Sample records for mass balance errors

  1. Mass-balance measurements in Alaska and suggestions for simplified observation programs

    USGS Publications Warehouse

    Trabant, D.C.; March, R.S.

    1999-01-01

    US Geological Survey glacier fieldwork in Alaska includes repetitious measurements, corrections for leaning or bending stakes, an ability to reliably measure seasonal snow as deep as 10 m, absolute identification of summer surfaces in the accumulation area, and annual evaluation of internal accumulation, internal ablation, and glacier-thickness changes. Prescribed field measurement and note-taking techniques help eliminate field errors and expedite the interpretative process. In the office, field notes are transferred to computerized spread-sheets for analysis, release on the World Wide Web, and archival storage. The spreadsheets have error traps to help eliminate note-taking and transcription errors. Rigorous error analysis ends when mass-balance measurements are extrapolated and integrated with area to determine glacier and basin mass balances. Unassessable errors in the glacier and basin mass-balance data reduce the value of the data set for correlations with climate change indices. The minimum glacier mass-balance program has at least three measurement sites on a glacier and the measurements must include the seasonal components of mass balance as well as the annual balance.

  2. Analysis of difference between direct and geodetic mass balance measurements at South Cascade Glacier, Washington

    USGS Publications Warehouse

    Krimmel, R.M.

    1999-01-01

    Net mass balance has been measured since 1958 at South Cascade Glacier using the 'direct method,' e.g. area averages of snow gain and firn and ice loss at stakes. Analysis of cartographic vertical photography has allowed measurement of mass balance using the 'geodetic method' in 1970, 1975, 1977, 1979-80, and 1985-97. Water equivalent change as measured by these nearly independent methods should give similar results. During 1970-97, the direct method shows a cumulative balance of about -15 m, and the geodetic method shows a cumulative balance of about -22 m. The deviation between the two methods is fairly consistent, suggesting no gross errors in either, but rather a cumulative systematic error. It is suspected that the cumulative error is in the direct method because the geodetic method is based on a non-changing reference, the bedrock control, whereas the direct method is measured with reference to only the previous year's summer surface. Possible sources of mass loss that are missing from the direct method are basal melt, internal melt, and ablation on crevasse walls. Possible systematic measurement errors include under-estimation of the density of lost material, sinking stakes, or poorly represented areas.

  3. How many stakes are required to measure the mass balance of a glacier?

    USGS Publications Warehouse

    Fountain, A.G.; Vecchia, A.

    1999-01-01

    Glacier mass balance is estimated for South Cascade Glacier and Maclure Glacier using a one-dimensional regression of mass balance with altitude as an alternative to the traditional approach of contouring mass balance values. One attractive feature of regression is that it can be applied to sparse data sets where contouring is not possible and can provide an objective error of the resulting estimate. Regression methods yielded mass balance values equivalent to contouring methods. The effect of the number of mass balance measurements on the final value for the glacier showed that sample sizes as small as five stakes provided reasonable estimates, although the error estimates were greater than for larger sample sizes. Different spatial patterns of measurement locations showed no appreciable influence on the final value as long as different surface altitudes were intermittently sampled over the altitude range of the glacier. Two different regression equations were examined, a quadratic, and a piecewise linear spline, and comparison of results showed little sensitivity to the type of equation. These results point to the dominant effect of the gradient of mass balance with altitude of alpine glaciers compared to transverse variations. The number of mass balance measurements required to determine the glacier balance appears to be scale invariant for small glaciers and five to ten stakes are sufficient.

  4. 40 CFR 98.123 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... mass balance approach to estimate your fluorinated GHG emissions from a process, you must ensure that... relative errors associated with using the mass balance approach on that process using Equations L-1 through... mass-balance approach to estimate emissions from the process if this calculation results in an absolute...

  5. 40 CFR 98.123 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... mass balance approach to estimate your fluorinated GHG emissions from a process, you must ensure that... relative errors associated with using the mass balance approach on that process using Equations L-1 through... mass-balance approach to estimate emissions from the process if this calculation results in an absolute...

  6. 40 CFR 98.123 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... mass balance approach to estimate your fluorinated GHG emissions from a process, you must ensure that... relative errors associated with using the mass balance approach on that process using Equations L-1 through... mass-balance approach to estimate emissions from the process if this calculation results in an absolute...

  7. 40 CFR 98.123 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... mass balance approach to estimate your fluorinated GHG emissions from a process, you must ensure that... relative errors associated with using the mass balance approach on that process using Equations L-1 through... mass-balance approach to estimate emissions from the process if this calculation results in an absolute...

  8. Skylab water balance error analysis

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1977-01-01

    Estimates of the precision of the net water balance were obtained for the entire Skylab preflight and inflight phases as well as for the first two weeks of flight. Quantitative estimates of both total sampling errors and instrumentation errors were obtained. It was shown that measurement error is minimal in comparison to biological variability and little can be gained from improvement in analytical accuracy. In addition, a propagation of error analysis demonstrated that total water balance error could be accounted for almost entirely by the errors associated with body mass changes. Errors due to interaction between terms in the water balance equation (covariances) represented less than 10% of the total error. Overall, the analysis provides evidence that daily measurements of body water changes obtained from the indirect balance technique are reasonable, precise, and relaible. The method is not biased toward net retention or loss.

  9. Comparison of geodetic and glaciological mass-balance techniques, Gulkana Glacier, Alaska, U.S.A

    USGS Publications Warehouse

    Cox, L.H.; March, R.S.

    2004-01-01

    The net mass balance on Gulkana Glacier, Alaska, U.S.A., has been measured since 1966 by the glaciological method, in which seasonal balances are measured at three index sites and extrapolated over large areas of the glacier. Systematic errors can accumulate linearly with time in this method. Therefore, the geodetic balance, in which errors are less time-dependent, was calculated for comparison with the glaciological method. Digital elevation models of the glacier in 1974, 1993 and 1999 were prepared using aerial photographs, and geodetic balances were computed, giving - 6.0??0.7 m w.e. from 1974 to 1993 and - 11.8??0.7 m w.e. from 1974 to 1999. These balances are compared with the glaciological balances over the same intervals, which were - 5.8??0.9 and -11.2??1.0 m w.e. respectively; both balances show that the thinning rate tripled in the 1990s. These cumulative balances differ by <6%. For this close agreement, the glaciologically measured mass balance of Gulkana Glacier must be largely free of systematic errors and be based on a time-variable area-altitude distribution, and the photography used in the geodetic method must have enough contrast to enable accurate photogrammetry.

  10. Detailed comparison of the geodetic and direct glaciological mass balances on an annual time scale at Hintereisferner, Austria

    NASA Astrophysics Data System (ADS)

    Klug, Christoph; Bollmann, Erik; Galos, Stephan; Kaser, Georg; Prinz, Rainer; Rieg, Lorenzo; Sailer, Rudolf

    2016-04-01

    The quantification of glacier mass changes is fundamental for glacier monitoring and provides important information for climate change assessments, hydrological applications and sea-level changes. On Alpine glaciers two methods of measuring glacier mass changes are widely applied: the direct glaciological method and the geodetic method. Over the last decades several studies compared the mass balance estimates obtained by both methods to identify and correct stochastic and systematic errors. In almost all of these studies, the time span for comparison between the two methods is about one decade or longer. On Hintereisferner (HEF; Ötztal Alps, Austria) mass balance measurements were initiated in the glaciological year 1952/53, resulting in a consistent mass balance data set with an estimated accuracy of ±0.2 m w.e. a-1. Furthermore, 11 airborne laser scanning (ALS) campaigns were conducted between 2001 and 2011 at HEF, all consistent in accuracy as well as in precision (± 0.04 to 0.10 m for slopes ≤ 50°). This is a world-wide unique ALS dataset of a glacierized alpine catchment. Flight campaigns were performed close to the end of the hydrological year (30th September). Resulting data provide high quality topographic information to derive glacier mass changes by applying the geodetic method. On sub-decadal time-scales such method comparisons are rare, or reveal unexplainable large discrepancies between both mass balance methods. In this study we estimate stochastic and systematic uncertainties of the ALS data for processing volume changes, and quantify methodological differences, such as density assumptions, unequal measurement dates, crevasses and glacier dynamics. Hence, we present a method to compare direct glaciological and geodetic mass balances on an annual basis. In a first step, we calculate the annual geodetic mass balance of HEF between 2001 and 2011, resulting in a thickness change map of the glacier. In a second step, the snow cover, which has eventually built up before the ALS acquisition, is corrected. As snow cover biases are particular uncertain, a statistical approach has been applied to assess combined DTM errors by using the population of DTM differences over stable terrain. This method incorporates all known and unknown error sources from the surface difference in stable areas and uses its median thickness for correction in all altitudinal belts. In addition, intensity data of the ALS surveys are used to classify the optical surface properties into ice and firn zones. The resulting grids with according conversion factors (900 and 700 kg/m³ for ice and firn, respectively) are combined to calculate mass changes. In a last step, the survey dates are adjusted, using numerous field observations. On an annual time scale, the geodetic mass balances of HEF corrected using this approach, correlate well with the results from the homogenized direct glaciological method. Significant deviations occur in years with few measurements in the uppermost areas applying the direct glaciological method, due to strong melt in areas not equipped with ablation stakes (cf. Figure 2 for 2002/03) or inaccessibility due to weather conditions. On the basis of these results, the conventional error risk (e.g. confidence levels), was adopted in order to test the null hypothesis and to check if unexplained discrepancies suggest reanalyses of glaciological mass balances. Regarding the cumulative mass balance, the deviations between the two methods tend to become smaller the longer the period of comparison extends. Averaged between 2001 and 2011 the largest sources of differences are snow cover and density assumptions having high uncertainties in their estimates and/or leading to higher error ranges in the geodetic mass balances. Some errors were found to have a minor impact and are not treated explicitly, such as uncertainties in different glacier outlines used in both methods or the influence of snow covered and snow free crevasses in successive years on the geodetic mass balance.

  11. State of balance of the cryosphere

    NASA Technical Reports Server (NTRS)

    Van Der Veen, C. J.

    1991-01-01

    Available observations and mass balance estimates of the cryosphere are summarized. Problems discussed include mountain glaciers, the Greenland ice sheet, the Antarctic ice sheet, conventional glacier measurement techniques, and satellite applications in glacier mass balance studies. It is concluded that the interior part of the Greenland ice sheet is thickening or in near equilibrium. Estimates of the mass balance of the Antarctic ice sheet suggest that it is positive, although the error limits allow for a slightly negative balance.

  12. Comparing mass balance and adjoint methods for inverse modeling of nitrogen dioxide columns for global nitrogen oxide emissions

    NASA Astrophysics Data System (ADS)

    Cooper, Matthew; Martin, Randall V.; Padmanabhan, Akhila; Henze, Daven K.

    2017-04-01

    Satellite observations offer information applicable to top-down constraints on emission inventories through inverse modeling. Here we compare two methods of inverse modeling for emissions of nitrogen oxides (NOx) from nitrogen dioxide (NO2) columns using the GEOS-Chem chemical transport model and its adjoint. We treat the adjoint-based 4D-Var modeling approach for estimating top-down emissions as a benchmark against which to evaluate variations on the mass balance method. We use synthetic NO2 columns generated from known NOx emissions to serve as "truth." We find that error in mass balance inversions can be reduced by up to a factor of 2 with an iterative process that uses finite difference calculations of the local sensitivity of NO2 columns to a change in emissions. In a simplified experiment to recover local emission perturbations, horizontal smearing effects due to NOx transport are better resolved by the adjoint approach than by mass balance. For more complex emission changes, or at finer resolution, the iterative finite difference mass balance and adjoint methods produce similar global top-down inventories when inverting hourly synthetic observations, both reducing the a priori error by factors of 3-4. Inversions of simulated satellite observations from low Earth and geostationary orbits also indicate that both the mass balance and adjoint inversions produce similar results, reducing a priori error by a factor of 3. As the iterative finite difference mass balance method provides similar accuracy as the adjoint method, it offers the prospect of accurately estimating top-down NOx emissions using models that do not have an adjoint.

  13. Monitoring glacier albedo as a proxy to derive summer and annual surface mass balances from optical remote-sensing data

    NASA Astrophysics Data System (ADS)

    Davaze, Lucas; Rabatel, Antoine; Arnaud, Yves; Sirguey, Pascal; Six, Delphine; Letreguilly, Anne; Dumont, Marie

    2018-01-01

    Less than 0.25 % of the 250 000 glaciers inventoried in the Randolph Glacier Inventory (RGI V.5) are currently monitored with in situ measurements of surface mass balance. Increasing this archive is very challenging, especially using time-consuming methods based on in situ measurements, and complementary methods are required to quantify the surface mass balance of unmonitored glaciers. The current study relies on the so-called albedo method, based on the analysis of albedo maps retrieved from optical satellite imagery acquired since 2000 by the MODIS sensor, on board the TERRA satellite. Recent studies revealed substantial relationships between summer minimum glacier-wide surface albedo and annual surface mass balance, because this minimum surface albedo is directly related to the accumulation-area ratio and the equilibrium-line altitude. On the basis of 30 glaciers located in the French Alps where annual surface mass balance data are available, our study conducted on the period 2000-2015 confirms the robustness and reliability of the relationship between the summer minimum surface albedo and the annual surface mass balance. For the ablation season, the integrated summer surface albedo is significantly correlated with the summer surface mass balance of the six glaciers seasonally monitored. These results are promising to monitor both annual and summer glacier-wide surface mass balances of individual glaciers at a regional scale using optical satellite images. A sensitivity study on the computed cloud masks revealed a high confidence in the retrieved albedo maps, restricting the number of omission errors. Albedo retrieval artifacts have been detected for topographically incised glaciers, highlighting limitations in the shadow correction algorithm, although inter-annual comparisons are not affected by systematic errors.

