yet been asked.

  6. Iron oxide and hydroxide precipitation from ferrous solutions and its relevance to Martian surface mineralogy

    NASA Technical Reports Server (NTRS)

    Posey-Dowty, J.; Moskowitz, B.; Crerar, D.; Hargraves, R.; Tanenbaum, L.

    1986-01-01

    Experiments were performed to examine if the ubiquitousness of a weak magnetic component in all Martian surface fines tested with the Viking Landers can be attributed to ferric iron precipitation in aqueous solution under oxidizing conditions at neutral pH. Ferrous solutions were mixed in deionized water and various minerals were added to separate liquid samples. The iron-bearing additives included hematite, goethite, magnetite, maghemite, lepidocrocite and potassium bromide blank at varying concentrations. IR spectroscopic scans were made to identify any precipitates resulting from bubbling oxygen throughout the solutions; the magnetic properties of the precipitates were also examined. The data indicated that the lepidocrocite may have been preferentially precipitated, then aged to maghemite. The process would account for the presumed thin residue of maghemite on the present Martian surface, long after abundant liquid water on the Martian surface vanished.

  7. The global distribution of Martian permafrost

    NASA Technical Reports Server (NTRS)

    Paige, David A.

    1991-01-01

    Accurately determining the present global distribution of Martian ground ice will be an important step towards understanding the evolution of the Martian surface and atmosphere, and could greatly facilitate human and robotic exploration of the planet. The quantitative Mars permafrost studies demonstrated the potential importance of a number of factors determining the past and present distribution of subsurface ice on Mars, but have not considered the issue of regional variability. To consider the distribution of Mars permafrost in greater detail a new thermal model was developed that can calculate Martian surface and subsurface temperatures as a function of time-of-day and season. The results indicate that the distribution of Martian permafrost is highly sensitive to the bulk thermal properties of the overlying soil. Viking IRTM observations of diurnal surface temperature variations show that the bulk thermal properties of midlatitude surface materials exhibit a high degree of regional inhomogeneity. In general, the results show that the global distribution of permafrost is at least as sensitive to the thermal properties of the overlying surface material as it is to variations in surface isolation due to large scale variations in Mars' orbital and axial elements. In particular, they imply that subsurface ice may exist just a few centimeters below the surface in regions of low thermal inertia and high albedo, which are widespread at latitudes ranging from the equator to +60 degrees latitude.

  8. Space Radiation Effects on Inflatable Habitat Materials Project

    NASA Technical Reports Server (NTRS)

    Waller, Jess M.; Nichols, Charles

    2015-01-01

    The Space Radiation Effects on Inflatable Habitat Materials project provides much needed risk reduction data to assess space radiation damage of existing and emerging materials used in manned low-earth orbit, lunar, interplanetary, and Martian surface missions. More specifically, long duration (up to 50 years) space radiation damage will be quantified for materials used in inflatable structures (1st priority), as well as for habitable composite structures and space suits materials (2nd priority). The data acquired will have relevance for nonmetallic materials (polymers and composites) used in NASA missions where long duration reliability is needed in continuous or intermittent radiation fluxes. This project also will help to determine the service lifetimes for habitable inflatable, composite, and space suit materials.

  9. Self-sustaining Mars colonies utilizing the North Polar Cap and the Martian atmosphere.

    PubMed

    Powell, J; Maise, G; Paniagua, J

    2001-01-01

    A revolutionary new concept for the early establishment of robust, self-sustaining Martian colonies is described. The colonies would be located on the North Polar Cap of Mars and utilize readily available water ice and the CO2 Martian atmosphere as raw materials to produce all of the propellants, fuel, air, water, plastics, food, and other supplies needed by the colony. The colonists would live in thermally insulated large, comfortable habitats under the ice surface, fully shielded from cosmic rays. The habitats and supplies would be produced by a compact, lightweight (~4 metric tons) nuclear powered robotic unit termed ALPH (Atomic Liberation of Propellant and Habitat), which would land 2 years before the colonists arrived. Using a compact, lightweight 5 MW (th) nuclear reactor/steam turbine (1 MW(e)) power source and small process units (e.g., H2O electrolyzer, H2 and O2 liquefiers, methanator, plastic polymerizer, food producer, etc.) ALPH would stockpile many hundreds of tons of supplies in melt cavities under the ice, plus insulated habitats, to be in place and ready for use when the colonists landed. With the stockpiled supplies, the colonists would construct and operate rovers and flyers to explore the surface of Mars. ALPH greatly reduces the amount of Earth supplied material needed and enables large permanent colonies on Mars. It also greatly reduces human and mission risks and vastly increases the capability not only for exploration of the surrounding Martian surface, but also the ice cap itself. The North Polar Cap is at the center of the vast ancient ocean that covered much of the Martian Northern Hemisphere. Small, nuclear heated robotic probes would travel deep (1 km or more) inside the ice cap, collecting data on its internal structure, the composition and properties of the ancient Martian atmosphere, and possible evidence of ancient life forms (microfossils, traces of DNA, etc.) that were deposited either by wind or as remnants of the ancient ocean. Details of the ALPH system, which is based on existing technology, are presented. ALPH units could be developed and demonstrated on Earth ice sheets within a few years. An Earth-Mars space transport architecture is described, in which Mars produced propellant and supplies for return journeys to Earth would be lifted with relatively low DeltaV to Mars orbit, and from there transported back to Earth orbit, enabling faster and lower cost trips from Earth to Mars. The exploration capability and quality of life in a mature Martian colony of 500 persons located on the North Polar Cap is outlined. c2001 International Astronautical Federation. Published by Elsevier Science Ltd.

  10. AFM Studies of Lunar Soils and Application to the Mars 2001 Mission

    NASA Technical Reports Server (NTRS)

    Weitz, C. M.; Anderson, M. S.; Marshall, J.

    1999-01-01

    The upcoming Mars 01 mission will carry an Atomic Force Microscope (AFM) as part of the Mars Environmental Compatibility Assessment (MECA) instrument. By operating in a tapping mode, the AFM is capable of sub-nanometer resolution in three dimensions and can distinguish between substances of different compositions by employing phase contrast imaging. To prepare for the Mars 01 mission, we are testing the AFM on a lunar soil to determine its ability to define particle shapes and sizes and grain-surface textures. The test materials are from the Apollo 17 soil 79221, which is a mixture of agglutinates, impact and volcanic beads, and mare and highland rock and mineral fragments. The majority of the lunar soil particles are less than 100 microns in size, comparable to the sizes estimated for martian dust. We have used the AFM to examine several different soil particles at various resolutions. The instrument has demonstrated the ability to identify parallel ridges characteristic of twinning on a 150 micron plagioclase feldspar particle. Extremely small (10-100 nanometer) adhering particles are visible on the surface of the feldspar grain, and they appear elongate with smooth surfaces. Phase contrast imaging of the nanometer particles shows several compositions to be present. When the AFM was applied to a 100 micron glass spherule, it was possible to define an extremely smooth surface; this is in clear contrast to results from a basalt fragment which exhibited a rough surface texture. Also visible on the surface of the glass spherule were chains of 100 nanometer and smaller impact melt droplets. For the '01 Mars mission, the AFM is intended to define the size and shape distributions of soil particles, in combination with the NMCA optical microscope system and images from the Robot Arm Camera (RAC). These three data sets will provide a means of assessing potentially hazardous soil and dust properties. The study that we have conducted on the lunar soils now suggests that the NMCA experiment will be able to define grain transport and weathering processes. For example, it should be possible to determine if Martian grains have been subjected to aeolian or water transport, volcanic activity, impact melting processes, in-situ weathering, and a host of other processes. Additionally, textural maturity could be assessed (via freshness and form of fracture patterns and grain shapes). Thus, the AFM has the potential to shed new light on Martian surface processes by adding the submicroscopic dimension to planetary investigations.

  11. Coordinating Chemical and Mineralogical Analyses of Antarctic Dry Valley Sediments as Potential Analogs for Mars

    NASA Technical Reports Server (NTRS)

    Patel, S. N.; Bishop, J. L.; Englert, P.; Gibson, E. K.

    2015-01-01

    The Antarctic Dry Valleys (ADV) provide a unique terrestrial analog for Martian surface processes as they are extremely cold and dry sedimentary environments. The surface geology and the chemical composition of the Dry Valleys that are similar to Mars suggest the possible presence of these soil-formation processes on Mars. The soils and sediments from Wright Valley, Antarctica were investigated in this study to examine mineralogical and chemical changes along the surface layer in this region and as a function of depth. Surface samples collected near Prospect Mesa and Don Juan Pond of the ADV were analyzed using visible/near-infrared (VNIR) and mid-IR reflectance spectroscopy and major and trace element abundances.

  12. MOLA: Seasonal Snow Variations on Mars: Slow Flyover of the Martian North Pole

    NASA Technical Reports Server (NTRS)

    2001-01-01

    MOLA: Seasonal Snow Variations on Mars: Slow Flyover of the Martian North Pole: False Color. This is a visualization of the topography near the Martian north pole as measured with the MOLA instrument. This particular animation shows a slow zoom to the surface of the pole, a flyover of the polar cap and a slow zoom out. The surface color is based on the elevation of the topography.

  13. Next Steps Forward in Understanding Martian Surface and Subsurface Chemistry

    NASA Astrophysics Data System (ADS)

    Carrier, Brandi L.

    2017-09-01

    The presence of oxidants such as hydrogen peroxide (H2O2) and perchlorate (ClO4-), which have been detected on Mars, has significant implications for chemistry and astrobiology. These oxidants can increase the reactivity of the Martian soil, accelerate the decomposition of organic molecules, and depress the freezing point of water. The study by Crandall et al. "Can Perchlorates be Transformed to Hydrogen Peroxide Products by Cosmic Rays on the Martian Surface" reveals a new formation mechanism by which hydrogen peroxide and other potential oxidants can be generated via irradiation of perchlorate by cosmic rays. This study represents an important next step in developing a full understanding of Martian surface and subsurface chemistry, particularly with respect to degradation of organic molecules and potential biosignatures.

  14. Searching for signatures of life on Mars: an Fe-isotope perspective.

    PubMed

    Anand, M; Russell, S S; Blackhurst, R L; Grady, M M

    2006-10-29

    Recent spacecraft and lander missions to Mars have reinforced previous interpretations that Mars was a wet and warm planet in the geological past. The role of liquid water in shaping many of the surface features on Mars has long been recognized. Since the presence of liquid water is essential for survival of life, conditions on early Mars might have been more favourable for the emergence and evolution of life. Until a sample return mission to Mars, one of the ways of studying the past environmental conditions on Mars is through chemical and isotopic studies of Martian meteorites. Over 35 individual meteorite samples, believed to have originated on Mars, are now available for lab-based studies. Fe is a key element that is present in both primary and secondary minerals in the Martian meteorites. Fe-isotope ratios can be fractionated by low-temperature processes which includes biological activity. Experimental investigations of Fe reduction and oxidation by bacteria have produced large fractionation in Fe-isotope ratios. Hence, it is considered likely that if there is/were any form of life present on Mars then it might be possible to detect its signature by Fe-isotope studies of Martian meteorites. In the present study, we have analysed a number of Martian meteorites for their bulk-Fe-isotope composition. In addition, a set of terrestrial analogue material has also been analysed to compare the results and draw inferences. So far, our studies have not found any measurable Fe-isotopic fractionation in bulk Martian meteorites that can be ascribed to any low-temperature process operative on Mars.

  15. Searching for signatures of life on Mars: an Fe-isotope perspective

    PubMed Central

    Anand, M; Russell, S.S; Blackhurst, R.L; Grady, M.M

    2006-01-01

    Recent spacecraft and lander missions to Mars have reinforced previous interpretations that Mars was a wet and warm planet in the geological past. The role of liquid water in shaping many of the surface features on Mars has long been recognized. Since the presence of liquid water is essential for survival of life, conditions on early Mars might have been more favourable for the emergence and evolution of life. Until a sample return mission to Mars, one of the ways of studying the past environmental conditions on Mars is through chemical and isotopic studies of Martian meteorites. Over 35 individual meteorite samples, believed to have originated on Mars, are now available for lab-based studies. Fe is a key element that is present in both primary and secondary minerals in the Martian meteorites. Fe-isotope ratios can be fractionated by low-temperature processes which includes biological activity. Experimental investigations of Fe reduction and oxidation by bacteria have produced large fractionation in Fe-isotope ratios. Hence, it is considered likely that if there is/were any form of life present on Mars then it might be possible to detect its signature by Fe-isotope studies of Martian meteorites. In the present study, we have analysed a number of Martian meteorites for their bulk-Fe-isotope composition. In addition, a set of terrestrial analogue material has also been analysed to compare the results and draw inferences. So far, our studies have not found any measurable Fe-isotopic fractionation in bulk Martian meteorites that can be ascribed to any low-temperature process operative on Mars. PMID:17008212

  16. MARS PATHFINDER CAMERA TEST IN SAEF-2

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Jet Propulsion Laboratory (JPL) workers conduct a systems test of the Mars Pathfinder imager, installed atop the Pathfinder lander (with JPL insignia). The imager is the white cyclindrical structure close to the worker's gloved hand. At left is the small rover that will be deployed from the lander to explore the Martian surface. The rover is mounted on one of three petals that will be attached to the lander. The two-pronged mast extending upward from the lander is for the low-gain antenna. The imager is mounted on a mast that will be extended after the lander touches down on Mars, affording a better view of the area. The imager is a camera that will transmit images of the Martian surface as well as the trail left by the rover, helping researchers to better understand the composition of the soil. It also is equipped with selectable filters for gathering data about the atmosphere of the Red Planet. JPL manages the Mars Pathfinder project for NASA. The journey to Mars is scheduled to begin with liftoff Dec. 2 aboard a Delta II expendable launch vehicle.

  17. Mars: Difference Between Lowland and Highland Basalts Confirms A Tendency Observed In Terrestrial and Lunar Basaltic Compositions

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable 1 to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. 2 MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, 3 kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- 4 terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular 5 momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- 6 paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 7 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for 8 these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. 9 MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, 10 kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. v 11

  18. Study of the Martian Subsurface with a Fiber Optics Spectrometer: the Ma_Miss Experiment

    NASA Astrophysics Data System (ADS)

    Coradini, A.; de Sanctis, M. C.; Ammannito, E.; Boccaccini, A.; Battistelli, E.; Capanni, A.

    2009-04-01

    In this presentation is described the investigation that we intend to do with a small imaging spectrometer that will be inserted in the drill of the Exomars- Pasteur rover. This spectrometer is named Ma_miss (Mars Multispectral Imager for Subsurface Studies ). The Ma_Miss experiment is located in the drill ,that will be able to make a hole in the Mars soil and rock up to 2 m. Ma_Miss includes the optical head of the spectrometer, a lamp to illuminate the borehole walls, and the optical fiber that brings the signal to the spectrometer. The multispectral images are acquired by means of a sapphire window placed on the lateral wall of the drill tool, as close as possible to the drill head. The images are gathered by means of an optical fibre system and analyzed using the spectrometer. The Ma_Miss gathered light containing the scientific information is transferred to the array detector and electronics of the instrument by means of an optical rotary joint implemented in the roto-translation group of the drill, as shown in the next pictures In the figure is schematically represented the Ma_Miss- Dibs architecture. This experiment will be extremely valuable since it will allow, for the first time, to have an idea of the mineralogical composition of the Martian subsurface and to study freshly cut rocks. The study of surface and subsurface mineralogy of Martian soil and rocks is the key for understanding the chemico-physical processes that led to the formation and evolution of the Red Planet. The history of the water and other volatiles, as well as the signatures of weathering processes are important to understand present and past environmental conditions associated with the possibility of life. Surface samples are highly influenced by exogenous processes (weathering, erosion, sedimentation, impact) that alter their original properties. So, the analyses of uncontaminated samples by means of instrumented drills and in situ analytic stations are the key for unambiguous interpretation of the original environment that leading to the formation of rocks. Analysis of subsurface layers is the only approach that warranties measurements on samples close to their original composition. The upper few meters of the surface materials on Mars play a crucial role in its history, providing important constraints geologic, hydrologic, and climatic to the history of the planet. Drilling into the near-surface crust will provide an opportunity to assess variations in composition, texture, stratification, unconformities, etc. that will help define its lithology and structure, and provide important clues regarding its origin and subsequent evolution. The subsurface material can give information on the evolution of surface sediments (erosion, transport, deposition), on the relation between sediments and bedrock, on the relation between environmental conditions and surface processes permitting to "investigate planetary processes that influence habitability." Investigation of mineralogical composition of near-surface geological materials is needed to fully characterize the geology of the regions that will be visited by the Rover at all appropriate spatial scales, and to interpret the processes that have formed and modified rocks and regolith. Subsurface access, sampling material below the oxidized layer, can be the key to "assess the biological potential of the target environment (past or present)". To date, we have direct observations relative only to the Martian surface. Little is known about the characteristics of the first subsurface layers. The possibility to sample subsurface materials to be delivered to other instruments, and to record the context of the sampled soil doing in situ borehole mineralogical analysis, is fundamental to search for traces of past or present life on Mars. The spectrometer observes a single point target, having 0.1 mm diameter, on the borehole wall surface. Depending on the surface features we are interested in, the observation window can scan the borehole's surface by means of drill tip rotation or translation. When the drill is translated, a "Column Image" is acquired. This translation step can be equal to the observation spot (0.1 mm). The "Ring Image" can be obtained by rotation of the drill tip; a rotation step of about 0.5˚ (corresponding to 720 acquisitions in the ring) is sufficient to assure the full coverage of the ring.

  19. Ne-20/Ne-22 in the Martian Atmosphere: New Evidence from Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Park, J.; Nyquist, L. E.; Herzog, G. F.; Nagao, K.; Mikouchi, T.; Kusakabe, M.

    2017-01-01

    Analyses of Ne trapped in "pods" of impact melt in the Elephant Moraine 79001 (EET 79001) Martian meteorite led to suggest (Ne-20/Ne-22) approx.10 in the Martian atmosphere (MA). In contrast, obtained trapped (Ne-20/Ne-22)Tr approx.7 from an impact melt vein in Yamato 793605 (Y-793605) and concluded that the isotopic composition of Martian Ne remained poorly defined. A "pyroxene-rich" separate from Dhofar 378 (Dho 378) analyzed gave a comparatively high trapped Ne concentration and (Ne-20/Ne-22) = 7.3+/-0.2 in agreement with the Y-793605 value. We explore the hypothesis that Martian Ne was trapped in the Dho 378 meteorite in a manner similar to entrapment of terrestrial Ne in tektites strengthening the "Martian atmosphere" interpretation. We also report new data for Northwest Africa 7034 (NWA 7034) that are consistent with the Ne data for Dho 378.

  20. Lunar and Martian Sub-surface Habitat Structure Technology Development and Application

    NASA Technical Reports Server (NTRS)

    Boston, Penelope J.; Strong, Janet D.

    2005-01-01

    NASA's human exploration initiative poses great opportunity and great risk for manned missions to the Moon and Mars. Subsidace structures such as caves and lava tubes offer readily available and existing in-situ habitat options. Sub-surface dwellings can provide complete radiation, micro-meteorite and exhaust plume shielding and a moderate and constant temperature environment; they are, therefore, excellent pre-existing habitat risk mitigation elements. Technical challenges to subsurface habitat structure development include surface penetration (digging and mining equipment), environmental pressurization, and psychological environment enhancement requirements. Lunar and Martian environments and elements have many beneficial similarities. This will allow for lunar testing and design development of subsurface habitat structures for Martian application; however, significant differences between lunar and Martian environments and resource elements will mandate unique application development. Mars is NASA's ultimate exploration goal and is known to have many very large lava tubes. Other cave types are plausible. The Moon has unroofed rilles and lava tubes, but further research will, in the near future, define the extent of Lunar and Martian differences and similarities. This paper will discuss Lunar and Martian subsurface habitation technology development challenges and opportunities.

  1. Structure and dynamics of the convective boundary layer on Mars as inferred from large-eddy simulations and remote-sensing measurements

    NASA Astrophysics Data System (ADS)

    Spiga, A.; Forget, F.; Lewis, S. R.; Hinson, D. P.

    2010-02-01

    The structure of the Martian convective boundary layer (BL) is decribed by means of a novel approach involving both modelling and data analysis. Mars Express radio-occultation (RO) temperature profiles are compared to large-eddy simulations (LESs) performed with the Martian mesoscale model. The model combines the Martian radiative transfer, soil and surface layer schemes designed at Laboratoire de Météorologie Dynamique (LMD) with the most recent version of the Weather Research and Forecast (WRF) fully compressible non-hydrostatic dynamical core. The key roles of the vertical resolution and, to lesser extent, of the domain horizontal extent have been investigated to ensure the robustness of the LES results. The dramatic regional variations of the BL depth are quantitatively reproduced by the Martian LES. Intense BL dynamics are found to underlie the measured depths (up to 9 km): vertical speed up to 20 m s-1, heat flux up to 2.7 K m s-1 and turbulent kinetic energy up to 26 m2 s-2. Under specific conditions, both the model and the measurements show a distinctive positive correlation between surface topography and BL depth. Our interpretation is that, in the tenuous CO2 Martian near-surface environment, the daytime BL is to first order controlled by the infrared radiative heating, fairly independent of elevation, which implies a simple correlation between the BL potential temperature and the inverse pressure ("pressure effect"). No prominent "pressure effect" is in action on Earth where sensible heat flux dominates the BL energy budget. Both RO observations and numerical simulations confirm the terrain-following behaviour of near-surface temperature on Mars induced by the dominant radiative influence. The contribution of the Martian sensible heat flux is not negligible and results in a given isotherm in the BL being comparatively closer to the ground at higher surface elevation. The strong radiative control of the Martian convective BL implies a generalised formulation for the BL dimensionless quantities. Based on this formulation and the variety of simulated BL depths by the LES, new similarity relationships for the Martian convective BL in quasi-steady midday conditions are derived. Rigorous comparisons between the Martian and terrestrial BL and fast computations of the mean Martian BL turbulent statistics are now made possible by such similarity laws.

  2. Surface Power Radiative Cooling Tests

    NASA Astrophysics Data System (ADS)

    Vaughn, Jason; Schneider, Todd

    2006-01-01

    Terrestrial nuclear power plants typically maintain their temperature through convective cooling, such as water and forced air. However, the space environment is a vacuum environment, typically 10-8 Torr pressure, therefore in proposed missions to the lunar surface, power plants would have to rely on radiative cooling to remove waste heat. Also, the Martian surface has a very tenuous atmosphere (e.g. ~5 Torr CO2), therefore, the main heat transfer method on the Martian surface is also radiative. Because of the lack of atmosphere on the Moon and the tenuous atmosphere on Mars, surface power systems on both the Lunar and Martian surface must rely heavily on radiative heat transfer. Because of the large temperature swings on both the lunar and the Martian surfaces, trying to radiate heat is inefficient. In order to increase power system efficiency, an effort is underway to test various combinations of materials with high emissivities to demonstrate their ability to survive these degrading atmospheres to maintain a constant radiator temperature improving surface power plant efficiency. An important part of this effort is the development of a unique capability that would allow the determination of a materials emissivity at high temperatures. A description of the test capability as well as initial data is presented.

  3. The case for a Martian origin of the shergottites. II - Trapped and indigenous gas components in EETA 79001 glass

    NASA Technical Reports Server (NTRS)

    Wiens, R. C.; Becker, R. H.; Pepin, R. O.

    1986-01-01

    The isotopic composition of N, Ar, Ne, and He, trapped in an uncrushed sample of the antarctic shergottite EETA 79001, was analyzed by subjecting the evacuated sample to stepped heating in the presence of 100 mtorr of oxygen. The isotopic composition of nitrogen (with the delta-N-15 value of greater than 300 percent) and the elemental ratios Ar-36/N-14 and Ar-40/N-14 were covariant along mixing lines passing through the Martian atmospheric composition. The results of this and previous analyses are consistent with a two-component nitrogen system in which about 84 ppb of trapped Martian atmospheric N is mixed in variable proportions with another, more thermally labile N component during stepped heating. The isotopic Ar-36/Ar-38 ratio of the EETA 79001 is different from that of the earth atmosphere by about 25 percent.

  4. The Modern Near-Surface Martian Climate: A Review of In-situ Meteorological Data from Viking to Curiosity

    NASA Astrophysics Data System (ADS)

    Martínez, G. M.; Newman, C. N.; De Vicente-Retortillo, A.; Fischer, E.; Renno, N. O.; Richardson, M. I.; Fairén, A. G.; Genzer, M.; Guzewich, S. D.; Haberle, R. M.; Harri, A.-M.; Kemppinen, O.; Lemmon, M. T.; Smith, M. D.; de la Torre-Juárez, M.; Vasavada, A. R.

    2017-10-01

    We analyze the complete set of in-situ meteorological data obtained from the Viking landers in the 1970s to today's Curiosity rover to review our understanding of the modern near-surface climate of Mars, with focus on the dust, CO2 and H2O cycles and their impact on the radiative and thermodynamic conditions near the surface. In particular, we provide values of the highest confidence possible for atmospheric opacity, atmospheric pressure, near-surface air temperature, ground temperature, near-surface wind speed and direction, and near-surface air relative humidity and water vapor content. Then, we study the diurnal, seasonal and interannual variability of these quantities over a span of more than twenty Martian years. Finally, we propose measurements to improve our understanding of the Martian dust and H2O cycles, and discuss the potential for liquid water formation under Mars' present day conditions and its implications for future Mars missions. Understanding the modern Martian climate is important to determine if Mars could have the conditions to support life and to prepare for future human exploration.

  5. Mars

    NASA Astrophysics Data System (ADS)

    McSween, H. Y., Jr.

    2003-12-01

    More than any other planet, Mars has captured our attention and fueled our speculations. Much of this interest relates to the possibility of martian life, as championed by Percival Lowell in the last century and subsequently in scientific papers and science fiction. Lowell's argument for life on Mars was based partly on geochemistry, in that his assessmentof the planet's hospitable climate was dependent on the identification of H2O ice rather than frozen CO2 in the polar caps. Although this reasoning was refuted by Alfred Wallace in 1907, widespread belief in extant martian life persisted within the scientific community until the mid-twentieth century (Zahnle, 2001). In 1965 the Mariner 4 spacecraft flyby suddenly chilled this climate, by demonstrating that the martian atmosphere was thin and the surface was a cratered moonscape devoid of canals. This view of Mars was overturned again in 1971, when the Mariner 9 spacecraft discovered towering volcanoes and dry riverbeds, implying a complex geologic history. The first geochemical measurements on Mars, made by two Viking landers in 1976, revealed soils enriched in salts suggesting exposure to water, but lacking organic compounds which virtually ended discussion of martian life.The suggestion that a small group of achondritic meteorites were martian samples (McSween and Stolper, 1979; Walker et al., 1979; Wasson and Wetherill, 1979) found widespread acceptance when trapped gases in them were demonstrated to be compositionally similar to the Mars atmosphere ( Bogard and Johnson, 1983; Becker and Pepin, 1984). The ability to perform laboratory measurements of elements and isotopes present in trace quantities in meteorites has invigorated the subject of martian geochemistry. Indeed, because of these samples, we now know more about the geochemistry of Mars than of any other planet beyond the Earth-Moon system. Some studies of martian meteorites have prompted a renewed search for extraterrestrial life using chemical biomarkers.Recent Mars spacecraft, including the Mars Pathfinder lander/rover in 1997 and Mars Global Surveyor and Mars Odyssey now orbiting the planet, have provided significant new geochemical findings. These missions have also generated geophysical data with which to constrain geochemical models of the martian interior.

  6. Onboard calibration igneous targets for the Mars Science Laboratory Curiosity rover and the Chemistry Camera laser induced breakdown spectroscopy instrument

    NASA Astrophysics Data System (ADS)

    Fabre, C.; Maurice, S.; Cousin, A.; Wiens, R. C.; Forni, O.; Sautter, V.; Guillaume, D.

    2011-03-01

    Accurate characterization of the Chemistry Camera (ChemCam) laser-induced breakdown spectroscopy (LIBS) on-board composition targets is of prime importance for the ChemCam instrument. The Mars Science Laboratory (MSL) science and operations teams expect ChemCam to provide the first compositional results at remote distances (1.5-7 m) during the in situ analyses of the Martian surface starting in 2012. Thus, establishing LIBS reference spectra from appropriate calibration standards must be undertaken diligently. Considering the global mineralogy of the Martian surface, and the possible landing sites, three specific compositions of igneous targets have been determined. Picritic, noritic, and shergottic glasses have been produced, along with a Macusanite natural glass. A sample of each target will fly on the MSL Curiosity rover deck, 1.56 m from the ChemCam instrument, and duplicates are available on the ground. Duplicates are considered to be identical, as the relative standard deviation (RSD) of the composition dispersion is around 8%. Electronic microprobe and laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) analyses give evidence that the chemical composition of the four silicate targets is very homogeneous at microscopic scales larger than the instrument spot size, with RSD < 5% for concentration variations > 0.1 wt.% using electronic microprobe, and < 10% for concentration variations > 0.01 wt.% using LA ICP-MS. The LIBS campaign on the igneous targets performed under flight-like Mars conditions establishes reference spectra for the entire mission. The LIBS spectra between 240 and 900 nm are extremely rich, hundreds of lines with high signal-to-noise, and a dynamical range sufficient to identify unambiguously major, minor and trace elements. For instance, a first LIBS calibration curve has been established for strontium from [Sr] = 284 ppm to [Sr] = 1480 ppm, showing the potential for the future calibrations for other major or minor elements.

  7. Mineral Composition and Abundance of the Rocks and Soils at Gusev and Meridiani from the Mars Exploration Rover Mini-TES Instruments

    NASA Technical Reports Server (NTRS)

    Christensen, P. R.; Wyatt, M. B.; Glotch, T. D.; Rogers, A. D.; Anwar, S.; Arvidson, R. E.; Bandfield, J. L.; Blaney, D. L.; Budney, C.; Calvin, W. M.

    2005-01-01

    The Miniature Thermal Emission Spectrometer (Mini-TES) has provided remote measurements of mineralogy, thermophysical properties, and atmospheric temperature profile and composition of the outcrops, rocks, spherules, and soils surrounding the Spirit and Opportunity Rovers. The mineralogy of volcanic rocks provides insights into the composition of the source regions and the nature of martian igneous processes. Carbonates, sulfates, evaporites, and oxides provide information on the role of water in the surface evolution. Oxides, such as crystalline hematite, provide insight into aqueous weathering processes, as would the occurrence of clay minerals and other weathering products. Diurnal temperature measurements can be used to determine particle size and search for the effects of sub-surface layering, which in turn provide clues to the origin of surficial materials through rock disintegration, aeolian transport, atmospheric fallout, or induration. In addition to studying the surface properties, Mini-TES spectra have also been used to determine the temperature profile in the lower boundary layer, providing evidence for convective activity, and have determined the seasonal trends in atmospheric temperature and dust and cloud opacity.

  8. Groundbased monitoring of Martian atmospheric opacity

    NASA Technical Reports Server (NTRS)

    Herkenhoff, K. E.; Martin, L. J.

    1993-01-01

    The amount of dust in the Martian atmosphere is variable in both space and time. The presence of aerosols in the Mars atmosphere complicates quantitative analysis of Martian surface properties. We have developed a model for Mars surface and atmospheric scattering based on equations in Hillier et al (1991). This formulation was chosen for its speed of computation and because it accounts for the spherical geometry of atmospheric scattering at high mission angles, i.e., near the planetary limb.

  9. Low surface gravitational acceleration of Mars results in a thick and weak lithosphere: Implications for topography, volcanism, and hydrology

    NASA Astrophysics Data System (ADS)

    Heap, Michael J.; Byrne, Paul K.; Mikhail, Sami

    2017-01-01

    Surface gravitational acceleration (surface gravity) on Mars, the second-smallest planet in the Solar System, is much lower than that on Earth. A direct consequence of this low surface gravity is that lithostatic pressure is lower on Mars than on Earth at any given depth. Collated published data from deformation experiments on basalts suggest that, throughout its geological history (and thus thermal evolution), the Martian brittle lithosphere was much thicker but weaker than that of present-day Earth as a function solely of surface gravity. We also demonstrate, again as a consequence of its lower surface gravity, that the Martian lithosphere is more porous, that fractures on Mars remain open to greater depths and are wider at a given depth, and that the maximum penetration depth for opening-mode fractures (i.e., joints) is much deeper on Mars than on Earth. The result of a weak Martian lithosphere is that dykes-the primary mechanism for magma transport on both planets-can propagate more easily and can be much wider on Mars than on Earth. We suggest that this increased the efficiency of magma delivery to and towards the Martian surface during its volcanically active past, and therefore assisted the exogeneous and endogenous growth of the planet's enormous volcanoes (the heights of which are supported by the thick Martian lithosphere) as well as extensive flood-mode volcanism. The porous and pervasively fractured (and permeable) nature of the Martian lithosphere will have also greatly assisted the subsurface storage of and transport of fluids through the lithosphere throughout its geologically history. And so it is that surface gravity, influenced by the mass of a planetary body, can greatly modify the mechanical and hydraulic behaviour of its lithosphere with manifest differences in surface topography and geomorphology, volcanic character, and hydrology.

  10. Comparison of the Mantle Potential Temperature of Ancient Mars and the Earth

    NASA Astrophysics Data System (ADS)

    Filiberto, Justin; Dasgupta, Rajdeep

    2016-04-01

    Basaltic igneous rocks shed light onto the chemistry, tectonic, and thermal state of planetary interiors. For the purpose of comparative planetology, therefore, it is critical to fully utilize the compositional diversity of basaltic rocks for different terrestrial planets. For Mars, basaltic compositions have been analyzed in situ on the surface at three different landing sites, from orbit providing global geochemistry, and in the laboratory for specific Martian meteorites [1-4]. This provides a range in chemistry and age of Martian rocks. Terrestrial mafic to ultramafic igneous rocks have a range in chemistry across different tectonic regimes and different ages [5-8]. These differences in chemistry and age of planetary basalts may reflect changes in the conditions of partial melting in the planetary interiors. Therefore, here we compare estimates of basalt genesis conditions for Mars with rocks from the Noachian (Gusev Crater, Meridiani Planum, Gale Crater, and a clast in the NWA 7034 meteorite [9, 10]), Hesperian (surface volcanics [11]), and Amazonian (surface volcanics and shergottites [11-14]), to calculate an average mantle potential temperature for different Martian epochs and investigate how the interior of Mars has changed through time. We also calculate formation conditions for terrestrial komatiites and Archean basalts to calculate an average mantle potential temperature during the Archean. Finally, we compare Martian mantle potential temperatures with petrologic estimate of cooling for the Earth to compare the cooling history for Mars and the Earth. References: [1] Squyres S.W. et al. (2006) JGR. doi:10.1029/2005je002562. [2] Schmidt M.E., et al. (2014) JGRP. doi:2013JE004481. [3] Zipfel J. et al. (2011) MaPS. 46(1): 1-20. [4] Treiman A.H. and Filiberto J. (2015) MaPS. DOI:10.1111/maps.12363. [5] Putirka K.D.(2005) G-cubed. DOI:10.1029/2005gc000915. [6] Putirka K.D. et al. (2007) ChemGeo. 241(3-4): 177-206. [7] Courtier A.M. et al. (2007) EPSL. 264(1-2): 308-316. [8] Lee C.-T.A. et al. (2009) EPSL. 279(1-2): 20-33. [9] Filiberto J. and Dasgupta R. (2011) EPSL. 304(3-4): 527-537. [10] Filiberto J. and Dasgupta R. (2015) JGRP. DOI:2014JE004745. [11] Baratoux D. et al. (2011) Nature. 472: 338-341. [12] Musselwhite D.S. et al. (2006) MaPS. 41(9): 1271-1290. [13] Filiberto J. et al. (2010) MaPS. 45(8): 1258-1270. [14] Gross J. et al. (2011) MaPS. 46(1): 116-133.

