Mars: Past, Present, and Future. Results from the MSATT Program, part 1
NASA Technical Reports Server (NTRS)
Haberle, R. M. (Editor)
1993-01-01
This volume contains papers that were accepted for presentation at the workshop on Mars: Past, Present, and Future -- Results from the MSATT Program. Topics include, but are not limited to: Martian impact craters; thermal emission measurements of Hawaiian palagonitic soils with implications for Mars; thermal studies of the Martian surface; Martian atmospheric composition studies; temporal and spatial mapping of Mars' atmospheric dust opacity and surface albedo; studies of atmospheric dust from Viking IR thermal mapper data; the distribution of Martian ground ice at other epochs; numerical simulation of thermally induced near-surface flows over Martian terrain; the pH of Mars; the mineralogic evolution of the Martian surface through time; geologic controls of erosion and sedimentation on Mars; and dielectric properties of Mars' surface: proposed measurement on a Mars Lander.
NASA Technical Reports Server (NTRS)
2004-01-01
Some of the topics addressed by the conference paper abstracts included in this document include: martian terrain, terrestrial biological activity and mineral deposits with implications for life on Mars, the martian crust and mantle, weathering and erosion on Mars, evidence for ancient martian environmental and climatic conditions, with implications for the existence of surface and ground water on Mars and the possibility for life, martian valleys, and evidence for water and lava flow on the surface of Mars.
Indigenous Carbonaceous Matter in the Nakhla Mars Meteorite
NASA Technical Reports Server (NTRS)
Clemett, S. J.; Thomas-Keprta, K. L.; Rahman, Z.; Le, L.; Wentworth, S. J.; Gibson, E. K.; McKay, D. S.
2016-01-01
Detailed microanalysis of the Martian meteorite Nakhla has shown there are morphologically distinct carbonaceous features spatially associated with low-T aqueous alteration phases including salts and id-dingsite. A comprehensive suite of analytical instrumentation including optical microscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) spectroscopy, focused ion beam (FIB) microscopy, transmission electron microscopy (TEM), two-step laser mass spectrometry (mu-L(sup 2)MS), laser mu-Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and nanoscale secondary ion mass spectrometry (NanoSIMS) are being used to characterize the carbonaceous matter and host mineralogy. The search for carbonaceous matter on Mars has proved challenging. Viking Landers failed to unambiguously detect simple organics at either of the two landing sites although the Martian surface is estimated to have acquired at least 10(exp15) kg of C as a consequence of meteoritic accretion over the last several Ga. The dearth of organics at the Martian surface has been attributed to various oxidative processes including UV photolysis and peroxide activity. Consequently, investigations of Martian organics need to be focused on the sub-surface regolith where such surface processes are either severely attenuated or absent. Fortuitously since Martian meteorites are derived from buried regolith materials they provide a unique opportunity to study Martian organic geochemistry.
Measurements of the Charged and Neutral Particle Spectra on the Martian Surface with MSL/RAD
NASA Astrophysics Data System (ADS)
Koehler, Jan
The Radiation Assessment Detector (RAD) onboard Mars Science Laboratory’s rover Curiosity is the first ever instrument to measure the energetic particle radiation environment on the surface of Mars. Charged particles are a major component of this environment, both galactic cosmic rays propagating to the Martian surface and secondary particles created by interactions of these cosmic rays with the atoms of the Martian atmosphere and soil. Another important factor for determining the biological impact of the Martian surface radiation is the specific contribution of neutrons, which possess a high biological effectiveness. In contrast to charged particles, neutrons and gamma rays are generally only measured indirectly. Their measurement is the result of a complex convolution of the incident particle spectrum with the measurement process. We apply an inversion method to calculate the gamma/neutron spectra from the RAD neutral particle measurements. Here we show first surface measurements of the Martian particle spectra and compare them to theoretical predictions. Measuring the Martian particle spectra is an essential step for determining the mutagenic influences to past or present life at or beneath the Martian surface as well as the radiation hazard for future human exploration, including the shielding design of a potential habitat.
NASA Technical Reports Server (NTRS)
Fegley, Bruce, Jr. (Editor); Waenke, Heinrich (Editor)
1992-01-01
Papers accepted for the Mars Surface and Atmosphere Through Time (MSATT) Workshop on Innovative Instruments for the In Situ Study of Atmosphere-Surface Interaction of Mars, 8-9 Oct. 1992 in Mainz, Germany are included. Topics covered include: a backscatter Moessbauer spectrometer (BaMS) for use on Mars; database of proposed payloads and instruments for SEI missions; determination of martian soil mineralogy and water content using the Thermal Analyzer for Planetary Soils (TAPS); in situ identification of the martian surface material and its interaction with the martian atmosphere using DTA/GC; mass spectrometer-pyrolysis experiment for atmospheric and soil sample analysis on the surface of Mars; and optical luminescence spectroscopy as a probe of the surface mineralogy of Mars.
NASA Astrophysics Data System (ADS)
Dartnell, Lewis R.; Patel, Manish R.; Storrie-Lombardi, Michael C.; Ward, John M.; Muller, Jan-Peter
2012-05-01
Even in the absence of any biosphere on Mars, organic molecules, including polycyclic aromatic hydrocarbons (PAHs), are expected on its surface due to delivery by comets and meteorites of extraterrestrial organics synthesized by astrochemistry, or perhaps in situ synthesis in ancient prebiotic chemistry. Any organic compounds exposed to the unfiltered solar ultraviolet spectrum or oxidizing surface conditions would have been readily destroyed, but discoverable caches of Martian organics may remain shielded in the subsurface or within surface rocks. We have studied the stability of three representative polycyclic aromatic hydrocarbons (PAHs) in a Mars chamber, emulating the ultraviolet spectrum of unfiltered sunlight under temperature and pressure conditions of the Martian surface. Fluorescence spectroscopy is used as a sensitive indicator of remaining PAH concentration for laboratory quantification of molecular degradation rates once exposed on the Martian surface. Fluorescence-based instrumentation has also been proposed as an effective surveying method for prebiotic organics on the Martian surface. We find the representative PAHs, anthracene, pyrene, and perylene, to have persistence half-lives once exposed on the Martian surface of between 25 and 60 h of noontime summer UV irradiation, as measured by fluorescence at their peak excitation wavelength. This equates to between 4 and 9.6 sols when the diurnal cycle of UV light intensity on the Martian surface is taken into account, giving a substantial window of opportunity for detection of organic fluorescence before photodegradation. This study thus supports the use of fluorescence-based instrumentation for surveying recently exposed material (such as from cores or drill tailings) for native Martian organic molecules in rover missions.
Lunar and Planetary Science XXXV: Weird Martian Minerals: Complex Mars Surface Processes
NASA Technical Reports Server (NTRS)
2004-01-01
The session "Complex Mars Surface" included the following reports:A Reappraisal of Adsorbed Superoxide Ion as the Cause Behind the Reactivity of the Martian Soils; Sub-Surface Deposits of Hydrous Silicates or Hydrated Magnesium Sulfates as Hydrogen Reservoirs near the Martian Equator: Plausible or Not?; Thermal and Evolved Gas Analysis of Smectites: The Search for Water on Mars; Aqueous Alteration Pathways for K, Th, and U on Mars; Temperature Dependence of the Moessbauer Fraction in Mars-Analog Minerals; Acid-Sulfate Vapor Reactions with Basaltic Tephra: An Analog for Martian Surface Processes; Iron Oxide Weathering in Sulfuric Acid: Implications for Mars; P/Fe as an Aquamarker for Mars; Stable Isotope Composition of Carbonates Formed in Low-Temperature Terrestrial Environments as Martian Analogs; Can the Phosphate Sorption and Occlusion Properties Help to Elucidate the Genesis of Specular Hematite on the Mars Surface?; Sulfate Salts, Regolith Interactions, and Water Storage in Equatorial Martian Regolith; Potential Pathways to Maghemite in Mars Soils: The Key Role of Phosphate; and Mineralogy, Abundance, and Hydration State of Sulfates and Chlorides at the Mars Pathfinder Landing Site.
Review of dust transport and mitigation technologies in lunar and Martian atmospheres
NASA Astrophysics Data System (ADS)
Afshar-Mohajer, Nima; Wu, Chang-Yu; Curtis, Jennifer Sinclair; Gaier, James R.
2015-09-01
Dust resuspension and deposition is a ubiquitous phenomenon in all lunar and Martian missions. The near-term plans to return to the Moon as a stepping stone to further exploration of Mars and beyond bring scientists' attention to development and evaluation of lunar and Martian dust mitigation technologies. In this paper, different lunar and Martian dust transport mechanisms are presented, followed by a review of previously developed dust mitigation technologies including fluidal, mechanical, electrical and passive self-cleaning methods for lunar/Martian installed surfaces along with filtration for dust control inside cabins. Key factors in choosing the most effective dust mitigation technology are recognized to be the dust transport mechanism, energy consumption, environment, type of surface materials, area of the surface and surface functionality. While electrical methods operating at higher voltages are identified to be suitable for small but light sensitive surfaces, pre-treatment of the surface is effective for cleaning thermal control surfaces, and mechanical methods are appropriate for surfaces with no concerns of light blockage, surface abrasion and 100% cleaning efficiency. Findings from this paper can help choose proper surface protection/cleaning for future space explorations. Hybrid techniques combining the advantages of different methods are recommended.
NASA Technical Reports Server (NTRS)
Plumlee, Geoffrey S.; Ridley, W. Ian; Debraal, Jeffrey D.
1992-01-01
This is one in a series of reports summarizing our chemical modeling studies of water-rock-gas interactions at the martian surface through time. The purpose of these studies is to place constraints on possible mineralogies formed at the martian surface and to model the geochemical implications of martian surficial processes proposed by previous researchers. Plumlee and Ridley summarize geochemical processes that may have occurred as a result of inferred volcano- and impact-driven hydrothermal activity on Mars. DeBraal et al. model the geochemical aspects of water-rock interactions and water evaporation near 0 C, as a prelude to future calculations that will model sub-0 C brine-rock-clathrate interactions under the current martian climate. In this report, we discuss reaction path calculations that model chemical processes that may have occurred at the martian surface in a postulated early, warm, wet climate. We assume a temperature of 25 C in all our calculations. Processes we model here include (1) the reaction of rainwater under various ambient CO2 and O2 pressures with basaltic rocks at the martian surface, (2) the formation of acid rain by volcanic gases such as HCl and SO2, (3) the reactions of acid rain with basaltic surficial materials, and (4) evaporation of waters resulting from rainwater-basalt interactions.
Adaptation of an Antarctic lichen to Martian niche conditions can occur within 34 days
NASA Astrophysics Data System (ADS)
de Vera, Jean-Pierre; Schulze-Makuch, Dirk; Khan, Afshin; Lorek, Andreas; Koncz, Alexander; Möhlmann, Diedrich; Spohn, Tilman
2014-08-01
Stresses occurring on the Martian surface were simulated in a Mars Simulation Chamber (MSC) and included high UV fluxes (Zarnecki and Catling, 2002), low temperatures, low water activity, high atmospheric CO2 concentrations, and an atmospheric pressure of about 800 Pa (Kasting, 1991; Head et al., 2003). The lichen Pleopsidium chlorophanum is an extremophile that lives in very cold, dry, high-altitude habitats, which are Earth's best approximation of the Martian surface. Samples with P. chlorophanum were exposed uninterruptedly to simulated conditions of the unprotected Martian surface (i.e. 6344 kJ m-2) and protected niche conditions (269 kJ m-2) for 34 days. Under unprotected Martian surface conditions the fungal symbiont decreases its metabolic activity and it was unclear if the algal symbiont of the lichen was still actively photosynthesizing. However, under "protected site" conditions, the entire lichen not only survived and remained photosynthetically active, it even adapted physiologically by increasing its photosynthetic activity over 34 days.
The Gulliver mission: Sample return from Deimos
NASA Astrophysics Data System (ADS)
Britt, D.
The Martian moon Deimos has been accumulating material ejected from the Martian surface ever since the earliest periods of Martian history, over 4.4 Gyrs ago. Analysis of Martian ejecta, material accumulation, capture cross-section, regolith overturn, and Deimos's albedo suggest that Mars material may make up as much as 5-10% of Deimos's regolith. The Martian material on Deimos would be dominated by ejecta from the ancient crust of Mars, delivered during the Noachian Period of basin-forming impacts and heavy bombardment. Deimos is essentially a repository of samples from ancient Mars, which would include the full range of Martian crustal and upper mantle material from the early differentiation and crustal-forming epoch as well as samples from the era of high volatile flux, thick atmosphere, and possible surface water. The Gulliver Mission proposes to directly collect up to 10 kilograms of Deimos regolith and return it to Earth. This sample will contain up to 1000 grams of Martian material. Because of stochastic processes of regolith mixing over 4.4 Gyrs, the rock fragments, grains, and pebble-sized materials will likely sample the diversity of the Martian ancient surface. In addition to Martian ejecta, 90% of the Deimos sample will be spectral type D asteroidal material, thought to be highly primitive and originate in the outer asteroid belt. In essence, Gulliver represents two shortcuts, to Mars sample return and to the outer asteroid belt.
NASA Technical Reports Server (NTRS)
Posey-Dowty, J.; Moskowitz, B.; Crerar, D.; Hargraves, R.; Tanenbaum, L.
1986-01-01
Experiments were performed to examine if the ubiquitousness of a weak magnetic component in all Martian surface fines tested with the Viking Landers can be attributed to ferric iron precipitation in aqueous solution under oxidizing conditions at neutral pH. Ferrous solutions were mixed in deionized water and various minerals were added to separate liquid samples. The iron-bearing additives included hematite, goethite, magnetite, maghemite, lepidocrocite and potassium bromide blank at varying concentrations. IR spectroscopic scans were made to identify any precipitates resulting from bubbling oxygen throughout the solutions; the magnetic properties of the precipitates were also examined. The data indicated that the lepidocrocite may have been preferentially precipitated, then aged to maghemite. The process would account for the presumed thin residue of maghemite on the present Martian surface, long after abundant liquid water on the Martian surface vanished.
The SIMPSONS project: An integrated Mars transportation system
NASA Astrophysics Data System (ADS)
Kaplan, Matthew; Carlson, Eric; Bradfute, Sherie; Allen, Kent; Duvergne, Francois; Hernandez, Bert; Le, David; Nguyen, Quan; Thornhill, Brett
In response to the Request for Proposal (RFP) for an integrated transportation system network for an advanced Martian base, Frontier Transportation Systems (FTS) presents the results of the SIMPSONS project (Systems Integration for Mars Planetary Surface Operations Networks). The following topics are included: the project background, vehicle design, future work, conclusions, management status, and cost breakdown. The project focuses solely on the surface-to-surface transportation at an advanced Martian base.
The SIMPSONS project: An integrated Mars transportation system
NASA Technical Reports Server (NTRS)
Kaplan, Matthew; Carlson, Eric; Bradfute, Sherie; Allen, Kent; Duvergne, Francois; Hernandez, Bert; Le, David; Nguyen, Quan; Thornhill, Brett
1992-01-01
In response to the Request for Proposal (RFP) for an integrated transportation system network for an advanced Martian base, Frontier Transportation Systems (FTS) presents the results of the SIMPSONS project (Systems Integration for Mars Planetary Surface Operations Networks). The following topics are included: the project background, vehicle design, future work, conclusions, management status, and cost breakdown. The project focuses solely on the surface-to-surface transportation at an advanced Martian base.
Spectroscopic analyses of Fe and water in clays: A Martian surface weathering study
NASA Technical Reports Server (NTRS)
Bishop, J. L.; Pieters, Carle M.; Edwards, J. O.; Coyne, L. M.; Chang, S.
1991-01-01
Martian surface morphology suggests the presence of liquid H2O on Mars in the past. Reflectance spectra of the Martian surface include features which correspond to the crystal field transitions of iron, as well as features supporting the presence of ice and minerals containing structural OH and surface water. Researchers initiated further spectroscopic studies of surface iron and water and structural OH in clays in order to determine what remotely obtained spectra can indicate about the presence of clays on Mars based on a clearer understanding of the factors influencing the spectral features. Current technology allows researchers to better correlate the low frequency fundamental stretching and bending vibrations of O-H bonds with the diagnostic near infrared overtone and combination bands used in mineral characterization and identification.
Lunar and Martian Sub-surface Habitat Structure Technology Development and Application
NASA Technical Reports Server (NTRS)
Boston, Penelope J.; Strong, Janet D.
2005-01-01
NASA's human exploration initiative poses great opportunity and great risk for manned missions to the Moon and Mars. Subsidace structures such as caves and lava tubes offer readily available and existing in-situ habitat options. Sub-surface dwellings can provide complete radiation, micro-meteorite and exhaust plume shielding and a moderate and constant temperature environment; they are, therefore, excellent pre-existing habitat risk mitigation elements. Technical challenges to subsurface habitat structure development include surface penetration (digging and mining equipment), environmental pressurization, and psychological environment enhancement requirements. Lunar and Martian environments and elements have many beneficial similarities. This will allow for lunar testing and design development of subsurface habitat structures for Martian application; however, significant differences between lunar and Martian environments and resource elements will mandate unique application development. Mars is NASA's ultimate exploration goal and is known to have many very large lava tubes. Other cave types are plausible. The Moon has unroofed rilles and lava tubes, but further research will, in the near future, define the extent of Lunar and Martian differences and similarities. This paper will discuss Lunar and Martian subsurface habitation technology development challenges and opportunities.
NASA Astrophysics Data System (ADS)
Applin, D. M.; Izawa, M. R. M.; Cloutis, E. A.; Goltz, D.; Johnson, J. R.
2015-06-01
Small amounts of unidentified organic compounds have only recently been inferred on Mars despite strong reasons to expect significant concentrations and decades of searching. Based on X-ray diffraction and reflectance spectroscopic analyses we show that solid oxalic acid and its most common mineral salts are stable under the pressure and ultraviolet irradiation environment of the surface of Mars, and could represent a heretofore largely overlooked reservoir of organic carbon in the martian near-surface. In addition to the delivery to Mars by carbonaceous chondrites, oxalate minerals are among the predicted breakdown products of meteoritic organic matter delivered to the martian surface, as well as any endogenic organic carbon reaching the martian surface from the interior. A reinterpretation of pyrolysis experiments from the Viking, Phoenix, and Mars Science Laboratory missions shows that all are consistent with the presence of significant concentrations of oxalate minerals. Oxalate minerals could be important in numerous martian geochemical processes, including acting as a possible nitrogen sink (as ammonium oxalate), and contributing to the formation of “organic” carbonates, methane, and hydroxyl radicals.
NASA Technical Reports Server (NTRS)
Carr, M. H.; Baum, W. A.; Blasius, K. R.; Briggs, G. A.; Cutts, J. A.; Duxbury, T. C.; Greeley, R.; Guest, J.; Masursky, H.; Smith, B. A.
1980-01-01
Images acquired by the Viking orbiters, beginning in 1976 are presented. The pictures represent only a small fraction of the many thousands taken, and were chosen to illustrate the diverse geology of Mars and its atmospheric phenomena. Specific topics discussed include the Viking mission and its objectives, a brief comparison of Earth and Mars, and surface features of Mars including the great equatorial canyons, channels, volcanic and deformational features, and craters. Martian moons, surface processes, polar regions, and the Martian atmosphere are also covered.
The Athena Mars Rover Investigation
NASA Technical Reports Server (NTRS)
Squyres, S. W.; Arvidson, R. E.; Bell, J. F., III; Carr, M.; Christensen, P.; DesMarais, D.; Economou, T.; Gorevan, S.; Haskin, L.; Herkenhoff, K.
2000-01-01
The Mars Surveyor program requires tools for martian surface exploration, including remote sensing, in-situ sensing, and sample collection. The Athena Mars rover payload is a suite of scientific instruments and sample collection tools designed to: (1) Provide color stereo imaging of martian surface environments, and remotely-sensed point discrimination of mineralogical composition; (2) Determine the elemental and mineralogical composition of martian surface materials; (3) Determine the fine-scale textural properties of these materials; and (4) Collect and store samples. The Athena payload is designed to be implemented on a long-range rover such as the one now under consideration for the 2003 Mars opportunity. The payload is at a high state of maturity, and most of the instruments have now been built for flight.
Chemical and Physical Interactions of Martian Surface Material
NASA Astrophysics Data System (ADS)
Bishop, J. L.
1999-09-01
A model of alteration and maturation of the Martian surface material is described involving both chemical and physical interactions. Physical processes involve distribution and mixing of the fine-grained soil particles across the surface and into the atmosphere. Chemical processes include reaction of sulfate, salt and oxidizing components of the soil particles; these agents in the soils deposited on rocks will chew through the rock minerals forming coatings and will bind surface soils together to form duricrust deposits. Formation of crystalline iron oxide/oxyhydroxide minerals through hydrothermal processes and of poorly crystalline and amorphous phases through palagonitic processes both contribute to formation of the soil particles. Chemical and physical alteration of these soil minerals and phases contribute to producing the chemical, magnetic and spectroscopic character of the Martian soil as observed by Mars Pathfinder and Mars Global Surveyor. Minerals such as maghemite/magnetite and jarosite/alunite have been observed in terrestrial volcanic soils near steam vents and may be important components of the Martian surface material. The spectroscopic properties of several terrestrial volcanic soils containing these minerals have been analyzed and evaluated in terms of the spectroscopic character of the surface material on Mars.
NASA Technical Reports Server (NTRS)
French, B. M.
1977-01-01
An overview of the Viking Mars probe is presented. The Viking spacecraft is described and a brief history of the earlier observations and exploration of Mars is provided. A number of the Viking photographs of the Martian surface are presented and a discussion of the experiments Viking performed including a confirmation of the general theory of relativity are reported. Martian surface chemistry is discussed and experiments to study the weather on Mars are reported.
Chlorine Abundances in Martian Meteorites
NASA Technical Reports Server (NTRS)
Bogard, D.D.; Garrison, D.H.; Park, J.
2009-01-01
Chlorine measurements made in martian surface rocks by robotic spacecraft typically give Chlorine (Cl) abundances of approximately 0.1-0.8%. In contrast, Cl abundances in martian meteorites appear lower, although data is limited, and martian nakhlites were also subjected to Cl contamination by Mars surface brines. Chlorine abundances reported by one lab for whole rock (WR) samples of Shergotty, ALH77005, and EET79001 range 108-14 ppm, whereas Cl in nakhlites range 73-1900 ppm. Measurements of Cl in various martian weathering phases of nakhlites varied 0.04-4.7% and reveal significant concentration of Cl by martian brines Martian meteorites contain much lower Chlorine than those measured in martian surface rocks and give further confirmation that Cl in these surface rocks was introduced by brines and weathering. It has been argued that Cl is twice as effective as water in lowering the melting point and promoting melting at shallower martian depths, and that significant Cl in the shergottite source region would negate any need for significant water. However, this conclusion was based on experiments that utilized Cl concentrations more analogous to martian surface rocks than to shergottite meteorites, and may not be applicable to shergottites.
Numerical Model Studies of the Martian Mesoscale Circulations
NASA Technical Reports Server (NTRS)
Segal, M.; Arritt, R. W.
1996-01-01
Studies concerning mesoscale topographical effects on Martian flows examined low-level jets in the near equatorial latitudes and the dynamical intensification of flow by steep terrain. Continuation of work from previous years included evaluating the dissipation of cold air mass outbreaks due to enhanced sensible heat flux, further sensitivity and scaling evaluations for generalization of the characteristics of Martian mesoscale circulation caused by horizontal sensible heat-flux gradients, and evaluations of the significance that non-uniform surface would have on enhancing the polar CO2 ice sublimation during the spring. The sensitivity of maximum and minimum atmospheric temperatures to changes in wind speed, surface albedo, and deep soil temperature was investigated.
Lunar and Planetary Science XXXV: Martian Aeolian and Mass Wasting Processes: Blowing and Flowing
NASA Technical Reports Server (NTRS)
2004-01-01
The session Martian Aeolian and Mass Wasting Processes: BLowing and Flowing included the following topics: 1) Three Decades of Martian Surface Changes; 2) Thermophysical Properties of Isidis Basin, Mars; 3) Intracrater Material in Eastern Arabia Terra: THEMIS, MOC, and MOLA Analysis of Wind-blown Deposits and Possible High-Inertia Source Material; 4) Thermal Properties of Sand from TES and THEMIS: Do Martian Dunes Make a Good Control for Thermal Inertia Calculations? 5) A Comparative Analysis of Barchan Dunes in the Intra-Crater Dune Fields and the North Polar Sand Sea; 6) Diluvial Dunes in Athabasca Valles, Mars: Morphology, Modeling and Implications; 7) Surface Profiling of Natural Dust Devils; 8) Martian Dust Devil Tracks: Inferred Directions of Movement; 9) Numerical Simulations of Anastomosing Slope Streaks on Mars; 10) Young Fans in an Equatorial Crater in Xanthe Terra, Mars; 11) Large Well-exposed Alluvual Fans in Deep Late-Noachian Craters; 12) New Evidence for the Formation of Large Landslides on Mars; and 13) What Can We Learn from the Ages of Valles Marineris Landslides on Martian Impact History?
Evidence for recent groundwater seepage and surface runoff on Mars.
Malin, M C; Edgett, K S
2000-06-30
Relatively young landforms on Mars, seen in high-resolution images acquired by the Mars Global Surveyor Mars Orbiter Camera since March 1999, suggest the presence of sources of liquid water at shallow depths beneath the martian surface. Found at middle and high martian latitudes (particularly in the southern hemisphere), gullies within the walls of a very small number of impact craters, south polar pits, and two of the larger martian valleys display geomorphic features that can be explained by processes associated with groundwater seepage and surface runoff. The relative youth of the landforms is indicated by the superposition of the gullies on otherwise geologically young surfaces and by the absence of superimposed landforms or cross-cutting features, including impact craters, small polygons, and eolian dunes. The limited size and geographic distribution of the features argue for constrained source reservoirs.
Chemical transport during formation and alteration of Martian impact and volcanic deposits
NASA Technical Reports Server (NTRS)
Newsom, H. E.
1992-01-01
Much of the surface of Mars, including volcanic and cratered terrains, probably experienced alteration and degassing processes. These processes may have depleted or enriched many important elements in surface materials, including bedrock, dust, and soils. The composition of the martian soil may represent the best estimate, for some elements, of the average composition of the martian crust, similar to the composition of loess created by glacial action on the Earth. The martian soil may represent the only convenient, globally or regionally averaged sample of the martian crust. In order to understand the composition of the source material for the soil, however, we need to understand the contributions of volcanic vs. impact sources for this material and the chemical fractionations involved in its production. The processes to be addressed include degassing of volcanic deposits, as observed in the Valley of Ten Thousand Smokes at Katmai, Alaska, and degassing of meltbearing impact ejecta as inferred for suevite ejecta sheets at the Ries Crater, and alteration or palagonitization of volcanic deposits, as documented for volcanos in British Columbia and many other volcanic terrains, and impact crater deposits. The process of palagonitization has been the subject of several studies with reference to Mars, and palagonite is a good analogue for the spectroscopic properties of the martian dust. The role of impact in cratering has not been as well studied, although other researchers have established that both degassing and alteration are common features of impact crater deposits. Other relevant sources of experimental data include the extensive literature on the corrosion of nuclear waste glass and leaching of shocked materials.
NASA Technical Reports Server (NTRS)
Perez-Davis, Marla E.; Gaier, James R.
1990-01-01
In the foreseeable future, an expedition may be undertaken to explore the planet Mars. Some of the power source options being considered for such a mission are photovoltaics, regenerative fuel cells and nuclear reactors. In addition to electrical power requirements, environmental conditions en route to Mars, in the planetary orbit and on the Martian surface must be simulated and studied in order to anticipate and solve potential problems. Space power systems components such as photovoltaic arrays, radiators, and solar concentrators may be vulnerable to degradation in the Martian environment. Natural characteristics of Mars which may pose a threat to surface power systems include high velocity winds, dust, ultraviolet radiation, large daily variation in temperature, reaction to components of the soil, atmosphere and atmospheric condensates as well as synergistic combinations. Most of the current knowledge of the characteristics of the Martian atmosphere and soil composition was obtained from the Viking 1 and 2 missions in 1976. A theoretical study is presented which was used to assess the effects of the Martian atmospheric conditions on the power systems components. A computer program written at NASA-Lewis for combustion research that uses a free energy minimization technique was used to calculate chemical equilibrium for assigned thermodynamic states of temperature and pressure. The power system component materials selected for this study include: silicon dioxide, silicon, carbon, copper, and titanium. Combinations of environments and materials considered include: (1) Mars atmosphere with power surface material, (2) Mars atmosphere and dust component with power surface material, and (3) Mars atmosphere and hydrogen peroxide or superoxide or superoxide with power system material. The chemical equilibrium calculations were performed at a composition ratio (oxidant to reactant) of 100. The temperature for the silicon dioxide material and silicon, which simulate photovoltaic cells, were 300 and 400 K; for carbon, copper and titanium, which simulate radiator surfaces, 300, 500, and 1000 K. All of the systems were evaluated at pressures of 700, 800, and 900 Pa, which stimulate the Martian atmosphere.
NASA Technical Reports Server (NTRS)
Douglas, C.; Wright, I. P.; Bell, J. B.; Morris, R. V.; Golden, D. C.; Pillinger, C. T.
1993-01-01
Spectroscopic observations of the Martian surface in the invisible to near infrared (0.4-1.0 micron), coupled with measurements made by Viking, have shown that the surface is composed of a mixture of fine-grained weathered and nonweathered minerals. The majority of the weathered components are thought to be materials like smectite clays, scapolite, or palagonite. Until materials are returned for analysis there are two possible ways of proceeding with an investigation of Martian surface processes: (1) the study of weathering products in meteorites that have a Martian origin (SNC's), and (2) the analysis of certain terrestrial weathering products as analogs to the material found in SNC's, or predicted to be present on the Martian surface. We describe some preliminary measurements of the carbon chemistry of terrestrial palagonite samples that exhibit spectroscopic similarities with the Martian surface. The data should aid the understanding of weathering in SNC's and comparisons between terrestrial palagonites and the Martian surface.
Solar UV irradiation conditions on the surface of Mars.
Rontó, Györgyi; Bérces, Attila; Lammer, Helmut; Cockell, Charles S; Molina-Cuberos, Gregorio J; Patel, Manish R; Selsis, Franck
2003-01-01
The UV radiation environment on planetary surfaces and within atmospheres is of importance in a wide range of scientific disciplines. Solar UV radiation is a driving force of chemical and organic evolution and serves also as a constraint in biological evolution. In this work we modeled the transmission of present and early solar UV radiation from 200 to 400 nm through the present-day and early (3.5 Gyr ago) Martian atmosphere for a variety of possible cases, including dust loading, observed and modeled O3 concentrations. The UV stress on microorganisms and/or molecules essential for life was estimated by using DNA damaging effects (specifically bacteriophage T7 killing and uracil dimerization) for various irradiation conditions on the present and ancient Martian surface. Our study suggests that the UV irradiance on the early Martian surface 3.5 Gyr ago may have been comparable with that of present-day Earth, and though the current Martian UV environment is still quite severe from a biological viewpoint, we show that substantial protection can still be afforded under dust and ice.
Visualization of particle flux in the human body on the surface of Mars
NASA Technical Reports Server (NTRS)
Saganti, Premkumar B.; Cucinotta, Francis A.; Wilson, John W.; Schimmerling, Walter
2002-01-01
For a given galactic cosmic ray (GCR) environment, information on the particle flux of protons, alpha particles, and heavy ions, that varies with respect to the topographical altitude on the Martian surface, are needed for planning exploration missions to Mars. The Mars Global Surveyor (MGS) mission with its Mars Orbiter Laser Altimeter (MOLA) instrument has been providing precise topographical surface map of the Mars. With this topographical data, the particle flux at the Martian surface level through the CO2 atmospheric shielding for solar minimum and solar maximum conditions are calculated. These particle flux calculations are then transported first through an anticipated shielding of a conceptual shelter with several water equivalent shield values (up to 50 g/cm2 of water in steps of 5 g/cm2) considered to represent a surface habitat, and then into the human body. Model calculations are accomplished utilizing the HZETRN, QMSFRG, and SUM-MARS codes. Particle flux calculations for 12 different locations in the human body were considered from skin depth to the internal organs including the blood-forming organs (BFO). Visualization of particle flux in the human body at different altitudes on the Martian surface behind a known shielding is anticipated to provide guidance for assessing radiation environment risk on the Martian surface for future human missions.
Visualization of particle flux in the human body on the surface of Mars.
Saganti, Premkumar B; Cucinotta, Francis A; Wilson, John W; Schimmerling, Walter
2002-12-01
For a given galactic cosmic ray (GCR) environment, information on the particle flux of protons, alpha particles, and heavy ions, that varies with respect to the topographical altitude on the Martian surface, are needed for planning exploration missions to Mars. The Mars Global Surveyor (MGS) mission with its Mars Orbiter Laser Altimeter (MOLA) instrument has been providing precise topographical surface map of the Mars. With this topographical data, the particle flux at the Martian surface level through the CO2 atmospheric shielding for solar minimum and solar maximum conditions are calculated. These particle flux calculations are then transported first through an anticipated shielding of a conceptual shelter with several water equivalent shield values (up to 50 g/cm2 of water in steps of 5 g/cm2) considered to represent a surface habitat, and then into the human body. Model calculations are accomplished utilizing the HZETRN, QMSFRG, and SUM-MARS codes. Particle flux calculations for 12 different locations in the human body were considered from skin depth to the internal organs including the blood-forming organs (BFO). Visualization of particle flux in the human body at different altitudes on the Martian surface behind a known shielding is anticipated to provide guidance for assessing radiation environment risk on the Martian surface for future human missions.
Search for Past Life on Mars: Possible Relict Biogenic Activity in Martian Meteorite ALH84001
NASA Technical Reports Server (NTRS)
McKay, David S.; Gibson, Everett K., Jr.; Thomas-Keprta, Kathie L.; Vali, Hojatollah; Romanek, Christopher S.; Clemett, Simon J.; Chillier, Xavier D. F.; Maechling, Claude R.; Zare, Richard N.
1996-01-01
Fresh fracture surfaces of the martian meteorite ALH84001 contain abundant polycyclic aromatic hydrocarbons (PAHs). These fresh fracture surfaces also display carbonate globules. Contamination studies suggest the PAHs are indigenous to the meteorite. High resolution scanning and transmission electron microscopy study of surface textures and internal structures of selected carbonate globules show that the globules contain fine-grained, secondary phases of single-domain magnetite and Fe-monosulfides. The carbonate globules are similar in texture and size to some terrestrial bacterially induced carbonate precipitates. Although inorganic formation is possible, formation of the globules by biogenic processes could explain many of the observed features including the PAHs. The PAHs, the carbonate globules, and their associated secondary mineral phases and textures could thus be fossil remains of a past martian biota.
Crew activities, science, and hazards of manned missions to Mars
NASA Technical Reports Server (NTRS)
Clark, Benton C.
1988-01-01
The crew scientific and nonscientific activities that will occur at each stage of a mission to Mars are examined. Crew activities during the interplanetary flight phase will include simulations, maintenance and monitoring, communications, upgrading procedures and operations, solar activity monitoring, cross-training and sharpening of skills, physical conditioning, and free-time activities. Scientific activities will address human physiology, human psychology, sociology, astronomy, space environment effects, manufacturing, and space agriculture. Crew activities on the Martian surface will include exploration, construction, manufacturing, food production, maintenance and training, and free time. Studies of Martian geology and atmosphere, of the life forms that may exist there, and of the Martian moons will occur on the planet's surface. Crew activities and scientific studies that will occur in Mars orbit, and the hazards relevant to each stage of the mission, are also addressed.
Multi-temporal database of High Resolution Stereo Camera (HRSC) images - Alpha version
NASA Astrophysics Data System (ADS)
Erkeling, G.; Luesebrink, D.; Hiesinger, H.; Reiss, D.; Jaumann, R.
2014-04-01
Image data transmitted to Earth by Martian spacecraft since the 1970s, for example by Mariner and Viking, Mars Global Surveyor (MGS), Mars Express (MEx) and the Mars Reconnaissance Orbiter (MRO) showed, that the surface of Mars has changed dramatically and actually is continually changing [e.g., 1-8]. The changes are attributed to a large variety of atmospherical, geological and morphological processes, including eolian processes [9,10], mass wasting processes [11], changes of the polar caps [12] and impact cratering processes [13]. In addition, comparisons between Mariner, Viking and Mars Global Surveyor images suggest that more than one third of the Martian surface has brightened or darkened by at least 10% [6]. Albedo changes can have effects on the global heat balance and the circulation of winds, which can result in further surface changes [14-15]. The High Resolution Stereo Camera (HRSC) [16,17] on board Mars Express (MEx) covers large areas at high resolution and is therefore suited to detect the frequency, extent and origin of Martian surface changes. Since 2003 HRSC acquires highresolution images of the Martian surface and contributes to Martian research, with focus on the surface morphology, the geology and mineralogy, the role of liquid water on the surface and in the atmosphere, on volcanism, as well as on the proposed climate change throughout the Martian history and has improved our understanding of the evolution of Mars significantly [18-21]. The HRSC data are available at ESA's Planetary Science Archive (PSA) as well as through the NASA Planetary Data System (PDS). Both data platforms are frequently used by the scientific community and provide additional software and environments to further generate map-projected and geometrically calibrated HRSC data. However, while previews of the images are available, there is no possibility to quickly and conveniently see the spatial and temporal availability of HRSC images in a specific region, which is important to detect the surface changes that occurred between two or more images.
Numerical simulations of drainage flows on Mars
NASA Technical Reports Server (NTRS)
Parish, Thomas R.; Howard, Alan D.
1992-01-01
Data collected by Viking Landers have shown that the meteorology of the near surface Martian environment is analogous to desertlike terrestrial conditions. Geological evidence such as dunes and frost streaks indicate that the surface wind is a potentially important factor in scouring of the martian landscape. In particular, the north polar basin shows erosional features that suggest katabatic wind convergence into broad valleys near the margin of the polar cap. The pattern of katabatic wind drainage off the north polar cap is similar to that observed on Earth over Antarctica or Greenland. The sensitivity is explored of Martian drainage flows to variations in terrain slope and diurnal heating using a numerical modeling approach. The model used is a 2-D sigma coordinate primitive equation system that has been used for simulations of Antarctic drainage flows. Prognostic equations include the flux forms of the horizontal scalar momentum equations, temperature, and continuity. Parameterization of both longwave (terrestrial) and shortwave (solar) radiation is included. Turbulent transfer of heat and momentum in the Martian atmosphere remains uncertain since relevant measurements are essentially nonexistent.
Measurements of the Martian Gamma/Neutron Spectra with MSL/RAD
NASA Astrophysics Data System (ADS)
Kohler, J.; Zeitlin, C. J.; Ehresmann, B.; Wimmer-Schweingruber, R. F.; Hassler, D.; Reitz, G.; Brinza, D.; Weigle, E.; Boettcher, S.; Burmeister, S.; Guo, J.; Martin-Garcia, C.; Boehm, E.; Posner, A.; Rafkin, S. C.; Kortmann, O.
2013-12-01
The Radiation Assessment Detector (RAD) onboard Mars Science Laboratory's rover curiosity measures the energetic charged and neutral particle spectra and the radiation dose rate on the Martian surface. An important factor for determining the biological impact of the Martian surface radiation is the specific contribution of neutrons, which possess a high biological effectiveness. In contrast to charged particles, neutrons and gamma rays are generally only measured indirectly. Their measurement is the result of a complex convolution of the incident particle spectrum with the measurement process. We apply an inversion method to calculate the gamma/neutron spectra from the RAD neutral particle measurements. Here we show first measurements of the Martian gamma/neutron spectra and compare them to theoretical predictions. We find that the shape of the gamma spectrum is very similar to the predicted one, but with a ~50% higher intensity. The measured neutron spectrum agrees well with prediction up to ~100 MeV, but shows a considerably increased intensity for higher energies. The measured neutron spectrum translates into a radiation dose rate of 25 μGy/day and a dose equivalent rate of 106 μSv/day. This corresponds to 10% of the total surface dose rate, and 15% of the biological relevant surface dose equivalent rate on Mars. Measuring the Martian neutron spectra is an essential step for determining the mutagenic influences to past or present life at or beneath the Martian surface as well as the radiation hazard for future human exploration, including the shielding design of a potential habitat. The contribution of neutrons to the dose equivalent increases considerably with shielding thickness, so our measurements provide an important figure to mitigate cancer risk.
Sample Return from Ancient Hydrothermal Springs
NASA Technical Reports Server (NTRS)
Allen, Carlton C.; Oehler, Dorothy Z.
2008-01-01
Hydrothermal spring deposits on Mars would make excellent candidates for sample return. Molecular phylogeny suggests that that life on Earth may have arisen in hydrothermal settings [1-3], and on Mars, such settings not only would have supplied energy-rich waters in which martian life may have evolved [4-7] but also would have provided warm, liquid water to martian life forms as the climate became colder and drier [8]. Since silica, sulfates, and clays associated with hydrothermal settings are known to preserve geochemical and morphological remains of ancient terrestrial life [9-11], such settings on Mars might similarly preserve evidence of martian life. Finally, because formation of hydrothermal springs includes surface and subsurface processes, martian spring deposits would offer the potential to assess astrobiological potential and hydrological history in a variety of settings, including surface mineralized terraces, associated stream deposits, and subsurface environments where organic remains may have been well protected from oxidation. Previous attempts to identify martian spring deposits from orbit have been general or limited by resolution of available data [12-14]. However, new satellite imagery from HiRISE has a resolution of 28 cm/pixel, and based on these new data, we have interpreted several features in Vernal Crater, Arabia Terra as ancient hydrothermal springs [15, 16].
On the Dielectric Properties of the Martian-like Surface Sediments
NASA Technical Reports Server (NTRS)
Heggy, E.; Clifford, S. M.; Morris, R. V.; Paillou, P.; Ruffie, G.
2004-01-01
We have undertaken laboratory electromagnetic characterization of the total set of minerals identified by TES on the Martian surface in order to investigate experimentally the dielectric properties of the sediments covering it in the frequency range from 1 to 30 MHz. Volcanic Rocks with a well defined mineralogy and petrology from potential terrestrial analogues sites have also been included in the study. Our primary objective is to evaluate the range of electrical and magnetic losses that may be encountered by the various Radar sounding and imaging experiments dedicated to map the Martian subsurface searching for underground water. The electromagnetic properties of these Mars-like materials will be presented as a function of various geophysical parameters, such as porosity, bulk density and temperature. The secondary objective, is to locate regions were surface dielectric conditions are suitable for subsurface sounding.
Magnesium isotope systematics in Martian meteorites
NASA Astrophysics Data System (ADS)
Magna, Tomáš; Hu, Yan; Teng, Fang-Zhen; Mezger, Klaus
2017-09-01
Magnesium isotope compositions are reported for a suite of Martian meteorites that span the range of petrological and geochemical types recognized to date for Mars, including crustal breccia Northwest Africa (NWA) 7034. The δ26Mg values (per mil units relative to DSM-3 reference material) range from -0.32 to -0.11‰; basaltic shergottites and nakhlites lie to the heavier end of the Mg isotope range whereas olivine-phyric, olivine-orthopyroxene-phyric and lherzolitic shergottites, and chassignites have slightly lighter Mg isotope compositions, attesting to modest correlation of Mg isotopes and petrology of the samples. Slightly heavier Mg isotope compositions found for surface-related materials (NWA 7034, black glass fraction of the Tissint shergottite fall; δ26Mg > -0.17‰) indicate measurable Mg isotope difference between the Martian mantle and crust but the true extent of Mg isotope fractionation for Martian surface materials remains unconstrained. The range of δ26Mg values from -0.19 to -0.11‰ in nakhlites is most likely due to accumulation of clinopyroxene during petrogenesis rather than garnet fractionation in the source or assimilation of surface material modified at low temperatures. The rather restricted range in Mg isotope compositions between spatially and temporally distinct mantle-derived samples supports the idea of inefficient/absent major tectonic cycles on Mars, which would include plate tectonics and large-scale recycling of isotopically fractionated surface materials back into the Martian mantle. The cumulative δ26Mg value of Martian samples, which are not influenced by late-stage alteration processes and/or crust-mantle interactions, is - 0.271 ± 0.040 ‰ (2SD) and is considered to reflect δ26Mg value of the Bulk Silicate Mars. This value is robust taking into account the range of lithologies involved in this estimate. It also attests to the lack of the Mg isotope variability reported for the inner Solar System bodies at current analytical precision, also noted for several other major elements.
Small Scale Polygons and the History of Ground Ice on Mars
NASA Technical Reports Server (NTRS)
Mellon, Michael T.
2003-01-01
Recent progress on polygon modeling has focused on the diameter and surface relief that we expect of thermal-contraction polygons in martian permafrost. With this in mind, we developed a finite-element model of thermal-contraction-crack behavior in permafrost in a martian climate. This model was generated from a finite element code by Jay Melosh (called TECTON) originally developed for terrestrial and planetary crustal-deformation studies. We adapted this model to martian permafrost by including time (and temperature) dependent rheologies, boundary conditions, and isotropic thermal-contraction, as well as several small adaptations to a martian environment. We tested our model extensively, including comparison to an analytic solution of pre-fracture stress. We recently published an analysis of two potential sources of water for forming the recent gullies. In this work we first evaluated the potential for near-surface ground ice (in the top meter or so of soil) to melt under conditions of solar heating on sloped surfaces at high obliquity, utilizing both thermal and diffusion-based ground-ice-stability models; our results suggested that the ground ice will sublimate, and the ice table will recede to greater depths before the melting temperature can be reached. An exception can occur only for extremely salt-rich ice, depressing the freezing point.
A model for the origin of Martian polygonal terrain
NASA Technical Reports Server (NTRS)
Mcgill, G. E.
1993-01-01
Extensive areas of the Martian northern plains in Utopia and Acidalia Planitiae are characterized by 'polygonal terrain.' Polygonal terrain consists of material cut by complex troughs defining a pattern resembling mudcracks, columnar joints, or frost-wedge polygons on the Earth. However, the Martian polygons are orders of magnitude larger than these potential Earth analogs, leading to severe mechanical difficulties for genetic models based on simple analogy arguments. Stratigraphic studies show that the polygonally fractured material in Utopia Planitia was deposited on a land surface with significant topography, including scattered knobs and mesas, fragments of ancient crater rims, and fresh younger craters. Sediments or volcanics deposited over topographically irregular surfaces can experience differential compaction producing drape folds. Bending stresses due to these drape folds would be superposed on the pervasive tensile stresses due to desiccation or cooling, such that the probability of fracturing is enhanced above buried topographic highs and suppressed above buried topographic lows. Thus it was proposed that the scale of the Martian polygons is controlled by the spacing of topographic highs on the buried surface rather than by the physics of the shrinkage process.
NASA Technical Reports Server (NTRS)
Usui, Tomohiro; Alexander, O'D.; Wang, J.; Simon, J. I.; Jones, J. H.
2012-01-01
Magmatic degassing of volatile elements affects the climate and near-surface environment of Mars. Telescopic and meteorite studies have revealed that the Martian atmosphere and near-surface materials have D/H ratios 5-6 times terrestrial values [e.g., 1, 2]. Such high D/H ratios are interpreted to result from the preferential loss of H relative to heavier D from the Martian atmosphere, assuming that the original Martian water inventory had a D/H ratio similar to terrestrial values and to H in primitive meteorites [e.g., 1, 3]. However, the primordial Martian D/H ratio has, until now, not been well constrained. The uncertainty over the Martian primordial D/H ratio has arisen both from the scarcity of primitive Martian meteorites and as a result of contamination by terrestrial and, perhaps, Martian surface waters that obscure the signature of the Martian mantle. This study reports a comprehensive dataset of magmatic volatiles and D/H ratios in Martian primary magmas based on low-contamination, in situ ion microprobe analyses of olivine-hosted melt inclusions from both depleted [Yamato 980459 (Y98)] and enriched [Larkman Nunatak 06319 (LAR06)] Martian basaltic meteorites. Analyses of these primitive melts provide definitive evidence that the Martian mantle has retained a primordial D/H ratio and that young Martian basalts have assimilated old Martian crust.
A Study of the Electrostatic Interaction Between Insulators and Martian/Lunar Soil Simulants
NASA Technical Reports Server (NTRS)
Mantovani, James G.
2001-01-01
Using our previous experience with the Mars Environmental Compatibility Assessment (MECA) electrometer, we have designed a new type of aerodynamic electrometer. The goal of the research was to measure the buildup of electrostatic surface charge on a stationary cylindrical insulator after windborne granular particles have collided with the insulator surface in a simulated dust storm. The experiments are performed inside a vacuum chamber. This allows the atmospheric composition and pressure to be controlled in order to simulate the atmospheric conditions near the equator on the Martian surface. An impeller fan was used to propel the dust particles at a cylindrically shaped insulator under low vacuum conditions. We tested the new electrometer in a 10 mbar CO2 atmosphere by exposing two types of cylindrical insulators, Teflon (1.9 cm diameter) and Fiberglass (2.5 cm diameter), to a variety of windborne granular particulate materials. The granular materials tested were JSC Mars-1 simulant, which is a mixture of coarse and fine (<5microns diameter) particle sizes, and some of the major mineral constituents of the Martian soil. The minerals included Ottawa sand (SiO2), iron oxide (Fe2O3), aluminum oxide (Al2O3) and magnesium oxide (MgO). We also constructed a MECA-like electrometer that contained an insulator capped planar electrode for measuring the amount of electrostatic charge produced by rubbing an insulator surface over Martian and lunar soil simulants. The results of this study indicate that it is possible to detect triboelectric charging of insulator surfaces by windborne Martian soil simulant, and by individual mineral constituents of the soil simulant. We have also found that Teflon and Fiberglass insulator surfaces respond in different ways by developing opposite polarity surface charge, which decays at different rates after the particle impacts cease.
Permafrost on Mars: distribution, formation, and geological role
NASA Technical Reports Server (NTRS)
Nummedal, D.
1984-01-01
The morphology of channels, valleys, chaotic and fretted terrains and many smaller features on Mars is consistent with the hypothesis that localized deterioration of thick layers of ice-rich permafrost was a dominant geologic process on the Martian surface. Such ground ice deterioration gave rise to large-scale mass movement, including sliding, slumping and sediment gravity flowage, perhaps also catastropic floods. In contrast to Earth, such mass movement processes on Mars lack effective competition from erosion by surface runoff. Therefore, Martian features due to mass movement grew to reach immense size without being greatly modified by secondary erosional processes. The Viking Mission to Mars in 1976 provided adequate measurements of the relevant physical parameters to constrain models for Martian permafrost.
The Gulliver Mission: A Short-Cut to Primitive Body and Mars Sample Return
NASA Astrophysics Data System (ADS)
Britt, D. T.
2003-05-01
The Martian moon Deimos has extraordinary potential for future sample return missions. Deimos is spectrally similar to D-type asteroids and may be a captured primitive asteroid that originated in the outer asteroid belt. This capture probably took place in the earliest periods of Martian history, over 4.4 Gyrs ago [1], and Deimos has been accumulating material ejected from the Martian surface ever since. Analysis of Martian ejecta, material accumulation, capture cross-section, regolith over-turn, and Deimos's albedo suggest that Mars material may make up as much as 10% of Deimos's regolith. The Martian material on Deimos would be dominated by ejecta from the ancient crust of Mars, delivered during the Noachian Period of basin-forming impacts and heavy bombardment. Deimos could be a repository of samples from ancient Mars, including the full range of Martian crustal and upper mantle material from the early differentiation and crustal-forming epoch as well as samples from the era of high volatile flux, thick atmosphere, and possible surface water. In addition to Martian ejecta, 90% of the Deimos sample will be spectral type D asteroidal material. D-type asteroids are thought to be highly primitive and are most common in the difficult to access outer asteroid belt and the Jupiter Trojans. The Gulliver Mission proposes to directly collect up to 10 kilograms of Deimos regolith and return it to Earth. This sample may contain up to 1000 grams of Martian material along with up to 9 kilograms of primitive asteroidal material. Because of stochastic processes of regolith mixing over 4.4 Gyrs, the rock fragments and grains will likely sample the diversity of the Martian ancient surface as well as the asteroid. In essence, Gulliver represents two shortcuts, to Mars sample return and to the outer asteroid belt. References: [1] Burns J. A. (1992) Mars (Kieffer H. H. et al., eds), 1283-1302.
Lunar and Planetary Science XXXI
NASA Technical Reports Server (NTRS)
2000-01-01
This CD-ROM presents papers presented to the Thirty-first Lunar and Planetary Science Conference, March 13-17, 2000, Houston, Texas. Eighty-one conference sessions, and over one thousand extended abstracts are included. Abstracts cover topics such as Martian surface properties and geology, meteoritic composition, Martian landing sites and roving vehicles, planned Mars Sample Return Missions, and general astrobiology.
Mars Pathfinder Wheel Abrasion Experiment Ground Test
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Siebert, Mark W.
1998-01-01
The National Aeronautics and Space Administration (NASA) sent a mission to the martian surface, called Mars Pathfinder. The mission payload consisted of a lander and a rover. The primary purpose of the mission was demonstrating a novel entry, descent, and landing method that included a heat shield, a parachute, rockets, and a cocoon of giant air bags. Once on the surface, the spacecraft returned temperature measurements near the Martian surface, atmosphere pressure, wind speed measurements, and images from the lander and rover. The rover obtained 16 elemental measurements of rocks and soils, performed soil-mechanics, atmospheric sedimentation measurements, and soil abrasiveness measurements.
Proceedings of the Seventh International Conference on Mars
NASA Technical Reports Server (NTRS)
2007-01-01
The oral and poster sessions of the SEVENTH INTERNATIONAL CONFERENCE ON MARS included; The Distribution and Context of Water-related Minerals on Mars; Poster Session: Mars Geology; Geology of the Martian Surface: Lithologic Variation, Composition, and Structure; Water Through Mars' Geologic History; Poster Session: Mars Water and the Martian Interior; Volatiles and Interior Evolution; The Martian Climate and Atmosphere: Variations in Time and Space; Poster Session: The Martian Climate and Current Processes; Modern Mars: Weather, Atmospheric Chemistry, Geologic Processes, and Water Cycle; Public Lecture: Mars Reconnaissance Orbiter's New View of the Red Planet; The North and South Polar Layered Deposits, Circumpolar Regions, and Changes with Time; Poster Session: Mars Polar Science, Astrobiology, Future Missions/Instruments, and Other Mars Science; Mars Astrobiology and Upcoming Missions; and Martian Stratigraphy and Sedimentology: Reading the Sedimentary Record.
Conditions and constraints of food processing in space
NASA Technical Reports Server (NTRS)
Fu, B.; Nelson, P. E.; Mitchell, C. A. (Principal Investigator)
1994-01-01
Requirements and constraints of food processing in space include a balanced diet, food variety, stability for storage, hardware weight and volume, plant performance, build-up of microorganisms, and waste processing. Lunar, Martian, and space station environmental conditions include variations in atmosphere, day length, temperature, gravity, magnetic field, and radiation environment. Weightlessness affects fluid behavior, heat transfer, and mass transfer. Concerns about microbial behavior include survival on Martian and lunar surfaces and in enclosed environments. Many present technologies can be adapted to meet space conditions.
The fate of iron on Mars: Mechanism of oxidation of basaltic minerals to ferric-bearing assemblages
NASA Technical Reports Server (NTRS)
Burns, Roger G.
1992-01-01
Perhaps the most conspicuous indication that chemical weathering has occurred on the surface of Mars is the overall color of the red planet and the spectroscopic features that identify ferric-bearing assemblages in the martian regolith. Apparently, Fe(2+) ions in primary minerals in parent igneous rocks on the martian surface have been oxidized to ferric iron, which occurs in degradation products that now constitute the regolith. The mineralogy of the unweathered igneous rocks prior to weathering on the martian surface is reasonably well constrained, mainly as a result of petrographic studies of the SNC meteorites. However, the alteration products resulting from oxidative weathering of these rocks are less well-constrained. The topics covered include the following: primary rocks subjected to chemical weathering; dissolution processes; oxidation of dissolved Fe(2+); mechanism of polymerization of hydrous ferric oxides; terrestrial occurrences of ferromagnesian smectites; and dehydroxylated Mg-Fe smectites on Mars.
Response comment: Carbon sequestration on Mars
Edwards, Christopher; Ehlmann, Bethany L.
2016-01-01
Martian atmospheric pressure has important implications for the past and present habitability of the planet, including the timing and causes of environmental change. The ancient Martian surface is strewn with evidence for early water bound in minerals (e.g., Ehlmann and Edwards, 2014) and recorded in surface features such as large catastrophically created outflow channels (e.g., Carr, 1979), valley networks (Hynek et al., 2010; Irwin et al., 2005), and crater lakes (e.g., Fassett and Head, 2008). Using orbital spectral data sets coupled with geologic maps and a set of numerical spectral analysis models, Edwards and Ehlmann (2015) constrained the amount of atmospheric sequestration in early Martian rocks and found that the majority of this sequestration occurred prior to the formation of the early Hesperian/late Noachian valley networks (Fassett and Head, 2011; Hynek et al., 2010), thus implying the atmosphere was already thin by the time these surface-water-related features were formed.
MEVTV Workshop on Nature and Composition of Surface Units on Mars
NASA Technical Reports Server (NTRS)
Zimbelman, J. R. (Editor); Solomon, S. C. (Editor); Sharpton, V. L. (Editor)
1987-01-01
Topics addressed include: SNC meteorites and their potential for providing information about the geochemical evolution of Mars; remote sensing; photogeological inferences of Martian surface compositions; and interactions of the surface with volatiles in either the surface or the atmosphere.
NASA Technical Reports Server (NTRS)
England, C.
2000-01-01
For human or large robotic exploration of Mars, engineering devices such as power sources will be utilized that interact closely with the Martian environment. Heat sources for power production, for example, will use the low ambient temperature for efficient heat rejection. The Martian ambient, however, is highly variable, and will have a first order influence on the efficiency and operation of all large-scale equipment. Diurnal changes in temperature, for example, can vary the theoretical efficiency of power production by 15% and affect the choice of equipment, working fluids, and operating parameters. As part of the Mars Exploration program, missions must acquire the environmental data needed for design, operation and maintenance of engineering equipment including the transportation devices. The information should focus on the variability of the environment, and on the differences among locations including latitudes, altitudes, and seasons. This paper outlines some of the WHY's, WHAT's and WHERE's of the needed data, as well as some examples of how this data will be used. Environmental data for engineering design should be considered a priority in Mars Exploration planning. The Mars Thermal Environment Radiator Characterization (MTERC), and Dust Accumulation and Removal Technology (DART) experiments planned for early Mars landers are examples of information needed for even small robotic missions. Large missions will require proportionately more accurate data that encompass larger samples of the Martian surface conditions. In achieving this goal, the Mars Exploration program will also acquire primary data needed for understanding Martian weather, surface evolution, and ground-atmosphere interrelationships.
Perchlorates on Mars enhance the bacteriocidal effects of UV light.
Wadsworth, Jennifer; Cockell, Charles S
2017-07-06
Perchlorates have been identified on the surface of Mars. This has prompted speculation of what their influence would be on habitability. We show that when irradiated with a simulated Martian UV flux, perchlorates become bacteriocidal. At concentrations associated with Martian surface regolith, vegetative cells of Bacillus subtilis in Martian analogue environments lost viability within minutes. Two other components of the Martian surface, iron oxides and hydrogen peroxide, act in synergy with irradiated perchlorates to cause a 10.8-fold increase in cell death when compared to cells exposed to UV radiation after 60 seconds of exposure. These data show that the combined effects of at least three components of the Martian surface, activated by surface photochemistry, render the present-day surface more uninhabitable than previously thought, and demonstrate the low probability of survival of biological contaminants released from robotic and human exploration missions.
Pre-Global Surveyor evidence for Martian ground water
Donahue, Thomas M.
2001-01-01
A time-dependent theory for the evolution of water on Mars is presented. Using this theory and invoking a large number of observational constraints, I argue that these constraints require that a large reservoir of water exists in the Martian crust at depths shallow enough to interact strongly with the atmosphere. The constraints include the abundance of atmospheric water vapor, escape fluxes of hydrogen and deuterium, D/H ratios in the atmosphere and in hydrous minerals found in one Martian meteorite, alteration of minerals in other meteorites, and fluvial features on the Martian surface. These results are consonant with visual evidence for recent groundwater seepage obtained by the Mars Global Surveyor satellite. PMID:11158555
Physical properties of the martian surface from the viking 1 lander: preliminary results.
Shorthill, R W; Hutton, R E; Moore, H J; Scott, R F; Spitzer, C R
1976-08-27
The purpose of the physical properties experiment is to determine the characteristics of the martian "soil" based on the use of the Viking lander imaging system, the surface sampler, and engineering sensors. Viking 1 lander made physical contact with the surface of Mars at 11:53:07.1 hours on 20 July 1976 G.M.T. Twenty-five seconds later a high-resolution image sequence of the area around a footpad was started which contained the first information about surface conditions on Mars. The next image is a survey of the martian landscape in front of the lander, including a view of the top support of two of the landing legs. Each leg has a stroke gauge which extends from the top of the leg support an amount equal to the crushing experienced by the shock absorbers during touchdown. Subsequent images provided views of all three stroke gauges which, together with the knowledge of the impact velocity, allow determination of "soil" properties. In the images there is evidence of surface erosion from the engines. Several laboratory tests were carried out prior to the mission with a descent engine to determine what surface alterations might occur during a Mars landing. On sol 2 the shroud, which protected the surface sampler collector head from biological contamination, was ejected onto the surface. Later a cylindrical pin which dropped from the boom housing of the surface sampler during the modified unlatching sequence produced a crater (the second Mars penetrometer experiment). These two experiments provided further insight into the physical properties of the martian surface.
Physical properties of the martian surface from the Viking 1 lander: preliminary results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shorthill, R.W.; Hutton, R.E.; Moore, H.J. II
1976-08-27
The purpose of the physical properties experiment is to determine the characteristics of the martian ''soil'' based on the use of the Viking lander imaging system, the surface sampler, and engineering sensors. Viking 1 lander made physical contact with the surface of Mars at 11:53:07.1 hours on 20 July 1976 G.M.T. Twenty-five seconds later a high-resolution image sequence of the area around a footpad was started which contained the first information about surface conditions on Mars. The next image is a survey of the martian landscape in front of the lander, including a view of the top support of twomore » of the landing legs. Each leg has a stroke gauge which extends from the top of the leg support an amount equal to the crushing experienced by the shock absorbers during touchdown. Subsequent images provided views of all three stroke gauges which, together with the knowledge of the impact velocity, allow determination of ''soil'' properties. In the images there is evidence of surface erosion from the engines. Several laboratory tests were carried out prior to the mission with a descent engine to determine what surface alterations might occur during a Mars landing. On sol 2 the shroud, which protected the surface sampler collector head from biological contamination, was ejected onto the surface. Later a cylindrical pin which dropped from the boom housing of the surface sampler during the modified unlatching sequence produced a crater (the second Mars penetrometer experiment). These two experiments provided further insight into the physical properties of the martian surface.« less
Computer modeling of the mineralogy of the Martian surface, as modified by aqueous alteration
NASA Technical Reports Server (NTRS)
Zolensky, M. E.; Bourcier, W. L.; Gooding, J. L.
1988-01-01
Mineralogical constraints can be placed on the Martian surface by assuming chemical equilibria among the surface rocks, atmosphere and hypothesized percolating groundwater. A study was made of possible Martian surface mineralogy, as modified by the action of aqueous alteration, using the EQ3/6 computer codes. These codes calculate gas fugacities, aqueous speciation, ionic strength, pH, Eh and concentration and degree of mineral saturation for complex aqueous systems. Thus, these codes are also able to consider mineralogical solid solutions. These codes are able to predict the likely alteration phases which will occur as the result of weathering on the Martian surface. Knowledge of the stability conditions of these phases will then assist in the definition of the specifications for the sample canister of the proposed Martian sample return mission. The model and its results are discussed.
Mars Gardens in the University - Red Thumbs: Growing Vegetables in Martian regolith simulant.
NASA Astrophysics Data System (ADS)
Guinan, Edward Francis
2018-01-01
Over the next few decades NASA and private enterprise missions plan to send manned missions to Mars with the ultimate aim to establish a permanent human presence on this planet. For a self-sustaining colony on Mars it will be necessary to provide food by growing plants in sheltered greenhouses on the Martian surface. As part of an undergraduate student project in Astrobiology at Villanova University, experiments are being carried out, testing how various plants grow in Martian regolith. A wide sample of plants are being grown and tested in Mars regolith simulant commercially available from The Martian Garden (TheMartian Garden.com). This Mars regolith simulant is based on Mojave Mars Simulant (MMS) developed by NASA and JPL for the Mars Phoenix mission. The MMS is based on the Mojave Saddleback basalt similar that used by JPL/NASA. Additional reagents were added to this iron rich basalt to bring the chemical content close to actual Mars regolith. The MMS used is an approximately 90% similar to regolith found on the surface of Mars - excluding poisonous perchlorates commonly found on actual Mars surface.The students have selected various vegetables and herbs to grow and test. These include carrots, spinach, dandelions, kale, soy beans, peas, onions, garlic and of course potatoes and sweet potatoes. Plants were tested in various growing conditions, using different fertilizers, and varying light conditions and compared with identical “control plants” grown in Earth soil / humus. The results of the project will be discussed from an education view point as well as from usefulness for fundamental research.We thank The Martian Garden for providing Martian regolith simulant at education discounted prices.
Visualization of Radiation Environment on Mars: Assessment with MARIE Measurements
NASA Technical Reports Server (NTRS)
Saganti, P.; Cucinotta, F.; Zeitlin, C.; Cleghorn, T.; Flanders, J.; Riman, F.; Hu, X.; Pinsky, L.; Lee, K.; Anderson, V.;
2003-01-01
For a given GCR (Galactic Cosmic Ray) environment at Mars, particle flux of protons, alpha particles, and heavy ions, are also needed on the surface of Mars for future human exploration missions. For the past twelve months, the MARJE (Martian Radiation Environment Experiment) instrument onboard the 200J Mars Odyssey has been providing the radiation measurements from the Martian orbit. These measurements are well correlated with the HZETRN (High Z and Energy Transport) and QMSFRG (Quantum Multiple-Scattering theory of nuclear Fragmentation) model calculations. These model calculations during these specific GCR environment conditions are now extended and transported through the CO2 atmosphere onto the Martian surface. These calculated pa11icle flux distributions are presented as a function of the Martian topography making use of the MOLA (Mars Orbiter Laser Altimeter) data from the MGS (Mars Global Surveyor). Also, particle flux calculations are presented with visualization in the human body from skin depth to the internal organs including the blood-forming organs.
A numerical circulation model with topography for the Martian Southern Hemisphere
NASA Technical Reports Server (NTRS)
Mass, C.; Sagan, C.
1975-01-01
A quasi-geostrophic numerical model, including friction, radiation, and the observed planetary topography, is applied to the general circulation of the Martian atmosphere in the Southern Hemisphere at latitudes south of about 35 deg. Near equilibrium weather systems developed after about 5 model days. To avoid violating the quasi-geostrophic approximation, only 0.8 of the already smoothed relief was employed. Weather systems and velocity fields are strikingly tied to topography. A 2mb middle latitude jet stream is found of remarkably terrestrial aspect. Highest surface velocities, both horizontal and vertical, are predicted in western Hellas Planitia and eastern Argyre Planitia, which are observed to be preferred sites of origin of major Martian dust storms. Mean horizontal velocities and vertical velocities are found just above the surface velocity boundary layer.
The new Mars: The discoveries of Mariner 9
NASA Technical Reports Server (NTRS)
Hartmann, W. K.; Raper, O.
1974-01-01
The Mariner 9 encounter with Mars is extensively documented with photographs taken by the satellite's onboard cameras, and an attempt is made to explain the observed Martian topography in terms of what is known about the geomorphological evolution of the earth. Early conceptions about the Mars surface are compared with more recent data made available by the Mariner 9 cameras. Other features of the planet Mars which are specifically discussed include the volcanic regions, the surface channels, the polar caps and layered terrain, the Martian atmosphere, and the planet's two moons--Phobos and Deimos.
NASA Technical Reports Server (NTRS)
Gooding, James L.; Ming, Douglas W.; Allton, Judith H.; Byers, Terry B.; Dunn, Robert P.; Gibbons, Frank L.; Pate, Daniel B.; Polette, Thomas M.
1992-01-01
Physical and chemical interactions between the surface and atmosphere of Mars can be expected to embody a strong cause-and-effect relationship with the minerals comprising the martian regolith. Many of the minerals in soils and sediments are probably products of chemical weathering (involving surface/atmosphere or surface/hydrosphere reactions) that could be expected to subsequently influence the sorption of atmospheric gases and water vapor. Therefore, identification of the minerals in martian surface soils and sediments is essential for understanding both past and present interactions between the Mars surface and atmosphere. Clearly, the most definitive mineral analyses would be achieved with well-preserved samples returned to Earth-based laboratories. In advance of a Mars sample return mission, however, significant progress could be made with in situ experiments that fill current voids in knowledge about the presence or abundance of key soil minerals such as clays (layered-structured silicates), zeolites, and various salts, including carbonates. TAPS is intended to answer that challenge by providing first-order identification of soil and sediment minerals.
Transmission electron microscope analyses of alteration phases in martian meteorite MIL 090032
NASA Astrophysics Data System (ADS)
Hallis, L. J.; Ishii, H. A.; Bradley, J. P.; Taylor, G. J.
2014-06-01
The nakhlite group of martian meteorites found in the Antarctic contain varying abundances of both martian and terrestrial secondary alteration phases. The aim of this study was to use transmission electron microscopy (TEM) to compare martian and terrestrial alteration embodied within a single nakhlite martian meteorite find - MIL 090032. Martian alteration veins in MIL 090032 are composed of poorly ordered Fe-smectite phyllosilicate. This poorly-ordered smectite appears to be equivalent to the nanocrystalline phyllosilicate/hydrated amorphous gel phase previously described in the martian alteration veins of other nakhlites. Chemical differences in this nanocrystalline phyllosilicate between different nakhlites imply localised alteration, which occurred close to the martian surface in MIL 090032. Both structurally and compositionally the nakhlite nanocrystalline phyllosilicate shows similarities to the amorphous/poorly ordered phase recently discovered in martian soil by the Mars Curiosity Rover at Rocknest, Gale Crater. Terrestrially derived alteration phases in MIL 090032 include jarosite and gypsum, amorphous silicates, and Fe-oxides and hydroxides. Similarities between the mineralogy and chemistry of the MIL 090032 terrestrial and martian alteration phases suggest the alteration conditions on Mars were similar to those in the Antarctic. At both sites a small amount of fluid at low temperatures infiltrated the rock and became acidic as a result of the conversion of Fe2+ to Fe3+ under oxidising conditions.
Parameter estimation for terrain modeling from gradient data. [navigation system for Martian rover
NASA Technical Reports Server (NTRS)
Dangelo, K. R.
1974-01-01
A method is developed for modeling terrain surfaces for use on an unmanned Martian roving vehicle. The modeling procedure employs a two-step process which uses gradient as well as height data in order to improve the accuracy of the model's gradient. Least square approximation is used in order to stochastically determine the parameters which describe the modeled surface. A complete error analysis of the modeling procedure is included which determines the effect of instrumental measurement errors on the model's accuracy. Computer simulation is used as a means of testing the entire modeling process which includes the acquisition of data points, the two-step modeling process and the error analysis. Finally, to illustrate the procedure, a numerical example is included.
NASA Astrophysics Data System (ADS)
Bishop, J. L.; Hamilton, V. E.
2001-12-01
Martian meteorites provide direct information about crustal rocks on Mars. In this study we are measuring reflectance and emittance spectra of multiple Martian meteorites in order to characterize the spectral properties of the minerals present and to develop comprehensive criteria for remote detection of rocks and minerals. Previous studies have evaluated mid-IR emittance spectra [Hamilton et al., 1997] and visible/IR reflectance spectra [Bishop et al., 1998a,b] of Martian meteorites independently. The current study includes comparisons of the visible/NIR and mid-IR spectral regions and also involves comparison of mid-IR spectra measured using biconical reflectance and thermal emission techniques. Combining spectral analyses of Martian meteorite chips and powders enables characterization of spectral bands for remote detection of potential source regions for meteorite-like rocks on the surface of Mars using both Thermal Emission Spectrometer (TES) datasets and visible/NIR datasets from past and future missions. Identification of alteration minerals in these meteorites also provides insights into the alteration processes taking place on Mars. Analysis of TES data on Mars has identified global regions of basaltic and andesitic surface material [e.g. Bandfield et al., 2000; Christensen et al., 2000]; however neither of these spectral endmembers corresponds well to the spectra of Martian meteorites. Some preliminary findings suggest that small regions on the surface of Mars may relate to meteorite compositions [e.g. Hoefen et al., 2000; Hamilton et al., 2001]. Part of the difficulty in identifying meteorite compositions on Mars may be due to surface alteration. We hope to apply the results of our spectroscopic analyses of Martian meteorites, as well as fresh and altered basaltic material, toward analysis of composition on Mars using multiple spectral datasets. References: Bandfield J. et al., Science 287, 1626, 2000. Bishop J. et al., MAPS 33, 699, 1998a. Bishop J. et al., MAPS 33, 693, 1998b. Christensen P., et al., JGR 105, 9609, 2000. Hamilton V. et al., JGR 102, 25593, 1997. Hamilton V. et al., LPSC XXXII, #2184, 2001. Hoefen T. et al., Bull. Am. Astron. Soc. 32, 1118, 2000.
The Surface of Mars: A Post-Viking View.
ERIC Educational Resources Information Center
Carr, Michael H.
1983-01-01
Highlights current information on the martian surface. Topics include a planetary overview (atmosphere, dust storms, water vapor/ice, soil analysis) and surface features (craters, volcanoes, canyons/channels, polar regions, wind-related features). Similarities/differences between Mars and Earth are also discussed. (JN)
NASA Technical Reports Server (NTRS)
Plumlee, G. S.; Ridley, W. I.; Debraal, J. D.; Reed, M. H.
1993-01-01
Chemical reaction path calculations were used to model the minerals that might have formed at or near the Martian surface as a result of volcano or meteorite impact driven hydrothermal systems; weathering at the Martian surface during an early warm, wet climate; and near-zero or sub-zero C brine-regolith reactions in the current cold climate. Although the chemical reaction path calculations carried out do not define the exact mineralogical evolution of the Martian surface over time, they do place valuable geochemical constraints on the types of minerals that formed from an aqueous phase under various surficial and geochemically complex conditions.
Ice-Ridge Pile Up and the Genesis of Martian "Shorelines"
NASA Technical Reports Server (NTRS)
Barnhart, C. J.; Tulaczyk, S.; Asphaug, E.; Kraal, E. R.; Moore, J.
2005-01-01
Unique geomorphologic features such as basin terraces exhibiting topographic continuity have been found within several Martian craters as shown in Viking, MOC, and THEMIS images. These features, showing similarity to terrestrial shorelines, have been mapped and cataloged with significant effort [1]. Currently, open wave action on the surface of paleolakes has been hypothesized as the geomorphologic agent responsible for the generation of these features [2]. As consequence, feature interpretations, including shorelines, wave-cut benches, and bars are, befittingly, lacustrine. Because such interpretations and their formation mechanisms have profound implications for the climate and potential biological history of Mars, confidence is crucial. The insight acquired through linked quantitative modeling of geomorphologic agents and processes is key to accurately interpreting these features. In this vein, recent studies [3,4] involving the water wave energy in theoretical open water basins on Mars show minimal erosional effects due to water waves under Martian conditions. Consequently, sub-glacial lake flattens the surface, produces a local velocity increase over the lake, and creates a deviation of the ice flow from the main flow direction [11]. These consequences of ice flow are observed at Lake Vostok, Antarctica an excellent Martian analogue [11]. Martian observations include reticulate terrain exhibiting sharp inter-connected ridges speculated to reflect the deposition and reworking of ice blocks at the periphery of ice-covered lakes throughout Hellas [12]. Our model determines to what extent ice, a terrestrial geomorphologic agent, can alter the Martian landscape. Method: We study the evolution of crater ice plugs as the formation mechanism of surface features frequently identified as shorelines. In particular, we perform model integrations involving parameters such as ice slope and purity, atmospheric pressure and temperature, crater shape and composition, and an energy balance between solar flux, geothermal flux, latent heat, and ablation. Our ultimate goal is to understand how an intracrater ice plug could create the observed shoreline features and how these
Physical and chemical properties of the Martian soil: Review of resources
NASA Technical Reports Server (NTRS)
Stoker, C. R.; Gooding, James L.; Banin, A.; Clark, Benton C.; Roush, Ted
1991-01-01
The chemical and physical properties of Martian surface materials are reviewed from the perspective of using these resources to support human settlement. The resource potential of Martian sediments and soils can only be inferred from limited analyses performed by the Viking Landers (VL), from information derived from remote sensing, and from analysis of the SNC meteorites thought to be from Mars. Bulk elemental compositions by the VL inorganic chemical (x ray fluorescence) analysis experiments have been interpreted as evidence for clay minerals (possibly smectites) or mineraloids (palagonite) admixed with sulfate and chloride salts. The materials contained minerals bearing Fe, Ti, Al, Mg and Si. Martian surface materials may be used in many ways. Martian soil, with appropriate preconditioning, can probably be used as a plant growth medium, supplying mechanical support, nutrient elements, and water at optimal conditions to the plants. Loose Martian soils could be used to cover structures and provide radiation shielding for surface habitats. Martian soil could be wetted and formed into abode bricks used for construction. Duricrete bricks, with strength comparable to concrete, can probably be formed using compressed muds made from martian soil.