  14. Surface mass balance contributions to acceleration of Antarctic ice mass loss during 2003-2013

    NASA Astrophysics Data System (ADS)

    Seo, Ki-Weon; Wilson, Clark R.; Scambos, Ted; Kim, Baek-Min; Waliser, Duane E.; Tian, Baijun; Kim, Byeong-Hoon; Eom, Jooyoung

    2015-05-01

    Recent observations from satellite gravimetry (the Gravity Recovery and Climate Experiment (GRACE) mission) suggest an acceleration of ice mass loss from the Antarctic Ice Sheet (AIS). The contribution of surface mass balance changes (due to variable precipitation) is compared with GRACE-derived mass loss acceleration by assessing the estimated contribution of snow mass from meteorological reanalysis data. We find that over much of the continent, the acceleration can be explained by precipitation anomalies. However, on the Antarctic Peninsula and other parts of West Antarctica, mass changes are not explained by precipitation and are likely associated with ice discharge rate increases. The total apparent GRACE acceleration over all of the AIS between 2003 and 2013 is -13.6 ± 7.2 Gt/yr2. Of this total, we find that the surface mass balance component is -8.2 ± 2.0 Gt/yr2. However, the GRACE estimate appears to contain errors arising from the atmospheric pressure fields used to remove air mass effects. The estimated acceleration error from this effect is about 9.8 ± 5.8 Gt/yr2. Correcting for this yields an ice discharge acceleration of -15.1 ± 6.5 Gt/yr2.

  15. Surface Mass Balance Contributions to Acceleration of Antarctic Ice Mass Loss during 2003- 2013

    NASA Astrophysics Data System (ADS)

    Seo, K. W.; Wilson, C. R.; Scambos, T. A.; Kim, B. M.; Waliser, D. E.; Tian, B.; Kim, B.; Eom, J.

    2015-12-01

    Recent observations from satellite gravimetry (the GRACE mission) suggest an acceleration of ice mass loss from the Antarctic Ice Sheet (AIS). The contribution of surface mass balance changes (due to variable precipitation) is compared with GRACE-derived mass loss acceleration by assessing the estimated contribution of snow mass from meteorological reanalysis data. We find that over much of the continent, the acceleration can be explained by precipitation anomalies. However, on the Antarctic Peninsula and other parts of West Antarctica mass changes are not explained by precipitation and are likely associated with ice discharge rate increases. The total apparent GRACE acceleration over all of the AIS between 2003 and 2013 is -13.6±7.2 GTon/yr2. Of this total, we find that the surface mass balance component is -8.2±2.0 GTon/yr2. However, the GRACE estimate appears to contain errors arising from the atmospheric pressure fields used to remove air mass effects. The estimated acceleration error from this effect is about 9.8±5.8 GTon/yr2. Correcting for this yields an ice discharge acceleration of -15.1±6.5 GTon/yr2.

  16. Concussion History and Time Since Concussion Do not Influence Static and Dynamic Balance in Collegiate Athletes.

    PubMed

    Merritt, Eric D; Brown, Cathleen N; Queen, Robin M; Simpson, Kathy J; Schmidt, Julianne D

    2017-11-01

    Dynamic balance deficits exist following a concussion, sometimes years after injury. However, clinicians lack practical tools for assessing dynamic balance. To determine if there are significant differences in static and dynamic balance performance between individuals with and without a history of concussion. Cross sectional. Clinical research laboratory. 45 collegiate student-athletes with a history of concussion (23 males, 22 females; age = 20.0 ± 1.4 y; height = 175.8 ± 11.6 cm; mass = 76.4 ± 19.2 kg) and 45 matched controls with no history of concussion (23 males, 22 females; age = 20.0 ± 1.3 y; height = 178.8 ± 13.2 cm; mass = 75.7 ± 18.2 kg). Participants completed a static (Balance Error Scoring System) and dynamic (Y Balance Test-Lower Quarter) balance assessment. A composite score was calculated from the mean normalized Y Balance Test-Lower Quarter reach distances. Firm, foam, and overall errors were counted during the Balance Error Scoring System by a single reliable rater. One-way ANOVAs were used to compare balance performance between groups. Pearson's correlations were performed to determine the relationship between the time since the most recent concussion and balance performance. A Bonferonni adjusted a priori α < 0.025 was used for all analyses. Static and dynamic balance performance did not significantly differ between groups. No significant correlation was found between the time since the most recent concussion and balance performance. Collegiate athletes with a history of concussion do not present with static or dynamic balance deficits when measured using clinical assessments. More research is needed to determine whether the Y Balance Test-Lower Quarter is sensitive to acute balance deficits following concussion.

  17. Surface mass balance contributions to acceleration of Antarctic ice mass loss during 2003-2013.

    PubMed

    Seo, Ki-Weon; Wilson, Clark R; Scambos, Ted; Kim, Baek-Min; Waliser, Duane E; Tian, Baijun; Kim, Byeong-Hoon; Eom, Jooyoung

    2015-05-01

    Recent observations from satellite gravimetry (the Gravity Recovery and Climate Experiment (GRACE) mission) suggest an acceleration of ice mass loss from the Antarctic Ice Sheet (AIS). The contribution of surface mass balance changes (due to variable precipitation) is compared with GRACE-derived mass loss acceleration by assessing the estimated contribution of snow mass from meteorological reanalysis data. We find that over much of the continent, the acceleration can be explained by precipitation anomalies. However, on the Antarctic Peninsula and other parts of West Antarctica, mass changes are not explained by precipitation and are likely associated with ice discharge rate increases. The total apparent GRACE acceleration over all of the AIS between 2003 and 2013 is -13.6 ± 7.2 Gt/yr 2 . Of this total, we find that the surface mass balance component is -8.2 ± 2.0 Gt/yr 2 . However, the GRACE estimate appears to contain errors arising from the atmospheric pressure fields used to remove air mass effects. The estimated acceleration error from this effect is about 9.8 ± 5.8 Gt/yr 2 . Correcting for this yields an ice discharge acceleration of -15.1 ± 6.5 Gt/yr 2 .

  18. Coil motion effects in watt balances: a theoretical check

    NASA Astrophysics Data System (ADS)

    Li, Shisong; Schlamminger, Stephan; Haddad, Darine; Seifert, Frank; Chao, Leon; Pratt, Jon R.

    2016-04-01

    A watt balance is a precision apparatus for the measurement of the Planck constant that has been proposed as a primary method for realizing the unit of mass in a revised International System of Units. In contrast to an ampere balance, which was historically used to realize the unit of current in terms of the kilogram, the watt balance relates electrical and mechanical units through a virtual power measurement and has far greater precision. However, because the virtual power measurement requires the execution of a prescribed motion of a coil in a fixed magnetic field, systematic errors introduced by horizontal and rotational deviations of the coil from its prescribed path will compromise the accuracy. We model these potential errors using an analysis that accounts for the fringing field in the magnet, creating a framework for assessing the impact of this class of errors on the uncertainty of watt balance results.

  19. Net Weight Issue LLNL DOE-STD-3013 Containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilk, P

    2008-01-16

    The following position paper will describe DOE-STD-3013 container sets No.L000072 and No.L000076, and how they are compliant with DOE-STD-3013-2004. All masses of accountable nuclear materials are measured on LLNL certified balances maintained under an MC&A Program approved by DOE/NNSA LSO. All accountability balances are recalibrated annually and checked to be within calibration on each day that the balance is used for accountability purposes. A statistical analysis of the historical calibration checks from the last seven years indicates that the full-range Limit of Error (LoE, 95% confidence level) for the balance used to measure the mass of the contents of themore » above indicated 3013 containers is 0.185 g. If this error envelope, at the 95% confidence level, were to be used to generate an upper-limit to the measured weight of the containers No.L000072 and No.L000076, the error-envelope would extend beyond the 5.0 kg 3013-standard limit on the package contents by less than 0.3 g. However, this is still well within the intended safety bounds of DOE-STD-3013-2004.« less

  20. System Identification and Automatic Mass Balancing of Ground-Based Three-Axis Spacecraft Simulator

    DTIC Science & Technology

    2006-08-01

    commanded torque to move away from these singularity points. The introduction of this error may not degrade the performance for large slew angle ...trajectory has been generated and quaternion feedback control has been implemented for reference trajectory tracking. The testbed was reasonably well...System Identification and Automatic Mass Balancing of Ground-Based Three-Axis Spacecraft Simulator Jae-Jun Kim∗ and Brij N. Agrawal † Department of

  1. Ultrasonic detection of solid phase mass flow ratio of pneumatic conveying fly ash

    NASA Astrophysics Data System (ADS)

    Duan, Guang Bin; Pan, Hong Li; Wang, Yong; Liu, Zong Ming

    2014-04-01

    In this paper, ultrasonic attenuation detection and weight balance are adopted to evaluate the solid mass ratio in this paper. Fly ash is transported on the up extraction fluidization pneumatic conveying workbench. In the ultrasonic test. McClements model and Bouguer-Lambert-Beer law model were applied to formulate the ultrasonic attenuation properties of gas-solid flow, which can give the solid mass ratio. While in the method of weigh balance, the averaged mass addition per second can reveal the solids mass flow ratio. By contrast these two solid phase mass ratio detection methods, we can know, the relative error is less.

  2. Determination of the Gravitational Constant with a Beam Balance

    NASA Astrophysics Data System (ADS)

    Schlamminger, St.; Holzschuh, E.; Kündig, W.

    2002-09-01

    The Newtonian gravitational constant G was determined by means of a novel beam-balance experiment with an accuracy comparable to that of the most precise torsion-balance experiments. The gravitational force of two stainless steel tanks filled with 13 521kg mercury on 1.1kg test masses was measured using a commercial mass comparator. A careful analysis of the data and the experimental error yields G=6.674 07(22)×10-11 m3 kg-1 s-2. This value is in excellent agreement with most values previously obtained with different methods.

  3. Adherence to balance tolerance limits at the Upper Mississippi Science Center, La Crosse, Wisconsin.

    USGS Publications Warehouse

    Myers, C.T.; Kennedy, D.M.

    1998-01-01

    Verification of balance accuracy entails applying a series of standard masses to a balance prior to use and recording the measured values. The recorded values for each standard should have lower and upper weight limits or tolerances that are accepted as verification of balance accuracy under normal operating conditions. Balance logbooks for seven analytical balances at the Upper Mississippi Science Center were checked over a 3.5-year period to determine if the recorded weights were within the established tolerance limits. A total of 9435 measurements were checked. There were 14 instances in which the balance malfunctioned and operators recorded a rationale in the balance logbook. Sixty-three recording errors were found. Twenty-eight operators were responsible for two types of recording errors: Measurements of weights were recorded outside of the tolerance limit but not acknowledged as an error by the operator (n = 40); and measurements were recorded with the wrong number of decimal places (n = 23). The adherence rate for following tolerance limits was 99.3%. To ensure the continued adherence to tolerance limits, the quality-assurance unit revised standard operating procedures to require more frequent review of balance logbooks.

  4. Mass balance assessment using GPS

    NASA Technical Reports Server (NTRS)

    Hulbe, Christina L.

    1993-01-01

    Mass balance is an integral part of any comprehensive glaciological investigation. Unfortunately, it is hard to determine at remote locations where there is no fixed reference. The Global Positioning System (GPS) offers a solution. Simultaneous GPS observations at a known location and the remote field site, processed differentially, will accurately position the camp site. From there, a monument planted in the firn atop the ice can also be accurately positioned. Change in the monument's vertical position is a direct indicator of ice thickness change. Because the monument is not connected to the ice, its motion is due to both mass balance change and to the settling of firn as it densifies into ice. Observations of relative position change between the monument and anchors at various depths within the firn are used to remove the settling effect. An experiment to test this method has begun at Byrd Station on the West Antarctic Ice Sheet and the first epoch of observations was made. Analysis indicates that positioning errors will be very small. It appears likely that the largest errors involved with this technique will arise from ancillary data needed to determine firn settling.

  5. A Range Correction for Icesat and Its Potential Impact on Ice-sheet Mass Balance Studies

    NASA Technical Reports Server (NTRS)

    Borsa, A. A.; Moholdt, G.; Fricker, H. A.; Brunt, Kelly M.