  11. Simulation of the UV-radiation at the Martian surface

    NASA Astrophysics Data System (ADS)

    Kolb, C.; Stimpfl, P.; Krenn, H.; Lammer, H.; Kargl, G.; Abart, R.; Patel, M. R.

    The UV-radiation at the Martian surface is for several reasons of importance. UV radiation can cause specific damages in the DNA-containing living systems and is involved in the formation of catalytically produced oxidants such as superoxide ions and peroxides. These are capable to oxidize and subsequently destroy organic matter. Lab simulations are necessary to investigate and understand the effects of organic matter removal at the Martian surface. We designed a radiation apparatus which simulates the solar spectrum at the Martian surface between 200 and 700 nm. The system consists of an UV-enhanced xenon arc lamp and special exchangeable filter-sets and mirrors for simulating the effects of the Martian atmospheric column and dust loading. A special collimating system bundles the final parallel beam so that the intensity at the target spot is independent from the distance between the ray source and the sample. The system was calibrated by means of an optical photo-spectrometer to align the ray output with the theoretical target spectrum and to ensure spectral homogeneity. We present preliminary data on calibration and performance of our system, which is integrated in the Austrian Mars simulation facility.

  12. The chronology of the martian volcanoes

    NASA Technical Reports Server (NTRS)

    Plescia, J. B.; Saunders, R. S.

    1979-01-01

    The volcanoes of Mars have been divided into three groups based on morphology: basaltic shields, domes and composite cones, and highland patera. A fourth group can be added to include the volcano-tectonic depressions. Using crater counts and the absolute chronology of Soderblom, an attempt is made to estimate the history of the volcanoes. Early in the martian history, about 2.5 b.y. ago, all three styles of volcanoes were active at various locations on the surface. At approximately 1.7-1.8 b.y. ago a transition occurred in the style and loci of volcanic construction. Volcanoes of younger age appear to be only of the basaltic shield group and are restricted to the Tharsis region. This same transition was noted by a change in the style of the basaltic shield group. Older shields were small low features, while the younger shields are significantly broader and taller.

  13. MSL Chemistry and Mineralogy X-Ray Diffraction X-Ray Fluorescence (CheMin) Instrument

    NASA Technical Reports Server (NTRS)

    Zimmerman, Wayne; Blake, Dave; Harris, William; Morookian, John Michael; Randall, Dave; Reder, Leonard J.; Sarrazin, Phillipe

    2013-01-01

    This paper provides an overview of the Mars Science Laboratory (MSL) Chemistry and Mineralogy Xray Diffraction (XRD), X-ray Fluorescence (XRF) (CheMin) Instrument, an element of the landed Curiosity rover payload, which landed on Mars in August of 2012. The scientific goal of the MSL mission is to explore and quantitatively assess regions in Gale Crater as a potential habitat for life - past or present. The CheMin instrument will receive Martian rock and soil samples from the MSL Sample Acquisition/Sample Processing and Handling (SA/SPaH) system, and process it utilizing X-Ray spectroscopy methods to determine mineral composition. The Chemin instrument will analyze Martian soil and rocks to enable scientists to investigate geophysical processes occurring on Mars. The CheMin science objectives and proposed surface operations are described along with the CheMin hardware with an emphasis on the system engineering challenges associated with developing such a complex instrument.

  14. Methylated silicates may explain the release of chlorinated methane from Martian soil

    NASA Astrophysics Data System (ADS)

    Bak, Ebbe N.; Jensen, Svend J. Knak; Nørnberg, Per; Finster, Kai

    2016-01-01

    The only organic compounds that have been detected in the Martian soil are simple chlorinated compounds released from heated surface material. However, the sources of the organic carbon are in dispute. Wind abraded silicates, which are widespread on the Martian surface, can sequester atmospheric methane which generates methylated silicates and thus could provide a mechanism for accumulation of reduced carbon in the surface soil. In this study we show that thermal volatilization of methylated silicates in the presence of perchlorate leads to the production of chlorinated methane. Thus, methylated silicates could be a source of the organic carbon released as chlorinated methane upon thermal volatilization of Martian soil samples. Further, our experiments show that the ratio of the different chlorinated compounds produced is dependent on the mass ratio of perchlorate to organic carbon in the soil.

  15. Atmospheric Constraints on the Surface UV Environment of Mars at 3.9 Ga Relevant to Prebiotic Chemistry

    NASA Astrophysics Data System (ADS)

    Ranjan, Sukrit; Wordsworth, Robin; Sasselov, Dimitar D.

    2017-08-01

    Recent findings suggest that Mars may have been a clement environment for the emergence of life and may even have compared favorably to Earth in this regard. These findings have revived interest in the hypothesis that prebiotically important molecules or even nascent life may have formed on Mars and been transferred to Earth. UV light plays a key role in prebiotic chemistry. Characterizing the early martian surface UV environment is key to understanding how Mars compares to Earth as a venue for prebiotic chemistry. Here, we present two-stream, multilayer calculations of the UV surface radiance on Mars at 3.9 Ga to constrain the surface UV environment as a function of atmospheric state. We explore a wide range of atmospheric pressures, temperatures, and compositions that correspond to the diversity of martian atmospheric states consistent with available constraints. We include the effects of clouds and dust. We calculate dose rates to quantify the effect of different atmospheric states on UV-sensitive prebiotic chemistry. We find that, for normative clear-sky CO2-H2O atmospheres, the UV environment on young Mars is comparable to young Earth. This similarity is robust to moderate cloud cover; thick clouds (τcloud ≥ 100) are required to significantly affect the martian UV environment, because cloud absorption is degenerate with atmospheric CO2. On the other hand, absorption from SO2, H2S, and dust is nondegenerate with CO2, meaning that, if these constituents build up to significant levels, surface UV fluence can be suppressed. These absorbers have spectrally variable absorption, meaning that their presence affects prebiotic pathways in different ways. In particular, high SO2 environments may admit UV fluence that favors pathways conducive to abiogenesis over pathways unfavorable to it. However, better measurements of the spectral quantum yields of these pathways are required to evaluate this hypothesis definitively.

  16. Reflectance spectroscopy and GEX simulation of palagonite and iron-rich montmorillonite clay mixtures: Implications for the surface composition of Mars

    NASA Technical Reports Server (NTRS)

    Orenberg, J. B.; Handy, J.; Quinn, R.

    1992-01-01

    Because of the power of remote sensing reflectance spectroscopy in determining mineralogy, it has been used as the major method of identifying a possible mineral analogue of the martian surface. A summary of proposed martian surface compositions from reflectance spectroscopy before 1979 was presented by Singer et al. Since that time, iron-rich montmorillonite clay, nanocrystalline or nanophase hematite, and palagonite have been suggested as Mars soil analogue materials. Palagonite in petrological terms is best described as an amorphous, hydrated, ferric iron, silica gel. Montmorillonite is a member of the smectite clay group, and its structure is characterized by an octahedral sheet in coordination with two tetrahedral sheets in which oxygen atoms are shared. The crystal unity of montmorillonite is well defined in contrast to palagonite where it is considered amorphous or poorly crystalline at best. Because of the absence of the diagnostic strong 2.2-micron reflectance band characteristic of clays in the near-infrared (NIR) spectrum of Mars and palagonite and based upon a consideration of wide wavelength coverage (0.3-50 microns), Roush et al. concluded that palagonite is a more likely Mars surface analogue. In spite of the spectral agreement of palagonite and the Mars reflectance spectrum in the 2.2-micron region, palagonite shows poor correspondence with the results of the Viking LR experiment. In contrast, iron-rich montmorillonite clays show relatively good agreement with the results of the Viking LR experiment. This spectral study was undertaken to evaluate the spectral properties of mixtures of palagonite and Mars analogue iron-rich montmorillonite clay (16-18 wt. percent Fe as Fe2O3) as a Mars surface mineralogical model. Mixtures of minerals as Mars surface analogue materials have been studied before, but the mixtures were restricted to crystalline clays and iron oxides.

  17. Workshop on the Issue Martian Meteorites: Where do we Stand and Where are we Going?

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The presentations in this workshop discuss the composition of Martian meteorites. Many of the talks were on a specific meteorite, i.e., Allan Hills 84001 (ALH84001). The discovery earlier of carbonates in ALH84001 lead some researchers to suggest that there was evidence of martian life. Other possible explanations for this phenomena are given. Other papers discuss methods to sterilize martian samples, the existence of water on Mars, the facilities of the Meteorite Processing Laboratory at Johnson Space Center, comparative analyses of geologic processes and the gathering of meteorites.

  18. Color-Coded Clues to Composition Superimposed on Martian Seasonal-Flow Image

    NASA Image and Video Library

    2014-02-10

    This image from NASA Mar Reconnaissance Orbiter combines a photograph of seasonal dark flows on a Martian slope at Palikir Crater with a grid of colors based on data collected by a mineral-mapping spectrometer observing the same area.

  19. Evolution of CO2 and H2O on Mars: A cold Early History?

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Michalski, J.

    2011-01-01

    The martian climate has long been thought to have evolved substantially through history from a warm and wet period to the current cold and dry conditions on the martian surface. This view has been challenged based primarily on evidence that the early Sun had a substantially reduced luminosity and that a greenhouse atmosphere would be difficult to sustain on Mars for long periods of time. In addition, the evidence for a warm, wet period of martian history is far from conclusive with many of the salient features capable of being explained by an early cold climate. An important test of the warm, wet early Mars hypothesis is the abundance of carbonates in the crust [1]. Recent high precision isotopic measurements of the martian atmosphere and discoveries of carbonates on the martian surface provide new constraints on the evolution of the martian atmosphere. This work seeks to apply these constraints to test the feasibility of the cold early scenario

  20. Lunar and Planetary Science XXXV: Mars: Remote Sensing and Terrestrial Analogs

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Mars: Remote Sensing and Terrestrial Analogs" included the following:Physical Meaning of the Hapke Parameter for Macroscopic Roughness: Experimental Determination for Planetary Regolith Surface Analogs and Numerical Approach; Near-Infrared Spectra of Martian Pyroxene Separates: First Results from Mars Spectroscopy Consortium; Anomalous Spectra of High-Ca Pyroxenes: Correlation Between Ir and M ssbauer Patterns; THEMIS-IR Emissivity Spectrum of a Large Dark Streak near Olympus Mons; Geomorphologic/Thermophysical Mapping of the Athabasca Region, Mars, Using THEMIS Infrared Imaging; Mars Thermal Inertia from THEMIS Data; Multispectral Analysis Methods for Mapping Aqueous Mineral Depostis in Proposed Paleolake Basins on Mars Using THEMIS Data; Joint Analysis of Mars Odyssey THEMIS Visible and Infrared Images: A Magic Airbrush for Qualitative and Quantitative Morphology; Analysis of Mars Thermal Emission Spectrometer Data Using Large Mineral Reference Libraries ; Negative Abundance : A Problem in Compositional Modeling of Hyperspectral Images; Mars-LAB: First Remote Sensing Data of Mineralogy Exposed at Small Mars-Analog Craters, Nevada Test Site; A Tool for the 2003 Rover Mini-TES: Downwelling Radiance Compensation Using Integrated Line-Sight Sky Measurements; Learning About Mars Geology Using Thermal Infrared Spectral Imaging: Orbiter and Rover Perspectives; Classifying Terrestrial Volcanic Alteration Processes and Defining Alteration Processes they Represent on Mars; Cemented Volcanic Soils, Martian Spectra and Implications for the Martian Climate; Palagonitic Mars: A Basalt Centric View of Surface Composition and Aqueous Alteration; Combining a Non Linear Unmixing Model and the Tetracorder Algorithm: Application to the ISM Dataset; Spectral Reflectance Properties of Some Basaltic Weathering Products; Morphometric LIDAR Analysis of Amboy Crater, California: Application to MOLA Analysis of Analog Features on Mars; Airborne Radar Study of Soil Moisture at a Mars Analog Site: Tohachi Wash/Little Colorado River; and Antarctic Dry Valleys: Modification of Rocks and Soils and Implications for Mars The Arkaroola Mars Analogue Region, South Australia.

  1. Northwest Africa 8159: An approximately 2.3 Billion Year Old Martian Olivine-Bearing Augite Basalt

    NASA Technical Reports Server (NTRS)

    Simon, J. I.; Peters, T. J.; Tappa, M. J.; Agee, C. B.

    2014-01-01

    Based on petrology, mineralogy, and bulk composition, the new NWA 8159 martian meteorite is distinct from all known samples from Mars. In particular, the augite compositional trends are unique, but most similar to those of nakhite intercumulus. Whether NWA 8159 represents a new lithology or is related to a known meteorite group remains to be determined. Sr and Nd isotopic analyses will allow comparison of source characteristics with SNC and other new ungrouped meteorites (e.g., NWA 7635). Here we report initial Rb-Sr and Sm-Nd isotopic results for NWA 8159 with the objective to determine its formation age and to potentially identify similarities and potential source affinities with other martian rocks.

  2. Implantation of Martian Materials in the Inner Solar System by a Mega Impact on Mars

    NASA Astrophysics Data System (ADS)

    Hyodo, Ryuki; Genda, Hidenori

    2018-04-01

    Observations and meteorites indicate that the Martian materials are enigmatically distributed within the inner solar system. A mega impact on Mars creating a Martian hemispheric dichotomy and the Martian moons can potentially eject Martian materials. A recent work has shown that the mega-impact-induced debris is potentially captured as the Martian Trojans and implanted in the asteroid belt. However, the amount, distribution, and composition of the debris has not been studied. Here, using hydrodynamic simulations, we report that a large amount of debris (∼1% of Mars’ mass), including Martian crust/mantle and the impactor’s materials (∼20:80), are ejected by a dichotomy-forming impact, and distributed between ∼0.5–3.0 au. Our result indicates that unmelted Martian mantle debris (∼0.02% of Mars’ mass) can be the source of Martian Trojans, olivine-rich asteroids in the Hungarian region and the main asteroid belt, and some even hit the early Earth. The evidence of a mega impact on Mars would be recorded as a spike of 40Ar–39Ar ages in meteorites. A mega impact can naturally implant Martian mantle materials within the inner solar system.

  3. Visible and Near-IR Reflectance Spectra for Smectite, Sulfate And Perchlorate under Dry Conditions for Interpretation of Martian Surface Mineralogy

    NASA Technical Reports Server (NTRS)

    Morris, R.V.; Ming, W.; Golden, D.C.; Arvidson, R.E.; Wiseman, S.M.; Lichtenberg, K.A.; Cull, S.; Graff, T.G.

    2009-01-01

    Visible and near-IR (VNIR) spectral data for the martian surface obtained from orbit by the MRO-CRISM and OMEGA instruments are interpreted as having spectral signatures of H2O/OH-bearing phases, including smectites and other phyllosilicates, sulfates, and high-SiO2 phases [e.g., 1-4]. Interpretations of martian spectral signatures are based on and constrained by spectra that are obtained in the laboratory on samples with known mineralogical compositions and other physicochemical characteristics under, as appropriate, Mars-like environmental conditions (e.g., temperature, pressure, and humidity). With respect to environmental conditions, differences in the absolute concentration of atmospheric H2O can effect the hydration state and therefore the spectra signatures of smectite phyllosilicates (solvation H2O) and certain sulfates (hydration H2O) [e.g., 5-7]. We report VNIR spectral data acquired under humid (laboratory air) and dry (dry N2 gas) environments for two natural smectites (nontronite API-33A and saponite SapCa-1) to characterize the effect of solvation H2O on spectral properties. We also report spectral data for the thermal dehydration products of (1) melanterite (FeSO4.7H2O) in both air and dry N2 gas and (2) Mg-perchlorate (Mg(ClO4)2.6H2O) in dry N2 environments. Spectral measurements for samples dehydrated in dry N2 were made without exposing them to humid laboratory air.

  4. What can in situ ion chromatography offer for Mars exploration?

    PubMed

    Shelor, C Phillip; Dasgupta, Purnendu K; Aubrey, Andrew; Davila, Alfonso F; Lee, Michael C; McKay, Christopher P; Liu, Yan; Noell, Aaron C

    2014-07-01

    The successes of the Mars exploration program have led to our unprecedented knowledge of the geological, mineralogical, and elemental composition of the martian surface. To date, however, only one mission, the Phoenix lander, has specifically set out to determine the soluble chemistry of the martian surface. The surprising results, including the detection of perchlorate, demonstrated both the importance of performing soluble ion measurements and the need for improved instrumentation to unambiguously identify all the species present. Ion chromatography (IC) is the state-of-the-art technique for soluble ion analysis on Earth and would therefore be the ideal instrument to send to Mars. A flight IC system must necessarily be small, lightweight, low-power, and have low eluent consumption. We demonstrate here a breadboard system that addresses these issues by using capillary IC at low flow rates with an optimized eluent generator and suppressor. A mix of 12 ions known or plausible for the martian soil, including 4 (oxy)chlorine species, has been separated at flow rates ranging from 1 to 10 μL/min, requiring as little as 200 psi at 1.0 μL/min. This allowed the use of pneumatic displacement pumping from a pressurized aluminum eluent reservoir and the elimination of the high-pressure pump entirely (the single heaviest and most energy-intensive component). All ions could be separated and detected effectively from 0.5 to 100 μM, even when millimolar concentrations of perchlorate were present in the same mixtures.

  5. Polymeric composites on the basis of Martian ground for building future mars stations

    NASA Astrophysics Data System (ADS)

    Mukbaniani, O. V.; Aneli, J. N.; Markarashvili, E. G.; Tarasashvili, M. V.; Aleksidze, N. D.

    2016-04-01

    The colonization of Mars will require obtaining building materials which can be put in place and processed into buildings via various constructive technologies. We tried to use artificial Martian ground - AMG (GEO PAT 11-234 (2015)) and special resins for the preparation of building block prototypes. The composite material has been obtained based on the AMG as filler, epoxy resin (type ED-20) and tetraethoxysilane - TEOS. We have studied strengthening - softening temperatures and water absorption of the AMG polymer composites that are determined by epoxy resin and TEOS modification. Comparison of the experimental results shows that composites containing modified filler have higher values of the maximum ultimate strength, resistance and flexibility parameters than unmodified composites with definite loading. Modified composites also have a higher softening temperature and lower water absorption.

  6. Uranium-lead isotope systematics of Mars inferred from the basaltic shergottite QUE 94201

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaffney, A M; Borg, L E; Connelly, J N

    2006-12-22

    Uranium-lead ratios (commonly represented as {sup 238}U/{sup 204}Pb = {mu}) calculated for the sources of martian basalts preserve a record of petrogenetic processes that operated during early planetary differentiation and formation of martian geochemical reservoirs. To better define the range of {mu} values represented by the source regions of martian basalts, we completed U-Pb elemental and isotopic analyses on whole rock, mineral and leachate fractions from the martian meteorite Queen Alexandra Range 94201 (QUE 94201). The whole rock and silicate mineral fractions have unradiogenic Pb isotopic compositions that define a narrow range ({sup 206}Pb/{sup 204}Pb = 11.16-11.61). In contrast, themore » Pb isotopic compositions of weak HCl leachates are more variable and radiogenic. The intersection of the QUE 94201 data array with terrestrial Pb in {sup 206}Pb/{sup 204}Pb-{sup 207}Pb/{sup 204}Pb-{sup 208}Pb/{sup 204}Pb compositional space is consistent with varying amounts of terrestrial contamination in these fractions. We calculate that only 1-7% contamination is present in the purified silicate mineral and whole rock fractions, whereas the HCl leachates contain up to 86% terrestrial contamination. Despite the contamination, we are able to use the U-Pb data to determine the initial {sup 206}Pb/{sup 204}Pb of QUE 94201 (11.086 {+-} 0.008) and calculate the {mu} value of the QUE 94201 mantle source to be 1.823 {+-} 0.008. This is the lowest {mu} value calculated for any martian basalt source, and, when compared to the highest values determined for martian basalt sources, indicates that {mu} values in martian source reservoirs vary by at least 100%. The range of source {mu} values further indicates that the {mu} value of bulk silicate Mars is approximately three. The amount of variation in the {mu} values of the mantle sources ({mu} {approx} 2-4) is greater than can be explained by igneous processes involving silicate phases alone. We suggest the possibility that a small amount of sulfide crystallization may generate large extents of U-Pb fractionation during formation of the mantle sources of martian basalts.« less

  7. Multi-temporal database of High Resolution Stereo Camera (HRSC) images - Alpha version

    NASA Astrophysics Data System (ADS)

    Erkeling, G.; Luesebrink, D.; Hiesinger, H.; Reiss, D.; Jaumann, R.

    2014-04-01

    Image data transmitted to Earth by Martian spacecraft since the 1970s, for example by Mariner and Viking, Mars Global Surveyor (MGS), Mars Express (MEx) and the Mars Reconnaissance Orbiter (MRO) showed, that the surface of Mars has changed dramatically and actually is continually changing [e.g., 1-8]. The changes are attributed to a large variety of atmospherical, geological and morphological processes, including eolian processes [9,10], mass wasting processes [11], changes of the polar caps [12] and impact cratering processes [13]. In addition, comparisons between Mariner, Viking and Mars Global Surveyor images suggest that more than one third of the Martian surface has brightened or darkened by at least 10% [6]. Albedo changes can have effects on the global heat balance and the circulation of winds, which can result in further surface changes [14-15]. The High Resolution Stereo Camera (HRSC) [16,17] on board Mars Express (MEx) covers large areas at high resolution and is therefore suited to detect the frequency, extent and origin of Martian surface changes. Since 2003 HRSC acquires highresolution images of the Martian surface and contributes to Martian research, with focus on the surface morphology, the geology and mineralogy, the role of liquid water on the surface and in the atmosphere, on volcanism, as well as on the proposed climate change throughout the Martian history and has improved our understanding of the evolution of Mars significantly [18-21]. The HRSC data are available at ESA's Planetary Science Archive (PSA) as well as through the NASA Planetary Data System (PDS). Both data platforms are frequently used by the scientific community and provide additional software and environments to further generate map-projected and geometrically calibrated HRSC data. However, while previews of the images are available, there is no possibility to quickly and conveniently see the spatial and temporal availability of HRSC images in a specific region, which is important to detect the surface changes that occurred between two or more images.

  8. The "Mars-Sun Connection" and the Impact of Solar Variability on Mars Weather and Climate

    NASA Astrophysics Data System (ADS)

    Hassler, D. M.; Grinspoon, D.

    2004-05-01

    We develop the scientific case to measure simultaneously the UV and near-UV solar irradiance incident on the Mars atmosphere and at the Martian surface, to explore the effects and influence of Solar variability and "Space Weather" on Mars weather and climate, its implications for life, and the implications for astronaut safety on future manned Mars missions. The UV flux at the Martian surface is expected to be highly variable, due to diurnal, daily, and seasonal variations in opacity of atmospheric dust and clouds, as well as diurnal and seasonal variations in ozone, water vapor and other absorbing species. This flux has been modeled (Kuhn and Atreya, 1979), but never measured directly from the Martian surface. By directly observing the UV and near UV solar irradiance both at the top of the atmosphere and at the Martian surface we will be able to directly constrain important model parameters necessary to understand the variations of atmospheric dynamics which drive both Mars weather and climate. Directly measuring the solar UV radiation incident upon the Mars atmosphere and at the Martian surface also has important implications for astronaut safety on future manned Mars missions. The flux at the surface of Mars at 250 nm is also believed to be approximately 3000 times greater than that on Earth. This presents potential hazards to future human explorers as well as challenges for future agriculture such as may be carried out in surface greenhouses to provide food for human colonists. A better understanding of the surface flux will aid in designing appropriate protection against these hazards.

  9. The ``Mars-Sun Connection" and the Impact of Solar Variability on Mars Weather and Climate

    NASA Astrophysics Data System (ADS)

    Hassler, D. M.; Grinspoon, D. H.

    2003-05-01

    We develop the scientific case to measure simultaneously the UV and near-UV solar irradiance incident on the Mars atmosphere and at the Martian surface, to explore the effects and influence of Solar variability and ``Space Weather" on Mars weather and climate, its implications for life, and the implications for astronaut safety on future manned Mars missions. The UV flux at the Martian surface is expected to be highly variable, due to diurnal, daily, and seasonal variations in opacity of atmospheric dust and clouds, as well as diurnal and seasonal variations in ozone, water vapor and other absorbing species. This flux has been modeled (Kuhn and Atreya, 1979), but never measured directly from the Martian surface. By directly observing the UV and near UV solar irradiance both at the top of the atmosphere and at the Martian surface we will be able to directly constrain important model parameters necessary to understand the variations of atmospheric dynamics which drive both Mars weather and climate. Directly measuring the solar UV radiation incident upon the Mars atmosphere and at the Martian surface also has important implications for astronaut safety on future manned Mars missions. The flux at the surface of Mars at 250 nm is also believed to be approximately 3000 times greater than that on Earth. This presents potential hazards to future human explorers as well as challenges for future agriculture such as may be carried out in surface greenhouses to provide food for human colonists. A better understanding of the surface flux will aid in designing appropriate protection against these hazards.

  10. Halite as a Methane Sequestration Host: A Possible Explanation for Periodic Methane Release on Mars, and a Surface-accessible Source of Ancient Martian Carbon

    NASA Technical Reports Server (NTRS)

    Fries, M. D.; Steele, Andrew; Hynek, B. M.

    2015-01-01

    We present the hypothesis that halite may play a role in methane sequestration on the martian surface. In terrestrial examples, halite deposits sequester large volumes of methane and chloromethane. Also, examples of chloromethane-bearing, approximately 4.5 Ga old halite from the Monahans meteorite show that this system is very stable unless the halite is damaged. On Mars, methane may be generated from carbonaceous material trapped in ancient halite deposits and sequestered. The methane may be released by damaging its halite host; either by aqueous alteration, aeolian abrasion, heating, or impact shock. Such a scenario may help to explain the appearance of short-lived releases of methane on the martian surface. The methane may be of either biogenic or abiogenic origin. If this scenario plays a significant role on Mars, then martian halite deposits may contain samples of organic compounds dating to the ancient desiccation of the planet, accessible at the surface for future sample return missions.

  11. Radiation Shielding Optimization on Mars

    NASA Technical Reports Server (NTRS)

    Slaba, Tony C.; Mertens, Chris J.; Blattnig, Steve R.

    2013-01-01

    Future space missions to Mars will require radiation shielding to be optimized for deep space transit and an extended stay on the surface. In deep space, increased shielding levels and material optimization will reduce the exposure from most solar particle events (SPE) but are less effective at shielding against galactic cosmic rays (GCR). On the surface, the shielding provided by the Martian atmosphere greatly reduces the exposure from most SPE, and long-term GCR exposure is a primary concern. Previous work has shown that in deep space, additional shielding of common materials such as aluminum or polyethylene does not significantly reduce the GCR exposure. In this work, it is shown that on the Martian surface, almost any amount of aluminum shielding increases exposure levels for humans. The increased exposure levels are attributed to neutron production in the shield and Martian regolith as well as the electromagnetic cascade induced in the Martian atmosphere. This result is significant for optimization of vehicle and shield designs intended for the surface of Mars.

  12. Oxalate minerals on Mars?

    NASA Astrophysics Data System (ADS)

    Applin, D. M.; Izawa, M. R. M.; Cloutis, E. A.; Goltz, D.; Johnson, J. R.

    2015-06-01

    Small amounts of unidentified organic compounds have only recently been inferred on Mars despite strong reasons to expect significant concentrations and decades of searching. Based on X-ray diffraction and reflectance spectroscopic analyses we show that solid oxalic acid and its most common mineral salts are stable under the pressure and ultraviolet irradiation environment of the surface of Mars, and could represent a heretofore largely overlooked reservoir of organic carbon in the martian near-surface. In addition to the delivery to Mars by carbonaceous chondrites, oxalate minerals are among the predicted breakdown products of meteoritic organic matter delivered to the martian surface, as well as any endogenic organic carbon reaching the martian surface from the interior. A reinterpretation of pyrolysis experiments from the Viking, Phoenix, and Mars Science Laboratory missions shows that all are consistent with the presence of significant concentrations of oxalate minerals. Oxalate minerals could be important in numerous martian geochemical processes, including acting as a possible nitrogen sink (as ammonium oxalate), and contributing to the formation of “organic” carbonates, methane, and hydroxyl radicals.

  13. Nature of the Martian surface as inferred from the particle-size distribution of lunar-surface material.

    NASA Technical Reports Server (NTRS)

    Mason, C. C.

    1971-01-01

    Analysis of lunar particle size distribution data indicates that the surface material is composed of two populations. One population is caused by comminution from the impact of the larger-sized meteorites, while the other population is caused by the melting of fine material by the impact of smaller-sized meteorites. The results are referred to Mars, and it is shown that the Martian atmosphere would vaporize the smaller incoming meteorites and retard the incoming meteorites of intermediate and large size, causing comminution and stirring of the particulate layer. The combination of comminution and stirring would result in fine material being sorted out by the prevailing circulation of the Martian atmosphere and the material being transported to regions where it could be deposited. As a result, the Martian surface in regions of prevailing upward circulation is probably covered by either a rubble layer or by desert pavement; regions of prevailing downward circulation are probably covered by sand dunes.

  14. Martian Igneous Geochemistry: The Nature of the Martian Mantle

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.; Elkins-Tanton, L. T.; Peng, Z. X.; Herrin, J. S.

    2012-01-01

    Mafic igneous rocks probe the interiors of their parent objects, reflecting the compositions and mineralogies of their source regions, and the magmatic processes that engendered them. Incompatible trace element contents of mafic igneous rocks are widely used to constrain the petrologic evolution of planets. We focus on incompatible element ratios of martian meteorites to constrain the petrologic evolution of Mars in the context of magma ocean/cumulate overturn models [1]. Most martian meteorites contain some cumulus grains, but regardless, their incompatible element ratios are close to those of their parent magmas. Martian meteorites form two main petrologic/ age groupings; a 1.3 Ga group composed of clinopyroxenites (nakhlites) and dunites (chassignites), and a <1 Ga group composed of basalts and lherzolites (shergottites).

  15. Near-opposition martian limb-darkening: Quantification and implication for visible-near-infrared bidirectional reflectance studies.

    NASA Astrophysics Data System (ADS)

    de Grenier, Muriel; Pinet, Patrick C.

    1995-06-01

    A nearly global coverage of the martian eastern hemisphere, acquired under small phase angles and varying observational geometries conditions, has been produced from 1988 opposition by spectral (0.5-1 μm) imaging data obtained at the Pic du Midi Observatory in France. From this data set, the methodology presented here permits a systematic analysis of martian photometric behavior at a regional scale of 100-300 km in the visible and near-infrared. The quantification of limb-darkening as a function of wavelength and surface albedo gives access in martian regional properties as a function of wavelength and surface albedo and results in the production of visible and near-infrared geometric albedo maps. A linear relation between the limb darkening parameter k and geometric albedo exists in the near infrared. Based on laboratory studies, it suggests a spectral response of particulate type for the martian soil. Conversely, in the visible, the value of k parameter is 0.6 independent of albedo and is consistent with a single scattering photometric behavior in the surface layer. However, the observed change in the martian photometry from single to multiple scattering may be partially due to a large contribution of atmospheric scattering above 0.7 μm. In the absence of a multitemporal dataset analysis, it must be emphasized that the present results are a priori only pertinent to the atmospheric and surface conditions existing on Mars at the time of observation. However, this analysis may contribute to characterize some physical properties, such as surface roughness. In the near-infrared, for bright terrains, k tends to 0.8 and agrees with the presence of very fine particulate materials. Photometry of dark areas is more irregular (0.48 < k < 0.64) and might result from surface roughness heterogeneities. However, a few dark areas reveal that k anomalous values in the range 0.7-0.8 may be caused by the presence of a coating of very fine materials or duricrust. Finally, we evaluate the influence of reflectance geometrical effects on the multispectral and spectroscopic data of the martian surface.

  16. Unusual Iron Redox Systematics of Martian Magmas

    NASA Technical Reports Server (NTRS)

    Danielson, L.; Righter, K.; Pando, K.; Morris, R. V.; Graff, T.; Agresti, D.; Martin, A.; Sutton, S.; Newville, M.; Lanzirotti, A.

    2012-01-01

    Martian magmas are known to be FeO-rich and the dominant FeO-bearing mineral at many sites visited by the Mars Exploration rovers (MER) is magnetite. Morris et al. proposed that the magnetite appears to be igneous in origin, rather than of secondary origin. However, magnetite is not typically found in experimental studies of martian magmatic rocks. Magnetite stability in terrestrial magmas is well understood, as are the stabilities of FeO and Fe2O3 in terrestrial magmas. In order to better understand the variation of FeO and Fe2O3, and the stability of magnetite (and other FeO-bearing phases) in martian magmas, we have undertaken an experimental study with two emphases. First, we determine the FeO and Fe2O3 contents of super- and sub-liquidus glasses from a shergottite bulk composition at 1 bar to 4 GPa, and variable fO2. Second, we document the stability of magnetite with temperature and fO2 in a shergottite bulk composition.

  17. Stable Isotope Measurements of Martian Atmospheric CO2 at the Phoenix Landing Site

    NASA Astrophysics Data System (ADS)

    Niles, Paul B.; Boynton, William V.; Hoffman, John H.; Ming, Douglas W.; Hamara, Dave

    2010-09-01

    Carbon dioxide is a primary component of the martian atmosphere and reacts readily with water and silicate rocks. Thus, the stable isotopic composition of CO2 can reveal much about the history of volatiles on the planet. The Mars Phoenix spacecraft measurements of carbon isotopes [referenced to the Vienna Pee Dee belemnite (VPDB)] [δ13CVPDB = -2.5 ± 4.3 per mil (‰)] and oxygen isotopes [referenced to the Vienna standard mean ocean water (VSMOW)] (δ18OVSMOW = 31.0 ± 5.7‰), reported here, indicate that CO2 is heavily influenced by modern volcanic degassing and equilibration with liquid water. When combined with data from the martian meteorites, a general model can be constructed that constrains the history of water, volcanism, atmospheric evolution, and weathering on Mars. This suggests that low-temperature water-rock interaction has been dominant throughout martian history, carbonate formation is active and ongoing, and recent volcanic degassing has played a substantial role in the composition of the modern atmosphere.

