Maser hunting in the galactic plane
NASA Astrophysics Data System (ADS)
Quinn, Lyshia Jane
The process of massive star formation greatly influences its surroundings through their outflows, vast UV output and shocks from their supernova death. They form at great distances from the Earth, enshrouded by dust and gas and have relatively short lifetimes. Astrophysical masers which form in these environments may act as locators of the star forming regions. The aim of this thesis is to study massive star formation using masers to probe these regions. The three main masers used in this thesis are the Class I and Class II methanol masers and the 6035 MHz ex-OH maser. The methanol masers are divided into two groups, Class I and Class II, based on their distance from a central source. The Class I masers are separated 1-2 pc from a central source, the central source is the star forming region. The Class II masers are associated close to a star forming source. They are often associated with a 6035 MHz ex-OH maser. The 6035 MHz ex-OH masers are less common than the 6668 MHz Class I methanol masers. They are often found at sites of the 6668 MHz Class I masers and 1665/7 MHz OH masers. This thesis presents two maser surveys, the Methanol Multibeam (MMB) survey and the Class I survey. The MMB survey is currently surveying the entire Galactic Plane for the 6668 MHz Class II methanol maser and the 6035 MHz ex-OH maser. Over 60% of the survey in the Southern hemisphere is now complete using the Parkes telescope. Over 900 6668 MHz Class I methanol masers and 110 6035 MHz ex-OH masers have been detected, with all of these masers pinpoint the location of newly forming high mass stars. Follow up observations to determine the precise locations of the 6668 MHz methanol and 6035 MHz ex-OH masers are currently underway. The first ever unbiased Class I survey has observed 1 sq degree of the Galactic Plane for the 44 GHz Class I methanol masers using the Mopra telescope in Australia. The 44 GHz Class II methanol masers are hypothesised to be associated with ! the outflows of high mass stellar objects. The Class I survey has detected 25 44 GHz methanol masers, with 23 being new detections. A smaller survey for 36 GHz Class I masers was also conducted using the Mopra telescope centered on the region with the highest population of 44 GHz Class I masers.
Rubidium 87 gas cell studies, phase 2. [design and characteristics of rubidium maser
NASA Technical Reports Server (NTRS)
Vanier, J.
1974-01-01
The design, development, and characteristics of a rubidium 87 maser are discussed. The design of a receiver capable of locking a crystal oscillator to the maser signal is reported. The subjects considered are: (1) maser construction, (2) maser control electronics, (3) the characteristics of the receiver, and (4) results of experimental maser tests.
SiO and CH3OH mega-masers in NGC 1068
Wang, Junzhi; Zhang, Jiangshui; Gao, Yu; Zhang, Zhi-Yu; Li, Di; Fang, Min; Shi, Yong
2014-01-01
Maser is an acronym for microwave amplification by stimulated emission of radiation; in astronomy mega-masers are masers in galaxies that are ≥106 times more luminous than typical galactic maser sources. Observational studies of mega-masers can help us to understand their origins and characteristics. More importantly, mega-masers can be used as diagnostic tracers to probe the physical properties of their parent galaxies. Since the late 1970s, only three types of molecules have been found to form mega-masers: H2O, OH and H2CO. Here we report the detection of both SiO and CH3OH mega-masers near the centre of Seyfert 2 galaxy NGC 1068 at millimetre wavelengths, obtained using the IRAM 30-m telescope. We argue that the SiO mega-maser originated from the nuclear disk and the CH3OH mega-maser originated from shock fronts. High-resolution observations in the future will enable us to investigate AGN feedback and determine the masses of central supermassive black holes in such galaxies. PMID:25386834
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darling, Jeremy; Gerard, Benjamin; Amiri, Nikta
We report the results of a Green Bank Telescope survey for water masers, ammonia (1, 1) and (2, 2), and the H66 α recombination line toward 506 luminous compact 24 μ m emitting regions in the Andromeda Galaxy (M31). We include the 206 sources observed in the Darling water maser survey for completeness. The survey was sensitive enough to detect any maser useful for ∼10 μ as yr{sup 1} astrometry. No new water masers, ammonia lines, or H66 α recombination lines were detected individually or in spectral stacks reaching rms noise levels of ∼3 mJy and ∼0.2 mJy, respectively, inmore » 3.1–3.3 km s{sup 1} channels. The lack of detections in individual spectra and in the spectral stacks is consistent with Galactic extrapolations. Contrary to previous assertions, there do not seem to be any additional bright water masers to be found in M31. The strong variability of water masers may enable new maser detections in the future, but variability may also limit the astrometric utility of known (or future) masers because flaring masers must also fade.« less
WATER MASERS IN THE ANDROMEDA GALAXY. II. WHERE DO MASERS ARISE?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amiri, Nikta; Darling, Jeremy
We present a comparative multiwavelength analysis of water-maser-emitting regions and non-maser-emitting luminous 24 μ m star-forming regions in the Andromeda Galaxy (M31) to identify the sites most likely to produce luminous water masers useful for astrometry and proper motion studies. Included in the analysis are Spitzer 24 μ m photometry, Herschel 70 and 160 μ m photometry, H α emission, dust temperature, and star-formation rate. We find significant differences between the maser-emitting and non-maser-emitting regions: water-maser-emitting regions tend to be more infrared-luminous and show higher star-formation rates. The five water masers in M31 are consistent with being analogs of watermore » masers in Galactic star-forming regions and represent the high-luminosity tail of a larger (and as yet undetected) population. Most regions likely to produce water masers bright enough for proper motion measurements using current facilities have already been surveyed, but we suggest three ways to detect additional water masers in M31: (1) reobserve the most luminous mid- or far-infrared sources with higher sensitivity than was used in the Green Bank Telescope survey; (2) observe early-stage star-forming regions selected by millimeter continuum that have not already been selected by their 24 μ m emission, and (3) reobserve the most luminous mid- or far-infrared sources and rely on maser variability for new detections.« less
How to Detect Inclined Water Maser Disks (and Possibly Measure Black Hole Masses)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darling, Jeremy, E-mail: jdarling@colorado.edu
We describe a method for identifying inclined water maser disks orbiting massive black holes and for potentially using them to measure black hole masses. Owing to the geometry of maser amplification pathways, the minority of water maser disks are observable: only those viewed nearly edge-on have been identified, suggesting that an order of magnitude additional maser disks exist. We suggest that inward-propagating masers are gravitationally deflected by the central black hole, thereby scattering water maser emission out of the disk plane and enabling detection. The signature of an inclined water maser disk would be narrow masers near the systemic velocitymore » that appear to emit from the black hole position, as identified by the radio continuum core. To explore this possibility, we present high-resolution (0.″07–0.″17) Very Large Array line and continuum observations of 13 galaxies with narrow water maser emission and show that three are good inclined-disk candidates (five remain ambiguous). For the best case, CGCG 120−039, we show that the maser and continuum emission are coincident to within 3.5 ± 1.4 pc (6.7 ± 2.7 mas). Subsequent very long baseline interferometric maps can confirm candidate inclined disks and have the potential to show maser rings or arcs that provide a direct measurement of black hole mass, although the mass precision will rely on knowledge of the size of the maser disk.« less
37 GHz Methanol Masers : Horsemen of the Apocalypse for the Class II Methanol Maser Phase?
NASA Astrophysics Data System (ADS)
Ellingsen, S. P.; Breen, S. L.; Sobolev, A. M.; Voronkov, M. A.; Caswell, J. L.; Lo, N.
2011-12-01
We report the results of a search for class II methanol masers at 37.7, 38.3, and 38.5 GHz toward a sample of 70 high-mass star formation regions. We primarily searched toward regions known to show emission either from the 107 GHz class II methanol maser transition, or from the 6.035 GHz excited OH transition. We detected maser emission from 13 sources in the 37.7 GHz transition, eight of these being new detections. We detected maser emission from three sources in the 38 GHz transitions, one of which is a new detection. We find that 37.7 GHz methanol masers are only associated with the most luminous 6.7 and 12.2 GHz methanol maser sources, which in turn are hypothesized to be the oldest class II methanol sources. We suggest that the 37.7 GHz methanol masers are associated with a brief evolutionary phase (of 1000-4000 years) prior to the cessation of class II methanol maser activity in the associated high-mass star formation region.
Simultaneous Survey of Water and Class I Methanol Masers toward Red MSX Sources
NASA Astrophysics Data System (ADS)
Kim, Chang-Hee; Kim, Kee-Tae; Park, Yong-Sun
2018-06-01
We report simultaneous single-dish surveys of 22 GHz H2O and 44 and 95 GHz class I CH3OH masers toward 299 Red Midcourse Space Experiment Sources in the protostellar stage. The detection rates are 45% at 22 GHz, 28% at 44 GHz, and 23% at 95 GHz. There are 15, 53, and 51 new discoveries at 22, 44, and 95 GHz, respectively. We detect high-velocity (>30 km s‑1) features in 27 H2O maser sources. The 95 GHz maser emission is detected only in 44 GHz maser sources. The two transitions show strong correlations in the peak velocity, peak flux density, and isotropic maser luminosity, indicating that they are likely generated in the same sites by the same mechanisms. The 44 GHz masers have much narrower distributions than 22 GHz masers in the relative peak velocity and velocity range, while 6.7 GHz class II CH3OH masers have distributions intermediate between the two. The maser luminosity significantly correlates with the parental clump mass, while it correlates well with the bolometric luminosity of the central protostar only when data of the low-mass regime from the literature are added. Comparison with the results of previous maser surveys toward massive star-forming regions suggests that the detection rates of 22 and 44 GHz masers tend to increase as the central objects evolve. This is contrary to the trends found in low- and intermediate-mass star-forming regions. Thus, the occurrence of both masers might depend on the surrounding environments as well as on the evolution of the central object.
UNUSUAL SHOCK-EXCITED OH MASER EMISSION IN A YOUNG PLANETARY NEBULA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiao, Hai-Hua; Shen, Zhi-Qiang; Walsh, Andrew J.
2016-01-20
We report on OH maser emission toward G336.644−0.695 (IRAS 16333−4807), which is a H{sub 2}O maser-emitting Planetary Nebula (PN). We have detected 1612, 1667, and 1720 MHz OH masers at two epochs using the Australia Telescope Compact Array, hereby confirming it as the seventh known case of an OH-maser-emitting PN. This is only the second known PN showing 1720 MHz OH masers after K 3−35 and the only evolved stellar object with 1720 MHz OH masers as the strongest transition. This PN is one of a group of very young PNe. The 1612 MHz and 1667 MHz masers are atmore » a similar velocity to the 22 GHz H{sub 2}O masers, whereas the 1720 MHz masers show a variable spectrum, with several components spread over a higher velocity range (up to 36 km s{sup −1}). We also detect Zeeman splitting in the 1720 MHz transition at two epochs (with field strengths of ∼2 to ∼10 mG), which suggests the OH emission at 1720 MHz is formed in a magnetized environment. These 1720 MHz OH masers may trace short-lived equatorial ejections during the formation of the PN.« less
Observations of Non Typical Masers at the RT-22 Radio Telescope in 2004-2013
NASA Astrophysics Data System (ADS)
Shulga, V. M.; Antyufeyev, O. V.; Zubrin, S. Y.; Myshenko, V. V.; Piddyachiy, V. I.; Korolev, A. M.; Patoka, O. M.
2017-06-01
Purpose: Some peculiarities of emission of Class I methanol masers on the 80-71A+ transition at 95 GHz in sources closely associated with protostar-forming regions and in supernova remnants are studied. Here belongs the investigation of SiO (J=2-1) maser variability in R Cassiopeiae, too. Design/methodology/approach: Search for Class I methanol masers is based on the idea of coincidence of regions of their emission with sources of OH masing transition in the bottom level of energy at frequency of 1720 MHz (2Π3/2 J=3/2 F=2-1). Findings: Two methanol masers on transition 80-71A+ (95 GHz) in the supernova remnants IC 443 and Kes 79 are detected. Variabilities of SiO maser emission on transition J=2-1 in R Cassiopeiae are shown for the first time. Conclusions: Variability of methanol and SiO masers is their general feature. On the example of three objects, the possibility of using the 1720 MHz OH maser as an indicator in the search for Class I methanol masers is shown. Especially it is important in the study of methanol maser emission in supernova remnants that has been proved to be true by detection of methanol masers on transition 80-71A+ (95 GHz) in IC 443 and Kes 79. Features of spectra variability of emission in R Cassiopeiae testify to formation and disappearance of SiO (J=2-1) masers.
An Improved X-Band Maser System for Deep Space Network Applications
NASA Astrophysics Data System (ADS)
Britcliffe, M.; Hanson, T.; Fernandez, J.
2000-01-01
An 8450-MHz (X-band) maser system utilizing a commercial Gifford--McMahon (GM) closed-cycle cryocooler (CCR) was designed, fabricated, and demonstrated. The CCR system was used to cool a maser operating at 8450 MHz. The prototype GM CCR system meets or exceeds all Deep Space Network requirements for maser performance. The two-stage GM CCR operates at 4.2 K; for comparison, the DSN's current three-stage cryocooler, which uses a Joule--Thompson cooling stage in addition to GM cooling, operates at 4.5 K. The new CCR withstands heat loads of 1.5 W at 4.2 K as compared to 1 W at 4.5 K for the existing DSN cryocooler used for cooling masers. The measured noise temperature, T_e, of the maser used for these tests is defined at the ambient connection to the antenna feed system. The T_e measured 5.0 K at a CCR temperature of 4.5 K, about 1.5 K higher than the noise temperature of a typical DSN Block II-A X-band traveling-wave maser (TWM). Reducing the temperature of the CCR significantly lowers the maser noise temperature and increases maser gain and bandwidth. The new GM CCR gives future maser systems significant operational advantages, including reduced maintenance time and logistics requirements. The results of a demonstration of this new system are presented. Advantages of using a GM-cooled maser and the effects of the reduced CCR temperature on maser performance are discussed.
The Megamaser Cosmology Project. X. High-resolution Maps and Mass Constraints for SMBHs
NASA Astrophysics Data System (ADS)
Zhao, W.; Braatz, J. A.; Condon, J. J.; Lo, K. Y.; Reid, M. J.; Henkel, C.; Pesce, D. W.; Greene, J. E.; Gao, F.; Kuo, C. Y.; Impellizzeri, C. M. V.
2018-02-01
We present high-resolution (submas) Very Long Baseline Interferometry maps of nuclear H2O megamasers for seven galaxies. In UGC 6093, the well-aligned systemic masers and high-velocity masers originate in an edge-on, flat disk and we determine the mass of the central supermassive black holes (SMBH) to be M SMBH = 2.58 × 107 M ⊙ (±7%). For J1346+5228, the distribution of masers is consistent with a disk, but the faint high-velocity masers are only marginally detected, and we constrain the mass of the SMBH to be in the range (1.5–2.0) × 107 M ⊙. The origin of the masers in Mrk 1210 is less clear, as the systemic and high-velocity masers are misaligned and show a disorganized velocity structure. We present one possible model in which the masers originate in a tilted, warped disk, but we do not rule out the possibility of other explanations including outflow masers. In NGC 6926, we detect a set of redshifted masers, clustered within a parsec of each other, and a single blueshifted maser about 4.4 pc away, an offset that would be unusually large for a maser disk system. Nevertheless, if it is a disk system, we estimate the enclosed mass to be M SMBH < 4.8 × 107 M ⊙. For NGC 5793, we detect redshifted masers spaced about 1.4 pc from a clustered set of blueshifted features. The orientation of the structure supports a disk scenario as suggested by Hagiwara et al. We estimate the enclosed mass to be M SMBH < 1.3 × 107 M ⊙. For NGC 2824 and J0350‑0127, the masers may be associated with parsec- or subparsec-scale jets or outflows.
A WATER MASER AND NH{sub 3} SURVEY OF GLIMPSE EXTENDED GREEN OBJECTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cyganowski, C. J.; Koda, J.; Towers, S.
We present the results of a Nobeyama 45 m H{sub 2}O maser and NH{sub 3} survey of all 94 northern GLIMPSE extended green objects (EGOs), a sample of massive young stellar objects (MYSOs) identified based on their extended 4.5 {mu}m emission. We observed the NH{sub 3}(1,1), (2,2), and (3,3) inversion lines, and detected emission toward 97%, 63%, and 46% of our sample, respectively (median rms {approx} 50 mK). The H{sub 2}O maser detection rate is 68% (median rms {approx} 0.11 Jy). The derived H{sub 2}O maser and clump-scale gas properties are consistent with the identification of EGOs as young MYSOs.more » To explore the degree of variation among EGOs, we analyze subsamples defined based on mid-infrared (MIR) properties or maser associations. H{sub 2}O masers and warm dense gas, as indicated by emission in the higher-excitation NH{sub 3} transitions, are most frequently detected toward EGOs also associated with both Class I and II CH{sub 3}OH masers. Ninety-five percent (81%) of such EGOs are detected in H{sub 2}O (NH{sub 3}(3,3)), compared to only 33% (7%) of EGOs without either CH{sub 3}OH maser type. As populations, EGOs associated with Class I and/or II CH{sub 3}OH masers have significantly higher NH{sub 3} line widths, column densities, and kinetic temperatures than EGOs undetected in CH{sub 3}OH maser surveys. However, we find no evidence for statistically significant differences in H{sub 2}O maser properties (such as maser luminosity) among any EGO subsamples. Combining our data with the 1.1 mm continuum Bolocam Galactic Plane Survey, we find no correlation between isotropic H{sub 2}O maser luminosity and clump number density. H{sub 2}O maser luminosity is weakly correlated with clump (gas) temperature and clump mass.« less
OH masers towards IRAS 19092+0841
NASA Astrophysics Data System (ADS)
Edris, K. A.; Fuller, G. A.; Etoka, S.; Cohen, R. J.
2017-12-01
Context. Maser emission is a strong tool for studying high-mass star-forming regions and their evolutionary stages. OH masers in particular can trace the circumstellar material around protostars and determine their magnetic field strengths at milliarcsecond resolution. Aims: We seek to image OH maser emission towards high-mass protostellar objects to determine their evolutionary stages and to locate the detected maser emission in the process of high-mass star formation. Methods: In 2007, we surveyed OH maser emission towards 217 high-mass protostellar objects to study its presence. In this paper, we present follow-up MERLIN observations of a ground-state OH maser emission towards one of these objects, IRAS 19092+0841. Results: We detect emissions from the two OH main spectral lines, 1665 and 1667 MHz, close to the central object. We determine the positions and velocities of the OH maser features. The masers are distributed over a region of 5'' corresponding to 22 400 AU (or 0.1 pc) at a distance of 4.48 kpc. The polarization properties of the OH maser features are determined as well. We identify three Zeeman pairs from which we inferred a magnetic field strength of 4.4 mG pointing towards the observer. Conclusions: The relatively small velocity spread and relatively wide spacial distribution of the OH maser features support the suggestion that this object could be in an early evolutionary state before the presence of disk, jets or outflows.
NASA Technical Reports Server (NTRS)
Clauss, R. C.; Quinn, R. B. (Inventor)
1980-01-01
A dielectrically loaded four port waveguide circulator is used with a reflected wave maser connected to a second port between first and third ports to form one of a plurality of cascaded maser waveguide structures. The fourth port is connected to a waveguide loaded with microwave energy absorbing material. The third (output signal) port of one maser waveguide structure is connected by a waveguide loaded with dielectric material to the first (input) port of an adjacent maser waveguide structure, and the second port is connected to a reflected wave maser by a matching transformer which passes the signal to be amplified into and out of the reflected wavemaser and blocks pumping energy in the reflected wave maser from entering the circulator. A number of cascaded maser waveguide structures are thus housed in a relatively small volume of conductive material placed within a cryogenically cooled magnet assembly.
A New 95 GHz Methanol Maser Catalog. I. Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Wenjin; Xu, Ye; Lu, Dengrong
The Purple Mountain Observatory 13.7 m radio telescope has been used to search for 95 GHz (8{sub 0}–7{sub 1}A{sup +}) class I methanol masers toward 1020 Bolocam Galactic Plane Survey (BGPS) sources, leading to 213 detections. We have compared the line width of the methanol and HCO{sup +} thermal emission in all of the methanol detections, and on that basis, we find that 205 of the 213 detections are very likely to be masers. This corresponds to an overall detection rate of 95 GHz methanol masers toward our BGPS sample of 20%. Of the 205 detected masers, 144 (70%) aremore » new discoveries. Combining our results with those of previous 95 GHz methanol maser searches, a total of 481 95 GHz methanol masers are now known. We have compiled a catalog listing the locations and properties of all known 95 GHz methanol masers.« less
NASA Astrophysics Data System (ADS)
Shinnaga, H.; Moran, J. M.; Young, K. H.; Ho, P. T. P.
2005-12-01
We imaged the SiO maser emission of J=5-4 in the v=1 state associated with the peculiar red supergiant VY Canis Majoris using the partially completed Submillimeter Array. We identified seven maser components and measured the relative positions at sub-arcsecond scale in the high J transition for the first time. We have also measured the polarization of these maser components. The strongest maser feature has a linear polarization of ˜ 60%, and its direction of polarization is approximately aligned with the bipolar axis. Such a high degree of polarization suggests that radiative pumping is probably responsible for the maser inversion. Five of the other maser features have significant linear polarization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, B.; Menten, K. M.; Wu, Y.
We conducted Very Large Array C-configuration observations to measure positions and luminosities of Galactic Class II 6.7 GHz methanol masers and their associated ultra-compact H ii regions. The spectral resolution was 3.90625 kHz and the continuum sensitivity reached 45 μ Jy beam{sup −1}. We mapped 372 methanol masers with peak flux densities of more than 2 Jy selected from the literature. Absolute positions have nominal uncertainties of 0.″3. In this first paper on the data analysis, we present three catalogs; the first gives information on the strongest feature of 367 methanol maser sources, and the second provides information on allmore » detected maser spots. The third catalog presents derived data of the 127 radio continuum counterparts associated with maser sources. Our detection rate of radio continuum counterparts toward methanol masers is approximately one-third. Our catalogs list properties including distance, flux density, luminosity, and the distribution in the Galactic plane. We found no significant relationship between luminosities of masers and their associated radio continuum counterparts, however, the detection rate of radio continuum emission toward maser sources increases statistically with the maser luminosities.« less
Maser observation in VY CMa with VERA
NASA Astrophysics Data System (ADS)
Choi, Yoon Kyung
We present the results of multi-epoch VERA (VLBI Exploration of Radio Astrometry) observations of H2O masers at 22 GHz and ^28SiO masers at 43 GHz in the supergiant VY Canis Majoris (hereafter, VY CMa). We estimate the inner motion of H2O masers over 6 months and that of SiO masers over 1 month. Using the inner motion, we calculated the statistical parallax of VY CMa. The size of the emitting region for ^28SiO masers is R_SiO ~1.81-2.89 R_* and it is consistent with the previous study.
High-resolution VLBA Observations of Three 7 mm SiO Masers toward VX Sgr at Five Epochs
NASA Astrophysics Data System (ADS)
Su, J. B.; Shen, Z.-Q.; Chen, X.; Yi, Jiyune; Jiang, D. R.; Yun, Y. J.
2012-07-01
VX Sgr is a red supergiant at an adopted distance of 1.6 kpc with intense 43 GHz SiO maser emission. In this paper, we present the high-resolution very long baseline interferometry (VLBI) observations of SiO masers toward VX Sgr at five epochs. We used the Very Long Baseline Array to map the J = 1→0 (v = 1, 2) 28SiO masers and confirmed a ring-like structure. In the first two epochs, the v = 1 masers form a ring, but v = 2 maser spots residing only in the southern and northern regions do not form a complete ring. In the third epoch, the two masers are distributed in a ring structure and the v = 2 masers are a bit closer to the central star. In the last two epochs, many new maser spots appear and overlap each other. These overlapping maser spots can be related to the shock waves and reflect the collisional pumping. We compare the observations with the pumping models and speculate that the real pumping mechanism may be complex in VX Sgr and vary with time. The J = 1→0 (v = 0) 29SiO line emission is also detected, but is too weak to produce any VLBI map.
The relationship between Class I and Class II methanol masers at high angular resolution
NASA Astrophysics Data System (ADS)
McCarthy, T. P.; Ellingsen, S. P.; Voronkov, M. A.; Cimò, G.
2018-06-01
We have used the Australia Telescope Compact Array (ATCA) to make the first high-resolution observations of a large sample of class I methanol masers in the 95-GHz (80-71A+) transition. The target sources consist of a statistically complete sample of 6.7-GHz class II methanol masers with an associated 95-GHz class I methanol maser, enabling a detailed study of the relationship between the two methanol maser classes at arcsecond angular resolution. These sources have been previously observed at high resolution in the 36- and 44-GHz transitions, allowing comparison between all three class I maser transitions. In total, 172 95-GHz maser components were detected across the 32 target sources. We find that at high resolution, when considering matched maser components, a 3:1 flux density ratio is observed between the 95- and 44-GHz components, consistent with a number of previous lower angular resolution studies. The 95-GHz maser components appear to be preferentially located closer to the driving sources and this may indicate that this transition is more strongly inverted nearby to background continuum sources. We do not observe an elevated association rate between 95-GHz maser emission and more evolved sources, as indicated by the presence of 12.2-GHz class II masers. We find that in the majority of cases where both class I and class II methanol emission is observed, some component of the class I emission is associated with a likely outflow candidate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Youngjoo; Cho, Se-Hyung; Kim, Jaeheon
We present the first images of the v = 1 and v = 2 J = 1 → 0 SiO maser lines taken with KaVA, i.e., the combined array of the Korean Very Long Baseline Interferometry (VLBI) Network and the VLBI Exploration of Radio Astrometry (VERA), toward the OH/IR star WX Psc. The combination of long and short antenna baselines enabled us to detect a large number of maser spots, which exhibit a typical ring-like structure in both the v = 1 and v = 2 J = 1 → 0 SiO masers as those that have been found inmore » previous VLBI observational results of WX Psc. The relative alignment of the v = 1 and v = 2 SiO maser spots are precisely derived from astrometric analysis, due to the absolute coordinates of the reference maser spot that were well determined in an independent astrometric observation with VERA. The superposition of the v = 1 and v = 2 maser spot maps shows a good spatial correlation between the v = 1 and v = 2 SiO maser features. Nevertheless, it is also shown that the v = 2 SiO maser spot is distributed in an inner region compared to the v = 1 SiO maser by about 0.5 mas on average. These results provide good support for the recent theoretical studies of the SiO maser pumping, in which both the collisional and the radiative pumping predict the strong spatial correlation and the small spatial discrepancy between the v = 1 and v = 2 SiO maser.« less
The mid-infrared environments of 6.7 GHz methanol masers from the Methanol Multi-Beam Survey
NASA Astrophysics Data System (ADS)
Gallaway, M.; Thompson, M. A.; Lucas, P. W.; Fuller, G. A.; Caswell, J. L.; Green, J. A.; Voronkov, M. A.; Breen, S. L.; Quinn, L.; Ellingsen, S. P.; Avison, A.; Ward-Thompson, D.; Cox, J.
2013-04-01
We present a study of the mid-infrared environments and association with star formation tracers of 6.7 GHz methanol masers taken from the Methanol Multi-Beam (MMB) survey. Our ultimate goal is to establish the mass of the host star and its evolutionary stage for each maser site. As a first step, the GLIMPSE survey of the Galactic plane is utilized to investigate the environment of 776 methanol masers and we find that while the majority of the masers are associated with mid-infrared counterparts, a significant fraction (17 per cent) are not associated with any detectable mid-infrared emission. A number of the maser counterparts are clearly extended with respect to the GLIMPSE point spread function and we implement an adaptive non-circular aperture photometry (ANCAP) technique to determine the fluxes of the maser counterparts. The ANCAP technique doubles the number of masers with flux information at all four wavelengths compared to the number of the corresponding counterparts obtained from the GLIMPSE Point Source Catalog. The colours of the maser counterparts are found to be very similar to the smaller study carried out by Ellingsen. The MMB masers are weakly associated with extended green objects and Red MSX Survey embedded sources (YSO and H II region classifications) with 18 and 12 per cent of masers associated with these objects, respectively. The majority of MMB masers (60 per cent) have detectable GLIMPSE infrared counterparts but have not been identified with previously recognized tracers of massive star formation; this confirms that the MMB survey has the potential to identify massive star-forming regions independent of infrared selection.
12.2-GHz methanol maser MMB follow-up catalogue - IV. Longitude range 20°-60°
NASA Astrophysics Data System (ADS)
Breen, S. L.; Ellingsen, S. P.; Caswell, J. L.; Green, J. A.; Voronkov, M. A.; Avison, A.; Fuller, G. A.; Quinn, L. J.
2016-07-01
This is the fourth and final instalment of a series of catalogues presenting 12.2-GHz methanol maser observations made towards each of the 6.7-GHz methanol masers detected in the Methanol Multibeam (MMB) survey. This final portion of the survey covers the 20°-60° longitude range, increasing the 12.2-GHz follow-up range to the full MMB coverage of 186° ≥ l ≤ 60° and |b| ≤ 2°. Towards a total of 260 6.7-GHz MMB methanol masers (we were unable to observe five of the MMB sources in this longitude range) we detect 116 12.2-GHz masers counterparts, 64 of which were discovered in this survey. Including data from the literature, we find that there are 12.2-GHz methanol masers towards 47.1 per cent of the 6.7-GHz methanol masers in this portion of the Galaxy. Across the entire MMB survey range, we find a detection rate of 45.3 per cent. We find that the detection rate of 12.2-GHz methanol masers as a function of Galactic longitude is not uniform and there is an excess of masers with broad velocity ranges at longitudes near 30° and 330°. Comparing the occurrence of 12.2-GHz methanol masers with MMB-targeted CO observations has shown that those outflows associated with a 12.2-GHz source have a larger average dynamical time-scale than those associated with only 6.7-GHz methanol masers, supporting the notion that the 12.2-GHz masers are associated with a later phase of high-mass star formation.
The first simultaneous mapping of four 7 mm SiO maser lines using the OCTAVE system
NASA Astrophysics Data System (ADS)
Oyama, Tomoaki; Kono, Yusuke; Suzuki, Syunsaku; Kanaguchi, Masahiro; Nishikawa, Takashi; Kawaguchi, Noriyuki; Hirota, Tomoya; Nagayama, Takumi; Kobayashi, Hideyuki; Imai, Hiroshi; Kuwahara, Sho; Kano, Amane; Oyadomari, Miyako; Chong, Sze Ning
2016-12-01
We report on simultaneous very long baseline interferometry (VLBI) mapping of 28SiO v = 1, 2, 3, and 29SiO v = 0 J = 1 → 0 maser lines at the 7 mm band toward the semi-regular variable star, W Hydrae (W Hya), using the new data acquisition system (OCTAVE-DAS), installed in the VLBI Exploration of Radio Astrometry (VERA) array and temporarily operated in the 45 m telescope of the Nobeyama Radio Observatory. Although these masers were spatially resolved, their compact maser spots were fortunately detected in the 1000 km baselines of VERA. We found the locations of the v = 3 maser emission which are unexpected from the currently proposed maser pumping models. Mapping of the 29SiO maser line in W Hya is the third result after those in WX Psc and R Leo. This paper shows the scientific implication of simultaneous VLBI observations of multiple SiO maser lines as realized by using the OCTAVE system.
Astrometry of the Red Supergiant Star VY Canis Majoris with VERA
NASA Astrophysics Data System (ADS)
Choi, Y. K.; Hirota, T.; Honma, M.; Kobayashi, H.
2009-08-01
We present observational results on the red supergiant VY Canis Majoris with VERA. We have observed 22 GHz H_2O masers and 43 GHz SiO masers (v=1 and 2 J=1-0) around VY CMa for 13 months. We successfully detected a parallax of 0.87 ± 0.08 mas, corresponding to 1.15 +0.10 -0.09 kpc of distance using H_2O masers. As results of phase--referencing analyses, we have measured absolute positions for both the H_2O masers and SiO masers. The proper motions of the H_2O masers show the tendency of expansion.
Astrometry of red supergiant VY Canis Majoris with VERA
NASA Astrophysics Data System (ADS)
Choi, Y. K.; Hirota, T.; Honma, M.; Kobayashi, H.
2008-07-01
We present observational results on the red supergiant VY Canis Majoris with VERA. We have observed 22 GHz H2O masers and 43 GHz SiO masers (v=1 and 2 J=1-0) around VY CMa for 13 months. We succesfully detected a parallax of 0.87 ± 0.08 mas, corresponding to the distance of 1.15 +0.10-0.09 kpc using H2O masers. As the result of phase-referencing analyses, we have measured absolute positions for both H2O masers and SiO masers. The H2O maser features show rapid expansion off the central star.
NASA Astrophysics Data System (ADS)
Shinnaga, Hiroko; Moran, James M.; Young, Ken H.; Ho, Paul T. P.
2004-11-01
We used the Submillimeter Array to image the SiO maser emission in the v=1, J=5-4 transition associated with the peculiar red supergiant VY Canis Majoris. We identified seven maser components and measured their relative positions and linear polarization properties. Five of the maser components are coincident to within about 150 mas (~200 AU at the distance of 1.5 kpc); most of them may originate in the circumstellar envelope at a radius of about 50 mas from the star along with the SiO masers in the lowest rotational transitions. Our measurements show that two of the maser components may be offset from the inner stellar envelope (at the 3 σ level of significance) and may be part of a larger bipolar outflow associated with VY CMa identified by Shinnaga et al. The strongest maser feature at a velocity of 35.9 km s-1 has a 60% linear polarization, and its polarization direction is aligned with the bipolar axis. Such a high degree of polarization suggests that maser inversion is due to radiative pumping. Five of the other maser features have significant linear polarization.
Simultaneous Observatinos of H2O and SiO Masers Toward Known Extragalactic Water Maser Sources
NASA Astrophysics Data System (ADS)
Cho, Se-Hyung; Yoon, Dong-Hwan; Kim, Jaeheon; Byun, Do-Young; Wagner, Jan
2015-12-01
We observe ten known 22 GHz H_{2}O maser galaxies during February 19-22, 2011 using the 21 m Tamna telescope of the Korean VLBI Network and a new wide-band digital spectrometer. Simultaneously we searched for 43 GHz SiO v = 1, 2, J = 1-0 maser emission. We detect H_{2}O maser emission towards five sources (M 33, NGC 1052, NGC 1068, NGC 4258, M 82), with non-detections towards the remaining sources (UGC 3193, UGC 3789, Antennae H_{2}O-West, M 51, NGC 6323) likely due to sensitivity. Our 22 GHz spectra are consistent with earlier findings. Our simultaneous 43 GHz SiO maser search produced non-detections, yielding - for the first time - upper limits on the 43 GHz SiO maser emission in these sources at a 3 σ sensitivity level of 0.018 K-0.033 K (0.24 Jy-0.44 Jy) in a 1.75 km s^{-1} velocity resolution. Our findings suggest that any 43 GHz SiO masers in these sources (some having starburst-associated H_{2}O kilomasers) must be faint compared to the 22 GHz H_{2}O maser emission.
Simultaneous 183 GHz H2O maser and SiO observations towards evolved stars using APEX SEPIA Band 5
NASA Astrophysics Data System (ADS)
Humphreys, E. M. L.; Immer, K.; Gray, M. D.; De Beck, E.; Vlemmings, W. H. T.; Baudry, A.; Richards, A. M. S.; Wittkowski, M.; Torstensson, K.; De Breuck, C.; Møller, P.; Etoka, S.; Olberg, M.
2017-07-01
Aims: The aim is to investigate the use of 183 GHz H2O masers for characterization of the physical conditions and mass loss process in the circumstellar envelopes of evolved stars. Methods: We used APEX SEPIA Band 5 (an ALMA Band 5 receiver on the APEX telescope) to observe the 183 GHz H2O line towards two red supergiant (RSG) and three asymptotic giant branch (AGB) stars. Simultaneously, we observed the J = 4-3 line for 28SiO v = 0, 1, 2 and 3, and for 29SiO v = 0 and 1. We compared the results with simulations and radiative transfer models for H2O and SiO, and examined data for the individual linear orthogonal polarizations. Results: We detected the 183 GHz H2O line towards all the stars with peak flux densities >100 Jy, including a new detection from VY CMa. Towards all five targets, the water line had indications of being caused by maser emission and had higher peak flux densities than for the SiO lines. The SiO lines appear to originate from both thermal and maser processes. Comparison with simulations and models indicate that 183 GHz maser emission is likely to extend to greater radii in the circumstellar envelopes than SiO maser emission and to similar or greater radii than water masers at 22, 321 and 325 GHz. We speculate that a prominent blue-shifted feature in the W Hya 183 GHz spectrum is amplifying the stellar continuum, and is located at a similar distance from the star as mainline OH maser emission. We note that the coupling of an SiO maser model to a hydrodynamical pulsating model of an AGB star yields qualitatively similar simulated results to the observations. From a comparison of the individual polarizations, we find that the SiO maser linear polarization fraction of several features exceeds the maximum fraction allowed under standard maser assumptions and requires strong anisotropic pumping of the maser transition and strongly saturated maser emission. The low polarization fraction of the H2O maser however, fits with the expectation for a non-saturated maser. Conclusions: 183 GHz H2O masers can provide strong probes of the mass loss process of evolved stars. Higher angular resolution observations of this line using ALMA Band 5 will enable detailed investigation of the emission location in circumstellar envelopes and can also provide information on magnetic field strength and structure.
HIGH-RESOLUTION VLBA OBSERVATIONS OF THREE 7 mm SiO MASERS TOWARD VX Sgr AT FIVE EPOCHS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, J. B.; Shen, Z.-Q.; Chen, X.
2012-07-20
VX Sgr is a red supergiant at an adopted distance of 1.6 kpc with intense 43 GHz SiO maser emission. In this paper, we present the high-resolution very long baseline interferometry (VLBI) observations of SiO masers toward VX Sgr at five epochs. We used the Very Long Baseline Array to map the J = 1{yields}0 (v = 1, 2) {sup 28}SiO masers and confirmed a ring-like structure. In the first two epochs, the v = 1 masers form a ring, but v = 2 maser spots residing only in the southern and northern regions do not form a complete ring.more » In the third epoch, the two masers are distributed in a ring structure and the v = 2 masers are a bit closer to the central star. In the last two epochs, many new maser spots appear and overlap each other. These overlapping maser spots can be related to the shock waves and reflect the collisional pumping. We compare the observations with the pumping models and speculate that the real pumping mechanism may be complex in VX Sgr and vary with time. The J = 1{yields}0 (v = 0) {sup 29}SiO line emission is also detected, but is too weak to produce any VLBI map.« less
A hydrogen maser with cavity auto-tuner for timekeeping
NASA Technical Reports Server (NTRS)
Lin, C. F.; He, J. W.; Zhai, Z. C.
1992-01-01
A hydrogen maser frequency standard for timekeeping was worked on at the Shanghai Observatory. The maser employs a fast cavity auto-tuner, which can detect and compensate the frequency drift of the high-Q resonant cavity with a short time constant by means of a signal injection method, so that the long term frequency stability of the maser standard is greatly improved. The cavity auto-tuning system and some maser data obtained from the atomic time comparison are described.
Non-equilibrium processes in interstellar molecules
NASA Technical Reports Server (NTRS)
Strelnitskiy, V. S.
1979-01-01
The types of nonequilibrium emission and absorption by interstellar molecules are summarized. The observed brightness emission temperatures of compact OH and H2O sources are discussed using the concept of maser amplification. A single thermodynamic approach was used in which masers and anti-masers are considered as heat engines for the theoretical interpretation of the cosmic maser and anti-maser phenomena. The requirements for different models of pumping are formulated and a classification is suggested for the mechanisms of pumping, according to the source and discharge of energy.
Frequency stability of maser oscillators operated with cavity Q. [hydrogen and rubidium masers
NASA Technical Reports Server (NTRS)
Tetu, M.; Tremblay, P.; Lesage, P.; Petit, P.; Audoin, C.
1982-01-01
The short term frequency stability of masers equipped with an external feedback loop to increase the cavity quality factor was studied. The frequency stability of a hydrogen and a rubidium maser were measured and compared with theoretical evaluation. It is shown that the frequency stability passes through an optimum when the cavity Q is varied. Long term fluctuations are discussed and the optimum mid term frequency stability achievably by small size active and passive H-masers is considered.
NASA Technical Reports Server (NTRS)
Dragonette, Richard A.; Suter, Joseph J.
1992-01-01
An extensive statistical analysis has been undertaken to determine if a correlation exists between changes in an NR atomic hydrogen maser's frequency offset and changes in environmental conditions. Correlation analyses have been performed comparing barometric pressure, humidity, and temperature with maser frequency offset as a function of time for periods ranging from 5.5 to 17 days. Semipartial correlation coefficients as large as -0.9 have been found between barometric pressure and maser frequency offset. Correlation between maser frequency offset and humidity was small compared to barometric pressure and unpredictable. Analysis of temperature data indicates that in the most current design, temperature does not significantly affect maser frequency offset.
NASA hydrogen maser accuracy and stability in relation to world standards
NASA Technical Reports Server (NTRS)
Peters, H. E.; Percival, D. B.
1973-01-01
Frequency comparisons were made among five NASA hydrogen masers in 1969 and again in 1972 to a precision of one part in 10 to the 13th power. Frequency comparisons were also made between these masers and the cesium-beam ensembles of several international standards laboratories. The hydrogen maser frequency stabilities as related to IAT were comparable to the frequency stabilities of individual time scales with respect to IAT. The relative frequency variations among the NASA masers, measured after the three-year interval, were 2 + or - 2 parts in 10 to the 13th power. Thus time scales based on hydrogen masers would have excellent long-term stability and uniformity.
Enhanced magnetic Purcell effect in room-temperature masers
Breeze, Jonathan; Tan, Ke-Jie; Richards, Benjamin; Sathian, Juna; Oxborrow, Mark; Alford, Neil McN
2015-01-01
Recently, the world’s first room-temperature maser was demonstrated. The maser consisted of a sapphire ring housing a crystal of pentacene-doped p-terphenyl, pumped by a pulsed rhodamine-dye laser. Stimulated emission of microwaves was aided by the high quality factor and small magnetic mode volume of the maser cavity yet the peak optical pumping power was 1.4 kW. Here we report dramatic miniaturization and 2 orders of magnitude reduction in optical pumping power for a room-temperature maser by coupling a strontium titanate resonator with the spin-polarized population inversion provided by triplet states in an optically excited pentacene-doped p-terphenyl crystal. We observe maser emission in a thimble-sized resonator using a xenon flash lamp as an optical pump source with peak optical power of 70 W. This is a significant step towards the goal of continuous maser operation. PMID:25698634
Class I methanol masers in NGC 253: Alcohol at the end of the bar
NASA Astrophysics Data System (ADS)
Ellingsen, S. P.; Chen, X.; Breen, S. L.; Qiao, H.-H.
2017-11-01
We have used the Australia Telescope Compact Array to observe the 36.2-GHz class I methanol maser emission towards NGC 253 and find that it is located at the interface between the nuclear ring and both ends of the galactic bar. This is thought to be the location of the inner Linblad resonance and we suggest that the maser emission in this region is likely due to large-scale cloud-cloud collisions. We have detected the first extragalactic 44.1-GHz class I methanol maser and find that it is associated with the 36.2-GHz maser emission. In contrast to the class I methanol masers found in Galactic star formation regions, the 44.1-GHz emission in NGC 253 is two orders of magnitude weaker than the 36.2-GHz masers. Both the 36.2- and 44.1-GHz emission is orders of magnitude stronger than expected from typical high-mass star formation regions. This demonstrates that the luminous class I methanol masers observed in NGC 253 are significantly different from those associated with Galactic star formation.
A 6.7 GHz Methanol Maser Survey at High Galactic Latitudes
NASA Astrophysics Data System (ADS)
Yang, Kai; Chen, Xi; Shen, Zhi-Qiang; Li, Xiao-Qiong; Wang, Jun-Zhi; Jiang, Dong-Rong; Li, Juan; Dong, Jian; Wu, Ya-Jun; Qiao, Hai-Hua; Ren, Zhiyuan
2017-09-01
We performed a systematic 6.7 GHz Class II methanol maser survey using the Shanghai Tianma Radio Telescope toward targets selected from the all-sky Wide-Field Infrared Survey Explorer (WISE) point catalog. In this paper, we report the results from the survey of those at high Galactic latitudes, I.e., | b| > 2°. Of 1473 selected WISE point sources at high latitude, 17 point positions that were actually associated with 12 sources were detected with maser emission, reflecting the rarity (1%-2%) of methanol masers in the region away from the Galactic plane. Out of the 12 sources, 3 are detected for the first time. The spectral energy distribution at infrared bands shows that these new detected masers occur in the massive star-forming regions. Compared to previous detections, the methanol maser changes significantly in both spectral profiles and flux densities. The infrared WISE images show that almost all of these masers are located in the positions of the bright WISE point sources. Compared to the methanol masers at the Galactic plane, these high-latitude methanol masers provide good tracers for investigating the physics and kinematics around massive young stellar objects, because they are believed to be less affected by the surrounding cluster environment.
A masing event in NGC 6334I: contemporaneous flaring of hydroxyl, methanol, and water masers
NASA Astrophysics Data System (ADS)
MacLeod, G. C.; Smits, D. P.; Goedhart, S.; Hunter, T. R.; Brogan, C. L.; Chibueze, J. O.; van den Heever, S. P.; Thesner, C. J.; Banda, P. J.; Paulsen, J. D.
2018-07-01
As a product of the maser monitoring program with the 26 m telescope of the Hartebeesthoek Radio Astronomy Observatory (HartRAO), we present an unprecedented, contemporaneous flaring event of 10 maser transitions in hydroxyl, methanol, and water that began in 2015 January in the massive star-forming region NGC 6334I in the velocity range -10 to -2 km s-1. The 6.7 GHz methanol and 22.2 GHz water masers began flaring within 22 d of each other, while the 12.2 GHz methanol and 1665 MHz hydroxyl masers flared 80 and 113 d later, respectively. The 1665 MHz, 6.7 GHz, and 22.2 GHz masers have all remained in their flared state for nearly 3 yr. The brightest flaring components increased by factors of 66, 21, 26, and 20 in the 12.2 and 6.7 GHz methanol, 1665 MHz hydroxyl, and 22.2 GHz water maser transitions, respectively; some weaker components increased by up to a factor of 145. We also report new maser emission in the 1720, 6031, and 6035 MHz OH lines and the 23.1 GHz methanol line, along with the detection of only the fifth 4660 MHz OH maser. We note the correlation of this event with the extraordinary (sub)millimetre continuum outburst from the massive protostellar system NGC 6334I-MM1 and discuss the implications of the observed time lags between different maser velocity components on the nature of the outburst. Finally, we identify two earlier epoch maser flaring events likely associated with this object, which suggest a recurring accretive phenomenon that generates powerful radiative outbursts.
A Masing Event in NGC 6334I: Contemporaneous Flaring of Hydroxyl, Methanol and Water Masers
NASA Astrophysics Data System (ADS)
MacLeod, G. C.; Smits, D. P.; Goedhart, S.; Hunter, T. R.; Brogan, C. L.; Chibueze, J. O.; van den Heever, S. P.; Thesner, C. J.; Banda, P. J.; Paulsen, J. D.
2018-04-01
As a product of the maser monitoring program with the 26 m telescope of the Hartebeesthoek Radio Astronomy Observatory (HartRAO), we present an unprecedented, contemporaneous flaring event of 10 maser transitions in hydroxyl, methanol, and water that began in 2015 January in the massive star-forming region NGC 6334I in the velocity range -10 to -2 km s-1. The 6.7 GHz methanol and 22.2 GHz water masers began flaring within 22 days of each other, while the 12.2 GHz methanol and 1665 MHz hydroxyl masers flared 80 and 113 days later respectively. The 1665 MHz, 6.7 GHz, and 22.2 GHz masers have all remained in their flared state for nearly 3 years. The brightest flaring components increased by factors of 66, 21, 26, and 20 in the 12.2 and 6.7 GHz methanol, 1665 MHz hydroxyl and 22.2 GHz water maser transitions respectively; some weaker components increased by up to a factor of 145. We also report new maser emission in the 1720, 6031, and 6035 MHz OH lines and the 23.1 GHz methanol line, along with the detection of only the fifth 4660 MHz OH maser. We note the correlation of this event with the extraordinary (sub)millimeter continuum outburst from the massive protostellar system NGC 6334I-MM1 and discuss the implications of the observed time lags between different maser velocity components on the nature of the outburst. Finally, we identify two earlier epoch maser flaring events likely associated with this object, which suggest a recurring accretive phenomenon that generates powerful radiative outbursts.
Long-term Variability of H2CO Masers in Star-forming Regions
NASA Astrophysics Data System (ADS)
Andreev, N.; Araya, E. D.; Hoffman, I. M.; Hofner, P.; Kurtz, S.; Linz, H.; Olmi, L.; Lorran-Costa, I.
2017-10-01
We present results of a multi-epoch monitoring program on variability of 6 cm formaldehyde (H2CO) masers in the massive star-forming region NGC 7538 IRS 1 from 2008 to 2015, conducted with the Green Bank Telescope, the Westerbork Radio Telescope , and the Very Large Array. We found that the similar variability behaviors of the two formaldehyde maser velocity components in NGC 7538 IRS 1 (which was pointed out by Araya and collaborators in 2007) have continued. The possibility that the variability is caused by changes in the maser amplification path in regions with similar morphology and kinematics is discussed. We also observed 12.2 GHz methanol and 22.2 GHz water masers toward NGC 7538 IRS 1. The brightest maser components of CH3OH and H2O species show a decrease in flux density as a function of time. The brightest H2CO maser component also shows a decrease in flux density and has a similar LSR velocity to the brightest H2O and 12.2 GHz CH3OH masers. The line parameters of radio recombination lines and the 20.17 and 20.97 GHz CH3OH transitions in NGC 7538 IRS 1 are also reported. In addition, we observed five other 6 cm formaldehyde maser regions. We found no evidence of significant variability of the 6 cm masers in these regions with respect to previous observations, the only possible exception being the maser in G29.96-0.02. All six sources were also observed in the {{{H}}}213{CO} isotopologue transition of the 6 cm H2CO line; {{{H}}}213{CO} absorption was detected in five of the sources. Estimated column density ratios [{{{H}}}212{CO}]/[{{{H}}}213{CO}] are reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, Ian M.; Joyce, Spenser A., E-mail: ihoffman@wittenberg.edu
We present the first detection of para-ammonia masers in NGC 7538: multiple epochs of observation of the {sup 14}NH{sub 3} (J, K) = (10, 8) and (9,8) lines. We detect both thermal absorption and nonthermal emission in the (10,8) and (9,8) transitions and the absence of a maser in the (11,8) transition. The (9,8) maser is observed to increase in intensity by 40% over six months. Using interferometric observations with a synthesized beam of 0.''25, we find that the (10,8) and (9,8) masers originate at the same sky position near IRS 1. With strong evidence that the (10,8) and (9,8)more » masers arise in the same volume, we discuss the application of pumping models for the simultaneous excitation of nonmetastable (J > K) para-ammonia states having the same value of K and consecutive values of J. We also present detections of thermal absorption in rotational states ranging in energy from E/k{sub B} ∼ 200 K to 2000 K, and several non-detections in higher-energy states. In particular, we describe the populations in eight adjacent rotational states with K = 6, including two maser transitions, along with the implications for ortho-ammonia pumping models. An existing torus model for molecular gas in the environment of IRS 1 has been applied to the masers; a variety of maser species are shown to agree with the model. Historical and new interferometric observations of {sup 15}NH{sub 3} (3,3) masers in the region indicate a precession of the rotating torus at a rate comparable to continuum-emission-based models of the region. We discuss the general necessity of interferometric observations for diagnosing the excitation state of the masers and for determining the geometry of the molecular environment.« less
Unbiased water and methanol maser surveys of NGC 1333
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyo, A-Ran; Kim, Jongsoo; Byun, Do-Young
2014-11-01
We present the results of unbiased 22 GHz H{sub 2}O water and 44 GHz class I CH{sub 3}OH methanol maser surveys in the central 7' × 10' area of NGC 1333 and two additional mapping observations of a 22 GHz water maser in a ∼3' × 3' area of the IRAS4A region. In the 22 GHz water maser survey of NGC 1333 with a sensitivity of σ ∼ 0.3 Jy, we confirmed the detection of masers toward H{sub 2}O(B) in the region of HH 7-11 and IRAS4B. We also detected new water masers located ∼20'' away in the western directionmore » of IRAS4B or ∼25'' away in the southern direction of IRAS4A. We could not, however, find young stellar objects or molecular outflows associated with them. They showed two different velocity components of ∼0 and ∼16 km s{sup –1}, which are blue- and redshifted relative to the adopted systemic velocity of ∼7 km s{sup –1} for NGC 1333. They also showed time variabilities in both intensity and velocity from multi-epoch observations and an anti-correlation between the intensities of the blue- and redshifted velocity components. We suggest that the unidentified power source of these masers might be found in the earliest evolutionary stage of star formation, before the onset of molecular outflows. Finding this kind of water maser is only possible through an unbiased blind survey. In the 44 GHz methanol maser survey with a sensitivity of σ ∼ 0.5 Jy, we confirmed masers toward IRAS4A2 and the eastern shock region of IRAS2A. Both sources are also detected in 95 and 132 GHz methanol maser lines. In addition, we had new detections of methanol masers at 95 and 132 GHz toward IRAS4B. In terms of the isotropic luminosity, we detected methanol maser sources brighter than ∼5 × 10{sup 25} erg s{sup –1} from our unbiased survey.« less
Outward Motions of SiO Masers around VX Sgr
NASA Astrophysics Data System (ADS)
Su, J. B.; Shen, Z.-Q.; Chen, X.; Jiang, D. R.
2014-09-01
We report the proper motions of SiO maser features around VX Sgr from the two-epoch VLBA observations (2006 December 15 and 2007 August 19). The majority of maser feature activities show a trend of outward motions. It is consistent with our previous finding that the outflow may play an important role for SiO maser pumping.
Ultralow noise performance of an 8.4-GHz maser-feedhorn system
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Petty, S. M.; Kovatch, J. J.; Glass, G. W.
1990-01-01
A total system noise temperature of 6.6 K was demonstrated with an 8.4-GHz traveling wave maser and feedhorn operating in a cryogenic environment. Both the maser and feedhorn were inserted in the helium cryostat, with the maser operating in the 1.6-K liquid bath and the feedhorn cooled in the helium gas, with a temperature gradient along the horn ranging from the liquid bath temperature at its lower end to room temperature at its top. The ruby maser exhibited 43 dB of gain with a bandwidth of 76 MHz(-3 dB) centered at 8400 MHz. Discussions of the maser, cooled feedhorn, and cryostat designs are presented along with a discussion of the noise temperature measurements.
Exploring the engines of molecular outflows. Radio continuum and H_2_O maser observations.
NASA Astrophysics Data System (ADS)
Tofani, G.; Felli, M.; Taylor, G. B.; Hunter, T. R.
1995-09-01
We present A-configuration VLA observations of the 22GHz H_2_O maser line and 8.4GHz continuum emission of 22 selected CO bipolar outflows associated with water masers. These observations allow us to study the region within 10^4^AU of the engine powering the outflow. The positions of the maser spots are compared with those of ultra-compact (UC) continuum sources found in our observations, with IRAS data and with data from the literature on the molecular outflows. Weak unresolved continuum sources are found in several cases associated with the maser. Most probably they represent the ionized envelope surrounding the young stellar object (YSO) which powers the maser and the outflow. These weak radio continuum sources are not necessarily associated with the IRAS sources, which are more representative of the global emission from the star forming region. A comparison of the velocity pattern of the CO outflow with those of the maser spots detected with the VLA is also made. Asymmetries in the H_2_O velocities are found on opposite sides of the YSO, suggesting that the outflow acceleration begins from the YSO itself. In a few cases we find evidence for two outflows in different evolutionary stages. The H_2_O masers in these sources are always found at the centre of the younger outflow. The degree of variability of each maser is derived from single dish observations obtained with the Medicina radiotelescope before and after the VLA observations. Velocity drifts of some features are interpreted as acceleration of the maser.
ACCURATE OH MASER POSITIONS FROM THE SPLASH PILOT REGION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiao, Hai-Hua; Shen, Zhi-Qiang; Walsh, Andrew J.
2016-12-01
We report on high spatial resolution observations, using the Australia Telescope Compact Array (ATCA), of ground-state OH masers. These observations were carried out toward 196 pointing centers previously identified in the Southern Parkes Large-Area Survey in Hydroxyl (SPLASH) pilot region, between Galactic longitudes of 334° and 344° and Galactic latitudes of −2° and +2°. Supplementing our data with data from the MAGMO (Mapping the Galactic Magnetic field through OH masers) survey, we find maser emission toward 175 of the 196 target fields. We conclude that about half of the 21 nondetections were due to intrinsic variability. Due to the superiormore » sensitivity of the followup ATCA observations, and the ability to resolve nearby sources into separate sites, we have identified 215 OH maser sites toward the 175 fields with detections. Among these 215 OH maser sites, 111 are new detections. After comparing the positions of these 215 maser sites to the literature, we identify 122 (57%) sites associated with evolved stars (one of which is a planetary nebula), 64 (30%) with star formation, two sites with supernova remnants, and 27 (13%) of unknown origin. The infrared colors of evolved star sites with symmetric maser profiles tend to be redder than those of evolved star sites with asymmetric maser profiles, which may indicate that symmetric sources are generally at an earlier evolutionary stage.« less
44 GHZ CLASS I METHANOL (CH{sub 3}OH) MASER SURVEY IN THE GALACTIC CENTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
McEwen, Bridget C.; Pihlström, Ylva M.; Sjouwerman, Loránt O.
2016-12-01
We report on a large 44 GHz (7{sub 0}–6{sub 1} A {sup +}) methanol (CH{sub 3}OH) maser survey of the Galactic Center. The Karl G. Jansky Very Large Array was used to search for CH{sub 3}OH maser emission covering a large fraction of the region around Sgr A. In 25 pointings, over 300 CH{sub 3}OH maser sources (>10 σ ) were detected. The majority of the maser sources have a single peak emission spectrum with line of sight velocities that range from about −13 to 72 km s{sup −1}. Most maser sources were found to have velocities around 35−55 kmmore » s{sup −1}, closely following velocities of neighboring interacting molecular clouds (MCs). The full width at half-maximum of each individual spectral feature is very narrow (∼0.85 km s{sup −1} on average). In the north, where Sgr A East is known to be interacting with the 50 km s{sup −1} MC, more than 100 44 GHz CH{sub 3}OH masers were detected. In addition, three other distinct concentrations of masers were found, which appear to be located closer to the interior of the interacting MCs. It is possible that a subset of masers is associated with star formation, although conclusive evidence is lacking.« less
Modelling of Cosmic Molecular Masers: Introduction to a Computation Cookbook
NASA Astrophysics Data System (ADS)
Sobolev, Andrej M.; Gray, Malcolm D.
2012-07-01
Numerical modeling of molecular masers is necessary in order to understand their nature and diagnostic capabilities. Model construction requires elaboration of a basic description which allows computation, that is a definition of the parameter space and basic physical relations. Usually, this requires additional thorough studies that can consist of the following stages/parts: relevant molecular spectroscopy and collisional rate coefficients; conditions in and around the masing region (that part of space where population inversion is realized); geometry and size of the masing region (including the question of whether maser spots are discrete clumps or line-of-sight correlations in a much bigger region) and propagation of maser radiation. Output of the maser computer modeling can have the following forms: exploration of parameter space (where do inversions appear in particular maser transitions and their combinations, which parameter values describe a `typical' source, and so on); modeling of individual sources (line flux ratios, spectra, images and their variability); analysis of the pumping mechanism; predictions (new maser transitions, correlations in variability of different maser transitions, and the like). Described schemes (constituents and hierarchy) of the model input and output are based mainly on the experience of the authors and make no claim to be dogmatic.
Radiative instabilities and 1000 second fluctuations in astrophysical masers
NASA Technical Reports Server (NTRS)
Scappaticci, Gerardo A.; Watson, William D.
1992-01-01
A stability analysis for small (linear) perturbations is presented for the radiation in astrophysical masers treated in the usual, linear maser approximation. Instabilities that oscillate with a period of about L/c, where L is the length of the maser are found. They occur (1) when the maser is partly but not heavily saturated, (2) when the decay rate Gamma for the molecular states is near c/L, and (3) when the product of the brightness temperature T sub 0 of the incident radiation and the angle for the beaming is less than a critical value that depends upon the particular masing transition. A fourth parameter, the fractional inversion in the pumping multiplied by (T sub 0/frequency), determines the importance of spontaneous emission which can eliminate the instabilities. These instabilities are a likely cause for the fluctuations in the radiation from the 18 cm OH masers that have been reported to occur on time scales as short as 1000 s. The calculations are applicable to other types of astrophysical masers as well, and suggest that spontaneous emission will prevent similar instabilities in the H2O and SiO masers.
WATER AND METHANOL MASER ACTIVITIES IN THE NGC 2024 FIR 6 REGION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Minho; Kang, Miju; Byun, Do-Young
The NGC 2024 FIR 6 region was observed in the water maser line at 22 GHz and the methanol class I maser lines at 44, 95, and 133 GHz. The water maser spectra displayed several velocity components and month-scale time variabilities. Most of the velocity components may be associated with FIR 6n, while one component was associated with FIR 4. A typical lifetime of the water maser velocity components is about eight months. The components showed velocity fluctuations with a typical drift rate of about 0.01 km s{sup -1} day{sup -1}. The methanol class I masers were detected toward FIRmore » 6. The methanol emission is confined within a narrow range around the systemic velocity of the FIR 6 cloud core. The methanol masers suggest the existence of shocks driven by either the expanding H II region of FIR 6c or the outflow of FIR 6n.« less
Dual-polarization 8.45 GHz traveling-wave maser
NASA Technical Reports Server (NTRS)
Quinn, R. B.
1987-01-01
An 8.5 GHz dual-channel, dual-polarization traveling-wave maser (TWM) amplifier was installed in the XKR solar system radar cone at DSS 14. The TWM is based on the Blk IIA 8.45 GHz maser structure, with two of the four maser stages being used for each channel, and each maser half then followed by a high-performance GaAs FET amplifier to achieve the desired net gain. A shortened low-noise input waveguide and an orthogonal-mode junction which is cooled to 4.5 K feeds each amplifier chain. The rotation of an external polarizer permits the polarization of each channel to be defined as either linear or circular. A circular waveguide switch was also developed to provide for noise calibration and to protect the maser from incident transmitter power.
Pumping Mechanisms for SiO Masers around VX Sgr
NASA Astrophysics Data System (ADS)
Su, J. B.; Shen, Z.-Q.; Chen, X.; Yi, Jiyune; Jiang, D. R.; Yun, Y. J.
2011-06-01
VX Sgr, a semi-regular variable, is a red giant star with intense SiO maser emission at 43 GHz. The pumping mechanism of the circumstellar SiO masers has been controversial for decades since its discovery. In order to pursue this long-standing problem further, we have carried out simultaneous VLBA observations of two 7 mm SiO masers at five epochs in about two years. We present relatively aligned υ = 1 and υ = 2, J = 1-0 SiO maser maps and discuss the dominant pumping mechanism, which may be epoch dependent or a combination of both mechanisms.
New auto-tuning technique for the hydrogen maser
NASA Technical Reports Server (NTRS)
Sydnor, R. L.; Maleki, L.
1983-01-01
Auto-tuning of the maser cavity compensates for cavity pulling effect, and other sources of contribution to the long term frequency drift. Schemes previously proposed for the maser cavity auto-tuning can have adverse effects on the performance of the maser. A new scheme is proposed based on the phase relationship between the electric and the magnetic fields inside the cavity. This technique has the desired feature of auto-tuning the cavity with a very high sensitivity and without disturbing the maser performance. Some approaches for the implementation of this scheme and possible areas of difficulty are examined.
Kinematics of the CSE in VY CMa
NASA Astrophysics Data System (ADS)
Choi, Yoon Kyung
2009-07-01
We report on astrometric results of H2O and SiO masers in the circumstellar envelopes of VY Canis Majoris (VY CMa) carried out with VERA for 2 years. Absolute positions and proper motions of 3 different frequencies of masers were measured with phase-referencing analyses. Using the positions and the 3-dimensional velocities of the masers, we considered the 3-dimensional structures and kinematics of the circumstellar envelopes around VY CMa. The H2O masers show bipolar outflow along the line of sight, and the SiO masers have both expanding and contracting motions with less than 5 km/s.
Radiative Instabilities in Three-Dimensional Astrophysical Masers
NASA Technical Reports Server (NTRS)
Scappaticci, Gerardo A.; Watson, William D.
1995-01-01
Inherent instabilities in the radiative transfer for astrophysical masers have been recognized and calculated in the linear maser idealization in our previous investigations. The same instabilities are now shown to occur in the more realistic, three-dimensional geometries. Fluctuations in the emergent flux result and may be related to the observed fluctuations in the radiative flux from the 1665 MHz OH masers that have been reported to occur on timescales as short as 1000 s. The time-dependent differential equations of radiative transfer are solved numerically for three-dimensional astrophysical masers. Computations are performed for spherical and elongated (rectangular parallelepiped) geometries.
Water vapour masers in long-period variable stars. I. RX Bootis and SV Pegasi
NASA Astrophysics Data System (ADS)
Winnberg, A.; Engels, D.; Brand, J.; Baldacci, L.; Walmsley, C. M.
2008-05-01
Context: Water vapour maser emission from late-type stars characterises them as asymptotic-giant-branch stars with oxygen-rich chemistry that are losing mass at a substantial rate. Further conclusions on the properties of the stars, however, are hampered by the strong variability of the emission. Aims: We wish to understand the reasons for the strong variability of H2O masers in circumstellar shells of late-type stars. In this paper we study RX Bootis and SV Pegasi as representatives of semiregular variable stars (SRVs). Methods: We monitored RX Boo and SV Peg in the 22-GHz maser line of water vapour with single-dish telescopes. The monitoring period covered two decades for RX Boo (1987-2007) and 12 years for SV Peg (1990-1995, 2000-2007). In addition, maps were obtained of RX Boo with the Very Large Array over several years. Results: We find that most of the emission in the circumstellar shell of RX Boo is located in an incomplete ring with an inner radius of 91 mas (15 AU). A velocity gradient is found in a NW-SE direction. The maser region can be modelled as a shell with a thickness of 22 AU, which is only partially filled. The gas crossing time is 16.5 years. The ring-like structure and the velocity gradient remained stable for at least 11 years, while the maser line profiles varied strongly. This suggests that the spatial asymmetry is not accidental, so that either the mass loss process or the maser excitation conditions in RX Boo are not spherically symmetric. The strong variability of the maser spectral features is mainly due to incoherent intensity fluctuations of maser emission spots, which have lifetimes of the order of 1 year. We found no correlation between the optical and the maser variability in either star. The variability properties of the SV Peg masers do not differ substantially from those of RX Boo. There were fewer spectral features present, and the range of variations was narrower. The maser was active on the >10-Jy level only 1990-1992 and 2006/2007. At other times the maser was either absent (<1 Jy) or barely detectable. Conclusions: The variability of H2O masers in the SRVs RX Boo and SV Peg is due to the emergence and disappearance of maser clouds with lifetimes of ~1 year. The emission regions do not evenly fill the shell of RX Boo leading to asymmetry in the spatial distribution, which persists at least an order of magnitude longer. Appendix A is only available in electronic form at http://www.aanda.org
The volatile OH Mainline Masers of R Leo
NASA Astrophysics Data System (ADS)
Lewis, B. M.
2004-12-01
R Leo was observed soon after the Arecibo upgrade, in mid-1999, when its principal 1665 & 1667 MHz masers respectively had intensities of 2.2 & 3.2 Jy: these had completely disappeared by mid-2002. The 1665 MHz maser has never exceeded 10 mJy since, while the 1667 has never exceeded 70 mJy. Moreover the initial decline of both, by factors of ≥ 25, occurred in 10 months. Though both masers recovered by a factor of ≥ 3 soon after, this was immediately followed by a sharp decline from which they have never rallied. The 1667 MHz maser declined from 1000 to 27 mJy over the first 9 months of 2001, and even more quickly, from 60 to 24 mJy, in 36 days through September 2004. This behaviour contrasts sharply with that of 1612 MHz masers of normal OH/IR stars, which commonly vary by a factor of three around the pulsation cycle, and which have on occasion been observed to disappear with an e-folding time of ˜ 1 yr (ApJ 548, L77). Nor is this difference simply the usual pulsational variation of OH mainlines, as those of R LMi only vary in intensity by a factor of three. We conclude that the mainline masers of R Leo are unusually volatile, and prone to an order of magnitude more variability than most such masers. The NIR colors of OH/IR stars follow a well-defined locus, whose entire extent is traversed ≤ 60 yr after the cessation of mass-loss. Lewis (BAAS 35, 1358) therefore argues that the rapid loss of 1612 MHz masers is set by changes in the maser pump following on changes in the reprocessing of stellar radiation by dust in the inner environs of its circumstellar shell. But the pumping of OH mainline masers is even more sensitive to the details of IR-line overlap than the 1612. The amplitude and brevity of changes in the OH mainline masers of R Leo therefore suggest that these are generated by small changes in IR line overlap.
Deciphering Periodic Methanol Masers
NASA Astrophysics Data System (ADS)
Stecklum, Bringfried; Caratti o Garatti, Alessio; Henning, Thomas; Hodapp, Klaus; Hopp, Ulrich; Kraus, Alex; Linz, Hendrik; Sanna, Alberto; Sobolev, Andrej; Wolf, Verena
2018-05-01
Impressive progress has been made in recent years on massive star formation, yet the involved high optical depths even at submm/mm wavelengths make it difficult to reveal its details. Recently, accretion bursts of massive YSOs have been identified to cause flares of Class II methanol masers (methanol masers for short) due to enhanced mid-IR pumping. This opens a new window to protostellar accretion variability, and implies that periodic methanol masers hint at cyclic accretion. Pinning down the cause of the periodicity requires joint IR and radio monitoring. We derived the first IR light curve of a periodic maser host from NEOWISE data. The source, G107.298+5.639, is an intermediate-mass YSO hosting methanol and water masers which flare every 34.5 days. Our recent joint K-band and radio observations yielded first but marginal evidence for a phase lag between the rise of IR and maser emission, respectively, and revealed that both NEOWISE and K-band light curves are strongly affected by the light echo from the ambient dust. Both the superior resolution of IRAC over NEOWISE and the longer wavelengths compared to our ground-based imaging are required to inhibit the distractive contamination by the light echo. Thus, we ask for IRAC monitoring of G107 to cover one flare cycle, in tandem with 100-m Effelsberg and 2-m Wendelstein radio and NIR observations to obtain the first high-quality synoptic measurements of this kind of sources. The IR-maser phase lag, the intrinsic shape of the IR light curves and their possible color variation during the cycle allow us to constrain models for the periodic maser excitation. Since methanol masers are signposts of intermediate-mass and massive YSOs, deciphering their variability offers a clue to the dynamics of the accretion-mediated growth of massive stars and their feedback onto the immediate natal environment. The Spitzer light curve of such a maser-hosting YSO would be a legacy science product of the mission.
NASA Astrophysics Data System (ADS)
Hunter, T. R.; Brogan, C. L.; MacLeod, G. C.; Cyganowski, C. J.; Chibueze, J. O.; Friesen, R.; Hirota, T.; Smits, D. P.; Chandler, C. J.; Indebetouw, R.
2018-02-01
We report the first sub-arcsecond VLA imaging of 6 GHz continuum, methanol maser, and excited-state hydroxyl maser emission toward the massive protostellar cluster NGC 6334I following the recent 2015 outburst in (sub)millimeter continuum toward MM1, the strongest (sub)millimeter source in the protocluster. In addition to detections toward the previously known 6.7 GHz Class II methanol maser sites in the hot core MM2 and the UCHII region MM3 (NGC 6334F), we find new maser features toward several components of MM1, along with weaker features ∼1″ north, west, and southwest of MM1, and toward the nonthermal radio continuum source CM2. None of these areas have heretofore exhibited Class II methanol maser emission in three decades of observations. The strongest MM1 masers trace a dust cavity, while no masers are seen toward the strongest dust sources MM1A, 1B, and 1D. The locations of the masers are consistent with a combination of increased radiative pumping due to elevated dust grain temperature following the outburst, the presence of infrared photon propagation cavities, and the presence of high methanol column densities as indicated by ALMA images of thermal transitions. The nonthermal radio emission source CM2 (2″ north of MM1) also exhibits new maser emission from the excited 6.035 and 6.030 GHz OH lines. Using the Zeeman effect, we measure a line-of-sight magnetic field of +0.5 to +3.7 mG toward CM2. In agreement with previous studies, we also detect numerous methanol and excited OH maser spots toward the UCHII region MM3, with predominantly negative line-of-sight magnetic field strengths of ‑2 to ‑5 mG and an intriguing south–north field reversal.
Theoretical comparison of maser materials for a 32-GHz maser amplifier
NASA Technical Reports Server (NTRS)
Lyons, James R.
1988-01-01
The computational results of a comparison of maser materials for a 32 GHz maser amplifier are presented. The search for a better maser material is prompted by the relatively large amount of pump power required to sustain a population inversion in ruby at frequencies on the order of 30 GHz and above. The general requirements of a maser material and the specific problems with ruby are outlined. The spin Hamiltonian is used to calculate energy levels and transition probabilities for ruby and twelve other materials. A table is compiled of several attractive operating points for each of the materials analyzed. All the materials analyzed possess operating points that could be superior to ruby. To complete the evaluation of the materials, measurements of inversion ratio and pump power requirements must be made in the future.
Using Hyperfine Structure Limits to Characterize the Formaldehyde Maser in G32.74-0.07
NASA Astrophysics Data System (ADS)
Araya, Esteban; Nazmus Sakib, Md; Olmi, Luca; Hofner, Peter; Kurtz, Stan; Hoffman, Ian M.; Linz, Hendrik
2018-06-01
Formaldehyde (H2CO) masers are a rare variety of astrophysical masers, but they have the virtue of exclusively tracing the interiors of high-mass star forming regions. We report observations conducted with the 305m Arecibo Telescope and the Karl G. Jansky Very Large Array (VLA) of the 6 cm H2CO maser in the region of high-mass star formation G32.74-0.07. This maser is among the narrowest H2CO masers known, and thus it is an excellent candidate to study the excitation of the hyperfine components of the transition. The Arecibo and VLA results are consistent, the maser flux density observed with Arecibo is recovered in the VLA image within the rms noise of the spectra, and the fitted line widths of the two observations agree to within formal errors. Our high signal-to-noise (~7 mJy rms) and high spectral resolution (0.05 km/s) observations allow us to set strong limits on the hyperfine structure of the line. The line profile is consistent with unsaturated emission, with a maser gain of approximately 3, and an amplified background radio continuum of ~1 mJy. VLA observations confirm the presence of a continuum source at the location of the maser. The continuum source is characterized by a spectral index of +0.9 at 5 GHz, which is indicative of thermal Bremsstrahlung in the optically thick/thin transition.
Detection of a weak maser emission pedestal associated with the SiO maser. [in variable late stars
NASA Technical Reports Server (NTRS)
Snyder, L. E.; Dickinson, D. F.; Brown, L. W.; Buhl, D.