Diurnal variation in martian dust devil activity
NASA Astrophysics Data System (ADS)
Chapman, R. M.; Lewis, S. R.; Balme, M.; Steele, L. J.
2017-08-01
We show that the dust devil parameterisation in use in most Mars Global Circulation Models (MGCMs) results in an unexpectedly high level of dust devil activity during morning hours. Prior expectations of the diurnal variation of Martian dust devils are based mainly upon the observed behaviour of terrestrial dust devils: i.e. that the majority occur during the afternoon. We instead find that large areas of the Martian surface experience dust devil activity during the morning in our MGCM, and that many locations experience a peak in dust devil activity before mid-sol. We find that the diurnal variation in dust devil activity is governed by near-surface wind speeds. Within the range of daylight hours, higher wind speeds tend to produce higher levels of dust devil activity, rather than the activity simply being governed by the availability of heat at the planet's surface, which peaks in early afternoon. Evidence for whether the phenomenon we observe is real or an artefact of the parameterisation is inconclusive. We compare our results with surface-based observations of Martian dust devil timings and obtain a good match with the majority of surveys. We do not find a good match with orbital observations, which identify a diurnal distribution more closely matching that of terrestrial dust devils, but orbital observations have limited temporal coverage, biased towards the early afternoon. We propose that the generally accepted description of dust devil behaviour on Mars is incomplete, and that theories of dust devil formation may need to be modified specifically for the Martian environment. Further surveys of dust devil observations are required to support any such modifications. These surveys should include both surface and orbital observations, and the range of observations must encompass the full diurnal period and consider the wider meteorological context surrounding the observations.
The Preliminary Design of a Universal Martian Lander
NASA Technical Reports Server (NTRS)
Norman, Timothy L.; Gaskin, David; Adkins, Sean; MacDonnell, David; Ross, Enoch; Hashimoto, Kouichi; Miller, Loran; Sarick, John; Hicks, Jonathan; Parlock, Andrew;
1993-01-01
As part of the NASA/USRA program, nineteen West Virginia University students conducted a preliminary design of a manned Universal Martian Lander (UML). The WVU design considers descent to Mars from polar orbit, a six month surface stay, and ascent for rendezvous. The design begins with an unmanned UML landing at Elysium Mons followed by the manned UML landing nearby. During the six month surface stay, the eight modules are assembled to form a Martian base where scientific experiments are performed. The mission also incorporates hydroponic plant growth into a Controlled Ecological Life Support System (CELSS) for water recycling, food production, and to counteract psycho-logical effects of living on Mars. In situ fuel production for the Martian Ascent and Rendezvous Vehicle (MARV) is produced From gases in the Martian atmosphere. Following surface operations, the eight member crew uses the MARV to return to the Martian Transfer Vehicle (MTV) for the journey home to Earth.
Radiation protection using Martian surface materials in human exploration of Mars
NASA Technical Reports Server (NTRS)
Kim, M. H.; Thibeault, S. A.; Wilson, J. W.; Heilbronn, L.; Kiefer, R. L.; Weakley, J. A.; Dueber, J. L.; Fogarty, T.; Wilkins, R.
2001-01-01
To develop materials for shielding astronauts from the hazards of GCR, natural Martian surface materials are considered for their potential as radiation shielding for manned Mars missions. The modified radiation fluences behind various kinds of Martian rocks and regolith are determined by solving the Boltzmann equation using NASA Langley's HZETRN code along with the 1977 Solar Minimum galactic cosmic ray environmental model. To develop structural shielding composite materials for Martian surface habitats, theoretical predictions of the shielding properties of Martian regolith/polyimide composites has been computed to assess their shielding effectiveness. Adding high-performance polymer binders to Martian regolith to enhance structural properties also enhances the shielding properties of these composites because of the added hydrogenous constituents. Heavy ion beam testing of regolith simulant/polyimide composites is planned to validate this prediction. Characterization and proton beam tests are performed to measure structural properties and to compare the shielding effects on microelectronic devices, respectively.
Ferrate (IV) as a Possible Oxidant on the Martian Surface
NASA Astrophysics Data System (ADS)
Tsapin, Alexandre; Goldfeld, M. G.; McDonald, G. D.; Nealson, K. H.; Mohnke, J.; Moskovitz, B.; Solheid, P.; Kemner, K. H.; Orlandini, K.
Viking experiments showed that Martian soil has a very strong oxidant, which could be responsible for the results of experiments performed on Viking landers. These experiments were designed specifically to detect life on Mars. The nature of that oxidant was not determined during Viking mission. Later several groups tried to reconstruct Viking experiments and find out the nature of Martian oxidant. None of these attempts were completely successful. The general perception was that there are several chemically different oxidants on Martian surface. In this study we suggested that potassium ferrate K_2FeO_4 can be Martian oxidant responsible at least partially for the results of experiments on Viking landers. We characterized liquid and powder preparation of Fe (VI) with EPR, optical spectroscopy, Mossbauer spectroscopy, and by Fe-XANES. All properties of our preparations of (FeVI) are consistent with the proposal role of that compound as a strong oxidant on Martian surface.
Measurements of the neutron spectrum on the Martian surface with MSL/RAD
NASA Astrophysics Data System (ADS)
Köhler, J.; Zeitlin, C.; Ehresmann, B.; Wimmer-Schweingruber, R. F.; Hassler, D. M.; Reitz, G.; Brinza, D. E.; Weigle, G.; Appel, J.; Böttcher, S.; Böhm, E.; Burmeister, S.; Guo, J.; Martin, C.; Posner, A.; Rafkin, S.; Kortmann, O.
2014-03-01
The Radiation Assessment Detector (RAD), onboard the Mars Science Laboratory (MSL) rover Curiosity, measures the energetic charged and neutral particles and the radiation dose rate on the surface of Mars. An important factor for determining the biological impact of the Martian surface radiation is the specific contribution of neutrons, with their deeper penetration depth and ensuing high biological effectiveness. This is very difficult to measure quantitatively, resulting in considerable uncertainties in the total radiation dose. In contrast to charged particles, neutral particles (neutrons and gamma rays) are generally only measured indirectly. Measured spectra are a complex convolution of the incident particle spectrum with the detector response function and must be unfolded. We apply an inversion method (based on a maximum likelihood estimation) to calculate the neutron and gamma spectra from the RAD neutral particle measurements. Here we show the first spectra on the surface of Mars and compare them to theoretical predictions. The measured neutron spectrum (ranging from 8 to 740 MeV) translates into a radiation dose rate of 14±4μGy/d and a dose equivalent rate of 61±15μSv/d. This corresponds to 7% of the measured total surface dose rate and 10% of the biologically relevant surface dose equivalent rate on Mars. Measuring the Martian neutron and gamma spectra is an essential step for determining the mutagenic influences to past or present life at or beneath the Martian surface as well as the radiation hazard for future human exploration, including the shielding design of a potential habitat.
A model of Martian surface chemistry
NASA Technical Reports Server (NTRS)
Oyama, V. I.; Berdahl, B. J.
1979-01-01
Alkaline earth and alkali metal superoxides and peroxides, gamma-Fe2O3 and carbon suboxide polymer, are proposed to be constituents of the Martian surface material. These reactive substances explain the water modified reactions and thermal behaviors of the Martian samples demonstrated by all of the Viking Biology Experiments. It is also proposed that the syntheses of these substances result mainly from electrical discharges between wind-mobilized particles at Martian pressures; plasmas are initiated and maintained by these discharges. Active species in the plasma either combine to form or react with inorganic surfaces to create the reactive constituents.
Viking 1: early results. [Mars atmosphere and surface examinations
NASA Technical Reports Server (NTRS)
1976-01-01
A brief outline of the Viking 1 mission to Mars is followed by descriptions of the Martian landing site and the scientific instrumentation aboard Viking 1 orbiter and lander. Measurements of the Martian atmosphere provided data on its molecular composition, temperature and pressure. The detection of nitrogen in the Martian atmosphere indicates the existence of life. Panoramic photographs of the Martian surface were also obtained and are shown. Preliminary chemical and biological investigations on samples of Martian soil indicated the presence of the elements iron, calcium, silicon, titanium and aluminum as major constituents. Observed biochemical reactions were judged conducive of biological activity.
Mars. [evolution and surface features
NASA Technical Reports Server (NTRS)
Pollack, J. B.
1975-01-01
The evolution and physical structure of Mars are discussed primarily on the basis of Mariner 9 observations. The Martian atmosphere, density, and iron abundance are compared with those of earth, and it is noted that the planet was probably formed in less than 100,000 years. Stages in Martian differentiation are described together with the atmospheric composition, condensation and dust clouds, and surface winds. The surface is shown to have a wide diversity of geological landforms resulting from a variety of processes, including meteoroid bombardment, volcanic and tectonic activity, sapping, the action of running water, and wind action. Described landforms include impact craters, volcanic plains and domes, shield volcanoes, sinuous channels and gullies apparently formed by running water, and the enormous canyon system. Mechanisms for climatic change are considered, and questions are posed regarding the possibility of life on Mars.
NASA Astrophysics Data System (ADS)
Ehresmann, B.; Hassler, D.; Zeitlin, C.; Guo, J.; Lee, C. O.; Wimmer-Schweingruber, R. F.; Appel, J. K.; Boehm, E.; Boettcher, S. I.; Brinza, D. E.; Burmeister, S.; Lohf, H.; Martin-Garcia, C.; Matthiae, D.; Rafkin, S. C.; Reitz, G.
2017-12-01
NASA's Mars Science Laboratory (MSL) mission has now been operating in Gale crater on the surface of Mars for five years. On board MSL, the Radiation Assessment Detector (MSL/RAD) is measuring the Martian surface radiation environment, providing insights on its intensity and composition. This radiation field is mainly composed of primary Galactic Cosmic Rays (GCRs) and secondary particles created by the GCRs' interactions with the Martian atmosphere and soil. However, on shorter time scales the radiation environment can be dominated by contributions from Solar Energetic Particle (SEP) events. Due to the modulating effect of the Martian atmosphere shape and intensity of these SEP spectra will differ significantly between interplanetary space and the Martian surface. Understanding how SEP events influence the surface radiation field is crucial to assess associated health risks for potential human missions to Mars. Here, we present updated MSL/RAD results for charged particle fluxes measured on the surface during SEP activity from the five years of MSL operations on Mars. The presented results incorporate updated analysis techniques for the MSL/RAD data and yield the most robust particle spectra to date. Furthermore, we compare the MSL/RAD SEP-induced fluxes to measurements from other spacecraft in the inner heliosphere and, in particular, in Martian orbit. Analyzing changes of SEP intensities from interplanetary space to the Martian surface gives insight into the modulating effect of the Martian atmosphere, while comparing timing profiles of SEP events between Mars and different points in interplanetary space can increase our understanding of SEP propagation in the heliosphere.
Liquid Water in the Extremely Shallow Martian Subsurface
NASA Technical Reports Server (NTRS)
Pavlov, A.; Shivak, J. N.
2012-01-01
Availability of liquid water is one of the major constraints for the potential Martian biosphere. Although liquid water is unstable on the surface of Mars due to low atmospheric pressures, it has been suggested that liquid films of water could be present in the Martian soil. Here we explored a possibility of the liquid water formation in the extremely shallow (1-3 cm) subsurface layer under low atmospheric pressures (0.1-10 mbar) and low ("Martian") surface temperatures (approx.-50 C-0 C). We used a new Goddard Martian simulation chamber to demonstrate that even in the clean frozen soil with temperatures as low as -25C the amount of mobile water can reach several percents. We also showed that during brief periods of simulated daylight warming the shallow subsurface ice sublimates, the water vapor diffuses through porous surface layer of soil temporarily producing supersaturated conditions in the soil, which leads to the formation of additional liquid water. Our results suggest that despite cold temperatures and low atmospheric pressures, Martian soil just several cm below the surface can be habitable.
NASA Technical Reports Server (NTRS)
Forget, Francois; Hourdin, F.; Talagrand, O.
1994-01-01
The Mars Pathfinder Meteorological Package (ASI/MET) will measure the local pressure, temperature, and winds at its future landing site, somewhere between the latitudes 0 deg N and 30 deg N. Comparable measurements have already been obtained at the surface of Mars by the Viking Landers at 22 deg N (VL1) and 48 deg N (VL2), providing much useful information on the martian atmosphere. In particular the pressure measurements contain very instructive information on the global atmospheric circulation. At the Laboratoire de Meteorologie Dynamique (LMD), we have analyzed and simulated these measurements with a martian atmospheric global circulation model (GCM), which was the first to simulate the martian atmospheric circulation over more than 1 year. The model is able to reproduce rather accurately many observed features of the martian atmosphere, including the long- and short-period oscillations of the surface pressure observed by the Viking landers. From a meteorological point of view, we think that a landing site located near or at the equator would be an interesting choice.
The Search for Sustainable Subsurface Habitats on Mars, and the Sampling of Impact Ejecta
NASA Astrophysics Data System (ADS)
Ivarsson, Magnus; Lindgren, Paula
2010-07-01
On Earth, the deep subsurface biosphere of both the oceanic and the continental crust is well known for surviving harsh conditions and environments characterized by high temperatures, high pressures, extreme pHs, and the absence of sunlight. The microorganisms of the terrestrial deep biosphere have an excellent capacity for adapting to changing geochemistry, as the alteration of the crust proceeds and the conditions of their habitats slowly change. Despite an almost complete isolation from surface conditions and the surface biosphere, the deep biosphere of the crustal rocks has endured over geologic time. This indicates that the deep biosphere is a self-sufficient system, independent of the global events that occur at the surface, such as impacts, glaciations, sea level fluctuations, and climate changes. With our sustainable terrestrial subsurface biosphere in mind, the subsurface on Mars has often been suggested as the most plausible place to search for fossil Martian life, or even present Martian life. Since the Martian surface is more or less sterile, subsurface settings are the only place on Mars where life could have been sustained over geologic time. To detect a deep biosphere in the Martian basement, drilling is a requirement. However, near future Mars sample return missions are limited by the mission's payload, which excludes heavy drilling equipment and restrict the missions to only dig the topmost meter of the Martian soil. Therefore, the sampling and analysis of Martian impact ejecta has been suggested as a way of accessing the deeper Martian subsurface without using heavy drilling equipment. Impact cratering is a natural geological process capable of excavating and exposing large amounts of rock material from great depths up to the surface. Several studies of terrestrial impact deposits show the preservation of pre-impact biosignatures, such as fossilized organisms and chemical biological markers. Therefore, if the Martian subsurface contains a record of life, it is reasonable to assume that biosignatures derived from the Martian subsurface could also be preserved in the Martian impact ejecta.
Lighting Condition Analysis for Mars' Moon Phobos
NASA Technical Reports Server (NTRS)
Li, Zu Qun; de Carufel, Guy; Crues, Edwin Z.; Bielski, Paul
2016-01-01
This study used high fidelity computer simulation to investigate the lighting conditions, specifically the solar radiation flux over the surface, on Phobos. Ephemeris data from the Jet Propulsion Laboratory (JPL) DE405 model was used to model the state of the Sun, Earth, Moon, and Mars. An occultation model was developed to simulate Phobos' self-shadowing and its solar eclipses by Mars. The propagated Phobos state was compared with data from JPL's Horizon system to ensure the accuracy of the result. Results for Phobos lighting conditions over one Martian year are presented, which include the duration of solar eclipses, average solar radiation intensity, surface exposure time, and radiant exposure for both sun tracking and fixed solar arrays. The results show that: Phobos' solar eclipse time varies throughout the Martian year, with longer eclipse durations during the Martian northern spring and fall seasons and no eclipses during the Martian northern summer and winter seasons; solar radiation intensity is close to minimum in late spring and close to maximum in late fall; exposure time per orbit is relatively constant over the surface during the spring and fall but varies with latitude during the summer and winter; and Sun tracking solar arrays generate more energy than a fixed solar array. A usage example of the result is also present in this paper to demonstrate the utility.
How Do Martian Dust Devils Vary Throughout the Sol?
NASA Astrophysics Data System (ADS)
Chapman, R.; Lewis, S.; Balme, M. R.; Steele, L.
2016-12-01
Dust devils are vortices of air made visible by entrained dust particles. Dust devils have been observed on Earth and captured in many Mars lander and orbiter images. Martian dust devils may be important to the global climate and are parameterised within Mars Global Circulation Models (MGCMs). We show that the dust devil parameterisation in use within most MGCMs results in an unexpectedly high level of dust devil activity during morning hours. In contrast to expectations, based on the observed behaviour of terrestrial dust devils and the diurnal maximum thermal contrast at the surface, we find that large areas of the modelled Martian surface experience dust devil activity during the morning as well as in the afternoon, and that many locations experience a peak in dust devil activity before mid-sol. Using the UK MGCM, we study the amount of surface dust lifted by dust devils throughout the diurnal cycle as a proxy for the level of dust devil activity occurring. We compare the diurnal variation in dust devil activity with the diurnal variation of the variables included in the dust devil parameterisation. We find that the diurnal variation in dust devil activity is strongly modulated by near-surface wind speeds. Within the range of daylight hours, higher wind speeds tend to produce more dust devil activity, rather than the activity simply being governed by the availability of heat at the planet's surface, which peaks in early afternoon. We compare our results with observations of Martian dust devil timings and obtain a good match with the majority of surface-based surveys. We do not find such a good match with orbital observations, but these data tend to be biased in their temporal coverage. We propose that the generally accepted description of dust devil behaviour on Mars is incomplete, and that theories of dust devil formation may need to be modified specifically for the Martian environment. Further dust devil observations are required to support any such modifications.
2003-07-07
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the second Mars Exploration Rover, Opportunity, is poised for launch after rollback of the Mobile Service Tower. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rover’s prime mission is planned to last three months on Mars.
2003-07-07
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the rover "Opportunity" for the second Mars Exploration Rover mission launches at 11:18:15 p.m. EDT. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rover’s prime mission is planned to last three months on Mars.
A High Resolution Microprobe Study of EETA79001 Lithology C
NASA Technical Reports Server (NTRS)
Schrader, Christian M.; Cohen, B. A.; Donovan, J. J.; Vicenzi, E. P.
2010-01-01
Antarctic meteorite EETA79001 has received substantial attention for possibly containing a component of Martian soil in its impact glass (Lithology C) [1]. The composition of Martian soil can illuminate near-surface processes such as impact gardening [2] and hydrothermal and volcanic activity [3,4]. Impact melts in meteorites represent our most direct samples of Martian regolith. We present the initial findings from a high-resolution electron microprobe study of Lithology C from Martian meteorite EETA79001. As this study develops we aim to extract details of a potential soil composition and to examine Martian surface processes using elemental ratios and correlations.
NASA Astrophysics Data System (ADS)
Justh, H. L.; Kasting, J. F.
2002-12-01
The nature of the ancient climate of Mars remains one of the fundamental unresolved problems in martian research. While the present environment is hostile to life, images from the Mariner, Viking and Mars Global Surveyor missions, have shown geologic features on the martian surface that seem to indicate an earlier period of hydrologic activity. The fact that ancient valley networks and degraded craters have been seen on the martian surface indicates that the early martian climate may have been more Earth-like, with a warmer surface temperature. The presence of liquid water would require a greenhouse effect much larger than needed at present, as the solar constant, S0, was 25% lower 3.8 billion years ago when the channels are thought to have formed (1,2). Previous calculations have shown that gaseous CO2 and H2O alone could not have warmed the martian surface to the temperature needed to account for the presence of liquid water (3). It has been hypothesized that a CO2-H2O atmosphere could keep early Mars warm if it was filled with CO2 ice clouds in the upper martian troposphere (4). Obtaining mean martian surface temperatures above 273 K would require nearly 100% cloud cover, a condition that is unrealistic for condensation clouds on early Mars. Any reduction in cloud cover makes it difficult to achieve warm martian surface temperatures except at high pressures and CO2 clouds could cool the martian surface if they were low and optically thick (5). CO2 and CH4 have been suggested as important greenhouse gases on the early Earth. Our research focuses on the effects of increased concentrations of atmospheric greenhouse gases on the surface temperature of early Mars, with emphasis on the reduced greenhouse gas, CH4. To investigate the possible warming effect of CH4, we modified a one-dimensional, radiative-convective climate model used in previous studies of the early martian climate (5). New cloud-free temperature profiles for various surface pressures and CH4 mixing ratios will be presented. This use of climate modeling is important since it is the fundamental way that the magnitude of possible geochemical and biological CH4 sources can be related to predicted CH4 concentrations in the early martian atmosphere. References: 1) Gough, D. O. Solar Physics 74, 21-34 (1981). 2) Carr, M. H. Water on Mars (1996). 3) Kasting, J. F. Icarus 94, 1-13 (1991). 4) Forget, F., and Pierrehumbert R. T. Science 278, 1273-1276 (1997). 5) Mischna, M. A., Kasting J. F., Pavlov A., and Freedman R. Icarus 145, 546-554 (2000).
NASA Astrophysics Data System (ADS)
De Vera, Jean-Pierre; Schulze-Makuch, D.; Khan, A.; Lorek, A.; Koncz, A.; Stivaletta, N.; Möhlmann, D.; Spohn, T.
2012-05-01
We observed an increase in photosynthetic activity in the lichen Pleopsidium chlorophanum but a strong negative effect on the photosynthetic activity of endolithic cyanobacteria when subjected for 34 days to environmental stresses likely to be encountered in semi-protected habitats on the Martian surface. Stresses were simulated in a Mars Simulation Chamber (MSC) and included high UV fluxes, low temperatures, low water activity, high atmospheric CO2 concentrations, and an atmospheric pressure of about 6 mbar. P. chlorophanum is an extremophile: it lives in very cold, dry, high-altitude habitats which are Earth's best approximation of the Martian surface. Our lichen samples came from North Victoria Land in Antarctica whereas the investigated samples of cyanobacteria came from tropic regions in the Sahara. Three samples of each group of organisms were exposed uninterruptedly to simulated conditions (as above) of the naked, unprotected Martian surface for 34 days, receiving the full Martian solar spectrum (200 - 2500 nm) for a cumulative UV dose of 6343.6 kJm-2. For a second sample set - containing also three lichen thalli and three endolithic cyanobacteria communities - the cumulative (34-day) UV dose was reduced to 268.8 kJm-2, to reasonably simulate the amount the microorganisms might receive in (semi-) protected surface sites (e.g., fissures, cracks and micro-caves within rocks or permafrost soil). In the 'unprotected' experiment it was unclear if the lichen was still actively photosynthesizing but still clear that the cyanobacteria were affected. However, under 'protected site' conditions, the cyanobacteria had no clear photosynthetic response under and after simulated Martian conditions but the lichen not only survived and remained photosynthetically active, it even adapted physiologically by increasing its photosynthetic activity over 34 days. Comparison with other Mars simulation experiments on exposure platforms in space and in the laboratory with other investigated species show results of remarkable survival rates and maintained photosynthesizing activity which strongly supports the interconnected notions (1) that terrestrial life most likely can adapt physiologically to live on Mars (hence justifying stringent measures to prevent human activities from contaminating/infecting Mars with terrestrial organisms); (2) that in searching for extant life on Mars we should focus on "protected" habitats; and (3) that early-originating (Noachian Period) indigenous Martian life might still survive in such habitats despite Mars' cooling and drying during the last 4 billion years.
Simulation of Martian dust accumulation on surfaces
NASA Technical Reports Server (NTRS)
Perez-Davis, Marla E.; Gaier, James R.; Kress, Robert; Grimalda, Justus
1990-01-01
Future NASA space missions include the possibility of manned landings and exploration of Mars. Environmental and operational constraints unique to Mars must be considered when selecting and designing the power system to be used on the Mars surface. A technique is described which was developed to simulate the deposition of dust on surfaces. Three kinds of dust materials were studied: aluminum oxide, basalt, and iron oxide. The apparatus was designed using the Stokes and Stokes-Cunningham law for particle fallout, with additional consideration given to particle size and shape. Characterization of the resulting dust films on silicon dioxide, polytetrafluoroethylene, indium tin oxide, diamondlike carbon, and other surfaces are discussed based on optical transmittance measurements. The results of these experiments will guide future studies which will consider processes to remove the dust from surfaces under Martian environmental conditions.
Considerations Concerning the Development and Testing of In-situ Materials for Martian Exploration
NASA Technical Reports Server (NTRS)
Kim, M.-H. Y.; Heilbronn, L.; Thibeault, S. A.; Simonsen, L. C.; Wilson, J. W.; Chang, K.; Kiefer, R. L.; Maahs, H. G.
2000-01-01
Natural Martian surface materials are evaluated for their potential use as radiation shields for manned Mars missions. The modified radiation fluences behind various kinds of Martian rocks and regolith are determined by solving the Boltzmann equation using NASA Langley s HZETRN code along with the 1977 Solar Minimum galactic cosmic ray environmental model. To make structural shielding composite materials from constituents of the Mars atmosphere and from Martian regolith for Martian surface habitats, schemes for synthesizing polyimide from the Mars atmosphere and for processing Martian regolith/polyimide composites are proposed. Theoretical predictions of the shielding properties of these composites are computed to assess their shielding effectiveness. Adding high-performance polymer binders to Martian regolith to enhance structural properties enhances the shielding properties of these composites because of the added hydrogenous constituents. Laboratory testing of regolith simulant/polyimide composites is planned to validate this prediction.
NASA Technical Reports Server (NTRS)
Graff, T. G.; Morris, R. V.; Christensen, P. R.
2003-01-01
The lunar mare basalts potentially provide a unique sample suite for understanding the nature of basalts on the martian surface. Our current knowledge of the mineralogical and chemical composition of the basaltic material on Mars comes from studies of the basaltic martian meteorites and from orbital and surface remote sensing observations. Petrographic observations of basaltic martian meteorites (e.g., Shergotty, Zagami, and EETA79001) show that the dominant phases are pyroxene (primarily pigeonite and augite), maskelynite (a diaplectic glass formed from plagioclase by shock), and olivine [1,2]. Pigeonite, a low calcium pyroxene, is generally not found in abundance in terrestrial basalts, but does often occur on the Moon [3]. Lunar samples thus provide a means to examine a variety of pigeonite-rich basalts that also have bulk elemental compositions (particularly low-Ti Apollo 15 mare basalts) that are comparable to basaltic SNC meteorites [4,5]. Furthermore, lunar basalts may be mineralogically better suited as analogues of the martian surface basalts than the basaltic martian meteorites because the plagioclase feldspar in the basaltic Martian meteorites, but not in the lunar surface basalts, is largely present as maskelynite [1,2]. Analysis of lunar mare basalts my also lead to additional endmember spectra for spectral libraries. This is particularly important analysis of martian thermal emission spectra, because the spectral library apparently contains a single pigeonite spectrum derived from a synthetic sample [6].
Some unconventional approaches to the exploration of Mars
NASA Astrophysics Data System (ADS)
French, J. R.
1991-02-01
The topics of space transport to Mars, and surface transport and surface operations on Mars are discussed in detail and new options for accomplishing these activities are presented. The question of maximizing the return on the investment in a Mars mission is addressed. One way to accomplish this is through reduction of propellant requirements by increasing the performance of the rocket engine, while another option is to make use of nuclear fuel. A technique discussed in detail would provide a means to manufacture fuel from Martian resources for both the return trip and for Mars surface exploration. Options for Mars surface transport include battery and nuclear powered rovers, solar powered automobiles, and either battery, nuclear or Mars-generated-propellant-powered aircraft specially designed to explore the Martian surface. The advantages and disadvantages of each of these options are considered, and the usefulness of a manned aircraft for both exploration and surface operational functions is discussed.
Strategies for Investigating Early Mars Using Returned Samples
NASA Technical Reports Server (NTRS)
Carrier, B. L.; Beaty, D. W.; McSween, H. Y.; Czaja, A. D.; Goreva, Y. S.; Hausrath, E. M.; Herd, C. D. K.; Humayun, M.; McCubbin, F. M.; McLennan, S. M.;
2017-01-01
The 2011 Visions & Voyages Planeary Science Decadal Survey identified making significant progress toward the return of samples from Mars as the highest priority goal for flagship missions in next decade. Numerous scientific objectives have been identified that could be advanced through the potential return and analysis of martian rock, regolith, and atmospheric samples. The analysis of returned martian samples would be particularly valuable in in-creasing our understanding of Early Mars. There are many outstanding gaps in our knowledge about Early Mars in areas such as potential astrobiology, geochronology, planetary evolution (including the age, context, and processes of accretion, differentiation, magmatic, and magnetic history), the history of water at the martian surface, and the origin and evolution of the martian atmosphere. Here we will discuss scientific objectives that could be significantly advanced by Mars sample return.
Mars vertical axis wind machines: The design of a tornado vortex machine for use on Mars
NASA Technical Reports Server (NTRS)
Carlin, Daun; Dyhr, Amy; Kelly, Jon; Schmirler, J. Eric; Carlin, Mike; Hong, Won E.; Mahoney, Kamin
1994-01-01
Ever since Viking 1 and 2 landed on the surface of Mars in the summer of 1976, man has yearned to go back. But before man steps foot upon the surface of Mars, unmanned missions such as the Martian Soft Lander and Martian Subsurface Penetrator will precede him. Alternative renewable power sources must be developed to supply the next generation of surface exploratory spacecraft, since RTG's, solar cells, and long-life batteries all have their significant drawbacks. One such alternative is to take advantage of the unique Martian atmospheric conditions by designing a small scale, Martian wind power generator, capable of surviving impact and fulfilling the long term (2-5 years), low-level power requirements (1-2 Watts) of an unmanned surface probe. After investigation of several wind machines, a tornado vortex generator was chosen based upon its capability of theoretically augmenting and increasing the available power that may be extracted from average Martian wind speeds of approximately 7.5 m/s. The Martian Tornado Vortex Wind Generator stands 1 meter high and has a diameter of 0.5 m. Martian winds enter the base and shroud of the Tornado Vortex Generator at 7.5 m/s and are increased to an exit velocity of 13.657 m/s due to the vortex that is created. This results in a rapid pressure drop of 4.56 kg/s(exp 2) m across the vortex core which aids in producing a net power output of 1.1765 Watts. The report contains the necessary analysis and requirements needed to feasibly operate a low-level powered, unmanned, Martian surface probe.
Mars vertical axis wind machines: The design of a tornado vortex machine for use on Mars
NASA Astrophysics Data System (ADS)
Carlin, Daun; Dyhr, Amy; Kelly, Jon; Schmirler, J. Eric; Carlin, Mike; Hong, Won E.; Mahoney, Kamin; Ralston, Michael
1994-06-01
Ever since Viking 1 and 2 landed on the surface of Mars in the summer of 1976, man has yearned to go back. But before man steps foot upon the surface of Mars, unmanned missions such as the Martian Soft Lander and Martian Subsurface Penetrator will precede him. Alternative renewable power sources must be developed to supply the next generation of surface exploratory spacecraft, since RTG's, solar cells, and long-life batteries all have their significant drawbacks. One such alternative is to take advantage of the unique Martian atmospheric conditions by designing a small scale, Martian wind power generator, capable of surviving impact and fulfilling the long term (2-5 years), low-level power requirements (1-2 Watts) of an unmanned surface probe. After investigation of several wind machines, a tornado vortex generator was chosen based upon its capability of theoretically augmenting and increasing the available power that may be extracted from average Martian wind speeds of approximately 7.5 m/s. The Martian Tornado Vortex Wind Generator stands 1 meter high and has a diameter of 0.5 m. Martian winds enter the base and shroud of the Tornado Vortex Generator at 7.5 m/s and are increased to an exit velocity of 13.657 m/s due to the vortex that is created. This results in a rapid pressure drop of 4.56 kg/s(exp 2) m across the vortex core which aids in producing a net power output of 1.1765 Watts. The report contains the necessary analysis and requirements needed to feasibly operate a low-level powered, unmanned, Martian surface probe.
NASA Technical Reports Server (NTRS)
Bielski, Paul
2015-01-01
Phobos, the larger of Mars' moons, provides a potential staging location for human exploration of the Martian surface. Its low gravity (about 1/200th of Earth) and lack of atmosphere makes it an attractive destination before a more complex human landing on Mars is attempted. While easier to approach and depart than Mars itself, Phobos provides unique challenges to visiting crews. It is irregularly shaped, so its local gravitational field does not always point straight down with respect to the visible horizon. It is very close to Mars and tidally locked, so the Martian gravity gradient and applied acceleration greatly affect the perceived surface gravity direction and magnitude. This simulation allows the assessment of unique mobility approaches on the surface of Phobos, including hopping in particular.
Mars Exospheric studies with MENCA on a Mars Orbiter
NASA Astrophysics Data System (ADS)
Bhardwaj, Anil; Menca Team
2012-07-01
The study of Martian exosphere is important for understanding the escape rate of Martian atmosphere and its impact on Mars' climate change. The neutral density distribution and the composition of Martian exosphere still remain largely unexplored. There are no in-situ measurements of the Martian exosphere; only a few remote sensing measurements have been made and some modelling studies are carried out. We proposed to fly a neutral mass spectrometer, namely "MENCA" (Mars Exospheric Neutral Composition Analyser) to explore the Martian exospheric neutral density and composition at an altitude of ~500 km and above from the surface of Mars, and to study its radial and diurnal variations. MENCA is based on the technique of quadrupole mass spectrometry and has the mass range of 1-300 amu with unit mass resolution. (*) MENCA Team includes: S.V. Mohankumar, T. P. Das, P. Sreelatha, P. Pradeepkumar, B. Sunder, Amarnath Nandi, Neha Naik, G. Supriya, Vipin K. Yadav, M. B. Dhanya, R. Satheesh Thampi, G. P. Padmanabhan
MODELING THE VARIATIONS OF DOSE RATE MEASURED BY RAD DURING THE FIRST MSL MARTIAN YEAR: 2012–2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Jingnan; Wimmer-Schweingruber, Robert F.; Heber, Bernd
2015-09-01
The Radiation Assessment Detector (RAD), on board Mars Science Laboratory’s (MSL) rover Curiosity, measures the energy spectra of both energetic charged and neutral particles along with the radiation dose rate at the surface of Mars. With these first-ever measurements on the Martian surface, RAD observed several effects influencing the galactic cosmic-ray (GCR) induced surface radiation dose concurrently: (a) short-term diurnal variations of the Martian atmospheric pressure caused by daily thermal tides, (b) long-term seasonal pressure changes in the Martian atmosphere, and (c) the modulation of the primary GCR flux by the heliospheric magnetic field, which correlates with long-term solar activitymore » and the rotation of the Sun. The RAD surface dose measurements, along with the surface pressure data and the solar modulation factor, are analyzed and fitted to empirical models that quantitatively demonstrate how the long-term influences ((b) and (c)) are related to the measured dose rates. Correspondingly, we can estimate dose rate and dose equivalents under different solar modulations and different atmospheric conditions, thus allowing empirical predictions of the Martian surface radiation environment.« less
NASA Technical Reports Server (NTRS)
Pavlov, A. A.; Pavlov, A. K.; Ostryakov, V. M.; Vasilyev, G. I.; Mahaffy, P.; Steele, A.
2014-01-01
C-13/C-12 and N-15/N-14 isotopic ratios are pivotal for our understanding of the Martian carbon cycle, history of the Martian atmospheric escape, and origin of the organic compounds on Mars. Here we demonstrate that the carbon and nitrogen isotopic composition of the surface rocks on Mars can be significantly altered by the continuous exposure of Martian surface to cosmic rays. Cosmic rays can effectively produce C-13 and N-15 isotopes via spallation nuclear reactions on oxygen atoms in various Martian rocks. We calculate that in the top meter of the Martian rocks, the rates of production of both C-13 and N-15 due to galactic cosmic rays (GCRs) exposure can vary within 1.5-6 atoms/cm3/s depending on rocks' depth and chemical composition. We also find that the average solar cosmic rays can produce carbon and nitrogen isotopes at a rate comparable to GCRs in the top 5-10 cm of the Martian rocks. We demonstrate that if the total carbon content in a surface Martian rock is <10 ppm, then the "light," potentially "biological" C-13/C-12 ratio would be effectively erased by cosmic rays over 3.5 billion years of exposure. We found that for the rocks with relatively short exposure ages (e.g., 100 million years), cosmogenic changes in N-15/N-14 ratio are still very significant. We also show that a short exposure to cosmic rays of Allan Hills 84001 while on Mars can explain its high-temperature heavy nitrogen isotopic composition (N-15/N-14). Applications to Martian meteorites and the current Mars Science Laboratory mission are discussed.
Mars surface weathering products and spectral analogs: Palagonites and synthetic iron minerals
NASA Technical Reports Server (NTRS)
Golden, D. C.; Ming, D. W.; Morris, R. V.; Lauer, H. V., Jr.
1992-01-01
There are several hypotheses regarding the formation of Martian surface fines. These surface fines are thought to be products of weathering processes occurring on Mars. Four major weathering environments of igneous rocks on Mars have been proposed; (1) impact induced hydrothermal alterations; (2) subpermafrost igneous intrusion; (3) solid-gas surface reactions; and (4) subaerial igneous intrusion over permafrost. Although one or more of these processes may be important on the Martian surface, one factor in common for all these processes is the reaction of solid or molten basalt with water (solid, liquid, or gas). These proposed processes, with the exception of solid-gas surface reactions, are transient processes. The most likely product of transient hydrothermal processes are layer silicates, zeolites, hydrous iron oxides and palagonites. The long-term instability of hydrous clay minerals under present Martian conditions has been predicted; however, the persistence of such minerals due to slow kinetics of dehydration, or entrapment in permafrost, where the activity of water is high, can not be excluded. Anhydrous oxides of iron (e.g., hematite and maghemite) are thought to be stable under present Martian surface conditions. Oxidative weathering of sulfide minerals associated with Martian basalts has been proposed. Weathering of sulfide minerals leads to a potentially acidic permafrost and the formation of Fe(3) oxides and sulfates. Weathering of basalts under acidic conditions may lead to the formation of kaolinite through metastable halloysite and metahalloysite. Kaolinite, if present, is thought to be a thermodynamically stable phase at the Martian surface. Fine materials on Mars are important in that they influence the surface spectral properties; these fines are globally distributed on Mars by the dust storms and this fraction will have the highest surface area which should act as a sink for most of the absorbed volatiles near the surface of Mars. Therefore, the objectives of this study were to: (1) examine the fine fraction mineralogy of several palagonitic materials from Hawaii; and (2) compare spectral properties of palagonites and submicron sized synthetic iron oxides with the spectral properties of the Martian surface.
Investigations in Martian Sedimentology
NASA Technical Reports Server (NTRS)
Moore, Jeffrey M.
1998-01-01
The purpose of this report is to investigate and discuss the Martian surface. This report was done in specific tasks. The tasks were: characterization of Martian fluids and chemical sediments; mass wasting and ground collapse in terrains of volatile-rich deposits; Mars Rover terrestrial field investigations; Mars Pathfinder operations support; and Martian subsurface water instrument.
NASA Technical Reports Server (NTRS)
Toulmin, P., III; Rose, H. J., Jr.; Christian, R. P.; Baird, A. K.; Evans, P. H.; Clark, B. C.; Keil, K.; Kelliher, W. C.
1977-01-01
The current status of geochemical, mineralogical, petrological interpretation of refined Viking Lander data is reviewed, and inferences that can be drawn from data on the composition of Martian surface materials are presented. The materials are dominantly fine silicate particles admixed with, or including, iron oxide particles. Both major element and trace element abundances in all samples are indicative of mafic source rocks (rather than more highly differentiated salic materials). The surface fines are nearly identical in composition at the two widely separated Lander sites, except for some lithologic diversity at the 100-m scale. This implies that some agency (presumably aeolian processes) has thoroughly homogenized them on a planetary scale. The most plausible model for the mineralogical constitution of the fine-grained surface materials at the two Lander sites is a fine-grained mixture dominated by iron-rich smectites, or their degradation products, with ferric oxides, probably including maghemite and carbonates (such as calcite), but not such less stable phases as magnesite or siderite.
Near-infrared spectra of the Martian surface: Reading between the lines
NASA Technical Reports Server (NTRS)
Crisp, D.; Bell, J. F., III
1993-01-01
Moderate-resolution near-infrared (NIR) spectra of Mars have been widely used in studies of the Martian surface because many candidate surface materials have distinctive absorption features at these wavelengths. Recent advances in NIR detector technology and instrumentation have also encouraged studies in this spectral region. The use of moderate spectral resolution has often been justified for NIR surface observations because the spectral features produced by most surface materials are relatively broad, and easily discriminated at this resolution. In spite of this, NIR spectra of Mars are usually very difficult to interpret quantitatively. One problem is that NIR surface absorption features are often only a few percent deep, requiring observations with great signal-to-noise ratios. A more significant problem is that gases in the Martian atmosphere contribute numerous absorption features at these wavelengths. Ground-based observers must also contend with variable absorption by several gases in the Earth's atmosphere (H2O, CO2, O3, N2O, CH4, O2). The strong CO2 bands near 1.4, 1.6, 2.0, 2.7, 4.3, and 4.8 micrometers largely preclude the analysis of surface spectral features at these wavelengths. Martian atmospheric water vapor also contributes significant absorption near 1.33, 1.88, and 2.7 micrometers, but water vapor in the Earth's atmosphere poses a much larger problem to ground-based studies of these spectral regions. The third most important NIR absorber in the Martian atmosphere is CO. This gas absorbs most strongly in the relatively-transparent spectral windows near 4.6 and 2.3 micrometers. It also produces 1-10 percent absorption in the solar spectrum at these NIR wavelengths. This solar CO absorption cannot be adequately removed by dividing the Martian spectrum by that of a star, as is commonly done to calibrate ground-based spectroscopic observations, because most stars do not have identical amounts of CO absorption in their spectra. Here, we describe tow effective methods for eliminating contamination of Martian surface spectra by absorption in the solar, terrestrial, and Martian atmospheres. Both methods involve the use of very-high-resolution spectra that completely resolve the narrow atmospheric absorption lines.
Mars Sample Return without Landing on the Surface
NASA Technical Reports Server (NTRS)
Jurewicz, A. J. G.; Jones, Steven M.; Yen, A. S.
2000-01-01
Many in the science community want a Mars sample return in the near future, with the expectation that it will provide in-depth information, significantly beyond what we know from remote sensing, limited in-situ measurements, and work with Martian meteorites. Certainly, return of samples from the Moon resulted in major advances in our understanding of both the geologic history of our planetary satellite, and its relationship to Earth. Similar scientific insights would be expected from analyses of samples returned from Mars. Unfortunately, Mars-lander sample-return missions have been delayed, for the reason that NASA needs more time to review the complexities and risks associated with that type of mission. A traditional sample return entails a complex transfer-chain, including landing, collection, launch, rendezvous, and the return to Earth, as well as an evaluation of potential biological hazards involved with bringing pristine Martian organics to Earth. There are, however, means of returning scientifically-rich samples from Mars without landing on the surface. This paper discusses an approach for returning intact samples of surface dust, based on known instrument technology, without using an actual Martian lander.
NASA Astrophysics Data System (ADS)
Patel, M. R.; Bérces, A.; Kolb, C.; Lammer, H.; Rettberg, P.; Zarnecki, J. C.; Selsis, F.
2003-01-01
The issue of the variation of the surface ultraviolet (UV) environment on Mars was investigated with particular emphasis being placed on the interpretation of data in a biological context. A UV model has been developed to yield the surface UV irradiance at any time and place over the Martian year. Seasonal and diurnal variations were calculated and dose rates evaluated. Biological interpretation of UV doses is performed through the calculation of DNA damage effects upon phage T7 and Uracil, used as examples for biological dosimeters. A solar UV "hotspot" was revealed towards perihelion in the southern hemisphere, with a significant damaging effect upon these species. Diurnal profiles of UV irradiance are also seen to vary markedly between aphelion and perihelion. The effect of UV dose is also discussed in terms of the chemical environment of the Martian regolith, since UV irradiance can reach high enough levels so as to have a significant effect upon the soil chemistry. We show, by assuming that H2O is the main source of hydrogen in the Martian atmosphere, that the stoichiometrically desirable ratio of 2:1 for atmospheric H and O loss rates to space are not maintained and at present the ratio is about 20:1. A large planetary oxygen surface sink is therefore necessary, in contrast with escape to space. This surface oxygen sink has important implications for the oxidation potential and the toxicology of the Martian soil. UV-induced adsorption of O_{2}^{-} super-radicals plays an important role in the oxidative environment of the Martian surface, and the biologically damaging areas found in this study are also shown to be regions of high subsurface oxidation. Furthermore, we briefly cover the astrobiological implications for landing sites that are planned for future Mars missions
Biohazard potential of putative Martian organisms during missions to Mars.
Warmflash, David; Larios-Sanz, Maia; Jones, Jeffrey; Fox, George E; McKay, David S
2007-04-01
Exploration Class missions to Mars will require precautions against potential contamination by any native microorganisms that may be incidentally pathogenic to humans. While the results of NASA's Viking biology experiments of the 1970s have been generally interpreted as inconclusive for surface organisms, and attributed to active but nonbiological chemistries, the possibility of native surface life has never been ruled out completely. It is possible that, prior to the first human landing on Mars, robotic craft and sample return missions will provide enough data to know with certainty whether future human landing sites harbor extant life forms. If native life were found to exist, it would be problematic to determine whether any of its species might present a medical danger to astronauts. Therefore, it will become necessary to assess empirically the risk that the planet contains pathogens based on terrestrial examples of pathogenicity and to take a reasonably cautious approach to biohazard protection. A survey of terrestrial pathogens was conducted with special emphasis on those whose evolution has not depended on the presence of animal hosts. The history of the development and implementation of Apollo anti-contamination protocol and recommendations of the National Research Council's Space Studies Board regarding Mars were reviewed. Organisms can emerge in Nature in the absence of indigenous animal hosts and both infectious and non-infectious human pathogens are therefore theoretically possible on Mars. Although remote, the prospect of Martian surface life, together with the existence of a diversity of routes by which pathogenicity has emerged on Earth, suggests that the probability of human pathogens on Mars, while low, is not zero. Still, since the discovery and study of Martian life can have long-term benefits for humanity, the risk that Martian life might include pathogens should not be an obstacle to human exploration. As a precaution, it is recommended that EVA (extravehicular activity) suits be decontaminated when astronauts enter surface habitats upon returning from field activity and that biosafety protocols approximating laboratory BSL 2 be developed for astronauts working in laboratories on the Martian surface. Quarantine of astronauts and Martian materials arriving on Earth should also be part of a human mission to Mars, and this and the surface biosafety program should be integral to human expeditions from the earliest stages of the mission planning.
Dust Ejection Induced by Small Meteoroids Impacting Martian Surface
NASA Technical Reports Server (NTRS)
Shuvalov, Valery
2001-01-01
The objective of this study is numerical modeling of meteoroid impact on the martian surface and determination of the resulting dust cloud parameters. Additional information is contained in the original extended abstract.
The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment.
Schofield, J T; Barnes, J R; Crisp, D; Haberle, R M; Larsen, S; Magalhães, J A; Murphy, J R; Seiff, A; Wilson, G
1997-12-05
The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment measured the vertical density, pressure, and temperature structure of the martian atmosphere from the surface to 160 km, and monitored surface meteorology and climate for 83 sols (1 sol = 1 martian day = 24.7 hours). The atmospheric structure and the weather record are similar to those observed by the Viking 1 lander (VL-1) at the same latitude, altitude, and season 21 years ago, but there are differences related to diurnal effects and the surface properties of the landing site. These include a cold nighttime upper atmosphere; atmospheric temperatures that are 10 to 12 degrees kelvin warmer near the surface; light slope-controlled winds; and dust devils, identified by their pressure, wind, and temperature signatures. The results are consistent with the warm, moderately dusty atmosphere seen by VL-1.
Photovoltaic array for Martian surface power
NASA Technical Reports Server (NTRS)
Appelbaum, J.; Landis, G. A.
1992-01-01
Missions to Mars will require electric power. A leading candidate for providing power is solar power produced by photovoltaic arrays. To design such a power system, detailed information on solar-radiation availability on the Martian surface is necessary. The variation of the solar radiation on the Martian surface is governed by three factors: (1) variation in Mars-Sun distance; (2) variation in solar zenith angle due to Martian season and time of day; and (3) dust in the Martian atmosphere. A major concern is the dust storms, which occur on both local and global scales. However, there is still appreciable diffuse sunlight available even at high opacity, so that solar array operation is still possible. Typical results for tracking solar collectors are also shown and compared to the fixed collectors. During the Northern Hemisphere spring and summer the isolation is relatively high, 2-5 kW-hr/sq m-day, due to the low optical depth of the Martian atmosphere. These seasons, totalling a full terrestrial year, are the likely ones during which manned mission will be carried out.
Martian regolith geochemistry and sampling techniques
NASA Technical Reports Server (NTRS)
Clark, B. C.
1988-01-01
Laboratory study of samples of the intermediate and fine-grained regolith, including duricrust peds, is a fundamental prerequisite for understanding the types of physical and chemical weathering processes on Mars. The extraordinary importance of such samples is their relevance to understanding past changes in climate, availability (and possible physical state) of water, eolian forces, the thermal and chemical influences of volcanic and impact processes, and the inventory and fates of Martian volatiles. Fortunately, this regolith material appears to be ubiquitous over the Martian surface, and should be available at many different landing sites. Viking data has been interpreted to indicate a smectite-rich regolith material, implying extensive weathering involving aqueous activity and geochemical alteration. An all-igneous source of the Martian fines has also been proposed. The X-ray fluorescence measurement data set can now be fully explained in terms of a simple two-component model. The first component is silicate, having strong geochemical similarities with Shergottites, but not other SNC meteorites. The second component is salt. Variations in these components could produce silicate and salt-rich beds, the latter being of high potential importance for microenvironments in which liquid water (brines) could exist. It therefore would be desirable to scan the surface of the regolith for such prospects.
Martian regolith geochemistry and sampling techniques
NASA Astrophysics Data System (ADS)
Clark, B. C.
Laboratory study of samples of the intermediate and fine-grained regolith, including duricrust peds, is a fundamental prerequisite for understanding the types of physical and chemical weathering processes on Mars. The extraordinary importance of such samples is their relevance to understanding past changes in climate, availability (and possible physical state) of water, eolian forces, the thermal and chemical influences of volcanic and impact processes, and the inventory and fates of Martian volatiles. Fortunately, this regolith material appears to be ubiquitous over the Martian surface, and should be available at many different landing sites. Viking data has been interpreted to indicate a smectite-rich regolith material, implying extensive weathering involving aqueous activity and geochemical alteration. An all-igneous source of the Martian fines has also been proposed. The X-ray fluorescence measurement data set can now be fully explained in terms of a simple two-component model. The first component is silicate, having strong geochemical similarities with Shergottites, but not other SNC meteorites. The second component is salt. Variations in these components could produce silicate and salt-rich beds, the latter being of high potential importance for microenvironments in which liquid water (brines) could exist. It therefore would be desirable to scan the surface of the regolith for such prospects.
The Mars Microprobe Mission: Advanced Micro-Avionics for Exploration Surface
NASA Astrophysics Data System (ADS)
Blue, Randel
2000-01-01
The Mars Microprobe Mission is the second spacecraft developed as part of the New Millennium Program deep space missions. The objective of the Microprobe Project is to demonstrate the applicability of key technologies for future planetary missions by developing two probes for deployment on Mars. The probes are designed with a single stage entry, descent, and landing system and impact the Martian surface at speeds of approximately 200 meters per second. The microprobes are composed of two main sections, a forebody section that penetrates to a depth below the Martian surface of 0.5 to 2 meters, and an aftbody section that remains on the surface. Each probe system consists of a number of advanced technology components developed specifically for this mission. These include a non-erosive aeroshell for entry into. the atmosphere, a set of low temperature batteries to supply probe power, an advanced microcontroller to execute the mission sequence, collect the science data, and react to possible system fault conditions, a telecommunications subsystem implemented on a set of custom integrated circuits, and instruments designed to provide science measurements from above and below the Martian surface. All of the electronic components have been designed and fabricated to withstand the severe impact shock environment and to operate correctly at predicted temperatures below -100 C.
NASA Technical Reports Server (NTRS)
Rygalov, V. Y.; Bucklin, R. A.; Fowler, P. A.; Wheeler, R. M.
2000-01-01
Two of the main conditions for plant growth and development on the Martian surface are irradiation (optimal range from 80 W/sq m to 180 W/sq m of photosynthetically active radiation) and temperature (optimal range from 20 C to 27 C). The only known natural source of energy on Mars is sunlight, with a general intensity of 589 +/- 142 W/sq m (Martian Solar Constant). Comparisons of plant growth requirements with conditions on the Martian surface are presented in Table 1, while some basic considerations for implementing plant growth in a Martian DG are presented in Table 2. The general scenario and approximate schedule of startup and development of operations in DG are shown in Table 3.
Lighting Condition Analysis for Mars' Moon Phobos
NASA Technical Reports Server (NTRS)
Li, Zu Qun; de Carufel, Guy; Crues, Edwin Z.; Bielski, Paul
2016-01-01
This study used high fidelity computer simulation to investigate the lighting conditions, specifically the solar radiation flux over the surface, on Phobos. Ephemeris data from the Jet Propulsion Laboratory (JPL) DE405 model was used to model the state of the Sun, Earth, Moon, and Mars. An occultation model was developed to simulate Phobos' self-shadowing and its solar eclipses by Mars. The propagated Phobos state was compared with data from JPL's Horizon system to ensure the accuracy of the result. Results for Phobos lighting conditions over one Martian year are presented, which include the duration of solar eclipses, average solar radiation intensity, surface exposure time, available energy per unit area for sun tracking arrays, and available energy per unit area for fixed arrays (constrained by incident angle). The results show that: Phobos' solar eclipse time varies throughout the Martian year, with longer eclipse durations during the Martian spring and fall seasons and no eclipses during the Martian summer and winter seasons; solar radiation intensity is close to minimum at the summer solstice and close to maximum at the winter solstice; exposure time per orbit is relatively constant over the surface during the spring and fall but varies with latitude during the summer and winter; and Sun tracking solar arrays generate more energy than a fixed solar array. A usage example of the result is also present in this paper to demonstrate the utility.
Martian atmospheric O3 retrieval development for the NOMAD-UVIS spectrometer
NASA Astrophysics Data System (ADS)
Hewson, W.; Mason, J. P.; Leese, M.; Hathi, B.; Holmes, J.; Lewis, S. R.; Iriwin, P. G. J.; Patel, M. R.
2017-09-01
The composition of atmospheric trace gases and aerosols is a highly variable and poorly constrained component of the martian atmosphere, and by affecting martian climate and UV surface dose, represents a key parameter in the assessment of suitability for martian habitability. The ExoMars Trace Gas Orbiter (TGO) carries the Open University (OU) designed Ultraviolet and VIsible Spectrometer (UVIS) instrument as part of the Belgian-led Nadir and Occultation for MArs Discovery (NOMAD) spectrometer suite. NOMAD will begin transmitting science observations of martian surface and atmosphere back-scattered UltraViolet (UV) and visible radiation in Spring 2018, which will be processed to derive spatially and temporally averaged atmospheric trace gas and aerosol concentrations, intended to provide a better understanding of martian atmospheric photo-chemistry and dynamics, and will also improve models of martian atmospheric chemistry, climate and habitability. Work presented here illustrates initial development and testing of the OU's new retrieval algorithm for determining O3 and aerosol concentrations from the UVIS instrument.
Lunar and Planetary Science XXXV: Mars Geophysics
NASA Technical Reports Server (NTRS)
2004-01-01
The titles in this section include: 1) An Extraordinary Magnetic Field Map of Mars; 2) Mapping Weak Crustal Magnetic Fields on Mars with Electron Reflectometry; 3) Analytic Signal in the Interpretation of Mars Southern Highlands Magnetic Field; 4) Modeling of Major Martian Magnetic Anomalies: Further Evidence for Polar Reorientations During the Noachian; 5) An Improved Model of the Crustal Structure of Mars; 6) Geologic Evolution of the Martian Dichotomy and Plains Magnetization in the Ismenius Area of Mars; 7) Relaxation of the Martian Crustal Dichotomy Boundary in the Ismenius Region; 8) Localized Tharsis Loading on Mars: Testing the Membrane Surface Hypothesis; 9) Thermal Stresses and Tharsis Loading: Implications for Wrinkle Ridge Formation on Mars; 10) What Can be Learned about the Martian Lithosphere from Gravity and Topography Data? 11) A Gravity Analysis of the Subsurface Structure of the Utopia Impact Basin; 12) Mechanics of Utopia Basin on Mars; 13) Burying the 'Buried Channels' on Mars: An Alternative Explanation.
Evidence that the reactivity of the martian soil is due to superoxide ions
NASA Technical Reports Server (NTRS)
Yen, A. S.; Kim, S. S.; Hecht, M. H.; Frant, M. S.; Murray, B.
2000-01-01
The Viking Landers were unable to detect evidence of life on Mars but, instead, found a chemically reactive soil capable of decomposing organic molecules. This reactivity was attributed to the presence of one or more as-yet-unidentified inorganic superoxides or peroxides in the martian soil. Using electron paramagnetic resonance spectroscopy, we show that superoxide radical ions (O2-) form directly on Mars-analog mineral surfaces exposed to ultraviolet radiation under a simulated martian atmosphere. These oxygen radicals can explain the reactive nature of the soil and the apparent absence of organic material at the martian surface.
NASA Astrophysics Data System (ADS)
Rettberg, P.; Moller, R.; Pogoda de La Vega, U.; Rabbow, E.; Panitz, C.; Mohlmann, D.; Reitz, G.
For the development of adequate instruments and methods for in situ life detection analysis and for the avoidance of contaminating of Mars by terrestrial life forms introduced to it's surface unintentionally, it is necessary to understand the potential and limits of life on Earth. Whereas it is possible to test most of the environmental parameters of Mars separately in the laboratory, like diurnal and seasonal temperature cyles, pressure, atmospheric composition, and to investigate their biological effects in detail, it is technically more difficult to simulate two or more parameters at the same time. The realistic simulation of a complete Martian surface environment is a considerable technical challenge. It is especially difficult to reproduce the Martian UV climate realistically. Up to now no total Mars simulation was performed in one single experiment which should include diurnal cycles of temperature, UV radiation and humidity in a simulated Martian atmosphere and at Martian pressure, with Martian soil analogues, dust particles, and ionising radiation. However, it is absolutely essential to investigate the biological effects of combined environmental parameters, because it is already known for some cases that biological effects might not necessarily be additive, but can be synergistic or antagonistic. A prominent example is the synergistic effect of vacuum and UV radiation on the survivability of B. subtilis spores. From several investigations in the last decades the Martian UV climate with it's energy-rich short-wavelength radiation down to 200 nm turned out to be the most important deleterious environmental parameter on Mars. Direct UV exposure caused a rapid and nearly complete inactivation of spores. However, thin layers of Martian soil analogue material, like simulated standard Mars JSC-1 or Fe-montmorillonite, are sufficient to shield spores from the deleterious effects of UV radiation. From these results it can be concluded that in spite of the destructive UV climate at least a part of a microbial population might be able to escape the inactiviation by UV radiation, if covered accidentally by Martian dust and soil particles. Up to now the molecular basis of the strong oxidizing properties of Martian soil found 1 by the Viking landers is not completely understood. This chemical reactivity capable of decomposing organic molecules was attributed to the presence of one or more as- yet-unidentified inorganic superoxides or peroxides in the Martian soil. The biological consequences of these photochemical reactions are not yet investigated in detail, although it is known that B. subtilis spores are able to withstand oxidative conditions to a certain degree. The determination of the survival of microorganisms under the physical and chemical `extremes' of Mars will provide detailed insights into the potential for contamination that will allow the development and improvement of planetary protection measures. 2
Characteristics of the Martian atmosphere surface layer
NASA Technical Reports Server (NTRS)
Clow, G. D.; Haberle, R. M.
1991-01-01
Researchers extend elements of various terrestrial boundary layer models to Mars in order to estimate sensible heat, latent heat, and momentum fluxes within the Martian atmospheric surface layer. To estimate the molecular viscosity and thermal conductivity of a CO2-H2O gas mixture under Martian conditions, parameterizations were developed. Parameterizations for specific heat and and binary diffusivity were also determined. The Prandtl and Schmidt numbers derived from these thermophysical properties were found to range from 0.78 - 1.0 and 0.47 - 0.70, respectively, for Mars. Brutsaert's model for sensible and latent heat transport within the interfacial sublayer for both aerodynamically smooth and rough airflow was experimentally tested under similar conditions, validating its application to Martian conditions. For the surface sublayer, the researchers modified the definition of the Monin-Obukhov length to properly account for the buoyancy forces arising from water vapor gradients in the Martian atmospheric boundary layer. This length scale was then utilized with similarity theory turbulent flux profiles with the same form as those used by Businger et al. and others. It was found that under most Martian conditions, the interfacial and surface sublayers offer roughly comparable resistance to sensible heat and water vapor transport and are thus both important in determining the associated fluxes.
Detection of reduced carbon in basalt using Raman spectroscopy: a signpost to habitat on Mars
NASA Astrophysics Data System (ADS)
Harris, L. V.; Hutchinson, I. B.; Parnell, J.; Ingley, R.; Edwards, H. G. M.
2013-09-01
In the search for evidence of the environmental history of the Martian surface, and the possibility of life at some stage in the planet's history, a key component is reduced carbon. Carbon is available to the surface environment through meteoritic infall [1] and erosion of abundant volcanic rocks which contain magmatic carbon [2][3], in addition to the possibility of some biogenic carbonaceous matter. However, reduced carbon has not yet been detected by a range of missions to Mars. Carbonate minerals, containing carbon in inorganic oxidized form, have been recorded [4], which together with carbon dioxide in the Martian atmosphere and magmatic carbon in Martian meteorites provide evidence for a carbon cycle on Mars [5][6]. The mobility of carbon on Mars is also evident in fracture-bound carbon in the Nakhla meteorite, derived from Martian basalt [7] [8]. Basalts are widespread on Mars, so are readily accessible for sampling and analysis. Basalt-hosted carbon could have a relationship to life in both a consequential or causative manner. Basalt could incorporate carbon from organic matter disseminated in sediments through which the basaltic magma passed. It is even possible that basalt could concentrate carbon scavenged from sediments into carbon-rich structures. Alternatively, basalt could act as a feedstock of carbon to provide biomass for colonizing microbes. In this way, the discovery of carbon in (Martian) basalt could be regarded as a signpost to habitat, i.e. the identification of carbon is a key aspect of the strategy for targeting where evidence of life should be sought. The ExoMars mission, currently intended to fly in 2018, includes a Raman spectroscopy instrument, whose targets for detection include reduced carbon. We report here the study of an analogue for the carbon-bearing Nakhla meteorite, representing nearsurface Martian crust, using Raman spectroscopy and other techniques to demonstrate the potential to detect the reduced carbon therein. The analogue is a terrestrial basalt containing traces of reduced carbon in cross-cutting fractures.
Cemented Volcanic Soils, Martian Spectra and Implications for the Martian Climate
NASA Technical Reports Server (NTRS)
Bishop, J. L.; Schiffman, P.; Drief, A.; Southard, R. J.
2004-01-01
Cemented soils formed via reactions with salts are studied here and provide information about the climate when they formed. Spectroscopic and microprobe studies have been performed on cemented volcanic crusts in order to learn about the composition of these materials, how they formed, and what they can tell us about climatic interactions with surface material on Mars to form cemented soils. These crusts include carbonate, sulfate and opaline components that may all be present in cemented soil units on Mars.
2017-06-09
Dr. Carlos Calle, lead scientist in the Kennedy Space Center's Electrostatics and Surface Physics Laboratory, left, and Jay Phillips, a research physicist, are modifying an electrostatic precipitator to help remove dust from simulated Martian atmosphere. NASA's Journey to Mars requires cutting-edge technologies to solve the problems explorers will face on the Red Planet. Scientists are developing some of the needed solutions by adapting a device to remove the ever-present dust from valuable elements in the Martian atmosphere. Those commodities include oxygen, water and methane.
2017-06-09
Dr. Carlos Calle, lead scientist in the Kennedy Space Center's Electrostatics and Surface Physics Laboratory, left, and Jay Phillips, a research physicist, are modifying an electrostatic precipitator to help remove dust from a simulated Martian atmosphere. NASA's Journey to Mars requires cutting-edge technologies to solve the problems explorers will face on the Red Planet. Scientists are developing some of the needed solutions by adapting a device to remove the ever-present dust from valuable elements in the Martian atmosphere. Those commodities include oxygen, water and methane.
2017-06-09
Jay Phillips, a research physicist in the Kennedy Space Center's Electrostatics and Surface Physics Laboratory, left, and Dr. Carlos Calle, lead scientist in the lab, are modifying an electrostatic precipitator to help remove dust from simulated Martian atmosphere. NASA's Journey to Mars requires cutting-edge technologies to solve the problems explorers will face on the Red Planet. Scientists are developing some of the needed solutions by adapting a device to remove the ever-present dust from valuable elements in the Martian atmosphere. Those commodities include oxygen, water and methane.
Tissint martian meteorite: a fresh look at the interior, surface, and atmosphere of Mars.
Aoudjehane, H Chennaoui; Avice, G; Barrat, J-A; Boudouma, O; Chen, G; Duke, M J M; Franchi, I A; Gattacceca, J; Grady, M M; Greenwood, R C; Herd, C D K; Hewins, R; Jambon, A; Marty, B; Rochette, P; Smith, C L; Sautter, V; Verchovsky, A; Weber, P; Zanda, B
2012-11-09
Tissint (Morocco) is the fifth martian meteorite collected after it was witnessed falling to Earth. Our integrated mineralogical, petrological, and geochemical study shows that it is a depleted picritic shergottite similar to EETA79001A. Highly magnesian olivine and abundant glass containing martian atmosphere are present in Tissint. Refractory trace element, sulfur, and fluorine data for the matrix and glass veins in the meteorite indicate the presence of a martian surface component. Thus, the influence of in situ martian weathering can be unambiguously distinguished from terrestrial contamination in this meteorite. Martian weathering features in Tissint are compatible with the results of spacecraft observations of Mars. Tissint has a cosmic-ray exposure age of 0.7 ± 0.3 million years, consistent with those of many other shergottites, notably EETA79001, suggesting that they were ejected from Mars during the same event.
NASA Technical Reports Server (NTRS)
Schuerger, A. C.; Ming, Douglas W.; Golden, D. C.
2012-01-01
Recent studies on the interactive effects of hypobaria, low temperatures, and CO2-enriched anoxic atmospheres on the growth of 37 species of mesophilic bacteria identified 14 potential biocidal agents that might affect microbial survival and growth on the martian surface. Biocidal or inhibitory factors include (not in priority): (1) solar UV irradiation, (2) low pressure, (3) extreme desiccating conditions, (4) extreme diurnal temperature fluctuations, (5) solar particle events, (6) galactic cosmic rays, (7) UV-glow discharge from blowing dust, (8) solar UV-induced volatile oxidants [e.g., O2(-), O(-), H2O2, O3], (9) globally distributed oxidizing soils, (10) extremely high salts levels [e.g., MgCl2, NaCl, FeSO4, and MgSO4] in surficial soils at some sites on Mars, (11) high concentrations of heavy metals in martian soils, (12) likely acidic conditions in martian fines, (13) high CO2 concentrations in the global atmosphere, and (14) perchlorate-rich soils. Despite these extreme conditions several studies have demonstrated that dormant spores or vegetative cells of terrestrial microorganisms can survive simulated martian conditions as long as they are protected from UV irradiation. What has not been explored in depth are the effects of potential biotoxic geochemical components of the martian regolith on the survival and growth of microorganisms. The primary objectives of the research included: (1) prepare and characterize Mars analog soils amended with potential biotoxic levels of sulfates, salts, acidifying minerals, etc.; and (2) use the simulants to conduct biotoxicity assays to determine if terrestrial microorganisms from spacecraft can survive direct exposure to the analog soils.
The global distribution of Martian permafrost
NASA Technical Reports Server (NTRS)
Paige, David A.
1991-01-01
Accurately determining the present global distribution of Martian ground ice will be an important step towards understanding the evolution of the Martian surface and atmosphere, and could greatly facilitate human and robotic exploration of the planet. The quantitative Mars permafrost studies demonstrated the potential importance of a number of factors determining the past and present distribution of subsurface ice on Mars, but have not considered the issue of regional variability. To consider the distribution of Mars permafrost in greater detail a new thermal model was developed that can calculate Martian surface and subsurface temperatures as a function of time-of-day and season. The results indicate that the distribution of Martian permafrost is highly sensitive to the bulk thermal properties of the overlying soil. Viking IRTM observations of diurnal surface temperature variations show that the bulk thermal properties of midlatitude surface materials exhibit a high degree of regional inhomogeneity. In general, the results show that the global distribution of permafrost is at least as sensitive to the thermal properties of the overlying surface material as it is to variations in surface isolation due to large scale variations in Mars' orbital and axial elements. In particular, they imply that subsurface ice may exist just a few centimeters below the surface in regions of low thermal inertia and high albedo, which are widespread at latitudes ranging from the equator to +60 degrees latitude.
NASA Astrophysics Data System (ADS)
Bérces, Attila; ten Kate, I. L.; Fekete, A.; Hegedus, M.; Garry, J. R. C.; Lammer, Helmut; Ehrenfreund, Pascale; Peeters, Zan; Kovacs, G.; Ronto, G.
Mars is considered as a main target for astrobiologically relevant exploration programmes. In order to explain the non-detection of organic material to a detection level of several parts per billion (ppb) by the Viking landers, several hypotheses have been suggested, including degradation processes occurring on the martian surface and in the martian soil and subsurface. UV exposure experiments have been performed in which thin layers of glycine ( 300 nm), and aqueous suspensions of phage T7 and isolated T7 DNA were irradiated with a Deuterium lamp and for comparison with a Xenon arc lamp, modified to simulate the solar irradiation on the surface of Mars (MarsUV). The glycine sample was subjected to 24 hours of irradiation with MarsUV. The results of this glycine experiment show a destruction rate comparable to the results of previous experiments in which thin layers of glycine were irradiated with a deuterium lamp (ten Kate et al., 2005, 2006). After exposure of different doses of simulated Martian UV radiation a decrease of the biological activity of phages and characteristic changes in the UV absorption spectrum have been detected, indicating the UV damage of isolated and intraphage T7 DNA. The results of our experiments show that intraphage DNA is 4 times more sensitive to simulated martian UV and deuterium lamp radiation than isolated T7 DNA. This result indicates the significant role that phage proteins play in the UV damage. The effect of simulated martian radiation is smaller than the biological defects observed after the exposure with a deuterium lamp for both cases, in intraphage and isolated DNA, despite of the 100 times larger intensity of the MarsUV lamp. The detected spectral differences are about ten times smaller; the biological activity is about 3 - 4 times smaller, indicating that the shorter wavelength UV radiation from the deuterium lamp is more effective in inducing DNA damage, irrespective of being intraphage or isolated.
Aeolus -A Mission to Study the Thermal and Wind Environment of Mars
NASA Technical Reports Server (NTRS)
Colaprete, Anthony
2017-01-01
Aeolus is a small satellite mission to observe surface and atmospheric forcing and general circulation of Mars, by measuring surface energy balance, atmospheric temperatures, aerosols and clouds, and winds. Critically, Aeolus will make these measurements at all local times of day, providing information on both seasonal and diurnal variability. To date, direct measurements of Martian wind speeds have only been possible at the surface, only during daylight hours, and over small areas limited by rover traverse capabilities. From orbit, thermal measurements (e.g., estimates from assumed geostrophic balance) as well as images of dust storms and dune migration have provided inputs to derive current data sets on Martian winds. However, Mars General Circulation models demonstrate that wind speeds derived from these indirect measurements may be in error by 50 to 100%. For this reason, direct wind velocity measurements have been deemed "High Priority" by MEPAG (Mars Exploration Program Analysis Group); measuring wind speeds and corresponding thermal data is vital to understanding the climate of Mars. Aeolus will carry four Spatial Heterodyne Spectrometers (SHS), coupled to two orthogonal viewing telescopes. These high-resolution near-infrared spectrometers will measure CO2 (daytime absorption) and O2 (day and night emission) lines in the Martian atmosphere. Doppler shifts in these lines can be measured during Martian day and night, resolving wind speeds down to 5 m/s. Orthogonal views allow the spectrometers to capture wind vectors over all observation locations. Aeolus will also carry the atmospheric limb-viewing Thermal Limb Sounder (TLS) to measure atmospheric temperatures, water ice clouds, and dust abundances across all altitudes where winds are measured. Finally, the Surface Radiometric Sensor Package (SuRSeP), a nadir viewing radiometer, will measure the total reflected solar and emitted thermal radiance, surface temperature, and water cloud and dust total column abundances. The combined spectral and thermal measurements will provide a new understanding of the global energy balance, dust transport processes, and climate cycles in the Martian atmosphere. Aeolus will consist of a single satellite in a near-polar orbit, allowing it to pass over all local times, with the baseline mission observing all seasons of an entire Martian year (two Earth years). Aeolus was one of two Martian smallsat concepts selected for study through the Planetary Science Deep Space SmallSat Studies program. This talk will provide an overview of the mission, including science rationale, instruments, spacecraft, and mission operations concept.
The Martian atmospheric planetary boundary layer stability, fluxes, spectra, and similarity
NASA Technical Reports Server (NTRS)
Tillman, James E.
1994-01-01
This is the first analysis of the high frequency data from the Viking lander and spectra of wind, in the Martian atmospheric surface layer, along with the diurnal variation of the height of the mixed surface layer, are calculated for the first time for Mars. Heat and momentum fluxes, stability, and z(sub O) are estimated for early spring, from a surface temperature model and from Viking Lander 2 temperatures and winds at 44 deg N, using Monin-Obukhov similarity theory. The afternoon maximum height of the mixed layer for these seasons and conditions is estimated to lie between 3.6 and 9.2 km. Estimations of this height is of primary importance to all models of the boundary layer and Martian General Circulation Models (GCM's). Model spectra for two measuring heights and three surface roughnesses are calculated using the depth of the mixed layer, and the surface layer parameters and flow distortion by the lander is also taken into account. These experiments indicate that z(sub O), probably lies between 1.0 and 3.0 cm, and most likely is closer to 1.0 cm. The spectra are adjusted to simulate aliasing and high frequency rolloff, the latter caused both by the sensor response and the large Kolmogorov length on Mars. Since the spectral models depend on the surface parameters, including the estimated surface temperature, their agreement with the calculated spectra indicates that the surface layer estimates are self consistent. This agreement is especially noteworthy in that the inertial subrange is virtually absent in the Martian atmosphere at this height, due to the large Kolmogorov length scale. These analyses extend the range of applicability of terrestrial results and demonstrate that it is possible to estimate the effects of severe aliasing of wind measurements, to produce a models which agree well with the measured spectra. The results show that similarity theory developed for Earth applies to Mars, and that the spectral models are universal.
Characterizing the Performance of the Wheel Electrostatic Spectrometer
NASA Technical Reports Server (NTRS)
Johansen, M. R.; Mackey, P. J.; Holbert, E.; Clements, J. S.; Calle, C. I.