  18. Spectroscopic analyses of Fe and water in clays: A Martian surface weathering study

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Pieters, Carle M.; Edwards, J. O.; Coyne, L. M.; Chang, S.

    1991-01-01

    Martian surface morphology suggests the presence of liquid H2O on Mars in the past. Reflectance spectra of the Martian surface include features which correspond to the crystal field transitions of iron, as well as features supporting the presence of ice and minerals containing structural OH and surface water. Researchers initiated further spectroscopic studies of surface iron and water and structural OH in clays in order to determine what remotely obtained spectra can indicate about the presence of clays on Mars based on a clearer understanding of the factors influencing the spectral features. Current technology allows researchers to better correlate the low frequency fundamental stretching and bending vibrations of O-H bonds with the diagnostic near infrared overtone and combination bands used in mineral characterization and identification.

  19. Principal Components Analysis of Reflectance Spectra Returned by the Mars Exploration Rover Opportunity

    NASA Technical Reports Server (NTRS)

    Mercer, C. M.; Cohen, Barbara A.

    2010-01-01

    The Mars Exploration Rover Opportunity has spent over six years exploring the Martian surface near its landing site at Meridiani Planum. Meridiani bedrock observed by the rover is largely characterized by sulfate-rich sandstones and hematite spherules, recording evidence of ancient aqueous environments [1]. The region is a deflationary surface, allowing hematite spherules, fragments of bedrock, and "cobbles" of foreign origin to collect loosely on the surface. These cobbles may be meteorites (e.g., Barberton, Heat Shield Rock, Santa Catarina) [2], or rock fragments of exotic composition derived from adjacent terranes or from the subsurface and delivered to Meridiani Planum as impact ejecta [3]. The cobbles provide a way to better understand Martian meteorites and the lithologic diversity of Meridiani Planum by examining the various rock types located there. In the summer of 2007, a global dust storm on Mars effectively disabled Opportunity's Miniature Thermal Emission Spectrometer (Mini-TES), which served as the Athena Science Team s primary tool for remotely identifying rocks of interest on a tactical timescale for efficient rover planning. While efforts are ongoing to recover use of the Mini-TES, the team is currently limited to identifying rocks of interest by visual inspection of images returned from Opportunity's Panoramic Camera (Pancam). This study builds off of previous efforts to characterize cobbles at Meridiani Planum using a database of reflectance spectra extracted from Pancam 13-Filter (13F) images [3]. We analyzed the variability of rock spectra in this database and identified physical characteristics of Martian rocks that could potentially account for the observed variance. By understanding such trends, we may be able to distinguish between rock types at Meridiani Planum and regain the capability to remotely identify locally unique rocks.

  20. Exploring the Utilization of Low-Pressure, Piston-Cylinder Experiments to Determine the Bulk Compositions of Finite, Precious Materials

    NASA Technical Reports Server (NTRS)

    Vander Kaaden, K. E.; McCubbin, F. M.; Harrington, A. D.

    2017-01-01

    Determining the bulk composition of precious materials with a finite mass (e.g., meteorite samples) is extremely important in the fields of Earth and Planetary Science. From meteorite studies we are able to place constraints on large scale planetary processes like global differentiation and subsequent volcanism, as well as smaller scale processes like crystallization in a magma chamber or sedimentary compaction at the surface. However, with meteorite samples in particular, far too often we are limited by how precious the sample is as well as its limited mass. In this study, we have utilized aliquots of samples previously studied for toxicological hazards, including both the fresh samples (lunar mare basalt NWA 4734, lunar regolith breccia NWA 7611, martian basalt Tissint, martian regolith breccia NWA 7034, a vestian basalt Berthoud, a vestian regolith breccia NWA 2060, and a terrestrial mid-ocean ridge basalt (MORB)), and those that underwent iron leaching (Tissint, NWA 7034, NWA 4734, MORB). With these small masses of material, we performed low pressure (approx. 0.75 GPa), high temperature (greater than 1600 degrees Celsius) melting experiments. Each sample was analyzed using a JEOL 8530F electron microprobe to determine the bulk composition of the materials that were previously examined. When available, the results of our microprobe data were compared with bulk rock compositions in the literature. The results of this study show that with this technique, only approx. 50 mg of sample is required to accurately determine the bulk composition of the materials of interest.

  1. Martian Cryogenic Carbonate Formation: Stable Isotope Variations Observed in Laboratory Studies

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Niles, Paul B.; Sun, Tao; Fu, Qi; Romanek, Christopher S.; Gibson, Everett K. Jr.

    2014-01-01

    The history of water on Mars is tied to the formation of carbonates through atmospheric CO2 and its control of the climate history of the planet. Carbonate mineral formation under modern martian atmospheric conditions could be a critical factor in controlling the martian climate in a means similar to the rock weathering cycle on Earth. The combination of evidence for liquid water on the martian surface and cold surface conditions suggest fluid freezing could be very common on the surface of Mars. Cryogenic calcite forms easily from freezing solutions when carbon dioxide degasses quickly from Ca-bicarbonate-rich water, a process that has been observed in some terrestrial settings such as arctic permafrost cave deposits, lake beds of the Dry Valleys of Antarctica, and in aufeis (river icings) from rivers of N.E. Alaska. A series of laboratory experiments were conducted that simulated cryogenic carbonate formation on Mars in order to understand their isotopic systematics. The results indicate that carbonates grown under martian conditions show variable enrichments from starting bicarbonate fluids in both carbon and oxygen isotopes beyond equilibrium values.

  2. Neutron Spectroscopy Can Constrain the Composition and Provenance of Phobos and Deimos

    NASA Technical Reports Server (NTRS)

    Elphic, R. C.; Lee, P.; Zolensky, M. E.; Mittelfehldt, D. W.; Lim, L.; Colaprete, A.

    2016-01-01

    The origin of the martian moons Phobos and Deimos is obscure and enigmatic. Hypotheses include the capture of asteroids originally from the outer main belt or beyond, residual material left over from Mars' formation, and accreted ejecta from a large impact on Mars, among others. Measurements of reflectance spectra indicate a similarity to dark, red D-type asteroids, but could indicate a highly space-weathered veneer. Here we suggest a way of constraining the near-surface composition of the two moons, for comparison to known meteoritic compositions. Neutron spectroscopy, particularly the thermal and epithermal neutron flux, distinguishes clearly between various classes of meteorites and varying hydrogen (water) abundances. Perhaps most surprising of all, a rendezvous with Phobos or Deimos is not necessary to achieve this.

  3. Neutron Spectroscopy Can Constrain the Composition and Provenance of Phobos and Deimos

    NASA Technical Reports Server (NTRS)

    Elphic, R. C.; Lee, P.; Zolensky, M. E.; Mittlefehldt, D. W.; Lim, L. F.; Colaprete, A.

    2016-01-01

    The origin of the martian moons Phobos and Deimos is obscure and enigmatic. Hypotheses include the capture of small bodies originally from the outer main belt or beyond, residual material left over from Mars' formation, and accreted ejecta from a large impact on Mars, among others. Measurements of reflectance spectra indicate a similarity to low-albedo, red D-type asteroids, but could indicate a highly space-weathered veneer. Here we suggest a way of constraining the near-surface composition of the two moons, for comparison with known meteoritic compositions. Neutron spectroscopy, particularly the thermal and epithermal neutron flux, distinguishes clearly between various classes of meteorites and varying hydrogen (water) abundances. Perhaps most surprising of all, a rendezvous with Phobos or Deimos is not necessary to achieve this. Multiple flybys suffice.

  4. Constraining Habitable Environments on Mars by Quantifying Available Geochemical Energy

    NASA Astrophysics Data System (ADS)

    Tierney, L. L.; Jakosky, B. M.

    2009-12-01

    The search for life on Mars includes the availability of liquid water, access to biogenic elements and an energy source. In the past, when water was more abundant on Mars, a source of energy may have been the limiting factor for potential life. Energy, either from photosynthesis or chemosynthesis, is required in order to drive metabolism. Potential martian organisms most likely took advantage of chemosynthetic reactions at and below the surface. Terrestrial chemolithoautotrophs, for example, thrive off of chemical disequilibrium that exists in many environments and use inorganic redox (reduction-oxidation) reactions to drive metabolism and create cellular biomass. The chemical disequilibrium of six different martian environments were modeled in this study and analyzed incorporating a range of water and rock compositions, water:rock mass ratios, atmospheric fugacities, pH, and temperatures. All of these models can be applied to specific sites on Mars including environments similar to Meridiani Planum and Gusev Crater. Both a mass transfer geochemical model of groundwater-basalt interaction and a mixing model of groundwater-hydrothermal fluid interaction were used to estimate hypothetical martian fluid compositions that results from mixing over the entire reaction path. By determining the overall Gibbs free energy yields for redox reactions in the H-O-C-S-Fe-Mn system, the amount of geochemical energy that was available for potential chemolithoautotrophic microorganisms was quantified and the amount of biomass that could have been sustained was estimated. The quantity of biomass that can be formed and supported within a system depends on energy availability, thus sites that have higher levels and fluxes of energy have greater potential to support life. Results show that iron- and sulfur-oxidation reactions would have been the most favorable redox reactions in aqueous systems where groundwater and rock interacted at or near the surface. These types of reactions could have supported between 0.05 and 1.0 grams (dry weight) of biomass per mole of iron or sulfur. The hydrothermal environments would have had numerous redox reactions in the H-O-C-S-Fe-Mn system that could have provided sufficient metabolic energy for potential microorganisms. Methanotrophy, for example, provides the greatest amount of energy at ~760 kJ per mole of methane, which is equivalent to 0.6 grams (dry weight) of biomass. Additional results show that varying the amount of CO2 in the martian atmosphere or adjusting the water:rock ratios has little effect on the resulting Gibbs free energies. The martian values that are reported for available free energy in this study are similar to values that have been calculated for terrestrial systems in hydrothermal settings in which life is known to be abundant. In summary, the models indicate that martian aqueous environments were likely to have been habitable at a wide range of conditions when liquid water was more abundant and would have been able to supply a large amount of energy for potential organisms.

  5. Martian CH(4): sources, flux, and detection.

    PubMed

    Onstott, T C; McGown, D; Kessler, J; Lollar, B Sherwood; Lehmann, K K; Clifford, S M

    2006-04-01

    Recent observations have detected trace amounts of CH(4) heterogeneously distributed in the martian atmosphere, which indicated a subsurface CH(4) flux of ~2 x 10(5) to 2 x 10(9) cm(2) s(1). Four different origins for this CH(4) were considered: (1) volcanogenic; (2) sublimation of hydrate- rich ice; (3) diffusive transport through hydrate-saturated cryosphere; and (4) microbial CH(4) generation above the cryosphere. A diffusive flux model of the martian crust for He, H(2), and CH(4) was developed based upon measurements of deep fracture water samples from South Africa. This model distinguishes between abiogenic and microbial CH(4) sources based upon their isotopic composition, and couples microbial CH(4) production to H(2) generation by H(2)O radiolysis. For a He flux of approximately 10(5) cm(2) s(1) this model yields an abiogenic CH(4) flux and a microbial CH(4) flux of approximately 10(6) and approximately 10(9) cm(2) s(1), respectively. This flux will only reach the martian surface if CH(4) hydrate is saturated in the cryosphere; otherwise it will be captured within the cryosphere. The sublimation of a hydrate-rich cryosphere could generate the observed CH(4) flux, whereas microbial CH(4) production in a hypersaline environment above the hydrate stability zone only seems capable of supplying approximately 10(5) cm(2) s(1) of CH(4). The model predicts that He/H(2)/CH(4)/C(2)H(6) abundances and the C and H isotopic values of CH(4) and the C isotopic composition of C(2)H(6) could reveal the different sources. Cavity ring-down spectrometers represent the instrument type that would be most capable of performing the C and H measurements of CH(4) on near future rover missions and pinpointing the cause and source of the CH(4) emissions.

  6. Detecting Pyrolysis Products from Bacteria in a Mars Soil Analogue

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Cleaves, H. J.; Schubert, M.; Aubrey, A.; Buch, A.; Mahaffy, P. R.; Bada, J. L.

    2004-01-01

    One of the primary objectives of the 1976 Viking missions was to determine whether organic compounds, possibly of biological origin, were present in the Martian surface soils. The Viking gas chromatography mass spectrometry (GCMS) instruments found no evidence for any organic compounds of Martian origin above a few parts per billion in the upper 10 cm of surface soil, suggesting the absence of a widely distributed Martian biota. However, it is now known that key organic compounds important to biology, such as amino acids, carboxylic acids and nucleobases, would likely have been missed by the Viking GCMS instruments. In this study, a Mars soil analogue that was inoculated with approx. 10 billion Escherichia coli cells was heated at 500 C under Martian ambient pressure to release volatile organic compounds from the sample. The pyrolysis products were then analyzed for amino acids and nucleobases using high performance liquid chromatography (HPLC) and GCMS. Our experimental results indicate that at the part per billion level, the degradation products generated from several million bacterial cells per gram of Martian soil would not have been detected by the Viking GCMS instruments. Upcoming strategies for Mars exploration will require in-situ analyses by instruments that can assess whether any organic compounds, especially those that might be associated with life, are present in Martian surface samples.

  7. The spectroscopic chemical and photophysical properties of Martian soils and their analogs

    NASA Technical Reports Server (NTRS)

    Coyne, Lelia M.

    1987-01-01

    The program of research outlined should advance significantly the understanding of the spectral signal of montmorillonites in general and the variations produced in it by structural and surface ferric and ferrous iron and interlayer water as a function of several environmental conditions that are different between Earth and Mars. In addition, an extensive data base was collected providing spectral characterization of several features (iron, both surface and structural, OH-groups, both structural and from adsorbed water and O(-) centers) that are known, or thought to be, influential in directing the surface activity of these important materials. With this data base with which to assess the results of the Viking labeled release simulation studies, it should be possible to gain important insights into the mechanisms of surface reactivity for this important chemical reaction. The results to be gained from these studies will provide a significant body of ground base truth from which to assess: the presence of smectite clays on Mars; the mineralogical form in which the Martian iron is bound; establish upper limits on the present surface water content of Martian soils; perhaps provide insights on the Martian surface radiation history; and to make strong predictions about the nature of surface chemistry on Mars, if iron-bearing clays are a significant component of the surface mineralogical assemblage.

  8. Maximum Frictional Charge Generation on Polymer Surfaces

    NASA Astrophysics Data System (ADS)

    Calle, Carlos; Groop, Ellen; Mantovani, James; Buehler, Martin

    2001-03-01

    The maximum amount of charge that a given surface area can hold is limited by the surrounding environmental conditions such as the atmospheric composition, pressure, humidity, and temperature. Above this charge density limit, the surface will discharge to the atmosphere or to a nearby conductive surface that is at a different electric potential. We have performed experiments using the MECA Electrometer, a flight instrument developed jointly by the Jet Propulsion Laboratory and NASA Kennedy Space Center to study the electrostatic properties of the Martian soil. The electrometer contains five types of polymers: fiberglass/epoxy, polycarbonate (Lexan), polytetraflouroethylene (Teflon), Rulon J, and polymethylmethacrylate (PMMA, Lucite). We repeatedly rubbed the polymers with another material until each polymer's charge saturation was determined. We will discuss the correlation of our data with the triboelectric series.

  9. Formation of Adsorbed Oxygen Radicals on Minerals at the Martian Surface and the Decomposition of Organic Molecules

    NASA Technical Reports Server (NTRS)

    Yen, A. S.; Kim, S. S.; Freeman, B. A.; Hecht, M. H.

    2000-01-01

    We present experimental evidence that superoxide ions form on mineral grains at the martian surface and show that these adsorbates can explain the unusual reactivity of the soil as well as the apparent absence of organic molecules.

  10. Hydrological Process of Martian Surface in Hesperian epoch

    NASA Astrophysics Data System (ADS)

    Yamashiki, Y. A.; Sato, H.; Kuroki, R.; Miyamoto, H.; Hemmi, R.

    2017-12-01

    It is considered that the Mars in Noachian ecoch was much warmer temperature than current condition, with atmosphere and ocean supported by its magnetic actiity. Several valley which seems to be developed by ancient hydrological processes are obsered in Martian surface, is being considered to be built long time before. Some fluvial fun was formed during the following Hesperian epoch, which is considered as much cooler and drier than Noachian epoch. In this study, we applied Hydro-debris 2D model into Martian surface in Hesperian epoch in order to try develping surface vallay formation throughout hydrological processes. Sediment transport and associated small-scale debris-flow occurrence may be the key for valley formation, where might be the micro-habitable zone.

  11. Chemical and Physical Interactions of Martian Surface Material

    NASA Astrophysics Data System (ADS)

    Bishop, J. L.

    1999-09-01

    A model of alteration and maturation of the Martian surface material is described involving both chemical and physical interactions. Physical processes involve distribution and mixing of the fine-grained soil particles across the surface and into the atmosphere. Chemical processes include reaction of sulfate, salt and oxidizing components of the soil particles; these agents in the soils deposited on rocks will chew through the rock minerals forming coatings and will bind surface soils together to form duricrust deposits. Formation of crystalline iron oxide/oxyhydroxide minerals through hydrothermal processes and of poorly crystalline and amorphous phases through palagonitic processes both contribute to formation of the soil particles. Chemical and physical alteration of these soil minerals and phases contribute to producing the chemical, magnetic and spectroscopic character of the Martian soil as observed by Mars Pathfinder and Mars Global Surveyor. Minerals such as maghemite/magnetite and jarosite/alunite have been observed in terrestrial volcanic soils near steam vents and may be important components of the Martian surface material. The spectroscopic properties of several terrestrial volcanic soils containing these minerals have been analyzed and evaluated in terms of the spectroscopic character of the surface material on Mars.

  12. Physiological and technological considerations for Mars mission extravehicular activity

    NASA Technical Reports Server (NTRS)

    Waligora, James M.; Sedej, Melaine M.

    1986-01-01

    The nature of the suit is a function of the needs of human physiology, the ambient environment outside the suit, and the type of activity to be accomplished while in the suit. The physiological requirements that must be provided for in the Martian Extravehicular Activity (EVA) suit will be reviewed. The influence of the Martian environment on the EVA suit and EVA capabilities is elaborated, and the Martian environment is compared with the lunar environment. The differences that may influence the EVA design are noted. The type, nature, and duration of activities to be done in transit to Mars and on the Martian surface will be evaluated and the impact of these activities on the requirements for EVA systems will be discussed. Furthermore, the interaction between Martian surface transportation systems and EVA systems will be covered. Finally, options other than EVA will be considered such as robotics, nonanthropometric suits, and vehicles with anthropometric extremities or robotic end effectors.

  13. The channels of Mars

    NASA Technical Reports Server (NTRS)

    Baker, V. R.

    1982-01-01

    Early observations of Mars conducted by means of telescopes are considered. Secchi introduced the Italian word 'canale' ('channel') in 1869 to describe apparent lines on the planet's surface. Between 1877 and 1888 Schiaparelli mapped a profusion of 'canali'. Schiaparelli's work led to famous controversies about Mars. This book attempts to investigate the puzzle posed by the Martian channels, taking into account also the results of the studies conducted with the aid of the two orbiting Viking spacecraft which have produced a total number of nearly 60,000 pictures. The channel types are discussed along with questions regarding the distribution, the ages, and the proposed origins of the channels. Attention is given to the geomorphology of Mars, the patterns and networks of Martian valleys, ice and the Martian surface, the outflow channels, catastrophic flood processes, questions of analogy between terrestrial and Martian geographic features, and Martian phenomena associated with water liquid or water ice.

  14. Subsurface Structure in the Martian Polar Layered Deposits: The Deep Space 2 Impact Accelerometry Experiment

    NASA Technical Reports Server (NTRS)

    Moersch, J. E.; Lorenz, R. D.

    1998-01-01

    While primarily a technology demonstration mission, the New Millenium Mars Microprobes (also known as Deep Space 2, or simply DS2)will also provide the first in situ science measurements of the martian subsurface. The DS2 impact accelerometry experiment will provide both engineering data about the depth of probe emplacement and science data about the physical nature of the subsurface at the probes' landing sites. Little is known about the detailed physical properties or small-scale vertical structure of the subsurface at the DS2 landing site in the southern martian polar layered deposits. Imaging data from the Viking Orbiters and Mars Global Surveyor reveal alternating bands of light and dark material in this region with thicknesses at least as small as the limit of resolution, about 10 m. The overall composition of these layers is poorly constrained, but generally thought to be a mixture of dust and ice with the layers being caused by variations in the dust/ice ratio, or perhaps by dust deposits of different densities. Low thermal inertias in the region suggest that the top few centimeters of the surface are composed of a mantling of fine-grained dust. However, 3.5-cm radar returns indicate that the maximum depth of this dust is not greater than a few tens of centimeters. Thermal models generally agree that, while the layered deposits do provide a potential near-surface reservoir for ice, the uppermost few centimeters to meters in these regions are likely to be ice-free because of sublimation losses. Finally, while it is generally agreed that the layered deposits are the product of variations in the martian climate, no direct correlation has been made between band sequences and specific climate changes. Our intention is to shed light on some of these questions about the martian polar layered deposits by using the DS2 accelerometry experiment to determine the physical nature of the layered deposits, and to detect the presence of any subsurface layering of dust, ice, and/or rock. In the process, we will also determine the final resting depth of the two microprobes, an important parameter in the interpretation of other DS2 experiments.

  15. On the in situ aqueous alteration of soils on Mars

    USGS Publications Warehouse

    Amundson, Ronald; Ewing, S.; Dietrich, W.; Sutter, B.; Owen, J.; Chadwick, O.; Nishiizumi, K.; Walvoord, Michelle Ann; McKay, C.

    2008-01-01

    Early (>3 Gy) wetter climate conditions on Mars have been proposed, and it is thus likely that pedogenic processes have occurred there at some point in the past. Soil and rock chemistry of the Martian landing sites were evaluated to test the hypothesis that in situ aqueous alteration and downward movement of solutes have been among the processes that have transformed these portions of the Mars regolith. A geochemical mass balance shows that Martian soils at three landing sites have lost significant quantities of major rock-forming elements and have gained elements that are likely present as soluble ions. The loss of elements is interpreted to have occurred during an earlier stage(s) of weathering that may have been accompanied by the downward transport of weathering products, and the salts are interpreted to be emplaced later in a drier Mars history. Chemical differences exist among the sites, indicating regional differences in soil composition. Shallow soil profile excavations at Gusev crater are consistent with late stage downward migration of salts, implying the presence of small amounts of liquid water even in relatively recent Martian history. While the mechanisms for chemical weathering and salt additions on Mars remain unclear, the soil chemistry appears to record a decline in leaching efficiency. A deep sedimentary exposure at Endurance crater contains complex depth profiles of SO4, Cl, and Br, trends generally consistent with downward aqueous transport accompanied by drying. While no model for the origin of Martian soils can be fully constrained with the currently available data, a pedogenic origin is consistent with observed Martian geology and geochemistry, and provides a testable hypothesis that can be evaluated with present and future data from the Mars surface. ?? 2008 Elsevier Ltd.

  16. Ground Based Observation of Isotopic Oxygen in the Martian Atmosphere Using Infrared Heterodyne Spectroscopy

    NASA Technical Reports Server (NTRS)

    Smith, R. L.; Kostiuk, T.; Livengood, T. A.; Fast, K. E.; Hewagama, T.; Delgado, J. D.; Sonnabend, G.

    2010-01-01

    Infrared heterodyne spectra of isotopic CO2 in the Martian atmosphere were obtained using the Goddard Heterodyne Instrument for Planetary Wind and Composition, HIPWAC, which was interfaced with the 3-meter telescope at the NASA Infrared Telescope Facility- Spectra were colle cted at a resolution of lambda/delta lambda=10(exp 7). Absorption fea tures of the CO2 isotopologues have been identified from which isotop ic ratios of oxygen have been determined. The isotopic ratios O-17/O -16 and O-18/O-16 in the Martian atmosphere can be related to Martian atmospheric evolution and can be compared to isotopic ratios of oxyg en in the Earth's atmosphere. Isotopic carbon and oxygen are importa nt constraints on any theory for the erosion of the Martian primordia l atmosphere and the interaction between the atmosphere and surface o r subsurface chemical reservoirs. This investigation explored the pr esent abundance of the stable isotopes of oxygen in Mars' atmospheric carbon dioxide by measuring rovibrational line absorption in isotop ic species of CO2 using groundbased infrared heterodyne spectroscopy in the vicinity of the 9.6 micron and 10.6 micron CO2 lasing bands. T he target transitions during this observation were O-18 C-12 O-16 as well as O-178 C-12 O-16 and O-16 C-113 O-16 at higher resolving power of lambda/delta lambda=10(exp 7) and with high signal-to-noise ratio (longer integration time) in order to fully characterize the absorpt ion line profiles. The fully-resolved lineshape of both the strong n ormal-isotope and the weak isotopic CO2 lines were measured simultane ously in a single spectrum.

  17. Chemical Weathering Records of Martian Soils Preserved in the Martian Meteorite EET79001

    NASA Technical Reports Server (NTRS)

    Rao, M. N.; Wentworth, S. J.; McKay, D. S.

    2004-01-01

    Impact-melt glasses, rich in Martian atmospheric gases, contain Martian soil fines (MSF) mixed with other coarse-grained regolith fractions which are produced during impact bombardment on Mars surface. An important characteristic of the MSF fraction is the simultaneous enrichment of felsic component accompanied by the depletion of mafic component relative to the host phase in these glasses. In addition, these glasses yield large sulfur abundances due to the occurrence of secondary mineral phases such as sulfates produced during acid-sulfate weathering of the regolith material near the Martian surface. Sulfurous gases released into atmosphere by volcanoes on Mars are oxidized to H2SO4 which deposit back on the surface of Mars as aerosol particles. Depending on the water availability, sulfuric acids dissolve into solutions which aggressively decompose the Fe-Mg silicates in the Martian regolith. During chemical weathering, structural elements such as Fe, Mg and Ca (among others) are released into the transgressing solutions. These solutions leach away the soluble components of Mg, Ca and Na, leaving behind insoluble iron as Fe3(+) hydroxysulfate mixed with poorly crystalline hydroxide- precipitates under oxidizing conditions. In this study, we focus on the elemental distribution of FeO and SO3 in the glass veins of EET79001, 507 sample, determined by Electron Microprobe and FE SEM measurements at JSC. This glass sample is an aliquot of a bigger glass inclusion ,104 analysed by where large concentrations of Martian atmospheric noble gases are found.

  18. Experiments and Spectral Studies of Martian Volcanic Rocks: Implications for the Origin of Pathfinder Rocks and Soils

    NASA Technical Reports Server (NTRS)

    Rutherford, Malcolm J.; Mustard, Jack; Weitz, Catherine

    2002-01-01

    The composition and spectral properties of the Mars Pathfinder rocks and soils together with the identification of basaltic and andesitic Mars terrains based on Thermal Emission Spectrometer (TES) data raised interesting questions regarding the nature and origin of Mars surface rocks. We have investigated the following questions: (1) are the Pathfinder rocks igneous and is it possible these rocks could have formed by known igneous processes, such as equilibrium or fractional crystallization, operating within SNC magmas known to exist on Mars? If it is possible, what P (depth) and PH2O conditions are required? (2) whether TES-based interpretations of plagioclase-rich basalt and andesitic terrains in the south and north regions of Mars respectively are unique. Are the surface compositions of these regions plagioclase-rich, possibly indicating the presence of old AI-rich crust of Mars, or are the spectra being affected by something like surface weathering processes that might determine the spectral pyroxene to plagioclase ratio?

  19. Large Alluvial Fans on Mars

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; Howard, Alan D.

    2004-01-01

    Several dozen distinct alluvial fans, 10 to greater than 40 km long downslope are observed exclusively in highlands craters. Within a search region between 0 deg. and 30 deg. S, alluvial fan-containing craters were only found between 18 and 29 S, and they all occur at around plus or minus 1 km of the MOLA-defined Martian datum. Within the study area they are not randomly distributed but instead form three distinct clusters. Fans typically descend greater than 1 km from where they disgorge from their alcoves. Longitudinal profiles show that their surfaces are very slightly concave with a mean slope of 2 degrees. Many fans exhibit very long, narrow low-relief ridges radially oriented down-slope, often branching at their distal ends, suggestive of distributaries. Morphometric data for 31 fans was derived from MOLA data and compared with terrestrial fans with high-relief source areas, terrestrial low gradient alluvial ramps in inactive tectonic settings, and older Martian alluvial ramps along crater floors. The Martian alluvial fans generally fall on the same trends as the terrestrial alluvial fans, whereas the gentler Martian crater floor ramps are similar in gradient to the low relief terrestrial alluvial surfaces. For a given fan gradient, Martian alluvial fans generally have greater source basin relief than terrestrial fans in active tectonic settings. This suggests that the terrestrial source basins either yield coarser debris or have higher sediment concentrations than their Martian counterpoints. Martian fans and Basin and Range fans have steeper gradients than the older Martian alluvial ramps and terrestrial low relief alluvial surfaces, which is consistent with a supply of coarse sediment. Martian fans are relatively large and of low gradient, similar to terrestrial fluvial fans rather than debris flow fans. However, gravity scaling uncertainties make the flow regime forming Martian fans uncertain. Martian fans, at least those in Holden crater, apparently formed around the time of the Noachian-Hesperian boundary. We infer that these fans formed during an episode of enhanced precipitation (probably snow) and runoff, which exhibited both sudden onset and termination.

  20. The divergent fates of primitive hydrospheric water on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Wade, Jon; Dyck, Brendan; Palin, Richard M.; Moore, James D. P.; Smye, Andrew J.

    2017-12-01

    Despite active transport into Earth’s mantle, water has been present on our planet’s surface for most of geological time. Yet water disappeared from the Martian surface soon after its formation. Although some of the water on Mars was lost to space via photolysis following the collapse of the planet’s magnetic field, the widespread serpentinization of Martian crust suggests that metamorphic hydration reactions played a critical part in the sequestration of the crust. Here we quantify the relative volumes of water that could be removed from each planet’s surface via the burial and metamorphism of hydrated mafic crusts, and calculate mineral transition-induced bulk-density changes at conditions of elevated pressure and temperature for each. The metamorphic mineral assemblages in relatively FeO-rich Martian lavas can hold about 25 per cent more structurally bound water than those in metamorphosed terrestrial basalts, and can retain it at greater depths within Mars. Our calculations suggest that in excess of 9 per cent by volume of the Martian mantle may contain hydrous mineral species as a consequence of surface reactions, compared to about 4 per cent by volume of Earth’s mantle. Furthermore, neither primitive nor evolved hydrated Martian crust show noticeably different bulk densities compared to their anhydrous equivalents, in contrast to hydrous mafic terrestrial crust, which transforms to denser eclogite upon dehydration. This would have allowed efficient overplating and burial of early Martian crust in a stagnant-lid tectonic regime, in which the lithosphere comprised a single tectonic plate, with only the warmer, lower crust involved in mantle convection. This provided an important sink for hydrospheric water and a mechanism for oxidizing the Martian mantle. Conversely, relatively buoyant mafic crust and hotter geothermal gradients on Earth reduced the potential for upper-mantle hydration early in its geological history, leading to water being retained close to its surface, and thus creating conditions conducive for the evolution of complex multicellular life.

  1. The divergent fates of primitive hydrospheric water on Earth and Mars.

    PubMed

    Wade, Jon; Dyck, Brendan; Palin, Richard M; Moore, James D P; Smye, Andrew J

    2017-12-20

    Despite active transport into Earth's mantle, water has been present on our planet's surface for most of geological time. Yet water disappeared from the Martian surface soon after its formation. Although some of the water on Mars was lost to space via photolysis following the collapse of the planet's magnetic field, the widespread serpentinization of Martian crust suggests that metamorphic hydration reactions played a critical part in the sequestration of the crust. Here we quantify the relative volumes of water that could be removed from each planet's surface via the burial and metamorphism of hydrated mafic crusts, and calculate mineral transition-induced bulk-density changes at conditions of elevated pressure and temperature for each. The metamorphic mineral assemblages in relatively FeO-rich Martian lavas can hold about 25 per cent more structurally bound water than those in metamorphosed terrestrial basalts, and can retain it at greater depths within Mars. Our calculations suggest that in excess of 9 per cent by volume of the Martian mantle may contain hydrous mineral species as a consequence of surface reactions, compared to about 4 per cent by volume of Earth's mantle. Furthermore, neither primitive nor evolved hydrated Martian crust show noticeably different bulk densities compared to their anhydrous equivalents, in contrast to hydrous mafic terrestrial crust, which transforms to denser eclogite upon dehydration. This would have allowed efficient overplating and burial of early Martian crust in a stagnant-lid tectonic regime, in which the lithosphere comprised a single tectonic plate, with only the warmer, lower crust involved in mantle convection. This provided an important sink for hydrospheric water and a mechanism for oxidizing the Martian mantle. Conversely, relatively buoyant mafic crust and hotter geothermal gradients on Earth reduced the potential for upper-mantle hydration early in its geological history, leading to water being retained close to its surface, and thus creating conditions conducive for the evolution of complex multicellular life.

  2. Extended Survival of Several Microorganisms and Relevant Amino Acid Biomarkers under Simulated Martian Surface Conditions as a Function of Burial Depth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Adam; Pratt, L.M.; Vishnivetskaya, Tatiana A

    2011-01-01

    Recent orbital and landed missions have provided substantial evidence for ancient liquid water on the martian surface as well as evidence of more recent sedimentary deposits formed by water and/or ice. These observations raise serious questions regarding an independent origin and evolution of life on Mars. Future missions seek to identify signs of extinct martian biota in the form of biomarkers or morphological characteristics, but the inherent danger of spacecraft-borne terrestrial life makes the possibility of forward contamination a serious threat not only to the life detection experiments, but also to any extant martian ecosystem. A variety of cold andmore » desiccation-tolerant organisms were exposed to 40 days of simulated martian surface conditions while embedded within several centimeters of regolith simulant in order to ascertain the plausibility of such organisms survival as a function of environmental parameters and burial depth. Relevant amino acid biomarkers associated with terrestrial life were also analyzed in order to understand the feasibility of detecting chemical evidence for previous biological activity. Results indicate that stresses due to desiccation and oxidation were the primary deterrent to organism survival, and that the effects of UV-associated damage, diurnal temperature variations, and reactive atmospheric species were minimal. Organisms with resistance to desiccation and radiation environments showed increased levels of survival after the experiment compared to organisms characterized as psychrotolerant. Amino acid analysis indicated the presence of an oxidation mechanism that migrated downward through the samples during the course of the experiment and likely represents the formation of various oxidizing species at mineral surfaces as water vapor diffused through the regolith. Current sterilization protocols may specifically select for organisms best adapted to survival at the martian surface, namely species that show tolerance to radical-induced oxidative damage and low water activity environments. Additionally, any hypothetical martian ecosystems may have evolved similar physiological traits that allow sporadic metabolism during periods of increased water activity.« less

  3. A search for polycyclic aromatic hydrocarbons over the Martian South Polar Residual Cap

    NASA Astrophysics Data System (ADS)

    Campbell, J. D.; Sidiropoulos, P.; Muller, J.-P.