1978-01-01
Results are reported for high-spectral-resolution observations of the v = 1, J = 1-0 SiO maser sources at 43,122.027 MHz (6.95 mm wavelength) associated with the variable stars Omega Cet, NML Tau, VY CMa, R Leo, W Hya, VX Sgr, NML Cyg, and R Cas. A weak underlying maser emission pedestal is clearly observed in the spectra of all but NML Cyg and R Cas. The data indicate that the underlying pedestal of SiO emission appears to originate in a shell-like region around the star, has a thermal appearance even though it must be due to weak maser emission, and appears to be part of the spectral signature of SiO maser emission from late-type stars. It is found that the center velocities of the pedestals may be used to determine stellar radial velocities. Observations of large-scale time variations in the intensity of the Ori A SiO maser and the detection of weak maser pedestals associated with each of the two strong emission-feature groups in Orion are also discussed. It is suggested that the Orion molecular cloud might contain two late-type long-period variable stars that may be semiregular variables.
Recent progress in the NASA-Goddard Space Flight Center atomic hydrogen standards program
NASA Technical Reports Server (NTRS)
Reinhardt, V. S.
1981-01-01
At NASA Goddard Space Flight Center and through associated contractors, a broad spectrum of work is being carried out to develop improved hydrogen maser frequency standards for field use, improved experimental hydrogen maser frequency standards, and improved frequency and time distribution and measurement systems for hydrogen maser use. Recent progress in the following areas is reported: results on the Nr masers built by the Applied Physics Laboratory of Johns Hopkins University, the development of a low cost hydrogen maser at Goddard Space Flight Center, and work on a low noise phase comparison system and digitally phase locked crystal oscillator called the distribution and measurement system.
A cloud collision model for water maser excitation.
Tarter, J C; Welch, W J
1986-06-01
High-velocity collisions between small, dense, neutral clouds or between a dense cloud and a dense shell can provide the energy source required to excite H2O maser emission. The radiative precursor from the surface of the collisional shock front rapidly diffuses through the cloud, heating the dust grains but leaving the H2 molecules cool. Transient maser emission occurs as the conditions for the Goldreich and Kwan "hot-dust cold-gas" maser pump scheme are realized locally within the cloud. In time the local maser action quenches due to the heating of the H2 molecules by collisions against the grains. Although this model cannot explain the very long-lived steady maser features, it is quite successful in explaining a number of the observed properties of the high-velocity features in such sources as Orion, W51, and W49. In particular, it provides a natural explanation for the rapid time variations, the narrow line widths, juxtaposition of high- and low-velocity features, and the short lifetimes which are frequently observed for the so-called high-velocity maser "bullets" thought to be accelerated by strong stellar winds.
Water masers in NGC7538 region
NASA Astrophysics Data System (ADS)
Kameya, Osamu
We observed H2O masers towards NGC7538 molecular-cloud core using VERA (VLBI Experiment of Radio Astrometry). This region is in the Perseus arm at a distance of about 2.7 kpc and is famous for its multiple, massive star formation. There are three areas there, N(IRS1-3), E(IRS9), and S(IRS11), each having a strong IR source(s), ultra-compact HII region(s), bipolar outflow, high-density core, and OH/H2O/CH3OH masers. We made differential VLBI observations towards the NGC7538 H2O maser sources at N and S and a reference source, Cepheus A H2O maser, simultaneously. The Cepheus A region is separated by 2 degrees from the NGC7538 region. The positions of H2O masers in N and S regions, distributed around the ultra-compact HII regions, are basically consistent with those found by means of interferometric observations of past 29 years. The masers may come from interface regions between the ultra-compact HII regions and the environments of dense molecular gas.
NASA Astrophysics Data System (ADS)
Shibata, Katsunori M.; Chung, Hyung-Soo; Kameno, Seiji; Roh, Duk-Gyoo; Umemoto, Tomofumi; Kim, Kwang-Dong; Asada, Keiichi; Han, Seog-Tae; Mochizuki, Nanako; Cho, Se-Hyung; Sawada-Satoh, Satoko; Kim, Hyun-Goo; Bushimata, Takeshi; Minh, Young Chol; Miyaji, Takeshi; Kuno, Nario; Mikoshiba, Hiroshi; Sunada, Kazuyoshi; Inoue, Makoto; Kobayashi, Hideyuki
2004-06-01
We have made VLBI observations at 86GHz using a 1000-km baseline between Korea and Japan with successful detections of SiO v = 1, J = 2 - 1 maser emissions from VY CMa and Orion KL in 2001 June. This was the first VLBI result for this baseline and the first astronomical VLBI observation for the Korean telescope. Since then, we observed SiO v = 1, J = 2 - 1 maser emission in VY CMa in 2002 January and 2003 February and derived the distributions of the maser emissions. Our results show that the maser emissions extend over 2-4 stellar radii, and were within the inner radius of the dust shell. We observed other SiO maser sources and continuum sources, and 86-GHz continuum emissions were detected from three continuum sources. It was verified that this baseline has a performance comparable to the most sensitive baseline in the VLBA and the CMVA, and is capable of investigating the proper motions of maser features in circumstellar envelopes using monitoring observations.
Proposal for a room-temperature diamond maser
Jin, Liang; Pfender, Matthias; Aslam, Nabeel; Neumann, Philipp; Yang, Sen; Wrachtrup, Jörg; Liu, Ren-Bao
2015-01-01
The application of masers is limited by its demanding working conditions (high vacuum or low temperature). A room-temperature solid-state maser is highly desirable, but the lifetimes of emitters (electron spins) in solids at room temperature are usually too short (∼ns) for population inversion. Masing from pentacene spins in p-terphenyl crystals, which have a long spin lifetime (∼0.1 ms), has been demonstrated. This maser, however, operates only in the pulsed mode. Here we propose a room-temperature maser based on nitrogen-vacancy centres in diamond, which features the longest known solid-state spin lifetime (∼5 ms) at room temperature, high optical pumping efficiency (∼106 s−1) and material stability. Our numerical simulation demonstrates that a maser with a coherence time of approximately minutes is feasible under readily accessible conditions (cavity Q-factor ∼5 × 104, diamond size ∼3 × 3 × 0.5 mm3 and pump power <10 W). A room-temperature diamond maser may facilitate a broad range of microwave technologies. PMID:26394758
ERIC Educational Resources Information Center
Dickinson, Dale F.
1978-01-01
Intense radiation at microwave frequencies is emitted by certain nebular regions and stellar atmospheres. It is generated by maser action, which does for microwaves what laser action does for light. Describes in detail the types of masers and their action. (Author/MA)
Rubidium-87 gas cell studies, phase 2
NASA Technical Reports Server (NTRS)
Vanier, J.
1973-01-01
A description is given of the development of a compact rubidium-87 maser. Data cover the electronic control system for the maser itself and a superhetrodyne receiver capable of locking a crystal oscillator to the maser signal.
The cyclotron maser theory of AKR and Z-mode radiation. [Auroral Kilometric Radiation
NASA Technical Reports Server (NTRS)
Wu, C. S.
1985-01-01
The cyclotron maser mechanism which may be responsible for the generation of auroral kilometric radiation and Z-mode radiation is discussed. Emphasis is placed on the basic concepts of the cyclotron maser theory, particularly the relativistic effect of the cyclotron resonance condition. Recent development of the theory is reviewed. Finally, the results of a computer simulation study which helps to understand the nonlinear saturation of the maser instability are reported.
Zeeman Effect observations toward 36 GHz methanol masers in the Galactic Center
NASA Astrophysics Data System (ADS)
Potvin, Justin A.; Momjian, Emmanuel; Pratim Sarma, Anuj
2017-01-01
We present observations of 36 GHz Class I methanol masers taken with the Karl G. Jansky Very Large Array (VLA) in the B configuration with the aim of detecting the Zeeman Effect. We targeted several 36 GHz Class I methanol masers associated with supernova remnants (SNRs) toward the Galactic Center. Each source was observed in dual circular polarizations for three hours. The observed spectral profiles of the masers are complex, with several components blended in velocity. In only one case was the Stokes V maser profile prominent enough to reveal a 2-sigma hint of a magnetic field of zBlos = 14.56 +/- 5.60 Hz; we have chosen to express our results in terms of zBlos since the Zeeman splitting factor (z) for 36 GHz methanol masers has not been measured. There are several hints that these spectra would reveal significant magnetic fields if they could be spatially and spectrally resolved.
NASA Astrophysics Data System (ADS)
Menten, K. M.
Masers in general are signposts of interesting astronomical sources and phenomena. In particular, they are found in the immediate environment of young stellar objects. Abundant observational evidence suggests that H_2O masers arise in the outflows from such sources in their earliest evolutionary phases and are in fact powered by accretion. As such they are intimately connected with the core of Francesco Palla's science. And indeed, H_2O masers were at the start and an essential component of a highly successful research program initiated by Francesco, the identification and characterization of a significant sample of massive young stellar objects. An overview is given of the sustained H_2O maser research program conducted over many years with the Medicina 32-meter radio telescope, in which Francesco played a vital part. Last, but not least, with Steven Stahler, Francesco co-authored an excellent chapter on interstellar masers that formed a part of The Formation of Stars, their classic textbook of the field.
MALT-45: A 7 mm survey of the southern Galaxy
NASA Astrophysics Data System (ADS)
Jordan, Christopher Harry
2015-09-01
The last decade has seen vast improvement in the knowledge of star formation within our Galaxy, largely owing to improvements in instrumentation, allowing astronomers to compile more data. However, despite the advances of technology, the quest for understanding high-mass star formation (HMSF) continues. As we go on, breakthroughs have occurred; a prime example is the discovery of the class II methanol maser, which exclusively signposts on-going sites of HMSF, but still lacks the detail necessary to identify HMSF in all forms. Once we have understood where, why and how HMSF can occur, we will be able to diagnose Galactic structure and evolution. Untargeted, large area surveys of molecular gas are ideal for identifying HMSF regions across a broad range of evolutionary phases. For example, searches for molecular species with a high critical density can highlight dense gases, which can then be used to probe Galactic structure and star formation. Because HMSF occurs in regions of dense molecular gas, mapping high-density tracers serves well to identify regions for study. The (1,1), (2,2) and (3,3) inversion transitions of ammonia (NH3) have been successfully mapped by the H2O Southern Galactic Plane Survey (HOPS), identifying previously unknown sites of star formation, as well as probing the structure of the Milky Way's spiral arms. Fortunately, HMSF can be identified by bright spectral lines in maser emission; HOPS also mapped the Galactic plane for water (H2O) masers and, perhaps more importantly, the Methanol MultiBeam survey identities class II methanol (CH3OH) masers, which are exclusively associated with HMSF. While class II CH3OH masers always signpost HMSF, they appear only in a specific evolutionary stage, and therefore other species (such as H2O masers) are required to identify other stages. Another, even higher density gas tracer useful for detecting HMSF and mapping the structure of our Galaxy is carbon monosulfide (CS). The ground state transition J = 1-0 for CS lies within the 7mm waveband, which also contains the poorly understood class I CH3OH maser. Unlike the class II variant, class I masers are not exclusively associated with HMSF, but do appear in star-forming regions across a wide range of evolutionary stages. A large problem for class I CH3OH maser studies is the bias in the targeted searches which have been used to find them; they have only been identified towards other masing regions (such as class II CH3OH), and therefore the properties of these masers are somewhat unclear. In this thesis, results focus on the MALT-45 survey using the Australia Telescope Compact Array (ATCA) in auto-correlation ('single-dish' mode). To date, MALT-45 has mapped the Galactic plane within 330° *lt; < l < 335°, jbj< 0:5°, which contains several known star-forming regions, including the G333 giant molecular cloud. MALT-45 surveys 12 spectral lines, but primarily CS (1-0), class I CH3OH masers and SiO (1-0) v = 0; 1; 2; 3. Bright, extended CS emission is detected across the survey region, and highlight two distinct velocities, due to different spiral arms of the Galaxy. In addition to the previously known 19 class I CH3OH masers, 58 new masers were detected. SiO masers were detected towards 47 regions, in various combinations of vibrational mode v = 1; 2; 3, all towards evolved infrared stars. Thermal SiO v = 0 emission is also detected across the survey region. Major science results from MALT-45 include: (i) A CS to NH3 comparison, which highlights cold, dense clumps as well as hot, evolved clumps. The cold and dense clumps appear to have self-absorption of CS emission in their centres and a relative over-abundance of NH3, while evolved clumps appear to have very little NH3 emission, despite being a dense gas tracer; (ii) Almost all (94 per cent) of ATLASGAL 870 um dust emission point sources are associated with at least a 3σ peak of CS emission; (iii) By comparing with peak CS velocities, class I CH3OH masers are good indicators of the systemic velocities of clouds; (iv) More than half (55 per cent) of the detected class I CH3OH masers are not associated with any other kind of maser; (v) Class II CH3OH, H2O and hydroxyl (OH) masers associate well with class I CH3OH masers, confirming that class I CH3OH masers occur towards a wide range of evolutionary stages in HMSF; (vi) Class I CH3OH masers appear to have no correlation in intensity or luminosity with other maser species; (vii) Class I CH3OH masers have typical projected linear distances from other masers associated with star formation, peaks of CS and 870 μm point sources within 0.5 pc; (viii) Class I CH3OH masers are spread over a larger area when also associated with class II CH3OH or OH masers, perhaps due to their more evolved state; (ix) Almost all (95 per cent) of class I CH3OH masers are associated with an ATLASGAL source; (x) Using ATLASGAL source parameters, a clump mass is calculated. The population of class I CH3OH masers has a broad range of associated masses (10^1.5 to 10^4.5M⊙), but peaks between 10^3.0 and 10^3.5M⊙. Higher masses tend to be associated with evolved regions of star formation, while lower masses tend to be non-evolved regions; (xi) SiO masers typically decrease in intensity with vibrational mode (v = 1; 2; 3), but eleven cases of stronger v = 2 than v = 1 emission were found, and two regions of only v = 2 emission were found; (xii) The relatively rare v = 3 vibrational mode of SiO (1-0) was detected towards three evolved infrared stars.
New results on Class I methanol masers in nearby low-mass star formation regions
NASA Astrophysics Data System (ADS)
Kalenskii, S. V.; Kurtz, S.; Hofner, P.
We present the review of the properties of Class I methanol masers detected in low-mass star forming regions (LMSFRs). These masers, called further LMMIs, are associated with postshock gas in the lobes of chemically active outflows in LMSFRs NGC1333,NGC2023, HH25, and L1157. Flux densities of these masers are no higher than 18 Jy at 44 GHz and are lower in the other Class I lines, being much lower than those of strong Class I masers in the regions of high-mass star formation. However, LMMI luminosities at 44 GHz match the relation "maser luminosity-protostar luminosity" established for high- and intermediate-mass protostars. No variability of LMMIs has been found in 2004-2011. Radial velocities of most LMMIs are close to the systemic velocities of associated regions. The only known exception is the maser detected at 36 GHz toward the blue lobe of the extra-high-velocity outflow in NGC2023, whose radial velocity is 3.5 km s-1 lower than the systemic velocity. Four masers, NGC1333I2A, NGC1333I4A, HH25MMS, and L1157 have been observed at 44 GHz with the VLA in the D configuration with an angular resolution of about 1:500. All of them except NGC1333I2A have been later reobserved with the EVLA in the B configuration, which provides an angular resolution of about 0:200 at this frequency. The maser images consist of compact spots, unresolved or barely resolved even with the B configuration. The brightness temperatures of the strongest spots are hundreds of thousands Kelvins. Many spots consist of two spatial components and demonstrate double spectral lines. An interesting result is the detection of unresolved spots demonstrating broad(˜3-5 km s-1) spectral lines. Their fluxes correspond to brightness temperatures ˜1000 K. Thus, in spite of large linewidths, these objects could be weak masers. Probably, the broad lines, detected in some sources at 44 GHz and in other Class I lines as a result of single-dish observations, are also masers. We believe that turbulence plays an important role in forming the image and the spectrum of maser emission. However, turbulence alone cannot provide the observed intensities of masers in L1157. Therefore we believe that some additional factors are required in order to explain the observed LMMI properties.
Dynamics of SiO Masers around VX Sgr
NASA Astrophysics Data System (ADS)
Su, J. B.; Shen, Z.-Q.; Chen, X.; Jiang, D. R.
2018-01-01
We performed Very Long Baseline Array (VLBA) observations of SiO masers (v=1,v=2,J=1\\to 0) toward VX Sgr from 2006 July to 2008 August. With the application of a phase reference technique, the accurate relative positions of maser spots at the two transitions can be acquired. The relative positions enable us to obtain more matched masers in the same coordinate frame to better study the dynamics of the maser shell. We adopt two different methods to investigate the global motions of the maser shell, which is found to expand in a decelerated manner. At the beginning of this process, the decelerative force can be interpreted as a force dominated by the gravitational attraction of the star. However, in the later epochs, the deceleration has a smaller magnitude, suggesting that an outward force is combating the stellar gravity. In addition, we construct a model of a rotating and expanding maser shell. The consistency of the model and observations at the first two epochs suggests approximate Keplerian rotation of the shell with a period of 46.9 years. However, other explanations, such as an axisymmetric outflow, are also possible. We also find two matched maser spots with double-peak spectra moving at a velocity of 6.8 km s‑1. The special spectra provide direct observational evidence that the motion of a maser spot reflects the real gas stream, rather than changes in physical conditions. Finally, the distance to VX Sgr is calculated to be 1.10 ± 0.11 kpc using a statistical parallax method. This value is within the range reported in the literature.
A low noise synthesizer for autotuning and performance testing of hydrogen masers
NASA Technical Reports Server (NTRS)
Cloeren, J. M.; Ingold, J. S.
1984-01-01
A low noise synthesizer has been developed for use in hydrogen maser autotuning and performance evaluation. This synthesizer replaces the frequency offset maser normally used for this purpose and allows the user to maintain all masers in the ensemble at the same frequency. The synthesizer design utilizes a quartz oscillator with a BVA resonator. The oscillator has a frequency offset of 5 X 10 to the minus 8 power. The BVA oscillator is phase-locked to a hydrogen maser by means of a high gain, high stability phase-locked loop, employing low noise multipliers as phase error amplifiers. A functional block diagram of the synthesizer and performance data will be presented.
The electron-cyclotron maser for astrophysical application
NASA Astrophysics Data System (ADS)
Treumann, Rudolf A.
2006-08-01
The electron-cyclotron maser is a process that generates coherent radiation from plasma. In the last two decades, it has gained increasing attention as a dominant mechanism of producing high-power radiation in natural high-temperature magnetized plasmas. Originally proposed as a somewhat exotic idea and subsequently applied to include non-relativistic plasmas, the electron-cyclotron maser was considered as an alternative to turbulent though coherent wave-wave interaction which results in radio emission. However, when it was recognized that weak relativistic corrections had to be taken into account in the radiation process, the importance of the electron-cyclotron maser rose to the recognition it deserves. Here we review the theory and application of the electron-cyclotron maser to the directly accessible plasmas in our immediate terrestrial and planetary environments. In situ access to the radiating plasmas has turned out to be crucial in identifying the conditions under which the electron-cyclotron maser mechanism is working. Under extreme astrophysical conditions, radiation from plasmas may provide a major energy loss; however, for generating the powerful radiation in which the electron-cyclotron maser mechanism is capable, the plasma must be in a state where release of susceptible amounts of energy in the form of radiation is favorable. Such conditions are realized when the plasma is unable to digest the available free energy that is imposed from outside and stored in its particle distribution. The lack of dissipative processes is a common property of collisionless plasmas. When, in addition, the plasma density becomes so low that the amount of free energy per particle is large, direct emission becomes favorable. This can be expressed as negative absorption of the plasma which, like in conventional masers, leads to coherent emission even though no quantum correlations are involved. The physical basis of this formal analogy between a quantum maser and the electron-cyclotron maser is that in the electron-cyclotron maser the free-space radiation modes can be amplified directly. Several models have been proposed for such a process. The most famous one is the so-called loss-cone maser. However, as argued in this review, the loss-cone maser is rather inefficient. Available in situ measurements indicate that the loss-cone maser plays only a minor role. Instead, the main source for any strong electron-cyclotron maser is found in the presence of a magnetic-field-aligned electric potential drop which has several effects: (1) it dilutes the local plasma to such an extent that the plasma enters the regime in which the electron-cyclotron maser becomes effective; (2) it generates energetic relativistic electron beams and field-aligned currents; (3) it deforms, together with the magnetic mirror force, the electron distribution function, thereby mimicking a high energy level sufficiently far above the Maxwellian ground state of an equilibrium plasma; (4) it favors emission in the free-space RX mode in a direction roughly perpendicular to the ambient magnetic field; (5) this emission is the most intense, since it implies the coherent resonant contribution of a maximum number of electrons in the distribution function to the radiation (i.e., to the generation of negative absorption); (6) it generates a large number of electron holes via the two-stream instability, and ion holes via the current-driven ion-acoustic instability which manifest themselves as subtle fine structures moving across the radiation spectrum and being typical for the electron-cyclotron maser emission process. These fine structures can thus be taken as the ultimate identifier of the electron-cyclotron maser. The auroral kilometric radiation of Earth is taken here as the paradigm for other manifestations of intense radio emissions such as the radiation from other planets in the solar system, from exoplanets, the Sun and other astrophysical objects.
Polarisation observations of VY Canis Majoris H2O 532-441 620.701 GHz maser emission with HIFI
NASA Astrophysics Data System (ADS)
Harwit, M.; Houde, M.; Sonnentrucker, P.; Boogert, A. C. A.; Cernicharo, J.; De Beck, E.; Decin, L.; Henkel, C.; Higgins, R. D.; Jellema, W.; Kraus, A.; McCoey, C.; Melnick, G. J.; Menten, K. M.; Risacher, C.; Teyssier, D.; Vaillancourt, J. E.; Alcolea, J.; Bujarrabal, V.; Dominik, C.; Justtanont, K.; de Koter, A.; Marston, A. P.; Olofsson, H.; Planesas, P.; Schmidt, M.; Schöier, F. L.; Szczerba, R.; Waters, L. B. F. M.
2010-10-01
Context. Water vapour maser emission from evolved oxygen-rich stars remains poorly understood. Additional observations, including polarisation studies and simultaneous observation of different maser transitions may ultimately lead to greater insight. Aims: We have aimed to elucidate the nature and structure of the VY CMa water vapour masers in part by observationally testing a theoretical prediction of the relative strengths of the 620.701 GHz and the 22.235 GHz maser components of ortho H2O. Methods: In its high-resolution mode (HRS) the Herschel Heterodyne Instrument for the Far Infrared (HIFI) offers a frequency resolution of 0.125 MHz, corresponding to a line-of-sight velocity of 0.06 km s-1, which we employed to obtain the strength and linear polarisation of maser spikes in the spectrum of VY CMa at 620.701 GHz. Simultaneous ground based observations of the 22.235 GHz maser with the Max-Planck-Institut für Radioastronomie 100-m telescope at Effelsberg, provided a ratio of 620.701 GHz to 22.235 GHz emission. Results: We report the first astronomical detection to date of H2O maser emission at 620.701 GHz. In VY CMa both the 620.701 and the 22.235 GHz polarisation are weak. At 620.701 GHz the maser peaks are superposed on what appears to be a broad emission component, jointly ejected from the star. We observed the 620.701 GHz emission at two epochs 21 days apart, both to measure the potential direction of linearly polarised maser components and to obtain a measure of the longevity of these components. Although we do not detect significant polarisation levels in the core of the line, they rise up to approximately 6% in its wings. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendix (page 5) is only available in electronic form at http://www.aanda.org
A water-vapour giga-maser in the active galaxy TXFS2226-184.
Koekemoer, A M; Henkel, C; Greenhill, L J; Dey, A; van Breugel, W; Codella, C; Antonucci, R
1995-12-14
Active galactic nuclei are thought to be powered by gas falling into a massive black hole; the different types of active galaxy may arise because we view them through a thick torus of molecular gas at varying angles of inclination. One way to determine whether the black hole is surrounded by a torus, which would obscure the accretion disk around the black hole along certain lines of sight, is to search for water masers, as these exist only in regions with plentiful molecular gas. Since the first detection of an extra-galactic water maser in 1979, they have come to be associated primarily with active galaxies, and have even been used to probe the mass of the central engine. Here we report the detection of a water giga-maser in the radio galaxy TXFS2226-184. The strength of the emission supports a recently proposed theory of maser pumping that allows for even more powerful masers, which might be detectable at cosmological distances. Water masers may accordingly provide a way to determine distances to galaxies outside the usual distance ladder, providing an independent calibration of the Hubble constant.
Searches for H2O masers toward narrow-line Seyfert 1 galaxies
NASA Astrophysics Data System (ADS)
Yoshiaki, Hagiwara; Doi, Akihiro; Hachisuka, Kazuya; Horiuchi, Shinji
2018-05-01
We present searches for 22 GHz H2O masers toward 36 narrow-line Seyfert 1 galaxies (NLS1s), selected from known NLS1s with vsys ≲ 41000 km s-1. Out of the 36 NLS1s in our sample, 11 have been first surveyed in our observations, while the observations of other NLS1s were previously reported in literature. In our survey, no new water maser source from NLS1s was detected at the 3σ rms level of 8.4 mJy to 144 mJy, which depends on different observing conditions or inhomogeneous sensitivities of each observation using three different telescopes. It is likely that the non-detection of new masers in our NLS1 sample is primarily due to insufficient sensitivities of our observations. Including the five known NLS1 masers, the total detection rate of the H2O maser in NLS1s is not remarkably different from that of type 2 Seyfert galaxies or LINERs. However, more extensive and systematic searches of NLS1 would be required for a statistical discussion of the detection rate of the NLS1 maser, compared with that of type 2 Seyferts or LINERs.
Continuous-wave room-temperature diamond maser.
Breeze, Jonathan D; Salvadori, Enrico; Sathian, Juna; Alford, Neil McN; Kay, Christopher W M
2018-03-21
The maser-the microwave progenitor of the optical laser-has been confined to relative obscurity owing to its reliance on cryogenic refrigeration and high-vacuum systems. Despite this, it has found application in deep-space communications and radio astronomy owing to its unparalleled performance as a low-noise amplifier and oscillator. The recent demonstration of a room-temperature solid-state maser that utilizes polarized electron populations within the triplet states of photo-excited pentacene molecules in a p-terphenyl host paves the way for a new class of maser. However, p-terphenyl has poor thermal and mechanical properties, and the decay rates of the triplet sublevel of pentacene mean that only pulsed maser operation has been observed in this system. Alternative materials are therefore required to achieve continuous emission: inorganic materials that contain spin defects, such as diamond and silicon carbide, have been proposed. Here we report a continuous-wave room-temperature maser oscillator using optically pumped nitrogen-vacancy defect centres in diamond. This demonstration highlights the potential of room-temperature solid-state masers for use in a new generation of microwave devices that could find application in medicine, security, sensing and quantum technologies.
Hydrogen masers and cesium fountains at NRC
NASA Technical Reports Server (NTRS)
Boulanger, J.-S.; Morris, D.; Douglas, R. J.; Gagne, M.-C.
1994-01-01
The NRC masers H-3 and H-4 have been operating since June 1993 with cavity servo control. These low-flux active H masers are showing stabilities of about 10(exp -15) from 1 hour to several days. Stability results are presented, and the current and planned uses of the masers are discussed. A cesium fountain primary frequency standard project has been started at NRC. Trapping and launching experiments with the goal of 7 m/s launches are beginning. We discuss our plans for a local oscillator and servo that exploit the pulsed aspect of cesium fountain standards, and meet the challenge of 10(exp -14) tau(exp -1/2) stability without requiring masers. At best, we expect to run this frequency standard initially for periods of hours each working day rather than continuously for years, and so frequency transfer to outside laboratories has been carefully considered. We conclude that masers (or other even better secondary clocks) are required to exploit this potential accuracy of the cesium fountain. We present and discuss our conclusion that it is feasible to transfer frequency in this way with a transfer-induced uncertainty of less than 10(exp -15), even in the presence of maser frequency drift and random walk noise.
Searches for H2O masers toward narrow-line Seyfert 1 galaxies
NASA Astrophysics Data System (ADS)
Hagiwara, Yoshiaki; Doi, Akihiro; Hachisuka, Kazuya; Horiuchi, Shinji
2018-06-01
We present searches for 22 GHz H2O masers toward 36 narrow-line Seyfert 1 galaxies (NLS1s), selected from known NLS1s with vsys ≲ 41000 km s-1. Out of the 36 NLS1s in our sample, 11 have been first surveyed in our observations, while the observations of other NLS1s were previously reported in literature. In our survey, no new water maser source from NLS1s was detected at the 3σ rms level of 8.4 mJy to 144 mJy, which depends on different observing conditions or inhomogeneous sensitivities of each observation using three different telescopes. It is likely that the non-detection of new masers in our NLS1 sample is primarily due to insufficient sensitivities of our observations. Including the five known NLS1 masers, the total detection rate of the H2O maser in NLS1s is not remarkably different from that of type 2 Seyfert galaxies or LINERs. However, more extensive and systematic searches of NLS1 would be required for a statistical discussion of the detection rate of the NLS1 maser, compared with that of type 2 Seyferts or LINERs.
SSC microgravity sounding rocket program MASER.
Jonsson, R
1988-01-01
The Swedish Microgravity Sounding Rocket program MASER is presented. Especially the MASER 1 payload is depicted, but also an outlook for the future possibilities within the Short Duration Flight Opportunities is given. Furthermore the coordination and relation with the German TEXUS program is touched upon. With the two TEXUS and MASER programs--possibly together with other fascinating projects like M-ARIES and MG-M-ARIANNE--the microgravity scientific community in Europe should get reasonable amounts of flight opportunities in preparation for the big space venture the European Space Station.
Hydrogen maser frequency standard computer model for automatic cavity tuning servo simulations
NASA Technical Reports Server (NTRS)
Potter, P. D.; Finnie, C.
1978-01-01
A computer model of the JPL hydrogen maser frequency standard was developed. This model allows frequency stability data to be generated, as a function of various maser parameters, many orders of magnitude faster than these data can be obtained by experimental test. In particular, the maser performance as a function of the various automatic tuning servo parameters may be readily determined. Areas of discussion include noise sources, first-order autotuner loop, second-order autotuner loop, and a comparison of the loops.
Rubidium-87 gas cell studies, phase 1
NASA Technical Reports Server (NTRS)
Vanier, J.
1972-01-01
The construction of a quartz bulb-quartz cavity type rubidium maser is described, and the results obtained with two of these masers are presented. The tuning characteristics, medium term stability, and short term stability are reported. It is concluded that the stability of the masers in the short term region is superior to any of the oscillators presently existing. On this basis it is believed that future development of the masers to reduce their size and improve their medium term stability is well justified.
A Search for Water Maser Emission from Brown Dwarfs and Low-luminosity Young Stellar Objects
NASA Astrophysics Data System (ADS)
Gómez, José F.; Palau, Aina; Uscanga, Lucero; Manjarrez, Guillermo; Barrado, David
2017-05-01
We present a survey for water maser emission toward a sample of 44 low-luminosity young objects, comprising (proto-)brown dwarfs, first hydrostatic cores (FHCs), and other young stellar objects (YSOs) with bolometric luminosities lower than 0.4 L ⊙. Water maser emission is a good tracer of energetic processes, such as mass-loss and/or accretion, and is a useful tool to study these processes with very high angular resolution. This type of emission has been confirmed in objects with L bol ≳ 1 L ⊙. Objects with lower luminosities also undergo mass-loss and accretion, and thus, are prospective sites of maser emission. Our sensitive single-dish observations provided a single detection when pointing toward the FHC L1448 IRS 2E. However, follow-up interferometric observations showed water maser emission associated with the nearby YSO L1448 IRS 2 (a Class 0 protostar of L bol ≃ 3.6-5.3 L ⊙) and did not find any emission toward L1448 IRS 2E. The upper limits for water maser emission determined by our observations are one order of magnitude lower than expected from the correlation between water maser luminosities and bolometric luminosities found for YSOs. This suggests that this correlation does not hold at the lower end of the (sub)stellar mass spectrum. Possible reasons are that the slope of this correlation is steeper at L bol ≤ 1 L ⊙ or that there is an absolute luminosity threshold below which water maser emission cannot be produced. Alternatively, if the correlation still stands at low luminosity, the detection rates of masers would be significantly lower than the values obtained in higher-luminosity Class 0 protostars.
Angular Momentum in Disk Wind Revealed in the Young Star MWC 349A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qizhou; Claus, Brian; Watson, Linda
Disk winds are thought to play a critical role in star birth. As winds extract excess angular momentum from accretion disks, matter in the disk can be transported inward to the star to fuel mass growth. However, observational evidence of wind carrying angular momentum has been very limited. We present Submillimeter Array (SMA) observations of the young star MWC 349A in the H26 α and H30 α recombination lines. The high signal-to-noise ratios made possible by the maser emission process allow us to constrain the relative astrometry of the maser spots to milli-arcsecond precision. Previous observations of the H30 αmore » line with the SMA and the Plateau de Bure interferometer (PdBI) showed that masers are distributed in the disk and wind. Our new high-resolution observations of the H26 α line reveal differences in spatial distribution from that of the H30 α line. H26 α line masers in the disk are excited in a thin annulus with a radius of about 25 au, while the H30 α line masers are formed in a slightly larger annulus with a radius of 30 au. This is consistent with expectations for maser excitation in the presence of an electron density variation of approximately R {sup −4}. In addition, the H30 α and H26 α line masers arise from different parts in the wind. This difference is also expected from maser theory. The wind component of both masers exhibits line-of-sight velocities that closely follow a Keplerian law. This result provides strong evidence that the disk wind extracts significant angular momentum, thereby facilitating mass accretion in the young star.« less
NASA Astrophysics Data System (ADS)
Oyadomari, Miyako; Imai, Hiroshi; Nagayama, Takumi; Oyama, Tomoaki; Matsumoto, Naoko; Nakashima, Jun-ichi; Cho, Se-Hyung
2018-06-01
In order to understand the excitation mechanisms of silicon monoxide (SiO) masers around long-period variables (LPVs), we have investigated distributions of the SiO v = 2 and v = 3 J = 1 → 0 masers around 12 LPVs by very long baseline interferometry (VLBI) observations with the VLBI Exploration of Radio Astrometry (VERA) and the Nobeyama 45 m telescopes. VLBI fringes of the v = 3 maser emission were detected for five LPVs. The composite maps of the v = 2 and v = 3 masers were made for T Cep, W Hya, WX Psc, and R Leo using the spectral line phase-referencing technique. The v = 2 maser spots were distributed in a ring-like form around the central stars, while it is difficult to recognize any specific morphology in the v = 3 maser distributions due to the small number of v = 3 spots detected. However in T Cep, we find that the distribution of the v = 3 maser spots correlates well with the v = 2 masers within a few milliarcseconds (0.2-0.3 au) in position and 1 km s-1 in line-of-sight velocity at the light curve phase of ϕ = 0.28 (ϕ = 0.0 and 1.0 correspond to the visible light maxima). This correlation implies that the mechanism of line-overlapping between the mid-infrared lines of H2O and SiO molecules works in T Cep at ϕ = 0.28. We discuss the possibility that the line-overlapping may work at the limited duration from the maximum to the minimum of the stellar light curve.
NASA Astrophysics Data System (ADS)
Oyadomari, Miyako; Imai, Hiroshi; Nagayama, Takumi; Oyama, Tomoaki; Matsumoto, Naoko; Nakashima, Jun-ichi; Cho, Se-Hyung
2018-03-01
In order to understand the excitation mechanisms of silicon monoxide (SiO) masers around long-period variables (LPVs), we have investigated distributions of the SiO v = 2 and v = 3 J = 1 → 0 masers around 12 LPVs by very long baseline interferometry (VLBI) observations with the VLBI Exploration of Radio Astrometry (VERA) and the Nobeyama 45 m telescopes. VLBI fringes of the v = 3 maser emission were detected for five LPVs. The composite maps of the v = 2 and v = 3 masers were made for T Cep, W Hya, WX Psc, and R Leo using the spectral line phase-referencing technique. The v = 2 maser spots were distributed in a ring-like form around the central stars, while it is difficult to recognize any specific morphology in the v = 3 maser distributions due to the small number of v = 3 spots detected. However in T Cep, we find that the distribution of the v = 3 maser spots correlates well with the v = 2 masers within a few milliarcseconds (0.2-0.3 au) in position and 1 km s-1 in line-of-sight velocity at the light curve phase of ϕ = 0.28 (ϕ = 0.0 and 1.0 correspond to the visible light maxima). This correlation implies that the mechanism of line-overlapping between the mid-infrared lines of H2O and SiO molecules works in T Cep at ϕ = 0.28. We discuss the possibility that the line-overlapping may work at the limited duration from the maximum to the minimum of the stellar light curve.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodson, Richard; Rioja, María J.; Jung, Tae-Hyun
2014-11-01
Oxygen-rich asymptotic giant branch (AGB) stars can be intense emitters of SiO (v = 1 and 2, J = 1 → 0) and H{sub 2}O maser lines at 43 and 22 GHz, respectively. Very long baseline interferometry (VLBI) observations of the maser emission provide a unique tool to probe the innermost layers of the circumstellar envelopes in AGB stars. Nevertheless, the difficulties in achieving astrometrically aligned H{sub 2}O and v = 1 and v = 2 SiO maser maps have traditionally limited the physical constraints that can be placed on the SiO maser pumping mechanism. We present phase-referenced simultaneous spectral-linemore » VLBI images for the SiO v = 1 and v = 2, J = 1 → 0, and H{sub 2}O maser emission around the AGB star R LMi, obtained from the Korean VLBI Network (KVN). The simultaneous multi-channel receivers of the KVN offer great possibilities for astrometry in the frequency domain. With this facility, we have produced images with bona fide absolute astrometric registration between high-frequency maser transitions of different species to provide the positions of the H{sub 2}O maser emission and the center of the SiO maser emission, hence reducing the uncertainty in the proper motions for R LMi by an order of magnitude over that from Hipparcos. This is the first successful demonstration of source frequency phase referencing for millimeter VLBI spectral-line observations and also where the ratio between the frequencies is not an integer.« less
Multistation refrigeration system
NASA Technical Reports Server (NTRS)
Wiebe, E. R. (Inventor)
1978-01-01
A closed cycle refrigeration (CCR) system is disclosed for providing cooling at different parts of a maser. The CCR includes a first station for cooling the maser's parts, except the amplifier portion, to 4.5 K. The CCR further includes means with a 3.0 K station for cooling the maser's amplifier to 3.0 K and, thereby, increases the maser's gain and/or bandwith by a significant factor. The means which provide the 3.0 K cooling include a pressure regulator, heat exchangers, an expansion valve, and a vacuum pump, which coact to cause helium, provided from a compressor, to liquefy and thereafter expand so as to vaporize. The heat of vaporization for the helium is provided by the maser amplifier, which is thereby cooled to 3.0 K.
Hydrogen maser oscillation at 10 K
NASA Technical Reports Server (NTRS)
Crampton, S. B.; Jones, K. M.; Souza, S. P.
1984-01-01
A low temperature atomic hydrogen maser was developed using frozen atomic neon as the storage surface. The maser has been operated in the pulsed mode at temperatures from 6 K to 11 K and as a self-excited oscillator from 9 K to 10.5 K.
Comparative study of the loss cone-driven instabilities in the low solar corona
NASA Technical Reports Server (NTRS)
Sharma, R. R.; Vlahos, L.
1984-01-01
A comparative study of the loss cone-driven instabilities in the low solar corona is undertaken. The instabilities considered are the electron cyclotron maser, the whistler, and the electrostatic upper hybrid. It is shown that the first-harmonic extraordinary mode of the electron cyclotron maser instability is the fastest growing mode for strong magnetized plasma (the ratio of plasma frequency to cyclotron frequency being less than 0.35). For values of the ratio between 0.35 and 1.0, the first-harmonic ordinary mode of the electron cyclotron maser instability dominates the emission. For ratio values greater than 1.0, no direct electromagnetic radiation is expected since other instabilities, which do not escape directly, saturate the electron cyclotron maser (the whistler or the electrostatic upper hybrid waves). It is also shown that the second-harmonic electron cyclotron maser emission never grows to an appreciable level. Thus, it is suggested that the electron cyclotron maser instability can be the explanation for the escape of the first harmonic from a flaring loop.
Very long baseline interferometric observations of the hydroxyl masers in VY Canis Majoris
NASA Technical Reports Server (NTRS)
Reid, M. J.; Muhleman, D. O.
1978-01-01
Results are presented for spectral-line VLBI observations of the OH emission from VY CMa. The main-line (1665 and 1667 MHz) emission was mapped with an angular resolution of 0.02 arcsec by analyzing interferometer phase data. The main-line emission comes from many maser components of apparent size less than 0.03 arcsec which are separated by up to 0.5 arcsec. New maser features near the center of the OH spectra were detected and found to lie within the region encompassed by the low-velocity OH emission. The 1612-MHz emission was mapped by Fourier inversion of the VLBI data from two baselines. All spatially isolated maser components appeared smaller than 0.15 arcsec; however, the maser emission is very complex at most velocities. Maser components within a velocity range of 1.3 km/s are often separated by more than 1 arcsec, while components more than 10 km/s apart in each emission complex are often coincident to 0.2 arcsec.
Water masers and ammonia (1, 1) and (2, 2) towards six regions in the Carina Nebula
NASA Astrophysics Data System (ADS)
Breen, S. L.; Green, C.-E.; Cunningham, M. R.; Voronkov, M. A.; Horiuchi, S.; Green, J. A.
2018-01-01
We present water maser and ammonia (1, 1) and (2, 2) observations, towards six regions in the Carina Nebula, conducted with the Australia Telescope Compact Array. In total five water masers were detected within two of the target fields, and we provide their accurate positions and characteristics. These five water masers constitute all of the known masers detected towards star formation regions in the Carina Nebula and we argue, that given the evidence for active star formation, and the presence of many high-mass stars, the Carina Nebula is uncharacteristically devoid of masers. Our results are consistent with the Carina Nebula having a lack of young high-mass stars, despite the presence of older high-mass stars. Ammonia (1, 1) and (2, 2) emission was detected towards all but one of the target fields and we find that their linewidths and derived temperatures are consistent with the presence of young star formation regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Buizer, James M.; Bartkiewicz, Anna; Szymczak, Marian, E-mail: jdebuizer@sofia.usra.edu
2012-08-01
Milliarcsecond very long baseline interferometry maps of regions containing 6.7 GHz methanol maser emission have lead to the recent discovery of ring-like distributions of maser spots and the plausible hypothesis that they may be tracing circumstellar disks around forming high-mass stars. We aimed to test this hypothesis by imaging these regions in the near- and mid-infrared at high spatial resolution and compare the observed emission to the expected infrared morphologies as inferred from the geometries of the maser rings. In the near-infrared we used the Gemini North adaptive optics system of ALTAIR/NIRI, while in the mid-infrared we used the combinationmore » of the Gemini South instrument T-ReCS and super-resolution techniques. Resultant images had a resolution of {approx}150 mas in both the near-infrared and mid-infrared. We discuss the expected distribution of circumstellar material around young and massive accreting (proto)stars and what infrared emission geometries would be expected for the different maser ring orientations under the assumption that the masers are coming from within circumstellar disks. Based upon the observed infrared emission geometries for the four targets in our sample and the results of spectral energy distribution modeling of the massive young stellar objects associated with the maser rings, we do not find compelling evidence in support of the hypothesis that methanol masers rings reside in circumstellar disks.« less
Maser: one-stop platform for NGS big data from analysis to visualization
Kinjo, Sonoko; Monma, Norikazu; Misu, Sadahiko; Kitamura, Norikazu; Imoto, Junichi; Yoshitake, Kazutoshi; Gojobori, Takashi; Ikeo, Kazuho
2018-01-01
Abstract A major challenge in analyzing the data from high-throughput next-generation sequencing (NGS) is how to handle the huge amounts of data and variety of NGS tools and visualize the resultant outputs. To address these issues, we developed a cloud-based data analysis platform, Maser (Management and Analysis System for Enormous Reads), and an original genome browser, Genome Explorer (GE). Maser enables users to manage up to 2 terabytes of data to conduct analyses with easy graphical user interface operations and offers analysis pipelines in which several individual tools are combined as a single pipeline for very common and standard analyses. GE automatically visualizes genome assembly and mapping results output from Maser pipelines, without requiring additional data upload. With this function, the Maser pipelines can graphically display the results output from all the embedded tools and mapping results in a web browser. Therefore Maser realized a more user-friendly analysis platform especially for beginners by improving graphical display and providing the selected standard pipelines that work with built-in genome browser. In addition, all the analyses executed on Maser are recorded in the analysis history, helping users to trace and repeat the analyses. The entire process of analysis and its histories can be shared with collaborators or opened to the public. In conclusion, our system is useful for managing, analyzing, and visualizing NGS data and achieves traceability, reproducibility, and transparency of NGS analysis. Database URL: http://cell-innovation.nig.ac.jp/maser/ PMID:29688385
The performance of NASA research hydrogen masers
NASA Technical Reports Server (NTRS)
Reinhardt, V. S.; Rueger, L. J.
1980-01-01
Field operable hydrogen masers based on prior maser designs are presented. These units incorporate improvements in magnetic shielding, lower noise electronics, better thermal control, and have a microprocessor for operation, monitoring, and diagnostic functions. They are ruggedly built for transportability and ease of service anywhere in the world.
Studying Star Formation in the Central Molecular Zone using 22 GHz Water and 6.7 GHz Methanol Masers
NASA Astrophysics Data System (ADS)
Rickert, Matthew; Yusef-Zadeh, Farhad; Ott, Juergen; Meier, David S.; SWAG
2016-01-01
The inner 400 pc of our Galaxy, or the so-called the central molecular zone (CMZ), has a unique environment with a large mass of dense, warm molecular gas. One of the premier questions is how star formation (SF) differs in this unique environment from elsewhere in the Galaxy. We intend to address this issue by identifying improved numbers and locations of early sites of SF. We have conducted high resolution surveys of the CMZ, looking for early SF indicators such as 22 GHz water and 6.7 GHz methanol masers. We present the initial water maser results from the SWAG survey and methanol results from the first full VLA survey of 6.7 GHz methanol masers in the CMZ. These surveys span beyond the inner 1.2ο x 0.5ο of the Galaxy, including Sgr B through Sgr C. The improved spatial and spectral resolutions (~26" and 2 km s-1) and sensitivity (RMS ~10 mJy beam-1) of our ATCA observations have allowed us to identify over 140 water maser candidates in the SWAG survey. This is a factor of 3 more than detected from prior surveys of the CMZ. The preliminary distribution of these candidates appears to be uniform along Galactic longitude. Should this distribution persist for water masers associated with star formation (as opposed to those produced by evolved stars), then this result would imply a more uniform distribution of recent SF activity in the CMZ. Prior works have shown that 2/3 of the molecular gas mass is located at positive Galactic longitudes, and young stellar objects (YSOs) identified by IR SEDs are located predominantly at negative Galactic longitudes. A combination of these results can provide insight on the evolution of SF within the CMZ. We are currently comparing the water maser positions to other catalogs (ex. OH/IR stars) in order to distinguish between the mechanisms producing these masers. We are also currently working on determining the distribution of 6.7 GHz methanol masers. These masers do not contain the same ambiguity as water masers as to their source and are only produced by high mass star formation. Finally we have also conducted the first on-the-fly (OTF) VLA survey of 22 GHz water masers spanning the inner 2.0ο x 0.5ο, with 0.3" and 0.4 km s-1 spatial and spectral resolutions.
Monitoring Observatinos of H2O and SiO Masers Toward Post-AGB Stars
NASA Astrophysics Data System (ADS)
Kim, Jaeheon; Cho, Se-Hyung; Yoon, Dong-Hwan
2016-12-01
We present the results of simultaneous monitoring observations of H_2O 6_{1,6}-5_{2,3} (22 GHz) and SiO J=1-0, 2-1, 3-2 maser lines (43, 86, 129 GHz) toward five post-AGB (candidate) stars, using the 21-m single-dish telescopes of the Korean VLBI Network. Depending on the target objects, 7 - 11 epochs of data were obtained. We detected both H_2O and SiO maser lines from four sources: OH16.1-0.3, OH38.10-0.13, OH65.5+1.3, and IRAS 19312+1950. We could not detect H_2O maser emission toward OH13.1+5.1 between the late OH/IR and post-AGB stage. The detected H_2O masers show typical double-peaked line profiles. The SiO masers from four sources, except IRAS 19312+1950, show the peaks around the stellar velocity as a single peak, whereas the SiO masers from IRAS 19312+1950 occur above the red peak of the H_2O maser. We analyzed the properties of detected maser lines, and investigated their evolutionary state through comparison with the full widths at zero power. The distribution of observed target sources was also investigated in the IRAS two-color diagram in relation with the evolutionary stage of post-AGB stars. From our analyses, the evolutionary sequence of observed sources is suggested as OH65.5+1.3 → OH13.1+5.1 → OH16.1-0.3 → OH38.10-0.13, except for IRAS 19312+1950. In addition, OH13.1+5.1 from which the H_2O maser has not been detected is suggested to be on the gateway toward the post-AGB stage. With respect to the enigmatic object, IRAS 19312+1950, we could not clearly figure out its nature. To properly explain the unusual phenomena of SiO and H_2O masers, it is essential to establish the relative locations and spatial distributions of two masers using VLBI technique. We also include the 1.2 - 160 μm spectral energy distribution using photometric data from the following surveys: 2MASS, WISE, MSX, IRAS, and AKARI (IRC and FIS). In addition, from the IRAS LRS spectra, we found that the depth of silicate absorption features shows significant variations depending on the evolutionary sequence, associated with the termination of AGB phase mass-loss.
NASA atomic hydrogen standards program: An update
NASA Technical Reports Server (NTRS)
Reinhardt, V. S.; Kaufmann, D. C.; Adams, W. A.; Deluca, J. J.; Soucy, J. L.
1976-01-01
Comparisons are made between the NP series and the NX series of hydrogen masers. A field operable hydrogen maser (NR series) is also described. Atomic hydrogen primary frequency standards are in development stages. Standards are being developed for a hydrogen beam frequency standard and for a concertina hydrogen maser.
Experimental demonstration of the anti-maser
NASA Astrophysics Data System (ADS)
Mazzocco, Anthony; Aviles, Michael; Andrews, Jim; Dawson, Nathan; Crescimanno, Michael
2012-10-01
We denote by ``anti-maser'' a coherent perfect absorption (CPA) process in the radio frequency domain. We demonstrate several experimental realizations of the anti-maser suitable for an advanced undergraduate laboratory. Students designed, assembled and tested these devices, as well as the inexpensive laboratory setup and experimental protocol for displaying various CPA phenomenon.
Thermal short improves sensitivity of cryogenically cooled maser
NASA Technical Reports Server (NTRS)
Clauss, R. C.
1968-01-01
In-line, quarter-wave thermal short cools the center conductor of the signal-input coaxial transmission line to a cryogenically cooled traveling wave maser. It reduces both the thermal noise contribution of the coaxial line and the heat leak through the center conductor to the maser at 4.4 degrees K.
Historical Cost Curves for Hydrogen Masers and Cesium Beam Frequency and Timing Standards
NASA Technical Reports Server (NTRS)
Remer, D. S.; Moore, R. C.
1985-01-01
Historical cost curves were developed for hydrogen masers and cesium beam standards used for frequency and timing calibration in the Deep Space Network. These curves may be used to calculate the cost of future hydrogen masers or cesium beam standards in either future or current dollars. The cesium beam standards are decreasing in cost by about 2.3% per year since 1966, and hydrogen masers are decreasing by about 0.8% per year since 1978 relative to the National Aeronautics and Space Administration inflation index.
Nanosecond time-resolved characterization of a pentacene-based room-temperature MASER
Salvadori, Enrico; Breeze, Jonathan D.; Tan, Ke-Jie; Sathian, Juna; Richards, Benjamin; Fung, Mei Wai; Wolfowicz, Gary; Oxborrow, Mark; Alford, Neil McN.; Kay, Christopher W. M.
2017-01-01
The performance of a room temperature, zero-field MASER operating at 1.45 GHz has been examined. Nanosecond laser pulses, which are essentially instantaneous on the timescale of the spin dynamics, allow the visible-to-microwave conversion efficiency and temporal response of the MASER to be measured as a function of excitation energy. It is observed that the timing and amplitude of the MASER output pulse are correlated with the laser excitation energy: at higher laser energy, the microwave pulses have larger amplitude and appear after shorter delay than those recorded at lower laser energy. Seeding experiments demonstrate that the output variation may be stabilized by an external source and establish the minimum seeding power required. The dynamics of the MASER emission may be modeled by a pair of first order, non-linear differential equations, derived from the Lotka-Volterra model (Predator-Prey), where by the microwave mode of the resonator is the predator and the spin polarization in the triplet state of pentacene is the prey. Simulations allowed the Einstein coefficient of stimulated emission, the spin-lattice relaxation and the number of triplets contributing to the MASER emission to be estimated. These are essential parameters for the rational improvement of a MASER based on a spin-polarized triplet molecule. PMID:28169331
X-Ray Characteristics of Megamaser Galaxies
NASA Astrophysics Data System (ADS)
Leiter, K.; Kadler, M.; Wilms, J.; Braatz, J.; Grossberger, C.; Krauss, F.; Kreikenbohm, A.; Langejahn, M.; Litzinger, E.; Markowitz, A.
2017-10-01
Water megamaser galaxies are a rare subclass of Active Galactic Nuclei (AGN). They play a key role in modern cosmology, providing a significant improvement for measuring geometrical distances with high precision. Megamaser studies presently measure H_{0} to about 5%. The goal of modern programs is to reach 3%, which strongly constrains the equation of state of dark energy. An increasing number of independent measurements of suitable water masers is providing the statistics necessary to decrease the uncertainties. X-ray studies of maser galaxies yield important constraints on target-selection criteria for future surveys, increasing their detection rate. We studied the X-ray properties of a homogeneous sample of Type 2 AGN with water maser activity observed by XMM-Newton to investigate the properties of megamaser-hosting galaxies compared to a control sample of non-maser galaxies. Comparing the luminosity distributions confirm previous results that water maser galaxies appear more luminous than non-maser sources. The maser phenomenon goes along with more complex X-ray spectra, higher column densities and higher equivalent widths of the Fe Kα line. Both a sufficiently luminous X-ray source and a high absorbing column density in the line of sight are necessary prerequisites to favour the appearance of the water megamaser phenomenon in AGN.
Bow shocks in a newly discovered maser source in IRAS 20231+3440
NASA Astrophysics Data System (ADS)
Ogbodo, C. S.; Burns, R. A.; Handa, T.; Omodaka, T.; Nakagawa, A.; Nagayama, T.; Honma, M.; Chibueze, J. O.; Ubachukwu, A. A.; Eze, R. N. C.
2017-08-01
From measuring the annual parallax of water masers over 1.5 yr with VLBI Exploration of Radio Astrometry, we present the trigonometric parallax and corresponding distance of another newly identified water maser source in the region of IRAS 20231+3440 as π = 0.611 ± 0.022 mas and D = 1.64 ± 0.06 kpc, respectively. We measured the absolute proper motions of all the newly detected maser spots (30 spots) and presented two pictures describing the possible spatial distribution of the water maser as the morphology marks out an arc of masers whose average proper motion velocity in the jet direction was 14.26 km s-1. As revealed by the ALLWISE composite image and by applying the colour-colour method of young stellar objects (YSO) identification and classification on photometric archived data, we identified the driving source of the north maser group to be a class I, young stellar object. To further probe the nature of the progenitor, we used the momentum rate maximum value (1.2 × 10-4 M⊙ yr-1 km s-1) of the outflow to satisfy that the progenitor under investigation is a low-mass young stellar object concurrently forming alongside an intermediate-mass YSO ˜60 000 au (˜37 arcsec) away from it.
LINEAR POLARIZATION OF CLASS I METHANOL MASERS IN MASSIVE STAR-FORMING REGIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Ji-hyun; Byun, Do-Young; Kim, Kee-Tae
Class I methanol masers are found to be good tracers of the interaction between outflows from massive young stellar objects with their surrounding media. Although polarization observations of Class II methanol masers have been able to provide information about magnetic fields close to the central (proto)stars, polarization observations of Class I methanol masers are rare, especially at 44 and 95 GHz. We present the results of linear polarization observations of 39 Class I methanol maser sources at 44 and 95 GHz. These two lines are observed simultaneously with one of the 21 m Korean VLBI Network telescopes in single-dish mode.more » Approximately 60% of the observed sources have fractional polarizations of a few percent in at least one transition. This is the first reported detection of linear polarization of the 44 GHz methanol maser. The two maser transitions show similar polarization properties, indicating that they trace similar magnetic environments, although the fraction of the linear polarization is slightly higher at 95 GHz. We discuss the association between the directions of polarization angles and outflows. We also discuss some targets having different polarization properties at both lines, including DR21(OH) and G82.58+0.20, which show the 90° polarization angle flip at 44 GHz.« less
On Estimating the Mass of Keplerian Accretion Disks in H2O Maser Galaxies
NASA Astrophysics Data System (ADS)
Kuo, C. Y.; Reid, M. J.; Braatz, J. A.; Gao, F.; Impellizzeri, C. M. V.; Chien, W. T.
2018-06-01
H2O maser disks with Keplerian rotation in active galactic nuclei offer a clean way to determine accurate black hole mass and the Hubble constant. An important assumption made in using a Keplerian H2O maser disk for measuring black hole mass and the Hubble constant is that the disk mass is negligible compared to the black hole mass. A simple and useful model of Huré et al. can be used to test this assumption. In that work, the authors apply a linear disk model to a position–dynamical mass diagram and re-analyze position–velocity data from H2O maser disks associated with active galactic nuclei. They claim that a maser disk with nearly perfect Keplerian rotation could have a disk mass comparable to the black hole mass. This would imply that ignoring the effects of disk self-gravity can lead to large systematic errors in the measurement of black hole mass and the Hubble constant. We examine their methods and find that their large estimated disk masses of Keplerian disks are likely the result of their use of projected instead of three-dimensional position and velocity information. To place better constraints on the disk masses of Keplerian maser systems, we incorporate disk self-gravity into a three-dimensional Bayesian modeling program for maser disks and also evaluate constraints based on the physical conditions for disks that support water maser emission. We find that there is little evidence that disk masses are dynamically important at the ≲1% level compared to the black holes.
Time Variations of the Radial Velocity of H2O Masers in the Semi-Regular Variable R Crt
NASA Astrophysics Data System (ADS)
Sudou, Hiroshi; Shiga, Motoki; Omodaka, Toshihiro; Nakai, Chihiro; Ueda, Kazuki; Takaba, Hiroshi
2017-12-01
H2O maser emission {at 22 GHz} in the circumstellar envelope is one of the good tracers of detailed physics and inematics in the mass loss process of asymptotic giant branch stars. Long-term monitoring of an H2O maser spectrum with high time resolution enables us to clarify acceleration processes of the expanding shell in the stellar atmosphere. We monitored the H2O maser emission of the semi-regular variable R Crt with the Kagoshima 6-m telescope, and obtained a large data set of over 180 maser spectra over a period of 1.3 years with an observational span of a few days. Using an automatic peak detection method based on least-squares fitting, we exhaustively detected peaks as significant velocity components with the radial velocity on a 0.1 km s^{-1} scale. This analysis result shows that the radial velocity of red-shifted and blue-shifted components exhibits a change between acceleration and deceleration on the time scale of a few hundred days. These velocity variations are likely to correlate with intensity variations, in particular during flaring state of H2O masers. It seems reasonable to consider that the velocity variation of the maser source is caused by shock propagation in the envelope due to stellar pulsation.However, it is difficult to explain the relationship between the velocity variation and the intensity variation only from shock propagation effects. We found that a time delay of the integrated maser intensity with respect to the optical light curve is about 150 days.
Astrophysical masers - Inverse methods, precision, resolution and uniqueness
NASA Astrophysics Data System (ADS)
Lerche, I.
1986-07-01
The paper provides exact analytic solutions to the two-level, steady-state, maser problem in parametric form, with the emergent intensities expressed in terms of the incident intensities and with the maser length also given in terms of an integral over the intensities. It is shown that some assumption must be made on the emergent intensity on the nonobservable side of the astrophysical maser in order to obtain any inversion of the equations. The incident intensities can then be expressed in terms of the emergent, observable, flux. It is also shown that the inversion is nonunique unless a homogeneous linear integral equation has only a null solution. Constraints imposed by knowledge of the physical length of the maser are felt in a nonlinear manner by the parametric variable and do not appear to provide any substantive additional information to reduce the degree of nonuniqueness of the inverse solutions. It is concluded that the questions of precision, resolution and uniqueness for solutions to astrophysical maser problems will remain more of an emotional art than a logical science for some time to come.
MERLIN observations of water maser proper motions in VY Canis Majoris
NASA Astrophysics Data System (ADS)
Richards, A. M. S.; Yates, J. A.; Cohen, R. J.
1998-09-01
MERLIN observations of the 22-GHz water masers in the circumstellar envelope of the supergiant VY CMa show an ellipsoidal distribution with a maximum extent of 700 mas east-west and 400 mas north-south. Comparison with observations made nine years earlier shows that the majority of maser features have survived and show proper motions throughout the region. The mean change in position is 28 mas and the proper motions are generally directed away from the assumed stellar position, and tend to be larger for features at greater projected distances. If the H_2O maser region is modelled as a partially filled thick spherical shell, and VY CMa is at a distance of 1.5 kpc, then the proper motion velocities in the direction of expansion are between 8kms^-1 at a distance of 75 mas from the assumed stellar position and 32kms^-1 at 360 mas. These velocities are consistent with the H_2O maser spectral line velocities which correspond to a maximum expansion velocity of 36kms^-1 at 400 mas from the assumed stellar position. These observations are consistent with radiation pressure on dust providing the force to accelerate the stellar wind as it passes through the H_2O maser shell. The H_2O maser region is elongated in the same direction as the dusty nebula around VY CMa. The water masers illuminate the small-scale dynamics and clumpiness which show the role of dust in driving the outflow. The overall ellipsoidal shape may be due to properties of the dust, such as its behaviour in the stellar magnetic field, or to interaction between the wind and circumstellar material. Maser monitoring also shows the difference between changes on the time-scale of stellar variability (a few years) and possible stages in the evolution of VY CMa to its likely fate as a supernova.
A Search for Water Maser Emission from Brown Dwarfs and Low-luminosity Young Stellar Objects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gómez, José F.; Manjarrez, Guillermo; Palau, Aina
We present a survey for water maser emission toward a sample of 44 low-luminosity young objects, comprising (proto-)brown dwarfs, first hydrostatic cores (FHCs), and other young stellar objects (YSOs) with bolometric luminosities lower than 0.4 L {sub ⊙}. Water maser emission is a good tracer of energetic processes, such as mass-loss and/or accretion, and is a useful tool to study these processes with very high angular resolution. This type of emission has been confirmed in objects with L {sub bol} ≳ 1 L {sub ⊙}. Objects with lower luminosities also undergo mass-loss and accretion, and thus, are prospective sites of maser emission.more » Our sensitive single-dish observations provided a single detection when pointing toward the FHC L1448 IRS 2E. However, follow-up interferometric observations showed water maser emission associated with the nearby YSO L1448 IRS 2 (a Class 0 protostar of L {sub bol} ≃ 3.6–5.3 L {sub ⊙}) and did not find any emission toward L1448 IRS 2E. The upper limits for water maser emission determined by our observations are one order of magnitude lower than expected from the correlation between water maser luminosities and bolometric luminosities found for YSOs. This suggests that this correlation does not hold at the lower end of the (sub)stellar mass spectrum. Possible reasons are that the slope of this correlation is steeper at L {sub bol} ≤ 1 L {sub ⊙} or that there is an absolute luminosity threshold below which water maser emission cannot be produced. Alternatively, if the correlation still stands at low luminosity, the detection rates of masers would be significantly lower than the values obtained in higher-luminosity Class 0 protostars.« less
Use of a 2.3-GHz traveling-wave maser on the Usuda 64-meter antenna
NASA Technical Reports Server (NTRS)
Neff, D.
1987-01-01
A 2.3 GHz traveling-wave maser/closed-cycle refrigeration system was installed on the 64 m antenna at Usuda, Japan. This was done to evaluate the beam-waveguide antenna noise performance, and to support the International Cometary Explorer's (ICE's) comet flyby mission. System noise temperature at 2270 MHz was measured to be 15 K, including the maser noise contribution of 2.5 K. Maser installation and noise performance are described. The Usuda 64 m antenna is of high quality with a system operating noise temperature better than the DSN 64 m antennas.
Results of Long-Term Monitoring of Maser Emission in the Star-forming Region G 10.623-0.383
NASA Astrophysics Data System (ADS)
Colom, P.; Lekht, E. E.; Pashchenko, M. I.; Rudnitskii, G. M.; Tolmachev, A. M.
2017-12-01
The results of a study of the maser source G 10.623-0.383 in the λ = 1.35 cm H2O line using the 22-mradio telescope of the Pushchino Radio AstronomyObservatory (Russia) and in the main hydroxyl lines (λ = 18 cm) using the Nançay Radio Telescope (France) are presented. Uncorrelated long-term variations of the integrated intensities and the velocity centroids with characteristic times of 11 yrs (mean value) and 32 yrs, respectively, are studied. The drift of the velocity centroid may be associated with maser condensations whose material is collapsing onto the OB cluster. It is shown that the H2O maser source contains maser condensation configurations on various scales over a long time, which evolve with time. OH maser emission was only detected in the main lines at 1665 and 1667 MHz. The flux densities of the strongest emission components were variable, but their radial velocities did not change. A Zeeman pair was found at 1667 MHz with a splitting of about 1.44 km/s, corresponding to a line-of-sight magnetic field of 4.1 mG, which was preserved over at least 25 years. The characteristics of the H2O andOHmaser variability suggests that the masers are located in different parts of G 10.623-0.383.
A 32-GHz reflected-wave maser amplifier with wide instantaneous bandwidth
NASA Technical Reports Server (NTRS)
Shell, J.; Neff, D.
1988-01-01
An eight stage, 32 GHz reflected wave ruby maser was built. The maser operates in a 3 watt closed cycle refrigerator at 4.5 K and is capable of 21 dB of net gain with an instantaneous bandwidth of 400 MHz. The input noise temperature referred to the room temperature flange is approximately 21 K.
DISCOVERY OF 6.035 GHz HYDROXYL MASER FLARES IN IRAS 18566+0408
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Marzouk, A. A.; Araya, E. D.; Hofner, P.
2012-05-10
We report the discovery of 6.035 GHz hydroxyl (OH) maser flares toward the massive star-forming region IRAS 18566+0408 (G37.55+0.20), which is the only region known to show periodic formaldehyde (4.8 GHz H{sub 2}CO) and methanol (6.7 GHz CH{sub 3}OH) maser flares. The observations were conducted between 2008 October and 2010 January with the 305 m Arecibo Telescope in Puerto Rico. We detected two flare events, one in 2009 March and one in 2009 September to November. The OH maser flares are not simultaneous with the H{sub 2}CO flares, but may be correlated with CH{sub 3}OH flares from a component atmore » corresponding velocities. A possible correlated variability of OH and CH{sub 3}OH masers in IRAS 18566+0408 is consistent with a common excitation mechanism (IR pumping) as predicted by theory.« less
Phase locking of a semiconductor double-quantum-dot single-atom maser
NASA Astrophysics Data System (ADS)
Liu, Y.-Y.; Hartke, T. R.; Stehlik, J.; Petta, J. R.
2017-11-01
We experimentally study the phase stabilization of a semiconductor double-quantum-dot (DQD) single-atom maser by injection locking. A voltage-biased DQD serves as an electrically tunable microwave frequency gain medium. The statistics of the maser output field demonstrate that the maser can be phase locked to an external cavity drive, with a resulting phase noise L =-99 dBc/Hz at a frequency offset of 1.3 MHz. The injection locking range, and the phase of the maser output relative to the injection locking input tone are in good agreement with Adler's theory. Furthermore, the electrically tunable DQD energy level structure allows us to rapidly switch the gain medium on and off, resulting in an emission spectrum that resembles a frequency comb. The free running frequency comb linewidth is ≈8 kHz and can be improved to less than 1 Hz by operating the comb in the injection locked regime.
NASA Technical Reports Server (NTRS)
Tucker, T. K.
1989-01-01
Presented here are the results obtained from performance evaluation of a pair of Sigma Tau Standards Corporation Model VLBA-112 active hydrogen maser frequency standards. These masers were manufactured for the National Radio Astronomy Observatory (NRAO) for use on the Very Long Baseline Array (VLBA) project and were furnished to the Jet Propulsion Laboratory (JPL) for the purpose of these tests. Tests on the two masers were performed in the JPL Frequency Standards Laboratory (FSL) and included the characterization of output frequency stability versus environmental factors such as temperature, humidity, magnetic field, and barometric pressure. The performance tests also included the determination of phase noise and Allan variance using both FSL and Sigma Tau masers as references. All tests were conducted under controlled laboratory conditions, with only the desired environmental and operational parameters varied to determine sensitivity to external environment.
Special Hydron Maser Workshop held on Wednesday, December 5, 1990
1990-12-01
described in the paper by N.B. Koshelyacvsky of VNIIFTRI given on Dece~llber I , the drift in wall shift of their masers was about 1 x 10-’\\cr day. No data...liperatrires tend to givc rise to grcatcr frequency drifts. Thercfoce, they arc pla~lning to put a CIII-75 maser in a refrigerator at VNIIFTRI to
Molecular maser flares in the high-mass star-forming region IRAS18566+0408
NASA Astrophysics Data System (ADS)
Halbe, Daniel M.
We report results of a long-termmonitoring study of 6cmformaldehyde (H 2CO), 6.035GHz hydroxyl (OH), and 6.7GHz methanol (CH3OH) masers in the young high-mass protostellar object IRAS18566+0408 (G37.55+0.20). This is the only high-mass star-forming region where correlated variability of three different maser species has been reported. The observations were conducted with the 305m Arecibo Radio Telescope, and together with data from the literature, we present H2CO flux density measurements from 2002 to 2014, CH3OH data from 2006 to 2013, and discuss OH observations obtained between 2008 and 2012. Our extended monitoring observations of the H2CO maser agree with the quasi-periodic flare phenomenon and exponential decrease in quiescent and flare flux densities proposed by Araya and collaborators in 2010. We also confirm the occurrence of 6.035GHz OH flares and a time delay with respect to the H2CO flares. An analysis between the variability behavior of different CH3OH maser components and the H2CO maser suggests that multiple variability mechanisms are responsible for CH3OH flux density changes.
DISTANCES TO DARK CLOUDS: COMPARING EXTINCTION DISTANCES TO MASER PARALLAX DISTANCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foster, Jonathan B.; Jackson, James M.; Stead, Joseph J.
We test two different methods of using near-infrared extinction to estimate distances to dark clouds in the first quadrant of the Galaxy using large near-infrared (Two Micron All Sky Survey and UKIRT Infrared Deep Sky Survey) surveys. Very long baseline interferometry parallax measurements of masers around massive young stars provide the most direct and bias-free measurement of the distance to these dark clouds. We compare the extinction distance estimates to these maser parallax distances. We also compare these distances to kinematic distances, including recent re-calibrations of the Galactic rotation curve. The extinction distance methods agree with the maser parallax distancesmore » (within the errors) between 66% and 100% of the time (depending on method and input survey) and between 85% and 100% of the time outside of the crowded Galactic center. Although the sample size is small, extinction distance methods reproduce maser parallax distances better than kinematic distances; furthermore, extinction distance methods do not suffer from the kinematic distance ambiguity. This validation gives us confidence that these extinction methods may be extended to additional dark clouds where maser parallaxes are not available.« less
Continuous-wave room-temperature diamond maser
NASA Astrophysics Data System (ADS)
Breeze, Jonathan D.; Salvadori, Enrico; Sathian, Juna; Alford, Neil Mcn.; Kay, Christopher W. M.
2018-03-01
The maser—the microwave progenitor of the optical laser—has been confined to relative obscurity owing to its reliance on cryogenic refrigeration and high-vacuum systems. Despite this, it has found application in deep-space communications and radio astronomy owing to its unparalleled performance as a low-noise amplifier and oscillator. The recent demonstration of a room-temperature solid-state maser that utilizes polarized electron populations within the triplet states of photo-excited pentacene molecules in a p-terphenyl host paves the way for a new class of maser. However, p-terphenyl has poor thermal and mechanical properties, and the decay rates of the triplet sublevel of pentacene mean that only pulsed maser operation has been observed in this system. Alternative materials are therefore required to achieve continuous emission: inorganic materials that contain spin defects, such as diamond and silicon carbide, have been proposed. Here we report a continuous-wave room-temperature maser oscillator using optically pumped nitrogen–vacancy defect centres in diamond. This demonstration highlights the potential of room-temperature solid-state masers for use in a new generation of microwave devices that could find application in medicine, security, sensing and quantum technologies.
The electron-cyclotron maser instability as a source of plasma radiation. [Solar radio bursts
NASA Technical Reports Server (NTRS)
Winglee, R. M.; Dulk, G. A.
1986-01-01
The generation of continuum bursts from the sun at dm and m wavelengths (in particular, type IV bursts) via the electron-cyclotron-maser instability is examined. The maser instability can be driven by an electron distribution with either a loss-cone anisotropy or a peak at large pitch angles. For omega(p)/Omega(e) much greater than 1, the maser emission is produced by electrons interacting through a harmonic (cyclotron) resonance and is electrostatic, being in the upper hybrid mode at frequencies approximately equal to omega(p). Coalescence processes are required to convert the electrostatic waves into transverse radiation which can escape from the source region. Whether the resultant spectrum is nearly a smooth continuum or has a zebra-stripe pattern (both of which occur in type IV bursts) depends on the form of the electron distribution, inhomogeneities in the density and magnetic field, and whether the maser reaches saturation. For at least the case of some type IV dm bursts with fine structure, comparison with observations seems to indicate that the electrons producing the emission are more likely to have a loss-cone distribution, and that the maser instability is not at saturation.
[Probing Planck-scale Physics with a Ne-21/He-3 Zeeman Maser
NASA Technical Reports Server (NTRS)
2003-01-01
The Ne-21/He-3 Zeeman maser is a recently developed device which employs co-located ensembles of Ne-21 and He-3 atoms to provide sensitive differential measurements of the noble gas nuclear Zeeman splittings as a function of time, thereby greatly attenuating common-mode systematic effects such as uniform magnetic field variations. The Ne-21 maser will serve as a precision magnetometer to stabilize the system's static magnetic field, while the He-3 maser is used as a sensitive probe for violations of CPT and Lorentz symmetry by searching for small variations in the 3He maser frequency as the spatial orientation of the apparatus changes due to the rotation of the Earth (or placement on a rotating table). In the context of a general extension of the Standard Model of particle physics, the Ne-21/He-3 maser will provide the most sensitive search to date for CPT and Lorentz violation of the neutron: better than 10(exp -32) GeV, an improvement of more than an order of magnitude over past experiments. This exceptional precision will offer a rare opportunity to probe physics at the Planck scale. A future space-based Ne-21/He-3 maser or related device could provide even greater sensitivity to violations of CPT and Lorentz symmetry, and hence to Planck-scale physics, because of isolation from dominant systematic effects associated with ground-based operation, and because of access to different positions in space-time.