2013-01-01
A Wheel Electrostatic Spectrometer has been developed as a surveying tool to be incorporated into a Martian rover design. Electrostatic sensors with various protruding cover insulators are embedded into a prototype rover wheel. When these insulators come into contact with a surface, a charge develops on the cover insulator through tribocharging. A charge spectrum is created by analyzing the accumulated charge on each of the dissimilar cover insulators. This charge spectrum can be used to determine differences in Martian regolith properties. In this study, we analyzed the repeatability of the measurements for this sensor package and found that the sensor repeatability lies within one standard deviation of the noise in the signal. In addition, we tested the need for neutralizing the surface charge on the cover insulators and discovered a need to discharge the sensor cover insulators after each revolution. Future work includes an electronics redesign to reduce noise and a Martian pressure static elimination tool that can be used to neutralize the charge on the sensor cover insulators after each wheel revolution.
Lighting Condition Analysis for Mars Moon Phobos
NASA Technical Reports Server (NTRS)
Li, Zu Qun; Crues, Edwin Z.; Bielski, Paul; De Carufel, Guy
2016-01-01
A manned mission to Phobos may be an important precursor and catalyst for the human exploration of Mars, as it will fully demonstrate the technologies for a successful Mars mission. A comprehensive understanding of Phobos' environment such as lighting condition and gravitational acceleration are essential to the mission success. The lighting condition is one of many critical factors for landing zone selection, vehicle power subsystem design, and surface mobility vehicle path planning. Due to the orbital characteristic of Phobos, the lighting condition will change dramatically from one Martian season to another. This study uses high fidelity computer simulation to investigate the lighting conditions, specifically the solar radiation flux over the surface, on Phobos. Ephemeris data from the Jet Propulsion Laboratory (JPL) DE405 model was used to model the state of the Sun, the Earth, and Mars. An occultation model was developed to simulate Phobos' self-shadowing and its solar eclipses by Mars. The propagated Phobos' state was compared with data from JPL's Horizon system to ensure the accuracy of the result. Results for Phobos lighting condition over one Martian year are presented in this paper, which include length of solar eclipse, average solar radiation intensity, surface exposure time, total maximum solar energy, and total surface solar energy (constrained by incident angle). The results show that Phobos' solar eclipse time changes throughout the Martian year with the maximum eclipse time occurring during the Martian spring and fall equinox and no solar eclipse during the Martian summer and winter solstice. Solar radiation intensity is close to minimum at the summer solstice and close to maximum at the winter solstice. Total surface exposure time is longer near the north pole and around the anti- Mars point. Total maximum solar energy is larger around the anti-Mars point. Total surface solar energy is higher around the anti-Mars point near the equator. The results from this study and others like it will be important in determining landing site selection, vehicle system design and mission operations for the human exploration of Phobos and subsequently Mars.
MOLA: Seasonal Snow Variations on Mars: Slow Flyover of the Martian North Pole
NASA Technical Reports Server (NTRS)
2001-01-01
MOLA: Seasonal Snow Variations on Mars: Slow Flyover of the Martian North Pole: False Color. This is a visualization of the topography near the Martian north pole as measured with the MOLA instrument. This particular animation shows a slow zoom to the surface of the pole, a flyover of the polar cap and a slow zoom out. The surface color is based on the elevation of the topography.
Next Steps Forward in Understanding Martian Surface and Subsurface Chemistry
NASA Astrophysics Data System (ADS)
Carrier, Brandi L.
2017-09-01
The presence of oxidants such as hydrogen peroxide (H2O2) and perchlorate (ClO4-), which have been detected on Mars, has significant implications for chemistry and astrobiology. These oxidants can increase the reactivity of the Martian soil, accelerate the decomposition of organic molecules, and depress the freezing point of water. The study by Crandall et al. "Can Perchlorates be Transformed to Hydrogen Peroxide Products by Cosmic Rays on the Martian Surface" reveals a new formation mechanism by which hydrogen peroxide and other potential oxidants can be generated via irradiation of perchlorate by cosmic rays. This study represents an important next step in developing a full understanding of Martian surface and subsurface chemistry, particularly with respect to degradation of organic molecules and potential biosignatures.
NASA Astrophysics Data System (ADS)
Góbi, Sándor; Bergantini, Alexandre; Kaiser, Ralf I.
2017-04-01
The aim of the present work is to unravel the radiolytic decomposition of adenine (C5H5N5) under conditions relevant to the Martian surface. Being the fundamental building block of (deoxy)ribonucleic acids, the possibility of survival of this biomolecule on the Martian surface is of primary importance to the astrobiology community. Here, neat adenine and adenine-magnesium perchlorate mixtures were prepared and irradiated with energetic electrons that simulate the secondary electrons originating from the interaction of the galactic cosmic rays with the Martian surface. Perchlorates were added to the samples since they are abundant—and therefore relevant oxidizers on the surface of Mars—and they have been previously shown to facilitate the radiolysis of organics such as glycine. The degradation of the samples were monitored in situ via Fourier transformation infrared spectroscopy and the electron ionization quadruple mass spectrometric method; temperature-programmed desorption profiles were then collected by means of the state-of-the-art single photon photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS), allowing for the detection of the species subliming from the sample. The results showed that perchlorates do increase the destruction rate of adenine by opening alternative reaction channels, including the concurrent radiolysis/oxidation of the sample. This new pathway provides a plethora of different radiolysis products that were identified for the first time. These are carbon dioxide (CO2), isocyanic acid (HNCO), isocyanate (OCN-), carbon monoxide (CO), and nitrogen monoxide (NO); an oxidation product containing carbonyl groups (R1R2-C=O) with a constrained five-membered cyclic structure could also be observed. Cyanamide (H2N-C≡N) was detected in both irradiated samples as well.
Lunar and Planetary Science XXXVI, Part 18
NASA Technical Reports Server (NTRS)
2005-01-01
Topics discussed include: PoDS: A Powder Delivery System for Mars In-Situ Organic, Mineralogic and Isotopic Analysis Instruments Planetary Differentiation of Accreting Planetesimals with 26Al and 60Fe as the Heat Sources Ground-based Observation of Lunar Surface by Lunar VIS/NIR Spectral Imager Mt. Oikeyama Structure: First Impact Structure in Japan? Central Mounds in Martian Impact Craters: Assessment as Possible Perennial Permafrost Mounds (Pingos) A Further Analysis of Potential Photosynthetic Life on Mars New Insight into Valleys-Ocean Boundary on Mars Using 128 Pixels per Degree MOLA Data: Implication for Martian Ocean and Global Climate Change; Recursive Topography Based Surface Age Computations for Mars: New Insight into Surficial Processes That Influenced Craters Distribution as a Step Toward the Formal Proof of Martian Ocean Recession, Timing and Probability; Laser-induced Breakdown Spectroscopy: A New Method for Stand-Off Quantitative Analysis of Samples on Mars; Milk Spring Channels Provide Further Evidence of Oceanic, >1.7-km-Deep Late Devonian Alamo Crater, Southern Nevada; Exploration of Martian Polar Residual Caps from HEND/ODYSSEY Data; Outflow Channels Influencing Martian Climate: Global Circulation Model Simulations with Emplaced Water; Presence of Nonmethane Hydrocarbons on Pluto; Difference in Degree of Space Weathering on the Newborn Asteroid Karin; Circular Collapsed Features Related to the Chaotic Terrain Formation on Mars; A Search for Live (sup 244)Pu in Deep-Sea Sediments: Preliminary Results of Method Development; Some Peculiarities of Quartz, Biotite and Garnet Transformation in Conditions of Step-like Shock Compression of Crystal Slate; Error Analysis of Remotely-Acquired Mossbauer Spectra; Cloud Activity on Titan During the Cassini Mission; Solar Radiation Pressure and Transient Flows on Asteroid Surfaces; Landing Site Characteristics for Europa 1: Topography; and The Crop Circles of Europa.
An ultraviolet simulator for the incident Martian surface radiation and its applications
NASA Astrophysics Data System (ADS)
Kolb, C.; Abart, R.; Bérces, A.; Garry, J. R. C.; Hansen, A. A.; Hohenau, W.; Kargl, G.; Lammer, H.; Patel, M. R.; Rettberg, P.; Stan-Lotter, H.
2005-10-01
Ultraviolet (UV) radiation can act on putative organic/biological matter at the Martian surface in several ways. Only absorbed, but not transmitted or reflected, radiation energy can be photo-chemically effective. The most important biological UV effects are due to photochemical reactions in nucleic acids, DNA or RNA, which constitute the genetic material of all cellular organisms and viruses. Protein or lipid effects generally play a minor role, but they are also relevant in some cases. UV radiation can induce wavelengths-specific types of DNA damage. At the same time it can also induce the photo-reversion reaction of a UV induced DNA photoproduct of nucleic acid bases, the pyrimidine dimers. Intense UVB and UVC radiation, experienced on early Earth and present-day Mars, has been revealed to be harmful to all organisms, including extremophile bacteria and spores. Moreover, the formation of oxidants, catalytically produced in the Martian environment through UV irradiation, may be responsible for the destruction of organic matter on Mars. Following this, more laboratory simulations are vital in order to investigate and understand UV effects on organic matter in the case of Mars. We have designed a radiation apparatus that simulates the anticipated Martian UV surface spectrum between 200 and 400 nm (UVC UVA). The system comprises a UV enhanced xenon arc lamp, special filter-sets and mirrors to simulate the effects of the Martian atmospheric column and dust loading. We describe the technical setup and performance of the system and discuss its uses for different applications. The design is focused on portability, therefore, the Mars-UV simulator represents a device for several different Mars simulation facilities with specific emphasis on Mars research topics.
Mars Surface Ionizing Radiation Environment: Need for Validation
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Kim, M. Y.; Clowdsley, M. S.; Heinbockel, J. H.; Tripathi, R. K.; Singleterry, R. C.; Shinn, J. L.; Suggs, R.
1999-01-01
Protection against the hazards from exposure to ionizing radiation remains an unresolved issue in the Human Exploration and Development of Space (HEDS) enterprise [1]. The major uncertainty is the lack of data on biological response to galactic cosmic ray (GCR) exposures but even a full understanding of the physical interaction of GCR with shielding and body tissues is not yet available and has a potentially large impact on mission costs. "The general opinion is that the initial flights should be short-stay missions performed as fast as possible (so-called 'Sprint' missions) to minimize crew exposure to the zero-g and space radiation environment, to ease requirements on system reliability, and to enhance the probability of mission success." The short-stay missions tend to have long transit times and may not be the best option due to the relatively long exposure to zero-g and ionizing radiation. On the other hand the short-transit missions tend to have long stays on the surface requiring an adequate knowledge of the surface radiation environment to estimate risks and to design shield configurations. Our knowledge of the surface environment is theoretically based and suffers from an incomplete understanding of the physical interactions of GCR with the Martian atmosphere, Martian surface, and intervening shield materials. An important component of Mars surface robotic exploration is the opportunity to test our understanding of the Mars surface environment. The Mars surface environment is generated by the interaction of Galactic Cosmic Rays (GCR) and Solar Particle Events (SPEs) with the Mars atmosphere and Mars surface materials. In these interactions, multiple charged ions are reduced in size and secondary particles are generated, including neutrons. Upon impact with the Martian surface, the character of the interactions changes as a result of the differing nuclear constituents of the surface materials. Among the surface environment are many neutrons diffusing from the Martian surface and especially prominent are energetic neutrons with energies up to a few hundred MeV. Testing of these computational results is first supported by ongoing experiments at the Brookhaven National Laboratory but equally important is the validation to the extent possible by measurements on the Martian surface. Such measurements are limited by power and weight requirements of the specific mission and simplified instrumentation by necessity lacks the full discernment of particle type and spectra as is possible with laboratory experimental equipment. Yet, the surface measurements are precise and a necessary requisite to validate our understanding of the surface environment. At the very minimum the surface measurements need to provide some spectral information on the neutron environment. Of absolute necessity is the precise knowledge of the detector response functions for absolute comparisons between the computational model of the surface environment and the detector measurements on the surface.
NASA Astrophysics Data System (ADS)
Spiga, A.; Forget, F.; Lewis, S. R.; Hinson, D. P.
2010-02-01
The structure of the Martian convective boundary layer (BL) is decribed by means of a novel approach involving both modelling and data analysis. Mars Express radio-occultation (RO) temperature profiles are compared to large-eddy simulations (LESs) performed with the Martian mesoscale model. The model combines the Martian radiative transfer, soil and surface layer schemes designed at Laboratoire de Météorologie Dynamique (LMD) with the most recent version of the Weather Research and Forecast (WRF) fully compressible non-hydrostatic dynamical core. The key roles of the vertical resolution and, to lesser extent, of the domain horizontal extent have been investigated to ensure the robustness of the LES results. The dramatic regional variations of the BL depth are quantitatively reproduced by the Martian LES. Intense BL dynamics are found to underlie the measured depths (up to 9 km): vertical speed up to 20 m s-1, heat flux up to 2.7 K m s-1 and turbulent kinetic energy up to 26 m2 s-2. Under specific conditions, both the model and the measurements show a distinctive positive correlation between surface topography and BL depth. Our interpretation is that, in the tenuous CO2 Martian near-surface environment, the daytime BL is to first order controlled by the infrared radiative heating, fairly independent of elevation, which implies a simple correlation between the BL potential temperature and the inverse pressure ("pressure effect"). No prominent "pressure effect" is in action on Earth where sensible heat flux dominates the BL energy budget. Both RO observations and numerical simulations confirm the terrain-following behaviour of near-surface temperature on Mars induced by the dominant radiative influence. The contribution of the Martian sensible heat flux is not negligible and results in a given isotherm in the BL being comparatively closer to the ground at higher surface elevation. The strong radiative control of the Martian convective BL implies a generalised formulation for the BL dimensionless quantities. Based on this formulation and the variety of simulated BL depths by the LES, new similarity relationships for the Martian convective BL in quasi-steady midday conditions are derived. Rigorous comparisons between the Martian and terrestrial BL and fast computations of the mean Martian BL turbulent statistics are now made possible by such similarity laws.
Surface Power Radiative Cooling Tests
NASA Astrophysics Data System (ADS)
Vaughn, Jason; Schneider, Todd
2006-01-01
Terrestrial nuclear power plants typically maintain their temperature through convective cooling, such as water and forced air. However, the space environment is a vacuum environment, typically 10-8 Torr pressure, therefore in proposed missions to the lunar surface, power plants would have to rely on radiative cooling to remove waste heat. Also, the Martian surface has a very tenuous atmosphere (e.g. ~5 Torr CO2), therefore, the main heat transfer method on the Martian surface is also radiative. Because of the lack of atmosphere on the Moon and the tenuous atmosphere on Mars, surface power systems on both the Lunar and Martian surface must rely heavily on radiative heat transfer. Because of the large temperature swings on both the lunar and the Martian surfaces, trying to radiate heat is inefficient. In order to increase power system efficiency, an effort is underway to test various combinations of materials with high emissivities to demonstrate their ability to survive these degrading atmospheres to maintain a constant radiator temperature improving surface power plant efficiency. An important part of this effort is the development of a unique capability that would allow the determination of a materials emissivity at high temperatures. A description of the test capability as well as initial data is presented.
The Gulliver sample return mission to Deimos
NASA Astrophysics Data System (ADS)
Britt, D. T.; Robinson, M.; Gulliver Team
The Martian moon Deimos presents a unique opportunity for a sample return mission. Deimos is spectrally analogous to type D asteroids, which are thought to be composed of highly primitive carbonaceous material that originated in the outer asteroid belt. It also is in orbit around Mars and has been accumulating material ejected from the Martian surface ever since the earliest periods of Martian history, over 4.4 Gyrs ago. There are a number of factors that make sample return from Deimos extremely attractive. It is Better: Deimos is a repository for two kinds of extremely significant and scientifically exciting ancient samples: (1) Primitive spectral D-type material that may have accreted in the outer asteroid belt and Trojan swarm. This material samples the composition of solar nebula well outside the zone of terrestrial planets and provides a direct sample of primitive material so common past 3 AU but so uncommon in the meteorite collection. (2) Ancient Mars, which could include the full range of Martian crustal and upper mantle material from the early differentiation and crustal-forming epoch as well as samples from the era of high volatile flux, thick atmosphere, and possible surface water. The Martian material on Deimos would be dominated by ejecta from the ancient crust of Mars, delivered during the Noachian Period of basin-forming impacts and heavy bombardment. It is Closer: Compared to other primitive D-type asteroids, Deimos is by far the most accessible. Because of its orbit around Mars, Deimos is far closer than any other D asteroid. It is Safer: Deimos is also by far the safest small body for sample return yet imaged. It is an order of magnitude less rocky than Eros and the NEAR-Shoemaker mission succeeded in landing on Eros with a spacecraft not designed for landing and proximity maneuvering. Because of Viking imagery we already know a great deal about the surface roughness of Deimos. It is known to be very smooth and have moderate topography and gravitational slopes. It is Easier: Deimos is farther from Mars and smaller than Phobos. This location minimizes the delta-V penalties from entering the Martian gravity well; minimizes the energy requirements for sampling maneuvers; and minimizes Martian tidal effects on S/C operations. After initial processing these samples will be made available as soon as possible to the international cosmochemistry community for detailed analysis. The mission management team includes Lockheed Martin Astronautics (flight system, I&T) and JPL (payload, mission ops, and mission management).
NASA Astrophysics Data System (ADS)
Martínez, G. M.; Newman, C. N.; De Vicente-Retortillo, A.; Fischer, E.; Renno, N. O.; Richardson, M. I.; Fairén, A. G.; Genzer, M.; Guzewich, S. D.; Haberle, R. M.; Harri, A.-M.; Kemppinen, O.; Lemmon, M. T.; Smith, M. D.; de la Torre-Juárez, M.; Vasavada, A. R.
2017-10-01
We analyze the complete set of in-situ meteorological data obtained from the Viking landers in the 1970s to today's Curiosity rover to review our understanding of the modern near-surface climate of Mars, with focus on the dust, CO2 and H2O cycles and their impact on the radiative and thermodynamic conditions near the surface. In particular, we provide values of the highest confidence possible for atmospheric opacity, atmospheric pressure, near-surface air temperature, ground temperature, near-surface wind speed and direction, and near-surface air relative humidity and water vapor content. Then, we study the diurnal, seasonal and interannual variability of these quantities over a span of more than twenty Martian years. Finally, we propose measurements to improve our understanding of the Martian dust and H2O cycles, and discuss the potential for liquid water formation under Mars' present day conditions and its implications for future Mars missions. Understanding the modern Martian climate is important to determine if Mars could have the conditions to support life and to prepare for future human exploration.
Groundbased monitoring of Martian atmospheric opacity
NASA Technical Reports Server (NTRS)
Herkenhoff, K. E.; Martin, L. J.
1993-01-01
The amount of dust in the Martian atmosphere is variable in both space and time. The presence of aerosols in the Mars atmosphere complicates quantitative analysis of Martian surface properties. We have developed a model for Mars surface and atmospheric scattering based on equations in Hillier et al (1991). This formulation was chosen for its speed of computation and because it accounts for the spherical geometry of atmospheric scattering at high mission angles, i.e., near the planetary limb.
Assessment of the turbulence parameterization schemes for the Martian mesoscale simulations
NASA Astrophysics Data System (ADS)
Temel, Orkun; Karatekin, Ozgur; Van Beeck, Jeroen
2016-07-01
Turbulent transport within the Martian atmospheric boundary layer (ABL) is one of the most important physical processes in the Martian atmosphere due to the very thin structure of Martian atmosphere and super-adiabatic conditions during the diurnal cycle [1]. The realistic modeling of turbulent fluxes within the Martian ABL has a crucial effect on the many physical phenomena including dust devils [2], methane dispersion [3] and nocturnal jets [4]. Moreover, the surface heat and mass fluxes, which are related with the mass transport within the sub-surface of Mars, are being computed by the turbulence parameterization schemes. Therefore, in addition to the possible applications within the Martian boundary layer, parameterization of turbulence has an important effect on the biological research on Mars including the investigation of water cycle or sub-surface modeling. In terms of the turbulence modeling approaches being employed for the Martian ABL, the "planetary boundary layer (PBL) schemes" have been applied not only for the global circulation modeling but also for the mesoscale simulations [5]. The PBL schemes being used for Mars are the variants of the PBL schemes which had been developed for the Earth and these schemes are either based on the empirical determination of turbulent fluxes [6] or based on solving a one dimensional turbulent kinetic energy equation [7]. Even though, the Large Eddy Simulation techniques had also been applied with the regional models for Mars, it must be noted that these advanced models also use the features of these traditional PBL schemes for sub-grid modeling [8]. Therefore, assessment of these PBL schemes is vital for a better understanding the atmospheric processes of Mars. In this framework, this present study is devoted to the validation of different turbulence modeling approaches for the Martian ABL in comparison to Viking Lander [9] and MSL [10] datasets. The GCM/Mesoscale code being used is the PlanetWRF, the extended version of WRF model for the extraterrestrial atmospheres [11]. Based on the measurements, the performances of different PBL schemes have been evaluated and some improvements have been proposed. [1] Colaïtis, A., Spiga, A., Hourdin, F., Rio, C., Forget, F., & Millour, E. (2013). A thermal plume model for the Martian convective boundary layer. Journal of Geophysical Research: Planets, 118(7), 1468-1487. [2] Balme, M., & Greeley, R. (2006). Dust devils on Earth and Mars. Reviews of Geophysics, 44(3). [3] Olsen, K. S., Cloutis, E., & Strong, K. (2012). Small-scale methane dispersion modelling for possible plume sources on the surface of Mars. Geophysical Research Letters, 39(19). [4] Savijärvi, H., & Siili, T. (1993). The Martian slope winds and the nocturnal PBL jet. Journal of the atmospheric sciences, 50(1), 77-88. [5] Fenton, L. K., Toigo, A. D., & Richardson, M. I. (2005). Aeolian processes in Proctor crater on Mars: Mesoscale modeling of dune-forming winds. Journal of Geophysical Research: Planets, 110(E6). [6] Hong, Song-You, Yign Noh, Jimy Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341. [7] Janjic, Zavisa I., 1994: The Step-Mountain Eta Coordinate Model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927-945. [8] Michaels, T. I., & Rafkin, S. C. (2004). Large-eddy simulation of atmospheric convection on Mars. Quarterly Journal of the Royal Meteorological Society, 130(599), 1251-1274. [9] Hess, S. L., Henry, R. M., Leovy, C. B., Ryan, J. A., & Tillman, J. E. (1977). Meteorological results from the surface of Mars: Viking 1 and 2. Journal of Geophysical Research, 82(28), 4559-4574. [10] Martínez, G. et Al. (2015). Likely frost events at Gale crater: Analysis from MSL/REMS measurements. Icarus. [11] Richardson, M. I., Toigo, A. D., & Newman, C. E. (2007). PlanetWRF: A general purpose, local to global numerical model for planetary atmospheric and climate dynamics. Journal of Geophysical Research: Planets, 112(E9).
The case for Mars III: Strategies for exploration - General interest and overview
NASA Technical Reports Server (NTRS)
Stoker, Carol R. (Editor)
1989-01-01
Papers on the possibilities for manned Mars missions are presented, covering topics such as space policy, space education and Mars exploration, economic issues, international cooperation, life support, biomedical factors, human factors, the Mars Rover Sample Return Mission, and possible unmanned precursor missions to Mars. Other topics include the scientific objectives for human exploration of Mars, mission strategies, possible transportation systems for manned Mars flight, advanced propulsion techniques, and the utilization of Mars resources. Additional subjects include the construction and maintenance of a Martian base, possible systems for mobility on the Martian surface, space power systems, and the use of the Space Station for a Mars mission.
NASA Astrophysics Data System (ADS)
Heap, Michael J.; Byrne, Paul K.; Mikhail, Sami
2017-01-01
Surface gravitational acceleration (surface gravity) on Mars, the second-smallest planet in the Solar System, is much lower than that on Earth. A direct consequence of this low surface gravity is that lithostatic pressure is lower on Mars than on Earth at any given depth. Collated published data from deformation experiments on basalts suggest that, throughout its geological history (and thus thermal evolution), the Martian brittle lithosphere was much thicker but weaker than that of present-day Earth as a function solely of surface gravity. We also demonstrate, again as a consequence of its lower surface gravity, that the Martian lithosphere is more porous, that fractures on Mars remain open to greater depths and are wider at a given depth, and that the maximum penetration depth for opening-mode fractures (i.e., joints) is much deeper on Mars than on Earth. The result of a weak Martian lithosphere is that dykes-the primary mechanism for magma transport on both planets-can propagate more easily and can be much wider on Mars than on Earth. We suggest that this increased the efficiency of magma delivery to and towards the Martian surface during its volcanically active past, and therefore assisted the exogeneous and endogenous growth of the planet's enormous volcanoes (the heights of which are supported by the thick Martian lithosphere) as well as extensive flood-mode volcanism. The porous and pervasively fractured (and permeable) nature of the Martian lithosphere will have also greatly assisted the subsurface storage of and transport of fluids through the lithosphere throughout its geologically history. And so it is that surface gravity, influenced by the mass of a planetary body, can greatly modify the mechanical and hydraulic behaviour of its lithosphere with manifest differences in surface topography and geomorphology, volcanic character, and hydrology.
NASA Technical Reports Server (NTRS)
Wilson, Eric H.; Atreya, Sushil K.; Kaiser, Ralf I.; Mahaffy, Paul R.
2016-01-01
Recent observations of the Martian surface by the Phoenix lander and the Sample Analysis at Mars indicate the presence of perchlorate (ClO4). The abundance and isotopic composition of these perchlorates suggest that the mechanisms responsible for their formation in the Martian environment may be unique in our solar system. With this in mind, we propose a potential mechanism for the production of Martian perchlorate: the radiolysis of the Martian surface by galactic cosmic rays, followed by the sublimation of chlorine oxides into the atmosphere and their subsequent synthesis to form perchloric acid (HClO4) in the atmosphere, and the surface deposition and subsequent mineralization of HClO4 in the regolith to form surface perchlorates. To evaluate the viability of this mechanism, we employ a one-dimensional chemical model, examining chlorine chemistry in the context of Martian atmospheric chemistry. Considering the chlorine oxide, OClO, we find that an OClO flux as low as 3.2 x 10(exp 7) molecules/sq cm/s sublimated into the atmosphere from the surface could produce sufficient HClO4 to explain the perchlorate concentration on Mars, assuming an accumulation depth of 30 cm and integrated over the Amazonian period. Radiolysis provides an efficient pathway for the oxidation of chlorine, bypassing the efficient Cl/HCl recycling mechanism that characterizes HClO4 formation mechanisms proposed for the Earth but not Mars.
Development of an engineering model atmosphere for Mars
NASA Technical Reports Server (NTRS)
Justus, C. G.
1988-01-01
An engineering model atmosphere for Mars is being developed with many of the same features and capabilities for the highly successful Global Reference Atmospheric Model (GRAM) program for Earth's atmosphere. As an initial approach, the model is being built around the Martian atmosphere model computer subroutine (ATMOS) of Culp and Stewart (1984). In a longer-term program of research, additional refinements and modifications will be included. ATMOS includes parameterizations to stimulate the effects of solar activity, seasonal variation, diurnal variation magnitude, dust storm effects, and effects due to the orbital position of Mars. One of the current shortcomings of ATMOS is the neglect of surface variation effects. The longer-term period of research and model building is to address some of these problem areas and provide further improvements in the model (including improved representation of near-surface variations, improved latitude-longitude gradient representation, effects of the large annual variation in surface pressure because of differential condensation/sublimation of the CO2 atmosphere in the polar caps, and effects of Martian atmospheric wave perturbations on the magnitude of the expected density perturbation.
Cryolitozone of Mars- as the climatic indicator of the Martian relict ocean
NASA Astrophysics Data System (ADS)
Ozorovich, Y.; Fournier-Sicre, A.; Linkin, V.; Kosov, A.; Skulachev, D.; Gorbatov, S.; Ivanov, A.; Heggy, E.
2015-10-01
The existance of a large Martian cryolitozone consisting of different cryogenic formations both on the surface- polar caps ice and in subsurface layer (and probably overcooled salt solutions in lower horizons) is conditioned mostly by the planet's geological history and atmosphere evolution. The very structure of the cryolitozone with its strongly pronounced zone character owing to drying up of 0 to 200 m thick surface layer in the equatorial latitudes ranging from + 30 to - 300 was formed in the course of long-periodic climatic variations and at present is distincly heterogeneous both depthward and in latitudinal and longtudinal dimensions. The dryed up region of Martian frozen rocks is estimated to have been developing during more than 3.5 bln years, so the upper layer boundary of permafrost can serve as a sort of indicator reflecting the course of Martian climatic evolution. Since the emount of surface moisture and its distribition character are conditioned by the cryolitozone scale structure its investigation is considered to be an important aspect of the forthcoming Martian projects. In order to create Martian climate and atmosphere circulation models the whole complex information on surface provided by optical and infrared ranges observations, regional albedo surface measurements, ground layer thermal flow investigations, etc. must be carefully studed. The investigation of permafrost formation global distribution and their appearance in h ≤1 m thick subsurface layer may be provided successfully by using active-passive microwave remote sensing techniques [1]. Along with optical and infrared observations the method of orbital panoramic microwave radiometry in centi- and decimeter ranges would contribute to the mapping of the cryolitozone global surface distribution. This proposal discusses methodical and experimental possibilities of this global observation of Martian cryolitozone as the additional way for investigation subsurface of Mars. The main idea of this approach is - the salt component of subsurface is the global geolectrical marker of the Martian relict ocean in the past. Mars' observations by means of ground and onboard instruments are known to have been conducted in recent years. These observations provided information on Mars' surface mean temperature values and their seasonal variations. Radar measurements allowed to estimate dielectric constant and soil upper layer density values. Mars' surface radiation measurements by a 3,4 cm radiometer aboard Mars-3 and 5 automatic interplanetary stations (1971-1973) proved to be more informative. Radio brightness temperature variations were registered along the flight route. As a result surface temperature latitudinal distribution estimates in a spatial resolution element, were obtained as well as more precise values of dielectric constant and soil density of centimeter fractions this surface layer. No more experiments using microwave radiometers were conducted since. The only way to obtain information about Mars surface mezoscale structure is to use a high spatial resolution panoramic equipment on-board. Mars' surface radio images would allow to identify regions differing in ice percentage content in cryogenic surface structures or in mineralized solutions of negative temperature and to estimate relative quantity of cryogenic formations - permafrost fractions as well as to measure the soil looseness or porosity degree. In addition it would be possible to restore various regions' average vertical temperature, humidity and porosity profiles of less than 1 m thick surface layer. These dependencies combined with the results of depth inductive sounding (0.5 km) and magnitotelluric (1- 5 km) sensing would provide new and more detailed information on Martian crust structure and character and its cryolitozone, necessary to create a more reliable paleoclimatic model of the planet. Experiment equipment and methods Space experiment is conducted to obtain maps of temperature and humidity global distribution of Martian cryolitozone upper layer by means of radiothermal images of the surface. Analysis of the available data produces estimates of the soil integral content, degree of salt solutions mineralization and porosity. Regions of permafrost and ice formations are identified as well. One could possibly estimate average profiles of temperature, humidity and porosity of a 0,5-1 m thick surface layer. For that purpose one should apply observations by a two channel scanning radiometer of centimetre and decimetre ranges. Fluctuational sensitivity of each channel is ˜0,10 K, time constant of integration is 1 s. The two channels share an antenna, an inflatable or self-opening one with a mechanically scanning beam; aperture is about 3-4 m in size; directivity diagram - 30. Spatial EPSC Abstracts Vol. 10, EPSC2015-128, 2015 European Planetary Science Congress 2015 c Author(s) 2015 EPSC European Planetary Science Congress resolution element (pixel) is about 20 km, observation belt is of 200 - 400 km depending on the orbit parameters. Restoration accuracy of the radiobrighness temperature absolute values is of order of 2-30K. Microwave block dimensions are up to 500x500x300 mm; weight is ˜10 kg. An optimal frequency range for Martian radiometric measurements is 8-18 or 21 cm. Suggested radiometer presents a synthetic aperture microwave radiometer-imager. An optimal frequency range for Martian radiometric measurements is 8 -18 or 21 cm. It employs an interferometric technique to synthesize high resolutions from small antennas. This radiometer can be build, for example as analog of Electronically Steerable Thinned Array Radiometer (ESTAR). ESTAR operates at 1.4 GHz and has been deployed on the C-130 and P-3 aircrafts. It was used by NASA to measure soil moisture and to assess the potential to measure ocean surface salinity. Antenna fastening and joint to microwave block are hard. Registering system is a digit tape-recorder. Information stream is up to 1 kb/s. Power consumption is up to 50W/27V. Radiometer observations are conducted along the route of the Martian orbital station in accordance with the experiment general program. Observation angle is θ ˜0-300 ; polarization is vertical. Frequency of the radiometer calibration is not less that once in 24 hours. Radiometer scale calibration and measurement of antenna-feeder unit transition coefficient can be carried out against standard sources as well as the relict radiation (˜30K) with the antenna proper orientation. Generally it is desirable to match the radiometer system observation zone with that of optical and TV systems and infrared radiometer as well. Martian surface radio images should be geographically identified. Data processing and temperature and humidity maps drawing is performed by processor system back on Ground. On the base space- technology platform - the small satellite CHIBIS, also will planning to create prototype of Martian instrumentation for the operative geophysical monitoring system of the natural ecosystem for remote sensing in the range of 18-21 cm and 8-13 mkm. This is allowed to realize preliminary testing and calibration of the prototype of the Martian instrument in the Earth's condition. One of the areas of future studies on the surface of Mars are providing the measurements in situ in the local geophysical martian polygon by different geophysical instruments, including: radar measurements in the range of 0.5 - 50 Mhz, lowfrequency sounding by MARSES - TDEM instruments, MTS (magneto -telluric sounding) with depth of sounding until 1 km, in the frame work of the rover survey of the different areas of Martian surface . Additional information about MARSES-Active experiment on www.iki.rssi.ru/MARSES/english/info.htm [1] Ozorovich Yu.R., Raizer V.Yu., Microwave remote sensing of Martian cryolitozone, Preprint IKI, No.1768, 1991: https://www.researchgate.net/publication/275266762 _Microwave_remote_sensing_of_Martian_cryolitozone) [2] ACTIVE-PASSIVE MICROWAVE REMOTE SENSING OF MARTIAN PERMAFROST AND SUBSURFACE WATER. V.Raizer2, V. M.Linkin1, Y. R. Ozorovich1, W.D. Smythe,B3. Zoubkov1, F. Babkin1 1 Space Research Institute,Russian Academy of Sciences, 84/32 Profsoyuznaya st.,Moscow, 117810,Russia yozorovi@iki.rssi.ru,2 STC,Fairfax, VA 22031-1748,USA Vraizer@aol.com, 3 JPL/NASA,4800 Oak Grove Drive,Pasadena,CA 91109,USA wsmyth@spluvs.jpl.nasa.gov. http://www.lpi.usra.edu/meetings/lpsc2000/pdf/1258. pdf These glaciers have been hiding in plain sight whole time, under a blanketing of dust. There's so much ice, in fact, that if the glaciers were spread uniformly over the entire surface of the world, Mars would be covered in one meter of ice. Mars' dusty cover is doing more than hiding the glaciers from evaporation in the thin, radiation-prone atmosphere of Mars/
Simulation of the UV-radiation at the Martian surface
NASA Astrophysics Data System (ADS)
Kolb, C.; Stimpfl, P.; Krenn, H.; Lammer, H.; Kargl, G.; Abart, R.; Patel, M. R.
The UV-radiation at the Martian surface is for several reasons of importance. UV radiation can cause specific damages in the DNA-containing living systems and is involved in the formation of catalytically produced oxidants such as superoxide ions and peroxides. These are capable to oxidize and subsequently destroy organic matter. Lab simulations are necessary to investigate and understand the effects of organic matter removal at the Martian surface. We designed a radiation apparatus which simulates the solar spectrum at the Martian surface between 200 and 700 nm. The system consists of an UV-enhanced xenon arc lamp and special exchangeable filter-sets and mirrors for simulating the effects of the Martian atmospheric column and dust loading. A special collimating system bundles the final parallel beam so that the intensity at the target spot is independent from the distance between the ray source and the sample. The system was calibrated by means of an optical photo-spectrometer to align the ray output with the theoretical target spectrum and to ensure spectral homogeneity. We present preliminary data on calibration and performance of our system, which is integrated in the Austrian Mars simulation facility.
Methylated silicates may explain the release of chlorinated methane from Martian soil
NASA Astrophysics Data System (ADS)
Bak, Ebbe N.; Jensen, Svend J. Knak; Nørnberg, Per; Finster, Kai
2016-01-01
The only organic compounds that have been detected in the Martian soil are simple chlorinated compounds released from heated surface material. However, the sources of the organic carbon are in dispute. Wind abraded silicates, which are widespread on the Martian surface, can sequester atmospheric methane which generates methylated silicates and thus could provide a mechanism for accumulation of reduced carbon in the surface soil. In this study we show that thermal volatilization of methylated silicates in the presence of perchlorate leads to the production of chlorinated methane. Thus, methylated silicates could be a source of the organic carbon released as chlorinated methane upon thermal volatilization of Martian soil samples. Further, our experiments show that the ratio of the different chlorinated compounds produced is dependent on the mass ratio of perchlorate to organic carbon in the soil.
Properties of the moon, Mars, Martian satellites, and near-earth asteroids
NASA Technical Reports Server (NTRS)
Taylor, Jeffrey G.
1989-01-01
Environments and surface properties of the moon, Mars, Martian satellites, and near-earth asteroids are discussed. Topics include gravity, atmospheres, surface properties, surface compositions, seismicity, radiation environment, degradation, use of robotics, and environmental impacts. Gravity fields vary from large fractions of the earth's field such as 1/3 on Mars and 1/6 on the moon to smaller fractions of 0.0004 g on an asteroid 1 km in diameter. Spectral data and the analogy with meteor compositions suggest that near-earth asteroids may contain many resources such as water-rich carbonaceous materials and iron-rich metallic bodies. It is concluded that future mining and materials processing operations from extraterrestrial bodies require an investment now in both (1) missions to the moon, Mars, Phobos, Deimos, and near-earth asteroids and (2) earth-based laboratory research in materials and processing.
Evolution of CO2 and H2O on Mars: A cold Early History?
NASA Technical Reports Server (NTRS)
Niles, P. B.; Michalski, J.
2011-01-01
The martian climate has long been thought to have evolved substantially through history from a warm and wet period to the current cold and dry conditions on the martian surface. This view has been challenged based primarily on evidence that the early Sun had a substantially reduced luminosity and that a greenhouse atmosphere would be difficult to sustain on Mars for long periods of time. In addition, the evidence for a warm, wet period of martian history is far from conclusive with many of the salient features capable of being explained by an early cold climate. An important test of the warm, wet early Mars hypothesis is the abundance of carbonates in the crust [1]. Recent high precision isotopic measurements of the martian atmosphere and discoveries of carbonates on the martian surface provide new constraints on the evolution of the martian atmosphere. This work seeks to apply these constraints to test the feasibility of the cold early scenario
NASA Technical Reports Server (NTRS)
Warmflash, David; Larios-Sanz, Maia; Jones, Jeffrey; Fox, George E.; McKay, David S.
2007-01-01
Exploration Class missions to Mars will require precautions against potential contamination by any native microorganisms that may be incidentally pathogenic to humans. While the results of NASA's Viking biology experiments of 1976 have been generally interpreted as inconclusive for surface organisms, the possibility of native surface life has never been ruled out and more recent studies suggest that the case for biological interpretation of the Viking Labeled Release data may now be stronger than it was when the experiments were originally conducted. It is possible that, prior to the first human landing on Mars, robotic craft and sample return missions will provide enough data to know with certainty whether or not future human landing sites harbor extant life forms. However, if native life is confirmed, it will be problematic to determine whether any of its species may present a medical risk to astronauts. Therefore, it will become necessary to assess empirically the risk that the planet contains pathogens based on terrestrial examples of pathogenicity and to take a reasonably cautious approach to bio-hazard protection. A survey of terrestrial pathogens was conducted with special emphasis on those pathogens whose evolution has not depended on the presence of animal hosts. The history of the development and implementation of Apollo anticontamination protocol and recent recommendations of the NRC Space Studies Board regarding Mars were reviewed. Organisms can emerge in nature in the absence of indigenous animal hosts and both infectious and non-infectious human pathogens are theoretically possible on Mars. The prospect of Martian surface life, together with the existence of a diversity of routes by which pathogenicity has emerged on Earth, suggests that the possibility of human pathogens on Mars, while low, is not zero. Since the discovery and study of Martian life can have long-term benefits for humanity, the risk that Martian life might include pathogens should not be an obstacle to human exploration. As a precaution, however, it is recommended that EVA suits be decontaminated when astronauts enter surface habitats when returning from field activity and that biosafety protocol approximating laboratory BSL 2 be developed for astronauts working in laboratories on the Martian surface. Quarantine of astronauts and Martian materials arriving on Earth should also be part of a human Mars mission and this and the surface biosafety program should be integral to human expeditions from the earliest stages of the mission planning.
My Martian Moment - Episode 1 - David Blake and CheMin
2015-09-25
Ames' David Blake developed the Chemistry and Mineralogy instrument, or CheMin for short, which is currently operating on NASA's Curiosity Mars rover. It identifies and measures the abundance of various minerals on the Martian surface. The instrument is built around a highly compact X-ray diffraction unit, the first of its kind to operate on a planet besides Earth. CheMin can quickly analyze soil samples, helping scientists understand the composition and history of the Martian surface.
Lunar and Planetary Science XXXV: Mars: Hydrology, Drainage, and Valley Systems
NASA Technical Reports Server (NTRS)
2004-01-01
The titles in this section include: 1) Analysis of Orientation Dependence of Martian Gullies; 2) A Preliminary Relationship between the Depth of Martian Gullies and the Abundance of Hydrogen on Near-Surface Mars; 3) Water Indicators in Sirenum Terra and around the Argyre Impact Basin, Mars; 4) The Distribution of Gullies and Tounge-shaped Ridges and Their Role in the Degradation of Martian Craters; 5) A Critical Evaluation of Crater Lake Systems in Memnonia Quadrangle, Mars; 6) Impact-generated Hydrothermal Activity at Gusev Crater: Implications for the Spirit Mission; 7) Characterization of the Distributary Fan in Holden NE Crater using Stereo Analysis; 8) Computational Analysis of Drainage Basins on Mars: Appraising the Drainage Density; 9) Hypsometric Analyses of Martian Basins: A Comparison to Terrestrial, Lunar, and Venusian Hypsometry; 10) Morphologic Development of Harmakhis Vallis, Mars; 11) Mangala Valles, Mars: Investigations of the source of Flood Water and Early Stages of Flooding; 12) The Formation of Aromatum Chaos and the Water Discharge Rate at Ravi Vallis; 13) Inferring Hydraulics from Geomorphology for Athabasca Valles, Mars; 14) The Origin and Evolution of Dao Vallis: Formation and Modification of Martian Channels by Structural Collapse and Glaciation; 15) Snowmelt and the Formation of Valley Networks on Martian Volcanoes; 16) Extent of Floating Ice in an Ancient Echus Chasma/Kasei Valley System, Mars.
The "Mars-Sun Connection" and the Impact of Solar Variability on Mars Weather and Climate
NASA Astrophysics Data System (ADS)
Hassler, D. M.; Grinspoon, D.
2004-05-01
We develop the scientific case to measure simultaneously the UV and near-UV solar irradiance incident on the Mars atmosphere and at the Martian surface, to explore the effects and influence of Solar variability and "Space Weather" on Mars weather and climate, its implications for life, and the implications for astronaut safety on future manned Mars missions. The UV flux at the Martian surface is expected to be highly variable, due to diurnal, daily, and seasonal variations in opacity of atmospheric dust and clouds, as well as diurnal and seasonal variations in ozone, water vapor and other absorbing species. This flux has been modeled (Kuhn and Atreya, 1979), but never measured directly from the Martian surface. By directly observing the UV and near UV solar irradiance both at the top of the atmosphere and at the Martian surface we will be able to directly constrain important model parameters necessary to understand the variations of atmospheric dynamics which drive both Mars weather and climate. Directly measuring the solar UV radiation incident upon the Mars atmosphere and at the Martian surface also has important implications for astronaut safety on future manned Mars missions. The flux at the surface of Mars at 250 nm is also believed to be approximately 3000 times greater than that on Earth. This presents potential hazards to future human explorers as well as challenges for future agriculture such as may be carried out in surface greenhouses to provide food for human colonists. A better understanding of the surface flux will aid in designing appropriate protection against these hazards.
The ``Mars-Sun Connection" and the Impact of Solar Variability on Mars Weather and Climate
NASA Astrophysics Data System (ADS)
Hassler, D. M.; Grinspoon, D. H.
2003-05-01
We develop the scientific case to measure simultaneously the UV and near-UV solar irradiance incident on the Mars atmosphere and at the Martian surface, to explore the effects and influence of Solar variability and ``Space Weather" on Mars weather and climate, its implications for life, and the implications for astronaut safety on future manned Mars missions. The UV flux at the Martian surface is expected to be highly variable, due to diurnal, daily, and seasonal variations in opacity of atmospheric dust and clouds, as well as diurnal and seasonal variations in ozone, water vapor and other absorbing species. This flux has been modeled (Kuhn and Atreya, 1979), but never measured directly from the Martian surface. By directly observing the UV and near UV solar irradiance both at the top of the atmosphere and at the Martian surface we will be able to directly constrain important model parameters necessary to understand the variations of atmospheric dynamics which drive both Mars weather and climate. Directly measuring the solar UV radiation incident upon the Mars atmosphere and at the Martian surface also has important implications for astronaut safety on future manned Mars missions. The flux at the surface of Mars at 250 nm is also believed to be approximately 3000 times greater than that on Earth. This presents potential hazards to future human explorers as well as challenges for future agriculture such as may be carried out in surface greenhouses to provide food for human colonists. A better understanding of the surface flux will aid in designing appropriate protection against these hazards.
NASA Technical Reports Server (NTRS)
Fries, M. D.; Steele, Andrew; Hynek, B. M.
2015-01-01
We present the hypothesis that halite may play a role in methane sequestration on the martian surface. In terrestrial examples, halite deposits sequester large volumes of methane and chloromethane. Also, examples of chloromethane-bearing, approximately 4.5 Ga old halite from the Monahans meteorite show that this system is very stable unless the halite is damaged. On Mars, methane may be generated from carbonaceous material trapped in ancient halite deposits and sequestered. The methane may be released by damaging its halite host; either by aqueous alteration, aeolian abrasion, heating, or impact shock. Such a scenario may help to explain the appearance of short-lived releases of methane on the martian surface. The methane may be of either biogenic or abiogenic origin. If this scenario plays a significant role on Mars, then martian halite deposits may contain samples of organic compounds dating to the ancient desiccation of the planet, accessible at the surface for future sample return missions.
Radiation Shielding Optimization on Mars
NASA Technical Reports Server (NTRS)
Slaba, Tony C.; Mertens, Chris J.; Blattnig, Steve R.
2013-01-01
Future space missions to Mars will require radiation shielding to be optimized for deep space transit and an extended stay on the surface. In deep space, increased shielding levels and material optimization will reduce the exposure from most solar particle events (SPE) but are less effective at shielding against galactic cosmic rays (GCR). On the surface, the shielding provided by the Martian atmosphere greatly reduces the exposure from most SPE, and long-term GCR exposure is a primary concern. Previous work has shown that in deep space, additional shielding of common materials such as aluminum or polyethylene does not significantly reduce the GCR exposure. In this work, it is shown that on the Martian surface, almost any amount of aluminum shielding increases exposure levels for humans. The increased exposure levels are attributed to neutron production in the shield and Martian regolith as well as the electromagnetic cascade induced in the Martian atmosphere. This result is significant for optimization of vehicle and shield designs intended for the surface of Mars.
A DTA/GC for the in Situ Identification of the Martian Surface Material
NASA Technical Reports Server (NTRS)
Mancinelli, R. L.; White, M. R.; Orenberg, J. B.
1993-01-01
The composition and mineralogy of the Martian surface material remain largely unknown. To determine its composition and mineralogy, several techniques are being considered for in situ analyses of the Martian surface material during missions to Mars. We have successfully developed, constructed, and tested a laboratory DTA/GC. The DTA is a Dupont model 1600 high temperature DTA coupled with a GC equipped with a MID detector. The system is operated by a Sun Sparc 11 workstation. When gas evolves during a thermal chemical event, it is shunted into the GC and the temperature is recorded in association with the specific thermal event. We have used this laboratory instrument to define experimental criteria necessary for determining the composition and mineralogy of the Martian surface in situ (e.g., heating of sample to 1100 C to distinguish clays). Our studies indicate that DTA/GC will provide a broad spectrum of mineralogical and evolved gas data pertinent to exobiology, geochemistry, and geology.
NASA Technical Reports Server (NTRS)
Mason, C. C.
1971-01-01
Analysis of lunar particle size distribution data indicates that the surface material is composed of two populations. One population is caused by comminution from the impact of the larger-sized meteorites, while the other population is caused by the melting of fine material by the impact of smaller-sized meteorites. The results are referred to Mars, and it is shown that the Martian atmosphere would vaporize the smaller incoming meteorites and retard the incoming meteorites of intermediate and large size, causing comminution and stirring of the particulate layer. The combination of comminution and stirring would result in fine material being sorted out by the prevailing circulation of the Martian atmosphere and the material being transported to regions where it could be deposited. As a result, the Martian surface in regions of prevailing upward circulation is probably covered by either a rubble layer or by desert pavement; regions of prevailing downward circulation are probably covered by sand dunes.
Mineralogy of the Martian Surface: Crustal Composition to Surface Processes
NASA Technical Reports Server (NTRS)
Mustard, John F.
1999-01-01
Over the course of this award we have: 1) Completed and published the results of a study of the effects of hyperfine particles on reflectance spectra of olivine and quartz, which included the development of scattering codes. Research has also progressed in the analysis of the effects of fine particle sizes on clay spectra. 2) Completed the analysis of the mineralogy of dark regions, showed the insitu compositions are highly correlated to the SNC meteorites, and determined that the martian mantle was depleted in aluminum prior to 2-3 GA ago; Studies of the mineralogic heterogeneity of surficial materials on Mars have also been conducted. and 3) Performed initial work on the study of the physical and chemical processes likely to form and modify duricrust. This includes assessments of erosion rates, solubility and transport of iron in soil environments, and models of pedogenic crust formation.
The viability of photovoltaics on the Martian surface
NASA Technical Reports Server (NTRS)
Gaier, James R.; Perez-Davis, Marla E.
1994-01-01
The viability of photovoltaics (PV) on the Martian surface may be determined by their ability to withstand significant degradation in the Martian environment. Probably the greatest threat is posed by fine dust particles which are continually blown about the surface of the planet. In an effort to determine the extent of the threat, and to investigate some abatement strategies, a series of experiments were conducted in the Martian Surface Wind Tunnel (MARSWIT) at NASA Ames Research Center. The effects of dust composition, particle size, wind velocity, angle of attack, and protective coatings on the transmittance of light through PV coverglass were determined. Both initially clear and initially dusted samples were subjected both to clear winds and simulated dust storms in the MARSWIT. It was found that wind velocity, particle size, and angle of attack are important parameters affecting occlusion of PV surfaces, while dust composition and protective coatings were not. Neither induced turbulence nor direct current biasing up to 200 volts were effective abatement techniques. Abrasion diffused the light impinging on the PV cells, but did not reduce total coverglass transmittance by more than a few percent.
NASA Astrophysics Data System (ADS)
de Grenier, Muriel; Pinet, Patrick C.
1995-06-01
A nearly global coverage of the martian eastern hemisphere, acquired under small phase angles and varying observational geometries conditions, has been produced from 1988 opposition by spectral (0.5-1 μm) imaging data obtained at the Pic du Midi Observatory in France. From this data set, the methodology presented here permits a systematic analysis of martian photometric behavior at a regional scale of 100-300 km in the visible and near-infrared. The quantification of limb-darkening as a function of wavelength and surface albedo gives access in martian regional properties as a function of wavelength and surface albedo and results in the production of visible and near-infrared geometric albedo maps. A linear relation between the limb darkening parameter k and geometric albedo exists in the near infrared. Based on laboratory studies, it suggests a spectral response of particulate type for the martian soil. Conversely, in the visible, the value of k parameter is 0.6 independent of albedo and is consistent with a single scattering photometric behavior in the surface layer. However, the observed change in the martian photometry from single to multiple scattering may be partially due to a large contribution of atmospheric scattering above 0.7 μm. In the absence of a multitemporal dataset analysis, it must be emphasized that the present results are a priori only pertinent to the atmospheric and surface conditions existing on Mars at the time of observation. However, this analysis may contribute to characterize some physical properties, such as surface roughness. In the near-infrared, for bright terrains, k tends to 0.8 and agrees with the presence of very fine particulate materials. Photometry of dark areas is more irregular (0.48 < k < 0.64) and might result from surface roughness heterogeneities. However, a few dark areas reveal that k anomalous values in the range 0.7-0.8 may be caused by the presence of a coating of very fine materials or duricrust. Finally, we evaluate the influence of reflectance geometrical effects on the multispectral and spectroscopic data of the martian surface.
Martian Cryogenic Carbonate Formation: Stable Isotope Variations Observed in Laboratory Studies
NASA Technical Reports Server (NTRS)
Socki, Richard A.; Niles, Paul B.; Sun, Tao; Fu, Qi; Romanek, Christopher S.; Gibson, Everett K. Jr.
2014-01-01
The history of water on Mars is tied to the formation of carbonates through atmospheric CO2 and its control of the climate history of the planet. Carbonate mineral formation under modern martian atmospheric conditions could be a critical factor in controlling the martian climate in a means similar to the rock weathering cycle on Earth. The combination of evidence for liquid water on the martian surface and cold surface conditions suggest fluid freezing could be very common on the surface of Mars. Cryogenic calcite forms easily from freezing solutions when carbon dioxide degasses quickly from Ca-bicarbonate-rich water, a process that has been observed in some terrestrial settings such as arctic permafrost cave deposits, lake beds of the Dry Valleys of Antarctica, and in aufeis (river icings) from rivers of N.E. Alaska. A series of laboratory experiments were conducted that simulated cryogenic carbonate formation on Mars in order to understand their isotopic systematics. The results indicate that carbonates grown under martian conditions show variable enrichments from starting bicarbonate fluids in both carbon and oxygen isotopes beyond equilibrium values.
Detecting Pyrolysis Products from Bacteria in a Mars Soil Analogue
NASA Technical Reports Server (NTRS)
Glavin, D. P.; Cleaves, H. J.; Schubert, M.; Aubrey, A.; Buch, A.; Mahaffy, P. R.; Bada, J. L.
2004-01-01
One of the primary objectives of the 1976 Viking missions was to determine whether organic compounds, possibly of biological origin, were present in the Martian surface soils. The Viking gas chromatography mass spectrometry (GCMS) instruments found no evidence for any organic compounds of Martian origin above a few parts per billion in the upper 10 cm of surface soil, suggesting the absence of a widely distributed Martian biota. However, it is now known that key organic compounds important to biology, such as amino acids, carboxylic acids and nucleobases, would likely have been missed by the Viking GCMS instruments. In this study, a Mars soil analogue that was inoculated with approx. 10 billion Escherichia coli cells was heated at 500 C under Martian ambient pressure to release volatile organic compounds from the sample. The pyrolysis products were then analyzed for amino acids and nucleobases using high performance liquid chromatography (HPLC) and GCMS. Our experimental results indicate that at the part per billion level, the degradation products generated from several million bacterial cells per gram of Martian soil would not have been detected by the Viking GCMS instruments. Upcoming strategies for Mars exploration will require in-situ analyses by instruments that can assess whether any organic compounds, especially those that might be associated with life, are present in Martian surface samples.
The spectroscopic chemical and photophysical properties of Martian soils and their analogs
NASA Technical Reports Server (NTRS)
Coyne, Lelia M.
1987-01-01
The program of research outlined should advance significantly the understanding of the spectral signal of montmorillonites in general and the variations produced in it by structural and surface ferric and ferrous iron and interlayer water as a function of several environmental conditions that are different between Earth and Mars. In addition, an extensive data base was collected providing spectral characterization of several features (iron, both surface and structural, OH-groups, both structural and from adsorbed water and O(-) centers) that are known, or thought to be, influential in directing the surface activity of these important materials. With this data base with which to assess the results of the Viking labeled release simulation studies, it should be possible to gain important insights into the mechanisms of surface reactivity for this important chemical reaction. The results to be gained from these studies will provide a significant body of ground base truth from which to assess: the presence of smectite clays on Mars; the mineralogical form in which the Martian iron is bound; establish upper limits on the present surface water content of Martian soils; perhaps provide insights on the Martian surface radiation history; and to make strong predictions about the nature of surface chemistry on Mars, if iron-bearing clays are a significant component of the surface mineralogical assemblage.
Planning for the Paleomagnetic Investigations of Returned Samples from Mars
NASA Astrophysics Data System (ADS)
Weiss, B. P.; Beaty, D. W.; McSween, H. Y., Jr.; Czaja, A. D.; Goreva, Y.; Hausrath, E.; Herd, C. D. K.; Humayun, M.; McCubbin, F. M.; McLennan, S. M.; Pratt, L. M.; Sephton, M. A.; Steele, A.; Hays, L. E.; Meyer, M. A.
2016-12-01
The red planet is a magnetic planet. Mars' iron-rich surface is strongly magnetized, likely dating back to the Noachian period when the surface may have been habitable. Paleomagnetic measurements of returned samples could transform our understanding of the Martian dynamo and its connection to climatic and planetary thermal evolution. Because the original orientations of Martian meteorites are unknown, all Mars paleomagnetic studies to date have only been able to measure the paleointensity of the Martian field. Paleomagnetic studies from returned Martian bedrock samples would provide unprecedented geologic context and the first paleodirectional information on Martian fields. The Mars 2020 rover mission seeks to accomplish the first leg by preparing for the potential return of 31 1 cm-diameter cores of Martian rocks. The Returned Sample Science Board (RSSB) has been tasked to advise the Mars 2020 mission in how to best select and preserve samples optimized for paleomagnetic measurements. A recent community-based study (Weiss et al., 2014) produced a ranked list of key paleomagnetism science objectives, which included: 1) Determine the intensity of the Martian dynamo 2) Characterize the dynamo reversal frequency with magnetostratigraphy 3) Constrain the effects of heating and aqueous alteration on the samples 4) Constrain the history of Martian tectonics Guided by these objectives, the RSSB has proposed four key sample quality criteria to the Mars 2020 mission: (a) no exposure to fields >200 mT, (b) no exposure to temperatures >100 °C, (c) no exposure to pressures >0.1 GPa, and (d) acquisition of samples that are absolutely oriented with respect to bedrock with a half-cone uncertainty of <5°. Our measurements of a Mars 2020 prototype drill have found that criteria (a-c) should be met by the drilling process. Furthermore, the core plate strike and dip will be measured to better than 5° for intact drill cores; we are working with the mission to establish ways to determine the core's angular orientation with respect to rotation around the drill hole axis. The next stage of our work is to establish whether and how these sample criteria would be maintained throughout the potential downstream missions that would return the samples to Earth.
NASA Technical Reports Server (NTRS)
Yen, A. S.; Kim, S. S.; Freeman, B. A.; Hecht, M. H.
2000-01-01
We present experimental evidence that superoxide ions form on mineral grains at the martian surface and show that these adsorbates can explain the unusual reactivity of the soil as well as the apparent absence of organic molecules.
The Meteorological Experiment on the Mars Surveyor '98 Polar Lander
NASA Technical Reports Server (NTRS)
Crisp, D.
1999-01-01
When it lands on Mars on December 3, 1999, the Mars Surveyor '98 Mars Polar Lander (MPL) will provide the first opportunity to make in-situ measurements of the near-surface weather climate, and volatile inventory in the Martian south polar region. To make the most of this opportunity, the MPL's Mars Volatiles and Climate Surveyor (MVACS) payload includes the most comprehensive complement of meteorological instruments ever sent to Mars. Like the Viking and the Mars Pathfinder Lander, the MVACS Meteorological (Met) package includes sensors for measuring atmospheric pressures, temperatures, and wind velocities. This payload also includes a 2-channel tunable diode laser spectrometer for in-situ measurements of the atmospheric water vapor abundance near the ground, and improved instruments for measuring the relative abundances of oxygen isotopes (in water vapor and CO2) and a surface temperature probe for measuring the surface and sub-surface temperatures. This presentation will provide a brief overview of the environmental conditions anticipated at the surface in the Martian regions. We will then provide an over-view of the MVACS Met instrument and describe the MET sensors in detail, including their principle of operation, range, resolution, accuracy, sampling strategy, heritage, accommodation on the Lander, and their control and data handling system. Finally, we will describe the operational sequences, resource requirements, and the anticipated data volumes for each of the Met instruments.
Hydrological Process of Martian Surface in Hesperian epoch
NASA Astrophysics Data System (ADS)
Yamashiki, Y. A.; Sato, H.; Kuroki, R.; Miyamoto, H.; Hemmi, R.
2017-12-01
It is considered that the Mars in Noachian ecoch was much warmer temperature than current condition, with atmosphere and ocean supported by its magnetic actiity. Several valley which seems to be developed by ancient hydrological processes are obsered in Martian surface, is being considered to be built long time before. Some fluvial fun was formed during the following Hesperian epoch, which is considered as much cooler and drier than Noachian epoch. In this study, we applied Hydro-debris 2D model into Martian surface in Hesperian epoch in order to try develping surface vallay formation throughout hydrological processes. Sediment transport and associated small-scale debris-flow occurrence may be the key for valley formation, where might be the micro-habitable zone.
Medical Issues for a Human Mission to Mars and Martian Surface Expeditions
NASA Astrophysics Data System (ADS)
Jones, J. A.; Barratt, M.; Effenhauser, R.; Cockell, C. S.; Lee, P.
The medical issues for an exploratory class mission to Mars are myriad and challenging. They include hazards from the space environment, such as space vacuum and radiation; hazards on the planetary surface such as micrometeoroids and Martian dust, and constitutional medical hazards, like appendicitis and tooth abscess. They include hazards in the transit vehicle like foreign bodies and toxic atmospheres, and hazards in the habitat like decompression and combustion events. They also include human physiological adaptation to variable conditions of reduced gravity and prolonged isolation and confinement. The health maintenance program for a Mars mission will employ strategies of disease prevention, early detection, and contingency management, to mitigate the risks of spaceflight and exploration. Countermeasures for altered gravity conditions will allow crewmembers to maintain high levels of performance and nominal physiologic functioning. Despite all of these issues, given sufficient redundancy in on-board life support systems, there are no medical show-stoppers for the first human exploratory class missions.
Physiological and technological considerations for Mars mission extravehicular activity
NASA Technical Reports Server (NTRS)
Waligora, James M.; Sedej, Melaine M.
1986-01-01
The nature of the suit is a function of the needs of human physiology, the ambient environment outside the suit, and the type of activity to be accomplished while in the suit. The physiological requirements that must be provided for in the Martian Extravehicular Activity (EVA) suit will be reviewed. The influence of the Martian environment on the EVA suit and EVA capabilities is elaborated, and the Martian environment is compared with the lunar environment. The differences that may influence the EVA design are noted. The type, nature, and duration of activities to be done in transit to Mars and on the Martian surface will be evaluated and the impact of these activities on the requirements for EVA systems will be discussed. Furthermore, the interaction between Martian surface transportation systems and EVA systems will be covered. Finally, options other than EVA will be considered such as robotics, nonanthropometric suits, and vehicles with anthropometric extremities or robotic end effectors.
NASA Technical Reports Server (NTRS)
Baker, V. R.
1982-01-01
Early observations of Mars conducted by means of telescopes are considered. Secchi introduced the Italian word 'canale' ('channel') in 1869 to describe apparent lines on the planet's surface. Between 1877 and 1888 Schiaparelli mapped a profusion of 'canali'. Schiaparelli's work led to famous controversies about Mars. This book attempts to investigate the puzzle posed by the Martian channels, taking into account also the results of the studies conducted with the aid of the two orbiting Viking spacecraft which have produced a total number of nearly 60,000 pictures. The channel types are discussed along with questions regarding the distribution, the ages, and the proposed origins of the channels. Attention is given to the geomorphology of Mars, the patterns and networks of Martian valleys, ice and the Martian surface, the outflow channels, catastrophic flood processes, questions of analogy between terrestrial and Martian geographic features, and Martian phenomena associated with water liquid or water ice.
NASA Technical Reports Server (NTRS)
Newsom, Horton E.
1988-01-01
The origin of the Martian soil is an important question for understanding weathering processes on the Martian surface, and also for understanding the global geochemistry of Mars. Chemical analyses of the soil will provide an opportunity to examine what may be a crustal average, as studies of loess on the Earth have demonstrated. In this regard the origin of the Martian soil is also important for understanding the chemical fractionations that have affected the composition of the soil. Several processes that are likely to contribute to the Martian soil are examined.
NASA Astrophysics Data System (ADS)
Kobayashi, K.; Isobe, H.
2011-12-01
Exploration made by Martian rovers and probes provided enormous information on the composition of the Martian surface materials. Origin and formation processes of the Martian surface materials should be various depending on topography and history of the Martian crust. Especially, iron minerals in the Martian soil should have essential role to characterize surface environment of the "red planet". In the present study, experimental reproduction of the Martian soil was carried out by hydrothermal alteration of the synthetic iron-rich basaltic rock. Experimental conditions for temperature and fluid composition followed Isobe and Yoshizawa (2010). Static alteration experiments are carried out at 100 °C and 150 °C, and mass ratio of the starting material to the pH1.0 sulfuric acid solution is 1:50. Run durations are 1, 2, 4 or 8 weeks. Appropriate mass of dry ice was sealed in the experimental vessels to expel atmospheric oxygen with CO2. For the static experiments, powdered starting materials were charged in PFA vial to keep textures of the run products. For the fluid flow experiments, we constructed closed loop with Teflon tube inclined approximately 45°. One of the vertical tube is charged with crushed synthetic basalt and heated approximately 150°C by aluminum block with ribbon heater. Surlfuric acid solution flows through the tube from bottom to top and cooled at the end of the aluminum block. Cooled solution returns to the bottom of the heated tube through another vertical tube without heating block. In the static condition run products, characteristic iron mineral particles are formed for 100°C and 150°C concordant with Isobe and Yoshizawa (2010). These iron minerals distributed not only inside the starting material powder but also on the surface of the reaction vessel and the PFA vial in the reactive solution. The surface of the reaction vessel shows orange and reddish color on 100°C and 150°C run products, respectively. By SEM observation, dissolution of melt and olivine grains were observed, and iron mineral particles substituted olivine partly. Diameters of the iron mineral particles are submicron to several micron meters at 100°C, and slowly increase with run durations and temperatures. In the fluid flow experiment, deposition of the characteristic iron minerals occur inside the heated tube. Distribution of iron minerals corresponds to temperature gradient and fluid flow direction. Iron minerals are partially covered by silica phase with submicron meters in thickness. The occurrence of the iron minerals in the run products of this study suggests that characteristic iron mineral fine particles including hematite and goethite were formed by acidic hydrothermal alteration of iron-rich basaltic rock even at remote region from the source materials.
NASA Astrophysics Data System (ADS)
Harris, Jennifer; Grindrod, Peter
2017-04-01
At present, martian meteorites represent the only samples of Mars available for study in terrestrial laboratories. However, these samples have never been definitively tied to source locations on Mars, meaning that the fundamental geological context is missing. The goal of this work is to link the bulk mineralogical analyses of martian meteorites to the surface geology of Mars through spectral mixture analysis of hyperspectral imagery. Hapke radiation transfer modelling has been shown to provide accurate (within 5 - 10% absolute error) mineral abundance values from laboratory derived hyperspectral measurements of binary [1] and ternary [2] mixtures of plagioclase, pyroxene and olivine. These three minerals form the vast bulk of the SNC meteorites [3] and the bedrock of the Amazonian provinces on Mars that are inferred to be the source regions for these meteorites based on isotopic aging. Spectral unmixing through the Hapke model could be used to quantitatively analyse the Martian surface and pinpoint the exact craters from which the SNC meteorites originated. However the Hapke model is complex with numerous variables, many of which are determinable in laboratory conditions but not from remote measurements of a planetary surface. Using binary and tertiary spectral mixtures and martian meteorite spectra from the RELAB spectral library, the accuracy of Hapke abundance estimation is investigated in the face of increasing constraints and simplifications to simulate CRISM data. Constraints and simplifications include reduced spectral resolution, additional noise, unknown endmembers and unknown particle physical characteristics. CRISM operates in two spectral resolutions, the Full Resolution Targeted (FRT) with which it has imaged approximately 2% of the martian surface, and the lower spectral resolution MultiSpectral Survey mode (MSP) with which it has covered the vast majority of the surface. On resampling the RELAB spectral mixtures to these two wavelength ranges it was found that with the lower spectral resolution the Hapke abundance results were just as accurate (within 7% absolute error) as with the higher resolution. Further results taking into account additional noise from both instrument and atmospheric sources and the potential presence of minor amounts of accessory minerals, and the selection of appropriate spectral endmembers where the exact endmembers present are unknown shall be presented. References [1] Mustard, J. F., Pieters, C. M., Quantitative abundance estimates from bidirectional reflectance measurements, Journal of Geophysical Research, Vol. 92, B4, E617 - E626, 1987 [2] Li, S., Milliken, R. E., Estimating the modal mineralogy of eucrite and diogenite meteorites using visible-near infrared reflectance spectroscopy, Meteoritics and Planetary Science, Vol. 50, 11, 1821 - 1850, 2015 [3] Hutchinson, R., Meteorites: A petrologic, chemical and isotopic synthesis, Cambridge University Press, 2004
Chemical Weathering Records of Martian Soils Preserved in the Martian Meteorite EET79001
NASA Technical Reports Server (NTRS)
Rao, M. N.; Wentworth, S. J.; McKay, D. S.
2004-01-01
Impact-melt glasses, rich in Martian atmospheric gases, contain Martian soil fines (MSF) mixed with other coarse-grained regolith fractions which are produced during impact bombardment on Mars surface. An important characteristic of the MSF fraction is the simultaneous enrichment of felsic component accompanied by the depletion of mafic component relative to the host phase in these glasses. In addition, these glasses yield large sulfur abundances due to the occurrence of secondary mineral phases such as sulfates produced during acid-sulfate weathering of the regolith material near the Martian surface. Sulfurous gases released into atmosphere by volcanoes on Mars are oxidized to H2SO4 which deposit back on the surface of Mars as aerosol particles. Depending on the water availability, sulfuric acids dissolve into solutions which aggressively decompose the Fe-Mg silicates in the Martian regolith. During chemical weathering, structural elements such as Fe, Mg and Ca (among others) are released into the transgressing solutions. These solutions leach away the soluble components of Mg, Ca and Na, leaving behind insoluble iron as Fe3(+) hydroxysulfate mixed with poorly crystalline hydroxide- precipitates under oxidizing conditions. In this study, we focus on the elemental distribution of FeO and SO3 in the glass veins of EET79001, 507 sample, determined by Electron Microprobe and FE SEM measurements at JSC. This glass sample is an aliquot of a bigger glass inclusion ,104 analysed by where large concentrations of Martian atmospheric noble gases are found.
NASA Technical Reports Server (NTRS)
Moore, Jeffrey M.; Howard, Alan D.
2004-01-01
Several dozen distinct alluvial fans, 10 to greater than 40 km long downslope are observed exclusively in highlands craters. Within a search region between 0 deg. and 30 deg. S, alluvial fan-containing craters were only found between 18 and 29 S, and they all occur at around plus or minus 1 km of the MOLA-defined Martian datum. Within the study area they are not randomly distributed but instead form three distinct clusters. Fans typically descend greater than 1 km from where they disgorge from their alcoves. Longitudinal profiles show that their surfaces are very slightly concave with a mean slope of 2 degrees. Many fans exhibit very long, narrow low-relief ridges radially oriented down-slope, often branching at their distal ends, suggestive of distributaries. Morphometric data for 31 fans was derived from MOLA data and compared with terrestrial fans with high-relief source areas, terrestrial low gradient alluvial ramps in inactive tectonic settings, and older Martian alluvial ramps along crater floors. The Martian alluvial fans generally fall on the same trends as the terrestrial alluvial fans, whereas the gentler Martian crater floor ramps are similar in gradient to the low relief terrestrial alluvial surfaces. For a given fan gradient, Martian alluvial fans generally have greater source basin relief than terrestrial fans in active tectonic settings. This suggests that the terrestrial source basins either yield coarser debris or have higher sediment concentrations than their Martian counterpoints. Martian fans and Basin and Range fans have steeper gradients than the older Martian alluvial ramps and terrestrial low relief alluvial surfaces, which is consistent with a supply of coarse sediment. Martian fans are relatively large and of low gradient, similar to terrestrial fluvial fans rather than debris flow fans. However, gravity scaling uncertainties make the flow regime forming Martian fans uncertain. Martian fans, at least those in Holden crater, apparently formed around the time of the Noachian-Hesperian boundary. We infer that these fans formed during an episode of enhanced precipitation (probably snow) and runoff, which exhibited both sudden onset and termination.
The divergent fates of primitive hydrospheric water on Earth and Mars
NASA Astrophysics Data System (ADS)
Wade, Jon; Dyck, Brendan; Palin, Richard M.; Moore, James D. P.; Smye, Andrew J.
2017-12-01
Despite active transport into Earth’s mantle, water has been present on our planet’s surface for most of geological time. Yet water disappeared from the Martian surface soon after its formation. Although some of the water on Mars was lost to space via photolysis following the collapse of the planet’s magnetic field, the widespread serpentinization of Martian crust suggests that metamorphic hydration reactions played a critical part in the sequestration of the crust. Here we quantify the relative volumes of water that could be removed from each planet’s surface via the burial and metamorphism of hydrated mafic crusts, and calculate mineral transition-induced bulk-density changes at conditions of elevated pressure and temperature for each. The metamorphic mineral assemblages in relatively FeO-rich Martian lavas can hold about 25 per cent more structurally bound water than those in metamorphosed terrestrial basalts, and can retain it at greater depths within Mars. Our calculations suggest that in excess of 9 per cent by volume of the Martian mantle may contain hydrous mineral species as a consequence of surface reactions, compared to about 4 per cent by volume of Earth’s mantle. Furthermore, neither primitive nor evolved hydrated Martian crust show noticeably different bulk densities compared to their anhydrous equivalents, in contrast to hydrous mafic terrestrial crust, which transforms to denser eclogite upon dehydration. This would have allowed efficient overplating and burial of early Martian crust in a stagnant-lid tectonic regime, in which the lithosphere comprised a single tectonic plate, with only the warmer, lower crust involved in mantle convection. This provided an important sink for hydrospheric water and a mechanism for oxidizing the Martian mantle. Conversely, relatively buoyant mafic crust and hotter geothermal gradients on Earth reduced the potential for upper-mantle hydration early in its geological history, leading to water being retained close to its surface, and thus creating conditions conducive for the evolution of complex multicellular life.
The divergent fates of primitive hydrospheric water on Earth and Mars.