    2018-07-01

    We present our research on compositional mapping of the Martian South Polar Residual Cap (SPRC), especially the detection of organic signatures within the dust content of the ice, based on hyperspectral data analysis. The SPRC is the main region of interest for this investigation, because of the unique CO2 ice sublimation features that cover the surface. These flat floored, circular depressions are highly dynamic, and we infer frequently expose dust particles previously trapped within the ice during the wintertime. Here we identify suitable regions for potential dust exposure on the SPRC, and utilise data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on board NASA's Mars Reconnaissance Orbiter (MRO) satellite to examine infrared spectra of dark regions assumed to be composed mainly of dust particles to establish their mineral composition, to eliminate the effects of ices on sub-pixel dusty features, and to look for signatures indicative of Polycyclic Aromatic Hydrocarbons (PAHs). Spectral mapping has identified compositional differences between depression rims and the majority of the SPRC and CRISM spectra have been corrected to minimise the influence of CO2 ice. Whilst no conclusive evidence for PAHs has been found within the detectability limits of the CRISM instrument, depression rims are shown to have higher water content than regions of featureless ice, and there are possible indications of magnesium carbonate within the dark, dusty regions.

  4. Modeling the development of martian sublimation thermokarst landforms

    USGS Publications Warehouse

    Dundas, Colin M.; Byrne, Shane; McEwen, Alfred S.

    2015-01-01

    Sublimation-thermokarst landforms result from collapse of the surface when ice is lost from the subsurface. On Mars, scalloped landforms with scales of decameters to kilometers are observed in the mid-latitudes and considered likely thermokarst features. We describe a landscape evolution model that couples diffusive mass movement and subsurface ice loss due to sublimation. Over periods of tens of thousands of Mars years under conditions similar to the present, the model produces scallop-like features similar to those on the Martian surface, starting from much smaller initial disturbances. The model also indicates crater expansion when impacts occur in surfaces underlain by excess ice to some depth, with morphologies similar to observed landforms on the Martian northern plains. In order to produce these landforms by sublimation, substantial quantities of excess ice are required, at least comparable to the vertical extent of the landform, and such ice must remain in adjacent terrain to support the non-deflated surface. We suggest that Martian thermokarst features are consistent with formation by sublimation, without melting, and that significant thicknesses of very clean excess ice (up to many tens of meters, the depth of some scalloped depressions) are locally present in the Martian mid-latitudes. Climate conditions leading to melting at significant depth are not required.

  5. Dependence of the Martian radiation environment on atmospheric depth: Modeling and measurement

    NASA Astrophysics Data System (ADS)

    Guo, Jingnan; Slaba, Tony C.; Zeitlin, Cary; Wimmer-Schweingruber, Robert F.; Badavi, Francis F.; Böhm, Eckart; Böttcher, Stephan; Brinza, David E.; Ehresmann, Bent; Hassler, Donald M.; Matthiä, Daniel; Rafkin, Scot

    2017-02-01

    The energetic particle environment on the Martian surface is influenced by solar and heliospheric modulation and changes in the local atmospheric pressure (or column depth). The Radiation Assessment Detector (RAD) on board the Mars Science Laboratory rover Curiosity on the surface of Mars has been measuring this effect for over four Earth years (about two Martian years). The anticorrelation between the recorded surface Galactic Cosmic Ray-induced dose rates and pressure changes has been investigated by Rafkin et al. (2014) and the long-term solar modulation has also been empirically analyzed and modeled by Guo et al. (2015). This paper employs the newly updated HZETRN2015 code to model the Martian atmospheric shielding effect on the accumulated dose rates and the change of this effect under different solar modulation and atmospheric conditions. The modeled results are compared with the most up-to-date (from 14 August 2012 to 29 June 2016) observations of the RAD instrument on the surface of Mars. Both model and measurements agree reasonably well and show the atmospheric shielding effect under weak solar modulation conditions and the decline of this effect as solar modulation becomes stronger. This result is important for better risk estimations of future human explorations to Mars under different heliospheric and Martian atmospheric conditions.

  6. Habitability Conditions Constrained by Martian Meteorites: Implications for Microbial Colonization and Mars Sample Return

    NASA Astrophysics Data System (ADS)

    Shivak, J. N.; Banerjee, N.; Flemming, R. L.

    2013-12-01

    We report the results of a comparative study of the crustal environmental conditions recorded by several Martian meteorites (Nakhla, Los Angeles, and Zagami). Though no samples have yet been returned from Mars, numerous meteorites are known and these provide the only samples of the Martian crust currently available for study. Terrestrial basalts and other mafic igneous rocks are analogous in many ways to much of the Martian crust, as evidenced by the composition of known Martian meteorites and measurements from planetary missions [1]. Microorganisms are known to thrive in the terrestrial geosphere and make use of many different substrates within rock in the subsurface of the Earth [2]. The action of aqueous solutions in the Martian crust has been well established through the study of alteration mineral assemblages present in many Martian meteorites, such as the nakhlites [3]. Aqueous activity in terrestrial chemolithoautotrophic habitats provides numerous energy and nutrient sources for microbes [4], suggesting the potential for habitable endolithic environments in Martian rocks. Fayalite in Nakhla has experienced extensive aqueous alteration to reddish-brown 'iddingsite' material within a pervasive fracture system. Textural imaging shows the replacement of primary olivine with various alteration phases and infiltration of this alteration front into host grains. Geochemical analysis of the alteration material shows the addition of iron and silica and removal of magnesium during alteration. Novel In situ Micro-XRD and Raman Spectroscopy of this material reveals a new assemblage consisting of iron oxides, smectite clays, carbonates, and a minor serpentine component. The alteration mineral assemblage here differs from several that have been previously reported [4] [5], allowing for a reevaluation of the environmental conditions during fluid action. Los Angeles and Zagami show no evidence of aqueous activity, though their primary basaltic mineralogies show many similarities to that of Nakhla. Fractures within Los Angeles and Zagami are fresh and unweathered, and no secondarily deposited phases were found. The environmental conditions suggested by the mineral phases in the Nakhla, Los Angeles, and Zagami meteorites can be used to assess their potential to act as microbial substrates for possible Martian life. Future Mars sample return missions have been proposed to involve the selection and caching of rock samples for return to the Earth. This will require intensive prioritization of samples on the surface and a need to vector towards areas with higher potential for astrobiologically interesting samples. The comparative methodologies developed here with Martian meteorites can be applied to unknown samples recovered from the surface of Mars to aid in mission operations and logistics. [1] J.C. Bridges et al., 2006. Journal of the Geological Society, London 163:229-251. [2] G. Southam et al., 2007. Treatise on Geophysics: Planets and Moons 10:421-438. [3] J.C. Bridges et al., 2001 Space Science Reviews 96: 365-392. [4] I.H. Thorseth et al., 1992. Geochimica et Cosmochimica Acta 56:845-850. [5] H.G. Changela et al., 2011 Meteoritics & Planetary Science 45(12):1847-1867.

  7. Prospecting for Diverse Igneous Rock Types on Mars: Pixl on "black Beauty" Nwa 7533

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Flannery, D.; Allwood, A.; Thompson, D. R.; Hodyss, R. P.; Clark, B. C.; Elam, W. T.; Hurowitz, J.

    2015-12-01

    In order to understand the evolution of the Martian crust and mantle, we need to acquire and analyze samples of igneous rocks other than the basaltic and ultramafic lithologies represented by the majority of Martian meteorites. Recent results from the Curiosity Rover demonstrate that diverse rock types exist in some Martian sedimentary environments in the form of conglomerate components or float, some of which shed light on the nature of early Martian crust (e.g., Sautter et al., 2015). We are developing investigation strategies for the in-situ instruments that will be flown on the Mars 2020 rover. These instruments will be used to inform the sampling campaigns required for future sample return missions. To achieve this, we applied PIXL (Planetary Instrument for X-ray Lithochemistry), an instrument for the Mars 2020 rover mission, to the meteorite NWA 7533. This meteorite is a pairing of NWA 7034, known informally as "Black Beauty", a new type of Martian meteorite that is broadly similar to the average composition of the Martian crust. This type of meteorite is essentially a 'conglomerate', with many diverse rock types, including mafic, feldspathic, and exotic rock fragments such as feldspar-ilmenite-phosphate clasts, as observed using higher-spatial resolution and higher sensitivity laboratory instruments (e.g., Agee et al., 2013; Humayun et al., 2014; Santos et al., 2015). Using PIXL, we analyzed a mm-scale cut and polished surface and applied algorithms developed by the PIXL team to semi-autonomously define and group regions containing similar lithological components (Thompson et al., 2015). PIXL data rapidly reveal distinctive zircon-bearing lithologies and feldspar-ilmenite-phosphate clasts similar to the detailed petrographic and mineralogical observations. Results suggest that PIXL readily identifies lithologies with minerals and elements (e.g., Rb and Sr) that are important for geochronology studies.

  8. Characteristics of the Martian atmosphere surface layer

    NASA Technical Reports Server (NTRS)

    Clow, G. D.; Haberle, R. M.

    1990-01-01

    Elements of various terrestrial boundary layer models are extended to Mars in order to estimate sensible heat, latent heat, and momentum fluxes within the Martian atmospheric surface ('constant flux') layer. The atmospheric surface layer consists of an interfacial sublayer immediately adjacent to the ground and an overlying fully turbulent surface sublayer where wind-shear production of turbulence dominates buoyancy production. Within the interfacial sublayer, sensible and latent heat are transported by non-steady molecular diffusion into small-scale eddies which intermittently burst through this zone. Both the thickness of the interfacial sublayer and the characteristics of the turbulent eddies penetrating through it depend on whether airflow is aerodynamically smooth or aerodynamically rough, as determined by the Roughness Reynold's number. Within the overlying surface sublayer, similarity theory can be used to express the mean vertical windspeed, temperature, and water vapor profiles in terms of a single parameter, the Monin-Obukhov stability parameter. To estimate the molecular viscosity and thermal conductivity of a CO2-H2O gas mixture under Martian conditions, parameterizations were developed using data from the TPRC Data Series and the first-order Chapman-Cowling expressions; the required collision integrals were approximated using the Lenard-Jones potential. Parameterizations for specific heat and binary diffusivity were also determined. The Brutsart model for sensible and latent heat transport within the interfacial sublayer for both aerodynamically smooth and rough airflow was experimentally tested under similar conditions, validating its application to Martian conditions. For the surface sublayer, the definition of the Monin-Obukhov length was modified to properly account for the buoyancy forces arising from water vapor gradients in the Martian atmospheric boundary layer. It was found that under most Martian conditions, the interfacial and surface sublayers offer roughly comparable resistance to sensible heat and water vapor transport and are thus both important in determining the associated fluxes.

  9. Numerical simulation of the radiation environment on Martian surface

    NASA Astrophysics Data System (ADS)

    Zhao, L.

    2015-12-01

    The radiation environment on the Martian surface is significantly different from that on earth. Existing observation and studies reveal that the radiation environment on the Martian surface is highly variable regarding to both short- and long-term time scales. For example, its dose rate presents diurnal and seasonal variations associated with atmospheric pressure changes. Moreover, dose rate is also strongly influenced by the modulation from GCR flux. Numerical simulation and theoretical explanations are required to understand the mechanisms behind these features, and to predict the time variation of radiation environment on the Martian surface if aircraft is supposed to land on it in near future. The high energy galactic cosmic rays (GCRs) which are ubiquitous throughout the solar system are highly penetrating and extremely difficult to shield against beyond the Earth's protective atmosphere and magnetosphere. The goal of this article is to evaluate the long term radiation risk on the Martian surface. Therefore, we need to develop a realistic time-dependent GCR model, which will be integrated with Geant4 transport code subsequently to reproduce the observed variation of surface dose rate associated with the changing heliospheric conditions. In general, the propagation of cosmic rays in the interplanetary medium can be described by a Fokker-Planck equation (or Parker equation). In last decade,we witnessed a fast development of GCR transport models within the heliosphere based on accurate gas-dynamic and MHD backgrounds from global models of the heliosphere. The global MHD simulation produces a more realistic pattern of the 3-D heliospheric structure, as well as the interface between the solar system and the surrounding interstellar space. As a consequence, integrating plasma background obtained from global-dependent 3-D MHD simulation and stochastic Parker transport simulation, we expect to produce an accurate global physical-based GCR modulation model. Combined with the Geant4 transport code, this GCR model will provide valuable insight into the long-term dose rates variation on the Martian surface.

  10. Viscous flow behavior of tholeiitic and alkaline Fe-rich martian basalts

    NASA Astrophysics Data System (ADS)

    Chevrel, Magdalena Oryaëlle; Baratoux, David; Hess, Kai-Uwe; Dingwell, Donald B.

    2014-01-01

    The chemical compositions of martian basalts are enriched in iron with respect to terrestrial basalts. Their rheology is poorly known and liquids of this chemical composition have not been experimentally investigated. Here, we determine the viscosity of five synthetic silicate liquids having compositions representative of the diversity of martian volcanic rocks including primary martian mantle melts and alkali basalts. The concentric cylinder method has been employed between 1500 °C and the respective liquidus temperatures of these liquids. The viscosity near the glass transition has been derived from calorimetric measurements of the glass transition. Although some glass heterogeneity limits the accuracy of the data near the glass transition, it was nevertheless possible to determine the parameters of the non-Arrhenian temperature-dependence of viscosity over a wide temperature range (1500 °C to the glass transition temperature). At superliquidus conditions, the martian basalt viscosities are as low as those of the Fe-Ti-rich lunar basalts, similar to the lowest viscosities recorded for terrestrial ferrobasalts, and 0.5 to 1 order of magnitude lower than terrestrial tholeiitic basalts. Comparison with empirical models reveals that Giordano et al. (2008) offers the best approximation, whereas the model proposed by Hui and Zhang (2007) is inappropriate for the compositions considered. The slightly lower viscosities exhibited by the melts produced by low degree of mantle partial melting versus melts produced at high degree of mantle partial melting (likely corresponding to the early history of Mars), is not deemed sufficient to lead to viscosity variations large enough to produce an overall shift of martian lava flow morphologies over time. Rather, the details of the crystallization sequence (and in particular the ability of some of these magmas to form spinifex texture) is proposed to be a dominant effect on the viscosity during martian lava flow emplacement and may explain the lower range of viscosities (102-104 Pa s) inferred from lava flow morphology. Further, the differences between the rheological behaviors of tholeiitic vs. trachy-basalts are significant enough to affect their emplacement as intrusive bodies or as effusive lava flows. The upper range of viscosities (106-108 Pa s) suggested from lava flow morphology is found consistent with the occurrence of alkali basalt documented from in situ analyses and does not necessarily imply the occurrence of basaltic-andesite or andesitic rocks.

  11. Fe-Bearing Phases Identified by the Moessbauer Spectrometers on the Mars Exploration Rovers: An Overview

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Klingelhoefer, G.; Rodionov, D.; Yen, A.; Gellert, R.

    2006-01-01

    The twin Mars Exploration Rovers Spirit and Opportunity have explored the martian surface at Gusev Crater (GC) and Meridiani Planum (MP), respectively, for about two Earth years. The Moessbauer (MB) spectrometers on both rovers have analyzed an aggregate of 200 surface targets and have returned to Earth information on the oxidation state of iron, the mineralogical composition of Febearing phases, and the distribution of Fe among oxidation states and phases at the two landing sites [1-7]. To date, 15 component subspectra (10 doublets and 5 sextets) have been identified and most have been assigned to mineralogical compositions. Two subspectra are assigned to phases (jarosite and goethite) that are marker minerals for aqueous processes because they contain hydroxide anion in their structures. In this paper, we give an overview of the Febearing phases identified and their distributions at Gusev crater and Meridiani Planum.

  12. Fe-Bearing Phases Indentified by the Moessbauer Spectrometers on the Mars Exploration Rovers: An Overview

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Klingelhoefer, G.; Ming, D. W.; Schroeder, C.; Rodionov, D.; Yen, A.; Gellert, R.

    2006-01-01

    The twin Mars Exploration Rovers Spirit and Opportunity have explored the martian surface at Gusev Crater (GC) and Meridiani Planum (MP), respectively, for about two Earth years. The Moessbauer (MB) spectrometers on both rovers have analyzed an aggregate of approx.200 surface targets and have returned to Earth information on the oxidation state of iron, the mineralogical composition of Fe-bearing phases, and the distribution of Fe among oxidation states and phases at the two landing sites [1-7]. To date, 15 component subspectra (10 doublets and 5 sextets) have been identified and most have been assigned to mineralogical compositions. Two subspectra are assigned to phases (jarosite and goethite) that are marker minerals for aqueous processes because they contain hydroxide anion in their structures. In this paper, we give an overview of the Febearing phases identified and their distributions at Gusev crater and Meridiani Planum.

  13. A mild, near-surface aqueous environment on Noachian Mars preserved in ALH84001

    NASA Astrophysics Data System (ADS)

    Halevy, I.; Fischer, W. W.; Eiler, J. M.

    2011-12-01

    Despite widespread evidence for liquid water at the surface of Mars during parts of the Noachian epoch, the temperature of early aqueous environments has been impossible to establish, raising questions of whether Mars' surface was ever warmer than today. This has hindered insight into aqueous alteration processes, which, on the basis of orbital spectroscopy, appear to have been prevalent on Noachian Mars. It is important to understand such processes, as they link the observed secondary mineral assemblages to interactions between primary igneous silicates and the surface environment (atmosphere-hydrosphere). We have addressed this problem by determining the precipitation temperatures of secondary carbonate minerals preserved in the oldest known sample of Mars' crust-the meteorite Allan Hills 84001 (ALH84001). Using carbonate 'clumped' isotope thermometry we have found that the carbonates in ALH84001, which are 3.9-4.0 billion years old, formed at a temperature of ~18±4°C. With temperature known, we used the carbon and oxygen isotopic composition of the carbonates, as constrained by both our measurements and previous acid digestion and ion microprobe studies, to develop a model for their formation process and environment. The observed isotopic variation is best explained by carbonate precipitation out of a gradually evaporating, shallow subsurface aqueous solution (e.g. a regolith aquifer) at near-constant temperatures. Furthermore, on the basis of the isotopic composition of the earliest precipitated carbonates in ALH84001, the volatiles from which they formed (H2O and CO2) came not from depth, but from the early Martian surface. The occurrence of carbonates in other SNC meteorites and as a minor component of Martian dust implies that environments analogous to the one we studied may have been important in generating some of the observed secondary mineral assemblages by interaction between Mars' igneous crust and its atmosphere-hydrosphere.

  14. Planetary SUrface Portal (PSUP): a tool for easy visualization and analysis of Martian surface

    NASA Astrophysics Data System (ADS)

    Poulet, Francois; Quantin-Nataf, Cathy; Ballans, Hervé; Lozac'h, Loic; Audouard, Joachim; Carter, John; Dassas, karin; Malapert, Jean-Christophe; Marmo, Chiara; Poulleau, Gilles; Riu, Lucie; Séjourné, antoine

    2016-10-01

    PSUP is two software application platforms for working with raster, vector, DTM, and hyper-spectral data acquired by various space instruments analyzing the surface of Mars from orbit. The first platform of PSUP is MarsSI (Martian surface data processing Information System, http://emars.univ-lyon1.fr). It provides data analysis functionalities to select and download ready-to-use products or to process data though specific and validated pipelines. To date, MarsSI handles CTX, HiRISE and CRISM data of NASA/MRO mission, HRSC and OMEGA data of ESA/MEx mission and THEMIS data of NASA/ODY mission (Lozac'h et al., EPSC 2015). The second part of PSUP is also open to the scientific community and can be visited at http://psup.ias.u-psud.fr/. This web-based user interface provides access to many data products for Mars: image footprints and rasters from the MarsSI tool; compositional maps from OMEGA and TES; albedo and thermal inertia from OMEGA and TES; mosaics from THEMIS, Viking, and CTX; high level specific products (defined as catalogues) such as hydrated mineral sites derived from CRISM and OMEGA data, central peaks mineralogy,… In addition, OMEGA C channel data cubes corrected for atmospheric and aerosol contributions can be downloaded. The architecture of PSUP data management and visualization is based on SITools2 and MIZAR, two CNES generic tools developed by a joint effort between CNES and scientific laboratories. SITools2 provides a self-manageable data access layer deployed on the PSUP data, while MIZAR is 3D application in a browser for discovering and visualizing geospatial data. Further developments including the addition of high level products of Mars (regional geological maps, new global compositional maps,…) are foreseen. Ultimately, PSUP will be adapted to other planetary surfaces and space missions in which the French research institutes are involved.

  15. The composition of phobos: evidence for carbonaceous chondrite surface from spectral analysis.

    PubMed

    Pang, K D; Pollack, J B; Veverka, J; Lane, A L; Ajello, J M

    1978-01-06

    A reflectance spectrum of Phobos (from 200 to 1100 nanometers) has been compiled from the Mariner 9 ultraviolet spectrometer, Viking lander imaging, and ground-based photometric data. The reflectance of the martian satellite is approximately constant at 5 percent from 1100 to 400 nanometers but drops sharply below 400 nanometers, reaching a value of 1 percent at 200 nanometers. The spectral albedo of Phobos bears a striking resemblance to that of asteroids (1) Ceres and (2) Pallas. Comparison of the reflectance spectra of asteroids with those of meteorites has shown that the spectral signature of Ceres is indicative of a carbonaceous chondritic composition. A physical explanation of how the compositional information is imposed on the reflectance spectrum is given. On the basis of a good match between the reflectance spectra of Phobos and Ceres and the extensive research that has been done to infer the composition of Ceres, it seems reasonable to believe that the surface composition of Phobos is similar to that of carbonaceous chondrites. This suggestion is consistent with the recently determined low density of Mars's inner satellite. Our result and recent Viking noble gas measurements suggest different modes of origin for Mars and Phobos.

  16. The Martian paleoclimate and enhanced atmospheric carbon dioxide

    NASA Technical Reports Server (NTRS)

    Cess, R. D.; Owen, T.; Ramanathan, V.

    1980-01-01

    Current evidence indicates that the Martian surface is abundant with water presently in the form of ice, while the atmosphere was at one time more massive with a past surface pressure of as much as 1 atm of CO2. In an attempt to understand the Martian paleoclimate, a past CO2-H2O greenhouse was modeled and global temperatures which are consistent with an earlier presence of liquid surface water are found in agreement with the extensive evidence for past fluvial erosion. An important aspect of the CO2-H2O greenhouse model is the detailed inclusion of CO2 hot bands. For a surface pressure of 1 atm of CO2, the present greenhouse model predicts a global mean surface temperature of 294 K, but if the hot bands are excluded, a surface temperature of only 250 K is achieved.

  17. Visualization of particle flux in the human body on the surface of Mars

    NASA Technical Reports Server (NTRS)

    Saganti, Premkumar B.; Cucinotta, Francis A.; Wilson, John W.; Schimmerling, Walter

    2002-01-01

    For a given galactic cosmic ray (GCR) environment, information on the particle flux of protons, alpha particles, and heavy ions, that varies with respect to the topographical altitude on the Martian surface, are needed for planning exploration missions to Mars. The Mars Global Surveyor (MGS) mission with its Mars Orbiter Laser Altimeter (MOLA) instrument has been providing precise topographical surface map of the Mars. With this topographical data, the particle flux at the Martian surface level through the CO2 atmospheric shielding for solar minimum and solar maximum conditions are calculated. These particle flux calculations are then transported first through an anticipated shielding of a conceptual shelter with several water equivalent shield values (up to 50 g/cm2 of water in steps of 5 g/cm2) considered to represent a surface habitat, and then into the human body. Model calculations are accomplished utilizing the HZETRN, QMSFRG, and SUM-MARS codes. Particle flux calculations for 12 different locations in the human body were considered from skin depth to the internal organs including the blood-forming organs (BFO). Visualization of particle flux in the human body at different altitudes on the Martian surface behind a known shielding is anticipated to provide guidance for assessing radiation environment risk on the Martian surface for future human missions.

  18. Visualization of particle flux in the human body on the surface of Mars.

    PubMed

    Saganti, Premkumar B; Cucinotta, Francis A; Wilson, John W; Schimmerling, Walter

    2002-12-01

    For a given galactic cosmic ray (GCR) environment, information on the particle flux of protons, alpha particles, and heavy ions, that varies with respect to the topographical altitude on the Martian surface, are needed for planning exploration missions to Mars. The Mars Global Surveyor (MGS) mission with its Mars Orbiter Laser Altimeter (MOLA) instrument has been providing precise topographical surface map of the Mars. With this topographical data, the particle flux at the Martian surface level through the CO2 atmospheric shielding for solar minimum and solar maximum conditions are calculated. These particle flux calculations are then transported first through an anticipated shielding of a conceptual shelter with several water equivalent shield values (up to 50 g/cm2 of water in steps of 5 g/cm2) considered to represent a surface habitat, and then into the human body. Model calculations are accomplished utilizing the HZETRN, QMSFRG, and SUM-MARS codes. Particle flux calculations for 12 different locations in the human body were considered from skin depth to the internal organs including the blood-forming organs (BFO). Visualization of particle flux in the human body at different altitudes on the Martian surface behind a known shielding is anticipated to provide guidance for assessing radiation environment risk on the Martian surface for future human missions.

  19. Dehydroxylated clay silicates on Mars: Riddles about the Martian regolith solved with ferrian saponites

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1992-01-01

    Clay silicates, resulting from the chemical weathering of volcanic glasses and basaltic rocks of Mars, are generally believed to be major constituents of the martian regolith and atmospheric dust. Because little attention has been given to the role, if any, of Mg-bearing clay silicates on the martian surface, the crystal chemistry, stability, and reactivity of Mg-Fe smectites are examined. Partially dehydroxylated ferrian saponites are suggested to be major constituents of the surface of Mars, regulating several properties of the regolith.

  20. Measurements of the Martian Gamma/Neutron Spectra with MSL/RAD

    NASA Astrophysics Data System (ADS)

    Kohler, J.; Zeitlin, C. J.; Ehresmann, B.; Wimmer-Schweingruber, R. F.; Hassler, D.; Reitz, G.; Brinza, D.; Weigle, E.; Boettcher, S.; Burmeister, S.; Guo, J.; Martin-Garcia, C.; Boehm, E.; Posner, A.; Rafkin, S. C.; Kortmann, O.

    2013-12-01

    The Radiation Assessment Detector (RAD) onboard Mars Science Laboratory's rover curiosity measures the energetic charged and neutral particle spectra and the radiation dose rate on the Martian surface. An important factor for determining the biological impact of the Martian surface radiation is the specific contribution of neutrons, which possess a high biological effectiveness. In contrast to charged particles, neutrons and gamma rays are generally only measured indirectly. Their measurement is the result of a complex convolution of the incident particle spectrum with the measurement process. We apply an inversion method to calculate the gamma/neutron spectra from the RAD neutral particle measurements. Here we show first measurements of the Martian gamma/neutron spectra and compare them to theoretical predictions. We find that the shape of the gamma spectrum is very similar to the predicted one, but with a ~50% higher intensity. The measured neutron spectrum agrees well with prediction up to ~100 MeV, but shows a considerably increased intensity for higher energies. The measured neutron spectrum translates into a radiation dose rate of 25 μGy/day and a dose equivalent rate of 106 μSv/day. This corresponds to 10% of the total surface dose rate, and 15% of the biological relevant surface dose equivalent rate on Mars. Measuring the Martian neutron spectra is an essential step for determining the mutagenic influences to past or present life at or beneath the Martian surface as well as the radiation hazard for future human exploration, including the shielding design of a potential habitat. The contribution of neutrons to the dose equivalent increases considerably with shielding thickness, so our measurements provide an important figure to mitigate cancer risk.

  1. Analysis of terrestrial and Martian volcanic compositions using thermal emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Wyatt, Michael Bruce

    2002-11-01

    This dissertation comprises four separate parts that address the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) investigation objective of determining and mapping the composition and distribution of surface minerals and rocks on Mars from orbit. In Part 1, laboratory thermal infrared spectra (5 25 μm, at 2 cm-1 spectral sampling), deconvolved modal mineralogies, and derived mineral and bulk rock chemistries of basalt, basaltic andesite, andesite, and dacite were used to evaluate and revise volcanic rock classification schemes. Multiple steps of classification were required to distinguish volcanic rocks, reflecting the mineralogic diversity and continuum of compositions that exists in volcanic rock types. In Part 2, laboratory spectral data were convolved to TES 10 cm-1 sampling to ascertain whether adequate results for volcanic rock classification can be obtained with lower spectral resolution, comparable to that obtained from Mars orbit. Modeled spectra, modeled modal mineralogies, and derived bulk rock chemistries at low (10 cm-1) spectral sampling provide good matches to measured and high (2 cm-1) spectral sampling modeled values. These results demonstrate the feasibility of using similar techniques and classification schemes for the interpretation of terrestrial laboratory samples and TES-resolution data. In Part 3, new deconvolved mineral abundances from TES data and terrestrial basalts using a spectral end-member set representing minerals common in unaltered and low-temperature aqueously altered basalts were used to reclassify martian surface lithologies. The new formulations maintain the dominance of unaltered basalt in the southern highlands, but indicate the northern lowlands can be interpreted as weathered basalt. The coincidence between locations of altered basalt and a previously suggested northern ocean basin implies that lowland plains materials may be basalts altered under submarine conditions and/or weathered basaltic sediment transported into this depocenter. In Part 4, results from the previous parts are applied to examine the distribution of TES-derived surface compositions in the Oxia Palus region on Mars through high-spatial resolution mapping. Features of interest within Oxia Palus include volcanic/sedimentary materials in southern Acidalia Planitia, low-albedo crater floors and wind streaks in western Arabia Terra, and channel outflow deposits of the Mars Pathfinder (MP) landing site.

  2. Carbon Isotope Characterization of Organic Intermediaries in Hydrothermal Hydrocarbon Synthesis by Pyrolysis-GC-MS-C-IRMS

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2010-01-01

    We report results of experiments designed to characterize the carbon isotope composition of intermediate organic compounds produced as a result of mineral surface catalyzed reactions. The impetus for this work stems from recently reported detection of methane in the Martian atmosphere coupled with evidence showing extensive water-rock interaction during Martian history. Abiotic formation by Fischer-Tropsch-type (FTT) synthesis during serpentinization reactions may be one possible process responsible for methane generation on Mars, and measurement of carbon and hydrogen isotopes of intermediary organic compounds can help constrain the origin of this methane. Of particular interest within the context of this work is the isotopic composition of organic intermediaries produced on the surfaces of mineral catalysts (i.e. magnetite) during hydrothermal experiments, and the ability to make meaningful and reproducible isotope measurements. Our isotope measurements utilize a unique analytical technique combining Pyrolysis-Gas Chromatograph-Mass Spectrometry-Combustion-Isotope Ratio Mass Specrometry (Py-GC-MS-C-IRMS). Others have conducted similar pyrolysis-IRMS experiments on low molecular weight organic acids (Dias, et al, Organic Geochemistry, 33 [2002]). Our technique differs in that it carries a split of the pyrolyzed GC-separated product to a Thermo DSQ-II quadrupole mass spectrometer as a means of making qualitative and semi-quantitative compositional measurements of the organic compounds. A sample of carboxylic acid (mixture of C1 through C6) was pyrolyzed at 100 XC and passed through the GC-MS-C-IRMS (combusted at 940 XC). In order to test the reliability of our technique we compared the _13C composition of different molecular weight organic acids (from C1 through C6) extracted individually by the traditional sealed-tube cupric oxide combustion (940 XC) method with the _13C produced by our pyrolysis technique. Our data indicate that an average 4.3. +/-0.5. (V-PDB) apparent isotopic fractionation accompanies the pyrolysis extractions. We postulate that this isotope offset could be the result of incomplete thermal desorption during pyrolysis. We are continuing to investigate the reliability of this pyrolysis technique for correcting carbon isotope measurements of mineral surface catalyzed organic compounds.

  3. Report of the Workshop on Unmixing the SNCs: Chemical, Isotopic, and Petrologic Components of Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H. (Editor); Herd, Christopher D. K. (Editor)

    2002-01-01

    Geochemical and petrologic studies of the Martian meteorites (nicknamed the SNCs) have proliferated in the past few years, from a wealth of new samples and the perfection of new analytical methods. An intriguing result from these studies is that the chemical and isotopic compositions of the Martian meteorites, all basalts or derived from basaltic magma, can be modeled as mixtures of a limited number of components. These mixing components were the focus of the workshop.

  4. The formation and stability of saline minerals at the Martian surface

    NASA Astrophysics Data System (ADS)

    Tosca, Nicholas James, III

    Evaporite minerals have been identified throughout the martian sedimentary record. Because evaporites can record detailed paleo-environmental information and often host fossil biosignatures on Earth, they are priority targets for future exploration. However, understanding processes that control the formation of these minerals on Mars requires an understanding of the behavior of Fe in highly concentrated evaporating fluids. In this study, a model is developed using the Pitzer ion interaction approach that accurately describes thermodynamic properties of the Fe2(SO4)3-H2SO4-H 2O system. Incorporating this model into a multicomponent thermodynamic database enables detailed study of evaporite mineral formation and stability on Mars. From geochemical modeling, the variation in evaporite mineralogy on Mars may be traced to volatile-anion input -- a variable intimately tied to pH. Using the "chemical divide" concept, evaporites at the martian surface can be used as sensitive probes of pH, atmospheric composition, and cation proportion in solution. Applying this approach to saline assemblages in Nakhlite meteorites and in Meridiani Planum sediments reveals two geochemical systems; each characterized by different pH and anion proportion. A complicating factor however is the concomitant oxidation of soluble Fe-bearing minerals. Such a process may have contributed to complex Fe mineralogy observed at Meridiani Planum through diagenesis. Fe-oxidation experiments at high ionic strength show a progression of mineral phases that begins with the formation of schwertmannite and subsequent ageing to jarosite and nano-crystalline goethite; a process strongly controlled by pH. Low water activity and small particle size drive the ageing of goethite to hematite which provides the final step of a mechanism that is consistent with the distribution of Fe-minerals at Meridiani Planum. These results show that the instability of Fe2+-sulfate minerals at the martian surface may lead to the association of Fe-oxide and Fe-hydroxysulfate minerals with evaporite salts. Indeed, such a geologic association has been observed through remote sensing techniques. Thus, as the Fe-sulfates are sensitive to pH, Fe-oxidation and relative humidity, understanding these phase relationships in greater detail will ultimately exploit the presence of these minerals as a unique set of geochemical probes.