    2014-01-01

    We report on a previously undocumented range error in NASA's Ice, Cloud and land Elevation Satellite (ICESat) that degrades elevation precision and introduces a small but significant elevation trend over the ICESat mission period. This range error (the Gaussian-Centroid or 'G-C'offset) varies on a shot-to-shot basis and exhibits increasing scatter when laser transmit energies fall below 20 mJ. Although the G-C offset is uncorrelated over periods less than1 day, it evolves over the life of each of ICESat's three lasers in a series of ramps and jumps that give rise to spurious elevation trends of -0.92 to -1.90 cm yr(exp -1), depending on the time period considered. Using ICESat data over the Ross and Filchner-Ronne ice shelves we show that (1) the G-C offset introduces significant biases in ice-shelf mass balance estimates, and (2) the mass balance bias can vary between regions because of different temporal samplings of ICESat.We can reproduce the effect of the G-C offset over these two ice shelves by fitting trends to sample-weighted mean G-C offsets for each campaign, suggesting that it may not be necessary to fully repeat earlier ICESat studies to determine the impact of the G-C offset on ice-sheet mass balance estimates.

  6. Decadal-scale sensitivity of Northeast Greenland ice flow to errors in surface mass balance using ISSM

    NASA Astrophysics Data System (ADS)

    Schlegel, N.-J.; Larour, E.; Seroussi, H.; Morlighem, M.; Box, J. E.

    2013-06-01

    The behavior of the Greenland Ice Sheet, which is considered a major contributor to sea level changes, is best understood on century and longer time scales. However, on decadal time scales, its response is less predictable due to the difficulty of modeling surface climate, as well as incomplete understanding of the dynamic processes responsible for ice flow. Therefore, it is imperative to understand how modeling advancements, such as increased spatial resolution or more comprehensive ice flow equations, might improve projections of ice sheet response to climatic trends. Here we examine how a finely resolved climate forcing influences a high-resolution ice stream model that considers longitudinal stresses. We simulate ice flow using a two-dimensional Shelfy-Stream Approximation implemented within the Ice Sheet System Model (ISSM) and use uncertainty quantification tools embedded within the model to calculate the sensitivity of ice flow within the Northeast Greenland Ice Stream to errors in surface mass balance (SMB) forcing. Our results suggest that the model tends to smooth ice velocities even when forced with extreme errors in SMB. Indeed, errors propagate linearly through the model, resulting in discharge uncertainty of 16% or 1.9 Gt/yr. We find that mass flux is most sensitive to local errors but is also affected by errors hundreds of kilometers away; thus, an accurate SMB map of the entire basin is critical for realistic simulation. Furthermore, sensitivity analyses indicate that SMB forcing needs to be provided at a resolution of at least 40 km.

  7. Comparison of Glaciological and Gravimetric Glacier Mass Balance Measurements of Taku and Lemon Creek Glaciers, Southeast Alaska

    NASA Astrophysics Data System (ADS)

    Vogler, K.; McNeil, C.; Bond, M.; Getraer, B.; Huxley-Reicher, B.; McNamara, G.; Reinhardt-Ertman, T.; Silverwood, J.; Kienholz, C.; Beedle, M. J.

    2017-12-01

    Glacier-wide annual mass balances (Ba) have been calculated for Taku (726 km2) and Lemon Creek glaciers (10.2 km2) since 1946 and 1953 respectively. These are the longest mass balance records in North America, and the only Ba time-series available for Southeast Alaska, making them particularly valuable for the global glacier mass balance monitoring network. We compared Ba time-series from Taku and Lemon Creek glaciers to Gravity Recovery and Climate Experiment (GRACE) mascon solutions (1352 and 1353) during the 2004-2015 period to assess how well these gravimetric solutions reflect individual glaciological records. Lemon Creek Glacier is a challenging candidate for this comparison because it is small compared to the 12,100 km2 GRACE mascon solutions. Taku Glacier is equally challenging because its mass balance is stable compared to the negative balances dominating its neighboring glaciers. Challenges notwithstanding, a high correlation between the glaciological and gravimetrically-derived Ba for Taku and Lemon Creek glaciers encourage future use of GRACE to measure glacier mass balance. Additionally, we employed high frequency ground penetrating radar (GPR) to measure the variability of accumulation around glaciological sites to assess uncertainty in our glaciological measurements, and the resulting impact to Ba. Finally, we synthesize this comparison of glaciological and gravimetric mass balance solutions with a discussion of potential sources of error in both methods and their combined utility for measuring regional glacier change during the 21st century.

  8. Quantifying the resolution level where the GRACE satellites can separate Greenland's glacial mass balance from surface mass balance

    NASA Astrophysics Data System (ADS)

    Bonin, J. A.; Chambers, D. P.

    2015-09-01

    Mass change over Greenland can be caused by either changes in the glacial dynamic mass balance (DMB) or the surface mass balance (SMB). The GRACE satellite gravity mission cannot directly separate the two physical causes because it measures the sum of the entire mass column with limited spatial resolution. We demonstrate one theoretical way to indirectly separate cumulative SMB from DMB with GRACE, using a least squares inversion technique with knowledge of the location of the glaciers. However, we find that the limited 60 × 60 spherical harmonic representation of current GRACE data does not provide sufficient resolution to adequately accomplish the task. We determine that at a maximum degree/order of 90 × 90 or above, a noise-free gravity measurement could theoretically separate the SMB from DMB signals. However, current GRACE satellite errors are too large at present to separate the signals. A noise reduction of a factor of 10 at a resolution of 90 × 90 would provide the accuracy needed for the interannual cumulative SMB and DMB to be accurately separated.

  9. Quantifying the resolution level where the GRACE satellites can separate Greenland's glacial mass balance from surface mass balance

    NASA Astrophysics Data System (ADS)

    Bonin, J. A.; Chambers, D. P.

    2015-02-01

    Mass change over Greenland can be caused by either changes in the glacial mass balance (GMB) or the precipitation-based surface mass balance (SMB). The GRACE satellite gravity mission cannot directly separate the two physical causes because it measures the sum of the entire mass column with limited spatial resolution. We demonstrate one theoretical way to indirectly separate SMB from GMB with GRACE, using a least squares inversion technique with knowledge of the location of the glacier. However, we find that the limited 60 × 60 spherical harmonic representation of current GRACE data does not provide sufficient resolution to adequately accomplish the task. We determine that at a maximum degree/order of 90 × 90 or above, a noise-free gravity measurement could theoretically separate the SMB from GMB signals. However, current GRACE satellite errors are too large at present to separate the signals. A noise reduction of a factor of 9 at a resolution of 90 × 90 would provide the accuracy needed for the interannual SMB and GMB to be accurately separated.

  10. DNAPL MAPPING AND WATER SATURATION MEASUREMENTS IN 2-D MODELS USING LIGHT TRANSMISSION VISUALIZATION (LTV) TECHNIQUE

    EPA Science Inventory

    • LTV can be used to characterize free phase PCE architecture in 2-D flow chambers without using a dye. • Results to date suggest that error in PCE detection using LTV can be less than 10% if the imaging system is optimized. • Mass balance calculations show a maximum error of 9...

  11. Sway Area and Velocity Correlated With MobileMat Balance Error Scoring System (BESS) Scores.

    PubMed

    Caccese, Jaclyn B; Buckley, Thomas A; Kaminski, Thomas W

    2016-08-01

    The Balance Error Scoring System (BESS) is often used for sport-related concussion balance assessment. However, moderate intratester and intertester reliability may cause low initial sensitivity, suggesting that a more objective balance assessment method is needed. The MobileMat BESS was designed for objective BESS scoring, but the outcome measures must be validated with reliable balance measures. Thus, the purpose of this investigation was to compare MobileMat BESS scores to linear and nonlinear measures of balance. Eighty-eight healthy collegiate student-athletes (age: 20.0 ± 1.4 y, height: 177.7 ± 10.7 cm, mass: 74.8 ± 13.7 kg) completed the MobileMat BESS. MobileMat BESS scores were compared with 95% area, sway velocity, approximate entropy, and sample entropy. MobileMat BESS scores were significantly correlated with 95% area for single-leg (r = .332) and tandem firm (r = .474), and double-leg foam (r = .660); and with sway velocity for single-leg (r = .406) and tandem firm (r = .601), and double-leg (r = .575) and single-leg foam (r = .434). MobileMat BESS scores were not correlated with approximate or sample entropy. MobileMat BESS scores were low to moderately correlated with linear measures, suggesting the ability to identify changes in the center of mass-center of pressure relationship, but not higher-order processing associated with nonlinear measures. These results suggest that the MobileMat BESS may be a clinically-useful tool that provides objective linear balance measures.

  12. Antarctic Glacial Isostatic Adjustment and Ice Sheet Mass Balance using GRACE: A Report from the Ice-sheet Mass Balance Exercise (IMBIE)

    NASA Astrophysics Data System (ADS)

    Ivins, E. R.; Wahr, J. M.; Schrama, E. J.; Milne, G. A.; Barletta, V.; Horwath, M.; Whitehouse, P.

    2012-12-01

    In preparation for the Inter-govermental Panel on Climate Change: Assessment Report 5 (IPCC AR5), ESA and NASA have formed a committee of experts to perform a formal set of comparative experiments concerning space observations of ice sheet mass balance. This project began in August of 2011 and has now concluded with a report submitted for Science (Shepherd et al., 2012). The focus of the work conducted is to re-evaluate scientific reports on the mass balance of Greenland ice sheet (GIS) and Antarctic ice sheet (AIS). The most serious discrepancies have been reported for the AIS, amounting to as much as 0.9 mm/yr in discrepant sea level contribution. A direct method of determining the AIS is by space gravimetry. However, for this method to contribute to our understanding of sea level change, we require knowledge of present-day non-elastic vertical movements of bedrock in Antarctica. Quantifying the uncertainty and bias caused by lack of observational control on models of regional glacial isostatic adjustment (GIA), was a major focus for our experiments. This regional process is the most problematic error source for GRACE-determinations of ice mass balance in Antarctica. While GIA likely dominates some large vertical motions in Antarctica that are now observed with GPS (Thomas et al., 2011, GRL), interpretations still require models. The reported uncertainty for space gravimetric (GRACE) based sea level sourcing is roughly 0.20 to 0.35 mm/yr. The uncertainty is also part of the error budget for mass balances derived from altimetry measurements, though at a much lower level. Analysis of the GRACE time series using CSR RL04 (2003.0-2010.10) for AIS mass balance reveals a small trend of order +1 to -24 Gt/yr without a GIA correction. Three periods were selected over which to perform inter-comparisons (see Table). One class of GIA models, that relies primarily on far field sea level reconstructions (e.g. ICE-5G), provide a GIA correction that places AIS mass imbalance (δM) as high as -160 Gt/yr. IMBIE used an average of new models IJ05_R2 and W12a for new corrections. This new class of models is constrained by a variety of Antarctic data sets (e.g. proxy reconstructions of past ice extent, GPS estimates of vertical land motion) and provides a correction that is approximately one half to one third of that obtained from the far-field based models. As a consequence, this newer class of models gives Antarctic ice mass balance of approximately -81 ± 33 Gt/yr, or 0.225 ± 0.092 mm/yr contribution to sea-level rise. The new class of GIA models for Antarctica enhances the value of all GRACE Follow-On mission data.Mass Balance of AIS δM (Gt/yr);

  13. Glaciological measurements and mass balances from Sperry Glacier, Montana, USA, years 2005–2015

    USGS Publications Warehouse

    Clark, Adam; Fagre, Daniel B.; Peitzsch, Erich H.; Reardon, Blase A.; Harper, Joel T.

    2017-01-01

    Glacier mass balance measurements help to provide an understanding of the behavior of glaciers and their response to local and regional climate. In 2005 the United States Geological Survey established a surface mass balance monitoring program on Sperry Glacier, Montana, USA. This project is the first quantitative study of mass changes of a glacier in the US northern Rocky Mountains and continues to the present. The following paper describes the methods used during the first 11 years of measurements and reports the associated results. From 2005 to 2015, Sperry Glacier had a cumulative mean mass balance loss of 4.37 m w.e. (water equivalent). The mean winter, summer, and annual glacier-wide mass balances were 2.92, −3.41, and −0.40 m w.e. yr−1 respectively. We derive these cumulative and mean results from an expansive data set of snow depth, snow density, and ablation measurements taken at selected points on the glacier. These data allow for the determination of mass balance point values and a time series of seasonal and annual glacier-wide mass balances for all 11 measurement years. We also provide measurements of glacier extent and accumulation areas for select years. All data have been submitted to the World Glacier Monitoring Service and are available at doi:10.5904/wgms-fog-2016-08. This foundational work provides valuable insight about Sperry Glacier and supplies additional data to the worldwide record of glaciers measured using the glaciological method. Future research will focus on the processes that control accumulation and ablation patterns across the glacier. Also we plan to examine the uncertainties related to our methods and eventually quantify a more robust estimate of error associated with our results.

  14. Glaciological measurements and mass balances from Sperry Glacier, Montana, USA, years 2005-2015

    NASA Astrophysics Data System (ADS)

    Clark, Adam M.; Fagre, Daniel B.; Peitzsch, Erich H.; Reardon, Blase A.; Harper, Joel T.