NASA Astrophysics Data System (ADS)
Ludwig, Bethany Ann; Cunningham, Nichol
2017-01-01
We present results from an investigation of class II 6.7GHz methanol masers towards four Massive Young Stellar Objects (MYSOs). The sources, selected from the Red MSX Source (RMS) Survey (Lumsden et al. 2013), were previously understood to be non-detections for class II methanol maser emission in the methanol multi-beam (MMB) Survey (Caswell et al. 2010.) Class II methanol masers are a well-known sign post of massive star forming regions and may be utilized to probe their relatively poorly understood formation. It is possible that these non-detections are simply weak masers that are potentially associated with a younger evolutionary phase of MYSOs as hypothesized by Olmi et al. (2014). The sources were chosen to sample various stages of evolution, having similar 21 to 8 micron flux ratios and bolometric luminosities as other MYSOs with previous class II methanol maser detections. We observed all 4 MYSOs with ATCA (~2" resolution) at 10 times deeper sensitivity than previously obtained with the MMB survey and have a spectral resolution of 0.087kms^-1 . The raw data is reduced using the program Miriad (Sault, R. J., et al., 1995) and deconvolutioned using the program CASA (McMullin, J. P., et al. 2007.) We determine one of the four observed MYSOs is harboring a weak class II methanol maser. We discuss the possibility of sensitivity limitations on the remaining sources as well as environmental and evolutionary differences between the sources.
Light shift effects in the Rb-87 maser
NASA Technical Reports Server (NTRS)
Busca, G.; Tetu, M.; Vanier, J.
1973-01-01
Previous work has shown the possibility to overcome the dependence of the Rb-87 maser frequency on light intensity by tuning the cavity at a proper setting. The conditions for this setting, called the light-independent frequency setting (LIFS), are carefully investigated. The results presented prove the existence of the LIFS and provide a new criterion for an automatic cavity tuning of the Rb maser.
Low-cost electron-gun pulser for table-top maser experiments
NASA Astrophysics Data System (ADS)
Grinberg, V.; Jerby, E.; Shahadi, A.
1995-04-01
A simple 10 kV electron-gun pulser for small-scale maser experiments is presented. This low-cost pulser has operated successfully in various table-top cyclotron-resonance maser (CRM) and free-electron maser (FEM) experiments. It consists of a low-voltage capacitor bank, an SCR control circuit and a transformer bank (car ignition coils) connected directly to the e-gun. The pulser produces a current of 3 A at 10 kV voltage in a Gaussian like shape of 1 ms pulse width. The voltage sweep during the pulse provides a useful tool to locate resonances of CRM and FEM interactions. Analytical expressions for the pulser design and experimental measurements are presented.
Physics of systematic frequency variations in hydrogen masers
NASA Technical Reports Server (NTRS)
Mattison, Edward M.
1990-01-01
The frequency stability of hydrogen masers for intervals longer that 10(exp 4) seconds is limited at present by systematic processes. Researchers discuss the physics of frequency-determining mechanisms internal to the maser that are susceptible to systematic variations, and the connections between these internal mechanisms and external environmental factors. Based upon estimates of the magnitudes of systematic effects, they find that the primary internal mechanisms currently limiting long-term maser frequency stability are cavity pulling, at the level parts in 10(exp 15) per day, and wall shift variations, at the level of parts in 10(exp 16) to parts in 10(exp 15) per day. They discuss strategies for reducing systematic frequency variations.
Physics of systematic frequency variations in hydrogen masers
NASA Technical Reports Server (NTRS)
Mattison, Edward M.
1992-01-01
The frequency stability of hydrogen masers for intervals longer than 10 exp 4 s is currently limited by systematic processes. The physics of frequency-determining mechanisms internal to the maser that are susceptible to systematic variations, and the connections between these internal mechanisms and external environmental factors are discussed. From estimates of the magnitudes of systematic effects, it is found that the primary internal mechanisms limiting long-term maser frequency stability are cavity pulling, at the level of parts in 1015 per day, and wall shift variations, at the level of parts in 10 exp 16 to parts in 10 exp 15 per day. Strategies for reducing systematic frequency variations are discussed.
Characteristics of advanced hydrogen maser frequency standards
NASA Technical Reports Server (NTRS)
Peters, H. E.
1973-01-01
Measurements with several operational atomic hydrogen maser standards have been made which illustrate the fundamental characteristics of the maser as well as the analysability of the corrections which are made to relate the oscillation frequency to the free, unperturbed, hydrogen standard transition frequency. Sources of the most important perturbations, and the magnitude of the associated errors, are discussed. A variable volume storage bulb hydrogen maser is also illustrated which can provide on the order of 2 parts in 10 to the 14th power or better accuracy in evaluating the wall shift. Since the other basic error sources combined contribute no more than approximately 1 part in 10 to the 14th power uncertainty, the variable volume storage bulb hydrogen maser will have net intrinsic accuracy capability of the order of 2 parts in 10 to the 14th power or better. This is an order of magnitude less error than anticipated with cesium standards and is comparable to the basic limit expected for a free atom hydrogen beam resonance standard.
NASA Technical Reports Server (NTRS)
Nedoluha, Gerald E.; Watson, William D.
1992-01-01
The present study solves the transfer equations for the polarized radiation of astrophysical 22-GHz water masers in the presence of a magnetic field which causes a Zeeman splitting that is much smaller than the spectral line breadth. The emphasis is placed on the relationship between the recently detected circular polarization in this maser radiation and the strength of the magnetic field. When the observed spectral line breadth is smaller than about 0.8 km/s (FWHM), it is calculated that the uncertainty is less than a factor of about 2. The accuracy is improved significantly when the angle between the line of sight and the direction of the magnetic field does not exceed about 45 deg. Uncertainty in the strength of the magnetic field due to lack of knowledge about which hyperfine transition is the source of the 22-GHz masers is removed. The 22-GHz maser feature is found to be the result of a merger of the three strongest hyperfine components.
A revised distance to IRAS 16293-2422 from VLBA astrometry of associated water masers
NASA Astrophysics Data System (ADS)
Dzib, S. A.; Ortiz-León, G. N.; Hernández-Gómez, A.; Loinard, L.; Mioduszewski, A. J.; Claussen, M.; Menten, K. M.; Caux, E.; Sanna, A.
2018-06-01
IRAS 16293-2422 is a very well-studied young stellar system seen in projection towards the L1689N cloud in the Ophiuchus complex. However, its distance is still uncertain; there is a range of values from 120 pc to 180 pc. Our goal is to measure the trigonometric parallax of this young star by means of H2O maser emission. We use archival data from 15 epochs of VLBA observations of the 22.2 GHz water maser line. By modeling the displacement on the sky of the H2O maser spots, we derived a trigonometric parallax of 7.1 ± 1.3 mas, corresponding to a distance of 141-21+30 pc. This new distance is in good agreement with recent values obtained for other magnetically active young stars in the L1689 cloud. We relate the kinematics of these masers with the outflows and the recent ejections powered by source A in the system.
In-Vacuum Dissociator for Atomic-Hydrogen Masers
NASA Technical Reports Server (NTRS)
Vessot, R. F.
1987-01-01
Thermal control and vacuum sealing achieved while contamination avoided. Simple, relatively inexpensive molecular-hydrogen dissociator for atomic-hydrogen masers used on Earth or in vacuum of space. No air cooling required, and absence of elastomeric O-ring seals prevents contamination. In-vacuum dissociator for atomic hydrogen masers, hydrogen gas in glass dissociator dissociated by radio-frequency signal transmitted from surrounding 3-turn coil. Heat in glass conducted away by contacting metal surfaces.
Satellite time and frequency transfer (STIFT)
NASA Technical Reports Server (NTRS)
Vessot, R. F. C.
1983-01-01
The concept of placing a hydrogen maser high stability clock in Earth orbit to provide accurate time and frequency comparisons worldwide to major timing centers and to a large number of radio observatory antenna sites involved in VLBI measurements was studied. The proposal was chiefly directed toward studies and initial hardware designs for time comparisons between hydrogen maser frequency standards and to modifications of the hydrogen maser for long-term use in space.
Registration of H2O and SiO masers in the Calabash Nebula to confirm the planetary nebula paradigm
NASA Astrophysics Data System (ADS)
Dodson, R.; Rioja, M.; Bujarrabal, V.; Kim, J.; Cho, S. H.; Choi, Y. K.; Youngjoo, Y.
2018-05-01
We report on the astrometric registration of very long baseline interferometry images of the SiO and H2O masers in OH 231.8+4.2, the iconic proto-planetary nebula also known as the Calabash nebula, using the Korean VLBI Network and source frequency phase referencing. This, for the first time, robustly confirms the alignment of the SiO masers, close to the asymptotic giant branch star, driving the bilobe structure with the water masers in the outflow. We are able to trace the bulk motions for the H2O masers over the last few decades to be 19 km s-1 and deduce that the age of this expansion stage is 38 ± 2 yr. The combination of this result with the distance allows a full 3D reconstruction and confirms that the H2O masers lie on and expand along the known large-scale symmetry axis and that the outflow is only a few decades old, so mass loss is almost certainly ongoing. Therefore, we conclude that the SiO emission marks the stellar core of the nebular, the H2O emission traces the expansion, and there must be multiple epochs of ejection to drive the macro-scale structure.
DISCOVERY OF NUCLEAR WATER MASER EMISSION IN CENTAURUS A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ott, Juergen; Meier, David S.; Walter, Fabian
2013-07-10
We report the detection of a 22 GHz water maser line in the nearest (D {approx} 3.8 Mpc) radio galaxy Centaurus A (Cen A) using the Australia Telescope Compact Array (ATCA). The line is centered at a velocity of {approx}960 km s{sup -1}, which is redshifted by about 415 km s{sup -1} from the systemic velocity. Such an offset, as well as the width of {approx}120 km s{sup -1}, could be consistent with either a nuclear maser arising from an accretion disk of the central supermassive black hole (SMBH), or with a jet maser that is emitted from the materialmore » that is shocked near the base of the jet in Cen A. The best spatial resolution of our ATCA data constrains the origin of the maser feature within <3 pc of the SMBH. The maser exhibits an isotropic luminosity of {approx}1 L{sub Sun }, which classifies it as a kilomaser, and appears to be variable on timescales of months. A kilomaser can also be emitted by shocked gas in star-forming regions. Given the small projected distance from the core, the large offset from systemic velocity, and the smoothness of the line feature, we conclude that a jet maser line emitted by shocked gas around the base of the active galactic nucleus is the most likely explanation. For this scenario we can infer a minimum density of the radio jet of {approx}> 10 cm{sup -3}, which indicates substantial mass entrainment of surrounding gas into the propagating jet material.« less
The Magnetic Field Toward the Young Planetary Nebula K 3-35
NASA Astrophysics Data System (ADS)
Gómez, Y.; Tafoya, D.; Anglada, G.; Miranda, L. F.; Torrelles, J. M.; Patel, N. A.; Hernández, R. Franco
2009-04-01
K 3-35 is a planetary nebula (PN) where H2O maser emission has been detected, suggesting that it departed from the proto-PNe phase only some decades ago. Interferometric VLA observations of the OH 18 cm transitions in K 3-35 are presented. OH maser emission is detected in all four ground state lines (1612, 1665, 1667, and 1720 MHz). All the masers appear blueshifted with respect to the systemic velocity of the nebula and have different spatial and kinematic distributions. The OH 1665 and 1720 MHz masers appear spatially coincident with the core of the nebula, while the OH 1612 and 1667 MHz ones exhibit a more extended distribution. We suggest that the 1665 and 1720 masers arise from a region close to the central star, possibly in a torus, while the 1612 and 1667 lines originate mainly from the extended northern lobe of the outflow. It is worth noting that the location and velocity of the OH 1720 MHz maser emission are very similar to those of the H2O masers (coinciding within 0farcs1 and ~ 2 km s-1, respectively). We suggest that the pumping mechanism in the H2O masers could be produced by the same shock that is exciting the OH 1720 MHz transition. A high degree of circular polarization (> 50%) was found to be present in some features of the 1612, 1665, and 1720 MHz emission. For the 1665 MHz transition at ~ +18 km s-1 the emission with left and right circular polarizations (LCP and RCP) coincide spatially within a region of ~ 0farcs03 in diameter. Assuming that these RCP and LCP 1665 features come from a Zeeman pair, we estimate a magnetic field of ~ 0.9 mG within 150 AU from the 1.3 cm continuum peak. This value is in agreement with a solar-type magnetic field associated with evolved stars.
Search for and follow-up imaging of subparsec accretion disks in AGN
NASA Astrophysics Data System (ADS)
Kondratko, Paul Thomas
We report results of several large surveys for water maser emission among Active Galactic Nuclei with the 100-m Green Bank Telescope and the two NASA Deep Space Network 70-m antennas at Tidbinbilla, Australia and at Robledo, Spain. We detected 23 new sources, which resulted in a 60% increase in the number of then known nuclear water maser sources. Eight new detections show the characteristic spectral signature of emission from an edge-on accretion disk and therefore constitute good candidates for the determination of black hole mass and geometric distance. This increase in the number of known sources has enabled us to reconsider statistical properties of the resulting sample. For the 30 water maser sources with available hard X-ray data, we found a possible correlation between unabsorbed X-ray luminosity (2-10 keV) and total isotropic water maser luminosity of the form L 2-10 0([Special characters omitted.] , consistent with the model proposed by Neufeld et al. (1994) in which X-ray irradiation of molecular accretion disk gas by the central engine excites the maser emission. We mapped for the first time with Very Long Baseline Interferomatey (VLBI) the full extent of the pc-scale accretion disk in NGC 3079 as traced by water maser emission. Positions and line-of-sight velocities of maser emission are consistent with a nearly edge-on pc-scale disk and a central mass of ~ 2 x 10^6 [Special characters omitted.] enclosed within ~ 0.4 pc. Based on the kinematics of the system, we propose that the disk is geometrically-thick, massive, subject to gravitational instabilities, and hence most likely clumpy and star- forming. The accretion disk in NGC 3079 is thus markedly different from the compact, thin, warped, differentially rotating disk in the archetypal maser galaxy NGC 4258. We also detect maser emission at high latitudes above the disk and suggest that it traces an inward extension of the kpc-scale bipolar wide- angle outflow previously observed along the galactic minor axis. We also report the first VLBI map of the pc-scale accretion disk in NGC 3393. Water maser emission in this source appears to follow Keplerian rotation and traces a linear structure between disk radii of 0.36 and ~ 1 pc. Assuming an edge-on disk and Keplerian rotation, the inferred central mass is (3.1±0.2) × 10^7 [Special characters omitted.] enclosed within 0.36±0.02 pc, which corresponds to a mean mass density of ~ 10 8.2 [Special characters omitted.] pc -3 . We also measured with the Green Bank Telescope centripetal acceleration within the disk, from which we infer the disk radius of 0.17±0.02 pc for the maser feature that is located along the line of sight to the dynamical center. This emission evidently occurs much closer to the center than the emission from the disk midline (0.17 vs. 0.36 pc), contrary to the situation in the two archetypal maser systems NGC 4258 and NGC 1068.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reid, M. J.; Brunthaler, A.; Menten, K. M.
The BeSSeL Survey is mapping the spiral structure of the Milky Way by measuring trigonometric parallaxes of hundreds of maser sources associated with high-mass star formation. While parallax techniques for water masers at high frequency (22 GHz) have been well documented, recent observations of methanol masers at lower frequency (6.7 GHz) have revealed astrometric issues associated with signal propagation through the ionosphere that could significantly limit parallax accuracy. These problems displayed as a “parallax gradient” on the sky when measured against different background quasars. We present an analysis method in which we generate position data relative to an “artificial quasar”more » at the target maser position at each epoch. Fitting parallax to these data can significantly mitigate the problems and improve parallax accuracy.« less
NASA Astrophysics Data System (ADS)
Busca, G.; Bernier, L. G.; Silvestrin, P.; Feltham, S.; Gaygerov, B. A.; Tatarenkov, V. M.
1994-05-01
The Observatoire Cantonal de Neuchatel (ON) is developing for ESTEC a compact H-maser for space use based upon a miniature sapphire loaded microwave cavity, a technique pioneered at VNIIFTRI. Various contacts between West-European parties, headed by ESA, and the Russian parties, headed by ESA, led to the proposal for flying two H-masers on Meteor 3M, a Russian meteorology satellite in low polar orbit. The experiment will include two masers, one provided by ON and the other by VNIIFTRI. T/F transfer and precise positioning will be performed by both a microwave link, using PRARE equipment, and an optical link, using LASSO-like equipment. The main objectives of the experiment are precise orbit determination and point positioning for geodetic/geophysical research, ultra-accurate time comparison and dissemination as well as in-orbit demonstration of operation and performance of H-masers. Within the scope of a preliminary space H-maser development phase performed for ESTEC at ON in preparation to the joint experiment, a Russian miniature sapphire loaded microwave cavity, on loan from VNIIFTRI, was evaluated in a full-size EFOS hydrogen maser built by ON. The experimental evaluation confirmed the theoretical expectation that with a hydrogen storage volume of only 0.65 liter an atomic quality factor of 1.5 x 10(exp 9) can be obtained for a -105 dBm output power. This represents a theoretical Allan deviation of 1.7 x 10(exp -15) averaged on a 1000 s time interval. From a full-size design to a compact one, therefore, the sacrifice in performance due to the reduction of the storage volume is very small.
NASA Technical Reports Server (NTRS)
Busca, G.; Bernier, L. G.; Silvestrin, P.; Feltham, S.; Gaygerov, B. A.; Tatarenkov, V. M.
1994-01-01
The Observatoire Cantonal de Neuchatel (ON) is developing for ESTEC a compact H-maser for space use based upon a miniature sapphire loaded microwave cavity, a technique pioneered at VNIIFTRI. Various contacts between West-European parties, headed by ESA, and the Russian parties, headed by ESA, led to the proposal for flying two H-masers on Meteor 3M, a Russian meteorology satellite in low polar orbit. The experiment will include two masers, one provided by ON and the other by VNIIFTRI. T/F transfer and precise positioning will be performed by both a microwave link, using PRARE equipment, and an optical link, using LASSO-like equipment. The main objectives of the experiment are precise orbit determination and point positioning for geodetic/geophysical research, ultra-accurate time comparison and dissemination as well as in-orbit demonstration of operation and performance of H-masers. Within the scope of a preliminary space H-maser development phase performed for ESTEC at ON in preparation to the joint experiment, a Russian miniature sapphire loaded microwave cavity, on loan from VNIIFTRI, was evaluated in a full-size EFOS hydrogen maser built by ON. The experimental evaluation confirmed the theoretical expectation that with a hydrogen storage volume of only 0.65 liter an atomic quality factor of 1.5 x 10(exp 9) can be obtained for a -105 dBm output power. This represents a theoretical Allan deviation of 1.7 x 10(exp -15) averaged on a 1000 s time interval. From a full-size design to a compact one, therefore, the sacrifice in performance due to the reduction of the storage volume is very small.
Maser mechanism of optical pulsations from anomalous X-ray pulsar 4U 0142+61
NASA Astrophysics Data System (ADS)
Lu, Y.; Zhang, S. N.
2004-11-01
Based on the work of Luo & Melrose from the early 1990s, a maser curvature emission mechanism in the presence of curvature drift is used to explain the optical pulsations from anomalous X-ray pulsars (AXPs). The model comprises a rotating neutron star with a strong surface magnetic field, i.e. a magnetar. Assuming the space-charge-limited flow acceleration mechanism, in which the strongly magnetized neutron star induces strong electric fields that pull the charges from its surface and flow along the open field lines, the neutron star generates a dense flow of electrons and positrons (relativistic pair plasma) by either two-photon pair production or one-photon pair creation resulting from inverse Compton scattering of the thermal photons above the pulsar polar cap (PC). The motion of the pair plasma is essentially one-dimensional along the field lines. We propose that optical pulsations from AXPs are generated by a curvature-drift-induced maser developing in the PC of magnetars. Pair plasma is considered as an active medium that can amplify its normal modes. The curvature drift, which is energy-dependent, is another essential ingredient in allowing negative absorption (maser action) to occur. For the source AXP 4U 0142+61, we find that the optical pulsation triggered by curvature-drift maser radiation occurs at the radial distance R(νM) ~ 4.75 × 109 cm to the neutron star. The corresponding curvature maser frequency is about νM~ 1.39 × 1014 Hz, and the pulse component from the maser amplification is about 27 per cent. The result is consistent with the observation of the optical pulsations from AXP 4U 0142+61.
Hubble Peers at the Heart of a Spiral Galaxy
2014-03-21
This new Hubble image is centered on NGC 5793, a spiral galaxy over 150 million light-years away in the constellation of Libra. This galaxy has two particularly striking features: a beautiful dust lane and an intensely bright center — much brighter than that of our own galaxy, or indeed those of most spiral galaxies we observe. NGC 5793 is a Seyfert galaxy. These galaxies have incredibly luminous centers that are thought to be caused by hungry supermassive black holes — black holes that can be billions of times the size of the sun — that pull in and devour gas and dust from their surroundings. This galaxy is of great interest to astronomers for many reasons. For one, it appears to house objects known as masers. Whereas lasers emit visible light, masers emit microwave radiation. The term "masers" comes from the acronym Microwave Amplification by Stimulated Emission of Radiation. Maser emission is caused by particles that absorb energy from their surroundings and then re-emit this in the microwave part of the spectrum. Naturally occurring masers, like those observed in NGC 5793, can tell us a lot about their environment; we see these kinds of masers in areas where stars are forming. In NGC 5793 there are also intense mega-masers, which are thousands of times more luminous than the sun. Credit: NASA, ESA, and E. Perlman (Florida Institute of Technology) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Hot Water In The ISM: Masing and Non-Masing Emission From Non-Dissociative Shocks
NASA Astrophysics Data System (ADS)
Kaufman, M. J.; Neufeld, D. A.
1993-12-01
We investigate the possibility that dense non-dissociative shocks may be a source of water maser emission in regions of active star formation. Recent observations of maser line ratios in several star forming regions (Melnick et al. 1993 ApJ 416, L37) indicate that water masers are excited in T>1000K gas, temperatures too high for molecular emission behind dissociative shocks. We solve for the structure of, and emission from, multi-fluid shocks in gas with n(H_2)>10(7) cm(-3) and Vshock< 50 km s(-1) , using new treatments of molecular cooling and ion-neutral coupling in dense gas. Such high densities are required by maser collisional pumping schemes. In this gas, the fractional ionization is low and carried on grains; results are presented for a variety of assumed grain size distributions and as a function of shock velocity, magnetic field and preshock density. Suitable preshock conditions yield individual masing regions with sizes of ~ 10(13) cm, consistent with interferometric observations of 22 GHz maser spots, and peak masing gas temperatures of ~ fewtimes 10(3) K, consistent with the temperatures inferred from maser line ratios. Although these masers are an `exotic' manifestation of the passing shock waves, most of the shock energy emerges in non-masing rovibrational line emission from H_2O,OH,CO and H_2, and we investigate this emission from shocks with densities as low as n(H_2) ~ 10(5cm(-3)) . Our study of the expected H_2O far-IR line emissions is motivated, in particular, by the possibility of observing such emissions with the European Space Agency's Infrared Space Observatory.
THE MEGAMASER COSMOLOGY PROJECT. IX. BLACK HOLE MASSES FOR THREE MASER GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, F.; Zhao, W.; Braatz, J. A.
As part of the Megamaser Cosmology Project, we present VLBI maps of nuclear water masers toward five galaxies. The masers originate in sub-parsec circumnuclear disks. For three of the galaxies, we fit Keplerian rotation curves to estimate their supermassive black hole (SMBH) masses, and determine (2.9 ± 0.3) × 10{sup 6} M {sub ⊙} for J0437+2456, (1.7 ± 0.1) × 10{sup 7} M {sub ⊙} for ESO 558–G009, and (1.1 ± 0.2) × 10{sup 7} M {sub ⊙} for NGC 5495. In the other two galaxies, Mrk 1029 and NGC 1320, the geometry and dynamics are more complicated and preclude robust black hole mass estimates. Including our new results, we compiled amore » list of 15 VLBI-confirmed disk maser galaxies with robust SMBH mass measurements. With this sample, we confirm the empirical relation of R {sub out} ∝ 0.3 M {sub SMBH} reported in Wardle and Yusef-Zadeh. We also find a tentative correlation between maser disk outer radii and Wide-Field Infrared Survey Explorer luminosity. We find no correlations of maser disk size with X-ray 2–10 keV luminosity or [O iii] luminosity.« less
Near-infrared Observations of SiO Maser-emitting Asymptotic Giant Branch (AGB) Stars
NASA Astrophysics Data System (ADS)
Chibueze, James O.; Miyahara, Takeshi; Omodaka, Toshihiro; Ohta, Takashi; Fujii, Takahiro; Tanaka, Masuo; Motohara, Kentaro; Makoto, Miyoshi
2016-02-01
Near-infrared (NIR) monitoring observations of asymptotic giant branch stars exciting bright SiO masers have been made with the 1 m telescope of Kagoshima University. In order to investigate the properties of these stars and their envelopes, we combined our NIR photometric data with mid- and far-infrared flux data obtained by the IRAS satellite, SiO maser flux data provided by the Nobeyama Radio Observatory, visual magnitude data provided by the AAVSO, and the reported data on the expansion velocities of the circumstellar envelopes. The absolute magnitudes at the K-band and the distances are estimated using the period-luminosity relation of Mira variables determined by Feast et al. Then, mass-loss rates and isotropic luminosities of an SiO maser are estimated. The mass-loss rates range from approximately 10-8 {M}⊙ \\{{yr}}-1 to over 10-5 {M}⊙ {{yr}}-1. We found that the NIR pulsation amplitudes are correlated with the pulsation periods and the observed wavelengths. We also found correlations of the isotropic luminosities of SiO masers with the mass-loss rates and absolute magnitudes at the K-band. These results will help us to understand the pumping mechanism of SiO masers. We measured, for the first time, the periods and/or NIR magnitudes of TX Cam, BW Cam, IRAS 06297+4045, IRAS 18387-0423, and RT Cep.
Water Masers and Accretion Disks in Galactic Nuclei
NASA Astrophysics Data System (ADS)
Greenhill, L. J.
2005-12-01
There are over 50 sources of H2O maser emission in type-2 active galactic nuclei, a large fraction discovered in the last two years. Interferometer maps of water masers are presently the only means by which structures ⪉ 1 pc from massive black holes can be mapped directly, which is particularly important for type-2 systems because edge-on orientation and obscuration complicate study by other means. Investigations of several sources have demonstrated convincingly that the maser emission traces warped accretion disks 0.1 to 1 pc from central engines of order 106-108 M⊙. The same may be true for almost half the known (but unmapped) sources, based on spectral characteristics consistent with emission from edge-on accretion disks. Mapping these sources is a high priority. Study of most recently discovered masers requires long baseline arrays that include 100-m class apertures and would benefit from aggregate bit rates on the order of 1 gigabit per second. The Square Kilometer Array should provide an order of magnitude boost in mapping sensitivity, but outrigger antennas will be needed to achieve necesssary angular resolutions, as may be space-borne antennas.
Particle propagation, wave growth and energy dissipation in a flaring flux tube
NASA Technical Reports Server (NTRS)
White, S. M.; Melrose, D. B.; Dulk, G. A.
1986-01-01
Wave amplification by downgoing particles in a common flare model is investigated. The flare is assumed to occur at the top of a coronal magnetic flux loop, and results in the heating of plasma in the flaring region. The hot electrons propagate down the legs of the flux tube towards increasing magnetic field. It is simple to demonstrate that the velocity distributions which result in this model are unstable to both beam instabilities and cyclotron maser action. An explanation is presented for the propagation effects on the distribution, and the properties of the resulting amplified waves are explored, concentrating on cyclotron maser action, which has properties (emission in the z mode below the local gyrofrequency) quite different from maser action by other distributions considered in the context of solar flares. The z mode waves will be damped in the coronal plasma surrounding the flaring flux tube and lead to heating there. This process may be important in the overall energy budget of the flare. The downgoing maser is compared with the loss cone maser, which is more likely to produce observable bursts.
Topics in atomic hydrogen standard research and applications
NASA Technical Reports Server (NTRS)
Peters, H. E.
1971-01-01
Hydrogen maser based frequency and time standards have been in continuous use at NASA tracking stations since February 1970, while laboratory work at Goddard has continued in the further development and improvement of hydrogen masers. Concurrently, experimental work has been in progress with a new frequency standard based upon the hydrogen atom using the molecular beam magnetic resonance method. Much of the hydrogen maser technology is directly applicable to the new hydrogen beam standard, and calculations based upon realistic data indicate that the accuracy potential of the hydrogen atomic beam exceeds that of either the cesium beam tube or the hydrogen maser, possibly by several orders of magnitude. In addition, with successful development, the hydrogen beam standard will have several other performance advantages over other devices, particularly exceptional stability and long continuous operating life. Experimental work with a new laboratory hydrogen beam device has recently resulted in the first resonance transition curves, measurements of relative state populations, beam intensities, etc. The most important aspects of both the hydrogen maser and the hydrogen beam work are covered.
NASA Astrophysics Data System (ADS)
Humphreys, Elizabeth
2017-11-01
Cool evolved stars on the Asymptotic Giant Branch (AGB) and Red Supergiants (RSG) often host strong masers, for example from SiO, water and OH. The maser emission can display high degrees of circular and linear polarization, potentially revealing information on magnetic field strength and morphology at different radii in the circumstellar envelopes. In this review, I will describe maser polarization theory and discuss was has been learnt so far from maser observations. I will also discuss dust polarization at (sub)mm wavelengths and the role that full polarization observations using ALMA is going to play in better characterizing evolved stars. Finally, I will talk about the potential impact of magnetic fields in the evolution of the stars, for example the shaping of AGB stars to often highly axisymmetric/aspherical Planetary Nebulae.queso2017queso2017
NASA Astrophysics Data System (ADS)
Cotton, W. D.; Ragland, S.; Pluzhnik, E. A.; Danchi, W. C.; Traub, W. A.; Willson, L. A.; Lacasse, M. G.
2010-06-01
This is the fourth paper in a series of multi-epoch observations at 7 mm wavelength of the SiO masers in several asymptotic giant branch stars from a sample of Mira variable stars showing evidence of asymmetric structure in the infrared. These stars have been observed interferometrically in the infrared by IOTA and with VLBA measurements of the SiO masers. In this paper, we present the observations of χ Cygni (χ Cyg), R Aquilae (R Aql), R Leo Minoris (R LMi), RU Herculis (RU Her), U Herculis (U Her), and U Orionis (U Ori). Several radial features with velocity gradients were observed, all with velocities close to systemic furthest from the star and redshifted closer to the stellar surface. Systemic velocities are estimated for several of the stars. No compelling evidence of asymmetry is seen in the maser distributions. All maser rings are approximately twice the near-IR uniform disk diameter and are comparable in size to the extended molecular envelope when such measurements are available.
Whistler and Alfvén Mode Cyclotron Masers in Space
NASA Astrophysics Data System (ADS)
Trakhtengerts, V. Y.; Rycroft, M. J.
2012-10-01
Preface; 1. Introduction; 2. Basic theory of cyclotron masers (CMs); 3. Linear theory of the cyclotron instability (CI); 4. Backward wave oscillator (BWO) regime in CMs; 5. Nonlinear cyclotron wave-particle interactions for a quasi-monochromatic wave; 6. Nonlinear interaction of quasi-monochromatic whistler mode waves with gyroresonant electrons in an in homogeneous plasma; 7. Wavelet amplification in an inhomogeneous plasma; 8. Quasi-linear theory of cyclotron masers; 9. Nonstationary generation regimes, and modulation effects; 10. ELF/VLF noise-like emissions and electrons in the Earth's radiation belts; 11. Generation of discrete ELF/VLF whistler mode emissions; 12. Cyclotron instability of the proton radiation belts; 13. Cyclotron masers elsewhere in the solar system and in laboratory plasma devices; Epilogue; Glossary of terms; List of acronyms; References; Index.
NASA Astrophysics Data System (ADS)
Vlemmings, W. H. T.; Torres, R. M.; Dodson, R.
2011-05-01
Context. To properly determine the role of magnetic fields during massive star formation, a statistically significant sample of field measurements probing different densities and regions around massive protostars needs to be established. However, relating Zeeman splitting measurements to magnetic field strengths needs a carefully determined splitting coefficient. Aims: Polarization observations of, in particular, the very abundant 6.7 GHz methanol maser, indicate that these masers appear to be good probes of the large scale magnetic field around massive protostars at number densities up to nH2 ≈ 109 cm-3. We thus investigate the Zeeman splitting of the 6.7 GHz methanol maser transition. Methods: We have observed of a sample of 46 bright northern hemisphere maser sources with the Effelsberg 100-m telescope and an additional 34 bright southern masers with the Parkes 64-m telescope in an attempt to measure their Zeeman splitting. We also revisit the previous calculation of the methanol Zeeman splitting coefficients and show that these were severely overestimated making the determination of magnetic field strengths highly uncertain. Results: In total 44 of the northern masers were detected and significant splitting between the right- and left-circular polarization spectra is determined in >75% of the sources with a flux density >20 Jy beam-1. Assuming the splitting is due to a magnetic field according to the regular Zeeman effect, the average detected Zeeman splitting corrected for field geometry is ~0.6 m s-1. Using an estimate of the 6.7 GHz A-type methanol maser Zeeman splitting coefficient based on old laboratory measurements of 25 GHz E-type methanol transitions this corresponds to a magnetic field of ~120 mG in the methanol maser region. This is significantly higher than expected using the typically assumed relation between magnetic field and density (B∝ n_H_20.47) and potentially indicates the extrapolation of the available laboratory measurements is invalid. The stability of the right- and left-circular calibration of the Parkes observations was insufficient to determine the Zeeman splitting of the Southern sample. Spectra are presented for all sources in both samples. Conclusions: There is no strong indication that the measured splitting between right- and left-circular polarization is due to non-Zeeman effects, although this cannot be ruled out until the Zeeman coefficient is properly determined. However, although the 6.7 GHz methanol masers are still excellent magnetic field morphology probes through linear polarization observations, previous derivations of magnetic fields strength turn out to be highly uncertain. A solution to this problem will require new laboratory measurements of the methanol Landé-factors. Table 2 and Figs. 5-7 are only available in electronic form at http://www.aanda.org
Cyclotron maser instability and its applications
NASA Astrophysics Data System (ADS)
Wu, C. S.
The possible application of cyclotron maser theory to a variety of radio sources is considered, with special attention given to the theory of auroral kilometric radiation (AKR) of Wu and Lee (1979). The AKR model assumes a loss-cone distribution function for the reflected electrons, along with the depletion of low-energy electrons by the parallel electric field. Other topics considered include fundamental AKR, second-harmonic AKR, the generation of Z-mode radiation, and the application of maser instability to other sources than AKR.
X-band ultralow-noise maser amplifier performance
NASA Technical Reports Server (NTRS)
Glass, G. W.; Ortiz, G. G.; Johnson, D. L.
1994-01-01
Noise temperature measurements of an 8440-MHz ultralow noise maser amplifier (ULNA) have been performed at subatmospheric, liquid-helium temperatures. The traveling-wave maser was operated while immersed in a liquid helium bath. The lowest input noise temperature measured was 1.43 +/- 0.16 K at a physical temperature of 1.60 K. At this physical temperature, the observed gain per centimeter of ruby was 4.9 dB/cm. The amplifier had a 3-dB bandwidth of 76 MHz.
Detection of 183 GHz H2O megamaser emission towards NGC 4945
NASA Astrophysics Data System (ADS)
Humphreys, E. M. L.; Vlemmings, W. H. T.; Impellizzeri, C. M. V.; Galametz, M.; Olberg, M.; Conway, J. E.; Belitsky, V.; De Breuck, C.
2016-08-01
Aims: The aim of this work is to search Seyfert 2 galaxy NGC 4945, a well-known 22 GHz water megamaser galaxy, for H2O (mega)maser emission at 183 GHz. Methods: We used APEX SEPIA Band 5 (an ALMA Band 5 receiver on the APEX telescope) to perform the observations. Results: We detected 183 GHz H2O maser emission towards NGC 4945 with a peak flux density of ~3 Jy near the galactic systemic velocity. The emission spans a velocity range of several hundred km s-1. We estimate an isotropic luminosity of >1000 L⊙, classifying the emission as a megamaser. A comparison of the 183 GHz spectrum with that observed at 22 GHz suggests that 183 GHz emission also arises from the active galactic nucleus (AGN) central engine. If the 183 GHz emission originates from the circumnuclear disk, then we estimate that a redshifted feature at 1084 km s-1 in the spectrum should arise from a distance of 0.022 pc from the supermassive black hole (1.6 × 105 Schwarzschild radii), I.e. closer than the water maser emission previously detected at 22 GHz. This is only the second time 183 GHz maser emission has been detected towards an AGN central engine (the other galaxy being NGC 3079). It is also the strongest extragalactic millimetre/submillimetre water maser detected to date. Conclusions: Strong millimetre 183 GHz H2O maser emission has now been shown to occur in an external galaxy. For NGC 4945, we believe that the maser emission arises, or is dominated by, emission from the AGN central engine. Emission at higher velocity, I.e. for a Keplerian disk closer to the black hole, has been detected at 183 GHz compared with that for the 22 GHz megamaser. This indicates that millimetre/submillimetre H2O masers can indeed be useful for tracing out more of AGN central engine structures and dynamics than previously probed. Future observations using ALMA Band 5 should unequivocally determine the origin of the emission in this and other galaxies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenhill, Lincoln J.; Moran, James M.; Tilak, Avanti
2009-12-10
Based on spectroscopic signatures, about one-third of known H{sub 2}O maser sources in active galactic nuclei (AGNs) are believed to arise in highly inclined accretion disks around central engines. These 'disk maser candidates' are of interest primarily because angular structure and rotation curves can be resolved with interferometers, enabling dynamical study. We identify five new disk maser candidates in studies with the Green Bank Telescope, bringing the total number published to 30. We discovered two (NGC 1320, NGC 17) in a survey of 40 inclined active galaxies (v {sub sys} < 20, 000 km s{sup -1}). The remaining three diskmore » maser candidates were identified in monitoring of known sources: NGC 449, NGC 2979, and NGC 3735. We also confirm a previously marginal case in UGC 4203. For the disk maser candidates reported here, inferred rotation speeds are 130-500 km s{sup -1}. Monitoring of three more rapidly rotating candidate disks (CG 211, NGC 6264, VV 340A) has enabled measurement of likely orbital centripetal acceleration, and estimation of central masses ((2-7) x10{sup 7} M {sub sun}) and mean disk radii (0.2-0.4 pc). Accelerations may ultimately permit estimation of distances when combined with interferometer data. This is notable because the three AGNs are relatively distant (10,000 km s{sup -1}
MASER: A Tool Box for Solar System Low Frequency Radio Astronomy
NASA Astrophysics Data System (ADS)
Cecconi, B.; Le Sidaner, P.; Savalle, R.; Bonnin, X.; Zarka, P.; Louis, C.; Coffre, A.; Lamy, L.; Denis, L.; Griessmeier, J.-M.; Faden, J.; Piker, C.; André, N.; Génot, V.; Erard, S.; King, T. A.; Mafi, J. N.; Sharlow, M.; Sky, J.; Demleitner, M.
2018-04-01
MASER (Measuring, Analysing, and Simulating Radio Emissions) is a toolbox for solar system radio astronomy. It provides tools for reading, displaying, finding, and modeling low frequency radio datasets.
VizieR Online Data Catalog: Ultra-compact HII regions & methanol masers. I. (Hu+, 2016)
NASA Astrophysics Data System (ADS)
Hu, B.; Menten, K. M.; Wu, Y.; Bartkiewicz, A.; Rygl, K.; Reid, M. J.; Urquhart, J. S.; Zheng, X.
2017-03-01
372 unique targets were selected from the following methanol maser surveys: the Methanol Multi-Beam catalog (MMB; Caswell & Breen 2010MNRAS.407.2599C; Green+ 2010-2012, VIII/96), the Arecibo Methanol Maser Galactic Plane Survey (AMGPS; Pandian+ 2011ApJ...730...55P), the Torun catalog of 6.7GHz methanol masers (Szymczak+ 2012, J/AN/333/634), and other individual observations of known 6.7GHz methanol masers or MSFRs (Caswell+ 1995MNRAS.272...96C; Walsh+ 1997, J/MNRAS/291/261; 1998, J/MNRAS/301/640; Xu+ 2008A&A...485..729X; Caswell 2009, J/other/PASA/26.454). The observations were conducted with the VLA in C-configuration using five sessions from 2012 February 28 to April 16. Spectral line data used 2048 channels across 8MHz, yielding a channel spacing of 3.90625kHz at the central frequency of 6.6685192GHz and a velocity resolution of 0.176km/s. The continuum observations employed two 1GHz sub-bands from 4.9840 to 6.0080GHz (the low band) and from 6.6245 to 7.6485GHz (the high band) and each sub-band was divided into 16 channels. (4 data files).
Trigonometric parallaxes of 6.7 GHz methanol masers
NASA Astrophysics Data System (ADS)
Rygl, K. L. J.; Brunthaler, A.; Reid, M. J.; Menten, K. M.; van Langevelde, H. J.; Xu, Y.
2010-02-01
Aims: Emission from the 6.7 GHz methanol maser transition is very strong, is relatively stable, has small internal motions, and is observed toward numerous massive star-forming regions in the Galaxy. Our goal is to perform high-precision astrometry using this maser transition to obtain accurate distances to their host regions. Methods: Eight strong masers were observed during five epochs of VLBI observations with the European VLBI Network between 2006 June, and 2008 March. Results: We report trigonometric parallaxes for five star-forming regions, with accuracies as good as ~22 µas. Distances to these sources are 2.57+0.34-0.27 kpc for ON 1, 0.776+0.104-0.083 kpc for L 1206, 0.929+0.034-0.033 kpc for L 1287, 2.38+0.13-0.12 kpc for NGC 281-W, and 1.59+0.07-0.06 kpc for S 255. The distances and proper motions yield the full space motions of the star-forming regions hosting the masers, and we find that these regions lag circular rotation on average by ~17 km s-1, a value comparable to those found recently by similar studies.
Water-maser emission from a planetary nebula with a magnetized torus.
Miranda, L F; Gómez, Y; Anglada, G; Torrelles, J M
2001-11-15
A star like the Sun becomes a planetary nebula towards the end of its life, when the envelope ejected during the earlier giant phase becomes photoionized as the surface of the remnant star reaches a temperature of approximately 30,000 K. The spherical symmetry of the giant phase is lost in the transition to a planetary nebula, when non-spherical shells and powerful jets develop. Molecules that were present in the giant envelope are progressively destroyed by the radiation. The water-vapour masers that are typical of the giant envelopes therefore are not expected to persist in planetary nebulae. Here we report the detection of water-maser emission from the planetary nebula K3-35. The masers are in a magnetized torus with a radius of about 85 astronomical units and are also found at the surprisingly large distance of about 5,000 astronomical units from the star, in the tips of bipolar lobes of gas. The precessing jets from K3-35 are probably involved in the excitation of the distant masers, although their existence is nevertheless puzzling. We infer that K3-35 is being observed at the very moment of its transformation from a giant star to a planetary nebula.
NASA Astrophysics Data System (ADS)
Charlton, Robert; Bogatko, Stuart; Zuehlsdorff, Tim; Hine, Nicholas; Horsfield, Andrew; Haynes, Peter
Maser technology has been held back for decades by the impracticality of the operating conditions of traditional masing devices, such as cryogenic freezing and strong magnetic fields. Recently it has been experimentally demonstrated that pentacene in p-terphenyl can act as a viable solid-state room-temperature maser by exploiting the alignment of the low-lying singlet and triplet excited states of pentacene. To understand the operation of this device from first principles, an ab initio study of the excitonic properties of pentacene in p-terphenyl has been carried out using time-dependent density functional theory (TDDFT), implemented in the linear-scaling ONETEP software (www.onetep.org). In particular, we focus on the impact that the wider crystal has on the localised pentacene excitations by performing an explicit DFT treatment of the p-terphenyl environment. We demonstrate the importance of explicit crystal host effects in calculating the excitation energies of pentacene in p-terphenyl, providing important information for the operation of the maser. We then use this same approach to test the viability of other linear polyacenes as maser candidates as a screening step before experimental testing.
Magnetic shielding and vacuum test for passive hydrogen masers
NASA Technical Reports Server (NTRS)
Gubser, D. U.; Wolf, S. A.; Jacoby, A. B.; Jones, L. D.
1982-01-01
Vibration tests on high permeability magnetic shields used in the SAO-NRL Advanced Development Model (ADM) hydrogen maser were made. Magnetic shielding factors were measured before and after vibration. Preliminary results indicate considerable (25%) degradation. Test results on the NRL designed vacuum pumping station for the ADM hydrogen maser are also discussed. This system employs sintered zirconium carbon getter pumps to pump hydrogen plus small ion pumps to pump the inert gases. In situ activation tests and pumping characteristics indicate that the system can meet design specifications.
Rapid Fluctuations of Water Maser Emission in VY Canis Majoris
NASA Astrophysics Data System (ADS)
Zheng, Xing Wu; Scalise, Eugenio, Jr.; Han, Fu
1998-11-01
We report the observational results of short timescale monitoring of the 22 GHz water maser emission in VY CMa. A quasi-sinusoidal fluctuation has been detected with the relative flux intensity change of 20%-25% and a period of 10.3 day for two dominant features. This detected variability appears to be superimposed on the normal maser lines. We cannot easily explain the rapid fluctuation with the variation of the radiative input or the strong interstellar scintillation along the line of sight. The variation may be caused by the periodic shock.
An improved method for measuring the magnetic inhomogeneity shift in hydrogen masers
NASA Technical Reports Server (NTRS)
Reinhardt, V. S.; Peters, H. E.
1975-01-01
The reported method makes it possible to conduct all maser frequency measurements under conditions of low magnetic field intensity for which the hydrogen maser is most stable. Aspects concerning the origin of the magnetic inhomogeneity shift are examined and the available approaches for measuring this shift are considered, taking into account certain drawbacks of currently used methods. An approach free of these drawbacks can be based on the measurement of changes in a parameter representing the difference between the number of atoms in the involved states.
Cryogenic filters for RFI protection
NASA Technical Reports Server (NTRS)
Bautista, J. J.; Petty, S. M.
1981-01-01
The increased bandwidth and sensitivity of the DSN maser-based receiver systems along with the increase in worldwide microwave spectrum usage dictated the need for employing additional measures to protect these systems from RFI (radio frequency inerference). Both in-band and out-of-band microwave signals at the input of the Deep Space Network (DSN) traveling wave masers (TWM) can adversely affect the maser performance in a variety of ways. Filters fabricated from superconducting materials operating below their superconducting transition temperature (Tc) possess the most potential for providing the necessary RFI protection without degrading the system performance.
IAU (Maser) Symposium 287 Summary
NASA Astrophysics Data System (ADS)
Menten, Karl M.
2012-07-01
Almost exactly twenty years ago, the first of a series of conferences dedicated to cosmic masers took place in Arlington, Virginia in the USA (March 9-11, 1992). Two more followed, each on a different continent, in Mangaratiba, near Rio de Janeiro, Brasil (March 5-10, 2001) and in Alice Springs, Australia (March 12-16, 2007). As at all others, a large part of the international maser community convened from January 29 to February 3, 2012 in splendid Stellenbosch, South Africa, to discuss the state of the art of the field.
FORMALDEHYDE MASERS: EXCLUSIVE TRACERS OF HIGH-MASS STAR FORMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Araya, E. D.; Brown, J. E.; Olmi, L.
2015-11-15
The detection of four formaldehyde (H{sub 2}CO) maser regions toward young high-mass stellar objects in the last decade, in addition to the three previously known regions, calls for an investigation of whether H{sub 2}CO masers are an exclusive tracer of young high-mass stellar objects. We report the first survey specifically focused on the search for 6 cm H{sub 2}CO masers toward non high-mass star-forming regions (non HMSFRs). The observations were conducted with the 305 m Arecibo Telescope toward 25 low-mass star-forming regions, 15 planetary nebulae and post-AGB stars, and 31 late-type stars. We detected no H{sub 2}CO emission in ourmore » sample of non HMSFRs. To check for the association between high-mass star formation and H{sub 2}CO masers, we also conducted a survey toward 22 high-mass star-forming regions from a Hi-GAL (Herschel infrared Galactic Plane Survey) sample known to harbor 6.7 GHz CH{sub 3}OH masers. We detected a new 6 cm H{sub 2}CO emission line in G32.74−0.07. This work provides further evidence that supports an exclusive association between H{sub 2}CO masers and young regions of high-mass star formation. Furthermore, we detected H{sub 2}CO absorption toward all Hi-GAL sources, and toward 24 low-mass star-forming regions. We also conducted a simultaneous survey for OH (4660, 4750, 4765 MHz), H110α (4874 MHz), HCOOH (4916 MHz), CH{sub 3}OH (5005 MHz), and CH{sub 2}NH (5289 MHz) toward 68 of the sources in our sample of non HMSFRs. With the exception of the detection of a 4765 MHz OH line toward a pre-planetary nebula (IRAS 04395+3601), we detected no other spectral line to an upper limit of 15 mJy for most sources.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumoto, Naoko; Hirota, Tomoya; Honma, Mareki
2014-07-01
We have carried out the first very long baseline interferometry (VLBI) imaging of a 44 GHz class I methanol maser (7{sub 0}-6{sub 1} A {sup +}) associated with a millimeter core MM2 in a massive star-forming region IRAS 18151–1208 with KaVA (KVN and VERA Array), which is a newly combined array of KVN (Korean VLBI Network) and VERA (VLBI Exploration of Radio Astrometry). We have succeeded in imaging compact maser features with a synthesized beam size of 2.7 milliarcseconds × 1.5 milliarcseconds (mas). These features are detected at a limited number of baselines within the length of shorter than ≈ 650 km corresponding to 100 Mλ in the uv-coverage.more » The central velocity and the velocity width of the 44 GHz methanol maser are consistent with those of the quiescent gas rather than the outflow traced by the SiO thermal line. The minimum component size among the maser features is ∼5 mas × 2 mas, which corresponds to the linear size of ∼15 AU × 6 AU assuming a distance of 3 kpc. The brightness temperatures of these features range from ∼3.5 × 10{sup 8} to 1.0 × 10{sup 10} K, which are higher than the estimated lower limit from a previous Very Large Array observation with the highest spatial resolution of ∼50 mas. The 44 GHz class I methanol maser in IRAS 18151–1208 is found to be associated with the MM2 core, which is thought to be less evolved than another millimeter core MM1 associated with the 6.7 GHz class II methanol maser.« less
Charles Townes, the Maser, and the Laser
electronics, radio astronomy and infrared astronomy. He holds the original patent for the maser [microwave research and teaching and pursued new interests in astrophysics. His work there in radio astronomy resulted
A method of eliminating hydrogen maser wall shift
NASA Technical Reports Server (NTRS)
Levine, M. W.; Vessot, R. F. C.
1972-01-01
Maser output frequency shift was prevented by storage bulb kept at temperature at which wall shift is zero and effects of bulb size, shape, and surface texture are eliminated. Servo system is shown, along with bidirectional counter.
Non-equilibrium populations of hydrogen in high-redshift galaxies
NASA Astrophysics Data System (ADS)
Pomerantz, Brian B.; Redmond, Kayla; Strelnitski, Vladimir
2014-07-01
We investigate the possibility of maser amplification in hydrogen recombination lines from the galaxies of first generation, at z≲ 30. Combining analytical and computational approaches, we show that the transitions between the hydrogen Rydberg energy levels induced by the radiation from the ionizing star and by the (warmer than currently) cosmic microwave background can produce noticeable differences in the population distribution, as compared with previous computations for contemporary H+ regions, most of which ignored the processes induced by the ionizing star's radiation. In particular, the low (n≲ 30) α-transitions show an increased tendency towards population inversion, when ionization of the H+ region is caused by a very hot star at high redshift. The resulting maser/laser amplification can increase the brightness of the emitted lines and make them detectable. However, the limiting effects of maser saturation will probably not allow maser gains to exceed one or two orders of magnitude.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okwit, S.; Siegel, K.; Smith, J.G.
1962-09-01
Results of an investigation to determine the feasibility of incorporating superconducting magnet techniques in the design of traveling-wave maser systems are reported. Several different types of magnet configurations were investigated: isomagnets, Helmholtz coils, modified Helmholtz coils, air-core solenoids, and magnetic end-loaded air-core solenoids. The magnetic end-loaded air-core solenoid was found to be the best configuration for the S-band maser under consideration. This technique yielded relatively large regions of field homogeneity with relatively small aspect ratios (length of solenoid/diameter of solenoid). Several small-scale models of full-length superconducting magnets and foreshortened end-loaded superconducting magnets were constructed using un-annealed niobium wire. Measurements havemore » shown that these magnets were adequate for traveling-wave maser applications that require magnetic fields up to 2,200 G and marginal for magnetic fields up to 2,500 G.« less
High Precision Time Transfer in Space with a Hydrogen Maser on MIR
NASA Technical Reports Server (NTRS)
Mattison, Edward M.; Vessot, Robert F. C.
1996-01-01
An atomic hydrogen maser clock system designed for long term operation in space will be installed on the Russian space station Mir, in late 1997. The H-maser's frequency stability will be measured using pulsed laser time transfer techniques. Daily time comparisons made with a precision of better than 100 picoseconds will allow an assessment of the long term stability of the space maser at a level on the order of 1 part in 10(sup 15) or better. Laser pulse arrival times at the spacecraft will be recorded with a resolution of 10 picoseconds relative to the space clock's time scale. Cube corner reflectors will reflect the pulses back to the Earth laser station to determine the propagation delay and enable comparison with the Earth-based time scale. Data for relativistic and gravitational frequency corrections will be obtained from a Global Positioning System (GPS) receiver.
NASA Astrophysics Data System (ADS)
Durisen, Richard H.; Mejia, Annie C.; Pickett, Brian K.; Hartquist, Thomas W.
2001-12-01
Evidence suggests that some masers associated with massive protostars may originate in the outer regions of large disks, at radii of hundreds to thousands of AU from the central mass. This is particularly true for methanol (CH3OH), for which linear distributions of masers are found with disklike kinematics. In three-dimensional hydrodynamics simulations we have made to study the effects of gravitational instabilities in the outer parts of disks around young low-mass stars, the nonlinear development of the instabilities leads to a complex of intersecting spiral shocks, clumps, and arclets within the disk and to significant time-dependent, nonaxisymmetric distortions of the disk surface. A rescaling of our disk simulations to the case of a massive protostar shows that conditions in the disturbed outer disk seem conducive to the appearance of masers if it is viewed edge-on.
Fine structure of microwave spike bursts and associated cross-field energy transport
NASA Technical Reports Server (NTRS)
Winglee, R. M.; Dulk, G. A.; Pritchett, P. L.
1988-01-01
The characteristics of the maser emission from a driven system where energetic electrons continue to flow through the source region is investigated using electronic particle simulations. It is shown that, under appropriate conditions, the maser can efficiently radiate a significant portion of the energy of the fast electrons in a very short time. The radiation is emitted in pulses even though the flow of electrons through the system is at a constant rate. The mission of these pulses is proposed as the source of the fine structure. Under other conditions the dominant maser emission changes from fundamental x-mode to either fundamental z-mode or to electrostatic upper hybrid or Bernstein modes. The bulk of the emission from the maser instability cannot propagate across field lines in this regime, and hence strong local plasma heating is expected, with little energy transport across the magnetic field lines.
Excited OH 4.7 GHz masers associated with IRAS far-infrared sources
NASA Astrophysics Data System (ADS)
Masheder, M. R. W.; Cohen, R. J.; Caswell, J. L.; Walker, R. N. F.; Shepherd, M.
We describe the results of an all-sky search for maser emission from excited OH in the 2Pi(1/2), J = 1/2 state at 4765, 4750, and 4660 MHz, carried out at Jodrell Bank and at Parkes in 1989 and 1991. A total of 129 sources were observed in all including all objects from the Cohen et al. (1988) (CBJ) sample of far infrared IRAS sources with 60 micron flux, F(60) over 4000 Jy for which OH 18-cm emission was already known. A total of 18 objects were detected, including seven new discoveries and a new maser region in W49. Three of these were also detected at 4750 MHz, including the first strong 4750 MHz maser (S252). Three objects were detected at 4660 MHz, including a new discovery seen in this line only. We found strong variations in seven sources.
THE MEGAMASER COSMOLOGY PROJECT. VIII. A GEOMETRIC DISTANCE TO NGC 5765b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, F.; Zhao, W.; Braatz, J. A.
As part of the Megamaser Cosmology Project, here we present a new geometric distance measurement to the megamaser galaxy NGC 5765b. Through a series of very long baseline interferometry observations, we have confirmed the water masers trace a thin, sub-parsec Keplerian disk around the nucleus, implying an enclosed mass of 4.55 ± 0.40 × 10{sup 7} M{sub ⊙}. Meanwhile, from single-dish monitoring of the maser spectra over two years, we measured the secular drifts of maser features near the systemic velocity of the galaxy with rates between 0.5 and 1.2 km s{sup −1} yr{sup −1}. Fitting a warped, thin-disk model to these measurements, wemore » determine a Hubble Constant H{sub 0} of 66.0 ± 6.0 km s{sup −1} Mpc{sup −1} with an angular-diameter distance to NGC 5765b of 126.3 ± 11.6 Mpc. Apart from the distance measurement, we also investigate some physical properties related to the maser disk in NGC 5765b. The high-velocity features are spatially distributed into several clumps, which may indicate the existence of a spiral density wave associated with the accretion disk. For the redshifted features, the envelope defined by the peak maser intensities increases with radius. The profile of the systemic masers in NGC 5765b is smooth and shows almost no structural changes over the two years of monitoring time, which differs from the more variable case of NGC 4258.« less
DEEPLY EMBEDDED PROTOSTELLAR POPULATION IN THE 20 km s{sup −1} CLOUD OF THE CENTRAL MOLECULAR ZONE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Xing; Gu, Qiusheng; Zhang, Qizhou
2015-12-01
We report the discovery of a population of deeply embedded protostellar candidates in the 20 km s{sup −1} cloud, one of the massive molecular clouds in the Central Molecular Zone (CMZ) of the Milky Way, using interferometric submillimeter continuum and H{sub 2}O maser observations. The submillimeter continuum emission shows five 1 pc scale clumps, each of which further fragments into several 0.1 pc scale cores. We identify 17 dense cores, among which 12 are gravitationally bound. Among the 18 H{sub 2}O masers detected, 13 coincide with the cores and probably trace outflows emanating from the protostars. There are also 5more » gravitationally bound dense cores without H{sub 2}O maser detection. In total, the 13 masers and 5 cores may represent 18 protostars with spectral types later than B1 or potentially growing more massive stars at earlier evolutionary stages, given the non-detection in the centimeter radio continuum. In combination with previous studies of CH{sub 3}OH masers, we conclude that the star formation in this cloud is at an early evolutionary phase, before the presence of any significant ionizing or heating sources. Our findings indicate that star formation in this cloud may be triggered by a tidal compression as it approaches pericenter, similar to the case of G0.253+0.016 but with a higher star formation rate, and demonstrate that high angular resolution, high-sensitivity maser, and submillimeter observations are promising techniques to unveil deeply embedded star formation in the CMZ.« less
RADIO OBSERVATIONS OF THE STAR FORMATION ACTIVITIES IN THE NGC 2024 FIR 4 REGION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Minho; Kang, Miju; Lee, Jeong-Eun, E-mail: minho@kasi.re.kr
Star formation activities in the NGC 2024 FIR 4 region were studied by imaging centimeter continuum sources and water maser sources using several archival data sets from the Very Large Array. The continuum source VLA 9 is elongated in the northwest–southeast direction, consistent with the FIR 4 bipolar outflow axis, and has a flat spectrum in the 6.2–3.6 cm interval. The three water maser spots associated with FIR 4 are also distributed along the outflow axis. One of the spots is located close to VLA 9, and another one is close to an X-ray source. Examinations of the positions ofmore » compact objects in this region suggest that the FIR 4 cloud core contains a single low-mass protostar. VLA 9 is the best indicator of the protostellar position. VLA 9 may be a radio thermal jet driven by this protostar, and it is unlikely that FIR 4 contains a high-mass young stellar object (YSO). A methanol 6.7 GHz maser source is located close to VLA 9, at a distance of about 100 AU. The FIR 4 protostar must be responsible for the methanol maser action, which suggests that methanol class II masers are not necessarily excited by high-mass YSOs. Also discussed are properties of other centimeter continuum sources in the field of view and the water masers associated with FIR 6n. Some of the continuum sources are radio thermal jets, and some are magnetically active young stars.« less
A dearth of OH/IR stars in the Small Magellanic Cloud
NASA Astrophysics Data System (ADS)
Goldman, Steven R.; van Loon, Jacco Th.; Gómez, José F.; Green, James A.; Zijlstra, Albert A.; Nanni, Ambra; Imai, Hiroshi; Whitelock, Patricia A.; Groenewegen, Martin A. T.; Oliveira, Joana M.
2018-01-01
We present the results of targeted observations and a survey of 1612-, 1665- and 1667-MHz circumstellar OH maser emission from asymptotic giant branch (AGB) stars and red supergiants (RSGs) in the Small Magellanic Cloud (SMC), using the Parkes and Australia Telescope Compact Array (ATCA) radio telescopes. No clear OH maser emission has been detected in any of our observations targeting luminous, long-period, large-amplitude variable stars, which have been confirmed spectroscopically and photometrically to be mid- to late-M spectral type. These observations have probed 3-4 times deeper than any OH maser survey in the SMC. Using a bootstrapping method with Large Magellanic Cloud (LMC) and Galactic OH/IR star samples and our SMC observation upper limits, we have calculated the likelihood of not detecting maser emission in any of the two sources considered to be the top maser candidates to be less than 0.05 per cent, assuming a similar pumping mechanism as the LMC and Galactic OH/IR sources. We have performed a population comparison of the Magellanic Clouds and used Spitzer IRAC and MIPS photometry to confirm that we have observed all high luminosity SMC sources that are expected to exhibit maser emission. We suspect that, compared to the OH/IR stars in the Galaxy and LMC, the reduction in metallicity may curtail the dusty wind phase at the end of the evolution of the most massive cool stars. We also suspect that the conditions in the circumstellar envelope change beyond a simple scaling of abundances and wind speed with metallicity.
A hydrogen maser clock for space - Clocks in future possible and improbable applications
NASA Astrophysics Data System (ADS)
Vessot, Robert F. C.
The development of atomic-H maser clocks for space applications since 1967 is reviewed, with a focus on the 39-kg instrument built for a rocket-flight test of gravitational redshift in 1976. The stability of the oscillator and the instability of earth-space propagation in that test are described, and techniques for overcoming the latter effects are considered. More recent maser clocks employ an H sorption manifold rather than heavy ion pumps; their application to precise satellite position determination for space-based VLBI astronomy is discussed in detail. Extensive diagrams, drawings, and photographs are provided.
VizieR Online Data Catalog: Arcetri Catalogue of H2O Maser Sources (Brand+ 1994)
NASA Astrophysics Data System (ADS)
Brand, J.; Cesaroni, R.; Caselli, P.; Catarzi, M.; Codella, C.; Comoretto, G.; Curioni, G. P.; Curioni, P.; di, Franco S.; Felli, M.; Giovanardi, C.; Olmi, L.; Palagi, F.; Palla, F.; Panella, D.; Pareschi, G.; Rossi, E.; Speroni, N.; Tofani, G.
1993-11-01
An update is presented of the Arcetri Atlas of water masers (Comoretto et al. 1990A&AS...84..179C). It contains the results of observations of water masers with the Medicina 32-m antenna. The observed sources were all discovered in the period 1989-1993, and were found either directly in the course of our own programs or were taken from the literature in which case they were re-observed at Medicina. We give the observed parameters of 214 sources in tabular form, and present all the spectra of the 141 detections. (2 data files).
SiO Masers in Mira with ALMA Long Baselines
NASA Astrophysics Data System (ADS)
Humphreys, Elizabeth
2018-04-01
The effect of binary companions on the near-circumstellar environment of AGB stars is an open-question. Using ALMA long baseline data, we have investigated this region of Mira A using SiO emission. The data locate SiO masers with respect to the star, unlike lower frequency observations. They also indicate an impact of the binary companion on gas within about 10 Rstar of Mira A. These types of studies, using high-frequency SiO masers, can provide a new avenue for understanding the influence of binaries on AGB mass loss and envelope-shaping.
Design and industrial production of frequency standards in the USSR
NASA Technical Reports Server (NTRS)
Demidov, Nikolai A.; Uljanov, Adolph A.
1990-01-01
Some aspects of research development and production of quantum frequency standards, carried out in QUARTZ Research and Production Association (RPA), Gorky, U.S.S.R., were investigated for the last 25 to 30 years. During this period a number of rubidium and hydrogen frequency standards, based on the active maser, were developed and put into production. The first industrial model of a passive hydrogen maser was designed in the last years. Besides frequency standards for a wide application range, RPA QUARTZ investigates metrological frequency standards--cesium standards with cavity length 1.9 m and hydrogen masers with a flexible storage bulb.
The Zeeman Effect in the 44 GHz Class I Methanol Maser Line toward DR21(OH)
NASA Astrophysics Data System (ADS)
Momjian, E.; Sarma, A. P.
2017-01-01
We report detection of the Zeeman effect in the 44 GHz Class I methanol maser line, toward the star-forming region DR21(OH). In a 219 Jy beam-1 maser centered at an LSR velocity of 0.83 km s-1, we find a 20-σ detection of zBlos = 53.5 ± 2.7 Hz. If 44 GHz methanol masers are excited at n ˜ 107-8 cm-3, then the B versus n1/2 relation would imply, from comparison with Zeeman effect detections in the CN(1 - 0) line toward DR21(OH), that magnetic fields traced by 44 GHz methanol masers in DR21(OH) should be ˜10 mG. Combined with our detected zBlos = 53.5 Hz, this would imply that the value of the 44 GHz methanol Zeeman splitting factor z is ˜5 Hz mG-1. Such small values of z would not be a surprise, as the methanol molecule is non-paramagnetic, like H2O. Empirical attempts to determine z, as demonstrated, are important because there currently are no laboratory measurements or theoretically calculated values of z for the 44 GHz CH3OH transition. Data from observations of a larger number of sources are needed to make such empirical determinations robust.
Long-Term Monitoring of Molecular Masers in IRAS 18566+0408
NASA Astrophysics Data System (ADS)
Halbe, Daniel Michael; Araya, Esteban; Hofner, Peter; Linz, Hendrik; Olmi, Luca; Kurtz, Stan
2016-01-01
We report results of a long-term monitoring study of 6 cm formaldehyde (H2CO),6.035 GHz hydroxyl (OH), and 6.7 GHz methanol (CH3OH) masers in the young high-mass protostellar object IRAS 18566+0408 (G37.55+0.20). This is the only high-mass star forming region where correlated variability of three different maser species has been reported. The observations were conducted with the 305m Arecibo Radio Telescope and the Very Large Array. Together with data from the literature, we present H2CO flux density measurements from 2002 to 2014, CH3OH data from 2006 to 2015, and OH observations from 2008 to 2015. Our extended monitoring observations of the H2CO maser agree with quasi-periodic variability and exponential flux density decrease during the quiescent and flare states as proposed by Araya and collaborators in 2010. We also confirm the occurrence of 6.035 GHz OH flares and a time delay with respect to the H2CO flares (first reported by Al-Marzouk and collaborators in 2012). An analysis of the variability behavior of different CH3OH velocity components and the H2CO maser suggests that multiple variability mechanisms may be responsible for the CH3OH flux density changes.
IRAS 18113-2503: THE WATER FOUNTAIN WITH THE FASTEST JET?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez, Jose F.; Guerrero, MartIn A.; Ricardo Rizzo, J.
2011-09-20
We present Expanded Very Large Array water maser observations at 22 GHz toward the source IRAS 18113-2503. Maser components span over a very high velocity range of {approx_equal} 500 km s{sup -1}, the second largest found in a Galactic maser, only surpassed by the high-mass star-forming region W49N. Maser components are grouped into a blueshifted and a redshifted cluster, separated by 0.''12. Further mid-IR and radio data suggest that IRAS 18113-2503 is a post-asymptotic giant branch star, thus a new bona fide member of the rare class of 'water fountains' (WFs). It is the evolved object with the largest totalmore » velocity spread in its water masers and with the highest velocity dispersion within its redshifted and blueshifted lobes ({approx_equal} 170 km s{sup -1}). The large total velocity range of emission probably indicates that IRAS 18113-2503 has the fastest jet among the known WF stars. On the other hand, the remarkably high velocity dispersion within each lobe may be interpreted in terms of shocks produced by an episode of mass ejection whose velocity increased up to very high values or, alternatively, by projection effects in a jet with a large opening angle and/or precessing motions.« less
Water in Massive protostellar objects: first detection of THz water maser and water inner abundance.
NASA Astrophysics Data System (ADS)
Herpin, Fabrice
2014-10-01
The formation massive stars is still not well understood. Despite numerous water line observations with Herschel telescope, over a broad range of energies, in most of the observed sources the WISH-KP (Water In Star-forming regions with Herschel, Co-PI: F. Herpin) observations were not able to trace the emission from the hot core. Moreover, water maser model predict that several THz water maser should be detectable in these objects. We aim to detect for the first time the THz maser lines o-H2O 8(2,7)- 7(3,4) at 1296.41106 GHz and p-H2O 7(2,6)- 6(3,3) at 1440.78167 GHz as predicted by the model. We propose two sources for a northern flight as first priority and two other sources for a possible southern flight. This will 1) constrain the maser theory, 2) constrain the physical conditions and water abundance in the inner layers of the prostellar environnement. In addition, we will use the p-H2O 3(3,1)- 4(0,4) thermal line at 1893.68651 GHz (L2 channel) in order to probe the physical conditions and water abundance in the inner layers of the prostellar objects where HIFI-Herschel has partially failed.
SiO Maser Emission in S Per - The Movie
NASA Astrophysics Data System (ADS)
Ostrowski-Fukuda, T. A.; Stencel, R. E.; Kemball, A.; Diamond, P. J.
2002-05-01
The Very Long Baseline Array (VLBA) has been used to monitor the 43-GHz SiO (v=1, J=1-0) maser emission in the supergiant star S Persei monthly since 1999. SiO masers act as probes of the gas motions and magnetic fields of this star allowing us to investigate its extended atmosphere. Here we report the continuing results of this on-going project. Many epochs of data have been reduced and pieced together in a time-lapse movie fashion, allowing us to follow the motions of the individual maser regions. The trajectories and velocities of the SiO masers are investigated. Our findings from S Per are compared to TX Cam, which has been studied in the same fashion. We are most interested in learning out about the structure, time evolution, mass-loss process, magnetic field structure, and the physical conditions in the inner regions of these types of stars. Just as in the case of TX Cam, we have found that our images reveal that the mass loss may not be the same for all regions of the star's surface. This work is supported by the Menzel Scholarship Fund at the University of Denver, and in conjunction with the National Radio Astronomy Observatory, Socorro, NM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockett, P.B.
1989-01-01
The escape probability formalism is used in this dissertation to treat two problems in astrophysical radiative transfer. The first problem concerns line overlap, which occurs when two or more spectral lines lie close enough together that there is a significant probability that a photon emitted in one of the lines can be absorbed in another. The second problem involves creating a detailed model of the masers around the supergiant star, VX Sgr. The author has developed an escape probability procedure that accounts for the effects of line overlap by integrating the amount of absorption in each of the overlapping lines.more » This method was used to test the accuracy of a simpler escape probability formalism developed by Elitzur and Netzer that utilized rectangular line profiles. Good agreement between the two methods was found for a wide range of physical conditions. The more accurate method was also used to examine the effects of line overlap of the far infrared lines of the OH molecule. This overlap did have important effects on the level populations and could cause maser emission. He has also developed a detailed model of the OH 1612 and water masers around VX Sgr. He found that the masers can be adequately explained using reasonable estimates for the physical parameters. He also was able to provide a tighter constraint on the highly uncertain mass loss rate from the star. He had less success modeling the SiO masers. His explanation will require a more exact method of treating the many levels involved and also a more accurate knowledge of the relevant physical input parameters.« less
Magnetic Fields in Evolved Stars: Imaging the Polarized Emission of High-frequency SiO Masers
NASA Astrophysics Data System (ADS)
Vlemmings, W. H. T.; Humphreys, E. M. L.; Franco-Hernández, R.
2011-02-01
We present Submillimeter Array observations of high-frequency SiO masers around the supergiant VX Sgr and the semi-regular variable star W Hya. The J = 5-4, v = 128SiO and v = 029SiO masers of VX Sgr are shown to be highly linearly polarized with a polarization from ~5% to 60%. Assuming the continuum emission peaks at the stellar position, the masers are found within ~60 mas of the star, corresponding to ~100 AU at a distance of 1.57 kpc. The linear polarization vectors are consistent with a large-scale magnetic field, with position and inclination angles similar to that of the dipole magnetic field inferred in the H2O and OH maser regions at much larger distances from the star. We thus show for the first time that the magnetic field structure in a circumstellar envelope can remain stable from a few stellar radii out to ~1400 AU. This provides further evidence supporting the existence of large-scale and dynamically important magnetic fields around evolved stars. Due to a lack of parallactic angle coverage, the linear polarization of masers around W Hya could not be determined. For both stars, we observed the 28SiO and 29SiO isotopologues and find that they have a markedly different distributions and that they appear to avoid each other. Additionally, emission from the SO 55-44 line was imaged for both sources. Around W Hya, we find a clear offset between the red- and blueshifted SO emission. This indicates that W Hya is likely host to a slow bipolar outflow or a rotating disk-like structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockett, P.B.
1989-01-01
The escape probability formalism is used to treat two problems in astrophysical radiative transfer. The first problem concerns line overlap, which occurs when two or more spectral lines lie close enough together that there is a significant probability that a photon emitted in one of the lines can be absorbed in another. The second problem involved creating a detailed model of the masers around the supergiant star, VX Sgr. An escape probability procedure was developed that accounts for the effects of line overlap by integrating the amount of absorption in each of the overlapping lines. This method was used tomore » test the accuracy of a simpler escape probability formalism developed by Elitzur and Netzer that utilized rectangular line profiles. Good agreement between the two methods was found for a wide range of physical conditions. The more accurate method was also used to examine the effects of line overlap of the far infrared lines of the OH molecule. This overlap did have important effects on the level populations and could cause maser emission. A detailed model of the OH 1612 and water masers around VX Sgr were also developed. The masers can be adequately explained using reasonable estimates for the physical parameters. It is possible to provide a tighter constraint on the highly uncertain mass loss rate from the star. Modeling the SiO masers was less successful. Their explanation will require a more exact method of treating the many levels involved and also a more accurate knowledge of the relevant physical input parameters.« less
NASA Astrophysics Data System (ADS)
Zhang, B.; Reid, M. J.; Menten, K. M.; Zheng, X. W.