  5. Lunar and Planetary Science XXXV: Martian Aeolian and Mass Wasting Processes: Blowing and Flowing

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session Martian Aeolian and Mass Wasting Processes: BLowing and Flowing included the following topics: 1) Three Decades of Martian Surface Changes; 2) Thermophysical Properties of Isidis Basin, Mars; 3) Intracrater Material in Eastern Arabia Terra: THEMIS, MOC, and MOLA Analysis of Wind-blown Deposits and Possible High-Inertia Source Material; 4) Thermal Properties of Sand from TES and THEMIS: Do Martian Dunes Make a Good Control for Thermal Inertia Calculations? 5) A Comparative Analysis of Barchan Dunes in the Intra-Crater Dune Fields and the North Polar Sand Sea; 6) Diluvial Dunes in Athabasca Valles, Mars: Morphology, Modeling and Implications; 7) Surface Profiling of Natural Dust Devils; 8) Martian Dust Devil Tracks: Inferred Directions of Movement; 9) Numerical Simulations of Anastomosing Slope Streaks on Mars; 10) Young Fans in an Equatorial Crater in Xanthe Terra, Mars; 11) Large Well-exposed Alluvual Fans in Deep Late-Noachian Craters; 12) New Evidence for the Formation of Large Landslides on Mars; and 13) What Can We Learn from the Ages of Valles Marineris Landslides on Martian Impact History?

  6. Photovoltaic Cell Operation on Mars

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Kerslake, Thomas; Jenkins, Phillip P.; Scheiman, David A.

    2004-01-01

    The Martian surface environment provides peculiar challenges for the operation of solar arrays: low temperature, solar flux with a significant scattered component that varies in intensity and spectrum with the amount of suspended atmospheric dust, and the possibility of performance loss due to dust deposition on the array surface. This paper presents theoretical analyses of solar cell performance on the surface of Mars and measurements of cells under Martian conditions.

  7. The Gulliver Mission: A Short-Cut to Primitive Body and Mars Sample Return

    NASA Astrophysics Data System (ADS)

    Britt, D. T.

    2003-05-01

    The Martian moon Deimos has extraordinary potential for future sample return missions. Deimos is spectrally similar to D-type asteroids and may be a captured primitive asteroid that originated in the outer asteroid belt. This capture probably took place in the earliest periods of Martian history, over 4.4 Gyrs ago [1], and Deimos has been accumulating material ejected from the Martian surface ever since. Analysis of Martian ejecta, material accumulation, capture cross-section, regolith over-turn, and Deimos's albedo suggest that Mars material may make up as much as 10% of Deimos's regolith. The Martian material on Deimos would be dominated by ejecta from the ancient crust of Mars, delivered during the Noachian Period of basin-forming impacts and heavy bombardment. Deimos could be a repository of samples from ancient Mars, including the full range of Martian crustal and upper mantle material from the early differentiation and crustal-forming epoch as well as samples from the era of high volatile flux, thick atmosphere, and possible surface water. In addition to Martian ejecta, 90% of the Deimos sample will be spectral type D asteroidal material. D-type asteroids are thought to be highly primitive and are most common in the difficult to access outer asteroid belt and the Jupiter Trojans. The Gulliver Mission proposes to directly collect up to 10 kilograms of Deimos regolith and return it to Earth. This sample may contain up to 1000 grams of Martian material along with up to 9 kilograms of primitive asteroidal material. Because of stochastic processes of regolith mixing over 4.4 Gyrs, the rock fragments and grains will likely sample the diversity of the Martian ancient surface as well as the asteroid. In essence, Gulliver represents two shortcuts, to Mars sample return and to the outer asteroid belt. References: [1] Burns J. A. (1992) Mars (Kieffer H. H. et al., eds), 1283-1302.

  8. Bedrock Exhumed from the Deep

    NASA Image and Video Library

    2017-01-18

    Roadside bedrock outcrops are all too familiar for many who have taken a long road trip through mountainous areas on Earth. Martian craters provide what tectonic mountain building and man's TNT cannot: crater-exposed bedrock outcrops. Although crater and valley walls offer us roadside-like outcrops from just below the Martian surface, their geometry is not always conducive to orbital views. On the other hand, a crater central peak -- a collection of mountainous rocks that have been brought up from depth, but also rotated and jumbled during the cratering process -- produce some of the most spectacular views of bedrock from orbit. This color composite cutout shows an example of such bedrock that may originate from as deep as 2 miles beneath the surface. The bedrock at this scale is does not appear to be layered or made up of grains, but has a massive appearance riddled with cross-cutting fractures, some of which have been filled by dark materials and rock fragments (impact melt and breccias) generated by the impact event. A close inspection of the image shows that these light-toned bedrock blocks are partially to fully covered by sand dunes and coated with impact melt bearing breccia flows. http://photojournal.jpl.nasa.gov/catalog/PIA12291

  9. Martian Surface Mineralogy from Rovers with Spirit, Opportunity, and Curiosity

    NASA Technical Reports Server (NTRS)

    Morris, Richard V.

    2016-01-01

    Beginning in 2004, NASA has landed three well-instrumented rovers on the equatorial martian surface. The Spirit rover landed in Gusev crater in early January, 2004, and the Opportunity rover landed on the opposite side of Mars at Meridian Planum 21 days later. The Curiosity rover landed in Gale crater to the west of Gusev crater in August, 2012. Both Opportunity and Curiosity are currently operational. The twin rovers Spirit and Opportunity carried Mossbauer spectrometers to determine the oxidation state of iron and its mineralogical composition. The Curiosity rover has an X-ray diffraction instrument for identification and quantification of crystalline materials including clay minerals. Instrument suites on all three rovers are capable of distinguishing primary rock-forming minerals like olivine, pyroxene and magnetite and products of aqueous alteration in including amorphous iron oxides, hematite, goethite, sulfates, and clay minerals. The oxidation state of iron ranges from that typical for unweathered rocks and soils to nearly completely oxidized (weathered) rocks and soils as products of aqueous and acid-sulfate alteration. The in situ rover mineralogy also serves as ground-truth for orbital observations, and orbital mineralogical inferences are used for evaluating and planning rover exploration.

  10. Solar UV irradiation conditions on the surface of Mars.

    PubMed

    Rontó, Györgyi; Bérces, Attila; Lammer, Helmut; Cockell, Charles S; Molina-Cuberos, Gregorio J; Patel, Manish R; Selsis, Franck

    2003-01-01

    The UV radiation environment on planetary surfaces and within atmospheres is of importance in a wide range of scientific disciplines. Solar UV radiation is a driving force of chemical and organic evolution and serves also as a constraint in biological evolution. In this work we modeled the transmission of present and early solar UV radiation from 200 to 400 nm through the present-day and early (3.5 Gyr ago) Martian atmosphere for a variety of possible cases, including dust loading, observed and modeled O3 concentrations. The UV stress on microorganisms and/or molecules essential for life was estimated by using DNA damaging effects (specifically bacteriophage T7 killing and uracil dimerization) for various irradiation conditions on the present and ancient Martian surface. Our study suggests that the UV irradiance on the early Martian surface 3.5 Gyr ago may have been comparable with that of present-day Earth, and though the current Martian UV environment is still quite severe from a biological viewpoint, we show that substantial protection can still be afforded under dust and ice.

  11. The Evolution of Water in Martian Atmosphere, Hydrosphere, and Cryosphere: Insights from Hydrogen Isotopes

    NASA Astrophysics Data System (ADS)

    Usui, T.; Kurokawa, H.; Alexander, C.; Simon, J. I.; Wang, J.; Jones, J. H.

    2016-12-01

    Mars exploration missions provide compelling evidence for the presence of liquid water during the earliest geologic era (Noachian: > 3.9 Ga) of Mars. The amount and stability of liquid water on the surface is strongly influenced by the composition and pressure of the atmosphere. However, the evolution of Noachian atmosphere has been poorly constrained due to uncertainties of atmospheric loss regimes and internal/external factors such as impact flux and volcanic degassing. We can trace the evolution of the early Martian atmosphere and its interaction with the hydrosphere and cryosphere with hydrogen isotope ratios (D/H) because they fractionate during atmospheric escape and during hydrological cycling between the atmosphere, surface waters, and the polar ice caps. This study reports D/H ratios of primordial and 4 Ga-old atmosphere by ion microprobe analyses of Martian meteorites. Analyses of olivine-hosted glass inclusions in the most primitive shergottite (Yamato 980459) provide a near-chondritic D/H ratio (1.3×SMOW) for the 4.5 Ga primordial water preserved in the mantle. On the other hand, carbonates in Allan Hills 84001 provide a D/H range (1.5-2.0×SMOW) for the Noachian surface water that was isotopically equilibrated with the 4 Ga atmosphere. The latter observation requires that even after the Noachian period the hydrogen isotopes were fractionated significantly to reach the present-day value of 6×SMOW. Using the one-reservoir model of Kurokawa et al. (2014) we can provide minimum estimates on the amounts of hydrogen loss before and after 4 Ga based on the D/H data from the meteorites (1.3×SMOW at 4.5 Ga and 1.5-2.0×SMOW at 4 Ga) assuming the volume of polar surface-ice (20-30 m global equivalent layers, GEL). The model indicates that the hydrogen loss during the first 0.5 billion years (16-54 m GEL) was comparable to those (42-93 mGEL) in the remaining Martian history. These values are distinctly lower than the geological estimates on the volumes of paleo-oceans (e.g., 550 mGEL, Di Achille & Hynek, 2010). This difference implies that a buried cryosphere must accounted for a large part of the water budget (Usui et al. 2015).

  12. KSC-01pp0491

    NASA Image and Video Library

    2001-03-13

    Arrays of lights at left focus on solar array panels at right during illumination testing. The solar array is part of the 2001 Mars Odyssey Orbiter. Scheduled for launch April 7, 2001, the orbiter contains three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers

  13. KSC-01pp0479

    NASA Image and Video Library

    2001-03-13

    Workers in the Spacecraft Assembly and Encapsulation Facility (SAEF 2) reattach the solar panel on the 2001 Mars Odyssey Orbiter in order to conduct illumination testing. Scheduled for launch April 7, 2001, the orbiter contains three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers

  14. KSC-01pp0482

    NASA Image and Video Library

    2001-03-13

    In the Spacecraft Assembly and Encapsulation Facility (SAEF 2), workers get ready to open the panels of the solar array on the 2001 Mars Odyssey Orbiter in order to conduct illumination testing. Scheduled for launch April 7, 2001, the orbiter contains three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers

  15. KSC-01pp0481

    NASA Image and Video Library

    2001-03-13

    Workers in the Spacecraft Assembly and Encapsulation Facility (SAEF 2) reattach the solar panel on the 2001 Mars Odyssey Orbiter in order to conduct illumination testing. Scheduled for launch April 7, 2001, the orbiter contains three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers

  16. KSC-01pp0483

    NASA Image and Video Library

    2001-03-13

    In the Spacecraft Assembly and Encapsulation Facility (SAEF 2), workers stand back as the panels of the solar array on the 2001 Mars Odyssey Orbiter open. The array will undergo illumination testing. Scheduled for launch April 7, 2001, the orbiter contains three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers

  17. KSC-01pp0485

    NASA Image and Video Library

    2001-03-13

    A worker in the Spacecraft Assembly and Encapsulation Facility (SAEF 2) checks the underside of the extended solar array panels on the 2001 Mars Odyssey Orbiter. The array will undergo illumination testing. Scheduled for launch April 7, 2001, the orbiter contains three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers

  18. Development and testing of laser-induced breakdown spectroscopy for the Mars Rover Program : elemental analysis at stand-off distances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cremers, D. A.; Wiens, R. C.; Arp, Z. A.

    2003-01-01

    One of the most Fundamental pieces of information about any planetary body is the elemental cornposition of its surface materials. The Viking Martian landers employed XRF (x-ray fluorescence) and the MER rovers are carrying APXS (alpha-proton x-ray spectrometer) instruments upgraded from that used on the Pathfinder rover to supply elemental composition information for soils and rocks for which direct contact is possible. These in-situ analyses require that the lander or rover be in contact with the sample

  19. Reducing greenhouses and the temperature history of earth and Mars

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1977-01-01

    It has been suggested that NH3 and other reducing gases were present in the earth's primitive atmosphere, enhancing the global greenhouse effect; data obtained through isotopic archeothermometry support this hypothesis. Computations have been applied to the evolution of surface temperatures on Mars, considering various bolometric albedos and compositions. The results are of interest in the study of Martian sinuous channels which may have been created by aqueous fluvial errosion, and imply that clement conditions may have previously occurred on Mars, and may occur in the future.

  20. Imaging experiment: The Viking Lander

    USGS Publications Warehouse

    Mutch, T.A.; Binder, A.B.; Huck, F.O.; Levinthal, E.C.; Morris, E.C.; Sagan, C.; Young, A.T.

    1972-01-01

    The Viking Lander Imaging System will consist of two identical facsimile cameras. Each camera has a high-resolution mode with an instantaneous field of view of 0.04??, and survey and color modes with instantaneous fields of view of 0.12??. Cameras are positioned one meter apart to provide stereoscopic coverage of the near-field. The Imaging Experiment will provide important information about the morphology, composition, and origin of the Martian surface and atmospheric features. In addition, lander pictures will provide supporting information for other experiments in biology, organic chemistry, meteorology, and physical properties. ?? 1972.

  1. The SIMPSONS project: An integrated Mars transportation system

    NASA Astrophysics Data System (ADS)

    Kaplan, Matthew; Carlson, Eric; Bradfute, Sherie; Allen, Kent; Duvergne, Francois; Hernandez, Bert; Le, David; Nguyen, Quan; Thornhill, Brett

    In response to the Request for Proposal (RFP) for an integrated transportation system network for an advanced Martian base, Frontier Transportation Systems (FTS) presents the results of the SIMPSONS project (Systems Integration for Mars Planetary Surface Operations Networks). The following topics are included: the project background, vehicle design, future work, conclusions, management status, and cost breakdown. The project focuses solely on the surface-to-surface transportation at an advanced Martian base.

  2. The SIMPSONS project: An integrated Mars transportation system

    NASA Technical Reports Server (NTRS)

    Kaplan, Matthew; Carlson, Eric; Bradfute, Sherie; Allen, Kent; Duvergne, Francois; Hernandez, Bert; Le, David; Nguyen, Quan; Thornhill, Brett

    1992-01-01

    In response to the Request for Proposal (RFP) for an integrated transportation system network for an advanced Martian base, Frontier Transportation Systems (FTS) presents the results of the SIMPSONS project (Systems Integration for Mars Planetary Surface Operations Networks). The following topics are included: the project background, vehicle design, future work, conclusions, management status, and cost breakdown. The project focuses solely on the surface-to-surface transportation at an advanced Martian base.

  3. Directional Emissivity Effects on Martian Surface Brightness Temperatures

    NASA Astrophysics Data System (ADS)

    Pitman, K. M.; Wolff, M. J.; Bandfield, J. L.; Clancy, R. T.; Clayton, G. C.

    2001-11-01

    The angular dependence of thermal emission from the surface of Mars has not been well characterized. Although nadir sequences constitute most of the MGS/TES Martian surface observations [1,2], a significant number scans of Martian surfaces at multiple emission angles (emission phase function (EPF) sequences) also exist. Such data can provide insight into surface structures, thermal inertias, and non-isotropic corrections to thermal emission measurements [3]. The availability of abundant EPF data as well as the added utility of such observations for atmospheric characterization provide the impetus for examining the phenomenon of directional emissivity. We present examples of directional emissivity effects on brightness temperature spectra for a variety of typical Martian surfaces. We examine the theoretical development by Hapke (1993, 1996) [4,5] and compare his algorithm to that of Mishchenko et al. (1999) [6]. These results are then compared to relevant TES EPF data. This work is supported through NASA grant NAGS-9820 (MJW) and JPL contract no. 961471 (RTC). [1] Smith et al. (1998), AAS-DPS meeting # 30, # 11.P07. [2] Kieffer, Mullins, & Titus (1998), EOS, 79, 533. [3] Jakosky, Finiol, & Henderson (1990), JGR, 17, 985--988. [4] Hapke, B. (1993), Theory of Reflectance & Emittance Spectroscopy, Cambridge Univ. Press, NY. [5] Hapke, B. (1996), JGR, 101, E7, 16817--16831. [6] Mishchenko et al. (1999), JQSRT, 63, 409--432.

  4. Are the Viking Lander sites representative of the surface of Mars?

    NASA Technical Reports Server (NTRS)

    Jakosky, B. M.; Christensen, P. R.

    1986-01-01

    Global remote sensing data of the Martian surface, collected by earth- and satellite-based instruments, are compared with data from the two Viking Landers to determine if the Lander data are representative of the Martian surface. The landing sites are boulder-strewn and feature abundant fine material and evidence of strong eolian forces. One site (VL-1) is in a plains-covered basin which is associated with volcanic activity; the VL-2 site is in the northern plains. Thermal IR, broadband albedo, color imaging and radar remote sensing has been carried out of the global Martian surface. The VL-1 data do not fit a general correlation observed between increases in 70-cm radar cross-sections and thermal inertia. A better fit is found with 12.5-cm cross sections, implying the presence of a thinner or discontinuous duricrust at the VL-1 site, compared to other higher-inertia regions. A thin dust layer is also present at the VL-2 site, based on the Lander reflectance data. The Lander sites are concluded to be among the three observed regions of anomalous reflectivity, which can be expected in low regions selected for the landings. Recommendations are furnished for landing sites of future surface probes in order to choose sites more typical of the global Martian surface.

  5. Enzyme activity in terrestrial soil in relation to exploration of the Martian surface

    NASA Technical Reports Server (NTRS)

    Mclaren, A. D.

    1974-01-01

    Sensitive tests for the detection of extracellular enzyme activity in Martian soil was investigated using simulated Martian soil. Enzyme action at solid-liquid water interfaces and at low humidity were studied, and a kinetic scheme was devised and tested based on the growth of microorganisms and the oxidation of ammonium nitrite.

  6. The Generation of Barriers to Melt Ascent in the Martian Lithosphere

    NASA Astrophysics Data System (ADS)

    Schools, Joe W.; Montési, Laurent G. J.

    2018-01-01

    Planetary mantles can be regarded as an aggregate of two phases: a solid, porous matrix and a liquid melt. Melt travels rapidly upward through the matrix due to its buoyancy. When this melt enters the colder lithosphere, it begins to crystallize. If crystallization happens at a high rate, the newly formed crystals can clog the pore space, reducing its permeability to essentially zero. This zone of zero permeability is the permeability barrier. We use the MELTS family of thermodynamic calculators to determine melt compositions and the crystallization sequence of ascending melt throughout Martian history and simulate the formation of permeability barriers. At lower strain rates (10-17-10-15 s-1) permeability barriers form deep in the lithosphere, possibly contributing to the formation of localized volcanic edifices on the Martian surface once fracturing or thermal erosion enables melt to traverse the lithosphere. Higher strain rates (10-13 s-1) yield shallower permeability barriers, perhaps producing extensive lava flows. Permeability barrier formation is investigated using an anhydrous mantle source or mantle sources that include up to 1,000 ppm H2O. Introducing even small amounts of water (25 ppm H2O) reduces mantle viscosity in a manner similar to increasing the strain rate and results in a shallower barrier than in the anhydrous case. Large amounts of water (1,000 ppm H2O) yield very shallow weak barriers or no barriers at all. The depth of the permeability barrier has evolved through time, likely resulting in a progression in the style of surface volcanism from widespread flows to massive, singular volcanoes.

  7. Model for Volatile Incorporation into Soils and Dust on Mars

    NASA Astrophysics Data System (ADS)

    Clark, B. C.; Yen, A.

    2006-12-01

    Martian soils with high content of compounds of sulfur and chlorine are ubiquitous on Mars, having been found at all five landing sites. Sulfate and chloride salts are implicated by a variety of evidence, but few conclusive specific identifications have been made. Discovery of jarosite and Mg-Ca sulfates in outcrops at Meridiani Planum (MER mission) and regional-scale beds of kieserite and gypsum (Mars Express mission) notwithstanding, the sulfates in soils are uncertain. Chlorides or other Cl-containing minerals have not been uniquely identified directly by any method. Viking and Pathfinder missions found trends in the elemental analytical data consistent with MgSO4, but Viking results are biased by duricrust samples and Pathfinder by soil contamination of rock surfaces. The Mars Exploration Rovers (MER) missions have taken extensive data on soils with no confirmation of trends implicating any particular cation. In our model of martian dust and soil, the S and Cl are initially incorporated by condensation or chemisorption on grains directly from gas phase molecules in the atmosphere. It is shown by modeling that the coatings thus formed cannot quantitatively explain the apparent elemental composition of these materials, and therefore involve the migration of ions and formation of microscopic weathering rinds. Original cation inventories of unweathered particles are isochemically conserved. Exposed rock surfaces should also have micro rinds, depending upon the length of time of exposure. Martian soils may therefore have unusual chemical properties when interacting with aqueous layers or infused fluids. Potential ramifications to the quantitative accuracy of x-ray fluorescence and Moessbauer spectroscopy on unprocessed samples are also assessed.

  8. Detection of hydrated silicates in crustal outcrops in the northern plains of Mars.

    PubMed

    Carter, J; Poulet, F; Bibring, J-P; Murchie, S

    2010-06-25

    The composition of the ancient martian crust is a key ingredient in deciphering the environment and evolution of early Mars. We present an analysis of the composition of large craters in the martian northern plains based on data from spaceborne imaging spectrometers. Nine of the craters have excavated assemblages of phyllosilicates from ancient, Noachian crust buried beneath the plains' cover. The phyllosilicates are indistinguishable from those exposed in widespread locations in the southern highlands, demonstrating that liquid water once altered both hemispheres of Mars.

  9. CO2: Adsorption on palagonite and the Martian regolith

    NASA Technical Reports Server (NTRS)

    Zent, Aaron P.; Fanale, Fraser P.; Postawko, Susan E.

    1987-01-01

    Possible scenarios for the evolution of the Martian climate are discussed. In the interest of determining an upper limit on the absorptive capacity of the Martian regolith, researchers examined the results of Fanale and Cannon (1971, 1974) for CO2 adsorption on nontronite and basalt. There appeared to be a strong proportionality between the capacity of the absorbent and its specific surface area. A model of the Martian climate is given that allows the researchers to make some estimates of exchangeable CO2 abundances.

  10. Opportunity Examines Cracks and Coatings on Mars Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This false-color panoramic image, taken on martian day, or sol, 561 (Aug. 22, 2005) by NASA's Opportunity rover, shows the nature of the outcrop rocks that the rover is encountering on its southward journey across the martian plains to 'Erebus Crater.' The rocks, similar in make-up to those encountered earlier in the mission, display a clear pattern of cracks as well as rind-like features (identifiable as a light shade of blue to olive in the image) coating the outcrop surface. Prominent in the image are two holes (one on the rock, one on the rind) drilled with the rover's rock abrasion tool to facilitate chemical analysis of the underlying material. The reddish color around the holes is from iron-rich dust produced during the grinding operation. The rind, nicknamed 'Lemon Rind,' and the underlying rock, nicknamed 'Strawberry,' have turned out to be similar in overall chemistry and texture. Science team members are working to understand the nature of the relationship between these kinds of rocks and rinds on the Meridiani plains. This false-color composite was generated from a combination of 750-, 530-, and 430-nanometer filter images taken by the Opportunity panoramic camera, an instrument that has acquired more than 36,000 color filter images to date of martian terrain at Meridiani Planum.

  11. MIMA, a miniaturized Fourier infrared spectrometer for Mars ground exploration: Part I. Concept and expected performance

    NASA Astrophysics Data System (ADS)

    Bellucci, G.; Saggin, B.; Fonti, S.; Biondi, D.; Cerulli, P.; De Luca, M.; Altieri, F.; Mattana, A.; Alberti, E.; Marzo, G.; Zasova, L.

    2007-10-01

    The Mars Infrared MApper (MIMA) is a FT-IR miniaturised spectrometer which is being developed for ESA ExoMars Pasteur mission. The Martian Infrared MApper Fourier Spectrometer is designed to provide remote measurements of mineralogy and atmosphere of the scene surrounding a Martian rover and guide it to key targets for detailed in situ measurements by other rover experiments. Among the main scientific objectives of the MIMA instrument are to assist the rover in rock/soils selection for further in-situ investigation and to identify rocks and soils on the Martian surface which provide evidence of past/present biological activity. The instrument is also designed to measure the water vapour abundance and vertical distribution and its diurnal and seasonal variation, dust opacity, optical properties, composition, diurnal and seasonal variation. The instrument is a double pendulum interferometer providing spectra in the 2 - 25 μm wavelength domain with a resolving power of 1000 at 2 μm and 80 at 25 μm. The radiometric performances are SNR > 40 in the near infrared and a NEDe = 0.002 in the thermal region. The instrument design is very compact, with a total mass of 1kg and an average power consumption of 5 W.

  12. The radiation environment on the surface of Mars - Summary of model calculations and comparison to RAD data

    NASA Astrophysics Data System (ADS)

    Matthiä, Daniel; Hassler, Donald M.; de Wet, Wouter; Ehresmann, Bent; Firan, Ana; Flores-McLaughlin, John; Guo, Jingnan; Heilbronn, Lawrence H.; Lee, Kerry; Ratliff, Hunter; Rios, Ryan R.; Slaba, Tony C.; Smith, Michael; Stoffle, Nicholas N.; Townsend, Lawrence W.; Berger, Thomas; Reitz, Günther; Wimmer-Schweingruber, Robert F.; Zeitlin, Cary

    2017-08-01

    The radiation environment at the Martian surface is, apart from occasional solar energetic particle events, dominated by galactic cosmic radiation, secondary particles produced in their interaction with the Martian atmosphere and albedo particles from the Martian regolith. The highly energetic primary cosmic radiation consists mainly of fully ionized nuclei creating a complex radiation field at the Martian surface. This complex field, its formation and its potential health risk posed to astronauts on future manned missions to Mars can only be fully understood using a combination of measurements and model calculations. In this work the outcome of a workshop held in June 2016 in Boulder, CO, USA is presented: experimental results from the Radiation Assessment Detector of the Mars Science Laboratory are compared to model results from GEANT4, HETC-HEDS, HZETRN, MCNP6, and PHITS. Charged and neutral particle spectra and dose rates measured between 15 November 2015 and 15 January 2016 and model results calculated for this time period are investigated.

  13. MEDUSA (Martian Environmental DUst Systematic Analyser) for the monitoring of the Martian atmospheric dust and water vapour

    NASA Astrophysics Data System (ADS)

    Colangeli, L.; Battaglia, R.; della Corte, V.; Esposito, F.; Ferrini, G.; Mazzotta Epifani, E.; Palomba, E.; Palumbo, P.; Panizza, A.; Rotundi, A.

    2004-03-01

    The knowledge of Martian airborne dust properties and about mechanisms of dust settling/raising to/from the surface are important to determine climate and surface evolution on Mars. Water is an important tracer of climatic changes on long time-scales and is strictly related to the presence of life forms. The study in situ of dust and water vapour properties and evolution in Martian atmosphere is useful to trace back the planet climate, also in function of life form development. This investigation is also appropriate in preparation to future manned exploration of the planet (in relation to hazardous conditions). In this work we discuss the concept of the MEDUSA (Martian Environmental Dust Analyser) experiment that is designed to provide data on grain size and mass distribution, number density, velocity and scattering properties and on water vapour concentration. The instrument is a multisensor system based on optical and impact detection of grains, coupled with cumulative deposition sensors.

  14. Water activity and the challenge for life on early Mars.

    PubMed

    Tosca, Nicholas J; Knoll, Andrew H; McLennan, Scott M

    2008-05-30

    In situ and orbital exploration of the martian surface has shown that acidic, saline liquid water was intermittently available on ancient Mars. The habitability of these waters depends critically on water activity (aH2O), a thermodynamic measure of salinity, which, for terrestrial organisms, has sharply defined limits. Using constraints on fluid chemistry and saline mineralogy based on martian data, we calculated the maximum aH2O for Meridiani Planum and other environments where salts precipitated from martian brines. Our calculations indicate that the salinity of well-documented surface waters often exceeded levels tolerated by known terrestrial organisms.

  15. Global Distribution of Shallow Water on Mars: Neutron Mapping of Summer-Time Surface by HEND/Odyssey

    NASA Technical Reports Server (NTRS)

    Mitrofanov, I. G.; Litvak, M. L.; Kozyrev, A. S.; Sanin, A. B.; Tretyakov, V. I.; Boynton, W.; Hamara, D.; Shinohara, C.; Saunders, R. S.; Drake, D.

    2003-01-01

    Orbital mapping of induced neutrons and gamma-rays by Odyssey has recently successfully proven the applicability of nuclear methods for studying of the elementary composition of Martian upper-most subsurface. In particular, the suite of Gamma-Ray Spectrometer (GRS) has discovered the presence of large water-ice rich regions southward and northward on Mars. The data of neutron mapping of summer-time surface are presented below from the Russian High Energy Neutron Spectrometer (HEND), which is a part of GRS suite. These maps represent the content of water in the soil for summer season at Southern and Northern hemispheres, when the winter deposit of CO2 is absent on the surface. The seasonal evolution of CO2 coverage on Mars is the subject of the complementary paper.

  16. The NASA environmental models of Mars

    NASA Technical Reports Server (NTRS)

    Kaplan, D. I.

    1991-01-01

    NASA environmental models are discussed with particular attention given to the Mars Global Reference Atmospheric Model (Mars-GRAM) and the Mars Terrain simulator. The Mars-GRAM model takes into account seasonal, diurnal, and surface topography and dust storm effects upon the atmosphere. It is also capable of simulating appropriate random density perturbations along any trajectory path through the atmosphere. The Mars Terrain Simulator is a software program that builds pseudo-Martian terrains by layering the effects of geological processes upon one another. Output pictures of the constructed surfaces can be viewed from any vantage point under any illumination conditions. Attention is also given to the document 'Environment of Mars, 1988' in which scientific models of the Martian atmosphere and Martian surface are presented.

  17. Evidence for recent groundwater seepage and surface runoff on Mars.

    PubMed

    Malin, M C; Edgett, K S

    2000-06-30

    Relatively young landforms on Mars, seen in high-resolution images acquired by the Mars Global Surveyor Mars Orbiter Camera since March 1999, suggest the presence of sources of liquid water at shallow depths beneath the martian surface. Found at middle and high martian latitudes (particularly in the southern hemisphere), gullies within the walls of a very small number of impact craters, south polar pits, and two of the larger martian valleys display geomorphic features that can be explained by processes associated with groundwater seepage and surface runoff. The relative youth of the landforms is indicated by the superposition of the gullies on otherwise geologically young surfaces and by the absence of superimposed landforms or cross-cutting features, including impact craters, small polygons, and eolian dunes. The limited size and geographic distribution of the features argue for constrained source reservoirs.

  18. Pb evolution in the Martian mantle

    NASA Astrophysics Data System (ADS)

    Bellucci, J. J.; Nemchin, A. A.; Whitehouse, M. J.; Snape, J. F.; Bland, P.; Benedix, G. K.; Roszjar, J.

    2018-03-01

    The initial Pb compositions of one enriched shergottite, one intermediate shergottite, two depleted shergottites, and Nakhla have been measured by Secondary Ion Mass Spectrometry (SIMS). These values, in addition to data from previous studies using an identical analytical method performed on three enriched shergottites, ALH 84001, and Chassigny, are used to construct a unified and internally consistent model for the differentiation history of the Martian mantle and crystallization ages for Martian meteorites. The differentiation history of the shergottites and Nakhla/Chassigny are fundamentally different, which is in agreement with short-lived radiogenic isotope systematics. The initial Pb compositions of Nakhla/Chassigny are best explained by the late addition of a Pb-enriched component with a primitive, non-radiogenic composition. In contrast, the Pb isotopic compositions of the shergottite group indicate a relatively simple evolutionary history of the Martian mantle that can be modeled based on recent results from the Sm-Nd system. The shergottites have been linked to a single mantle differentiation event at 4504 Ma. Thus, the shergottite Pb isotopic model here reflects a two-stage history 1) pre-silicate differentiation (4504 Ma) and 2) post-silicate differentiation to the age of eruption (as determined by concordant radiogenic isochron ages). The μ-values (238U/204Pb) obtained for these two different stages of Pb growth are μ1 of 1.8 and a range of μ2 from 1.4-4.7, respectively. The μ1-value of 1.8 is in broad agreement with enstatite and ordinary chondrites and that proposed for proto Earth, suggesting this is the initial μ-value for inner Solar System bodies. When plotted against other source radiogenic isotopic variables (Sri, γ187Os, ε143Nd, and ε176Hf), the second stage mantle evolution range in observed mantle μ-values display excellent linear correlations (r2 > 0.85) and represent a spectrum of Martian mantle mixing-end members (depleted, intermediate, enriched).

  19. Aeolian removal of dust from radiator surfaces on Mars

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Perez-Davis, Marla E.; Rutledge, Sharon K.; Hotes, Deborah

    1990-01-01

    Simulated radiator surfaces made of arc-textured Cu and Nb-1 percent-Zr and ion beam textured graphite and C-C composite were fabricated and their integrated spectral emittance characterized from 300 to 3000 K. A thin layer of aluminum oxide, basalt, or iron (III) oxide dust was then deposited on them, and they were subjected to low pressure winds in the Martian Surface Wind Tunnel. It was found that dust deposited on simulated radiator surfaces may or may not seriously lower their integrated spectral emittance, depending upon the characteristics of the dust. With Al2O3 there is no appreciable degradation of emittance on a dusted sample, with basaltic dust there is a 10 to 20 percent degradation, and with Fe2O3 a 20 to 40 percent degradation. It was also found that very high winds on dusted highly textured surfaces can result in their abrasion. Degradation in emittance due to abrasion was found to vary with radiator material. Arc-textured Cu and Nb-1 percent Zr was found to be more susceptible to emittance degradation than graphite or C-C composite. The most abrasion occurred at low angles, peaking at the 22.5 deg test samples.

  20. Radiometric Measurements of the Thermal Conductivity of Complex Planetary-like Materials

    NASA Astrophysics Data System (ADS)

    Piqueux, S.; Christensen, P. R.

    2012-12-01

    Planetary surface temperatures and thermal inertias are controlled by the physical and compositional characteristics of the surface layer material, which result from current and past geological activity. For this reason, temperature measurements are often acquired because they provide fundamental constraints on the geological history and habitability. Examples of regolith properties affecting surface temperatures and inertias are: grain sizes and mixture ratios, solid composition in the case of ices, presence of cement between grains, regolith porosity, grain roughness, material layering etc.. Other important factors include volatile phase changes, and endogenic or exogenic heat sources (i.e. geothermal heat flow, impact-related heat, biological activity etc.). In the case of Mars, the multitude of instruments observing the surface temperature at different spatial and temporal resolutions (i.e. IRTM, Thermoskan, TES, MiniTES, THEMIS, MCS, REMS, etc.) in conjunction with other instruments allows us to probe and characterize the thermal properties of the surface layer with an unprecedented resolution. While the derivation of thermal inertia values from temperature measurements is routinely performed by well-established planetary regolith numerical models, constraining the physical properties of the surface layer from thermal inertia values requires the additional step of laboratory measurements. The density and specific heat are usually constant and sufficiently well known for common geological materials, but the bulk thermal conductivity is highly variable as a function of the physical characteristics of the regolith. Most laboratory designs do not allow an investigation of the thermal conductivity of complex regolith configurations similar to those observed on planetary surfaces (i.e. cemented material, large grains, layered material, and temperature effects) because the samples are too small and need to be soft to insert heating or measuring devices. For this reason, we have built a new type of apparatus to measure the thermal conductivity of sample significantly larger than previous apparatus under planetary conditions of atmosphere and gas composition. Samples' edges are cooled down from room to LN2 temperature and the surface material temperature is recorded by an infrared camera without inserting thermocouples or heat sources. Sample surface cooling trends are fit with finite element models of heat transfer to retrieve the material thermal conductivity. Preliminary results confirm independent numerical modeling results predicting the thermal conductivity of complex materials: the thermal inertia of particulate material under Mars conditions is temperature-dependent, small amounts of cements significantly increase the bulk conductivity and inertia of particulate material, and one-grain-thick armors similar to those observed by the Mars Exploration Rovers behave like a thin highly conductive layer that does not significantly influence apparent thermal inertias. These results are used to further our interpretation of Martian temperature observations. For example local amounts of subsurface water ice or the fraction of cementing phase in the global Martian duricrust can be constrained; the search for subtle changes in near-surface heat flow can be performed more accurately, and surface thermal inertias under various atmospheric conditions of pressure and gas composition can be predicted.