    2017-01-01

    Glacier mass balance measurements help to provide an understanding of the behavior of glaciers and their response to local and regional climate. In 2005 the United States Geological Survey established a surface mass balance monitoring program on Sperry Glacier, Montana, USA. This project is the first quantitative study of mass changes of a glacier in the US northern Rocky Mountains and continues to the present. The following paper describes the methods used during the first 11 years of measurements and reports the associated results. From 2005 to 2015, Sperry Glacier had a cumulative mean mass balance loss of 4.37 m w.e. (water equivalent). The mean winter, summer, and annual glacier-wide mass balances were 2.92, -3.41, and -0.40 m w.e. yr-1 respectively. We derive these cumulative and mean results from an expansive data set of snow depth, snow density, and ablation measurements taken at selected points on the glacier. These data allow for the determination of mass balance point values and a time series of seasonal and annual glacier-wide mass balances for all 11 measurement years. We also provide measurements of glacier extent and accumulation areas for select years. All data have been submitted to the World Glacier Monitoring Service and are available at doi:10.5904/wgms-fog-2016-08. This foundational work provides valuable insight about Sperry Glacier and supplies additional data to the worldwide record of glaciers measured using the glaciological method. Future research will focus on the processes that control accumulation and ablation patterns across the glacier. Also we plan to examine the uncertainties related to our methods and eventually quantify a more robust estimate of error associated with our results.

  15. Trunk repositioning errors are increased in balance-impaired older adults.

    PubMed

    Goldberg, Allon; Hernandez, Manuel Enrique; Alexander, Neil B

    2005-10-01

    Controlling the flexing trunk is critical in recovering from a loss of balance and avoiding a fall. To investigate the relationship between trunk control and balance in older adults, we measured trunk repositioning accuracy in young and balance-impaired and unimpaired older adults. Young adults (N = 8, mean age 24.3 years) and two groups of community-dwelling older adults defined by unipedal stance time (UST)-a balance-unimpaired group (UST > 30 seconds, N = 7, mean age 73.9 years) and a balance-impaired group (UST < 5 seconds, N = 8, mean age 79.6 years)-were tested in standing trunk control ability by reproducing a approximately 30 degrees trunk flexion angle under three visual-surface conditions: eyes opened and closed on the floor, and eyes opened on foam. Errors in reproducing the angle were defined as trunk repositioning errors (TREs). Clinical measures related to balance, trunk extensor strength, and self-reported disability were obtained. TREs were significantly greater in the balance-impaired group than in the other groups, even when controlling for trunk extensor strength and body mass. In older adults, there were significant correlations between TREs and three clinical measures of balance and fall risk, UST and maximum step length (-0.65 to -0.75), and Timed Up & Go score (0.55), and between TREs and age (0.63-0.76). In each group TREs were similar under the three visual-surface conditions. Test-retest reliability for TREs was good to excellent (intraclass correlation coefficients > or =0.74). Older balance-impaired adults have larger TREs, and thus poorer trunk control, than do balance-unimpaired older individuals. TREs are reliable and valid measures of underlying balance impairment in older adults, and may eventually prove to be useful in predicting the ability to recover from losses of balance and to avoid falls.

  16. Solar radiation, cloudiness and longwave radiation over low-latitude glaciers: implications for mass-balance modelling

    NASA Astrophysics Data System (ADS)

    Mölg, Thomas; Cullen, Nicolas J.; Kaser, Georg

    Broadband radiation schemes (parameterizations) are commonly used tools in glacier mass-balance modelling, but their performance at high altitude in the tropics has not been evaluated in detail. Here we take advantage of a high-quality 2 year record of global radiation (G) and incoming longwave radiation (L↓) measured on Kersten Glacier, Kilimanjaro, East Africa, at 5873 m a.s.l., to optimize parameterizations of G and L↓. We show that the two radiation terms can be related by an effective cloud-cover fraction neff, so G or L↓ can be modelled based on neff derived from measured L↓ or G, respectively. At neff = 1, G is reduced to 35% of clear-sky G, and L↓ increases by 45-65% (depending on altitude) relative to clear-sky L↓. Validation for a 1 year dataset of G and L↓ obtained at 4850 m on Glaciar Artesonraju, Peruvian Andes, yields a satisfactory performance of the radiation scheme. Whether this performance is acceptable for mass-balance studies of tropical glaciers is explored by applying the data from Glaciar Artesonraju to a physically based mass-balance model, which requires, among others, G and L↓ as forcing variables. Uncertainties in modelled mass balance introduced by the radiation parameterizations do not exceed those that can be caused by errors in the radiation measurements. Hence, this paper provides a tool for inclusion in spatially distributed mass-balance modelling of tropical glaciers and/or extension of radiation data when only G or L↓ is measured.

  17. Balance Velocities of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Joughin, Ian; Fahnestock, Mark; Ekholm, Simon; Kwok, Ron

    1997-01-01

    We present a map of balance velocities for the Greenland ice sheet. The resolution of the underlying DEM, which was derived primarily from radar altimetry data, yields far greater detail than earlier balance velocity estimates for Greenland. The velocity contours reveal in striking detail the location of an ice stream in northeastern Greenland, which was only recently discovered using satellite imagery. Enhanced flow associated with all of the major outlets is clearly visible, although small errors in the source data result in less accurate estimates of the absolute flow speeds. Nevertheless, the balance map is useful for ice-sheet modelling, mass balance studies, and field planning.

  18. A New Proposal to Redefine Kilogram by Measuring the Planck Constant Based on Inertial Mass

    NASA Astrophysics Data System (ADS)

    Liu, Yongmeng; Wang, Dawei

    2018-04-01

    A novel method to measure the Planck constant based on inertial mass is proposed here, which is distinguished from the conventional Kibble balance experiment which is based on the gravitational mass. The kilogram unit is linked to the Planck constant by calculating the difference of the parameters, i.e. resistance, voltage, velocity and time, which is measured in a two-mode experiment, unloaded mass mode and the loaded mass mode. In principle, all parameters measured in this experiment can reach a high accuracy, as that in Kibble balance experiment. This method has an advantage that some systematic error can be eliminated in difference calculation of measurements. In addition, this method is insensitive to air buoyancy and the alignment work in this experiment is easy. At last, the initial design of the apparatus is presented.

  19. Linking morphodynamic response with sediment mass balance on the Colorado River in Marble Canyon: issues of scale, geomorphic setting, and sampling design

    USGS Publications Warehouse

    Grams, Paul E.; Topping, David J.; Schmidt, John C.; Hazel, Joseph E.; Kaplinski, Matt

    2013-01-01

    Measurements of morphologic change are often used to infer sediment mass balance. Such measurements may, however, result in gross errors when morphologic changes over short reaches are extrapolated to predict changes in sediment mass balance for long river segments. This issue is investigated by examination of morphologic change and sediment influx and efflux for a 100 km segment of the Colorado River in Grand Canyon, Arizona. For each of four monitoring intervals within a 7 year study period, the direction of sand-storage response within short morphologic monitoring reaches was consistent with the flux-based sand mass balance. Both budgeting methods indicate that sand storage was stable or increased during the 7 year period. Extrapolation of the morphologic measurements outside the monitoring reaches does not, however, provide a reasonable estimate of the magnitude of sand-storage change for the 100 km study area. Extrapolation results in large errors, because there is large local variation in site behavior driven by interactions between the flow and local bed topography. During the same flow regime and reach-average sediment supply, some locations accumulate sand while others evacuate sand. The interaction of local hydraulics with local channel geometry exerts more control on local morphodynamic response than sand supply over an encompassing river segment. Changes in the upstream supply of sand modify bed responses but typically do not completely offset the effect of local hydraulics. Thus, accurate sediment budgets for long river segments inferred from reach-scale morphologic measurements must incorporate the effect of local hydraulics in a sampling design or avoid extrapolation altogether.

  20. Application and validation of long-range terrestrial laser scanning to monitor the mass balance of very small glaciers in the Swiss Alps

    NASA Astrophysics Data System (ADS)

    Fischer, Mauro; Huss, Matthias; Kummert, Mario; Hoelzle, Martin

    2016-06-01

    Due to the relative lack of empirical field data, the response of very small glaciers (here defined as being smaller than 0.5 km2) to current atmospheric warming is not fully understood yet. Investigating their mass balance, e.g. using the direct glaciological method, is a prerequisite to fill this knowledge gap. Terrestrial laser scanning (TLS) techniques operating in the near infrared range can be applied for the creation of repeated high-resolution digital elevation models and consecutive derivation of annual geodetic mass balances of very small glaciers. This method is promising, as laborious and potentially dangerous field measurements as well as the inter- and extrapolation of point measurements can be circumvented. However, it still needs to be validated. Here, we present TLS-derived annual surface elevation and geodetic mass changes for five very small glaciers in Switzerland (Glacier de Prapio, Glacier du Sex Rouge, St. Annafirn, Schwarzbachfirn, and Pizolgletscher) and two consecutive years (2013/14-2014/15). The scans were acquired with a long-range Riegl -6000 especially designed for surveying snow- and ice-covered terrain. Zonally variable conversion factors for firn and bare ice surfaces were applied to convert geodetic volume to mass changes. We compare the geodetic results to direct glaciological mass balance measurements coinciding with the TLS surveys and assess the uncertainties and errors included in both methods. Average glacier-wide mass balances were negative in both years, showing stronger mass losses in 2014/15 (-1.65 m w.e.) compared to 2013/14 (-0.59 m w.e.). Geodetic mass balances were slightly less negative but in close agreement with the direct glaciological ones (R2 = 0.91). Due to the dense in situ measurements, the uncertainties in the direct glaciological mass balances were small compared to the majority of measured glaciers worldwide (±0.09 m w.e. yr-1 on average), and similar to uncertainties in the TLS-derived geodetic mass balances (±0.13 m w.e. yr-1).

  1. Energy balance and mass conservation in reduced order models of fluid flows

    NASA Astrophysics Data System (ADS)

    Mohebujjaman, Muhammad; Rebholz, Leo G.; Xie, Xuping; Iliescu, Traian

    2017-10-01

    In this paper, we investigate theoretically and computationally the conservation properties of reduced order models (ROMs) for fluid flows. Specifically, we investigate whether the ROMs satisfy the same (or similar) energy balance and mass conservation as those satisfied by the Navier-Stokes equations. All of our theoretical findings are illustrated and tested in numerical simulations of a 2D flow past a circular cylinder at a Reynolds number Re = 100. First, we investigate the ROM energy balance. We show that using the snapshot average for the centering trajectory (which is a popular treatment of nonhomogeneous boundary conditions in ROMs) yields an incorrect energy balance. Then, we propose a new approach, in which we replace the snapshot average with the Stokes extension. Theoretically, the Stokes extension produces an accurate energy balance. Numerically, the Stokes extension yields more accurate results than the standard snapshot average, especially for longer time intervals. Our second contribution centers around ROM mass conservation. We consider ROMs created using two types of finite elements: the standard Taylor-Hood (TH) element, which satisfies the mass conservation weakly, and the Scott-Vogelius (SV) element, which satisfies the mass conservation pointwise. Theoretically, the error estimates for the SV-ROM are sharper than those for the TH-ROM. Numerically, the SV-ROM yields significantly more accurate results, especially for coarser meshes and longer time intervals.

  2. Determining the Ability of Terrestrial Time-Lapse Microgravity Surveying on a Glacier to Find Summer Mass Balance Using Gravitational Modeling

    NASA Astrophysics Data System (ADS)

    Young, Emma V.

    Mass loss of alpine glaciers presently account for about half of the cryospheric contribution to the global sea-level rise. Mass balance of alpine glaciers has predominantly been monitored by; (1) glaciological and hydrological methods, and (2) satellite gravimetric methods using data from NASA's Gravity Recovery and Climate Experiment (GRACE) satellite mission. However, the former can be logistically costly and have large extrapolation errors: measurements taken at monthly temporal scales are expensive and have a spatial resolution of roughly one kilometer. The latter provides monthly mass-balance estimates of aggregates of alpine glaciers, although the spatial resolution ( 300 km) is far too coarse for assessing individual glaciers' mass balance. Ground-based, time-lapse microgravity measurements can potentially overcome some of the disadvantages of the glaciological, hydrological, and satellite gravitational methods for assessing mass changes and their spatial distribution on a single glacier. Gravity models were utilized to predict the gravity signals of the summer-time mass balance, changes in the seasonal snow cover outside of the glacier, and the vertical gravity gradient (VGG) needed for the free-air correction on Wolverine Glacier, AK. The modeled gravity signal of the summer-time mass balance (average of -0.237 mGal) is more than an order of magnitude larger than the uncertainty of conventional relative gravimeters (+/- 0.007 mGal). Therefore, modeling predict that the time-lapse gravitational method could detect the summer-time mass balance on Wolverine Glacier. The seasonal snow effect was shown to have the greatest influence ( -0.15 mGal) on the outer 100 m boundary of the glacier and minimal effect ( -0.02 mGal) towards the center, both larger than the uncertainty of relative gravimeters. The VGG has a positive deviation, about -0.1 to -0.2 mGal/m, from the normal VGG (-0.309 mGal/m). Thus, seasonal snow effect and VGG need to be correctly accounted for when processing gravity measurements to derive the residual gravity signal of the glacier mass balance. Accurate measurements of elevation changes, seasonal snow depth, and the VGG should be performed in future gravity surveys of glaciers.