Wade, Jon; Dyck, Brendan; Palin, Richard M; Moore, James D P; Smye, Andrew J
2017-12-20
Despite active transport into Earth's mantle, water has been present on our planet's surface for most of geological time. Yet water disappeared from the Martian surface soon after its formation. Although some of the water on Mars was lost to space via photolysis following the collapse of the planet's magnetic field, the widespread serpentinization of Martian crust suggests that metamorphic hydration reactions played a critical part in the sequestration of the crust. Here we quantify the relative volumes of water that could be removed from each planet's surface via the burial and metamorphism of hydrated mafic crusts, and calculate mineral transition-induced bulk-density changes at conditions of elevated pressure and temperature for each. The metamorphic mineral assemblages in relatively FeO-rich Martian lavas can hold about 25 per cent more structurally bound water than those in metamorphosed terrestrial basalts, and can retain it at greater depths within Mars. Our calculations suggest that in excess of 9 per cent by volume of the Martian mantle may contain hydrous mineral species as a consequence of surface reactions, compared to about 4 per cent by volume of Earth's mantle. Furthermore, neither primitive nor evolved hydrated Martian crust show noticeably different bulk densities compared to their anhydrous equivalents, in contrast to hydrous mafic terrestrial crust, which transforms to denser eclogite upon dehydration. This would have allowed efficient overplating and burial of early Martian crust in a stagnant-lid tectonic regime, in which the lithosphere comprised a single tectonic plate, with only the warmer, lower crust involved in mantle convection. This provided an important sink for hydrospheric water and a mechanism for oxidizing the Martian mantle. Conversely, relatively buoyant mafic crust and hotter geothermal gradients on Earth reduced the potential for upper-mantle hydration early in its geological history, leading to water being retained close to its surface, and thus creating conditions conducive for the evolution of complex multicellular life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Adam; Pratt, L.M.; Vishnivetskaya, Tatiana A
2011-01-01
Recent orbital and landed missions have provided substantial evidence for ancient liquid water on the martian surface as well as evidence of more recent sedimentary deposits formed by water and/or ice. These observations raise serious questions regarding an independent origin and evolution of life on Mars. Future missions seek to identify signs of extinct martian biota in the form of biomarkers or morphological characteristics, but the inherent danger of spacecraft-borne terrestrial life makes the possibility of forward contamination a serious threat not only to the life detection experiments, but also to any extant martian ecosystem. A variety of cold andmore » desiccation-tolerant organisms were exposed to 40 days of simulated martian surface conditions while embedded within several centimeters of regolith simulant in order to ascertain the plausibility of such organisms survival as a function of environmental parameters and burial depth. Relevant amino acid biomarkers associated with terrestrial life were also analyzed in order to understand the feasibility of detecting chemical evidence for previous biological activity. Results indicate that stresses due to desiccation and oxidation were the primary deterrent to organism survival, and that the effects of UV-associated damage, diurnal temperature variations, and reactive atmospheric species were minimal. Organisms with resistance to desiccation and radiation environments showed increased levels of survival after the experiment compared to organisms characterized as psychrotolerant. Amino acid analysis indicated the presence of an oxidation mechanism that migrated downward through the samples during the course of the experiment and likely represents the formation of various oxidizing species at mineral surfaces as water vapor diffused through the regolith. Current sterilization protocols may specifically select for organisms best adapted to survival at the martian surface, namely species that show tolerance to radical-induced oxidative damage and low water activity environments. Additionally, any hypothetical martian ecosystems may have evolved similar physiological traits that allow sporadic metabolism during periods of increased water activity.« less
NASA Technical Reports Server (NTRS)
Neukum, G.; Lehmann, F.; Regner, P.; Jaumann, R.
1988-01-01
Remote sensing of the Martian surface from the ground and from orbiting spacecraft has provided some first-order insight into the mineralogical-chemical composition and the weathering state of Martian surface materials. Much more detailed information can be gathered from performing such measurements in situ at the landing sites or from a rover in combination with analogous measurements from orbit. Measurements in the wavelength range of approximately 0.3 to 12.0 micrometers appear to be suitable to characterize much of the physical, mineralogical, petrological, and chemical properties of Martian surface materials and the weathering and other alteration processes that have acted on them. It is of particular importance to carry out measurements at the same time over a broad wavelength range since the reflectance signatures are caused by different effects and hence give different and complementing information. It appears particularly useful to employ a combination of active and passive methods because the use of active laser spectroscopy allows the obtaining of specific information on thermal infrared reflectance of surface materials. It seems to be evident that a spectrometric survey of Martian materials has to be focused on the analysis of altered and fresh mafic materials and rocks, water-bearing silicates, and possibly carbonates.
Modeling the development of martian sublimation thermokarst landforms
Dundas, Colin M.; Byrne, Shane; McEwen, Alfred S.
2015-01-01
Sublimation-thermokarst landforms result from collapse of the surface when ice is lost from the subsurface. On Mars, scalloped landforms with scales of decameters to kilometers are observed in the mid-latitudes and considered likely thermokarst features. We describe a landscape evolution model that couples diffusive mass movement and subsurface ice loss due to sublimation. Over periods of tens of thousands of Mars years under conditions similar to the present, the model produces scallop-like features similar to those on the Martian surface, starting from much smaller initial disturbances. The model also indicates crater expansion when impacts occur in surfaces underlain by excess ice to some depth, with morphologies similar to observed landforms on the Martian northern plains. In order to produce these landforms by sublimation, substantial quantities of excess ice are required, at least comparable to the vertical extent of the landform, and such ice must remain in adjacent terrain to support the non-deflated surface. We suggest that Martian thermokarst features are consistent with formation by sublimation, without melting, and that significant thicknesses of very clean excess ice (up to many tens of meters, the depth of some scalloped depressions) are locally present in the Martian mid-latitudes. Climate conditions leading to melting at significant depth are not required.
Dependence of the Martian radiation environment on atmospheric depth: Modeling and measurement
NASA Astrophysics Data System (ADS)
Guo, Jingnan; Slaba, Tony C.; Zeitlin, Cary; Wimmer-Schweingruber, Robert F.; Badavi, Francis F.; Böhm, Eckart; Böttcher, Stephan; Brinza, David E.; Ehresmann, Bent; Hassler, Donald M.; Matthiä, Daniel; Rafkin, Scot
2017-02-01
The energetic particle environment on the Martian surface is influenced by solar and heliospheric modulation and changes in the local atmospheric pressure (or column depth). The Radiation Assessment Detector (RAD) on board the Mars Science Laboratory rover Curiosity on the surface of Mars has been measuring this effect for over four Earth years (about two Martian years). The anticorrelation between the recorded surface Galactic Cosmic Ray-induced dose rates and pressure changes has been investigated by Rafkin et al. (2014) and the long-term solar modulation has also been empirically analyzed and modeled by Guo et al. (2015). This paper employs the newly updated HZETRN2015 code to model the Martian atmospheric shielding effect on the accumulated dose rates and the change of this effect under different solar modulation and atmospheric conditions. The modeled results are compared with the most up-to-date (from 14 August 2012 to 29 June 2016) observations of the RAD instrument on the surface of Mars. Both model and measurements agree reasonably well and show the atmospheric shielding effect under weak solar modulation conditions and the decline of this effect as solar modulation becomes stronger. This result is important for better risk estimations of future human explorations to Mars under different heliospheric and Martian atmospheric conditions.
Modeling aqueous ferrous iron chemistry at low temperatures with application to Mars
Marion, G.M.; Catling, D.C.; Kargel, J.S.
2003-01-01
Major uncertainties exist with respect to the aqueous geochemical evolution of the Martian surface. Considering the prevailing cryogenic climates and the abundance of salts and iron minerals on Mars, any attempt at comprehensive modeling of Martian aqueous chemistry should include iron chemistry and be valid at low temperatures and high solution concentrations. The objectives of this paper were to (1) estimate ferrous iron Pitzer-equation parameters and iron mineral solubility products at low temperatures (from < 0 ??C to 25 ??C), (2) incorporate these parameters and solubility products into the FREZCHEM model, and (3) use the model to simulate the surficial aqueous geochemical evolution of Mars. Ferrous iron Pitzer-equation parameters were derived in this work or taken from the literature. Six new iron minerals [FeCl2??4H2O, FeCl2??6H2O, FeSO4??H2O, FeSO4??7H2O, FeCO3, and Fe(OH)3] were added to the FREZCHEM model bringing the total solid phases to 56. Agreement between model predictions and experimental data are fair to excellent for the ferrous systems: Fe-Cl, Fe-SO4, Fe-HCO3, H-Fe-Cl, and H-Fe-SO4. We quantified a conceptual model for the aqueous geochemical evolution of the Martian surface. The five stages of the conceptual model are: (1) carbonic acid weathering of primary ferromagnesian minerals to form an initial magnesium-iron-bicarbonate-rich solution; (2) evaporation and precipitation of carbonates, including siderite (FeCO3), with evolution of the brine to a concentrated NaCl solution; (3) ferrous/ferric iron oxidation; (4) either evaporation or freezing of the brine to dryness; and (5) surface acidification. What began as a dilute Mg-Fe-HCO3 dominated leachate representing ferromagnesian weathering evolved into an Earth-like seawater composition dominated by NaCl, and finally into a hypersaline Mg-Na-SO4-Cl brine. Weathering appears to have taken place initially under conditions that allowed solution of ferrous iron [low O2(g)], but later caused oxidation of iron [high O2(g)]. Surface acidification and/or sediment burial can account for the minor amounts of Martian surface carbonates. This model rests on a large number of assumptions and is therefore speculative. Nevertheless, the model is consistent with current understanding concerning surficial salts and minerals based on Martian meteorites, Mars lander data, and remotely-sensed spectral analyses. ?? 2003 Elsevier Ltd.
Characteristics of the Martian atmosphere surface layer
NASA Technical Reports Server (NTRS)
Clow, G. D.; Haberle, R. M.
1990-01-01
Elements of various terrestrial boundary layer models are extended to Mars in order to estimate sensible heat, latent heat, and momentum fluxes within the Martian atmospheric surface ('constant flux') layer. The atmospheric surface layer consists of an interfacial sublayer immediately adjacent to the ground and an overlying fully turbulent surface sublayer where wind-shear production of turbulence dominates buoyancy production. Within the interfacial sublayer, sensible and latent heat are transported by non-steady molecular diffusion into small-scale eddies which intermittently burst through this zone. Both the thickness of the interfacial sublayer and the characteristics of the turbulent eddies penetrating through it depend on whether airflow is aerodynamically smooth or aerodynamically rough, as determined by the Roughness Reynold's number. Within the overlying surface sublayer, similarity theory can be used to express the mean vertical windspeed, temperature, and water vapor profiles in terms of a single parameter, the Monin-Obukhov stability parameter. To estimate the molecular viscosity and thermal conductivity of a CO2-H2O gas mixture under Martian conditions, parameterizations were developed using data from the TPRC Data Series and the first-order Chapman-Cowling expressions; the required collision integrals were approximated using the Lenard-Jones potential. Parameterizations for specific heat and binary diffusivity were also determined. The Brutsart model for sensible and latent heat transport within the interfacial sublayer for both aerodynamically smooth and rough airflow was experimentally tested under similar conditions, validating its application to Martian conditions. For the surface sublayer, the definition of the Monin-Obukhov length was modified to properly account for the buoyancy forces arising from water vapor gradients in the Martian atmospheric boundary layer. It was found that under most Martian conditions, the interfacial and surface sublayers offer roughly comparable resistance to sensible heat and water vapor transport and are thus both important in determining the associated fluxes.
Numerical simulation of the radiation environment on Martian surface
NASA Astrophysics Data System (ADS)
Zhao, L.
2015-12-01
The radiation environment on the Martian surface is significantly different from that on earth. Existing observation and studies reveal that the radiation environment on the Martian surface is highly variable regarding to both short- and long-term time scales. For example, its dose rate presents diurnal and seasonal variations associated with atmospheric pressure changes. Moreover, dose rate is also strongly influenced by the modulation from GCR flux. Numerical simulation and theoretical explanations are required to understand the mechanisms behind these features, and to predict the time variation of radiation environment on the Martian surface if aircraft is supposed to land on it in near future. The high energy galactic cosmic rays (GCRs) which are ubiquitous throughout the solar system are highly penetrating and extremely difficult to shield against beyond the Earth's protective atmosphere and magnetosphere. The goal of this article is to evaluate the long term radiation risk on the Martian surface. Therefore, we need to develop a realistic time-dependent GCR model, which will be integrated with Geant4 transport code subsequently to reproduce the observed variation of surface dose rate associated with the changing heliospheric conditions. In general, the propagation of cosmic rays in the interplanetary medium can be described by a Fokker-Planck equation (or Parker equation). In last decade,we witnessed a fast development of GCR transport models within the heliosphere based on accurate gas-dynamic and MHD backgrounds from global models of the heliosphere. The global MHD simulation produces a more realistic pattern of the 3-D heliospheric structure, as well as the interface between the solar system and the surrounding interstellar space. As a consequence, integrating plasma background obtained from global-dependent 3-D MHD simulation and stochastic Parker transport simulation, we expect to produce an accurate global physical-based GCR modulation model. Combined with the Geant4 transport code, this GCR model will provide valuable insight into the long-term dose rates variation on the Martian surface.
Blind tests of methods for InSight Mars mission: Open scientific challenge
NASA Astrophysics Data System (ADS)
Clinton, John; Ceylan, Savas; Giardini, Domenico; Khan, Amir; van Driel, Martin; Böse, Maren; Euchner, Fabian; Garcia, Raphael F.; Drilleau, Mélanie; Lognonné, Philippe; Panning, Mark; Banerdt, Bruce
2017-04-01
The Marsquake Service (MQS) will be the ground segment service within the InSight mission to Mars, which will deploy a single seismic station on Elysium Planitia in November 2018. The main tasks of the MQS are the identification and characterisation of seismicity, and managing the Martian seismic event catalogue. In advance of the mission, we have developed a series of single station event location methods that rely on a priori 1D and 3D structural models. In coordination with the Mars Structural Service, we expect to use iterative inversion techniques to revise these structural models and event locations. In order to seek methodological advancements and test our current approaches, we have designed a blind test case using Martian synthetics combined with realistic noise models for the Martian surface. We invite all scientific parties that are interested in single station approaches and in exploring the Martian time-series to participate and contribute to our blind test. We anticipate the test will can improve currently developed location and structural inversion techniques, and also allow us explore new single station techniques for moment tensor and magnitude determination. The waveforms for our test case are computed employing AxiSEM and Instaseis for a randomly selected 1D background model and event catalogue that is statistically consistent with our current expectation of Martian seismicity. Realistic seismic surface noise is superimposed to generate a continuous time-series spanning 6 months. The event catalog includes impacts as well as Martian quakes. The temporal distribution of the seismicity in the timeseries, as well as the true structural model, are not be known to any participating parties including MQS till the end of competition. We provide our internal tools such as event location codes, suite of background models, seismic phase travel times, in order to support researchers who are willing to use/improve our current methods. Following the deadline of our blind test in late 2017, we plan to combine all outcomes in an article with all participants as co-authors.
Simulations of the general circulation of the Martian atmosphere. II - Seasonal pressure variations
NASA Technical Reports Server (NTRS)
Pollack, James B.; Haberle, Robert M.; Murphy, James R.; Schaeffer, James; Lee, Hilda
1993-01-01
The CO2 seasonal cycle of the Martian atmosphere and surface is simulated with a hybrid energy balance model that incorporates dynamical and radiation information from a large number of general circulation model runs. This information includes: heating due to atmospheric heat advection, the seasonally varying ratio of the surface pressure at the two Viking landing sites to the globally averaged pressure, the rate of CO2 condensation in the atmosphere, and solar heating of the atmosphere and surface. The predictions of the energy balance model are compared with the seasonal pressure variations measured at the two Viking landing sites and the springtime retreat of the seasonal polar cap boundaries. The following quantities are found to have a strong influence on the seasonal pressures at the Viking landing sites: albedo of the seasonal CO2 ice deposits, emissivity of this deposit, atmospheric heat advection, and the pressure ratio.
Thomas, P.C.; Malin, M.C.; Carr, M.H.; Danielson, G.E.; Davies, M.E.; Hartmann, W.K.; Ingersoll, A.P.; James, P.B.; McEwen, A.S.; Soderblom, L.A.; Veverka, J.
1999-01-01
Seasonal changes observed on the surface of Mars can in part be attributed to the transport of geological materials by wind. Images obtained by orbiting spacecraft in the 1970s showed large wind-formed features such as dunes, and revealed regional time-varying albedos that could be attributed to the effects of dust erosion and deposition. But the resolution of these images was insufficient to identify different types and sources of aeolian materials, nor could they reveal aeolian deposits other than large dunes or extensive surface coverings that were redistributed by dust storms. Here we present images of Mars with up to 50 times better resolution. These images show that martian dunes include at least two distinct components, the brighter of which we interpret to be composed of relatively soft minerals, possibly sulphates. We also find large areas of the martian surface that have several metres or more of aeolian mantle lacking obvious bedforms.
The early Martian environment: Clues from the cratered highlands and the Precambrian Earth
NASA Technical Reports Server (NTRS)
Craddock, R. A.; Maxwell, T. A.
1993-01-01
There is abundant geomorphic evidence to suggest that Mars once had a much denser and warmer atmosphere than present today. Outflow channel, ancient valley networks, and degraded impact craters in the highlands all suggest that ancient Martian atmospheric conditions supported liquid water on the surface. The pressure, composition, and duration of this atmosphere is largely unknown. However, we have attempted to place some constraints on the nature of the early Martian atmosphere by analyzing morphologic variations of highland impact crater populations, synthesizing results of other investigators, and incorporating what is know about the geologic history of the early Earth. This is important for understanding the climatic evolution of Mars, the relative abundance of martian volatiles, and the nature of highland surface materials.
The Martian paleoclimate and enhanced atmospheric carbon dioxide
NASA Technical Reports Server (NTRS)
Cess, R. D.; Owen, T.; Ramanathan, V.
1980-01-01
Current evidence indicates that the Martian surface is abundant with water presently in the form of ice, while the atmosphere was at one time more massive with a past surface pressure of as much as 1 atm of CO2. In an attempt to understand the Martian paleoclimate, a past CO2-H2O greenhouse was modeled and global temperatures which are consistent with an earlier presence of liquid surface water are found in agreement with the extensive evidence for past fluvial erosion. An important aspect of the CO2-H2O greenhouse model is the detailed inclusion of CO2 hot bands. For a surface pressure of 1 atm of CO2, the present greenhouse model predicts a global mean surface temperature of 294 K, but if the hot bands are excluded, a surface temperature of only 250 K is achieved.
Isotopic links between atmospheric chemistry and the deep sulphur cycle on Mars.
Franz, Heather B; Kim, Sang-Tae; Farquhar, James; Day, James M D; Economos, Rita C; McKeegan, Kevin D; Schmitt, Axel K; Irving, Anthony J; Hoek, Joost; Dottin, James
2014-04-17
The geochemistry of Martian meteorites provides a wealth of information about the solid planet and the surface and atmospheric processes that occurred on Mars. The degree to which Martian magmas may have assimilated crustal material, thus altering the geochemical signatures acquired from their mantle sources, is unclear. This issue features prominently in efforts to understand whether the source of light rare-earth elements in enriched shergottites lies in crustal material incorporated into melts or in mixing between enriched and depleted mantle reservoirs. Sulphur isotope systematics offer insight into some aspects of crustal assimilation. The presence of igneous sulphides in Martian meteorites with sulphur isotope signatures indicative of mass-independent fractionation suggests the assimilation of sulphur both during passage of magmas through the crust of Mars and at sites of emplacement. Here we report isotopic analyses of 40 Martian meteorites that represent more than half of the distinct known Martian meteorites, including 30 shergottites (28 plus 2 pairs, where pairs are separate fragments of a single meteorite), 8 nakhlites (5 plus 3 pairs), Allan Hills 84001 and Chassigny. Our data provide strong evidence that assimilation of sulphur into Martian magmas was a common occurrence throughout much of the planet's history. The signature of mass-independent fractionation observed also indicates that the atmospheric imprint of photochemical processing preserved in Martian meteoritic sulphide and sulphate is distinct from that observed in terrestrial analogues, suggesting fundamental differences between the dominant sulphur chemistry in the atmosphere of Mars and that in the atmosphere of Earth.
NASA Technical Reports Server (NTRS)
Burns, Roger G.
1992-01-01
Clay silicates, resulting from the chemical weathering of volcanic glasses and basaltic rocks of Mars, are generally believed to be major constituents of the martian regolith and atmospheric dust. Because little attention has been given to the role, if any, of Mg-bearing clay silicates on the martian surface, the crystal chemistry, stability, and reactivity of Mg-Fe smectites are examined. Partially dehydroxylated ferrian saponites are suggested to be major constituents of the surface of Mars, regulating several properties of the regolith.
Fajardo-Cavazos, Patricia; Schuerger, Andrew C; Nicholson, Wayne L
2008-08-01
Most planetary protection research has concentrated on characterizing viable bioloads on spacecraft surfaces, developing techniques for bioload reduction prior to launch, and studying the effects of simulated martian environments on microbial survival. Little research has examined the persistence of biogenic signature molecules on spacecraft materials under simulated martian surface conditions. This study examined how endogenous adenosine-5'-triphosphate (ATP) would persist on aluminum coupons under simulated martian conditions of 7.1 mbar, full-spectrum simulated martian radiation calibrated to 4 W m(-2) of UV-C (200 to 280 nm), -10 degrees C, and a Mars gas mix of CO(2) (95.54%), N(2) (2.7%), Ar (1.6%), O(2) (0.13%), and H(2)O (0.03%). Cell or spore viabilities of Acinetobacter radioresistens, Bacillus pumilus, and B. subtilis were measured in minutes to hours, while high levels of endogenous ATP were recovered after exposures of up to 21 days. The dominant factor responsible for temporal reductions in viability and loss of ATP was the simulated Mars surface radiation; low pressure, low temperature, and the Mars gas composition exhibited only slight effects. The normal burst of endogenous ATP detected during spore germination in B. pumilus and B. subtilis was reduced by 1 or 2 orders of magnitude following, respectively, 8- or 30-min exposures to simulated martian conditions. The results support the conclusion that endogenous ATP will persist for time periods that are likely to extend beyond the nominal lengths of most surface missions on Mars, and planetary protection protocols prior to launch may require additional rigor to further reduce the presence and abundance of biosignature molecules on spacecraft surfaces.
NASA Astrophysics Data System (ADS)
Ehresmann, B.; Zeitlin, C. J.; Hassler, D.; Wimmer-Schweingruber, R. F.; Guo, J.; Appel, J. K.; Boehm, E.; Boettcher, S. I.; Burmeister, S.; Lohf, H.; Martin-Garcia, C.; Matthiae, D.; Rafkin, S. C.; Reitz, G.
2017-12-01
NASA's Mars Science Laboratory (MSL) mission has now been operating in Gale Crater on the surface of Mars for five years. Onboard Curiosity, the Radiation Assessment Detector (MSL/RAD) is measuring the Martian surface radiation environment, providing insights into its intensity and composition. This radiation field is mainly composed of primary Galactic Cosmic Rays (GCRs) and secondary particles created by the GCRs' interactions with the Martian atmosphere and soil. On short time scales, the radiation environment can be dominated by contributions from Solar Energetic Particle (SEP) events. Due to the shielding effect of the Martian atmosphere, shapes and intensities of SEP spectra differ significantly between interplanetary space and the Martian surface. Understanding how SEP events influence the surface radiation field is crucial to assess associated health risks for potential human missions to Mars. Even in the absence of SEP events, the surface environment is influenced by solar activity, which determines the strength of the interplanetary magnetic field and modulates GCR intensities. The GCR flux has risen considerably since Curiosity's landing as the solar cycle heads towards minimum. Here, we present updated MSL/RAD results for charged particle fluxes measured on the surface from GCRs and SEP events from the five years of MSL operations on Mars. We will present results that incorporate updated analysis techniques for the MSL/RAD data and yield the most robust particle spectra to date. The GCR results will be compared to simulation results. The SEP-induced fluxes on the surface will be compared to measurements from other spacecraft in the inner heliosphere and, in particular, in Martian orbit.
Implications of Earth analogs to Martian sulfate-filled Fractures
NASA Astrophysics Data System (ADS)
Holt, R. M.; Powers, D. W.
2017-12-01
Sulfate-filled fractures in fine-grained sediments on Mars are interpreted to be the result of fluid movement during deep burial. Fractures in the Dewey Lake (aka Quartermaster) Formation of southeastern New Mexico and west Texas are filled with gypsum that is at least partially synsedimentary. Sulfate in the Dewey Lake takes two principal forms: gypsum cement and gypsum (mainly fibrous) that fills fractures ranging from horizontal to vertical. Apertures are mainly mm-scale, though some are > 1 cm. The gypsum is antitaxial, fibrous, commonly approximately perpendicular to the wall rock, and displays suture lines and relics of the wall rock. Direct evidence of synsedimentary, near-surface origin includes gypsum intraclasts, intraclasts that include smaller intraclasts that contain gypsum clasts, intraclasts of gypsum with suture lines, gypsum concentrated in small desiccation cracks, and intraclasts that include fibrous gypsum-filled fractures that terminate at the eroded clast boundary. Dewey Lake fracture fillings suggest that their Martian analogs may also have originated in the shallow subsurface, shortly following the deposition of Martian sediments, in the presence of shallow aquifers.
Planetary protection and the search for life beneath the surface of Mars
NASA Technical Reports Server (NTRS)
Mancinelli, Rocco L.
2003-01-01
The search for traces of extinct and extant life on Mars will be extended to beneath the surface of the planet. Current data from Mars missions suggesting the presence of liquid water early in Mars' history and mathematical modeling of the fate of water on Mars imply that liquid water may exist deep beneath the surface of Mars. This leads to the hypothesis that life may exist deep beneath the Martian surface. One possible scenario to look for life on Mars involves a series of unmanned missions culminating with a manned mission drilling deep into the Martian subsurface (approximately 3Km), collecting samples, and conducting preliminary analyses to select samples for return to earth. This mission must address both forward and back contamination issues, and falls under planetary protection category V. Planetary protection issues to be addressed include provisions stating that the inevitable deposition of earth microbes by humans should be minimized and localized, and that earth microbes and organic material must not contaminate the Martian subsurface. This requires that the drilling equipment be sterilized prior to use. Further, the collection, containment and retrieval of the sample must be conducted such that the crew is protected and that any materials returning to earth are contained (i.e., physically and biologically isolated) and the chain of connection with Mars is broken. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Planetary protection and the search for life beneath the surface of Mars.
Mancinelli, Rocco L
2003-01-01
The search for traces of extinct and extant life on Mars will be extended to beneath the surface of the planet. Current data from Mars missions suggesting the presence of liquid water early in Mars' history and mathematical modeling of the fate of water on Mars imply that liquid water may exist deep beneath the surface of Mars. This leads to the hypothesis that life may exist deep beneath the Martian surface. One possible scenario to look for life on Mars involves a series of unmanned missions culminating with a manned mission drilling deep into the Martian subsurface (approximately 3Km), collecting samples, and conducting preliminary analyses to select samples for return to earth. This mission must address both forward and back contamination issues, and falls under planetary protection category V. Planetary protection issues to be addressed include provisions stating that the inevitable deposition of earth microbes by humans should be minimized and localized, and that earth microbes and organic material must not contaminate the Martian subsurface. This requires that the drilling equipment be sterilized prior to use. Further, the collection, containment and retrieval of the sample must be conducted such that the crew is protected and that any materials returning to earth are contained (i.e., physically and biologically isolated) and the chain of connection with Mars is broken. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Photovoltaic Cell Operation on Mars
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Kerslake, Thomas; Jenkins, Phillip P.; Scheiman, David A.
2004-01-01
The Martian surface environment provides peculiar challenges for the operation of solar arrays: low temperature, solar flux with a significant scattered component that varies in intensity and spectrum with the amount of suspended atmospheric dust, and the possibility of performance loss due to dust deposition on the array surface. This paper presents theoretical analyses of solar cell performance on the surface of Mars and measurements of cells under Martian conditions.
A wet-geology and cold-climate Mars model: Punctuation of a slow dynamic approach to equilibrium
NASA Technical Reports Server (NTRS)
Kargel, J. S.
1993-01-01
It was suggested that Mars may have possessed a relatively warm humid climate and a vigorous hydrological cycle involving meteoric precipitation, oceans, and continental ice sheets. Baker hypothesized that these geologically active conditions may have been repeated several times; each of these dynamic epochs was followed by a collapse of the climate and hydrologic cycle of Mars into essentially current conditions, completing what is termed a 'Baker cycle'. The purpose is to present an endmember possibility that Martian glacial landscapes, including some that were previously considered to have formed under warm climatic conditions, might be explained by processes compatible with an extremely cold surface. Two aspects of hypothesized Martian glacial terrains were cited as favoring a warm climate during Baker cycles: (1) the formation of some landscapes, including possible eskers, tunnel channels, drumlins, and outwash plains, appears to have required liquid water, and (2) a liquid-surfaced ocean was probably necessary to feed the glaciers. The requirement for liquid water, if these features were correctly interpreted, is difficult to avoid; it is entirely possible that a comparatively warm climate was involved, but it is not clear that formation of landforms by wet-based glaciers actually requires a warm climate. Even less certain is the supposed requirement for liquid oceans. Formation of glaciers only requires a source of water or ice to supply an amount of precipitation that exceeds losses due to melting and sublimation. At Martian temperatures precipitation is very low, but so are melting and sublimation, so a large body of ice that is unstable with respect to sublimation may take the role of Earth's oceans in feeding the glaciers. Recent models suggest that even current Martian polar caps, long thought to be static bodies of ice and dust, might actually be slow-moving, cryogenic continental glaciers. Is it possible that subglacial processes beneath cryogenic (but wetbased) ice sheets formed the hypothesized Martian glacial landscapes?
Agriculture on Mars: Soils for Plant Growth
NASA Technical Reports Server (NTRS)
Ming, D. W.
2016-01-01
Robotic rovers and landers have enabled the mineralogical, chemical, and physical characterization of loose, unconsolidated materials on the surface of Mars. Planetary scientists refer to the regolith material as "soil." NASA is currently planning to send humans to Mars in the mid 2030s. Early missions may rely on the use of onsite resources to enable exploration and self-sufficient outposts on Mars. The martian "soil" and surface environment contain all essential plant growth elements. The study of martian surface materials and how they might react as agricultural soils opens a new frontier for researchers in the soil science community. Other potential applications for surface "soils" include (i) sources for extraction of essential plant-growth nutrients, (ii) sources of O2, H2, CO2, and H2O, (iii) substrates for microbial populations in the degradation of wastes, and (iv) shielding materials surrounding outpost structures to protect humans, plants, and microorganisms from radiation. There are many challenges that will have to be addressed by soil scientists prior to human exploration over the next two decades.
Model predictions and visualization of the particle flux on the surface of Mars.
Cucinotta, Francis A; Saganti, Premkumar B; Wilson, John W; Simonsen, Lisa C
2002-12-01
Model calculations of the particle flux on the surface of Mars due to the Galactic Cosmic Rays (GCR) can provide guidance on radiobiological research and shielding design studies in support of Mars exploration science objectives. Particle flux calculations for protons, helium ions, and heavy ions are reported for solar minimum and solar maximum conditions. These flux calculations include a description of the altitude variations on the Martian surface using the data obtained by the Mars Global Surveyor (MGS) mission with its Mars Orbiter Laser Altimeter (MOLA) instrument. These particle flux calculations are then used to estimate the average particle hits per cell at various organ depths of a human body in a conceptual shelter vehicle. The estimated particle hits by protons for an average location at skin depth on the Martian surface are about 10 to 100 particle-hits/cell/year and the particle hits by heavy ions are estimated to be 0.001 to 0.01 particle-hits/cell/year.
Origin and thermal evolution of Mars
NASA Technical Reports Server (NTRS)
Schubert, Gerald; Soloman, S. C.; Turcotte, D. L.; Drake, M. J.; Sleep, N. H.
1990-01-01
The thermal evolution of Mars is governed by subsolidus mantle convection beneath a thick lithosphere. Models of the interior evolution are developed by parameterizing mantle convective heat transport in terms of mantle viscosity, the superadiabatic temperature rise across the mantle, and mantle heat production. Geological, geophysical, and geochemical observations of the compositon and structure of the interior and of the timing of major events in Martian evolution are used to constrain the model computations. Such evolutionary events include global differentiation, atmospheric outgassing, and the formation of the hemispherical dichotomy and Tharsis. Numerical calculations of fully three-dimensional, spherical convection in a shell the size of the Martian mantle are performed to explore plausible patterns of Martian mantel convection and to relate convective features, such as plumes, to surface features, such as Tharsis. The results from the model calculations are presented.
Interdisciplinary investigations of comparative planetology
NASA Technical Reports Server (NTRS)
Sagan, C.
1978-01-01
Research supported wholly or in part by NASA's Planetary Programs Office is summarized. Topics covered include: the evaporation of ice in planetary atmospheres: ice-covered rivers on Mars; reducing greenhouses and the temperature history of Earth and Mars; particle motion on Mars inferred from the Viking Lander cameras; the nature and visibility of crater-associated streaks on Mars; the equilibrium figure of Phobos and other small bodies; striations on Phobos; radiation pressure and Poynting-Robertson drag for small spherical particles; direct imaging of extra-solar planets with stationary occultations; the relation between planetology and conventional astrophysics; remote spectral studies and in situ X-ray fluorescence analysis of the Martian surface; small channels on Mars; junction angles of Martian channels; constraints on Aeolian phenomena on Mars; the geology of Mars; and the flow of erosional debris on the Martian terrain.
NASA Astrophysics Data System (ADS)
Wolkenberg, Paulina; Giuranna, Marco; Aoki, Shohei; Scaccabarozzi, Diego; Saggin, Bortolino; Formisano, Vittorio
2016-04-01
More than 2,500,000 spectra have been collected by the Planetary Fourier Spectrometer aboard Mars Express spacecraft after 12 years of activity. The data span more than six Martian years, from MY26, Ls = 331°, to MY 33, Ls = 78°. This huge dataset has been used to build a new database of atmospheric parameters, including atmospheric and surface temperatures, and dust and water ice opacity. Dust aerosols suspended in the atmosphere affect its thermal structure and are a major driver of the circulation. They are always present in the Martian atmosphere, but the amount varies greatly depending on location and season. We analyze dust opacities at 1075 cm-1 retrieved from the PFS long-wavelength channel spectra to characterize the dust activity on Mars for the relevant period. The dust storm season (Ls= 185° - 310°) is monitored for each Martian year. All dust observations show a seasonal pattern, which is ruled by the occurrence of regional and/or global dust storms. Regional dust storms are observed every year, while a planet encircling dust storm occurred in MY 28, when the highest values of dust opacity are also observed (~ 2.45). We characterize the spatial and temporal evolution of these regional and global dust events and investigate the effect of dust on surface and atmospheric temperatures.
Cosmogenic nuclides in the Martian surface: Constraints for sample recovery and transport
NASA Technical Reports Server (NTRS)
Englert, Peter A. J.
1988-01-01
Stable and radioactive cosmogenic nuclides and radiation damage effects such as cosmic ray tracks can provide information on the surface history of Mars. A recent overview on developments in cosmogenic nuclide research for historical studies of predominantly extraterrestrial materials was published previously. The information content of cosmogenic nuclides and radiation damage effects produced in the Martian surface is based on the different ways of interaction of the primary galactic and solar cosmic radiation (GCR, SCR) and the secondary particle cascade. Generally the kind and extent of interactions as seen in the products depend on the following factors: (1) composition, energy and intensity of the primary SCR and GCR; (2) composition, energy and intensity of the GCR-induced cascade of secondary particles; (3) the target geometry, i.e., the spatial parameters of Martian surface features with respect to the primary radiation source; (4) the target chemistry, i.e., the chemical composition of the Martian surface at the sampling location down to the minor element level or lower; and (5) duration of the exposure. These factors are not independent of each other and have a major influence on sample taking strategies and techniques.
NASA Technical Reports Server (NTRS)
Hourdin, Frederic; Forget, Francois; Talagrand, O.
1993-01-01
We have been developing a General Circulation Model (GCM) of the martian atmosphere since 1989. The model has been described rather extensively elsewhere and only the main characteristics are given here. The dynamical part of the model, adapted from the LMD terrestrial climate model, is based on a finite-difference formulation of the classical 'primitive equations of meteorology.' The radiative transfer code includes absorption and emission by CO2 (carefully validated by comparison to line-by-line calculations) and dust in the thermal range and absorption and scattering by dust in the visible range. Other physical parameterizations are included: modeling of vertical turbulent mixing, dry convective adjustment (in order to prevent vertical unstable temperature profiles), and a multilayer model of the thermal conduction in the soil. Finally, the condensation-sublimation of CO2 is introduced through specification of a pressure-dependent condensation temperature. The atmospheric and surface temperatures are prevented from falling below this critical temperature by condensation and direct precipitation onto the surface of atmospheric CO2. The only prespecified spatial fields are the surface thermal inertia, albedo, and topography.
Mars Sample Return: The Value of Depth Profiles
NASA Technical Reports Server (NTRS)
Hausrath, E. M.; Navarre-Sitchler, A. K.; Moore, J.; Sak, P. B.; Brantley, S. L.; Golden, D. C.; Sutter, B.; Schroeder, C.; Socki, R.; Morris, R. V.;
2008-01-01
Sample return from Mars offers the promise of data from Martian materials that have previously only been available from meteorites. Return of carefully selected samples may yield more information about the history of water and possible habitability through Martian history. Here we propose that samples collected from Mars should include depth profiles of material across the interface between weathered material on the surface of Mars into unweathered parent rock material. Such profiles have the potential to yield chemical kinetic data that can be used to estimate the duration of water and information about potential habitats on Mars.
NASA Technical Reports Server (NTRS)
Orenberg, J. B.; Handy, J.
1991-01-01
Because of the power of remote sensing reflectance spectroscopy in determining mineralogy, it was used as the major method of identifying possible mineral analogs of the Martian surface. A summary of proposed Martian surface compositions from reflectance spectroscopy before 1979 was presented. Since that time, iron-rich montmorillonite clay, nanocrystalline or nanophase hematite, and palagonite were suggested as Mars soil analog materials.
Directional Emissivity Effects on Martian Surface Brightness Temperatures
NASA Astrophysics Data System (ADS)
Pitman, K. M.; Wolff, M. J.; Bandfield, J. L.; Clancy, R. T.; Clayton, G. C.
2001-11-01
The angular dependence of thermal emission from the surface of Mars has not been well characterized. Although nadir sequences constitute most of the MGS/TES Martian surface observations [1,2], a significant number scans of Martian surfaces at multiple emission angles (emission phase function (EPF) sequences) also exist. Such data can provide insight into surface structures, thermal inertias, and non-isotropic corrections to thermal emission measurements [3]. The availability of abundant EPF data as well as the added utility of such observations for atmospheric characterization provide the impetus for examining the phenomenon of directional emissivity. We present examples of directional emissivity effects on brightness temperature spectra for a variety of typical Martian surfaces. We examine the theoretical development by Hapke (1993, 1996) [4,5] and compare his algorithm to that of Mishchenko et al. (1999) [6]. These results are then compared to relevant TES EPF data. This work is supported through NASA grant NAGS-9820 (MJW) and JPL contract no. 961471 (RTC). [1] Smith et al. (1998), AAS-DPS meeting # 30, # 11.P07. [2] Kieffer, Mullins, & Titus (1998), EOS, 79, 533. [3] Jakosky, Finiol, & Henderson (1990), JGR, 17, 985--988. [4] Hapke, B. (1993), Theory of Reflectance & Emittance Spectroscopy, Cambridge Univ. Press, NY. [5] Hapke, B. (1996), JGR, 101, E7, 16817--16831. [6] Mishchenko et al. (1999), JQSRT, 63, 409--432.
Are the Viking Lander sites representative of the surface of Mars?
NASA Technical Reports Server (NTRS)
Jakosky, B. M.; Christensen, P. R.
1986-01-01
Global remote sensing data of the Martian surface, collected by earth- and satellite-based instruments, are compared with data from the two Viking Landers to determine if the Lander data are representative of the Martian surface. The landing sites are boulder-strewn and feature abundant fine material and evidence of strong eolian forces. One site (VL-1) is in a plains-covered basin which is associated with volcanic activity; the VL-2 site is in the northern plains. Thermal IR, broadband albedo, color imaging and radar remote sensing has been carried out of the global Martian surface. The VL-1 data do not fit a general correlation observed between increases in 70-cm radar cross-sections and thermal inertia. A better fit is found with 12.5-cm cross sections, implying the presence of a thinner or discontinuous duricrust at the VL-1 site, compared to other higher-inertia regions. A thin dust layer is also present at the VL-2 site, based on the Lander reflectance data. The Lander sites are concluded to be among the three observed regions of anomalous reflectivity, which can be expected in low regions selected for the landings. Recommendations are furnished for landing sites of future surface probes in order to choose sites more typical of the global Martian surface.
Enzyme activity in terrestrial soil in relation to exploration of the Martian surface
NASA Technical Reports Server (NTRS)
Mclaren, A. D.
1974-01-01
Sensitive tests for the detection of extracellular enzyme activity in Martian soil was investigated using simulated Martian soil. Enzyme action at solid-liquid water interfaces and at low humidity were studied, and a kinetic scheme was devised and tested based on the growth of microorganisms and the oxidation of ammonium nitrite.
On the weathering of Martian igneous rocks
NASA Technical Reports Server (NTRS)
Dreibus, G.; Waenke, H.
1992-01-01
Besides the young crystallization age, one of the first arguments for the martian origin of shergottite, nakhlite, and chassignite (SNC) meteorites came from the chemical similarity of the meteorite Shergotty and the martian soil as measured by Viking XRF analyses. In the meantime, the discovery of trapped rare gas and nitrogen components with element and isotope ratios closely matching the highly characteristic ratios of the Mars atmosphere in the shock glasses of shergottite EETA79001 was further striking evidence that the SNC's are martian surface rocks. The martian soil composition as derived from the Viking mission, with its extremely high S and Cl concentrations, was interpreted as weathering products of mafic igneous rocks. The low SiO2 content and the low abundance of K and other trace elements in the martian soils point to a mafic crust with a considerably smaller degree of fractionation compared to the terrestrial crust. However, the chemical evolution of the martian regolith and soil in respect to surface reaction with the planetary atmosphere or hydrosphere is poorly understood. A critical point in this respect is that the geochemical evidence as derived from the SNC meteorites suggests that Mars is a very dry planet that should have lost almost all its initially large water inventory during its accretion.
Chemistry and mineralogy of Martian dust: An explorer's primer
NASA Technical Reports Server (NTRS)
Gooding, James L.
1991-01-01
A summary of chemical and mineralogical properties of Martian surface dust is offered for the benefit of engineers or mission planners who are designing hardware or strategies for Mars surface exploration. For technical details and specialized explanations, references should be made to literature cited. Four sources used for information about Martian dust composition: (1) Experiments performed on the Mars surface by the Viking Landers 1 and 2 and Earth-based lab experiments attempting to duplicate these results; (2) Infrared spectrophotometry remotely performed from Mars orbit, mostly by Mariner 9; (3) Visible and infrared spectrophotometry remotely performed from Earth; and (4) Lab studies of the shergottite nakhlite chassignite (SNC) clan of meteorites, for which compelling evidence suggests origin on Mars. Source 1 is limited to fine grained sediments at the surface whereas 2 and 3 contain mixed information about surface dust (and associated rock) and atmospheric dust. Source 4 has provided surprisingly detailed information but investigations are still incomplete.
CO2: Adsorption on palagonite and the Martian regolith
NASA Technical Reports Server (NTRS)
Zent, Aaron P.; Fanale, Fraser P.; Postawko, Susan E.
1987-01-01
Possible scenarios for the evolution of the Martian climate are discussed. In the interest of determining an upper limit on the absorptive capacity of the Martian regolith, researchers examined the results of Fanale and Cannon (1971, 1974) for CO2 adsorption on nontronite and basalt. There appeared to be a strong proportionality between the capacity of the absorbent and its specific surface area. A model of the Martian climate is given that allows the researchers to make some estimates of exchangeable CO2 abundances.
NASA Astrophysics Data System (ADS)
Matthiä, Daniel; Hassler, Donald M.; de Wet, Wouter; Ehresmann, Bent; Firan, Ana; Flores-McLaughlin, John; Guo, Jingnan; Heilbronn, Lawrence H.; Lee, Kerry; Ratliff, Hunter; Rios, Ryan R.; Slaba, Tony C.; Smith, Michael; Stoffle, Nicholas N.; Townsend, Lawrence W.; Berger, Thomas; Reitz, Günther; Wimmer-Schweingruber, Robert F.; Zeitlin, Cary
2017-08-01
The radiation environment at the Martian surface is, apart from occasional solar energetic particle events, dominated by galactic cosmic radiation, secondary particles produced in their interaction with the Martian atmosphere and albedo particles from the Martian regolith. The highly energetic primary cosmic radiation consists mainly of fully ionized nuclei creating a complex radiation field at the Martian surface. This complex field, its formation and its potential health risk posed to astronauts on future manned missions to Mars can only be fully understood using a combination of measurements and model calculations. In this work the outcome of a workshop held in June 2016 in Boulder, CO, USA is presented: experimental results from the Radiation Assessment Detector of the Mars Science Laboratory are compared to model results from GEANT4, HETC-HEDS, HZETRN, MCNP6, and PHITS. Charged and neutral particle spectra and dose rates measured between 15 November 2015 and 15 January 2016 and model results calculated for this time period are investigated.
NASA Astrophysics Data System (ADS)
Colangeli, L.; Battaglia, R.; della Corte, V.; Esposito, F.; Ferrini, G.; Mazzotta Epifani, E.; Palomba, E.; Palumbo, P.; Panizza, A.; Rotundi, A.
2004-03-01
The knowledge of Martian airborne dust properties and about mechanisms of dust settling/raising to/from the surface are important to determine climate and surface evolution on Mars. Water is an important tracer of climatic changes on long time-scales and is strictly related to the presence of life forms. The study in situ of dust and water vapour properties and evolution in Martian atmosphere is useful to trace back the planet climate, also in function of life form development. This investigation is also appropriate in preparation to future manned exploration of the planet (in relation to hazardous conditions). In this work we discuss the concept of the MEDUSA (Martian Environmental Dust Analyser) experiment that is designed to provide data on grain size and mass distribution, number density, velocity and scattering properties and on water vapour concentration. The instrument is a multisensor system based on optical and impact detection of grains, coupled with cumulative deposition sensors.
Water activity and the challenge for life on early Mars.
Tosca, Nicholas J; Knoll, Andrew H; McLennan, Scott M
2008-05-30
In situ and orbital exploration of the martian surface has shown that acidic, saline liquid water was intermittently available on ancient Mars. The habitability of these waters depends critically on water activity (aH2O), a thermodynamic measure of salinity, which, for terrestrial organisms, has sharply defined limits. Using constraints on fluid chemistry and saline mineralogy based on martian data, we calculated the maximum aH2O for Meridiani Planum and other environments where salts precipitated from martian brines. Our calculations indicate that the salinity of well-documented surface waters often exceeded levels tolerated by known terrestrial organisms.
The Ph-D project: Manned expedition to the Moons of Mars
NASA Astrophysics Data System (ADS)
Singer, S. Fred
2000-01-01
The Ph-D (Phobos-Deimos) mission involves the transfer of six to eight men (and women), including two medical scientists, from Earth orbit to Deimos, the outer satellite of Mars. There follows a sequential program of unmanned exploration of the surface of Mars by means of some ten to twenty unmanned rover vehicles, each of which returns Mars samples to the Deimos laboratory. A two-man sortie descends to the surface of Mars to gain a direct geological perspective and develop priorities in selecting samples. At the same time, other astronauts conduct a coordinated program of exploration (including sample studies) of Phobos and Deimos. Bringing men close to Mars to control exploration is shown to have scientific and other advantages over either (i) (manned) control from the Earth, or (ii) manned operations from Mars surface. The mission is envisaged to take place after 2010, and to last about two years (including a three-to six-month stay at Deimos). Depending on then-available technology, take-off weight from Earth orbit is of the order of 300 tons. A preferred mission scheme may preposition propellants and equipment at Deimos by means of ``slow freight,'' possibly using a ``gravity boost'' from Venus. It is then followed by a ``manned express'' that conveys the astronauts more rapidly to Deimos. Both chemical and electric propulsion are used in this mission, as appropriate. Electric power is derived from solar and nuclear sources. Assuming that certain development costs can be shared with space-station programs, the incremental cost of the project is estimated as less than $40 billion (in 1998 dollars), expended over a 15-year period. The potential scientific returns are both unique and important: (i) Establishing current or ancient existence of life-forms on Mars; (ii) Understanding the causes of climate change by comparing Earth and Mars; (iii) Martian planetary history; (iv) Nature and origin of the Martian moons. Beyond the Ph-D Project, many advanced programs beckon; discussed here are exploitation of Martian resources, Martian ``agriculture'', and the possibility of planetary engineering experiments that can benefit survival on the Earth. .
Starting Conditions for Hydrothermal Systems Underneath Martian Craters: Hydrocode Modeling
NASA Technical Reports Server (NTRS)
Pierazzo, E.; Artemieva, N. A.; Ivanov, B. A.
2004-01-01
Mars is the most Earth-like of the Solar System s planets, and the first place to look for any sign of present or past extraterrestrial life. Its surface shows many features indicative of the presence of surface and sub-surface water, while impact cratering and volcanism have provided temporary and local surface heat sources throughout Mars geologic history. Impact craters are widely used ubiquitous indicators for the presence of sub-surface water or ice on Mars. In particular, the presence of significant amounts of ground ice or water would cause impact-induced hydrothermal alteration at Martian impact sites. The realization that hydrothermal systems are possible sites for the origin and early evolution of life on Earth has given rise to the hypothesis that hydrothermal systems may have had the same role on Mars. Rough estimates of the heat generated in impact events have been based on scaling relations, or thermal data based on terrestrial impacts on crystalline basements. Preliminary studies also suggest that melt sheets and target uplift are equally important heat sources for the development of a hydrothermal system, while its lifetime depends on the volume and cooling rate of the heat source, as well as the permeability of the host rocks. We present initial results of two-dimensional (2D) and three-dimensional (3D) simulations of impacts on Mars aimed at constraining the initial conditions for modeling the onset and evolution of a hydrothermal system on the red planet. Simulations of the early stages of impact cratering provide an estimate of the amount of shock melting and the pressure-temperature distribution in the target caused by various impacts on the Martian surface. Modeling of the late stage of crater collapse is necessary to characterize the final thermal state of the target, including crater uplift, and distribution of the heated target material (including the melt pool) and hot ejecta around the crater.
Evidence for a Heterogeneous Distribution of Water in the Martian Interior
NASA Technical Reports Server (NTRS)
McCubbin, Francis; Boyce, Jeremy W.; Srinvasan, Poorna; Santos, Alison R.; Elardo, Stephen M.; Filiberto, Justin; Steele, Andrew; Shearer, Charles K.
2016-01-01
The abundance and distribution of H2O within the terrestrial planets, as well as its timing of delivery, is a topic of vital importance for understanding the chemical and physical evolution of planets and their potential for hosting habitable environments. Analysis of planetary materials from Mars, the Moon, and the eucrite parent body (i.e., asteroid 4Vesta) have confirmed the presence of H2O within their interiors. Moreover, H and N isotopic data from these planetary materials suggests H2O was delivered to the inner solar system very early from a common source, similar in composition to the carbonaceous chondrites. Despite the ubiquity of H2O in the inner Solar System, the only destination with any prospects for past or present habitable environments at this time, outside of the Earth, is Mars. Although the presence of H2O within the martian interior has been confirmed, very little is known regarding its abundance and distribution within the martian interior and how the martian water inventory has changed over time. By combining new analyses of martian apatites within a large number of martian meteorite types with previously published volatile data and recently determined mineral-melt partition coefficients for apatite, we report new insights into the abundance and distribution of volatiles in the martian crust and mantle. Using the subset of samples that did not exhibit crustal contamination, we determined that the enriched shergottite mantle source has 36-73 ppm H2O and the depleted shergottite mantle source has 14-23 ppm H2O. This result is consistent with other observed geochemical differences between enriched and depleted shergottites and supports the idea that there are at least two geochemically distinct reservoirs in the martian mantle. We also estimated the H2O content of the martian crust using the revised mantle H2O abundances and known crust-mantle distributions of incompatible lithophile elements. We determined that the bulk martian crust has approximately 1400 ppm H2O, which is likely distributed toward the martian surface. This crustal water abundance would equate to a global equivalent layer (GEL) of water at a depth of-229 m, which can account for at least some of the surface features on Mars attributed to flowing water and may be sufficient to support the past presence of a shallow sea on Mars' surface.
The NASA environmental models of Mars
NASA Technical Reports Server (NTRS)
Kaplan, D. I.
1991-01-01
NASA environmental models are discussed with particular attention given to the Mars Global Reference Atmospheric Model (Mars-GRAM) and the Mars Terrain simulator. The Mars-GRAM model takes into account seasonal, diurnal, and surface topography and dust storm effects upon the atmosphere. It is also capable of simulating appropriate random density perturbations along any trajectory path through the atmosphere. The Mars Terrain Simulator is a software program that builds pseudo-Martian terrains by layering the effects of geological processes upon one another. Output pictures of the constructed surfaces can be viewed from any vantage point under any illumination conditions. Attention is also given to the document 'Environment of Mars, 1988' in which scientific models of the Martian atmosphere and Martian surface are presented.
NASA Astrophysics Data System (ADS)
Linkin, V.; Harri, A.-M.; Lipatov, A.; Belostotskaja, K.; Derbunovich, B.; Ekonomov, A.; Khloustova, L.; Kremnev, R.; Makarov, V.; Martinov, B.; Nenarokov, D.; Prostov, M.; Pustovalov, A.; Shustko, G.; Järvinen, I.; Kivilinna, H.; Korpela, S.; Kumpulainen, K.; Lehto, A.; Pellinen, R.; Pirjola, R.; Riihelä, P.; Salminen, A.; Schmidt, W.; Siili, T.; Blamont, J.; Carpentier, T.; Debus, A.; Hua, C. T.; Karczewski, J.-F.; Laplace, H.; Levacher, P.; Lognonné, Ph.; Malique, C.; Menvielle, M.; Mouli, G.; Pommereau, J.-P.; Quotb, K.; Runavot, J.; Vienne, D.; Grunthaner, F.; Kuhnke, F.; Musmann, G.; Rieder, R.; Wänke, H.; Economou, T.; Herring, M.; Lane, A.; McKay, C. P.
1998-02-01
A mission to Mars including two Small Stations, two Penetrators and an Orbiter was launched at Baikonur, Kazakhstan, on 16 November 1996. This was called the Mars-96 mission. The Small Stations were expected to land in September 1997 (L s approximately 178°), nominally to Amazonis-Arcadia region on locations (33 N, 169.4 W) and (37.6 N, 161.9W). The fourth stage of the Mars-96 launcher malfunctioned and hence the mission was lost. However, the state of the art concept of the Small Station can be applied to future Martian lander missions. Also, from the manufacturing and performance point of view, the Mars-96 Small Station could be built as such at low cost, and be fairly easily accommodated on almost any forthcoming Martian mission. This is primarily due to the very simple interface between the Small Station and the spacecraft. The Small Station is a sophisticated piece of equipment. With the total available power of approximately 400 mW the Station successfully supports an ambitious scientific program. The Station accommodates a panoramic camera, an alpha-proton-x-ray spectrometer, a seismometer, a magnetometer, an oxidant instrument, equipment for meteorological observations, and sensors for atmospheric measurement during the descent phase, including images taken by a descent phase camera. The total mass of the Small Station with payload on the Martian surface, including the airbags, is only 32 kg. Lander observations on the surface of Mars combined with data from Orbiter instruments will shed light on the contemporary Mars and its evolution. As in the Mars-96 mission, specific science goals could be exploration of the interior and surface of Mars, investigation of the structure and dynamics of the atmosphere, the role of water and other materials containing volatiles and in situ studies of the atmospheric boundary layer processes. To achieve the scientific goals of the mission the lander should carry a versatile set of instruments. The Small Station accommodates devices for atmospheric measurements, geophysical and geochemical studies of the Martian surface and interior, and cameras for descent phase and panoramic views. These instruments would be able to contribute remarkably to the process of solving some of the scientific puzzles of Mars.
Linkin, V; Harri, A M; Lipatov, A; Belostotskaja, K; Derbunovich, B; Ekonomov, A; Khloustova, L; Kremnev, R; Makarov, V; Martinov, B; Nenarokov, D; Prostov, M; Pustovalov, A; Shustko, G; Jarvinen, I; Kivilinna, H; Korpela, S; Kumpulainen, K; Lehto, A; Pellinen, R; Pirjola, R; Riihela, P; Salminen, A; Schmidt, W; McKay, C P
1998-01-01
A mission to Mars including two Small Stations, two Penetrators and an Orbiter was launched at Baikonur, Kazakhstan, on 16 November 1996. This was called the Mars-96 mission. The Small Stations were expected to land in September 1997 (Ls approximately 178 degrees), nominally to Amazonis-Arcadia region on locations (33 N, 169.4 W) and (37.6 N, 161.9 W). The fourth stage of the Mars-96 launcher malfunctioned and hence the mission was lost. However, the state of the art concept of the Small Station can be applied to future Martian lander missions. Also, from the manufacturing and performance point of view, the Mars-96 Small Station could be built as such at low cost, and be fairly easily accommodated on almost any forthcoming Martian mission. This is primarily due to the very simple interface between the Small Station and the spacecraft. The Small Station is a sophisticated piece of equipment. With the total available power of approximately 400 mW the Station successfully supports an ambitious scientific program. The Station accommodates a panoramic camera, an alpha-proton-x-ray spectrometer, a seismometer, a magnetometer, an oxidant instrument, equipment for meteorological observations, and sensors for atmospheric measurement during the descent phase, including images taken by a descent phase camera. The total mass of the Small Station with payload on the Martian surface, including the airbags, is only 32 kg. Lander observations on the surface of Mars combined with data from Orbiter instruments will shed light on the contemporary Mars and its evolution. As in the Mars-96 mission, specific science goals could be exploration of the interior and surface of Mars, investigation of the structure and dynamics of the atmosphere, the role of water and other materials containing volatiles and in situ studies of the atmospheric boundary layer processes. To achieve the scientific goals of the mission the lander should carry a versatile set of instruments. The Small Station accommodates devices for atmospheric measurements, geophysical and geochemical studies of the Martian surface and interior, and cameras for descent phase and panoramic views. These instruments would be able to contribute remarkably to the process of solving some of the scientific puzzles of Mars.
Nitrogen-Bearing, Indigenous Carbonaceous Matter in the Nakhla Mars Meteorite
NASA Technical Reports Server (NTRS)
Thomas-Keprta, K. L.; Clemett, S. J.; Messenger, S.; Rahman, Z.; Gibson, E. K.; Wentworth, S. J.; McKay, D. S.
2017-01-01
We report the identification of discrete assemblages of nitrogen (N)-rich organic matter entrapped within interior fracture surfaces of the martian meteorite Nakhla. Based on context, composition and isotopic measurements this organic matter is of demonstrably martian origin. The presence of N-bearing organic species is of considerable importance to the habitable potential and chemical evolution of the martian regolith.
NASA Astrophysics Data System (ADS)
Flores-McLaughlin, John
2017-08-01
Planetary bodies and spacecraft are predominantly exposed to isotropic radiation environments that are subject to transport and interaction in various material compositions and geometries. Specifically, the Martian surface radiation environment is composed of galactic cosmic radiation, secondary particles produced by their interaction with the Martian atmosphere, albedo particles from the Martian regolith and occasional solar particle events. Despite this complex physical environment with potentially significant locational and geometric dependencies, computational resources often limit radiation environment calculations to a one-dimensional or slab geometry specification. To better account for Martian geometry, spherical volumes with respective Martian material densities are adopted in this model. This physical description is modeled with the PHITS radiation transport code and compared to a portion of measurements from the Radiation Assessment Detector of the Mars Science Laboratory. Particle spectra measured between 15 November 2015 and 15 January 2016 and PHITS model results calculated for this time period are compared. Results indicate good agreement between simulated dose rates, proton, neutron and gamma spectra. This work was originally presented at the 1st Mars Space Radiation Modeling Workshop held in 2016 in Boulder, CO.
Flores-McLaughlin, John
2017-08-01
Planetary bodies and spacecraft are predominantly exposed to isotropic radiation environments that are subject to transport and interaction in various material compositions and geometries. Specifically, the Martian surface radiation environment is composed of galactic cosmic radiation, secondary particles produced by their interaction with the Martian atmosphere, albedo particles from the Martian regolith and occasional solar particle events. Despite this complex physical environment with potentially significant locational and geometric dependencies, computational resources often limit radiation environment calculations to a one-dimensional or slab geometry specification. To better account for Martian geometry, spherical volumes with respective Martian material densities are adopted in this model. This physical description is modeled with the PHITS radiation transport code and compared to a portion of measurements from the Radiation Assessment Detector of the Mars Science Laboratory. Particle spectra measured between 15 November 2015 and 15 January 2016 and PHITS model results calculated for this time period are compared. Results indicate good agreement between simulated dose rates, proton, neutron and gamma spectra. This work was originally presented at the 1st Mars Space Radiation Modeling Workshop held in 2016 in Boulder, CO. Copyright © 2017. Published by Elsevier Ltd.
The ultraviolet environment of Mars: biological implications past, present, and future.
Cockell, C S; Catling, D C; Davis, W L; Snook, K; Kepner, R L; Lee, P; McKay, C P
2000-08-01
A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment, past and present. Biological action spectra for DNA inactivation and chloroplast (photosystem) inhibition are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Over time Mars has probably experienced an increasingly inhospitable photobiological environment, with present instantaneous DNA weighted irradiances 3.5-fold higher than they may have been on early Mars. This is in contrast to the surface of Earth, which experienced an ozone amelioration of the photobiological environment during the Proterozoic and now has DNA weighted irradiances almost three orders of magnitude lower than early Earth. Although the present-day martian UV flux is similar to that of early Earth and thus may not be a critical limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Microbial strategies for protection against UV radiation are considered in the light of martian photobiological calculations, past and present. Data are also presented for the effects of hypothetical planetary atmospheric manipulations on the martian UV radiation environment with estimates of the biological consequences of such manipulations.
The ultraviolet environment of Mars: biological implications past, present, and future
NASA Technical Reports Server (NTRS)
Cockell, C. S.; Catling, D. C.; Davis, W. L.; Snook, K.; Kepner, R. L.; Lee, P.; McKay, C. P.
2000-01-01
A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment, past and present. Biological action spectra for DNA inactivation and chloroplast (photosystem) inhibition are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Over time Mars has probably experienced an increasingly inhospitable photobiological environment, with present instantaneous DNA weighted irradiances 3.5-fold higher than they may have been on early Mars. This is in contrast to the surface of Earth, which experienced an ozone amelioration of the photobiological environment during the Proterozoic and now has DNA weighted irradiances almost three orders of magnitude lower than early Earth. Although the present-day martian UV flux is similar to that of early Earth and thus may not be a critical limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Microbial strategies for protection against UV radiation are considered in the light of martian photobiological calculations, past and present. Data are also presented for the effects of hypothetical planetary atmospheric manipulations on the martian UV radiation environment with estimates of the biological consequences of such manipulations.
Nature of the Martian Uplands and Martian Meteorite Age Distribution
NASA Astrophysics Data System (ADS)
Hartmann, W. K.; Barlow, N. G.
2005-12-01
Martian meteorites have been launched from some 4 to 8 sites on Mars within the last 20 My. Some 75% to 88% of the sites ejected igneous rocks < 1.3 Gy old. Thus 75% to 88% of the rock-launching sites represent only 29% of Martian time. We hypothesize this imbalance arises not merely from poor statistics, but because much of the older Martian surface is inefficient in launching rocks during impacts. There are three lines of evidence. First, intense Noachian cratering must have produced surface layers with > 100 m of regolith, which reduces launch efficiency due to dominance of fines and possible effects of ice in the regolith. Second, both Mars Exploration Rovers in 2004, found that some older coherent strata are weak sediments, 1-2 orders of magnitude weaker than Martian igneous rocks. Low strength favors low launch efficiency, and even if launched, such rocks may produce recognizable meteorites on Earth. Third, the smaller fresh impact craters in Martian upland sites are rarely surrounded by secondary impact crater fields (cf. Barlow and Block, 2004). In a survey of 200 craters, the smallest Noachian, Hesperian, and Amazonian craters with fields of secondaries are ˜ 45 km, ˜ 24 km, and ˜ 10 km, respectively. With 40% of Mars being Noachian, and 74% being either Noachian or Hesperian, these effects could play an important role in the statistics of recognized Martian meteorites and production rates of secondary crater populations. Reference: Barlow N.G., Block, K.M. (2004), DPS abstract 47.04.
NASA Technical Reports Server (NTRS)
Martinez, G. M.; Newman, C. N.; De Vicente-Retortillo, A.; Fischer, E.; Renno, N. O.; Richardson, M. I.; Fairén, A. G.; Genzer, M.; Guzewich, S. D.; Haberle, R. M.;
2017-01-01
We analyze the complete set of in-situ meteorological data obtained from the Viking landers in the 1970s to todays Curiosity rover to review our understanding of the modern near-surface climate of Mars, with focus on the dust, CO2 and H2O cycles and their impact on the radiative and thermodynamic conditions near the surface. In particular, we provide values of the highest confidence possible for atmospheric opacity, atmospheric pressure, near-surface air temperature, ground temperature, near-surface wind speed and direction, and near-surface air relative humidity and water vapor content. Then, we study the diurnal, seasonal and interannual variability of these quantities over a span of more than twenty Martian years. Finally, we propose measurements to improve our understanding of the Martian dust and H2O cycles, and discuss the potential for liquid water formation under Mars present day conditions and its implications for future Mars missions.
My Martian Moment - Episode 02 - Chris McKay and Perchlorates
2015-10-06
NASA Ames' Chris McKay is a planetary scientist, whose research includes planetary atmospheres and on the origins and evolution of life in the Solar System and the Universe. His work also includes planning the next generation of science instruments needed to better understand the chemicals and composition of the dirt on the surface of Mars.
Planetary Research Center. [astronomical photography of planetary surfaces and atmospheres
NASA Technical Reports Server (NTRS)
Baum, W. A.; Millis, R. L.; Bowell, E. L. G.
1974-01-01
Extensive Earth-based photography of Mars, Jupiter, and Venus is presented which monitors the atmospheric and/or surface changes that take place day to day. Color pictures are included of the 1973 dust storm on Mars, showing the daily cycle of the storm's regeneration. Martian topography, and the progress of the storm is examined. Areas most affected by the storm are summarized.
NASA Astrophysics Data System (ADS)
Justh, H. L.; Kasting, J. F.
2001-12-01
Images from the Mariner, Viking and Mars Global Surveyor missions have shown geologic features on the Martian surface that seem to indicate an earlier period of hydrologic activity. Many researchers have suggested that the early Martian climate was more Earth-like with a Ts of 273 K or higher. The presence of liquid water would require a greenhouse effect much larger than needed at present since S0 is 25% lower 3.8 billion years ago when the channels are thought to have formed. Research into the effects of CO2 clouds upon the climate of early Mars have yielded results that would not effectively warm the surface to the temperature needed to account for the presence of liquid water. Forget and Pierrehumbert (Science, 1997) showed that large crystals of CO2 ice in clouds that form in the upper troposphere would produce a strong warming effect. Obtaining mean surface temperatures above 273 K would require 100% cloud cover, a condition that is unrealistic for early Mars. It has also been shown that any reduction in cloud cover makes it difficult to achieve warm Martian surface temperatures except at high pressures. CO2 clouds could also cool the Martian surface if they were low and optically thick. CO2 ice may be hard to nucleate, leading to the formation of very large particles (Glandorf, private communication). CH4 has been suggested as an important greenhouse gas on the early Earth. This has led us to look at CH4 as a potential solution to the early Mars climate issue. To investigate the possible warming effect of CH4, we utilized a modified, one-dimensional, radiative-convective climate model that has been used in previous studies of the early Martian climate. New calculations of the effects of CH4 upon the early Martian climate will be presented. The use of CH4 to warm the surface of early Mars does not necessarily imply the presence of life on Mars. Abiotic sources of CH4, such as serpentinization of ultramafic rocks, could supply the concentrations needed to warm the surface.
MN Carbonates in the Martian Meteorite Nakhla: Possible Evidence of Brine Evaporation
NASA Technical Reports Server (NTRS)
Bailey, J. V.; McKay, D. S.; Wentworth, S. J.
2003-01-01
The importance of secondary phases in martian meteorites lies in their potential to provide clues about the martian environments responsible for their formation. During this study, we analyzed a number of carbonate-bearing fracture surfaces from the Nakhla meteorite. Here we describe the physical and chemical properties of several manganese-calcium-rich siderites. Additionally, we describe a potential model for the formation and alteration of these carbonates, and we suggest constraints on the conditions responsible for their precipitation. Nakhla is an olivine-bearing clinopyroxenite with minor amounts of feldspar, FeS, and Fe oxides. Secondary mineral assemblages include vein filling clay with embedded iron oxides, a calcium sulfate, amorphous silica, chlorapatite, halite and carbonates. Bridges and Grady suggested that the carbonates in Nakhla formed from brine evaporation. Isotope studies of the Mn rich siderite are also consistent with formation from hydrothermal fluids with an upper T constraint of 170 C.
Electron Spin Resonance (ESR) detection of active oxygen species and organic phases in Martian soils
NASA Technical Reports Server (NTRS)
Tsay, Fun-Dow; Kim, Soon Sam; Liang, Ranty H.
1989-01-01
The presence of active oxygen species (O(-), O2(-), O3(-)) and other strong oxidants (Fe2O3 and Fe3O4) was invoked in interpretations of the Viking biological experiments and a model was also suggested for Martian surface chemistry. The non-biological interpretations of the biological results gain futher support as no organic compounds were detected in the Viking pyrolysis-gas chromatography mass spectrometer (GCSM) experiments at concentrations as low as 10 ppb. Electron spin resonance (ESR) measures the absorption of microwaves by a paramagnetic and/or ferromagnetic center in the presence of an external field. In many instances, ESR has the advantage of detailed submicroscopic identification of the transient species and/or unstable reaction intermediates in their environments. Since the higly active oxygen species (O(-), O2(-), O3(-), and R-O-O(-)) are all paramagnetic in nature, they can be readily detected in native form by the ESR method. Active oxygen species likely to occur in the Martian surface samples were detected by ESR in UV-irradiated samples containing MgO. A miniaturized ESR spectrometer system can be developed for the Mars Rover Sample Return Mission. The instrument can perform the following in situ Martian samples analyses: detection of active oxygen species; characterization of Martian surface chemistry and photooxidation processes; and searching for organic compounds in the form of free radicals preserved in subsoils, and detection of microfossils with Martian carbonate sediments.
NASA Technical Reports Server (NTRS)
Lindstrom, M. M.
1994-01-01
Exploration of the Moon and planets began with telescopic studies of their surfaces, continued with orbiting spacecraft and robotic landers, and will culminate with manned exploration and sample return. For the Moon and Mars we also have accidental samples provided by impacts on their surfaces, the lunar and martian meteorites. How much would we know about the lunar surface if we only had lunar meteorites, orbital spacecraft, and robotic exploration, and not the Apollo and Luna returned samples? What does this imply for Mars? With martian meteorites and data from Mariner, Viking, and the future Pathfinder missions, how much could we learn about Mars? The basis of most of our detailed knowledge about the Moon is the Apollo samples. They provide ground truth for the remote mapping, timescales for lunar processes, and samples from the lunar interior. The Moon is the foundation of planetary science and the basis for our interpretation of the other planets. Mars is similar to the Moon in that impact and volcanism are the dominant processes, but Mars' surface has also been affected by wind and water, and hence has much more complex surface geology. Future geochemical or mineralogical mapping of Mars' surface should be able to tell us whether the dominant rock types of the ancient southern highlands are basaltic, anorthositic, granitic, or something else, but will not be able to tell us the detailed mineralogy, geochemistry, or age. Without many more martian meteorites or returned samples we will not know the diversity of martian rocks, and therefore will be limited in our ability to model martian geological evolution.
Network science landers for Mars
NASA Astrophysics Data System (ADS)
Harri, A.-M.; Marsal, O.; Lognonne, P.; Leppelmeier, G. W.; Spohn, T.; Glassmeier, K.-H.; Angrilli, F.; Banerdt, W. B.; Barriot, J. P.; Bertaux, J.-L.; Berthelier, J. J.; Calcutt, S.; Cerisier, J. C.; Crisp, D.; Dehant, V.; Giardini, D.; Jaumann, R.; Langevin, Y.; Menvielle, M.; Musmann, G.; Pommereau, J. P.; di Pippo, S.; Guerrier, D.; Kumpulainen, K.; Larsen, S.; Mocquet, A.; Polkko, J.; Runavot, J.; Schumacher, W.; Siili, T.; Simola, J.; Tillman, J. E.
1999-01-01
The NetLander Mission will deploy four landers to the Martian surface. Each lander includes a network science payload with instrumentation for studying the interior of Mars, the atmosphere and the subsurface, as well as the ionospheric structure and geodesy. The NetLander Mission is the first planetary mission focusing on investigations of the interior of the planet and the large-scale circulation of the atmosphere. A broad consortium of national space agencies and research laboratories will implement the mission. It is managed by CNES (the French Space Agency), with other major players being FMI (the Finnish Meteorological Institute), DLR (the German Space Agency), and other research institutes. According to current plans, the NetLander Mission will be launched in 2005 by means of an Ariane V launch, together with the Mars Sample Return mission. The landers will be separated from the spacecraft and targeted to their locations on the Martian surface several days prior to the spacecraft's arrival at Mars. The landing system employs parachutes and airbags. During the baseline mission of one Martian year, the network payloads will conduct simultaneous seismological, atmospheric, magnetic, ionospheric, geodetic measurements and ground penetrating radar mapping supported by panoramic images. The payloads also include entry phase measurements of the atmospheric vertical structure. The scientific data could be combined with simultaneous observations of the atmosphere and surface of Mars by the Mars Express Orbiter that is expected to be functional during the NetLander Mission's operational phase. Communication between the landers and the Earth would take place via a data relay onboard the Mars Express Orbiter.
Martín-Redondo, M Paz; Martínez, Eduardo Sebastian; Sampedro, M Teresa Fernández; Armiens, Carlos; Gómez-Elvira, Javier; Martinez-Frias, Jesus
2009-07-01
The Rover Environmental Monitoring Station (REMS) is one of NASA/MSL's instruments, which has been designed for measuring ambient pressure, humidity, wind speed and direction, UV radiation, and air and ground temperature (GT). The GT-sensor is dedicated to measure the real temperature of the Martian surface, integrating the IR energy coming from the ground. The existing IR spectral data of Martian dust, rocks and sediments allow for comparing the Martian spectra with the spectra of different terrestrial minerals and lithologies, and those of their alteration and weathering products. The FTIR reflectance of a set of selected astrobiologically significant minerals (including oxides, oxi/hydroxides, sulfates, chlorides, opal and clays) and basalt (as the main and most widespread volcanic Martian rock) was measured, considering different mixing amounts, and covering the specific working wavelength range of the REMS' GT-sensor. The results obtained show important percentage increases or decreases of reflectance in the entire wavelength range (e.g. basalt-hematite vs. basalt-magnetite) and specific variations limited to some spectral bands (e.g. basalt-smectite vs. basalt-jasper). The basalt reflectance percentage increases or decreases, even up to 100%, depending on the mixing of the different minerals. This unequivocally confirms the need for considering the chemical-mineralogical assemblages (and their textures) for any investigation and interpretation of Mars surface environment. Some complementary applications of this research on our planet, either in relation to the specific performances and characteristics of the GT-sensor autonomous recalibration system, or those oriented to carrying out similar studies on different types of terrestrial environmental settings, are also described.
Mars Environmental Chamber for Dynamic Dust Deposition and Statics Analysis
NASA Technical Reports Server (NTRS)
Moeller, L. E.; Tuller, M.; Islam, M. R.; Baker, L.; Kuhlman, K.
2004-01-01
Recent observations of the 2001 dust storms encircling Mars confirm predictions of environmental challenges for exploration. Martian dust has been found to completely mantle the Martian surface over thousands of square kilometers and the opacity of airborne dust has been shown to be capable of modifying atmospheric temperature, radiative transfer and albedo. Planetary dust cycling dynamics are suggested to be a key factor in the evolution of the Martian surface. Long-term robotic and manned exploration of Mars will be confronted by dust deposition in periods of atmospheric calm and violent wind storms. Aeolian dust deposition recorded during the Mars Pathfinder mission was estimated to fall at rates of 20-45 microns per Earth year. Although many tools of exploration will be challenged by coating, adhesion, abrasion and possible chemical reaction of deposited, wind blown and actively disturbed Martian dust, solar cells are thought to be of primary concern. Recent modeling work of power output by gallium arsenide/germanium solar cells was validated by the Pathfinder Lander data and showed power output decreases of 0.1 to 0.5% per Martian day. A major determinant for the optimal positioning angle of solar panels employed in future missions is the angle of repose of the settling dust particles that is dependent on a variety of physical and chemical properties of the particles, the panel surface, and the environmental conditions on the Mars surface. While the effects of many of these factors are well understood qualitatively, quantitative analyses, especially under physical and chemical conditions prevailing on the Mars surface are lacking.