  1. MARTIAN COLORS PROVIDE CLUES ABOUT MARTIAN WATER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA Hubble Space Telescope images of Mars taken in visible and infrared light detail a rich geologic history and provide further evidence for water-bearing minerals on the planet's surface. LEFT This 'true-color' image of Mars shows the planet as it would look to human eyes. It is clearly more earth-toned than usually depicted in other astronomical images, including earlier Hubble pictures. The slightly bluer shade along the edges of the disk is due to atmospheric hazes and wispy water ice clouds (like cirrus clouds) in the early morning and late evening Martian sky. The yellowish-pink color of the northern polar cap indicates the presence of small iron-bearing dust particles. These particles are covering or are suspended in the air above the blue-white water ice and carbon dioxide ice, which make up the polar cap. Accurate colors are needed to determine the composition and mineralogy of Mars. This can tell how water has influenced the formation of rocks and minerals found on Mars today, as well as the distribution and abundance of ice and subsurface liquid water. Confirmation of the presence of certain oxidized (rusted) minerals (processed by heat or water action) would imply the possibility of different, perhaps much more Earth-like, past Martian climate periods. Because the smallest features visible in this image are only about 14 miles (22 km) across, Hubble can track small-scale variations in the distribution of minerals that do not follow global trends. The image was generated from three separate Wide Field and Planetary Camera 2 images acquired at wavelengths of 410, 502, and 673 nanometers, in March 1997. RIGHT A false-color picture taken in infrared light reveals features that cannot be seen in visible light. Hubble's unique infrared view pinpoints variations in the abundance and distribution of unknown water-bearing minerals on the planet. While it has been known for decades that small amounts of water-bearing minerals exist on the planet's surface, the reddish regions in this image indicate areas of enhanced concentrations of these as-yet-unidentified deposits. They are perhaps related to the water-rich history of this part of Mars. In particular, the large reddish region known as Mare Acidalium was the site of massive flooding early in Martian history. (NASA's Pathfinder spacecraft landed at the southern edge of this region in 1997.) This composite image was taken in July 1997 with Hubble's Near Infrared Camera and Multi-Object Spectrometer. Red corresponds to the strength of an absorption band detected near 1450 nanometers; green to the brightness of the surface in the near-infrared; and blue to topographic elevation, determined from Viking Orbiter data. Researchers: Jim Bell (Cornell University), Justin Maki (NASA Jet Propulsion Laboratory or JPL), and Mike Wolff (Space Sciences Institute), with acknowledgements to Robert Comstock (Central Washington University), Phil James (University of Toledo), and Dave Crisp (JPL) for image processing and acquisition assistance. Photo Credit: Jim Bell (Cornell University), Justin Maki (JPL), and Mike Wolff (Space Sciences Institute) and NASA

  2. Weathered stony meteorites from Victoria Land, Antarctica, as possible guides to rock weathering on Mars

    NASA Technical Reports Server (NTRS)

    Gooding, J. L.

    1984-01-01

    Parallel studies of Martian geomorphic features and their analogs on Earth continue to be fruitful in deciphering the geologic history of Mars. In the context of rock weathering, the Earth-analog approach is admirably served by the study of meteorites recovered from ice sheets in Antarctica. The weathering environment of Victoria Land possesses several Mars-like attributes. Four of the five Antarctic meteorites being studied contain rust and EETA79005 further possesses a conspicuous, dark, weathering rind on one side. Secondary minerals (rust and salts) occur both on the surfaces and interiors of some of the samples and textural evidence indicates that such secondary mineralization contributed to physical weathering (by salt riving) of the rocks. Several different rust morphologies occur and emphasis is being placed on identifying the phase compositions of the various rust occurrances. A thorough understanding of terrestrial weathering features of the meteorites is a prerequisite for identifying possible Martian weathering features (if such features exist) that might be postulated to occur in some meteorites.

  3. Some aspects of composition of the lower Martian atmosphere: input for MIRA

    NASA Astrophysics Data System (ADS)

    Moroz, V.; Korablev, O.; Krasnopolsky, V.; Rorin, A.

    Recent spacecraft missions and high-resolution spectroscopic observations from the Earth-based, airborne and spaceborne observatories have justified the chemical contents of the Martian atmosphere at a new level of confidence. Both the lower and middle atmosphere of Mars reveal very limited chemical activity, while the variations of the abundance of minor constituents may be attributed to phase transitions of volatiles. Water vapor, which mixing ratio is controlled by complex hydrological cycle in the lower atmosphere and at the surface of the planet, affects seasonally varying depletion of ozone. Measured ratio of D/H can be explained with general models of the early evolution of the planet, though this estimate in the bulk atmosphere may not be ultimately representative due to altitude dependant fractionation of water isotopes. CO, as a chemically passive nonvolatile component, reveals increase of mixing ratio in the vicinity of winter polar caps during active condensation of the bulk CO2 atmosphere. No reliable evidence o any organicf matter in the atmosphere of Mars has been obtained.

  4. The ultraviolet environment of Mars: biological implications past, present, and future.

    PubMed

    Cockell, C S; Catling, D C; Davis, W L; Snook, K; Kepner, R L; Lee, P; McKay, C P

    2000-08-01

    A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment, past and present. Biological action spectra for DNA inactivation and chloroplast (photosystem) inhibition are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Over time Mars has probably experienced an increasingly inhospitable photobiological environment, with present instantaneous DNA weighted irradiances 3.5-fold higher than they may have been on early Mars. This is in contrast to the surface of Earth, which experienced an ozone amelioration of the photobiological environment during the Proterozoic and now has DNA weighted irradiances almost three orders of magnitude lower than early Earth. Although the present-day martian UV flux is similar to that of early Earth and thus may not be a critical limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Microbial strategies for protection against UV radiation are considered in the light of martian photobiological calculations, past and present. Data are also presented for the effects of hypothetical planetary atmospheric manipulations on the martian UV radiation environment with estimates of the biological consequences of such manipulations.

  5. The ultraviolet environment of Mars: biological implications past, present, and future

    NASA Technical Reports Server (NTRS)

    Cockell, C. S.; Catling, D. C.; Davis, W. L.; Snook, K.; Kepner, R. L.; Lee, P.; McKay, C. P.

    2000-01-01

    A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment, past and present. Biological action spectra for DNA inactivation and chloroplast (photosystem) inhibition are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Over time Mars has probably experienced an increasingly inhospitable photobiological environment, with present instantaneous DNA weighted irradiances 3.5-fold higher than they may have been on early Mars. This is in contrast to the surface of Earth, which experienced an ozone amelioration of the photobiological environment during the Proterozoic and now has DNA weighted irradiances almost three orders of magnitude lower than early Earth. Although the present-day martian UV flux is similar to that of early Earth and thus may not be a critical limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Microbial strategies for protection against UV radiation are considered in the light of martian photobiological calculations, past and present. Data are also presented for the effects of hypothetical planetary atmospheric manipulations on the martian UV radiation environment with estimates of the biological consequences of such manipulations.

  6. Nature of the Martian Uplands and Martian Meteorite Age Distribution

    NASA Astrophysics Data System (ADS)

    Hartmann, W. K.; Barlow, N. G.

    2005-12-01

    Martian meteorites have been launched from some 4 to 8 sites on Mars within the last 20 My. Some 75% to 88% of the sites ejected igneous rocks < 1.3 Gy old. Thus 75% to 88% of the rock-launching sites represent only 29% of Martian time. We hypothesize this imbalance arises not merely from poor statistics, but because much of the older Martian surface is inefficient in launching rocks during impacts. There are three lines of evidence. First, intense Noachian cratering must have produced surface layers with > 100 m of regolith, which reduces launch efficiency due to dominance of fines and possible effects of ice in the regolith. Second, both Mars Exploration Rovers in 2004, found that some older coherent strata are weak sediments, 1-2 orders of magnitude weaker than Martian igneous rocks. Low strength favors low launch efficiency, and even if launched, such rocks may produce recognizable meteorites on Earth. Third, the smaller fresh impact craters in Martian upland sites are rarely surrounded by secondary impact crater fields (cf. Barlow and Block, 2004). In a survey of 200 craters, the smallest Noachian, Hesperian, and Amazonian craters with fields of secondaries are ˜ 45 km, ˜ 24 km, and ˜ 10 km, respectively. With 40% of Mars being Noachian, and 74% being either Noachian or Hesperian, these effects could play an important role in the statistics of recognized Martian meteorites and production rates of secondary crater populations. Reference: Barlow N.G., Block, K.M. (2004), DPS abstract 47.04.

  7. The Modern Near-Surface Martian Climate: A Review of In-Situ Meteorological Data from Viking to Curiosity

    NASA Technical Reports Server (NTRS)

    Martinez, G. M.; Newman, C. N.; De Vicente-Retortillo, A.; Fischer, E.; Renno, N. O.; Richardson, M. I.; Fairén, A. G.; Genzer, M.; Guzewich, S. D.; Haberle, R. M.; hide

    2017-01-01

    We analyze the complete set of in-situ meteorological data obtained from the Viking landers in the 1970s to todays Curiosity rover to review our understanding of the modern near-surface climate of Mars, with focus on the dust, CO2 and H2O cycles and their impact on the radiative and thermodynamic conditions near the surface. In particular, we provide values of the highest confidence possible for atmospheric opacity, atmospheric pressure, near-surface air temperature, ground temperature, near-surface wind speed and direction, and near-surface air relative humidity and water vapor content. Then, we study the diurnal, seasonal and interannual variability of these quantities over a span of more than twenty Martian years. Finally, we propose measurements to improve our understanding of the Martian dust and H2O cycles, and discuss the potential for liquid water formation under Mars present day conditions and its implications for future Mars missions.

  8. Was Early Mars Warmed by CH4?

    NASA Astrophysics Data System (ADS)

    Justh, H. L.; Kasting, J. F.

    2001-12-01

    Images from the Mariner, Viking and Mars Global Surveyor missions have shown geologic features on the Martian surface that seem to indicate an earlier period of hydrologic activity. Many researchers have suggested that the early Martian climate was more Earth-like with a Ts of 273 K or higher. The presence of liquid water would require a greenhouse effect much larger than needed at present since S0 is 25% lower 3.8 billion years ago when the channels are thought to have formed. Research into the effects of CO2 clouds upon the climate of early Mars have yielded results that would not effectively warm the surface to the temperature needed to account for the presence of liquid water. Forget and Pierrehumbert (Science, 1997) showed that large crystals of CO2 ice in clouds that form in the upper troposphere would produce a strong warming effect. Obtaining mean surface temperatures above 273 K would require 100% cloud cover, a condition that is unrealistic for early Mars. It has also been shown that any reduction in cloud cover makes it difficult to achieve warm Martian surface temperatures except at high pressures. CO2 clouds could also cool the Martian surface if they were low and optically thick. CO2 ice may be hard to nucleate, leading to the formation of very large particles (Glandorf, private communication). CH4 has been suggested as an important greenhouse gas on the early Earth. This has led us to look at CH4 as a potential solution to the early Mars climate issue. To investigate the possible warming effect of CH4, we utilized a modified, one-dimensional, radiative-convective climate model that has been used in previous studies of the early Martian climate. New calculations of the effects of CH4 upon the early Martian climate will be presented. The use of CH4 to warm the surface of early Mars does not necessarily imply the presence of life on Mars. Abiotic sources of CH4, such as serpentinization of ultramafic rocks, could supply the concentrations needed to warm the surface.

  9. A Moessbauer spectrometer for the mineralogical analysis of the Mars surface: First temperature dependent tests of the detector and drive system

    NASA Technical Reports Server (NTRS)

    Held, P.; Teucher, R.; Klingelhoefer, G.; Foh, J.; Jaeger, H.; Kankeleit, E.

    1993-01-01

    Part of the scientific payload of the Mars-96 mission is a Fe-(57)Mossbauer (MB) spectrometer installed on a small rover to be placed on the surface of Mars. The instrument is under development at the University of Darmstadt. This instrument, with some modifications, is also included in the scientific payload of the proposed MARSNET mission of the European Space Agency (ESA). A similar instrument is currently under development in the US. The reason for developing a Mossbauer spectrometer for space applications is the high abundance of the element iron, especially on the surface of Mars. The elemental composition of Martian soil was determined during the Viking mission in 1976 but not it's mineralogical composition. One believes that it is composed mainly of iron-rich clay minerals, with an iron content of about 14 (plus or minus 2) wt-percent, partly magnetic. Of extremely great interest are the oxidation state of the iron, the magnetic phases and the mineral composition of the Mars surface. To these questions MB spectroscopy can provide important information, which are not available by other methods. We report on first tests of the experimental setup in the temperature range plus 20 C to -70 C, roughly corresponding to the temperature range on the surface of Mars. Also questions concerning the signal/noise ratio (S/N) are discussed.

  10. Cryolitozone of Mars- as the climatic indicator of the Martian relict ocean

    NASA Astrophysics Data System (ADS)

    Ozorovich, Y.; Fournier-Sicre, A.; Linkin, V.; Kosov, A.; Skulachev, D.; Gorbatov, S.; Ivanov, A.; Heggy, E.

    2015-10-01

    The existance of a large Martian cryolitozone consisting of different cryogenic formations both on the surface- polar caps ice and in subsurface layer (and probably overcooled salt solutions in lower horizons) is conditioned mostly by the planet's geological history and atmosphere evolution. The very structure of the cryolitozone with its strongly pronounced zone character owing to drying up of 0 to 200 m thick surface layer in the equatorial latitudes ranging from + 30 to - 300 was formed in the course of long-periodic climatic variations and at present is distincly heterogeneous both depthward and in latitudinal and longtudinal dimensions. The dryed up region of Martian frozen rocks is estimated to have been developing during more than 3.5 bln years, so the upper layer boundary of permafrost can serve as a sort of indicator reflecting the course of Martian climatic evolution. Since the emount of surface moisture and its distribition character are conditioned by the cryolitozone scale structure its investigation is considered to be an important aspect of the forthcoming Martian projects. In order to create Martian climate and atmosphere circulation models the whole complex information on surface provided by optical and infrared ranges observations, regional albedo surface measurements, ground layer thermal flow investigations, etc. must be carefully studed. The investigation of permafrost formation global distribution and their appearance in h ≤1 m thick subsurface layer may be provided successfully by using active-passive microwave remote sensing techniques [1]. Along with optical and infrared observations the method of orbital panoramic microwave radiometry in centi- and decimeter ranges would contribute to the mapping of the cryolitozone global surface distribution. This proposal discusses methodical and experimental possibilities of this global observation of Martian cryolitozone as the additional way for investigation subsurface of Mars. The main idea of this approach is - the salt component of subsurface is the global geolectrical marker of the Martian relict ocean in the past. Mars' observations by means of ground and onboard instruments are known to have been conducted in recent years. These observations provided information on Mars' surface mean temperature values and their seasonal variations. Radar measurements allowed to estimate dielectric constant and soil upper layer density values. Mars' surface radiation measurements by a 3,4 cm radiometer aboard Mars-3 and 5 automatic interplanetary stations (1971-1973) proved to be more informative. Radio brightness temperature variations were registered along the flight route. As a result surface temperature latitudinal distribution estimates in a spatial resolution element, were obtained as well as more precise values of dielectric constant and soil density of centimeter fractions this surface layer. No more experiments using microwave radiometers were conducted since. The only way to obtain information about Mars surface mezoscale structure is to use a high spatial resolution panoramic equipment on-board. Mars' surface radio images would allow to identify regions differing in ice percentage content in cryogenic surface structures or in mineralized solutions of negative temperature and to estimate relative quantity of cryogenic formations - permafrost fractions as well as to measure the soil looseness or porosity degree. In addition it would be possible to restore various regions' average vertical temperature, humidity and porosity profiles of less than 1 m thick surface layer. These dependencies combined with the results of depth inductive sounding (0.5 km) and magnitotelluric (1- 5 km) sensing would provide new and more detailed information on Martian crust structure and character and its cryolitozone, necessary to create a more reliable paleoclimatic model of the planet. Experiment equipment and methods Space experiment is conducted to obtain maps of temperature and humidity global distribution of Martian cryolitozone upper layer by means of radiothermal images of the surface. Analysis of the available data produces estimates of the soil integral content, degree of salt solutions mineralization and porosity. Regions of permafrost and ice formations are identified as well. One could possibly estimate average profiles of temperature, humidity and porosity of a 0,5-1 m thick surface layer. For that purpose one should apply observations by a two channel scanning radiometer of centimetre and decimetre ranges. Fluctuational sensitivity of each channel is ˜0,10 K, time constant of integration is 1 s. The two channels share an antenna, an inflatable or self-opening one with a mechanically scanning beam; aperture is about 3-4 m in size; directivity diagram - 30. Spatial EPSC Abstracts Vol. 10, EPSC2015-128, 2015 European Planetary Science Congress 2015 c Author(s) 2015 EPSC European Planetary Science Congress resolution element (pixel) is about 20 km, observation belt is of 200 - 400 km depending on the orbit parameters. Restoration accuracy of the radiobrighness temperature absolute values is of order of 2-30K. Microwave block dimensions are up to 500x500x300 mm; weight is ˜10 kg. An optimal frequency range for Martian radiometric measurements is 8-18 or 21 cm. Suggested radiometer presents a synthetic aperture microwave radiometer-imager. An optimal frequency range for Martian radiometric measurements is 8 -18 or 21 cm. It employs an interferometric technique to synthesize high resolutions from small antennas. This radiometer can be build, for example as analog of Electronically Steerable Thinned Array Radiometer (ESTAR). ESTAR operates at 1.4 GHz and has been deployed on the C-130 and P-3 aircrafts. It was used by NASA to measure soil moisture and to assess the potential to measure ocean surface salinity. Antenna fastening and joint to microwave block are hard. Registering system is a digit tape-recorder. Information stream is up to 1 kb/s. Power consumption is up to 50W/27V. Radiometer observations are conducted along the route of the Martian orbital station in accordance with the experiment general program. Observation angle is θ ˜0-300 ; polarization is vertical. Frequency of the radiometer calibration is not less that once in 24 hours. Radiometer scale calibration and measurement of antenna-feeder unit transition coefficient can be carried out against standard sources as well as the relict radiation (˜30K) with the antenna proper orientation. Generally it is desirable to match the radiometer system observation zone with that of optical and TV systems and infrared radiometer as well. Martian surface radio images should be geographically identified. Data processing and temperature and humidity maps drawing is performed by processor system back on Ground. On the base space- technology platform - the small satellite CHIBIS, also will planning to create prototype of Martian instrumentation for the operative geophysical monitoring system of the natural ecosystem for remote sensing in the range of 18-21 cm and 8-13 mkm. This is allowed to realize preliminary testing and calibration of the prototype of the Martian instrument in the Earth's condition. One of the areas of future studies on the surface of Mars are providing the measurements in situ in the local geophysical martian polygon by different geophysical instruments, including: radar measurements in the range of 0.5 - 50 Mhz, lowfrequency sounding by MARSES - TDEM instruments, MTS (magneto -telluric sounding) with depth of sounding until 1 km, in the frame work of the rover survey of the different areas of Martian surface . Additional information about MARSES-Active experiment on www.iki.rssi.ru/MARSES/english/info.htm [1] Ozorovich Yu.R., Raizer V.Yu., Microwave remote sensing of Martian cryolitozone, Preprint IKI, No.1768, 1991: https://www.researchgate.net/publication/275266762 _Microwave_remote_sensing_of_Martian_cryolitozone) [2] ACTIVE-PASSIVE MICROWAVE REMOTE SENSING OF MARTIAN PERMAFROST AND SUBSURFACE WATER. V.Raizer2, V. M.Linkin1, Y. R. Ozorovich1, W.D. Smythe,B3. Zoubkov1, F. Babkin1 1 Space Research Institute,Russian Academy of Sciences, 84/32 Profsoyuznaya st.,Moscow, 117810,Russia yozorovi@iki.rssi.ru,2 STC,Fairfax, VA 22031-1748,USA Vraizer@aol.com, 3 JPL/NASA,4800 Oak Grove Drive,Pasadena,CA 91109,USA wsmyth@spluvs.jpl.nasa.gov. http://www.lpi.usra.edu/meetings/lpsc2000/pdf/1258. pdf These glaciers have been hiding in plain sight whole time, under a blanketing of dust. There's so much ice, in fact, that if the glaciers were spread uniformly over the entire surface of the world, Mars would be covered in one meter of ice. Mars' dusty cover is doing more than hiding the glaciers from evaporation in the thin, radiation-prone atmosphere of Mars/

  11. Electron Spin Resonance (ESR) detection of active oxygen species and organic phases in Martian soils

    NASA Technical Reports Server (NTRS)

    Tsay, Fun-Dow; Kim, Soon Sam; Liang, Ranty H.

    1989-01-01

    The presence of active oxygen species (O(-), O2(-), O3(-)) and other strong oxidants (Fe2O3 and Fe3O4) was invoked in interpretations of the Viking biological experiments and a model was also suggested for Martian surface chemistry. The non-biological interpretations of the biological results gain futher support as no organic compounds were detected in the Viking pyrolysis-gas chromatography mass spectrometer (GCSM) experiments at concentrations as low as 10 ppb. Electron spin resonance (ESR) measures the absorption of microwaves by a paramagnetic and/or ferromagnetic center in the presence of an external field. In many instances, ESR has the advantage of detailed submicroscopic identification of the transient species and/or unstable reaction intermediates in their environments. Since the higly active oxygen species (O(-), O2(-), O3(-), and R-O-O(-)) are all paramagnetic in nature, they can be readily detected in native form by the ESR method. Active oxygen species likely to occur in the Martian surface samples were detected by ESR in UV-irradiated samples containing MgO. A miniaturized ESR spectrometer system can be developed for the Mars Rover Sample Return Mission. The instrument can perform the following in situ Martian samples analyses: detection of active oxygen species; characterization of Martian surface chemistry and photooxidation processes; and searching for organic compounds in the form of free radicals preserved in subsoils, and detection of microfossils with Martian carbonate sediments.

  12. What would we miss if we characterized the Moon and Mars with just planetary meteorites, remote mapping, and robotic landers?. [Abstract only

    NASA Technical Reports Server (NTRS)

    Lindstrom, M. M.

    1994-01-01

    Exploration of the Moon and planets began with telescopic studies of their surfaces, continued with orbiting spacecraft and robotic landers, and will culminate with manned exploration and sample return. For the Moon and Mars we also have accidental samples provided by impacts on their surfaces, the lunar and martian meteorites. How much would we know about the lunar surface if we only had lunar meteorites, orbital spacecraft, and robotic exploration, and not the Apollo and Luna returned samples? What does this imply for Mars? With martian meteorites and data from Mariner, Viking, and the future Pathfinder missions, how much could we learn about Mars? The basis of most of our detailed knowledge about the Moon is the Apollo samples. They provide ground truth for the remote mapping, timescales for lunar processes, and samples from the lunar interior. The Moon is the foundation of planetary science and the basis for our interpretation of the other planets. Mars is similar to the Moon in that impact and volcanism are the dominant processes, but Mars' surface has also been affected by wind and water, and hence has much more complex surface geology. Future geochemical or mineralogical mapping of Mars' surface should be able to tell us whether the dominant rock types of the ancient southern highlands are basaltic, anorthositic, granitic, or something else, but will not be able to tell us the detailed mineralogy, geochemistry, or age. Without many more martian meteorites or returned samples we will not know the diversity of martian rocks, and therefore will be limited in our ability to model martian geological evolution.

  13. Ni/S/Cl systematics and the origin of impact-melt glasses in Martian meteorite Elephant Moraine 79001

    NASA Astrophysics Data System (ADS)

    Schrader, Christian M.; Cohen, Barbara A.; Donovan, John J.; Vicenzi, Edward P.

    2016-04-01

    Martian meteorite Elephant Moraine A79001 (EET 79001) has received considerable attention for the unusual composition of its shock melt glass, particularly its enrichment in sulfur relative to the host shergottite. It has been hypothesized that Martian regolith was incorporated into the melt or, conversely, that the S-enrichment stems from preferential melting of sulfide minerals in the host rock during shock. We present results from an electron microprobe study of EET 79001 including robust measurements of major and trace elements in the shock melt glass (S, Cl, Ni, Co, V, and Sc) and minerals in the host rock (Ni, Co, and V). We find that both S and major element abundances can be reconciled with previous hypotheses of regolith incorporation and/or excess sulfide melt. However, trace element characteristics of the shock melt glass, particularly Ni and Cl abundances relative to S, cannot be explained either by the incorporation of regolith or sulfide minerals. We therefore propose an alternative hypothesis whereby, prior to shock melting, portions of EET 79001 experienced acid-sulfate leaching of the mesostasis, possibly groundmass feldspar, and olivine, producing Al-sulfates that were later incorporated into the shock melt, which then quenched to glass. Such activity in the Martian near-surface is supported by observations from the Mars Exploration Rovers and laboratory experiments. Our preimpact alteration model, accompanied by the preferential survival of olivine and excess melting of feldspar during impact, explains the measured trace element abundances better than either the regolith incorporation or excess sulfide melting hypothesis does.

  14. Combining meteorites and missions to explore Mars.

    PubMed

    McCoy, Timothy J; Corrigan, Catherine M; Herd, Christopher D K

    2011-11-29

    Laboratory studies of meteorites and robotic exploration of Mars reveal scant atmosphere, no evidence of plate tectonics, past evidence for abundant water, and a protracted igneous evolution. Despite indirect hints, direct evidence of a martian origin came with the discovery of trapped atmospheric gases in one meteorite. Since then, the study of martian meteorites and findings from missions have been linked. Although the meteorite source locations are unknown, impact ejection modeling and spectral mapping of Mars suggest derivation from small craters in terrains of Amazonian to Hesperian age. Whereas most martian meteorites are young (< 1.3 Ga), the spread of whole rock isotopic compositions results from crystallization of a magma ocean > 4.5 Ga and formation of enriched and depleted reservoirs. However, the history inferred from martian meteorites conflicts with results from recent Mars missions, calling into doubt whether the igneous histor y inferred from the meteorites is applicable to Mars as a whole. Allan Hills 84001 dates to 4.09 Ga and contains fluid-deposited carbonates. Accompanying debate about the mechanism and temperature of origin of the carbonates came several features suggestive of past microbial life in the carbonates. Although highly disputed, the suggestion spurred interest in habitable extreme environments on Earth and throughout the Solar System. A flotilla of subsequent spacecraft has redefined Mars from a volcanic planet to a hydrologically active planet that may have harbored life. Understanding the history and habitability of Mars depends on understanding the coupling of the atmosphere, surface, and subsurface. Sample return that brings back direct evidence from these diverse reservoirs is essential.

  15. Combining meteorites and missions to explore Mars

    PubMed Central

    McCoy, Timothy J.; Corrigan, Catherine M.; Herd, Christopher D. K.

    2011-01-01

    Laboratory studies of meteorites and robotic exploration of Mars reveal scant atmosphere, no evidence of plate tectonics, past evidence for abundant water, and a protracted igneous evolution. Despite indirect hints, direct evidence of a martian origin came with the discovery of trapped atmospheric gases in one meteorite. Since then, the study of martian meteorites and findings from missions have been linked. Although the meteorite source locations are unknown, impact ejection modeling and spectral mapping of Mars suggest derivation from small craters in terrains of Amazonian to Hesperian age. Whereas most martian meteorites are young (< 1.3 Ga), the spread of whole rock isotopic compositions results from crystallization of a magma ocean > 4.5 Ga and formation of enriched and depleted reservoirs. However, the history inferred from martian meteorites conflicts with results from recent Mars missions, calling into doubt whether the igneous histor y inferred from the meteorites is applicable to Mars as a whole. Allan Hills 84001 dates to 4.09 Ga and contains fluid-deposited carbonates. Accompanying debate about the mechanism and temperature of origin of the carbonates came several features suggestive of past microbial life in the carbonates. Although highly disputed, the suggestion spurred interest in habitable extreme environments on Earth and throughout the Solar System. A flotilla of subsequent spacecraft has redefined Mars from a volcanic planet to a hydrologically active planet that may have harbored life. Understanding the history and habitability of Mars depends on understanding the coupling of the atmosphere, surface, and subsurface. Sample return that brings back direct evidence from these diverse reservoirs is essential. PMID:21969535

  16. Mars Gardens in the University - Red Thumbs: Growing Vegetables in Martian regolith simulant.

    NASA Astrophysics Data System (ADS)

    Guinan, Edward Francis

    2018-01-01

    Over the next few decades NASA and private enterprise missions plan to send manned missions to Mars with the ultimate aim to establish a permanent human presence on this planet. For a self-sustaining colony on Mars it will be necessary to provide food by growing plants in sheltered greenhouses on the Martian surface. As part of an undergraduate student project in Astrobiology at Villanova University, experiments are being carried out, testing how various plants grow in Martian regolith. A wide sample of plants are being grown and tested in Mars regolith simulant commercially available from The Martian Garden (TheMartian Garden.com). This Mars regolith simulant is based on Mojave Mars Simulant (MMS) developed by NASA and JPL for the Mars Phoenix mission. The MMS is based on the Mojave Saddleback basalt similar that used by JPL/NASA. Additional reagents were added to this iron rich basalt to bring the chemical content close to actual Mars regolith. The MMS used is an approximately 90% similar to regolith found on the surface of Mars - excluding poisonous perchlorates commonly found on actual Mars surface.The students have selected various vegetables and herbs to grow and test. These include carrots, spinach, dandelions, kale, soy beans, peas, onions, garlic and of course potatoes and sweet potatoes. Plants were tested in various growing conditions, using different fertilizers, and varying light conditions and compared with identical “control plants” grown in Earth soil / humus. The results of the project will be discussed from an education view point as well as from usefulness for fundamental research.We thank The Martian Garden for providing Martian regolith simulant at education discounted prices.

  17. Mars Environmental Chamber for Dynamic Dust Deposition and Statics Analysis

    NASA Technical Reports Server (NTRS)

    Moeller, L. E.; Tuller, M.; Islam, M. R.; Baker, L.; Kuhlman, K.

    2004-01-01

    Recent observations of the 2001 dust storms encircling Mars confirm predictions of environmental challenges for exploration. Martian dust has been found to completely mantle the Martian surface over thousands of square kilometers and the opacity of airborne dust has been shown to be capable of modifying atmospheric temperature, radiative transfer and albedo. Planetary dust cycling dynamics are suggested to be a key factor in the evolution of the Martian surface. Long-term robotic and manned exploration of Mars will be confronted by dust deposition in periods of atmospheric calm and violent wind storms. Aeolian dust deposition recorded during the Mars Pathfinder mission was estimated to fall at rates of 20-45 microns per Earth year. Although many tools of exploration will be challenged by coating, adhesion, abrasion and possible chemical reaction of deposited, wind blown and actively disturbed Martian dust, solar cells are thought to be of primary concern. Recent modeling work of power output by gallium arsenide/germanium solar cells was validated by the Pathfinder Lander data and showed power output decreases of 0.1 to 0.5% per Martian day. A major determinant for the optimal positioning angle of solar panels employed in future missions is the angle of repose of the settling dust particles that is dependent on a variety of physical and chemical properties of the particles, the panel surface, and the environmental conditions on the Mars surface. While the effects of many of these factors are well understood qualitatively, quantitative analyses, especially under physical and chemical conditions prevailing on the Mars surface are lacking.

  18. Calculated mineral precipitation upon evaporation of a model Martian groundwater near 0 C

    NASA Technical Reports Server (NTRS)

    Debraal, J. D.; Reed, M. H.; Plumlee, G. S.

    1992-01-01

    Previously, the effect of weathering a basalt of Shergotty meteorite composition with pure water buffered at martian atmospheric values of CO2 and O2, to place constraints upon the composition of martian groundwater, and to determine possible equilibrium mineral assemblages was calculated. A revised calculation of the composition of the aqueous phase in the weathering reaction as a function of the amount of basalt titrated into the solution is shown. The concentrations of sulfate and chloride ions increase in the solution from high water/rock ratios (w/r) on the left to low water/rock ratios on the right, until at w/r = 1, where 1 kg of basalt has been titrated, sulfate concentration is 1564 ppm and chloride is 104 ppm. This resulting fluid is dominated by sulfate and sodium, with bicarbonate and chloride at about the same concentration. This solution was evaporated in an attempt to determine if the resulting evaporite can explain the Viking XRF data. The program CHILLER was used to evaporate this solution at 0.1 C.

  19. Atmospheric Constraints on the Surface UV Environment of Mars at 3.9 Ga Relevant to Prebiotic Chemistry.

    PubMed

    Ranjan, Sukrit; Wordsworth, Robin; Sasselov, Dimitar D

    2017-08-01

    Recent findings suggest that Mars may have been a clement environment for the emergence of life and may even have compared favorably to Earth in this regard. These findings have revived interest in the hypothesis that prebiotically important molecules or even nascent life may have formed on Mars and been transferred to Earth. UV light plays a key role in prebiotic chemistry. Characterizing the early martian surface UV environment is key to understanding how Mars compares to Earth as a venue for prebiotic chemistry. Here, we present two-stream, multilayer calculations of the UV surface radiance on Mars at 3.9 Ga to constrain the surface UV environment as a function of atmospheric state. We explore a wide range of atmospheric pressures, temperatures, and compositions that correspond to the diversity of martian atmospheric states consistent with available constraints. We include the effects of clouds and dust. We calculate dose rates to quantify the effect of different atmospheric states on UV-sensitive prebiotic chemistry. We find that, for normative clear-sky CO 2 -H 2 O atmospheres, the UV environment on young Mars is comparable to young Earth. This similarity is robust to moderate cloud cover; thick clouds (τ cloud  ≥ 100) are required to significantly affect the martian UV environment, because cloud absorption is degenerate with atmospheric CO 2 . On the other hand, absorption from SO 2 , H 2 S, and dust is nondegenerate with CO 2 , meaning that, if these constituents build up to significant levels, surface UV fluence can be suppressed. These absorbers have spectrally variable absorption, meaning that their presence affects prebiotic pathways in different ways. In particular, high SO 2 environments may admit UV fluence that favors pathways conducive to abiogenesis over pathways unfavorable to it. However, better measurements of the spectral quantum yields of these pathways are required to evaluate this hypothesis definitively. Key Words: Radiative transfer-Origin of life-Mars-UV radiation-Prebiotic chemistry. Astrobiology 17, 687-708.