  3. The importance of accurate glacier albedo for estimates of surface mass balance on Vatnajökull: Evaluating the surface energy budget in a Regional Climate Model with automatic weather station observations

    NASA Astrophysics Data System (ADS)

    Steffensen Schmidt, Louise; Aðalgeirsdóttir, Guðfinna; Guðmundsson, Sverrir; Langen, Peter L.; Pálsson, Finnur; Mottram, Ruth; Gascoin, Simon; Björnsson, Helgi

    2017-04-01

    The evolution of the surface mass balance of Vatnajökull ice cap, Iceland, from 1981 to the present day is estimated by using the Regional Climate Model HIRHAM5 to simulate the surface climate. A new albedo parametrization is used for the simulation, which describes the albedo with an exponential decay with time. In addition, it utilizes a new background map of the ice albedo created from MODIS data. The simulation is validated against observed daily values of weather parameters from five Automatic Weather Stations (AWSs) from 2001-2014, as well as mass balance measurements from 1995-2014. The modelled albedo is overestimated at the AWS sites in the ablation zone, which we attribute to an overestimation of the thickness of the snow layer and the model not accounting for dust and ash deposition during dust storms and volcanic eruptions. A comparison with the specific summer, winter, and annual mass balance for all Vatnajökull from 1995-2014 shows a good overall fit during the summer, with the model underestimating the balance by only 0.04 m w. eq. on average. The winter balance, on the other hand, is overestimated by 0.5 m w. eq. on average, mostly due to an overestimation of the precipitation at the highest areas of the ice cap. A simple correction of the accumulation at these points reduced the error to 0.15 m w. eq. The model captures the evolution of the specific mass balance well, for example it captures an observed shift in the balance in the mid-1990s, which gives us confidence in the results for the entire model run. Our results show the importance of bare ice albedo for modelled mass balance and that processes not currently accounted for in RCMs, such as dust storms, are an important source of uncertainty in estimates of the snow melt rate.

  4. Balancing the books - a statistical theory of prospective budgets in Earth System science

    NASA Astrophysics Data System (ADS)

    O'Kane, J. Philip

    An honest declaration of the error in a mass, momentum or energy balance, ɛ, simply raises the question of its acceptability: "At what value of ɛ is the attempted balance to be rejected?" Answering this question requires a reference quantity against which to compare ɛ. This quantity must be a mathematical function of all the data used in making the balance. To deliver this function, a theory grounded in a workable definition of acceptability is essential. A distinction must be drawn between a retrospective balance and a prospective budget in relation to any natural space-filling body. Balances look to the past; budgets look to the future. The theory is built on the application of classical sampling theory to the measurement and closure of a prospective budget. It satisfies R.A. Fisher's "vital requirement that the actual and physical conduct of experiments should govern the statistical procedure of their interpretation". It provides a test, which rejects, or fails to reject, the hypothesis that the closing error on the budget, when realised, was due to sampling error only. By increasing the number of measurements, the discrimination of the test can be improved, controlling both the precision and accuracy of the budget and its components. The cost-effective design of such measurement campaigns is discussed briefly. This analysis may also show when campaigns to close a budget on a particular space-filling body are not worth the effort for either scientific or economic reasons. Other approaches, such as those based on stochastic processes, lack this finality, because they fail to distinguish between different types of error in the mismatch between a set of realisations of the process and the measured data.

  5. Estimating glacier response times and disequilibrium in a changing climate

    NASA Astrophysics Data System (ADS)

    Christian, J. E.; Koutnik, M.; Roe, G.

    2017-12-01

    Glaciers respond to climate variations according to a characteristic timescale that, for most mountain glaciers, is on the order of 10—100 years. An important consequence of this multi-decadal memory is that a glacier's transient response to a climate trend exhibits a persistent lag behind the equilibrium response. In the context of anthropogenic warming, this means that most glaciers are currently well out of equilibrium, and that a substantial amount of retreat is committed even without further warming. The degree of disequilibrium depends fundamentally on the glacier response timescale, making it an important parameter to constrain. A common and robust metric for the response timescale is τ=H/bt, where H and bt are characteristic values for ice thickness and the terminus mass-balance rate, respectively. However, sparse observations, climate variability, and glacier disequilibrium make it difficult to define these characteristic values. We compare several sources of uncertainty that will affect estimates of the response timescale and thus the degree of disequilibrium. Ice thickness is poorly constrained for many glaciers, which bears directly on estimates of the response timescale. However, errors may also arise from estimating thickness and mass-balance rates in a variable climate. We assess how noisy mass balance and observed terminus fluctuations introduce sampling errors into estimates of the glacier's response timescale and the expected equilibrium response to a climate change. Additionally, the instantaneous value of τ evolves during sustained warming as the glacier thins and retreats. Perhaps counterintuitively, τ can increase if retreat into higher elevations exceeds thinning. This has implications for estimating the timescale based on currently observed geometry and mass balance. We use shallow-ice and 3-stage linear models to explore these effects with synthetic glacier geometries and climate forcings. In this way, we can diagnose the geometric and climatic sources of uncertainty in glacier response timescales and degrees of disequilibrium. Estimating these metrics from existing datasets is necessary to relate mass balance to glacier state and to anticipate future responses; our analyses will help constrain such estimates and improve understanding of their limitations.

  6. The influence of topographic feedback on a coupled mass balance and ice-flow model for Vestfonna ice-cap, Svalbard

    NASA Astrophysics Data System (ADS)

    Schäfer, Martina; Möller, Marco; Zwinger, Thomas; Moore, John

    2016-04-01

    Using a coupled simulation set-up between a by statistical climate data forced and to ice-cap resolution downscaled mass balance model and an ice-dynamic model, we study coupling effects for the Vestfonna ice cap, Nordaustlandet, Svalbard, by analysing the impacts of different imposed coupling intervals on mass-balance and sea-level rise (SLR) projections. Based on a method to estimate errors introduced by different coupling schemes, we find that neglecting the topographic feedback in the coupling leads to underestimations of 10-20% in SLR projections on century time-scales in our model compared to full coupling (i.e., exchange of properties using smallest occurring time-step). Using the same method it also is shown that parametrising mass-balance adjustment for changes in topography using lapse rates is a - in computational terms - cost-effective reasonably accurate alternative applied to an ice-cap like Vestfonna. We test the forcing imposed by different emission pathways (RCP 2.4, 4.5, 6.0 and 8.5). For most of them, over the time-period explored (2000-2100), fast-flowing outlet glaciers decrease in impacting SLR due to their deceleration and reduced mass flux as they thin and retreat from the coast, hence detaching from the ocean and thereby losing their major mass drainage mechanism, i.e., calving.

  7. Temporal and spatial variabilities of Antarctic ice mass changes inferred by GRACE in a Bayesian framework

    NASA Astrophysics Data System (ADS)

    Wang, L.; Davis, J. L.; Tamisiea, M. E.

    2017-12-01

    The Antarctic ice sheet (AIS) holds about 60% of all fresh water on the Earth, an amount equivalent to about 58 m of sea-level rise. Observation of AIS mass change is thus essential in determining and predicting its contribution to sea level. While the ice mass loss estimates for West Antarctica (WA) and the Antarctic Peninsula (AP) are in good agreement, what the mass balance over East Antarctica (EA) is, and whether or not it compensates for the mass loss is under debate. Besides the different error sources and sensitivities of different measurement types, complex spatial and temporal variabilities would be another factor complicating the accurate estimation of the AIS mass balance. Therefore, a model that allows for variabilities in both melting rate and seasonal signals would seem appropriate in the estimation of present-day AIS melting. We present a stochastic filter technique, which enables the Bayesian separation of the systematic stripe noise and mass signal in decade-length GRACE monthly gravity series, and allows the estimation of time-variable seasonal and inter-annual components in the signals. One of the primary advantages of this Bayesian method is that it yields statistically rigorous uncertainty estimates reflecting the inherent spatial resolution of the data. By applying the stochastic filter to the decade-long GRACE observations, we present the temporal variabilities of the AIS mass balance at basin scale, particularly over East Antarctica, and decipher the EA mass variations in the past decade, and their role in affecting overall AIS mass balance and sea level.

  8. A new approach to enforce element-wise mass/species balance using the augmented Lagrangian method

    NASA Astrophysics Data System (ADS)

    Chang, J.; Nakshatrala, K.

    2015-12-01

    The least-squares finite element method (LSFEM) is one of many ways in which one can discretize and express a set of first ordered partial differential equations as a mixed formulation. However, the standard LSFEM is not locally conservative by design. The absence of this physical property can have serious implications in the numerical simulation of subsurface flow and transport. Two commonly employed ways to circumvent this issue is through the Lagrange multiplier method, which explicitly satisfies the element-wise divergence by introducing new unknowns, or through appending a penalty factor to the continuity constraint, which reduces the violation in the mass balance. However, these methodologies have some well-known drawbacks. Herein, we propose a new approach to improve the local balance of species/mass balance. The approach augments constraints to a least-square function by a novel mathematical construction of the local species/mass balance, which is different from the conventional ways. The resulting constrained optimization problem is solved using the augmented Lagrangian, which corrects the balance errors in an iterative fashion. The advantages of this methodology are that the problem size is not increased (thus preserving the symmetry and positive definite-ness) and that one need not provide an accurate guess for the initial penalty to reach a prescribed mass balance tolerance. We derive the least-squares weighting needed to ensure accurate solutions. We also demonstrate the robustness of the weighted LSFEM coupled with the augmented Lagrangian by solving large-scale heterogenous and variably saturated flow through porous media problems. The performance of the iterative solvers with respect to various user-defined augmented Lagrangian parameters will be documented.

  9. Regionally Optimized GRACE Processing and Inter-comparison on the Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Mohajerani, Y.; Velicogna, I.; Sutterley, T. C.; Rignot, E. J.

    2017-12-01

    The Antarctic ice sheet is losing mass at an accelerating rate, with a sea level contribution that changed from 0.08mm/yr from 1992 to 2001 to 0.4mm/yr from 2002 to 2011. While most of this contribution comes from West Antarctica, Totten Glacier has the largest discharge of ice in East Antarctica, with a sea level rise potential of 3.9 m. Furthermore, the drainage basin of Totten Glacier, along the neighboring Moscow University Glacier are below sea level, extending hundreds of kilometers inland. Therefore, obtaining regional estimates of both western and eastern Antarctic basins are of critical importance. The GRACE (Gravity Recovery and Climate Experiment) satellite has been providing mass balance time-series from geoid changes since 2002. Several mascon and harmonic GRACE solutions are available from different processing centers. Here, we evaluate the various solutions across the ice sheet and a new set of regionally optimized mascons to study the mass balance of Totten and Moscow University glaciers. We obtain a trend of -16.5±4.1Gt/yr with an acceleration of -2.0±1.8Gt/yr2 for the two glaciers for the period April 2002 to December 2016 using the Ivins et al (2013) GIA model (errors include leakage, GIA, and regression errors). We compare the results with the Mass Budget Method that combines ice discharge (D) and surface mass balance (SMB) from two models: 1) RACMO2.3, and 2) MAR3.6.4. MBM/RACMO2.3 shows the best agreement with the GRACE estimates. Within the common period from April 2002 to December 2015, the MBM/RACMO2.3 and MAR3.6.4 results are -15.6±1.8Gt/yr and -6.7±1.5Gt/yr respectively, while the GRACE time-series has a trend of -14.8±2.7 Gt/yr. We extend the study to the Getz Ice Shelf, the third largest ice shelf in West Antarctica after Ronne and Ross West ice shelves. We compare our gravity-derived mass estimates, the mass budget estimates, and the volume changes from altimetry data to compare the estimates and obtain a multi-sensor assessment of ice sheet mass balance.

  10. Osteoporosis and gait and balance disturbances in older sarcopenic obese New Zealanders.

    PubMed

    Waters, D L; Hale, L; Grant, A M; Herbison, P; Goulding, A

    2010-02-01

    Bone, muscle, and fat may affect gait and balance in older adults. Osteoporosis was prevalent in low muscle mass participants and related to gait and balance deficits. Low muscle combined with high fat mass had more functional deficits and poorer bone health, which has implications for falls risk and fractures. Decreasing bone density and muscle mass and increasing fat mass may act synergistically to affect gait and balance in older adults. One hundred eighty-three older adults (age 72.7 +/- 6 years, range 56-93; body mass index 28.2 +/- 4.9, range 16.6-46.0) were recruited from a New Zealand falls prevention intervention trial. Total and appendicular skeletal muscle mass (ASM), percent fat, and bone mineralization were assessed by dual energy X-ray absorptiometry and used to characterize normal lean (NL, n = 51), sarcopenic (SS, n = 18), sarcopenic obese (SO, n = 29), and obese (OO, n = 85) phenotypes. Functional performance was assessed using timed up and go, chair stand, single leg stand, and step test. Regression models were adjusted for age, sex, medications, and physical activity. Femoral neck osteoporosis was present in 22% SS, 17% SO, 12% NL, and 7% OO. Femoral neck osteoporosis with low ASM predicted poor chair stand performance (beta -3.3, standard error 1.6, p = 0.04). SO scored lowest on the chair stand (p = 0.03) and step test (p = 0.03). Higher ASM predicted faster timed up and go performance (p = 0.001). Osteoporosis was prevalent in low ASM groups (SS and SO) and related to gait and balance deficits, particularly in the SO. This has implications for falls risk, fractures, and interventions.