Identifying Surface Changes on HRSC Images of the Mars South Polar Residual CAP (sprc)
NASA Astrophysics Data System (ADS)
Putri, Alfiah Rizky Diana; Sidiropoulos, Panagiotis; Muller, Jan-Peter
2016-06-01
The surface of Mars has been an object of interest for planetary research since the launch of Mariner 4 in 1964. Since then different cameras such as the Viking Visual Imaging Subsystem (VIS), Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC), and Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) and High Resolution Imaging Science Experiment (HiRISE) have been imaging its surface at ever higher resolution. The High Resolution Stereo Camera (HRSC) on board of the European Space Agency (ESA) Mars Express, has been imaging the Martian surface, since 25th December 2003 until the present-day. HRSC has covered 100 % of the surface of Mars, about 70 % of the surface with panchromatic images at 10-20 m/pixel, and about 98 % at better than 100 m/pixel (Neukum et. al., 2004), including the polar regions of Mars. The Mars polar regions have been studied intensively recently by analysing images taken by the Mars Express and MRO missions (Plaut et al., 2007). The South Polar Residual Cap (SPRC) does not change very much in volume overall but there are numerous examples of dynamic phenomena associated with seasonal changes in the atmosphere. In particular, we can examine the time variation of layers of solid carbon dioxide and water ice with dust deposition (Bibring, 2004), spider-like channels (Piqueux et al., 2003) and so-called Swiss Cheese Terrain (Titus et al., 2004). Because of seasonal changes each Martian year, due to the sublimation and deposition of water and CO2 ice on the Martian south polar region, clearly identifiable surface changes occur in otherwise permanently icy region. In this research, good quality HRSC images of the Mars South Polar region are processed based on previous identification as the optimal coverage of clear surfaces (Campbell et al., 2015). HRSC images of the Martian South Pole are categorized in terms of quality, time, and location to find overlapping areas, processed into high quality Digital Terrain Models (DTMs) and Orthorectified Images (ORIs) and projected into polar stereographic projection using DLR (Deutsches Zentrum für Luft- und Raumfahrt; German Aerospace Center)'s VICAR and GIS software with modifications developed by Kim & Muller (2009). Surface changes are identified in the Mars SPRC region and analysed based on their appearance in the HRSC images.
NASA Astrophysics Data System (ADS)
Sinha, Navita
Mars is one of the suitable bodies in our solar system that can accommodate extraterrestrial life. The detection of plumes of methane in the Martian atmosphere, geochemical evidence, indication of flow of intermittent liquid water on the Martian surface, and geomorphologies of Mars have bolstered the plausibility of finding extant or evidence of extinct life on its surface and/or subsurface. However, contemporary Mars has been considered as an inhospitable planet for several reasons, such as low atmospheric surface pressure, low surface temperature, and intense DNA damaging radiation. Despite the hostile conditions of Mars, a few strains of methanogenic archaea have shown survivability in limited surface and subsurface conditions of Mars. Methanogens, which are chemolithoautotrophic non-photosynthetic anaerobic archaea, have been considered ideal models for possible Martian life forms for a long time. The search for biosignatures in the Martian atmosphere and possibility of life on the Martian surface under UVC radiation and deep subsurface under high pressure, temperature, and various pHs are the motivations of this research. Analogous to Earth, Martian atmospheric methane could be biological in origin. Chapter 1 provides relevant information about Mars' habitability, methane on Mars, and different strains of methanogens used in this study. Chapter 2 describes the interpretation of the carbon isotopic data of biogenic methane produced by methanogens grown on various Mars analogs and the results provide clues to determine ambiguous sources of methane on Mars. Chapter 3 illustrates the sensitivity of hydrated and desiccated cultures of halophilic and non-halophilic methanogens to DNA-damaging ultraviolet radiations, and the results imply that UVC radiation may not be an enormous constraint for methanogenic life forms on the surface of Mars. Chapters 4, 5, and 6 discuss the data for the survivability, growth, and morphology of methanogens in presumed deep subsurface physicochemical conditions such as temperature, pressure, hydrogen concentration, and pH of Mars. Finally, chapter 7 provides conclusions, limitations of the experiments, and future perspective of the work. Overall, the quantitative measurements obtained in the various sections of this novel work provide insights to atmospheric biosignatures and survivability of methanogenic organisms on the surface and subsurface of Mars.
Schumann Resonances on Mars - a Two-layer Ground Case
NASA Astrophysics Data System (ADS)
Kozakiewicz, J.; Kulak, A.; Mlynarczyk, J.
2012-04-01
Schumann resonances (SR) are global resonances of electromagnetic waves in the range of extremely low frequencies (ELF) propagating in a cavity formed by a planetary surface and a lower ionosphere. SR are induced by electrical discharges, which on Earth are associated mainly with lightning. They were predicted by Winfried Otto Schumann in 1952. SR are supposed to occur on Mars, although many properties of the Martian environment are still unknown. One of the most important problems in modeling SR on Mars is to estimate electrical properties of the Martian ground and their influence on ELF waves propagation. The Martian crust is composed mainly of basaltic materials. Water, which causes significant increase in electrical conductivity of rocks, does not exist in liquid state at the surface of Mars. Therefore the Martian ground is believed to be a low conductive one. However, it is possible that some liquid water may be present at various depths below the surface. In our previous study we have developed an analytical model, based on the characteristic electric and magnetic altitudes' formalism, that has allowed us to take into consideration the Martian ground. Using this new model, we found that basaltic ground of low conductivity greatly influenced the SR parameters. In this work, we carried out simulations in order to characterize an influence of vertical changes in ground properties on the parameters of the Martian ground-ionosphere waveguide. We have considered several cases of a two-layer ground, in which the lower layer was of higher conductivity than the upper one. The obtained results indicate how the SR parameters depend on electrical conductivity, permittivity, and depth of the layers. The results also point out the importance of studying SR on Mars and the need for further research in propagation of ELF waves in the Martian environment. SR can be used as a remote sensing tool for exploration of the Martian crust. Furthermore, they can be especially useful for groundwater detection.
Micro weather stations for in situ measurements in the Martian planetary boundary layer
NASA Technical Reports Server (NTRS)
Crisp, D.; Kaiser, W. J.; Kenny, T. W.; Vanzandt, T. R.; Tillman, J. E.
1992-01-01
Viking Lander meteorology measurements show that the Martian planetary boundary layer (PBL) has large diurnal and seasonal variations in pressure, wind velocity, relative humidity, and airborne dust loading. An even larger range of conditions was inferred from remote sensing observations acquired by the Mariner 9 and Viking orbiters. Numerical models indicate that these changes may be accompanied by dramatic vertical and horizontal wind shears (100 m/s/km) and rapid changes in the static stability. In-situ measurements from a relatively small number surface stations could yield global constraints on the Martian climate and atmospheric general circulation by providing ground truth for remote sensing instruments on orbiters. A more complete understanding of the meteorology of the PBL is an essential precursor to manned missions to Mars because this will be their working environment. In-situ measurements are needed for these studies because the spatial and temporal scales that characterize the important meteorological processes near the surface cannot be resolved from orbit. The Mars Environmental Survey (MESUR) Program will provide the first opportunity to deploy a network of surface weather stations for a comprehensive investigation of the Martian PBL. The feasibility and utility of a network of micro-weather stations for making in-situ meteorological measurements in the Martian PBL are assessed.
NASA Astrophysics Data System (ADS)
Hobbs, S. W.; Paull, D. J.; Clarke, J. D. A.; Roach, Ian C.
2016-03-01
Comparison of the similarities and differences between terrestrial and Martian hillside gullies promotes understanding of how surface processes operate on both planets. Here we tested the viability of subsurface flow of water as a process affecting gully evolution. We compared gullies within the Monaro Volcanic Province near Cooma, New South Wales, Australia, to gullies possessing strong structural control near Gasa Crater, Terra Cimmeria, Mars. Although cursory examination of the Monaro gullies initially suggested strong evidence for aquifer erosion, detailed field surveys showed the evidence to be ambiguous. Instead a complex regime of erosion dependent on multiple conditions and processes such as local geology, surface runoff, dry mass wasting, and animal activity emerged. We found the morphology of gullies near Gasa Crater to be consistent with erosion caused by liquid water, while also being heavily influenced by the local environment, including slope and geology. Additionally, erosion at the Martian site was not consistent with evidence of subsequent, smaller scale erosion and channel modification by dry mass wasting. Local conditions thus play an important role in gully evolution, further highlighting that processes forming Martian gullies may be more diverse than initially thought.
Automated life-detection experiments for the Viking mission to Mars
NASA Technical Reports Server (NTRS)
Klein, H. P.
1974-01-01
As part of the Viking mission to Mars in 1975, an automated set of instruments is being built to test for the presence of metabolizing organisms on that planet. Three separate modules are combined in this instrument so that samples of the Martian surface can be subjected to a broad array of experimental conditions so as to measure biological activity. The first, the Pyrolytic Release Module, will expose surface samples to a mixture of C-14O and C-14O2 in the presence of Martian atmosphere and a light source that simulates the Martian visible spectrum. The assay system is designed to determine the extent of assimilation of CO or CO2 into organic compounds. The Gas Exchange Module will incubate surface samples in a humidified CO2 atmosphere. At specified times, portions of the incubation atmosphere will be analyzed by gas chromatography to detect the release or uptake of CO2 and several additional gases. The Label Release Module will incubate surface samples with a dilute aqueous solution of simple radioactive organic substrates in Martian atmosphere, and the gas phase will be monitored continuously for the release of labeled CO2.
On the existence and stability of liquid water on the surface of mars today.
Kuznetz, L H; Gan, D C
2002-01-01
The recent discovery of high concentrations of hydrogen just below the surface of Mars' polar regions by Mars Odyssey has enlivened the debate about past or present life on Mars. The prevailing assumption prior to the discovery was that the liquid water essential for its existence is absent. That assumption was based largely on the calculation of heat and mass transfer coefficients or theoretical climate models. This research uses an experimental approach to determine the feasibility of liquid water under martian conditions, setting the stage for a more empirical approach to the question of life on Mars. Experiments were conducted in three parts: Liquid water's existence was confirmed by droplets observed under martian conditions in part 1; the evolution of frost melting on the surface of various rocks under martian conditions was observed in part 2; and the evaporation rate of water in Petri dishes under Mars-like conditions was determined and compared with the theoretical predictions of various investigators in part 3. The results led to the conclusion that liquid water can be stable for extended periods of time on the martian surface under present-day conditions.
On the existence and stability of liquid water on the surface of mars today
NASA Technical Reports Server (NTRS)
Kuznetz, L. H.; Gan, D. C.
2002-01-01
The recent discovery of high concentrations of hydrogen just below the surface of Mars' polar regions by Mars Odyssey has enlivened the debate about past or present life on Mars. The prevailing assumption prior to the discovery was that the liquid water essential for its existence is absent. That assumption was based largely on the calculation of heat and mass transfer coefficients or theoretical climate models. This research uses an experimental approach to determine the feasibility of liquid water under martian conditions, setting the stage for a more empirical approach to the question of life on Mars. Experiments were conducted in three parts: Liquid water's existence was confirmed by droplets observed under martian conditions in part 1; the evolution of frost melting on the surface of various rocks under martian conditions was observed in part 2; and the evaporation rate of water in Petri dishes under Mars-like conditions was determined and compared with the theoretical predictions of various investigators in part 3. The results led to the conclusion that liquid water can be stable for extended periods of time on the martian surface under present-day conditions.
Magnetic and electrical properties of Martian particles
NASA Technical Reports Server (NTRS)
Olhoeft, G. R.
1991-01-01
The only determinations of the magnetic properties of Martian materials come from experiments on the two Viking Landers. The results suggest Martian soil containing 1 to 10 percent of a highly magnetic phase. Though the magnetic phase mineral was not conclusively identified, the predominate interpretation is that the magnetic phase is probably maghemite. The electrical properties of the surface of Mars were only measured remotely by observations with Earth based radar, microwave radiometry, and inference from radio-occultation of Mars orbiting spacecraft. No direct measurements of electrical properties on Martian materials have been performed.
Martian physical properties experiments: The Viking Mars Lander
Shorthill, R.W.; Hutton, R.E.; Moore, H.J.; Scott, R.F.
1972-01-01
Current data indicate that Mars, like the Earth and Moon, will have a soil-like layer. An understanding of this soil-like layer is an essential ingredient in understanding the Martian ecology. The Viking Lander and its subsystems will be used in a manner similar to that used by Sue Surveyor program to define properties of the Martian "soil". Data for estimates of bearing strength, cohesion, angle of internal friction, porosity, grain size, adhesion, thermal inertia, dielectric constants, and homogeneity of the Martian surface materials will be collected. ?? 1972.
Chemical reactivity of the Martian soil
NASA Technical Reports Server (NTRS)
Zent, A. P.; Mckay, C. P.
1992-01-01
The Viking life sciences experimental packages detected extraordinary chemical activity in the martian soil, probably the result of soil-surface chemistry. At least one very strong oxidant may exist in the martian soil. The electrochemical nature of the martian soil has figured prominently in discussions of future life sciences research on Mars. Putative oxidants in the martian soil may be responsible for the destruction of organic material to considerable depth, precluding the recovery of reducing material that may be relic of early biological forms. Also, there have been serious expressions of concern regarding the effect that soil oxidants may have on human health and safety. The concern here has centered on the possible irritation of the respiratory system due to dust carried into the martian habitat through the air locks.
The chemical reactivity of the Martian soil and implications for future missions
NASA Technical Reports Server (NTRS)
Zent, Aaron P.; Mckay, Christopher P.
1994-01-01
Possible interpretations of the results of the Viking Biology Experiments suggest that greater than 1 ppm of a thermally labile oxidant, perhaps H2O2, and about 10 ppm of a thermally stable oxidant are present in the martian soil. We reexamine these results and discuss implications for future missions, the search for organics on Mars, and the possible health and engineering effects for human exploration. We conclude that further characterization of the reactivity of the martian regolith materials is warrented-although if our present understanding is correct the oxidant does not pose a hazard to humans. There are difficulties in explaining the reactivity of the Martian soil by oxidants. Most bulk phase compounds that are capable of oxidizing H2O to O2 per the Gas Exchange Experiment (GEx) are thermally labile or unstable against reduction by atmospheric CO2. Models invoking trapped O2 or peroxynitrates (NOO2(-)) require an unlikely geologic history for the Viking Lander 2 site. Most suggested oxidants, including H2O2, are expected to decompose rapidly under martian UV. Nonetheless, we conclude that the best model for the martian soil contains oxidants produced by heterogeneous chemical reactions with a photochemically produced atmospheric oxidant. The GEx results may be due to catalytic decomposition of an unstable oxidizing material by H2O. We show that interfacial reaction sites covering less than 1% of the available soil surfaces could explain the Viking Biology Experiments results.
NASA Technical Reports Server (NTRS)
Bridges, N. T.
1993-01-01
Thermal inertia is commonly used to derive physical properties of the Martian surface. If the surface is composed of loosely consolidated grains, then the thermal conductivity derived from the inertia can theoretically be used to compute the particle size. However, one persistent difficulty associated with the interpretation of thermal inertia and the derivation of particle size from it has been the degree to which atmospheric properties affect both the radiation balance at the surface and the gas conductivity. These factors vary with atmospheric pressure so that derived thermal inertias and particle sizes are a function of elevation. By utilizing currently available thermal models and laboratory information, a fine component thermal inertia map was convolved with digital topography to produce particle size maps of the Martian surface corrected for these elevation-dependent effects. Such an approach is especially applicable for the highest elevations on Mars, where atmospheric back radiation and gas conductivity are low.
Endolithic microbial model for Martian exobiology: The road to extinction
NASA Technical Reports Server (NTRS)
Oscampo-Friedmann, R.; Friedmann, E. I.
1991-01-01
Martian exobiology is based on the assumption that on early Mars, liquid water was present and that conditions were suitable for the evolution of life. The cause for life to disappear from the surface and the recognizable fingerprints of past microbial activity preserved on Mars are addressed. The Antarctic cryptoendolithic microbial ecosystem as a model for extinction in the deteriorating Martian environment is discussed.
2012-09-12
This image shows the Mars Hand Lens Imager MAHLI on NASA Curiosity rover, with the Martian landscape in the background. The image was taken by Curiosity Mast Camera on the 32nd Martian day, or sol, of operations on the surface.
Deceleration of Mars Science Laboratory in Martian Atmosphere, Artist Concept
2011-10-03
This artist concept depicts the interaction of NASA Mars Science Laboratory spacecraft with the upper atmosphere of Mars during the entry, descent and landing of the Curiosity rover onto the Martian surface.
NASA Astrophysics Data System (ADS)
Bak, Ebbe N.; Zafirov, Kaloyan; Merrison, Jonathan P.; Jensen, Svend J. Knak; Nørnberg, Per; Gunnlaugsson, Haraldur P.; Finster, Kai
2017-09-01
The results of the Labeled Release and the Gas Exchange experiments conducted on Mars by the Viking Landers show that compounds in the Martian soil can cause oxidation of organics and a release of oxygen in the presence of water. Several sources have been proposed for the oxidizing compounds, but none has been validated in situ and the cause of the observed oxidation has not been resolved. In this study, laboratory simulations of saltation were conducted to examine if and under which conditions wind abrasion of silicates, a process that is common on the Martian surface, can give rise to oxidants in the form of hydrogen peroxide (H2O2) and hydroxyl radicals (ṡOH). We found that silicate samples abraded in simulated Martian atmospheres gave rise to a significant production of H2O2 and ṡOH upon contact with water. Our experiments demonstrated that abraded silicates could lead to a production of H2O2 facilitated by atmospheric O2 and inhibited by carbon dioxide. Furthermore, during simulated saltation the silicate particles became triboelectrically charged and at pressures similar to the Martian surface pressure we observed glow discharges. Electrical discharges can cause dissociation of CO2 and through subsequent reactions lead to a production of H2O2. These results indicate that the reactions linked to electrical discharges are the dominant source of H2O2 during saltation of silicates in a simulated Martian atmosphere, given the low pressure and the relatively high concentration of CO2. Our experiments provide evidence that wind driven abrasion could enhance the reactivity of the Martian soil and thereby could have contributed to the oxidation of organic compounds and the O2 release observed in the Labeled Release and the Gas Exchange experiments. Furthermore, the release of H2O2 and ṡOH from abraded silicates could have a negative effect on the persistence of organic compounds in the Martian soil and the habitability of the Martian surface.
First Atmospheric Science Results from the Mars Exploration Rovers Mini-TES
NASA Technical Reports Server (NTRS)
Smith, Michael D.; Wolff, Michael J.; Lemmon, Mark T.; Spanovich, Nicole; Banfield, Don; Budney, Charles J.; Clancy, R. Todd; Ghosh, Amitabha; Landis, Geoffrey A.; Smith, Peter;
2004-01-01
Thermal infrared spectra of the martian atmosphere taken by the Miniature Thermal Emission Spectrometer (Mini-TES) were used to determine the atmospheric temperatures in the planetary boundary layer and the column-integrated optical depth of aerosols. Mini-TES observations show the diurnal variation of the martian boundary layer thermal structure, including a near-surface superadiabatic layer during the afternoon and an inversion layer at night. Upward-looking Mini-TES observations show warm and cool parcels of air moving through the Mini-TES field of view on a time scale of 30 seconds. The retrieved dust optical depth shows a downward trend at both sites.
History of telescopic observations of the Martian satellites
NASA Astrophysics Data System (ADS)
Pascu, D.; Erard, S.; Thuillot, W.; Lainey, V.
2014-11-01
This article intends to review the different studies of the Mars satellites Phobos and Deimos realized by means of ground-based telescopic observations as well in the astrometry and dynamics domain as in the physical one. This study spans the first period of investigations of the Martian satellites since their discovery in 1877 through the astrometry and the spectrometry methods, mainly before the modern period of the space era. It includes also some other observations performed thanks to the Hubble Space Telescope. The different techniques used and the main results obtained for the positionning, the size estimate, the albedo and surface composition are described.
Gaussian-based filters for detecting Martian dust devils
Yang, F.; Mlsna, P.A.; Geissler, P.
2006-01-01
The ability to automatically detect dust devils in the Martian atmosphere from orbital imagery is becoming important both for scientific studies of the planet and for the planning of future robotic and manned missions. This paper describes our approach for the unsupervised detection of dust devils and the preliminary results achieved to date. The algorithm centers upon the use of a filter constructed from Gaussian profiles to match dust devil characteristics over a range of scale and orientation. The classification step is designed to reduce false positive errors caused by static surface features such as craters. A brief discussion of planned future work is included. ?? 2006 IEEE.
Iron-tolerant Cyanobacteria as a Tool to Study Terrestrial and Extraterrestrial Iron Deposition
NASA Technical Reports Server (NTRS)
Brown, I. I.; Mummey, D.; Cooksey, K. E.; McKay, D. S.
2005-01-01
We are investigating biological mechanisms of terrestrial iron deposition as analogs for Martian hematite recently confirmed by. Possible terrestrial analogs include iron oxide hydrothermal deposits, rock varnish, iron-rich laterites, ferricrete soils, moki balls, and banded iron formations (BIFs). With the discovery of recent volcanic activity in the summit craters of five Martian volcanoes, renewed interest in the iron dynamics of terrestrial hydrothermal environments and associated microorganisms is warranted. In this study we describe a new genus and species of CB exhibiting elevated dissolved iron tolerance and the ability to precipitate hematite on the surface of their exopolymeric sheathes.
First Atmospheric Science Results from the Mars Exploration Rovers Mini-TES.
Smith, Michael D; Wolff, Michael J; Lemmon, Mark T; Spanovich, Nicole; Banfield, Don; Budney, Charles J; Clancy, R Todd; Ghosh, Amitabha; Landis, Geoffrey A; Smith, Peter; Whitney, Barbara; Christensen, Philip R; Squyres, Steven W
2004-12-03
Thermal infrared spectra of the martian atmosphere taken by the Miniature Thermal Emission Spectrometer (Mini-TES) were used to determine the atmospheric temperatures in the planetary boundary layer and the column-integrated optical depth of aerosols. Mini-TES observations show the diurnal variation of the martian boundary layer thermal structure, including a near-surface superadiabatic layer during the afternoon and an inversion layer at night. Upward-looking Mini-TES observations show warm and cool parcels of air moving through the Mini-TES field of view on a time scale of 30 seconds. The retrieved dust optical depth shows a downward trend at both sites.
West-Antarctic Ice Streams: Analog to Ice Flow in Channels on Mars
NASA Technical Reports Server (NTRS)
Lucchitta, B. K.
1997-01-01
Sounding of the sea floor in front of the Ross Ice Shelf in Antarctica recently revealed large persistent patterns of longitudinal megaflutes and drumlinoid forms, which are interpreted to have formed at the base of ice streams during the list glacial advance. The flutes bear remarkable resemblance to longitudinal grooves and highly elongated streamlined islands found on the floors of some large martian channels, called outflow channels. ln addition, other similarities exist between Antarctic ice streams and outflow channels. Ice streams are 30 to 80 km wide and hundreds of kilometers long, as are the martian channels. Ice stream beds are below sea level. Floors of many martian outflow channels lie below martian datum, which may have been close to or below past martian sea levels. The Antarctic ice stream bed gradient is flat and locally may go uphill, and surface slopes are exceptionally low. So are gradients of martian channels. The depth to the bed in ice streams is 1 to 1.5 km. At bankful stage, the depth of the fluid in outflow channels would have been 1 to 2 km. These similarities suggest that the martian outflow channels, whose origin is commonly attributed to gigantic catastrophic floods, were locally filled by ice that left a conspicuous morphologic imprint. Unlike the West-Antarctic-ice streams, which discharge ice from an ice sheet, ice in the martian channels came from water erupting from the ground. In the cold martian environment, this water, if of moderate volume, would eventually freeze. Thus it may have formed icings on springs, ice dams and jams on constrictions in the channel path, or frozen pools. Given sufficient thickness and downhill surface gradient, these ice masses would have moved; and given the right conditions, they could have moved like Antarctic ice streams.
NASA Technical Reports Server (NTRS)
Banin, Amos; Orenberg, James
1990-01-01
A series of variably proportioned iron/calcium smectite clays and iron loaded smectite clays containing iron up to the level found in the Martian soil were prepared from a typical montomorillonite clay using the Banin method. Evidence was obtained which supports the premise that these materials provide a unique and appropriate model soil system for the Martian surface in that they are consistent with the constraints imposed by the Viking surface elemental analysis, the reflectance data obtained by various spacecraft instruments and ground based telescopes, and the chemical reactivity measured by one of the Viking biology experiments, the Labeled Release (LR) experiment.
Martian Surface Beneath Phoenix
NASA Technical Reports Server (NTRS)
2008-01-01
This is an image of the Martian surface beneath NASA's Phoenix Mars Lander. The image was taken by Phoenix's Robotic Arm Camera (RAC) on the eighth Martian day of the mission, or Sol 8 (June 2, 2008). The light feature in the middle of the image below the leg is informally called 'Holy Cow.' The dust, shown in the dark foreground, has been blown off of 'Holy Cow' by Phoenix's thruster engines. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Early views of the martian surface from the Mars Orbiter Camera of Mars Global Surveyor.
Malin, M C; Carr, M H; Danielson, G E; Davies, M E; Hartmann, W K; Ingersoll, A P; James, P B; Masursky, H; McEwen, A S; Soderblom, L A; Thomas, P; Veverka, J; Caplinger, M A; Ravine, M A; Soulanille, T A; Warren, J L
1998-03-13
High-resolution images of the martian surface at scales of a few meters show ubiquitous erosional and depositional eolian landforms. Dunes, sandsheets, and drifts are prevalent and exhibit a range of morphology, composition (inferred from albedo), and age (as seen in occurrences of different dune orientations at the same location). Steep walls of topographic depressions such as canyons, valleys, and impact craters show the martian crust to be stratified at scales of a few tens of meters. The south polar layered terrain and superposed permanent ice cap display diverse surface textures that may reflect the complex interplay of volatile and non-volatile components. Low resolution regional views of the planet provide synoptic observations of polar cap retreat, condensate clouds, and the lifecycle of local and regional dust storms.
The MAGO experiment for dust environment monitoring on the Martian surface
NASA Astrophysics Data System (ADS)
Palumbo, P.; Battaglia, R.; Brucato, J. R.; Colangeli, L.; della Corte, V.; Esposito, F.; Ferrini, G.; Mazzotta Epifani, E.; Mennella, V.; Palomba, E.; Panizza, A.; Rotundi, A.
2004-01-01
Among the main directions identified for future Martian exploration, the study of the properties of dust dispersed in the atmosphere, its cycle and the impact on climate are considered of primary relevance. Dust storms, dust devils and the dust ``cycle'' have been identified and studied by past remote and in situ experiments, but little quantitative information is available on these processes, so far. The airborne dust contributes to the determination of the dynamic and thermodynamic evolution of the atmosphere, including the large-scale circulation processes and its impact on the climate of Mars. Moreover, aeolian erosion, redistribution of dust on the surface and weathering processes are mostly known only qualitatively. In order to improve our knowledge of the airborne dust evolution and other atmospheric processes, it is mandatory to measure the amount, mass-size distribution and dynamical properties of solid particles in the Martian atmosphere as a function of time. In this context, there is clearly a need for the implementation of experiments dedicated to study directly atmospheric dust. The Martian atmospheric grain observer (MAGO) experiment is aimed at providing direct quantitative measurements of mass and size distributions of dust particles, a goal that has never been fully achieved so far. The instrument design combines three types of sensors to monitor in situ the dust mass flux (micro balance system, MBS) and single grain properties (grain detection system, GDS+impact sensor, IS). Technical solutions and science capabilities are discussed in this paper.
Possible Phosphate Redistribution on the Martian Surface: Implication From Simulation Experiments
NASA Astrophysics Data System (ADS)
Dreibus, G.; Haubold, R.; Jagoutz, E.
2001-12-01
The chemical composition of Martian rocks and soils as measured with the APXS (Alpha Proton X-ray Spectrometer) of the Mars Pathfinder Mission are very different [1]. Surprisingly, only small differences of the phosphorous concentrations between soils and rocks were found. The P concentration of about 4000 ppm is similar to that measured in basaltic shergottites. Phosphates are the host mineral for the REE, Th and U. Leach experiments with slightly acidified brines on basaltic shergottites easily dissolved more than a half of the REEs and U whereas K remained insoluble. Therefore, we suggested the possibility of alteration and mobilization of phosphates in the Martian environment with the result of an enrichment of U, Th, and consequently P on the surface. However, the APXS measured no P enrichment in rocks and soil of the Martian crust, whereas a high Th concentration on the surface was measured with the gamma-spectroscopy from orbit by Mars-5 and Phobos-2 [2]. With leach experiments on terrestrial samples we studied the solubility of U and Th as in the case of shergottites, but also that of phosphorous. Furthermore, simulation experiments of reactions between slightly acidified calcium-phosphate solution and different terrestrial rock types were performed to clarify the redistribution of P at the Martian surface with its complex weathering history. Ref.: [1] Brueckner J. et al. (2001) Lunar Planet. Science. XXXII, 1293; [2] Surkov Yu. A. et al. (1989) Nature 341, 595.
The missing organic molecules on Mars
NASA Technical Reports Server (NTRS)
Benner, S. A.; Devine, K. G.; Matveeva, L. N.; Powell, D. H.
2000-01-01
GC-MS on the Viking 1976 Mars missions did not detect organic molecules on the Martian surface, even those expected from meteorite bombardment. This result suggested that the Martian regolith might hold a potent oxidant that converts all organic molecules to carbon dioxide rapidly relative to the rate at which they arrive. This conclusion is influencing the design of Mars missions. We reexamine this conclusion in light of what is known about the oxidation of organic compounds generally and the nature of organics likely to come to Mars via meteorite. We conclude that nonvolatile salts of benzenecarboxylic acids, and perhaps oxalic and acetic acid, should be metastable intermediates of meteoritic organics under oxidizing conditions. Salts of these organic acids would have been largely invisible to GC-MS. Experiments show that one of these, benzenehexacarboxylic acid (mellitic acid), is generated by oxidation of organic matter known to come to Mars, is rather stable to further oxidation, and would not have been easily detected by the Viking experiments. Approximately 2 kg of meteorite-derived mellitic acid may have been generated per m(2) of Martian surface over 3 billion years. How much remains depends on decomposition rates under Martian conditions. As available data do not require that the surface of Mars be very strongly oxidizing, some organic molecules might be found near the surface of Mars, perhaps in amounts sufficient to be a resource. Missions should seek these and recognize that these complicate the search for organics from entirely hypothetical Martian life.
The missing organic molecules on Mars
Benner, Steven A.; Devine, Kevin G.; Matveeva, Lidia N.; Powell, David H.
2000-01-01
GC-MS on the Viking 1976 Mars missions did not detect organic molecules on the Martian surface, even those expected from meteorite bombardment. This result suggested that the Martian regolith might hold a potent oxidant that converts all organic molecules to carbon dioxide rapidly relative to the rate at which they arrive. This conclusion is influencing the design of Mars missions. We reexamine this conclusion in light of what is known about the oxidation of organic compounds generally and the nature of organics likely to come to Mars via meteorite. We conclude that nonvolatile salts of benzenecarboxylic acids, and perhaps oxalic and acetic acid, should be metastable intermediates of meteoritic organics under oxidizing conditions. Salts of these organic acids would have been largely invisible to GC-MS. Experiments show that one of these, benzenehexacarboxylic acid (mellitic acid), is generated by oxidation of organic matter known to come to Mars, is rather stable to further oxidation, and would not have been easily detected by the Viking experiments. Approximately 2 kg of meteorite-derived mellitic acid may have been generated per m2 of Martian surface over 3 billion years. How much remains depends on decomposition rates under Martian conditions. As available data do not require that the surface of Mars be very strongly oxidizing, some organic molecules might be found near the surface of Mars, perhaps in amounts sufficient to be a resource. Missions should seek these and recognize that these complicate the search for organics from entirely hypothetical Martian life. PMID:10706606
The missing organic molecules on Mars.
Benner, S A; Devine, K G; Matveeva, L N; Powell, D H
2000-03-14
GC-MS on the Viking 1976 Mars missions did not detect organic molecules on the Martian surface, even those expected from meteorite bombardment. This result suggested that the Martian regolith might hold a potent oxidant that converts all organic molecules to carbon dioxide rapidly relative to the rate at which they arrive. This conclusion is influencing the design of Mars missions. We reexamine this conclusion in light of what is known about the oxidation of organic compounds generally and the nature of organics likely to come to Mars via meteorite. We conclude that nonvolatile salts of benzenecarboxylic acids, and perhaps oxalic and acetic acid, should be metastable intermediates of meteoritic organics under oxidizing conditions. Salts of these organic acids would have been largely invisible to GC-MS. Experiments show that one of these, benzenehexacarboxylic acid (mellitic acid), is generated by oxidation of organic matter known to come to Mars, is rather stable to further oxidation, and would not have been easily detected by the Viking experiments. Approximately 2 kg of meteorite-derived mellitic acid may have been generated per m(2) of Martian surface over 3 billion years. How much remains depends on decomposition rates under Martian conditions. As available data do not require that the surface of Mars be very strongly oxidizing, some organic molecules might be found near the surface of Mars, perhaps in amounts sufficient to be a resource. Missions should seek these and recognize that these complicate the search for organics from entirely hypothetical Martian life.
Detecting Organic Compounds in Martian Soil Analogues Using Gas Chromatography Mass Spectrometry
NASA Technical Reports Server (NTRS)
Glavin, D. P.; Buch, A.; Mahaffy, P. R.
2004-01-01
One of the primary objectives of the 1976 Viking missions was to determine whether organic compounds, possibly of biological origin, were present in the Martian surface soils. The Viking gas chromatography mass spectrometry (GCMS) instruments found no evidence for any organic compounds of Martian origin above a few parts per billion in the upper 10 cm of surface soil [l], suggesting the absence of a widely distributed Martian biota. However, Benner et d. have suggested that significant amounts of non-volatile organic compounds, possibly including oxidation products of bioorganic molecules (e.g. carboxylic acids) would not have been detected by the Viking GCMS [2]. Moreover, other key organic compounds important to biology, such as amino acids and nucleobases, would also likely have been missed by the Viking GCMS as these compounds require chemical derivatization to be stable in a GC column [3]. Recent pyrolysis experiments with a Mars soil analogue that had been innoculated with Escherichia coli bacteria have shown that amino acid decomposition products (amines) and nucleobases are among the most abundant products generated after pyrolysis of the bacterial cells [4,5]. At the part per billion level (Viking GCMS detection limit), these pyrolysis products generated from several million bacterial cells per gram of Martian soil would not have been detected by the Viking GCMS instruments [4]. Analytical protocols are under development for upcoming in situ lander opportunities to target several important biological compounds including amino acids and nucleobases. For example, extraction and chemical derivatization techniques [3] are being adapted for space flight use to transform reactive or fragile molecules that would not have been detected by the Viking GCMS instruments, into species that are sufficiently volatile to be detected by GCMS. Recent experiments carried out at NASA Goddard have shown that using this derivatization technique all of the targeted compounds mentioned above can be separated on a GC column and detected by MS at sub-picomole (< 10(exp -l2 mole) levels. With these methods, the detection limit for amino acids, carboxylic acids and nucleobases is several orders of magnitude more sensitive than the Viking GCMS instruments for these compounds. Preliminary results using this analytical technique on a variety of Martian soil analogues will be presented.
NASA Technical Reports Server (NTRS)
Morris, R. V.; Bell, J. F., III; Golden, D. C.; Lauer, H. V., Jr.
1993-01-01
Meteoritic impacts under oxidizing surface conditions occur on both earth and Mars. Oxidative alteration of impact melt sheets is reported at several terrestrial impact structures including Manicouagan, West Clearwater Lake, and the Ries Basin. A number of studies have advocated that a significant fraction of Martian soil may consist of erosional products of oxidatively altered impact melt sheets. If so, the signature of the Fe-bearing mineralogies formed by the process may be present in visible and near infrared reflectivity data for the Martian surface. Of concern is what mineral assemblages form in impact melt sheets produced under oxidizing conditions and what their spectral signatures are. Spectral and Moessbauer data for 19 powder samples of impact melt rock from Manicouagan Crater are reported. Results show for naturally occurring materials that composite hematite-pyroxene bands have minima in the 910-nm region. Thus many of the anomalous Phobos-2 spectra, characterized by a shallow band minimum in the near-IR whose position varies between approximately 850 and 1000 nm, can be explained by assemblages whose endmembers (hematite and pyroxene) are accepted to be present on Mars. Furthermore, results show that a mineralogically diverse suite of rocks can be generated at essentially constant composition, which implies that variations in Martian surface mineralogy do not necessarily imply variations in chemical composition.
Evidence from Hydrogen Isotopes in Meteorites for a Subsurface Hydrogen Reservoir on Mars
NASA Technical Reports Server (NTRS)
Usui, Tomohiro; Alexander, Conel M. O'D.; Wang, Jianhua; Simon, Justin I.; Jones, John H.
2015-01-01
The surface geology and geomorphology of Mars indicates that it was once warm enough to maintain a large body of liquid water on its surface, though such a warm environment might have been transient. The transition to the present cold and dry Mars is closely linked to the history of surface water, yet the evolution of surficial water is poorly constrained. We have conducted in situ hydrogen isotope (D/H) analyses of quenched and impact glasses in three Martian meteorites (Yamato 980459, EETA79001, LAR 06319) by Cameca ims-6f at Digital Terrain Models (DTM) following the methods of [1]. The hydrogen isotope analyses provide evidence for the existence of a distinct but ubiquitous water/ice reservoir (D/H = 2-3 times Earth's ocean water: Standard Mean Ocean Water (SMOW)) that lasted from at least the time when the meteorites crystallized (173-472 Ma) to the time they were ejected by impacts (0.7-3.3 Ma), but possibly much longer [2]. The origin of this reservoir appears to predate the current Martian atmospheric water (D/H equals approximately 5-6 times SMOW) and is unlikely to be a simple mixture of atmospheric and primordial water retained in the Martian mantle (D/H is approximately equal to SMOW [1]). Given the fact that this intermediate-D/H reservoir (2-3 times SMOW) is observed in a diverse range of Martian materials with different ages (e.g., SNC (Shergottites, Nakhlites, Chassignites) meteorites, including shergottites such as ALH 84001; and Curiosity surface data [3]), we conclude that this intermediate-D/H reservoir is likely a global surficial feature that has remained relatively intact over geologic time. We propose that this reservoir represents either hydrated crust and/or ground ice interbedded within sediments. Our results corroborate the hypothesis that a buried cryosphere accounts for a large part of the initial water budget of Mars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Góbi, Sándor; Bergantini, Alexandre; Kaiser, Ralf I., E-mail: ralfk@hawaii.edu
The aim of the present work is to unravel the radiolytic decomposition of adenine (C{sub 5}H{sub 5}N{sub 5}) under conditions relevant to the Martian surface. Being the fundamental building block of (deoxy)ribonucleic acids, the possibility of survival of this biomolecule on the Martian surface is of primary importance to the astrobiology community. Here, neat adenine and adenine–magnesium perchlorate mixtures were prepared and irradiated with energetic electrons that simulate the secondary electrons originating from the interaction of the galactic cosmic rays with the Martian surface. Perchlorates were added to the samples since they are abundant—and therefore relevant oxidizers on the surfacemore » of Mars—and they have been previously shown to facilitate the radiolysis of organics such as glycine. The degradation of the samples were monitored in situ via Fourier transformation infrared spectroscopy and the electron ionization quadruple mass spectrometric method; temperature-programmed desorption profiles were then collected by means of the state-of-the-art single photon photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS), allowing for the detection of the species subliming from the sample. The results showed that perchlorates do increase the destruction rate of adenine by opening alternative reaction channels, including the concurrent radiolysis/oxidation of the sample. This new pathway provides a plethora of different radiolysis products that were identified for the first time. These are carbon dioxide (CO{sub 2}), isocyanic acid (HNCO), isocyanate (OCN{sup −}), carbon monoxide (CO), and nitrogen monoxide (NO); an oxidation product containing carbonyl groups (R{sub 1}R{sub 2}–C=O) with a constrained five-membered cyclic structure could also be observed. Cyanamide (H{sub 2}N–C≡N) was detected in both irradiated samples as well.« less
Crystallization Age of NWA 1460 Shergottite: Paradox Revisited
NASA Technical Reports Server (NTRS)
Nyquist, L. E.; Shih, C-Y.; Reese, Y. D.; Irving, A. J.
2004-01-01
We have determined the Rb-Sr age of basaltic shergottite NWA 1460 to be 312 +/- 3 Ma, and the Sm-Nd age to be 352 +/- 30 Ma. The initial Sr and Nd isotopic compositions of NWA 1460 suggest it is an earlier melting product of a Martian mantle source region similar to those of the Iherzolitic shergottites and basaltic shergottite EETA79001, lithology B. The new ages of NWA 1460 and other recently analyzed Martian meteorites leads us to reexamine the paradox that most of the Martian meteorites appear to be younger from the majority of the Martian surface. This paradox continues to pose a challenge to determining a reliable Martian chronology.
The Mars atmosphere as seen from Curiosity
NASA Astrophysics Data System (ADS)
Mischna, Michael
Study of the Mars atmosphere by the Mars Science Laboratory (MSL) has been ongoing since immediately after landing on August 6, 2012 (UTC) at the bottom of Gale Crater. The MSL Rover Environmental Monitoring Station (REMS) has been the primary payload for atmospheric monitoring, while additional observations from the ChemCam, Mastcam, Navcam and Sample Analysis at Mars (SAM) instruments have augmented our understanding of the local martian environment at Gale. The REMS instrument consists of six separate sensor types, observing air and ground temperature, near-surface winds, relative humidity, surface pressure and UV radiation. The standard cadence of REMS observations consists of five-minute observations of 1 Hz frequency at the top of each hour, augmented by several one-hour “extended blocks” each sol, also at 1 Hz frequency, together yielding one of the most richly diverse and detailed samplings of the martian atmosphere. Among the intriguing atmospheric phenomena observed during the first 359 sols of the mission is a substantially greater (˜12% of the diurnal mean) diurnal pressure cycle than found in previous surface measurements by Viking at a similar season (˜3-4%), likely due to the topography of the crater environment. Measurements of air and ground temperature by REMS are seen to reflect both changes in atmospheric opacity as well as transitions in the surface geology (and surface thermal properties) along the rover’s traverse. The REMS UV sensor has provided the first measurements of ultraviolet flux at the martian surface, and identified dust events that reduce solar insolation at the surface. The REMS RH sensor has observed a seasonal change in humidity in addition to the expected diurnal variations in relative humidity; however, no surface frost has been detected through the first 360 sols of the mission. With a weekly cadence, Navcam images the local zenith for purposes of tracking cloud motion and wind direction, and likewise observes the horizon to search (thus far unsuccessfully) for visible dust devil activity. The Mastcam operates with a similar observing frequency for quantifying atmospheric opacity, while ChemCam is used in its ‘passive’ mode, while pointed at the sky, to measure atmospheric water vapor abundance. Lastly, the SAM suite has provided information about atmospheric composition, including trace species abundances and isotopic ratios, which may be used to infer the history and evolution of the martian atmosphere.
Mars brine formation experiment
NASA Technical Reports Server (NTRS)
Moore, Jeffrey M.; Bullock, Mark A.; Stoker, Carol R.
1993-01-01
The presence of water-soluble cations and anions in the Martian regolith has been the subject of speculation for some time. Viking lander data provided evidence for salt-cemented crusts on the Martian surface. If the crusts observed at the two Viking landing sites are, in fact, cemented by salts, and these crusts are globally widespread, as IRTM-derived thermal inertia studies of the Martian surface seem to suggest, then evaporite deposits, probably at least in part derived from brines, are a major component of the Martian regolith. The composition of liquid brines in the subsurface, which not only may be major agents of physical weathering but may also presently constitute a major deep subsurface liquid reservoir, is currently unconstrained by experimental work. A knowledge of the chemical identity and rate of production of Martian brines is a critical first-order step toward understanding the nature of both these fluids and their precipitated evaporites. Laboratory experiments are being conducted to determine the identity and production rate of water-soluble ions that form in initially pure liquid water in contact with Mars-mixture gases and unaltered Mars-analog minerals.
Observations, models, and mechanisms of failure of surface rocks surrounding planetary surface loads
NASA Technical Reports Server (NTRS)
Schultz, R. A.; Zuber, M. T.
1994-01-01
Geophysical models of flexural stresses in an elastic lithosphere due to an axisymmetric surface load typically predict a transition with increased distance from the center of the load of radial thrust faults to strike-slip faults to concentric normal faults. These model predictions are in conflict with the absence of annular zones of strike-slip faults around prominent loads such as lunar maria, Martian volcanoes, and the Martian Tharsis rise. We suggest that this paradox arises from difficulties in relating failure criteria for brittle rocks to the stress models. Indications that model stresses are inappropriate for use in fault-type prediction include (1) tensile principal stresses larger than realistic values of rock tensile strength, and/or (2) stress differences significantly larger than those allowed by rock-strength criteria. Predictions of surface faulting that are consistent with observations can be obtained instead by using tensile and shear failure criteria, along with calculated stress differences and trajectories, with model stress states not greatly in excess of the maximum allowed by rock fracture criteria.
Matthiä, Daniel; Hassler, Donald M; de Wet, Wouter; Ehresmann, Bent; Firan, Ana; Flores-McLaughlin, John; Guo, Jingnan; Heilbronn, Lawrence H; Lee, Kerry; Ratliff, Hunter; Rios, Ryan R; Slaba, Tony C; Smith, Michael; Stoffle, Nicholas N; Townsend, Lawrence W; Berger, Thomas; Reitz, Günther; Wimmer-Schweingruber, Robert F; Zeitlin, Cary
2017-08-01
The radiation environment at the Martian surface is, apart from occasional solar energetic particle events, dominated by galactic cosmic radiation, secondary particles produced in their interaction with the Martian atmosphere and albedo particles from the Martian regolith. The highly energetic primary cosmic radiation consists mainly of fully ionized nuclei creating a complex radiation field at the Martian surface. This complex field, its formation and its potential health risk posed to astronauts on future manned missions to Mars can only be fully understood using a combination of measurements and model calculations. In this work the outcome of a workshop held in June 2016 in Boulder, CO, USA is presented: experimental results from the Radiation Assessment Detector of the Mars Science Laboratory are compared to model results from GEANT4, HETC-HEDS, HZETRN, MCNP6, and PHITS. Charged and neutral particle spectra and dose rates measured between 15 November 2015 and 15 January 2016 and model results calculated for this time period are investigated. Copyright © 2017 The Committee on Space Research (COSPAR). All rights reserved.
Solar Energetic Particle Events Observed on Mars with MSL/RAD
NASA Astrophysics Data System (ADS)
Ehresmann, B.; Hassler, D.; Zeitlin, C.; Guo, J.; Wimmer-Schweingruber, R. F.; Appel, J. K.; Boehm, E.; Boettcher, S. I.; Brinza, D. E.; Burmeister, S.; Lohf, H.; Martin-Garcia, C.; Rafkin, S. C.; Posner, A.; Reitz, G.
2016-12-01
The Mars Science Laboratory's Radiation Assessment Detector (MSL/RAD) has been conducting measurements of the ionizing radiation field on the Martian surface since August 2012. While this field is mainly dominated by Galactic Cosmic Rays (GCRs) and their interactions with the atoms in the atmosphere and soil, Solar Energetic Particle (SEP) events can contribute significantly to the radiation environment on short time scales and enhance and dominate, in particular, the Martian surface proton flux. Monitoring and understanding the effects of these SEP events on the radiation environment is of great importance to assess the associated health risks for potential, future manned missions to Mars. Furthermore, measurements of the proton spectra during such events aids in the validation of particle transport codes that are used to model the propagation of SEPs through the Martian atmosphere. Comparing the temporal evolution of the SEP events signals detected by MSL/RAD with measurements from other spacecraft can further yield insight into SEP propagation throughout the heliosphere. Here, we present and overview of measurements of the SEP events that have been directly detected on the Martian surface by the MSL/RAD instrument.
Instrumentation and Methodology Development for Mars Mission
NASA Technical Reports Server (NTRS)
Chen, Yuan-Liang Albert
2002-01-01
The Mars environment comprises a dry, cold and low air pressure atmosphere with low gravity (0.38g) and high resistivity soil. The global dust storms that cover a large portion of Mars were observed often from Earth. This environment provides an idea condition for triboelectric charging. The extremely dry conditions on the Martian surface have raised concerns that electrostatic charge buildup will not be dissipated easily. If triboelectrically generated charge cannot be dissipated or avoided, then dust will accumulate on charged surfaces and electrostatic discharge may cause hazards for future exploration missions. The low surface temperature on Mars helps to prolong the charge decay on the dust particles and soil. To better understand the physics of Martian charged dust particles is essential to future Mars missions. We research and design two sensors, velocity/charge sensor and PZT momentum sensors, to detect the velocity distribution, charge distribution and mass distribution of Martian charged dust particles. These sensors are fabricated at NASA Kenney Space Center, Electromagnetic Physics Testbed. The sensors will be tested and calibrated for simulated Mars atmosphere condition with JSC MARS-1 Martian Regolith simulant in this NASA laboratory.
2008-06-27
This image was acquired by NASA Phoenix Mars Lander Surface Stereo Imager SSI in the late afternoon of the 30th Martian day of the mission, or Sol 30 June 25, 2008. This is hours after the beginning of Martian northern summer.
NASA Technical Reports Server (NTRS)
Lee, P.; Rice, J. W., Jr.; Bunch, Theodore E.; Grieve, R. A. F.; McKay, C. P.; Schutt, J. W.; Zent, A. P.
1999-01-01
Small valleys are perhaps the clearest evidence for an aqueous past on Mars. While small valley formation has occurred even in Amazonian times, most small valleys on Mars are associated with the heavily cratered Noachian terrains. Martian small valleys are often cited as evidence for a putative warmer and wetter climate on Early Mars in which rain and subsequent surface runoff would have acted as significant erosional agents, but the morphology of many small valleys has at the same time been recognized as having several unusual characteristics, making their origin still enigmatic and climatic inferences from them uncertain. Meanwhile, martian climate modeling efforts have been facing difficulties over the past decades with the problem of making the early martian climate warm enough to achieve temperature above 273 K to allow rainfall and the sustained flow of liquid water at the martian surface.
Investigation of Martian H2O and CO2 via orbital gamma ray spectroscopy
NASA Technical Reports Server (NTRS)
Evans, Larry G.; Squyres, Steven W.
1987-01-01
The capability of an orbital gamma ray spectrometer to address presently unanswered questions concerning H2O and CO2 on Mars is investigated. The gamma ray signal produced by the Martian atmosphere and by several simple models of Martian surface materials is calculated. Results are reported for: (1) the production of neutrons in the atmosphere and in the subsurface material by cosmic ray interactions, (2) the scattering of neutrons and the resultant neutron energy spectrum and spatial distributions, (3) the reproduction of gamma rays by neutron prompt capture and nonelastic scatter reactions, (4) the production of gamma rays by natural radionuclides, (5) the attenuation of the gamma ray signal by passage through surface materials and the Martian atmosphere, (6) the production of the gamma ray continuum background, and (7) the uncertainty in gamma ray line strengths that results from the combined signal and background observed by the detector.
Cleaning a Martian Meteoritean Meteorite
2018-02-13
A slice of a meteorite scientists have determined came from Mars placed inside an oxygen plasma cleaner, which removes organics from the outside of surfaces. This slice will likely be used here on Earth for testing a laser instrument for NASA's Mars 2020 rover; a separate slice will go to Mars on the rover. Martian meteorites are believed to be the result of impacts to the Red Planet's surface, resulting in rock being blasted into the atmosphere. After traveling through space for eons, some of these rocks entered Earth's atmosphere. Scientists determine whether they are true Martian meteorites based on their rock and noble gas chemistry and mineralogy. The gases trapped in these meteorites bear the unique fingerprint of the Martian atmosphere, as recorded by NASA's Viking mission in 1976. The rock types also show clear signs of igneous processing not possible on smaller bodies, such as asteroids. https://photojournal.jpl.nasa.gov/catalog/PIA22247
Dust Devils on Mars: Effects of Surface Roughness on Particle Threshold
NASA Technical Reports Server (NTRS)
Neakrase, Lynn D.; Greeley, Ronald; Iversen, James D.; Balme, Matthew L.; Foley, Daniel J.; Eddlemon, Eric E.
2005-01-01
Dust devils have been proposed as effective mechanisms for lofting large quantities of dust into the martian atmosphere. Previous work showed that vortices lift dust more easily than simple boundary layer winds. The aim of this study is to determine experimentally the effects of non-erodable roughness elements on vortex particle threshold through laboratory simulations of natural surfaces. Additional information is included in the original extended abstract.
Martian Surface & Pathfinder Airbags
1997-07-05
This image of the Martian surface was taken in the afternoon of Mars Pathfinder's first day on Mars. Taken by the Imager for Mars Pathfinder (IMP camera), the image shows a diversity of rocks strewn in the foreground. A hill is visible in the distance (the notch within the hill is an image artifact). Airbags are seen at the lower right. http://photojournal.jpl.nasa.gov/catalog/PIA00612
Mars Image Collection Mosaic Builder
NASA Technical Reports Server (NTRS)
Plesea, Lucian; Hare, Trent
2008-01-01
A computer program assembles images from the Mars Global Surveyor (MGS) Mars Observer Camera Narrow Angle (MOCNA) collection to generate a uniform-high-resolution, georeferenced, uncontrolled mosaic image of the Martian surface. At the time of reporting the information for this article, the mosaic covered 7 percent of the Martian surface and contained data from more than 50,000 source images acquired under various light conditions at various resolutions.
The Martian surface radiation environment - a comparison of models and MSL/RAD measurements
NASA Astrophysics Data System (ADS)
Matthiä, Daniel; Ehresmann, Bent; Lohf, Henning; Köhler, Jan; Zeitlin, Cary; Appel, Jan; Sato, Tatsuhiko; Slaba, Tony; Martin, Cesar; Berger, Thomas; Boehm, Eckart; Boettcher, Stephan; Brinza, David E.; Burmeister, Soenke; Guo, Jingnan; Hassler, Donald M.; Posner, Arik; Rafkin, Scot C. R.; Reitz, Günther; Wilson, John W.; Wimmer-Schweingruber, Robert F.
2016-03-01
Context: The Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) has been measuring the radiation environment on the surface of Mars since August 6th 2012. MSL-RAD is the first instrument to provide detailed information about charged and neutral particle spectra and dose rates on the Martian surface, and one of the primary objectives of the RAD investigation is to help improve and validate current radiation transport models. Aims: Applying different numerical transport models with boundary conditions derived from the MSL-RAD environment the goal of this work was to both provide predictions for the particle spectra and the radiation exposure on the Martian surface complementing the RAD sensitive range and, at the same time, validate the results with the experimental data, where applicable. Such validated models can be used to predict dose rates for future manned missions as well as for performing shield optimization studies. Methods: Several particle transport models (GEANT4, PHITS, HZETRN/OLTARIS) were used to predict the particle flux and the corresponding radiation environment caused by galactic cosmic radiation on Mars. From the calculated particle spectra the dose rates on the surface are estimated. Results: Calculations of particle spectra and dose rates induced by galactic cosmic radiation on the Martian surface are presented. Although good agreement is found in many cases for the different transport codes, GEANT4, PHITS, and HZETRN/OLTARIS, some models still show large, sometimes order of magnitude discrepancies in certain particle spectra. We have found that RAD data is helping to make better choices of input parameters and physical models. Elements of these validated models can be applied to more detailed studies on how the radiation environment is influenced by solar modulation, Martian atmosphere and soil, and changes due to the Martian seasonal pressure cycle. By extending the range of the calculated particle spectra with respect to the experimental data additional information about the radiation environment is gained, and the contribution of different particle species to the dose is estimated.
Mars analog minerals' spectral reflectance characteristics under Martian surface conditions
NASA Astrophysics Data System (ADS)
Poitras, J. T.; Cloutis, E. A.; Salvatore, M. R.; Mertzman, S. A.; Applin, D. M.; Mann, P.
2018-05-01
We investigated the spectral reflectance properties of minerals under a simulated Martian environment. Twenty-eight different hydrated or hydroxylated phases of carbonates, sulfates, and silica minerals were selected based on past detection on Mars through spectral remote sensing data. Samples were ground and dry sieved to <45 μm grain size and characterized by XRD before and after 133 days inside a simulated Martian surface environment (pressure 5 Torr and CO2 fed). Reflectance spectra from 0.35 to 4 μm were taken periodically through a sapphire (0.35-2.5 μm) and zinc selenide (2.5-4 μm) window over a 133-day period. Mineral stability on the Martian surface was assessed through changes in spectral characteristics. Results indicate that the hydrated carbonates studied would be stable on the surface of Mars, only losing adsorbed H2O while maintaining their diagnostic spectral features. Sulfates were less stable, often with shifts in the band position of the SO, Fe, and OH absorption features. Silicas displayed spectral shifts related to SiOH and hydration state of the mineral surface, while diagnostic bands for quartz were stable. Previous detection of carbonate minerals based on 2.3-2.5 μm and 3.4-3.9 μm features appears to be consistent with our results. Sulfate mineral detection is more questionable since there can be shifts in band position related to SO4. The loss of the 0.43 μm Fe3+ band in many of the sulfates indicate that there are fewer potential candidates for Fe3+ sulfates to permanently exist on the Martian surface based on this band. The gypsum sample changed phase to basanite during desiccation as demonstrated by both reflectance and XRD. Silica on Mars has been detected using band depth ratio at 1.91 and 1.96 μm and band minimum position of the 1.4 μm feature, and the properties are also used to determine their age. This technique continues to be useful for positive silica identifications, however, silica age appears to be less consistent with our laboratory data. These results will be useful in spectral libraries for characterizing Martian remote sensed data.
The water cycle in the general circulation model of the martian atmosphere
NASA Astrophysics Data System (ADS)
Shaposhnikov, D. S.; Rodin, A. V.; Medvedev, A. S.
2016-03-01
Within the numerical general-circulation model of the Martian atmosphere MAOAM (Martian Atmosphere: Observation and Modeling), we have developed the water cycle block, which is an essential component of modern general circulation models of the Martian atmosphere. The MAOAM model has a spectral dynamic core and successfully predicts the temperature regime on Mars through the use of physical parameterizations typical of both terrestrial and Martian models. We have achieved stable computation for three Martian years, while maintaining a conservative advection scheme taking into account the water-ice phase transitions, water exchange between the atmosphere and surface, and corrections for the vertical velocities of ice particles due to sedimentation. The studies show a strong dependence of the amount of water that is actively involved in the water cycle on the initial data, model temperatures, and the mechanism of water exchange between the atmosphere and the surface. The general pattern and seasonal asymmetry of the water cycle depends on the size of ice particles, the albedo, and the thermal inertia of the planet's surface. One of the modeling tasks, which results from a comparison of the model data with those of the TES experiment on board Mars Global Surveyor, is the increase in the total mass of water vapor in the model in the aphelion season and decrease in the mass of water ice clouds at the poles. The surface evaporation scheme, which takes into account the turbulent rise of water vapor, on the one hand, leads to the most complete evaporation of ice from the surface in the summer season in the northern hemisphere and, on the other hand, supersaturates the atmosphere with ice due to the vigorous evaporation, which leads to worse consistency between the amount of the precipitated atmospheric ice and the experimental data. The full evaporation of ice from the surface increases the model sensitivity to the size of the polar cap; therefore, the increase in the latter leads to better results. The use of a more accurate dust scenario changes the model temperatures, which also strongly affects the water cycle.
Nature of the Martian uplands: Effect on Martian meteorite age distribution and secondary cratering
NASA Astrophysics Data System (ADS)
Hartmann, William K.; Barlow, Nadine G.
2006-10-01
Martian meteorites (MMs) have been launched from an estimated 5-9 sites on Mars within the last 20 Myr. Some 80-89% of these launch sites sampled igneous rock formations from only the last 29% of Martian time. We hypothesize that this imbalance arises not merely from poor statistics, but because the launch processes are dominated by two main phenomena: first, much of the older Martian surface is inefficient in launching rocks during impacts, and second, the volumetrically enormous reservoir of original cumulate crust enhances launch probability for 4.5 Gyr old rocks. There are four lines of evidence for the first point, not all of equal strength. First, impact theory implies that MM launch is favored by surface exposures of near-surface coherent rock (≤102 m deep), whereas Noachian surfaces generally should have ≥102 m of loose or weakly cemented regolith with high ice content, reducing efficiency of rock launch. Second, similarly, both Mars Exploration Rovers found sedimentary strata, 1-2 orders of magnitude weaker than Martian igneous rocks, favoring low launch efficiency among some fluvial-derived Hesperian and Noachian rocks. Even if launched, such rocks may be unrecognized as meteorites on Earth. Third, statistics of MM formation age versus cosmic-ray exposure (CRE) age weakly suggest that older surfaces may need larger, deeper craters to launch rocks. Fourth, in direct confirmation, one of us (N. G. B.) has found that older surfaces need larger craters to produce secondary impact crater fields (cf. Barlow and Block 2004). In a survey of 200 craters, the smallest Noachian, Hesperian, and Amazonian craters with prominent fields of secondaries have diameters of ˜45 km, ˜19 km, and ˜10 km, respectively. Because 40% of Mars is Noachian, and 74% is either Noachian or Hesperian, the subsurface geologic characteristics of the older areas probably affect statistics of recognized MMs and production rates of secondary crater populations, and the MM and secondary crater statistics may give us clues to those properties.
Low Cost Mars Surface Exploration: The Mars Tumbleweed
NASA Technical Reports Server (NTRS)
Antol, Jeffrey; Calhoun, Philip; Flick, John; Hajos, Gregory; Kolacinski, Richard; Minton, David; Owens, Rachel; Parker, Jennifer
2003-01-01
The "Mars Tumbleweed," a rover concept that would utilize surface winds for mobility, is being examined as a low cost complement to the current Mars exploration efforts. Tumbleweeds carrying microinstruments would be driven across the Martian landscape by wind, searching for areas of scientific interest. These rovers, relatively simple, inexpensive, and deployed in large numbers to maximize coverage of the Martian surface, would provide a broad scouting capability to identify specific sites for exploration by more complex rover and lander missions.
Hydrogen Isotopes Record the History of the Martian Hydrosphere and Atmosphere
NASA Technical Reports Server (NTRS)
Usui, T.; Simon, J. I.; Jones, J. H.; Kurokawa, H.; Sato, M.; Alexander, C. M. O'D; Wang, J.
2015-01-01
The surface geology and geomorphology of Mars indicates that it was once warm enough to maintain a large body of liquid water on its surface, though such a warm environment might have been transient. The transition to the present cold and dry Mars is closely linked to the history of surface water, yet the evolution of surficial water is poorly constrained. This study presents insights from hydrogen isotopes for the origin and evolution of Martian water reservoirs.
Prospects for Chronological Studies of Martian Rocks and Soils
NASA Technical Reports Server (NTRS)
Nyquist, L. E.; Shih, C-Y.; Reese, Y. D.
2008-01-01
Chronological information about Martian processes comes from two sources: Crater-frequency studies and laboratory studies of Martian meteorites. Each has limitations that could be overcome by studies of returned Martian rocks and soils. Chronology of Martian volcanism: The currently accepted chronology of Martian volcanic surfaces relies on crater counts for different Martian stratigraphic units [1]. However, there is a large inherent uncertainty for intermediate ages near 2 Ga ago. The effect of differing preferences for Martian cratering chronologies [1] is shown in Fig. 1. Stoeffler and Ryder [2] summarized lunar chronology, upon which Martian cratering chronology is based. Fig. 2 shows a curve fit to their data, and compares to it a corresponding lunar curve from [3]. The radiometric ages of some lunar and Martian meteorites as well as the crater-count delimiters for Martian epochs [4] also are shown for comparison to the craterfrequency curves. Scaling the Stoeffler-Ryder curve by a Mars/Moon factor of 1.55 [5] places Martian shergottite ages into the Early Amazonian to late Hesperian epochs, whereas using the lunar curve of [3] and a Mars/Moon factor 1 consigns the shergottites to the Middle-to-Late Amazonian, a less probable result. The problem is worsened if a continually decreasing cratering rate since 3 Ga ago is accepted [6]. We prefer the adjusted St ffler-Ryder curve because it gives better agreement with the meteorite ages (Fig.
NASA Technical Reports Server (NTRS)
1974-01-01
Photographs of the surface of the planet Mars which were obtained by the Mariner 9 space probe are presented. Areas of investigation during the Mariner 9 flight involved television coverage, ultraviolet spectroscopy, infrared spectroscopy, infrared radiometry, S-band occultation, and celestial mechanics. Descriptions of the photographs are provided to further identify the surface features and the coordinates of the area photographed are included. Emphasis is placed on the visual evidence of the effects of wind in shaping the Martian surface. Photographs of cloud formations and dust storms are analyzed.
Resource Utilization and Site Selection for a Self-Sufficient Martian Outpost
NASA Technical Reports Server (NTRS)
Barker, Donald; Chamitoff, Gregory; James, George
1998-01-01
As a planet with striking similarities to Earth, Mars is an important focus for scientific research aimed at understanding the processes of planetary evolution and the formation of our solar system. Fortunately, Mars is also a planet with abundant natural resources, including assessible materials that can be used to support human life and to sustain a self-sufficient martian outpost. Resources required include water, breathable air, food, shelter, energy, and fuel. Through a mission design based on in situ resource development, we can establish a permanent outpost on Mars beginning with the first manned mission. This paper examines the potential for supporting the first manned mission with the objective of achieving self-sufficiency through well-understood resource development and a program of rigorous scientific research aimed at extending that capability. We examine the potential for initially extracting critical resources from the martian environment, and discuss the scientific investigations required to identify additional resources in the atmosphere, on the surface, and within the subsurface. We also discuss our current state of knowledge of Mars, technical considerations of resource utilization, and using unmanned missions' data for selecting an optimal site. The primary goal of achieving self-sufficiency on Mars would accelerate the development of human colonization beyond Earth, while providing a robust and permanent martian base from which humans can explore and conduct long-term research on planetary evolution, the solar system, and life itself.
Mars Array Technology Experiment Developed to Test Solar Arrays on Mars
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
2001-01-01
Solar arrays will be the power supply for future missions to the planet Mars, including landers, rovers, and eventually human missions to explore the Martian surface. Until Mars Pathfinder landed in July 1997, no solar array had been used on the surface. The MATE package is intended to measure the solar energy reaching the surface, characterize the Martian environment to gather the baseline information required for designing power systems for long-duration missions, and to quantify the performance and degradation of advanced solar cells on the Martian surface. To measure the properties of sunlight reaching the Martian surface, MATE incorporates two radiometers and a visible/NIR spectrometer. The radiometers consist of multiple thermocouple junctions using thin-film technology. These devices generate a voltage proportional to the solar intensity. One radiometer measures the global broadband solar intensity, including both the direct and scattered sunlight, with a field of view of approximately 130. The second radiometer incorporates a slit to measure the direct (unscattered) intensity radiation. The direct radiometer can only be read once per day, with the Sun passing over the slit. The spectrometer measures the global solar spectrum with two 256-element photodiode arrays, one Si sensitive in the visible range (300 to 1100 nm), and a second InGaAs sensitive to the near infrared (900 to 1700 nm). This range covers 86 percent of the total energy from the Sun, with approximately 5-nm resolution. Each photodiode array has its own fiber-optic feed and grating. Although the purpose of the MATE is to gather data useful in designing solar arrays for Mars surface power systems, the radiometer and spectrometer measurements are expected to also provide important scientific data for characterizing the properties of suspended atmospheric dust. In addition to measuring the solar environment of Mars, MATE will measure the performance of five different individual solar cell types and two different solar cell strings, to qualify advanced solar cell types for future Mars missions. The MATE instrument, designed for the Mars-2001 Surveyor Lander mission, contains a capable suite of sensors that will provide both scientific information as well as important engineering data on the operation of solar power systems on Mars. MATE will characterize the intensity and spectrum of the solar radiation on Mars and measure the performance of solar arrays in the Mars environment. MATE flight hardware was built and tested at the NASA Glenn Research Center and is ready for flight.
NASA Technical Reports Server (NTRS)
Schuerger, A. C.; Kern, R. G.
2003-01-01
In order to minimize the forward contamination of Mars, spacecraft are assembled under clean-room conditions that often require several procedures to clean and sterilize components. Surface characteristics of spacecraft materials may contribute to microbial survival by protecting spores from sterilizing agents, including UV irradiation on the surface of Mars. The primary objective of this study was to evaluate the effects of surface characteristics of several spacecraft materials on the survival of Bacillus subtilis spores under simulated Martian conditions.
NASA Technical Reports Server (NTRS)
Schuerger, Andrew C.; Kern, Roger G.
2004-01-01
In order to minimize the forward contamination of Mars, spacecraft are assembled under cleanroom conditions that require several procedures to clean and sterilize components. Surface characteristics of spacecraft materials may contribute to microbial survival on the surface of Mars by protecting spores from sterilizing agents, including UV irradiation. The primary objective of this study was to evaluate the effects of surface characteristics of several spacecraft materials on the survival of Bacillus subtilis spores under simulated Martian conditions.
Composition and Color of Martian Soil from Oxidation of Meteoritic Material
NASA Technical Reports Server (NTRS)
Yen, A. S.
2001-01-01
Aqueous weathering is not necessary for formation of the martian soils. The chemical composition and oxidation state of the surface fines can be attributed to meteoritic influx. Additional information is contained in the original extended abstract.
Automated Detection of Craters in Martian Satellite Imagery Using Convolutional Neural Networks
NASA Astrophysics Data System (ADS)
Norman, C. J.; Paxman, J.; Benedix, G. K.; Tan, T.; Bland, P. A.; Towner, M.
2018-04-01
Crater counting is used in determining surface age of planets. We propose improvements to martian Crater Detection Algorithms by implementing an end-to-end detection approach with the possibility of scaling the algorithm planet-wide.
NASA Astrophysics Data System (ADS)
Dimitrova, L. L.; Haines, M.; Holt, W. E.; Schultz, R. A.; Richard, G.; Haines, A. J.
2006-12-01
Interactive maps of surface-breaking faults and stress models on Mars provide important tools to engage undergraduate students, educators, and scientists with current geological and geophysical research. We have developed a map based on the Google Maps API -- an Internet based tool combining DHTML and AJAX, -- which allows very large maps to be viewed over the World Wide Web. Typically, small portions of the maps are downloaded as needed, rather than the entire image at once. This set-up enables relatively fast access for users with low bandwidth. Furthermore, Google Maps provides an extensible interactive interface making it ideal for visualizing multiple data sets at the user's choice. The Google Maps API works primarily with data referenced to latitudes and longitudes, which is then mapped in Mercator projection only. We have developed utilities for general cylindrical coordinate systems by converting these coordinates into equivalent Mercator projection before including them on the map. The MARTIAN project is available at http://rock.geo.sunysb.edu/~holt/Mars/MARTIAN/. We begin with an introduction to the Martian surface using a topography model. Faults from several datasets are classified by type (extension vs. compression) and by time epoch. Deviatoric stresses due to gravitational potential energy differences, calculated from the topography and crustal thickness, can be overlain. Several quantitative measures for the fit of the stress field to the faults are also included. We provide introductory text and exercises spanning a range of topics: how are faults identified, what stress is and how it relates to faults, what gravitational potential energy is and how variations in it produce stress, how the models are created, and how these models can be evaluated and interpreted. The MARTIAN tool is used at Stony Brook University in GEO 310: Introduction to Geophysics, a class geared towards junior and senior geosciences majors. Although this project is in its early stages, high school and college teachers, as well as researchers have expressed interest in using and extending these tools for visualizing and interacting with data on Earth and other planetary bodies.
Biogenic catalysis of soil formation on Mars?
NASA Technical Reports Server (NTRS)
Bishop, J. L.
1998-01-01
The high iron abundance and the weak ferric iron spectral features of martian surface material are consistent with nanophase (nm-sized) iron oxide minerals as a major source of iron in the bright region soil on Mars. Nanophase iron oxide minerals, such as ferrihydrite and schwertmannite, and nanophase forms of hematite and goethite are formed by both biotic and abiotic processes on Earth. The presence of these minerals on Mars does not indicate biological activity on Mars, but it does raise the possibility. This work includes speculation regarding the possibility of biogenic soils on Mars based on previous observations and analyses. A remote sensing goal of upcoming missions should be to determine if nanophase iron oxide minerals, clay silicates and carbonates are present in the martian surface material. These minerals are important indicators for exobiology and their presence on Mars would invoke a need for further investigation and sample return from these sites.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the rover 'Opportunity' for the second Mars Exploration Rover mission is poised for launch after rollback of the Mobile Service Tower. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rovers prime mission is planned to last three months on Mars.
Delta II Heavy MER-B Prelaunch
2003-07-07
On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the rover "Opportunity" for the second Mars Exploration Rover mission is poised for launch after rollback of the Mobile Service Tower. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rover’s prime mission is planned to last three months on Mars.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the rover 'Opportunity' for the second Mars Exploration Rover mission launches at 11:18:15 p.m. EDT. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rovers prime mission is planned to last three months on Mars.
Delta II Heavy launch of "Opportunity" MER-B Rover
2003-07-07
On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the rover "Opportunity" for the second Mars Exploration Rover mission launches at 11:18:15 p.m. EDT. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rover’s prime mission is planned to last three months on Mars.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the rover 'Opportunity' for the second Mars Exploration Rover mission launches at 11:18:15 p.m. EDT. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rovers prime mission is planned to last three months on Mars.
Delta II Heavy MER-B - MST Rollback
2003-07-07
The Mobile Service Tower is ready to be rolled back at Launch Complex 17-B, Cape Canaveral Air Force Station, to launch the Delta II Heavy launch vehicle carrying the rover "Opportunity" on the second Mars Exploration Rover mission. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rover’s prime mission is planned to last three months on Mars.
2003-07-07
KENNEDY SPACE CENTER, FLA. - The Mobile Service Tower begins to roll back at Launch Complex 17-B, Cape Canaveral Air Force Station, revealing the Delta II Heavy launch vehicle carrying the rover "Opportunity" on the second Mars Exploration Rover mission. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rover’s prime mission is planned to last three months on Mars.
Updates from the MSL-RAD Experiment on the Mars Curiosity Rover
NASA Technical Reports Server (NTRS)
Zeitlin, Cary
2015-01-01
The MSL-RAD instrument continues to operate flawlessly on Mars. As of this writing, some 1040 sols (Martian days) of data have been successfully acquired. Several improvements have been made to the instrument's configuration, particularly aimed at enabling the analysis of neutral-particle data. The dose rate since MSL's landing in August 2012 has remained remarkably stable, reflecting the unusual and very weak solar maximum of Cycle 24. Only a few small SEP events have been observed by RAD, which is shielded by the Martian atmosphere. Gale Crater, where Curiosity landed, is 4.4 km below the mean surface of Mars, and the column depth of atmosphere above is approximately 20 g/sq cm, which provides significant attenuation of GCR heavy ions and SEPs. Recent analysis results will be presented, including updated estimates of the neutron contributions to dose and dose equivalent in cruise and on the surface of Mars.
Preliminary Dynamic Feasibility and Analysis of a Spherical, Wind-Driven (Tumbleweed), Martian Rover
NASA Technical Reports Server (NTRS)
Flick, John J.; Toniolo, Matthew D.
2005-01-01
The process and findings are presented from a preliminary feasibility study examining the dynamics characteristics of a spherical wind-driven (or Tumbleweed) rover, which is intended for exploration of the Martian surface. The results of an initial feasibility study involving several worst-case mobility situations that a Tumbleweed rover might encounter on the surface of Mars are discussed. Additional topics include the evaluation of several commercially available analysis software packages that were examined as possible platforms for the development of a Monte Carlo Tumbleweed mission simulation tool. This evaluation lead to the development of the Mars Tumbleweed Monte Carlo Simulator (or Tumbleweed Simulator) using the Vortex physics software package from CM-Labs, Inc. Discussions regarding the development and evaluation of the Tumbleweed Simulator, as well as the results of a preliminary analysis using the tool are also presented. Finally, a brief conclusions section is presented.
NASA Technical Reports Server (NTRS)
Litvak, M. L.; Mitrofanov, I. G.; Kozyrev, A. S.; Sanin, A. B.; Tretyakov, V.; Boynton, W. V.; Hamara, D. K.; Shinohara, C.; Saunders, R. S.
2005-01-01
The three years of Mars Odyssey successful work on the martian orbit provide a lot of new information about peculiarities of long term variations of CO2 seasonal cycle. To start such analysis we have used observations of neutron albedo of Mars obtained by High Energy Neutron detector (HEND) mounted onboard Mars Odyssey spacecraft. The high latitude northern and southern regions of Mars are affected by global redistribution of atmospheric CO2 which resulted in 25% of atmospheric mass condensed on martian surface of these regions during winter period of time. The seasonal deposit is formed starting from 60N/60S latitudes and achieve its maximal thickness about 1 m at latitudes close to martian poles. Changes of CO2 deposit thickness is the reason for significant variations of neutron flux above martian poles from summer to winter seasons because CO2 frost effectively hides upper water rich surface layers from the orbit observations in neutrons and gamma-rays. This effect was used to estimate column density of CO2 deposit at different latitudes on North and South of Mars and reconstruct multidimensional model of CO2 deposit showing how snow depth varies as function of latitude, longitude and time. In this presentation we tried to make a next step in our study of martian seasonal CO2 cycle and look for similarities and differences between two successive martian years.