  20. Physical properties of the martian surface from the viking 1 lander: preliminary results.

    PubMed

    Shorthill, R W; Hutton, R E; Moore, H J; Scott, R F; Spitzer, C R

    1976-08-27

    The purpose of the physical properties experiment is to determine the characteristics of the martian "soil" based on the use of the Viking lander imaging system, the surface sampler, and engineering sensors. Viking 1 lander made physical contact with the surface of Mars at 11:53:07.1 hours on 20 July 1976 G.M.T. Twenty-five seconds later a high-resolution image sequence of the area around a footpad was started which contained the first information about surface conditions on Mars. The next image is a survey of the martian landscape in front of the lander, including a view of the top support of two of the landing legs. Each leg has a stroke gauge which extends from the top of the leg support an amount equal to the crushing experienced by the shock absorbers during touchdown. Subsequent images provided views of all three stroke gauges which, together with the knowledge of the impact velocity, allow determination of "soil" properties. In the images there is evidence of surface erosion from the engines. Several laboratory tests were carried out prior to the mission with a descent engine to determine what surface alterations might occur during a Mars landing. On sol 2 the shroud, which protected the surface sampler collector head from biological contamination, was ejected onto the surface. Later a cylindrical pin which dropped from the boom housing of the surface sampler during the modified unlatching sequence produced a crater (the second Mars penetrometer experiment). These two experiments provided further insight into the physical properties of the martian surface.

  1. Physical properties of the martian surface from the Viking 1 lander: preliminary results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shorthill, R.W.; Hutton, R.E.; Moore, H.J. II

    1976-08-27

    The purpose of the physical properties experiment is to determine the characteristics of the martian ''soil'' based on the use of the Viking lander imaging system, the surface sampler, and engineering sensors. Viking 1 lander made physical contact with the surface of Mars at 11:53:07.1 hours on 20 July 1976 G.M.T. Twenty-five seconds later a high-resolution image sequence of the area around a footpad was started which contained the first information about surface conditions on Mars. The next image is a survey of the martian landscape in front of the lander, including a view of the top support of twomore » of the landing legs. Each leg has a stroke gauge which extends from the top of the leg support an amount equal to the crushing experienced by the shock absorbers during touchdown. Subsequent images provided views of all three stroke gauges which, together with the knowledge of the impact velocity, allow determination of ''soil'' properties. In the images there is evidence of surface erosion from the engines. Several laboratory tests were carried out prior to the mission with a descent engine to determine what surface alterations might occur during a Mars landing. On sol 2 the shroud, which protected the surface sampler collector head from biological contamination, was ejected onto the surface. Later a cylindrical pin which dropped from the boom housing of the surface sampler during the modified unlatching sequence produced a crater (the second Mars penetrometer experiment). These two experiments provided further insight into the physical properties of the martian surface.« less

  2. Effects of Mars Regolith Analogs, UVC radiation, Temperature, Pressure, and pH on the Growth and Survivability of Methanogenic Archaea and Stable Carbon Isotope Fractionation: Implications for Surface and Subsurface Life on Mars

    NASA Astrophysics Data System (ADS)

    Sinha, Navita

    Mars is one of the suitable bodies in our solar system that can accommodate extraterrestrial life. The detection of plumes of methane in the Martian atmosphere, geochemical evidence, indication of flow of intermittent liquid water on the Martian surface, and geomorphologies of Mars have bolstered the plausibility of finding extant or evidence of extinct life on its surface and/or subsurface. However, contemporary Mars has been considered as an inhospitable planet for several reasons, such as low atmospheric surface pressure, low surface temperature, and intense DNA damaging radiation. Despite the hostile conditions of Mars, a few strains of methanogenic archaea have shown survivability in limited surface and subsurface conditions of Mars. Methanogens, which are chemolithoautotrophic non-photosynthetic anaerobic archaea, have been considered ideal models for possible Martian life forms for a long time. The search for biosignatures in the Martian atmosphere and possibility of life on the Martian surface under UVC radiation and deep subsurface under high pressure, temperature, and various pHs are the motivations of this research. Analogous to Earth, Martian atmospheric methane could be biological in origin. Chapter 1 provides relevant information about Mars' habitability, methane on Mars, and different strains of methanogens used in this study. Chapter 2 describes the interpretation of the carbon isotopic data of biogenic methane produced by methanogens grown on various Mars analogs and the results provide clues to determine ambiguous sources of methane on Mars. Chapter 3 illustrates the sensitivity of hydrated and desiccated cultures of halophilic and non-halophilic methanogens to DNA-damaging ultraviolet radiations, and the results imply that UVC radiation may not be an enormous constraint for methanogenic life forms on the surface of Mars. Chapters 4, 5, and 6 discuss the data for the survivability, growth, and morphology of methanogens in presumed deep subsurface physicochemical conditions such as temperature, pressure, hydrogen concentration, and pH of Mars. Finally, chapter 7 provides conclusions, limitations of the experiments, and future perspective of the work. Overall, the quantitative measurements obtained in the various sections of this novel work provide insights to atmospheric biosignatures and survivability of methanogenic organisms on the surface and subsurface of Mars.

  3. Schumann Resonances on Mars - a Two-layer Ground Case

    NASA Astrophysics Data System (ADS)

    Kozakiewicz, J.; Kulak, A.; Mlynarczyk, J.

    2012-04-01

    Schumann resonances (SR) are global resonances of electromagnetic waves in the range of extremely low frequencies (ELF) propagating in a cavity formed by a planetary surface and a lower ionosphere. SR are induced by electrical discharges, which on Earth are associated mainly with lightning. They were predicted by Winfried Otto Schumann in 1952. SR are supposed to occur on Mars, although many properties of the Martian environment are still unknown. One of the most important problems in modeling SR on Mars is to estimate electrical properties of the Martian ground and their influence on ELF waves propagation. The Martian crust is composed mainly of basaltic materials. Water, which causes significant increase in electrical conductivity of rocks, does not exist in liquid state at the surface of Mars. Therefore the Martian ground is believed to be a low conductive one. However, it is possible that some liquid water may be present at various depths below the surface. In our previous study we have developed an analytical model, based on the characteristic electric and magnetic altitudes' formalism, that has allowed us to take into consideration the Martian ground. Using this new model, we found that basaltic ground of low conductivity greatly influenced the SR parameters. In this work, we carried out simulations in order to characterize an influence of vertical changes in ground properties on the parameters of the Martian ground-ionosphere waveguide. We have considered several cases of a two-layer ground, in which the lower layer was of higher conductivity than the upper one. The obtained results indicate how the SR parameters depend on electrical conductivity, permittivity, and depth of the layers. The results also point out the importance of studying SR on Mars and the need for further research in propagation of ELF waves in the Martian environment. SR can be used as a remote sensing tool for exploration of the Martian crust. Furthermore, they can be especially useful for groundwater detection.

  4. Micro weather stations for in situ measurements in the Martian planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Crisp, D.; Kaiser, W. J.; Kenny, T. W.; Vanzandt, T. R.; Tillman, J. E.

    1992-01-01

    Viking Lander meteorology measurements show that the Martian planetary boundary layer (PBL) has large diurnal and seasonal variations in pressure, wind velocity, relative humidity, and airborne dust loading. An even larger range of conditions was inferred from remote sensing observations acquired by the Mariner 9 and Viking orbiters. Numerical models indicate that these changes may be accompanied by dramatic vertical and horizontal wind shears (100 m/s/km) and rapid changes in the static stability. In-situ measurements from a relatively small number surface stations could yield global constraints on the Martian climate and atmospheric general circulation by providing ground truth for remote sensing instruments on orbiters. A more complete understanding of the meteorology of the PBL is an essential precursor to manned missions to Mars because this will be their working environment. In-situ measurements are needed for these studies because the spatial and temporal scales that characterize the important meteorological processes near the surface cannot be resolved from orbit. The Mars Environmental Survey (MESUR) Program will provide the first opportunity to deploy a network of surface weather stations for a comprehensive investigation of the Martian PBL. The feasibility and utility of a network of micro-weather stations for making in-situ meteorological measurements in the Martian PBL are assessed.

  5. Crystallization of Yamato 980459 at 0.5 GPA: Are Residual Liquids Like QUE 94201?

    NASA Technical Reports Server (NTRS)

    Rapp, J. F.; Draper, D. S.; Mercer, C.

    2012-01-01

    The Martian basaltic meteorites Y980459 and QUE94201 (henceforth referred to as Y98 and QUE respectively) are thought to represent magmatic liquid compositions, rather than being products of protracted crystallization and accumulation like the majority of other martian meteorites. Both meteorite compositions have been experimentally crystallized at 1 bar, and liquidus phases were found to match corresponding mineral core compositions in the meteorites, consistent with the notion that these meteorites represent bona fide melts. They also represent the most primitive and most evolved basaltic martian samples, respectively. Y98 has Mg# (molar Mg/Mg+Fe) approximates 65, and lacks plagioclase; whereas QUE has Mg# approximates 40, and lacks olivine. However they share important geochemical characteristics (e.g. superchondritic CaO/Al2O3, very high epsilon(sub Nd) and low Sr-87/Sr-87) that suggest they sample a similar highly depleted mantle reservoir. As such, they represent likely endmembers of martian magmatic liquid compositions, and it is natural to seek petrogenetic linkages between the two. We make no claim that the actual meteorites themselves share a genetic link (the respective ages rule that out); we are exploring only in general whether primitive martian liquids like Y98 could evolve to liquids resembling QUE. Both experimental and computational efforts have been made to determine if there is indeed such a link. Recent petrological models at 1 bar generated using MELTS suggest that a QUE-like melt can be derived from a parental melt with a Y98 composition. However, experimental studies at 1 bar have been less successful at replicating this progression. Previous experimental crystallization studies of Y98 by our group at 0.5 GPa have produced melt compositions approaching that of QUE, although these results were complicated by the presence of small, variable amounts of H2O in some of the runs owing to the use of talc/pyrex experimental assemblies. Therefore we have repeated the four experiments, augmented with additional runs, all using BaCO3 cell assemblies, which are devoid of water, and these new experiments supersede those reported earlier. Here we report results of experiments simulating equilibrium crystallization; fractional crystallization experiments are currently underway.

  6. Martian Analogue Sample Characterization and Spectral Library Development at the Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Morris, Richard V.

    2002-01-01

    An extensive collection of Martian analogue samples housed at the Johnson Space Center is the focus of ongoing research by the JSC Mars soil genesis group and their collaborators. Because the major element composition of Martian meteorites and in situ analyses of Martian soils and rocks indicate that Mars is predominantly an iron-rich basaltic world, the focus of active sample collection and analysis is basaltic materials and their hydrolytic (both aqueous and hydrothermal) and sulfatetic alteration products. Described below are the scope of the JSC Mars analogue sample collection, the characterization process, and plans to incorporate the data into spectral libraries for the Mars 2003 Mars Exploration Rover (MER) and Mars 2005 Mars Reconnaissance Orbiter (MRO) CRISM missions.

  7. SNC meteorites and their implications for reservoirs of Martian volatiles

    NASA Technical Reports Server (NTRS)

    Jones, J. H.

    1993-01-01

    The SNC meteorites and the measurements of the Viking landers provide our only direct information about the abundance and isotopic composition of Martian volatiles. Indirect measurements include spectroscopic determinations of the D/H ratio of the Martian atmosphere. A personal view of volatile element reservoirs on Mars is presented, largely as inferred from the meteoritic evidence. This view is that the Martian mantle has had several opportunities for dehydration and is most likely dry, although not completely degassed. Consequently, the water contained in SNC meteorites was most likely incorporated during ascent through the crust. Thus, it is possible that water can be decoupled from other volatile/incompatible elements, making the SNC meteorites suspect as indicators of water inventories on Mars.

  8. Bacillus subtilis spore survival and expression of germination-induced bioluminescence after prolonged incubation under simulated Mars atmospheric pressure and composition: implications for planetary protection and lithopanspermia

    NASA Technical Reports Server (NTRS)

    Nicholson, Wayne L.; Schuerger, Andrew C.

    2005-01-01

    Bacterial endospores in the genus Bacillus are considered good models for studying interplanetary transfer of microbes by natural or human processes. Although spore survival during transfer itself has been the subject of considerable study, the fate of spores in extraterrestrial environments has received less attention. In this report we subjected spores of a strain of Bacillus subtilis, containing luciferase resulting from expression of an sspB-luxAB gene fusion, to simulated martian atmospheric pressure (7-18 mbar) and composition (100% CO(2)) for up to 19 days in a Mars simulation chamber. We report here that survival was similar between spores exposed to Earth conditions and spores exposed up to 19 days to simulated martian conditions. However, germination-induced bioluminescence was lower in spores exposed to simulated martian atmosphere, which suggests sublethal impairment of some endogenous spore germination processes.

  9. Chemical composition of Martian fines

    NASA Technical Reports Server (NTRS)

    Clark, B. C.; Baird, A. K.; Weldon, R. J.; Tsusaki, D. M.; Schnabel, L.; Candelaria, M. P.

    1982-01-01

    Of the 21 samples acquired for the Viking X-ray fluorescence spectrometer, 17 were analyzed to high precision. Compared to typical terrestrial continental soils and lunar mare fines, the Martian fines are lower in Al, higher in Fe, and much higher in S and Cl concentrations. Protected fines at the two lander sites are almost indistinguishable, but concentration of the element S is somewhat higher at Utopia. Duricrust fragments, successfully acquired only at the Chryse site, invariably contained about 50% higher S than fines. No elements correlate positively with S, except Cl and possibly Mg. A sympathetic variation is found among the triad Si, Al, Ca; positive correlation occurs between Ti and Fe. Sample variabilities are as great within a few meters as between lander locations (4500 km apart), implying the existence of a universal Martian regolith component of constant average composition. The nature of the source materials for the regolith fines must be mafic to ultramafic.

  10. Automated life-detection experiments for the Viking mission to Mars

    NASA Technical Reports Server (NTRS)

    Klein, H. P.

    1974-01-01

    As part of the Viking mission to Mars in 1975, an automated set of instruments is being built to test for the presence of metabolizing organisms on that planet. Three separate modules are combined in this instrument so that samples of the Martian surface can be subjected to a broad array of experimental conditions so as to measure biological activity. The first, the Pyrolytic Release Module, will expose surface samples to a mixture of C-14O and C-14O2 in the presence of Martian atmosphere and a light source that simulates the Martian visible spectrum. The assay system is designed to determine the extent of assimilation of CO or CO2 into organic compounds. The Gas Exchange Module will incubate surface samples in a humidified CO2 atmosphere. At specified times, portions of the incubation atmosphere will be analyzed by gas chromatography to detect the release or uptake of CO2 and several additional gases. The Label Release Module will incubate surface samples with a dilute aqueous solution of simple radioactive organic substrates in Martian atmosphere, and the gas phase will be monitored continuously for the release of labeled CO2.

  11. On the existence and stability of liquid water on the surface of mars today.

    PubMed

    Kuznetz, L H; Gan, D C

    2002-01-01

    The recent discovery of high concentrations of hydrogen just below the surface of Mars' polar regions by Mars Odyssey has enlivened the debate about past or present life on Mars. The prevailing assumption prior to the discovery was that the liquid water essential for its existence is absent. That assumption was based largely on the calculation of heat and mass transfer coefficients or theoretical climate models. This research uses an experimental approach to determine the feasibility of liquid water under martian conditions, setting the stage for a more empirical approach to the question of life on Mars. Experiments were conducted in three parts: Liquid water's existence was confirmed by droplets observed under martian conditions in part 1; the evolution of frost melting on the surface of various rocks under martian conditions was observed in part 2; and the evaporation rate of water in Petri dishes under Mars-like conditions was determined and compared with the theoretical predictions of various investigators in part 3. The results led to the conclusion that liquid water can be stable for extended periods of time on the martian surface under present-day conditions.

  12. On the existence and stability of liquid water on the surface of mars today

    NASA Technical Reports Server (NTRS)

    Kuznetz, L. H.; Gan, D. C.

    2002-01-01

    The recent discovery of high concentrations of hydrogen just below the surface of Mars' polar regions by Mars Odyssey has enlivened the debate about past or present life on Mars. The prevailing assumption prior to the discovery was that the liquid water essential for its existence is absent. That assumption was based largely on the calculation of heat and mass transfer coefficients or theoretical climate models. This research uses an experimental approach to determine the feasibility of liquid water under martian conditions, setting the stage for a more empirical approach to the question of life on Mars. Experiments were conducted in three parts: Liquid water's existence was confirmed by droplets observed under martian conditions in part 1; the evolution of frost melting on the surface of various rocks under martian conditions was observed in part 2; and the evaporation rate of water in Petri dishes under Mars-like conditions was determined and compared with the theoretical predictions of various investigators in part 3. The results led to the conclusion that liquid water can be stable for extended periods of time on the martian surface under present-day conditions.

  13. The M3 project

    NASA Astrophysics Data System (ADS)

    Poulet, Francois; Carter, John; Riu, Lucie; Martinez, Antoine; Bibring, Jean-Pierre; Gondet, Brigitte; Langevin, Yves

    2017-10-01

    An essential part of revealing the past conditions that occurred at the surface of Mars is determining its mineralogy. Igneous compositions can provide insight into mechanisms such as crustal formation, magma differentiation and volcanic activity, while clays, salts and other altered phases can constrain the past liquid water environments on/near the surface. The visible near-infrared imaging spectrometer OMEGA on board the ESA Mars Express mission provided major steps in our understanding of the composition of the Martian surface by mapping anhydrous and hydrated minerals (Riu et al. 2017; Carter et al. 2017). The ultimate step in interpreting IR OMEGA data is a quantitative retrieval of mineral abundances from the modeling of spectra of selected terrains. So far, such an approach was performed on restricted areas of the surface using a radiative transfer model (Poulet et al., 2009, 2014). The purpose of the M3 (Modal Mineralogy of Mars) project is thus to provide global distributions of Martian surface minerals using previous OMEGA investigations, and to distribute the mineral maps to the science community through the web portal PSUP (Poulet et al. 2017). Two types of terrains are considered: type 1: mafic-bearing ones; type 2: hydrated deposits.For type-1 terrains, a 3-D global image cube was constructed containing atmospheric- and aerosol-corrected NIR spectra distributed over 32px/° and +/-60° of latitude with a surface coverage of 90%. NIR reflectance spectra were modeled to retrieve mineral abundances and particle grain sizes of the mafic-bearing terrains. This work is completed with final maps presented this year (Riu et al. 2017).For type-2 terrains, a specific approach is required. First, signatures of hydrated minerals are detected for each single OMEGA cube. Second, the spectral modeling is applied to each pixel and then the modeled abundances are averaged when overlapping observations occur for a specific location. The validation of this approach has been performed on two regions that exhibit the greatest mineral diversity of hydrated minerals on Mars: Nilo-Syrtis region and Mawrth Vallis/Oxia Planum region. Mineral maps of various hydrated and primary phases will be presented.

  14. Defining the Iron-Rich Fe-Ni-S Melting Curve at 20GPa: Implications for Martian Core Solidification

    NASA Astrophysics Data System (ADS)

    Gilfoy, F. G.; Li, J.

    2016-12-01

    In 1997, the Mars Global Surveyor detected strong remnant magnetization of 4 Ga impact basins in the planet's southern highlands (Acuna et al. 1999), but the dearth of strongly magnetized rocks younger than 4 Ga in age is interpreted as evidence cataloging the death of an early Martian dynamo (Stevenson, 2001; Fassett 2011). In order to investigate the thermal evolution of the Martian core and assess the possibility of iron "snow" core crystallization to restart the dynamo, a series of multi-anvil experiments have been conducted to define the iron-rich liquidus of the Fe-Ni-S system at 20 GPa, the estimated pressure of the Martian core-mantle boundary (CMB), across its entire temperature range. Due to the fineness of features at high temperatures and low S concentrations, area analysis techniques, in additional to traditional electron microprobe analysis, were used to determine the composition of the experimental data. When fitted using an asymmetrical regular solution model, our data yields a liquidus that is significantly depressed when compared to calculations made assuming ideal behavior. Pronounced melting point depression at S contents corresponding to the likely composition of the Martian core means that the onset of crystallization will take much longer than previously thought. By comparing a calculated areotherm to liquidii interpolated between our experimental data and that from the literature, we find that the two intersect at the high-pressure end. Thus, the Martian core solidification is expected to begin at the center of planet and iron "snow" core crystallization is unlikely to occur within Mars .

  15. Magnetic and electrical properties of Martian particles

    NASA Technical Reports Server (NTRS)

    Olhoeft, G. R.

    1991-01-01

    The only determinations of the magnetic properties of Martian materials come from experiments on the two Viking Landers. The results suggest Martian soil containing 1 to 10 percent of a highly magnetic phase. Though the magnetic phase mineral was not conclusively identified, the predominate interpretation is that the magnetic phase is probably maghemite. The electrical properties of the surface of Mars were only measured remotely by observations with Earth based radar, microwave radiometry, and inference from radio-occultation of Mars orbiting spacecraft. No direct measurements of electrical properties on Martian materials have been performed.

  16. Martian physical properties experiments: The Viking Mars Lander

    USGS Publications Warehouse

    Shorthill, R.W.; Hutton, R.E.; Moore, H.J.; Scott, R.F.

    1972-01-01

    Current data indicate that Mars, like the Earth and Moon, will have a soil-like layer. An understanding of this soil-like layer is an essential ingredient in understanding the Martian ecology. The Viking Lander and its subsystems will be used in a manner similar to that used by Sue Surveyor program to define properties of the Martian "soil". Data for estimates of bearing strength, cohesion, angle of internal friction, porosity, grain size, adhesion, thermal inertia, dielectric constants, and homogeneity of the Martian surface materials will be collected. ?? 1972.

  17. Chemical reactivity of the Martian soil

    NASA Technical Reports Server (NTRS)

    Zent, A. P.; Mckay, C. P.

    1992-01-01

    The Viking life sciences experimental packages detected extraordinary chemical activity in the martian soil, probably the result of soil-surface chemistry. At least one very strong oxidant may exist in the martian soil. The electrochemical nature of the martian soil has figured prominently in discussions of future life sciences research on Mars. Putative oxidants in the martian soil may be responsible for the destruction of organic material to considerable depth, precluding the recovery of reducing material that may be relic of early biological forms. Also, there have been serious expressions of concern regarding the effect that soil oxidants may have on human health and safety. The concern here has centered on the possible irritation of the respiratory system due to dust carried into the martian habitat through the air locks.

  18. Small Impact Craters with Dark Ejecta Deposits

    NASA Technical Reports Server (NTRS)

    1999-01-01

    When a meteor impacts a planetary surface, it creates a blast very much like a bomb explosion. Shown here are two excellent examples of small impact craters on the martian surface. Each has a dark-toned deposit of material that was blown out of the crater (that is, ejected) during the impact. Materials comprising these deposits are called ejecta. The ejecta here is darker than the surrounding substrate because each crater-forming blast broke through the upper, brighter surface material and penetrated to a layer of darker material beneath. This darker material was then blown out onto the surface in the radial pattern seen here.

    The fact that impact craters can penetrate and expose material from beneath the upper surface of a planet is very useful for geologists trying to determine the nature and composition of the martian subsurface. The scene shown here is illuminated from the upper left and covers an area 1.1 km (0.7 mi) wide by 1.4 km (0.9 mi). The larger crater has a diameter of about 89 meters (97 yards), the smaller crater is about 36 meters (39 yards) across. The picture is located in Terra Meridiani and was taken by the Mars Global Surveyor Mars Orbiter Camera.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  19. Martian Surface and Atmosphere Workshop

    NASA Astrophysics Data System (ADS)

    Schuraytz, Benjamin C.

    The NASA-sponsored Martian Surface and Atmosphere Through Time Study Project convened its first major meeting at the University of Colorado in Boulder, September 23-25, 1991. The workshop, co-sponsored by the Lunar and Planetary Institute (LPI) and the Laboratory for Atmospheric and Space Physics at the University of Colorado, brought together an international group of 125 scientists to discuss a variety of issues relevant to the goals of the MSATT Program. The workshop program committee included co-convenors Robert Haberle, MSATT Steering Committee Chairman NASA Ames Research Center) and Bruce Jakosky (University of Colorado), and committee members Amos Banin (NASA Ames Research Center and Hebrew University), Benjamin Schuraytz (LPI), and Kenneth Tanaka (U.S. Geological Survey, Flagstaff, Ariz.).The purpose of the workshop was to begin exploring and defining the relationships between different aspects of Mars science—the evolution of the surface, the atmosphere, upper atmosphere, volatiles, and climate. Specific topics addressed in the 88 contributed abstracts included the current nature of the surface with respect to physical properties and photometric observations and interpretations; the history of geological processes, comprising water and ice-related geomorphology, impact cratering, and volcanism; and the geochemistry and mineralogy of the surface with emphasis on compositional and spectroscopic studies and weathering processes. Also addressed were the present atmosphere, focusing on structure and dynamics, volatile and dust distribution, and the upper atmosphere; long-term volatile evolution based on volatiles in SNC meteorites (certain meteorites thought to have come from Mars) and atmospheric evolution processes; climate history and volatile cycles in relation to early climate and the polar caps, ground ice, and regolith; and future mission concepts.

  20. Martian particle size based on thermal inertia corrected for elevation-dependent atmospheric properties

    NASA Technical Reports Server (NTRS)

    Bridges, N. T.

    1993-01-01

    Thermal inertia is commonly used to derive physical properties of the Martian surface. If the surface is composed of loosely consolidated grains, then the thermal conductivity derived from the inertia can theoretically be used to compute the particle size. However, one persistent difficulty associated with the interpretation of thermal inertia and the derivation of particle size from it has been the degree to which atmospheric properties affect both the radiation balance at the surface and the gas conductivity. These factors vary with atmospheric pressure so that derived thermal inertias and particle sizes are a function of elevation. By utilizing currently available thermal models and laboratory information, a fine component thermal inertia map was convolved with digital topography to produce particle size maps of the Martian surface corrected for these elevation-dependent effects. Such an approach is especially applicable for the highest elevations on Mars, where atmospheric back radiation and gas conductivity are low.

  1. Endolithic microbial model for Martian exobiology: The road to extinction

    NASA Technical Reports Server (NTRS)

    Oscampo-Friedmann, R.; Friedmann, E. I.

    1991-01-01

    Martian exobiology is based on the assumption that on early Mars, liquid water was present and that conditions were suitable for the evolution of life. The cause for life to disappear from the surface and the recognizable fingerprints of past microbial activity preserved on Mars are addressed. The Antarctic cryptoendolithic microbial ecosystem as a model for extinction in the deteriorating Martian environment is discussed.

  2. Hello, MAHLI

    NASA Image and Video Library

    2012-09-12

    This image shows the Mars Hand Lens Imager MAHLI on NASA Curiosity rover, with the Martian landscape in the background. The image was taken by Curiosity Mast Camera on the 32nd Martian day, or sol, of operations on the surface.

  3. Deceleration of Mars Science Laboratory in Martian Atmosphere, Artist Concept

    NASA Image and Video Library

    2011-10-03

    This artist concept depicts the interaction of NASA Mars Science Laboratory spacecraft with the upper atmosphere of Mars during the entry, descent and landing of the Curiosity rover onto the Martian surface.

  4. Production of reactive oxygen species from abraded silicates. Implications for the reactivity of the Martian soil

    NASA Astrophysics Data System (ADS)

    Bak, Ebbe N.; Zafirov, Kaloyan; Merrison, Jonathan P.; Jensen, Svend J. Knak; Nørnberg, Per; Gunnlaugsson, Haraldur P.; Finster, Kai

    2017-09-01

    The results of the Labeled Release and the Gas Exchange experiments conducted on Mars by the Viking Landers show that compounds in the Martian soil can cause oxidation of organics and a release of oxygen in the presence of water. Several sources have been proposed for the oxidizing compounds, but none has been validated in situ and the cause of the observed oxidation has not been resolved. In this study, laboratory simulations of saltation were conducted to examine if and under which conditions wind abrasion of silicates, a process that is common on the Martian surface, can give rise to oxidants in the form of hydrogen peroxide (H2O2) and hydroxyl radicals (ṡOH). We found that silicate samples abraded in simulated Martian atmospheres gave rise to a significant production of H2O2 and ṡOH upon contact with water. Our experiments demonstrated that abraded silicates could lead to a production of H2O2 facilitated by atmospheric O2 and inhibited by carbon dioxide. Furthermore, during simulated saltation the silicate particles became triboelectrically charged and at pressures similar to the Martian surface pressure we observed glow discharges. Electrical discharges can cause dissociation of CO2 and through subsequent reactions lead to a production of H2O2. These results indicate that the reactions linked to electrical discharges are the dominant source of H2O2 during saltation of silicates in a simulated Martian atmosphere, given the low pressure and the relatively high concentration of CO2. Our experiments provide evidence that wind driven abrasion could enhance the reactivity of the Martian soil and thereby could have contributed to the oxidation of organic compounds and the O2 release observed in the Labeled Release and the Gas Exchange experiments. Furthermore, the release of H2O2 and ṡOH from abraded silicates could have a negative effect on the persistence of organic compounds in the Martian soil and the habitability of the Martian surface.

  5. West-Antarctic Ice Streams: Analog to Ice Flow in Channels on Mars

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.

    1997-01-01

    Sounding of the sea floor in front of the Ross Ice Shelf in Antarctica recently revealed large persistent patterns of longitudinal megaflutes and drumlinoid forms, which are interpreted to have formed at the base of ice streams during the list glacial advance. The flutes bear remarkable resemblance to longitudinal grooves and highly elongated streamlined islands found on the floors of some large martian channels, called outflow channels. ln addition, other similarities exist between Antarctic ice streams and outflow channels. Ice streams are 30 to 80 km wide and hundreds of kilometers long, as are the martian channels. Ice stream beds are below sea level. Floors of many martian outflow channels lie below martian datum, which may have been close to or below past martian sea levels. The Antarctic ice stream bed gradient is flat and locally may go uphill, and surface slopes are exceptionally low. So are gradients of martian channels. The depth to the bed in ice streams is 1 to 1.5 km. At bankful stage, the depth of the fluid in outflow channels would have been 1 to 2 km. These similarities suggest that the martian outflow channels, whose origin is commonly attributed to gigantic catastrophic floods, were locally filled by ice that left a conspicuous morphologic imprint. Unlike the West-Antarctic-ice streams, which discharge ice from an ice sheet, ice in the martian channels came from water erupting from the ground. In the cold martian environment, this water, if of moderate volume, would eventually freeze. Thus it may have formed icings on springs, ice dams and jams on constrictions in the channel path, or frozen pools. Given sufficient thickness and downhill surface gradient, these ice masses would have moved; and given the right conditions, they could have moved like Antarctic ice streams.

  6. Numerical Model Studies of the Martian Mesoscale Circulations

    NASA Technical Reports Server (NTRS)

    Segal, M.; Arritt, R. W.

    1996-01-01

    Studies concerning mesoscale topographical effects on Martian flows examined low-level jets in the near equatorial latitudes and the dynamical intensification of flow by steep terrain. Continuation of work from previous years included evaluating the dissipation of cold air mass outbreaks due to enhanced sensible heat flux, further sensitivity and scaling evaluations for generalization of the characteristics of Martian mesoscale circulation caused by horizontal sensible heat-flux gradients, and evaluations of the significance that non-uniform surface would have on enhancing the polar CO2 ice sublimation during the spring. The sensitivity of maximum and minimum atmospheric temperatures to changes in wind speed, surface albedo, and deep soil temperature was investigated.

  7. The spectroscopic, chemical, and photophysical properties of Martian soils and their analogs (MERC, phase 2)

    NASA Technical Reports Server (NTRS)

    Banin, Amos; Orenberg, James

    1990-01-01

    A series of variably proportioned iron/calcium smectite clays and iron loaded smectite clays containing iron up to the level found in the Martian soil were prepared from a typical montomorillonite clay using the Banin method. Evidence was obtained which supports the premise that these materials provide a unique and appropriate model soil system for the Martian surface in that they are consistent with the constraints imposed by the Viking surface elemental analysis, the reflectance data obtained by various spacecraft instruments and ground based telescopes, and the chemical reactivity measured by one of the Viking biology experiments, the Labeled Release (LR) experiment.

  8. Martian Surface Beneath Phoenix

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is an image of the Martian surface beneath NASA's Phoenix Mars Lander. The image was taken by Phoenix's Robotic Arm Camera (RAC) on the eighth Martian day of the mission, or Sol 8 (June 2, 2008). The light feature in the middle of the image below the leg is informally called 'Holy Cow.' The dust, shown in the dark foreground, has been blown off of 'Holy Cow' by Phoenix's thruster engines.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  9. Search for Past Life on Mars: Possible Relict Biogenic Activity in Martian Meteorite ALH84001

    NASA Technical Reports Server (NTRS)

    McKay, David S.; Gibson, Everett K., Jr.; Thomas-Keprta, Kathie L.; Vali, Hojatollah; Romanek, Christopher S.; Clemett, Simon J.; Chillier, Xavier D. F.; Maechling, Claude R.; Zare, Richard N.

    1996-01-01

    Fresh fracture surfaces of the martian meteorite ALH84001 contain abundant polycyclic aromatic hydrocarbons (PAHs). These fresh fracture surfaces also display carbonate globules. Contamination studies suggest the PAHs are indigenous to the meteorite. High resolution scanning and transmission electron microscopy study of surface textures and internal structures of selected carbonate globules show that the globules contain fine-grained, secondary phases of single-domain magnetite and Fe-monosulfides. The carbonate globules are similar in texture and size to some terrestrial bacterially induced carbonate precipitates. Although inorganic formation is possible, formation of the globules by biogenic processes could explain many of the observed features including the PAHs. The PAHs, the carbonate globules, and their associated secondary mineral phases and textures could thus be fossil remains of a past martian biota.

  10. The missing organic molecules on Mars

    NASA Technical Reports Server (NTRS)

    Benner, S. A.; Devine, K. G.; Matveeva, L. N.; Powell, D. H.

    2000-01-01

    GC-MS on the Viking 1976 Mars missions did not detect organic molecules on the Martian surface, even those expected from meteorite bombardment. This result suggested that the Martian regolith might hold a potent oxidant that converts all organic molecules to carbon dioxide rapidly relative to the rate at which they arrive. This conclusion is influencing the design of Mars missions. We reexamine this conclusion in light of what is known about the oxidation of organic compounds generally and the nature of organics likely to come to Mars via meteorite. We conclude that nonvolatile salts of benzenecarboxylic acids, and perhaps oxalic and acetic acid, should be metastable intermediates of meteoritic organics under oxidizing conditions. Salts of these organic acids would have been largely invisible to GC-MS. Experiments show that one of these, benzenehexacarboxylic acid (mellitic acid), is generated by oxidation of organic matter known to come to Mars, is rather stable to further oxidation, and would not have been easily detected by the Viking experiments. Approximately 2 kg of meteorite-derived mellitic acid may have been generated per m(2) of Martian surface over 3 billion years. How much remains depends on decomposition rates under Martian conditions. As available data do not require that the surface of Mars be very strongly oxidizing, some organic molecules might be found near the surface of Mars, perhaps in amounts sufficient to be a resource. Missions should seek these and recognize that these complicate the search for organics from entirely hypothetical Martian life.