2012-01-01
We report astrometric results of phase-referencing very long baseline interferometry observations of 43 GHz SiO maser emission toward the red hypergiant VY Canis Majoris (VY CMa) using the Very Long Baseline Array (VLBA). We measured a trigonometric parallax of 0.83 ± 0.08 mas, corresponding to a distance of 1.20+0.13 -0.10 kpc. Compared to previous studies, the spatial distribution of SiO masers has changed dramatically, while its total extent remains similar. The internal motions of the maser spots are up to 1.4 mas yr-1, corresponding to 8 km s-1, and show a tendency for expansion. After modeling the expansion of maser spots, we derived an absolute proper motion for the central star of μ x = -2.8 ± 0.2 and μ y = 2.6 ± 0.2 mas yr-1 eastward and northward, respectively. Based on the maser distribution from the VLBA observations, and the relative position between the radio photosphere and the SiO maser emission at 43 GHz from the complementary Very Large Array observations, we estimate the absolute position of VY CMa at mean epoch 2006.53 to be αJ2000 = 07h22m58.s3259 ± 0.s0007, δJ2000 = -25°46'03farcs063 ± 0farcs010. The position and proper motion of VY CMa from the VLBA observations differ significantly with values measured by the Hipparcos satellite. These discrepancies are most likely associated with inhomogeneities and dust scattering the optical light in the circumstellar envelope. The absolute proper motion measured with VLBA suggests that VY CMa may be drifting out of the giant molecular cloud to the east of it.
Masers in Disks due to Gravitational Instabilities
NASA Astrophysics Data System (ADS)
Mejia, A. C.; Durisen, R. H.; Pickett, B. K.; Hartquist, T. W.
2001-12-01
Evidence suggests that some masers associated with massive protostars may originate in the outer regions of large circumstellar disks, at radii of 100's to 1000's of AU from the central mass. This is particularly true for methanol (CH3OH), where linear distributions of masers are found with disk-like kinematics. In 3D hydrodynamics simulations we have made to study the effects of gravitational instabilities in the outer parts of disks around young low-mass stars, the nonlinear development of the instabilities leads to a complex of intersecting spiral shocks, clumps, and arclets within the disk and to significant time-dependent, nonaxisymmetric distortions of the disk surface. A rescaling of our disk simulations to the case of a massive protostar shows that conditions in the disturbed outer disk seem conducive to the appearance of masers if it is viewed edge-on. This work was supported by NASA Origins Program Grant NAGW5-4342, by the Alexander von Humboldt Foundation, and by NASA Planetary Geology and Geophysics Program Grant NAG5-10262.
Dust Grains and the Luminosity of Circumnuclear Water Masers in Active Galaxies
NASA Technical Reports Server (NTRS)
Collison, Alan J.; Watson, William D.
1995-01-01
In previous calculations for the luminosities of 22 GHz water masers, the pumping is reduced and ultimately quenched with increasing depth into the gas because of trapping of the infrared (approximately equals 30-150 micrometers), spectral line radiation of the water molecule. When the absorption (and reemission) of infrared radiation by dust grains is included, we demonstrate that the pumping is no longer quenched but remains constant with increasing optical depth. A temperature difference between the grains and the gas is required. Such conditions are expected to occur, for example, in the circumnuclear masing environments created by X-rays in active galaxies. Here, the calculated 22 GHz maser luminosities are increased by more than an order of magnitude. Application to the well-studied, circumnuclear masing disk in the galaxy NGC 4258 yields a maser luminosity near that inferred from observations if the observed X-ray flux is assumed to be incident onto only the inner surface of the disk.
Cryogenic, low-noise high electron mobility transistor amplifiers for the Deep Space Network
NASA Technical Reports Server (NTRS)
Bautista, J. J.
1993-01-01
The rapid advances recently achieved by cryogenically cooled high electron mobility transistor (HEMT) low-noise amplifiers (LNA's) in the 1- to 10-GHz range are making them extremely competitive with maser amplifiers. In order to address future spacecraft navigation, telemetry, radar, and radio science needs, the Deep Space Network is investing both maser and HEMT amplifiers for its Ka-band (32-GHz) downlink capability. This article describes the current state cryogenic HEMT LNA development at Ka-band for the DSN. Noise performance results at S-band (2.3 GHz) and X-band (8.5 GHz) for HEMT's and masers are included for completeness.
Radio Imaging of Envelopes of Evolved Stars
NASA Astrophysics Data System (ADS)
Cotton, Bill
2018-04-01
This talk will cover imaging of stellar envelopes using radio VLBI techniques; special attention will be paid to the technical differences between radio and optical/IR interferomery. Radio heterodyne receivers allow a straightforward way to derive spectral cubes and full polarization observations. Milliarcsecond resolution of very bright, i.e. non thermal, emission of molecular masers in the envelopes of evolved stars can be achieved using VLBI techniques with baselines of thousands of km. Emission from SiO, H2O and OH masers are commonly seen at increasing distance from the photosphere. The very narrow maser lines allow accurate measurements of the velocity field within the emitting region.
Beam maser measurements of CH3OH rotational transitions
NASA Technical Reports Server (NTRS)
Gaines, L.; Casleton, K. H.; Kukolich, S. G.
1974-01-01
Precise measurements of rotational transitions in methanol are reported that were made by means of beam maser spectrometers. No hyperfine structure was resolved at a resonance line width of 8 kHz. Accurate center frequencies for the transitions measured are useful for determining Doppler shifts for observed interstellar lines.
The importance of plasma effects on electron-cyclotron maser-emission from flaring loops
NASA Technical Reports Server (NTRS)
Sharma, R. R.; Vlahos, L.; Papadopoulos, K.
1982-01-01
Electron cyclotron maser instability has been suggested as the cause of the observed short (10-20 msec), intense (an approximate brightness temperature of 10 to the 15th K) and up to 100% polarized microwave solar emission. It is shown that plasma effects and thermal cyclotron damping, ignored in previous theories, play an important role in controlling the frequency range of the emission. The radio emission is suppressed for ratios of the plasma frequency to the cyclotron frequency smaller than 0.4. An examination of the cyclotron damping, reveals that the maser action is suppressed unless a large fraction (i.e., over 10%) of the accelerated electrons participates in the emission process.
The Zeeman effect or linear birefringence? VLA polarimetric spectral line observations of H2O masers
NASA Astrophysics Data System (ADS)
Zhao, Jun-Hui; Goss, W. M.; Diamond, P.
We present line profiles of the four Stokes parameters of H2O masers at 22 GHz observed with the VLA in full polarimetric spectral line mode. With careful calibration, the instrumental effects such as linear leakage and the difference of antenna gain between RCP and LCP, can be minimized. Our measurements show a few percent linear polarization. Weak circular polarization was detected at a level of 0.1 percent of the peak intensity. A large uncertainty in the measurements of weak circular polarization is caused by telescope pointing errors. The observed polarization of H2O masers can be interpreted as either the Zeeman effect or linear birefringence.
Infrared pumping processes for SiO masers. [in interstellar space
NASA Technical Reports Server (NTRS)
Geballe, T. R.; Townes, C. H.
1974-01-01
The J = 2 to 1 transition of the first excited vibrational state (v = 1) Si(28)O(16) has recently been shown to produce maser amplification near 86,245 MHz in Orion A and in several stars. Two possible pumping mechanisms are proposed for such masers. One involves the near coincidence between the frequencies of the 1-0 (RO) and 3-2 (R18) transitions in Si(28)O(16). The other requires emission by SiO and reabsorption without the necessity for an accidental frequency coincidence. Each of these types of mechanisms may occur for other transitions of molecules in a medium illuminated by intense infrared radiation, or with strong temperature gradients.
NASA Technical Reports Server (NTRS)
Eichinger, R. A.; Dachel, P.; Miller, W. H.; Ingold, J. S.
1982-01-01
Extremely low noise, high performance, wideband buffer amplifiers and buffered phase comparators were developed. These buffer amplifiers are designed to distribute reference frequencies from 30 KHz to 45 MHz from a hydrogen maser without degrading the hydrogen maser's performance. The buffered phase comparators are designed to intercompare the phase of state of the art hydrogen masers without adding any significant measurement system noise. These devices have a 27 femtosecond phase stability floor and are stable to better than one picosecond for long periods of time. Their temperature coefficient is less than one picosecond per degree C, and they have shown virtually no voltage coefficients.
IR and SiO Maser Observations of Miras
NASA Astrophysics Data System (ADS)
Cotton, W. D.; Mennesson, B.; Diamond, P. J.; Perrin, G.; Coudé du Foresto, V.; Chagnon, G.; van Langevelde, H. J.; Ridgway, S.; Waters, R.; Vlemmings, W.; Morel, S.; Traub, W.; Carleton, N.; Lacasse, M.
2005-12-01
Preliminary results of a coordinated program of near IR and SiO maser interferometric observations of Mira variables are reported. The 2.2 and 3.6 micron results are from the FLUOR/TISIS beam combiners on the IOTA interferometer and the SiO maser observations from the VLBA. The ratio of the SiO ring diameter to the apparent diameter at 2.2 microns for stars in our sample cluster around 2, whereas the 3.6 micron diameters range from slightly larger than the 2.2 micron diameter to approximately the SiO ring diameter. This may be due to differences in the opacity of the molecular envelope at 3.6 microns.
Dynamics of High Temperature Plasmas.
1985-10-01
25 VI. > LASER BEAT WAVE PARTICLE ACCELERATION-.. ..... .. 27 ,, VII. ORBITRON MASER DESIGN .. ..... ............. 30 0 VIIM> ELECTRON BEAM STABILITY...IN THE MODIFIED BETATRON .... ............ 32 IX. * RELATIVISTIC ELECTRON BEAM DIODE DESIGN . . . . 35 X. FREE ELECTRON LASER APPLICATION TO XUV...Accelerators (B), VI. Laser Beat Wave Particle Acceleration, VII. Orbitron Maser Design , VIII. Electron Beam Stability in the Modified Betatron, IX
Exploring the engines of molecular outflows
NASA Astrophysics Data System (ADS)
Testi, Leonardo
1995-03-01
Water vapour masers and CO outflows are well known to be associated with the youngest phases of evolution of massive stellar objects. Nevertheless, up to now there is a lack of high resolution multiwavelength study of the regions containing these objects. Using the VLA, the CSO and the TIRGO equipped with the new Near-Infrared (NIR) camera ARNICA, we have begun a systematic study of water maser/CO outflow regions. These new high resolution and high sensitivity data have proved to be very useful in probing the star formation activity and the connection between infrared and radio sources. Here we report the results obtained in a preliminary sub- sample of objects. The NIR data showed that both the maser spots and the large- scale outflows tend to be associated to the most embedded and probably younger sources of the infrared clusters. Infrared emission lines observed with narrow band filters show the presence of jet-like structures in most of the sources observed. Water masers, jet-like and Herbig-Haro-like infrared structures, and CO outflows enable to probe ejection phenomena at all spacial scales ranging from 0.01 to 1 parsec.
Measuring the Accelerations of Water Megamasers in Active Galaxy J0437+2456
NASA Astrophysics Data System (ADS)
Turner, Jeremy; Jeremy Turner
2018-01-01
The Megamaser Cosmology Project is measuring the Hubble constant using observations of 22 GHz water megamasers in the accretion disks of active galaxies within the Hubble flow. This approach uses the dynamics of the megamaser disks to determine their physical sizes and thereby find the angular-diameter distances to galaxies without relying on the cosmic distance ladder. We present Green Bank Telescope observations and analysis of the maser disk in the galaxy J0437+2456, which encircles a 2.9×106 M⊙ supermassive black hole. With spectral monitoring observations spanning over four years, we measure the centripetal acceleration of each individual maser component by tracking its velocity drift over time. These accelerations will be used in later work to model the maser disk and determine the distance to the galaxy. Our acceleration measurements use an iterative least squares fitting technique. For the systemic maser features, we find a mean acceleration of 1.87 ± 0.47 km/s/yr. This project was completed as part of the NSF REU program at NRAO.
On the Relation of Silicates and SiO Maser in Evolved Stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jiaming; Jiang, Biwei, E-mail: bjiang@bnu.edu.cn
2017-04-01
The SiO molecule is one of the candidates for the seed of silicate dust in the circumstellar envelope of evolved stars, but this opinion is challenged. In this work we investigate the relation of the SiO maser emission power and the silicate dust emission power. With both our own observation by using the PMO/Delingha 13.7 m telescope and archive data, a sample is assembled of 21 SiO v = 1, J = 2 − 1 sources and 28 SiO v = 1, J = 1 − 0 sources that exhibit silicate emission features in the ISO /SWS spectrum as well. The analysis of their SiO maser and silicatemore » emission power indicates a clear correlation, which is not against the hypothesis that the SiO molecules are the seed nuclei of silicate dust. On the other hand, no correlation is found between SiO maser and silicate crystallinity, which may imply that silicate crystallinity does not correlate with mass-loss rate.« less
Spin-lattice relaxation and the calculation of gain, pump power, and noise temperature in ruby
NASA Technical Reports Server (NTRS)
Lyons, J. R.
1989-01-01
The use of a quantitative analysis of the dominant source of relaxation in ruby spin systems to make predictions of key maser amplifier parameters is described. The spin-lattice Hamiltonian which describes the interaction of the electron spins with the thermal vibrations of the surrounding lattice is obtained from the literature. Taking into account the vibrational anisotropy of ruby, Fermi's rule is used to calculate the spin transition rates between the maser energy levels. The spin population rate equations are solved for the spin transition relaxation times, and a comparison with previous calculations is made. Predictions of ruby gain, inversion ratio, and noise temperature as a function of physical temperature are made for 8.4-GHz and 32-GHz maser pumping schemes. The theory predicts that ruby oriented at 90 deg will have approximately 50 percent higher gain in dB and slightly lower noise temperature than a 54.7-deg ruby at 32 GHz (assuming pump saturation). A specific calculation relating pump power to inversion ratio is given for a single channel of the 32-GHz reflected wave maser.
DOE R&D Accomplishments Database
Shimoda, K.; Wang, T. C.; Townes, C. H.
1956-03-01
The theory of the molecular transitions which are induced by the microwave field in a maser and the effects of various design parameters are examined in detail. It is shown that the theoretical minimum detectable beam intensity when the maser is used as a spectrometer for the 3-3 line of ammonia is about 10{sup 9} molecules/sec under typical experimental conditions. Various systematic frequency shifts and random frequency fluctuations of the maser oscillator are discussed and evaluated. The most prominent of the former are the "frequency-pulling" effect which arises from detuning of the cavity and the Doppler shift due to the asymmetrical coupling of the beam with the two travelling wave components of the standing waves which are set up in the cavity. These two effects may produce fractional shifts as large as one part in 10{sup 9}. If adequate precautions are taken, however, they can be reduced to one part in 10{sup 10} or possibly less. The random fluctuations are shown to be of the order of one part in 10{sup 13} under typical operating conditions. For molecular beams in which the electric-dipole transition is used the TM{sub 010} mode is usually the most suitable for the maser which atomic beams in which magnetic transitions are utilized, the TE{sub 011} mode is to be preferred.
SOFIA/GREAT Discovery of Terahertz Water Masers
NASA Astrophysics Data System (ADS)
Neufeld, David A.; Melnick, Gary J.; Kaufman, Michael J.; Wiesemeyer, Helmut; Güsten, Rolf; Kraus, Alex; Menten, Karl M.; Ricken, Oliver; Faure, Alexandre
2017-07-01
We report the discovery of water maser emission at frequencies above 1 THz. Using the GREAT instrument on SOFIA, we have detected emission in the 1.296411 THz {8}27-{7}34 transition of water toward three oxygen-rich evolved stars: W Hya, U Her, and VY CMa. An upper limit on the 1.296 THz line flux was obtained toward R Aql. Near-simultaneous observations of the 22.23508 GHz {6}16-{5}23 water maser transition were carried out toward all four sources using the Effelsberg 100 m telescope. The measured line fluxes imply 22 GHz/1.296 THz photon luminosity ratios of 0.012, 0.12, and 0.83, respectively, for W Hya, U Her, and VY CMa, values that confirm the 22 GHz maser transition to be unsaturated in W Hya and U Her. We also detected the 1.884888 THz {8}45-{7}52 transition toward W Hya and VY CMa, and the 1.278266 THz {7}43-{6}52 transition toward VY CMa. Like the 22 GHz maser transition, all three of the THz emission lines detected here originate from the ortho-H2O spin isomer. Based upon a model for the circumstellar envelope of W Hya, we estimate that stimulated emission is responsible for ˜85% of the observed 1.296 THz line emission, and thus that this transition may be properly described as a terahertz-frequency maser. In the case of the 1.885 THz transition, by contrast, our W Hya model indicates that the observed emission is dominated by spontaneous radiative decay, even though a population inversion exists. GREAT is a development by the MPI für Radioastronomie and the KOSMA/Universität zu Köln, in cooperation with the MPI für Sonnensystemforschung and the DLR Institut für Planetenforschung.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, B.; Reid, M. J.; Menten, K. M.
2012-01-01
We report astrometric results of phase-referencing very long baseline interferometry observations of 43 GHz SiO maser emission toward the red hypergiant VY Canis Majoris (VY CMa) using the Very Long Baseline Array (VLBA). We measured a trigonometric parallax of 0.83 {+-} 0.08 mas, corresponding to a distance of 1.20{sup +0.13}{sub -0.10} kpc. Compared to previous studies, the spatial distribution of SiO masers has changed dramatically, while its total extent remains similar. The internal motions of the maser spots are up to 1.4 mas yr{sup -1}, corresponding to 8 km s{sup -1}, and show a tendency for expansion. After modeling themore » expansion of maser spots, we derived an absolute proper motion for the central star of {mu}{sub x} = -2.8 {+-} 0.2 and {mu}{sub y} = 2.6 {+-} 0.2 mas yr{sup -1} eastward and northward, respectively. Based on the maser distribution from the VLBA observations, and the relative position between the radio photosphere and the SiO maser emission at 43 GHz from the complementary Very Large Array observations, we estimate the absolute position of VY CMa at mean epoch 2006.53 to be {alpha}{sub J2000} = 07{sup h}22{sup m}58.{sup s}3259 {+-} 0.{sup s}0007, {delta}{sub J2000} = -25 Degree-Sign 46'03.''063 {+-} 0.''010. The position and proper motion of VY CMa from the VLBA observations differ significantly with values measured by the Hipparcos satellite. These discrepancies are most likely associated with inhomogeneities and dust scattering the optical light in the circumstellar envelope. The absolute proper motion measured with VLBA suggests that VY CMa may be drifting out of the giant molecular cloud to the east of it.« less
H2O masers and protoplanetary disk dynamics in IC 1396 N
NASA Astrophysics Data System (ADS)
Bayandina, O. S.; Val'tts, I. E.; Kurtz, S. E.; Rudnitskij, G. M.; Alakoz, A. V.
2017-06-01
We report H2O maser line observations of the bright-rimmed globule IC 1396 N using a ground-space interferometer with the 10-m RadioAstron radio telescope as the space-based element. The source was not detected on projected baselines >2.3. Earth diameters, which indicates a lower limit on the maser size of L > 0.03 AU and an upper limit on the brightness temperature of 6.25 × 1012 K. Fringe-rate maps are prepared based on data from ground-ground baselines. Positions, velocities and flux densities of maser spots were determined. Multiple low-velocity features from -4.5 km/s to +0.7 km/s are seen, and two high-velocity features of V LSR = -9.4 km/s and V LSR = +4.4 km/s are found at projected distances of 157 AU and 70 AU, respectively, from the strongest low-velocity feature at V LSR = +0.3 km/s. Maser components from the central part of the spectrum fall into four velocity groups but into three spatial groups. Three spatial groups of low-velocity features detected in the 2014 observations are arranged in a linear structure about 200 AU in length. Two of these groups were not detected in 1996 and possibly are jets which formed between 1996 and 2014. The putative jet seems to have changed direction in 18 years, which we explain by the precession of the jet under the influence of the gravity of material surrounding the globule. The jet collimation can be provided by a circumstellar protoplanetary disk. There is a straight line orientation in the " V LSR-Right Ascension" diagram between the jet and the maser group at V LSR = +0.3 km/s. However, the central group with the same position but at the velocity V LSR -3.4 km/s falls on a straight line between two high-velocity components detected in 2014. Comparison of the low-velocity positions from 2014 and 1996, based on the same V LSR-Right Ascension diagram for low-velocity features, shows that the majority of the masers maintain their positions near the central velocity V LSR = 0.3 km/s during the 18 year period.
Physico-Chemical Research on the Sounding Rocket Maser 13
NASA Astrophysics Data System (ADS)
Lockowandt, Christian; Kemi, Stig; Abrahamsson, Mattias; Florin, Gunnar
MASER is a sounding rocket platform for short-duration microgravity experiments, providing the scientific community with an excellent microgravity tool. The MASER programme has been running by SSC from 1987 and has up to 2012 provided twelve successful flights for microgravity missions with 6-7 minutes of microgravity, the g-level is normally below 1x10-5 g. The MASER 13 is planned to be launched in spring 2015 from Esrange Space Center in Northern Sweden. The rocket will carry four ESA financed experiment modules. The MASER 13 vehicle will be propelled by the 2-stage solid fuel VSB-30 rocket motor, which provided the 390 kg payload with an apogee of 260 km and 6 and a half minutes of microgravity. Swedish Space Corporation carries out the MASER missions for ESA and the program is also available for other customers. The payload comprise four different experiment modules of which three could be defined as physic-chemical research; XRMON-SOL, CDIC-3, MEDI. It also comprises the Maser Service Module and the recovery system. The Service Module provided real-time 5 Mbps down-link of compressed experiment digital video data from the on-board cameras, as well as high-speed housekeeping telemetry data. XRMON-SOL In this experiment the influence of gravity on the formation of an equiaxed microstructure will be investigated. Special attention will be put on the aspect of nucleation, segregation and impingement. The experiment scope is to melt and solidify an AlCu-alloy sample in microgravity. The solidification will be performed in an isothermal environment. The solidification process will be monitored and recorded with X-ray image during the whole flight, images will also be down-linked to ground for real-time monitoring and possible interaction. CDIC-3 The goal is to study in migrogravity the spatio-temporal dynamics of a chemical front travelling in a thin solution layer open to the air and specifically the respective role of Marangoni and density-related hydrodynamic instabilities. The model reaction is the autocatalytic iodate oxidation of arsenous acid, where surface tension changes due to the change in composition. The experiment will be performed by injecting the fluids into an experiment cell and the reaction will be triggered by an electrical pulse. The chemical reaction front and the dynamics of the liquid will be monitored by different optical systems. MEDI The general objective of the investigation is to improve the understanding of the physical phenomena that govern the formation of the columnar-to-equiaxed transition (CET) in alloy solidification and its consequences for casting soundness. In the frame of the experiment MEDI on MASER 13 the goal is to investigate the formation of an equiaxed microstructure under low gravity conditions.
NASA Astrophysics Data System (ADS)
Issaoun, S.; Goddi, C.; Matthews, L. D.; Greenhill, L. J.; Gray, M. D.; Humphreys, E. M. L.; Chandler, C. J.; Krumholz, M.; Falcke, H.
2017-10-01
Context. High-mass star formation remains poorly understood due to observational difficulties (e.g. high dust extinction and large distances) hindering the resolution of disk-accretion and outflow-launching regions. Aims: Orion Source I is the closest known massive young stellar object (YSO) and exceptionally powers vibrationally-excited SiO masers at radii within 100 AU, providing a unique probe of gas dynamics and energetics. We seek to observe and image these masers with Very Long Baseline Interferometry (VLBI). Methods: We present the first images of the 28SiO v = 1, J = 2-1 maser emission around Orion Source I observed at 86 GHz (λ3 mm) with the Very Long Baseline Array (VLBA). These images have high spatial ( 0.3 mas) and spectral ( 0.054 km s-1) resolutions. Results: We find that the λ3 mm masers lie in an X-shaped locus consisting of four arms, with blue-shifted emission in the south and east arms and red-shifted emission in the north and west arms. Comparisons with previous images of the 28SiO v = 1,2, J = 1-0 transitions at λ7 mm (observed in 2001-2002) show that the bulk of the J = 2-1 transition emission follows the streamlines of the J = 1-0 emission and exhibits an overall velocity gradient consistent with the gradient at λ7 mm. While there is spatial overlap between the λ3 mm and λ7 mm transitions, the λ3 mm emission, on average, lies at larger projected distances from Source I ( 44 AU compared with 35 AU for λ7 mm). The spatial overlap between the v = 1, J = 1-0 and J = 2-1 transitions is suggestive of a range of temperatures and densities where physical conditions are favorable for both transitions of a same vibrational state. However, the observed spatial offset between the bulk of emission at λ3 mm and λ7 mm possibly indicates different ranges of temperatures and densities for optimal excitation of the masers. We discuss different maser pumping models that may explain the observed offset. Conclusions: We interpret the λ3 mm and λ7 mm masers as being part of a single wide-angle outflow arising from the surface of an edge-on disk rotating about a northeast-southwest axis, with a continuous velocity gradient indicative of differential rotation consistent with a Keplerian profile in a high-mass proto-binary. The reduced spectral cube (FITS format) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A126
Widespread HCN maser emission in carbon-rich evolved stars
NASA Astrophysics Data System (ADS)
Menten, K. M.; Wyrowski, F.; Keller, D.; Kamiński, T.
2018-05-01
Context. HCN is a major constituent of the circumstellar envelopes of carbon-rich evolved stars, and rotational lines from within its vibrationally excited states probe parts of these regions closest to the stellar surface. A number of such lines are known to show maser action. Historically, in one of them, the 177 GHz J = 2 → 1 line in the l-doubled bending mode has been found to show relatively strong maser action, with results only published for a single object, the archetypical high-mass loss asymptotic giant branch (AGB) star IRC+10216. Aims: To examine how common 177 GHz HCN maser emission is, we conducted an exploratory survey for this line toward a select sample of carbon-rich asymptotic giant branch stars that are observable from the southern hemisphere. Methods: We used the Atacama Pathfinder Experiment 12 meter submillimeter Telescope (APEX) equipped with a new receiver to simultaneously observe three J = 2 → 1 HCN rotational transitions, the (0, 11c, 0) and (0, 11d, 0) l-doublet components, and the line from the (0,0,0) ground state. Results: The (0, 11c, 0) maser line is detected toward 11 of 13 observed sources, which all show emission in the (0,0,0) transition. In most of the sources, the peak intensity of the (0, 11c, 0) line rivals that of the (0,0,0) line; in two sources, it is even stronger. Except for the object with the highest mass-loss rate, IRC+10216, the (0, 11c, 0) line covers a smaller velocity range than the (0,0,0) line. The (0, 11d, 0) line, which is detected in four of the sources, is much weaker than the other two lines and covers a velocity range that is smaller yet, again except for IRC+10216. Compared to its first detection in 1989, the profile of the (0, 11c, 0) line observed toward IRC+10216 looks very different, and we also appear to see variability in the (0,0,0) line profile (at a much lower degree). Our limited information on temporal variabilitydisfavors a strong correlation of maser and stellar continuum flux. Conclusions: Maser emission in the 177 GHz J = 2 → 1 (0, 11c, 0) line of HCN appears to be common in carbon-rich AGB stars. Like for other vibrationally excited HCN lines, our observations indicate that the origin of these lines is in the acceleration zone of the stellar outflow in which dust is forming. For all the stars toward which we detect the maser line, the number of photons available at 7 and 14 μm, corresponding to transitions to vibrationally excited states possibly involved in its pumping, is found to be far greater than that of the maser photons, which makes radiative pumping feasible. Other findings point to a collisional pumping scheme, however. The reduced spectra (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/613/A49
A dual-cavity ruby maser for the Ka-band link experiment
NASA Technical Reports Server (NTRS)
Shell, J.; Quinn, R. B.
1994-01-01
A 33.68-GHz dual-cavity ruby maser was built to support the Ka-Band Link Experiment (KABLE) conducted with the Mars Observer spacecraft. It has 25 dB of net gain and a 3-dB bandwidth of 85 MHz. Its noise temperature in reference to the cooled feedhorn aperture is 5 K.
Progress Report on the Development of a Laser/Maser Vocabulary.
ERIC Educational Resources Information Center
Lerner, Rita G.
The development of a laser/maser vocabulary follows the pattern established earlier in two similar projects--(1) Development of a Multi-Coordinate Vocabulary--Chemical Physics, and (2) Development of a Multi-Coordinate Index--Plasma Physics. A set of lists of terms judged to be important to a user of information was developed by a specialist in…
A Nonlocal Calculation of Circumstellar OH Masers
NASA Astrophysics Data System (ADS)
Collison, A. J.; Nedoluha, G. E.
1993-12-01
We present calculations for circumstellar OH masers which explicitly account for the nonlocal interaction throughout the masing region. Excitation temperatures and observed emission are calculated for all four ground state maser lines. All other transitions are treated using a modified Sobolev approximation. Calculations are performed within the context of a simplified dust/outflow model which provides the pumping conditions and their variation with radius. Total velocity relaxation is implicitly assumed in the calculations. We find general agreement with the qualitative results of earlier work (Collison & Nedoluha, ApJ, 10 Feb 94 issue) and agree with the conclusions of Alcock & Ross (1986, ApJ, 305, 837) who showed that observed profiles can not be produced by a smooth, spherically symmetric wind model of the outflow.
Physical conditions near red giant and supergiant stars - An interpretation of SiO VLBI maps
NASA Technical Reports Server (NTRS)
Alcock, Charles; Ross, Randy R.
1986-01-01
Understanding the dynamical structure of circumstellar envelopes around cool giant and supergiant stars depends critically on the knowledge of what happens in the 'near zone' of the envelope, within a few stellar radii of the star. One probe with adequate angular resolution to study the near zone is VLBI observation of the SiO masers. It is shown that VLBI maps of VX Sgr establish that the particle density in the SiO masers is very high (about 10 to the 12th/cu cm), indicating that the masers form in dense cloudlets and not in a spherically expanding wind. The implications of these results for the mechanism of mass loss are discussed.
RadioAstron Maser Observations: a Record in Angular Resolution
NASA Astrophysics Data System (ADS)
Sobolev, A. M.; Shakhvorostova, N. N.; Alakoz, A. V.; Baan, W. A.; RadioAstron Maser Team
2017-06-01
Extremely long baselines of the space-ground interferometer RadioAstron allow to achieve ultra-high angular resolutions. The possibility of detection of a maser emission with resolutions about tens of micro-arcseconds was arguable before successful experiments reported in this paper. We present the results of the maser survey obtained by RadioAstron during first 5 years of operation. Extremely high angular resolution of 11 microarcseconds have been achieved in observations of the megamaser galaxy NGC 4258. For the galaxy at the distance about 7 Mpc this corresponds to linear resolution around 80 AU. Very compact features with angular sizes about 20 micro-arcseconds have been detected in star-forming regions of our Galaxy. Corresponding linear sizes are about 5-10 millions of kilometers.
Basic theory for polarized, astrophysical maser radiation in a magnetic field
NASA Technical Reports Server (NTRS)
Watson, William D.
1994-01-01
Fundamental alterations in the theory and resulting behavior of polarized, astrophysical maser radiation in the presence of a magnetic field have been asserted based on a calculation of instabilities in the radiative transfer. I reconsider the radiative transfer and find that the relevant instabilities do not occur. Calculational errors in the previous investigation are identified. In addition, such instabilities would have appeared -- but did not -- in the numerous numerical solutions to the same radiative transfer equations that have been presented in the literature. As a result, all modifications that have been presented in a recent series of papers (Elitzur 1991, 1993) to the theory for polarized maser radiation in the presence of a magnetic field are invalid. The basic theory is thus clarified.
Narrow polarized components in the OH 1612-MHz maser emission from supergiant OH-IR sources
NASA Technical Reports Server (NTRS)
Cohen, R. J.; Downs, G.; Emerson, R.; Grimm, M.; Gulkis, S.; Stevens, G.
1987-01-01
High-resolution (300 Hz) OH 1612-MHz spectra of the supergiant OH-IR sources VY CMa, VX Sgr, IRC 10420, and NML Cyg are presented. Linewidths as small as 550 Hz (0.1 km/s) are found for narrow components in the spectra. The present results are consistent with current models for maser line-narrowing and for the physical properties in the OH maser regions. A significant degree of circular polarization is noted in many of the narrow components. The circular polarization suggests the presence of magnetic fields of about 1 mG in the circumstellar envelopes which would be strong enough to influence the outflow from the stars, and which may explain asymmetries found in the circumstellar envelopes.
The EVN Galactic Plane Survey - EGaPS
NASA Technical Reports Server (NTRS)
Petrov, Leonid
2011-01-01
I present a catalogue of the positions and correlated flux densities of 109 compact extragalactic radio sources in the Galactic plane determined from an analysis of a 48-h Very Long Baseline Interferometry (VLBI) experiment at 22 GHz with the European VLBI Network. The median position uncertainty is 9 mas. The correlated flux densities of the detected sources are in the range of 2-300 mJy. In addition to the target sources, nine water masers have been detected, of which two are new. I derived the positions of the masers with an accuracy of 30-200 mas and determined the velocities of the maser components and their correlated flux densities. The catalogue and the supporting material are available at http://astrogeo.org/egaps.
OH maser proper motions in Cepheus A
NASA Astrophysics Data System (ADS)
Migenes, V.; Cohen, R. J.; Brebner, G. C.
1992-02-01
MERLIN measurements made between 1982 and 1989 reveal proper motions of OH masers in the source Cepheus A. The proper motions are typically a few milliarcsec per year, and are mainly directed away from the central H II regions. Statistical analysis of the data suggests an expansion time-scale of some 300 yr. The distance of the source implied by the proper motions is 320+140/-80 pc, assuming that the expansion is isotropic. The proper motions can be reconciled with the larger distance of 730 pc which is generally accepted, provided that the masers are moving at large angles to the line of sight. The expansion time-scale agrees with that of the magnetic field decay recently reported by Cohen, et al. (1990).
Rotation-Infall Motion around the Protostar IRAS 16293-2422 Traced by Water Maser Emission
NASA Astrophysics Data System (ADS)
Imai, Hiroshi; Iwata, Takahiro; Miyoshi, Makoto
1999-08-01
We made VLBI observations of the water maser emission associated with a protostar, IRAS 16293-2422, using the Kashima-Nobeyama Interferometer (KNIFE) and the Japanese domestic VLBI network (J-Net).\\footnote[2]. These distributions of water maser features showed the blue-shifted and red-shifted components separated in the north-south direction among three epochs spanning three years. The direction of the separation was perpendicular to the molecular outflow and parallel to the elongation of the molecular disk. These steady distributions were successfully modeled by a rotating-infalling disk with an outer radius of 100 AU around a central object with a mass of 0.3 MO . The local specific angular momentum of the disk was calculated to be 0.2-1.0times 10-3 km s-1 pc at a radius of 20-100 AU. This value is roughly equal to that of the disk of IRAS 00338+6312 in L1287 and those of the molecular disks around the protostars in the Taurus molecular cloud. The relatively large disk radius of about 100 AU traced by water maser emission suggests that impinging clumps onto the disk should be hotter than 200 K to excite the water maser emission. Mizusawa, Nobeyama, and Kagoshima stations are operated by staff members of National Astronomical Observatory of the Ministry of Education, Science, Sports and Culture. Kashima station is operated by staff members of Communications Research Laboratory of the Ministry of Posts and Telecomunications. The recent status of J-Net is seen in the WWW home page: http://www.nro.nao.ac.jp/\\ \\ miyaji/Jnet.
High-sensitivity survey of a pole-on disk-jet system around high mass YSOs
NASA Astrophysics Data System (ADS)
Motogi, Kazuhito; Walsh, Andrew; Hirota, Tomoya; Niinuma, Kotaro; Sugiyama, Koichiro; Fujisawa, Kenta; Yonekura, Yoshinori; Honma, Mareki; Sorai, Kazuo
2013-10-01
Recent theoretical works have suggested that detailed evolution of a high mass protostellar object highly depends on effective accretion rate and exact accretion geometry. Observational studies of the innermost accretion properties are, thus, an essential task in the ALMA era. High mass protostellar objects with a pole-on disk-jet system are, hence, excellent targets for such a study, since an outflow cavity reduces the total optical depth along the line-of-sight. Our previous studies have shown that some singular water maser sources called dominant blue-shifted masers (DBSMs) are plausible candidates of pole-on disk jet systems. There are, however, still two major problems as follows, (1) Some DBSMs can be a "fake", because of the significant variability of water masers. (2) It is difficult to verify the sources are really in pole-on geometry. The first problems can be checked with the thermal counterparts, and the second problem can be tested by morphologies of the class II CH3OH maser sources. We propose a high-sensitivity survey of real “pole-on” disk-jet systems towards the southern ten DBSMs. This new survey consists of multi-band observations between C/X/K/W bands. We will start from the C/X-continuum survey in this semester. Scientific goals in this semester are, (1) surveying radio jet activities with the C/X continuum emission, (2) estimating the inclination angle of disk-jet systems based on the morphologies of the CH3OH maser spots. (3) determining the exact positions of driving sources.
Recurring OH Flares towards o Ceti - I. Location and structure of the 1990s' and 2010s' events
NASA Astrophysics Data System (ADS)
Etoka, S.; Gérard, E.; Richards, A. M. S.; Engels, D.; Brand, J.; Le Bertre, T.
2017-06-01
We present the analysis of the onset of the new 2010s OH flaring event detected in the OH ground-state main line at 1665 MHz towards o Ceti and compare its characteristics with those of the 1990s' flaring event. This is based on a series of complementary single-dish and interferometric observations both in OH and H2O obtained with the Nançay Radio telescope, the Medicina and Effelsberg Telescopes, the European VLBI Network and (e)Multi-Element Radio Linked Interferometer Network. We compare the overall characteristics of o Ceti's flaring events with those that have been observed towards other thin-shell Miras, and explore the implication of these events with respect to the standard OH circumstellar-envelope model. The role of binarity in the specific characteristics of o Ceti's flaring events is also investigated. The flaring regions are found to be less than ˜400 ± 40 mas (I.e. ≤40 ± 4 au) either side of o Ceti, with seemingly no preferential location with respect to the direction to the companion Mira B. Contrary to the usual expectation that the OH maser zone is located outside the H2O maser zone, the coincidence of the H2O and OH maser velocities suggests that both emissions arise at similar distances from the star. The OH flaring characteristics of Mira are similar to those observed in various Mira variables before, supporting the earlier results that the regions where the transient OH maser emission occurs are different from the standard OH maser zone.
Study of Improvement of Hydrogen Maser Frequency Standard
NASA Technical Reports Server (NTRS)
Crampton, S. B.
1977-01-01
The research work dealt primarily with reducing the atom leakage rate using as storage surfaces the FEP Teflon surfaces conventionally used in contemporary hydrogen maser frequency standards. Some work was also done on a possible alternative to the conventional surfaces, but the results here and elsewhere suggest that the alternative surface is not promising enough to warrant much further work.
Astronomical masers and lasers
NASA Astrophysics Data System (ADS)
Townes, C. H.
1997-12-01
A brief account is given of the discovery of the astronomical maser and laser effects in OH radicals and in molecules of water (H2O), carbon monoxide and dioxide (CO and CO2), ammonia (NH3), methyl alcohol (CH3OH), formaldehyde (CH2O), and silicon oxide (SiO). A detailed table is given of all the currently known molecular stimulated-emission lines.
Effects of hydrogen atom spin exchange collisions on atomic hydrogen maser oscillation frequency
NASA Technical Reports Server (NTRS)
Crampton, S. B.
1979-01-01
Frequency shifts due to collisions between hydrogen atoms in an atomic hydrogen maser frequency standard are studied. Investigations of frequency shifts proportional to the spin exchange frequency shift cross section and those proportional to the duration of exchange collisions are discussed. The feasibility of operating a hydrogen frequency standard at liquid helium temperatures is examined.
ALMA sub-mm maser and dust distribution of VY Canis Majoris
NASA Astrophysics Data System (ADS)
Richards, A. M. S.; Impellizzeri, C. M. V.; Humphreys, E. M.; Vlahakis, C.; Vlemmings, W.; Baudry, A.; De Beck, E.; Decin, L.; Etoka, S.; Gray, M. D.; Harper, G. M.; Hunter, T. R.; Kervella, P.; Kerschbaum, F.; McDonald, I.; Melnick, G.; Muller, S.; Neufeld, D.; O'Gorman, E.; Parfenov, S. Yu.; Peck, A. B.; Shinnaga, H.; Sobolev, A. M.; Testi, L.; Uscanga, L.; Wootten, A.; Yates, J. A.; Zijlstra, A.
2014-12-01
Aims: Cool, evolved stars have copious, enriched winds. Observations have so far not fully constrained models for the shaping and acceleration of these winds. We need to understand the dynamics better, from the pulsating stellar surface to ~10 stellar radii, where radiation pressure on dust is fully effective. Asymmetric nebulae around some red supergiants imply the action of additional forces. Methods: We retrieved ALMA Science Verification data providing images of sub-mm line and continuum emission from VY CMa. This enables us to locate water masers with milli-arcsec accuracy and to resolve the dusty continuum. Results: The 658, 321, and 325 GHz masers lie in irregular, thick shells at increasing distances from the centre of expansion. For the first time this is confirmed as the stellar position, coinciding with a compact peak offset to the NW of the brightest continuum emission. The maser shells overlap but avoid each other on scales of up to 10 au. Their distribution is broadly consistent with excitation models but the conditions and kinematics are complicated by wind collisions, clumping, and asymmetries. Appendices are available in electronic form at http://www.aanda.org
Electron cyclotron maser instability in the solar corona - The role of superthermal tails
NASA Technical Reports Server (NTRS)
Vlahos, L.; Sharma, R. R.
1985-01-01
The effect of a superthermal component of electrons on the loss-cone-driven electron cyclotron maser instability is analyzed. It is found that for a superthermal tail with temperature about 10 KeV, the first harmonic (X- and O-mode) is suppressed for n(t)/n(r) of about 1 (n/t/ and n/r/ are the densities of superthermal tail and loss-cone electrons) and the second harmonic (X- and O-modes) is suppressed for n(t)/n(r) less than about 0.1. A qualitative discussion on the formation of superthermal tails is presented and it is suggested that superthermal tails play an important role on the observed or available power, at microwave frequencies, from the electron cyclotron maser instability in the solar corona.
High-frequency VLBI Imaging of Sgr A* and VX Sgr
NASA Astrophysics Data System (ADS)
Lu, R.-S.; Krichbaum, T. P.; Zensus, A. J.
VLBI observations at millimeter wavelengths provide unprecedented high angular resolution and allow to image regions, which are self-absorbed at longer wavelengths. Here we present new results from a multi-frequency VLBA monitoring of SgrA* at 22, 43, and 86 GHz performed on 10 consecutive days in May 2007. We discuss the source structure of Sgr A* through the analysis of the closure phase and closure amplitude, of which the latter improves the calibration accuracy and shows indications of a non-Gaussian brightness distribution at the highest frequency. We also present preliminary maps of the maser emission lines (v=1, J=1-0, and J=2-1) in the circumstellar SiO maser of VX Sgr. This will put new constraints on the kinematics and the pumping mechanisms of SiO masers.
A new 3D maser code applied to flaring events
NASA Astrophysics Data System (ADS)
Gray, M. D.; Mason, L.; Etoka, S.
2018-06-01
We set out the theory and discretization scheme for a new finite-element computer code, written specifically for the simulation of maser sources. The code was used to compute fractional inversions at each node of a 3D domain for a range of optical thicknesses. Saturation behaviour of the nodes with regard to location and optical depth was broadly as expected. We have demonstrated via formal solutions of the radiative transfer equation that the apparent size of the model maser cloud decreases as expected with optical depth as viewed by a distant observer. Simulations of rotation of the cloud allowed the construction of light curves for a number of observable quantities. Rotation of the model cloud may be a reasonable model for quasi-periodic variability, but cannot explain periodic flaring.
Design and analysis of optically pumped submillimeter waveguide maser amplifiers and oscillators
NASA Technical Reports Server (NTRS)
Galantowicz, T. A.
1975-01-01
The design and experimental measurements are described of an optically pumped far-infrared (FIR) waveguide maser; preliminary measurements on a FIR waveguide amplifier are presented. The FIR maser was found to operate satisfactorily in a chopped CW mode using either methanol (CH3OH) or acetonitrile (CH3CN) as the active molecule. Two other gases, difluoroethane and difluoroethylene, produced an unstable output with high threshold and low output power when operated in the chopped CW mode. Experimental measurements include FIR output versus cavity length, output beam pattern, output power versus pressure, and input power. The FIR output was the input to an amplifier which was constructed similar to the oscillator. An increase of 10% in output power was noted on the 118.8 microns line of methanol.
NASA Astrophysics Data System (ADS)
Vlemmings, W. H. T.; Khouri, T.; Martí-Vidal, I.; Tafoya, D.; Baudry, A.; Etoka, S.; Humphreys, E. M. L.; Jones, T. J.; Kemball, A.; O'Gorman, E.; Pérez-Sánchez, A. F.; Richards, A. M. S.
2017-07-01
Aims: Polarisation observations of circumstellar dust and molecular (thermal and maser) lines provide unique information about dust properties and magnetic fields in circumstellar envelopes of evolved stars. Methods: We use Atacama Large Millimeter/submillimeter Array (ALMA) Band 5 science verification observations of the red supergiant VY CMa to study the polarisation of SiO thermal/maser lines and dust continuum at 1.7 mm wavelength. We analyse both linear and circular polarisation and derive the magnetic field strength and structure, assuming the polarisation of the lines originates from the Zeeman effect, and that of the dust originates from aligned dust grains. We also discuss other effects that could give rise to the observed polarisation. Results: We detect, for the first time, significant polarisation ( 3%) of the circumstellar dust emission at millimeter wavelengths. The polarisation is uniform with an electric vector position angle of 8°. Varying levels of linear polarisation are detected for the J = 4 - 328SiO v = 0, 1, 2, and 29SiO v = 0, 1 lines, with the strongest polarisation fraction of 30% found for the 29SiO v = 1 maser. The linear polarisation vectors rotate with velocity, consistent with earlier observations. We also find significant (up to 1%) circular polarisation in several lines, consistent with previous measurements. We conclude that the detection is robust against calibration and regular instrumental errors, although we cannot yet fully rule out non-standard instrumental effects. Conclusions: Emission from magnetically aligned grains is the most likely origin of the observed continuum polarisation. This implies that the dust is embedded in a magnetic field >13 mG. The maser line polarisation traces the magnetic field structure. The magnetic field in the gas and dust is consistent with an approximately toroidal field configuration, but only higher angular resolution observations will be able to reveal more detailed field structure. If the circular polarisation is due to Zeeman splitting, it indicates a magnetic field strength of 1-3 Gauss, consistent with previous maser observations.
A FEATURE MOVIE OF SiO EMISSION 20-100 AU FROM THE MASSIVE YOUNG STELLAR OBJECT ORION SOURCE I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, L. D.; Greenhill, L. J.; Goddi, C.
2010-01-01
We present multi-epoch Very Long Baseline Array imaging of the {sup 28}SiO v = 1 and v = 2, J = 1-0 maser emission toward the massive young stellar object (YSO) Orion Source I. Both SiO transitions were observed simultaneously with an angular resolution of approx0.5 mas (approx0.2 AU for d = 414 pc) and a spectral resolution of approx0.2 km s{sup -1}. Here we explore the global properties and kinematics of the emission through two 19-epoch animated movies spanning 21 months (from 2001 March 19 to 2002 December 10). These movies provide the most detailed view to date ofmore » the dynamics and temporal evolution of molecular material within approx20-100 AU of a massive (approx>8 M{sub sun}) YSO. As in previous studies, we find that the bulk of the SiO masers surrounding Source I lie in an X-shaped locus; the emission in the south and east arms is predominantly blueshifted, and emission in the north and west is predominantly redshifted. In addition, bridges of intermediate-velocity emission are observed connecting the red and blue sides of the emission distribution. We have measured proper motions of over 1000 individual maser features and found that these motions are characterized by a combination of radially outward migrations along the four main maser-emitting arms and motions tangent to the intermediate-velocity bridges. We interpret the SiO masers as arising from a wide-angle bipolar wind emanating from a rotating, edge-on disk. The detection of maser features along extended, curved filaments suggests that magnetic fields may play a role in launching and/or shaping the wind. Our observations appear to support a picture in which stars with masses as high as at least 8 M{sub sun} form via disk-mediated accretion. However, we cannot yet rule out that the Source I disk may have been formed or altered following a recent close encounter.« less
Mapping Sub-pc Structure in AGNs with Water Vapor Megamasers
NASA Astrophysics Data System (ADS)
Braatz, James; Reid, Mark; Condon, James; Lo, K. Y.; Henkel, Christian; Kuo, Cheng-Yu; Impellizzeri, Violette; Gao, Feng; Zhao, Wei; Greene, Jenny; Constantin, Anca
2012-12-01
VLBI observations of water vapor megamasers provide the only direct means of mapping gas in AGNs on sub-parsec scales. Altogether, megamasers have been detected in about 150 galaxies, most of them nearby (z < 0.05), type 2 AGNs. Twenty one of these systems have now been mapped with VLBI. In about 25% of all maser-detected galaxies, the single-dish spectrum of the emission reveals a triple-peaked profile characteristic of masers in a thin, circumnuclear, edge-on accretion disk, and VLBI observations of these megamasers confirm the disk geometry. The maps reveal the size, shape (i.e. warp), and orientation of the disks, they provide gold-standard black hole masses and, in several cases, they enable the measurement of geometric distances to the host galaxies. In a few megamasers with more ambiguous single-dish profiles, VLBI maps show that some of the emission originates not in a disk, but rather from clouds that appear to be associated with an outflow. In these megamasers, and possibly many of the systems not yet mapped with VLBI, the masers may be directly associated with optically opaque, dusty gas believed to obscure some AGNs. Here we summarize results from VLBI imaging of megamasers and discuss the prospects for using observations of masers to understand the nature of obscuring gas in AGNs.
NASA Astrophysics Data System (ADS)
Takefuji, K.; Sugiyama, K.; Yonekura, Y.; Saito, T.; Fujisawa, K.; Kondo, T.
2017-11-01
For the sake of high-sensitivity 6.7 GHz methanol maser observations, we developed a new technology for coherently combining the two signals from the Hitachi 32 m radio telescope and the Takahagi 32 m radio telescope of the Japanese Very long baseline interferometer Network (JVN), where the two telescopes were separated by about 260 m. After the two telescopes were phased as a twofold larger single telescope, the mean signal-to-noise ratio (S/N) of the 6.7 GHz methanol masers observed by the phased telescopes was improved to 1.254-fold higher than that of the single dish, through a very long baseline interferometry (VLBI) experiment on the 50 km baseline of the Kashima 34 m telescope and the 1000 km baseline of the Yamaguchi 32 m telescope. Furthermore, we compared the S/Ns of the 6.7 GHz maser spectra for two methods. One is a VLBI method and the other is the newly developed digital position switching that is a similar technology to that used in noise-canceling headphones. Finally, we confirmed that the mean S/N of method of the digital position switching (ON-OFF) was 1.597-fold higher than that of the VLBI method.
Orbiting Water Molecules Dance to Tune Of Galaxy's "Central Engine," Astronomers Say
NASA Astrophysics Data System (ADS)
2000-01-01
A disk of water molecules orbiting a supermassive black hole at the core of a galaxy 60 million light-years away is "reverberating" in response to variations in the energy output from the galaxy's powerful "central engine" close to the black hole, astronomers say. The team of astronomers used the National Science Foundation's (NSF) Very Large Array (VLA) radio telescope in New Mexico and the 100-meter-diameter radio telescope of the Max Planck Institute for Radio Astronomy at Effelsberg, Germany, to observe the galaxy NGC 1068 in the constellation Cetus. They announced their findings today at the American Astronomical Society's meeting in Atlanta. The water molecules, in a disk some 5 light-years in diameter, are acting as a set of giant cosmic radio-wave amplifiers, called masers. Using energy radiated by the galaxy's "central engine," the molecules strengthen, or brighten, radio emission at a particular frequency as seen from Earth. "We have seen variations in the radio 'brightness' of these cosmic amplifiers that we believe were caused by variations in the energy output of the central engine," said Jack Gallimore, an astronomer at the National Radio Astronomy Observatory (NRAO) in Charlottesville, VA. "This could provide us with a valuable new tool for learning about the central engine itself," he added. Gallimore worked with Stefi Baum of the Space Telescope Science Institute in Baltimore, MD; Christian Henkel of the Max Planck Institute for Radio Astronomy in Bonn, Germany; Ian Glass of the South African Astronomical Observatory; Mark Claussen of the NRAO in Socorro, NM; and Almudena Prieto of the European Southern Observatory in Munich, Germany. "Our observations show that NGC 1068 is the second-known case of a giant disk of water molecules orbiting a supermassive black hole at a galaxy's core," Gallimore said. The first case was the galaxy NGC 4258 (Messier 106), whose disk of radio-amplifying water molecules was measured by the NSF's Very Long Baseline Array (VLBA) radio telescope in 1995. Further VLBA observations of NGC 4258 allowed astronomers to calculate an extremely accurate distance to that galaxy last year. "We're excited to find this phenomenon in a second galaxy, but we're also tantalized by the evidence that these masers respond to variations of the central engine," Gallimore said. In order to amplify radio signals, masers, like their visible-light counterparts, lasers, require a source of energy, called the pumping energy. The scientists believe the masers in NGC 1068 get that pumping energy from a highly-energetic, superhot disk of material that is being pulled into the black hole. That disk, called an accretion disk, emits X-rays that the astronomers think start a chain of events that powers the masers. Such accretion disks can be unstable, dramatically changing their energy output from time to time. "When the accretion disk puts out more energy, the masers should brighten, and when it puts out less energy, they should get fainter. If the accretion disk gets too bright, however, water molecules are destroyed and the masers turn off. We think that's what we're seeing in this galaxy," Gallimore said. "We want to watch this in the future to learn more, not only about the masers, but also about the accretion disk itself," he said. The strongest evidence that the masers are responding to variations in the output of the central engine came from watching variations in the brightness of masers on opposite sides of the water molecule disk. The masers on both sides of the molecular disk, some 5 light-years across, brightened within about two weeks of each other. "If this were caused by something within that molecular disk itself, it would take about 10,000 years to affect both sides of the disk, because of the orbital times involved. However, both sides of the disk are the same distance from the central engine, so they can both respond to the central engine simultaneously," Gallimore explained. The black hole at NGC 1068's center, the scientists say, is about 10 million times more massive than the Sun. NGC 1068 also is known as Messier 77 (M77), one of the objects listed in French astronomer Charles Messier's catalog of non-stellar objects. First observed in 1780, it appeared in the version of Messier's catalog published in 1781. In 1914, Lowell Observatory astronomer Vesto Slipher measured the Doppler shift in the galaxy's light, showing that the galaxy is receding from Earth at a speed of about 1,100 kilometers per second. The galaxy's water masers, which amplify radio signals at a frequency of 22 GHz, were discovered in 1984. The galaxy is visible in moderate-sized amateur telescopes. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
The Water Maser in II Zw 96: Scientific Justification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiggins, Brandon Kerry
We propose a VLBI search to image and locate the water emission in II Zw 96. We propose 3 sites within II Zw 96 for VLBI followup (see the proposed target listing below). We request 2.5 hours of on-source integration time with the VLBA per source. The array will achieve ~ 65µJy sensitivity in K band in this time which will be sufficient to detect luminous water maser features.
NASA Astrophysics Data System (ADS)
Bandurkin, I. V.; Kaminsky, A. K.; Perelstein, E. A.; Peskov, N. Yu.; Savilov, A. V.; Sedykh, S. N.
2012-08-01
The possibility of using frequency multiplication in order to obtain high-power short-wavelength radiation from a free-electron maser (FEM) with a Bragg resonator has been studied. Preliminary experiments with an LIU-3000 (JINR) linear induction accelerator demonstrate the operation of a frequency-multiplying FEM at megawatt power in the 6- and 4-mm wave bands on the second and third harmonic, respectively.
The SiO Masers of TX Camelopardalis
NASA Astrophysics Data System (ADS)
Marvel, Kevin B.; Diamond, P.; Kemball, A.
2001-06-01
Observations of evolved stars with the Very Long Baseline Array have shown that silicon monoxide masers are found just above the photospheres of these interesting objects. By observing many times over a few pulsation periods, researchers are now discovering complex motions in the extended photospheres of these bloated, old stars. We will present several dramatic "movies" of these sources and speculate on wat such observations can tell us about the physical conditions near the star.
Asymptotic inference in system identification for the atom maser.
Catana, Catalin; van Horssen, Merlijn; Guta, Madalin
2012-11-28
System identification is closely related to control theory and plays an increasing role in quantum engineering. In the quantum set-up, system identification is usually equated to process tomography, i.e. estimating a channel by probing it repeatedly with different input states. However, for quantum dynamical systems such as quantum Markov processes, it is more natural to consider the estimation based on continuous measurements of the output, with a given input that may be stationary. We address this problem using asymptotic statistics tools, for the specific example of estimating the Rabi frequency of an atom maser. We compute the Fisher information of different measurement processes as well as the quantum Fisher information of the atom maser, and establish the local asymptotic normality of these statistical models. The statistical notions can be expressed in terms of spectral properties of certain deformed Markov generators, and the connection to large deviations is briefly discussed.
Injection Locking of a Semiconductor Double Quantum Dot Micromaser
Liu, Y.-Y.; Stehlik, J.; Gullans, M. J.; Taylor, J. M.; Petta, J. R.
2016-01-01
Emission linewidth is an important figure of merit for masers and lasers. We recently demonstrated a semiconductor double quantum dot (DQD) micromaser where photons are generated through single electron tunneling events. Charge noise directly couples to the DQD energy levels, resulting in a maser linewidth that is more than 100 times larger than the Schawlow-Townes prediction. Here we demonstrate a linewidth narrowing of more than a factor 10 by locking the DQD emission to a coherent tone that is injected to the input port of the cavity. We measure the injection locking range as a function of cavity input power and show that it is in agreement with the Adler equation. The position and amplitude of distortion sidebands that appear outside of the injection locking range are quantitatively examined. Our results show that this unconventional maser, which is impacted by strong charge noise and electron-phonon coupling, is well described by standard laser models. PMID:28127226
Injection Locking of a Semiconductor Double Quantum Dot Micromaser.
Liu, Y-Y; Stehlik, J; Gullans, M J; Taylor, J M; Petta, J R
2015-11-01
Emission linewidth is an important figure of merit for masers and lasers. We recently demonstrated a semiconductor double quantum dot (DQD) micromaser where photons are generated through single electron tunneling events. Charge noise directly couples to the DQD energy levels, resulting in a maser linewidth that is more than 100 times larger than the Schawlow-Townes prediction. Here we demonstrate a linewidth narrowing of more than a factor 10 by locking the DQD emission to a coherent tone that is injected to the input port of the cavity. We measure the injection locking range as a function of cavity input power and show that it is in agreement with the Adler equation. The position and amplitude of distortion sidebands that appear outside of the injection locking range are quantitatively examined. Our results show that this unconventional maser, which is impacted by strong charge noise and electron-phonon coupling, is well described by standard laser models.
Test of an orbiting hydrogen maser clock system using laser time transfer
NASA Technical Reports Server (NTRS)
Vessot, Robert F. C.; Mattison, Edward M.; Nystrom, G. U.; Decher, Rudolph
1992-01-01
We describe a joint Smithsonian Astrophysical Laboratory/National Aeronautics and Space Administration (SAO/NASA) program for flight testing a atomic hydrogen maser clock system designed for long-term operation in space. The clock system will be carried by a shuttle-launched EURECA spacecraft. Comparisons with earth clocks to measure the clock's long-term frequency stability (tau = 10(exp 4) seconds) will be made using laser time transfer from existing NASA laser tracking stations. We describe the design of the maser clock and its control systems, and the laser timing technique. We describe the precision of station time synchronization and the limitations in the comparison between the earth and space time scales owing to gravitational and relativistic effects. We will explore the implications of determining the spacecraft's location by an on-board Global Position System (GPS) receiver, and of using microwave techniques for time and frequency transfer.
Magnetic refrigeration for maser amplifier cooling
NASA Technical Reports Server (NTRS)
Johnson, D. L.
1982-01-01
The development of a multifrequency upconverter-maser system for the DSN has created the need to develop a closed-cycle refrigerator (CCR) capable of providing more than 3 watts of refrigeration capability at 4.5 K. In addition, operating concerns such as the high cost of electrical power consumption and the loss of maser operation due to CCR failures require that improvements be made to increase the efficiency and reliability of the CCR. One refrigeration method considered is the replacement of the Joule-Thomson expansion circuit with a magnetic refrigeration. Magnetic refrigerators can provide potentially reliable and highly efficient refrigeration at a variety of temperature ranges and cooling power. The concept of magnetic refrigeration is summarized and a literature review of existing magnetic refrigerator designs which have been built and tested and that may also be considered as possibilities as a 4 K to 15 K magnetic refrigeration stage for the DSN closed-cycle refrigerator is provided.
Effects of Coulomb collisions on cyclotron maser and plasma wave growth in magnetic loops
NASA Technical Reports Server (NTRS)
Hamilton, Russell J.; Petrosian, Vahe
1990-01-01
The evolution of nonthermal electrons accelerated in magnetic loops is determined by solving the kinetic equation, including magnetic field convergence and Coulomb collisions in order to determine the effects of these interactions on the induced cyclotron maser and plasma wave growth. It is found that the growth rates are larger and the possibility of cyclotron maser action is stronger for smaller loop column density, for larger magnetic field convergence, for a more isotropic injected electron pitch angle distribution, and for more impulsive acceleration. For modest values of the column density in the coronal portion of a flaring loop, the growth rates of instabilities are significantly reduced, and the reduction is much larger for the cyclotron modes than for the plasma wave modes. The rapid decrease in the growth rates with increasing loop column density suggests that, in flare loops when such phenomena occur, the densities are lower than commonly accepted.
NASA Astrophysics Data System (ADS)
Green, J. A.; Gray, M. D.; Robishaw, T.; Caswell, J. L.; McClure-Griffiths, N. M.
2014-06-01
Recent comparisons of magnetic field directions derived from maser Zeeman splitting with those derived from continuum source rotation measures have prompted new analysis of the propagation of the Zeeman split components, and the inferred field orientation. In order to do this, we first review differing electric field polarization conventions used in past studies. With these clearly and consistently defined, we then show that for a given Zeeman splitting spectrum, the magnetic field direction is fully determined and predictable on theoretical grounds: when a magnetic field is oriented away from the observer, the left-hand circular polarization is observed at higher frequency and the right-hand polarization at lower frequency. This is consistent with classical Lorentzian derivations. The consequent interpretation of recent measurements then raises the possibility of a reversal between the large-scale field (traced by rotation measures) and the small-scale field (traced by maser Zeeman splitting).
NASA Astrophysics Data System (ADS)
Rigby, Pauline
2010-05-01
The race to make a laser began with Bell Laboratories. In the late 1950s the then Bell Telephone Laboratories was a well-funded research institute in Murray Hill, New Jersey, that already had a string of high-profile achievements to its name - including the transistor, which was invented in 1947 by John Bardeen, Walter Brattain and William Shockley. A few years later, a Bell Labs re search group led by Charles Townes proposed a device that could produce and amplify electromagnetic radiation in the microwave region of the spectrum. By 1953 the researchers had turned their theory into a working device, which they called a maser - an acronym for microwave amplification by stimulated emission of radiation. And in December 1958, Townes and his brother-in-law Arthur Schawlow wrote a famous paper (Physical Review 112 1940) describing how the maser concept could be extended into the optical regime, to make the first "infrared and optical maser" - in other words, a laser.
The African VLBI network project
NASA Astrophysics Data System (ADS)
Loots, Anita
2015-01-01
The AVN is one of the most significant vehicles through which capacity development in Africa for SKA participation will be realized. It is a forerunner to the long baseline Phase 2 component of the mid-frequency SKA. Besides the 26m HartRAO telescope in South Africa, Ghana is expected to be the first to establish a VLBI-capable telescope through conversion of a redundant 32m telecommunications system near Accra. The most widely used receivers in the EVN are L-band and C-band (5 GHz). L-band is divided into a low band around the hydrogen (HI) line frequency of 1420 MHz, and a high band covering the hydroxyl line frequencies of 1612-1720 MHz. The high band is much more commonly used for VLBI as it provides more bandwidth. For the AVN, the methanol maser line at 6668 MHz is a key target for the initial receiver and the related 12178MHz methanol maser line also seen in star-forming regions a potential future Ku-band receiver. In the potential future band around 22GHz(K-band), water masers in star-forming regions and meg-maser galaxies at 22.235 GHz are targets, as are other radio continuum sources such as AGNs. The AVN system will include 5GHz and 6.668GHz receiver systems with recommendation to partner countries that the first upgrade should be L-band receivers. The original satellite telecommunications feed horns cover 3.8 - 6.4 GHz and should work at 5 GHz and operation at 6.668 GHz for the methanol maser is yet to be verified. The first light science will be conducted in the 6.7 GHz methanol maser band. Telescopes developed for the AVN will initially join other global networks for VLBI. When at least four VLBI-capable telescopes are operational on the continent, it will be possible to initiate stand-alone AVN VLBI. Each country where an AVN telescope becomes operational will have its own single-dish observing program. Capacity building to run an observatory includes the establishment of competent core essential observatory staff in partner countries who can train larger teams in science, engineering and technology issues and collaborate with the broader global science community to develop new African radio astronomy science communities.
European VLBI Network imaging of 6.7 GHz methanol masers
NASA Astrophysics Data System (ADS)
Bartkiewicz, A.; Szymczak, M.; van Langevelde, H. J.
2016-03-01
Context. Methanol masers at 6.7 GHz are well known tracers of high-mass star-forming regions. However, their origin is still not clearly understood. Aims: We aimed to determine the morphology and velocity structure for a large sample of the maser emission with generally lower peak flux densities than those in previous surveys. Methods: Using the European VLBI Network (EVN) we imaged the remaining sources from a sample of sources that were selected from the unbiased survey using the Torun 32 m dish. In this paper we report the results for 17 targets. Together they form a database of a total of 63 source images with high sensitivity (3σrms = 15-30 mJy beam-1), milliarcsecond angular resolution (6-10 mas) and very good spectral resolution (0.09 km s-1 or 0.18 km s-1) for detailed studies. Results: We studied in detail the properties of the maser clouds and calculated the mean and median values of the projected size (17.4 ± 1.2 au and 5.5 au, respectively) as well as the FWHM of the line (0.373 ± 0.011 km s-1 and 0.315 km s-1 for the mean and median values, respectively), testing whether it was consistent with Gaussian profile. We also found maser clouds with velocity gradients (71%) that ranged from 0.005 km s-1 au-1 to 0.210 km s-1 au-1. We tested the kinematic models to explain the observed structures of the 6.7 GHz emission. There were targets where the morphology supported the scenario of a rotating and expanding disk or a bipolar outflow. Comparing the interferometric and single-dish spectra we found that, typically, 50-70% of the flux was missing. This phenomena is not strongly related to the distance of the source. Conclusions: The EVN imaging reveals that in the complete sample of 63 sources the ring-like morphology appeared in 17% of sources, arcs were seen in a further 8%, and the structures were complex in 46% cases. The ultra-compact (UC) H II regions coincide in position in the sky for 13% of the sources. They are related both to extremely high and low luminosity masers from the sample. The catalogue of the complete sample is available via http://paulo.astro.uni.torun.pl/~pw/mmcat/
SiO maser polarization in evolved stars: magnetic field
NASA Astrophysics Data System (ADS)
Herpin, F.; Baudry, A.; Thum, C.; Morris, D.; Wiesemeyer, H.
The maser theory still needs to be improved, in particular in terms of polarization. The study of the maser geometry inside the circumstellar envelopes can also be achieved through polarization studies (e.g., VLBI observations). But the most exciting point is the determination of the magnetic field that can be made from polarization measurements: this is definitively a new field of investigation for these evolved objects. The magnetic field probably plays an important role in the AGB star's life and can be a major factor (magnetic rotator theory) on the origin of the high mass loss rates observed in evolved objects. Measurement of the magnetic field is thus essential to study the mass loss mechanisms and also the Alfven waves. During its transition most quasi spherical AGB stars (i.e. envelopes) become complicated aspherical objects. This shaping is well explained by the Interacting Stellar Winds theory (Kwok works), but the ISW model fails to reproduce very complicated structures with jets and ansae. A new model (Magnetized Wind Blown Bubble theory) was thus developed by Blackman et al. (2001) and A. Franck: a weak toroidal magnetic field, embedded in the stellar wind, acts as a collimating agent (cf. Garcia-Segura 1997) and can produce such structures. Three molecules can show polarized maser emission in the circumstellar envelopes: - OH traces the envelope far from the central star (1000-10000 AU) - H2O at intermediate distances (a few 100 AU) - SiO in the inner circumstellar layers (5-10 AU) Measurement of the polarization rate of the maser radiation emitted by these molecules can give us the averaged value B// of the magnetic field along the line of sight (for a single dish observation). We present here the first complete study of the SiO maser polarization in a large sample of evolved stars (more than 100). The 4 Stokes parameters I, U, Q, V were simultaneously measured with the polarimeter on the IRAM-30m telescope. From the Stokes parameters values we derive the linear (pL) and circular (pC) polarization rates and polarization angle. The circular polarization rate gives us directly the magnetic field B//: B// varies from 1 to 32 Gauss depending on the source, with an average value of 9 Gauss.
NASA Astrophysics Data System (ADS)
Shalashov, A. G.; Gospodchikov, E. D.; Izotov, I. V.; Mansfeld, D. A.; Skalyga, V. A.; Tarvainen, O.
2018-04-01
We report the first experimental evidence of a controlled transition from the generation of periodic bursts of electromagnetic radiation into the continuous-wave regime of a cyclotron maser formed in magnetically confined nonequilibrium plasma. The kinetic cyclotron instability of the extraordinary wave of weakly inhomogeneous magnetized plasma is driven by the anisotropic electron population resulting from electron cyclotron plasma heating in a MHD-stable minimum-B open magnetic trap.
Detailed Monitoring of the 43-GHz SiO Maser Emission in S Per
NASA Astrophysics Data System (ADS)
Ostrowski-Fukuda, T. A.; Kemball, A. J.; Stencel, R. E.
2001-12-01
We report the preliminary results of a 3 year project to investigate the processes of SiO masers (v=1, J=1-0) in the extended atmosphere of S Per. Using the Very Long Baseline Array (VLBA) at 43-GHz the SiO masers act as probes of the gas motions and magnetic fields surrounding this late-type supergiant. Several epochs have been reduced and pieced together in a time-lapse movie fashion. This "preview" of the full movie already allows us to follow the motions of the individual maser regions. One of our main goals is to compare and contrast our findings from S Per to other similar stars. We are most interested in learning out about the structure, time evolution, mass-loss process, magnetic field structure, and the physical conditions in the inner regions of these types of stars. Just as in the case of TX Cam, (Diamond & Kemball, 1999), we have also found that our time-lapse images show that the gas motions of S Per are not uniform around the star. This allows us to also speculate that the rate of mass loss may not be the same for all regions of the star's surface. This work is supported by the University of Denver's Menzel Scholarship Fund and in conjunction with the National Radio Astronomy Observatory, Socorro, NM.
NASA Astrophysics Data System (ADS)
Sánchez-Monge, Á.; Beltrán, M. T.; Cesaroni, R.; Fontani, F.; Brand, J.; Molinari, S.; Testi, L.; Burton, M.
2013-02-01
Aims: We present Australia Telescope Compact Array (ATCA) observations of the H2O maser line and radio continuum at 18.0 GHz and 22.8 GHz toward a sample of 192 massive star-forming regions containing several clumps already imaged at 1.2 mm. The main aim of this study is to investigate the water maser and centimeter continuum emission (that likely traces thermal free-free emission) in sources at different evolutionary stages, using evolutionary classifications previously published. Methods: We used the recently comissioned Compact Array Broadband Backend (CABB) at ATCA that obtains images with ~20'' resolution in the 1.3 cm continuum and H2O maser emission in all targets. For the evolutionary analysis of the sources we used millimeter continuum emission from the literature and the infrared emission from the MSX Point Source Catalog. Results: We detect centimeter continuum emission in 88% of the observed fields with a typical rms noise level of 0.45 mJy beam-1. Most of the fields show a single radio continuum source, while in 20% of them we identify multiple components. A total of 214 cm continuum sources have been identified, that likely trace optically thin H ii regions, with physical parameters typical of both extended and compact H ii regions. Water maser emission was detected in 41% of the regions, resulting in a total of 85 distinct components. The low angular (~20'') and spectral (~14 km s-1) resolutions do not allow a proper analysis of the water maser emission, but suffice to investigate its association with the continuum sources. We have also studied the detection rate of H ii regions in the two types of IRAS sources defined in the literature on the basis of the IRAS colors: High and Low. No significant differences are found, with high detection rates (>90%) for both High and Low sources. Conclusions: We classify the millimeter and infrared sources in our fields in three evolutionary stages following the scheme presented previously: (Type 1) millimeter-only sources, (Type 2) millimeter plus infrared sources, (Type 3) infrared-only sources. We find that H ii regions are mainly associated with Type 2 and Type 3 objects, confirming that these are more evolved than Type 1 sources. The H ii regions associated with Type 3 sources are slightly less dense and larger in size than those associated with Type 2 sources, as expected if the H ii region expands as it evolves, and Type 3 objects are older than Type 2 objects. The maser emission is mostly found to be associated with Type 1 and Type 2 sources, with a higher detection rate toward Type 2, consistent with the results of the literature. Finally, our results on H ii region and H2O maser association with different evolutionary types confirm the evolutionary classification proposed previously. Appendices are available in electronic form at http://www.aanda.orgTables 3-5, 7-9 are only, and Table 1 is also available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/550/A21
Massive Molecular Outflows Toward Methanol Masers: by Eye and Machine Learning
NASA Astrophysics Data System (ADS)
de Villiers, Helena
2013-07-01
The best known evolutionary state of massive stars is that of the UC HII region, occurring a few 10^5 years after the initial formation of a massive YSO. Currently objects in the "hot core" phase, occurring prior to the UC HII region, are studied with great interest. Because the YSO is still supposed to be accreting at this stage, one would expect outflows from the central object to develop during this phase, entraining surrounding cold molecular gas in their wake. During this time, 6.7 GHz (Class II) methanol masers will also turn on. They are uniquely associated with massive YSO's, thus serve as a useful signpost. We searched for molecular outflows with the JCMT and HARP focal plane array in a sample of targets toward 6.7 GHz methanol maser coordinates within 20 < Glon < 34. We found 58 CO clumps but only 47 of them were closely associated with the methanol masers. Their spectra were analyzed for broadened line wings, which were found to be present in 46 of the spectra, indicating either bi- or mono-polar outflows. This is a 98% detection frequency. The velocity ranges of these spectrum wings were used to create two dimensional blue and red maps. The out flows' physical parameters were calculated and compared with literature. We created a catalog of kinematic distances and properties of all the 13CO outflows associated with Class II methanol masers, as well as their associated H_2 core and virial masses as derived from the C18O data. In the the light of our results we emphasize the need for an automated detection process, especially with the increasing number of wide-area surveys. We are currently exploring the use of machine learning algorithms (specifically Support Vector Machines) in the detection of high velocity structures in p-p-v cubes.