  11. Comparison of SWAT Hydrological Model Results from TRMM 3B42, NEXRAD Stage III, and Oklahoma Mesonet Data

    NASA Astrophysics Data System (ADS)

    Tobin, K. J.; Bennett, M. E.

    2008-05-01

    The Cimarron River Basin (3110 sq km) between Dodge and Guthrie, Oklahoma is located in northern Oklahoma and was used as a test bed to compare the hydrological model performance associated with different methods of precipitation quantification. The Soil and Water Assessment Tool (SWAT) was selected for this project, which is a comprehensive model that, besides quantifying watershed hydrology, can simulate water quality as well as nutrient and sediment loading within stream reaches. An advantage of this location is the extensive monitoring of MET parameters (precipitation, temperature, relative humidity, wind speed, solar radiation) afforded by the Oklahoma Mesonet, which has been documented to improve the performance of SWAT. The utility of TRMM 3B42 and NEXRAD Stage III data in supporting the hydrologic modeling of Cimarron River Basin is demonstrated. Minor adjustments to selected model parameters were made to make parameter values more realistic based on results from previous studies and information and to more realistically simulate base flow. Significantly, no ad hoc adjustments to major parameters such as Curve Number or Available Soil Water were made and robust simulations were obtained. TRMM and NEXRAD data are aggregated into an average daily estimate of precipitation for each TRMM grid cell (0.25 degree X 0.25 degree). Preliminary simulation of stream flow (year 2004 to 2006) in the Cimarron River Basin yields acceptable monthly results with very little adjustment of model parameters using TRMM 3B42 precipitation data (mass balance error = 3 percent; Monthly Nash-Sutcliffe efficiency coefficients (NS) = 0.77). However, both Oklahoma Mesonet rain gauge (mass balance error = 13 percent; Monthly NS = 0.91; Daily NS = 0.64) and NEXRAD Stage III data (mass balance error = -5 percent; Monthly NS = 0.95; Daily NS = 0.69) produces superior simulations even at a sub-monthly time scale; daily results are time averaged over a three day period. Note that all types of precipitation data perform better than a synthetic precipitation dataset generated using a weather simulator (mass balance error = 12 percent; Monthly NS = 0.40). Our study again documents that merged precipitation satellite products, such as TRMM 3B42, can support semi-distributed hydrologic modeling at the watershed scale. However, apparently additional work is required to improve TRMM precipitation retrievals over land to generate a product that yields more robust hydrological simulations especially at finer time scales. Additionally, ongoing work in this basin will compare TRMM results with stream flow model results generated using CMORPH precipitation estimates. Finally, in the future we plan to use simulated, semi-distributed soil moisture values determined by SWAT for comparison with gridded soil moisture estimates from TRMM-TMI that should provide further validation of our modeling efforts.

  12. Contributions to lateral balance control in ambulatory older adults.

    PubMed

    Sparto, Patrick J; Newman, A B; Simonsick, E M; Caserotti, P; Strotmeyer, E S; Kritchevsky, S B; Yaffe, K; Rosano, C

    2018-06-01

    In older adults, impaired control of standing balance in the lateral direction is associated with the increased risk of falling. Assessing the factors that contribute to impaired standing balance control may identify areas to address to reduce falls risk. To investigate the contributions of physiological factors to standing lateral balance control. Two hundred twenty-two participants from the Pittsburgh site of the Health, Aging and Body Composition Study had lateral balance control assessed using a clinical sensory integration balance test (standing on level and foam surface with eyes open and closed) and a lateral center of pressure tracking test using visual feedback. The center of pressure was recorded from a force platform. Multiple linear regression models examined contributors of lateral control of balance performance, including concurrently measured tests of lower extremity sensation, knee extensor strength, executive function, and clinical balance tests. Models were adjusted for age, body mass index, and sex. Larger lateral sway during the sensory integration test performed on foam was associated with longer repeated chair stands time. During the lateral center of pressure tracking task, the error in tracking increased at higher frequencies; greater error was associated with worse executive function. The relationship between sway performance and physical and cognitive function differed between women and men. Contributors to control of lateral balance were task-dependent. Lateral standing performance on an unstable surface may be more dependent upon general lower extremity strength, whereas visual tracking performance may be more dependent upon cognitive factors. Lateral balance control in ambulatory older adults is associated with deficits in strength and executive function.

  13. An Iterated Global Mascon Solution with Focus on Land Ice Mass Evolution

    NASA Technical Reports Server (NTRS)

    Luthcke, S. B.; Sabaka, T.; Rowlands, D. D.; Lemoine, F. G.; Loomis, B. D.; Boy, J. P.

    2012-01-01

    Land ice mass evolution is determined from a new GRACE global mascon solution. The solution is estimated directly from the reduction of the inter-satellite K-band range rate observations taking into account the full noise covariance, and formally iterating the solution. The new solution increases signal recovery while reducing the GRACE KBRR observation residuals. The mascons are estimated with 10-day and 1-arc-degree equal area sampling, applying anisotropic constraints for enhanced temporal and spatial resolution of the recovered land ice signal. The details of the solution are presented including error and resolution analysis. An Ensemble Empirical Mode Decomposition (EEMD) adaptive filter is applied to the mascon solution time series to compute timing of balance seasons and annual mass balances. The details and causes of the spatial and temporal variability of the land ice regions studied are discussed.

  14. Antarctic and Greenland ice sheet mass balance products from satellite gravimetry

    NASA Astrophysics Data System (ADS)

    Horwath, Martin; Groh, Andreas; Horvath, Alexander; Forsberg, René; Meister, Rakia; Barletta, Valentina R.; Shepherd, Andrew

    2017-04-01

    Because of their important role in the Earth's climate system, ESA's Climate Change Initiative (CCI) has identified both the Antarctic Ice Sheet (AIS) and the Greenland Ice Sheet (GIS) as Essential Climate Variables (ECV). Since respondents of a user survey indicated that the ice sheet mass balance is one of the most important ECV data products needed to better understand climate change, the AIS_cci and the GIS_cci project provide Gravimetric Mass Balance (GMB) products based on satellite gravimetry data. The GMB products are derived from GRACE (Gravity Recovery and Climate Experiment) monthly solutions of release ITSG-Grace2016 produced at TU Graz. GMB basin products (i.e. time series of monthly mass changes for the entire ice sheets and selected drainage basins) and GMB gridded products (e.g. mass balance estimates with a formal resolution of about 50km, covering the entire ice sheets) are generated for the period from 2002 until present. The first GMB product was released in mid 2016. Here we present an extended and updated version of the ESA CCI GMB products, which are freely available through data portals hosted by the projects (https://data1.geo.tu-dresden.de/ais_gmb, http://products.esa-icesheets-cci.org/products/downloadlist/GMB). Since the initial product release, the applied processing strategies have been improved in order to further reduce GRACE errors and to enhance the separation of signals super-imposed to the ice mass changes. While a regional integration approach is used by the AIS_cci project, the GMB products of the GIS_cci project are derived using a point mass inversion. The differences between both approaches are investigated through the example of the GIS, where an alternative GMB product was generated using the regional integration approach implemented by the AIS_cci. Finally, we present the latest mass balance estimates for both ice sheets as well as their corresponding contributions to global sea level rise.

  15. Re-assessment of the mass balance of the Abbot and Getz sectors of West Antarctica

    NASA Astrophysics Data System (ADS)

    Chuter, S.; Bamber, J. L.

    2016-12-01

    Large discrepancies exist in mass balance estimates for the Getz and Abbot drainage basins, primarily due to previous poor knowledge of ice thickness at the grounding line, poor coverage by previous altimetry missions and signal leakage issues for GRACE. Large errors arise when using ice thickness measurements derived from ERS-1 and/or ICESat altimetry data due to poor track spacing, `loss of lock' issues near the grounding line and the complex morphology of these shelves, requiring fine resolution to derive robust and accurate elevations close to the grounding line. However, the advent of CryoSat-2 with its unique orbit and SARIn mode of operation has overcome these issues and enabled the determination of ice shelf thickness at a much higher accuracy than possible from previous satellites, particularly within the grounding zone. Here we present a contemporary estimate of ice sheet mass balance for the both the Getz and Abbot drainage basins. This is achieved through the use of contemporary velocity data derived from Landsat feature tracking and the use of CryoSat-2 derived ice thickness measurements. Additionally, we use this new ice thickness dataset to reassess mass balance estimates from 2008/2009, where there were large disparities between results from radar altimetry and Input-Output methodologies over the Abbot region in particular. These contemporary results are compared with other present day estimates from gravimetry and altimetry elevation changes.

  16. The response of glaciers to climate change

    NASA Astrophysics Data System (ADS)

    Klok, Elisabeth Jantina

    2003-12-01

    The research described in this thesis addresses two aspects of the response of glaciers to climate change. The first aspect deals with the physical processes that govern the interaction between glaciers and climate change and was treated by (1) studying the spatial and temporal variation of the glacier albedo from satellite images, (2) investigating the spatial distribution of the surface energy and mass balance of a glacier, and (3) investigating the sensitivity of the mass balance to climate change. All of these studies are focused on Morteratschgletscher in Switzerland. The second aspect is the climatic interpretation of glacier length fluctuations. This was studied by developing a model that calculates historical mass balance records from global glacier length fluctuations. To increase our understanding of the variations in glacier albedo, we derived surface albedos from 12 Landsat images. This constituted a stringent test for the retrieval methodology applied because Morteratschgletscher is very steep and rugged, which strongly influences the satellite signal. We aimed to retrieve surface albedos while taking into account all important processes that influence the relationship between the satellite signal and the surface albedo, e.g. the topographic effects on incoming solar radiation, and the anisotropic nature of the reflection pattern of ice and snow surfaces. We then analysed the spatial and temporal pattern of the surface albedo. We developed a two-dimensional mass balance model based on the surface energy balance to study the spatial distribution of the energy and mass balance fluxes of Morteratschgletscher. Meteorological data from weather stations in the vicinity of Morteratschgletscher serve as input for the model. We corrected incoming solar radiation for shading, aspect, slope, reflection from surrounding slopes, and obstruction of the sky. Ignoring these effects results in an increase in solar radiation of 37%, causing a decrease in the mass balance of 0.34 m w.e. We modelled the mass balance for 1999 and 2000 and analysed the spatial distribution. We then ran the model for a period of 23 years and calculated the mass balance sensitivity to climate change by perturbing air temperature and precipitation. The mass balance sensitivity to temperature and precipitation are ˜0.59 m w.e. a-1 K-1 and 0.17 m w.e. a-1 per 10 percent respectively. We also used three other albedo parameterisations to calculate the mass balance sensitivity since albedo parameterisations are often regarded as a main source of error in mass balance models. We concluded that an accurate estimate of the mass balance sensitivity requires a parameterisation that captures the process of a decreasing snow albedo when a snow pack gets older or thinner. To extract a climate signal from worldwide glacier length fluctuations, we developed a simple model. The climate signal is represented as a reconstruction of the mass balance and the equilibrium line altitude (ELA). The model was tested on seventeen European glacier length records and then applied to nineteen glacier length records from different parts of the world. Between 1910 and 1959, the average increase in the reconstructed ELAs is 33 m. This implies that during the first half of the twentieth century, the climate was warmer or drier than before. The reconstructed ELAs decrease to lower elevations after 1960 and up till 1980, when most of the reconstructions end. The results can be translated into a global temperature increase of about 0.8 K for the period 1910-1959

  17. Variable Acceleration Force Calibration System (VACS)

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.; Parker, Peter A.; Johnson, Thomas H.; Landman, Drew

    2014-01-01

    Conventionally, force balances have been calibrated manually, using a complex system of free hanging precision weights, bell cranks, and/or other mechanical components. Conventional methods may provide sufficient accuracy in some instances, but are often quite complex and labor-intensive, requiring three to four man-weeks to complete each full calibration. To ensure accuracy, gravity-based loading is typically utilized. However, this often causes difficulty when applying loads in three simultaneous, orthogonal axes. A complex system of levers, cranks, and cables must be used, introducing increased sources of systematic error, and significantly increasing the time and labor intensity required to complete the calibration. One aspect of the VACS is a method wherein the mass utilized for calibration is held constant, and the acceleration is changed to thereby generate relatively large forces with relatively small test masses. Multiple forces can be applied to a force balance without changing the test mass, and dynamic forces can be applied by rotation or oscillating acceleration. If rotational motion is utilized, a mass is rigidly attached to a force balance, and the mass is exposed to a rotational field. A large force can be applied by utilizing a large rotational velocity. A centrifuge or rotating table can be used to create the rotational field, and fixtures can be utilized to position the force balance. The acceleration may also be linear. For example, a table that moves linearly and accelerates in a sinusoidal manner may also be utilized. The test mass does not have to move in a path that is parallel to the ground, and no re-leveling is therefore required. Balance deflection corrections may be applied passively by monitoring the orientation of the force balance with a three-axis accelerometer package. Deflections are measured during each test run, and adjustments with respect to the true applied load can be made during the post-processing stage. This paper will present the development and testing of the VASC concept.