  11. The missing organic molecules on Mars

    PubMed Central

    Benner, Steven A.; Devine, Kevin G.; Matveeva, Lidia N.; Powell, David H.

    2000-01-01

    GC-MS on the Viking 1976 Mars missions did not detect organic molecules on the Martian surface, even those expected from meteorite bombardment. This result suggested that the Martian regolith might hold a potent oxidant that converts all organic molecules to carbon dioxide rapidly relative to the rate at which they arrive. This conclusion is influencing the design of Mars missions. We reexamine this conclusion in light of what is known about the oxidation of organic compounds generally and the nature of organics likely to come to Mars via meteorite. We conclude that nonvolatile salts of benzenecarboxylic acids, and perhaps oxalic and acetic acid, should be metastable intermediates of meteoritic organics under oxidizing conditions. Salts of these organic acids would have been largely invisible to GC-MS. Experiments show that one of these, benzenehexacarboxylic acid (mellitic acid), is generated by oxidation of organic matter known to come to Mars, is rather stable to further oxidation, and would not have been easily detected by the Viking experiments. Approximately 2 kg of meteorite-derived mellitic acid may have been generated per m2 of Martian surface over 3 billion years. How much remains depends on decomposition rates under Martian conditions. As available data do not require that the surface of Mars be very strongly oxidizing, some organic molecules might be found near the surface of Mars, perhaps in amounts sufficient to be a resource. Missions should seek these and recognize that these complicate the search for organics from entirely hypothetical Martian life. PMID:10706606

  12. The missing organic molecules on Mars.

    PubMed

    Benner, S A; Devine, K G; Matveeva, L N; Powell, D H

    2000-03-14

    GC-MS on the Viking 1976 Mars missions did not detect organic molecules on the Martian surface, even those expected from meteorite bombardment. This result suggested that the Martian regolith might hold a potent oxidant that converts all organic molecules to carbon dioxide rapidly relative to the rate at which they arrive. This conclusion is influencing the design of Mars missions. We reexamine this conclusion in light of what is known about the oxidation of organic compounds generally and the nature of organics likely to come to Mars via meteorite. We conclude that nonvolatile salts of benzenecarboxylic acids, and perhaps oxalic and acetic acid, should be metastable intermediates of meteoritic organics under oxidizing conditions. Salts of these organic acids would have been largely invisible to GC-MS. Experiments show that one of these, benzenehexacarboxylic acid (mellitic acid), is generated by oxidation of organic matter known to come to Mars, is rather stable to further oxidation, and would not have been easily detected by the Viking experiments. Approximately 2 kg of meteorite-derived mellitic acid may have been generated per m(2) of Martian surface over 3 billion years. How much remains depends on decomposition rates under Martian conditions. As available data do not require that the surface of Mars be very strongly oxidizing, some organic molecules might be found near the surface of Mars, perhaps in amounts sufficient to be a resource. Missions should seek these and recognize that these complicate the search for organics from entirely hypothetical Martian life.

  13. Magmatic volatiles and the weathering of Mars

    NASA Technical Reports Server (NTRS)

    Clark, B. C.

    1993-01-01

    The sources for volatiles on Mars have been the subject of many hypotheses for exogenous influences including late accretion of volatile-enriched material, impact devolatilization to create massive early atmospheres, and even major bombardment by comets. However, the inventory of chemically active volatiles observable at the contemporary surface of Mars is consistent with domination by endogenous, subsequent planetary processes, viz., persistent magmatic outgassing. Volcanism on Mars has been widespread in both space and time. Notwithstanding important specific differences between the mantles of Earth and Mars, the geochemical similarities are such that the suite of gases emitted from Martian volcanic activity should include H2O, CO2, S-containing gases (e.g. H2S and/or SO2), and Cl-containing gases (e.g., Cl2 and/or HCl). H2O and CO2 exist in the atmosphere of Mars. Both are also present as surface condensates. However, spectroscopic observations of the Martian atmosphere clearly show that the S- and Cl-containing gases are severely depleted, with upper limits of less than or equal to 10(exp -7) the abundance of CO2. Likewise, there is no evidence of polar condensates of compounds of these elements as there is for CO2 and H2O. Within the soil, on the other hand, there has been direct measurement of incorporated H2O and abundant compounds containing S and Cl. Barring some as yet implausible geochemical sequestering process, the S/Cl ratio of about 6:1 in Martian soils implies a limit of 5% on the contribution of matter of solarlike composition (e.g., carbonaceous chondrite or cometary material) to these volatiles. Hence, exogenous sources are minor or not yet observed. From analysis of elemental trends in Martian soils, it has been recently shown that a simple two-component model can satisfy the Viking in situ measurements. Component A includes Si and most or all the Al, Ca, Ti, and Fe. Component B, taken as 16 +/- 3% by weight of the total, contains S and most or all the Cl and Mg. These results constrain several models of Martian soil mineralogy but are consistent with a mixture of silicates (such as Fe-rich clays and accessory minerals and soluble salts). The overall element profile is notably like shergottites, with significant incorporation of chemically reactive atmospheric gases from magmatic degassing.

  14. The Viking gas exchange experiment results from Chryse and Utopia surface samples

    NASA Technical Reports Server (NTRS)

    Oyama, V. I.; Berdahl, B. J.

    1977-01-01

    Immediate gas changes occurred when untreated Martian surface samples were humidified and/or wet by an aqueous nutrient medium in the Viking lander gas exchange experiment. The evolutions of N2, CO2, and Ar are mainly associated with soil surface desorption caused by water vapor, while O2 evolution is primarily associated with decomposition of superoxides inferred to be present on Mars. On recharges with fresh nutrient and test gas, only CO2 was given off, and its rate of evolution decreased with each recharge. This CO2 evolution is thought to come from the oxidation of organics present in the nutrient by gamma Fe2O3 in the surface samples. Atmospheric analyses were also performed at both sites. The mean atmospheric composition from four analyses is N2, 2.3%; O2, not greater than 0.15%; Ar, 1.5% and CO2, 96.2%.

  15. Eolian features in the Western Desert of Egypt and some applications to Mars.

    USGS Publications Warehouse

    El-Baz, F.; Breed, C.S.; Grolier, M.J.; McCauley, J.F.

    1979-01-01

    Relations of landform types to wind regimes, bedrock composition, sediment supply, and topography are shown by field studies and satellite photographs of the Western Desert. This desert provides analogs of Martian wind-formed features and sand dunes, alternating light and dark streaks, knob 'shadows' and yardangs. Surface particles have been segregated by wind into dunes, sand sheets, and light streaks, that can be differentiated by their grain size distributions, surface shapes, and colors. Throughgoing sand of mostly fine to medium grain size is migrating S in longitudinal dune belts and barchan chains whose long axes lie parallel to the prevailing W winds, but topographic variations such as scarps and depressions strongly influence the zones of deposition and dune morphology. -from Authors

  16. KSC-01pp0488

    NASA Image and Video Library

    2001-03-13

    Arrays of lights (left) in the Spacecraft Assembly and Encapsulation Facility (SAEF 2) are used for illumination testing on the solar array panels at right. The panels are part of on the 2001 Mars Odyssey Orbiter. Scheduled for launch April 7, 2001, the orbiter contains three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers

  17. KSC-01pp0490

    NASA Image and Video Library

    2001-03-13

    Workers testing in the Spacecraft Assembly and Encapsulation Facility (SAEF 2) stand alongside the 2001 Mars Odyssey Orbiter and behind its solar array panels. The arrays of lights (right) focus on the panels during illumination testing. Scheduled for launch April 7, 2001, the orbiter contains three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers

  18. Everyone Wins: A Mars-Impact Origin for Carbonaceous Phobos and Deimos

    NASA Technical Reports Server (NTRS)

    Fries, M.; Welzenbach, L.; Steele, A.

    2016-01-01

    Discussions of Phobos' and Deimos' origin(s) tend to feature an orthogonally opposed pair of observations: dynamical studies which favor coalescence of the moons from an orbital debris ring arising from a large impact on Mars; and reflectance spectroscopy of the moons that indicate a carbonaceous composition that is not consistent with Martian surface materials. One way to reconcile this discrepancy is to consider the option of a Mars-impact origin for Phobos and Deimos, followed by surficial decoration of carbon-rich materials by interplanetary dust particles (IDP). The moons experience a high IDP flux because of their location in Mars' gravity well. Calculations show that accreted carbon is sufficient to produce a surface with reflectance spectra resembling carbonaceous chondrites.

  19. Using high spectral resolution spectrophotometry to study broad mineral absorption features on Mars

    NASA Technical Reports Server (NTRS)

    Blaney, D. L.; Crisp, D.

    1993-01-01

    Traditionally telescopic measurements of mineralogic absorption features have been made using relatively low to moderate (R=30-300) spectral resolution. Mineralogic absorption features tend to be broad so high resolution spectroscopy (R greater than 10,000) does not provide significant additional compositional information. Low to moderate resolution spectroscopy allows an observer to obtain data over a wide wavelength range (hundreds to thousands of wavenumbers) compared to the several wavenumber intervals that are collected using high resolution spectrometers. However, spectrophotometry at high resolution has major advantages over lower resolution spectroscopy in situations that are applicable to studies of the Martian surface, i.e., at wavelengths where relatively weak surface absorption features and atmospheric gas absorption features both occur.

  20. The radiation environment on the surface of Mars - Summary of model calculations and comparison to RAD data.

    PubMed

    Matthiä, Daniel; Hassler, Donald M; de Wet, Wouter; Ehresmann, Bent; Firan, Ana; Flores-McLaughlin, John; Guo, Jingnan; Heilbronn, Lawrence H; Lee, Kerry; Ratliff, Hunter; Rios, Ryan R; Slaba, Tony C; Smith, Michael; Stoffle, Nicholas N; Townsend, Lawrence W; Berger, Thomas; Reitz, Günther; Wimmer-Schweingruber, Robert F; Zeitlin, Cary

    2017-08-01

    The radiation environment at the Martian surface is, apart from occasional solar energetic particle events, dominated by galactic cosmic radiation, secondary particles produced in their interaction with the Martian atmosphere and albedo particles from the Martian regolith. The highly energetic primary cosmic radiation consists mainly of fully ionized nuclei creating a complex radiation field at the Martian surface. This complex field, its formation and its potential health risk posed to astronauts on future manned missions to Mars can only be fully understood using a combination of measurements and model calculations. In this work the outcome of a workshop held in June 2016 in Boulder, CO, USA is presented: experimental results from the Radiation Assessment Detector of the Mars Science Laboratory are compared to model results from GEANT4, HETC-HEDS, HZETRN, MCNP6, and PHITS. Charged and neutral particle spectra and dose rates measured between 15 November 2015 and 15 January 2016 and model results calculated for this time period are investigated. Copyright © 2017 The Committee on Space Research (COSPAR). All rights reserved.

  1. A model for the origin of Martian polygonal terrain

    NASA Technical Reports Server (NTRS)

    Mcgill, G. E.

    1993-01-01

    Extensive areas of the Martian northern plains in Utopia and Acidalia Planitiae are characterized by 'polygonal terrain.' Polygonal terrain consists of material cut by complex troughs defining a pattern resembling mudcracks, columnar joints, or frost-wedge polygons on the Earth. However, the Martian polygons are orders of magnitude larger than these potential Earth analogs, leading to severe mechanical difficulties for genetic models based on simple analogy arguments. Stratigraphic studies show that the polygonally fractured material in Utopia Planitia was deposited on a land surface with significant topography, including scattered knobs and mesas, fragments of ancient crater rims, and fresh younger craters. Sediments or volcanics deposited over topographically irregular surfaces can experience differential compaction producing drape folds. Bending stresses due to these drape folds would be superposed on the pervasive tensile stresses due to desiccation or cooling, such that the probability of fracturing is enhanced above buried topographic highs and suppressed above buried topographic lows. Thus it was proposed that the scale of the Martian polygons is controlled by the spacing of topographic highs on the buried surface rather than by the physics of the shrinkage process.

  2. Solar Energetic Particle Events Observed on Mars with MSL/RAD

    NASA Astrophysics Data System (ADS)

    Ehresmann, B.; Hassler, D.; Zeitlin, C.; Guo, J.; Wimmer-Schweingruber, R. F.; Appel, J. K.; Boehm, E.; Boettcher, S. I.; Brinza, D. E.; Burmeister, S.; Lohf, H.; Martin-Garcia, C.; Rafkin, S. C.; Posner, A.; Reitz, G.

    2016-12-01

    The Mars Science Laboratory's Radiation Assessment Detector (MSL/RAD) has been conducting measurements of the ionizing radiation field on the Martian surface since August 2012. While this field is mainly dominated by Galactic Cosmic Rays (GCRs) and their interactions with the atoms in the atmosphere and soil, Solar Energetic Particle (SEP) events can contribute significantly to the radiation environment on short time scales and enhance and dominate, in particular, the Martian surface proton flux. Monitoring and understanding the effects of these SEP events on the radiation environment is of great importance to assess the associated health risks for potential, future manned missions to Mars. Furthermore, measurements of the proton spectra during such events aids in the validation of particle transport codes that are used to model the propagation of SEPs through the Martian atmosphere. Comparing the temporal evolution of the SEP events signals detected by MSL/RAD with measurements from other spacecraft can further yield insight into SEP propagation throughout the heliosphere. Here, we present and overview of measurements of the SEP events that have been directly detected on the Martian surface by the MSL/RAD instrument.

  3. Instrumentation and Methodology Development for Mars Mission

    NASA Technical Reports Server (NTRS)

    Chen, Yuan-Liang Albert

    2002-01-01

    The Mars environment comprises a dry, cold and low air pressure atmosphere with low gravity (0.38g) and high resistivity soil. The global dust storms that cover a large portion of Mars were observed often from Earth. This environment provides an idea condition for triboelectric charging. The extremely dry conditions on the Martian surface have raised concerns that electrostatic charge buildup will not be dissipated easily. If triboelectrically generated charge cannot be dissipated or avoided, then dust will accumulate on charged surfaces and electrostatic discharge may cause hazards for future exploration missions. The low surface temperature on Mars helps to prolong the charge decay on the dust particles and soil. To better understand the physics of Martian charged dust particles is essential to future Mars missions. We research and design two sensors, velocity/charge sensor and PZT momentum sensors, to detect the velocity distribution, charge distribution and mass distribution of Martian charged dust particles. These sensors are fabricated at NASA Kenney Space Center, Electromagnetic Physics Testbed. The sensors will be tested and calibrated for simulated Mars atmosphere condition with JSC MARS-1 Martian Regolith simulant in this NASA laboratory.

  4. Happy Mars Solstice!

    NASA Image and Video Library

    2008-06-27

    This image was acquired by NASA Phoenix Mars Lander Surface Stereo Imager SSI in the late afternoon of the 30th Martian day of the mission, or Sol 30 June 25, 2008. This is hours after the beginning of Martian northern summer.

  5. Systematics of Ni, Co, Cr and V in Olivine from Planetary Melt Systems: Martian Basalts

    NASA Technical Reports Server (NTRS)

    Herd, C. D. K.; Jones, J. H.; Shearer, C. K.; Papike, J. J.

    2001-01-01

    Secondary Ion Mass Spectrometry (SIMS) data for Ni, Co, Cr, and V in olivine in martian basalts is compared to data from lunar and terrestrial basalts. We use experimentally-derived and published D values to calculate as-yet unsampled, olivine-bearing, non-cumulus melt compositions. Additional information is contained in the original extended abstract.

  6. Possible Analogs for Small Valleys on Mars at the Haughton Impact Crater Site, Devon Island, Canadian High Arctic

    NASA Technical Reports Server (NTRS)

    Lee, P.; Rice, J. W., Jr.; Bunch, Theodore E.; Grieve, R. A. F.; McKay, C. P.; Schutt, J. W.; Zent, A. P.

    1999-01-01

    Small valleys are perhaps the clearest evidence for an aqueous past on Mars. While small valley formation has occurred even in Amazonian times, most small valleys on Mars are associated with the heavily cratered Noachian terrains. Martian small valleys are often cited as evidence for a putative warmer and wetter climate on Early Mars in which rain and subsequent surface runoff would have acted as significant erosional agents, but the morphology of many small valleys has at the same time been recognized as having several unusual characteristics, making their origin still enigmatic and climatic inferences from them uncertain. Meanwhile, martian climate modeling efforts have been facing difficulties over the past decades with the problem of making the early martian climate warm enough to achieve temperature above 273 K to allow rainfall and the sustained flow of liquid water at the martian surface.

  7. Investigation of Martian H2O and CO2 via orbital gamma ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Evans, Larry G.; Squyres, Steven W.

    1987-01-01

    The capability of an orbital gamma ray spectrometer to address presently unanswered questions concerning H2O and CO2 on Mars is investigated. The gamma ray signal produced by the Martian atmosphere and by several simple models of Martian surface materials is calculated. Results are reported for: (1) the production of neutrons in the atmosphere and in the subsurface material by cosmic ray interactions, (2) the scattering of neutrons and the resultant neutron energy spectrum and spatial distributions, (3) the reproduction of gamma rays by neutron prompt capture and nonelastic scatter reactions, (4) the production of gamma rays by natural radionuclides, (5) the attenuation of the gamma ray signal by passage through surface materials and the Martian atmosphere, (6) the production of the gamma ray continuum background, and (7) the uncertainty in gamma ray line strengths that results from the combined signal and background observed by the detector.

  8. Cleaning a Martian Meteoritean Meteorite

    NASA Image and Video Library

    2018-02-13

    A slice of a meteorite scientists have determined came from Mars placed inside an oxygen plasma cleaner, which removes organics from the outside of surfaces. This slice will likely be used here on Earth for testing a laser instrument for NASA's Mars 2020 rover; a separate slice will go to Mars on the rover. Martian meteorites are believed to be the result of impacts to the Red Planet's surface, resulting in rock being blasted into the atmosphere. After traveling through space for eons, some of these rocks entered Earth's atmosphere. Scientists determine whether they are true Martian meteorites based on their rock and noble gas chemistry and mineralogy. The gases trapped in these meteorites bear the unique fingerprint of the Martian atmosphere, as recorded by NASA's Viking mission in 1976. The rock types also show clear signs of igneous processing not possible on smaller bodies, such as asteroids. https://photojournal.jpl.nasa.gov/catalog/PIA22247

  9. Iron Redox Systematics of Martian Magmas

    NASA Technical Reports Server (NTRS)

    Righter, K.; Danielson, L.; Martin, A.; Pando, K.; Sutton, S.; Newville, M.

    2011-01-01

    Martian magmas are known to be FeO-rich and the dominant FeO-bearing mineral at many sites visited by the Mars Exploration rovers (MER) is magnetite [1]. Morris et al. [1] propose that the magnetite appears to be igneous in origin, rather than of secondary origin. However, magnetite is not typically found in experimental studies of martian magmatic rocks [2,3]. Magnetite stability in terrestrial magmas is well understood, as are the stability of FeO and Fe2O3 in terrestrial magmas [4,5]. In order to better understand the variation of FeO and Fe2O3, and the stability of magnetite (and other FeO-bearing phases) in martian magmas we have undertaken an experimental study with two emphases. First we document the stability of magnetite with temperature and fO2 in a shergottite bulk composition. Second, we determine the FeO and Fe2O3 contents of the same shergottite bulk composition at 1 bar and variable fO2 at 1250 C, and at variable pressure. These two goals will help define not only magnetite stability, but pyroxene-melt equilibria that are also dependent upon fO2.

  10. The Carbonates in ALH 84001 Record the Evolution of the Martian Atmosphere Through Multiple Formation Events

    NASA Technical Reports Server (NTRS)

    Shaheen, R.; Niles, P. B.; Corrgan, C.

    2012-01-01

    Current Martian conditions restrict the presence of liquid water due to low temperatures (approx 210K), a thin atmosphere (approx 7mb), and intense UV radiation. However, past conditions on Mars may have been different with the possibility that the ancient Martian climate was warm and wet with a dense CO2 atmosphere. The cycling of carbon on Mars through atmospheric CO2 and carbonate minerals is critical for deciphering its climate history. In particular stable isotopes contained in carbonates can provide information of their origin and formation environment as well as possibly hinting at the composition of global reservoirs such as atmospheric CO2. Martian meteorite ALH 84001 contains widely studied carbonate rosettes that have been dated to approx. 3.9 Ga and have been used to interpret climatic conditions present at that time. However, there is mount-ing evidence for multiple episodes of carbonate formation in ALH 84001 with potentially distinct isotopic compositions. This study seeks to tease out these different carbonate assemblages using stepped phosphoric acid dissolution and analysis of carbon and triple oxygen stable isotopes. In addition, we report SIMS analyses of the delta O-18 several petrographically unusual carbonate phases in the meteorite.

  11. Martian Surface & Pathfinder Airbags

    NASA Image and Video Library

    1997-07-05

    This image of the Martian surface was taken in the afternoon of Mars Pathfinder's first day on Mars. Taken by the Imager for Mars Pathfinder (IMP camera), the image shows a diversity of rocks strewn in the foreground. A hill is visible in the distance (the notch within the hill is an image artifact). Airbags are seen at the lower right. http://photojournal.jpl.nasa.gov/catalog/PIA00612

  12. Mars Image Collection Mosaic Builder

    NASA Technical Reports Server (NTRS)

    Plesea, Lucian; Hare, Trent

    2008-01-01

    A computer program assembles images from the Mars Global Surveyor (MGS) Mars Observer Camera Narrow Angle (MOCNA) collection to generate a uniform-high-resolution, georeferenced, uncontrolled mosaic image of the Martian surface. At the time of reporting the information for this article, the mosaic covered 7 percent of the Martian surface and contained data from more than 50,000 source images acquired under various light conditions at various resolutions.

  13. LU-HF Age and Isotope Systematics of ALH84001

    NASA Technical Reports Server (NTRS)

    Righter, M.; Lapen, T. J.; Brandon, A. D.; Beard, B. L.; Shafer, J. T.; Peslier, A. H.

    2009-01-01

    Allan Hills (ALH) 84001 is an orthopyroxenite that is unique among the Martian meteorites in having the oldest inferred crystallization age (approx..4.5 to 4.0 Gyr) [e.g., 1-6 and references therein 7]. Its ancient origin makes this stone a critical constraint on early history of Mars, in particular the evolution of different planetary crust and mantle reservoirs. However, because there is significant variability in reported crystallization ages, determination of initial isotope compositions is imprecise making assessment of planetary reservoirs difficult. Here we report a new Lu-Hf mineral isochron age, initial Hf-176/Hf-177 isotope composition, and inferred Martian mantle source compositions for ALH84001 that place constraints on longlived source reservoirs for the enriched shergottite suite of Martian meteorites including Shergotty, Zagami, NWA4468, NWA856, RBT04262, LAR06319, and Los Angeles. Sm-Nd isotope analyses are under way for the same mineral aliquots analyzed for Lu-Hf. The Lu-Hf system was utilized because Lu and Hf are both lithophile and refractory and are not easily redistributed during short-lived thermal pulses associated with shock metamorphism. Moreover, chromite has relatively modest Hf concentrations with very low Lu/Hf ratios [9] yielding tight constraints on initial Hf-176/Hf-177 isotope compositions

  14. The Martian surface radiation environment - a comparison of models and MSL/RAD measurements

    NASA Astrophysics Data System (ADS)

    Matthiä, Daniel; Ehresmann, Bent; Lohf, Henning; Köhler, Jan; Zeitlin, Cary; Appel, Jan; Sato, Tatsuhiko; Slaba, Tony; Martin, Cesar; Berger, Thomas; Boehm, Eckart; Boettcher, Stephan; Brinza, David E.; Burmeister, Soenke; Guo, Jingnan; Hassler, Donald M.; Posner, Arik; Rafkin, Scot C. R.; Reitz, Günther; Wilson, John W.; Wimmer-Schweingruber, Robert F.

    2016-03-01

    Context: The Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) has been measuring the radiation environment on the surface of Mars since August 6th 2012. MSL-RAD is the first instrument to provide detailed information about charged and neutral particle spectra and dose rates on the Martian surface, and one of the primary objectives of the RAD investigation is to help improve and validate current radiation transport models. Aims: Applying different numerical transport models with boundary conditions derived from the MSL-RAD environment the goal of this work was to both provide predictions for the particle spectra and the radiation exposure on the Martian surface complementing the RAD sensitive range and, at the same time, validate the results with the experimental data, where applicable. Such validated models can be used to predict dose rates for future manned missions as well as for performing shield optimization studies. Methods: Several particle transport models (GEANT4, PHITS, HZETRN/OLTARIS) were used to predict the particle flux and the corresponding radiation environment caused by galactic cosmic radiation on Mars. From the calculated particle spectra the dose rates on the surface are estimated. Results: Calculations of particle spectra and dose rates induced by galactic cosmic radiation on the Martian surface are presented. Although good agreement is found in many cases for the different transport codes, GEANT4, PHITS, and HZETRN/OLTARIS, some models still show large, sometimes order of magnitude discrepancies in certain particle spectra. We have found that RAD data is helping to make better choices of input parameters and physical models. Elements of these validated models can be applied to more detailed studies on how the radiation environment is influenced by solar modulation, Martian atmosphere and soil, and changes due to the Martian seasonal pressure cycle. By extending the range of the calculated particle spectra with respect to the experimental data additional information about the radiation environment is gained, and the contribution of different particle species to the dose is estimated.

  15. Mars analog minerals' spectral reflectance characteristics under Martian surface conditions

    NASA Astrophysics Data System (ADS)

    Poitras, J. T.; Cloutis, E. A.; Salvatore, M. R.; Mertzman, S. A.; Applin, D. M.; Mann, P.

    2018-05-01

    We investigated the spectral reflectance properties of minerals under a simulated Martian environment. Twenty-eight different hydrated or hydroxylated phases of carbonates, sulfates, and silica minerals were selected based on past detection on Mars through spectral remote sensing data. Samples were ground and dry sieved to <45 μm grain size and characterized by XRD before and after 133 days inside a simulated Martian surface environment (pressure 5 Torr and CO2 fed). Reflectance spectra from 0.35 to 4 μm were taken periodically through a sapphire (0.35-2.5 μm) and zinc selenide (2.5-4 μm) window over a 133-day period. Mineral stability on the Martian surface was assessed through changes in spectral characteristics. Results indicate that the hydrated carbonates studied would be stable on the surface of Mars, only losing adsorbed H2O while maintaining their diagnostic spectral features. Sulfates were less stable, often with shifts in the band position of the SO, Fe, and OH absorption features. Silicas displayed spectral shifts related to SiOH and hydration state of the mineral surface, while diagnostic bands for quartz were stable. Previous detection of carbonate minerals based on 2.3-2.5 μm and 3.4-3.9 μm features appears to be consistent with our results. Sulfate mineral detection is more questionable since there can be shifts in band position related to SO4. The loss of the 0.43 μm Fe3+ band in many of the sulfates indicate that there are fewer potential candidates for Fe3+ sulfates to permanently exist on the Martian surface based on this band. The gypsum sample changed phase to basanite during desiccation as demonstrated by both reflectance and XRD. Silica on Mars has been detected using band depth ratio at 1.91 and 1.96 μm and band minimum position of the 1.4 μm feature, and the properties are also used to determine their age. This technique continues to be useful for positive silica identifications, however, silica age appears to be less consistent with our laboratory data. These results will be useful in spectral libraries for characterizing Martian remote sensed data.

  16. The water cycle in the general circulation model of the martian atmosphere

    NASA Astrophysics Data System (ADS)

    Shaposhnikov, D. S.; Rodin, A. V.; Medvedev, A. S.

    2016-03-01

    Within the numerical general-circulation model of the Martian atmosphere MAOAM (Martian Atmosphere: Observation and Modeling), we have developed the water cycle block, which is an essential component of modern general circulation models of the Martian atmosphere. The MAOAM model has a spectral dynamic core and successfully predicts the temperature regime on Mars through the use of physical parameterizations typical of both terrestrial and Martian models. We have achieved stable computation for three Martian years, while maintaining a conservative advection scheme taking into account the water-ice phase transitions, water exchange between the atmosphere and surface, and corrections for the vertical velocities of ice particles due to sedimentation. The studies show a strong dependence of the amount of water that is actively involved in the water cycle on the initial data, model temperatures, and the mechanism of water exchange between the atmosphere and the surface. The general pattern and seasonal asymmetry of the water cycle depends on the size of ice particles, the albedo, and the thermal inertia of the planet's surface. One of the modeling tasks, which results from a comparison of the model data with those of the TES experiment on board Mars Global Surveyor, is the increase in the total mass of water vapor in the model in the aphelion season and decrease in the mass of water ice clouds at the poles. The surface evaporation scheme, which takes into account the turbulent rise of water vapor, on the one hand, leads to the most complete evaporation of ice from the surface in the summer season in the northern hemisphere and, on the other hand, supersaturates the atmosphere with ice due to the vigorous evaporation, which leads to worse consistency between the amount of the precipitated atmospheric ice and the experimental data. The full evaporation of ice from the surface increases the model sensitivity to the size of the polar cap; therefore, the increase in the latter leads to better results. The use of a more accurate dust scenario changes the model temperatures, which also strongly affects the water cycle.

  17. Nature of the Martian uplands: Effect on Martian meteorite age distribution and secondary cratering

    NASA Astrophysics Data System (ADS)

    Hartmann, William K.; Barlow, Nadine G.

    2006-10-01

    Martian meteorites (MMs) have been launched from an estimated 5-9 sites on Mars within the last 20 Myr. Some 80-89% of these launch sites sampled igneous rock formations from only the last 29% of Martian time. We hypothesize that this imbalance arises not merely from poor statistics, but because the launch processes are dominated by two main phenomena: first, much of the older Martian surface is inefficient in launching rocks during impacts, and second, the volumetrically enormous reservoir of original cumulate crust enhances launch probability for 4.5 Gyr old rocks. There are four lines of evidence for the first point, not all of equal strength. First, impact theory implies that MM launch is favored by surface exposures of near-surface coherent rock (≤102 m deep), whereas Noachian surfaces generally should have ≥102 m of loose or weakly cemented regolith with high ice content, reducing efficiency of rock launch. Second, similarly, both Mars Exploration Rovers found sedimentary strata, 1-2 orders of magnitude weaker than Martian igneous rocks, favoring low launch efficiency among some fluvial-derived Hesperian and Noachian rocks. Even if launched, such rocks may be unrecognized as meteorites on Earth. Third, statistics of MM formation age versus cosmic-ray exposure (CRE) age weakly suggest that older surfaces may need larger, deeper craters to launch rocks. Fourth, in direct confirmation, one of us (N. G. B.) has found that older surfaces need larger craters to produce secondary impact crater fields (cf. Barlow and Block 2004). In a survey of 200 craters, the smallest Noachian, Hesperian, and Amazonian craters with prominent fields of secondaries have diameters of ˜45 km, ˜19 km, and ˜10 km, respectively. Because 40% of Mars is Noachian, and 74% is either Noachian or Hesperian, the subsurface geologic characteristics of the older areas probably affect statistics of recognized MMs and production rates of secondary crater populations, and the MM and secondary crater statistics may give us clues to those properties.

  18. Low Cost Mars Surface Exploration: The Mars Tumbleweed

    NASA Technical Reports Server (NTRS)

    Antol, Jeffrey; Calhoun, Philip; Flick, John; Hajos, Gregory; Kolacinski, Richard; Minton, David; Owens, Rachel; Parker, Jennifer

    2003-01-01

    The "Mars Tumbleweed," a rover concept that would utilize surface winds for mobility, is being examined as a low cost complement to the current Mars exploration efforts. Tumbleweeds carrying microinstruments would be driven across the Martian landscape by wind, searching for areas of scientific interest. These rovers, relatively simple, inexpensive, and deployed in large numbers to maximize coverage of the Martian surface, would provide a broad scouting capability to identify specific sites for exploration by more complex rover and lander missions.

  19. Hydrogen Isotopes Record the History of the Martian Hydrosphere and Atmosphere

    NASA Technical Reports Server (NTRS)

    Usui, T.; Simon, J. I.; Jones, J. H.; Kurokawa, H.; Sato, M.; Alexander, C. M. O'D; Wang, J.

    2015-01-01

    The surface geology and geomorphology of Mars indicates that it was once warm enough to maintain a large body of liquid water on its surface, though such a warm environment might have been transient. The transition to the present cold and dry Mars is closely linked to the history of surface water, yet the evolution of surficial water is poorly constrained. This study presents insights from hydrogen isotopes for the origin and evolution of Martian water reservoirs.

  20. Laboratory Measurements of Oxygen Gas Release from Basaltic Minerals Exposed to UV- Radiation: Implications for the Viking Gas Exchange Experiments

    NASA Astrophysics Data System (ADS)

    Hurowitz, J. A.; Yen, A. S.

    2007-12-01

    The biology experiments onboard the Viking Landers determined that the Martian soils at Chryse and Utopia Planitia contain an unknown chemical compound of a highly oxidizing nature. The Gas Exchange Experiments (GEx) demonstrated that the humidification of a 1-cc Martian soil sample resulted in the production of as much as 790 nanomoles of oxygen gas. Yen et al. (2000) have provided experimental evidence that superoxide radicals can be generated on plagioclase feldspar (labradorite) grain surfaces by exposure to ultraviolet (UV) light in the presence of oxygen gas. Adsorbed superoxide radicals are thought to react readily with water vapor, and produce oxygen gas in quantities sufficient to explain the Viking GEx results. Direct evidence for the formation of oxygen gas, however, was not provided in the experiments of Yen et al (2000). Accordingly, the motivation of this study is to determine whether superoxide radicals adsorbed on labradorite surfaces are capable of producing oxygen gas upon exposure to water vapor. We have constructed an experimental apparatus that is capable of monitoring oxygen gas release from basaltic mineral powders that have been exposed to UV-radiation under Martian atmospheric pressure conditions. The apparatus consists of a stainless-steel vacuum chamber with a UV- transparent window where sample radiation exposures are performed. The vacuum chamber has multiple valved ports for injection of gases and water vapor. The vacuum chamber is connected via a precision leak valve to a quadrupole mass spectrometer, which measures changes in the composition of the headspace gases over our mineral samples. We will report on the results of our experiments, which are aimed at detecting and quantifying oxygen gas release from UV-exposed basaltic mineral samples using this new experimental facility. These results will further constrain whether superoxide ions adsorbed on mineral surfaces provide a viable explanation for the Viking GEx results, which have been of considerable controversy in the roughly three decades since the measurements were first made.

Top