Magmatic volatiles and the weathering of Mars
NASA Technical Reports Server (NTRS)
Clark, B. C.
1993-01-01
The sources for volatiles on Mars have been the subject of many hypotheses for exogenous influences including late accretion of volatile-enriched material, impact devolatilization to create massive early atmospheres, and even major bombardment by comets. However, the inventory of chemically active volatiles observable at the contemporary surface of Mars is consistent with domination by endogenous, subsequent planetary processes, viz., persistent magmatic outgassing. Volcanism on Mars has been widespread in both space and time. Notwithstanding important specific differences between the mantles of Earth and Mars, the geochemical similarities are such that the suite of gases emitted from Martian volcanic activity should include H2O, CO2, S-containing gases (e.g. H2S and/or SO2), and Cl-containing gases (e.g., Cl2 and/or HCl). H2O and CO2 exist in the atmosphere of Mars. Both are also present as surface condensates. However, spectroscopic observations of the Martian atmosphere clearly show that the S- and Cl-containing gases are severely depleted, with upper limits of less than or equal to 10(exp -7) the abundance of CO2. Likewise, there is no evidence of polar condensates of compounds of these elements as there is for CO2 and H2O. Within the soil, on the other hand, there has been direct measurement of incorporated H2O and abundant compounds containing S and Cl. Barring some as yet implausible geochemical sequestering process, the S/Cl ratio of about 6:1 in Martian soils implies a limit of 5% on the contribution of matter of solarlike composition (e.g., carbonaceous chondrite or cometary material) to these volatiles. Hence, exogenous sources are minor or not yet observed. From analysis of elemental trends in Martian soils, it has been recently shown that a simple two-component model can satisfy the Viking in situ measurements. Component A includes Si and most or all the Al, Ca, Ti, and Fe. Component B, taken as 16 +/- 3% by weight of the total, contains S and most or all the Cl and Mg. These results constrain several models of Martian soil mineralogy but are consistent with a mixture of silicates (such as Fe-rich clays and accessory minerals and soluble salts). The overall element profile is notably like shergottites, with significant incorporation of chemically reactive atmospheric gases from magmatic degassing.
Urey prize lecture - Water on Mars
NASA Technical Reports Server (NTRS)
Squyres, Steven W.
1989-01-01
Taking the heat-transport physics of ice-covered lakes in the Dry Valleys of Antarctica as a model, it is presently suggested that liquid water lakes could have persisted for significant periods under protective ice covers in the Valles Marineris depressions of Mars. Calculations of ground ice thermodynamic stability in a Martian setting indicate that they may exist close to the surface at high latitudes, but are able to persist near the equator only at substantial depths. Such Martian landforms as terrain-softening are attributable to the creep of the Martian regolith under the influence of ground-ice deformation; FEM modeling of the flow process implies terrain-softening to be a near-surface phenomenon.
Animated Optical Microscope Zoom in from Phoenix Launch to Martian Surface
NASA Technical Reports Server (NTRS)
2008-01-01
[figure removed for brevity, see original site] Click on image for animation This animated camera view zooms in from NASA's Phoenix Mars Lander launch site all the way to Phoenix's Microscopy and Electrochemistry and C Eonductivity Analyzer (MECA) aboard the spacecraft on the Martian surface. The final frame shows the soil sample delivered to MECA as viewed through the Optical Microscope (OM) on Sol 17 (June 11, 2008), or the 17th Martian day. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Mapping the Iron Oxidation State in Martian Meteorites
NASA Technical Reports Server (NTRS)
Martin, A. M.; Treimann, A. H.; Righter, K.
2017-01-01
Several types of Martian igneous meteorites have been identified: clinopyroxenites (nakhlites), basaltic shergottites, peridotitic shergottites, dunites (chassignites) and orthopyroxenites [1,2]. In order to constrain the heterogeneity of the Martian mantle and crust, and their evolution through time, numerous studies have been performed on the iron oxidation state of these meteorites [3,4,5,6,7,8,9]. The calculated fO2 values all lie within the FMQ-5 to FMQ+0.5 range (FMQ representing the Fayalite = Magnetite + Quartz buffer); however, discrepancies appear between the various studies, which are either attributed to the choice of the minerals/melts used, or to the precision of the analytical/calculation method. The redox record in volcanic samples is primarily related to the oxidation state in the mantle source(s). However, it is also influenced by several deep processes: melting, crystallization, magma mixing [10], assimilation and degassing [11]. In addition, the oxidation state in Martian meteorites is potentially affected by several surface processes: assimilation of sediment/ crust during lava flowing at Mars' surface, low temperature micro-crystallization [10], weathering at the surface of Mars and low temperature reequilibration, impact processes (i.e. high pressure phase transitions, mechanical mixing, shock degassing and melting), space weathering, and weathering on Earth (at atmospheric conditions different from Mars). Decoding the redox record of Martian meteorites, therefore, requires large-scale quantitative analysis methods, as well as a perfect understanding of oxidation processes.
NASA Technical Reports Server (NTRS)
Neukum, G.; Hiller, K.
1981-01-01
Four discussions are conducted: (1) the methodology of relative age determination by impact crater statistics, (2) a comparison of proposed Martian impact chronologies for the determination of absolute ages from crater frequencies, (3) a report on work dating Martian volcanoes and erosional features by impact crater statistics, and (4) an attempt to understand the main features of Martian history through a synthesis of crater frequency data. Two cratering chronology models are presented and used for inference of absolute ages from crater frequency data, and it is shown that the interpretation of all data available and tractable by the methodology presented leads to a global Martian geological history that is characterized by two epochs of activity. It is concluded that Mars is an ancient planet with respect to its surface features.
Fate of Earth Microbes on Mars: UV Radiation Effects
NASA Technical Reports Server (NTRS)
Cockell, Charles
2000-01-01
A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment. Biological action spectra for DNA inactivation are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Although the present-day martian UV flux is similar to early earth and thus may not be a limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Here calculations for loss of microbial viability on the Pathfinder and Polar lander spacecraft are presented and the effects of martian dust on loss of viability are discussed. Details of the radiative transfer model are presented.
Fate of Earth Microbes on Mars -- UV Radiation Effects
NASA Technical Reports Server (NTRS)
Cockell, Charles
2000-01-01
A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment. Biological action spectra for DNA inactivation are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Although the present-day martian UV flux is similar to early earth and thus may not be a limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Here calculations for loss of microbial viability on the Pathfinder and Polar lander spacecraft are presented and the effects of martian dust on loss of viability are discussed. Details of the radiative transfer model are presented.
NASA Astrophysics Data System (ADS)
Marshall, Jason P.; Hudson, Troy L.; Andrade, José E.
2017-10-01
The InSight mission launches in 2018 to characterize several geophysical quantities on Mars, including the heat flow from the planetary interior. This quantity will be calculated by utilizing measurements of the thermal conductivity and the thermal gradient down to 5 meters below the Martian surface. One of the components of InSight is the Mole, which hammers into the Martian regolith to facilitate these thermal property measurements. In this paper, we experimentally investigated the effect of the Mole's penetrating action on regolith compaction and mechanical properties. Quasi-static and dynamic experiments were run with a 2D model of the 3D cylindrical mole. Force resistance data was captured with load cells. Deformation information was captured in images and analyzed using Digitial Image Correlation (DIC). Additionally, we used existing approximations of Martian regolith thermal conductivity to estimate the change in the surrounding granular material's thermal conductivity due to the Mole's penetration. We found that the Mole has the potential to cause a high degree of densification, especially if the initial granular material is relatively loose. The effect on the thermal conductivity from this densification was found to be relatively small in first-order calculations though more complete thermal models incorporating this densification should be a subject of further investigation. The results obtained provide an initial estimate of the Mole's impact on Martian regolith thermal properties.
On the Impact Origin of Phobos and Deimos. IV. Volatile Depletion
NASA Astrophysics Data System (ADS)
Hyodo, Ryuki; Genda, Hidenori; Charnoz, Sébastien; Pignatale, Francesco C. F.; Rosenblatt, Pascal
2018-06-01
Recent works have shown that the Martian moons Phobos and Deimos may have accreted within a giant impact-generated disk whose composition is about an equal mixture of Martian material and impactor material. Just after the giant impact, the Martian surface heated up to ∼3000–6000 K and the building blocks of moons, including volatile-rich vapor, were heated up to ∼2000 K. In this paper, we investigate the volatile loss from the building blocks of Phobos and Deimos by hydrodynamic escape of vapor and radiation pressure on condensed particles. We show that a non-negligible amount of volatiles (>10% of the vapor with temperature >1000 K via hydrodynamic escape, and moderately volatile dusts that condense at ∼700–2000 K via radiation pressure) could be removed just after the impact during their first single orbit from their pericenters to apocenters. Our results indicate that bulk Phobos and Deimos are depleted in volatile elements. Together with future explorations such as the Japan Aerospace eXploration Agency’s Martian Moons eXploration mission, our results could be used to constrain the origin of Phobos and Deimos.
Minor constituents in the Martian atmosphere from the ISM/Phobos experiment
NASA Astrophysics Data System (ADS)
Rosenqvist, J.; Drossart, P.; Combes, M.; Encrenaz, T.; Lellouch, E.; Bibring, J. P.; Erard, S.; Langevin, Y.; Chassefière, E.
1992-08-01
Global Martian atmospheric results derived from the infrared-imaging spectrometer ISM flown aboard the Phobos 2 Soviet space-craft are presented. Over low altitude regions the expected CO mixing ratio of (8 ± 3) × 10 -4 is measured. Variations of the 2.35-μm feature are inconsistent with this value over the Great Martian Volcanoes. If the 2.35-μm band is entirely attributable to carbon monoxide, the CO mixing ratio is typically depleted by a factor of 3 over these high altitude areas. Orography should play a major role in the existence of this CO "hole." If, however, these spectral variations at 2.35 μm are due to the surface composition, the fraction of the surface covered by the responsible mineral must smoothly decrease as the surface elevation decreases. This phenomenon implies a strong interaction between the surface and the atmosphere for the Great Martian Volcanoes. Diurnal behavior and latitudinal variations of water vapor are globally consistent with Viking measurements. During the Phobos observations, the water vapor amounts over the bright equatorial regions range around 11 pr-μm during the day. These amounts are slightly larger than those inferred from 1976 to 1979. The lack of global dust storms during 1988-1989 could explain the enhancement of H 2O in the atmosphere.
NASA Technical Reports Server (NTRS)
Shearer, C. K.; Messenger, S.; Sharp, Z. D.; Burger, P. V.; Nguyen, N.; McCubbin, F. M.
2017-01-01
The style, magnitude, timing, and mixing components involved in the interaction between mantle derived Martian magmas and Martian crust have long been a point of debate. Understanding this process is fundamental to deciphering the composition of the Martian crust and its interaction with the atmosphere, the compositional diversity and oxygen fugacity variations in the Martian mantle, the bulk composition of Mars and the materials from which it accreted, and the noble gas composition of Mars and the Sun. Recent studies of the chlorine isotopic composition of Martian meteorites imply that although the variation in delta (sup 37) Cl is limited (total range of approximately14 per mille), there appears to be distinct signatures for the Martian crust and mantle. However, there are potential issues with this interpretation. New Cl isotope data from the SAM (Sample Analysis at Mars) instrument on the Mars Science Lab indicate a very wide range of Cl isotopic compositions on the Martian surface. Recent measurements by [10] duplicated the results of [7,8], but placed them within the context of SAM surface data. In addition, Martian meteorite Chassigny contains trapped noble gases with isotopic ratios similar to solar abundance, and has long been considered a pristine, mantle derived sample. However, previous studies of apatite in Chassigny indicate that crustal fluids have interacted with regions interstitial to the cumulus olivine. The initial Cl isotope measurements of apatite in Chassigny suggest an addition of crustal component to this lithology, apparently contradicting the rare gas data. Here, we examine the Cl isotopic composition of multiple generations and textures of apatite in Chassigny to extricate the crustal and mantle components in this meteorite and to reveal the style and timing of the addition of crustal components to mantle-derived magmas. These data reveal distinct Martian Cl sources whose signatures have their origins linked to both the early Solar System and the evolving Martian atmosphere.
Wind tunnel simulation of Martian sand storms
NASA Technical Reports Server (NTRS)
Greeley, R.
1980-01-01
The physics and geological relationships of particles driven by the wind under near Martian conditions were examined in the Martian Surface Wind Tunnel. Emphasis was placed on aeolian activity as a planetary process. Threshold speeds, rates of erosion, trajectories of windblown particles, and flow fields over various landforms were among the factors considered. Results of experiments on particles thresholds, rates of erosion, and the effects of electrostatics on particles in the aeolian environment are presented.
Aeolian Removal of Dust Types from Photovoltaic Surfaces on Mars
NASA Technical Reports Server (NTRS)
Gaier, James R.; Perez-Davis, Marla E.; Marabito, Mark
1990-01-01
Dust elevated in local or global dust storms on the Martian surface could settle on photovoltaic (PV) surfaces and seriously hamper their performance. Using a recently developed technique to apply a uniform dust layer, PV surface materials were subjected to simulated Martian winds in an attempt to determine whether natural Aeolian processes on Mars would sweep off the settled dust. Three different types of dust were used; an optical polishing powder, basaltic "trap rock", and iron (III) oxide crystals. The effects of wind velocity, angle of attack, height above the Martian surface, and surface coating material were investigated. It was found that arrays mounted with an angle of attack approaching 45 degrees show the most efficient clearing. Although the angular dependence is not sharp, horizontally mounted arrays required significantly higher wind velocities to clear off the dust. From this test it appears that the arrays may be erected quite near the ground, but previous studies have suggested that saltation effects can be expected to cause such arrays to be covered by soil if they are set up less than about a meter from the ground. Particle size effects appear to dominate over surface chemistry in these experiments, but additional tests are required to confirm this. Providing that the surface chemistry of Martian dusts is not drastically different from simulated dust and that gravity differences have only minor effects, the materials used for protective coatings for photovoltaic arrays may be optimized for other considerations such as transparency, and chemical or abrasion resistance. The static threshold velocity is low enough that there are regions on Mars which experience winds strong enough to clear off a photovoltaic array if it is properly oriented. Turbulence fences proved to be an ineffective strategy to keep dust cleared from the photovoltaic surfaces.
Water Ice Clouds in the Martian Atmosphere: A View from MGS TES
NASA Technical Reports Server (NTRS)
Hale, A. S.; Tamppari, L. K.; Christensen, P. R.; Smith, M. D.; Bass, Deborah; Qu, Zheng; Pearl, J. C.
2005-01-01
We use the method of Tamppari et al. to map water ice clouds in the Martian atmosphere. This technique was originally developed to analyze the broadband Viking IRTM channels and we have now applied it to the TES data. To do this, the TES spectra are convolved to the IRTM bandshapes and spatial resolutions, enabling use of the same processing techniques as were used in Tamppari et al.. This retrieval technique relies on using the temperature difference recorded in the 20 micron and 11 micron IRTM bands (or IRTM convolved TES bands) to map cold water ice clouds above the warmer Martian surface. Careful removal of surface contributions to the observed radiance is therefore necessary, and we have used both older Viking-derived basemaps of the surface emissivity and albedo, and new MGS derived basemaps in order the explore any possible differences on cloud retrieval due to differences in surface contribution removal. These results will be presented in our poster. Our previous work has concentrated primarily on comparing MGS TES to Viking data; that work saw that large-scale cloud features, such as the aphelion cloud belt, are quite repeatable from year to year, though small scale behavior shows some variation. Comparison of Viking and MGS era cloud maps will be presented in our poster. In the current stage of our study, we have concentrated our efforts on close analysis of water ice cloud behavior in the northern summer of the three MGS mapping years on relatively small spatial scales, and present our results below. Additional information is included in the original extended abstract.
Troughs in Ice Sheets and Other Icy Deposits on Mars: Analysis of Their Radiative Balance
NASA Technical Reports Server (NTRS)
Fountain, A.; Kargel, J.; Lewis, K.; MacAyeal, D.; Pfeffer, T.; Zwally, H. J.
2000-01-01
It has long been known that groove-like structures in glaciers and ice sheets can trap more incoming solar radiation than is the case for a 'normal' flat, smooth surface. In this presentation, we shall describe the radiative regimes of typical scarps and troughs on icy surfaces of Mars, and suggest how these features originate and evolve through time. The basis of our analysis is the radiation balance model presented by Pfeffer and Bretherton. Their model considers the visible band radiation regime of a V-shaped groove on a terrestrial ice surface, and shows that absorbed energy can be enhanced by up to 50 percent for grooves with small opening angles and with typical polar values of the solar zenith angle. Our work extends this model by considering: (a) departures from V-shaped geometry, (b) both englacial and surficial dust and debris, and (c) the infrared spectrum. We apply the extended model to various features on the Martian surface, including the spiral-like scarps on the Northern and Southern ice sheets, the large-scale chasms (e.g., Chasm Borealis), and groove-like lineations on valley floors thought to be filled with mixtures of dust and icy substances. In conjunction with study of valley-closure experiments, we suggest that spiral-like scarps and chasms are stable features of the Martian climate regime. We also suggest that further study of scarps and chasms may shed light on the composition (i.e., relative proportions of water ice, carbon-dioxide ice and dust) of the Martian ice sheets and valley fills.
NASA Technical Reports Server (NTRS)
1975-01-01
Data derived from Mariners 6, 7, and 9, Russian Mars probes, and photographic and radar observations conducted from earth are used to develop engineering models of Martian surface properties. These models are used in mission planning and in the design of landing and exploration vehicles. Optical models needed in the design of camera systems, dielectric properties needed in the design of radar systems, and thermal properties needed in the design of the spacecraft thermal control system are included.
What can in situ ion chromatography offer for Mars exploration?
Shelor, C Phillip; Dasgupta, Purnendu K; Aubrey, Andrew; Davila, Alfonso F; Lee, Michael C; McKay, Christopher P; Liu, Yan; Noell, Aaron C
2014-07-01
The successes of the Mars exploration program have led to our unprecedented knowledge of the geological, mineralogical, and elemental composition of the martian surface. To date, however, only one mission, the Phoenix lander, has specifically set out to determine the soluble chemistry of the martian surface. The surprising results, including the detection of perchlorate, demonstrated both the importance of performing soluble ion measurements and the need for improved instrumentation to unambiguously identify all the species present. Ion chromatography (IC) is the state-of-the-art technique for soluble ion analysis on Earth and would therefore be the ideal instrument to send to Mars. A flight IC system must necessarily be small, lightweight, low-power, and have low eluent consumption. We demonstrate here a breadboard system that addresses these issues by using capillary IC at low flow rates with an optimized eluent generator and suppressor. A mix of 12 ions known or plausible for the martian soil, including 4 (oxy)chlorine species, has been separated at flow rates ranging from 1 to 10 μL/min, requiring as little as 200 psi at 1.0 μL/min. This allowed the use of pneumatic displacement pumping from a pressurized aluminum eluent reservoir and the elimination of the high-pressure pump entirely (the single heaviest and most energy-intensive component). All ions could be separated and detected effectively from 0.5 to 100 μM, even when millimolar concentrations of perchlorate were present in the same mixtures.
Project Minerva: A low cost manned Mars mission based on indigenous propellant production
NASA Technical Reports Server (NTRS)
Beder, David; Bryan, Richard; Bui, Tuyen; Caviezel, Kelly; Cinnamon, Mark; Daggert, Todd; Folkers, Mike; Fornia, Mark; Hanks, Natasha; Hamilton, Steve
1992-01-01
Project Minerva is a low-cost manned Mars mission designed to deliver a crew of four to the Martian surface using only two sets of two launches from the Kennedy Space Center. Key concepts which make this mission realizable are the use of near-term technologies and in-situ propellant production, following the scenario originally proposed by R. Zubrin. The first set of launches delivers two unmanned payloads into low Earth orbit (LEO): the first payload consists of an Earth Return Vehicle (ERV), a propellant production plant, and a set of robotic vehicles; the second payload consists of the trans-Mars injection (TMI) upper stage. In LEO, the two payloads are docked and the configuration is injected into a Mars transfer orbit. The landing on Mars is performed with the aid of multiple aerobraking maneuvers. On the Martian surface, the propellant production plant uses a Sabatier/electrolysis type process to combine nine tons of hydrogen with carbon dioxide from the Martian atmosphere to produce over a hundred tons of liquid oxygen and liquid methane, which are later used as the propellants for the rover expeditions and the manned return journey of the ERV. The systems necessary for the flights to and from Mars, as well as those needed for the stay on Mars, are discussed. These systems include the transfer vehicle design, life support, guidance and communications, rovers and telepresence, power generation, and propellant manufacturing. Also included are the orbital mechanics, the scientific goals, and the estimated mission costs.
An extensive phase space for the potential martian biosphere.
Jones, Eriita G; Lineweaver, Charles H; Clarke, Jonathan D
2011-12-01
We present a comprehensive model of martian pressure-temperature (P-T) phase space and compare it with that of Earth. Martian P-T conditions compatible with liquid water extend to a depth of ∼310 km. We use our phase space model of Mars and of terrestrial life to estimate the depths and extent of the water on Mars that is habitable for terrestrial life. We find an extensive overlap between inhabited terrestrial phase space and martian phase space. The lower martian surface temperatures and shallower martian geotherm suggest that, if there is a hot deep biosphere on Mars, it could extend 7 times deeper than the ∼5 km depth of the hot deep terrestrial biosphere in the crust inhabited by hyperthermophilic chemolithotrophs. This corresponds to ∼3.2% of the volume of present-day Mars being potentially habitable for terrestrial-like life.
1998-10-03
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the top of the Mars Polar Lander is secured on a portable stand. The Lander will undergo testing, including a functional test of the science instruments and the basic spacecraft subsystems, before its launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere
1998-10-03
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the top of the Mars Polar Lander is removed for testing, which includes a functional test of the science instruments and the basic spacecraft subsystems. The Mars Polar Lander is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere
1998-10-03
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Polar Lander is secured on a workstand for testing, which includes a functional test of the science instruments and the basic spacecraft subsystems. The Mars Polar Lander is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere
1998-10-03
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a technician begins testing on the Mars Polar Lander. The checkout includes a functional test of the science instruments and the basic spacecraft subsystems. The Mars Polar Lander is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere
Sebastián, Eduardo; Armiens, Carlos; Gómez-Elvira, Javier; Zorzano, María P; Martinez-Frias, Jesus; Esteban, Blanca; Ramos, Miguel
2010-01-01
We describe the parameters that drive the design and modeling of the Rover Environmental Monitoring Station (REMS) Ground Temperature Sensor (GTS), an instrument aboard NASA's Mars Science Laboratory, and report preliminary test results. REMS GTS is a lightweight, low-power, and low cost pyrometer for measuring the Martian surface kinematic temperature. The sensor's main feature is its innovative design, based on a simple mechanical structure with no moving parts. It includes an in-flight calibration system that permits sensor recalibration when sensor sensitivity has been degraded by deposition of dust over the optics. This paper provides the first results of a GTS engineering model working in a Martian-like, extreme environment.
Aeolian Removal of Dust Types from Photovoltaic Surfaces on Mars
NASA Technical Reports Server (NTRS)
Gaier, James R.; Perez-Davis, Marla E.
1990-01-01
Dust elevated in local or global dust storms on the Martian surface could settle on photovoltaic (PV) surfaces and seriously hamper their performance. Using a recently developed technique to apply a uniform dust layer, PV surface materials were subjected to simulated Martian winds in an attempt to determine whether natural aeolian processes on Mars would sweep off the settled dust. Three different types of dust were used. The effects of wind velocity, angle of attack, height above the Martian surface, and surface coating material were investigated. It was found that arrays mounted on an angle of attack approaching 45 deg show the most efficient clearing. Although the angular dependence is not sharp, horizontally mounted arrays required much higher wind velocities to clear off the dust. From this test it appears that the arrays may be erected quite near the ground, but previous studies have suggested that saltation effects can be expected to cause such arrays to be covered by soil if they are set up less than about a meter from the ground. Particle size effect appear to dominate over surface chemistry in these experiments, but additional tests are required to confirm this.
Evaporation of ice in planetary atmospheres: Ice-covered rivers on Mars
NASA Technical Reports Server (NTRS)
Wallace, D.; Sagan, C.
1978-01-01
The evaporation rate of water ice on the surface of a planet with an atmosphere involves an equilibrium between solar heating and radiative and evaporative cooling of the ice layer. The thickness of the ice is governed principally by the solar flux which penetrates the ice layer and then is conducted back to the surface. Evaporation from the surface is governed by wind and free convection. In the absence of wind, eddy diffusion is caused by the lower density of water vapor in comparison to the density of the Martian atmosphere. For mean martian insolations, the evaporation rate above the ice is approximately 10 to the minus 8th power gm/sq cm/s. Evaporation rates are calculated for a wide range of frictional velocities, atmospheric pressures, and insolations and it seems clear that at least some subset of observed Martian channels may have formed as ice-chocked rivers. Typical equilibrium thicknesses of such ice covers are approximately 10m to 30 m; typical surface temperatures are 210 to 235 K.
Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site.
Sullivan, R; Banfield, D; Bell, J F; Calvin, W; Fike, D; Golombek, M; Greeley, R; Grotzinger, J; Herkenhoff, K; Jerolmack, D; Malin, M; Ming, D; Soderblom, L A; Squyres, S W; Thompson, S; Watters, W A; Weitz, C M; Yen, A
2005-07-07
The martian surface is a natural laboratory for testing our understanding of the physics of aeolian (wind-related) processes in an environment different from that of Earth. Martian surface markings and atmospheric opacity are time-variable, indicating that fine particles at the surface are mobilized regularly by wind. Regolith (unconsolidated surface material) at the Mars Exploration Rover Opportunity's landing site has been affected greatly by wind, which has created and reoriented bedforms, sorted grains, and eroded bedrock. Aeolian features here preserve a unique record of changing wind direction and wind strength. Here we present an in situ examination of a martian bright wind streak, which provides evidence consistent with a previously proposed formational model for such features. We also show that a widely used criterion for distinguishing between aeolian saltation- and suspension-dominated grain behaviour is different on Mars, and that estimated wind friction speeds between 2 and 3 m s(-1), most recently from the northwest, are associated with recent global dust storms, providing ground truth for climate model predictions.
Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site
Sullivan, R.; Banfield, D.; Bell, J.F.; Calvin, W.; Fike, D.; Golombek, M.; Greeley, R.; Grotzinger, J.; Herkenhoff, K.; Jerolmack, D.; Malin, M.; Ming, D.; Soderblom, L.A.; Squyres, S. W.; Thompson, S.; Watters, W.A.; Weitz, C.M.; Yen, A.
2005-01-01
The martian surface is a natural laboratory for testing our understanding of the physics of aeolian (wind-related) processes in an environment different from that of Earth. Martian surface markings and atmospheric opacity are time-variable, indicating that fine particles at the surface are mobilized regularly by wind. Regolith (unconsolidated surface material) at the Mars Exploration Rover Opportunity's landing site has been affected greatly by wind, which has created and reoriented bedforms, sorted grains, and eroded bedrock. Aeolian features here preserve a unique record of changing wind direction and wind strength. Here we present an in situ examination of a martian bright wind streak, which provides evidence consistent with a previously proposed formational model for such features. We also show that a widely used criterion for distinguishing between aeolian saltation- and suspension-dominated grain behaviour is different on Mars, and that estimated wind friction speeds between 2 and 3 m s-1, most recently from the northwest, are associated with recent global dust storms, providing ground truth for climate model predictions.
NASA Technical Reports Server (NTRS)
Bishop, J. L.; Lane, M. D.; Dyar, M. D.; Brown, A. J.; Parente, M.
2006-01-01
Our analyses of sulfate minerals, analog sites, and Martian spectra and spectral images is focused on characterization of the Martian surface and in particular identification of aqueous processes there.
NASA Astrophysics Data System (ADS)
Brown, A. J.; McGuire, P.; Wolff, M. J.
2008-03-01
We describe efforts to model dust and ice aerosols content and soils and icy surface reflectance in the Martian southern polar region during spring recession (Ls = 152-320) using CRISM emission phase function (EPF) observations.
A Mars Pathfinder landing on a recently drained ephemeral sea: Cerberus Plains, 6 deg N, 188 deg W
NASA Technical Reports Server (NTRS)
Brakenridge, G. Robert
1994-01-01
Along a 500 km-wide belt extending between 202 deg and 180 deg W and lying astride the martian equator, moderately low-albedo, uncratered smooth plains exhibit low thermal inertia and potentially favorable conditions for the preservation of near-surface ice. The Cerberus Plains occupy a topographic trough as much as 2 km below the planetary datum, and the denser atmosphere at these altitudes would also favor long residence times for near-surface ice once emplaced. The plains have previously been interpreted as the result of young (late Amazonian) low viscosity lava flows or similarly youthful fluvial deposition. However, the plains are also included in maps of possibly extensive martian paleoseas or paleolakes. Ice emplaced as such seas dissipated could still be preserved under thin (a few tens of centimeters) sedimentary cover. In any case, and if a sea once existed, aqueous-born interstitial cementation, probably including hydrated iron oxides and sulfate minerals, would have been favored and is now susceptible to investigation by the Pathfinder alpha proton x-ray spectrometer and multispectral imager.
Adsorbed water and thin liquid films on Mars
NASA Astrophysics Data System (ADS)
Boxe, C. S.; Hand, K. P.; Nealson, K. H.; Yung, Y. L.; Yen, A. S.; Saiz-Lopez, A.
2012-07-01
At present, bulk liquid water on the surface and near-subsurface of Mars does not exist due to the scarcity of condensed- and gas-phase water, pressure and temperature constraints. Given that the nuclei of soil and ice, that is, the soil solid and ice lattice, respectively, are coated with adsorbed and/or thin liquid films of water well below 273 K and the availability of water limits biological activity, we quantify lower and upper limits for the thickness of such adsorbed/water films on the surface of the Martian regolith and for subsurface ice. These limits were calculated based on experimental and theoretical data for pure water ice and water ice containing impurities, where water ice containing impurities exhibit thin liquid film enhancements, ranging from 3 to 90. Close to the cold limit of water stability (i.e. 273 K), thin liquid film thicknesses at the surface of the Martian regolith is 0.06 nm (pure water ice) and ranges from 0.2 to 5 nm (water ice with impurities). An adsorbed water layer of 0.06 nm implies a dessicated surface as the thickness of one monolayer of water is 0.3 nm but represents 0.001-0.02% of the Martian atmospheric water vapour inventory. Taking into account the specific surface area (SSA) of surface-soil (i.e. top 1 mm of regolith and 0.06 nm adsorbed water layer), shows Martian surface-soil may contain interfacial water that represents 6-66% of the upper- and lower-limit atmospheric water vapour inventory and almost four times and 33%, the lower- and upper-limit Martian atmospheric water vapour inventory. Similarly, taking the SSA of Martian soil, the top 1 mm or regolith at 5 nm thin liquid water thickness, yields 1.10×1013 and 6.50×1013 litres of waters, respectively, 55-325 times larger than Mars' atmospheric water vapour inventory. Film thicknesses of 0.2 and 5 nm represent 2.3×104-1.5×106 litres of water, which is 6.0×10-7-4.0×10-4%, respectively, of a 10 pr μm water vapour column, and 3.0×10-6-4.0×10-4% and 6.0×10-6-8.0×10-4%, respectively, of the Martian atmospheric water vapour inventory. Thin liquid film thicknesses on/in subsurface ice were investigated via two scenarios: (i) under the idealistic case where it is assumed that the diurnal thermal wave is equal to the temperature of ice tens of centimetres below the surface, allowing for such ice to experience temperatures close to 273 K and (ii) under the, likely, realistic scenario where the diurnal thermal wave allows for the maximum subsurface ice temperature of 235 K at 1 m depth between 30°N and 30°S. Scenario 1 yields thin liquid film thicknesses ranging from 11 to 90 nm; these amounts represent 4×106-3.0×107 litres of water. For pure water ice, Scenario 2 reveals that the thickness of thin liquid films contained on/within Martian subsurface is less than 1.2 nm, several molecular layers thick. Conversely, via the effect of impurities at 235 K allows for a thin liquid film thickness on/within subsurface ice of 0.5 nm, corresponding to 6.0×104 litres of water. The existence of thin films on Mars is supported by data from the Mars Exploration Rovers (MERs) Spirit and Opportunity's Alpha Proton X-ray Spectrometer instrumentation, which have detected increased levels of bromine beneath the immediate surface, suggestive of the mobilization of soluble salts by thin films of liquid water towards local cold traps. These findings show that biological activity on the Martian surface and subsurface is not limited by nanometre dimensions of available water.
NASA Astrophysics Data System (ADS)
Kuzmin, R. O.; Zabalueva, E. V.
2018-03-01
The paper contains the data on the thermal and physical characteristic of the surface regolith of the Martian satellite Phobos obtained from the spaceborne remote sensing (with the Mariner 9, Viking, and Mars Global Surveyor orbiters and the Phobos-2 spacecraft) and the results of the numerical modeling of the thermal regime in the surface regolith (on diurnal and seasonal scales) performed for the prospective landing site in the Lagado Planitia region located in the anti-Martian hemisphere of Phobos.
NASA Astrophysics Data System (ADS)
Likhachev, V. N.; Fedotov, V. P.
2017-12-01
We know the spacecraft orientation before its touchdown on the Martian surface with an accuracy of 3-4°. The spacecraft control can result in a significant horizontal velocity at altitudes lower than 15 meters at the instant when the landing legs contact the surface when data from the radar location system terminates. An independent method for determining the gravity acceleration vector is presented in the paper. This method is implemented using information obtained from the gyro-inertial and radar instrumentation.
NASA Technical Reports Server (NTRS)
Chen, Yih-Kang
1992-01-01
Effect of flow field properties on the heating distribution over a 140 deg blunt cone was determined for a Martian atmosphere using Euler, Navier-Stokes (NS), viscous shock layer (VSL), and reacting boundary layer (BLIMPK) equations. The effect of gas kinetics on the flow field and the surface heating distribution were investigated. Gas models with nine species and nine reactions were implemented into the codes. Effects of surface catalysis on the heating distribution were studied using a surface kinetics model having five reactions.
An Astronaut Assistant Rover for Martian Surface Exploration
NASA Astrophysics Data System (ADS)
1999-01-01
Lunar exploration, recent field tests, and even on-orbit operations suggest the need for a robotic assistant for an astronaut during extravehicular activity (EVA) tasks. The focus of this paper is the design of a 300-kg, 2 cubic meter, semi-autonomous robotic rover to assist astronauts during Mars surface exploration. General uses of this rover include remote teleoperated control, local EVA astronaut control, and autonomous control. Rover size, speed, sample capacity, scientific payload and dexterous fidelity were based on known Martian environmental parameters,- established National Aeronautics and Space Administration (NASA) standards, the NASA Mars Exploration Reference Mission, and lessons learned from lunar and on-orbit sorties. An assumed protocol of a geological, two astronaut EVA performed during daylight hours with a maximum duration of tour hour dictated the following design requirements: (1) autonomously follow the EVA team over astronaut traversable Martian terrain for four hours; (2) retrieve, catalog, and carry 12 kg of samples; (3) carry tools and minimal in-field scientific equipment; (4) provide contingency life support; (5) compile and store a detailed map of surrounding terrain and estimate current position with respect to base camp; (6) provide supplemental communications systems; and (7) carry and support the use of a 7 degree - of- freedom dexterous manipulator.
Banin, A; Rishpon, J
1979-12-01
Various chemical, physical and geological observations indicate that smectite clays are probably the major components of the Martian soil. Satisfactory ground-based chemical simulation of the Viking biology experimental results was obtained with the smectite clays nontronite and montmorillonite when they contained iron and hydrogen as adsorbed ions. Radioactive gas was released from the medium solution used in the Viking Labeled Release (LR) experiment when interacted with the clays, at rates and quantities similar to those measured by Viking on Mars. Heating of the active clay (mixed with soluble salts) to 160 degrees C in CO2 atmosphere reduced the decomposition activity considerably, again, as was observed on Mars. The decomposition reaction in LR experiment is postulated to be iron-catalyzed formate decomposition on the clay surface. The main features of the Viking Pyrolytic Release (PR) experiment were also simulated recently (Hubbard, 1979) which the iron clays, including a relatively low '1st peak' and significant '2nd peak'. The accumulated observations on various Martian soil properties and the results of simulation experiments, thus indicate that smectite clays are major and active components of the Martian soil. It now appears that many of the results of the Viking biology experiments can be explained on the basis of their surface activity in catalysis and adsorption.
NASA Astrophysics Data System (ADS)
Lepper, K.; Kuhns, C. K.; McKeever, S. W. S.; Sears, D. W. G.
2000-08-01
Martian polar deposits have the potential to reveal a wealth of information about the evolution of Mars' climate and surface environment. However, as pointed out by Clifford et al. in the summary of the First International Conference on Mars Polar Science and Exploration, 'The single greatest obstacle to unlocking and interpreting the geologic and climatic record preserved at the [martian] poles is the need for absolute dating.' At that same conference Lepper and McKeever proposed development of luminescence dating as a remote in-situ technique for absolute dating of silicate mineral grains incorporated in polar deposits. Clifford et al. have also acknowledged that luminescence dating is more practical from cost, engineering, and logistical perspectives than other isotope-based methods proposed for in-situ dating on Mars. We report here the results of ongoing experiments with terrestrial analogs of martian surface materials to establish a broad fundamental knowledge base from which robust dating procedures for robotic missions may be developed. This broad knowledge base will also be critical in determining the engineering requirements of remote in-situ luminescence dating equipment intended for use on Mars. Additional information can be found in the original extended abstract.
Nonlinear Spectral Mixture Modeling to Estimate Water-Ice Abundance of Martian Regolith
NASA Astrophysics Data System (ADS)
Gyalay, Szilard; Chu, Kathryn; Zeev Noe Dobrea, Eldar
2017-10-01
We present a novel technique to estimate the abundance of water-ice in the Martian permafrost using Phoenix Surface Stereo Imager multispectral data. In previous work, Cull et al. (2010) estimated the abundance of water-ice in trenches dug by the Mars Phoenix lander by modeling the spectra of the icy regolith using the radiative transfer methods described in Hapke (2008) with optical constants for Mauna Kea palagonite (Clancy et al., 1995) as a substitute for unknown Martian regolith optical constants. Our technique, which uses the radiative transfer methods described in Shkuratov et al. (1999), seeks to eliminate the uncertainty that stems from not knowing the composition of the Martian regolith by using observations of the Martian soil before and after the water-ice has sublimated away. We use observations of the desiccated regolith sample to estimate its complex index of refraction from its spectrum. This removes any a priori assumptions of Martian regolith composition, limiting our free parameters to the estimated real index of refraction of the dry regolith at one specific wavelength, ice grain size, and regolith porosity. We can then model mixtures of regolith and water-ice, fitting to the original icy spectrum to estimate the ice abundance. To constrain the uncertainties in this technique, we performed laboratory measurements of the spectra of known mixtures of water-ice and dry soils as well as those of soils after desiccation with controlled viewing geometries. Finally, we applied the technique to Phoenix Surface Stereo Imager observations and estimated water-ice abundances consistent with pore-fill in the near-surface ice. This abundance is consistent with atmospheric diffusion, which has implications to our understanding of the history of water-ice on Mars and the role of the regolith at high latitudes as a reservoir of atmospheric H2O.
Preliminary design of a universal Martian lander
NASA Astrophysics Data System (ADS)
Norman, Timothy L.; Gaskin, David E.; Adkins, Sean; Gunawan, Mary; Johnson, Raquel; Macdonnell, David; Parlock, Andrew; Sarick, John; Bodwell, Charles; Hashimoto, Kouichi
In the next 25 years, mankind will be undertaking yet another giant leap forward in the exploration of the solar system: a manned mission to Mars. This journey will provide important information on the composition and history of both Mars and the Solar System. A manned mission will also provide the opportunity to study how humans can adapt to long term space flight conditions and the Martian environment. As part of the NASA/USRA program, nineteen West Virginia University students conducted a preliminary design of a manned Universal Martian Lander (UML). The UML's design will provide a 'universal' platform, consisting of four modules for living and laboratory experiments and a liquid-fuel propelled Manned Ascent Return Vehicle (MARV). The distinguishing feature of the UML is the 'universal' design of the modules which can be connected to form a network of laboratories and living quarters for future missions thereby reducing development and production costs. The WVU design considers descent to Mars from polar orbit, a six month surface stay, and ascent for rendezvous. The design begins with an unmanned UML landing at Elysium Mons followed by the manned UML landing nearby. During the six month surface stay, the eight modules will be assembled to form a Martian base where scientific experiments will be performed. The mission will also incorporate hydroponic plant growth into a Controlled Ecological Life Support System (CELSS) for water recycling, food production, and to counteract psychological effects of living on Mars. In situ fuel production for the MARV will be produced from gases in the Martian atmosphere. Following surface operations, the eight member crew will use the MARV to return to the Martian Transfer Vehicle (MTV) for the journey home to Earth.
NASA Astrophysics Data System (ADS)
Shalygina, O. S.; Markiewicz, W. J.; Hviid, S. F.
2012-09-01
It is well known that the aerosol play a major role in the energy budget of the Martian atmosphere. The importance of the aerosols for the radiative loading of the atmosphere has hence, direct impact on the Martian present weather and its seasonal cycle as well as consequences for its long term climate. Very accurate models of the sky brightness are required to separate the atmospheric illumination from the spectrum of the Martian surface, and hence to understand the mineralogy of the surface rocks and soil. Such accurate models are only possible if the optical properties of the Martian aerosols are known. In this work we analyze the images of the brightness of the Martian sky at midday acquired from the surface of the Mars during the Mars Pathfinder mission. The Imager for Mars Pathfinder (IMP) obtained data in filters centered at 443.6, 481.0, 670.8, 896.1 and 965.3 nm. Useful data sets were returned on sols 27, 40, 56, 65, 68, 74 and 82. Although the coverage in scattering angles of this sequence is limited to about 100°, having the Sun near zenith minimizes multiple scattering. This property should help in accuracy of constraining the size distribution and material properties. The shape of the particles can be expected to be less well constrained, as scattering events at angles around 150° are only present through multiple scattering. Data from sol 56 (Figure 1) were fitted with multiple scattering radiative transfer calculations to extract the size distribution, optical properties, and shape of the aerosols suspended in the atmosphere [1].
Preliminary design of a universal Martian lander
NASA Technical Reports Server (NTRS)
Norman, Timothy L.; Gaskin, David E.; Adkins, Sean; Gunawan, Mary; Johnson, Raquel; Macdonnell, David; Parlock, Andrew; Sarick, John; Bodwell, Charles; Hashimoto, Kouichi
1993-01-01
In the next 25 years, mankind will be undertaking yet another giant leap forward in the exploration of the solar system: a manned mission to Mars. This journey will provide important information on the composition and history of both Mars and the Solar System. A manned mission will also provide the opportunity to study how humans can adapt to long term space flight conditions and the Martian environment. As part of the NASA/USRA program, nineteen West Virginia University students conducted a preliminary design of a manned Universal Martian Lander (UML). The UML's design will provide a 'universal' platform, consisting of four modules for living and laboratory experiments and a liquid-fuel propelled Manned Ascent Return Vehicle (MARV). The distinguishing feature of the UML is the 'universal' design of the modules which can be connected to form a network of laboratories and living quarters for future missions thereby reducing development and production costs. The WVU design considers descent to Mars from polar orbit, a six month surface stay, and ascent for rendezvous. The design begins with an unmanned UML landing at Elysium Mons followed by the manned UML landing nearby. During the six month surface stay, the eight modules will be assembled to form a Martian base where scientific experiments will be performed. The mission will also incorporate hydroponic plant growth into a Controlled Ecological Life Support System (CELSS) for water recycling, food production, and to counteract psychological effects of living on Mars. In situ fuel production for the MARV will be produced from gases in the Martian atmosphere. Following surface operations, the eight member crew will use the MARV to return to the Martian Transfer Vehicle (MTV) for the journey home to Earth.
Stereo View of Martian Rock Target 'Funzie'
2018-02-08
The surface of the Martian rock target in this stereo image includes small hollows with a "swallowtail" shape characteristic of some gypsum crystals, most evident in the lower left quadrant. These hollows may have resulted from the original crystallizing mineral subsequently dissolving away. The view appears three-dimensional when seen through blue-red glasses with the red lens on the left. The scene spans about 2.5 inches (6.5 centimeters). This rock target, called "Funzie," is near the southern, uphill edge of "Vera Rubin Ridge" on lower Mount Sharp. The stereo view combines two images taken from slightly different angles by the Mars Hand Lens Imager (MAHLI) camera on NASA's Curiosity Mars rover, with the camera about 4 inches (10 centimeters) above the target. Fig. 1 and Fig. 2 are the separate "right-eye" and "left-eye" images, taken on Jan. 11, 2018, during the 1,932nd Martian day, or sol, of the rover's work on Mars. Right-eye and left-eye images are available at https://photojournal.jpl.nasa.gov/catalog/PIA22212
Thermally distinct ejecta blankets from Martian craters
NASA Astrophysics Data System (ADS)
Betts, B. H.; Murray, B. C.
1992-09-01
The study of ejecta blankets on Mars gives information about the Martian surface, subsurface, geologic history, atmospheric history, and impact process. In Feb. and Mar. 1989, the Termoskan instrument on board the Phobos 1988 spacecraft of the USSR acquired the highest spatial resolution thermal data ever obtained for Mars, ranging in the resolution from 300 meters to 3 km per pixel. Termoskan simultaneously obtained broad band visible channel data. The data covers a large portion of the equatorial region from 30 degrees S latitude to 6 degrees N latitude. Utilizing the data set we have discovered tens of craters with thermal infrared distinct ejecta (TIDE) in the equatorial regions of Mars. In order to look for correlations within the data, we have compiled a database which currently consists of 110 craters in an area rich in TIDE's and geologic unit variations. For each crater, we include morphologic information from Barlow's Catalog of Large Martian Impact Craters in addition to geographic, geologic, and physical information and Termoskan thermal infrared and visible data.
Thermally distinct ejecta blankets from Martian craters
NASA Technical Reports Server (NTRS)
Betts, B. H.; Murray, B. C.
1992-01-01
The study of ejecta blankets on Mars gives information about the Martian surface, subsurface, geologic history, atmospheric history, and impact process. In Feb. and Mar. 1989, the Termoskan instrument on board the Phobos 1988 spacecraft of the USSR acquired the highest spatial resolution thermal data ever obtained for Mars, ranging in the resolution from 300 meters to 3 km per pixel. Termoskan simultaneously obtained broad band visible channel data. The data covers a large portion of the equatorial region from 30 degrees S latitude to 6 degrees N latitude. Utilizing the data set we have discovered tens of craters with thermal infrared distinct ejecta (TIDE) in the equatorial regions of Mars. In order to look for correlations within the data, we have compiled a database which currently consists of 110 craters in an area rich in TIDE's and geologic unit variations. For each crater, we include morphologic information from Barlow's Catalog of Large Martian Impact Craters in addition to geographic, geologic, and physical information and Termoskan thermal infrared and visible data.
Rover Touchdown on Martian Surface
1997-07-06
This picture taken by the IMP (Imager for Mars Pathfinder) aboard the Mars Pathfinder spacecraft depicts the rover Sojourner's position after driving onto the Martian surface. Sojourner has become the first autonomous robot ever to traverse the surface of Mars. This image reflects the success of Pathfinder's principle objective -- to place a payload on Mars in a safe, operational configuration. The primary mission of Sojourner, scheduled to last seven days, will be to use its Alpha Proton X-ray Spectrometer (APXS) instrument to determine the elements that make up the rocks and soil on Mars. A full study using the APXS takes approximately ten hours, and can measure all elements except hydrogen at any time of the Martian day or night. The APXS will conduct its studies by bombarding rocks and soil samples with alpha particle radiation -- charged particles equivalent to the nucleus of a helium atom, consisting of two protons and two neutrons. http://photojournal.jpl.nasa.gov/catalog/PIA00623
Appropriate Simulants are a Requirement for Mars Surface Systems Technology Development
NASA Technical Reports Server (NTRS)
Edmunson, Jennifer E.; McLemore, Carole A.; Rickman, Douglas L.
2012-01-01
To date, there are two simulants for martian regolith: JSC Mars-1A, produced from palagonitic (weathered) basaltic tephra mined from the Pu'u Nene cinder cone in Hawaii [1] by commercial company Orbitec, and Mojave Mars Simulant (MMS), produced from Saddleback Basalt in the western Mojave desert by the Jet Propulsion Laboratory [2]. Until numerous recent orbiters, rovers, and landers were sent to Mars, weathered basalt was surmised to cover every inch of the martian landscape. All missions since Viking have disproven that the entire martian surface is weathered basalt. In fact, the outcrops, features, and surfaces that are significantly different from weathered basalt are too numerous to realistically count. There are gullies, evaporites, sand dunes, lake deposits, hydrothermal deposits, alluvium, etc. that indicate sedimentary and chemical processes. There is no one size fits all simulant. Each unique area requires its own simulant in order to test technologies and hardware, thereby reducing risk.
Reassessing the Ancient Martian Ocean Hypothesis using Global Distribution of Valley Networks
NASA Astrophysics Data System (ADS)
Chan, Ngai-Ham; Perron, J. Taylor; Mitrovica, Jerry X.
2016-04-01
We re-examine the connection between true polar wander and the Martian ocean hypothesis. Previous studies have investigated the plausibility of an ancient ocean on Mars by examining the ancient putative sea-level markers on the planet's surface. One such study has argued that topographic benches, or contacts, are ancient shorelines, and that these contacts display long-wavelength topographic variations consistent with post-depositional true polar wander (Perron et al., Nature, 2007). In contrast, a second study has argued that the topography of ancient deltaic deposits associated with an ocean on early Mars are not consistent with the true polar wander scenario (Achille & Hynek, Nature Geosci., 2010). We revisit this issue by examining another marker of ancient shorelines --- the fluvial valley networks observed on the surface of Mars. Our results provide further evidence that a true polar wander event drove significant post-depositional deflection of surface features related to an ancient Martian ocean.
Reassessing the Ancient Martian Ocean Hypothesis using Global Distribution of Valley Networks
NASA Astrophysics Data System (ADS)
Chan, N. H.; Perron, J. T.; Mitrovica, J. X.
2015-12-01
We re-examine the connection between true polar wander and the Martian ocean hypothesis. Previous studies have investigated the plausibility of an ancient ocean on Mars by examining the topography of ancient putative sea-level markers on the planet's surface. A previous study has argued that topographic benches, or contacts, are ancient shorelines, and that these contacts display long-wavelength topographic variations consistent with post-depositional true polar wander (Perron et al., Nature, 2007). In contrast, a second study has argued that the topography of ancient deltaic deposits associated with an ocean on early Mars are not consistent with the true polar wander scenario (Achille & Hynek, Nature Geosci., 2010). We revisit this issue by examining another marker of ancient shorelines --- the fluvial valley networks observed on the surface of Mars. Our results provide further evidence that a true polar wander event drove significant post-depositional deflection of surface features related to an ancient Martian ocean.
Wassmann, Marko; Moeller, Ralf; Rabbow, Elke; Panitz, Corinna; Horneck, Gerda; Reitz, Günther; Douki, Thierry; Cadet, Jean; Stan-Lotter, Helga; Cockell, Charles S; Rettberg, Petra
2012-05-01
In the space experiment "Molecular adaptation strategies of microorganisms to different space and planetary UV climate conditions" (ADAPT), bacterial endospores of the highly UV-resistant Bacillus subtilis strain MW01 were exposed to low-Earth orbit (LEO) and simulated martian surface conditions for 559 days on board the European Space Agency's exposure facility EXPOSE-E, mounted outside the International Space Station. The survival of B. subtilis MW01 spores from both assays (LEO and simulated martian conditions) was determined by a colony-formation assay after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110 nm) as well as the martian UV spectrum (λ≥200 nm) was the most deleterious factor applied; in some samples only a few spore survivors were recovered from B. subtilis MW01 spores exposed in monolayers. However, if shielded from solar irradiation, about 8% of MW01 spores survived in LEO conditions, and 100% survived in simulated martian conditions, compared to the laboratory controls. The results demonstrate the effect of shielding against the high inactivation potential of extraterrestrial solar UV radiation, which limits the chances of survival of even the highly UV-resistant strain of B. subtilis MW01 in the harsh environments of outer space and the martian surface.
Integrated Spectroscopic Studies of Anhydrous Sulfate Minerals
NASA Technical Reports Server (NTRS)
Lane, M. D.; Bishop, J. L.; Dyar, M. D.; Cloutis, E.; Forray, F. L.; Hiroi, T.
2005-01-01
Sulfates have been identified in Martian soils and bedrock and are emerging as an important indicator for aqueous activity on Mars. Sulfate minerals can form in a variety of low-temperature (evaporitic; chemical-weathering) and high-temperature (volcanic/fumarolic; hydrothermal) environments and their formational environments can range from alkaline to acidic. Although sulfates generally form in the presence of water, not all sulfates are hydrous or contain water in their structures. Many of these anhydrous sulfates (Dana group 28; Strunz class 67A) are minerals that form as accompanying phases to the main minerals in ore deposits or as replacement deposits in sedimentary rocks. However, some form from thermal decomposition of OH or H2O-bearing sulfates, such as from the reaction [1]: jarosite = yavapaiite + Fe2O3 + H2O. Where known, the stability fields of these minerals all suggest that they would be stable under martian surface conditions [2]. Thus, anhydrous sulfate minerals may contribute to martian surface mineralogy, so they must be well-represented in spectral libraries used for interpretation of the Martian surface. We present here the preliminary results of an integrated study of emittance, reflectance, and Mossbauer spectroscopy of a suite of wel-lcharacterized anhydrous sulfates.
NASA Technical Reports Server (NTRS)
Brown, I. I.; Allen, C. C.; Tringe, S. G.; Klatt, C. G.; Bryant, D. A.; Sarkisova, S. A.; Garrison, D. H.; McKay, D. S.
2010-01-01
The success of selecting future landing sites on Mars to discover extinct and/or extant extraterrestrial life is dependent on the correct approximation of available knowledge about terrestrial paleogeochemistry and life evolution to Martian (paleo) geology and geochemistry. It is well known that both Earth and Mars are Fe rich. This widespread occurrence suggests that Fe may have played a key role in early life forms, where it probably served as a key constituent in early prosthetic moieties in many proteins of ancient microbes on Earth and likely Mars. The second critical idea is the premise that Life on Mars could most likely have developed when Mars experienced tectonic activity [1] which dramatically decreased around 1 bin years after Martian creation. After that Martian life could have gone extinct or hibernated in the deep subsurface, which would be expensive to reach in contrast to the successful work of Martian surface rovers. Here we analyze the diversity of microbes in several terrestrial Fe rich surface environments in conjunction with the phylogeny and molecular timing of emergence of those microbes on Earth. Anticipated results should help evaluate future landing sites on Mars in searches for biosignatures.
Stalport, F; Coll, P; Szopa, C; Cottin, H; Raulin, F
2009-01-01
The detection and identification of organic molecules on Mars are of primary importance to establish the existence of a possible ancient prebiotic chemistry or even biological activity. The harsh environmental conditions at the surface of Mars could explain why the Viking probes-the only efforts, to date, to search for organics on Mars-detected no organic matter. To investigate the nature, abundance, and stability of organic molecules that could survive such environmental conditions, we developed a series of experiments that simulate martian surface environmental conditions. Here, we present results with regard to the impact of solar UV radiation on various carboxylic acids, such as mellitic acid, which are of astrobiological interest to the study of Mars. Our results show that at least one carboxylic acid, mellitic acid, could produce a resistant compound-benzenehexacarboxylic acid-trianhydride (C(12)O(9))-when exposed to martian surface radiation conditions. The formation of such products could contribute to the presence of organic matter in the martian regolith, which should be considered a primary target for in situ molecular analyses during future surface missions.
van Heereveld, Luc; Merrison, Jonathan; Nørnberg, Per; Finster, Kai
2017-06-01
The increasing number of missions to Mars also increases the risk of forward contamination. Consequently there is a need for effective protocols to ensure efficient protection of the Martian environment against terrestrial microbiota. Despite the fact of constructing sophisticated clean rooms for spacecraft assembly a 100 % avoidance of contamination appears to be impossible. Recent surveys of these facilities have identified a significant number of microbes belonging to a variety of taxonomic groups that survive the harsh conditions of clean rooms. These microbes may have a strong contamination potential, which needs to be investigate to apply efficient decontamination treatments. In this study we propose a series of tests to evaluate the potential of clean room contaminants to survive the different steps involved in forward contamination. We used Staphylococcus xylosus as model organism to illustrate the different types of stress that potential contaminants will be subjected to on their way from the spacecraft onto the surface of Mars. Staphylococcus xylosus is associated with human skin and commonly found in clean rooms and could therefore contaminate the spacecraft as a result of human activity during the assembling process. The path the cell will take from the surface of the spacecraft onto the surface of Mars was split into steps representing different stresses that include desiccation, freezing, aeolian transport in a Martian-like atmosphere at Martian atmospheric pressure, and UV radiation climate. We assessed the surviving fraction of the cellular population after each step by determining the integrated metabolic activity of the survivor population by measuring their oxygen consumption rate. The largest fraction of the starting culture (around 70 %) was killed during desiccation, while freezing, Martian vacuum and short-term UV radiation only had a minor additional effect on the survivability of Staphylococcus xylosus. The study also included a simulation of atmospheric transport on Martian dust, which did not significantly alter the metabolic potential of the cells. The high survival potential of skin microbes, which are not among the most robust isolates, clearly underlines the necessity for efficient decontamination protocols and of adequate planetary protection measures. Thus we propose a series of tests to be included into the description of isolates from spacecraft assembly clean rooms in order to assess the forward contamination potential of the specific isolate and to categorize the risk level according to the organisms survival potential. We are aware that the tests that we propose do not exhaust the types of challenges that the microbes would meet on their way and therefore the series of tests is open to being extended.
NASA Astrophysics Data System (ADS)
van Heereveld, Luc; Merrison, Jonathan; Nørnberg, Per; Finster, Kai
2017-06-01
The increasing number of missions to Mars also increases the risk of forward contamination. Consequently there is a need for effective protocols to ensure efficient protection of the Martian environment against terrestrial microbiota. Despite the fact of constructing sophisticated clean rooms for spacecraft assembly a 100 % avoidance of contamination appears to be impossible. Recent surveys of these facilities have identified a significant number of microbes belonging to a variety of taxonomic groups that survive the harsh conditions of clean rooms. These microbes may have a strong contamination potential, which needs to be investigate to apply efficient decontamination treatments. In this study we propose a series of tests to evaluate the potential of clean room contaminants to survive the different steps involved in forward contamination. We used Staphylococcus xylosus as model organism to illustrate the different types of stress that potential contaminants will be subjected to on their way from the spacecraft onto the surface of Mars. Staphylococcus xylosus is associated with human skin and commonly found in clean rooms and could therefore contaminate the spacecraft as a result of human activity during the assembling process. The path the cell will take from the surface of the spacecraft onto the surface of Mars was split into steps representing different stresses that include desiccation, freezing, aeolian transport in a Martian-like atmosphere at Martian atmospheric pressure, and UV radiation climate. We assessed the surviving fraction of the cellular population after each step by determining the integrated metabolic activity of the survivor population by measuring their oxygen consumption rate. The largest fraction of the starting culture (around 70 %) was killed during desiccation, while freezing, Martian vacuum and short-term UV radiation only had a minor additional effect on the survivability of Staphylococcus xylosus. The study also included a simulation of atmospheric transport on Martian dust, which did not significantly alter the metabolic potential of the cells. The high survival potential of skin microbes, which are not among the most robust isolates, clearly underlines the necessity for efficient decontamination protocols and of adequate planetary protection measures. Thus we propose a series of tests to be included into the description of isolates from spacecraft assembly clean rooms in order to assess the forward contamination potential of the specific isolate and to categorize the risk level according to the organisms survival potential. We are aware that the tests that we propose do not exhaust the types of challenges that the microbes would meet on their way and therefore the series of tests is open to being extended.
Do Martian Blueberries Have Pits? -- Artifacts of an Early Wet Mars
NASA Astrophysics Data System (ADS)
Lerman, L.
2005-03-01
Early Martian weather cycles would have supported organic chemical self-organization, the assumed predecessor to an independent "origin" of Martian life. Artifacts of these processes are discussed, including the possibility that Martian blueberries nucleated around organic cores.
NASA Astrophysics Data System (ADS)
Smirnov, V. M.; Yushkova, O. V.; Marchuk, V. N.
2018-05-01
The possibilities of using the Martian soil subsurface sounding radar for investigating the structure of the plasma shell surrounding the planet have been considered. Based on the numerical modeling results and actual soil sounding data, it has been shown that the soil sounding mode of the radio-locating MARSIS radar can be used to assess the structure of the Martian ionosphere. As the emitted signals pass to the planet's surface, it is possible to use the reflected signals to estimate the total electron content of the Martian ionosphere along the flight track of the spacecraft.
The prospects for life on Mars: A pre-Viking assessment
NASA Technical Reports Server (NTRS)
Sagan, C.; Lederberg, J.
1976-01-01
Mariner 9 provided a reinterpretation of several historical claims for Martian biology, and permitted an important further characterization of the environmental constraints on possible Martian organisms. Four classes of conceivable Martian organisms are identified, depending on the environmental temperature, T, and water activity, aw: Class 1, high T, high aw; Class 2, low T, high aw; Class 3, high T, low aw; and Class 4, low T, low aw. Organisms which extract their water requirements from hydrated minerals or from ice are considered possible on Mars, and the high ultraviolet flux and low oxygen partial pressure are considered to be negligible impediments to Martian biology. Large organisms are not only possible on Mars, they may be favored. The surface distribution of Martian organisms and future search strategies for life on Mars are discussed.
Isotope ratios of H, C, and O in CO2 and H2O of the martian atmosphere.
Webster, Chris R; Mahaffy, Paul R; Flesch, Gregory J; Niles, Paul B; Jones, John H; Leshin, Laurie A; Atreya, Sushil K; Stern, Jennifer C; Christensen, Lance E; Owen, Tobias; Franz, Heather; Pepin, Robert O; Steele, Andrew; Achilles, Cherie; Agard, Christophe; Alves Verdasca, José Alexandre; Anderson, Robert; Anderson, Ryan; Archer, Doug; Armiens-Aparicio, Carlos; Arvidson, Ray; Atlaskin, Evgeny; Aubrey, Andrew; Baker, Burt; Baker, Michael; Balic-Zunic, Tonci; Baratoux, David; Baroukh, Julien; Barraclough, Bruce; Bean, Keri; Beegle, Luther; Behar, Alberto; Bell, James; Bender, Steve; Benna, Mehdi; Bentz, Jennifer; Berger, Gilles; Berger, Jeff; Berman, Daniel; Bish, David; Blake, David F; Blanco Avalos, Juan J; Blaney, Diana; Blank, Jen; Blau, Hannah; Bleacher, Lora; Boehm, Eckart; Botta, Oliver; Böttcher, Stephan; Boucher, Thomas; Bower, Hannah; Boyd, Nick; Boynton, Bill; Breves, Elly; Bridges, John; Bridges, Nathan; Brinckerhoff, William; Brinza, David; Bristow, Thomas; Brunet, Claude; Brunner, Anna; Brunner, Will; Buch, Arnaud; Bullock, Mark; Burmeister, Sönke; Cabane, Michel; Calef, Fred; Cameron, James; Campbell, John; Cantor, Bruce; Caplinger, Michael; Caride Rodríguez, Javier; Carmosino, Marco; Carrasco Blázquez, Isaías; Charpentier, Antoine; Chipera, Steve; Choi, David; Clark, Benton; Clegg, Sam; Cleghorn, Timothy; Cloutis, Ed; Cody, George; Coll, Patrice; Conrad, Pamela; Coscia, David; Cousin, Agnès; Cremers, David; Crisp, Joy; Cros, Alain; Cucinotta, Frank; d'Uston, Claude; Davis, Scott; Day, Mackenzie; de la Torre Juarez, Manuel; DeFlores, Lauren; DeLapp, Dorothea; DeMarines, Julia; DesMarais, David; Dietrich, William; Dingler, Robert; Donny, Christophe; Downs, Bob; Drake, Darrell; Dromart, Gilles; Dupont, Audrey; Duston, Brian; Dworkin, Jason; Dyar, M Darby; Edgar, Lauren; Edgett, Kenneth; Edwards, Christopher; Edwards, Laurence; Ehlmann, Bethany; Ehresmann, Bent; Eigenbrode, Jen; Elliott, Beverley; Elliott, Harvey; Ewing, Ryan; Fabre, Cécile; Fairén, Alberto; Farley, Ken; Farmer, Jack; Fassett, Caleb; Favot, Laurent; Fay, Donald; Fedosov, Fedor; Feldman, Jason; Feldman, Sabrina; Fisk, Marty; Fitzgibbon, Mike; Floyd, Melissa; Flückiger, Lorenzo; Forni, Olivier; Fraeman, Abby; Francis, Raymond; François, Pascaline; Freissinet, Caroline; French, Katherine Louise; Frydenvang, Jens; Gaboriaud, Alain; Gailhanou, Marc; Garvin, James; Gasnault, Olivier; Geffroy, Claude; Gellert, Ralf; Genzer, Maria; Glavin, Daniel; Godber, Austin; Goesmann, Fred; Goetz, Walter; Golovin, Dmitry; Gómez Gómez, Felipe; Gómez-Elvira, Javier; Gondet, Brigitte; Gordon, Suzanne; Gorevan, Stephen; Grant, John; Griffes, Jennifer; Grinspoon, David; Grotzinger, John; Guillemot, Philippe; Guo, Jingnan; Gupta, Sanjeev; Guzewich, Scott; Haberle, Robert; Halleaux, Douglas; Hallet, Bernard; Hamilton, Vicky; Hardgrove, Craig; Harker, David; Harpold, Daniel; Harri, Ari-Matti; Harshman, Karl; Hassler, Donald; Haukka, Harri; Hayes, Alex; Herkenhoff, Ken; Herrera, Paul; Hettrich, Sebastian; Heydari, Ezat; Hipkin, Victoria; Hoehler, Tori; Hollingsworth, Jeff; Hudgins, Judy; Huntress, Wesley; Hurowitz, Joel; Hviid, Stubbe; Iagnemma, Karl; Indyk, Steve; Israël, Guy; Jackson, Ryan; Jacob, Samantha; Jakosky, Bruce; Jensen, Elsa; Jensen, Jaqueline Kløvgaard; Johnson, Jeffrey; Johnson, Micah; Johnstone, Steve; Jones, Andrea; Joseph, Jonathan; Jun, Insoo; Kah, Linda; Kahanpää, Henrik; Kahre, Melinda; Karpushkina, Natalya; Kasprzak, Wayne; Kauhanen, Janne; Keely, Leslie; Kemppinen, Osku; Keymeulen, Didier; Kim, Myung-Hee; Kinch, Kjartan; King, Penny; Kirkland, Laurel; Kocurek, Gary; Koefoed, Asmus; Köhler, Jan; Kortmann, Onno; Kozyrev, Alexander; Krezoski, Jill; Krysak, Daniel; Kuzmin, Ruslan; Lacour, Jean Luc; Lafaille, Vivian; Langevin, Yves; Lanza, Nina; Lasue, Jeremie; Le Mouélic, Stéphane; Lee, Ella Mae; Lee, Qiu-Mei; Lees, David; Lefavor, Matthew; Lemmon, Mark; Lepinette Malvitte, Alain; Léveillé, Richard; Lewin-Carpintier, Éric; Lewis, Kevin; Li, Shuai; Lipkaman, Leslie; Little, Cynthia; Litvak, Maxim; Lorigny, Eric; Lugmair, Guenter; Lundberg, Angela; Lyness, Eric; Madsen, Morten; Maki, Justin; Malakhov, Alexey; Malespin, Charles; Malin, Michael; Mangold, Nicolas; Manhes, Gérard; Manning, Heidi; Marchand, Geneviève; Marín Jiménez, Mercedes; Martín García, César; Martin, Dave; Martin, Mildred; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F Javier; Mauchien, Patrick; Maurice, Sylvestre; McAdam, Amy; McCartney, Elaina; McConnochie, Timothy; McCullough, Emily; McEwan, Ian; McKay, Christopher; McLennan, Scott; McNair, Sean; Melikechi, Noureddine; Meslin, Pierre-Yves; Meyer, Michael; Mezzacappa, Alissa; Miller, Hayden; Miller, Kristen; Milliken, Ralph; Ming, Douglas; Minitti, Michelle; Mischna, Michael; Mitrofanov, Igor; Moersch, Jeff; Mokrousov, Maxim; Molina Jurado, Antonio; Moores, John; Mora-Sotomayor, Luis; Morookian, John Michael; Morris, Richard; Morrison, Shaunna; Mueller-Mellin, Reinhold; Muller, Jan-Peter; Muñoz Caro, Guillermo; Nachon, Marion; Navarro López, Sara; Navarro-González, Rafael; Nealson, Kenneth; Nefian, Ara; Nelson, Tony; Newcombe, Megan; Newman, Claire; Newsom, Horton; Nikiforov, Sergey; Nixon, Brian; Noe Dobrea, Eldar; Nolan, Thomas; Oehler, Dorothy; Ollila, Ann; Olson, Timothy; de Pablo Hernández, Miguel Ángel; Paillet, Alexis; Pallier, Etienne; Palucis, Marisa; Parker, Timothy; Parot, Yann; Patel, Kiran; Paton, Mark; Paulsen, Gale; Pavlov, Alex; Pavri, Betina; Peinado-González, Verónica; Peret, Laurent; Perez, Rene; Perrett, Glynis; Peterson, Joe; Pilorget, Cedric; Pinet, Patrick; Pla-García, Jorge; Plante, Ianik; Poitrasson, Franck; Polkko, Jouni; Popa, Radu; Posiolova, Liliya; Posner, Arik; Pradler, Irina; Prats, Benito; Prokhorov, Vasily; Purdy, Sharon Wilson; Raaen, Eric; Radziemski, Leon; Rafkin, Scot; Ramos, Miguel; Rampe, Elizabeth; Raulin, François; Ravine, Michael; Reitz, Günther; Rennó, Nilton; Rice, Melissa; Richardson, Mark; Robert, François; Robertson, Kevin; Rodriguez Manfredi, José Antonio; Romeral-Planelló, Julio J; Rowland, Scott; Rubin, David; Saccoccio, Muriel; Salamon, Andrew; Sandoval, Jennifer; Sanin, Anton; Sans Fuentes, Sara Alejandra; Saper, Lee; Sarrazin, Philippe; Sautter, Violaine; Savijärvi, Hannu; Schieber, Juergen; Schmidt, Mariek; Schmidt, Walter; Scholes, Daniel; Schoppers, Marcel; Schröder, Susanne; Schwenzer, Susanne; Sebastian Martinez, Eduardo; Sengstacken, Aaron; Shterts, Ruslan; Siebach, Kirsten; Siili, Tero; Simmonds, Jeff; Sirven, Jean-Baptiste; Slavney, Susie; Sletten, Ronald; Smith, Michael; Sobrón Sánchez, Pablo; Spanovich, Nicole; Spray, John; Squyres, Steven; Stack, Katie; Stalport, Fabien; Stein, Thomas; Stewart, Noel; Stipp, Susan Louise Svane; Stoiber, Kevin; Stolper, Ed; Sucharski, Bob; Sullivan, Rob; Summons, Roger; Sumner, Dawn; Sun, Vivian; Supulver, Kimberley; Sutter, Brad; Szopa, Cyril; Tan, Florence; Tate, Christopher; Teinturier, Samuel; ten Kate, Inge; Thomas, Peter; Thompson, Lucy; Tokar, Robert; Toplis, Mike; Torres Redondo, Josefina; Trainer, Melissa; Treiman, Allan; Tretyakov, Vladislav; Urqui-O'Callaghan, Roser; Van Beek, Jason; Van Beek, Tessa; VanBommel, Scott; Vaniman, David; Varenikov, Alexey; Vasavada, Ashwin; Vasconcelos, Paulo; Vicenzi, Edward; Vostrukhin, Andrey; Voytek, Mary; Wadhwa, Meenakshi; Ward, Jennifer; Weigle, Eddie; Wellington, Danika; Westall, Frances; Wiens, Roger Craig; Wilhelm, Mary Beth; Williams, Amy; Williams, Joshua; Williams, Rebecca; Williams, Richard B; Wilson, Mike; Wimmer-Schweingruber, Robert; Wolff, Mike; Wong, Mike; Wray, James; Wu, Megan; Yana, Charles; Yen, Albert; Yingst, Aileen; Zeitlin, Cary; Zimdar, Robert; Zorzano Mier, María-Paz
2013-07-19
Stable isotope ratios of H, C, and O are powerful indicators of a wide variety of planetary geophysical processes, and for Mars they reveal the record of loss of its atmosphere and subsequent interactions with its surface such as carbonate formation. We report in situ measurements of the isotopic ratios of D/H and (18)O/(16)O in water and (13)C/(12)C, (18)O/(16)O, (17)O/(16)O, and (13)C(18)O/(12)C(16)O in carbon dioxide, made in the martian atmosphere at Gale Crater from the Curiosity rover using the Sample Analysis at Mars (SAM)'s tunable laser spectrometer (TLS). Comparison between our measurements in the modern atmosphere and those of martian meteorites such as ALH 84001 implies that the martian reservoirs of CO2 and H2O were largely established ~4 billion years ago, but that atmospheric loss or surface interaction may be still ongoing.
Mars and the remarkable Viking results
NASA Technical Reports Server (NTRS)
Soffen, G. A.
1978-01-01
It is pointed out that the Viking missions to Mars are the most extraordinary and complex remote effort ever performed by man. Factors which made the Viking results so remarkable are related to the technological engineering accomplishment, the voluminous scientific data about the planet, and the public interest. Quite surprisingly it was found that the Viking 1 landing site was very similar to the California desert. Attention is given to details of spacecraft landing on the Martian surface, aspects of landing site selection, the design and the operation of Lander instruments, the nine different investigations performed by the Lander, the significance of the pictures obtained of Mars, the remarkable heterogeneity of the planet, the extent and variety of volcanism, the presence of water in the solid and gaseous form on the Martian surface, the presence of water in the liquid phase at some time in the past, the two natural Martian satellites, the composition of the Martian polar caps and their changes during the seasons, the composition of the atmosphere, and the biological results, which remain ambiguous.
The Phoenix Mars Lander Robotic Arm
NASA Technical Reports Server (NTRS)
Bonitz, Robert; Shiraishi, Lori; Robinson, Matthew; Carsten, Joseph; Volpe, Richard; Trebi-Ollennu, Ashitey; Arvidson, Raymond E.; Chu, P. C.; Wilson, J. J.; Davis, K. R.
2009-01-01
The Phoenix Mars Lander Robotic Arm (RA) has operated for over 150 sols since the Lander touched down on the north polar region of Mars on May 25, 2008. During its mission it has dug numerous trenches in the Martian regolith, acquired samples of Martian dry and icy soil, and delivered them to the Thermal Evolved Gas Analyzer (TEGA) and the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The RA inserted the Thermal and Electrical Conductivity Probe (TECP) into the Martian regolith and positioned it at various heights above the surface for relative humidity measurements. The RA was used to point the Robotic Arm Camera to take images of the surface, trenches, samples within the scoop, and other objects of scientific interest within its workspace. Data from the RA sensors during trenching, scraping, and trench cave-in experiments have been used to infer mechanical properties of the Martian soil. This paper describes the design and operations of the RA as a critical component of the Phoenix Mars Lander necessary to achieve the scientific goals of the mission.
Water-bearing minerals on mars: source of observed mid-latitude water?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bish, D. L.; Carey, J. W.; Fialips, C. I.