Detection of the Water Maser Line at 1.35 cm in Exoplanetary Systems
NASA Astrophysics Data System (ADS)
Cosmovici, Christiano1, Pluchino S. 2, Pogrebenko S. 3, Montebugnoli S. 2, Bartolini M. 2, Schillirò F. 2
2012-05-01
The discovery of the first water emission in the atmosphere of Jupiter induced by a catastrophic cometary impact [1] has shown that the water Maser line at 22 GHz (1.35 cm) can be used as a diagnostic tool for cometary-[2] and also for planetary-water search outside the solar system, as comets are able to deliver very large amounts of water to planets raising the fascinating possibility of extraterrestrial life evolution. Furthermore, assuming that a sufficient amount of water may be present in the upper layers of a planetary atmosphere, it is possible to show that masing conditions may apply for a planet independently from cometary bombardment. The calculations of the feasibility of the Maser detection are reported in [3,4]. In 1999 we started the search for the water maser line on 35 targets up to 50 LY away from the Sun and by using fast multichannel spectrometers coupled to the 32 m dish of the Medicina and Noto Radiotelescopes (Italy) we carried out observations of : 1) stellar regions where either cometary clouds have been discovered, or planetary systems have been indirectly detected (up to now about 700); 2) peculiar stars, like red and brown dwarfs with sufficient IR- radiation to produce Maser emission. From the 35 targets investigated by us the following showed faint transient signals during different periods : Epsilon Eridani, Lalande 21185, EQ Peg, Ups And, 47 UMa, Tau Ceti and Gliese 581. The first two are the most reliable as we could detect signals with S/N > 4 with both telescopes. Eps Eri is particularly interesting for our purposes as it is only 10.8 LY away and among the closest star systems to the Sun. This target represents the terrestrial conditions 4 Gyr ago when cometary bombardment is supposed to have ended and life started.
Pumping of Class 2 methanol masers. 1: The 20 - 3-1E transition
NASA Astrophysics Data System (ADS)
Sobolev, A. M.; Deguchi, S.
1994-11-01
We present a large velocity gradient (LVG) model calculations which explain observed 20 - 3-1E line brightnesses in the strongest Class II methanol masers (MMII). The model explains the variations in spectral appearance of the different maser lines observed from the same source using single-dish facilities through differences in the sensitivities of the line intensities to the MMII physical parameters. In our model masers are pumped by emission of a nearby layer of hot dust with temperature greater than 150 K. The MMII are seen in projection on the H II region producing free-free radio continuum emission. It is shown that radiative excitations from rotational levels of the ground state to the levels of the 2nd and the 1st torsionally excited states both play important role in the pump. We found that the strong MMII (Tb greater than 1010K) should be beamed. The value of (CH3OH)/H2 in the strong MMII sources should exceed 7 x 10-7. Results suggest that the chemistry of the strong MMII was influenced by the shock wave passage. The strong MMII sources should have hydrogen number densities greater than 3 x 106/cu cm and gas temperatures less than 50 K. Thus, results of the present calculations indicate that MMII clumps were exposed to some fast and efficient cooling process. We suppose that local temperature variations can explain the observed absence of spatial coincidence between the MMII and OH maser spots. The MMII with Tb greater than or equal to 109 K can be produced in the sources with the optical depth equal in all directions. Like the strong MMII they should be dense nH greater than (106/cu cm - 3), methanol-abundant ((CH3OH)/H2) greater than 10-7 and relatively cold (T less than 75 K).
cavity, a technique pioneered at VNIIFTRI . Various contacts between West-European parties, headed by ESA, and the Russian parties, headed by RSA, Led...provided by ON and the other by VNIIFTRI . T/F transfer and precise positioning will be performed by both a microwave link, using PRARE equipment, and...sapphire loaded microwave cavity, on Loan from VNIIFTRI , was evaluated in a full-size EFOS hydrogen maser built by ON. The experimental evaluation
Superconducting magnet for a Ku-band maser.
NASA Technical Reports Server (NTRS)
Berwin, R.; Wiebe, E.; Dachel, P.
1972-01-01
A superconducting magnet to provide a uniform magnetic field of up to 8000 G in a 1.14-cm gap for the 15.3-GHz (Ku-band) traveling wave maser is described. The magnet operates in a persistent mode in the vacuum environment of a closed-cycle helium refrigerator (4.5 K). The features of a superconducting switch, which has both leads connected to 4.5 K heat stations and thereby does not receive heat generated by the magnet charging leads, are described.
Analysis of the IRAS Low Resolution Spectra
1988-04-01
WITH EU ANDROMEDAE : A CARBON 33 STAR NEAR AN OXYGEN-RICH CIRCUMSTELLAR SHELL (AP J COPYRIGHT - BENSON WORKED AT WELLESLEY COLL., WHILE LITTLE-MARENIN...OR AFGL MONEY) G. MASERS ASSOCIATED WITH TWO CARBON STARS: V778 CYGNI 71 AND EU ANDROMEDAE (ACCEPTED BY AP J FOR PUBLICATION 15 JUL 88; TWO NON...I.R. 1987, "A Water Maser Associated with EU Andromedae . A Carbon Star Near an Oxygen-Rich Circumstcllar Shell," Ap. J. (Letterc), 316, L37-L40. l
Maser radiometer for cosmic background radiation anisotropy measurements
NASA Technical Reports Server (NTRS)
Fixsen, D. J.; Wilkinson, D. T.
1982-01-01
A maser amplifier was incorporated into a low noise radiometer designed to measure large-scale anisotropy in the 3 deg K microwave background radiation. To minimize emission by atmospheric water vapor and oxygen, the radiometer is flown in a small balloon to an altitude to 25 km. Three successful flights were made - two from Palestine, Texas and one from Sao Jose dos Campos, Brazil. Good sky coverage is important to the experiment. Data from the northern hemisphere flights has been edited and calibrated.
Radio continuum of galaxies with H2O megamaser disks: 33 GHz VLA data
NASA Astrophysics Data System (ADS)
Kamali, F.; Henkel, C.; Brunthaler, A.; Impellizzeri, C. M. V.; Menten, K. M.; Braatz, J. A.; Greene, J. E.; Reid, M. J.; Condon, J. J.; Lo, K. Y.; Kuo, C. Y.; Litzinger, E.; Kadler, M.
2017-09-01
Context. Galaxies with H2O megamaser disks are active galaxies in whose edge-on accretion disks 22 GHz H2O maser emission has been detected. Because their geometry is known, they provide a unique view into the properties of active galactic nuclei. Aims: The goal of this work is to investigate the nuclear environment of galaxies with H2O maser disks and to relate the maser and host galaxy properties to those of the radio continuum emission of the galaxy. Methods: The 33 GHz (9 mm) radio continuum properties of 24 galaxies with reported 22 GHz H2O maser emission from their disks are studied in the context of the multiwavelength view of these sources. The 29-37 GHz Ka-band observations are made with the Karl Jansky Very Large Array in B, CnB, or BnA configurations, achieving a resolution of 0.2-0.5 arcsec. Hard X-ray data from the Swift/BAT survey and 22 μm infrared data from WISE, 22 GHz H2O maser data and 1.4 GHz data from NVSS and FIRST surveys are also included in the analysis. Results: Eighty-seven percent (21 out of 24) galaxies in our sample show 33 GHz radio continuum emission at levels of 4.5-240σ. Five sources show extended emission (deconvolved source size larger than 2.5 times the major axis of the beam), including one source with two main components and one with three main components. The remaining detected 16 sources (and also some of the above-mentioned targets) exhibit compact cores within the sensitivity limits. Little evidence is found for extended jets (>300 pc) in most sources. Either they do not exist, or our chosen frequency of 33 GHz is too high for a detection of these supposedly steep spectrum features. In NGC 4388, we find an extended jet-like feature that appears to be oriented perpendicular to the H2O megamaser disk. NGC 2273 is another candidate whose radio continuum source might be elongated perpendicular to the maser disk. Smaller 100-300 pc sized jets might also be present, as is suggested by the beam-deconvolved morphology of our sources. Whenever possible, central positions with accuracies of 20-280 mas are provided. A correlation analysis shows that the 33 GHz luminosity weakly correlates with the infrared luminosity. The 33 GHz luminosity is anticorrelated with the circular velocity of the galaxy. The black hole masses show stronger correlations with H2O maser luminosity than with 1.4 GHz, 33 GHz, or hard X-ray luminosities. Furthermore, the inner radii of the disks show stronger correlations with 1.4 GHz, 33 GHz, and hard X-ray luminosities than their outer radii, suggesting that the outer radii may be affected by disk warping, star formation, or peculiar density distributions.
First detection of a THz water maser in NGC 7538-IRS1 with SOFIA and new 22 GHz e-MERLIN maps
NASA Astrophysics Data System (ADS)
Herpin, F.; Baudry, A.; Richards, A. M. S.; Gray, M. D.; Schneider, N.; Menten, K. M.; Wyrowski, F.; Bontemps, S.; Simon, R.; Wiesemeyer, H.
2017-10-01
Context. The formation of massive stars (M> 10M⊙, L > 103L⊙) is still not well understood. Accumulating a large amount of mass infalling within a single entity in spite of radiation pressure is possible if, in addition to several other conditions, enough thermal energy is released. Despite numerous water line observations over a broad range of energies obtained with the Herschel Space Observatory, observations were not able to trace the emission from the hot core around the newly forming protostellar object in most of the sources. Aims: We wish to probe the physical conditions and water abundance in the inner layers of the host protostellar object NGC 7538-IRS1 using a highly excited H2O line. Water maser models predict that several THz water masers should be detectable in these objects. We therefore aim to detect the o-H2O 82,7-73,4 line in a star forming region for the first time. Model calculations have predicted this line to show maser action. Methods: We present SOFIA observations of the o-H2O 82,7-73,4 line at 1296.41106 GHz and a 616-523 22 GHz e-MERLIN map of the region (the very first 22 GHz images made after the e-MERLIN upgrade). In order to be able to constrain the nature of the emission - thermal or maser - we used near-simultaneous observations of the 22 GHz water maser performed with the Effelsberg radiotelescope and e-MERLIN. A thermal water model using the RATRAN radiative transfer code is presented based on HIFI pointed observations. Molecular water abundances are derived for the hot core. Results: The o-H2O 82,7-73,4 line is detected toward NGC 7538-IRS1 with one feature at the source velocity (-57.7 kms-1) and another one at -48.4 kms-1. We propose that the emission at the source velocity is consistent with thermal excitation and is excited in the innermost part of the IRS1a, in the closest circumstellar environment of the massive protostellar object. The other emission is very likely the first detection of a water THz maser line, pumped by shocks due to the IRS1b outflow, in a star-forming region. Assuming thermal excitation of the THz line, the water abundance in the hot core of NGC 7538-IRS1 is estimated to be 5.2 × 10-5 with respect to H2. The reduced spectra and maps (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A52
VizieR Online Data Catalog: 22-GHz water maser clouds (Richards+, 2012)
NASA Astrophysics Data System (ADS)
Richards, A. M. S.; Etoka, S.; Gray, M. D.; Lekht, E. E.; Mendoza-Torres, J. E.; Murakawa, K.; Rudnitskij, G.; Yates, J. A.
2012-07-01
Measurements of 22-GHz water maser clouds, made with the MERLIN radio interferometer. Obects presented (number of epochs): S Per (2); U Ori (4); U Her (3); IK Tau (3); RT Vir (7); W Hya (4). Results for VX Sgr were presented in Murakawa et al, 2003, Cat. J/MNRAS/344/1. The position and other properties of each patch of maser emission in each channel were measured by fitting 2D Gaussian components. The components form features corresponding to spatially distinct clouds and the properties of each cloud was calculated as described in the paper. For each cloud, we give the mean Vlsr, the total velocity extent DV, the full width half maximum DV1/2, the offsets of the cloud centroid from the assumed stellar position x, y and a (=sqrt(x2+y2), the feature largest angular size l and the peak flux density I. All velocities, angular distances and flux densities are in km/s, mas and Jy, respectively. (2 data files).
Wang, B.; Zhu, X.; Gao, C.; Bai, Y.; Dong, J. W.; Wang, L. J.
2015-01-01
The Square Kilometre Array (SKA) project is an international effort to build the world’s largest radio telescope, with a one-square-kilometre collecting area. In addition to its ambitious scientific objectives, such as probing cosmic dawn and the cradle of life, the SKA demands several revolutionary technological breakthroughs, such as ultra-high precision synchronisation of the frequency references for thousands of antennas. In this report, with the purpose of application to the SKA, we demonstrate a frequency reference dissemination and synchronisation scheme in which the phase-noise compensation function is applied at the client site. Hence, one central hub can be linked to a large number of client sites, thus forming a star-shaped topology. As a performance test, a 100-MHz reference frequency signal from a hydrogen maser (H-maser) clock is disseminated and recovered at two remote sites. The phase-noise characteristics of the recovered reference frequency signal coincide with those of the H-maser source and satisfy the SKA requirements. PMID:26349544
NASA Astrophysics Data System (ADS)
Orosz, G.; Imai, H.; Dodson, R.; Rioja, M. J.; Frey, S.; Burns, R. A.; Etoka, S.; Nakagawa, A.; Nakanishi, H.; Asaki, Y.; Goldman, S. R.; Tafoya, D.
2017-03-01
We report on the measurement of the trigonometric parallaxes of 1612 MHz hydroxyl masers around two asymptotic giant branch stars, WX Psc and OH 138.0+7.2, using the NRAO Very Long Baseline Array with in-beam phase referencing calibration. We obtain a 3σ upper limit of ≤5.3 mas on the parallax of WX Psc, corresponding to a lower limit distance estimate of ≳190 pc. The obtained parallax of OH 138.0+7.2 is 0.52 ± 0.09 mas (±18%), corresponding to a distance of {1.9}-0.3+0.4 {kpc}, making this the first hydroxyl maser parallax below one milliarcsecond. We also introduce a new method of error analysis for detecting systematic errors in the astrometry. Finally, we compare our trigonometric distances to published phase-lag distances toward these stars and find a good agreement between the two methods.
High Velocity Precessing Jet from the Water Fountain IRAS 18286-0959 Revealed by VLBA Observations
NASA Astrophysics Data System (ADS)
Yung, Bosco; Nakashima, J.; Imai, H.; Deguchi, S.; Diamond, P. J.; Kwok, S.
2011-05-01
We report the multi-epoch VLBA observations of 22.2GHz water maser emission associated with the "water fountain" star IRAS 18286-0959. The detected maser emission are distributed in the velocity range from -50km/s to 150km/s. The spatial distribution of over 70% of the identified maser features is found to be highly collimated along a spiral jet (namely, jet 1) extended from southeast to northwest direction, and the rest of the features appear to trace another spiral jet (jet 2) with a different orientation. The two jets form a "double-helix" pattern which lies across 200 milliarcseconds (mas). The maser features are reasonably fit by a model consisting of two precessing jets. The velocities of jet 1 and jet 2 are derived to be 138km/s and 99km/s, respectively. The precession period of jet 1 is about 56 years, and for jet 2 it is about 73 years. We propose that the appearance of two jets observed are the result of a single driving source with a significant proper motion. This research was supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region, China, the Seed Funding Programme for Basic Research of the University of Hong Kong, Grant-in-Aid for Young Scientists from the Ministry 9 of Education, Culture, Sports, Science, and Technology, and Grant-in-Aid for Scientific Research from Japan Society for Promotion Science.
THE ZEEMAN EFFECT IN THE 44 GHZ CLASS I METHANOL MASER LINE TOWARD DR21(OH)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Momjian, E.; Sarma, A. P., E-mail: emomjian@nrao.edu, E-mail: asarma@depaul.edu
2017-01-10
We report detection of the Zeeman effect in the 44 GHz Class I methanol maser line, toward the star-forming region DR21(OH). In a 219 Jy beam{sup −1} maser centered at an LSR velocity of 0.83 km s{sup −1}, we find a 20- σ detection of zB {sub los} = 53.5 ± 2.7 Hz. If 44 GHz methanol masers are excited at n ∼ 10{sup 7–8} cm{sup −3}, then the B versus n {sup 1/2} relation would imply, from comparison with Zeeman effect detections in the CN(1 − 0) line toward DR21(OH), that magnetic fields traced by 44 GHz methanol masersmore » in DR21(OH) should be ∼10 mG. Combined with our detected zB {sub los} = 53.5 Hz, this would imply that the value of the 44 GHz methanol Zeeman splitting factor z is ∼5 Hz mG{sup −1}. Such small values of z would not be a surprise, as the methanol molecule is non-paramagnetic, like H{sub 2}O. Empirical attempts to determine z , as demonstrated, are important because there currently are no laboratory measurements or theoretically calculated values of z for the 44 GHz CH{sub 3}OH transition. Data from observations of a larger number of sources are needed to make such empirical determinations robust.« less
The middle infrared properties of OH megamaser host galaxies
NASA Astrophysics Data System (ADS)
Zhang, J. S.; Wang, J. Z.; Di, G. X.; Zhu, Q. F.; Guo, Q.; Wang, J.
2014-10-01
We compiled all 119 OH maser galaxies (110 out of them are megamasers, i.e., LOH> 10 L⊙) published so far and cross-identified these OH masers with the Wide-Field Infrared Survey Explorer (WISE) catalog, to investigate the middle infrared (MIR) properties of OH maser galaxies. The WISE magnitude data at the 3.4, 4.6, 12 and 22 μm (W1 to W4) are collected for the OH maser sample and one control sample, which are non-detection sources. The color-color diagrams show that both OH megamaser (OHM) and non-OHM (ultra)luminous infrared galaxies ((U)LIRGs) are far away from the single blackbody model line and many of them can follow the path described by the power-law model. The active galaxy nuclei (AGN) fraction is about ~40% for both OHM and non-OHM (U)LIRGs, according to the AGN criteria W1 - W2 ≥ 0.8. Among the Arecibo survey sample, OHM sources tend to have a lower luminosity at short MIR wavelengths (e.g., 3.4 μm and 4.6 μm) than that of non-OHM sources, which should come from the low OHM fraction among the survey sample with large 3.4 μm and 4.6 μm luminosity. The OHM fraction tends to increase with cooler MIR colors (larger F22 μm/F3.4 μm). These may be good for sample selection when searching OH megamasers, such as excluding extreme luminous sources at short MIR wavelengths, choosing sources with cooler MIR colors. In the case of the power-law model, we derived the spectral indices for our samples. For the Arecibo survey sample, OHM (U)LIRGs tend to have larger spectral index α22-12 than non-OHM sources, which agrees with previous results. One significant correlation exists between the WISE infrared luminosity at 22μm and the color [W1]-[W4] for the Arecibo OHM hosts. These clues should provide suitable constraints on the sample selection for OH megamaser surveys by future advanced telescopes (e.g., FAST). In addition, the correlation of maser luminosity and the MIR luminosity of maser hosts tends to be non-significant, which may indirectly support the pumping of OHM emission that is dominated by the far infrared radiation, instead of the MIR radiation. Tables 4-7 are available in electronic form at http://www.aanda.org
State of the Art and Future Directions for the Atomic Hydrogen Maser
1990-12-01
5 x lo4 O C Materials such as Zerodur ,8 Cer-Vit,9 and ULElO are available that have comparable values of thermal coefficients1* but this is not...masers do not compete with cesium beam devices as a primary stan- dxrds. The advent of trapped atoms and ions cooled by laser interactions has led to...proceedings. 8 Zerodur is a trademark of Schott Glasswork, Inc. 9 Cer-Vit is a trademark of Owens-Illinois, Inc. W is a .trademark of Coming, Inc. E.M
NASA Astrophysics Data System (ADS)
Liu, Si-Jia; Zhang, Yu-Fei; Wang, Kang; Li, Yong-Ming; Jing, Jian
2017-03-01
Based on the anomalous Doppler effect, we put forward a proposal to enhance the conversion efficiency of the slow-wave electron cyclotron masers (ECM) under the resonance condition. Compared with previous studies, we add a second-order shaping term in the guild magnetic field. Theoretical analyses and numerical calculations show that it can enhance the conversion efficiency in the low-gain limit. The case of the initial velocity spread of electrons satisfying the Gaussian distribution is also analysed numerically.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Si-Jia; Zhang, Yu-Fei; Wang, Kang
Based on the anomalous Doppler effect, we put forward a proposal to enhance the conversion efficiency of the slow-wave electron cyclotron masers (ECM) under the resonance condition. Compared with previous studies, we add a second-order shaping term in the guild magnetic field. Theoretical analyses and numerical calculations show that it can enhance the conversion efficiency in the low-gain limit. The case of the initial velocity spread of electrons satisfying the Gaussian distribution is also analysed numerically.
The 1- to 4-K refrigeration techniques for cooling masers on a beam waveguide antenna
NASA Technical Reports Server (NTRS)
Johnson, D. L.
1986-01-01
The status of technology is reported for various 1- to 4-K commercially available refrigeration systems capable of producing 1.5-K refrigeration to cool masers and superconducting cavity oscillators on the proposed beam waveguide antenna. The design requirements for the refrigeration system and the cryostat are presented. A continuously operating evaporation refrigerator that uses capillary tubing to provide a continuous, self-regulating flow of helium at approximately 1.5 K has been selected as the first refrigerator design for the beam waveguide antenna.
New Tests for Variations of the Fine Structure Constant
NASA Technical Reports Server (NTRS)
Prestage, John D.
1995-01-01
We describe a new test for possible variations of the fine structure constant, by comparisons of rates between clocks based on hyperfine transitions in alkali atomos with different atomic number Z. H- maser, Cs and Hg+ clocks have a different dependence on ia relativistic contributions of order (Z. Recent H-maser vs Hg+ clock comparison data improves laboratory limits on a time variation by 100-fold to giveFuture laser cooled clocks (Be+, Rb, Cs, Hg+, etc.), when compared, will yield the most senstive of all tests for.
METAS New Time Scale Generation System - A Progress Report
2007-01-01
and a TWSTFT station are used for remote T&F comparisons. The GPS TAI link is driven by one of the atomic clocks defined as the REF clock...UTC(CH.P) paper clock TA(CH.P) paper clock TWSTFT link GPS link CH00 WAB1 H-maser 1-PPS H-maser 1-PPS REF 1-PPS 5-MHz from all clocks UTC(CH.R) 1-PPS...lost, the only consequence would be a transient of UTC (CH.P), which can be corrected by a subsequent steering. The GPS and TWSTFT links can be
Report from the MASER 9 Microgravity Rocket Flight in March 2002
NASA Astrophysics Data System (ADS)
Larsson, B.; Löth, K.; Lundin, M.
2002-01-01
The MASER 9 launch is planned for March 2002 and this rocket will carry 3 ESA financed experiment modules, performing in total 5 experiments. This paper will report on the flight results of this mission. The MASER 9 vehicle is propelled by a 2-stage solid fuel rocket motor, which give the 340 kg payload an apogee of about 250 Km and 6 minutes 10 seconds of microgravity. SSC and its sub-contractors will carry out the MASER 9 mission for the European Space Agency (ESA). The CIS-6 Experiment module is developed by Fokker Space and NLR. The Lymphosig, Thyrosig and the three Modular Space Bioreactor experiments are accommodated together in one module. Dr Cogoli, ETH, Zürich, Schweiz, will perform the Lymphocyte experiment. Prof. Ambesi from University of Udine in Italy will investigate Thyroid cells. Dr Cogoli, A.Bader, LEBAO, Hannover, Germany and Prof. Ambesi, will use the Modular Bioreactor for Medically Relevant Organ-like Structures in order to investigate Chondrocytes, Blood Vessel Tissue and Thyroid Cell Clusters. The ITEL experiment, of P. Colinet MRC, ULB, Belgium, is dedicated to investigate Interfacial Turbulence in Evaporating Liquids. The development of this module is a co-operation between SSC and Lambda-X, where Lambda-X is responsible for the development of the opto-mechanic core of the experiment and SSC is responsible for the overall module layout, the electronics, software and remaining mechanics. The Cyrène-2 experiment of Prof. Delhaye and Dr Lebaigue from CEA in Grenoble, is dedicated to investigate "Convective Boiling and Condensation of Ammonia in Microgravity". The development of this module is a co- operation where CNES Toulouse together with CEA Grenoble is responsible for the experiment unit and SSC is responsible for the overall module layout, the electronics, software and remaining mechanics. Included in the payload are also the Maser Service Module (MASM), a TV-link module and a recovery system. The Service Module features 2x5 Mbit/s telemetry, integrated Rate Control System and fibre-optic gyros. A newly developed Digital Video System will also be flight-tested for the first time
NASA Astrophysics Data System (ADS)
Svoboda, Brian; Shirley, Yancy; Rosolowsky, Erik; Dunham, Miranda; Ellsworth-Bowers, Timothy; Ginsburg, Adam
2013-07-01
High mass stars play a key role in the physical and chemical evolution of the interstellar medium, yet the evolutionary sequence for high mass star forming regions is poorly understood. Recent Galactic plane surveys are providing the first systematic view of high-mass star-forming regions in all evolutionary phases across the Milky Way. We present observations of the 22.23 GHz H2O maser transition J(Ka,Kc) = 6(1,6)→5(2,3) transition toward 1398 clumps identified in the Bolocam Galactic Plane Survey using the 100m Green Bank Telescope (GBT). We detect 392 H2O masers, 279 (71%) newly discovered. We show that H2O masers can identify the presence of protostars which were not previously identified by Spitzer/MSX Galactic plane IR surveys: 25% of IR-dark clumps have an H2O maser. We compare the physical properties of the clumps in the Bolocam Galactic Plane Survey (BGPS) with observations of diagnostics of star formation activity: 8 and 24 um YSO candidates, H2O and CH3OH masers, shocked H2, EGOs, and UCHII regions. We identify a sub-sample of 400 clumps with no star formation indicators representing the largest and most robust sample of pre-protocluster candidates from an unbiased survey to date. The different evolutionary stages show strong separations in HCO+ linewidth and integrated intensity, surface mass density, and kinetic temperature. Monte Carlo techniques are applied to distance probability distribution functions (DPDFs) in order to marginalize over the kinematic distance ambiguity and calculate the distribution of derived quantities for clumps in different evolutionary stages. Surface area and dust mass show weak separations above > 2 pc^2 and > 3x10^3 solar masses. An observed breakdown occurs in the size-linewidth relationship with no differentiation by evolutionary stage. Future work includes adding evolutionary indicators (MIPSGAL, HiGal, MMB) and expanding DPDF priors (HI self-absorption, Galactic structure) for more well-resolved KDAs.
Looking for high-mass young stellar objects: H2O and OH masers in ammonia cores
NASA Astrophysics Data System (ADS)
Codella, C.; Cesaroni, R.; López-Sepulcre, A.; Beltrán, M. T.; Furuya, R.; Testi, L.
2010-02-01
Context. The earliest stages of high-mass star formation have yet to be characterised well, because high-angular resolution observations are required to infer the properties of the molecular gas hosting the newly formed stars. Aims: We search for high-mass molecular cores in a large sample of 15 high-mass star-forming regions that are observed at high-angular resolution, extending a pilot survey based on a smaller number of objects. Methods: The sample was chosen from surveys of H2O and OH masers to favour the earliest phases of high-mass star formation. Each source was first observed with the 32-m single-dish Medicina antenna in the (1, 1) and (2, 2) inversion transitions at 1.3 cm of ammonia, which is an excellent tracer of dense gas. High-resolution maps in the NH3(2, 2) and (3, 3) lines and the 1.3 cm continuum were obtained successively with the VLA interferometer. Results: We detect continuum emission in almost all the observed star-forming regions, which corresponds to extended and UCHii regions created by young stellar objects with typical luminosities of ˜10^4~L⊙. However, only in three cases do we find a projected overlap between Hii regions and H2O and OH maser spots. On the other hand, the VLA images detect eight ammonia cores closely associated with the maser sources. The ammonia cores have sizes of ˜10^4 AU, and high masses (up to 104M⊙), and are very dense (from ˜10^6 to a few ×10^9 cm-3). The typical relative NH3 abundance is ≤10-7, in agreement with previous measurements in high-mass star-forming regions. Conclusions: The statistical analysis of the distribution between H2O and OH masers, NH3 cores, and Hii regions confirms that the earliest stages of high-mass star formation are characterised by high-density molecular cores with temperatures of on average ≥30 K, either without a detectable ionised region or associated with a hypercompact Hii region.
Modeling of the hydrogen maser disk in MWC 349
NASA Astrophysics Data System (ADS)
Ponomarev, Victor O.; Smith, Howard A.; Strelnitski, Vladimir S.
1994-04-01
Maser amplification in a Keplerian circumstellar disk seen edge on-the idea put forward by Gordon (1992), Martin-Pintado, & Serabyn (1992), and Thum, Martin-Pintado, & Bachiller (1992) to explain the millimeter hydrogen recombination lines in MWC 349-is further justified and developed here. The double-peaked (vs. possible triple-peaked) form of the observed spectra is explained by the reduced emission from the inner portion of the disk, the portion responsible for the central ('zero velocity') component of a triple-peaked spectrum. Radial gradient of electron density and/or free-free absorption within the disk are identified as the probable causes of this central 'hole' in the disk and of its opacity. We calculate a set of synthetic maser spectra radiated by a homogeneous Keplerian ring seen edge-on and compare them to the H30-alpha observations of Thum et al., averaged over about 1000 days. We used a simple graphical procedure to solve an inverse problem and deduced the probable values of some basic disk and maser parameters. We find that the maser is essentially unsaturated, and that the most probable values of electron temperature. Doppler width of the microturbulence, and electron density, all averaged along the amplification path are, correspondingly, Te less than or equal to 11,000 K, Vmicro less than or equal to 14 km/s, ne approx. = (3 +/- 2) x 107/cu cm. The model shows that radiation at every frequency within the spectrum arises in a monochromatic 'hot spot.' The maximum optical depth within the 'hot spot' producing radiation at the spectral peak maximum is taumax approx. = 6 +/- 1; the effective width of the masing ring is approx. = 0.4-0.7 times its outer diameter; the size of the 'hot spot' responsible for the radiation at the spectral peak frequency is approx. = 0.2-0.3 times the distance between the two 'hot spots' corresponding to two peaks. An important derivation of our model is the dynamical mass of the central star, M* approx. = 26 solar masses (D/1.2 kpc), D being the distance to the star. Prospects for improving the model are discussed.
Water maser emission from exoplanetary systems
NASA Astrophysics Data System (ADS)
Cosmovici, C. B.; Pogrebenko, S.
2018-01-01
Since the first discovery of a Jupiter-mass planet in 1995 more than 2000 exo-planets have been found to exist around main sequence stars. The detection techniques are based on the radial velocity method (which involves the measurement of the star's wobbling induced by the gravitational field of the orbiting giant planets) or on transit photometry by using space telescopes (Kepler, Corot, Hubble and Spitzer) outside the absorbing Earth atmosphere. From the ground, as infrared observations are strongly limited by atmospheric absorption, radioastronomy offers almost the only possible way to search for water presence and abundance in the planetary atmospheres of terrestrial-type planets where life may evolve. Following the discovery in 1994 of the first water maser emission in the atmosphere of Jupiter induced by a cometary impact, our measurements have shown that the water maser line at 22 GHz (1.35 cm) can be used as a powerful diagnostic tool for water search outside the solar system, as comets are able to deliver considerable amounts of water to planets raising the fascinating possibility of extraterrestrial life evolution. Thus in 1999 we started the systematic search for water on 35 different targets up to 50 light years away from the Sun. Here we report the first detection of the water maser emission from the exoplanetary systems Epsilon Eridani, Lalande 21185 and Gliese 581. We have shown the peculiar feasibility of water detection and its importance in the search for exoplanetary systems especially for the Astrobiology programs, given the possibility of long period observations using powerful radiotelescopes equipped with adequate spectrometers.
NH{sub 3}(3,3) AND CH{sub 3}OH NEAR SUPERNOVA REMNANTS: GBT AND VLA OBSERVATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
McEwen, Bridget C.; Pihlström, Ylva M.; Sjouwerman, Loránt O.
2016-08-01
We report on Green Bank Telescope 23.87 GHz NH{sub 3}(3,3) emission observations in five supernova remnants (SNRs) interacting with molecular clouds (G1.4−0.1, IC 443, W44, W51C, and G5.7−0.0). The observations show a clumpy gas density distribution, and in most cases the narrow line widths of ∼3–4 km s{sup −1} are suggestive of maser emission. Very Large Array observations reveal 36 and/or 44 GHz CH{sub 3}OH maser emission in a majority (72%) of the NH{sub 3} peak positions toward three of these SNRs. This good positional correlation is in agreement with the high densities required for the excitation of each line.more » Through these observations we have shown that CH{sub 3}OH and NH{sub 3} maser emission can be used as indicators of high-density clumps of gas shocked by SNRs, and provide density estimates thereof. Modeling of the optical depth of the NH{sub 3}(3,3) emission is compared to that of CH{sub 3}OH, constraining the densities of the clumps to a typical density of the order of 10{sup 5} cm{sup −3} for cospatial masers. Regions of gas with this density are found to exist in the post-shocked gas quite close to the SNR shock front, and may be associated with sites where cosmic rays produce gamma-ray emission via neutral pion decay.« less
Russian national time scale long-term stability
NASA Astrophysics Data System (ADS)
Alshina, A. P.; Gaigerov, B. A.; Koshelyaevsky, N. B.; Pushkin, S. B.
1994-05-01
The Institute of Metrology for Time and Space NPO 'VNIIFTRI' generates the National Time Scale (NTS) of Russia -- one of the most stable time scales in the world. Its striking feature is that it is based on a free ensemble of H-masers only. During last two years the estimations of NTS longterm stability based only on H-maser intercomparison data gives a flicker floor of about (2 to 3) x 10(exp -15) for averaging times from 1 day to 1 month. Perhaps the most significant feature for a time laboratory is an extremely low possible frequency drift -- it is too difficult to estimate it reliably. The other estimations, free from possible inside the ensemble correlation phenomena, are available based on the time comparison of NTS relative to the stable enough time scale of outer laboratories. The data on NTS comparison relative to the time scale of secondary time and frequency standards at Golitzino and Irkutsk in Russia and relative to NIST, PTB and USNO using GLONASS and GPS time transfer links gives stability estimations which are close to that based on H-maser intercomparisons.
Linear quadratic stochastic control of atomic hydrogen masers.
Koppang, P; Leland, R
1999-01-01
Data are given showing the results of using the linear quadratic Gaussian (LQG) technique to steer remote hydrogen masers to Coordinated Universal Time (UTC) as given by the United States Naval Observatory (USNO) via two-way satellite time transfer and the Global Positioning System (GPS). Data also are shown from the results of steering a hydrogen maser to the real-time USNO mean. A general overview of the theory behind the LQG technique also is given. The LQG control is a technique that uses Kalman filtering to estimate time and frequency errors used as input into a control calculation. A discrete frequency steer is calculated by minimizing a quadratic cost function that is dependent on both the time and frequency errors and the control effort. Different penalties, chosen by the designer, are assessed by the controller as the time and frequency errors and control effort vary from zero. With this feature, controllers can be designed to force the time and frequency differences between two standards to zero, either more or less aggressively depending on the application.
NASA Astrophysics Data System (ADS)
Sjouwerman, Loránt O.; Pihlström, Ylva M.; Rich, R. Michael; Morris, Mark R.; Claussen, Mark J.
2017-01-01
A radio survey of red giant SiO sources in the inner Galaxy and bulge is not hindered by extinction. Accurate stellar velocities (<1 km/s) are obtained with minimal observing time (<1 min) per source. Detecting over 20,000 SiO maser sources yields data comparable to optical surveys with the additional strength of a much more thorough coverage of the highly obscured inner Galaxy. Modeling of such a large sample would reveal dynamical structures and minority populations; the velocity structure can be compared to kinematic structures seen in molecular gas, complex orbit structure in the bar, or stellar streams resulting from recently infallen systems. Our Bulge Asymmetries and Dynamic Evolution (BAaDE) survey yields bright SiO masers suitable for follow-up Galactic orbit and parallax determination using VLBI. Here we outline our early VLA observations at 43 GHz in the northern bulge and Galactic plane (0
Two Populations of SiO Masers in the Galactic Bulge
NASA Astrophysics Data System (ADS)
Trapp, Adam; Rich, Robert Michael; Morris, Mark; Pihlstrom, Ylva; Sjouwerman, Lorant; Claussen, Mark J.; Stroh, Michael
2017-01-01
We present a summary of the kinematics of stellar SiO masers observed in the direction of the galactic bulge with ALMA (885 sources), and the JVLA (2,479 sources). These objects are selected by color from the MSX point source catalog, which has given an SiO detection rate of ~70%. The presented sample, along with the ~24,000 sources still being observed and reduced, enable radial velocity measurements even in regions with extreme optical extinction. These maser stars are compared to the known bulge surveys: APOGEE (~25,000 sources), BRAVA (~8000 sources), and GIBS (~6,400 sources). We have found that BAaDE stars in the direction of the bulge exist in two subpopulations: (1) A kinematically hot population exhibiting cylindrical rotation consistent with the other bulge surveys, and (2) a kinematically cold population more consistent with a disk population. In the ALMA data, we find evidence for a -200 km/s feature at (l,b) = (-9,0), possibly the symmetric complement to a previously proposed +200 km/s feature (Nidever 2012), that we do not confirm with our data.
Russian national time scale long-term stability
NASA Technical Reports Server (NTRS)
Alshina, A. P.; Gaigerov, B. A.; Koshelyaevsky, N. B.; Pushkin, S. B.
1994-01-01
The Institute of Metrology for Time and Space NPO 'VNIIFTRI' generates the National Time Scale (NTS) of Russia -- one of the most stable time scales in the world. Its striking feature is that it is based on a free ensemble of H-masers only. During last two years the estimations of NTS longterm stability based only on H-maser intercomparison data gives a flicker floor of about (2 to 3) x 10(exp -15) for averaging times from 1 day to 1 month. Perhaps the most significant feature for a time laboratory is an extremely low possible frequency drift -- it is too difficult to estimate it reliably. The other estimations, free from possible inside the ensemble correlation phenomena, are available based on the time comparison of NTS relative to the stable enough time scale of outer laboratories. The data on NTS comparison relative to the time scale of secondary time and frequency standards at Golitzino and Irkutsk in Russia and relative to NIST, PTB and USNO using GLONASS and GPS time transfer links gives stability estimations which are close to that based on H-maser intercomparisons.
NASA Astrophysics Data System (ADS)
Perini, Federico; Bortolotti, Claudio; Roma, Mauro; Ambrosini, Roberto; Negusini, Monia; Maccaferri, Giuseppe; Stagni, Matteo; Nanni, Mauro; Clivati, Cecilia; Frittelli, Matteo; Mura, Alberto; Levi, Filippo; Zucco, Massimo; Calonico, Davide; Bertarini, Alessandra; Artz, Thomas
2016-12-01
We present the first field test of the implementation of a coherent optical fiber link for remote antenna synchronization realized in Italy between the Italian Metrological Institute (INRIM) and the Medicina radio observatory of the National Institute for Astrophysics (INAF). The Medicina VLBI antenna participated in the EUR137 experiment carried out in September 2015 using, as reference systems, both the local H-maser and a remote H-maser hosted at the INRIM labs in Turin, separated by about 550 km. In order to assess the quality of the remote clock, the observed radio sources were split into two sets, using either the local or the remote H-maser. A system to switch automatically between the two references was integrated into the antenna field system. The observations were correlated in Bonn and preliminary results are encouraging since fringes were detected with both time references along the full 24 hours of the session. The experimental set-up, the results, and the perspectives for future radio astronomical and geodetic experiments are presented.
Water maser emission in the Saturnian system
NASA Astrophysics Data System (ADS)
Horiuchi, Shinji; Cimo, Giuseppe; Gurvits, Leonid; Pogrebenko, Sergei; Molera Calves, Guifré
2010-10-01
Prompted by the recent discovery of a water vapour plume of Enceladus by the Cassini spacecraft, our team started an observational programme to search for possible 22 GHz water vapour maser emission associated with different objects in the Kronian system. The observations have been conducted so far with the 32 m Medicina radio telescope (INAF-IRA, Italy) and the 14 m Metsahovi radio telescope (Aalto University, MRO, Finland). During the 2006-2008 campaigns, more than 300 hours of data have been analysed, and initial results including maser detections up to 7.0 sigma level have been presented. The detections attracted considerable interest and attempts to confirm them and investigate the phenomenon in depth. No confirmations have been published so far. In order to provide critical verification of these detections and study the details of masing conditions efficiently, we request a total of 20 hours on the Tidbinbilla 70 m telescope (DSS43) to observe Saturn and its moons during several, non-consecutive days. Due to natural changes of the planetary target positions, targets' coordinates will be provided after the antenna time is allocated.
Exciting Message from a Dying Monster Star
NASA Astrophysics Data System (ADS)
1996-03-01
SEST Discovers First Extra-galactic SiO Maser With the help of a new and more sensitive receiver, recently installed on the 15-metre Swedish-ESO Submillimetre Telescope (SEST) at the European Southern Observatory on the La Silla mountain in Chile, a team of European astronomers [1] has succeeded in discovering the first extra-galactic silicon-monoxide (SiO) maser . It is located in the atmosphere of the largest known star in the Large Magellanic Cloud, a satellite galaxy to the Milky Way. This observational feat now opens new, exciting possibilities for the study of individual stars in other galaxies in the Local Group. The continued search for extra-galactic SiO masers is a joint project of European and Australian astronomers, to be carried on with even more advanced instruments that will become available in the near future. What is a maser ? The fact that masers exist in the Universe is one of the most unexpected discoveries made by astronomers in this century. They function according to the same principles as the better known lasers . Lasers (Light Amplified Stimulated Emission Radiators) are becoming more and more common in our daily life, for instance to read discs in CD players and to cut steel plates. Inside a laser, molecules act as an enormously powerful amplifier for light of a specific wavelength (`colour') [2]. However, this only happens when we subject the molecules to special conditions, much unlike those they would normally experience in nature. Nevertheless, exotic places do exist in the Universe where conditions are similar to those in lasers. In the 1960s, astronomers discovered that some celestial objects emit abnormally strong radio waves at a particular wavelength. In the beginning, they thought that this emission was coming from an unknown molecule they called `Mysterium'. Later it turned out that it originated in already known, and rather ordinary, OH-molecules of oxygen and hydrogen. In some places in space, these molecules experience the same conditions as in lasers. However, the emission that is amplified in this case is not visible light as in lasers, but rather microwave radiation [3]. They are therefore known under the name masers or Microwave Amplified Stimulated Emission Radiators. This radiation is not visible to the human eye or optical astronomical detectors, but must be captured with astronomical radio telescopes. Later, silicon-monoxide (SiO) masers were discovered in which the molecules that amplify the microwave emission are made up of equal proportions of silicon (Si) and oxygen (O). The discovery of the first extra-galactic SiO maser In May 1995, new state-of-the-art receivers were installed on the Swedish-ESO Submillimetre Telescope (SEST) , a radio dish measuring 15 metres across at the ESO La Silla Observatory in Chile. The great technical improvement of the receivers and the excellent quality of this observing site and of the telescope itself make it one of the world's most powerful instruments for this type of research. And indeed, immediately after the installation of the new receivers, the first observations bore fruit. The astronomers decided to look with the telescope at the Large Magellanic Cloud (LMC), a satellite galaxy to the Milky Way galaxy in which we live. On a dark night in the Southern Hemisphere, one can easily spot the LMC with the naked eye as a little `cloud', seen in the direction of the southern constellation of Doradus (The Goldfish). Although much smaller than the Milky Way, it still contains many millions of stars. The astronomers chose to observe the largest known star in the LMC and they registered its microwave radiation for no less than 26 hours. Most of the observing was done during daytime, which is possible with this type of instrument: at microwave wavelengths, the sky appears dark even during the day. The astronomers were delighted to see the star shining at microwave wavelengths, cf. ESO Press Photo 16/96. The measured wavelength leaves no doubt that this is radiation from a SiO maser in the atmosphere of the star. If it would not have been a maser, it would have been far too weak to have been detected. Although we know several hundred masers of this type in the Milky Way, this is the first discovery of a SiO maser in another galaxy than our own . Since then, the observations have been continued in collaboration with Australian astronomers, using radio telescopes at Parkes and Mopra on that continent. A most unusual star When Swedish astronomer Bengt Westerlund and his colleagues first observed this LMC maser star in 1981 with optical telescopes, they thought that it was a rather normal, cool and not particularly bright star. However, a few years later, the Dutch-British-USA InfraRed Astronomical Satellite (IRAS) revealed its true nature. The IRAS measurements showed that the star radiates most of its light in the form of infrared radiation [4], making it one of the most powerful stars in the LMC; in fact, it emits about half a million times more energy than the Sun. On this occasion, it was given the designation IRAS 04553-6825 , the number indicating its position in the sky. IRAS 04553-6825 is unusual in other ways. It is some fifty times as heavy as our Sun, and it is the biggest known star in the LMC: if it were to take the place of our Sun, it would fill the solar system out to the planet Neptune, thirty times the distance from the Earth to the Sun. It is rather cool when compared to other stars - although it still has a temperature of about 2,000 C - and it therefore has a very red colour [5]. This Press Release is accompanied by ESO Press Photo 15/96 which demonstrates that while the star is hardly visible in blue light, it shines brightly in red and infrared light. Stars like IRAS 04553-6825 are known as red supergiants. It has been unofficially dubbed `The Monster', and having reached the end of a short and hectic life, it is now dying. The nuclear reactions deep inside are undergoing important changes at an ever-increasing rate and in the course of this process the star has swollen to its present, enormous size. Moreover, IRAS 04553-6825 is now blowing away its atmosphere. It loses material at a prodigious rate: each month, the equivalent of one Earth mass disappears into the surrounding space, at velocities of up to 25 kilometers per second. Were the mass-loss to continue in this way, the star would soon evaporate completely. It may never get that far, though. There is little doubt that, much before, it will end its life by exploding as a bright supernova. In February 1987, another star in the LMC exploded as a supernova, becoming as bright as the combined light of all the stars in the entire LMC. In fact, IRAS 04553-6825 might already have exploded some time ago, but due to the finite velocity of light - it takes the light 170,000 years to travel the distance from the LMC to us - the message about its fiery death may not have reached us yet. Our Sun is not expected to die this way; the death as a brilliant supernova is reserved for much heavier stars. Stellar dust and the existence of life Billions of years ago, the silicate-rich minerals that now make up most of the rocks and sand on Earth surrounded another dying star, similar to IRAS 04553-6825 . These minerals contain the silicon-oxide molecules which were then illuminated by the light of the red supergiant star and had shone brightly as SiO masers before they condensed into dust and were blown away into space. After many millions, perhaps even billions of years, they finally ended up in the rocks of planet Earth. Not only rocks and sand, but all things we use in daily life ultimately owe their existence to stars like IRAS 04553-6825 , ranging from the food we eat to the air we breathe, from the bicycle we drive to the brain in our head. This is because massive stars such as IRAS 04553-6825 produce heavy elements like oxygen, iron and carbon. We consist of these elements, and almost everything we use is made up of these elements as well. IRAS 04553-6825 is now blowing away matter from its atmosphere and thereby enriches the Universe with heavy elements. The outflowing gas gradually cools, and at a certain distance from the star it begins to condense into dust grains, a process that resembles the formation of droplets in clouds in the Earth's atmosphere. In particular, the SiO molecules in the atmosphere end up in dust grains in this way. The gas and dust expelled by IRAS 04553-6825 is then mixed with the material in the space between the stars. From this material, new stars form. Around some of these young stars planets will form. It is not excluded that some of these planets may be similar to the Earth, and may even harbour life. On the accompanying ESO Press Photo 15/96 , we see huge nebulae near the maser star; they are interstellar gas clouds that shine by the light of the embedded stars. IRAS 04553-6825 was born a few million years ago of the material in one of these nebulae. Now the rapidly outflowing material from this star (the stellar wind) is mixing with the gas cloud. This may trigger the formation of new stars a bit further away in the brightest parts of the nebulae. Dying stars like IRAS 04553-6825 are the main factories of dust in the Universe. It is an interesting thought that without these stars, there would be no dust. Without dust, there would be no planets. Without planets, there would be no life. We therefore owe our very existence to the mass-loss from these big, cool, dying stars. What does the study of SiO masers tell us ? We do not yet fully understand the processes by which a star like IRAS 04553-6825 loses its material into space. The mechanism that is responsible for the mass loss must be active near the surface of the star. However, mass-losing stars are very difficult to observe in visible light, because they quickly become obscured by the dust forming in their own stellar wind. Blue and yellow light is more absorbed than red light and therefore penetrates less through this dust. The absorbed energy is re-radiated by the dust as infrared radiation; this is why IRAS 04553-6825 shines so brightly in the infrared spectral region, resulting in its detection by IRAS. SiO maser radiation originates from close to the stellar surface, where the matter is being ejected by the star. The maser radiation is intense, and we can observe it because the surrounding dust is nearly transparent at microwave wavelengths. By observing the SiO maser radiation we can therefore study how the star expels its material. SiO masers emit the amplified radiation at a specific wavelength. However, if the molecules are moving towards us or away from us, we receive this radiation at a slightly different wavelength. This is the usual Doppler effect, analogous to the change in sound pitch you hear when a train or an ambulance approaches and then recedes. By measuring very accurately the wavelength of a SiO maser, it is therefore possible to determine with high precision the velocity of the material. With modern instruments, an accuracy of about 100 metres per second may be reached. This may not seem very much, but there are no other methods to measure the velocity in a star inside a dense dust cloud with such a precision. Moreover, when compared with the velocity of the outflowing material - typically between one and thirty kilometres per second - this accuracy is still quite sufficient to study the motion of the material close to the stellar surface in great detail. Future observations In the future, the 26-hour observation of the first extra-galactic SiO maser is expected to be followed by the discovery of many other SiO masers in galaxies in the Local Group, especially as the instrumentation continues to improve. By combining several telescopes into an array, the observational limit may be pushed to stars at a distance of about 2 million light-years, i.e. just about to the distance of the Andromeda nebula, a galaxy that is similar to the Milky Way. Plans for this are being elaborated in Australia with the Australia Telescope (a combination of many single radio telescopes like at Mopra), as well as within ESO. When more SiO masers in the LMC will have been discovered, we will be able to study how the mass loss differs from star to star. This will help us to learn how the mass loss depends on the overall characteristics of the star, for instance its brightness or its mass. Strangely enough, it is easier to do this type of study with stars in another galaxy, despite the fact that they are much more distant than the maser stars in the Milky Way. The main reason is that it is very difficult to measure distances to individual stars in our own galaxy. And if the distance to a star is not known, many other characteristics of the star will not be known either, e.g. its total energy production (intrinsic brightness) or its mass. However, as we know the distance to the LMC, about 170,000 light-years, we also know the distance to all the maser stars, which will be detected in this small galaxy. SiO masers are extremely powerful velocity indicators for celestial objects. We can therefore use them, not only to measure the motion of the molecules in the atmospheres of stars, but also to measure the velocities of the stars themselves. A study of the velocities of many SiO masers in the Milky Way indicates how the stars move through our galaxy. From this we gain a better understanding of how the Milky Way was formed; this is one of the great mysteries present-day astronomers are very eager to solve. And in the future, we may extend this type of study to other nearby galaxies. There is indeed a great potential for important new knowledge in this exciting area of modern astronomical research ! Notes: [1] The team consists of Jacco Th. van Loon and Albert A. Zijlstra (ESO/Garching), Lars-Ake Nyman (ESO/La Silla), and Valentin Bujarrabal (Observatorio Astronomico Nacional, Madrid, Spain). [2] Depending on the wavelength (and therefore on the energy it carries), electromagnetic radiation may take form of long and short radio waves, microwave radiation, infrared radiation, visible light, ultraviolet radiation, X-rays or gamma-rays. [3] Microwave radiation is for instance used to cook meals in microwave ovens. The heating effect occurs when the radiation energy is absorbed by the water molecules in the food. [4] Infrared radiation is what we experience as `heat': we feel it, but we cannot see it. [5] Stars with different temperatures have different colours. The Sun has a temperature of about 5,500 C and looks yellow, while hotter stars look blue and cooler stars are red. Analogously, when a metal bar is heated, it first will glow reddish, then become yellow, and eventually it will shine bluish.
NASA Astrophysics Data System (ADS)
Gorski, Mark; Ott, Jürgen; Rand, Richard; Meier, David S.; Momjian, Emmanuel; Schinnerer, Eva
2018-04-01
The Survey of Water and Ammonia in Nearby galaxies (SWAN) studies atomic and molecular species across the nuclei of four star-forming galaxies: NGC 253, IC 342, NGC 6946, and NGC 2146. As part of this survey, we present Karl G. Jansky Very Large Array molecular line observations of three galaxies: IC 342, NGC 6946, and NGC 2146. NGC 253 is covered in a previous paper. These galaxies were chosen to span an order of magnitude in star formation rates and to select a variety of galaxy types. We target the metastable transitions of ammonia NH3(1, 1) to (5, 5), the 22 GHz water (H2O) (616–523) transition, and the 36.1 GHz methanol (CH3OH) (4‑1–30) transition. We use the NH3 metastable lines to perform thermometry of the dense molecular gas. We show evidence for uniform heating across the central kiloparsec of IC 342 with two temperature components for the molecular gas, similar to NGC 253, of 27 and 308 K, and that the dense molecular gas in NGC 2146 has a temperature <86 K. We identify two new water masers in IC 342, and one new water maser in each of NGC 6946 and NGC 2146. The two galaxies NGC 253 and NGC 2146, with the most vigorous star formation, host H2O kilomasers. Lastly, we detect the first 36 GHz CH3OH masers in IC 342 and NGC 6946. For the four external galaxies the total CH3OH luminosity in each galaxy suggests a correlation with galactic star formation rate, whereas the morphology of the emission is similar to that of HNCO, a weak shock tracer.
Search for the 22 GHz water maser emission in selected comets
NASA Astrophysics Data System (ADS)
Cosmovici, C. B.; Pluchino, S.; Montebugnoli, S.; Pogrebenko, S.
2014-06-01
Following the first evidence of planetary water maser emission induced by the collision of comet Shoemaker/Levy with Jupiter and the puzzling detection of the 22 GHz water emission line in Comet Hyakutake we started in the period 2002-2008 systematic observations of selected comets at 22 GHz (1.35 cm) with the aim of clarifying the unusual behavior of the maser line in the cometary “scenario”. Using a fast multichannel spectrometer coupled to the 32 m dish of the Medicina (Bologna, Italy) Radio Telescope we investigated 6 bright or sungrazing comets down to a heliocentric distance of 0.11 AU: 96P/Machholz, 153P/ Ikeya-Zhang, C/2002 V1 (NEAT), C/2002 X5 (Kudo-Fujikawa), C/2002 T7 (Linear), and 73P/Schwassmann-Wachmann 3. All of them, similarly to Comet Hyakutake, demonstrate spectral features that, if real and due to the 1.35 cm water vapor transition, are strongly (up to tens of km/s) shifted relative to the radial velocity of the nucleus and, at least sometimes, seem to be present as two separate peaks. If our interpretation of these spectral peaks is correct, there must be some mechanism of acceleration of neutral water molecules up to the velocities of ions. We discuss here the results achieved and the possible explanation of the chemo-physical constraints. First possible detection of the water maser emission line at 22 GHz in sun-grazing comets Observed puzzling acceleration of neutral water molecules at ion velocities and split of the line in two components. Evidence of plasma-grain interaction in sun-grazing comets. Possible new detections in six peculiar comets.
Evidence for Stable v = 0, j = 1 → 0 SiO Maser Emission from VY Canis Majoris
NASA Astrophysics Data System (ADS)
McIntosh, G. C.; Rislow, B.
2009-02-01
Observations of the SiO v = 0, J = 1 → 0 spectra from VY CMa from 2003 through 2006 indicate an unusually long-lived, highly linearly polarized maser emission at a V lsr of approximately 18.5 km s-1. A time series cross-correlation analysis has been developed for calculating the characteristic lifetime of linearly polarized spectra. Applying the cross-correlation to these spectra indicates a characteristic lifetime of 5600 ± 400 days. These emission characteristics may be generated in a region of relatively stable outflow geometry and magnetic field rather than in the more ephemeral circumstellar environment.
Mixing properties of the one-atom maser
NASA Astrophysics Data System (ADS)
Bruneau, Laurent
2014-06-01
We study the relaxation properties of the quantized electromagnetic field in a cavity under repeated interactions with single two-level atoms, so-called one-atom maser. We improve the ergodic results obtained in Bruneau and Pillet (J Stat Phys 134(5-6):1071-1095, 2009) and prove that, whenever the atoms are initially distributed according to the canonical ensemble at temperature , all the invariant states are mixing. Under some non-resonance condition this invariant state is known to be thermal equilibirum at some renormalized temperature and we prove that the mixing is then arbitrarily slow, in other words that there is no lower bound on the relaxation speed.
Atomic Clocks and Variations of the FIne Structure Constant
NASA Technical Reports Server (NTRS)
Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute
1995-01-01
We describe a new test for possible variations of the fine structure constant alpha by comparisons of rates between clocks based on hyperfine transitions in alkali atoms with different atomic number Z. H-maser, Cs, and Hg(+) clocks have a different dependence on alpha via relativistic contributions of order (Z-alpha)(sup 2). Recent H-maser vs Hg(+) clock comparison data improve laboratory limits on a time variation by 100-fold to give dot-alpha less than or equal to 3.7 x 10(exp -14)/yr. Future laser cooled clocks (Be(+), Rb, Cs, Hg(+), etc.), when compared, will yield the most sensitive of all tests for dot-alpha/alpha.
A report on the gravitational redshift test for non-metric theories of gravitation
NASA Technical Reports Server (NTRS)
1980-01-01
The frequencies of two atomic hydrogen masers and of three superconducting cavity stabilized oscillators were compared as the ensemble of oscillators was moved in the Sun's gravitational field by the rotation and orbital motion of the Earth. Metric gravitation theories predict that the gravitational redshifts of the two types of oscillators are identical, and that there should be no relative frequency shift between the oscillators; nonmetric theories, in contrast, predict a frequency shift between masers and SCSOs that is proportional to the change in solar gravitational potential experienced by the oscillators. The results are consistent with metric theories of gravitation at a level of 2%.
Cyclotron maser emission of auroral Z mode radiation
NASA Technical Reports Server (NTRS)
Melrose, D. B.; Hewitt, R. G.; Dulk, G. A.
1983-01-01
Results are presented suggesting that loss cone driven cyclotron maser emission by upgoing electrons, closely analogous to auroral kilometric radiation (AKR), may be the mechanism behind the observed Z mode radiation. With this hypothesis, the lack of a strong correlation between the Z mode radiation and AKR is not surprising; the ray paths for the X mode and the Z mode are markedly different, with the former directed upward and the latter downward. In addition, it is expected that the generation of the Z mode will be favored only in regions where the ratio of the plasma frequency to the electron cyclotron frequency is greater than or approximately equal to 0.3, that is, where the X mode radiation is suppressed. If the fraction of the radiation generated that crosses the cyclotron layer is large, then the argument in favor of the loss cone driven cyclotron maser as the source of the observed Z mode radiation is a strong one. The spatial growth rates are fairly large in comparison with those for the X mode, and there seems to be little doubt that Z mode radiation should be generated under conditions that differ only slightly from those for the generation of X mode radiation in AKR.
Cyclotron maser emission of auroral Z mode radiation
NASA Astrophysics Data System (ADS)
Melrose, D. B.; Hewitt, R. G.; Dulk, G. A.
1983-12-01
Results are presented suggesting that loss cone driven cyclotron maser emission by upgoing electrons, closely analogous to auroral kilometric radiation (AKR), may be the mechanism behind the observed Z mode radiation. With this hypothesis, the lack of a strong correlation between the Z mode radiation and AKR is not surprising; the ray paths for the X mode and the Z mode are markedly different, with the former directed upward and the latter downward. In addition, it is expected that the generation of the Z mode will be favored only in regions where the ratio of the plasma frequency to the electron cyclotron frequency is greater than or approximately equal to 0.3, that is, where the X mode radiation is suppressed. If the fraction of the radiation generated that crosses the cyclotron layer is large, then the argument in favor of the loss cone driven cyclotron maser as the source of the observed Z mode radiation is a strong one. The spatial growth rates are fairly large in comparison with those for the X mode, and there seems to be little doubt that Z mode radiation should be generated under conditions that differ only slightly from those for the generation of X mode radiation in AKR.
Estudio de Maseres Circunestelares de Monoxido de Silicio con muy alta Resolucion Espacial
NASA Astrophysics Data System (ADS)
Soria-Ruiz, Rebeca
2006-03-01
We present high-spatial and high-spectral resolution studies of SiO masers in the circumstellar envelopes of late-type stars. These masers occur in the inner layers of the CSEs, in a region dominated by the stellar pulsation, thus being good (if not the only) probes available to understand the physics in these regions. Using the NRAO Very Long Baseline Array, we have produced maps of the 28SiO v=1 and v=2 J=1-0 and J=2-1 transitions towards several AGB stars: two Mira-type (TXCam and RLeo), one OH/IR (IRC+10011) and one S-type (xCyg) stars. The 29SiO v=0 J=1-0 and J=2-1 emission has also been studied. The spatial distributions retrieved, some of them for the first time, are in clear contradiction with the predictions of the models developed to date. We suggest that spectral line overlap may explain the results obtained. This work has been conducted by Dr. Javier Alcolea Jimenez and Dr. Francisco Colomer Sanmartin, at Observatorio Astronomico Nacional (Spain). The PhD thesis manuscript, in spanish, is available at ftp://ftp.oan.es/pub/users/r.soria/TESIS-RSoria.pdf .
An 8.4-GHz dual-maser front-end system for Parkes reimplementation
NASA Technical Reports Server (NTRS)
Trowbridge, D. L.; Loreman, J. R.; Brunzie, T. J.; Quinn, R.
1990-01-01
An 8.4-GHz front-end system consisting of a feedhorn, a waveguide feed assembly, dual masers, and downconverters was reimplemented at Parkes as part of the Parkes Canberra Telemetry Array for the Voyager Neptune encounter. The front-end system was originally assembled by the European Space Agency and installed on the Parkes antenna for the Giotto project. It was also used on a time-sharing basis by the Deep Space Network as part of the Parkes Canberra Telemetry Array to enhance the data return from the Voyager Uranus encounter. At the conclusion of these projects in 1986, part of the system was then shipped to JPL on loan for reimplementation at Parkes for the Voyager Neptune encounter. New design and implementation required to make the system operable at Parkes included new microwave front-end control cabinets, closed-cycle refrigeration monitor system, noise-adding radiometer system, front-end controller assembly, X81 local oscillator multiplier, and refurbishment of the original dual 8.4-GHz traveling-wave masers and waveguide feed system. The front-end system met all requirements during the encounter and was disassembled in October 1989 and returned to JPL.
Threshold Dynamics of a Semiconductor Single Atom Maser
NASA Astrophysics Data System (ADS)
Liu, Yinyu
Photon emission from single emitters provides fundamental insight into the detailed interaction between light and matter. Here we demonstrate a semiconductor single atom maser (SeSAM) that consists of a single InAs double quantum dot (DQD) that is coupled to a high quality factor microwave cavity. A finite bias results in population inversion in the DQD, enabling sizable cavity gain and stimulated emission. We develop a pulsed-gate approach that allows the SeSAM to be tuned across the masing threshold. The cavity output power as a function of DQD current is in good agreement with single atom maser theory once a small correction for lead emission is included. Photon statistics measurements show that the second-order correlation function of intra-cavity photon number, nc, crosses over from 〈nc2 〉 /〈nc 〉 2 = 2.1 below threshold to 〈nc2 〉 /〈nc 〉 2 = 1.2 above threshold. Large fluctuations are observed at threshold. In collaboration with J. Stehlik, C. Eichler, X. Mi, T. R. Hartke, M. J. Gullans, J. M. Taylor and J. R. Petta. Supported by the NSF and the Gordon and Betty Moore Foundation's EPiQS initiative through Grant No. GBMF4535.
Gravitational redshift space-probe experiment
NASA Technical Reports Server (NTRS)
Vessot, R. F. C.; Levine, M. W.
1979-01-01
A Scout D rocket was launched from Wallops Island, Virginia, carrying an atomic hydrogen maser oscillator system as the payload. The frequency of signals from the oscillator was monitored on the ground at Merritt Island, Florida, by using two hydrogen masers as comparison oscillators. The first-order Doppler shift in the signals was eliminated by a go-return transponder link to the payload, and the resulting data, representing the relativistic shifts, were recovered and recorded. The objective was to measure directly the effect of gravitational potential on the frequency of an atomic hydrogen maser assuming it to be a 'proper' clock. A gravitational effect amounting to some 4.5 parts in 10 to the 10th power was measured with an oscillator having a stability better than 1 part in 10 to the 14th power. Therefore, to make the best possible use of the oscillator, all frequency shifts at the 2 to 5 X 10 to the -15 power level in delta f/f in the system must be accounted for. This includes all the phase variations that can cause such a shift to appear. The experiment, the data available and the manner in which they were processed, and the results are described.
Traveling-Wave Maser for 32 GHz
NASA Technical Reports Server (NTRS)
Shell, James; Clauss, Robert
2009-01-01
The figure depicts a traveling-wave ruby maser that has been designed (though not yet implemented in hardware) to serve as a low-noise amplifier for reception of weak radio signals in the frequency band of 31.8 to 32.3 GHz. The design offers significant improvements over previous designs of 32-GHz traveling-wave masers. In addition, relative to prior designs of 32-GHz amplifiers based on high-electron-mobility transistors, this design affords higher immunity to radio-frequency interference and lower equivalent input noise temperature. In addition to the basic frequency-band and low-noise requirements, the initial design problem included a requirement for capability of operation in a closed-cycle helium refrigerator at a temperature .4 K and a requirement that the design be mechanically simplified, relative to prior designs, in order to minimize the cost of fabrication and assembly. Previous attempts to build 32- GHz traveling-wave masers involved the use of metallic slow-wave structures comprising coupled transverse electromagnetic (TEM)-mode resonators that were subject to very tight tolerances and, hence, were expensive to fabricate and assemble. Impedance matching for coupling signals into and out of these earlier masers was very difficult. A key feature of the design is a slow-wave structure, the metallic portions of which would be mechanically relatively simple in that, unlike in prior slow-wave structures, there would be no internal metal steps, irises, or posts. The metallic portions of the slow-wave structure would consist only of two rectangular metal waveguide arms. The arms would contain sections filled with the active material (ruby) alternating with evanescent-wave sections. This structure would be transparent in both the signal-frequency band (the aforementioned range of 31.8 to 32.3 GHz) and the pump-frequency band (65.75 to 66.75 GHz), and would impose large slowing factors in both frequency bands. Resonant ferrite isolators would be placed in the evanescent-wave sections to provide reverse loss needed to suppress reverse propagation of power at the signal frequency. This design is expected to afford a large gain-bandwidth product at the signal frequency and efficient coupling of the pump power into the paramagnetic spin resonances of the ruby sections. The more efficiently the pump power could be thus coupled, the more efficiently it could be utilized and the heat load on the refrigerator correspondingly reduced.
VLBA Scientists Study Birth of Sunlike Stars
NASA Astrophysics Data System (ADS)
1999-06-01
Three teams of scientists have used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope to learn tantalizing new details about how Sun-like stars are formed. Young stars, still growing by drawing in nearby gas, also spew some of that material back into their surroundings, like impatient infants that eat too quickly. The VLBA observations are giving astronomers new insights on both processes -- the accretion of material by the new stars and the outflows of material from them. "For the first time, we're actually seeing what happens right down next to the star in these young systems," said Mark Claussen, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. Claussen and other researchers announced their findings at the American Astronomical Society's meeting in Chicago. Material attracted by a young star's gravitational pull forms a flat, orbiting disk, called an accretion disk, in which the material circles closer and closer to the star until finally drawn into it. At the same time, material is ejected in "jets" speeding from the poles of the accretion disk. "The VLBA is showing us the first images of the region close to the star where the material in these jets is accelerated and formed into the `beams' of the jet," Claussen said. "We don't understand the details of these processes well," Claussen said. "These VLBA research projects are beginning to help unravel the mysteries of how stars like the Sun form." The teams are observing clumps of water vapor that naturally amplify radio emissions to see details smaller than the orbit of Mercury in young stellar systems as well as track gas motions. The clumps of gas are called masers, and amplify radio emission in much the same way that a laser amplifies light emission. "These images are just fantastic," said Al Wootten of NRAO in Charlottesville, VA. The maser clumps or "spots," emitting radio waves at a specific wavelength, can be tracked as they move over time. In addition, by measuring the Doppler shift in the wavelength of these emissions, astronomers can determine the speed at which the gas is moving. In an object known as S106FIR, 2,000 light-years away in the constellation Cygnus, a team of Japanese and U.S. VLBA observers led by Ray Furuya, a graduate student from Japan's Nobeyama Radio Observatory, has tracked the motion of material outward in the jet. This object, embedded in a dense cloud of molecular gas, the material from which the star is forming, shows maser spots moving in two directions as the jets emerge from both poles of the accretion disk. "The water masers are the only way we can detect the outflow from this young star," Furuya said. The VLBA observations can discern details as small as half the distance from the Earth to the Sun. "We can see outflow on scales the size of our Solar System. We think this object is one of the youngest protostars known," Furuya said. In another object, dubbed IRAS 16293-2422, in the constellation Ophiuchus, astronomers believe the water masers clearly show the outflowing jets of a young star and may be tracing the accretion disk as well. The young star is one of a pair of stars in a binary system some 500 light-years distant. The water-vapor masers are seen around only one of the pair, however. "In this system, we see outflow in the jet and also an elliptical ring of masers that may be part of the accretion disk," said Wootten, leader of the team observing this object. "The VLBA is showing us details as small as the size of Mercury's orbit around the Sun, a great help in understanding the physics going on there," Wootten said. A team composed largely of astronomers from the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA, also used the VLBA to study water masers in a young stellar object 2,500 light-years away in Cepheus. This team sees maser spots moving in opposite directions away from the young star on scales of ten times the diameter of the solar system, presumably tracing the jet or wind. On smaller scales, there is a circular loop of masers which the astronomers believe surrounds the young stellar object. "The loop probably represents the edge of a dusty shell of gas smaller than the Earth's orbit. The star is several times the mass of the Sun and its heat evaporates material closer in," said Nimesh Patel, leader of the team. The ability to see the details of stars still undergoing their formation processes is extremely valuable to understanding the details of those processes, according to Claussen, a member of the teams led by Furuya and Wootten. "The VLBA images show detail about 100 times better than those routinely available from other radio telescopes," Claussen said. "Studying these systems by observing the clumps of water vapor that act as masers is not particularly difficult with the VLBA. There are hundreds of young stars that we can study this way, and that means that we have a tremendous opportunity to learn just how stars similar to our Sun are formed and interact with their surroundings in the early parts of their lives." The VLBA is a system of ten radio-telescope antennas, each 25 meters (82 feet) in diameter, stretching some 5,000 miles from Mauna Kea in Hawaii to St. Croix in the U.S. Virgin Islands. Operated from NRAO's Array Operations Center in Socorro, NM, the VLBA offers astronomers the greatest resolving power, or ability to see fine detail, of any telescope currently operational. The NRAO is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
MM-wave cyclotron auto-resonance maser for plasma heating
NASA Astrophysics Data System (ADS)
Ceccuzzi, S.; Dattoli, G.; Di Palma, E.; Doria, A.; Gallerano, G. P.; Giovenale, E.; Mirizzi, F.; Spassovsky, I.; Ravera, G. L.; Surrenti, V.; Tuccillo, A. A.
2014-02-01
Heating and Current Drive systems are of outstanding relevance in fusion plasmas, magnetically confined in tokamak devices, as they provide the tools to reach, sustain and control burning conditions. Heating systems based on the electron cyclotron resonance (ECRH) have been extensively exploited on past and present machines DEMO, and the future reactor will require high frequencies. Therefore, high power (≥1MW) RF sources with output frequency in the 200 - 300 GHz range would be necessary. A promising source is the so called Cyclotron Auto-Resonance Maser (CARM). Preliminary results of the conceptual design of a CARM device for plasma heating, carried out at ENEA-Frascati will be presented together with the planned R&D development.
Injection locking of an electronic maser in the hard excitation mode
NASA Astrophysics Data System (ADS)
Yakunina, K. A.; Kuznetsov, A. P.; Ryskin, N. M.
2015-11-01
The phenomenon of hard excitation is natural for many electronic oscillators. In particular, in a gyrotron, a maximal efficiency is often attained in the hard excitation regime. In this paper, we study the injection-locking phenomena using two models of an electronic maser in the hard excitation mode. First, bifurcation analysis is performed for the quasilinear model described by ordinary differential equations for the slow amplitude and phase. Two main scenarios of transition to the injection-locked mode are described, which are generalizations of the well-known phase-locking and suppression mechanisms. The results obtained for the quasilinear model are confirmed by numerical simulations of a gyrotron with fixed Gaussian structure of the RF field.
Radio wave heating of the corona and electron precipitation during flares
NASA Technical Reports Server (NTRS)
Melrose, D. B.; Dulk, G. A.
1982-01-01
Electron-cyclotron masers, excited while energy release is occurring in a flaring magnetic loop, are likely to generate extremely intense radiation at decimeter wavelengths. The energy in the radiation can be comparable with that in the electrons associated with hard X-ray bursts, i.e., a significant fraction of the total energy in the flare. Essentially all of the radio energy is likely to be reabsorbed by gyroresonance absorption, either near the emitting region or at some distance away in neighboring loops. Enhanced diffusion of fast electrons caused by the maser can lead to precipitation at the maximum possible rate, and hence account for hard X-ray emission from the footpoints of the magnetic loops.