  18. Geodetic Mass Balance of the Northern Patagonian Icefield from 2000 to 2012 using two independent methods

    NASA Astrophysics Data System (ADS)

    Dussaillant, Inés; Berthier, Etienne; Brun, Fanny

    2018-02-01

    We compare two independent estimates of the rate of elevation change and geodetic mass balance of the Northern Patagonian Icefield (NPI) between 2000 (3856 km²) and 2012 (3740 km²) from space-borne data. The first is obtained by differencing the Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) from February 2000 and a Satellite pour l’Observation de la Terre 5 (SPOT5) DEM from March 2012. The second is deduced by fitting pixel-based linear elevation trends over 118 DEMs calculated from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) stereo images acquired between 2000 and 2012. Both methods lead to similar and strongly negative icefield-wide mass balances of -1.02±0.21 and -1.06±0.14 m w.e. yr-1 respectively, which is in agreement with earlier studies. Contrasting glacier responses are observed, with individual glacier mass balances ranging from -0.15 to -2.30 m w.e. yr-1 (standard deviation = 0.49 m w.e. yr-1; N = 38). For individual glaciers, the two methods agree within error bars, except for small glaciers poorly sampled in the SPOT5 DEM due to clouds. Importantly, our study confirms the lack of penetration of the C-band SRTM radar signal into the NPI snow and firn except for a region above 2900 m a.s.l. covering less than 1% of the total area. Ignoring penetration would bias the mass balance by only 0.005 m w.e. yr-1. A strong advantage of the ASTER method is that it relies only on freely available data and can thus be extended to other glacierized areas.

  19. Impact of co-digestion on existing salt and nutrient mass balances for a full-scale dairy energy project.

    PubMed

    Camarillo, Mary Kay; Stringfellow, William T; Spier, Chelsea L; Hanlon, Jeremy S; Domen, Jeremy K

    2013-10-15

    Anaerobic digestion of manure and other agricultural waste streams with subsequent energy production can result in more sustainable dairy operations; however, importation of digester feedstocks onto dairy farms alters previously established carbon, nutrient, and salinity mass balances. Salt and nutrient mass balance must be maintained to avoid groundwater contamination and salination. To better understand salt and nutrient contributions of imported methane-producing substrates, a mass balance for a full-scale dairy biomass energy project was developed for solids, carbon, nitrogen, sulfur, phosphorus, chloride, and potassium. Digester feedstocks, consisting of thickened manure flush-water slurry, screened manure solids, sudan grass silage, and feed-waste, were tracked separately in the mass balance. The error in mass balance closure for most elements was less than 5%. Manure contributed 69.2% of influent dry matter while contributing 77.7% of nitrogen, 90.9% of sulfur, and 73.4% of phosphorus. Sudan grass silage contributed high quantities of chloride and potassium, 33.3% and 43.4%, respectively, relative to the dry matter contribution of 22.3%. Five potential off-site co-digestates (egg waste, grape pomace, milk waste, pasta waste, whey wastewater) were evaluated for anaerobic digestion based on salt and nutrient content in addition to bio-methane potential. Egg waste and wine grape pomace appeared the most promising co-digestates due to their high methane potentials relative to bulk volume. Increasing power production from the current rate of 369 kW to the design value of 710 kW would require co-digestion with either 26800 L d(-1) egg waste or 60900 kg d(-1) grape pomace. However, importation of egg waste would more than double nitrogen loading, resulting in an increase of 172% above the baseline while co-digestion with grape pomace would increase potassium by 279%. Careful selection of imported co-digestates and management of digester effluent is required to manage salt and nutrient mass loadings and reduce groundwater impacts. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. A glacier runoff extension to the Precipitation Runoff Modeling System

    USGS Publications Warehouse

    Van Beusekom, Ashley E.; Viger, Roland

    2016-01-01

    A module to simulate glacier runoff, PRMSglacier, was added to PRMS (Precipitation Runoff Modeling System), a distributed-parameter, physical-process hydrological simulation code. The extension does not require extensive on-glacier measurements or computational expense but still relies on physical principles over empirical relations as much as is feasible while maintaining model usability. PRMSglacier is validated on two basins in Alaska, Wolverine, and Gulkana Glacier basin, which have been studied since 1966 and have a substantial amount of data with which to test model performance over a long period of time covering a wide range of climatic and hydrologic conditions. When error in field measurements is considered, the Nash-Sutcliffe efficiencies of streamflow are 0.87 and 0.86, the absolute bias fractions of the winter mass balance simulations are 0.10 and 0.08, and the absolute bias fractions of the summer mass balances are 0.01 and 0.03, all computed over 42 years for the Wolverine and Gulkana Glacier basins, respectively. Without taking into account measurement error, the values are still within the range achieved by the more computationally expensive codes tested over shorter time periods.

  1. Wall shear stress measurements using a new transducer

    NASA Technical Reports Server (NTRS)

    Vakili, A. D.; Wu, J. M.; Lawing, P. L.

    1986-01-01

    A new instrument has been developed for direct measurement of wall shear stress. This instrument is simple and symmetric in design with small moving mass and no internal friction. Features employed in the design of this instrument eliminate most of the difficulties associated with the traditional floating element balances. Vibration problems associated with the floating element skin friction balances have been found to be minimized by the design features and optional damping provided. The unique design of this instrument eliminates or reduces the errors associated with conventional floating-element devices: such as errors due to gaps, pressure gradient, acceleration, heat transfer and temperature change. The instrument is equipped with various sensing systems and the output signal is a linear function of the wall shear stress. Measurement made in three different tunnels show good agreement with theory and data obtained by the floating element devices.

  2. Reducing errors in aircraft atmospheric inversion estimates of point-source emissions: the Aliso Canyon natural gas leak as a natural tracer experiment

    NASA Astrophysics Data System (ADS)

    Gourdji, S. M.; Yadav, V.; Karion, A.; Mueller, K. L.; Conley, S.; Ryerson, T.; Nehrkorn, T.; Kort, E. A.

    2018-04-01

    Urban greenhouse gas (GHG) flux estimation with atmospheric measurements and modeling, i.e. the ‘top-down’ approach, can potentially support GHG emission reduction policies by assessing trends in surface fluxes and detecting anomalies from bottom-up inventories. Aircraft-collected GHG observations also have the potential to help quantify point-source emissions that may not be adequately sampled by fixed surface tower-based atmospheric observing systems. Here, we estimate CH4 emissions from a known point source, the Aliso Canyon natural gas leak in Los Angeles, CA from October 2015–February 2016, using atmospheric inverse models with airborne CH4 observations from twelve flights ≈4 km downwind of the leak and surface sensitivities from a mesoscale atmospheric transport model. This leak event has been well-quantified previously using various methods by the California Air Resources Board, thereby providing high confidence in the mass-balance leak rate estimates of (Conley et al 2016), used here for comparison to inversion results. Inversions with an optimal setup are shown to provide estimates of the leak magnitude, on average, within a third of the mass balance values, with remaining errors in estimated leak rates predominantly explained by modeled wind speed errors of up to 10 m s‑1, quantified by comparing airborne meteorological observations with modeled values along the flight track. An inversion setup using scaled observational wind speed errors in the model-data mismatch covariance matrix is shown to significantly reduce the influence of transport model errors on spatial patterns and estimated leak rates from the inversions. In sum, this study takes advantage of a natural tracer release experiment (i.e. the Aliso Canyon natural gas leak) to identify effective approaches for reducing the influence of transport model error on atmospheric inversions of point-source emissions, while suggesting future potential for integrating surface tower and aircraft atmospheric GHG observations in top-down urban emission monitoring systems.

  3. Stability improvement of a four cable-driven parallel manipulator using a center of mass balance system

    NASA Astrophysics Data System (ADS)

    Salafian, Iman; Stewart, Blake; Newman, Matthew; Zygielbaum, Arthur I.; Terry, Benjamin

    2017-04-01

    A four cable-driven parallel manipulator (CDPM), consisting of sophisticated spectrometers and imagers, is under development for use in acquiring phenotypic and environmental data over an acre-sized crop field. To obtain accurate and high quality data from the instruments, the end effector must be stable during sensing. One of the factors that reduces stability is the center of mass offset of the end effector, which can cause a pendulum effect or undesired tilt angle. The purpose of this work is to develop a system and method for balancing the center of mass of a 12th-scale CDPM to minimize vibration that can cause error in the acquired data. A simple method for balancing the end effector is needed to enable end users of the CDPM to arbitrarily add and remove sensors and imagers from the end effector as their experiments may require. A Center of Mass Balancing System (CMBS) is developed in this study which consists of an adjustable system of weights and a gimbal for tilt mitigation. An electronic circuit board including an orientation sensor, wireless data communication, and load cells was designed to validate the CMBS. To measure improvements gained by the CMBS, several static and dynamic experiments are carried out. In the experiments, the dynamic vibrations due to the translational motion and static orientation were measured with and without CMBS use. The results show that the CMBS system improves the stability of the end-effector by decreasing vibration and static tilt angle.

  4. Effects of Diaphragmatic Breathing Patterns on Balance: A Preliminary Clinical Trial.

    PubMed

    Stephens, Rylee J; Haas, Mitchell; Moore, William L; Emmil, Jordan R; Sipress, Jayson A; Williams, Alex

    The purpose of this study was to determine the feasibility of performing a larger study to determine if training in diaphragmatic breathing influences static and dynamic balance. A group of 13 healthy persons (8 men, 5 women), who were staff, faculty, or students at the University of Western States participated in an 8-week breathing and balance study using an uncontrolled clinical trial design. Participants were given a series of breathing exercises to perform weekly in the clinic and at home. Balance and breathing were assessed at the weekly clinic sessions. Breathing was evaluated with Liebenson's breathing assessment, static balance with the Modified Balance Error Scoring System, and dynamic balance with OptoGait's March in Place protocol. Improvement was noted in mean diaphragmatic breathing scores (1.3 to 2.6, P < .001), number of single-leg stance balance errors (7.1 to 3.8, P = .001), and tandem stance balance errors (3.2 to 0.9, P = .039). A decreasing error rate in single-leg stance was associated with improvement in breathing score within participants over the 8 weeks of the study (-1.4 errors/unit breathing score change, P < .001). Tandem stance performance did not reach statistical significance (-0.5 error/unit change, P = .118). Dynamic balance was insensitive to balance change, being error free for all participants throughout the study. This proof-of-concept study indicated that promotion of a costal-diaphragmatic breathing pattern may be associated with improvement in balance and suggests that a study of this phenomenon using an experimental design is feasible. Copyright © 2017. Published by Elsevier Inc.

  5. How Well do we Know Near-Surface Density When Determining Mass Balance by the Geodetic Method?

    NASA Astrophysics Data System (ADS)

    Kuhn, M. H.; Matzi, E.

    2005-12-01

    From a data set of firn pits in the accumulation area of Hintereisferner in the years 1964 - 2002 the behavior of density and water equivalent was analyzed with a view to estimating the potential errors in the application of the geodetic method. Since annual specific balance ranged from 100 to 3300 mm w.e. the profiles were scaled to total depth. For the uppermost 10% of the annual deposit at a typical location the 1964-2002 mean density would be 350 kg/m-3 with a standard deviation of 110 kg/m-3; for the 10% layer at the base of the annual snowpack the respective figures are 510 +- 30 kg/m-3. The normalized long term means of an ensemble of 9 pits ranged from 310 to 380 kg/m-3 in the top layer and from 510 to 540 kg/m-3 in the bottom layer. When one outlier is removed the the range in the bottom layer reduces to 525 to 540 kg/m-3. This small local variance encourages the use of the geodetic method. The comparison of elevation models of 1969 and 1997 yields a mass change that agrees very well with the results of the glaciological method provided the volume change is converted to mass with a density of 900 kg/m-3. While this may be true for the entire glacier on long terms, it will fail for individual years in the accumulation area. Possible errors are calculated from the data set emphasizing the role of year to year changes of specific balance and accumulation area ratio.

  6. Surface mass balance of Greenland mountain glaciers and ice caps

    NASA Astrophysics Data System (ADS)

    Benson, R. J.; Box, J. E.; Bromwich, D. H.; Wahr, J. M.

    2009-12-01

    Mountain glaciers and ice caps contribute roughly half of eustatic sea-level rise. Greenland has thousands of small mountain glaciers and several ice caps > 1000 sq. km that have not been included in previous mass balance calculations. To include small glaciers and ice caps in our study, we use Polar WRF, a next-generation regional climate data assimilation model is run at grid resolution less than 10 km. WRF provides surface mass balance data at sufficiently high resolution to resolve not only the narrow ice sheet ablation zone, but provides information useful in downscaling melt and accumulation rates on mountain glaciers and ice caps. In this study, we refine Polar WRF to simulate a realistic surface energy budget. Surface melting is calculated in-line from surface energy budget closure. Blowing snow sublimation is computed in-line. Melt water re-freeze is calculated using a revised scheme. Our results are compared with NASA's Gravity Recovery and Climate Experiment (GRACE) and associated error is calculated on a regional and local scale with validation from automated weather stations (AWS), snow pits and ice core data from various regions along the Greenland ice sheet.