2003-01-01
The Odyssey spacecraft documented the existence of heterogeneously distributed hydrogen at martian mid-latitudes, suggesting that large areas of the near-equatorial highlands contain near-surface deposits of 'chemically and/or physically bound H20 and/or OH' in amounts up to 3 .8% equivalent H20. Shallow occurrences of water ice are not stable near the martian equator, making the hydrogen deposits at these latitudes somewhat enigmatic. Clay minerals and zeolites have both been proposed as possible water-bearing constituents on Mars, and both are common terrestrial alteration products of hydrovolcanic basaltic ashes and palagonitic material comparable to those that may be widespread on Mars. Smectites withinmore » martian meteorites, attributed to hydrous alteration on Mars rather than on Earth, provide direct evidence of clay minerals from Mars. In addition, new thermal emission spectrometer (TES) data provide good evidence for unspecified zeolites in martian surface dust [6] . The nature of the hydrogen-containing material observed in the equatorial martian regolith is of particular importance to the question of whether hydrous minerals have formed in the past on Mars. Also, whether these minerals exist in a hydrated (i .e., containing H2O molecules in their structures) or dehydrated state is a crucial question . The existence of hydrous minerals is also important in connection with their possible role in affecting the diurnal variation of the martian atmosphere, in their potential role in unraveling the paleohydrology and paleobiology of Mars, and in their possible use as a water resource to support exploration of the martian mid-latitudes.« less
A Petrographic History of Martian Meteorite ALH84001: Two Shocks and an Ancient Age
NASA Technical Reports Server (NTRS)
Treiman, Allan H.
1995-01-01
ALH84001 is an igneous meteorite, an orthopyroxenite of martian origin. It contains petrographic evidence of two shock metamorphic events, separated by thermal and chemical events. The evidence for two shock events suggests that ALH84001 is ancient and perhaps a sample of the martian highlands. From petrography and mineral chemistry, the history of ALH84001 must include: crystallization from magma, a first shock (impact) metamorphism, thermal metamorphism, low-temperature chemical alteration, and a second shock (impact) metamorphism. Originally, ALH84001 was igneous, an orthopyroxene-chromite cumulate. In the first shock event, the igneous rock was cut by melt-breccia or cataclastic veinlets, now bands of equigranular fine-grained pyroxene and other minerals (crush zones). Intact fragments of the cumulate were fractured and strained (now converted to polygonized zones). The subsequent thermal metamorphism (possibly related to the first shock) annealed the melt-breccia or cataclastic veinlets to their present granoblastic texture and permitted chemical homogenization of all mineral species present. The temperature of metamorphism was at least 875 C, based on mineral thermometers. Next, Mg-Fe-Ca carbonates and pyrite replaced plagioclase in both clasts and granular bands, producing ellipsoidal carbonate globules with sub-micron scale compositional stratigraphy, repeated identically in all globules, The second shock event produced microfault offsets of carbonate stratigraphy and other mineral contacts, radial fractures around chromite and maskelynite, and strain birefringence in pyroxene. Maskelynite could not have been preserved from the first shock event, because it would have crystallized back to plagioclase. The martian source area for ALH84001 must permit this complex, multiple impact history. Very few craters on young igneous surfaces are on or near earlier impact features. It is more likely that ALH84001 was ejected from an old igneous unit (Hesperian or Noachian age), pocked by numerous impact craters over its long exposure at the martian surface.
NASA Astrophysics Data System (ADS)
Savransky, D.; Bell, J. F.
2004-12-01
We calculate the quantitative color of Mars using calibrated data from the Panoramic Cameras (Pancams) on the Mars Exploration Rovers Spirit and Opportunity. Measured color values allow us to directly compare the color properties of the rover landing sites with the Mars Pathfinder and Viking Lander sites, to quantify systematic changes in color over time, and to increase our perceptual understanding of conditions on the Martian surface. By converting calculated color values to the sRGB color space employed by the majority of modern computer monitors and printers, "true color" representations of the martian surface and sky are produced. Initial colorimetry values are calculated as CIE tristimulus values (the red, green, and blue components of human color vision). Calibrated radiance images from the six discrete left eye Pancam narrow band filters (centered at 753, 673, 601, 535, 482, and 432 nm) are splined to estimate an entire human visible spectrum (360 to 830 nm) for each pixel. Tristimulus values are found by discretely summing over the products of the spectra and 3 CIE color matching functions, allowing chromaticities (normalized tristimulus values) to be calculated. CIE tristimulus values are convolved with a transformation matrix to create sRGB tristimulus values which are then fit to a 2.2 gamma curve and scaled to the range of 0 to 255, 24 bit encoding (8 bits/channel) used by the majority of color displays. An average normalized surface spectrum is used to approximate chromaticities for images with only partial left eye filter sets. Chromaticity values of the martian sky and surface at various points throughout the mission generally match those from the Pathfinder and Viking landing sites. Using the color designation method defined by the ISCC-NBS, the martian sky is "light to moderate yellowish brown," while average rocks and soil vary between "dark grayish yellowish brown" to "moderate brown". Study of changes in the colors of the rover calibration targets over the first 200 sols of each mission show that the chromaticities are trending towards the "dark yellowish brown" portion of the color space, indicating that the calibration targets are getting covered by martian dust as the mission progresses and allowing a quantitative estimate of dust deposition rates. A similar study of sky chromaticities throughout the missions shows trends in the color of the sky towards "very light yellowish brown." Comparing these trends with measured dust opacities throughout the missions would predict that, to the human eye, the "true" martian sky (with no suspended dust) would appear a very light yellowish brown color - almost directly opposite from the color of Earth's sky. However, this hypothesis needs to be tested against multiple scattering radiative transfer models of the martian sky radiance field.
An Assessment of Dust Effects on Planetary Surface Systems to Support Exploration Requirements
NASA Technical Reports Server (NTRS)
Wagner, Sandy
2004-01-01
Apollo astronauts learned first hand how problems with dust impact lunar surface missions. After three days, lunar dust contamination on EVA suit bearings led to such great difficulty in movement that another EVA would not have been possible. Dust clinging to EVA suits was transported into the Lunar Module. During the return trip to Earth, when micro gravity was reestablished, the dust became airborne and floated through the cabin. Crews inhaled the dust and it irritated their eyes. Some mechanical systems aboard the spacecraft were damaged due to dust contamination. Study results obtained by Robotic Martian missions indicate that Martian surface soil is oxidative and reactive. Exposures to the reactive Martian dust will pose an even greater concern to the crew health and the integrity of the mechanical systems. As NASA embarks on planetary surface missions to support its Exploration Vision, the effects of these extraterrestrial dusts must be well understood and systems must be designed to operate reliably and protect the crew in the dusty environments of the Moon and Mars. The AIM Dust Assessment Team was tasked to identify systems that will be affected by the respective dust, how they will be affected, associated risks of dust exposure, requirements that will need to be developed, identified knowledge gaps, and recommended scientific measurements to obtain information needed to develop requirements, and design and manufacture the surface systems that will support crew habitation in the lunar and Martian outposts.
The provenance, formation, and implications of reduced carbon phases in Martian meteorites
NASA Astrophysics Data System (ADS)
Steele, Andrew; McCubbin, Francis M.; Fries, Marc D.
2016-11-01
This review is intended to summarize the current observations of reduced carbon in Martian meteorites, differentiating between terrestrial contamination and carbon that is indigenous to Mars. Indeed, the identification of Martian organic matter is among the highest priority targets for robotic spacecraft missions in the next decade, including the Mars Science Laboratory and Mars 2020. Organic carbon compounds are essential building blocks of terrestrial life, so the occurrence and origin (biotic or abiotic) of organic compounds on Mars is of great significance; however, not all forms of reduced carbon are conducive to biological systems. This paper discusses the significance of reduced organic carbon (including methane) in Martian geological and astrobiological systems. Specifically, it summarizes current thinking on the nature, sources, and sinks of Martian organic carbon, a key component to Martian habitability. Based on this compilation, reduced organic carbon on Mars, including detections of methane in the Martian atmosphere, is best described through a combination of abiotic organic synthesis on Mars and infall of extraterrestrial carbonaceous material. Although conclusive signs of Martian life have yet to be revealed, we have developed a strategy for life detection on Mars that can be utilized in future life-detection studies.
Geologic Map of MTM 35337, 40337, and 45337 Quadrangles, Deuteronilus Mensae Region of Mars
Chuang, Frank C.; Crown, David A.
2009-01-01
Deuteronilus Mensae, first defined as an albedo feature at lat 35.0 deg N., long 5.0 deg E., by U.S. Geological Survey (USGS) and International Astronomical Union (IAU) nomenclature, is a gradational zone along the dichotomy boundary in the northern mid-latitudes of Mars. The boundary in this location includes the transition from the rugged cratered highlands of Arabia Terra to the northern lowland plains of Acidalia Planitia. Within Deuteronilus Mensae, polygonal mesas are prominent along with features diagnostic of Martian fretted terrain, including lobate debris aprons, lineated valley fill, and concentric crater fill. Lobate debris aprons, as well as the valley and crater fill deposits, are geomorphic indicators of ground ice, and their concentration in Deuteronilus Mensae is of great interest because of their potential association with Martian climate change. The paucity of impact craters on the surfaces of debris aprons and the presence of ice-cemented mantle material imply young (for example, Amazonian) surface ages that are consistent with recent climate change in this region of Mars. North of Deuteronilus Mensae are the northern lowlands, a potential depositional sink that may have had large standing bodies of water or an ocean in the past. The northern lowlands have elevations that are several kilometers below the ancient cratered highlands with significantly younger surface ages. The morphologic and topographic characteristics of the Deuteronilus Mensae region record a diverse geologic history, including significant modification of the ancient highland plateau and resurfacing of low-lying regions. Previous studies of this region have interpreted a complex array of geologic processes, including eolian, fluvial and glacial activity, coastal erosion, marine deposition, mass wasting, tectonic faulting, effusive volcanism, and hydrovolcanism. The origin and age of the Martian crustal dichotomy boundary are fundamental questions that remain unresolved at the present time. Several scenarios for its formation, including single and multiple large impact events, have been proposed and debated in the literature. Endogenic processes whereby crust is thinned by internal mantle convection and tectonic processes have also been proposed. Planetary accretion models and isotopic data from Martian meteorites suggest that the crust formed very early in Martian history. Using populations of quasi-circular depressions extracted from the topography of Mars, other studies suggest that the age difference between the highlands and lowlands could be ~100 m.y.. Furthermore, understanding the origin and age of the dichotomy boundary has been made more complicated due to significant erosion and deposition that have modified the boundary and its adjacent regions. The resulting diversity of terrains and features is likely a combined result of ancient and recent events. Detailed geologic analyses of dichotomy boundary zones are important for understanding the spatial and temporal variations in highland evolution. This information, and comparisons to other highland regions, can help elucidate the scale of potential environmental changes. Previous geomorphic and geologic mapping investigations of the Deuteronilus Mensae region have been completed at local to global scales. The regional geology was first mapped by Lucchitta (1978) at 1:5,000,000 scale using Mariner 9 data. This study concluded that high crater flux early in Martian history formed overlapping craters and basins that were later filled by voluminous lava flows that buried the impacted surface, creating the highlands. After this period of heavy bombardment, fluvial erosion of the highlands formed the canyons and valleys, followed by dissection that created the small mesas and buttes, and later, formation of the steep escarpment marking the present-day northern highland margin. After valley dissection, mass wasting and eolian processes caused lateral retreat of mesas and buttes
Workshop on chemical weathering on Mars, part 2
NASA Technical Reports Server (NTRS)
Burns, Roger (Editor); Banin, Amos (Editor)
1992-01-01
The third Mars Surface and Atmosphere Through Time (MSATT) Workshop, which was held 10-12 Sep. 1992, at Cocoa Beach/Cape Kennedy, focused on chemical weathering of the surface of Mars. The 30 papers presented at the workshop described studies of Martian weathering processes based on results from the Viking mission experiments, remote sensing spectroscopic measurements, studies of the shergottite, nakhlite, and chassignite (SNC) meteorites, laboratory measurements of surface analog materials, and modeling of reaction pathways. A summary of the technical sessions is presented and a list of workshop participants is included.
Numerical simulation of thermally induced near-surface flows over Martian terrain
NASA Technical Reports Server (NTRS)
Parish, T. R.; Howard, A. D.
1993-01-01
Numerical simulations of the Martian near-surface wind regime using a mesoscale atmospheric model have shown that the thermally induced near-surface winds are analogous to terrestrial circulations. In particular, katabatic wind displays a striking similarity to flow observed over Antarctica. Introduction of solar radiation strongly perturbs the slope flows; anabatic conditions develop in middle to high latitudes during the daytime hours due to the solar heating of the sloping terrain. There appears to be a rapid transition from the katabatic to the anabatic flow regimes, emphasizing the primary importance of radiative exchanges at the surface in specifying the horizontal pressure gradient force.
Analysis and interpretation of Viking labeled release experimental results
NASA Technical Reports Server (NTRS)
Levin, G. V.
1979-01-01
The Viking Labeled Release (LR) life detection experiment on the surface of Mars produced data consistent with a biological interpretation. In considering the plausibility of this interpretation, terrestrial life forms were identified which could serve as models for Martian microbial life. Prominent among these models are lichens which are known to survive for years in a state of cryptobiosis, to grow in hostile polar environments, to exist on atmospheric nitrogen as sole nitrogen source, and to survive without liquid water by absorbing water directly from the atmosphere. Another model is derived from the endolithic bacteria found in the dry Antarctic valleys; preliminary experiments conducted with samples of these bacteria indicate that they produce positive LR responses approximating the Mars results. However, because of the hositility of the Martian environment to life, and the failure to find organics on the surface of Mars, a number of nonbiological explanations were advanced to account for the Viking LR data. A reaction of the LR nutrient with putative surface hydrogen peroxide is the leading candidate. Other possibilities raised include reactions caused by or with ultraviolet irradiation, gamma-Fe2O3, metalloperoxides or superoxides.
Life on Mars? II. Physical restrictions
NASA Technical Reports Server (NTRS)
Mancinelli, R. L.; Banin, A.
1995-01-01
The primary physical factors important to life's evolution on a planet include its temperature, pressure and radiation regimes. Temperature and pressure regulate the presence and duration of liquid water on the surface of Mars. The prolonged presence of liquid water is essential for the evolution and sustained presence of life on a planet. It has been postulated that Mars has always been a cold dry planet; it has also been postulated that early mars possessed a dense atmosphere of CO2 (> or = 1 bar) and sufficient water to cut large channels across its surface. The degree to which either of these postulates is true correlates with the suitability of Mars for life's evolution. Although radiation can destroy living systems, the high fluxes of UV radiation on the martian surface do not necessarily stop the origin and early evolution of life. The probability for life to have arisen and evolved to a significant degree on Mars, based on the postulated ranges of early martian physical factors, is almost solely related to the probability of liquid water existing on the planet for at least hundreds of millions to billions of years.
Martian crater counts on Elysium Mons
NASA Technical Reports Server (NTRS)
Mcbride, Kathleen; Barlow, Nadine G.
1990-01-01
Without returned samples from the Martian surface, relative age chronologies and stratigraphic relationships provide the best information for determining the ages of geomorphic features and surface regions. Crater-size frequency distributions of six recently mapped geological units of Elysium Mons were measured to establish their relative ages. Most of the craters on Elysium Mons and the adjacent plains units are between 500 and 1000 meters in diameter. However, only craters 1 km in diameter or larger were used because of inadequate spatial resolution of some of the Viking images and to reduce probability of counting secondary craters. The six geologic units include all of the Elysium Mons construct and a portion of the plains units west of the volcano. The surface area of the units studied is approximately 128,000 sq km. Four of the geologic units were used to create crater distribution curves. There are no craters larger than 1 km within the Elysium Mons caldera. Craters that lacked raised rims, were irregularly shaped, or were arranged in a linear pattern were assumed to be endogenic in origin and not counted. A crater frequency distribution analysis is presented.
Alteration of Sedimentary Clasts in Martian Meteorite Northwest Africa 7034
NASA Technical Reports Server (NTRS)
McCubbin, F. M.; Tartese, R.; Santos, A. R.; Domokos, G.; Muttik, N.; Szabo, T.; Vazquez, J.; Boyce, J. W.; Keller, L. P.; Jerolmack, D. J.;
2014-01-01
The martian meteorite Northwest Africa (NWA) 7034 and pairings represent the first brecciated hand sample available for study from the martian surface [1]. Detailed investigations of NWA 7034 have revealed substantial lithologic diversity among the clasts [2-3], making NWA 7034 a polymict breccia. NWA 7034 consists of igneous clasts, impact-melt clasts, and "sedimentary" clasts represented by prior generations of brecciated material. In the present study we conduct a detailed textural and geochemical analysis of the sedimentary clasts.
Deciphering Martian climatic history using returned samples
NASA Technical Reports Server (NTRS)
Paige, D. A.; Krieger, D. B.; Brigham, C. A.
1988-01-01
By necessity, a Mars sample return mission must sample the upper few meters of the Martian surface. This material was subjected to a wide variety of physical processes. Presently, the most important processes are believed to be wind-driven erosion and deposition, and water ice accumulation at higher latitudes. A sample return mission represents an opportunity to better understand and quantify these important geological processes. By obtaining sample cores at key locations, it may be possible to interpret much of recent Martian climatic history.
Mars Observer Mission: Mapping the Martian World
NASA Technical Reports Server (NTRS)
1992-01-01
The 1992 Mars Observer Mission is highlighted in this video overview of the mission objectives and planning. Using previous photography and computer graphics and simulation, the main objectives of the 687 day (one Martian year) consecutive orbit by the Mars Observer Satellite around Mars are explained. Dr. Arden Albee, the project scientist, speaks about the pole-to-pole mapping of the Martian surface topography, the planned relief maps, the chemical and mineral composition analysis, the gravity fields analysis, and the proposed search for any Mars magnetic fields.
In Situ Resource Utilization (ISRU II) Technical Interchange Meeting
NASA Technical Reports Server (NTRS)
Kaplan, David (Compiler); Saunders, Stephen R. (Compiler)
1997-01-01
This volume contains extended abstracts that have been accepted for presentation at the In Situ Resource Utilization (ISRU II) Technical Interchange Meeting, November 18-19, 1997, at the Lunar and Planetary Institute, Houston, Texas. Included are topics which include: Extraterrestrial resources, in situ propellant production, sampling of planetary surfaces, oxygen production, water vapor extraction from the Martian atmosphere, gas generation, cryogenic refrigeration, and propellant transport and storage.
Extraction of Water from Martian Regolith Simulant via Open Reactor Concept
NASA Technical Reports Server (NTRS)
Trunek, Andrew J.; Linne, Diane L.; Kleinhenz, Julie E.; Bauman, Steven W.
2018-01-01
To demonstrate proof of concept water extraction from simulated Martian regolith, an open reactor design is presented along with experimental results. The open reactor concept avoids sealing surfaces and complex moving parts. In an abrasive environment like the Martian surface, those reactor elements would be difficult to maintain and present a high probability of failure. A general lunar geotechnical simulant was modified by adding borax decahydrate (Na2B4O7·10H2O) (BDH) to mimic the 3 percent water content of hydrated salts in near surface soils on Mars. A rotating bucket wheel excavated the regolith from a source bin and deposited the material onto an inclined copper tray, which was fitted with heaters and a simple vibration system. The combination of vibration, tilt angle and heat was used to separate and expose as much regolith surface area as possible to liberate the water contained in the hydrated minerals, thereby increasing the efficiency of the system. The experiment was conducted in a vacuum system capable of maintaining a Martian like atmosphere. Evolved water vapor was directed to a condensing system using the ambient atmosphere as a sweep gas. The water vapor was condensed and measured. Processed simulant was captured in a collection bin and weighed in real time. The efficiency of the system was determined by comparing pre- and post-processing soil mass along with the volume of water captured.
Planetary Dust: Cross-Functional Considerations
NASA Technical Reports Server (NTRS)
Wagner, Sandra
2006-01-01
Apollo astronauts learned first hand how problems with dust impact lunar surface missions. After three days, lunar dust contaminating on EVA suit bearings led to such great difficulty in movement that another EVA would not have been possible. Dust clinging to EVA suits was transported into the Lunar Module. During the return trip to Earth, when microgravity was reestablished, the dust became airborne and floated through the cabin. Crews inhaled the dust and it irritated their eyes. Some mechanical systems aboard the spacecraft were damaged due to dust contamination. Study results obtained by Robotic Martian missions indicate that Martian surface soil is oxidative and reactive. Exposures to the reactive Martian dust will pose an even greater concern to the crew health and the integrity of the mechanical systems. As NASA embarks on planetary surface missions to support its Exploration Vision, the effects of these extraterrestrial dusts must be well understood and systems must be designed to operate reliably and protect the crew in the dusty environments of the Moon and Mars. The AIM Dust Assessment Team was tasked to identify systems that will be affected by the respective dust, how they will be affected, associated risks of dust exposure, requirements that will need to be developed, identified knowledge gaps, and recommended scientific measurements to obtain information needed to develop requirements, and design and manufacture the surface systems that will support crew habitation in the lunar and Martian outposts.
NASA Technical Reports Server (NTRS)
Zubrin, Robert M.
1991-01-01
The following paper reports on a design study of a novel space transportation concept known as a 'NIMF' (Nuclear rocket using Indigenous Martian Fuel). The NIMF is a ballistic vehicle which obtains its propellant out of the Martian air by compression and liquefaction of atmospheric CO2. This propellant is subsequently used to generate rocket thrust at a specific impulse of 264 s by being heated to high temperature (2800 K) gas in the NIMFs' nuclear thermal rocket engines. The vehicle is designed to provide surface to orbit and surface to surface transportation, as well as housing, for a crew of three astronauts. It is capable of refueling itself for a flight to its maximum orbit in less than 50 days. The ballistic NIMF has a mass of 44.7 tonnes and, with the assumed 2800 K propellant temperature, is capable of attaining highly energetic (250 km by 34,000 km elliptical) orbits. This allows it to rendezvous with interplanetary transfer vehicles which are only very loosely bound into orbit around Mars. If a propellant temperature of 2000 K is assumed, then low Mars orbit can be attained; while if 3100 K is assumed, then the ballistic NIMF is capable of injecting itself onto a minimum energy transfer orbit to Earth in a direct ascent from the Martian surface.
NASA Technical Reports Server (NTRS)
Park, J.; Ming, D. W.; Garrison, D. H.; Jones, J. H.; Bogard, D. D.; Nagao, K.
2009-01-01
The purpose of this noble gas investigation was to evaluate the possibility of measuring noble gases in martian rocks and air by future robotic missions such as the Mars Science Laboratory (MSL). The MSL mission has, as part of its payload, the Sample Analysis at Mars (SAM) instrument, which consists of a pyrolysis oven integrated with a GCMS. The MSL SAM instrument has the capability to measure noble gas compositions of martian rocks and atmosphere. Here we suggest the possibility of K-Ar age dating based on noble gas release of martian rocks by conducting laboratory simulation experiments on terrestrial basalts and martian meteorites. We provide requirements for the SAM instrument to obtain adequate noble gas abundances and compositions within the current SAM instrumental operating conditions, especially, a power limit that prevents heating the furnace above approx.1100 C. In addition, Martian meteorite analyses from NASA-JSC will be used as ground truth to evaluate the feasibility of robotic experiments to constrain the ages of martian surface rocks.
NASA Astrophysics Data System (ADS)
Seelos, F. P.; Arvidson, R. E.; Guinness, E. A.; Wolff, M. J.
2004-12-01
The Mars Exploration Rover (MER) Panoramic Camera (Pancam) observation strategy included the acquisition of multispectral data sets specifically designed to support the photometric analysis of Martian surface materials (J. R. Johnson, this conference). We report on the numerical inversion of observed Pancam radiance-on-sensor data to determine the best-fit surface bidirectional reflectance parameters as defined by Hapke theory. The model bidirectional reflectance parameters for the Martian surface provide constraints on physical and material properties and allow for the direct comparison of Pancam and orbital data sets. The parameter optimization procedure consists of a spatial multigridding strategy driving a Levenberg-Marquardt nonlinear least squares optimization engine. The forward radiance models and partial derivatives (via finite-difference approximation) are calculated using an implementation of the DIScrete Ordinate Radiative Transfer (DISORT) algorithm with the four-parameter Hapke bidirectional reflectance function and the two-parameter Henyey-Greenstein phase function defining the lower boundary. The DISORT implementation includes a plane-parallel model of the Martian atmosphere derived from a combination of Thermal Emission Spectrometer (TES), Pancam, and Mini-TES atmospheric data acquired near in time to the surface observations. This model accounts for bidirectional illumination from the attenuated solar beam and hemispherical-directional skylight illumination. The initial investigation was limited to treating the materials surrounding the rover as a single surface type, consistent with the spatial resolution of orbital observations. For more detailed analyses the observation geometry can be calculated from the correlation of Pancam stereo pairs (J. M. Soderblom et al., this conference). With improved geometric control, the radiance inversion can be applied to constituent surface material classes such as ripple and dune forms in addition to the soils on the Meridiani plain. Under the assumption of a Henyey-Greenstein phase function, initial results for the Opportunity site suggest a single scattering albedo on the order of 0.25 and a Henyey-Greenstein forward fraction approaching unity at an effective wavelength of 753 nm. As an extension of the photometric modeling, the radiance inversion also provides a means of calculating surface reflectance independent of the radiometric calibration target. This method for determining observed reflectance will provide an additional constraint on the dust deposition model for the calibration target.
Clastic Pipes on Mars: Evidence for a Near Surface Groundwater System
NASA Astrophysics Data System (ADS)
Wheatley, D. F.; Chan, M. A.; Okubo, C. H.
2017-12-01
Clastic pipes, a type of vertical, columnar injectite, occur throughout the terrestrial stratigraphic record and are identified across many Martian terrains. Terrestrial pipe analogs can aid in identifying clastic pipes on Mars to understand their formation processes and their implications for a past near-surface groundwater system. On Earth, clastic pipes form through fluidization of overpressurized sediment. Fluidization occurs when the upward frictional (i.e., drag) forces of escaping fluids overpower the downward acting gravitational force. To create the forces necessary for pipe formation requires overpressurization of a body of water-saturated porous media overlain by a low permeability confining layer. As the pressure builds, the confining layer eventually fractures and the escaping fluids fluidize the porous sediment causing the sediment to behave like a fluid. These specific formation conditions record evidence of a violent release of fluid-suspended sediment including brecciation of the host and sealing material, internal outward grading/sorting that results in a coarser-grained commonly better cemented outer rind, traction structures, and a cylindrical geometry. Pipes form self-organized, dispersed spatial relationships due to the efficient diffusion of overpressured zones in the subsurface and the expulsion of sediment under pressure. Martian pipes occur across the northern lowlands, dichotomy boundary, and southern highlands in various forms of erosional relief ranging from newer eruption structures to eroded cylindrical/conical mounds with raised rims to highly eroded mounds/hills. Similar to terrestrial examples, Martian pipes form in evenly-spaced, self-organized arrangements. The pipes are typically internally massive with a raised outer rim (interpreted as a sorted, coarser-grained, better-cemented rim). This evidence indicates that Martian pipes formed through fluidization, which requires a near-surface groundwater system. Pipes create a window into the subsurface by excavating subsurface sediment and waters. After emplacement, pipes can also act as fluid conduits, channeling post-depositional fluid flow. The preferential porosity and flow paths may make the pipes an ideal exploration target for microbial life.
The Effect of Impacts on the Early Martian Climate
NASA Technical Reports Server (NTRS)
Colaprete, A.; Haberle, R. M.; Segura, T. L.; Toon, O. B.; Zahnle, K.
2004-01-01
The first images returned by the Mariner 7 spacecraft of the Martian surface showed a landscape heavily scared by impacts. Mariner 9 imaging revealed geomorphic features including valley networks and outflow channels that suggest liquid water once flowed at the surface of Mars. Further evidence for water erosion and surface modification has come from the Viking Spacecraft, Mars Pathfinder, Mars Global Surveyor's (MGS) Mars Orbiter Camera (MOC), and Mars Odyssey's THEMIS instrument. In addition to network channels, this evidence includes apparent paleolake beds, fluvial fans and sedimentary layers. The estimated erosion rates necessary to explain the observed surface morphologies present a conundrum. The rates of erosion appear to be highest when the early sun was fainter and only 75% as luminous as it is today. All of this evidence points to a very different climate than what exists on Mars today. The most popular paradigm for the formation of the valley networks is that Mars had at one time a warm (T average > 273), wetter and stable climate. Possible warming mechanisms have included increased surface pressures, carbon dioxide clouds and trace greenhouse gasses. Yet to date climate models have not been able to produce a continuously warm and wet early Mars. The rates of erosion appear to correlate with the rate at which Mars was impacted thus an alternate possibility is transient warm and wet conditions initiated by large impacts. It is widely accepted that even relatively small impacts (approx. 10 km) have altered the past climate of Earth to such an extent as to cause mass extinctions. Mars has been impacted with a similar distribution of objects. The impact record at Mars is preserved in the abundance of observable craters on it surface. Impact induced climate change must have occurred on Mars.
A New Vehicle for Planetary Surface Exploration: The Mars Tumbleweed
NASA Technical Reports Server (NTRS)
Antol, Jeffrey
2005-01-01
The surface of Mars is currently being explored with a combination of orbiting spacecraft, stationary landers and wheeled rovers. However, only a small portion of the Martian surface has undergone in-situ examination. Landing sites must be chosen to insure the safety of the vehicles (and human explorers) and provide the greatest opportunity for mission success. While wheeled rovers provide the ability to move beyond the landing sites, they are also limited in their ability to traverse rough terrain; therefore, many scientifically interesting sites are inaccessible by current vehicles. In order to access these sites, a capability is needed that can transport scientific instruments across varied Martian terrain. A new "rover" concept for exploring the Martian surface, known as the Mars Tumbleweed, will derive mobility through use of the surface winds on Mars, much like the Tumbleweed plant does here on Earth. Using the winds on Mars, a Tumbleweed rover could conceivably travel great distances and cover broad areas of the planetary surface. Tumbleweed vehicles would be designed to withstand repeated bouncing and rolling on the rock covered Martian surface and may be durable enough to explore areas on Mars such as gullies and canyons that are currently inaccessible by conventional rovers. Achieving Mars wind-driven mobility; however, is not a minor task. The density of the atmosphere on Mars is approximately 60-80 times less than that on Earth and wind speeds are typically around 2-5 m/s during the day, with periodic winds of 10 m/s to 20 m/s (in excess of 25 m/s during seasonal dust storms). However, because of the Martian atmosphere#s low density, even the strongest winds on Mars equate to only a gentle breeze on Earth. Tumbleweed rovers therefore need to be relatively large (4-6 m in diameter), very lightweight (10-20 kg), and equipped with lightweight, low-power instruments. This paper provides an overview of the Tumbleweed concept, presents several notional design concepts, mission scenarios, and highlights recent tests and analyses of Tumbleweed prototypes.
NASA Astrophysics Data System (ADS)
Brack, A.; Commeyras, A.; Derenne, S.; Despois, D.; Dhamelincourt, P.; Dobrijevic, M.; Engrand, C.; Geffard, M.; Grenier-Loustalot, M. F.; Largeau, C.
2000-07-01
On Earth, the molecules which participated in the emergence of life about 4 Ga ago have been erased by plate tectonics, the permanent presence of running water, unshielded solar ultraviolet radiation and by oxygen produced by life. Since the environment of the early Mars about 3.5-4 Ga ago was probably very close to that of the early Earth, life might have emerged on Mars as well and might give us some insight into the prebiotic chemistry that took place on Earth about 4 Ga ago. Furthermore, there is a possibility that life still exists on Mars, protected from the harsh environment in some specific locales. In order to search for life on Mars, one should look for potential biogenic markers such as organic matter and inorganic signatures (microfossils, biominerals, biogenic etching, isotopic fingerprints...) which have different degrees of resistance to the Martian environment. As biomarkers could be organic or inorganic in nature, complete organic and mineral analyses should therefore be conducted in parallel on the same sets of samples, going from the least destructive to the most destructive technique of micro-analysis. Furthermore, in situ analyses should be complemented by high precision and high sensitivity laboratory measurements of returned Martian samples. Due to the very oxidized Martian environment, organic molecules should be searched for in protected sites, either surface boulders or near sub-surface, in layers deep enough for avoiding the oxidizing effect of the atmosphere. Molecules that should be looked for include low and high molecular weight organics (like alkanoic acids, peroxiacids, PAHs and amino acids, respectively), and macromolecular com-pounds like kerogens or kerogen-like materials. Previous in situ analyses were performed using pyrolysis systems which allow to detect organic compounds but do not always permit the identification of individual molecules. New possible analytical solutions could include gas chromatography-based techniques coupled with a mass spectrometer using multi GC columns systems, including columns able to separate enantiomers, chemical derivatization cells (using new derivatization schemes in particular for amino acid analysis), high performance liquid chromatography and supercritical fluid chromatography.
NASA Astrophysics Data System (ADS)
Carrier, B. L.; Beaty, D. W.
2017-12-01
NASA's Mars 2020 rover is scheduled to land on Mars in 2021 and will be equipped with a sampling system capable of collecting rock cores, as well as a specialized drill bit for collecting unconsolidated granular material. A key mission objective is to collect a set of samples that have enough scientific merit to justify returning to Earth. In the case of granular materials, we would like to catalyze community discussion on what we would do with these samples if they arrived in our laboratories, as input to decision-making related to sampling the regolith. Numerous scientific objectives have been identified which could be achieved or significantly advanced via the analysis of martian rocks, "regolith," and gas samples. The term "regolith" has more than one definition, including one that is general and one that is much more specific. For the purpose of this analysis we use the term "granular materials" to encompass the most general meaning and restrict "regolith" to a subset of that. Our working taxonomy includes the following: 1) globally sourced airfall dust (dust); 2) saltation-sized particles (sand); 3) locally sourced decomposed rock (regolith); 4) crater ejecta (ejecta); and, 5) other. Analysis of martian granular materials could serve to advance our understanding areas including habitability and astrobiology, surface-atmosphere interactions, chemistry, mineralogy, geology and environmental processes. Results of these analyses would also provide input into planning for future human exploration of Mars, elucidating possible health and mechanical hazards caused by the martian surface material, as well as providing valuable information regarding available resources for ISRU and civil engineering purposes. Results would also be relevant to matters of planetary protection and ground-truthing orbital observations. We will present a preliminary analysis of the following, in order to generate community discussion and feedback on all issues relating to: What are the specific reasons (and their priorities) for collecting samples of granular materials? How do those reasons translate to sampling priorities? In what condition would these samples be expected to be received? What is our best projection of the approach by which these samples would be divided, prepared, and analyzed to achieve our objectives?
Soil Components in Heterogeneous Impact Glass in Martian Meteorite EETA79001
NASA Technical Reports Server (NTRS)
Schrader, C. M.; Cohen, B. A.; Donovan, J. J.; Vicenzi, E. P.
2010-01-01
Martian soil composition can illuminate past and ongoing near-surface processes such as impact gardening [2] and hydrothermal and volcanic activity [3,4]. Though the Mars Exploration Rovers (MER) have analyzed the major-element composition of Martian soils, no soil samples have been returned to Earth for detailed chemical analysis. Rao et al. [1] suggested that Martian meteorite EETA79001 contains melted Martian soil in its impact glass (Lithology C) based on sulfur enrichment of Lithology C relative to the meteorite s basaltic lithologies (A and B) [1,2]. If true, it may be possible to extract detailed soil chemical analyses using this meteoritic sample. We conducted high-resolution (0.3 m/pixel) element mapping of Lithology C in thin section EETA79001,18 by energy dispersive spectrometry (EDS). We use these data for principal component analysis (PCA).
Inverted Martian Craters in Lineated Glacial Valleys, Ismenius Lacus Region, Mars
NASA Technical Reports Server (NTRS)
McConnell, B. S.; Wilt, G. L.; Gillespie, A.; Newsom, H. E.
2005-01-01
We studied small, uniquely-shaped craters found on the surface of lineated terrain in the Ismenius Lacus region of Mars. By utilizing MOC and THEMIS satellite images, we located terrain including lineations (viscous flow features), smoothing of topography, and morphologic features such as polygons and gullies, which appear to be strong evidence of preexisting ice deposits.
Advances in planetary geology, volume 2
NASA Technical Reports Server (NTRS)
1986-01-01
This publication is a continuation of volume 1; it is a compilation of reports focusing on research into the origin and evolution of the solar system with emphasis on planetary geology. Specific reports include a multispectral and geomorphic investigation of the surface of Europa and a geologic interpretation of remote sensing data for the Martian volcano Ascreaus Mons.
NASA Astrophysics Data System (ADS)
Losiak, Anna; Derkowski, Arkadiusz; Skala, Aleksander; Trzcinski, Jerzy
2016-04-01
Evaporites are highly water soluble minerals, formed as a result of the evaporation or freezing of bodies of water. They are common weathering minerals found on rocks (including meteorites) on Antarctic ice sheet [1,2,3,4]. The water necessary for the reaction is produced by melting of ice below the dark-colored meteorites which can heat up to a few degrees above 0 °C due to insolation heating during wind-free summer days [5,6]. The Martian North Polar Residual Cap is surrounded by a young [7] dune field that is rich in evaporitic mineral: gypsum [8]. Its existence implies that relatively recently in the Martian history (in late Amazonian, when surface conditions were comparable to the current ones) there was a significant amount of liquid water present on the Mars surface. One of the proposed solutions to this problem is that gypsum is formed by weathering on/in ice [9,10,11,12,13], similarly to the process occurring on the Antarctic ice sheet. Recently, Losiak et al. 2015 showed that that during the warmest days of the Martian summer, solar irradiation may be sufficient to melt pure water ice located below a layer of dark dust particles lying on the steepest sections of the equator-facing slopes of the spiral troughs within Martian NPRC. Under the current irradiation conditions, melting is possible in very restricted areas of the NPRC and it lasts for up to couple of hours, but during the times of high irradiance at the north pole [15] this process could have been much more pronounced. Liquid water can be metastable at the NPRC because the pressure during the summer season is ~760-650 Pa [16] which is above the triple point of water. The rate of free-surface "clean" liquid water evaporation under average Martian conditions determined experimentally by [17] is comparable to the rate of melting determined by [21] (if there is no wind at the surface). In the current study we attempt to determine experimentally how many melting-freezing cycles are required to form detectable (X-Ray Diffraction and SEM-EDS) amounts of evaporites on basaltic dust and slabs under simulated Antarctic conditions. In the future a similar experiment in simulated Martian conditions will be performed. References: [1] Jull et al. 1988. Science 242:417-419. [2] Gounelle and Zolensky 2001. MAPS 36:1321-1329. [3] Losiak and Velbel 2011. MAPS 46:443-458. [4] Hallis 2013. MAPS 48:165-179. [5] Schultz 1990. Workshop on Antarctic meteorite stranding surfaces 56-59. [6] Harvey 2003. Chemie der Erde 63:93-147. [7] Tanaka et al. 2008. Icarus 196:318-358. [8] Langevin et al. 2005. Science 307:1584-1586. [9] Niles and Michalski 2009. Nat. Geosci. 2:215-220. [10] Catling et al. 2006. Icarus 181:26-51. [11] Zolotov and Mironenko 2007. J. Geophys. Res. 112: 10.1029/ 2006JE002882. [12] Masse et al. 2010. Icarus 209:434-451. [13] Masse et al. 2012. Earth Planet. Sci. Lett. 317-318:44-55. [14] Losiak et al. 2015. Icarus 262:131-139. [15] Laskar et al. 2002. Nature 419:375-377. [16] Millour et al. 2014. Mars Climate Database v5.0 User Manual. [17] Hecht 2002. Icarus 156:373-386.
NASA Astrophysics Data System (ADS)
Wadhwa, M.; Leshin, L.; Clark, B.; Jones, S.; Jurewicz, A.; McLennan, S.; Mischna, M.; Ruff, S.; Squyres, S.; Westphal, A.
2017-06-01
We present a low-cost, low-risk mission concept for return of martian atmospheric dust. Such a mission would serve as a scientific, technological and operational pathfinder for future surface sample return and human exploration to Mars.
Fluvial valleys on Martian volcanoes
NASA Technical Reports Server (NTRS)
Baker, Victor R.; Gulick, Virginia C.
1987-01-01
Channels and valleys were known on the Martian volcanoes since their discovery by the Mariner 9 mission. Their analysis has generally centered on interpretation of possible origins by fluvial, lava, or viscous flows. The possible fluvial dissection of Martian volcanoes has received scant attention in comparison to that afforded outflow, runoff, and fretted channels. Photointerpretative, mapping, and morphometric studies of three Martian volcanoes were initiated: Ceraunius Tholus, Hecate Tholus, and Alba Patera. Preliminary morphometric results indicate that, for these three volcanoes, valley junction angles increase with decreasing slope. Drainage densities are quite variable, apparently reflecting complex interactions in the landscape-forming factors described. Ages of the Martian volcanoes were recently reinterpreted. This refined dating provides a time sequence in which to evaluate the degradational forms. An anomaly has appeared from the initial study: fluvial valleys seem to be present on some Martian volcanoes, but not on others of the same age. Volcanic surfaces characterized only by high permeability lava flows may have persisted without fluvial dissection.
The Effect of Shock on the Amorphous Component in Altered Basalt
NASA Technical Reports Server (NTRS)
Eckley, S. A.; Wright, S. P.; Rampe, E. B.; Niles, P. B.
2017-01-01
Investigation of the geochemical and mineralogical composition of the Martian surface provides insight into the geologic history of the predominantly basaltic crust. The Chemistry and Mineralogy (CheMin) instrument onboard the Curiosity rover has returned the first X-Ray diffraction data from the Martian surface. However, large proportions (27 +/- 14 with some estimates as high as 50 weight percentage) of an amorphous component have been reported. As a remedy to this problem, mass balance equations using geochemistry, volatile chemistry, and mineralogy have been employed to constrain the geochemistry of the amorphous component. However, "the nature and number of amorphous phases that constitute the amorphous component is not unequivocally known". Multiple hypotheses have been proposed to explain the origin of this amorphous component: Allophane (Al2O); Basaltic glass (Volcanic and impact); Palagonite (Altered basaltic glass); Hisingerite (Fe (sup 3 plus)-bearing phyllosilicate); S/Cl-rich component (sulfates and/or akaganeite); Nanophase ferric oxide component (npOx). Establishing a multi-phase amorphous component from a basaltic precursor that has undergone physical and chemical weathering within geochemical constraints is of paramount importance to better understand the composition of a large portion of the Martian surface (up to 50 weight percentage). Shocked basalts from Lonar Crater in India are valuable analogs for the Martian surface because it is a well-preserved impact crater in a basaltic target. Having undergone pre- and post-shock aqueous alteration, these rocks provide crucial data regarding the effect of shock on the amorphous component in altered basalt. By conducting mass balance equations similar to what has been performed for Gale crater materials, we attempt to calculate the geochemistry of the amorphous component in altered basalts ranging from unshocked to Class 5 (Table 1). This has the potential to reveal the nature and origin (i.e. primary igneous, shock metamorphic, and/or aqueous alteration occurring before or after the impact event) of the amorphous component in shocked basalt with the goal of unravelling the history of the Martian surface.
The role of SO2 on Mars and on the primordial oxygen isotope composition of water on Earth and Mars
NASA Technical Reports Server (NTRS)
Waenke, H.; Dreibus, G.; Jagoutz, E.; Mukhin, L. M.
1992-01-01
We stress the importance of SO2 on Mars. In the case that water should have been supplied in sufficient quantities to the Martian surface by a late veneer and stored in the near surface layers in form of ice, temporary greenhouse warming by SO2 after large SO2 discharges may have been responsible for melting of ice and break-out of water in areas not directly connected to volcanic activity. Aside from water, liquid SO2 could explain at least some of the erosion features on the Martian surface.
Mars Observer: Mission toward a basic understanding of Mars
NASA Technical Reports Server (NTRS)
Albee, Arden L.
1992-01-01
The Mars Observer Mission will provide a spacecraft platform about Mars from which the entire Martian surface and atmosphere will be observed and mapped by remote sensing instruments for at least 1 Martian year. The scientific objectives for the Mission emphasize qualitative and quantitative determination of the elemental and mineralogical composition of the surface; measurement of the global surface topography, gravity field, and magnetic field; and the development of a synoptic data base of climatological conditions. The Mission will provide basic global understanding of Mars as it exists today and will provide a framework for understanding its past.
Mars - A planet with a complex surface evolution
NASA Technical Reports Server (NTRS)
Arvidson, R. E.; Coradini, M.
1975-01-01
The surface of Mars has evolved to its present form through a complex sequence of tectonism and associated volcanism, impact processes, water erosion, mass movements, and wind action. The diversity of geological processes active in past Martian history far exceeded most predictions. By the same token, predictions of processes modifying the satellites of the outer planets may fall far short of the true range of phenomena. A summary of present though with regard to Martian surface evolution is presented to serve as a case in point of the value of imagery and topography data in making interpretations of geological histories.
Photo-induced free radicals on a simulated Martian surface
NASA Technical Reports Server (NTRS)
Tseng, S.-S.; Chang, S.
1974-01-01
Results of an electron spin resonance study of free radicals in the ultraviolet irradiation of a simulated Martian surface suggest that the ultraviolet photolysis of CO or CO2, or a mixture of both, adsorbed on silica gel at minus 170 C involves the formation of OH radicals and possibly of H atoms as the primary process, followed by the formation of CO2H radicals. It is concluded that the photochemical synthesis of organic compounds could occur on Mars if the siliceous surface dust contains enough silanol groups and/or adsorbed H2O in the form of bound water.
NASA Technical Reports Server (NTRS)
Blacic, J. D.
1986-01-01
Two Mars surface based build-up scenarios are presented in order to help visualize the mission and to serve as a basis for trade studies. In the first scenario, direct manned landings on the Martian surface occur early in the missions and scientific investigation is the main driver and rationale. In the second senario, Earth development of an infrastructure to exploit the volatile resources of the Martian moons for economic purposes is emphasized. Scientific exploration of the surface is delayed at first in this scenario relative to the first, but once begun develops rapidly, aided by the presence of a permanently manned orbital station.
Mars Pathfinder: The Wheel Abrasion Experiment
NASA Technical Reports Server (NTRS)
1996-01-01
NASA Lewis Research Center's Wheel Abrasion Experiment (WAE) will measure the amount of wear on wheel surfaces of the Mars Pathfinder rover. WAE uses thin films of Al, Ni, and Pt (ranging in thickness from 200 to 1000 angstroms) deposited on black, anodized Al strips attached to the rover wheel. As the wheel moves across the martian surface, changes in film reflectivity will be monitored by reflected sunlight. These changes, measured as output from a special photodetector mounted on the rover chassis, will be due to abrasion of the metal films by martian surface sand, dust, and clay.
Geological Evidence for Recent Ice Ages on Mars
NASA Astrophysics Data System (ADS)
Head, J. W.; Mustard, J. F.; Kreslavsky, M. A.; Milliken, R. E.; Marchant, D. R.
2003-12-01
A primary cause of ice ages on Earth is orbital forcing from variations in orbital parameters of the planet. On Mars such variations are known to be much more extreme. Recent exploration of Mars has revealed abundant water ice in the near-surface at high latitudes in both hemispheres. We outline evidence that these near-surface, water-ice rich mantling deposits represent a mixture of ice and dust that is layered, meters thick, and latitude dependent. These units were formed during a geologically recent major martian ice age, and were emplaced in response to the changing stability of water ice and dust on the surface during variations in orbital parameters. Evidence for these units include a smoothing of topography at subkilometer baselines from about 30o north and south latitudes to the poles, a distinctive dissected texture in MOC images in the +/-30o-60o latitude band, latitude-dependent sets of topographic characteristics and morphologic features (e.g., polygons, 'basketball' terrain texture, gullies, viscous flow features), and hydrogen concentrations consistent with the presence of abundant ice at shallow depths above 60o latitude. The most equatorward extent of these ice-rich deposits was emplaced down to latitudes equivalent to Saudi Arabia and the southern United States on Earth during the last major martian ice age, probably about 0.4-2.1 million years ago. Mars is currently in an inter-ice age period and the ice-rich deposits are presently undergoing reworking, degradation and retreat in response to the current stability relations of near-surface ice. Unlike Earth, martian ice ages are characterized by warmer climates in the polar regions and the enhanced role of atmospheric water ice and dust transport and deposition to produce widespread and relatively evenly distributed smooth deposits at mid-latitudes during obliquity maxima.
Sebastián, Eduardo; Armiens, Carlos; Gómez-Elvira, Javier; Zorzano, María P.; Martinez-Frias, Jesus; Esteban, Blanca; Ramos, Miguel
2010-01-01
We describe the parameters that drive the design and modeling of the Rover Environmental Monitoring Station (REMS) Ground Temperature Sensor (GTS), an instrument aboard NASA’s Mars Science Laboratory, and report preliminary test results. REMS GTS is a lightweight, low-power, and low cost pyrometer for measuring the Martian surface kinematic temperature. The sensor’s main feature is its innovative design, based on a simple mechanical structure with no moving parts. It includes an in-flight calibration system that permits sensor recalibration when sensor sensitivity has been degraded by deposition of dust over the optics. This paper provides the first results of a GTS engineering model working in a Martian-like, extreme environment. PMID:22163405
The ancient oxygen exosphere of Mars - Implications for atmosphere evolution
NASA Technical Reports Server (NTRS)
Zhang, M. H. G.; Luhmann, J. G.; Bougher, S. W.; Nagy, A. F.
1993-01-01
The paper considers absorption of oxygen (atoms and ions) by the surface as a mechanism for the early Martian atmosphere escape, due to the effect of high EUV flux of the ancient sun. Hot oxygen exosphere densities in ancient atmosphere and ionosphere are calculated for different EUV fluxes and the escape fluxes associated with these exposures. Using these densities, the ion production rate above the ionopause is calculated for different epochs including photoionization, charge exchange, and solar wind electron impact. It is found that, when the inferred high solar EUV fluxes of the past are taken into account, oxygen equivalent to that in several tens of meters of water, planet-wide, should have escaped Martian atmosphere to space over the last 3 Gyr.
The ancient oxygen exosphere of Mars - Implications for atmosphere evolution
NASA Astrophysics Data System (ADS)
Zhang, M. H. G.; Luhmann, J. G.; Bougher, S. W.; Nagy, A. F.
1993-06-01
The paper considers absorption of oxygen (atoms and ions) by the surface as a mechanism for the early Martian atmosphere escape, due to the effect of high EUV flux of the ancient sun. Hot oxygen exosphere densities in ancient atmosphere and ionosphere are calculated for different EUV fluxes and the escape fluxes associated with these exposures. Using these densities, the ion production rate above the ionopause is calculated for different epochs including photoionization, charge exchange, and solar wind electron impact. It is found that, when the inferred high solar EUV fluxes of the past are taken into account, oxygen equivalent to that in several tens of meters of water, planet-wide, should have escaped Martian atmosphere to space over the last 3 Gyr.
1998-10-03
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the top of the Mars Polar Lander is removed to prepare the Lander for testing, including a functional test of the science instruments and the basic spacecraft subsystems. The Mars Polar Lander is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere
NASA Astrophysics Data System (ADS)
Smith, P. H.; tomasko, M. G.; McEwen, A.; Rice, J.
2000-07-01
The next phase of unmanned Mars missions paves the way for astronauts to land on the surface of Mars. There are lessons to be learned from the unmanned precursor missions to the Moon and the Apollo lunar surface expeditions. These unmanned missions (Ranger, Lunar Orbiter, and Surveyor) provided the following valuable information, useful from both a scientific and engineering perspective, which was required to prepare the way for the manned exploration of the lunar surface: (1) high resolution imagery instrumental to Apollo landing site selection also tremendously advanced the state of Nearside and Farside regional geology; (2) demonstrated precision landing (less than two kilometers from target) and soft landing capability; (3) established that the surface had sufficient bearing strength to support a spacecraft; and (4) examination of the chemical composition and mechanical properties of the surface. The search for extinct or extant life on Mars will follow the water. However, geomorphic studies have shown that Mars has had liquid water on its surface throughout its geologic history. A cornucopia of potential landing sites with water histories (lakes, floodplains, oceans, deltas, hydrothermal regions) presently exist. How will we narrow down site selection and increase the likelihood of finding the signs of life? One way to do this is to identify 'Martian oases.' It is known that the Martian surface is often highly fractured and some areas have karst structures that support underground caves. Much of the water that formed the channels and valley networks is thought to be frozen underground. All that is needed to create the potential for liquid water is a near surface source of heat; recent lava flows and Martian meteorites attest to the potential for volcanic activity. If we can locate even one spot where fracturing, ice, and underground heat are co-located then we have the potential for an oasis. Such a discovery could truly excite the imaginations of both the public and Congress providing an attainable goal for both robotic and manned missions. The instrument required to detect an active oasis is a high spatial resolution (few tens of meters) Short Wavelength Infrared (SWIR) spectrometer coupled with a high resolution camera (five m/pixel). This combination creates too large a data volume to possibly return data for the entire Martian Surface; therefore it has been designed as one of the first in a new generation of 'smart' detectors, called the Mars Oasis Detector (MOD).
Lunar and Planetary Science XXXV: Mars
NASA Technical Reports Server (NTRS)
2004-01-01
The session "Mars" included the following reports:Tentative Theories for the Long-Term Geological and Hydrological Evolution of Mars; Stratigraphy of Special Layers Transient Ones on Permeable Ones: Examples from Earth and Mars; Spatial Analysis of Rootless Cone Groups on Iceland and Mars; Summer Season Variability of the North Residual Cap of Mars from MGS-TES; Spectral and Geochemical Characteristics of Lake Superior Type Banded Iron Formation: Analog to the Martian Hematite Outcrops; Martian Wave Structures and Their Relation to Mars; Shape, Highland-Lowland Chemical Dichotomy and Undulating Atmosphere Causing Serious Problems to Landing Spacecrafts; Shear Deformation in the Graben Systems of Sirenum Fosssae, Mars: Preliminary Results; Components of Martian Dust Finding on Terrestrial Sedimentary Deposits with Use of Infrared Spectra; Morphologic and Morphometric Analyses of Fluvial Systems in the Southern Highlands of Mars; Light Pattern and Intensity Analysis of Gray Spots Surrounding Polar Dunes on Mars; The Volume of Possible Ancient Oceanic Basins in the Northern Plains of Mars MARSES: Possibilities of Long-Term Monitoring Spatial and Temporal Variations and Changes of Subsurface Geoelectrical Section on the Base; Results of the Geophysical Survey Salt/Water Interface and Groundwater Mapping on the Marina Di Ragusa, Sicily and Shalter Island, USA ;A Miniature UV-VIS Spectrometer for the Surface of Mars; Automatic Recognition of Aeolian Ripples on Mars; Absolute Dune Ages and Implications for the Time of Formation of Gullies in Nirgal Vallis, Mars; Diurnal Dust Devil Behaviour for the Viking 1 Landing Site: Sols 1 to 30; Topography Based Surface Age Computations for Mars: A Step Toward the Formal Proof of Martian Ocean Recession, Timing and Probability; Gravitational Effects of Flooding and Filling of Impact Basins on Mars; Viking 2 Landing Site in MGS/MOC Images South Polar Residual Cap of Mars: Features, Stratigraphy, and Changes.
Global color variations on the Martian surface
Soderblom, L.A.; Edwards, K.; Eliason, E.M.; Sanchez, E.M.; Charette, M.P.
1978-01-01
Surface materials exposed throughout the equatorial region of Mars have been classified and mapped on the basis of spectral reflectance properties determined by the Viking II Orbiter vidicon cameras. Frames acquired at each of three wavelengths (0.45 ?? 0.03 ??m, 0.53 ?? 0.05 ??m, and 0.59 ?? 0.05 ??m) during the approach of Viking Orbiter II in Martian summer (Ls = 105??) were mosaicked by computer. The mosaics cover latitudes 30??N to 63??S for 360?? of longitude and have resolutions between 10 and 20 km per line pair. Image processing included Mercator transformation and removal of an average Martian photometric function to produce albedo maps at three wavelengths. The classical dark region between the equator and ???30??S in the Martian highlands is composed of two units: (i) and ancient unit consisting of topographic highs (ridges, crater rims, and rugged plateaus riddled with small dendritic channels) which is among the reddest on the planet (0.59/0.45 ??m {reversed tilde equals} 3); and (ii) intermediate age, smooth, intercrater volcanic plains displaying numerous mare ridges which are among the least red on Mars (0.59/0.45 ??m {reversed tilde equals} 2). The relatively young shield volcanoes are, like the oldest unit, dark and very red. Two probable eolian deposits are recognized in the intermediate and high albedo regions. The stratigraphically lower unit is intermediate in both color (0.59/ 0.45 ??m {reversed tilde equals} 2.5) and albedo. The upper unit has the highest albedo, is very red (0.59/0.45 ??m {reversed tilde equals} 3), and is apparently the major constituent of the annual dust storms as its areal extent changes from year to year. The south polar ice cap and condensate clouds dominate the southernmost part of the mosaics. ?? 1978.
Martian stepped-delta formation by rapid water release.
Kraal, Erin R; van Dijk, Maurits; Postma, George; Kleinhans, Maarten G
2008-02-21
Deltas and alluvial fans preserved on the surface of Mars provide an important record of surface water flow. Understanding how surface water flow could have produced the observed morphology is fundamental to understanding the history of water on Mars. To date, morphological studies have provided only minimum time estimates for the longevity of martian hydrologic events, which range from decades to millions of years. Here we use sand flume studies to show that the distinct morphology of martian stepped (terraced) deltas could only have originated from a single basin-filling event on a timescale of tens of years. Stepped deltas therefore provide a minimum and maximum constraint on the duration and magnitude of some surface flows on Mars. We estimate that the amount of water required to fill the basin and deposit the delta is comparable to the amount of water discharged by large terrestrial rivers, such as the Mississippi. The massive discharge, short timescale, and the associated short canyon lengths favour the hypothesis that stepped fans are terraced delta deposits draped over an alluvial fan and formed by water released suddenly from subsurface storage.
Simulation of Martian surface conditions and dust transport
NASA Astrophysics Data System (ADS)
Nørnberg, P.; Merrison, J. P.; Finster, K.; Folkmann, F.; Gunnlaugsson, H. P.; Hansen, A.; Jensen, J.; Kinch, K.; Lomstein, B. Aa.; Mugford, R.
2002-11-01
The suspended atmospheric dust which is also found deposited over most of the Martian globe plays an important (possibly vital) role in shaping the surface environment. It affects the weather (solar flux), water transport and possibly also the electrical properties at the surface. The simulation facilities at Aarhus provide excellent tools for studying the properties of this Martian environment. Much can be learned from such simulations, supporting and often inspiring new investigations of the planet. Electrical charging of a Mars analogue dust is being studied within a wind tunnel simulation aerosol. Here electric fields are used to extract dust from suspension. Although preliminary the results indicate that a large fraction of the dust is charged to a high degree, sufficient to dominate adhesion/cohesion processes. A Mars analogue dust layer has been shown to be an excellent trap for moisture, causing increased humidity in the soil below. This allows the possibility for liquid water to be stable close to the surface (less than 10 cm). This is being investigated in an environment simulator where heat and moisture transport can be studied through layers of Mars analogue dust.
NASA Astrophysics Data System (ADS)
Stanley, B. D.; Hirschmann, M. M.; Withers, A. C.
2012-12-01
The modern martian atmosphere is thin, leading to surface conditions too cold to support liquid water. Yet, there is evidence of liquid surface water early in martian history that is commonly thought to require a thick CO2 atmosphere. Our previous work follows the analysis developed by Holloway and co-workers (Holloway et al. 1992; Holloway 1998), which predicts a linear relationship between CO2 and oxygen fugacity (fO2) in graphite-saturated silicate melts. At low oxygen fugacity, the solubility of CO2 in silicate melts is therefore very low. Such low calculated solubilities under reducing conditions lead to small fluxes of CO2 associated with martian magmatism, and therefore production of a thick volcanogenic CO2 atmosphere could require a prohibitively large volume of mantle-derived magma. The key assumption in these previous calculations is that the carbonate ion is the chief soluble C-O-H species. The results of the calculations would not be affected appreciably if molecular CO2, rather than carbonate ion, were an important species, but could be entirely different if there were other appreciable C-species such as CO, carbonyl (C=O) complexes, carbide (Si-C), or CH4. Clearly, graphite-saturated experiments are required to explore how much volcanogenic C may be degassed by reduced martian lavas. A series of piston-cylinder experiments were performed on synthetic martian starting materials over a range of oxygen fugacities (IW+2.3 to IW-0.9), and at pressures of 1-3 GPa and temperatures of 1340-1600 °C in Pt-graphite double capsules. CO2 contents in experimental glasses were determined using Fourier transform infrared spectroscopy (FTIR) and range from 0.0026-0.50 wt%. CO2 solubilities change by one order of magnitude with an order of magnitude change in oxygen fugacity, as predicted by previous work. Secondary ion mass spectrometry (SIMS) determinations of C contents in glasses range from 0.0131-0.2626 wt%. C contents determined by SIMS are consistently higher than CO2 contents determined by FTIR. This difference, termed excess C, is attributed to the presence of other reduced C-species, such as carbonyls and amides (which have C=O and N-H bonds), detected using FTIR in reduced graphite-saturated martian basalts. An atmosphere produced by degassing of magmas similar to this study would be richer in C-O-H species than previously modeled using only CO2 and could create a much warmer climate that stabilizes liquid water on the ancient martian surface.
Parallel Study of HEND, RAD, and DAN Instrument Response to Martian Radiation and Surface Conditions
NASA Technical Reports Server (NTRS)
Martiniez Sierra, Luz Maria; Jun, Insoo; Litvak, Maxim; Sanin, Anton; Mitrofanov, Igor; Zeitlin, Cary
2015-01-01
Nuclear detection methods are being used to understand the radiation environment at Mars. JPL (Jet Propulsion Laboratory) assets on Mars include: Orbiter -2001 Mars Odyssey [High Energy Neutron Detector (HEND)]; Mars Science Laboratory Rover -Curiosity [(Radiation Assessment Detector (RAD); Dynamic Albedo Neutron (DAN))]. Spacecraft have instruments able to detect ionizing and non-ionizing radiation. Instrument response on orbit and on the surface of Mars to space weather and local conditions [is discussed] - Data available at NASA-PDS (Planetary Data System).
NASA Astrophysics Data System (ADS)
Gwynne, Owen; McKay, Chris; Zubrin, Robert
1991-06-01
Novel approaches to the human exploration of Mars are considered with emphasis on a space suit design, extraterrestrial surface mobility, and water supply. A possible way of transporting personnel on the surface of Mars uses a suborbital rocket that will hop from one site to the next, refuelling each time it lands and giving the Martian explorers effective global mobility. Telepresence could be used to avoid limiting the people on Mars to a small exploration area as a result of a lack of transportation infrastructure. Drawings and photographs are included.
Creating an Immersive Mars Experience Using Unity3D
NASA Technical Reports Server (NTRS)
Miles, Sarah
2011-01-01
Between the two Mars Exploration Rovers, Spirit and Opportunity, NASA has collected over 280,000 images while studying the Martian surface. This number will continue to grow, with Opportunity continuing to send images and with another rover, Curiosity, launching soon. Using data collected by and for these Mars rovers, I am contributing to the creation of virtual experiences that will expose the general public to Mars. These experiences not only work to increase public knowledge, but they attempt to do so in an engaging manner more conducive to knowledge retention by letting others view Mars through the rovers' eyes. My contributions include supporting image viewing (for example, allowing users to click on panoramic images of the Martian surface to access closer range photos) as well as enabling tagging of points of interest. By creating a more interactive way of viewing the information we have about Mars, we are not just educating the public about a neighboring planet. We are showing the importance of doing such research.
Developing OSL Geological Dating Techniques for Use on Future Missions to Mars
NASA Technical Reports Server (NTRS)
Blair, M. W.; Kalchgruber, R.; Deo, S.; McKeever, S. W. S.
2005-01-01
The surface of Mars has been subject to aeolian, fluvial, and periglacial activity in the (relatively) recent past. Unfortunately, chronological dating of recent events on Mars is difficult as the errors associated with crater counting are comparable to younger ages (approx. 1 Ma). Consequently, techniques to quantify the ages of geological processes on Mars have become an important area of research. Optically stimulated luminescence (OSL) dating is one candidate technique for in-situ dating of the deposition of Martian surface sediments. This method can aid in developing a geological and climatic history of the last million years on Mars. The current paper addresses some of the challenges and progress associated with developing OSL as a viable in-situ dating technique for Mars. Some of the challenges include the mineral composition, the effectiveness of solar resetting under Martian conditions, the temperature regime, and determining the natural dose rate on Mars. All of these topics are currently under investigation, and some preliminary results are presented.
NASA Technical Reports Server (NTRS)
Nakamura, N.; Nyquist, L.E.; Reese, Y.; Shih, C-Y.; Numata, M.; Fujitani, T.; Okano, O.
2009-01-01
Significantly large mass fractionations between chlorine isotopes (Cl-35, Cl-37) have been reported for terrestrial materials including both geological samples and laboratory materials. Also, the chlorine isotopic composition can be used as a tracer for early solar system processes. Moreover, chlorine is ubiquitous on the Martian surface. Typical chlorine abundances in Gusev soils are approx.0.5 %. The global surface average chlorine abundance also is approx.0.5 %. Striking variations among outcrop rocks at Meridiani were reported with some chlorine abundances as high as approx.2%. Characterizing conditions under which chlorine isotopic fractionation may occur is clearly of interest to planetary science. Thus, we have initiated development of a chlorine isotopic analysis technique using TIMS at NASA-JSC. We present here a progress report on the current status of development at JSC and discuss the possible application of chlorine isotopic analysis to Martian meteorites in a search for fluid- and possibly biological activity on Mars.
Martian crater degradation by eolian processes: Analogy with the Rio Cuarto Crater Field, Argentina
NASA Technical Reports Server (NTRS)
Grant, J. A.; Schultz, P. H.
1993-01-01
Numerous degraded and rimless craters occur across broad areas of the Martian surface that are mantled by thick, unconformable deposits. These regions include Arabia, Mesogaea, Electris, Tempe, the interior and surface to the northwest of Isidis Basin, southern Ismenius Lacus, and the polar layered terrains. Occurrence of the deposits and low regional thermal inertias indicate that at least some accumulated fine-grained sediment (effective particle diameters of 0.1-0.5 mm or coarse silt to medium sand) to a thickness of 100's to 1000's of meters. Most unconformable deposits experienced some eolian modification that may be recent in some locales. Despite the presence of these deposits, simple eolian deposition appears incapable of creating the numerous degraded and rimless craters occurring within their limits. Nevertheless, terrestrial analyses of the Rio Cuario craters formed into loessoid deposits demonstrates that eolian redistribution of fine-grained sediment in and around craters produces degraded morphologies that are analogous to some found in mantled regions on Mars.
A 'crytic' microbial mat: A new model ecosystem for extant life on Mars
NASA Technical Reports Server (NTRS)
Rothschild, L. J.
1995-01-01
If life were present on Mars today, it would face potentially lethal environmental conditions such as a lack of water, frigid temperatures, ultraviolet radiation, and soil oxidants. In addition, the Viking missions did not detect near-surface organic carbon available for assimilation. Autotrophic organisms that lived under a protective layer of sand or gravel would be able to circumvent the ultraviolet radiation and lack of fixed carbon. Two terrestrial photosynthetic near-surface microbial communities have been identified, one in the inter- and supertidal of Laguna Ojo de Liebere (Baja California Sur, Mexico) and one in the acidic gravel near several small geysers in Yellowstone National Park (Wyoming, U.S.A.). Both communities have been studied with respect to their ability to fix carbon under different conditions, including elevated levels of inorganic carbon. Although these sand communities have not been exposed to the entire suite of Martian environmental conditions simultaneously, such communities can provide a useful model ecosystem for a potential extant Martian biota.
NASA Astrophysics Data System (ADS)
Kim, J.; Schumann, G.; Neal, J. C.; Lin, S.
2013-12-01
Earth is the only planet possessing an active hydrological system based on H2O circulation. However, after Mariner 9 discovered fluvial channels on Mars with similar features to Earth, it became clear that some solid planets and satellites once had water flows or pseudo hydrological systems of other liquids. After liquid water was identified as the agent of ancient martian fluvial activities, the valley and channels on the martian surface were investigated by a number of remote sensing and in-suit measurements. Among all available data sets, the stereo DTM and ortho from various successful orbital sensor, such as High Resolution Stereo Camera (HRSC), Context Camera (CTX), and High Resolution Imaging Science Experiment (HiRISE), are being most widely used to trace the origin and consequences of martian hydrological channels. However, geomorphological analysis, with stereo DTM and ortho images over fluvial areas, has some limitations, and so a quantitative modeling method utilizing various spatial resolution DTMs is required. Thus in this study we tested the application of hydraulics analysis with multi-resolution martian DTMs, constructed in line with Kim and Muller's (2009) approach. An advanced LISFLOOD-FP model (Bates et al., 2010), which simulates in-channel dynamic wave behavior by solving 2D shallow water equations without advection, was introduced to conduct a high accuracy simulation together with 150-1.2m DTMs over test sites including Athabasca and Bahram valles. For application to a martian surface, technically the acceleration of gravity in LISFLOOD-FP was reduced to the martian value of 3.71 m s-2 and the Manning's n value (friction), the only free parameter in the model, was adjusted for martian gravity by scaling it. The approach employing multi-resolution stereo DTMs and LISFLOOD-FP was superior compared with the other research cases using a single DTM source for hydraulics analysis. HRSC DTMs, covering 50-150m resolutions was used to trace rough routes of water flows for extensive target areas. After then, refinements through hydraulics simulations with CTX DTMs (~12-18m resolution) and HiRISE DTMs (~1- 4m resolution) were conducted by employing the output of HRSC simulations as the initial conditions. Thus even a few high and very high resolution stereo DTMs coverage enabled the performance of a high precision hydraulics analysis for reconstructing a whole fluvial event. In this manner, useful information to identify the characteristics of martian fluvial activities, such as water depth along the time line, flow direction, and travel time, were successfully retrieved with each target tributary. Together with all above useful outputs of hydraulics analysis, the local roughness and photogrammetric control of the stereo DTMs appeared to be crucial elements for accurate fluvial simulation. The potential of this study should be further explored for its application to the other extraterrestrial bodies where fluvial activity once existed, as well as the major martian channel and valleys.
NASA Astrophysics Data System (ADS)
McSween, H. Y., Jr.
2003-12-01
More than any other planet, Mars has captured our attention and fueled our speculations. Much of this interest relates to the possibility of martian life, as championed by Percival Lowell in the last century and subsequently in scientific papers and science fiction. Lowell's argument for life on Mars was based partly on geochemistry, in that his assessmentof the planet's hospitable climate was dependent on the identification of H2O ice rather than frozen CO2 in the polar caps. Although this reasoning was refuted by Alfred Wallace in 1907, widespread belief in extant martian life persisted within the scientific community until the mid-twentieth century (Zahnle, 2001). In 1965 the Mariner 4 spacecraft flyby suddenly chilled this climate, by demonstrating that the martian atmosphere was thin and the surface was a cratered moonscape devoid of canals. This view of Mars was overturned again in 1971, when the Mariner 9 spacecraft discovered towering volcanoes and dry riverbeds, implying a complex geologic history. The first geochemical measurements on Mars, made by two Viking landers in 1976, revealed soils enriched in salts suggesting exposure to water, but lacking organic compounds which virtually ended discussion of martian life.The suggestion that a small group of achondritic meteorites were martian samples (McSween and Stolper, 1979; Walker et al., 1979; Wasson and Wetherill, 1979) found widespread acceptance when trapped gases in them were demonstrated to be compositionally similar to the Mars atmosphere ( Bogard and Johnson, 1983; Becker and Pepin, 1984). The ability to perform laboratory measurements of elements and isotopes present in trace quantities in meteorites has invigorated the subject of martian geochemistry. Indeed, because of these samples, we now know more about the geochemistry of Mars than of any other planet beyond the Earth-Moon system. Some studies of martian meteorites have prompted a renewed search for extraterrestrial life using chemical biomarkers.Recent Mars spacecraft, including the Mars Pathfinder lander/rover in 1997 and Mars Global Surveyor and Mars Odyssey now orbiting the planet, have provided significant new geochemical findings. These missions have also generated geophysical data with which to constrain geochemical models of the martian interior.
Pancam multispectral imaging results from the Spirit Rover at Gusev crater
Bell, J.F.; Squyres, S. W.; Arvidson, R. E.; Arneson, H.M.; Bass, D.; Blaney, D.; Cabrol, N.; Calvin, W.; Farmer, J.; Farrand, W. H.; Goetz, W.; Golombek, M.; Grant, J. A.; Greeley, R.; Guinness, E.; Hayes, A.G.; Hubbard, M.Y.H.; Herkenhoff, K. E.; Johnson, M.J.; Johnson, J. R.; Joseph, J.; Kinch, K.M.; Lemmon, M.T.; Li, R.; Madsen, M.B.; Maki, J.N.; Malin, M.; McCartney, E.; McLennan, S.; McSween, H.Y.; Ming, D. W.; Moersch, J.E.; Morris, R.V.; Dobrea, E.Z.N.; Parker, T.J.; Proton, J.; Rice, J. W.; Seelos, F.; Soderblom, J.; Soderblom, L.A.; Sohl-Dickstein, J. N.; Sullivan, R.J.; Wolff, M.J.; Wang, A.
2004-01-01
Panoramic Camera images at Gusev crater reveal a rock-strewn surface interspersed with high- to moderate-albedo fine-grained deposits occurring in part as drifts or in small circular swales or hollows. Optically thick coatings of fine-grained ferric iron-rich dust dominate most bright soil and rock surfaces. Spectra of some darker rock surfaces and rock regions exposed by brushing or grinding show near-infrared spectral signatures consistent with the presence of mafic silicates such as pyroxene or olivine. Atmospheric observations show a steady decline in dust opacity during the mission, and astronomical observations captured solar transits by the martian moons, Phobos and Deimos, as well as a view of Earth from the martian surface.
Pancam multispectral imaging results from the Spirit Rover at Gusev Crater.
Bell, J F; Squyres, S W; Arvidson, R E; Arneson, H M; Bass, D; Blaney, D; Cabrol, N; Calvin, W; Farmer, J; Farrand, W H; Goetz, W; Golombek, M; Grant, J A; Greeley, R; Guinness, E; Hayes, A G; Hubbard, M Y H; Herkenhoff, K E; Johnson, M J; Johnson, J R; Joseph, J; Kinch, K M; Lemmon, M T; Li, R; Madsen, M B; Maki, J N; Malin, M; McCartney, E; McLennan, S; McSween, H Y; Ming, D W; Moersch, J E; Morris, R V; Dobrea, E Z Noe; Parker, T J; Proton, J; Rice, J W; Seelos, F; Soderblom, J; Soderblom, L A; Sohl-Dickstein, J N; Sullivan, R J; Wolff, M J; Wang, A
2004-08-06
Panoramic Camera images at Gusev crater reveal a rock-strewn surface interspersed with high- to moderate-albedo fine-grained deposits occurring in part as drifts or in small circular swales or hollows. Optically thick coatings of fine-grained ferric iron-rich dust dominate most bright soil and rock surfaces. Spectra of some darker rock surfaces and rock regions exposed by brushing or grinding show near-infrared spectral signatures consistent with the presence of mafic silicates such as pyroxene or olivine. Atmospheric observations show a steady decline in dust opacity during the mission, and astronomical observations captured solar transits by the martian moons, Phobos and Deimos, as well as a view of Earth from the martian surface.
Pancam multispectral imaging results from the Spirit Rover at Gusev Crater
NASA Technical Reports Server (NTRS)
Bell, J. F., III; Squyres, S. W.; Arvidson, R. E.; Arneson, H. M.; Bass, D.; Blaney, D.; Cabrol, N.; Calvin, W.; Farmer, J.; Farrand, W. H.;
2004-01-01
Panoramic Camera images at Gusev crater reveal a rock-strewn surface interspersed with high- to moderate-albedo fine-grained deposits occurring in part as drifts or in small circular swales or hollows. Optically thick coatings of fine-grained ferric iron-rich dust dominate most bright soil and rock surfaces. Spectra of some darker rock surfaces and rock regions exposed by brushing or grinding show near-infrared spectral signatures consistent with the presence of mafic silicates such as pyroxene or olivine. Atmospheric observations show a steady decline in dust opacity during the mission, and astronomical observations captured solar transits by the martian moons, Phobos and Deimos, as well as a view of Earth from the martian surface.
Atmospheric effects on the remote determination of thermal inertia on Mars
NASA Technical Reports Server (NTRS)
Haberle, Robert M.; Jakosky, Bruce M.
1991-01-01
Measurements of the IR brightness temperature at the Martian surface at many different times of day are presently compared with temperatures predicted by thermal models which allow sunlight to reach the surface unattenuated, in order to determine the thermal inertia of the uppermost 1-10 cm of the Martian surface. The consequences of the assumptions made are assessed in view of results from a different thermal model which invokes radiation-transfer through a dusty CO2 atmosphere, as well as sensible heat-exchange with the surface. Smaller thermal inertias imply smaller particle sizes; the results obtained suggest that low thermal-inertia regions consist of 5-micron, rather than 50-micron, particle sizes.