Observational Study of Morphological Changes in Medium-mass Evolved Stars
NASA Astrophysics Data System (ADS)
Chong, Sze-Ning
2014-02-01
Medium-mass (or intermediate-mass) stars refer to main sequence stars with masses ranging from 0.4 to 8 solar masses. These stars are believed to finally evolve into the central stars of planetary nebulae (PNe) and white dwarfs. One of the fascinating aspects of PNe is their diverse morphology. To understand the mechanisms of the morphological changes from spherical circumstellar envelopes (CSEs) of asymptotic giant branch (AGB) stars to those forming highly diversified PNe, it is necessary to investigate the true three-dimensional (3D) morphology of PNe from two-dimensional images, and the short transition phase in-between the two phases should also be explored. "Water Fountain" (WF) sources belong to transition phase objects; they are AGB or post-AGB stars with collimated jets traced by high velocity water maser emissions in their CSEs. This thesis comprises of four chapters. The results can be divided into two major parts. Chapter 1 is the introduction on the related fields with brief reviews of previous observational studies on PNe and the rapidly evolving transition phase objects. Basic theories necessary for understanding the next chapters were also described, including those explaining the commonly observed Hα emission in PNe, the formation of multipolar PNe, the maser emission and the role of shock in circumstellar materials. The first major part of the results, about the morphological classification of multipolar PNe, is presented in Chapter 2. At the beginning of the chapter, the problems on the previous classification methods were pointed out. Then a three-lobed model was introduced. By changing the combination of the orientations of the three pairs of lobes, simulations using the model produced statistical results in classification and quantified the errors of misidentification. Assuming that all PNe observed have the true structure of three lobes, due to projection effect, only 49% of them would be correctly classified. 46% and 5% of them would be misclassified as quadrupolar and bipolar, respectively. Similar analyses for one-lobed and two- lobed models were also performed. The results can be generalized to cases with larger number of lobes. The modeled images were compared with the Hα images of real PNe obtained from the Hubble Space Telescope data archive. Moreover, the effects of sensitivity in observational instruments on morphological classification were demonstrated. Even with the same uniform density on the lobe surface, the resultant column density changes with the viewing angle. As a result, under low sensitivity, some parts of the lobes cannot be detected, leaving broken arcs instead of closed lobes. They may be commonly misidentified as features other than lobes. The second major part of the results, about the water masers in W43A, is presented in Chapter 3. Using the Very Long Baseline Array (VLBA) in the United States, water masers in W43A in thirteen epochs across about ten years were detected. Among the fifteen WFs ever discovered, W43A is the only one that has been observed for over a decade. The characteristic distribution patterns of maser features were analyzed with various tools such as variance-covariance matrix and positional cross-correlation coefficient to obtain the physical parameters of the fast bipolar gas outflow ejected from the star. The "traditional" precessing jet model assumes that the axis of the collimated outflow keeps precessing like a spinning top, and the jet excites masers at its tip. However, there are some bow-shaped patterns of maser features that do not agree with this model; instead, they are more consistent with a cavity model - a halo with a bipolar evacuated volume whose thick wall was further pushed by an inside second collimated outflow. The cavity model is able to reproduce bow-shaped patterns, not only in W43A but also other WFs. It takes column density into account, which is essential in maser amplification. It is also more closely related to the mid-infrared morphology of W43A. Moreover, the features were identified to be concentrated in six groups located at discrete distances from the geometric center. It is believed that they reveal the mass loss history of the central star of W43A. In Chapter 4, simulation results for future observations are presented and the results of this thesis are summarized. The cavity model introduced in Chapter 3 should be tested using the newly developed instruments such as the Atacama Large Millimeter/submillimeter Array (ALMA) with its high spatial resolution and sensitivity. The reconstruction of the true 3D structure of PNe represents the first step in the identification of the physical processes responsible for the shaping of PNe, and the results of W43A demonstrated how water maser observations could be utilized to study early 3D morphological changes in PNe. Maser sizes are of the order of milli-arcseconds, suggesting an extremely high-resolution aspect to be explored for probing the inner regions of CSEs in evolved stars. They move with such high velocities over 100 km s-1 that observation intervals at a few months are enough to detect significant motions. With high resolving power and sensitivity of observational instruments available, it is not surprising to predict that WFs will be the key to solve the morphological formation mysteries of PNe.
Anticipated uncertainty budgets of PRARETIME and T2L2 techniques as applied to ExTRAS
NASA Technical Reports Server (NTRS)
Thomas, Claudine; Wolf, Peter; Uhrich, Pierre J. M.; Schaefer, W.; Nau, H.; Veillet, Christian
1995-01-01
The Experiment on Timing Ranging and Atmospheric Soundings, ExTRAS, was conceived jointly by the European Space Agency, ESA, and the Russian Space Agency, RSA. It is also designated the 'Hydrogen-maser in Space/Meteor-3M project'. The launch of the satellite is scheduled for early 1997. The package, to be flown on board a Russian meteorological satellite includes ultra-stable frequency and time sources, namely two active and auto-tuned hydrogen masers. Communication between the on-board hydrogen masers and the ground station clocks is effected by means of a microwave link using the modified version for time transfer of the Precise Range And Range-rate Equipment, PRARETIME, technique, and an optical link which uses the Time Transfer by Laser Link, T2L2, method. Both the PRARETIME and T2L2 techniques operate in a two-directional mode, which makes it possible to carry out accurate transmissions without precise knowledge of the satellite and station positions. Due to the exceptional quality of the on-board clocks and to the high performance of the communication techniques with the satellite, satellite clock monitoring and ground clocks synchronization are anticipated to be performed with uncertainties below 0.5 ns (1 sigma). Uncertainty budgets and related comments are presented.
Direct Evidence for Maser Emission from the 36.2 GHz Class I Transition of Methanol in NGC253
NASA Astrophysics Data System (ADS)
Chen, Xi; Ellingsen, Simon P.; Shen, Zhi-Qiang; McCarthy, Tiege P.; Zhong, Wei-Ye; Deng, Hui
2018-04-01
Observations made with the Jansky Very large Array (JVLA) at an angular resolution of ∼0.″1 have detected class I methanol maser emission from the 36.2 GHz transition toward the starburst galaxy NGC 253. The methanol emission is detected toward four sites which lie within the regions of extended methanol emission detected in previous lower angular resolution (a few arcseconds) observations. The peak flux densities of the detected compact components are in the range 3–9 mJy beam‑1. Combining the JVLA data with single-dish observations from the Shanghai Tianma Radio Telescope (TMRT) and previous interferometric observations with the Australia Telescope Compact Array (ATCA), we show that the 36.2 GHz class I methanol emission consists of both extended and compact structures, with typical scales of ∼6″ (0.1 kpc) and ∼0.″05 (1 pc), respectively. The strongest components have a brightness temperature of >103 K, much higher than the maximum kinetic temperature (∼100 K) of the thermal methanol emission from NGC 253. Therefore, these observations conclusively demonstrate for the first time the presence of maser emission from a class I methanol transition in an external galaxy.
VLBA SURVEYS OF OH MASERS IN STAR-FORMING REGIONS. I. SATELLITE LINES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruiz-Velasco, A. E.; Felli, D.; Migenes, V.
2016-05-10
Using the Very Long Baseline Array we performed a high-resolution OH maser survey in Galactic star-forming regions (SFRs). We observed all the ground state spectral lines: the main lines at 1665 and 1667 MHz and the satellite lines at 1612 and 1720 MHz. Due to the exceptionality of finding satellite lines in SFRs, we will focus our discussion on those lines. In our sample of 41 OH maser sources, five (12%) showed the 1612 MHz line and ten (24%) showed the 1720 MHz line, with only one source showing both lines. We find that 1720 MHz emission is correlated withmore » the presence of H ii regions, suggesting that this emission could be used to diagnose or trace high-mass star formation. We include an analysis of the possible mechanisms that could be causing this correlation as well as assessing the possible relationships between lines in our sample. In particular, the presence of magnetic fields seems to play an important role as we found Zeeman splitting in four of our sources (W75 N, W3(OH), W51 and NGC 7538). Our results have implications for current understanding of the formation of high-mass stars as well as on the masing processes present in SFRs.« less
MASER: Measuring, Analysing, Simulating low frequency Radio Emissions.
NASA Astrophysics Data System (ADS)
Cecconi, B.; Le Sidaner, P.; Savalle, R.; Bonnin, X.; Zarka, P. M.; Louis, C.; Coffre, A.; Lamy, L.; Denis, L.; Griessmeier, J. M.; Faden, J.; Piker, C.; André, N.; Genot, V. N.; Erard, S.; King, T. A.; Mafi, J. N.; Sharlow, M.; Sky, J.; Demleitner, M.
2017-12-01
The MASER (Measuring, Analysing and Simulating Radio Emissions) project provides a comprehensive infrastructure dedicated to low frequency radio emissions (typically < 50 to 100 MHz). The four main radio sources observed in this frequency are the Earth, the Sun, Jupiter and Saturn. They are observed either from ground (down to 10 MHz) or from space. Ground observatories are more sensitive than space observatories and capture high resolution data streams (up to a few TB per day for modern instruments). Conversely, space-borne instruments can observe below the ionospheric cut-off (10 MHz) and can be placed closer to the studied object. Several tools have been developed in the last decade for sharing space physcis data. Data visualization tools developed by The CDPP (http://cdpp.eu, Centre de Données de la Physique des Plasmas, in Toulouse, France) and the University of Iowa (Autoplot, http://autoplot.org) are available to display and analyse space physics time series and spectrograms. A planetary radio emission simulation software is developed in LESIA (ExPRES: Exoplanetary and Planetary Radio Emission Simulator). The VESPA (Virtual European Solar and Planetary Access) provides a search interface that allows to discover data of interest for scientific users, and is based on IVOA standards (astronomical International Virtual Observatory Alliance). The University of Iowa also develops Das2server that allows to distribute data with adjustable temporal resolution. MASER is making use of all these tools and standards to distribute datasets from space and ground radio instruments available from the Observatoire de Paris, the Station de Radioastronomie de Nançay and the CDPP deep archive. These datasets include Cassini/RPWS, STEREO/Waves, WIND/Waves, Ulysses/URAP, ISEE3/SBH, Voyager/PRA, Nançay Decameter Array (Routine, NewRoutine, JunoN), RadioJove archive, swedish Viking mission, Interball/POLRAD... MASER also includes a Python software library for reading raw data.
NASA Astrophysics Data System (ADS)
Sakai, Nobuyuki; Nakanishi, Hiroyuki; Matsuo, Mitsuhiro; Koide, Nagito; Tezuka, Daisuke; Kurayama, Tomoharu; Shibata, Katsunori M.; Ueno, Yuji; Honma, Mareki
2015-08-01
We report the trigonometric parallax of IRAS 07427-2400 with VERA to be 0.185 ± 0.027 mas, corresponding to a distance of 5.41^{+0.92}_{-0.69}kpc. The result is consistent with the previous result of 5.32^{+0.49}_{-0.42}kpc obtained by Choi et al. (2014, ApJ, 790, 99) within error. To remove the effect of internal maser motions (e.g., random motions), we observed six maser features associated with IRAS 07427-2400 and determined systematic proper motions of the source by averaging proper motions of the six maser features. The obtained proper motions are (μαcos δ, μδ) = (-1.79 ± 0.32, 2.60 ± 0.17) mas yr-1 in equatorial coordinates, while Choi et al. (2014) showed (μαcos δ, μδ) = (-2.43 ± 0.02, 2.49 ± 0.09) mas yr-1 with one maser feature. Our astrometry results place the source in the Perseus arm, the nearest main arm in the Milky Way. Using our result with previous astrometry results obtained from observations of the Perseus arm, we conducted direct (quantitative) comparisons between 27 astrometry results and an analytic gas dynamics model based on the density-wave theory, obtaining two results. First is the pitch angle of the Perseus arm determined by VLBI astrometry, 11.1° ± 1.4°, differing from what is determined by the spiral potential model (probably traced by stars), ˜ 20°. The second is an offset between a dense gas region and the bottom of the spiral potential model. The dense gas region traced by VLBI astrometry is located downstream of the spiral potential model, which was previously confirmed in the nearby grand-design spiral galaxy M 51 in Egusa, Koda, and Scoville (2011, ApJ, 726, 85).
Are We Observing Coronal Mass Ejections in OH/IR AGB Stars?
NASA Astrophysics Data System (ADS)
Heiles, Carl
2017-05-01
Solar Coronal Mass Ejections (CMEs) are magnetic electron clouds that are violently ejected by the same magnetic reconnection events that produce Solar flares. CMEs are the major driving source of the hazardous space weather environments near the Earth. In exoplanet systems, the equivalent of Solar wind and CMEs can affect a planet's atmosphere, and in extreme cases can erode it, as probably happened with Mars, or disrupt the cosmic-ray shielding aspect of the planet's magnetic field.We (Jensen et al. 2013SoPh..285...83J, 2016SoPh..291..465J) have developed a new way to observe the electron column density and magnetic field of CMEs, namely to measure the frequency change and Faraday rotation of a spacecraft downlink carrier produced by propagation effects in the plasma. Surprisingly, this can work on other stars if they have the equivalent of the spacecraft carrier, as do OH/IR stars.OH/IR stars are Asymptotic Giant Branch (AGB) stars, which are red giant stars burning He in their final stages of stellar evolution. They have highly convective surfaces and large mass-ejection rates in the form of expanding dense shells of molecular gas and obscuring dust, which were ejected from the star by chaotic turbulent motions and then accelerated by radiation pressure. OH masers reside in these shells, pumped by the IR emission from the dust. The OH masers on the far side of the star (i.e., the positive-velocity masers) are the surrogate for the Solar-case spacecraft signal.The big question: Can we see CMEs in OH/IR stars? We have observed six OH/IR stars with the Arecibo Observatory for a total of about 150 hours over the past 1.5 years. We see changes in OH maser frequency and in the position angle of linear polarization. Both can be produced by electron clouds moving across the line of sight. We will present statistical summaries of the variability and interpret them in terms of CME models.
NASA Astrophysics Data System (ADS)
Goddi, C.; Greenhill, L.; Humphreys, E.; Matthews, L.; Chandler, C.
2010-11-01
Around high-mass Young Stellar Objects (YSOs), outflows are expected to be launched and collimated by accretion disks inside radii of 100 AU. Strong observational constraints on disk-mediated accretion in this context have been scarce, largely owing to difficulties in probing the circumstellar gas at scales 10-100 AU around high-mass YSOs, which are on average distant (>1 Kpc), form in clusters, and ignite quickly whilst still enshrouded in dusty envelopes. Radio Source I in Orion BN/KL is the nearest example of a high-mass YSO, and only one of three YSOs known to power SiO masers. Using VLA and VLBA observations of different SiO maser transitions, the KaLYPSO project (http://www.cfa.harvard.edu/kalypso/) aims to overcome past observational limitations by mapping the structure, 3-D velocity field, and dynamical evolution of the circumstellar gas within 1000 AU from Source I. Based on 19 epochs of VLBA observations of v=1,2 SiO masers over ~2 years, we produced a movie of bulk gas flow tracing the compact disk and the base of the protostellar wind at radii < 100 AU from Source I. In addition, we have used the VLA to map 7mm SiO v=0 emission and track proper motions over 10 years. We identify a narrowly collimated outflow with a mean motion of 18 km/s at radii 100-1000 AU, along a NE-SW axis perpendicular to that of the disk traced by the v=1,2 masers. The VLBA and VLA data exclude alternate models that place outflow from Source I along a NW-SE axis. The analysis of the complete (VLBA and VLA) dataset provides the most detailed evidence to date that high-mass star formation occurs via disk-mediated accretion.
Characteristic Lifetime Of A Polarized Feature In The V=0, J=1-0 Sio Maser VY Canis Majoris
NASA Astrophysics Data System (ADS)
Rislow, Benjamin; McIntosh, G. C.
2008-05-01
A time series cross correlation analysis has been developed for calculating the characteristic lifetime of linearly polarized features in the spectrum of silicon monoxide masers. Our observations of VY CMa in the v=0, J=1→0; transition from June 2003 to March 2006 revealed a highly linearly polarized feature at Vlsr=18.5 km s-1. Applying the cross correlation to this feature gave a characteristic lifetime of 2800 days. This time is much longer than the v=1, J=2→1; transition's lifetime of 645 days and indicates that the two transitions occur under different physical conditions. This research was supported by the University of Minnesota and the University of Minnesota, Morris.
NASA Astrophysics Data System (ADS)
Ginzburg, N. S.; Golubev, I. I.; Golubykh, S. M.; Zaslavskii, V. Yu.; Zotova, I. V.; Kaminsky, A. K.; Kozlov, A. P.; Malkin, A. M.; Peskov, N. Yu.; Perel'Shteĭn, É. A.; Sedykh, S. N.; Sergeev, A. S.
2010-10-01
A free-electron maser (FEM) with a double-mirror resonator involving a new modification of Bragg structures operating on coupled propagating and quasi-cutoff (trapped) modes has been studied. The presence of trapped waves in the feedback chain improves the selectivity of Bragg resonators and ensures stable single-mode generation regime at a considerable superdimensionality of the interaction space. The possibility of using the new feedback mechanism has been confirmed by experiments with a 30-GHz FEM pumped by the electron beam of LIU-3000 (JINR) linear induction accelerator, in which narrow-band generation was obtained at a power of ˜10 MW and a frequency close to the cutoff frequency of the trapped mode excited in the input Bragg reflector.
Injection locking of an electronic maser in the hard excitation mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yakunina, K. A.; Kuznetsov, A. P.; Ryskin, N. M.
2015-11-15
The phenomenon of hard excitation is natural for many electronic oscillators. In particular, in a gyrotron, a maximal efficiency is often attained in the hard excitation regime. In this paper, we study the injection-locking phenomena using two models of an electronic maser in the hard excitation mode. First, bifurcation analysis is performed for the quasilinear model described by ordinary differential equations for the slow amplitude and phase. Two main scenarios of transition to the injection-locked mode are described, which are generalizations of the well-known phase-locking and suppression mechanisms. The results obtained for the quasilinear model are confirmed by numerical simulationsmore » of a gyrotron with fixed Gaussian structure of the RF field.« less
A model for the wind of the M supergiant VX Sagittarii
NASA Astrophysics Data System (ADS)
Pijpers, F. P.
1990-11-01
The velocity distribution of the stellar wind from the M supergiant VX Sgr deduced from interferometric measurements of maser lines by Chapman and Cohen (1986) has been modeled using the linearized theory of stellar winds driven by short period sound waves proposed by Pijpers and Hearn (1989) and the theory of stellar winds driven by short period shocks proposed by Pijpers and Habing (1989). The effect of the radiative forces on the dust formed in the wind is included in a simple way. Good agreement with the observations is obtained by a range of parameters in the theory. A series of observations of the maser lines at invervals of one or a few days may provide additional constraints on the interpretation.
Efficiency at maximum power of a laser quantum heat engine enhanced by noise-induced coherence
NASA Astrophysics Data System (ADS)
Dorfman, Konstantin E.; Xu, Dazhi; Cao, Jianshu
2018-04-01
Quantum coherence has been demonstrated in various systems including organic solar cells and solid state devices. In this article, we report the lower and upper bounds for the performance of quantum heat engines determined by the efficiency at maximum power. Our prediction based on the canonical three-level Scovil and Schulz-Dubois maser model strongly depends on the ratio of system-bath couplings for the hot and cold baths and recovers the theoretical bounds established previously for the Carnot engine. Further, introducing a fourth level to the maser model can enhance the maximal power and its efficiency, thus demonstrating the importance of quantum coherence in the thermodynamics and operation of the heat engines beyond the classical limit.
Characterization of methanol as a magnetic field tracer in star-forming regions
NASA Astrophysics Data System (ADS)
Lankhaar, Boy; Vlemmings, Wouter; Surcis, Gabriele; van Langevelde, Huib Jan; Groenenboom, Gerrit C.; van der Avoird, Ad
2018-02-01
Magnetic fields play an important role during star formation1. Direct magnetic field strength observations have proven particularly challenging in the extremely dynamic protostellar phase2-4. Because of their occurrence in the densest parts of star-forming regions, masers, through polarization observations, are the main source of magnetic field strength and morphology measurements around protostars2. Of all maser species, methanol is one of the strongest and most abundant tracers of gas around high-mass protostellar disks and in outflows. However, as experimental determination of the magnetic characteristics of methanol has remained largely unsuccessful5, a robust magnetic field strength analysis of these regions could hitherto not be performed. Here, we report a quantitative theoretical model of the magnetic properties of methanol, including the complicated hyperfine structure that results from its internal rotation6. We show that the large range in values of the Landé g factors of the hyperfine components of each maser line lead to conclusions that differ substantially from the current interpretation based on a single effective g factor. These conclusions are more consistent with other observations7,8 and confirm the presence of dynamically important magnetic fields around protostars. Additionally, our calculations show that (nonlinear) Zeeman effects must be taken into account to further enhance the accuracy of cosmological electron-to-proton mass ratio determinations using methanol9-12.
High-power broadband plasma maser with magnetic self-insulation
NASA Astrophysics Data System (ADS)
Litvin, Vitaliy O.; Loza, Oleg T.
2018-01-01
Presented in this paper are the results of a particle-in-cell modelling of a novel high-power microwave (HPM) source which combines the properties of two devices. The first prototype is a magnetically insulated transmission line oscillator (MILO), an HPM self-oscillator which does not need an external magnetic field and irradiates a narrow spectrum depending on its iris-loaded slow-wave structure. The second prototype is a plasma maser, a Cherenkov HPM amplifier driven by a high-current relativistic electron beam propagating in a strong external magnetic field in plasma which acts as a slow-wave structure. The radiation frequency of plasma masers mainly depends on an easily variable plasma concentration; hence, their spectrum may overlap a few octaves. The plasma-based HPM device described in this paper operates without an external magnetic field: it looks like an MILO in which the iris-loaded slow-wave structure is substituted by a hollow plasma tube. The small pulse duration of ˜1.5 ns prevents a feedback rise in the 20-cm long generation section so that the device operates as a noise amplifier. Unlike conventional ultra wideband generators, the spectrum depends not only on the pulse duration but mainly on plasma, so the operation frequency of the device ranges within 12 GHz. For irradiated frequencies above 2 GHz, the total pulse energy efficiency of 7% is demonstrated at the HPM power level ˜1 GW.
Unveiling the molecular bipolar outflow of the peculiar red supergiant VY Canis Majoris
NASA Astrophysics Data System (ADS)
Shinnaga, Hiroko; Claussen, Mark J.; Lim, Jeremy; Dinh-van-Trung; Tsuboi, Masato
2003-04-01
We carried out polarimetric spectral-line imaging of the molecular outflow of the peculiar red supergiant VY Canis Majoris in SiO J=1-0 line in the ground vibrational state, which contains highly linearly-polarized velocity components, using the Very Large Array. We succeeded in unveiling the highly linearly polarized bipolar outflow for the first time at subarcsecond spatial resolution. The results clearly show that the direction of linear polarization of the brightest maser components is parallel to the outflow axis. The results strongly suggest that the linear polarization of the SiO maser is closely related to the outflow phenomena of the star. Furthermore, the results indicate that the linear polarization observed in the optical and infrared also occur due to the outflow phenomena.
Search for X-ray Emission from AGB Stars in the Coronal Graveyard
NASA Astrophysics Data System (ADS)
Montez, Rodolfo
2013-10-01
Maser observations demonstrate the existence of magnetic fields in the circumstellar envelopes of AGB stars. However, thus far, only 2-3 AGB stars have exhibited evidence for coronal X-ray emission. We have demonstrated that only the sensitivity of modern X-ray telescopes can detect magnetically-induced coronal emission and have identified a sample of AGB stars which are ideal candidates to search for such emission. Specifically, we have selected a sample of AGB stars with SiO maser emission, UV emission in at least one of the GALEX bandpasses, and low mass loss rates. The four selected AGB stars provide a pilot sample that optimally probes for coronal activity beyond the giant phase and that provides valuable tests for the launching and shaping of AGB mass loss.
Outburst OH maser activity in the envelopes of S Persei and VX Sagittarii *
NASA Astrophysics Data System (ADS)
Szymczak, M.; Wolak, P.; Gérard, E.; Richards, A. M. S.
2010-12-01
Context. OH masers from the envelopes of M-type supergiants show a significant degree of polarization, implying magnetic fields of a few mG. Nothing is known about the temporal characteristics of the magnetic fields or how such changes may affect stellar mass loss. Aims: We therefore observed two supergiant stars in order to quantify the long-term polarization behaviour of the maser emission. Methods: Full-polarization spectra at 1612 and 1667 MHz were obtained with the Nançay radio telescope at intervals over periods of 4 and 6 years for S Per and VX Sgr, respectively. Results: Time series of OH maser full polarization spectra are presented. Semiregular variations of the integrated flux densities generally follow the visual light curves as expected for radiative pumping cycles. For both sources the variability indices of individual features are higher at 1667 MHz than at 1612 MHz and their extreme values occur for the blue-shifted emission. The degrees of polarization at 1667 MHz show diverse behaviours usually uncorrelated with the total flux, whereas those at 1612 MHz are commonly stable on time scales of 4-6 yr. Several outbursts of the 1667 MHz emission on time scales of 0.5-2 yr were found in both targets. The bursting features are highly polarized and show drifts in velocity. Small changes of the degrees of polarization and smooth variations of position angle of linear polarization during the bursts were observed in S Per but they are more dramatic in VX Sgr. Conclusions: The OH outbursts do not seem to have any direct link to stellar events, but seem to be localized in the wind. Appendices A and B are only available in electronic form via http://www.edpsciences.orgA complete catalogue of the data in all four Stokes parameters is only available in electronic form at CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/viz-bin/qcat?J/A+A/524/A99
NASA Astrophysics Data System (ADS)
Springett, James C.
1994-05-01
Orbiting VLBI (OVLBI) astronomical observations are based upon measurements acquired simultaneously from ground-based and earth-orbiting radio telescopes. By the mid-1990s, two orbiting VLBI observatories, Russia's Radioastron and Japan's VSOP, will augment the worldwide VLBI network, providing baselines to earth radio telescopes as large as 80,000 km. The challenge for OVLBI is to effectuate space to ground radio telescope data cross-correlation (the observation) to a level of integrity currently achieved between ground radio telescopes. VLBI radio telescopes require ultrastable frequency and timing references in order that long term observations may be made without serious cross-correlation loss due to frequency source drift and phase noise. For this reason, such instruments make use of hydrogen maser frequency standards. Unfortunately, space-qualified hydrogen maser oscillators are currently not available for use on OVLBI satellites. Thus, the necessary long-term stability needed by the orbiting radio telescope may only be obtained by microwave uplinking a ground-based hydrogen maser derived frequency to the satellite. Although the idea of uplinking the frequency standard intrinsically seems simple, there are many 'contaminations' which degrade both the long and short term stability of the transmitted reference. Factors which corrupt frequency and timing accuracy include additive radio and electronic circuit thermal noise, slow or systematic phase migration due to changes of electronic circuit temporal operating conditions (especially temperature), ionosphere and troposphere induced scintillations, residual Doppler-incited components, and microwave signal multipath propagation. What is important, though, is to realize that ultimate stability does not have to be achieved in real-time. Instead, information needed to produce a high degree of coherence in the subsequent cross-correlation operation may be derived from a two-way coherent radio link, recorded and later introduced as compensations adjunct to the VLBI correlation process. Accordingly, this paper examines the technique for stable frequency/time transfer within the OVLBI system, together with a critique of the types of link degradation components which must be compensated, and the figures of merit known as coherence factors.
NASA Technical Reports Server (NTRS)
Springett, James C.
1994-01-01
Orbiting VLBI (OVLBI) astronomical observations are based upon measurements acquired simultaneously from ground-based and earth-orbiting radio telescopes. By the mid-1990s, two orbiting VLBI observatories, Russia's Radioastron and Japan's VSOP, will augment the worldwide VLBI network, providing baselines to earth radio telescopes as large as 80,000 km. The challenge for OVLBI is to effectuate space to ground radio telescope data cross-correlation (the observation) to a level of integrity currently achieved between ground radio telescopes. VLBI radio telescopes require ultrastable frequency and timing references in order that long term observations may be made without serious cross-correlation loss due to frequency source drift and phase noise. For this reason, such instruments make use of hydrogen maser frequency standards. Unfortunately, space-qualified hydrogen maser oscillators are currently not available for use on OVLBI satellites. Thus, the necessary long-term stability needed by the orbiting radio telescope may only be obtained by microwave uplinking a ground-based hydrogen maser derived frequency to the satellite. Although the idea of uplinking the frequency standard intrinsically seems simple, there are many 'contaminations' which degrade both the long and short term stability of the transmitted reference. Factors which corrupt frequency and timing accuracy include additive radio and electronic circuit thermal noise, slow or systematic phase migration due to changes of electronic circuit temporal operating conditions (especially temperature), ionosphere and troposphere induced scintillations, residual Doppler-incited components, and microwave signal multipath propagation. What is important, though, is to realize that ultimate stability does not have to be achieved in real-time. Instead, information needed to produce a high degree of coherence in the subsequent cross-correlation operation may be derived from a two-way coherent radio link, recorded and later introduced as compensations adjunct to the VLBI correlation process. Accordingly, this paper examines the technique for stable frequency/time transfer within the OVLBI system, together with a critique of the types of link degradation components which must be compensated, and the figures of merit known as coherence factors.
Pilot Search for 54-MHz Maser Emission from Interstellar Hydroxyl Using LOFAR
NASA Astrophysics Data System (ADS)
Hoffman, Ian M.; Heald, G.; Oonk, R.; McKean, J.; Mol, J.; Hessels, J.; Toribio, C.; LOFAR Collaboration
2014-01-01
We present the results of the most sensitive search to date for the two 54-MHz spectral lines of the hydroxyl (OH) molecule. These are the preliminary results of a larger, planned observational campaign. The splitting of the rotational ground state of the hydroxyl molecule gives rise to the four familiar 1.7-GHz transitions by which OH is known in the interstellar medium. There are also two magnetic-dipole transitions among these states at frequencies of 53.2 MHz and 55.1 MHz. These 54-MHz transitions have never been detected astronomically. Because of the relative weakness of the magnetic-dipole emission process, it is expected that only maser emission will generate a detectable 54-MHz signal. Two previous searches have been conducted by other authors with other instruments toward Galactic sources of known 1720-MHz OH maser emission: three sources were searched at 55.1 MHz and two other sources were searched at 53.2 MHz, resulting in upper limits of approximately 30 Jy for spectral channels of 2 km/s in width. In preparation for our future observational campaign that will apply the unprecedented sensitivity of LOFAR to the search for 54-MHz OH emission, we conducted a pilot project using six hours of Commissioning Time. These observations employed 21 48-element stations and produced a spectral resolution of approximately 0.5 km/s for both the 53.2- and 55.1-MHz lines. This spectral resolution is a considerable improvement over previous searches since it is suitable both for resolving the characteristically narrow width of maser lines and for identifying radiofrequency interference. In our pilot observations, no emission was detected at either frequency with an upper limit of approximately 3 Jy. We observed the Galactic sources W75N and W3(OH), neither of which have been searched previously at either frequency. We discuss the astrophysical implications of these sensitive non-detections. LOFAR, the Low Frequency Array designed and constructed by ASTRON, has facilities in several countries, that are owned by various parties (each with their own funding sources), and that are collectively operated by the International LOFAR Telescope (ILT) foundation under a joint scientific policy.
NASA Astrophysics Data System (ADS)
Niederhofer, F.; Humphreys, E. M. L.; Goddi, C.
2012-12-01
Using Science Verification data from the Atacama Large Millimeter/Submillimeter Array (ALMA), we have identified and imaged five rotational transitions (J = 5-4 and J = 6-5) of the three silicon monoxide isotopologues 28SiO v = 0, 1, 2 and 29SiO v = 0 and 28Si18O v = 0 in the frequency range from 214 to 246 GHz towards the Orion BN/KL region. The emission of the ground-state 28SiO, 29SiO and 28Si18O shows an extended bipolar shape in the northeast-southwest direction at the position of Radio Source I, indicating that these isotopologues trace an outflow ( 18 km s-1, PA 50°, 5000 AU in diameter) that is driven by this embedded high-mass young stellar object (YSO). Whereas on small scales (10-1000 AU) the outflow from Source I has a well-ordered spatial and velocity structure, as probed by Very Long Baseline Interferometry (VLBI) imaging of SiO masers, the large scales (500-5000 AU) probed by thermal SiO with ALMA reveal a complex structure and velocity field, most likely related to the effects of the environment of the BN/KL region on the outflow emanating from Source I. The emission of the vibrationally-excited species peaks at the position of Source I. This emission is compact and not resolved at an angular resolution of 1farcs5 ( 600 AU at a distance of 420 pc). 2D Gaussian fitting to individual velocity channels locates emission peaks within radii of 100 AU, i.e. they trace the innermost part of the outflow. A narrow spectral profile and spatial distribution of the v = 1 J = 5-4 line similar to the masing v = 1 J = 1-0 transition, provide evidence for the most highly rotationally excited (frequency > 200 GHz) SiO maser emission associated with Source I known to date. The maser emission will enable studies of the Source I disk-outflow interface with future ALMA longest baselines.
Particle propagation effects on wave growth in a solar flux tube
NASA Astrophysics Data System (ADS)
White, S. M.; Melrose, D. B.; Dulk, G. A.
1986-09-01
The evolution of a distribution of electrons is followed after they are injected impulsively at the top of a coronal magnetic loop, with the objective of studying the plasma instabilities which result. At early times the downgoing electrons have beamlike distributions and amplify electrostatic waves via the Cerenkov resonance; the anomalous Doppler resonance is found to be less important. Slightly later, while the electrons are still predominantly downgoing, they are unstable to cyclotron maser generation of z-mode waves with omega(p) much less than Omega, or to second harmonic x-mode waves. The energetics of these instabilities, including saturation effects and heating of the ambient plasma, are discussed. It is suggested that coalescence of two z-mode waves generated by cyclotron maser emission of the downgoing electrons may produce the observed microwave spike bursts.
Asymmetric linear efficiency and bunching mechanisms of TM modes for electron cyclotron maser
NASA Astrophysics Data System (ADS)
Chang, T. H.; Huang, W. C.; Yao, H. Y.; Hung, C. L.; Chen, W. C.; Su, B. Y.
2017-02-01
This study examines the transverse magnetic (TM) waveguide modes, which have long been considered as the unsuitable ones for the operation of the electron cyclotron maser. The beam-wave coupling strength of the TM modes, as expected, is found to be relatively weak as compared with that of the transverse electric (TE) waveguide modes. Unlike TE modes, surprisingly, the linear behavior of the TM modes depends on the sign of the wave number kz. The negative kz has a much stronger linear efficiency than that of the positive kz. The bunching mechanism analysis further exhibits that the azimuthal bunching and axial bunching do not compete but cooperate with each other for the backward-wave operation (negative kz). The current findings are encouraging and imply that TM modes might be advantageous to the gyrotron backward-wave oscillators.
Linear theory of plasma Čerenkov masers
NASA Astrophysics Data System (ADS)
Birau, M.
1996-11-01
A different theoretical model of Čerenkov instability in the linear amplification regime of plasma Čerenkov masers is developed. The model assumes a cold relativistic annular electron beam propagating through a column of cold dense plasma, the two bodies being immersed in an infinite magnetic guiding field inside a perfect cylindrical waveguide. In order to simplify the calculations, a radial rectangular distribution of plasma and beam density is assumed and only azimuthal symmetric modes are under investigation. The model's difference consists of taking into account the whole plasma and beam electromagnetic structures in the interpretation of the Čerenkov instability. This model leads to alternative results such as the possibility of emission at several frequencies. In addition, the electric field is calculated taking into account its radial phase dependence, so that a map of the field in the interaction region can be presented.
Discovery of pulsed OH maser emission stimulated by a pulsar.
Weisberg, Joel M; Johnston, Simon; Koribalski, Bärbel; Stanimirovic, Snezana
2005-07-01
Stimulated emission of radiation has not been directly observed in astrophysical situations up to this time. Here we demonstrate that photons from pulsar B1641-45 stimulate pulses of excess 1720-megahertz line emission in an interstellar hydroxyl (OH) cloud. As this stimulated emission is driven by the pulsar, it varies on a few-millisecond time scale, which is orders of magnitude shorter than the quickest OH maser variations previously detected. Our 1612-megahertz spectra are inverted copies of the 1720-megahertz spectra. This "conjugate line" phenomenon enables us to constrain the properties of the interstellar OH line-producing gas. We also show that pulsar signals undergo significantly deeper OH absorption than do other background sources, which confirms earlier tentative findings that OH clouds are clumpier on small scales than are neutral hydrogen clouds.
Theory of the Motion of Ball Lightning
NASA Astrophysics Data System (ADS)
Handel, Peter
2008-04-01
The Maser-Soliton Theory of BL predicts the dynamics of each of the harmonic waves in the wave packet that feeds and in fact defines the Langmuir plasma soliton that is observed as BL. The frequencies in the wave packet are in a narrow window f that corresponds in the case of open air BL to the diameter of the area in which the damage caused by the final explosion of the BL is observed. This is usually of the order of δx=30 m roughly, in rms. The corresponding wave vector interval is δk=(1/2)(1/30m)=0.017/m in rms. At the same time, k is of the order of 6/m, yielding k/δk=360. This pronounced line-narrowing is obtained due to the large gain of the atmospheric maser when it generates the Kapitsa standing wave. Phase differences between the waves that make up the electromagnetic field that couples with the electrostatic field of the soliton are determined by the frequency dependence of gain and dissipation. They are influenced less by the motion of the air, than by the maser dynamics and by the boundary conditions shaping the electromagnetic field, i.e. the individual photonic wave-packet. The paper presents the equations that determine the phase dynamics and therefore also the observed motion of BL. A similar phase dynamics is expected to be applicable to the special case of UFO motions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiggins, Brandon K.; Migenes, Victor; Smidt, Joseph M.
Questions surround the connection of luminous extragalactic masers to galactic processes. The observation that water and hydroxyl megamasers rarely coexist in the same galaxy has given rise to a hypothesis that the two species appear in different phases of nuclear activity. The detection of simultaneous hydroxyl and water megamaser emission toward IC694 has called this hypothesis into question, but, because many megamasers have not been surveyed for emission in the other molecule, it remains unclear whether IC694 occupies a narrow phase of galaxy evolution or whether the relationship between megamaser species and galactic processes is more complicated than previously believed. In this paper, we present results of a systematic search for 22 GHz water maser emission among OH megamaser hosts to identify additional objects hosting both megamasers. Our work roughly doubles the number of galaxies searched for emission in both molecules, which host at least one confirmed maser. We confirm with a high degree of confidence (more » $$\\gt 8\\sigma $$) the detection of water emission toward IIZw96, firmly establishing it as the second object to cohost both water and hydroxyl megamasers after IC694. We find high luminosity, narrow features in the water feature in IIZw96. All dual megamaser candidates appear in merging galaxy systems suggestive that megamasers that coexistance may signal a brief phase along the merger sequence. In conclusion, a statistical analysis of the results of our observations provide possible evidence for an exclusion of H 2O kilomasers among OH megamaser hosts.« less
NASA Astrophysics Data System (ADS)
Nakanishi, Hiroyuki; Sakai, Nobuyuki; Kurayama, Tomoharu; Matsuo, Mitsuhiro; Imai, Hiroshi; Burns, Ross A.; Ozawa, Takeaki; Honma, Mareki; Shibata, Katsunori M.; Kawaguchi, Noriyuki
2015-08-01
We conducted astrometric very long baseline interferometry (VLBI) observations of water-vapor maser emission in the massive star-forming region IRAS 21379+5106 in order to measure the annual parallax and proper motion, using VLBI Exploration of Radio Astrometry (VERA). The annual parallax measured 0.262 ± 0.031 mas, corresponding to a distance of 3.82^{+0.51}_{-0.41}kpc. The proper motion was (μαcos δ, μδ) = (-2.74 ± 0.08, -2.87 ± 0.18) mas yr-1. By using this result, the Galactic rotational velocity was estimated to be Vθ = 218 ± 19 km s-1 at the galactocentric distance R = 9.22 ± 0.43 kpc, when we adopted the Galactic constants R0 = 8.05 ± 0.45 kpc and V0 = 238 ± 14 km s-1. With the newly determined distance, the bolometric luminosity of the central young stellar object was reestimated to be (2.15 ± 0.54) × 103 L⊙, which corresponds to the spectral type of B2-B3. The maser features were found to be distributed along a straight line extending from the southwest to the northeast. In addition, a vector map of the internal motions, constructed from the residual proper motions, implies that the maser features trace a bipolar flow, and that it cannot be explained by simple ballistic motions.
SiO maser emission as a density tracer of circumstellar envelopes
NASA Astrophysics Data System (ADS)
Stroh, Michael; Pihlstrom, Ylva; Sjouwerman, Lorant
2018-06-01
The circumstellar envelopes (CSEs) of evolved stars offer a method to construct a sample of point-masses along the full Galactic plane, which can be used to test models of the gravitational potential. In the CSEs of red giants, SiO maser emission is frequently observed at 43 and 86 GHz, providing line-of-sight velocities. The Bulge Asymmetries and Dynamical Evolution (BAaDE) project aims to explore the complex structure of the inner Galaxy and Galactic Bulge, by observing 43 GHz SiO at the Very Large Array and 86 GHz SiO at the Atacama Large Millimeter/submillimeter Array, with an expected final sample of about 20,000 line-of-sight velocities and positions. We observed the 43 GHz and 86 GHz transitions near-simultaneously in a subsample of the sources using the Australia Telescope Compact Array and found that on average the 43 GHz v=1 line is 1.3 times stronger than the 86 GHz v=1 line. The presence of a detectable 43 GHz v=3 line alters the statistics, consistent with the SiO masers displaying 43 GHz v=3 emission arising in a denser regime in the circumstellar shell compared to those without. Comparing our results with radiative models implies that the 43 GHz v=3 line is a tracer of density variations caused by stellar pulsations. We will discuss these results in the context of the BAaDE project.
Geometric Aspects and Testing of the Galactic Center Distance Determination from Spiral Arm Segments
NASA Astrophysics Data System (ADS)
Nikiforov, I. I.; Veselova, A. V.
2018-02-01
We consider the problem of determining the geometric parameters of a Galactic spiral arm from its segment by including the distance to the spiral pole, i.e., the distance to the Galactic center ( R 0). The question about the number of points belonging to one turn of a logarithmic spiral and defining this spiral as a geometric figure has been investigated numerically and analytically by assuming the direction to the spiral pole (to the Galactic center) to be known. Based on the results obtained, in an effort to test the new approach, we have constructed a simplified method of solving the problem that consists in finding the median of the values for each parameter from all possible triplets of objects in the spiral arm segment satisfying the condition for the angular distance between objects. Applying the method to the data on the spatial distribution of masers in the Perseus and Scutum arms (the catalogue by Reid et al. (2014)) has led to an estimate of R 0 = 8.8 ± 0.5 kpc. The parameters of five spiral arm segments have been determined from masers of the same catalogue. We have confirmed the difference between the spiral arms in pitch angle. The pitch angles of the arms revealed by masers are shown to generally correlate with R 0 in the sense that an increase in R 0 leads to a growth in the absolute values of the pitch angles.
Frequency Comparison of [Formula: see text] Ion Optical Clocks at PTB and NPL via GPS PPP.
Leute, J; Huntemann, N; Lipphardt, B; Tamm, Christian; Nisbet-Jones, P B R; King, S A; Godun, R M; Jones, J M; Margolis, H S; Whibberley, P B; Wallin, A; Merimaa, M; Gill, P; Peik, E
2016-07-01
We used precise point positioning, a well-established GPS carrier-phase frequency transfer method to perform a direct remote comparison of two optical frequency standards based on single laser-cooled [Formula: see text] ions operated at the National Physical Laboratory (NPL), U.K. and the Physikalisch-Technische Bundesanstalt (PTB), Germany. At both institutes, an active hydrogen maser serves as a flywheel oscillator which is connected to a GPS receiver as an external frequency reference and compared simultaneously to a realization of the unperturbed frequency of the (2)S1/2(F=0)-(2)D3/2(F=2) electric quadrupole transition in [Formula: see text] via an optical femtosecond frequency comb. To profit from long coherent GPS-link measurements, we extrapolate the fractional frequency difference over the various data gaps in the optical clock to maser comparisons which introduces maser noise to the frequency comparison but improves the uncertainty from the GPS-link instability. We determined the total statistical uncertainty consisting of the GPS-link uncertainty and the extrapolation uncertainties for several extrapolation schemes. Using the extrapolation scheme with the smallest combined uncertainty, we find a fractional frequency difference [Formula: see text] of -1.3×10(-15) with a combined uncertainty of 1.2×10(-15) for a total measurement time of 67 h. This result is consistent with an agreement of the frequencies realized by both optical clocks and with recent absolute frequency measurements against caesium fountain clocks within the corresponding uncertainties.
NuSTAR Observations of Water Megamaser AGN
NASA Technical Reports Server (NTRS)
Masini, A.; Comastri, A.; Balokvic, M.; Zaw, I.; Puccetti, S.; Ballantyne, D. R.; Bauer, F. E.; Boggs, S. E.; Brandt, W. N.; Zhang, William W.
2016-01-01
Aims. We study the connection between the masing disk and obscuring torus in Seyfert 2 galaxies. Methods. We present a uniform X-ray spectral analysis of the high energy properties of 14 nearby megamaser active galactic nuclei observed by NuSTAR. We use a simple analytical model to localize the maser disk and understand its connection with the torus by combining NuSTAR spectral parameters with the available physical quantities from VLBI mapping.Results. Most of the sources that we analyzed are heavily obscured, showing a column density in excess of approx.10(exp 23) cm(exp -2); in particular, 79% are Compton-thick [NH is greater than 1.5 x 10(exp 24) cm(exp -2)]. When using column densities measured by NuSTAR with the assumption that the torus is the extension of the maser disk, and further assuming a reasonable density profile, we can predict the torus dimensions. They are found to be consistent with mid-IR interferometry parsec-scale observations of Circinus and NGC 1068. In this picture, the maser disk is intimately connected to the inner part of the torus. It is probably made of a large number of molecular clouds that connect the torus and the outer part of the accretion disk, giving rise to a thin disk rotating in most cases in Keplerian or sub-Keplerian motion. This toy model explains the established close connection between water megamaser emission and nuclear obscuration as a geometric effect.
Mid Infrared Hydrogen Recombination Line Emission from the Maser Star MWC 349A
NASA Technical Reports Server (NTRS)
Smith, Howard A.; Strelnitski, V.; Miles, J. W.; Kelly, D. M.; Lacy, J. H.
1997-01-01
We have detected and spectrally resolved the mid-IR hydrogen recombination lines H6(alpha)(12.372 micrometers), H7(alpha)(19.062 micrometers), H7(beta)(l1.309 micrometers) and H8(gamma)(12.385 micrometers) from the star MWC349A. This object has strong hydrogen maser emission (reported in the millimeter and submillimeter hydrogen recombination lines from H36(alpha) to H21(alpha)) and laser emission (reported in the H15(alpha), H12(alpha) and H10(alpha) lines). The lasers/masers are thought to arise predominantly in a Keplerian disk around the star. The mid-IR lines do not show evident signs of lasing, and can be well modeled as arising from the strong stellar wind, with a component arising from a quasi-static atmosphere around the disk, similar to what is hypothesized for the near IR (less than or equal to 4 micrometers) recombination lines. Since populations inversions in the levels producing these mid-IR transitions are expected at densities up to approximately 10(exp 11)/cu cm, these results imply either that the disk does not contain high-density ionized gas over long enough path lengths to produce a gain approximately 1, and/or that any laser emission from such regions is small compared to the spontaneous background emission from the rest of the source as observed with a large beam. The results reinforce the interpretation of the far-IR lines as true lasers.
NASA Technical Reports Server (NTRS)
Vlahos, Loukas; Sprangle, Phillip
1987-01-01
The nonlinear evolution of cyclotron radiation from streaming and gyrating electrons in an external magnetic field is analyzed. The nonlinear dynamics of both the fields and the particles are treated fully relativistically and self-consistently. The model includes a background plasma and electrostatic effects. The analytical and numerical results show that a substantial portion of the beam particle energy can be converted to electromagnetic wave energy at frequencies far above the electron cyclotron frequency. In general, the excited radiation can propagate parallel to the magnetic field and, hence, escape gyrothermal absorption at higher cyclotron harmonics. The high-frequency Doppler-shifted cyclotron instability can have saturation efficiencies far higher than those associated with well-known instabilities of the electron cyclotron maser type. Although the analysis is general, the possibility of using this model to explain the intense radio emission observed from the sun is explored in detail.
Effect of Alfvén waves on the growth rate of the electron-cyclotron maser emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, D. J., E-mail: djwu@pmo.ac.cn
By using the non-relativistic approximation for the calculation of growth rates, but taking account of the weakly relativistic modification for the electron-cyclotron resonance condition, it is shown that the effect of Alfvén waves (AWs) on the electron-cyclotron maser emission leads to the significant increase of the O-mode growth rate, but has little effect on the X-mode growth rate. We propose that this is because the O-mode wave has the field-aligned polarization sense in the same as the field-aligned oscillatory current, which is created by the field-aligned oscillatory motion of the energetic electrons caused via the presence of AWs. It ismore » this field-aligned oscillatory current that contributes a novel growth rate to the O-mode wave but has little effect on the X-mode wave.« less
The hyperfine excitation of OH radicals by He
NASA Astrophysics Data System (ADS)
Marinakis, Sarantos; Kalugina, Yulia; Lique, François
2016-04-01
Hyperfine-resolved collisions between OH radicals and He atoms are investigated using quantum scattering calculations and the most recent ab initio potential energy surface, which explicitly takes into account the OH vibrational motion. Such collisions play an important role in astrophysics, in particular in the modelling of OH masers. The hyperfine-resolved collision cross sections are calculated for collision energies up to 2500 cm-1 from the nuclear spin free scattering S-matrices using a recoupling technique. The collisional hyperfine propensities observed are discussed. As expected, the results from our work suggest that there is a propensity for collisions with ΔF = Δj. The new OH-He hyperfine cross sections are expected to significantly help in the modelling of OH masers from current and future astronomical observations. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.
Very long baseline interferometric observations of OH/IR stars
NASA Technical Reports Server (NTRS)
Reid, M. J.; Muhleman, D. O.
1975-01-01
Results are reported for spectral-line very long baseline interferometric observations of the following II OH/IR objects, which emit strong 1612-MHz OH maser radiation concentrated at two velocities: NML Cyg, R Aql, IRC+10011, IRC-10529, and OH 1837-05. The apparent angular sizes were obtained for NML Cyg and R Aql, and lower limits upon the apparent sizes were obtained for the other objects. The data for NML Cyg agree with previous size determinations and indicate that the low- and high-velocity components are separated by about 20 times their apparent size. The maser component of R Aql is calculated within a factor of two to be about 5 by 10 to the 14th power cm, although the emitting region can be significantly larger. A qualitative description is given for II OH/IR objects with late M-type Mira variable center stars and circumstellar dust shells of similar dimensions.
Raman Scattering in the Magnetized Semiconductor Plasma
NASA Astrophysics Data System (ADS)
Jankauskas, Zigmantas; Kvedaras, Vygaudas; Balevičius, Saulius
2005-04-01
Radio frequency (RF) magnetoplasmic waves known as helicons will propagate in solid-state plasmas when a strong magnetic field is applied. In our device the helicons were excited by RFs (the range 100-2000 MHz) much higher than the helicon generation frequency (the main peak at 20 MHz). The excitation of helicons in this case may be described by the effect similar to the Combination Scattering (Raman effect) when a part of the high RF wave energy that passes through the active material is absorbed and re-emitted by the magnetized solid-state plasma. It is expedient to call this experimental device a Helicon Maser (HRM) and the higher frequency e/m field - a pumping field. In full analogy with the usual Raman maser (or laser) the magnetized semiconductor sample plays the role of active material and the connecting cable - the role of high quality external resonator.
Raman Scattering in the Magnetized Semiconductor Plasma
NASA Astrophysics Data System (ADS)
Jankauskas, Zigmantas; Kvedaras, Vygaudas; Balevičius, Saulius
Radio frequency (RF) magnetoplasmic waves known as helicons will propagate in solid-state plasmas when a strong magnetic field is applied. In our device the helicons were excited by RFs (the range 100-2000 MHz) much higher than the helicon generation frequency (the main peak at 20 MHz). The excitation of helicons in this case may be described by the effect similar to the Combination Scattering (Raman effect) when a part of the high RF wave energy that passes through the active material is absorbed and re-emitted by the magnetized solid-state plasma. It is expedient to call this experimental device a Helicon Maser (HRM) and the higher frequency e/m field - a pumping field. In full analogy with the usual Raman maser (or laser) the magnetized semiconductor sample plays the role of active material and the connecting cable - the role of high quality external resonator.
Taris, F; Uhrich, P; Petit, G; Jiang, Z; Barillet, R; Hamouda, F
2000-01-01
This paper describes the software and equipment used at the Laboratoire Primaire du Temps et des Frequences du Bureau National de Metrologie (BNM-LPTF), Paris, France. Two H-masers in short baseline, one located at the BNM-LPTF and the other at the Laboratoire de l'Horloge Atomique du Centre National de la Recherche Scientifique (CNRS-LHA), Orsay, France, were computed in parallel with the BNM-LPTF software and with the BERNESE V 4.1 software. The comparison of the results issued from both computations shows an agreement within 100 ps (1 sigma). In addition, comparisons with the BNM-LPTF software were made over 10 days with the H-masers located at the Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany, and another at the National Physical Laboratory (NPL), Teddington, United Kingdom. The data collected show that a modulation with an amplitude of 50 ps and a period of 700-800 ps affects the equipment of the NPL. In addition, these comparisons show that the noise of the instruments together with the environmental conditions at the PTB was higher than that of the NPL and the BNM-LPTF during the observation period. The best relative frequency stability obtained, in the BNM-LPTF/NPL comparison, is about 3x10(-15) for averaging periods between 6x10(4) s and 3x10(5) s. This result is in good agreement with the expected stability of H-masers. It demonstrates that the noise brought by the GPS carrier phase measurements can be averaged out at this level.
Interferometric molecular line observations of W51
NASA Technical Reports Server (NTRS)
Rudolph, Alexander; Welch, William J.; Palmer, Patrick; Dubrulle, Berengere
1989-01-01
Observations are presented of the H II region complex in W51 made with a mm interferometer. W51 is a region of massive star formation approx. 7 kpc distant from the sun. This region has been well studied in both the IR and submillimeter, the radio, as well as the maser transitions. These previous observations have revealed three regions of interest: (1) W51MAIN, a know of bright maser emission near two compact H II regions W51e1 and W51e2 (W51MAIN is also the peak of the 400 micron emission indicating that the bulk of the mass is centered there; (2) W51IRS1 is a long curving structure seen at 20 micron and at 2 and 6 cm but not at 400 micron; (3) W51IRS2 (also known as W51NORTH) is another compact H II region slightly offset from an 8 and a 20 micron peak and a collection of masers. Some conclusions are as follows: (1) SO and H(13)CN emission are similar and coincide with outflow activity; (2) HCO+ spectra show evidence for overall collapse of the W51 cloud toward W51MAIN; (3) A previously undetected continuum peak, W51DUST, coincides with the molecular peak H(13)CN-4; and (4) Dust emission at 3.4 mm reveals that about half of the 400 micron emission comes from the ultracompact H II region e2, and the rest from W51e1 and W51DUST.
Simulating Future GPS Clock Scenarios with Two Composite Clock Algorithms
NASA Technical Reports Server (NTRS)
Suess, Matthias; Matsakis, Demetrios; Greenhall, Charles A.
2010-01-01
Using the GPS Toolkit, the GPS constellation is simulated using 31 satellites (SV) and a ground network of 17 monitor stations (MS). At every 15-minutes measurement epoch, the monitor stations measure the time signals of all satellites above a parameterized elevation angle. Once a day, the satellite clock estimates the station and satellite clocks. The first composite clock (B) is based on the Brown algorithm, and is now used by GPS. The second one (G) is based on the Greenhall algorithm. The composite clock of G and B performance are investigated using three ground-clock models. Model C simulates the current GPS configuration, in which all stations are equipped with cesium clocks, except for masers at USNO and Alternate Master Clock (AMC) sites. Model M is an improved situation in which every station is equipped with active hydrogen masers. Finally, Models F and O are future scenarios in which the USNO and AMC stations are equipped with fountain clocks instead of masers. Model F is a rubidium fountain, while Model O is more precise but futuristic Optical Fountain. Each model is evaluated using three performance metrics. The timing-related user range error having all satellites available is the first performance index (PI1). The second performance index (PI2) relates to the stability of the broadcast GPS system time itself. The third performance index (PI3) evaluates the stability of the time scales computed by the two composite clocks. A distinction is made between the "Signal-in-Space" accuracy and that available through a GNSS receiver.
The hydroxyl-water megamaser connection. I. Water emission toward OH megamaser hosts
Wiggins, Brandon K.; Migenes, Victor; Smidt, Joseph M.
2016-02-05
Questions surround the connection of luminous extragalactic masers to galactic processes. The observation that water and hydroxyl megamasers rarely coexist in the same galaxy has given rise to a hypothesis that the two species appear in different phases of nuclear activity. The detection of simultaneous hydroxyl and water megamaser emission toward IC694 has called this hypothesis into question, but, because many megamasers have not been surveyed for emission in the other molecule, it remains unclear whether IC694 occupies a narrow phase of galaxy evolution or whether the relationship between megamaser species and galactic processes is more complicated than previously believed. In this paper, we present results of a systematic search for 22 GHz water maser emission among OH megamaser hosts to identify additional objects hosting both megamasers. Our work roughly doubles the number of galaxies searched for emission in both molecules, which host at least one confirmed maser. We confirm with a high degree of confidence (more » $$\\gt 8\\sigma $$) the detection of water emission toward IIZw96, firmly establishing it as the second object to cohost both water and hydroxyl megamasers after IC694. We find high luminosity, narrow features in the water feature in IIZw96. All dual megamaser candidates appear in merging galaxy systems suggestive that megamasers that coexistance may signal a brief phase along the merger sequence. In conclusion, a statistical analysis of the results of our observations provide possible evidence for an exclusion of H 2O kilomasers among OH megamaser hosts.« less
Proceedings of the 14th Annual Precise Time and Time Interval (PTTI) Applications Planning Meeting
NASA Technical Reports Server (NTRS)
Wardrip, S. C. (Editor)
1983-01-01
Developments and applications in the field of frequency and time are addressed. Specific topics include rubidium frequency standards, future timing requirements, noise and atomic standards, hydrogen maser technology, synchronization, and quartz technology.
Hydrogen Masers. I. Theory and Prospects
NASA Astrophysics Data System (ADS)
Strelnitski, Vladimir S.; Ponomarev, Victor O.; Smith, Howard A.
1996-10-01
The discovery of the first high-gain hydrogen recombination line (HRL) maser in the millimeter/ submillimeter spectrum of the emission-line star MWC 349A requires an expansion of current paradigms about HRLs. In this paper we reexamine the problem of non-LTE populations in recombining hydrogen and specify the conditions necessary for high-gain masing and lasing in HRLs. To do so, we use the extensive new results on hydrogen level populations produced by Storey & Hummer and our calculations for the net (that is, line plus continuum) absorption coefficient for HRLs. We present results for the α- and β-lines whose principal quantum numbers n are between five and 100, for gas whose electron number density 3 ≤ log Ne(cm-3) ≤ 11, at two electron temperatures, Te = 5000 and 10,000 K. We show that the unsaturated maser gain in an HRL is a sharp function of Ne, and thus to achieve high-gain masing, each line requires a sufficiently extended region over which the density is rather closely specified. Saturation of masing recombination lines is a critical consideration. We derive a simple equation for estimating the degree of saturation from the observed flux density and the interferometric and/or model information about the amplification path length, avoiding the vague issue of the solid angle of masing. We also present a qualitative way to approach the effects of saturation on adjacent emission lines, although the detailed modeling is highly case-specific. We draw attention to another non-LTE phenomenon active in hydrogen: the overcooling of populations. This occurs for HRLs with n ≲ 20, in gas where Ne ≲ 105 cm-3. Observationally, the HRL over- cooling might manifest itself as an anomalously weak emission recombination line, or as a "dasar," that is, an anomalously strong absorption line. In the simplest case of a homogeneous H II region, the absorption can be observed on the proper free-free continuum of the region, if some conditions for the line or/and continuum optical depths are satisfied. We briefly discuss the prospects of detecting hydrogen masers, lasers, and dasars in several classes of Galactic and extragalactic objects, including compact H II regions, Be or Wolf-Rayet stars, starburst galaxies, and active galactic nuclei.
ITEL Experiment Module and its Flight on MASER9
NASA Astrophysics Data System (ADS)
Löth, K.; Schneider, H.; Larsson, B.; Jansson, O.; Houltz, Y.
2002-01-01
The ITEL (Interfacial Turbulence in Evaporating Liquid) module is built under contract from the European Space Agency (ESA) and is scheduled to fly onboard a Sounding Rocket (MASER 9) in March 2002. The project is conducted by Swedish Space Corporation (SSC) with Lambda-X as a subcontractor responsible for the optical system. The Principle Investigator is Pierre Colinet from Université Libre de Bruxelles (ULB). The experiment in ITEL on Maser 9 is part of a research program, which will make use of the International Space Station. The purpose of the flight on Maser 9 is to observe the cellular convection (Marangoni-Bénard instability) which arise when the surface tension varies with temperature yielding thermocapillary instabilities. During the 6 minutes of microgravity of the ITEL experiment, a highly volatile liquid layer (ethyl alcohol) will be evaporated, and the convection phenomena generated by the evaporation process will be visualized. Due to the cooling by latent heat consumption at the level of the evaporating free surface, a temperature gradient is induced perpendicularly to it. The flight experiment module contains one experiment cell, including a gas system for regulation of nitrogen flow over the evaporating surface and an injection unit that is used for injection of liquid into the cell both initially and during surface regulation. The experiment cell is equipped with pressure and flow sensors as well as thermocouples both inside the liquid and at different positions in the cell. Two optical diagnostic systems have been developed around the experiment cell. An interferometric optical tomograph measures the 3-dimensional distribution of temperature in the evaporating liquid and a Schlieren system visualizes the temperature gradients inside the liquid together with the liquid surface deformation. A PC/104 based electronic system is used for management and control of the experiment. The electronic system handles measurements, housekeeping, image capture system, surface and pressure regulation as well as storage of data. The images are stored onboard on three DV tape recorders. At flight, video images as well as data is sent to ground and the experiment can be controlled via telecommands. In this presentation we will focus on the technical parts of the experiment, the overall module and the preliminary technical results obtained from the flight, including reconstructions of 3-dimensional temperature distributions.
ERIC Educational Resources Information Center
Physics Education, 1983
1983-01-01
Discusses investigations of mirages with an astronomical telescope and a way of demonstrating three of the main features of laser/maser action. Also discusses several physics demonstrations using color television. These include thin-film interference effects, single-slit diffraction, emission/absorption spectra, "rings and brushes"…
German Astronomer Karl Menten Is 2007 Jansky Awardee
NASA Astrophysics Data System (ADS)
2007-06-01
Associated Universities, Inc., (AUI) and the National Radio Astronomy Observatory (NRAO) have awarded the 2007 Karl G. Jansky Lectureship to Professor Karl M. Menten of the Max-Planck-Institute for Radioastronomy in Bonn, Germany. The Jansky Lectureship is an honor established by the trustees of AUI to recognize outstanding contributions to the advancement of astronomy. Karl M. Menten Professor Karl M. Menten CREDIT: NRAO/AUI Click on image for high-resolution file (433 KB) Professor Menten is an extraordinarily productive scientist whose research has improved our fundamental understanding in a number of areas of astronomy. He has studied the chemistry of molecular clouds from which new stars are formed, the process of star formation in our own Milky Way Galaxy and in the early Universe, and the outer atmospheres of stars nearing the end of their "normal" lives. In 1991, Menten used NRAO's 140-foot Telescope at Green Bank, West Virginia, to discover strong radio emission from methanol masers in star-forming regions. These masers amplify, or strengthen, radio emission the same way a laser amplifies visible-light emission. Menten developed the observation of these methanol masers into a powerful tool for studying the formation of stars much more massive than our Sun, because the strong maser emission points astronomers to the stellar birthplaces. In addition, Menten pioneered the use of ultra-high-resolution observations with NRAO's Very Long Baseline Array to observe masers to make precision determinations of the structure, size and dynamics of the Milky Way. Menten received his doctoral degree in 1987 from the University of Bonn, Germany. He then joined the Harvard-Smithsonian Center for Astrophysics, working there until 1996, when he became the Director for Millimeter and Submillimeter Astronomy at the Max-Planck-Institute for Radioastronomy. In addition to that position, he also has been a Professor for Experimental Astrophysics at the University of Bonn since 2001. He initiated the Atacama Pathfinder Experiment (APEX), a 12-meter diameter telescope high in Chile's Atacama Desert, where the Atacama Large Millimeter/submillimeter Array (ALMA) is being built. APEX pioneered submillimeter-wavelength observations at Atacama, proving the quality of the site for such research. As Jansky Lecturer, Menten will give a presentation entitled, "Tuning in to the Molecular Universe," at NRAO facilities in Charlottesville, Virginia, Green Bank, West Virginia, and Socorro, New Mexico. The dates of these lectures, which are free and open to the public, will be announced later this summer. This is the forty-second Jansky Lectureship. First awarded in 1966, it is named in honor of the man who, in 1932, first detected radio waves from a cosmic source. Karl Jansky's discovery of radio waves from the central region of the Milky Way started the science of radio astronomy. Other recipients of the Jansky award include five Nobel laureates (Drs. Subrahmanyan Chandrasekhar, Arno Penzias, Robert Wilson, William Fowler, and Joseph Taylor) as well as Jocelyn Bell-Burnell, discoverer of the first pulsar, and Vera Rubin, discoverer of dark matter in galaxies. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
NASA Astrophysics Data System (ADS)
Axon, David
OH megamaser galaxies (OHMG) represent a key post-merger phase in the evolution of the Ultra-Luminous Infrared Galaxies (ULIRGs) population, in which an edge-on circum-nuclear gas disk (proto-torus) has already formed. Detailed interferometric mapping of maser sources implies that they originate in dense edge-on rotating molecular gas within a few tens of parsecs of the AGN. In addition, the OH lines are often broad (Doppler widths ~ 1000 km/s), implying large dynamical masses in the central few parsecs. In many systems the OH lines also show high velocity asymmetric tails suggesting large-scale outflows that could be clearing away enshrouding dense molecular material. Taken together this evidence points to a picture in which an OHMG hosts a nascent QSO surrounded by a flattened distribution of dense molecular gas that is in the process of being cleared away along the rotation axis of the maser disk. A great advantage of studying OHMG systems over the general ULIRG population is that the circum-nuclear disks are effectively "fixed" at an edge on orientation, thereby breaking the degeneracy between the number of clumps and inclination in state of the art clumpy torus models. We have been awarded HST time in cycle 17 to conduct a comprehensive study of structure of the circum-nuclear gas, and its relationship to the radio structure and that of the maser disk, of large sample (80) of OHMG. This work is supported by ground-based spectropolarimetry, integral field spectroscopy and new radio continuum observations, Our overall objective is to probe the final stages of evolution immediately before the full- emergence of an enshrouded AGN as the circum-nuclear dust is dispersed by starburst and AGN-induced outflows. The specific scientific goals of this ADP proposal are to retrieve and analyze the Spitzer thermal-IR 5-70 micron imaging and IRS spectra of the subset of 72 of our targets for which Spitzer observations are available in the archive. We aim to establish the relationship between host and circum-nuclear ionized gas and dust structures in different OHMG spectroscopic types (AGN, Starburst, Composite) and model the AGN and starburst contributions to the mid-IR SED. Combining these with our other data we will address a number of important questions: is the mid-IR SED consistent with an edge-on circum-nuclear dust structure, as expected from the maser observations? What is the relative orientation of the Maser molecular structure and the ionized gas? Is there a connection between AGN heating of the circum-nuclear dust and wind or radiation driven outflows from the nucleus? How does the bolometric luminosity of the AGN relate to the OH line luminosity, FWHM and line shape? In turn these will relate the ionizing luminosity to the covering factor of the torus and the enclosed dynamical mass. When complete, this study should provide new insights on the relationships between the fundamental physical parameters of the AGN, including black hole mass, accretion and mass outflow rates, and the large scale properties of the host galaxy.
Molecular Diagnostics of Supernova Remnant Shocks
NASA Astrophysics Data System (ADS)
Lazendic, J. S.; Wardle, M.; Green, A. J.; Whiteoak, J. B.; Burton, M. G.
We have undertaken a study of radio and infrared molecular-line emission towards several SNRs in order to investigate molecular signatures of SNR shocks, and to test models for OH maser production in SNRs. Here we present results on G349.7+0.2.
Hub-filament System in IRAS 05480+2545: Young Stellar Cluster and 6.7 GHz Methanol Maser
NASA Astrophysics Data System (ADS)
Dewangan, L. K.; Ojha, D. K.; Baug, T.
2017-07-01
To probe the star formation (SF) process, we present a multi-wavelength study of IRAS 05480+2545 (hereafter I05480+2545). Analysis of Herschel data reveals a massive clump (M clump ˜ 1875 {M}⊙ ; peak N(H2) ˜ 4.8 × 1022 cm-2 A V ˜ 51 mag) containing the 6.7 GHz methanol maser and I05480+2545, which is also depicted in a temperature range of 18-26 K. Several noticeable parsec-scale filaments are detected in the Herschel 250 μm image and seem to be radially directed to the massive clump. It resembles more of a “hub-filament” system. Deeply embedded young stellar objects (YSOs) have been identified using the 1-5 μm photometric data, and a significant fraction of YSOs and their clustering are spatially found toward the massive clump, revealing the intense SF activities. An infrared counterpart (IRc) of the maser is investigated in the Spitzer 3.6-4.5 μm images. The IRc does not appear as a point-like source and is most likely associated with the molecular outflow. Based on the 1.4 GHz and Hα continuum images, the ionized emission is absent toward the IRc, indicating that the massive clump harbors an early phase of a massive protostar before the onset of an ultracompact H II region. Together, the I05480+2545 is embedded in a very similar “hub-filament” system to those seen in the Rosette Molecular Cloud. The outcome of the present work indicates the role of filaments in the formation of the massive star-forming clump and cluster of YSOs, which might help channel material to the central hub configuration and the clump/core.
Sun-sized Water Vapor Masers in Cepheus A
NASA Astrophysics Data System (ADS)
Sobolev, A. M.; Moran, J. M.; Gray, M. D.; Alakoz, A.; Imai, H.; Baan, W. A.; Tolmachev, A. M.; Samodurov, V. A.; Ladeyshchikov, D. A.
2018-03-01
We present the first VLBI observations of a Galactic water maser (in Cepheus A) made with a very long baseline interferometric array involving the RadioAstron Earth-orbiting satellite station as one of its elements. We detected two distinct components at ‑16.9 and 0.6 km s‑1 with a fringe spacing of 66 μas. In total power, the 0.6 km s‑1 component appears to be a single Gaussian component of strength 580 Jy and width of 0.7 km s‑1. Single-telescope monitoring showed that its lifetime was only eight months. The absence of a Zeeman pattern implies the longitudinal magnetic field component is weaker than 120 mG. The space–Earth cross power spectrum shows two unresolved components smaller than 15 μas, corresponding to a linear scale of 1.6 × 1011 cm, about the diameter of the Sun, for a distance of 700 pc, separated by 0.54 km s‑1 in velocity and by 160 ± 35 μas in angle. This is the smallest angular structure ever observed in a Galactic maser. The brightness temperatures are greater than 2 × 1014 K, and the line widths are 0.5 km s‑1. Most of the flux (about 87%) is contained in a halo of angular size of 400 ± 150 μas. This structure is associated with the compact H II region HW3diii. We have probably picked up the most prominent peaks in the angular size range of our interferometer. We discuss three dynamical models: (1) Keplerian motion around a central object, (2) two chance overlapping clouds, and (3) vortices caused by flow around an obstacle (i.e., von Kármán vortex street) with a Strouhal number of about 0.3.
Cyclotron maser and plasma wave growth in magnetic loops
NASA Technical Reports Server (NTRS)
Hamilton, Russell J.; Petrosian, Vahe
1990-01-01
Cyclotron maser and plasma wave growth which results from electrons accelerated in magnetic loops are studied. The evolution of the accelerated electron distribution is determined by solving the kinetic equation including Coulomb collisions and magnetic convergence. It is found that for modest values of the column depth of the loop the growth rates of instabilities are significantly reduced and that the reduction is much larger for the cyclotron modes than for the plasma wave modes. The large decrease in the growth rate with column depth suggests that solar coronal densities must be much lower than commonly accepted in order for the cyclotron maser to operate. The density depletion has to be similar to that which occurs during auroral kilometric radiation events in the magnetosphere. The resulting distributions are much more complicated than the idealized distributions used in many theoretical studies, but the fastest growing mode can still simply be determined by the ratio of electron plasma to gyrofrequency, U=omega(sub p)/Omega(sub e). However, the dominant modes are different than for the idealized situations with growth of the z-mode largest for U approximately less than 0.5, and second harmonic x-mode (s=2) or fundamental o-mode (s=1) the dominant modes for 0.5 approximately less than U approximately less than 1. The electron distributions typically contain more than one inverted feature which could give rise to wave growth. It is shown that this can result in simultaneous amplification of more than one mode with each mode driven by a different feature and can be observed, for example, by differences in the rise times of the right and left circularly polarized components of the associated spike bursts.
Detection of Thermal 2 cm and 1 cm Formaldehyde Emission in NGC 7538
NASA Astrophysics Data System (ADS)
Yuan, Liang; Araya, E. D.; Hofner, P.; Kurtz, S.; Pihlstrom, Y.
2011-05-01
Formaldehyde is a tracer of high density gas in massive star forming regions. The K-doublet lines from the three lowest rotational energy levels of ortho-formaldehyde correspond to wavelengths of 6, 2 and 1 cm. Thermal emission of these transitions is rare, and maser emission has only been detected in the 6 cm line. NGC 7538 is an active site of massive star formation in the Galaxy, and one of only a few regions known to harbor 6 cm formaldehyde (H2CO) masers. Using the NRAO 100 m Green Bank Telescope (GBT), we detected 2 cm H2CO emission toward NGC 7538 IRS1. The velocity of the 2 cm H2CO line is very similar to the velocity of one of the 6 cm H2CO masers but the linewidth is greater. To investigate the nature of the 2 cm emission, we conducted observations of the 1 cm H2CO transition, and obtained a cross-scan map of the 2 cm line. We detected 1 cm emission and found that the 2 cm emission is extended (greater than 30"), which implies brightness temperatures of ˜0.2 K. Assuming optically thin emission, LTE, and that the 1 cm and 2 cm lines originate from the same volume of gas, both these detections are consistent with thermal emission of gas at ˜30 K. We conclude that the 1 cm and 2 cm H2CO lines detected with the GBT are thermal, which implies molecular densities above ˜105 cm-3. LY acknowledges support from WIU. PH acknowledges partial support from NSF grant AST-0908901.
Science Priorities of the RadioAstron Space VLBI Mission
NASA Astrophysics Data System (ADS)
Langston, Glen; Kardashev, N.; International Space VLBI Collaboration
2006-12-01
The main scientific goal of the RadioAstron Space VLBI mission is study of Active Galactic Nuclei (AGN), Masers and other astronomical objects with unprecedented angular resolution, up to few millionths of an arc-second. The resolution achieved with RadioAstron will allow study the following phenomena and problems: * Central engine of AGN and physical processes near super massive black holes providing an acceleration of cosmic rays size, velocity and shape of emitting region in the core, spectrum, polarization and variability of emitting components; * Cosmological models, dark matter and dark energy by studying dependence of above mentioned AGN's parameters with redshift, and by observing gravitational lensing; * Structure and dynamics of star and planets forming regions in our Galaxy and in AGN by studying maser and Mega maser radio emission; * Neutron (quark?) stars and black holes in our Galaxy, their structure and dynamics by VLBI and measurements of visibility scintillations, proper motions and parallaxes; * Structure and distribution of interstellar and interplanetary plasma by fringe visibility scintillations of pulsars; The RadioAstron mission uses the satellite SPECTR (astrophysical module), developed by Lavochkin Association of Russian Aviation and Space Agency (RASA). This module will be used in several other scientific missions. The total mass of the scientific payload is about 2500 kg, of which the unfolding parabolic 10-m radio astronomy antenna's mass is about 1500 kg, and scientific package holding the receivers, power supply, synthesizers, control units, frequency standards and data transmission radio system. The mass of the whole system (satellite and scientific payload) to be carried into orbit by the powerful "Zenit-2SB"-"Fregat-2CB" launcher is about 5000 kg. The RadioAstron project is an international collaboration between RASA and ground radio telescope facilities around the world.
Searching For Water Megamasers In Type-2 QSOs
NASA Astrophysics Data System (ADS)
Bennert, Nicola; Barvainis, R.; Henkel, C.; Antonucci, R.
2009-01-01
Using the Robert C. Byrd Green Bank Telescope and the Effelsberg 100-m radio telescope, we searched for water megamasers in 274 SDSS type-2 AGNs (0.3 < z < 0.83; Zakamska et al. 2003), half of which can be classified as type-2 QSOs on the basis of their [OIII] 5007 luminosity. While this survey lead to the discovery of the most luminous water vapor megamaser known so far, the gigamaser SDSS J080430.99+360718.1 (Barvainis & Antonucci 2005), no additional line emission is found. We discuss possible scenarios leading to this high rate of non-detections. From the extragalactic water masers known to date, a water maser luminosity function (LF) is created. The extrapolation to the higher luminosities of gigamasers that we would have been able to detect, given the sensitivity of our survey, suggests that gigamasers may simply be rare. We compile the properties of the known megamasers and discuss possible intrinsic differences between these low-luminous AGNs, mainly Seyfert-2 galaxies and LINERs in the local universe, and our sample consisting of high-luminous AGNs at higher redshift. It is notable that the known megamasers reside almost exclusively in spiral galaxies while our sample most likely consists of elliptical host galaxies. Also, the properties of the dust torus, in which the maser emission is thought to arise, might evolve with AGN luminosity. However, at this point, we cannot distinguish between the different possibilities discussed. Detecting megamasers at cosmological distances remains a challenging and yet, if successful, highly rewarding project not only for its potential to determine black hole masses but especially to constrain distances and thus probe the existence and properties of the elusive dark energy.
NASA Astrophysics Data System (ADS)
Efstathiou, George
2014-05-01
I reanalyse the Riess et al. (hereafter R11) Cepheid data using the revised geometric maser distance to NGC 4258 of Humphreys et al. (hereafter H13). I explore different outlier rejection criteria designed to give a reduced χ2 of unity and compare the results with the R11 rejection algorithm, which produces a reduced χ2 that is substantially less than unity and, in some cases, leads to underestimates of the errors on parameters. I show that there are sub-luminous low-metallicity Cepheids in the R11 sample that skew the global fits of the period-luminosity relation. This has a small but non-negligible impact on the global fits using NGC 4258 as a distance scale anchor, but adds a poorly constrained source of systematic error when using the Large Magellanic Cloud as an anchor. I also show that the small Milky Way Cepheid sample with accurate parallax measurements leads to a distance to NGC 4258 that is in tension with the maser distance. I conclude that H0 based on the NGC 4258 maser distance is H0 = 70.6 ± 3.3 km s-1 Mpc-1, compatible within 1σ with the recent determination from Planck for the base six-parameter Λ cold dark matter cosmology. If the H-band period-luminosity relation is assumed to be independent of metallicity and the three distance anchors are combined, I find H0 = 72.5 ± 2.5 km s-1 Mpc-1, which differs by 1.9σ from the Planck value. The differences between the Planck results and these estimates of H0 are not large enough to provide compelling evidence for new physics at this stage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunter, T. R.; Brogan, C. L.; Indebetouw, R.
Based on sub-arcsecond Atacama Large Millimeter/submillimeter Array (ALMA) and Submillimeter Array (SMA) 1.3 mm continuum images of the massive protocluster NGC 6334I obtained in 2015 and 2008, we find that the dust emission from MM1 has increased by a factor of 4.0 ± 0.3 during the intervening years, and undergone a significant change in morphology. The continuum emission from the other cluster members (MM2, MM4, and the UCH ii region MM3 = NGC 6334F) has remained constant. Long-term single-dish maser monitoring at HartRAO finds that multiple maser species toward NGC 6334I flared beginning in early 2015, a few months beforemore » our ALMA observation, and some persist in that state. New ALMA images obtained in 2016 July–August at 1.1 and 0.87 mm confirm the changes with respect to SMA 0.87 mm images from 2008, and indicate that the (sub)millimeter flaring has continued for at least a year. The excess continuum emission, centered on the hypercompact H ii region MM1B, is extended and elongated (1.″6 × 1.″0 ≈ 2100 × 1300 au) with multiple peaks, suggestive of general heating of the surrounding subcomponents of MM1, some of which may trace clumps in a fragmented disk rather than separate protostars. In either case, these remarkable increases in maser and dust emission provide direct observational evidence of a sudden accretion event in the growth of a massive protostar yielding a sustained luminosity surge by a factor of 70 ± 20, analogous to the largest events in simulations by Meyer et al. This target provides an excellent opportunity to assess the impact of such a rare event on a protocluster over many years.« less
On the Nature of the Enigmatic Object IRAS 19312+1950: A Rare Phase of Massive Star Formation?
NASA Technical Reports Server (NTRS)
Cordiner, M. A.; Boogert, A. C. A.; Charnley, S. B.; Justtanont, K.; Cox, N. L. J.; Smith, R. G.; Tielens, A. G. G. M.; Wirstrom, E. S.; Milam, S. N.; Keane, J. V.
2016-01-01
IRAS?19312+1950 is a peculiar object that has eluded firm characterization since its discovery, with combined maser properties similar to an evolved star and a young stellar object (YSO). To help determine its true nature, we obtained infrared spectra of IRAS?19312+1950 in the range 5-550 microns using the Herschel and Spitzer space observatories. The Herschel PACS maps exhibit a compact, slightly asymmetric continuum source at 170 microns, indicative of a large, dusty circumstellar envelope. The far-IR CO emission line spectrum reveals two gas temperature components: approx. = 0.22 Stellar Mass of material at 280+/-18 K, and ˜1.6 Me of material at 157+/-3 K. The OI 63 micron line is detected on-source but no significant emission from atomic ions was found. The HIFI observations display shocked, high-velocity gas with outflow speeds up to 90 km/s along the line of sight. From Spitzer spectroscopy, we identify ice absorption bands due to H2O at 5.8 microns and CO2 at 15 microns. The spectral energy distribution is consistent with a massive, luminous (approx. 2 × 10(exp 4) Stellar Luminosity) central source surrounded by a dense, warm circumstellar disk and envelope of total mass approx. 500-700 Stellar Mass with large bipolar outflow cavities. The combination of distinctive far-IR spectral features suggest that IRAS19312+1950 should be classified as an accreting, high-mass YSO rather than an evolved star. In light of this reclassification, IRAS19312+1950 becomes only the fifth high-mass protostar known to exhibit SiO maser activity, and demonstrates that 18 cm OH maser line ratios may not be reliable observational discriminators between evolved stars and YSOs.
Nicolaas Bloembergen as a scientist and a mentor
NASA Astrophysics Data System (ADS)
Liu, Jia-Ming
2018-03-01
Nicolaas Bloembergen made rich contributions to nuclear magnetic resonance, masers and lasers, nonlinear optics and ultrafast laser-matter interactions. The Nobel laureate sadly passed away on 5 September 2017. Here are my memories of my Harvard mentor, a remarkable person and a wonderful scientist.
Dicke’S Superradiance in Astrophysics. II. The OH 1612 MHz Line
NASA Astrophysics Data System (ADS)
Rajabi, Fereshteh; Houde, Martin
2016-09-01
We apply the concept of superradiance that was introduced by Dicke in 1954 to the OH molecule 1612 MHz spectral line, which is often used for the detection of masers in the circumstellar envelopes of evolved stars. Because the detection of 1612 MHz OH masers in the outer shells of envelopes of these stars implies the existence of a population inversion and a high level of velocity coherence, and that these are two necessary requirements for superradiance, we investigate whether superradiance can also happen in these regions. Superradiance is characterized by high-intensity, spatially compact, burst-like features taking place over timescales on the order of seconds to years, depending on the size and physical conditions present in the regions harboring such sources of radiation. Our analysis suggests that superradiance provides a valid explanation for previous observations of intensity flares detected in that spectral line for the U Orionis Mira star and the IRAS 18276-1431 preplanetary nebula.
Fifty years of atomic time-keeping at VNIIFTRI
NASA Astrophysics Data System (ADS)
Domnin, Yu; Gaigerov, B.; Koshelyaevsky, N.; Poushkin, S.; Rusin, F.; Tatarenkov, V.; Yolkin, G.
2005-06-01
Time metrology in Russia in the second half of the twentieth century has been marked, as in other advanced countries, by the rapid development of time and frequency quantum standards and the beginning of atomic time-keeping. This brief review presents the main developments and studies in time and frequency measurement, and the improvement of accuracy and atomic time-keeping at the VNIIFTRI—the National Metrology Institute keeping primary time and frequency standards and ensuring unification of measurement. The milestones along the way have been the ammonia and hydrogen masers, primary caesium beam and fountain standards and laser frequency standards. For many years, VNIIFTRI was the only world laboratory that applied hydrogen-maser clock ensembles for time-keeping. VNIIFTRI's work on international laser standard frequency comparisons and absolute frequency measurements contributed greatly to the adoption by the CIPM of a highly accurate value for the He-Ne/CH4 laser frequency. VNIIFTRI and the VNIIM were the first to establish a united time, frequency and length standard.
DICKE’S SUPERRADIANCE IN ASTROPHYSICS. II. THE OH 1612 MHz LINE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajabi, Fereshteh; Houde, Martin
We apply the concept of superradiance that was introduced by Dicke in 1954 to the OH molecule 1612 MHz spectral line, which is often used for the detection of masers in the circumstellar envelopes of evolved stars. Because the detection of 1612 MHz OH masers in the outer shells of envelopes of these stars implies the existence of a population inversion and a high level of velocity coherence, and that these are two necessary requirements for superradiance, we investigate whether superradiance can also happen in these regions. Superradiance is characterized by high-intensity, spatially compact, burst-like features taking place over timescalesmore » on the order of seconds to years, depending on the size and physical conditions present in the regions harboring such sources of radiation. Our analysis suggests that superradiance provides a valid explanation for previous observations of intensity flares detected in that spectral line for the U Orionis Mira star and the IRAS 18276-1431 preplanetary nebula.« less
Optical Stabilization of a Microwave Oscillator for Fountain Clock Interrogation.
Lipphardt, Burghard; Gerginov, Vladislav; Weyers, Stefan
2017-04-01
We describe an optical frequency stabilization scheme of a microwave oscillator that is used for the interrogation of primary cesium fountain clocks. Because of its superior phase noise properties, this scheme, which is based on an ultrastable laser and a femtosecond laser frequency comb, overcomes the frequency instability limitations of fountain clocks given by the previously utilized quartz-oscillator-based frequency synthesis. The presented scheme combines the transfer of the short-term frequency instability of an optical cavity and the long-term frequency instability of a hydrogen maser to the microwave oscillator and is designed to provide continuous long-term operation for extended measurement periods of several weeks. The utilization of the twofold stabilization scheme on the one hand ensures the referencing of the fountain frequency to the hydrogen maser frequency and on the other hand results in a phase noise level of the fountain interrogation signal, which enables fountain frequency instabilities at the 2.5 ×10 -14 (τ/s) -1/2 level that are quantum projection noise limited.
Shock-heated NH3 in a Molecular Jet Associated with a High-Mass Young Star.
Zhang; Hunter; Sridharan; Cesaroni
1999-12-20
We present the discovery of shock-excited NH3 in a well-collimated jet associated with the extremely young high-mass star IRAS 20126+4104. The NH3 (3, 3) and (4, 4) emission is dominated by three clumps along the SiO jet. At the end of the jet, there exists strong and broad (+/-10 km s-1) NH3 (3, 3) emission. With typical brightness temperatures greater than 500 K, the overall emission indicates a weakly inverted population and appears in an arc, consistent with the excitation by bow shocks. There are two bright spots in the NH3 (3, 3) emission with brightness temperatures of approximately 2000 K. The narrow line width (1.5 km s-1 FWHM), the small sizes (<0&farcs;3), and the unusually high brightness temperature of the features are indicative of maser emission. Our observations provide clear evidence that NH3 (3, 3) masers are excited in shock regions in molecular outflows.
NASA Technical Reports Server (NTRS)
Clements, P. A.; Borutzki, S. E.; Kirk, A.
1984-01-01
The Deep Space Network (DSN), managed by the Jet Propulsion Laboratory for NASA, must maintain time and frequency within specified limits in order to accurately track the spacecraft engaged in deep space exploration. Various methods are used to coordinate the clocks among the three tracking complexes. These methods include Loran-C, TV Line 10, Very Long Baseline Interferometry (VLBI), and the Global Positioning System (GPS). Calculations are made to obtain frequency offsets and Allan variances. These data are analyzed and used to monitor the performance of the hydrogen masers that provide the reference frequencies for the DSN Frequency and Timing System (DFT). Areas of discussion are: (1) a brief history of the GPS timing receivers in the DSN, (2) a description of the data and information flow, (3) data on the performance of the DSN master clocks and GPS measurement system, and (4) a description of hydrogen maser frequency steering using these data.
Dicke’s Superradiance in Astrophysics. I. The 21 cm Line
NASA Astrophysics Data System (ADS)
Rajabi, Fereshteh; Houde, Martin
2016-08-01
We have applied the concept of superradiance introduced by Dicke in 1954 to astrophysics by extending the corresponding analysis to the magnetic dipole interaction characterizing the atomic hydrogen 21 cm line. Although it is unlikely that superradiance could take place in thermally relaxed regions and that the lack of observational evidence of masers for this transition reduces the probability of detecting superradiance, in situations where the conditions necessary for superradiance are met (close atomic spacing, high velocity coherence, population inversion, and long dephasing timescales compared to those related to coherent behavior), our results suggest that relatively low levels of population inversion over short astronomical length-scales (e.g., as compared to those required for maser amplification) can lead to the cooperative behavior required for superradiance in the interstellar medium. Given the results of our analysis, we expect the observational properties of 21 cm superradiance to be characterized by the emission of high-intensity, spatially compact, burst-like features potentially taking place over short periods ranging from minutes to days.
NASA Technical Reports Server (NTRS)
Reinhart, G.; NguyenThi, H.; Bogno, A.; Billia, B.; Houltz, Y.; Loth, K.; Voss, D.; Verga, A.; dePascale, F.; Mathiesen, R. H.;
2012-01-01
The European Space Agency (ESA) - Microgravity Application Promotion (MAP) programme entitled XRMON (In situ X-Ray MONitoring of advanced metallurgical processes under microgravity and terrestrial conditions) aims to develop and perform in situ X-ray radiography observations of metallurgical processes in microgravity and terrestrial environments. The use of X-ray imaging methods makes it possible to study alloy solidification processes with spatio-temporal resolutions at the scales of relevance for microstructure formation. XRMON has been selected for MASER 12 sounding rocket experiment, scheduled in autumn 2011. Although the microgravity duration is typically six minutes, this short time is sufficient to investigate a solidification experiment with X-ray radiography. This communication will report on the preliminary results obtained with the experimental set-up developed by SSC (Swedish Space Corporation). Presented results dealing with directional solidification of Al-Cu confirm the great interest of performing in situ characterization to analyse dynamical phenomena during solidification processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, G. Q.; Chen, L.; Wu, D. J.
Solar type I radio storms are long-lived radio emissions from the solar atmosphere. It is believed that these type I storms are produced by energetic electrons trapped within a closed magnetic structure and are characterized by a high ordinary (O) mode polarization. However, the microphysical nature of these emissions is still an open problem. Recently, Wu et al. found that Alfven waves (AWs) can significantly influence the basic physics of wave-particle interactions by modifying the resonant condition. Taking the effects of AWs into account, this work investigates electron cyclotron maser emission driven by power-law energetic electrons with a low-energy cutoffmore » distribution, which are trapped in coronal loops by closed solar magnetic fields. The results show that the emission is dominated by the O mode. It is proposed that this O mode emission may possibly be responsible for solar type I radio storms.« less
Hydrogen Maser Clock (HMC) Experiment
NASA Technical Reports Server (NTRS)
Vessot, Robert F. C.; Mattison, Edward M.
1997-01-01
The Hydrogen Maser Clock (HMC) project was originally conceived to fly on a reflight of the European Space Agency (ESA) free flying platform, the European Recoverable Carrier (EURECA) that had been launched into space and recovered by NASA's Space Transportation System (STS). A Phase B study for operation of HMC as one of the twelve EURECA payload components was begun in July 1991, and completed a year later. Phase C/D of HMC began in August 1992 and continued into early 1995. At that time ESA decided not to refly EURECA, leaving HMC without access to space. Approximately 80% of the flight support electronics are presently operating the HMC's physics package in a vacuum tank at the Smithsonian Astrophysical Observatory, and are now considered to be well-tested flight electronics. The package will continue to be operated until the end of 1997 or until a flight opportunity becomes avaiable. Appendices: letters and trip report; proceedings of the symposium on frequency standards and metrology; milli-celsius-stability thermal control for an orbiting frequency standard.
Assessing Model Fitting of Megamaser Disks with Simulated Observations
NASA Astrophysics Data System (ADS)
Han, Jiwon; Braatz, James; Pesce, Dominic
2018-01-01
The Megamaser Cosmology Project (MCP) measures the Hubble Constant by determining distances to galaxies with observations of 22 GHz H20 megamasers. The megamasers arise in the circumnuclear accretion disks of active galaxies. In this research, we aim to improve the estimation of systematic errors in MCP measurements. Currently, the MCP fits a disk model to the observed maser data with a Markov Chain Monte Carlo (MCMC) code. The disk model is described by up to 14 global parameters, including up to 6 that describe the disk warping. We first assess the model by generating synthetic datasets in which the locations and dynamics of the maser spots are exactly known, and fitting the model to these data. By doing so, we can also test the effects of unmodeled substructure on the estimated uncertainties. Furthermore, in order to gain better understanding of the physics behind accretion disk warping, we develop a physics-driven model for the warp and test it with the MCMC approach.
Extraordinary Cosmic Laboratory Helps Unravel Mysteries of a Galaxy's Powerful Central "Engine"
NASA Astrophysics Data System (ADS)
An extraordinary cosmic laboratory 21 million light-years away is providing radio astronomers their best opportunity yet to decipher the mysteries of the ultra-powerful "engines" at the hearts of many galaxies and quasars. An international research team using the National Science Foundation's Very Long Baseline Array (VLBA) and Very Large Array (VLA) radio telescopes has peered deeply into the core of the galaxy NGC 4258, learning important new information about the mysterious region from which high-speed jets of subatomic particles are ejected. The scientists announced their findings today at the American Astronomical Society meeting in Toronto, Ontario. The new research provides significant quantitative support for a theoretical model for the origin of such jets first proposed in 1979. NGC 4258 is the galaxy in which a warped disk of water molecules was discovered in 1994. That disk, observed in detail with the VLBA, was shown to be orbiting a central mass some 35 million times more massive than the Sun. That central mass, the astronomers believe, is a black hole. More recent studies of the disk and its surroundings have given astronomers their most detailed look yet at the heart of an active galactic nucleus (AGN), including the ability to pinpoint the exact center of the system, where the black hole resides. The 1994 observations provided the best evidence to date for the existence of a black hole at the heart of a galaxy. Black holes, so dense that not even light can escape their gravitational fields, have long been suspected as the driving force behind the energetic central engines of AGNs. The fortuitous existence of the molecular disk in NGC 4258 has helped astronomers use the ultrasharp radio "vision" of the continent-wide VLBA to probe with unprecedented clarity into the heart of that galaxy's central engine. The researchers are: James Herrnstein, James Moran, and Lincoln Greenhill of the Harvard-Smithsonian Center for Astrophysics; Philip Diamond of the National Radio Astronomy Observatory in Socorro, NM; Mikoto Miyoshi of Japan's Misusawa Astrogeodynamics Observatory; and Naomasa Nakai and Makoto Inoue of Japan's Nobeyama Radio Observatory. The work formed the basis of Herrnstein's Ph.D. dissertation at Harvard University. The extraordinary detail of the observations is made possible by the fact that the water molecules in the disk orbiting the black hole are amplifying microwave radio emissions in the same manner that a laser amplifies light. These natural amplifiers are called cosmic masers, and they produce bright targets for radio telescopes. Study of water masers at the center of NGC 4258 is what revealed the orbiting disk in 1994. Further studies of the water masers in NGC 4258 now have allowed the research team to deduce the exact location of the object orbited by the disk. In addition, new observations of the galaxy's center show radio emission the astronomers believe traces the inner parts of the high-speed jets. Combined, these new observations allow measurement of the distance between the black hole and the innermost observable portions of the jets. Such measurement is extremely important, because the standard theoretical model, proposed in 1979 by Roger Blandford of Caltech and Arieh Konigl of the University of Chicago, makes a clear prediction that all detected radio emission will be offset from the central engine generating the jets. The new radio observations of NGC 4258 are the first to show the exact location of the core of an AGN, and thus the first to allow measurement of the offset between the core and the detected emission closest to it. Significantly, the offset measured in NGC 4258 is fully consistent with the quantitative prediction made by the model of Blandford and Konigl. "There has been a lot of speculation about the relationship between radio jets and black holes over the years," said Herrnstein. "But this measurement precisely pins down the geometric relationship between them in this object." In addition to these measurements, the research team also has recorded the movement of individual maser regions within the orbiting disk. Such motion was expected, and helps further confirm the fact that the masers are indeed part of a disk orbiting a black hole. These motions are seen in masers within the part of the disk closest to our line of sight, where orbital motion would be most evident to us. The masers observed at the edges of the disk (as seen from Earth) do not show any such measurable proper motion over time. Moran notes that "Although the period of rotation of the megamaser disk is about 800 years, the movement of the masers during the two years of observations was about 60 microarcseconds, equivalent to a motion of about one millimeter seen at a distance of 3,000 kilometers. Being able to witness the disk turning at such a great distance is very exciting." Another benefit will come from combining the measurements of the proper motions with measurements of the Doppler shift in the radio emission from the masers at the disk's edge. These two pieces of information allow the astronomers to calculate the distance to NGC 4258 with greater precision than before. This distance calculation will not be subject to many of the uncertainties that plague other extragalactic distance measurements, and thus will help calibrate the still-uncertain cosmic distance scale for other galaxies. The researchers still are refining their calculations of the distance, but expect to arrive at a figure accurate within 5 percent. "Such precision is possible because of the well-understood dynamics of the system," said Greenhill. "It is a purely trigonometric method, independent of the normal hierarchy of extragalactic distance indicators." The galaxy NGC 4258 also is known as Messier 106, and is visible in moderate-sized amateur telescopes in the nighttime winter sky of the northern hemisphere, near the Big Dipper. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The Harvard-Smithsonian Center for Astrophysics is operated by the Harvard College Observatory and the Smithsonian Astrophysical Observatory.
Improved thermal isolation for superconducting magnet systems
NASA Technical Reports Server (NTRS)
Wiebe, E. R.
1974-01-01
Closed-cycle refrigerating system for superconductive magnet and maser is operated in vacuum environment. Each wire leading from external power source passes through cooling station which blocks heat conduction. In connection with these stations, switch with small incandescent light bulb, which generates heat, is used to stop superconduction.
Defense Industrial Base Capabilities Study: Battlespace Awareness
2004-01-01
not production capacity or workforce issues. It considers the best capabilities in both the domestic and foreign components of the industrial base...www.maliburesearch.com Ground Penetrating Radar MARIMATECH 1989 Aarhus, Denmark n.a. n.a. www.marimatech.com Sonar Maser Technology (NZ) Ltd. 1983 Auckland , New
VizieR Online Data Catalog: 22GHz observations of VX Sgr (Murakawa+, 2003)
NASA Astrophysics Data System (ADS)
Murakawa, K.; Yates, J. A.; Richards, A. M. S.; Cohen, R. J.
2012-07-01
The 22-GHz H2O maser emission from VX Sgr was observed on 1994 26 and 1999 January 16 for 5 and 7hr, respectively, in both left and right circular polarization, using 5 antennas of MERLIN. (3 data files).
1999-12-01
POSSIBLE VALIDATION OF GENERAL RELATIVITY Andrei A. Grishaev Institute of Metrology for Time and Space (IMVP), GP VNIIFTRI 141570 Mendeleevo...Metrology for Time and Space (IMVP),GP VNIIFTRI ,141570 Mendeleevo, Russia, 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY
Optical Electronics. Electronics Module 9. Instructor's Guide.
ERIC Educational Resources Information Center
Franken, Bill
This module is the ninth of 10 modules in the competency-based electronics series. Introductory materials include a listing of competencies addressed in the module, a parts/equipment list, and a cross reference table of instructional materials. Five instructional units cover: fiber optic cable; optical coupler; lasers and masers; optical displays;…
Properties of Protostars in the Elephant Trunk in the Globule IC 1396A
NASA Astrophysics Data System (ADS)
Reach, William T.; Faied, Dohy; Rho, Jeonghee; Boogert, Adwin; Tappe, Achim; Jarrett, Thomas H.; Morris, Patrick; Cambrésy, Laurent; Palla, Francesco; Valdettaro, Riccardo
2009-01-01
Extremely red objects, identified in the early Spitzer Space Telescope observations of the bright-rimmed globule IC 1396A and photometrically classified as Class I protostars and Class II T Tauri stars based on their mid-infrared (mid-IR) colors, were spectroscopically observed at 5.5-38 μm (Spitzer Infrared Spectrograph), at the 22 GHz water maser frequency (National Radio Astronomy Observatory Green Bank Telescope), and in the optical (Palomar Hale 5 m) to confirm their nature and further elucidate their properties. The sources photometrically identified as Class I, including IC 1396A:α, γ, δ, epsilon, and ζ, are confirmed as objects dominated by accretion luminosity from dense envelopes, with accretion rates 1-10 × 10-6 M sun yr-1 and present stellar masses 0.1-2 M sun. The Class I sources have extremely red continua, still rising at 38 μm, with a deep silicate absorption at 9-11 μm, weaker silicate absorption around 18 μm, and weak ice features including CO2 at 15.2 μm and H2O at 6 μm. The ice/silicate absorption ratio in the envelope is exceptionally low for the IC 1396A protostars, compared to those in nearby star-forming regions, suggesting that the envelope chemistry is altered by the radiation field or globule pressure. Only one 22 GHz water maser was detected in IC 1396A; it is coincident with a faint mid-IR source, offset from near the luminous Class I protostar IC 1396A:γ. The maser source, IC 1396A:γ b , has luminosity less than 0.1 L sun, the first H2O maser from such a low-luminosity object. Two near-infrared (NIR) H2 knots on opposite sides of IC 1396A:γ reveal a jet, with an axis clearly distinct from the H2O maser of IC 1396A:γ b . The objects photometrically classified as Class II, including IC 1396A:β, θ, Two Micron All Sky Survey (2MASS)J 21364964+5722270, 2MASSJ 21362507+5727502, LkHα 349c, Tr 37 11-2146, and Tr 37 11-2037, are confirmed as stars with warm, luminous disks, with a silicate emission feature at 9-11 μm, and bright Hα emission; therefore, they are young, disk-bearing, classical T Tauri stars. The disk properties change significantly with source luminosity: low-mass (G-K) stars have prominent 9-11 emission features due to amorphous silicates while higher-mass (A-F) stars have weaker features requiring abundant crystalline silicates. A mineralogical model that fits the wide- and low-amplitude silicate feature of IC 1396A:θ requires small grains of crystalline olivine (11.3 μm peak) and another material to to explain its 9.1 μm peak; reasonable fits are obtained with a phyllosilicate, quartz, or relatively large (greater than 10 μm) amorphous olivine grains. The distribution of Class I sources is concentrated within the molecular globule, while the Class II sources are more widely scattered. Combined with the spectral results, this suggests two phases of star formation, the first (4 Myr ago) leading to the widespread Class II sources and the central O star of IC 1396 and the second (less than 1 Myr ago) occurring within the globule. The recent phase was likely triggered by the wind and radiation of the central O star of the IC 1396 H II region.
Experimental Galileo System Time (E-GST): One Year of Real-Time Experiment
2004-12-01
operations at the E-PTS in the current configuration. The frequency output of the H-maser is fed to a high-accuracy phase micro -stepper (namely an...turn, GaIn is a joint company consisting of Alenia Spazio, Alcatel Industries, Astrium GmbH, Astrium Ltd., and GSS (Galileo Sistemas y Servicios
NASA Technical Reports Server (NTRS)
1984-01-01
The effects of ionospheric and tropospheric propagation on time and frequency transfer, advances in the generation of precise time and frequency, time transfer techniques and filtering and modeling were among the topics emphasized. Rubidium and cesium frequency standard, crystal oscillators, masers, Kalman filters, and atomic clocks were discussed.
Experimental Observations of Microwave Emission from a 35 GHz Cyclotron Autoresonant Maser
1990-07-27
available graphite products) with a density of p =1.84 gm/cm 3 . The electron beam in the diode is generated through the process of explosive field emission...introduction to the physics of intense charge particle beams. Plenum Press, 1982. [331 D. Prosnitz %... .. T. Scharlemann. Beam quality definitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanna, A.; Menten, K. M.; Brunthaler, A.
We report a trigonometric parallax measurement with the Very Long Baseline Array for the water maser in the distant high-mass star-forming region G75.30+1.32. This source has a heliocentric distance of 9.25{sup +0.45}{sub -0.40} kpc, which places it in the Outer arm in the first Galactic quadrant. It lies 200 pc above the Galactic plane and is associated with a substantial H I enhancement at the border of a large molecular cloud. At a Galactocentric radius of 10.7 kpc, G75.30+1.32 is in a region of the Galaxy where the disk is significantly warped toward the North Galactic Pole. While the star-formingmore » region has an instantaneous Galactic orbit that is nearly circular, it displays a significant motion of 18 km s{sup -1} toward the Galactic plane. The present results, when combined with two previous maser studies in the Outer arm, yield a pitch angle of about 12 Degree-Sign for a large section of the arm extending from the first quadrant to the third.« less
A coherent fiber link for very long baseline interferometry.
Clivati, Cecilia; Costanzo, Giovanni A; Frittelli, Matteo; Levi, Filippo; Mura, Alberto; Zucco, Massimo; Ambrosini, Roberto; Bortolotti, Claudio; Perini, Federico; Roma, Mauro; Calonico, Davide
2015-11-01
We realize a coherent fiber link for application in very long baseline interferometry (VLBI) for radio astronomy and geodesy. A 550-km optical fiber connects the Italian National Metrological Institute (INRIM) to a radio telescope in Italy and is used for the primary Cs fountain clock stability and accuracy dissemination. We use an ultrastable laser frequency- referenced to the primary standard as a transfer oscillator; at the radio telescope, an RF signal is generated from the laser by using an optical frequency comb. This scheme now provides the traceability of the local maser to the SI second, realized by the Cs fountain at the 1.7 × 10(-16) accuracy. The fiber link never limits the experiment and is robust enough to sustain radio astronomical campaigns. This experiment opens the possibility of replacing the local hydrogen masers at the VLBI sites with optically-synthesized RF signals. This could improve VLBI resolution by providing more accurate and stable frequency references and, in perspective, by enabling common- clock VLBI based on a network of telescopes connected by fiber links.
Mass Loss from Stars: Prospects with ALMA and Other Radio Interferometers
NASA Astrophysics Data System (ADS)
Richards, Anita
2018-04-01
We can now fully resolve a small sample of stars, in general spotty and/or aspherical, with radii larger (as a function of observing wavelength) than the optical or NIR photosphere R*, requiring the full capabilities of ALMA, e-MERLIN, the NG-VLA or SKA with long baselines. ALMA results has confirmed the presence of continuum hot-spots as well as molecular absorption, against surpisingly large stellar diameters. These studies can be used to investigate the transport of mass and energy through the layers above the photosphere, timescales depending on whether radiative, ionisation/recombination effects, or bulk transport dominate. Maser properties can be measured with an order of magnitude higher resolutiong than thermal lines. The clumpiness of the wind could be related to local ejection of mass from the stellar surface. Models now provide the tools to reconstruct physical conditions from multiple maser lines, and could reveal changes associated with the formation of dust and the transition from complicated infall and outflow near the star, to the radially accelerating wind. I will concentrate on practical aspects of current and potential high-resolution observations to these ends.
DICKE’S SUPERRADIANCE IN ASTROPHYSICS. I. THE 21 cm LINE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajabi, Fereshteh; Houde, Martin
We have applied the concept of superradiance introduced by Dicke in 1954 to astrophysics by extending the corresponding analysis to the magnetic dipole interaction characterizing the atomic hydrogen 21 cm line. Although it is unlikely that superradiance could take place in thermally relaxed regions and that the lack of observational evidence of masers for this transition reduces the probability of detecting superradiance, in situations where the conditions necessary for superradiance are met (close atomic spacing, high velocity coherence, population inversion, and long dephasing timescales compared to those related to coherent behavior), our results suggest that relatively low levels of populationmore » inversion over short astronomical length-scales (e.g., as compared to those required for maser amplification) can lead to the cooperative behavior required for superradiance in the interstellar medium. Given the results of our analysis, we expect the observational properties of 21 cm superradiance to be characterized by the emission of high-intensity, spatially compact, burst-like features potentially taking place over short periods ranging from minutes to days.« less
Terahertz electron cyclotron maser interactions with an axis-encircling electron beam
NASA Astrophysics Data System (ADS)
Li, G. D.; Kao, S. H.; Chang, P. C.; Chu, K. R.
2015-04-01
To generate terahertz radiation via the electron cyclotron maser instability, harmonic interactions are essential in order to reduce the required magnetic field to a practical value. Also, high-order mode operation is required to avoid excessive Ohmic losses. The weaker harmonic interaction and mode competition associated with an over-moded structure present challenging problems to overcome. The axis-encircling electron beam is a well-known recipe for both problems. It strengthens the harmonic interaction, as well as minimizing the competing modes. Here, we examine these advantages through a broad data base obtained for a low-power, step-tunable, gyrotron oscillator. Linear results indicate far more higher-harmonic modes can be excited with an axis-encircling electron beam than with an off-axis electron beam. However, multi-mode, time-dependent simulations reveal an intrinsic tendency for a higher-harmonic mode to switch over to a lower-harmonic mode at a high beam current or upon a rapid current rise. Methods are presented to identify the narrow windows in the parameter space for stable harmonic interactions.
NASA Technical Reports Server (NTRS)
Hamell, Robert L.; Kuhnle, Paul F.; Sydnor, Richard L.
1992-01-01
Measuring the performance of ultra stable frequency standards such as the Superconducting Cavity Maser Oscillator (SCMO) necessitates improvement of some test instrumentation. The frequency stability test equipment used at JPL includes a 1 Hz Offset Generator to generate a beat frequency between a pair of 100 MHz signals that are being compared. The noise floor of the measurement system using the current Offset Generator is adequate to characterize stability of hydrogen masers, but it is not adequate for the SCMO. A new Offset Generator with improved stability was designed and tested at JPL. With this Offset Generator and a new Zero Crossing Detector, recently developed at JPL, the measurement flow was reduced by a factor of 5.5 at 1 second tau, 3.0 at 1000 seconds, and 9.4 at 10,000 seconds, compared against the previous design. In addition to the new circuit designs of the Offset Generator and Zero Crossing Detector, tighter control of the measurement equipment environment was required to achieve this improvement. The design of this new Offset Generator are described, along with details of the environment control methods used.
Three-Level Systems as Amplifiers and Attenuators: A Thermodynamic Analysis
NASA Astrophysics Data System (ADS)
Boukobza, E.; Tannor, D. J.
2007-06-01
Thermodynamics of a three-level maser was studied in the pioneering work of Scovil Schulz-DuBois [Phys. Rev. Lett. 2, 262 (1959)PRLTAO0031-900710.1103/PhysRevLett.2.262]. In this Letter we consider the same three-level model, but we give a full thermodynamic analysis based on Hamiltonian and dissipative Lindblad superoperators. The first law of thermodynamics is obtained using a recently developed alternative [Phys. Rev. A 74, 063823 (2006)PLRAAN1050-294710.1103/PhysRevA.74.063823] to Alicki’s definitions for heat flux and power [J. Phys. AJPHAC50305-4470 12, L103 (1979)10.1088/0305-4470/12/5/007]. Using a novel variation on Spohn’s entropy production function [J. Math. Phys. (N.Y.)JMAPAQ0022-2488 19, 1227 (1978)10.1063/1.523789], we obtain Carnot’s efficiency inequality and the Scovil Schulz-DuBois maser efficiency formula when the three-level system is operated as a heat engine (amplifier). Finally, we show that the three-level system has two other modes of operation—a refrigerator mode and a squanderer mode —both of which attenuate the electric field.
Characterizing radio continuum sources in a sample of Hi-GAL massive cores
NASA Astrophysics Data System (ADS)
Armstrong, Jason
In 2012 and 2013, Olmi and collaborators conducted a survey for 6.7GHz methanol masers with the Arecibo Telescope toward far infrared sources selected from the Hi-GAL catalog of massive cores. They reported a number of sources with weak 6.7GHz methanol masers, possibly indicating regions in early stages of star formation. Follow-up observations were conducted with the Karl G. Jansky Very Large Array (VLA) in New Mexico to characterize the sources. This thesis presents the results of radio continuum observations of nine of the Arecibo regions. A total of 33 radio continuum sources were detected. The nature of the radio continuum sources was analyzed based on their spectral indices. Most of the sources have negative spectral indices, which is indicative of synchrotron radiation. Many of the synchrotron sources are associated with a supernova remnant in our Galaxy, while the rest are likely background radio galaxies and quasars. Evidence for thermal bremsstrahlung radiation was found toward six sources associated with the Arecibo regions, which is consistent with the interpretation of gas ionized by young high-mass stellar objects.
H{sub 2}O Megamasers toward Radio-bright Seyfert 2 Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J. S.; Liu, Z. W.; Henkel, C.
2017-02-20
Using the Effelsberg-100 m telescope, we perform a successful pilot survey on H{sub 2}O maser emission toward a small sample of radio-bright Seyfert 2 galaxies with a redshift larger than 0.04. The targets were selected from a large Seyfert 2 sample derived from the spectroscopic Sloan Digital Sky Survey Data Release 7 (SDSS-DR7). One source, SDSS J102802.9+104630.4 ( z ∼ 0.0448), was detected four times during our observations, with a typical maser flux density of ∼30 mJy and a corresponding (very large) luminosity of ∼1135 L {sub ⊙}. The successful detection of this radio-bright Seyfert 2 and an additional tentativemore » detection support our previous statistical results that H{sub 2}O megamasers tend to arise from Seyfert 2 galaxies with large radio luminosity. The finding provides further motivation for an upcoming larger H{sub 2}O megamaser survey toward Seyfert 2s with particularly radio-bright nuclei with the basic goal to improve our understanding of the nuclear environment of active megamaser host galaxies.« less
Stability measurements of the radio science system at the 34-m high-efficiency antennas
NASA Technical Reports Server (NTRS)
Pham, T. T.; Breidenthal, J. C.; Peng, T. K.; Abbate, S. F.; Rockwell, S. T.
1993-01-01
From 1991 to 1993 the fractional frequency stability of the operational Radio Science System was measured at DSS's 15, 45, and 65. These stations are designed to have the most stable uplink and downlink equipment in the Deep Space Network (DSN). Some measurements were performed when the antenna was moving and the frequency was ramped. The stability, including contributions of all elements in the station except for the antenna and the hydrogen maser, was measured to be 0.3 to 1.3 x 10(exp -15) when the frequency was fixed, and 0.6 to 6.0 x 10(exp -15) when the frequency was ramped (sample interval, 1000 sec). Only one measurement out of fifteen exceeded specification. In all other cases, when previous measurements on the antenna and the hydrogen maser were added, a total system stability requirement of 5.0 x 10(exp -15) as met. In addition, ambient temperature was found to cause phase variation in the measurements at a rate of 5.5 deg of phase per deg C.
Simulating Electron Cyclotron Maser Emission for Low Mass Stars
NASA Astrophysics Data System (ADS)
Llama, Joe; Jardine, Moira
2018-01-01
Zeeman-Doppler Imaging (ZDI) is a powerful technique that enables us to map the large-scale magnetic fields of stars spanning the pre- and main-sequence. Coupling these magnetic maps with field extrapolation methods allow us to investigate the topology of the closed, X-ray bright corona, and the cooler, open stellar wind.Using ZDI maps of young M dwarfs with simultaneous radio light curves obtained from the VLA, we present the results of modeling the Electron-Cyclotron Maser (ECM) emission from these systems. We determine the X-ray luminosity and ECM emission that is produced using the ZDI maps and our field extrapolation model. We compare these findings with the observed radio light curves of these stars. This allows us to predict the relative phasing and amplitude of the stellar X-ray and radio light curves.This benchmarking of our model using these systems allows us to predict the ECM emission for all stars that have a ZDI map and an observed X-ray luminosity. Our model allows us to understand the origin of transient radio emission observations and is crucial for disentangling stellar and exoplanetary radio signals.
NASA Astrophysics Data System (ADS)
Svoboda, Brian E.; Shirley, Yancy L.; Battersby, Cara; Rosolowsky, Erik W.; Ginsburg, Adam G.; Ellsworth-Bowers, Timothy P.; Pestalozzi, Michele R.; Dunham, Miranda K.; Evans, Neal J., II; Bally, John; Glenn, Jason
2016-05-01
We sort 4683 molecular clouds between 10° < ℓ < 65° from the Bolocam Galactic Plane Survey based on observational diagnostics of star formation activity: compact 70 μm sources, mid-IR color-selected YSOs, H2O and CH3OH masers, and UCH II regions. We also present a combined NH3-derived gas kinetic temperature and H2O maser catalog for 1788 clumps from our own GBT 100 m observations and from the literature. We identify a subsample of 2223 (47.5%) starless clump candidates (SCCs), the largest and most robust sample identified from a blind survey to date. Distributions of flux density, flux concentration, solid angle, kinetic temperature, column density, radius, and mass show strong (>1 dex) progressions when sorted by star formation indicator. The median SCC is marginally subvirial (α ˜ 0.7) with >75% of clumps with known distance being gravitationally bound (α < 2). These samples show a statistically significant increase in the median clump mass of ΔM ˜ 170-370 M ⊙ from the starless candidates to clumps associated with protostars. This trend could be due to (I) mass growth of the clumps at \\dot{M}˜ 200{--}440 M ⊙ Myr-1 for an average freefall 0.8 Myr timescale, (II) a systematic factor of two increase in dust opacity from starless to protostellar phases, and/or (III) a variation in the ratio of starless to protostellar clump lifetime that scales as ˜M -0.4. By comparing to the observed number of CH3OH maser containing clumps, we estimate the phase lifetime of massive (M > 103 M ⊙) starless clumps to be 0.37 ± 0.08 Myr (M/103 M ⊙)-1 the majority (M < 450 M ⊙) have phase lifetimes longer than their average freefall time.
NASA Astrophysics Data System (ADS)
Tobar, Michael Edmund; Wolf, Peter; Bize, Sébastien; Santarelli, Giorgio; Flambaum, Victor
2010-01-01
The cryogenic sapphire oscillator at the Paris Observatory has been continuously compared to various hydrogen masers since 2001. The early data sets were used to test local Lorentz invariance in the Robertson-Mansouri-Sexl (RMS) framework by searching for sidereal modulations with respect to the cosmic microwave background, and represent the best Kennedy-Thorndike experiment to date. In this work, we present continuous operation over a period of greater than six years from September 2002 to December 2008 and present a more precise way to analyze the data by searching the time derivative of the comparison frequency. Because of the long-term operation we are able to search both sidereal and annual modulations. The results give PKT=βRMS-αRMS-1=-1.7(4.0)×10-8 for the sidereal and -23(10)×10-8 for the annual term, with a weighted mean of -4.8(3.7)×10-8, a factor of 8 better than previous. Also, we analyze the data with respect to a change in gravitational potential for both diurnal and annual variations. The result gives βH-Maser-βCSO=-2.7(1.4)×10-4 for the annual and -6.9(4.0)×10-4 for the diurnal terms, with a weighted mean of -3.2(1.3)×10-4. This result is 2 orders of magnitude better than other tests that use electromagnetic resonators. With respect to fundamental constants a limit can be provided on the variation with ambient gravitational potential and boost of a combination of the fine structure constant (α), the normalized quark mass (mq), and the electron to proton mass ratio (me/mp), setting the first limit on boost dependence of order 10-10.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brogan, C. L.; Hunter, T. R.; Indebetouw, R.
2016-12-01
We present Very Large Array and Atacama Large Millimeter/submillimeter Array imaging of the deeply embedded protostellar cluster NGC 6334I from 5 cm to 1.3 mm at angular resolutions as fine as 0.″17 (220 au). The dominant hot core MM1 is resolved into seven components at 1.3 mm, clustered within a radius of 1000 au. Four of the components have brightness temperatures >200 K, radii ∼300 au, minimum luminosities ∼10{sup 4} L {sub ⊙}, and must be centrally heated. We term this new phenomenon a “hot multi-core.” Two of these objects also exhibit compact free–free emission at longer wavelengths, consistent withmore » a hypercompact H ii region (MM1B) and a jet (MM1D). The spatial kinematics of the water maser emission centered on MM1D are consistent with it being the origin of the high-velocity bipolar molecular outflow seen in CO. The close proximity of MM1B and MM1D (440 au) suggests a proto-binary or a transient bound system. Several components of MM1 exhibit steep millimeter spectral energy distributions indicative of either unusual dust spectral properties or time variability. In addition to resolving MM1 and the other hot core (MM2) into multiple components, we detect five new millimeter and two new centimeter sources. Water masers are detected for the first time toward MM4A, confirming its membership in the protocluster. With a 1.3 mm brightness temperature of 97 K coupled with a lack of thermal molecular line emission, MM4A appears to be a highly optically thick 240 L {sub ⊙} dust core, possibly tracing a transient stage of massive protostellar evolution. The nature of the strongest water maser source CM2 remains unclear due to its combination of non-thermal radio continuum and lack of dust emission.« less
NASA Astrophysics Data System (ADS)
Goldman, Steven R.; van Loon, Jacco Th.; Zijlstra, Albert A.; Green, James A.; Wood, Peter R.; Nanni, Ambra; Imai, Hiroshi; Whitelock, Patricia A.; Matsuura, Mikako; Groenewegen, Martin A. T.; Gómez, José F.
2017-02-01
We present the results of our survey of 1612-MHz circumstellar OH maser emission from asymptotic giant branch (AGB) stars and red supergiants (RSGs) in the Large Magellanic Cloud (LMC). We have discovered four new circumstellar maser sources in the LMC, and increased the number of reliable wind speeds from infrared (IR) stars in the LMC from 5 to 13. Using our new wind speeds, as well as those from Galactic sources, we have derived an updated relation for dust-driven winds: vexp ∝ ZL0.4. We compare the subsolar metallicity LMC OH/IR stars with carefully selected samples of more metal-rich OH/IR stars, also at known distances, in the Galactic Centre and Galactic bulge. We derive pulsation periods for eight of the bulge stars for the first time by using near-IR photometry from the Vista Variables in the Via Lactea survey. We have modelled our LMC OH/IR stars and developed an empirical method of deriving gas-to-dust ratios and mass-loss rates by scaling the models to the results from maser profiles. We have done this also for samples in the Galactic Centre and bulge and derived a new mass-loss prescription which includes luminosity, pulsation period, and gas-to-dust ratio dot{M} = 1.06^{+3.5}_{-0.8} × }10^{-5 (L/10^4 L_{⊙})^{0.9± 0.1}(P/500 {d})^{0.75± 0.3} (r_gd/200)^{-0.03± 0.07} M⊙ yr-1. The tightest correlation is found between mass-loss rate and luminosity. We find that the gas-to-dust ratio has little effect on the mass-loss of oxygen-rich AGB stars and RSGs within the Galaxy and the LMC. This suggests that the mass-loss of oxygen-rich AGB stars and RSGs is (nearly) independent of metallicity between a half and twice solar.
ON THE NATURE OF THE ENIGMATIC OBJECT IRAS 19312+1950: A RARE PHASE OF MASSIVE STAR FORMATION?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cordiner, M. A.; Charnley, S. B.; Milam, S. N.
IRAS 19312+1950 is a peculiar object that has eluded firm characterization since its discovery, with combined maser properties similar to an evolved star and a young stellar object (YSO). To help determine its true nature, we obtained infrared spectra of IRAS 19312+1950 in the range 5–550 μ m using the Herschel and Spitzer space observatories. The Herschel PACS maps exhibit a compact, slightly asymmetric continuum source at 170 μ m, indicative of a large, dusty circumstellar envelope. The far-IR CO emission line spectrum reveals two gas temperature components: ≈0.22 M {sub ⊙} of material at 280 ± 18 K, andmore » ≈1.6 M {sub ⊙} of material at 157 ± 3 K. The O i 63 μ m line is detected on-source but no significant emission from atomic ions was found. The HIFI observations display shocked, high-velocity gas with outflow speeds up to 90 km s{sup −1} along the line of sight. From Spitzer spectroscopy, we identify ice absorption bands due to H{sub 2}O at 5.8 μ m and CO{sub 2} at 15 μ m. The spectral energy distribution is consistent with a massive, luminous (∼2 × 10{sup 4} L {sub ⊙}) central source surrounded by a dense, warm circumstellar disk and envelope of total mass ∼500–700 M {sub ⊙}, with large bipolar outflow cavities. The combination of distinctive far-IR spectral features suggest that IRAS 19312+1950 should be classified as an accreting, high-mass YSO rather than an evolved star. In light of this reclassification, IRAS 19312+1950 becomes only the fifth high-mass protostar known to exhibit SiO maser activity, and demonstrates that 18 cm OH maser line ratios may not be reliable observational discriminators between evolved stars and YSOs.« less
NASA Astrophysics Data System (ADS)
Thumm, M.
1997-02-01
Gyrotron oscillators are mainly used as high power mm-wave sources for start-up, electron cyclotron heating (ECH) and diagnostics of magnetically confined plasmas for controlled thermonuclear fusion research. 140 GHz (110 GHz) gyrotrons with output power Pout = 0.55 MW (0.93 MW), pulse length τ = 3.0 s (2.0 s) and efficiency η = 40% (38%) are commercially available. Total efficiencies around 50% have been achieved using single-stage depressed collectors. Diagnostic gyrotrons deliver Pout = 40 kW with τ = 40 μs at frequencies up to 650 GHz ( η≥4%). Recently, gyrotron oscillators have also been successfully used in materials processing, for example sintering of high performance, structural and functional ceramics. Such technological applications require gyrotrons with f≥24 GHz, Pout = 10-100 kW, CW, η≥30%. This paper reports on recent achievements in the development of very high power mm-wave gyrotron oscillators for long pulse or CW operation. In addition a short overview of the present development status of gyrotrons for technological applications, gyroklystron amplifiers, gyro-TWT amplifiers, cyclotron autoresonance masers (CARMs) and free electron masers (FEMs) is given. The most impressive FEM output parameters are: Pout = 2GW, τ = 20 ns, η = 13% at 140 GHz (LLNL) and Pout = 15 kW, τ = 20 μs, η = 5% in the range from 120 to 900 GHz (UCSB). In gyro-devices, magnetron injection guns (MIGs) operating in the temperature limited current regime have thus far been used most successfully. Diode guns as well as triode guns with a modulating anode are employed. Tests of a MIG operated under space-charge limited conditions have been not very successful. Electrostatic CW FEMs are driven by thermionic Pierce guns whereas pulsed high power devices employ many types of accelerators as drivers for example pulse-line accelerators, microtrons and induction or rf linacs, using field and photo emission cathodes.
NASA Astrophysics Data System (ADS)
Malykin, G. B.
2015-09-01
The well-known experiments performed by Pound and Rebka already in the 1960s confirmed the effect of gravitational time dilation, which had been predicted earlier within the framework of the general relativity theory. However, since photon exchange occurred in the course of these experiments on comparing the frequencies of nuclear resonance fluorescence at various altitudes, the reasons underlying the origin of this effect are explained in the literature by two different and, in fact, alternative presumed physical phenomena. According to the first explanation, clocks locate higher run faster, which is due to an increase in the gravitational potential with increasing distance from the Earth, whereas ascending and descending photons do not change their frequency (by the same clock, e.g., that of the so-called outside observer). According to the second explanation, the clock rate is the same at different altitudes, but the ascending photons undergo a redshift since they lose their energy, while the descending photons undergo a blueshift since they acquire energy. Other combined interpretations of the gravitational time dilation, which presume that the both phenomena exist simultaneously, are proposed in the literature. We propose an experiment with two clocks being active hydrogen masers, one of which is located at the bottom of a high-rise building, and the other, on the top of the building. In this case, time is measured by the first and second clocks during a sufficiently long time interval. After that, the masers are placed at one point, and their indications are compared. In this case, the photon exchange is not required for comparison of the clock readings, and, therefore, the method proposed allows one to reveal the actual reason of the effect under consideration. Numerical estimations are made, which allow for the accompanying effects influencing the measurement accuracy. Critical analysis of the earlier experiments shows that they are either equivocal, or are not absolutely impeccable from the methodology viewpoint.
NASA Astrophysics Data System (ADS)
Brogan, C. L.; Hunter, T. R.; Cyganowski, C. J.; Chandler, C. J.; Friesen, R.; Indebetouw, R.
2016-12-01
We present Very Large Array and Atacama Large Millimeter/submillimeter Array imaging of the deeply embedded protostellar cluster NGC 6334I from 5 cm to 1.3 mm at angular resolutions as fine as 0.″17 (220 au). The dominant hot core MM1 is resolved into seven components at 1.3 mm, clustered within a radius of 1000 au. Four of the components have brightness temperatures >200 K, radii ˜300 au, minimum luminosities ˜104 L ⊙, and must be centrally heated. We term this new phenomenon a “hot multi-core.” Two of these objects also exhibit compact free-free emission at longer wavelengths, consistent with a hypercompact H II region (MM1B) and a jet (MM1D). The spatial kinematics of the water maser emission centered on MM1D are consistent with it being the origin of the high-velocity bipolar molecular outflow seen in CO. The close proximity of MM1B and MM1D (440 au) suggests a proto-binary or a transient bound system. Several components of MM1 exhibit steep millimeter spectral energy distributions indicative of either unusual dust spectral properties or time variability. In addition to resolving MM1 and the other hot core (MM2) into multiple components, we detect five new millimeter and two new centimeter sources. Water masers are detected for the first time toward MM4A, confirming its membership in the protocluster. With a 1.3 mm brightness temperature of 97 K coupled with a lack of thermal molecular line emission, MM4A appears to be a highly optically thick 240 L ⊙ dust core, possibly tracing a transient stage of massive protostellar evolution. The nature of the strongest water maser source CM2 remains unclear due to its combination of non-thermal radio continuum and lack of dust emission.
Survey for C-Band High Spectral Lines with the Arecibo Telescope
NASA Astrophysics Data System (ADS)
Tan, Wei Siang
High-mass stars have masses greater than 8 solar masses and are the main source of heavy elements such as iron in the interstellar medium. This type of stars form in giant molecular clouds. Studying the molecular environment in star-forming regions is crucial to understand the physical structure and conditions that lead to the formation of high-mass stars. This thesis presents observations conducted with the 305m Arecibo Telescope in Puerto Rico of twelve high-mass star forming regions. Every source was observed in multiple transitions of molecular species including CH, CH3OH, H2CS, and OH lines, and a radio recombination line. The observations were conducted with the C-Band High receiver of the Arecibo Telescope in the frequency range of 6.0 to 7.4GHz. The goals of the observations were to investigate the detectability of different molecular species (including new possible molecular masers) and obtain high sensitivity observations of the 6.7GHz CH3OH line to detect absorption and use it as a probe of the kinematics of the molecular material with respect to the ionized gas. Among the results of the observations, we report detection of 6.7GHz CH3OH masers toward nine regions, OH masers toward five sources, 6.7GHz CH3OH absorption toward four sources (including tentative detections), and detection of H2CS toward the star forming region G34.26+0.15. We also found a variable and recurrent 6.7GHz CH3OH maser in G45.12+0.13. The 6.7GHz CH 3OH and 6278.65MHz H2CS absorption lines were modeled using the radiative transfer code RADEX to investigate the physical conditions of the molecular clouds responsible for the absorption lines. Our analysis of the absorption lines supports the interpretation that the spectral lines are tracing molecular envelopes of HII regions. In the case of 6.7GHz CH 3OH absorption, our results and data from an extensive literature review indicate that absorption is rare, but that a population of 6.7GHz CH 3OH absorbers may be present at levels below ˜ 100mJy. In the case of the 6278.65MHz H2CS absorption in G34.26+0.15, the data are consistent with infalling gas onto the HII region, which supports the key principle of gravitational collapse of molecular clouds during the process of star formation. However, high angular resolution observations of the H 2CS line are needed to confirm the infall hypothesis.
Compact radio sources in luminous infrared galaxies
NASA Astrophysics Data System (ADS)
Parra, Rodrigo
2007-08-01
Radio interferometry is an observational technique of high sensitivity and incomparably high spatial resolution. Moreover, because radio waves can freely propagate through interstellar dust and gas, it allows the study of regions of the universe completely obscured at other wavelengths. This thesis reports the observational and theoretical results of my research during the past four years which are mostly based on interferometric radio data. The COLA sample is an infrared selected sample of active star forming galaxies. We conducted 6 cm VLA and VLBI snapshot observations of the northern half of this sample. The radio emission seen at VLA scales is consistent with being powered by star formation activity because it follows the far infrared to radio correlation. We detect 22% of the sample sources in our VLBI snapshots. Based on luminosity arguments, we argue that these sub-parsec VLBI sources are powered by AGN activity. Furthermore, we find that VLBI detections are preferentially found in sources whose VLA scale structures have the highest peak brightnesses suggesting a strong correlation between compact starburst and AGN activity. This observational result is consistent with the theoretical picture of an Eddington-limited nuclear starburst acting as the last valve in the pipeline transporting the gas from kiloparsec scales onto the accretion disc of a buried AGN. Arp 220 is the archetypical ultra luminous infrared galaxy. For many years this source has been known to harbour a compact (~100 pc) cluster of unresolved 18 cm bright sources believed to be bright core collapse supernovae. Using multiwavelength VLBI observations, we obtained for the first time radio spectra for 18 of these sources. We find that over a half of them have spectra consistent with young supernovae. The rest can be better explained as older supernova remnants interacting with the high density starburst ISM. This finding allowed us to constrain the number of possible scenarios for the Arp 220 starburst. A subset of luminous infrared galaxies contain non-thermal spectral line emission from the OH radical. These OH megamasers often show diffuse extended (~100 pc) low gain emission surrounding compact ([Special characters omitted. 1 pc) high gain maser spots. These observational features have been explained in terms of unsaturated and saturated masers. Using numerical simulations we have shown how both the diffuse and compact components of the OH megamaser observed towards the luminous infrared galaxy IIIZw35 can be explained by a single phase of unsaturated maser clouds in which the compact bright masers are caused by the random line-of-sight overlap of several such clouds and the diffuse component by the beam spatial average of many low gain clouds too weak to be seen independently. The theoretical tools developed to analyse this particular case have been extended to the general problem of propagation of radiation in clumpy media.
VizieR Online Data Catalog: Methanol maser associated outflows (de Villiers+, 2014)
NASA Astrophysics Data System (ADS)
de Villiers, H. M.; Chrysostomou, A.; Thompson, M. A.; Ellingsen, S. P.; Urquhart, J. S.; Breen, S. L.; Burton, M. G.; Csengeri, T.; Ward-Thompson, D.
2015-04-01
The targets were observed with the JCMT, on the summit of Mauna Kea, Hawaii on seven nights between 2007 May 17 and 2008 July 22. Targets were mapped in the 13CO and C18O (J=3-2) transitions (330.6 and 329.3GHz), using the 16-receptor HARP. (5 data files).
Chapter 13. Incorporating wildlife habitat needs into restoration and rehabilitation projects
Richard Stevens
2004-01-01
Wildlife species richness, densities, and distribution are directly related to the quality and quantity of habitat (Autenrieth 1983; Autenrieth and others 1982; Bodurtha and others 1989; Call and Maser 1985; Caughley 1979; Kindschy and others 1982; Leckenby and others 1982; Reynolds 1980; Russo 1964; Thomas and others 1979a,c; Yoakum 1980). Productive big game ranges,...
NASA atomic hydrogen standards program - An update
NASA Technical Reports Server (NTRS)
Reinhardt, V. S.; Kaufmann, D. C.; Adams, W. A.; Deluca, J. J.; Soucy, J. L.
1976-01-01
Some of the design features of NASA hydrogen masers are discussed including the large hydrogen source bulb, the palladium purified, the state selector, the replaceable pumps, the small entrance stem, magnetic shields, the elongated storage bulb, the aluminum cavity, the electronics package, and the autotuner. Attention is also given to the reliability and operating life of these hydrogen atomic standards.
NASA Technical Reports Server (NTRS)
Manshadi, F.
1986-01-01
A low-loss bandstop filter designed and developed for the Deep Space Network's 34-meter high-efficiency antennas is described. The filter is used for protection of the X-band traveling wave masers from the 20-kW transmitter signal. A combination of empirical and theoretical techniques was employed as well as computer simulation to verify the design before fabrication.
USSR and Eastern Europe Scientific Abstracts Physics and Mathematics No. 35
1977-06-15
depends on the film thickness, on the conditions of demagnetization , and on the constant of uniaxial magnetic anisotropy. The distribution of...Acoustics 2 Crystals and Semiconductors.. .*. 16 Electricity and Magnetism 51 Fluid Dynamics 64 Lasers and Masers 88 Magnetohydrodynamics 110...Molecular Physics 132 Nuclear Physics 133 Optics and Spectroscopy 158 Stress, Strain and Deformation 165 Superconductivity 170 Theoretical
Efficient Energy Storage and Conversion Using Adiabatic Compression of Relativistic-Electron Plasmas
1989-02-17
discussed by Guest and Sigmar 1221, and because the cyclotron maser mode was omitted from consideration (Y lou a f + ku, f,, in Ref. 122]. In what follows...Academic Press. New York (1961 ) 122] GUEST. G.E., SIGMAR , D.., NucI. Fusion 11 (1971) 1271 ABRAMOWIT7. M., STEGIJN. I A. (17ds). Hlandbook of 151
Satellite test of the isotropy of the one-way spe ed of light using ExTRAS
NASA Technical Reports Server (NTRS)
Wolf, Peter
1995-01-01
A test of the second postulate of special relativity, the universality of the speed of light, using the ExTRAS (Experiment on Timing Ranging and Atmospheric Sounding) payload to be flown on board a Russian Meteor-3M satellite (launch date January 1997) is proposed. The propagation time of a light signal transmitted from one point to another without reflection would be measured directly by comparing the phases of two hydrogen maser clocks, one on board and one on the ground, using laser or microwave time transfer systems. An estimated uncertainty budget of the proposed measurements is given, resulting in an expected sensitivity of the experiment of delta c/c is less than 8xl0(exp -10) which would be an improvement by a factor of approximately 430 over previous direct measurements and by a factor of approximately 4 over the best indirect measurement. The proposed test would require no equipment additional to what is already planned and so is of inherently low-cost. It could be carried out by anyone having access to a laser or microwave ground station and a hydrogen maser.
H2O Megamasers toward Radio-bright Seyfert 2 Nuclei
NASA Astrophysics Data System (ADS)
Zhang, J. S.; Liu, Z. W.; Henkel, C.; Wang, J. Z.; Coldwell, G. V.
2017-02-01
Using the Effelsberg-100 m telescope, we perform a successful pilot survey on H2O maser emission toward a small sample of radio-bright Seyfert 2 galaxies with a redshift larger than 0.04. The targets were selected from a large Seyfert 2 sample derived from the spectroscopic Sloan Digital Sky Survey Data Release 7 (SDSS-DR7). One source, SDSS J102802.9+104630.4 (z ˜ 0.0448), was detected four times during our observations, with a typical maser flux density of ˜30 mJy and a corresponding (very large) luminosity of ˜1135 L ⊙. The successful detection of this radio-bright Seyfert 2 and an additional tentative detection support our previous statistical results that H2O megamasers tend to arise from Seyfert 2 galaxies with large radio luminosity. The finding provides further motivation for an upcoming larger H2O megamaser survey toward Seyfert 2s with particularly radio-bright nuclei with the basic goal to improve our understanding of the nuclear environment of active megamaser host galaxies. Based on observations with the 100 m telescope of the MPIfR (Max-Planck-Institut für Radioastronomie) at Effelsberg.
Complex molecules in Sagittarius B2(N): The importance of grain chemistry
NASA Technical Reports Server (NTRS)
Miao, Yanti; Mehringer, David M.; Kuan, Yi-Jheng; Snyder, Lewis E.
1995-01-01
The complex molecules vinyl cyanide (CH2CHCN), methyl formate (HCOOCH3), and ethyl cyanide (CH3CH2CN) were observed in the Sgr B2 star-forming region with the BIMA millimeter wavelength array. A region with diameter less than 0.1 pc toward the Sgr B2(N) molecular core is found to be the major source of these molecules. Also, this source is coincident with continuum emission from dust and a center of H2O maser activity. Ultracompact (UC) H 11 regions are located within 0.1 pc. Strikingly, none of these molecules is detected toward Sgr B2(M), a core located 1 minute south of Sgr B2(N). The existence of complex molecules, a large mass of dust, high-velocity H2O masers, and UC H 11 regions strongly suggests that the Sgr B2(N) region has just begun to form stars, while the absence of strong dust emission and large molecules suggests Sgr B2(M) is more evolved. The detection of large molecules coincident with continuum emission from dust supports the idea found in current chemical models that grain chemistry is of crucial importance for the formation of these molecules.
Broadband terahertz-power extracting by using electron cyclotron maser.
Pan, Shi; Du, Chao-Hai; Qi, Xiang-Bo; Liu, Pu-Kun
2017-08-04
Terahertz applications urgently require high performance and room temperature terahertz sources. The gyrotron based on the principle of electron cyclotron maser is able to generate watt-to-megawatt level terahertz radiation, and becomes an exceptional role in the frontiers of energy, security and biomedicine. However, in normal conditions, a terahertz gyrotron could generate terahertz radiation with high efficiency on a single frequency or with low efficiency in a relatively narrow tuning band. Here a frequency tuning scheme for the terahertz gyrotron utilizing sequentially switching among several whispering-gallery modes is proposed to reach high performance with broadband, coherence and high power simultaneously. Such mode-switching gyrotron has the potential of generating broadband radiation with 100-GHz-level bandwidth. Even wider bandwidth is limited by the frequency-dependent effective electrical length of the cavity. Preliminary investigation applies a pre-bunched circuit to the single-mode wide-band tuning. Then, more broadband sweeping is produced by mode switching in great-range magnetic tuning. The effect of mode competition, as well as critical engineering techniques on frequency tuning is discussed to confirm the feasibility for the case close to reality. This multi-mode-switching scheme could make gyrotron a promising device towards bridging the so-called terahertz gap.
Maintenance of Time and Frequency in the DSN Using the Global Positioning System
NASA Technical Reports Server (NTRS)
Clements, P. A.; Kirk, A.; Borutzki, S. E.
1985-01-01
The Deep Space Network must maintain time and frequency within specified limits in order to accurately track the spacecraft engaged in deep space exploration. The DSN has three tracking complexes, located approximately equidistantly around the Earth. Various methods are used to coordinate the clocks among the three complexes. These methods include Loran-C, TV Line 10, very long baseline interferometry (VLBI), and the Global Positioning System (GPS). The GPS is becoming increasingly important because of the accuracy, precision, and rapid availability of the data; GPS receivers have been installed at each of the DSN complexes and are used to obtain daily time offsets between the master clock at each site and UTC(USNO/NBS). Calculations are made to obtain frequency offsets and Allan variances. These data are analyzed and used to monitor the performance of the hydrogen masers that provide the reference frequencies for the DSN frequency and timing system (DFT). A brief history of the GPS timing receivers in the DSN, a description of the data and information flow, data on the performance of the DSN master clocks and GPS measurement system, and a description of hydrogen maser frequency steering using these data are presented.
VizieR Online Data Catalog: Water maser emission toward post-AGB and PN (Gomez+, 2015)
NASA Astrophysics Data System (ADS)
Gomez, J. F.; Rizzo, J. R.; Suarez, O.; Palau, A.; Miranda, L. F.; Guerrero, M. A.; Ramos-Larios, G.; Torrelles, J. M.
2015-09-01
The observed sources are listed in Table 1. They comprise most of the sources in Ramos-Larios et al. (2009A&A...501.1207R). They are post-AGB stars and PN candidates with the IRAS color criteria of Suarez et al. (2006A&A...458..173S) and with signs of strong optical obscuration. We have also included some optically visible post-AGB stars from Suarez et al. (2006A&A...458..173S) that were not included in our previous water maser observations of Suarez et al. (2007A&A...467.1085S, 2009A&A...505..217S) or for which those observations had poor sensitivity. We observed the 616-523 transition of H2O (rest frequency = 22235.08MHz) using three different telescopes: the DSS-63 antenna (70m diameter) at the Madrid Deep Space Communications Complex (MDSCC) near Robledo de Chavela (Spain), the 64m antenna at the Parkes Observatory of the Australia Telescope National Facility (ATNF), and the 100m Robert C. Byrd Green Bank Telescope (GBT) of the National Radio Astronomy Observatory. The observed positions, rms noise per spectral channel, and observing dates are listed in Table 1. (3 data files).
Metafitting: Weight optimization for least-squares fitting of PTTI data
NASA Technical Reports Server (NTRS)
Douglas, Rob J.; Boulanger, J.-S.
1995-01-01
For precise time intercomparisons between a master frequency standard and a slave time scale, we have found it useful to quantitatively compare different fitting strategies by examining the standard uncertainty in time or average frequency. It is particularly useful when designing procedures which use intermittent intercomparisons, with some parameterized fit used to interpolate or extrapolate from the calibrating intercomparisons. We use the term 'metafitting' for the choices that are made before a fitting procedure is operationally adopted. We present methods for calculating the standard uncertainty for general, weighted least-squares fits and a method for optimizing these weights for a general noise model suitable for many PTTI applications. We present the results of the metafitting of procedures for the use of a regular schedule of (hypothetical) high-accuracy frequency calibration of a maser time scale. We have identified a cumulative series of improvements that give a significant reduction of the expected standard uncertainty, compared to the simplest procedure of resetting the maser synthesizer after each calibration. The metafitting improvements presented include the optimum choice of weights for the calibration runs, optimized over a period of a week or 10 days.
Vibrationally excited water emission at 658 GHz from evolved stars
NASA Astrophysics Data System (ADS)
Baudry, A.; Humphreys, E. M. L.; Herpin, F.; Torstensson, K.; Vlemmings, W. H. T.; Richards, A. M. S.; Gray, M. D.; De Breuck, C.; Olberg, M.
2018-01-01
Context. Several rotational transitions of ortho- and para-water have been identified toward evolved stars in the ground vibrational state as well as in the first excited state of the bending mode (v2 = 1 in (0, 1, 0) state). In the latter vibrational state of water, the 658 GHz J = 11,0-10,1 rotational transition is often strong and seems to be widespread in late-type stars. Aims: Our main goals are to better characterize the nature of the 658 GHz emission, compare the velocity extent of the 658 GHz emission with SiO maser emission to help locate the water layers and, more generally, investigate the physical conditions prevailing in the excited water layers of evolved stars. Another goal is to identify new 658 GHz emission sources and contribute in showing that this emission is widespread in evolved stars. Methods: We have used the J = 11,0-10,1 rotational transition of water in the (0, 1, 0) vibrational state nearly 2400 K above the ground-state to trace some of the physical conditions of evolved stars. Eleven evolved stars were extracted from our mini-catalog of existing and potential 658 GHz sources for observations with the Atacama Pathfinder EXperiment (APEX) telescope equipped with the SEPIA Band 9 receiver. The 13CO J = 6-5 line at 661 GHz was placed in the same receiver sideband for simultaneous observation with the 658 GHz line of water. We have compared the ratio of these two lines to the same ratio derived from HIFI earlier observations to check for potential time variability in the 658 GHz line. We have compared the 658 GHz line properties with our H2O radiative transfer models in stars and we have compared the velocity ranges of the 658 GHz and SiO J = 2-1, v = 1 maser lines. Results: Eleven stars have been extracted from our catalog of known or potential 658 GHz evolved stars. All of them show 658 GHz emission with a peak flux density in the range ≈50-70 Jy (RU Hya and RT Eri) to ≈2000-3000 Jy (VY CMa and W Hya). Five Asymptotic Giant Branch (AGB) stars and one supergiant (AH Sco) are new detections. Three AGBs and one supergiant (VY CMa) exhibit relatively weak 13CO J = 6-5 line emission while o Ceti shows stronger 13CO emission. We have shown that the 658 GHz line is masing and we found that the 658 GHz velocity extent tends to be correlated with that of the SiO maser suggesting that both emission lines are excited in circumstellar layers close to the central star. Broad and stable line profiles are observed at 658 GHz. This could indicate maser saturation although we have tentatively provided first information on time variability at 658 GHz.
New Steering Strategies for the USNO Master Clocks
1999-12-01
1992. P. Koppang and R. Leland , “Linear quadratic stochastic control of atomic hydrogen masers,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr...vol. 46, pp. 517-522, May 1999. P. Koppang and R. Leland , “Steering of frequency standards by the use of linear quadratic gaussian control theory...3lst Annual Precise Time and Time Interval (PTTI) Meeting NEWSTEERINGSTRATEGIESFOR THEUSNOMASTERCLOCKS Paul A. Koppang Datum, Inc. Beverly, MA
Compensated Fiber-Optic Frequency Distribution Equipment
2010-11-01
fiber optic links have been developed and deployed, providing stability sufficient to transfer hydrogen maser-derived frequency references in intra...effectively compensate for the added noise and instability of an inter-facility fiber - optic frequency distribution link , it is important to understand the...dispersion (the variation in group velocity as a function of optical wavelength) may also affect the performance of the fiber optic link , when link
USSR and Eastern Europe Scientific Abstracts, Electronics and Electrical Engineering, Number 27
1977-02-10
input and output conditions. The power section of the circuit is modified to permit triacs and thyristors, respectively, to function. The purpose of the...electronic materials, components, and devices, on circuit theory, pulse techniques, electromagnetic wave propagation, radar, quantum electronic theory...Lasers, Masers, Holography, Quasi-Optical 20 Microelectronics and General Circuit Theory and Information 21 Radars and Radio Wavigati on 22
A comparative study of clock rate and drift estimation
NASA Technical Reports Server (NTRS)
Breakiron, Lee A.
1994-01-01
Five different methods of drift determination and four different methods of rate determination were compared using months of hourly phase and frequency data from a sample of cesium clocks and active hydrogen masers. Linear least squares on frequency is selected as the optimal method of determining both drift and rate, more on the basis of parameter parsimony and confidence measures than on random and systematic errors.