NASA Astrophysics Data System (ADS)
Dartnell, Lewis R.; Hunter, Stephanie J.; Lovell, Keith V.; Coates, Andrew J.; Ward, John M.
2010-09-01
The high flux of cosmic rays onto the unshielded surface of Mars poses a significant hazard to the survival of martian microbial life. Here, we determined the survival responses of several bacterial strains to ionizing radiation exposure while frozen at a low temperature characteristic of the martian near-subsurface. Novel psychrotolerant bacterial strains were isolated from the Antarctic Dry Valleys, an environmental analogue of the martian surface, and identified by 16S rRNA gene phylogeny as representatives of Brevundimonas, Rhodococcus, and Pseudomonas genera. These isolates, in addition to the known radioresistant extremophile Deinococcus radiodurans, were exposed to gamma rays while frozen on dry ice (-79°C). We found D. radiodurans to exhibit far greater radiation resistance when irradiated at -79°C than was observed in similar studies performed at higher temperatures. This greater radiation resistance has important implications for the estimation of potential survival times of microorganisms near the martian surface. Furthermore, the most radiation resistant of these Dry Valley isolates, Brevundimonas sp. MV.7, was found to show 99% 16S rRNA gene similarity to contaminant bacteria discovered in clean rooms at both Kennedy and Johnson Space Centers and so is of prime concern to efforts in the planetary protection of Mars from our lander probes. Results from this experimental irradiation, combined with previous radiation modeling, indicate that Brevundimonas sp. MV.7 emplaced only 30 cm deep in martian dust could survive the cosmic radiation for up to 100,000 years before suffering 106 population reduction.
NASA Astrophysics Data System (ADS)
Moser, D.; Reinhard, D. A.; Larson, D. J.; McCubbin, F. M.; Darling, J.; White, L. F.; Arcuri, G.; Irving, A. J.; Tait, K.; Barker, I.
2017-12-01
The rates at which early planetary surfaces like those of Mars and Earth transitioned to stability within the heavy bombardment epoch are poorly constrained. Here we show through analysis of the shock history of the earliest mineral remnants of Mars crust, specifically the accessory and highly refractory phases zircon and baddeleyite in martian meteorites, that the transition for Mars was relatively rapid and early. The Moon-sized impactor widely believed to have generated the martian hemispheric dichotomy, would have caused catastrophic heating, impact metamorphism and global re-surfacing by magma.This process would either destroy any primordial accessory phases through melting and vaporization, or impart micro- or nano-structural signatures of ultra-high temperature and/or pressure metamorphism on survivor crystals. We have conducted atom probe and/or correlative electron microscopy on intensely shocked and heated zircon and baddeleyite reference samples from Earth and the Moon, as well as from 4.43 Ga grains occurring as crystals and in lithic clasts in six polished surfaces of the Rabt Sbayta suite of martian polymict regolith breccias (NWA 7475, NWA 7034, NWA 7906, Rabt Sbayta 003). The martian population (n=68) shows no micro- or nano-signatures of ultra high temperature or pressure metamorphism. Instead, it exhibits mostly low-grade shock and thermal features consistent with regolith formation at 1.5 Ga and recent low pressure ( 5GPa) launch to Earth. Taken together with the time for decay of the mega-impact heat effects, as well as the 4.50 Ga age estimate for martian mantle solidification (modelled by other workers) our results indicate an early, 70 million year long transition from initiation of the hemispheric dichotomy to establishment of at least one domain of persistently stable and potentially habitable crust. The accelerated deep mantle convection prompted by mega-impact may have also increased the transport rate of volatiles to the Martian exterior during this transition, permitting the inference that early, planet-shaping impacts may ultimately promote habitability pathways in planetary systems.
Lithium isotope constraints on crust-mantle interactions and surface processes on Mars
NASA Astrophysics Data System (ADS)
Magna, Tomáš; Day, James M. D.; Mezger, Klaus; Fehr, Manuela A.; Dohmen, Ralf; Aoudjehane, Hasnaa Chennaoui; Agee, Carl B.
2015-08-01
Lithium abundances and isotope compositions are reported for a suite of martian meteorites that span the range of petrological and geochemical types recognized to date for Mars. Samples include twenty-one bulk-rock enriched, intermediate and depleted shergottites, six nakhlites, two chassignites, the orthopyroxenite Allan Hills (ALH) 84001 and the polymict breccia Northwest Africa (NWA) 7034. Shergottites unaffected by terrestrial weathering exhibit a range in δ7Li from 2.1 to 6.2‰, similar to that reported for pristine terrestrial peridotites and unaltered mid-ocean ridge and ocean island basalts. Two chassignites have δ7Li values (4.0‰) intermediate to the shergottite range, and combined, these meteorites provide the most robust current constraints on δ7Li of the martian mantle. The polymict breccia NWA 7034 has the lowest δ7Li (-0.2‰) of all terrestrially unaltered martian meteorites measured to date and may represent an isotopically light surface end-member. The new data for NWA 7034 imply that martian crustal surface materials had both a lighter Li isotope composition and elevated Li abundance compared with their associated mantle. These findings are supported by Li data for olivine-phyric shergotitte NWA 1068, a black glass phase isolated from the Tissint meteorite fall, and some nakhlites, which all show evidence for assimilation of a low-δ7Li crustal component. The range in δ7Li for nakhlites (1.8 to 5.2‰), and co-variations with chlorine abundance, suggests crustal contamination by Cl-rich brines. The differences in Li isotope composition and abundance between the martian mantle and estimated crust are not as large as the fractionations observed for terrestrial continental crust and mantle, suggesting a difference in the styles of alteration and weathering between water-dominated processes on Earth versus possibly Cl-S-rich brines on Mars. Using high-MgO shergottites (>15 wt.% MgO) it is possible to estimate the δ7Li of Bulk Silicate Mars (BSM) to be 4.2 ± 0.9‰ (2σ). This value is at the higher end of estimates for the Bulk Silicate Earth (BSE; 3.5 ± 1.0‰, 2σ), but overlaps within uncertainty.
Relative chronology of Martian volcanoes
NASA Technical Reports Server (NTRS)
Landheim, R.; Barlow, N. G.
1991-01-01
Impact cratering is one of the major geological processes that has affected the Martian surface throughout the planet's history. The frequency of craters within particular size ranges provides information about the formation ages and obliterative episodes of Martian geologic units. The Barlow chronology was extended by measuring small craters on the volcanoes and a number of standard terrain units. Inclusions of smaller craters in units previously analyzed by Barlow allowed for a more direct comparison between the size-frequency distribution data for volcanoes and established chronology. During this study, 11,486 craters were mapped and identified in the 1.5 to 8 km diameter range in selected regions of Mars. The results are summarized in this three page report and give a more precise estimate of the relative chronology of the Martian volcanoes. Also, the results of this study lend further support to the increasing evidence that volcanism has been a dominant geologic force throughout Martian history.
Protection of surface assets on Mars from wind blown jettisoned spacecraft components
NASA Astrophysics Data System (ADS)
Paton, Mark
2017-07-01
Jettisoned Entry, Descent and Landing System (EDLS) hardware from landing spacecraft have been observed by orbiting spacecraft, strewn over the Martian surface. Future Mars missions that land spacecraft close to prelanded assets will have to use a landing architecture that somehow minimises the possibility of impacts from these jettisoned EDLS components. Computer modelling is used here to investigate the influence of wind speed and direction on the distribution of EDLS components on the surface. Typical wind speeds encountered in the Martian Planetary Boundary Layer (PBL) were found to be of sufficient strength to blow items having a low ballistic coefficient, i.e. Hypersonic Inflatable Aerodynamic Decelerators (HIADs) or parachutes, onto prelanded assets even when the lander itself touches down several kilometres away. Employing meteorological measurements and careful characterisation of the Martian PBL, e.g. appropriate wind speed probability density functions, may then benefit future spacecraft landings, increase safety and possibly help reduce the delta v budget for Mars landers that rely on aerodynamic decelerators.
Effects of insolation on habitability and the isotopic history of Martian water
NASA Astrophysics Data System (ADS)
Moores, John
Three aspects of the Habitability of the Northern Plains of Mars to organics and terrestrial-like microbial life were assessed. (1) Protection offered by small surface features and; (2) the breakdown of rocks to form soils were examined using a radiative transfer computer model. Two separate sublimation experiments provided a basis to improve; (3) estimates of the amount of available water today and in the past by determining the fractionation of HDO between present-day reservoirs. (1) UV radiation sterilizes the hardiest of terrestrial organisms within minutes on the Martian surface. Small surface features including pits, trenches, flat faces and overhangs may create "safe havens" for organisms by blocking much of the UV flux. In the most favorable cases, this flux is sufficiently reduced such that organic in-fall could accumulate beneath overhanging surfaces and in pits and cracks while terrestrial microorganisms could persist for several tens of martian years. (2) The production of soils on the surface is considered by analogy with the arid US Southwest. Here differential insolation of incipient cracks of random orientations predicts crack orientation distributions consistent with field observations by assuming that only crack orientations which shield their interiors, minimizing their water loss, can grow, eventually disrupting the clast. (3) Disaggregated water ice to simulate the polar caps was produced by flash freezing in liquid nitrogen and crushing. When dust was added to the mixtures, the D/H ratio of the sublimate gas was seen to decrease with time from the bulk ratio. The more dust was added to the mixture, the more pronounced was this effect. The largest fractionation factor observed during these experiments was 2.5. Clean ice was also prepared and overlain by dust to simulate ground ice. Here, the movement of water vapor was modeled using an effective diffusivity that incorporated both adsorption on grains and diffusion. For low temperatures (<-55°C) a significant difference between the diffusivities of H 2 O and HDO was observed. This suggests adsorptive-control within the regolith as energies of interaction are 60-70kJmol -1 . This ability of the martian regolith to preferentially adsorb HDO decouples the ice table and polar caps from the atmosphere and allows for geographic variations in the D/H ratio on Mars.
Solar Particle Event Exposures and Local Tissue Environments in Free Space and on Martian Surface
NASA Technical Reports Server (NTRS)
Kim, M. Y.; Shinn, J. L.; Singleterry, R. C.; Atwell, W.; Wilson, J. W.
1999-01-01
Solar particle events (SPEs) are a concern to space missions outside Earth s geomagnetic field. The September 29, 1989 SPE is the largest ground-level event since February 23, 1956. It is an iron-rich event for which the spectra are well measured. Because ten times this event matches the ground level data of the February 1956 SPE, it is suggested that an event with ten-times the scaled spectra of the September 29, 1989 SPE be used as a worst case SPE for spacecraft design. For the worst case SPE, the input spectra were reconstructed using Nymmik's (1995) model for protons, the O and Fe ion spectra of Tylka et al. (1997) to evaluate the iron enhancement ratio, and the Solar Energetic Particle Baseline (SEPB) composition of McGuire et al. (1986) for the heavy ions. The necessary transport properties of the shielding materials and the astronaut s body tissues are evaluated using the HZETRN code. Three shield configurations (assumed to be aluminum) are considered: space suit taken as 0.3 g/sq cm, helmet/pressure vessel as 1 g/sq cm, and equipment room of 5 g/sq cm. A shelter is taken as 10 g/sq cm on the Martian surface. The effect of shielding due to the Martian atmosphere is included. The astronaut geometry is taken from the computerized anatomical man (CAM) model.
In-Situ Cryogenic Propellant Liquefaction and Storage for a Precursor to a Human Mars Mission
NASA Astrophysics Data System (ADS)
Mueller, Paul; Durrant, Tom
The current mission plan for the first human mission to Mars is based on an in-situ propellant production (ISPP) approach to reduce the amount of propellants needed to be taken to Mars and ultimately to reduce mission cost. Recent restructuring of the Mars Robotic Exploration Program has removed ISPP from the early sample return missions. A need still exists to demonstrate ISPP technologies on one or more robotic missions prior to the first human mission. This paper outlines a concept for an ISPP-based precursor mission as a technology demonstration prior to the first human mission. It will also return Martian soil samples to Earth for scientific analysis. The mission will primarily demonstrate cryogenic oxygen and fuel production, liquefaction, and storage for use as propellants for the return trip. Hydrogen will be brought from Earth as a feedstock to produce the hydrocarbon fuel (most likely methane). The analysis used to develop the mission concept includes several different thermal control and liquefaction options for the cryogens. Active cooling and liquefaction devices include Stirling, pulse tube, and Brayton-cycle cryocoolers. Insulation options include multilayer insulation, evacuated microspheres, aerogel blankets, and foam insulation. The cooling capacity and amount of insulation are traded off against each other for a minimum-mass system. In the case of hydrogen feedstock, the amount of hydrogen boiloff allowed during the trip to Mars is also included in the tradeoff. The spacecraft concept includes a Lander (including the propellant production plant) with a Mars Ascent Vehicle (MAV) mounted atop it. An option is explored where the engines on the MAV are also used for descent and landing on the Martian surface at the beginning of the mission. So the MAV propellant tanks would contain oxygen and methane during the trip from Earth. This propellant would be consumed in descent to the Martian surface, resulting in nearly-empty MAV tanks to be filled by the ISPP plant. The paper includes conceptual layout drawings of the proposed Lander/MAV combination, including propellant tanks and ISPP components. Mass estimates of the various components are also included.
Constraints on early events in Martian history as derived from the cratering record
NASA Technical Reports Server (NTRS)
Barlow, Nadine G.
1990-01-01
Constrains on early events in Martian history are derived using the planet's cratering record. Variations in the shapes of the crater size-frequency distribution curves are interpreted as indicative of the size-frequency distribution of the production populations, thus providing information about the age of the unit relative to the end of the heavy bombardment period. Results from the analysis of craters superposed on heavily cratered units across the Martian surface provide constraints on the hemispheric dichotomy and the early erosional conditions on Mars.
NASA Astrophysics Data System (ADS)
Spry, J. A.; Siegel, B.
2018-04-01
PP implementation is a required part of crewed exploration of Mars. Determining how PP is achieved is contingent on improved knowledge of Mars, best obtained in part by analysis of martian material of known provenance, as part of a Mars Sample Return mission.
Analysis of permafrost depths on Mars
NASA Technical Reports Server (NTRS)
Crescenti, G. H.
1984-01-01
The Martian surface thermal characteristics as they effect the thickness and distribution of the permafrost are discussed. Parameters such as temperature mean, maximum, and minimum, heat flow values, and damping depths are derived and applied to a model of the Martian cryosphere. A comparison is made between the permafrost layers of Earth and Mars.
Is Mars Sample Return Required Prior to Sending Humans to Mars?
NASA Technical Reports Server (NTRS)
Carr, Michael; Abell, Paul; Allwood, Abigail; Baker, John; Barnes, Jeff; Bass, Deborah; Beaty, David; Boston, Penny; Brinkerhoff, Will; Budney, Charles;
2012-01-01
Prior to potentially sending humans to the surface of Mars, it is fundamentally important to return samples from Mars. Analysis in Earth's extensive scientific laboratories would significantly reduce the risk of human Mars exploration and would also support the science and engineering decisions relating to the Mars human flight architecture. The importance of measurements of any returned Mars samples range from critical to desirable, and in all cases these samples will would enhance our understanding of the Martian environment before potentially sending humans to that alien locale. For example, Mars sample return (MSR) could yield information that would enable human exploration related to 1) enabling forward and back planetary protection, 2) characterizing properties of Martian materials relevant for in situ resource utilization (ISRU), 3) assessing any toxicity of Martian materials with respect to human health and performance, and 4) identifying information related to engineering surface hazards such as the corrosive effect of the Martian environment. In addition, MSR would be engineering 'proof of concept' for a potential round trip human mission to the planet, and a potential model for international Mars exploration.
CO2 greenhouse in the early martian atmosphere: SO2 inhibits condensation
NASA Technical Reports Server (NTRS)
Yung, Y. L.; Nair, H.; Gerstell, M. F.
1997-01-01
Many investigators of the early martian climate have suggested that a dense carbon dioxide atmosphere was present and warmed the surface above the melting point of water (J.B. Pollack, J.F. Kasting, S.M. Richardson, and K. Poliakoff 1987. Icarus 71, 203-224). However, J.F. Kasting (1991. Icarus 94, 1-13) pointed out that previous thermal models of the primitive martian atmosphere had not considered the condensation of CO2. When this effect was incorporated, Kasting found that CO2 by itself is inadequate to warm the surface. SO2 absorbs strongly in the near UV region of the solar spectrum. While a small amount of SO2 may have a negligible effect by itself on the surface temperature, it may have significantly warmed the middle atmosphere of early Mars, much as ozone warms the terrestrial stratosphere today. If this region is kept warm enough to inhibit the condensation of CO2, then CO2 remains a viable greenhouse gas. Our preliminary radiative modeling shows that the addition of 0.1 ppmv of SO2 in a 2 bar CO2 atmosphere raises the temperature of the middle atmosphere by approximately 10 degrees, so that the upper atmosphere in a 1 D model remains above the condensation temperature of CO2. In addition, this amount of SO2 in the atmosphere provides an effective UV shield for a hypothetical biosphere on the martian surface.
Palagonitic Mars: A Basalt Centric View of Surface Composition and Aqueous Alteration
NASA Technical Reports Server (NTRS)
Morris, R. V.; Graff, T. G.; Ming, D. W.; Bell, J. F., III; Le, L.; Mertzman, S. A.; Christensen, P. R.
2004-01-01
Palagonitic tephra from certain areas on Mauna Kea Volcano (Hawaii) are well-established spectral and magnetic analogues of high-albedo regions on Mars. By definition, palagonite is "a yellow or orange isotropic mineraloid formed by hydration and devitrification of basaltic glass." The yellow to orange pigment is nanometer-sized ferric oxide particles (np-Ox) dispersed throughout the hydrated basaltic glass matrix. The hydration state of the np-Ox particles and the matrix is not known, but the best Martian spectral analogues contain allophane-like materials and not crystalline phyllosilicates. Martian low-albedo regions are also characterized by a palagonite-like ferric absorption edge, but, unlike the highalbedo regions, they also show evidence for absorption by ferrous iron. Thermal emission spectra (TES) obtained by the Mars Global Surveyor Thermal Emission Spectrometer suggest that basaltic (surface Type 1) and andesitic (surface Type 2) volcanic compositions preferentially occur in southern (Syrtis Major) and northern (Acidalia) hemispheres, respectively. The absence of a ferric-bearing component in the modeling of TES spectra is in apparent conflict with VNIR spectra of Martian dark regions, as discussed above. However, the andesitic spectra have also been interpreted as oxidized basalt using phyllosilicates instead of high-SiO2 glass as endmembers in the spectral deconvolution of surface Type 2 TES spectra. We show here that laboratory VNIR and TES spectra of rinds on basaltic rocks are spectral endmembers that provide a consistent explanation for both VNIR and TES data of Martian dark regions.
NASA Technical Reports Server (NTRS)
Moehlmann, D.; Kochan, H.
1992-01-01
The Space Simulator of the German Aerospace Research Establishment at Cologne, formerly used for testing satellites, is now, since 1987, the central unit within the research sub-program 'Comet-Simulation' (KOSI). The KOSI team has investigated physical processes relevant to comets and their surfaces. As a byproduct we gained experience in sample-handling under simulated space conditions. In broadening the scope of the research activities of the DLR Institute of Space Simulation an extension to 'Laboratory-Planetology' is planned. Following the KOSI-experiments a Mars Surface-Simulation with realistic minerals and surface soil in a suited environment (temperature, pressure, and CO2-atmosphere) is foreseen as the next step. Here, our main interest is centered on thermophysical properties of the Martian surface and energy transport (and related gas transport) through the surface. These laboratory simulation activities can be related to space missions as typical pre-mission and during-the-mission support of the experiments design and operations (simulation in parallel). Post mission experiments for confirmation and interpretation of results are of great value. The physical dimensions of the Space Simulator (cylinder of about 2.5 m diameter and 5 m length) allows for testing and qualification of experimental hardware under realistic Martian conditions.
NASA Technical Reports Server (NTRS)
Jones, J. H.; Franz, H. B.
2015-01-01
Compared to terrestrial basalts, the Martian shergottite meteorites have an extraordinary range of Sr and Nd isotopic signatures. In addition, the S isotopic compositions of many shergottites show evidence of interaction with the Martian surface/ atmosphere through mass-independent isotopic fractionations (MIF, positive, non-zero delta(exp 33)S) that must have originated in the Martian atmosphere, yet ultimately were incorporated into igneous sulfides (AVS - acid-volatile sulfur). These positive delta(exp 33)S signatures are thought to be governed by solar UV photochemical processes. And to the extent that S is bound to Mars and not lost to space from the upper atmosphere, a positive delta(exp 33)S reservoir must be mass balanced by a complementary negative reservoir.
The Martian climate: Energy balance models with CO2/H2O atmospheres
NASA Technical Reports Server (NTRS)
Hoffert, M. I.
1985-01-01
Coupled equations are developed for mass and heat transport in a seasonal Mars model with condensation and sublimation of CO2 at the polar caps. Topics covered include physical considerations of planetary as mass and energy balance; effects of phase changes at the surface on mass and heat flux; atmospheric transport and governing equations; and numerical analysis.
Martian Surface Mineralogy from Rovers with Spirit, Opportunity, and Curiosity
NASA Technical Reports Server (NTRS)
Morris, Richard V.
2016-01-01
Beginning in 2004, NASA has landed three well-instrumented rovers on the equatorial martian surface. The Spirit rover landed in Gusev crater in early January, 2004, and the Opportunity rover landed on the opposite side of Mars at Meridian Planum 21 days later. The Curiosity rover landed in Gale crater to the west of Gusev crater in August, 2012. Both Opportunity and Curiosity are currently operational. The twin rovers Spirit and Opportunity carried Mossbauer spectrometers to determine the oxidation state of iron and its mineralogical composition. The Curiosity rover has an X-ray diffraction instrument for identification and quantification of crystalline materials including clay minerals. Instrument suites on all three rovers are capable of distinguishing primary rock-forming minerals like olivine, pyroxene and magnetite and products of aqueous alteration in including amorphous iron oxides, hematite, goethite, sulfates, and clay minerals. The oxidation state of iron ranges from that typical for unweathered rocks and soils to nearly completely oxidized (weathered) rocks and soils as products of aqueous and acid-sulfate alteration. The in situ rover mineralogy also serves as ground-truth for orbital observations, and orbital mineralogical inferences are used for evaluating and planning rover exploration.
Granular Material Flows with Interstitial Fluid Effects
NASA Technical Reports Server (NTRS)
Hunt, Melany L.; Brennen, Christopher E.
2004-01-01
The research focused on experimental measurements of the rheological properties of liquid-solid and granular flows. In these flows, the viscous effects of the interstitial fluid, the inertia of the fluid and particles, and the collisional interactions of the particles may all contribute to the flow mechanics. These multiphase flows include industrial problems such as coal slurry pipelines, hydraulic fracturing processes, fluidized beds, mining and milling operation, abrasive water jet machining, and polishing and surface erosion technologies. In addition, there are a wide range of geophysical flows such as debris flows, landslides and sediment transport. In extraterrestrial applications, the study of transport of particulate materials is fundamental to the mining and processing of lunar and Martian soils and the transport of atmospheric dust (National Research Council 2000). The recent images from Mars Global Surveyor spacecraft dramatically depict the complex sand and dust flows on Mars, including dune formation and dust avalanches on the slip-face of dune surfaces. These Aeolian features involve a complex interaction of the prevailing winds and deposition or erosion of the sediment layer; these features make a good test bed for the verification of global circulation models of the Martian atmosphere.
NASA Technical Reports Server (NTRS)
Miller, Jack; Heilbronn, Lawrence H.; Zeitlin, Cary J.; Wilson, John W.; Singleterry, Robert C., Jr.; Thibeault, Sheila Ann
2003-01-01
Mission crews in space outside the Earth s magnetic field will be exposed to high energy heavy charged particles in the galactic cosmic radiation (GCR). These highly ionizing particles will be a source of radiation risk to crews on extended missions to the Moon and Mars, and the biological effects of and countermeasures to the GCR have to be investigated as part of the planning of exploration-class missions. While it is impractical to shield spacecraft and planetary habitats against the entire GCR spectrum, biological and physical studies indicate that relatively modest amounts of shielding are effective at reducing the radiation dose. However, nuclear fragmentation in the shielding materials produces highly penetrating secondary particles, which complicates the problem: in some cases, some shielding is worse than none at all. Therefore the radiation transport properties of potential shielding materials need to be carefully investigated. One intriguing option for a Mars mission is the use of material from the Martian surface, in combination with chemicals carried from Earth and/or fabricated from elements found in the Martian atmosphere, to construct crew habitats. We have measured the transmission properties of epoxy-Martian regolith composites with respect to heavy charged particles characteristic of the GCR ions which bombard the Martian surface. The composites were prepared at NASA Langley Research Center using simulated Martian regolith, in the process also evaluating fabrication methods which could lead to technologies for in situ fabrication on Mars. Initial evaluation of the radiation shielding properties is made using radiation transport models developed at NASA-LaRC, and the results of these calculations are used to select the composites with the most favorable radiation transmission properties. These candidates are then evaluated at particle accelerators which produce beams of heavy charged particles representative in energy and charge of the radiation at the surface of Mars. The ultimate objective is to develop the models into a design tool for use by mission planners, flight surgeons and radiation health specialists.
Simulation of Martian EVA at the Mars Society Arctic Research Station
NASA Astrophysics Data System (ADS)
Pletser, V.; Zubrin, R.; Quinn, K.
The Mars Society has established a Mars Arctic Research Station (M.A.R.S.) on Devon Island, North of Canada, in the middle of the Haughton crater formed by the impact of a large meteorite several million years ago. The site was selected for its similarities with the surface of the Mars planet. During the Summer 2001, the MARS Flashline Research Station supported an extended international simulation campaign of human Mars exploration operations. Six rotations of six person crews spent up to ten days each at the MARS Flashline Research Station. International crews, of mixed gender and professional qualifications, conducted various tasks as a Martian crew would do and performed scientific experiments in several fields (Geophysics, Biology, Psychology). One of the goals of this simulation campaign was to assess the operational and technical feasibility of sustaining a crew in an autonomous habitat, conducting a field scientific research program. Operations were conducted as they would be during a Martian mission, including Extra-Vehicular Activities (EVA) with specially designed unpressurized suits. The second rotation crew conducted seven simulated EVAs for a total of 17 hours, including motorized EVAs with All Terrain Vehicles, to perform field scientific experiments in Biology and Geophysics. Some EVAs were highly successful. For some others, several problems were encountered related to hardware technical failures and to bad weather conditions. The paper will present the experiment programme conducted at the Mars Flashline Research Station, the problems encountered and the lessons learned from an EVA operational point of view. Suggestions to improve foreseen Martian EVA operations will be discussed.
Rover Track in Sand Sheet Near Martian Sand Dune
2015-12-10
The rippled surface of the first Martian sand dune ever studied up close fills this view of "High Dune" from the Mast Camera (Mastcam) on NASA's Curiosity rover. This site is part of the "Bagnold Dunes" field along the northwestern flank of Mount Sharp. The dunes are active, migrating up to about one yard or meter per year. The component images of this mosaic view were taken on Nov. 27, 2015, during the 1,176th Martian day, or sol, of Curiosity's work on Mars. The scene is presented with a color adjustment that approximates white balancing, to resemble how the sand would appear under daytime lighting conditions on Earth. The annotated version includes superimposed scale bars of 30 centimeters (1 foot) in the foreground and 100 centimeters (3.3 feet) in the middle distance. Malin Space Science Systems, San Diego, built and operates Curiosity's Mastcam. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, built the rover and manages the project for NASA's Science Mission Directorate, Washington. http://photojournal.jpl.nasa.gov/catalog/PIA20169
High Dune is First Martian Dune Studied up Close
2015-12-10
The rippled surface of the first Martian sand dune ever studied up close fills this view of "High Dune" from the Mast Camera (Mastcam) on NASA's Curiosity rover. This site is part of the "Bagnold Dunes" field along the northwestern flank of Mount Sharp. The dunes are active, migrating up to about one yard or meter per year. The component images of this mosaic view were taken on Nov. 27, 2015, during the 1,176th Martian day, or sol, of Curiosity's work on Mars. The scene is presented with a color adjustment that approximates white balancing, to resemble how the sand would appear under daytime lighting conditions on Earth. The annotated version includes superimposed scale bars of 30 centimeters (1 foot) in the foreground and 100 centimeters (3.3 feet) in the middle distance. Malin Space Science Systems, San Diego, built and operates Curiosity's Mastcam. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, built the rover and manages the project for NASA's Science Mission Directorate, Washington. http://photojournal.jpl.nasa.gov/catalog/PIA20168
Martian Soil Ready for Robotic Laboratory Analysis
NASA Technical Reports Server (NTRS)
2008-01-01
NASA's Phoenix Mars Lander scooped up this Martian soil on the mission's 11th Martian day, or sol, after landing (June 5, 2008) as the first soil sample for delivery to the laboratory on the lander deck. The material includes a light-toned clod possibly from crusted surface of the ground, similar in appearance to clods observed near a foot of the lander. This approximately true-color view of the contents of the scoop on the Robotic Arm comes from combining separate images taken by the Robotic Arm Camera on Sol 11, using illumination by red, green and blue light-emitting diodes on the camera. The scoop loaded with this sample was poised over an open sample-delivery door of Thermal and Evolved-Gas Analyzer at the end of Sol 11, ready to be dumped into the instrument on the next sol. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.NASA Technical Reports Server (NTRS)
Nakamura, N.; Nyquist, L. E.; Reese, Y.; Shih, C.-Y.; Fujitani, T.; Okano, O.
2011-01-01
Recently significantly large mass fractionation of stable chlorine isotopes has been reported for terrestrial and lunar samples [1,2]. In addition, in view of possible early solar system processes [3] and also potential perchlorate-related fluid/microbial activities on the Martian surface [4,5], a large chlorine isotopic fractionation might be expected for some types of planetary materials. Due to analytical difficulties of isotopic and elemental analyses, however, current chlorine analyses for planetary materials are controversial among different laboratories, particularly between IRMS (gas source mass spectrometry) and TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1,6,7] for isotopic analyses, as well as between those doing pyrohydrolysis and other groups [i.e. 6,8]. Additional careful investigations of Cl isotope and elemental abundances are required to confirm real chlorine isotope and elemental variations for planetary materials. We have developed a TIMS technique combined with HF-leaching/ion chromatography at NASA JSC that is applicable to analysis of small amounts of meteoritic and planetary materials. We present here results for several standard rocks and meteorites, including Martian meteorites.
NASA Technical Reports Server (NTRS)
1973-01-01
NASA will launch two spacecraft to Mars in 1975 to soft-land on the surface and test for signs of life. After confirming the site data from orbit, each of the spacecraft will separate into two parts, an orbiter and a lander. Together they will conduct scientific studies of the Martian atmosphere and surface. The lander's instruments will collect data for transmission to earth, direct or via the orbiter, including panoramic, stereo color pictures of its immediate surroundings, molecular organic and inorganic analyses of the soil, and atmospheric, meteorological, magnetic, and seismic characteristics. It will also make measurements of the atmosphere as it descends to the surface.
Penetration of Solar Radiation into Solid Carbon Dioxide
NASA Astrophysics Data System (ADS)
Chinnery, H. E.; Hagermann, A.; Kaufmann, E.; Lewis, S. R.; Grady, M. M.
2017-09-01
Carbon dioxide ice exists naturally on the surface of Mars. This is a unique environment, with no Earth analogues, and so determining the properties of such a surface is important to further our understanding of the Martian environment. Laboratory experiments have determined the e-folding scale, or absorption scale length, for carbon dioxide slab ice, granular ice and snow. This is a universal measure of how transparent a material is to visible light, and so has implications for the radiative budget of carbon dioxide ice covered surfaces, as well as physical processes, such as the so-called spider formations in the cryptic region near the Martian south pole.
NASA Astrophysics Data System (ADS)
Romero, P.; Pablos, B.; Barderas, G.
2017-07-01
Areostationary satellites are considered a high interest group of satellites to satisfy the telecommunications needs of the foreseen missions to Mars. An areostationary satellite, in an areoequatorial circular orbit with a period of 1 Martian sidereal day, would orbit Mars remaining at a fixed location over the Martian surface, analogous to a geostationary satellite around the Earth. This work addresses an analysis of the perturbed orbital motion of an areostationary satellite as well as a preliminary analysis of the aerostationary orbit estimation accuracy based on Earth tracking observations. First, the models for the perturbations due to the Mars gravitational field, the gravitational attraction of the Sun and the Martian moons, Phobos and Deimos, and solar radiation pressure are described. Then, the observability from Earth including possible occultations by Mars of an areostationary satellite in a perturbed areosynchronous motion is analyzed. The results show that continuous Earth-based tracking is achievable using observations from the three NASA Deep Space Network Complexes in Madrid, Goldstone and Canberra in an occultation-free scenario. Finally, an analysis of the orbit determination accuracy is addressed considering several scenarios including discontinuous tracking schedules for different epochs and different areoestationary satellites. Simulations also allow to quantify the aerostationary orbit estimation accuracy for various tracking series durations and observed orbit arc-lengths.
MEDUSA: The ExoMars experiment for in-situ monitoring of dust and water vapour
NASA Astrophysics Data System (ADS)
Colangeli, L.; Lopez-Moreno, J. J.; Nørnberg, P.; Della Corte, V.; Esposito, F.; Mazzotta Epifani, E.; Merrison, J.; Molfese, C.; Palumbo, P.; Rodriguez-Gomez, J. F.; Rotundi, A.; Visconti, G.; Zarnecki, J. C.; The International Medusa Team
2009-07-01
Dust and water vapour are fundamental components of the Martian atmosphere. In view of tracing the past environmental conditions on Mars, that possibly favoured the appearing of life forms, it is important to study the present climate and its evolution. Here dust and water vapour have (and have had) strong influence. Of major scientific interest is the quantity and physical, chemical and electrical properties of dust and the abundance of water vapour dispersed in the atmosphere and their exchange with the surface. Moreover, in view of the exploration of the planet with automated systems and in the future by manned missions, it is of primary importance to analyse the hazards linked to these environmental factors. The Martian Environmental Dust Systematic Analyser (MEDUSA) experiment, included in the scientific payload of the ESA ExoMars mission, accommodates a complement of sensors, based on optical detection and cumulative mass deposition, that aims to study dust and water vapour in the lower Martian atmosphere. The goals are to study, for the first time, in-situ and quantitatively, physical properties of the airborne dust, including the cumulative dust mass flux, the dust deposition rate, the physical and electrification properties, the size distribution of sampled particles and the atmospheric water vapour abundance versus time.
NASA Technical Reports Server (NTRS)
Kieffer, Hugh H. (Editor); Jakosky, Bruce M. (Editor); Snyder, Conway W. (Editor); Matthews, Mildred S. (Editor)
1992-01-01
The present volume on Mars discusses visual, photographic and polarimetric telescopic observations, spacecraft exploration of Mars, the origin and thermal evolution of Mars, and the bulk composition, mineralogy, and internal structure of the planet. Attention is given to Martian gravity and topography, stress and tectonics on Mars, long-term orbital and spin dynamics of Mars, and Martian geodesy and cartography. Topics addressed include the physical volcanology of Mars, the canyon system on planet, Martian channels and valley networks, and ice in the Martian regolith. Also discussed are Martian aeolian processes, sediments, and features, polar deposits of Mars, dynamics of the Martian atmosphere, and the seasonal behavior of water on Mars.
Searching for signatures of life on Mars: an Fe-isotope perspective.
Anand, M; Russell, S S; Blackhurst, R L; Grady, M M
2006-10-29
Recent spacecraft and lander missions to Mars have reinforced previous interpretations that Mars was a wet and warm planet in the geological past. The role of liquid water in shaping many of the surface features on Mars has long been recognized. Since the presence of liquid water is essential for survival of life, conditions on early Mars might have been more favourable for the emergence and evolution of life. Until a sample return mission to Mars, one of the ways of studying the past environmental conditions on Mars is through chemical and isotopic studies of Martian meteorites. Over 35 individual meteorite samples, believed to have originated on Mars, are now available for lab-based studies. Fe is a key element that is present in both primary and secondary minerals in the Martian meteorites. Fe-isotope ratios can be fractionated by low-temperature processes which includes biological activity. Experimental investigations of Fe reduction and oxidation by bacteria have produced large fractionation in Fe-isotope ratios. Hence, it is considered likely that if there is/were any form of life present on Mars then it might be possible to detect its signature by Fe-isotope studies of Martian meteorites. In the present study, we have analysed a number of Martian meteorites for their bulk-Fe-isotope composition. In addition, a set of terrestrial analogue material has also been analysed to compare the results and draw inferences. So far, our studies have not found any measurable Fe-isotopic fractionation in bulk Martian meteorites that can be ascribed to any low-temperature process operative on Mars.
Searching for signatures of life on Mars: an Fe-isotope perspective
Anand, M; Russell, S.S; Blackhurst, R.L; Grady, M.M
2006-01-01
Recent spacecraft and lander missions to Mars have reinforced previous interpretations that Mars was a wet and warm planet in the geological past. The role of liquid water in shaping many of the surface features on Mars has long been recognized. Since the presence of liquid water is essential for survival of life, conditions on early Mars might have been more favourable for the emergence and evolution of life. Until a sample return mission to Mars, one of the ways of studying the past environmental conditions on Mars is through chemical and isotopic studies of Martian meteorites. Over 35 individual meteorite samples, believed to have originated on Mars, are now available for lab-based studies. Fe is a key element that is present in both primary and secondary minerals in the Martian meteorites. Fe-isotope ratios can be fractionated by low-temperature processes which includes biological activity. Experimental investigations of Fe reduction and oxidation by bacteria have produced large fractionation in Fe-isotope ratios. Hence, it is considered likely that if there is/were any form of life present on Mars then it might be possible to detect its signature by Fe-isotope studies of Martian meteorites. In the present study, we have analysed a number of Martian meteorites for their bulk-Fe-isotope composition. In addition, a set of terrestrial analogue material has also been analysed to compare the results and draw inferences. So far, our studies have not found any measurable Fe-isotopic fractionation in bulk Martian meteorites that can be ascribed to any low-temperature process operative on Mars. PMID:17008212
Workshop on Evolution of Martian Volatiles. Part 1
NASA Technical Reports Server (NTRS)
Jakosky, B. (Editor); Treiman, A. (Editor)
1996-01-01
This volume contains papers that were presented on February 12-14, 1996 at the Evolution for Martian Volatiles Workshop. Topics in this volume include: returned Martian samples; acidic volatiles and the Mars soil; solar EUV Radiation; the ancient Mars Thermosphere; primitive methane atmospheres on Earth and Mars; the evolution of Martian water; the role of SO2 for the climate history of Mars; impact crater morphology; the formation of the Martian drainage system; atmospheric dust-water ice Interactions; volatiles and volcanos; accretion of interplanetary dust particles; Mars' ionosphere; simulations with the NASA Ames Mars General Circulation Model; modeling the Martian water cycle; the evolution of Martian atmosphere; isotopic composition; solar occultation; magnetic fields; photochemical weathering; NASA's Mars Surveyor Program; iron formations; measurements of Martian atmospheric water vapor; and the thermal evolution Models of Mars.
NASA Astrophysics Data System (ADS)
Ranjan, Sukrit; Wordsworth, Robin; Sasselov, Dimitar D.
2017-08-01
Recent findings suggest that Mars may have been a clement environment for the emergence of life and may even have compared favorably to Earth in this regard. These findings have revived interest in the hypothesis that prebiotically important molecules or even nascent life may have formed on Mars and been transferred to Earth. UV light plays a key role in prebiotic chemistry. Characterizing the early martian surface UV environment is key to understanding how Mars compares to Earth as a venue for prebiotic chemistry. Here, we present two-stream, multilayer calculations of the UV surface radiance on Mars at 3.9 Ga to constrain the surface UV environment as a function of atmospheric state. We explore a wide range of atmospheric pressures, temperatures, and compositions that correspond to the diversity of martian atmospheric states consistent with available constraints. We include the effects of clouds and dust. We calculate dose rates to quantify the effect of different atmospheric states on UV-sensitive prebiotic chemistry. We find that, for normative clear-sky CO2-H2O atmospheres, the UV environment on young Mars is comparable to young Earth. This similarity is robust to moderate cloud cover; thick clouds (τcloud ≥ 100) are required to significantly affect the martian UV environment, because cloud absorption is degenerate with atmospheric CO2. On the other hand, absorption from SO2, H2S, and dust is nondegenerate with CO2, meaning that, if these constituents build up to significant levels, surface UV fluence can be suppressed. These absorbers have spectrally variable absorption, meaning that their presence affects prebiotic pathways in different ways. In particular, high SO2 environments may admit UV fluence that favors pathways conducive to abiogenesis over pathways unfavorable to it. However, better measurements of the spectral quantum yields of these pathways are required to evaluate this hypothesis definitively.
NASA Astrophysics Data System (ADS)
Taylor, G. J.
2009-05-01
By combining data from several sources, Harry Y. (Hap) McSween (University of Tennessee), G. Jeffrey Taylor (University of Hawaii) and Michael B. Wyatt (Brown University) show that the surface of Mars is composed mostly of basalt not unlike those that make up the Earth's oceanic crust. McSween and his colleagues used data from Martian meteorites, analyses of soils and rocks at robotic landing sites, and chemical and mineralogical information from orbiting spacecraft. The data show that Mars is composed mostly of rocks similar to terrestrial basalts called tholeiites, which make up most oceanic islands, mid-ocean ridges, and the seafloor beneath sediments. The Martian samples differ in some respects that reflect differences in the compositions of the Martian and terrestrial interiors, but in general are a lot like Earth basalts. Cosmochemistst have used the compositions of Martian meteorites to discriminate bulk properties of Mars and Earth, but McSween and coworkers' synthesis shows that the meteorites differ from most of the Martian crust (the meteorites have lower aluminum, for example), calling into question how diagnostic the meteorites are for understanding the Martian interior.
Martian polar expeditions: problems and solutions.
Cockell, C S
2001-12-01
The Martian polar ice caps are regions of substantial scientific interest, being the most dynamic regions of Mars. They are volatile sinks and thus closely linked to Martian climatic conditions. Because of their scale and the precedent set by the past history of polar exploration on Earth, it is likely that an age of polar exploration will emerge on the surface of Mars after the establishment of a capable support structure at lower latitudes. Expeditions might be launched either from a lower latitude base camp or from a human-tended polar base. Based on previously presented expeditionary routes to the Martian poles, in this paper a "spiral in-spiral out" unsupported transpolar assault on the Martian north geographical pole is used as a Reference expedition to propose new types of equipment for the human polar exploration of Mars. Martian polar "ball" tents and "hover" modifications to the Nansen sledge for sledging on CO2-containing water ice substrates under low atmospheric pressures are suggested as elements for the success of these endeavours. Other challenges faced by these expeditions are quantitatively and qualitatively addressed. c 2001 Elsevier Science Ltd. All rights reserved.
Lunar and Planetary Science XXXV: Mars Geophysics
NASA Technical Reports Server (NTRS)
2004-01-01
The titles in this section include: 1) Distribution of Large Visible and Buried Impact Basins on Mars: Comparison with Free-Air Gravity, Crustal Thickness, and Magnetization Models; 2) The Early Thermal and Magnetic State of Terra Cimmeria, Southern Highlands of Mars; 3) Compatible Vector Components of the Magnetic Field of the Martian Crust; 4) Vertical Extrapolation of Mars Magnetic Potentials; 5) Rock Magnetic Fields Shield the Surface of Mars from Harmful Radiation; 6) Loading-induced Stresses near the Martian Hemispheric Dichotomy Boundary; 7) Growth of the Hemispheric Dichotomy and the Cessation of Plate Tectonics on Mars; 8) A Look at the Interior of Mars; 9) Uncertainties on Mars Interior Parameters Deduced from Orientation Parameters Using Different Radio-Links: Analytical Simulations; 10) Refinement of Phobos Ephemeris Using Mars Orbiter Laser Altimetry Radiometry.
Formation Timescales of the Martian Valley Networks
NASA Astrophysics Data System (ADS)
Hoke, M. T.; Hynek, B. M.
2010-12-01
The presence of valley networks across much of the ancient surface of Mars [e.g. 1] together with the locations and morphologies of the Martian deltas [e.g. 2] and ancient paleolakes [e.g. 3, 4], provides strong evidence that the Martian surface environment was once capable of sustaining long-lived flowing water. Many of the larger Martian valley networks exhibit characteristics consistent with their formation primarily from surface runoff of precipitated water [5-7]. Their formation likely followed similar processes as those that formed terrestrial river valleys, including the gradual erosion and transport of sediment downstream by bed load, suspended load, and wash load processes. When quantifying flow rates on Mars, some researchers have modified the Manning equation for depth- and width-averaged flow velocity in an attempt to better-fit Martian conditions [e.g. 3, 8-10]. These attempts, however, often result in flow velocities on Mars that are overestimated by up to a factor of two [10]. An alternative to the Manning equation that is often overlooked in the planetary science community is the Darcy-Weisbach (D-W) equation [11], which, unlike the Manning equation, maintains a dependence on the acceleration due to gravity. Although the D-W equation relies on a dimensionless friction function that has been fitted to terrestrial data, it is not a constant like the Manning coefficient. Rather, the D-W friction factor is a function of bed slope, flow depth, and median grain size [e.g. 8, 10, 12-14], and therefore it is better suited to model flow velocity on Mars. In this work, we investigate the formation timescales of the Martian valley networks through the use of four different sediment transport models [14], the D-W equation for average flow velocity, and a variety of parameters to encompass a range of possible formation conditions. This is done specific to each of eight large valley networks, all of which have crater densities that place their formation in the Late Noachian and Early Hesperian [15, 16], approximately 3.6 to 3.8 billion years ago. The preferred model scenario includes bankfull flows of 4-5 m depths corresponding to precipitation rates of 5 to 36 mm/day, depending on the valley network, and occurring intermittently 5% of the time. Results of the preferred model include formation timescales of 104 years (3°S, 5°E) to 108 years (east branch of Naktong Valles and 6°S, 45°E). References: [1] Hynek et al. (2010) JGR, doi:10.1029/2009JE003548; [2] Di Achille and Hynek (2010) Nature Geoscience, 3, 459-463; [3] Irwin et al. (2005) JGR, 110, E12S15; [4] Fassett and Head (2008) Icarus, 198, 37-56; [5] Craddock and Howard (2002) JGR, 107, 5111; [6] Howard et al. (2005) JGR, 110, E12S14; [7] Barnhart et al. (2009) JGR, 114, E01003; [8] Komar (1979) Icarus, 37, 156-181; [9] Goldspiel and Squyres (1991) Icarus, 89, 392-410; [10] Wilson et al. (2004) JGR, 109, E09003; [11] Leopold et al. (1964) Fluvial Processes in Geomorphology, 522pp; [12] Bathurst (1993) in Channel Network Hydrology, eds. Beven and Kirkby, p69-98; [13] Komar (1980) Icarus, 42, 317-329; [14] Kleinhans (2005) JGR, 110, E12003; [15] Fassett and Head (2008) Icarus, 195, 61-89; [16] Hoke and Hynek (2009) JGR, 114, E08002.
Martian Surface and Atmosphere Workshop
NASA Astrophysics Data System (ADS)
Schuraytz, Benjamin C.
The NASA-sponsored Martian Surface and Atmosphere Through Time Study Project convened its first major meeting at the University of Colorado in Boulder, September 23-25, 1991. The workshop, co-sponsored by the Lunar and Planetary Institute (LPI) and the Laboratory for Atmospheric and Space Physics at the University of Colorado, brought together an international group of 125 scientists to discuss a variety of issues relevant to the goals of the MSATT Program. The workshop program committee included co-convenors Robert Haberle, MSATT Steering Committee Chairman NASA Ames Research Center) and Bruce Jakosky (University of Colorado), and committee members Amos Banin (NASA Ames Research Center and Hebrew University), Benjamin Schuraytz (LPI), and Kenneth Tanaka (U.S. Geological Survey, Flagstaff, Ariz.).The purpose of the workshop was to begin exploring and defining the relationships between different aspects of Mars science—the evolution of the surface, the atmosphere, upper atmosphere, volatiles, and climate. Specific topics addressed in the 88 contributed abstracts included the current nature of the surface with respect to physical properties and photometric observations and interpretations; the history of geological processes, comprising water and ice-related geomorphology, impact cratering, and volcanism; and the geochemistry and mineralogy of the surface with emphasis on compositional and spectroscopic studies and weathering processes. Also addressed were the present atmosphere, focusing on structure and dynamics, volatile and dust distribution, and the upper atmosphere; long-term volatile evolution based on volatiles in SNC meteorites (certain meteorites thought to have come from Mars) and atmospheric evolution processes; climate history and volatile cycles in relation to early climate and the polar caps, ground ice, and regolith; and future mission concepts.
Photodegradation of selected organics on Mars
NASA Astrophysics Data System (ADS)
ten Kate, I. L.; Boosman, A.; Fornaro, T.; King, H. E.; Kopacz, K. A.; Wolthers, M.
2017-09-01
At least as much as 2.4 million kg of unaltered organic material is estimated to be delivered to the Martian surface each year. However, intense UV irradiation and the highly oxidizing and acidic nature of Martian soil cause degradation of organic compounds. Here we present first results obtained with the recently developed PALLAS facility at Utrecht University. This facility is specifically designed to simulate planetary and asteroid surface conditions to study the photocatalytic properties of relevant planetary minerals. Our results tentatively show degradation of several compounds and preservation of others.
NASA Technical Reports Server (NTRS)
2008-01-01
This image shows bluish-white frost seen on the Martian surface near NASA's Phoenix Mars Lander. The image was taken by the lander's Surface Stereo Imager on the 131st Martian day, or sol, of the mission (Oct. 7, 2008). Frost is expected to continue to appear in images as fall, then winter approach Mars' northern plains. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Meter-Scale 3-D Models of the Martian Surface from Combining MOC and MOLA Data
NASA Technical Reports Server (NTRS)
Soderblom, Laurence A.; Kirk, Randolph L.
2003-01-01
We have extended our previous efforts to derive through controlled photoclinometry, accurate, calibrated, high-resolution topographic models of the martian surface. The process involves combining MGS MOLA topographic profiles and MGS MOC Narrow Angle images. The earlier work utilized, along with a particular MOC NA image, the MOLA topographic profile that was acquired simultaneously, in order to derive photometric and scattering properties of the surface and atmosphere so as to force the low spatial frequencies of a one-dimensional MOC photoclinometric model to match the MOLA profile. Both that work and the new results reported here depend heavily on successful efforts to: 1) refine the radiometric calibration of MOC NA; 2) register the MOC to MOLA coordinate systems and refine the pointing; and 3) provide the ability to project into a common coordinate system, simultaneously acquired MOC and MOLA with a single set of SPICE kernels utilizing the USGS ISIS cartographic image processing tools. The approach described in this paper extends the MOC-MOLA integration and cross-calibration procedures from one-dimensional profiles to full two-dimensional photoclinometry and image simulations. Included are methods to account for low-frequency albedo variations within the scene.
NASA Technical Reports Server (NTRS)
Levrard, B.; Forget, F.; Montmessin, F.; Schmitt, B.; Doute, S.; Langevin, Y.; Poulet, F.; Bibring, J. P.; Gondet, B.
2005-01-01
Analyses of imaging data from Mariner, Viking and MGS have shown that surface properties (albedo, temperature) of the northern cap present significant differences within the summer season and between Mars years. These observations include differential brightening and/or darkening between polar areas from the end of the spring to midsummer. These differences are attributed to changes in grain size or dust content of surface ice. To better understand the summer behavior of the permanent northern polar cap, we perfomed a high resolution modeling (approximately 1 deg x 1 deg.) of northern cap in the Martian Climate/water cycle as simulated by the Laboratoire de Meteorologie Dynamique (LMD) global climate model. We compare the predicted properties of the surface ice (ice thickness, temperature) with the Mars Express Omega summer observations of the northern cap. albedo and thermal inertia svariations model. In particular, albedo variations could be constrained by OMEGA data. Meteorological predictions of the LMD GCM wil be presented at the conference to interpret the unprecedently resolved OMEGA observations. The specific evolution of regions of interest (cap center, Chasma Boreal...) and the possibility of late summer global cap brightening will be discussed.
NASA Technical Reports Server (NTRS)
Safaeinili, Ali; Kofman, Wlodek; Mouginot, Jeremie; Gim, Yonggyu; Herique, Alain; Ivanov, Anton B.; Plaut, Jeffrey J.; Picardi, Giovanni
2007-01-01
The Martian ionosphere's local total electron content (TEC) and the neutral atmosphere scale height can be derived from radar echoes reflected from the surface of the planet. We report the global distribution of the TEC by analyzing more than 750,000 echoes of the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS). This is the first direct measurement of the TEC of the Martian ionosphere. The technique used in this paper is a novel 'transmission-mode' sounding of the ionosphere of Mars in contrast to the Active Ionospheric Sounding experiment (AIS) on MARSIS, which generally operates in the reflection mode. This technique yields a global map of the TEC for the Martian ionosphere. The radar transmits a wideband chirp signal that travels through the ionosphere before and after being reflected from the surface. The received waves are attenuated, delayed and dispersed, depending on the electron density in the column directly below the spacecraft. In the process of correcting the radar signal, we are able to estimate the TEC and its global distribution with an unprecedented resolution of about 0.1 deg in latitude (5 km footprint). The mapping of the relative geographical variations in the estimated nightside TEC data reveals an intricate web of high electron density regions that correspond to regions where crustal magnetic field lines are connected to the solar wind. Our data demonstrates that these regions are generally but not exclusively associated with areas that have magnetic field lines perpendicular to the surface of Mars. As a result, the global TEC map provides a high-resolution view of where the Martian crustal magnetic field is connected to the solar wind. We also provide an estimate of the neutral atmospheric scale height near the ionospheric peak and observe temporal fluctuations in peak electron density related to solar activity.
NASA Technical Reports Server (NTRS)
Neukum, G.
1988-01-01
In the absence of dates derived from rock samples, impact crater frequencies are commonly used to date Martian surface units. All models for absolute dating rely on the lunar cratering chronology and on the validity of its extrapolation to Martian conditions. Starting from somewhat different lunar chronologies, rather different Martian cratering chronologies are found in the literature. Currently favored models are compared. The differences at old ages are significant, the differences at younger ages are considerable and give absolute ages for the same crater frequencies as different as a factor of 3. The total uncertainty could be much higher, though, since the ratio of lunar to Martian cratering rate which is of basic importance in the models is believed to be known no better than within a factor of 2. Thus, it is of crucial importance for understanding the the evolution of Mars and determining the sequence of events to establish an unambiguous Martian cratering chronology from crater statistics in combination with clean radiometric ages of returned Martian samples. For the dating goal, rocks should be as pristine as possible from a geologically simple area with a one-stage emplacement history of the local formation. A minimum of at least one highland site for old ages, two intermediate-aged sites, and one very young site is needed.
Thermal Infrared Emission Spectroscopy of Synthetic Allophane and its Potential Formation on Mars
NASA Technical Reports Server (NTRS)
Rampe, E. B.; Kraft, M. D.; Sharp, T. G.; Golden, D. C.; Ming, Douglas W.
2010-01-01
Allophane is a poorly-crystalline, hydrous aluminosilicate with variable Si/Al ratios approx.0.5-1 and a metastable precursor of clay minerals. On Earth, it forms rapidly by aqueous alteration of volcanic glass under neutral to slightly acidic conditions [1]. Based on in situ chemical measurements and the identification of alteration phases [2-4], the Martian surface is interpreted to have been chemically weathered on local to regional scales. Chemical models of altered surfaces detected by the Mars Exploration Rover Spirit in Gusev crater suggest the presence of an allophane-like alteration product [3]. Thermal infrared (TIR) spectroscopy and spectral deconvolution models are primary tools for determining the mineralogy of the Martian surface [5]. Spectral models of data from the Thermal Emission Spectrometer (TES) indicate a global compositional dichotomy, where high latitudes tend to be enriched in a high-silica material [6,7], interpreted as high-silica, K-rich volcanic glass [6,8]. However, later interpretations proposed that the high-silica material may be an alteration product (such as amorphous silica, clay minerals, or allophane) and that high latitude surfaces are chemically weathered [9-11]. A TIR spectral library of pure minerals is available for the public [12], but it does not contain allophane spectra. The identification of allophane on the Martian surface would indicate high water activity at the time of its formation and would help constrain the aqueous alteration environment [13,14]. The addition of allophane to the spectral library is necessary to address the global compositional dichotomy. In this study, we characterize a synthetic allophane by IR spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM) to create an IR emission spectrum of pure allophane for the Mars science community to use in Martian spectral models.
NASA Technical Reports Server (NTRS)
Sarid, A. R.; Frey, H. V.; Roark, J. H.
2003-01-01
Deciphering the cratering record on Mars has been challenging because it may reflect the changes in both the population of impactors and in the resurfacing processes on Mars. However, it is possible to determine the breadth of impactors captured in the cratering record. Extensive areas of resurfacing are of particular interest because they likely contain material from various ages in Martian history. By deducing the impact populations in both surface and underlying layers of terrain, it is possible to determine the age of the layers and constrain theories on the development of the Martian surface. However, to do so requires a method of seeing impact features which are no longer visible. Topographic data of Mars, taken by the Mars Orbiter Laser Altimeter (MOLA), has revealed impact features buried by resurfacing processes. These features are often indistinguishable on Viking images of the Martian surface. In this study, gridded MOLA data was analyzed in order to locate buried impact features, also called buried basins, in Syria, Solis, and Sinai Planum just south of Valles Marineris. The population statistics of buried features can be compared to those of visible features in order to determine the age of the underlying material and characteristics of the surface cover. Specifically, if the buried population in the Hesperian terrain is similar to the population of visible features in the Noachian, it would suggest that the underlying terrain is Noachian in age. The buried craters can then be compared to visible Noachian craters to reveal the amount of deterioration of the buried features. These comparisons allow us to explore the morphology of the terrain in the Hesperian region to determine if topographic variations are due to differences in the thickness of the overlying material or are a characteristic of the underlying terrain.
NASA Astrophysics Data System (ADS)
Bettanini, C.; Esposito, R.; Debei, S.; Molfese, C.; Colombatti, G.; Aboudan, A.; Brucato, J. R.; Cortecchia, F.; Di Achille, G.; Guizzo, G. P.; Friso, E.; Ferri, F.; Marty, L.; Mennella, V.; Molinaro, R.; Schipani, P.; Silvestro, S.; Mugnuolo, R.; Pirrotta, S.; Marchetti, E.; Harri, A.-M.; Montmessin, F.; Wilson, C.; Arruego Rodriguez, I.; Abbaki, S.; Apestigue, V.; Bellucci, G.; Berthelier, J. J.; Calcutt, S. B.; Forget, F.; Genzer, M.; Gilbert, P.; Haukka, H.; Jimenez, J. J.; Jimenez, S.; Josset, J. L.; Karatekin, O.; Landis, G.; Lorenz, R.; Martinez, J.; Möhlmann, D.; Moirin, D.; Palomba, E.; Pateli, M.; Pommereau, J.-P.; Popa, C. I.; Rafkin, S.; Rannou, P.; Renno, N. O.; Schmidt, W.; Simoes, F.; Spiga, A.; Valero, F.; Vazquez, L.; Vivat, F.; Witasse, O.
2017-08-01
The DREAMS (Dust characterization, Risk assessment and Environment Analyser on the Martian Surface) experiment on Schiaparelli lander of ExoMars 2016 mission was an autonomous meteorological station designed to completely characterize the Martian atmosphere on surface, acquiring data not only on temperature, pressure, humidity, wind speed and direction, but also on solar irradiance, dust opacity and atmospheric electrification, to measure for the first time key parameters linked to hazard conditions for future manned explorations. Although with very limited mass and energy resources, DREAMS would be able to operate autonomously for at least two Martian days (sols) after landing in a very harsh environment as it was supposed to land on Mars during the dust storm season (October 2016 in Meridiani Planum) relying on its own power supply. ExoMars mission was successfully launched on 14th March 2016 and Schiaparelli entered the Mars atmosphere on October 20th beginning its 'six minutes of terror' journey to the surface. Unfortunately, some unexpected behavior during the parachuted descent caused an unrecoverable critical condition in navigation system of the lander driving to a destructive crash on the surface. The adverse sequence of events at 4 km altitude triggered the transition of the lander in surface operative mode, commanding switch on the DREAMS instrument, which was therefore able to correctly power on and send back housekeeping data. This proved the nominal performance of all DREAMS hardware before touchdown demonstrating the highest TRL of the unit for future missions. This paper describes this experiment in terms of scientific goals, design, performances, testing and operational capabilities with an overview of in flight performances and available mission data.
Searching for the Source Crater of Nakhlite Meteorites.
Kereszturi, A; Chatzitheodoridis, E
2016-11-01
We surveyed the Martian surface in order to identify possible source craters of the nakhlite Martian meteorites. We investigated rayed craters that are assumed to be younger than 11 Ma, on lava surfaces with a solidification age around 1.2 Ga. An area of 17.3 million km 2 Amazonian lava plains was surveyed and 53 rayed craters were identified. Although most of them are smaller than the threshold limit that is estimated as minimum of launching fragments to possible Earth crossing trajectories, their observed size frequency distribution agrees with the expected areal density from cratering models characteristic for craters that are less than few tens of Ma old. We identified 6 craters larger than 3 km diameter constituting the potentially best source craters for nakhlites. These larger candidates are located mostly on a smooth lava surface, and in some cases, on the earlier fluvial-like channels. In three cases they are associated with fluidized ejecta lobes and rays - although the rays are faint in these craters, thus might be older than the other craters with more obvious rays. More work is therefore required to accurately estimate ages based on ray system for this purpose. A more detailed search should further link remote sensing Martian data with the in-situ laboratory analyses of Martian meteorites, especially in case of high altitude, steep terrains, where the crater rays seems to rarely survive several Ma.
NASA Technical Reports Server (NTRS)
Ballesteros, Erik Nicholas
2014-01-01
Understanding the surface and atmosphere of Mars is critical to current and future development of exploration systems. Dealing with the Martian regolith-the top layer of soil-remains a significant challenge, and much research is still needed. Addressing this need, the Cryogenics Test Lab and Granular Mechanics and Regolith Operations Lab at NASA's Kennedy Space Center are partnering to develop an apparatus that utilizes simulated Martian regolith in an analogous atmospheric environment to gather data about how the material behaves when exposed to water vapor. Martian surface temperatures range from 128 K (-145 C) to 308 K (35 C), and the average pressure is approximately 4.5 Torr; which presents an environment where water can potentially exist in vapor, solid or liquid form. And based on prior Mars missions such as the Phoenix Lander, it is known that water-ice exists just below the surface. This test apparatus will attempt to recreate the conditions that contributed to the Martian ice deposits by exposing a sample to water vapor at low pressure and temperature; thereby forming ice inside the simulant via diffusion. From this, we can better understand the properties and behavior of the regolith, and have more knowledge concerning its ability to store water-and subsequently, how to dig up and extract that water-which will be crucial to sample gathering when the first manned Mars mission takes place.
The composition of Martian aeolian sands: Thermal emissivity from Viking IRTM observations
NASA Technical Reports Server (NTRS)
Edgett, Kenneth S.; Christensen, Philip R.
1992-01-01
Aeolian sands provide excellent surfaces for the remote determination of the mineralogic composition of Martian materials, because such deposits consist of relatively well-sorted, uniform particle sizes and might consist of chemically unaltered, primary mineral grains derived from bedrock. Dark features on the floors of Martian craters are controlled by aeolian processes and many consist largely of unconsolidated, windblown sand. Measurement of the thermal emissivity of geologic materials provides a way to identify mid-infrared absorption bands, the strength and positions of which vary with mineral structure and composition. The Viking Infrared Thermal Mapper (IRTM) had four surface-sensing mid-IR bands, three of which, the 7, 9, and 11 micron channels, correspond to absorption features characteristic of carbonates, sialic, and mafic minerals, respectively. In this study, the highest quality IRTM data were constrained so as to avoid the effects of atmospheric dust, clouds, surface frosts, and particle size variations (the latter using data obtained between 7 and 9 H, and they were selected for dark intracrater features such that only data taken directly from the dark feature were used, so as to avoid thermal contributions from adjacent but unrelated materials. Three-point emissivity spectra of Martian dart intracrater features were compared with laboratory emission spectra of minerals and terrestrial aeolian sands convolved using the IRTM response function to the four IRTM spectral channels.
Evaluation of the Performance of the Mars Environmental Compatibility Assessment Electrometer
NASA Technical Reports Server (NTRS)
Mantovani, James G.
2002-01-01
The Mars Environmental Compatibility Assessment (MECA) electrometer is an instrument that was designed jointly by researchers at the Jet Propulsion Laboratory and the Kennedy Space Center, and is intended to fly on a future space exploration mission of the surface of Mars. The electrometer was designed primarily to study (1) the electrostatic interaction between the Martian soil and five different types of insulators, which are attached to the electrometer, as the electrometer is rubbed over the Martian soil. The MECA/Electrometer is also capable of measuring (2) the presence of charged particles in the Martian atmosphere, (3) the local electric field strength, and (4) the local temperature. The goal of the research project described in this report was to test and evaluate the measurement capabilities of the MECA/Electrometer under simulated Martian surface conditions using facilities located in the Labs and Testbeds Division at the Kennedy Space Center. The results of this study indicate that the Martian soil simulant can triboelectrically charge up the insulator surface. However, the maximum charge buildup did not exceed 18% of the electrometer's full-range sensitivity when rubbed vigorously, and is more likely to be as low as 1% of the maximum range when rubbed through soil. This indicates that the overall gain of the MECA/Electrometer could be increased by a factor of 50 if measurements at the 50% level of full-range sensitivity are desired. The ion gauge, which detects the presence of charged particles, was also evaluated over a pressure range from 10 to 400 Torr (13 to 533 mbar). The electric field sensor was also evaluated. Although the temperature sensor was not evaluated due to project time constraints, it was previously reported to work properly.
Evaluation of The Performance of The Mars Environmental Compatibility Assessment Electrometer
NASA Technical Reports Server (NTRS)
Mantovani, James G.
2001-01-01
The Mars Environmental Compatibility Assessment (MECA) electrometer is an instrument that was designed jointly by researchers at the Jet Propulsion Laboratory and the Kennedy Space Center, and is intended to fly on a future space exploration mission of the surface of Mars. The electrometer was designed primarily to study (1) the electrostatic interaction between the Martian soil and five different types of insulators, which are attached to the electrometer, as the electrometer is rubbed over the Martian soil. The MECA/Electrometer is also capable of measuring (2) the presence of charged particles in the Martian atmosphere, (3) the local electric field strength, and (4) the local temperature. The goal of the research project described in this report was to test and evaluate the measurement capabilities of the MECA/Electrometer under simulated Martian surface conditions using facilities located in the Labs and Testbeds Division at the Kennedy Space Center. The results of this study indicate that the Martian soil simulant can triboelectrically charge up the insulator surface. However, the maximum charge buildup did not exceed 18% of the electrometer's full-range sensitivity when rubbed vigorously, and is more likely to be as low as 1% of the maximum range when rubbed through soil. This indicates that the overall gain of the MECA/Electrometer could be increased by a factor of 50 if measurements at the 50% level of full-range sensitivity are desired. The ion gauge, which detects the presence of charged particles, was also evaluated over a pressure range from 10 to 400 Torr (13 to 533 mbar). The electric field sensor was also evaluated. Although the temperature sensor was not evaluated due to project time constraints, it was previously reported to work properly.
MetNet - Martian Network Mission
NASA Astrophysics Data System (ADS)
Harri, A.-M.
2009-04-01
We are developing a new kind of planetary exploration mission for Mars - MetNet in situ observation network based on a new semi-hard landing vehicle called the Met-Net Lander (MNL). The actual practical mission development work started in January 2009 with participation from various countries and space agencies. The scientific rationale and goals as well as key mission solutions will be discussed. The eventual scope of the MetNet Mission is to deploy some 20 MNLs on the Martian surface using inflatable descent system structures, which will be supported by observations from the orbit around Mars. Currently we are working on the MetNet Mars Precursor Mission (MMPM) to deploy one MetNet Lander to Mars in the 2009/2011 launch window as a technology and science demonstration mission. The MNL will have a versatile science payload focused on the atmospheric science of Mars. Detailed characterization of the Martian atmospheric circulation patterns, boundary layer phenomena, and climatology cycles, require simultaneous in-situ measurements by a network of observation posts on the Martian surface. The scientific payload of the MetNet Mission encompasses separate instrument packages for the atmospheric entry and descent phase and for the surface operation phase. The MetNet mission concept and key probe technologies have been developed and the critical subsystems have been qualified to meet the Martian environmental and functional conditions. This development effort has been fulfilled in collaboration between the Finnish Meteorological Institute (FMI), the Russian Lavoschkin Association (LA) and the Russian Space Research Institute (IKI) since August 2001. Currently the INTA (Instituto Nacional de Técnica Aeroespacial) from Spain is also participating in the MetNet payload development.
NASA Technical Reports Server (NTRS)
Grier, Jennifer A.
2005-01-01
We experienced much success in reaching our stated goals in our original MDAP proposal. Our work made substantial contributions towards an integrated understanding of the counting and calibration of crater data on Mars, and changing nature of the Martian surface influenced by craters, water, and wind, and their general relationship to Martian geothermal history. We accomplished this while being to responsive to the rapid changes in the field brought about by several key NASA missions that returned data during the life of the grant. Our integrated effort included three stages: The first major area of research (Crater Count Research) was conducted by Jennifer Grier (P.I.), Lazslo Keszthelyi (Collaborator), William Hartmann (Collaborator), with assistance from Dan Berman (Graduate student) and concerned the mapping and the collection of crater count data on various Martian terrains. The second major area of study (Absolute Age Calibration) was conducted by William Bottke (Co-I) at SWRI, and concerned constraining the nature of the Moon and Mars impactor populations to create better absolute age calibrations for counted areas. The third major area of study was the integration and leverage of this effort with ongoing related Mars crater work at PSI (Integrated and Continuing Studies - Older Volcanoes), headed by David Crown (PSI Scientist), assisted by Les Bleamaster (PSI Scientist) and Dan Berman (Graduate Student).
The physics of Martian weather and climate: a review.
Read, P L; Lewis, S R; Mulholland, D P
2015-12-01
The planet Mars hosts an atmosphere that is perhaps the closest in terms of its meteorology and climate to that of the Earth. But Mars differs from Earth in its greater distance from the Sun, its smaller size, its lack of liquid oceans and its thinner atmosphere, composed mainly of CO(2). These factors give Mars a rather different climate to that of the Earth. In this article we review various aspects of the martian climate system from a physicist's viewpoint, focusing on the processes that control the martian environment and comparing these with corresponding processes on Earth. These include the radiative and thermodynamical processes that determine the surface temperature and vertical structure of the atmosphere, the fluid dynamics of its atmospheric motions, and the key cycles of mineral dust and volatile transport. In many ways, the climate of Mars is as complicated and diverse as that of the Earth, with complex nonlinear feedbacks that affect its response to variations in external forcing. Recent work has shown that the martian climate is anything but static, but is almost certainly in a continual state of transient response to slowly varying insolation associated with cyclic variations in its orbit and rotation. We conclude with a discussion of the physical processes underlying these long- term climate variations on Mars, and an overview of some of the most intriguing outstanding problems that should be a focus for future observational and theoretical studies.
Results From Mars Show Electrostatic Charging of the Mars Pathfinder Sojourner Rover
NASA Technical Reports Server (NTRS)
Kolecki, Joseph C.; Siebert, Mark W.
1998-01-01
Indirect evidence (dust accumulation) has been obtained indicating that the Mars Pathfinder rover, Sojourner, experienced electrostatic charging on Mars. Lander camera images of the Sojourner rover provide distinctive evidence of dust accumulation on rover wheels during traverses, turns, and crabbing maneuvers. The sol 22 (22nd Martian "day" after Pathfinder landed) end-of-day image clearly shows fine red dust concentrated around the wheel edges with additional accumulation in the wheel hubs. A sol 41 image of the rover near the rock "Wedge" (see the next image) shows a more uniform coating of dust on the wheel drive surfaces with accumulation in the hubs similar to that in the previous image. In the sol 41 image, note particularly the loss of black-white contrast on the Wheel Abrasion Experiment strips (center wheel). This loss of contrast was also seen when dust accumulated on test wheels in the laboratory. We believe that this accumulation occurred because the Martian surface dust consists of clay-sized particles, similar to those detected by Viking, which have become electrically charged. By adhering to the wheels, the charged dust carries a net nonzero charge to the rover, raising its electrical potential relative to its surroundings. Similar charging behavior was routinely observed in an experimental facility at the NASA Lewis Research Center, where a Sojourner wheel was driven in a simulated Martian surface environment. There, as the wheel moved and accumulated dust (see the following image), electrical potentials in excess of 100 V (relative to the chamber ground) were detected by a capacitively coupled electrostatic probe located 4 mm from the wheel surface. The measured wheel capacitance was approximately 80 picofarads (pF), and the calculated charge, 8 x 10(exp -9) coulombs (C). Voltage differences of 100 V and greater are believed sufficient to produce Paschen electrical discharge in the Martian atmosphere. With an accumulated net charge of 8 x 10(exp -9) C, and average arc time of 1 msec, arcs can also occur with estimated arc currents approaching 10 milliamperes (mA). Discharges of this magnitude could interfere with the operation of sensitive electrical or electronic elements and logic circuits. Sojourner rover wheel tested in laboratory before launch to Mars. Before launch, we believed that the dust would become triboelectrically charged as it was moved about and compacted by the rover wheels. In all cases observed in the laboratory, the test wheel charged positively, and the wheel tracks charged negatively. Dust samples removed from the laboratory wheel averaged a few ones to tens of micrometers in size (clay size). Coarser grains were left behind in the wheel track. On Mars, grain size estimates of 2 to 10 mm were derived for the Martian surface materials from the Viking Gas Exchange Experiment. These size estimates approximately match the laboratory samples. Our tentative conclusion for the Sojourner observations is that fine clay-sized particles acquired an electrostatic charge during rover traverses and adhered to the rover wheels, carrying electrical charge to the rover. Since the Sojourner rover carried no instruments to measure this mission's onboard electrical charge, confirmatory measurements from future rover missions on Mars are desirable so that the physical and electrical properties of the Martian surface dust can be characterized. Sojourner was protected by discharge points, and Faraday cages were placed around sensitive electronics. But larger systems than Sojourner are being contemplated for missions to the Martian surface in the foreseeable future. The design of such systems will require a detailed knowledge of how they will interact with their environment. Validated environmental interaction models and guidelines for the Martian surface must be developed so that design engineers can test new ideas prior to cutting hardware. These models and guidelines cannot be validated without actual flighata. Electrical charging of vehicles and, one day, astronauts moving across the Martian surface may have moderate to severe consequences if large potential differences develop. The observations from Sojourner point to just such a possibility. It is desirable to quantify these results. The various lander/rover missions being planned for the upcoming decade provide the means for doing so. They should, therefore, carry instruments that will not only measure vehicle charging but characterize all the natural and induced electrical phenomena occurring in the environment and assess their impact on future missions.
A reduced organic carbon component in martian basalts.
Steele, A; McCubbin, F M; Fries, M; Kater, L; Boctor, N Z; Fogel, M L; Conrad, P G; Glamoclija, M; Spencer, M; Morrow, A L; Hammond, M R; Zare, R N; Vicenzi, E P; Siljeström, S; Bowden, R; Herd, C D K; Mysen, B O; Shirey, S B; Amundsen, H E F; Treiman, A H; Bullock, E S; Jull, A J T
2012-07-13
The source and nature of carbon on Mars have been a subject of intense speculation. We report the results of confocal Raman imaging spectroscopy on 11 martian meteorites, spanning about 4.2 billion years of martian history. Ten of the meteorites contain abiotic macromolecular carbon (MMC) phases detected in association with small oxide grains included within high-temperature minerals. Polycyclic aromatic hydrocarbons were detected along with MMC phases in Dar al Gani 476. The association of organic carbon within magmatic minerals indicates that martian magmas favored precipitation of reduced carbon species during crystallization. The ubiquitous distribution of abiotic organic carbon in martian igneous rocks is important for understanding the martian carbon cycle and has implications for future missions to detect possible past martian life.