NASA Technical Reports Server (NTRS)
1973-01-01
Ongoing research progress in the following areas is described: (1) tunable infrared light sources and applications; (2) precision frequency and wavelength measurements in the infrared with applications to atomic clocks; (3) zero-degree pulse propagation in resonant medium; (4) observation of Dicke superradiance in optically pumped HF gas; (5) unidirectional laser amplifier with built-in isolator; and (6) progress in infrared metal-to-metal point contact tunneling diodes.
VLBI observations of 6 GHz OH masers in three ultra-compact H Ii regions
NASA Astrophysics Data System (ADS)
Desmurs, J. F.; Baudry, A.
1998-12-01
Following our successful analysis of VLBI observations of the (2) Pi_ {3/ 2}, J={5/ 2}, F=3-3 and F=2-2 excited OH emission at 6035 and 6031 MHz in W3(OH), we have analyzed the same transitions in three other ultra-compact HII regions, M17, ON1, and W51. The restoring beams were in the range 6 to 30 milliarc sec. The F=3-3 and 2-2 hyperfine transitions of OH were both mapped in ON1. Seven 6035 MHz LCP or RCP maser components were identified in ON1. They are distributed over a region whose diameter is similar to that of the compact HII region, namely ~ 0.4 - 0.5 arc sec. In contrast with the F=3-3 line emission, the F=2-2 transition at 6031 MHz is nearly an order of magnitude weaker than the peak 6035 MHz emission. In M17, we observed fringes only in the 6035 MHz line. The detected OH components appear to be projected on to the compact HII region. We report also on weak VLBI detection of the 6035 MHz emission from W51. This emission seems to be located between two active ultra-compact HII regions in a complex area which deserves further investigation. The 5 cm OH minimum brightness temperatures range from about 3 10(7) K in W51 to 8 10(9) K in ON1. Variability of the 6035 or 6031 MHz emission is well established and suggests that the 5 cm OH masers are not fully saturated. The high spectral and spatial resolutions achieved in this work allowed us to identify Zeeman pairs and hence to derive the magnetic field strength. In ON1 and W51 the field lies in the range 4 to 6 mG with a trend for higher field at 6031 MHz than at 6035 MHz in ON1. In M17 no Zeeman splitting was observed and the magnetic field appears to be weaker than 1 mG.
WISE infrared properties of OH megamaser galaxies: Guide for future FAST OHM searching?
NASA Astrophysics Data System (ADS)
Zhang, JiangShui; Wang, JunZhi; Li, Di
2015-08-01
All 119 OH maser galaxies (110 out of them are megamasers, i.e., LOH > 10 Lsun) published so far were compiled and were cross-identified with the Wide-Field Infrared Survey Explorer (WISE) catalog, to investigate the middle infrared (MIR) properties of OH maser galaxies. The WISE magnitude data at the 3.4, 4.6, 12 and 22 μm (W1 to W4 band) were collected for the OH maser sample and one control sample, which are non-detection sources. The color-color diagrams show that both OH megamaser (OHM) and non-OHM (ultra)luminous infrared galaxies ((U)LIRGs) are far away from the single blackbody model line and many of them can follow the path described by the power-law model. The active galaxy nuclei (AGN) fraction is about 40% for both OHM and non-OHM (U)LIRGs, according to the AGN criteria W1-W2 ≥ 0.8. Among the Arecibo survey sample, OHM sources tend to have a lower luminosity at short MIR wavelengths (e.g., 3.4 μm and 4.6 μm) than that of non-OHM sources, which should come from the low OHM fraction among the survey sample with large 3.4 μm and 4.6 μm luminosity. The OHM fraction tends to increase with cooler MIR colors (larger F22 μm/F3.4 μm). In the case of the power-law model, we derived the spectral indices for our samples. For the Arecibo survey sample, OHM (U)LIRGs tend to have larger spectral index α22-12 than non-OHM sources, which agrees with previous results. One significant correlation exists between the WISE infrared luminosity at 22 μm and the color [W1]-[W4] for the Arecibo OHM hosts. In summary, these clues should provide suitable constraints on the sample selection for future OH megamaser surveys through the Five hundred aperture spherical telescope (FAST). Further potentials on FAST OH megamasers research are investigated, including detectability, sky density of OH megamasers etc.
Tauber, Svantje; Hauschild, Swantje; Crescio, Claudia; Secchi, Christian; Paulsen, Katrin; Pantaleo, Antonella; Saba, Angela; Buttron, Isabell; Thiel, Cora Sandra; Cogoli, Augusto; Pippia, Proto; Ullrich, Oliver
2013-05-07
We investigated the influence of altered gravity on key proteins of T cell activation during the MASER-12 ballistic suborbital rocket mission of the European Space Agency (ESA) and the Swedish Space Cooperation (SSC) at ESRANGE Space Center (Kiruna, Sweden). We quantified components of the T cell receptor, the membrane proximal signaling, MAPK-signaling, IL-2R, histone modifications and the cytoskeleton in non-activated and in ConA/CD28-activated primary human T lymphocytes. The hypergravity phase during the launch resulted in a downregulation of the IL-2 and CD3 receptor and reduction of tyrosine phosphorylation, p44/42-MAPK phosphorylation and histone H3 acetylation, whereas LAT phosphorylation was increased. Compared to the baseline situation at the point of entry into the microgravity phase, CD3 and IL-2 receptor expression at the surface of non-activated T cells were reduced after 6 min microgravity. Importantly, p44/42-MAPK-phosphorylation was also reduced after 6 min microgravity compared to the 1g ground controls, but also in direct comparison between the in-flight μg and the 1g group. In activated T cells, the reduced CD3 and IL-2 receptor expression at the baseline situation recovered significantly during in-flight 1g conditions, but not during microgravity conditions. Beta-tubulin increased significantly after onset of microgravity until the end of the microgravity phase, but not in the in-flight 1g condition. This study suggests that key proteins of T cell signal modules are not severely disturbed in microgravity. Instead, it can be supposed that the strong T cell inhibiting signal occurs downstream from membrane proximal signaling, such as at the transcriptional level as described recently. However, the MASER-12 experiment could identify signal molecules, which are sensitive to altered gravity, and indicates that gravity is obviously not only a requirement for transcriptional processes as described before, but also for specific phosphorylation / dephosphorylation of signal molecules and surface receptor dynamics.
2013-01-01
We investigated the influence of altered gravity on key proteins of T cell activation during the MASER-12 ballistic suborbital rocket mission of the European Space Agency (ESA) and the Swedish Space Cooperation (SSC) at ESRANGE Space Center (Kiruna, Sweden). We quantified components of the T cell receptor, the membrane proximal signaling, MAPK-signaling, IL-2R, histone modifications and the cytoskeleton in non-activated and in ConA/CD28-activated primary human T lymphocytes. The hypergravity phase during the launch resulted in a downregulation of the IL-2 and CD3 receptor and reduction of tyrosine phosphorylation, p44/42-MAPK phosphorylation and histone H3 acetylation, whereas LAT phosphorylation was increased. Compared to the baseline situation at the point of entry into the microgravity phase, CD3 and IL-2 receptor expression at the surface of non-activated T cells were reduced after 6 min microgravity. Importantly, p44/42-MAPK-phosphorylation was also reduced after 6 min microgravity compared to the 1g ground controls, but also in direct comparison between the in-flight μg and the 1g group. In activated T cells, the reduced CD3 and IL-2 receptor expression at the baseline situation recovered significantly during in-flight 1g conditions, but not during microgravity conditions. Beta-tubulin increased significantly after onset of microgravity until the end of the microgravity phase, but not in the in-flight 1g condition. This study suggests that key proteins of T cell signal modules are not severely disturbed in microgravity. Instead, it can be supposed that the strong T cell inhibiting signal occurs downstream from membrane proximal signaling, such as at the transcriptional level as described recently. However, the MASER-12 experiment could identify signal molecules, which are sensitive to altered gravity, and indicates that gravity is obviously not only a requirement for transcriptional processes as described before, but also for specific phosphorylation / dephosphorylation of signal molecules and surface receptor dynamics. PMID:23651740
Detection of the Magnetospheric Emissions from Extrasolar Planets
NASA Astrophysics Data System (ADS)
Lazio, J.
2014-12-01
Planetary-scale magnetic fields are a window to a planet's interior and provide shielding of the planet's atmosphere. The Earth, Mercury, Ganymede, and the giant planets of the solar system all contain internal dynamo currents that generate planetary-scale magnetic fields. These internal dynamo currents arise from differential rotation, convection, compositional dynamics, or a combination of these. If coupled to an energy source, such as the incident kinetic or magnetic energy from the solar wind, a planet's magnetic field can produce electron cyclotron masers in its magnetic polar regions. The most well known example of this process is the Jovian decametric emission, but all of the giant planets and the Earth contain similar electron cyclotron masers within their magnetospheres. Extrapolated to extrasolar planets, the remote detection of the magnetic field of an extrasolar planet would provide a means of obtaining constraints on the thermal state, composition, and dynamics of its interior as well as improved understanding of the basic planetary dynamo process. The magnetospheric emissions from solar system planets and the discovery of extrasolar planets have motivated both theoretical and observational work on magnetospheric emissions from extrasolar planets. Stimulated by these advances, the W.M. Keck Institute for Space Studies hosted a workshop entitled "Planetary Magnetic Fields: Planetary Interiors and Habitability." I summarize the current observational status of searches for magnetospheric emissions from extrasolar planets, based on observations from a number of ground-based radio telescopes, and future prospects for ground-based studies. Using the solar system planetary magnetic fields as a guide, future space-based missions will be required to study planets with magnetic field strengths lower than that of Jupiter. I summarize mission concepts identified in the KISS workshop, with a focus on the detection of planetary electron cyclotron maser emission. The authors acknowledge ideas and advice from the participants in the "Planetary Magnetic Fields: Planetary Interiors and Habitability" workshop organized by the Keck Institute for Space Studies. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.
VLBA Teams With Optical Interferometer to Study Star's Layers
NASA Astrophysics Data System (ADS)
2007-05-01
Two of the World's Largest Interferometric Facilities Team-up to Study a Red Giant Star Using ESO's VLTI on Cerro Paranal and the VLBA facility operated by NRAO, an international team of astronomers has made what is arguably the most detailed study of the environment of a pulsating red giant star. They performed, for the first time, a series of coordinated observations of three separate layers within the star's tenuous outer envelope: the molecular shell, the dust shell, and the maser shell, leading to significant progress in our understanding of the mechanism of how, before dying, evolved stars lose mass and return it to the interstellar medium. S Orionis (S Ori) belongs to the class of Mira-type variable stars. It is a solar-mass star that, as will be the fate of our Sun in 5 billion years, is nearing its gloomy end as a white dwarf. Mira stars are very large and lose huge amounts of matter. Every year, S Ori ejects as much as the equivalent of Earth's mass into the cosmos. ESO PR Photo 25a/07 ESO PR Photo 25a/07 Evolution of the Mira-type Star S Orionis "Because we are all stardust, studying the phases in the life of a star when processed matter is sent back to the interstellar medium to be used for the next generation of stars, planets... and humans, is very important," said Markus Wittkowski, lead author of the paper reporting the results. A star such as the Sun will lose between a third and half of its mass during the Mira phase. S Ori pulsates with a period of 420 days. In the course of its cycle, it changes its brightness by a factor of the order of 500, while its diameter varies by about 20%. Although such stars are enormous - they are typically larger than the current Sun by a factor of a few hundred, i.e. they encompass the orbit of the Earth around the Sun - they are also distant and to peer into their deep envelopes requires very high resolution. This can only be achieved with interferometric techniques. ESO PR Photo 25b/07 ESO PR Photo 25b/07 Structure of S Ori (Artist's Impression) "Astronomers are like medical doctors, who use various instruments to examine different parts of the human body," said co-author David Boboltz. "While the mouth can be checked with a simple light, a stethoscope is required to listen to the heart beat. Similarly the heart of the star can be observed in the optical, the molecular and dust layers can be studied in the infrared and the maser emission can be probed with radio instruments. Only the combination of the three gives us a more complete picture of the star and its envelope." The maser emission comes from silicon monoxide (SiO) molecules and can be used to image and track the motion of gas clouds in the stellar envelope roughly 10 times the size of the Sun. The astronomers observed S Ori with two of the largest interferometric facilities available: the ESO Very Large Telescope Interferometer (VLTI) at Paranal, observing in the near- and mid-infrared, and the NRAO-operated Very Long Baseline Array (VLBA), that takes measurements in the radio wave domain. Because the star's luminosity changes periodically, the astronomers observed it simultaneously with both instruments, at several different epochs. The first epoch occurred close to the stellar minimum luminosity and the last just after the maximum on the next cycle. ESO PR Photo 25c/07 ESO PR Photo 25c/07 S Ori to Scale (Artist's Impression) The astronomers found the star's diameter to vary between 7.9 milliarcseconds and 9.7 milliarcseconds. At the distance of S Ori, this corresponds to a change of the radius from about 1.9 to 2.3 times the distance between the Earth and the Sun, or between 400 and 500 solar radii! As if such sizes were not enough, the inner dust shell is found to be about twice as big. The maser spots, which also form at about twice the radius of the star, show the typical structure of partial to full rings with a clumpy distribution. Their velocities indicate that the gas is expanding radially, moving away at a speed of about 10 km/s. The multi-wavelength analysis indicates that near the minimum there is more dust production and mass ejection: in these phases indeed the amount of dust is significantly higher than in the others. After this intense matter production and ejection the star continues its pulsation and when it reaches the maximum luminosity, it displays a much more expanded dust shell. This clearly supports a strong connection between the Mira pulsation and the dust production and expulsion. Furthermore, the astronomers found that grains of aluminum oxide - also called corundum - constitute most of S Ori's dust shell: the grain size is estimated to be of the order of 10 millionths of a centimetre, that is one thousand times smaller than the diameter of a human hair. "We know one chapter of the secret life of a Mira star, but much more can be learned in the near future, when we add near-infrared interferometry with the AMBER instrument on the VLTI to our (already broad) observational approach," said Wittkowski. More Information The research presented here is reported in a paper in press in the journal Astronomy and Astrophysics ("The Mira variable S Ori: Relationships between the photosphere, molecular layer, dust shell, and SiO maser shell at 4 epochs", by M. Wittkowski et al.). It is available in PDF format from the publisher's web site. The team consists of Markus Wittkowski (ESO), David A. Boboltz (U.S. Naval Observatory, USA), Keiichi Ohnaka and Thomas Driebe (MPIfR Bonn, Germany), and Michael Scholz (University of Heidelberg, Germany and University of Sydney, Australia). Notes A maser is the microwave equivalent to a laser, which emits visible light. A maser emits powerful microwave radiation instead and its study requires radio telescopes. An astrophysical maser is a naturally occurring source of stimulated emission that may arise in molecular clouds, comets, planetary atmospheres, stellar atmospheres, or from various conditions in interstellar space. ESO operates the Very Large Telescope Interferometer at Paranal Observatory, Chile, with four fixed 8.2-m telescopes and four relocatable 1.8-m telescopes, working at optical/infrared wavelengths. NRAO operates the Very Long Baseline Array with 10 stations across the U.S. working at radio wavelengths between 3 mm and 90 cm (0.3-90 GHz). ESO, NRAO and other partners will operate the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, working at millimetre wavelengths between 0.3 and 10 mm (30-950 GHz)
USSR National Time Unit Keeping Over Long Interval Using an Ensemble of H-Masers
1990-12-01
Institute for Physical-Technical and Radiotechnical Measuremellts VNIIFTRI , Mendeleevo, Moscow region, 14570, USSR . . . all is as one day with God...ES) National Scientific and Research Institute,for Physical-Technical and Radiotechnical Measuremellts, VNIIFTRI , Mendeleevo,Moscow region, 14570, USSR...a t VNIIFTRI , and is the material for coating of the bulbs the same? Dr. Demidov: All the coatings since 1975 have been made with F10.
1985-04-15
pace. The advent of the intense pulsed relativistic electron beam renewed the interest in the cyclotron maser mechanism as a source of high power...Acknowledgement The author would like to express his gratitude to his advisor , Professor Jay L. Hirshfield, for the indefatigable scientific discussion which...YALE UNIVERSIT N FINAL REPORT To The Office of Naval Research [! Lf For Contract N00014-80-C-0075 y b IApplied Physics Section Yale University, New
USSR and Eastern Europe Scientific Abstracts, Physics and Mathematics. Number 37.
1977-12-07
when the pressure is zero. The magnetic field was created with a Hemlholtz design superconducting magnet with the magnetic field perpendicu- lar to...titanium resonator, the distribution of the magnetic field in the cross section created by the superconducting selonoids and the characteristics of the...Semiconductors 1 Electricity and Magnetism 18 Fluid Dynamics 20 Lasers and Masers 22 Magnetohydrodynamics • 35 Molecular Physics 52 Optics and
Biological Applications and Effects of Optical Masers.
1983-08-01
exposures began. By March 1983 after 316 daily exposures, there were large lesions in the superior and temporal macula and the exposure regime was stopped...epithelium (RPE) depigmentation in the superior macula . Now funduscopic examination of 11 the exposed eye disclosed a large lesion in the superior...paramacula where an edematous area had been observed previously and another large lesion in the temporal macula . There were numerous small depigmented
How the Laser Helped to Improve the Test of Special Theory of Relativity?
ERIC Educational Resources Information Center
Singh, Satya Pal
2013-01-01
In this paper of I have reviewed the test done for validating the special theory of relativity using masers and lasers in last one century. Michelson-Morley did the first experimental verification for the isotropy of space for the propagation of light in 1887. It has an accuracy of 1/100th of a fringe shift. The predicted fringe shift on the basis…
Application of Control Theory in the Formation of a Timescale
2004-09-01
York). [3] P. Koppang and R. Leland , 1999, “Linear quadratic stochastic control of atomic hydrogen masers,” IEEE Transactions on Ultrasonics... Koppang , D. Johns, and J. Skinner U.S. Naval Observatory Abstract We have created a timescale that joins the short-term stability of...comparison. REFERENCES [1] D. Matsakis, M. Miranian, and P. Koppang , 1999, “Steering the U.S. Naval Observatory (USNO) Master Clock,” in
Saturation and energy-conversion efficiency of auroral kilometric radiation
NASA Technical Reports Server (NTRS)
Wu, C. S.; Tsai, S. T.; Xu, M. J.; Shen, J. W.
1981-01-01
A quasi-linear theory is used to study the saturation level of the auroral kilometric radiation. The investigation is based on the assumption that the emission is due to a cyclotron maser instability as suggested by Wu and Lee and Lee et al. The thermodynamic bound on the radiation energy is also estimated separately. The energy-conversion efficiency of the radiation process is discussed. The results are consistent with observations.
VizieR Online Data Catalog: 6.7GHz methanol maser polarization in SFR (Surcis+, 2015)
NASA Astrophysics Data System (ADS)
Surcis, G.; Vlemmings, W. H. T.; van Langevelde, H. J.; Hutawarakorn Kramer, B.; Bartkiewicz, A.; Blasi, M. G.
2015-09-01
The first seven massive SFRs were observed at 6.7GHz in full polarization spectral mode with eight of the EVN antennas (Effelsberg, Jodrell, Onsala, Medicina, Noto, Torun, Westerbork, and Yebes-40m) between November 2012 and June 2013, for a total observation time of 49h. The bandwidth was 2MHz, providing a velocity range of ~100km/s. (8 data files).
Chromospheric dust formation, stellar masers and mass loss
NASA Technical Reports Server (NTRS)
Stencel, R. E.
1986-01-01
A multistep scenario which describes a plausible mass loss mechanism associated with red giant and related stars is outlined. The process involves triggering a condensation instability in an extended chromosphere, leading to the formation of cool, dense clouds which are conducive to the formation of molecules and dust grains. Once formed, the dust can be driven away from the star by radiation pressure. Consistency with various observed phenomena is discussed.
Sharpless-76E: astrometry and outflows in a protostellar cluster
NASA Astrophysics Data System (ADS)
Chibueze, James O.; Hamabata, Hideo; Nagayama, Takumi; Omodaka, Toshihiro; Handa, Toshihiro; Sunada, Kazuyoshi; Nakano, Makoto; Ueno, Yuji
2017-04-01
Using VLBI Exploration of Radio Astrometry, we have conducted multi-epoch observations of the H2O masers associated with Sharpless 76E. The measured annual parallax is 0.521 ± 0.024 mas corresponding to the distance of 1.92^{+0.09}_{-0.08} kpc. From the parallax measurement, we obtained the peculiar motion of Sh2-76EMM1 (UMM1, VMM1, WMM1) to be (-9 ± 3, 10 ± 4, 6 ± 4) km s-1and Sh2-76EMM2 (UMM2, VMM2, WMM2) to be (-5 ± 12, 3 ± 14, -21 ± 22) km s-1, where U, V and W are directed towards the Galactic Centre, in the direction of Galactic rotation and towards the Galactic north pole, respectively. The internal motion of the H2O masers trace two separate bipolar outflows, one associated with Sh2-76EMM1 and the other with Sh2-76EMM2. The spectral energy distribution (SED) of Sh2-76EMM1 suggests it to be a class I YSO. We have only limited data points for the SED fit of Sh2-76EMM2, therefore can only speculate it to be probably a class II based on its comparative K-band and H-band magnitudes.
Enzyme catalysis in microgravity: steady-state kinetic analysis of the isocitrate lyase reaction.
Ranaldi, Francesco; Vanni, Paolo; Giachetti, Eugenio
2003-01-21
Two decades of research in microgravity have shown that certain biochemical processes can be altered by weightlessness. Approximately 10 years ago, our team, supported by the European Space Agency (ESA) and the Agenzia Spaziale Italiana, started the Effect of Microgravity on Enzyme Catalysis project to test the possibility that the microgravity effect observed at cellular level could be mediated by enzyme reactions. An experiment to study the cleavage reaction catalyzed by isocitrate lyase was flown on the sounding rocket MASER 7, and we found that the kinetic parameters were not altered by microgravity. During the 28th ESA parabolic flight campaign, we had the opportunity to replicate the MASER 7 experiment and to perform a complete steady-state analysis of the isocitrate lyase reaction. This study showed that both in microgravity and in standard g controls the enzyme reaction obeyed the same kinetic mechanism and none of the kinetic parameters, nor the equilibrium constant of the overall reaction were altered. Our results contrast with those of a similar experiment, which was performed during the same parabolic flight campaign, and showed that microgravity increased the affinity of lipoxygenase-1 for linoleic acid. The hypotheses suggested to explain this change effect of the latter were here tested by computer simulation, and appeared to be inconsistent with the experimental outcome.
NASA Technical Reports Server (NTRS)
Clements, P. A.; Kirk, A.; Unglaub, R.
1987-01-01
There are two hydrogen maser clocks located at each signal processing center (SPC) in the DSN. Close coordination of the time and frequency of the SPC clocks is needed to navigate spacecraft to the outer planets. A recent example was the Voyager spacecraft's encounter with Uranus in January 1986. The clocks were adjusted with the goal of minimizing time and frequency offsets between the SPCs at encounter. How time and frequency at each SPC is estimated using data acquired from the Global Positioning System Timing Receivers operating on the NBS-BIH (National Bureau of Standards-Bureau International de l'Heure) tracking schedule is described. These data are combined with other available timing receiver data to calculate the time offset estimates. The adjustment of the clocks is described. It was determined that long range hydrogen maser drift is quite predictable and adjustable within limits. This enables one to minimize time and frequency differences between the three SPCs for many months by matching the drift rates of the three standards. Data acquisition and processing techniques using a Kalman filter to make estimates of time and frequency offsets between the clocks at the SPCs and UTC(NBS) (Coordinated Universal Time realized at NBS) are described.
Annual parallax and a dimming event of a Mira variable star, FV Bootis
NASA Astrophysics Data System (ADS)
Kamezaki, Tatsuya; Nakagawa, Akiharu; Omodaka, Toshihiro; Inoue, Kan-ichiro; Chibueze, James O.; Nagayama, Takumi; Ueno, Yuji; Matsunaga, Noriyuki
2016-10-01
We present the first measurement of the trigonometric parallax of water masers associated with a Mira star, FV Bootis (FV Boo) using VLBI Exploration of Radio Astrometry (VERA). Based on our multi-epoch VERA observations, we derived the parallax to be 0.97 ± 0.06 mas, which corresponds to a distance of 1.03^{+0.07}_{-0.06} kpc. The water masers around FV Boo were spatially distributed over an area of 41 au × 41 au, and their internal motions indicate the presence of an outflow. Using the Kagoshima University 1 m optical/infrared telescope, we determined the period to be 305.6 d and the mean apparent magnitude to be +2.91 mag in the K'-band. On the period-luminosity plane, the obtained period and K'-band magnitude puts FV Boo slightly below the sequence of Miras, possibly due to circumstellar reddening. Combining our photometric data with COBE and 2MASS datasets spanning over 20 years, we found in the near infrared that FV Boo was significantly fainter in 2005 compared with preceding and later phases. Its color, however, did not show a large variation through this change. We infer that the dimming could be caused by an eclipse due to a cloud in a binary system.
Hydroxyl Emission in the Westbrook Nebula
NASA Astrophysics Data System (ADS)
Strack, Angelica; Araya, Esteban; Ghosh, Tapasi; Arce, Hector G.; Lebron, Mayra E.; Salter, Christopher J.; Minchin, Robert F.; Pihlstrom, Ylva; Kurtz, Stan; Hofner, Peter; Olmi, Luca
2016-06-01
CRL 618, also known as the Westbrook Nebula, is a carbon-rich pre-planetary nebula. Hydroxyl (OH) transitions are typically not detected in carbon-rich late-type stellar objects, however observations conducted with the 305m Arecibo Telescope in 2008 resulted in the detection of 4765 MHz OH emission in CRL 618. We present results of observations carried out a few months after the original detection that confirm the line. This is the first detection of 4765 MHz OH emission (most likely a maser) in a pre-planetary nebula. Follow up observations conducted in 2015 resulted in non-detection of the 4765 MHz OH transition. This behavior is consistent with the high level of variability of excited OH lines that have been detected toward a handful of other pre-planetary nebulae. Our work supports that excited OH masers are short-lived during the pre-planetary nebula phase. We also conducted a search for other OH transitions from 1612 MHz to 8611 MHz with the Arecibo Telescope; we report no other detections at rms levels of ~5 mJy.This work has made use of the computational facilities donated by Frank Rodeffer to the WIU Astrophysics Research Laboratory. We also acknowledge support from M. & C. Wong RISE scholarships and a grant from the WIU College of Arts and Sciences.
VizieR Online Data Catalog: Water masers in M31. I. Recombination lines (Darling+, 2016)
NASA Astrophysics Data System (ADS)
Darling, J.; Gerard, B.; Amiri, N.; Lawrence, K.
2016-09-01
We constructed a catalog of 506 unresolved 24um sources from the Spitzer 24um map of M31 (Gordon et al. 2006ApJ...638L..87G); see Figure 1. Darling (2011ApJ...732L...2D) observed 206 24um sources in M31 using the Green Bank Telescope (GBT) in 2010 October through December. The 616-523 22.23508GHz ortho-water maser line observations were reported in Darling (2011ApJ...732L...2D), but simultaneous observations of the para-ammonia (NH3) rotational ground-state inversion transitions in the metastable states (J,K)=(1,1) and (2,2) at 23.6945 and 23.72263GHz, respectively, and the hydrogen recombination line H66α at 22.36417GHz were not. We subsequently observed all four of these lines toward an additional 300 24um sources in 2011 October through 2012 January. The resolution of the 24um Spitzer image is 6" (Gordon et al. 2006ApJ...638L..87G), so the unresolved IR sources remained within the 33" GBT beam even during the largest pointing drifts. The 33" beam (FWHM) at 22GHz spans 125pc in M31. (1 data file).
RadioAstron Science Program Five Years after Launch: Main Science Results
NASA Astrophysics Data System (ADS)
Kardashev, N. S.; Alakoz, A. V.; Andrianov, A. S.; Artyukhov, M. I.; Baan, W.; Babyshkin, V. E.; Bartel, N.; Bayandina, O. S.; Val'tts, I. E.; Voitsik, P. A.; Vorobyov, A. Z.; Gwinn, C.; Gomez, J. L.; Giovannini, G.; Jauncey, D.; Johnson, M.; Imai, H.; Kovalev, Y. Y.; Kurtz, S. E.; Lisakov, M. M.; Lobanov, A. P.; Molodtsov, V. A.; Novikov, B. S.; Pogodin, A. V.; Popov, M. V.; Privesenzev, A. S.; Rudnitski, A. G.; Rudnitski, G. M.; Savolainen, T.; Smirnova, T. V.; Sobolev, A. M.; Soglasnov, V. A.; Sokolovsky, K. V.; Filippova, E. N.; Khartov, V. V.; Churikova, M. E.; Shirshakov, A. E.; Shishov, V. I.; Edwards, P.
2017-12-01
The RadioAstron ground-space interferometer provides the highest angular resolution achieved now in astronomy. The detection of interferometric fringes from quasars with this angular resolution on baselines of 100-200 thousand km suggests the brightness temperatures which exceed the Compton limit by two orders of magnitude. Polarimetric measurements on ground-space baselines have revealed fine structure testifying to recollimation shocks on scales of 100-250 μas and a helical magnetic field near the base of radio emission in BL Lacertae. Substructure within a the scattering disk of pulsar emission on interferometer baselines (from 60000 to 250000 km) was discovered. This substructure is produced by action of the interstellar interferometer with an effective baseline of about 1 AU and the effective angular resolution of better than 1 μas. Diameters of scattering disks were measured for several pulsars, and distances to diffusing screens were evaluated. The ground-space observations of sources of the maser radiation in lines of water and hydroxyl have shown that the maser sources in star-forming regions remain unresolved on baselines, which considerably exceed the Earth diameter. These very compact and bright features with angular sizes of about 20-60 μas correspond to linear sizes of about 5-10 million km (several solar diameters).
JY1 time scale: a new Kalman-filter time scale designed at NIST
NASA Astrophysics Data System (ADS)
Yao, Jian; Parker, Thomas E.; Levine, Judah
2017-11-01
We report on a new Kalman-filter hydrogen-maser time scale (i.e. JY1 time scale) designed at the National Institute of Standards and Technology (NIST). The JY1 time scale is composed of a few hydrogen masers and a commercial Cs clock. The Cs clock is used as a reference clock to ease operations with existing data. Unlike other time scales, the JY1 time scale uses three basic time-scale equations, instead of only one equation. Also, this time scale can detect a clock error (i.e. time error, frequency error, or frequency drift error) automatically. These features make the JY1 time scale stiff and less likely to be affected by an abnormal clock. Tests show that the JY1 time scale deviates from the UTC by less than ±5 ns for ~100 d, when the time scale is initially aligned to the UTC and then is completely free running. Once the time scale is steered to a Cs fountain, it can maintain the time with little error even if the Cs fountain stops working for tens of days. This can be helpful when we do not have a continuously operated fountain or when the continuously operated fountain accidentally stops, or when optical clocks run occasionally.
Magnetic Fields of Extrasolar Planets: Planetary Interiors and Habitability
NASA Astrophysics Data System (ADS)
Lazio, T. Joseph
2018-06-01
Ground-based observations showed that Jupiter's radio emission is linked to its planetary-scale magnetic field, and subsequent spacecraft observations have shown that most planets, and some moons, have or had a global magnetic field. Generated by internal dynamos, magnetic fields are one of the few remote sensing means of constraining the properties of planetary interiors. For the Earth, its magnetic field has been speculated to be partially responsible for its habitability, and knowledge of an extrasolar planet's magnetic field may be necessary to assess its habitability. The radio emission from Jupiter and other solar system planets is produced by an electron cyclotron maser, and detections of extrasolar planetary electron cyclotron masers will enable measurements of extrasolar planetary magnetic fields. Based on experience from the solar system, such observations will almost certainly require space-based observations, but they will also be guided by on-going and near-future ground-based observations.This work has benefited from the discussion and participants of the W. M. Keck Institute of Space Studies "Planetary Magnetic Fields: Planetary Interiors and Habitability" and content within a white paper submitted to the National Academy of Science Committee on Exoplanet Science Strategy. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, J. F.; Wu, D. J.; Yan, Y. H., E-mail: djwu@pmo.ac.cn, E-mail: djwu@pmo.ac.cn
The electron-cyclotron maser (ECM) conventionally driven by velocity anisotropies of energetic electrons trapped in magnetic fields is one of the most important radio-emission mechanisms in astrophysics. Recently, Wu and Tang proposed that a proper lower energy cutoff behavior of power-law electrons can effectively excite the ECM emission. This paper considers effects of temperature anisotropy on this new ECM mechanism. The results show that the growth rates of the ECM emissions increase with {beta}{sub perpendicular0} and {beta}{sub ||0}, where {beta}{sub perpendicular0} and {beta}{sub ||0} are the perpendicular and parallel velocity spreads (in units of the light velocity c) of the energeticmore » electron beam, respectively. Moreover, the growth rates of O1 and X2 modes both sensitively depend on the ratio of the electron-cyclotron frequency to the plasma frequency {Omega} and reach their extremum values at {Omega} {approx_equal} 1.5 for the O1 mode and at {Omega} {approx_equal} 1.0 for the X2 mode. Meanwhile, as the mean velocity of the electron beam {beta}{sub s} (in units of c) increases, the growth rate of the O1 mode remains approximately constant and that of the X2 mode decreases considerably.« less
Water masers in the Kronian system
NASA Astrophysics Data System (ADS)
Pogrebenko, Sergei V.; Gurvits, Leonid I.; Elitzur, Moshe; Cosmovici, Cristiano B.; Avruch, Ian M.; Pluchino, Salvatore; Montebugnoli, Stelio; Salerno, Emma; Maccaferri, Giuseppe; Mujunen, Ari; Ritakari, Jouko; Molera, Guifre; Wagner, Jan; Uunila, Minttu; Cimo, Giuseppe; Schilliro, Francesco; Bartolini, Marco
The presence of water has been considered for a long time as a key condition for life in planetary environments. The Cassini mission discovered water vapour in the Kronian system by detecting absorption of UV emission from a background star (Hansen et al. 2006). Prompted by this discovery, we started an observational campaign for search of another manifestation of the water vapour in the Kronian system, its maser emission at the frequency of 22 GHz (1.35 cm wavelength). Observations with the 32 m Medicina radio telescope (INAF-IRA, Italy) started in 2006 using Mk5A data recording and the JIVE-Huygens software correlator. Later on, an on-line spectrometer was used at Medicina. The 14 m Metsähovi radio telescope (TKK-MRO, Finland) joined the observational campaign in 2008 using a locally developed data capture unit and software spectrometer. More than 300 hours of observations were collected in 2006-2008 campaign with the two radio telescopes. The data were analysed at JIVE using the Doppler tracking technique to compensate the observed spectra for the radial Doppler shift for various bodies in the Kronian system (Pogrebenko et al. 2009). Here we report the observational results for Hyperion, Titan, Enceladus and Atlas, and their physical interpretation. Encouraged by these results we started a campaign of follow up observations including other radio telescopes.
Radio wavelength observations of magnetic fields on active dwarf M, RS CVn and magnetic stars
NASA Technical Reports Server (NTRS)
Lang, Kenneth R.
1986-01-01
The dwarf M stars, YZ Canis Minoris and AD Leonis, exhibit narrow-band, slowly varying (hours) microwave emission that cannot be explained by conventional thermal radiation mechanisms. The dwarf M stars, AD Leonis and Wolf 424, emit rapid spikes whose high brightness temperatures similarly require a nonthermal radiation process. They are attributed to coherent mechanisms such as an electron-cyclotron maser or coherent plasma radiation. If the electron-cyclotron maser emits at the second or third harmonic gyrofrequency, the coronal magnetic field strength equals 250 G or 167 G, and constraints on the plasma frequency imply an electron density of 6 x 10 to the 9th/cu cm. Radio spikes from AD Leonis and Wolf 424 have rise times less than or equal to 5 ms, indicating a linear size of less than or equal to 1.5 x 10 to the 8th cm, or less than 0.005 of the stellar radius. Although Ap magnetic stars have strong dipole magnetic fields, they exhibit no detectable gyroresonant radiation, suggesting that these stars do not have hot, dense coronae. The binary RS CVn star UX Arietis exhibits variable emission at 6 cm wavelength on time scales ranging from 30 s to more than one hour.
Theories and models of the biology of the cell in space--an introduction
NASA Technical Reports Server (NTRS)
Cogoli, A.; Cogoli-Greuter, M.
1994-01-01
The World Space Congress 1992 took place after two Spacelab flights with important biological payloads on board, the SLS-1 (June 1991) and IML-1 (January 1992) missions respectively. Interesting experiments were carried out in 1991 also on the Shuttle middeck and on the sounding rocket MASER 4. The highlights of the investigations on these missions together with the results of relevant ground-based research were presented at the symposium.
A search for space energy alternatives
NASA Technical Reports Server (NTRS)
Gilbreath, W. P.; Billman, K. W.
1978-01-01
This paper takes a look at a number of schemes for converting radiant energy in space to useful energy for man. These schemes are possible alternatives to the currently most studied solar power satellite concept. Possible primary collection and conversion devices discussed include the space particle flux devices, solar windmills, photovoltaic devices, photochemical cells, photoemissive converters, heat engines, dielectric energy conversion, electrostatic generators, plasma solar collectors, and thermionic schemes. Transmission devices reviewed include lasers and masers.
Biological Applications and Effects of Optical Masers.
1984-06-01
term ocular effects of optical radiation on aging and macular degeneration is discussed and a final draft of the report of the Working Group assessing...exposure to short wavelength light on aging and degeneration of the retina and lens leading to degenerative maculopathies and senile cataract. Dr. Ham...chaired the Working Group assigned the task of assessing light damage to the RPE and its possible relationship to aging and macular degeneration of the
An LO Phase Link Using a Commercial Geo-Stationary Satellite
NASA Technical Reports Server (NTRS)
Bardin, Joseph C.; Weinreb, Sander; Bagri, Durgadas S.
2005-01-01
This viewgraph presentation reviews an experiment to determine feasibility of achieving 1 ps level time transfer using a satellite link and make use of inexpensive Ku band transmit/receive equipment. It reviews the advantages of Two Way Satellite Time Transfer using a commercial Geo-Stationary Satellite: (1) Commercial satellites are available (2) Significant cost reduction when compared to Hydrogen Masers and (3) Large footprint- entire US (including Hawaii) with just one satellite.
Recent Results with Transatlantic GeTT Campaign
1999-12-01
which are driven by H-masers. Frequent comparisons between GPS CP and TWSTFT throughout the campaign allow a comparison of the long-term stability of...the two entirely independent techniques. Small discrepancies between the time transfer by GPS CP and the time transfer by TWSTFT have been observed...density for the GeTT values in comparison to the other time-transfer methods: two-way satellite time and frequency transfer ( TWSTFT ) and Circular T
Time Transfer With the Galileo Precise Timing Facility
2007-11-01
being designed on the basis of three techniques: TWSTFT , CV, and use of OSPF products. The last technique implies interfacing an external facility...hydrogen masers (AHM) manufactured by T4S (Switzerland) and the 4 cesiums by Symmetricom. • Time Transfer Subsystem This includes the TWSTFT Station...PTF GACF MUCF TSP GMS UTC(k) BIPM OSPF GSS GalileoSat TWSTFT links Slave PTF CV links 442 39th Annual Precise Time and Time Interval
The observed spiral structure of the Milky Way
NASA Astrophysics Data System (ADS)
Hou, L. G.; Han, J. L.
2014-09-01
Context. The spiral structure of the Milky Way is not yet well determined. The keys to understanding this structure are to increase the number of reliable spiral tracers and to determine their distances as accurately as possible. HII regions, giant molecular clouds (GMCs), and 6.7 GHz methanol masers are closely related to high mass star formation, and hence they are excellent spiral tracers. The distances for many of them have been determined in the literature with trigonometric, photometric, and/or kinematic methods. Aims: We update the catalogs of Galactic HII regions, GMCs, and 6.7 GHz methanol masers, and then outline the spiral structure of the Milky Way. Methods: We collected data for more than 2500 known HII regions, 1300 GMCs, and 900 6.7 GHz methanol masers. If the photometric or trigonometric distance was not yet available, we determined the kinematic distance using a Galaxy rotation curve with the current IAU standard, R0 = 8.5 kpc and Θ0 = 220 km s-1, and the most recent updated values of R0 = 8.3 kpc and Θ0 = 239 km s-1, after velocities of tracers are modified with the adopted solar motions. With the weight factors based on the excitation parameters of HII regions or the masses of GMCs, we get the distributions of these spiral tracers. Results: The distribution of tracers shows at least four segments of arms in the first Galactic quadrant, and three segments in the fourth quadrant. The Perseus Arm and the Local Arm are also delineated by many bright HII regions. The arm segments traced by massive star forming regions and GMCs are able to match the HI arms in the outer Galaxy. We found that the models of three-arm and four-arm logarithmic spirals are able to connect most spiral tracers. A model of polynomial-logarithmic spirals is also proposed, which not only delineates the tracer distribution, but also matches the observed tangential directions. Appendix A is available in electronic form at http://www.aanda.orgFull Tables A.1-A.3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/569/A125 and also at the authors' webpage: http://zmtt.bao.ac.cn/milkyway/
UTC(SU) and EOP(SU) - the only legal reference frames of Russian Federation
NASA Astrophysics Data System (ADS)
Koshelyaevsky, Nikolay B.; Blinov, Igor Yu; Pasynok, Sergey L.
2015-08-01
There are two legal time reference frames in Russian Federation. UTC(SU) deals with atomic time and play a role of reference for legal timing through the whole country. The other one, EOP(SU), deals with Earth's orientation parameters and provides the official EOP data for scientific, technical and metrological applications in Russia.The atomic time is based on two essential hardware components: primary Cs fountain standards and ensemble of continuously operating H-masers as a time unit/time scale keeper. Basing on H-maser intercomparison system data, regular H-maser frequency calibration against Cs standards and time algorithm autonomous TA(SU) time scale is maintained by the Main Metrological Center. Since 2013 time unit in TA(SU) is the second (SU) reproduced independently by VNIIFTRI Cs primary standards in accordance to it’s definition in the SI. UTC(SU) is relied on TA(SU) and steering to UTC basing on TWSTFT/GNSS time link data. As a result TA(SU) stability level relative to TT considerably exceeds 1×10-15 for sample time one month and more, RMS[UTC-UTC(SU)] ≤ 3 ns for the period of 2013-2015. UTC(SU) is broadcasted by different national means such as specialized radio and TV stations, NTP servers and GLONASS. Signals of Russian radio stations contains DUT1 and dUT1 values at 0.1s and 0.02s resolution respectively.The definitive EOP(SU) are calculated by the Main Metrological Center basing on composition of the eight independent individual EOP data streams delivered by four Russian analysis centers: VNIIFTRI, Institute of Applied Astronomy, Information-Analytical Center of Russian Space Agency and Analysis Center of Russian Space Agency. The accuracy of ultra-rapid EOP values for 2014 is estimated ≤ 0.0006" for polar motion, ≤ 70 microseconds for UT1-UTC and ≤ 0.0003" for celestial pole offsets respectively.The other VNIIFTRI EOP activities can be grouped in three basic directions:- arrangement and carrying out GNSS and SLR observations at five institutes- processing GNSS, SLR and VLBI observation data for EOP evaluation- combination of GLONASS satellites orbit/clocks.The paper will deliver more detailed and particular information on Russian legal reference frames.
Deep Space Network, Cryogenic HEMT LNAs
NASA Technical Reports Server (NTRS)
Bautista, J. Javier
2006-01-01
Exploration of the Solar System with automated spacecraft that are more than ten astronomical units (1 AU = 149,597,870.691 km) from earth requires very large antennae employing extremely sensitive receivers. A key figure of merit in the specification of the spacecraft-to-earth telecommunications link is the ratio of the antenna gain to operatio nal noise temperature (G/Top) of the system. The Deep Space Network (DSN) receivers are cryogenic, low-noise amplifiers (LNAs) which addres s the need to maintain Top as low as technology permits. Historicall y, the extra-ordinarily sensitive receive systems operated by the DSN have required ctyogenically cooled, ruby masers, operating at a physi cal temperature near the boiling point of helium, as the LNA. Althoug h masers continue to be used today, they are hand crafted at JPL and expensive to manufacture and maintain. Recent advances in the developm ent of indium phosphide (InP) based high electron mobility transistor s (HEMTs) combined with cryogenic cooling near the boiling point of h ydrogen have made this alternate technology comparable with and a fraction of the cost of maser technology. InP HEMT LNA modules are demons trating noise temperatures less than ten times the quantum noise limi t (10hf/k) from 1 to 100 GHz. To date, the lowest noise LNA modules developed for the DSN have demonstrated noise temperatures of 3.5 K and 8.5 K at 8.5 K at 32 GHz, respectively. Front-end receiver packages employing these modules have demonstrated operating system noise temperatures of 17 K at 8.4 GHz (on a 70m antenna at zenith) and 39 K at 3 2 GHz (on a 34m antenna at zenith). The development and demonstration of cryogenic, InP HEMT based front-end amplifiers for the DSN requir es accurate component and module characterization, and modeling from 1 to 100 GHz at physical temperatures down to 12 K. The characterizati on and modeling begins with the HEMT chip, proceeds to the multi-stag e HEMT LNA module, and culminates with the complete front-end cryogenic receiver package for the antenna. This presentation will provide a n overview of this development process. Examples will be shown for de vices, LNA modules, front-end receiver packages, antennae employing these packages and the improvements to the down-link capacity.
NASA Technical Reports Server (NTRS)
Nelson, R. A.; Alley, C. O.; Rayner, J. D.; Shih, Y. H.; Steggerda, C. A.; Wang, B. C.; Agnew, B. W.
1993-01-01
An experiment was conducted to investigate the equivalence of two methods of time transfer in a noninertial reference frame: by means of an electromagnetic signal using laser light pulses and by means of the slow ground transport of a hydrogen maser atomic clock. The experiment may also be interpreted as an investigation of whether the one-way speeds of light in the east-west and west-east directions on the rotating earth are the same. The light pulses were sent from a laser coupled to a telescope at the NASA Goddard Optical Research Facility (GORF) in Greenbelt, Maryland to the U.S. Naval Observatory (USNO) in Washington, DC. The optical path was made possible by a 30-cm flat mirror on a water tower near GORF and a 25-cm flat mirror on top of the Washington National Cathedral near USNO. The path length was 26.0 km with an east-west component of 20.7 km. The pulses were reflected back over the same path by a portable array of corner cube reflectors. The transmission and return times were measured with a stationary Sigma Tau hydrogen maser and a University of Maryland event timer at GORF, while the times of reflection were measured with a similar maser and event timer combination carefully transported to USNO. Both timekeeping systems were housed in highly insulated enclosures and were maintained at constant temperatures to within +/- 0.1 C by microprocessor controllers. The portable system was also protected from shock and vibration by pneumatic supports. The difference delta(T) between the directly measured time of reflection according to the portable clock and the time of reflection calculated from the light pulse signal times measured by the stationary clock was determined. For a typical trip delta(T) is less than 100 ps and the corresponding limit on an anisotropy of the one-way speed of light is delta(c/c) is less than 1.5 x 10(exp -6). This the only experiment to date in which two atomic clocks were calibrated at one location, one was slowly transported to the other end of a path, and the times of transmission, reflection, and return of short light pulses sent in different directions along the path were registered.
NASA Astrophysics Data System (ADS)
Weber, Christof; Lammer, Helmut; Shaikhislamov, Ildar F.; Erkaev, Nikolai; Chadney, Joshua M.; Khodachenko, Maxim L.; Grießmeier, Jean-Mathias; Rucker, Helmut O.; Vocks, Christian; Macher, Wolfgang; Odert, Petra; Kislyakova, Kristina G.
2017-04-01
We present a study of the plasma conditions in the atmospheres of the Hot Jupiters HD 209458b and HD 189733b and for an HD 209458b-like planet at orbit locations between 0.2-1 AU around a Sun-like star. We discuss how these conditions influence the radio emission we expect from their planetary magnetospheres. We find that the environmental conditions for the cyclotron maser instability (CMI), the process which is responsible for the generation of radio waves at magnetic planets in the solar system, most likely will not operate at Hot Jupiters. The reason for that is that hydrodynamically expanding atmospheres possess extended ionospheres whose plasma densities within the magnetosphere are so large that the plasma frequency is much higher than the cyclotron frequency, which contradicts the necessary condition for the production of radio emission and prevents the escape of radio waves from close-in extrasolar planets at distances <0.05 AU from a Sun-like host star. The upper atmosphere structure of Hot Jupiters around stars similar to the Sun changes between 0.2 and 0.5 AU from the hydrodynamic to a hydrostatic regime and this results in conditions similar to solar system planets with a region of depleted plasma between the exobase and the magnetopause where the plasma frequency can be lower than the cyclotron frequency. In such an environment a beam of highly energetic electrons accelerated along the field lines towards the planet can produce radio emission. However, even if the CMI could operate the extended ionospheres of Hot Jupiters are too dense to let the radio emission escape from the planets. We also investigate the possible radio emission of the Hot Jupiter Tau Bootis b by placing it at different orbital distances from the host star, i.e. 0.1 and 0.2 AU. In particular we check if the atmosphere of Tau Bootis b at 0.046 AU is in the hydrostatic or in the hydrodynamic regime. If it is in the hydrodynamic regime it's ionosphere is extended and will constitute an obstacle for possibly generated radio waves or the generation via the Cyclotron Maser Instability (CMI) might even be prevented completely. Furthermore we investigate at which orbital location the atmosphere undergoes the transformation from hydrodynamic to hydrostatic, i.e. the transformation to more favourable conditions for the CMI.
NASA Astrophysics Data System (ADS)
Kalenskii, S. V.; Shchurov, M. A.
2016-04-01
The results of spectral observations of the region of massive star formation L379IRS1 (IRAS18265-1517) are presented. The observations were carried out with the 30-m Pico Veleta radio telescope (Spain) at seven frequencies in the 1-mm, 2-mm, and 3-mm wavelength bands. Lines of 24 molecules were detected, from simple diatomic or triatomic species to complex eight- or nine-atom compounds such as CH3OCHO or CH3OCH3. Rotation diagrams constructed from methanol andmethyl cyanide lines were used to determine the temperature of the quiescent gas in this region, which is about 40-50 K. In addition to this warm gas, there is a hot component that is revealed through high-energy lines of methanol and methyl cyanide, molecular lines arising in hot regions, and the presence of H2O masers and Class II methanol masers at 6.7 GHz, which are also related to hot gas. One of the hot regions is probably a compact hot core, which is located near the southern submillimeter peak and is related to a group of methanol masers at 6.7 GHz. High-excitation lines at other positions may be associated with other hot cores or hot post-shock gas in the lobes of bipolar outflows. The rotation diagrams can be use to determine the column densities and abundances of methanol (10-9) and methyl cyanide (about 10-11) in the quiescent gas. The column densities of A- and E-methanol in L379IRS1 are essentually the same. The column densities of other observedmolecules were calculated assuming that the ratios of the molecular level abundances correspond to a temperature of 40 K. The molecular composition of the quiescent gas is close to that in another region of massive star formation, DR21(OH). The only appreciable difference is that the column density of SO2 in L379IRS1 is at least a factor of 20 lower than the value in DR21(OH). The SO2/CS and SO2/OCS abundance ratios, which can be used as chemical clocks, are lower in L379IRS1 than in DR21(OH), suggesting that L379IRS1 is probably younger than DR21(OH).
Hundreds of new cluster candidates in the VISTA Variables in the Vía Láctea survey DR1
NASA Astrophysics Data System (ADS)
Barbá, R. H.; Roman-Lopes, A.; Nilo Castellón, J. L.; Firpo, V.; Minniti, D.; Lucas, P.; Emerson, J. P.; Hempel, M.; Soto, M.; Saito, R. K.
2015-09-01
Context. VISTA variables in the Vía Láctea is an ESO Public survey dedicated to scanning the bulge and an adjacent portion of the Galactic disk in the fourth quadrant using the VISTA telescope and its near-infrared camera VIRCAM. One of the leading goals of the VVV survey is to contribute to knowledge of the star cluster population of the Milky Way. Aims: To improve the census of Galactic star clusters, we performed a systematic and careful scan of the JHKs images of the Galactic plane section of the VVV survey. Methods: Our detection procedure is based on a combination of stellar density maps and visual inspection of promising features in the J-, H-, and KS-band images. The material examined are VVV JHKS color-composite images corresponding to Data Release 1 of VVV. Results: We report the discovery of 493 new infrared star cluster candidates. The analysis of the spatial distribution show that the clusters are very concentrated in the Galactic plane, presenting some local maxima around the position of large star-forming complexes, such as G305, RCW 95, and RCW 106. The vast majority of the new star cluster candidates are quite compact and generally surrounded by bright and/or dark nebulosities. IRAS point sources are associated with 59% of the sample, while 88% are associated with MSX point sources. GLIMPSE 8 μm images of the cluster candidates show a variety of morphologies, with 292 clusters dominated by knotty sources, while 361 clusters show some kind of nebulosity in this wavelength regime. Spatial cross-correlation with young stellar objects, masers, and extended green-object catalogs suggest that a large sample of the new cluster candidates are extremely young. In particular, 104 star clusters associated with methanol masers are excellent candidates for ongoing massive star formation. Also, there is a special set of sixteen cluster candidates that present clear signposts of star-forming activity having associated simultaneosly dark nebulae, young stellar objects, extended green objects, and masers. Full Tables 1-3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/581/A120
Multi-wavelength investigations on feedback of massive star formation
NASA Astrophysics Data System (ADS)
Yuan, Jinghua
2014-05-01
In the course of massive star formation, outflows, ionizing radiation and intense stellar winds could heavily affect their adjacent environs and natal clouds. There are several outstanding open questions related to these processes: i) whether they can drive turbulence in molecular clouds; ii) whether they are able to trigger star formation; iii) whether they can destroy natal clouds to terminate star formation at low efficiencies. This thesis investigates feedback in different stages of massive star formation. Influence of such feedback to the ambient medium has been revealed. A new type of millimeter methanol maser is detected for the first time. An uncommon bipolar outflow prominent in the mid-infrared is discovered. And features of triggered star formation are found on the border of an infrared bubble and in the surroundings of a Herbig Be star. Extended green objects (EGOs) are massive outflow candidates showing prominent shocked features in the mid-infrared. We have carried out a high resolution study of the EGO G22.04+0.22 (hereafter, G22) based on archived SMA data. Continuum and molecular lines at 1.3 mm reveal that G22 is still at a hot molecular core stage. A very young multi-polar outflow system is detected, which is interacting with the adjacent dense gas. Anomalous emission features from CH3OH (8,-1,8 - 7,0,7) and CH3OH (4,2,2 - 3,1,2) are proven to be millimeter masers. It is the first time that maser emission of CH3OH (8,-1,8 - 7,0,7) at 218.440 GHz is detected in a massive star-forming region. Bipolar outflows have been revealed and investigated almost always in the microwave or radio domain. It's sort of rare that hourglass-shaped morphology be discovered in the mid-infrared. Based on GLIMPSE data, we have discovered a bipolar object resembling an hourglass at 8.0 um. It is found to be associated with IRAS 18114-1825. Analysis based on fitted SED, optical spectroscopy, and infrared color indices suggests IRAS 18114-1825 is an uncommon bipolar outflow driven by a massive protostar. Multi-wavelength observations based on classical tracers of outflows are highly necessary. Extensive investigations of IRAS 18114-1825 may contribute to our understanding of massive star formation in early stage.
Hydrogen as an atomic beam standard
NASA Technical Reports Server (NTRS)
Peters, H. E.
1972-01-01
After a preliminary discussion of feasibility, new experimental work with a hydrogen beam is described. A space focused magnetic resonance technique with separated oscillatory fields is used with a monochromatic beam of cold hydrogen atoms which are selected from a higher temperature source. The first resonance curves and other experimental results are presented. These results are interpreted from the point of view of accuracy potential and frequency stability, and are compared with hydrogen maser and cesium beam capabilities.
Helium compressors for closed-cycle, 4.5-Kelvin refrigerators
NASA Technical Reports Server (NTRS)
Hanson, T. R.
1992-01-01
An improved helium compressor for traveling-wave maser and closed-cycle refrigerator systems was developed and is currently being supplied to the DSN. This new 5-hp compressor package is designed to replace the current 3-hp DSN compressors. The new compressor package was designed to retrofit into the existing 3-hp compressor frame and reuse many of the same components, therefore saving the cost of documenting and fabricating these components when implementing a new 5-hp compressor.
Biological Applications and Effects of Optical Masers
1988-02-19
LANDOLT RING SYSTEM 8-10 8. EARLY STUDIES ON SOLAR RADIATION AS A RETINAL HAZARD 10-15 9. RETINAL LIGHT TOXICITY AS A FUNCTION OF WAVE’.ENGTH 15-16 10...providing a simulated solor spectrum and 10 nm bandwidths throughout the near ultraviolet, visible and near infrared spectrum. This early ocular...do not present an ocular hazard at the levels used by the MILES prototype system or in fiber optic communication systems . By 1966 enough burn
Biological Applications and Effects of Optical Masers
1987-04-01
position unless so designated by other authorized documents. DT U AUG 0 3 1987 B7 7 3 13N, SECURITY CLASSIFICATION OF THIS PAGE ForM Approved REPORT... eperimental animal. We exposed the rhesus retina to 8 monochromatic laser lines extending from 1064 no in the near infrared to 441 nm in the visible...is plotted logarithmically along the ordinate vs iaveien. •n no along the abscissa. The sharp cut filter data designated by squares repreS*rk
Prospects for atomic frequency standards
NASA Technical Reports Server (NTRS)
Audoin, C.
1984-01-01
The potentialities of different atomic frequency standards which are not yet into field operation, for most of them, but for which preliminary data, obtained in laboratory experiments, give confidence that they may improve greatly the present state of the art are described. The review will mainly cover the following devices: (1) cesium beam frequency standards with optical pumping and detection; (2) optically pumped rubidium cells; (3) magnesium beam; (4) cold hydrogen masers; and (5) traps with stored and cooled ions.
Cerenkov Maser and Cerenkov Laser Devices.
1982-12-01
The principle goal of the work was the development of high power Cerenkov sources in the lower mm wavelength range. It was demonstrated that a...it is • Subject catecory name: approximately one kw. At the present-time the-beam i-s High Power icr ave collected on a mirror set at a 450 angle to...differences in the boundary-scat- This process shows potential as a tunable source of fared phonon conductivity are predicted along the prim- highs power
NASA Technical Reports Server (NTRS)
Tokumaru, Munetoshi; Yamauchi, Yohei; Kondo, Tetsuro
2001-01-01
Single-station observations of interplanetary scintillation UPS) at three microwave frequencies 2, 8, and 22GHz, were carried out between 1989 and 1998 using a large (34-micro farad) radio telescope at the Kashima Space Research Center of the Communications Research Laboratory. The aim of these observations was to explore the near-sun solar wind, which is the key region for the study of the solar wind acceleration mechanism. Strong quasars, 3C279 and 3C273B, were used for the Kashima IPS observations at 2 and 8GHz, and a water-vapor maser source, IRC20431, was used for the IPS observations at 22GHz. Solar wind speeds derived from Kashima IPS data suggest that the solar wind acceleration takes place at radial distances between 10 and 30 solar radii (Rs) from the sun. The properties of the turbulence spectrum (e.g. anisotropy, spectral index, inner scale) inferred from the Kashima data were found to change systematically in the solar wind acceleration region. While the solar wind in the maximum phase appears to be dominated by the slow wind, fast and rarefied winds associated with the coronal holes were found to develop significantly at high latitudes as the solar activity declined. Nevertheless, the Kashima data suggests that the location of the acceleration region is stable throughout the solar cycle.
Possibility of magnetospheric VLF response to atmospheric infrasonic waves
NASA Astrophysics Data System (ADS)
Bespalov, P. A.; Savina, O. N.
2012-06-01
In this paper, we consider a model of the influence of atmospheric infrasonic waves on VLF magnetospheric whistler wave excitation. This excitation occurs as a result of a succession of processes: a modulation of the plasma density by acoustic-gravity waves in the ionosphere, a reflection of the whistlers by ionosphere modulation, and a modification of whistler wave generation in the magnetospheric resonator. A variation of the magnetospheric resonator Q-factor has an influence on the operation of the plasma magnetospheric maser, where the active substances are radiation belt particles, and the working modes are electromagnetic whistler waves. The magnetospheric maser is an oscillating system which can be responsible for the excitation of self-oscillations. These self-oscillations are frequently characterized by alternating stages of accumulation and precipitation of energetic particles into the ionosphere during a pulse of whistler emissions. Numerical and analytical investigations of the response of self-oscillations to harmonic oscillations of the whistler reflection coefficient shows that even a small modulation rate can significantly change magnetospheric VLF emissions. Our results can explain the causes of the modulation of energetic electron fluxes and whistler wave intensity with a time scale from 10 to 150 s in the day-side magnetosphere. Such quasi-periodic VLF emissions are often observed in the sub-auroral and auroral magnetosphere and have a noticeable effect on the formation of space weather phenomena.
Quasi-optical reflective polarimeter for wide millimeter-wave band
NASA Astrophysics Data System (ADS)
Shinnaga, Hiroko; Tsuboi, Masato; Kasuga, Takashi
1998-11-01
We constructed a new reflective-type polarimeter system at 35 - 250 GHz for the 45 m telescope at Nobeyama Radio Observatory (NRO). Using the system, we can measure both linear polarization and circular polarization for our needs. The new system has two key points. First is that we can tune the center frequency of the polarimeter in the available frequency range, second is that insertion loss is low (0.15 plus or minus 0.03 dB at 86 GHz). These characteristics extended achievable scientific aims. In this paper, we present the design and the performance of the system. Using the system, we measured linear polarizations of some astronomical objects at 86 GHz, with SiO (nu) equals 0,1 and 2 at J equals 2 - 1 and 29SiO (nu) equals 0 J equals 2 - 1 simultaneously. As a result, the observation revealed SiO (nu) equals 0 J equals 2 - 1 of VY Canis Majoris is highly linearly polarized, the degree of linear polarization is up to 64%, in spite of SiO J equals 2 - 1 (nu) equals 1 is not highly linearly polarized. The highly linearly polarized feature is a strong evidence that 28SiO J equals 2 - 1 transition at the ground vibrational state originate through maser action. This is the first detection of the cosmic maser emission of SiO (nu) equals 0 J equals 2 - 1 transition.
NASA Astrophysics Data System (ADS)
Faure, A.; Remijan, A. J.; Szalewicz, K.; Wiesenfeld, L.
2014-03-01
A non-LTE radiative transfer treatment of cis-methyl formate (HCOOCH3) rotational lines is presented for the first time using a set of theoretical collisional rate coefficients. These coefficients have been computed in the temperature range 5-30 K by combining coupled-channel scattering calculations with a high accuracy potential energy surface for HCOOCH3-He. The results are compared to observations toward the Sagittarius B2(N) molecular cloud using the publicly available PRIMOS survey from the Green Bank Telescope. A total of 49 low-lying transitions of methyl formate, with upper levels below 25 K, are identified. These lines are found to probe a presumably cold (~30 K), moderately dense (~104 cm-3), and extended region surrounding Sgr B2(N). The derived column density of ~4 × 1014 cm-2 is only a factor of ~10 larger than the column density of the trans conformer in the same source. Provided that the two conformers have the same spatial distribution, this result suggests that strongly non-equilibrium processes must be involved in their synthesis. Finally, our calculations show that all detected emission lines with a frequency below 30 GHz are (collisionally pumped) weak masers amplifying the continuum of Sgr B2(N). This result demonstrates the importance and generality of non-LTE effects in the rotational spectra of complex organic molecules at centimeter wavelengths.
Electron Cyclotron Maser Emissions from Evolving Fast Electron Beams
NASA Astrophysics Data System (ADS)
Tang, J. F.; Wu, D. J.; Chen, L.; Zhao, G. Q.; Tan, C. M.
2016-05-01
Fast electron beams (FEBs) are common products of solar active phenomena. Solar radio bursts are an important diagnostic tool for understanding FEBs and the solar plasma environment in which they propagate along solar magnetic fields. In particular, the evolution of the energy spectrum and velocity distribution of FEBs due to the interaction with the ambient plasma and field during propagation can significantly influence the efficiency and properties of their emissions. In this paper, we discuss the possible evolution of the energy spectrum and velocity distribution of FEBs due to energy loss processes and the pitch-angle effect caused by magnetic field inhomogeneity, and we analyze the effects of the evolution on electron-cyclotron maser (ECM) emission, which is one of the most important mechanisms for producing solar radio bursts by FEBs. Our results show that the growth rates all decrease with the energy loss factor Q, but increase with the magnetic mirror ratio σ as well as with the steepness index δ. Moreover, the evolution of FEBs can also significantly influence the fastest growing mode and the fastest growing phase angle. This leads to the change of the polarization sense of the ECM emission. In particular, our results also reveal that an FEB that undergoes different evolution processes will generate different types of ECM emission. We believe the present results to be very helpful for a more comprehensive understanding of the dynamic spectra of solar radio bursts.
On the radiation mechanism of repeating fast radio bursts
NASA Astrophysics Data System (ADS)
Lu, Wenbin; Kumar, Pawan
2018-06-01
Recent observations show that fast radio bursts (FRBs) are energetic but probably non-catastrophic events occurring at cosmological distances. The properties of their progenitors are largely unknown in spite of many attempts to determine them using the event rate, duration, and energetics. Understanding the radiation mechanism for FRBs should provide the missing insights regarding their progenitors, which is investigated in this paper. The high brightness temperatures (≳1035 K) of FRBs mean that the emission process must be coherent. Two general classes of coherent radiation mechanisms are considered - maser and the antenna mechanism. We use the observed properties of the repeater FRB 121102 to constrain the plasma conditions needed for these two mechanisms. We have looked into a wide variety of maser mechanisms operating in either vacuum or plasma and find that none of them can explain the high luminosity of FRBs without invoking unrealistic or fine-tuned plasma conditions. The most favourable mechanism is antenna curvature emission by coherent charge bunches where the burst is powered by magnetic reconnection near the surface of a magnetar (B ≳ 1014 G). We show that the plasma in the twisted magnetosphere of a magnetar may be clumpy due to two-stream instability. When magnetic reconnection occurs, the pre-existing density clumps may provide charge bunches for the antenna mechanism to operate. This model should be applicable to all FRBs that have multiple outbursts like FRB 121102.
NASA Technical Reports Server (NTRS)
Tokumaru, Munetoshi; Yamauchi, Yohei; Kondo, Tetsuro
2001-01-01
Single-station observations of interplanetary scintillation (IPS) at three microwave frequencies; 2 GHz, 8 GHz and 22 GHz have been carried out between 1989 and 1998 using a large (34 m farad) radio telescope at the Kashima Space Research Center of the Communications Research Laboratory. The aim of these observations is to explore the near-sun solar wind, which is the key region for the study of the solar wind acceleration mechanism. Strong quasars; 3C279 and 3C273B were used for Kashima IPS observations at 2 GHz and 8 GHz, and a water vapor maser source, IRC20431 was used for the IPS observations at 22 GHz. Solar wind velocities derived from Kashima IPS data suggest that the solar wind acceleration takes place at radial distances between 10 and 30 solar radii (R(sub s)) from the sun. Properties of the turbulence spectrum (e.g. anisotropy, spectral index, inner scale) inferred from Kashima data are found to change systematically in the solar wind acceleration region. While the solar wind in the maximum phase appears to be dominated by the slow wind, fast and rarefied winds associated with coronal holes are found to develop significantly at high latitudes as the solar activity declines. Nevertheless, Kashima data suggests that the location of the acceleration region is stable throughout the solar cycle.
High sensitivity dynamic spectral search for flare star radio
NASA Technical Reports Server (NTRS)
Abada-Simon, M.; Lecacheux, A.; Louarn, P.; Dulk, G. A.; Belkora, L.; Bookbinder, J. A.; Rosolen, C.
1994-01-01
We observed ten well-known flare stars with the Arcibo radio telescope at 1.4 GHz and 5 GHz, using a special observing technique to discriminate between real flares and radio freqeuncy interference. With a high sensitivity of 5.5 K/Jy at 1.4 GHz when averaged over a 50 MHz band, we are able to recognize flux enhancements as weak as approximately 6 mJy above the sky background variations. In about 85 hours of observation, about a dozen bursts were detected, only from AD Leo. All had flux densities lower than 70 mJy, which probably explains their lack of fine structures (except for the strongest one), such as were reported in the literature for stronger flares. Half of the bursts that we recorded are 100% circularly polarized, and half are not circularly polarized. Our results are a first attempt of reliable statistics on dMe flare rates at 1.4 GHz. The high brightness temperatures we infer for the observed bursts are interpreted in terms of coherent emission processes, either the cyclotron maser instability or plasma radiation. Efficiencies are comparable to those of solar or planetary radio emissions in the case of the cyclotron maser, and higher than the solar efficiency in the case of plasma radiation, with the caveat that there are great uncertainties in the coronal model and the source size.
WIDE FIELD CO MAPPING IN THE REGION OF IRAS 19312+1950
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakashima, Jun-ichi; Ladeyschikov, Dmitry A.; Sobolev, Andrej M.
2016-07-01
We report the results of wide field CO mapping in the region of IRAS 19312+1950. This Infrared Astronomical Satellite ( IRAS ) object exhibits SiO/H{sub 2}O/OH maser emission, and is embedded in a chemically rich molecular component, the origin of which is still unknown. In order to reveal the entire structure and gas mass of the surrounding molecular component for the first time, we have mapped a wide region around IRAS 19312+1950 in the {sup 12}CO J = 1–0, {sup 13}CO J = 1–0 and C{sup 18}O J = 1–0 lines using the Nobeyama 45 m telescope. In conjunction withmore » archival CO maps, we investigated a region up to 20′ × 20′ in size around this IRAS object. We calculated the CO gas mass assuming local thermal equilibrium, the stellar velocity through the interstellar medium assuming an analytic model of bow shock, and the absolute luminosity, using the latest archival data and trigonometric parallax distance. The derived gas mass (225 M {sub ⊙}–478 M {sub ⊙}) of the molecular component and the relatively large luminosity (2.63 × 10{sup 4} L {sub ☉}) suggest that the central SiO/H{sub 2}O/OH maser source is a red supergiant rather than an asymptotic giant branch (AGB) star or post-AGB star.« less
High-resolution 18 CM spectra of OH/IR stars
NASA Astrophysics Data System (ADS)
Fix, John D.
1987-02-01
High-velocity-resolution, high-signal-to-noise spectra have been obtained for the 18 cm maser emission lines from a number of optically visible OH/IR stars. The spectra have been interpreted in terms of a recent model by Alcock and Ross (1986), in which OH/IR stars lose mass in discrete elements rather than by a continuous wind. Comparison of the observed spectra with synthetic spectra shows that the lines are the composite emission from thousands or tens of thousands of individual elements.
Time and Temperature Stability of Silver-Coated Ceramics for Hydrogen Maser Resonant Cavities
1988-12-01
observations. EXPERIMENTAL TECHNIQUE Samples of Cervit C-101 (Owens-Illinois Corp.), Zerodur (Schott Glass Corp.) and ULE (Corning Glass Works) were...created using a He-Ne laser interferometerl41. The fringe patterns were photographed, manually digitized, and analyzed by a computer that fits a series...Material ES l~ (101°~/m2) Zerodur 9.1 0.24 Cervit C101 9.2 ULE 6.8 RESULTS SAMPLE CURVATURE Fig. 1 shows the curvature, as expressed by the
Design and Industrial Production of Frequency Standards in the USSR
1990-12-01
VNIIFTRI ), the measurement data, taken in January-May interval of 1990, the frequency drift of four CHI-80 instruments was less than 1 x 10-l6 per day13...hydrogen keeper specifications received by VNIIFTRI . The frequency reproducibility is 5 x 10-l4 for the measurement interval up to 16 hours[16]. At...in hydrogen maser in new materials Proc. VNIIFTRI Issledovarliya v oblasty izmereny vremeny i chastoty. Moscow, 1978, v.37(67), P.81-85 2. S.B
Competition Between Electromagnetic Modes in a Free-Electron Maser
1994-02-28
electron perpendicular momentum familiar from gyrotron theory 111). The electron mass is me, initial electron velocity perpendicular and parallel to the...are Q Q2 of zeroth order (-1). Similarly, 48 Y tqfia IIOP --T-V I V s_*/ U- s sI J(93~+ I(*JQL4 8aq 5 Using matrix notation, we can write (i) = (C...disks were in turn electron beam welded to stainless steel flanges. While Kovar was needed to provide a good brazing interface, the mass of the material
1989-06-15
Andes near Santiago de Chile extinction coefficients have been determined at elevations above 3000 meters. Values betwee 0.018 km and 0.15 km have been...McGovern 1515 North Atlantic Aerosol Background concentrations measured at a Hebridean coastal site N.H. Smith, P.M. Park and I.E. Consterdine 1530...ocean V. Dreiling, R. Maser and L. Schutz 1615 Measurements of aerosol concentration and distribution at Helgoland Island P. Brand, J. Gebhart, M. Below
NASA Technical Reports Server (NTRS)
Kellermann, Kenneth I.; Heeschen, David; Backer, Donald C.; Cohen, Marshall H.; Davis, Michael; Depater, Imke; Deyoung, David; Dulk, George A.; Fisher, J. R.; Goss, W. Miller
1991-01-01
The following subject areas are covered: (1) scientific opportunities (millimeter and sub-millimeter wavelength astronomy; meter to hectometer astronomy; the Sun, stars, pulsars, interstellar masers, and extrasolar planets; the planets, asteroids, and comets; radio galaxies, quasars, and cosmology; and challenges for radio astronomy in the 1990's); (2) recommendations for new facilities (the millimeter arrays, medium scale instruments, and small-scale projects); (3) continuing activities and maintenance, upgrading of telescopes and instrumentation; (4) long range programs and technology development; and (5) social, political, and organizational considerations.
The Construction of a Nd:YAG Laser and Observation of the Output.
1983-12-01
State Laser En ineering, p. 55, Springer-Verlag New York, Inc., 97.- 4. Koechner, W., p. 56. 5. Siegman , A. E., An Introduction to Lasers and Masers...AD-A138 855 THE CONSTRUCTION OF A ND YAG LASER AND OBSERVATION OF i/i THE OUTPUT(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CAK H CHUNG DEC 83...CONSTRUCTION OF A Nd:YAG LASER AND OBSERVATION OF THE OUTPUT by Im. Ki Hyun Chung December 1983 Thesis Advisor: A. W. Cooper Approved for public release
Physics of Systematic Frequency Variations in Hydrogen Masers
1990-12-01
X expansivity a of the material of which the cavity is constructed (a-10-8 OC-1 for low-expansion materials like Cervit or Zerodur , L T ~ a...of the bulk cavity material itself. Such shrinkage has been observed in gauge-blocks of Zerodud and ULE9 and in Zerodur and ULE laser etalons8, and...repositioned or retuned after being moved. Material Zerodur 1 initial after 10 yrs Zerodur2 initial3 after 900 days U L E ~ initial after 20 days High