  7. Rapid Ice Loss at Vatnajokull,Iceland Since Late 1990s Constrained by Synthetic Aperture Radar Interferometry

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Amelung, F.; Dixon, T. H.; Wdowinski, S.

    2012-12-01

    Synthetic aperture radar interferometry time series is applied over Vatnajokull, Iceland by using 15 years ERS data. Ice loss at Vatnajokull accelerates since late 1990s especially after 21th century. Clear uplift signal due to ice mass loss is detected. The rebound signal is generally linear and increases a little bit after 2000. The relative annual velocity (GPS station 7485 as reference) is about 12 mm/yr at the ice cap edge, which matches the previous studies using GPS. The standard deviation compared to 11 GPS stations in this area is about 2 mm/yr. A relative-value modeling method ignoring the effect of viscous flow is chosen assuming elastic half space earth. The final ice loss estimation - 83 cm/yr - matches the climatology model with ground observations. Small Baseline Subsets is applied for time series analysis. Orbit error coupling with long wavelength phase trend due to horizontal plate motion is removed based on a second polynomial model. For simplicity, we do not consider atmospheric delay in this area because of no complex topography and small-scale turbulence is eliminated well after long-term average when calculating the annual mean velocity. Some unwrapping error still exits because of low coherence. Other uncertainties can be the basic assumption of ice loss pattern and spatial variation of the elastic parameters. It is the first time we apply InSAR time series for ice mass balance study and provide detailed error and uncertainty analysis. The successful of this application proves InSAR as an option for mass balance study and it is also important for validation of different ice loss estimation techniques.

  8. On the Utilization of Ice Flow Models and Uncertainty Quantification to Interpret the Impact of Surface Radiation Budget Errors on Estimates of Greenland Ice Sheet Surface Mass Balance and Regional Estimates of Mass Balance

    NASA Astrophysics Data System (ADS)

    Schlegel, N.; Larour, E. Y.; Gardner, A. S.; Lang, C.; Miller, C. E.; van den Broeke, M. R.

    2016-12-01

    How Greenland ice flow may respond to future increases in surface runoff and to increases in the frequency of extreme melt events is unclear, as it requires detailed comprehension of Greenland surface climate and the ice sheet's sensitivity to associated uncertainties. With established uncertainty quantification tools run within the framework of Ice Sheet System Model (ISSM), we conduct decadal-scale forward modeling experiments to 1) quantify the spatial resolution needed to effectively force distinct components of the surface radiation budget, and subsequently surface mass balance (SMB), in various regions of the ice sheet and 2) determine the dynamic response of Greenland ice flow to variations in components of the net radiation budget. The Glacier Energy and Mass Balance (GEMB) software is a column surface model (1-D) that has recently been embedded as a module within ISSM. Using the ISSM-GEMB framework, we perform sensitivity analyses to determine how perturbations in various components of the surface radiation budget affect model output; these model experiments allow us predict where and on what spatial scale the ice sheet is likely to dynamically respond to changes in these parameters. Preliminary results suggest that SMB should be forced at at least a resolution of 23 km to properly capture dynamic ice response. In addition, Monte-Carlo style sampling analyses reveals that the areas with the largest uncertainty in mass flux are located near the equilibrium line altitude (ELA), upstream of major outlet glaciers in the North and West of the ice sheet. Sensitivity analysis indicates that these areas are also the most vulnerable on the ice sheet to persistent, far-field shifts in SMB, suggesting that continued warming, and upstream shift in the ELA, are likely to result in increased velocities, and consequentially SMB-induced thinning upstream of major outlet glaciers. Here, we extend our investigation to consider various components of the surface radiation budget separately, in order to determine how and where errors in these fields may independently impact ice flow. This work was performed at the California Institute of Technology's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration's Cryosphere and Interdisciplinary Research in Earth Science Programs.

  9. Estimating instream constituent loads using replicate synoptic sampling, Peru Creek, Colorado

    NASA Astrophysics Data System (ADS)

    Runkel, Robert L.; Walton-Day, Katherine; Kimball, Briant A.; Verplanck, Philip L.; Nimick, David A.

    2013-05-01

    SummaryThe synoptic mass balance approach is often used to evaluate constituent mass loading in streams affected by mine drainage. Spatial profiles of constituent mass load are used to identify sources of contamination and prioritize sites for remedial action. This paper presents a field scale study in which replicate synoptic sampling campaigns are used to quantify the aggregate uncertainty in constituent load that arises from (1) laboratory analyses of constituent and tracer concentrations, (2) field sampling error, and (3) temporal variation in concentration from diel constituent cycles and/or source variation. Consideration of these factors represents an advance in the application of the synoptic mass balance approach by placing error bars on estimates of constituent load and by allowing all sources of uncertainty to be quantified in aggregate; previous applications of the approach have provided only point estimates of constituent load and considered only a subset of the possible errors. Given estimates of aggregate uncertainty, site specific data and expert judgement may be used to qualitatively assess the contributions of individual factors to uncertainty. This assessment can be used to guide the collection of additional data to reduce uncertainty. Further, error bars provided by the replicate approach can aid the investigator in the interpretation of spatial loading profiles and the subsequent identification of constituent source areas within the watershed. The replicate sampling approach is applied to Peru Creek, a stream receiving acidic, metal-rich effluent from the Pennsylvania Mine. Other sources of acidity and metals within the study reach include a wetland area adjacent to the mine and tributary inflow from Cinnamon Gulch. Analysis of data collected under low-flow conditions indicates that concentrations of Al, Cd, Cu, Fe, Mn, Pb, and Zn in Peru Creek exceed aquatic life standards. Constituent loading within the study reach is dominated by effluent from the Pennsylvania Mine, with over 50% of the Cd, Cu, Fe, Mn, and Zn loads attributable to a collapsed adit near the top of the study reach. These estimates of mass load may underestimate the effect of the Pennsylvania Mine as leakage from underground mine workings may contribute to metal loads that are currently attributed to the wetland area. This potential leakage confounds the evaluation of remedial options and additional research is needed to determine the magnitude and location of the leakage.

  10. Estimating instream constituent loads using replicate synoptic sampling, Peru Creek, Colorado

    USGS Publications Warehouse

    Runkel, Robert L.; Walton-Day, Katherine; Kimball, Briant A.; Verplanck, Philip L.; Nimick, David A.

    2013-01-01

    The synoptic mass balance approach is often used to evaluate constituent mass loading in streams affected by mine drainage. Spatial profiles of constituent mass load are used to identify sources of contamination and prioritize sites for remedial action. This paper presents a field scale study in which replicate synoptic sampling campaigns are used to quantify the aggregate uncertainty in constituent load that arises from (1) laboratory analyses of constituent and tracer concentrations, (2) field sampling error, and (3) temporal variation in concentration from diel constituent cycles and/or source variation. Consideration of these factors represents an advance in the application of the synoptic mass balance approach by placing error bars on estimates of constituent load and by allowing all sources of uncertainty to be quantified in aggregate; previous applications of the approach have provided only point estimates of constituent load and considered only a subset of the possible errors. Given estimates of aggregate uncertainty, site specific data and expert judgement may be used to qualitatively assess the contributions of individual factors to uncertainty. This assessment can be used to guide the collection of additional data to reduce uncertainty. Further, error bars provided by the replicate approach can aid the investigator in the interpretation of spatial loading profiles and the subsequent identification of constituent source areas within the watershed.The replicate sampling approach is applied to Peru Creek, a stream receiving acidic, metal-rich effluent from the Pennsylvania Mine. Other sources of acidity and metals within the study reach include a wetland area adjacent to the mine and tributary inflow from Cinnamon Gulch. Analysis of data collected under low-flow conditions indicates that concentrations of Al, Cd, Cu, Fe, Mn, Pb, and Zn in Peru Creek exceed aquatic life standards. Constituent loading within the study reach is dominated by effluent from the Pennsylvania Mine, with over 50% of the Cd, Cu, Fe, Mn, and Zn loads attributable to a collapsed adit near the top of the study reach. These estimates of mass load may underestimate the effect of the Pennsylvania Mine as leakage from underground mine workings may contribute to metal loads that are currently attributed to the wetland area. This potential leakage confounds the evaluation of remedial options and additional research is needed to determine the magnitude and location of the leakage.

  11. Selenium mass balance in the Great Salt Lake, Utah

    USGS Publications Warehouse

    Diaz, X.; Johnson, W.P.; Naftz, D.L.

    2009-01-01

    A mass balance for Se in the south arm of the Great Salt Lake was developed for September 2006 to August 2007 of monitoring for Se loads and removal flows. The combined removal flows (sedimentation and volatilization) totaled to a geometric mean value of 2079??kg Se/yr, with the estimated low value being 1255??kg Se/yr, and an estimated high value of 3143??kg Se/yr at the 68% confidence level. The total (particulates + dissolved) loads (via runoff) were about 1560??kg Se/yr, for which the error is expected to be ?? 15% for the measured loads. Comparison of volatilization to sedimentation flux demonstrates that volatilization rather than sedimentation is likely the major mechanism of selenium removal from the Great Salt Lake. The measured loss flows balance (within the range of uncertainties), and possibly surpass, the measured annual loads. Concentration histories were modeled using a simple mass balance, which indicated that no significant change in Se concentration was expected during the period of study. Surprisingly, the measured total Se concentration increased during the period of the study, indicating that the removal processes operate at their low estimated rates, and/or there are unmeasured selenium loads entering the lake. The selenium concentration trajectories were compared to those of other trace metals to assess the significance of selenium concentration trends. ?? 2008 Elsevier B.V.

  12. Groundwater discharge to wetlands driven by storm and flood events: Quantification using continuous Radon-222 and electrical conductivity measurements and dynamic mass-balance modelling

    NASA Astrophysics Data System (ADS)

    Gilfedder, B. S.; Frei, S.; Hofmann, H.; Cartwright, I.

    2015-09-01

    The dynamic response of groundwater discharge to external influences such as rainfall is an often neglected part of water and solute balances in wetlands. Here we develop a new field platform for long-term continuous 222Rn and electrical conductivity (EC) measurements at Sale Wetland, Australia to study the response of groundwater discharge to storm and flood events. The field measurements, combined with dynamic mass-balance modelling, demonstrate that the groundwater flux can increase from 3 to ∼20 mm d-1 following storms and up to 5 mm d-1 on the receding limb of floods. The groundwater pulses are likely produced by activation of local groundwater flow paths by water ponding on the surrounding flood plains. While 222Rn is a sensitive tracer for quantifying transient groundwater discharge, the mass-balance used to estimate fluxes is sensitive to parameterisation of gas exchange (k) with the atmosphere. Comparison of six equations for calculating k showed that, based on parameterisation of k alone, the groundwater flux estimate could vary by 58%. This work shows that neglecting transient processes will lead to errors in water and solute flux estimates based on infrequent point measurements. This could be particularly important for surface waters connected to contaminated or saline groundwater systems.

  13. Application of a data reconciliation method to the stoichiometric analysis of Fibrobacter succinogenes growth.

    PubMed

    Guiavarch, Erell; Pons, Agnes; Creuly, Catherine; Dussap, Claude-Gilles

    2008-12-01

    Fibrobacter succinogenes S85, a strictly anaerobic Gram-negative bacterium, was grown in continuous culture in a bioreactor at different dilution rates (0.02 to 0.092 h(-1)) on a fully synthetic culture medium with glucose as carbon source. Glucose and ammonium sulfate consumption, as well as biomass, succinate, acetate, formate, and carbohydrate production were regularly measured. The relevant biomass elemental compositions were established for each dilution rate. Robustness of the experimental information was checked by C and N mass balances estimation, which were satisfactory. A detailed overall stoichiometry analysis of the process, including all substrates and products of the culture, was proposed. Online and off-line parameters measured during the culture brought a large number of data which were weighted by their respective variance associated to the measured value. The material balance resulted in an overdetermined linear system of equations made of weighted relationships including experimental data, elemental balances (C, H, O, N, S, Na), and an additional constraint. The mass balances involved in stoichiometric equations were solved using data reconciliation and linear algebra methods to take into account error measurements. This methodology allowed to establish the overall stoichiometric equation for each dilution rate studied.

  14. Comparative Effects of Different Balance-Training-Progression Styles on Postural Control and Ankle Force Production: A Randomized Controlled Trial.

    PubMed

    Cuğ, Mutlu; Duncan, Ashley; Wikstrom, Erik

    2016-02-01

    Despite the effectiveness of balance training, the exact parameters needed to maximize the benefits of such programs remain unknown. One such factor is how individuals should progress to higher levels of task difficulty within a balance-training program. Yet no investigators have directly compared different balance-training-progression styles. To compare an error-based progression (ie, advance when proficient at a task) with a repetition-based progression (ie, advance after a set amount of repetitions) style during a balance-training program in healthy individuals. Randomized controlled trial. Research laboratory. A total of 28 (16 women, 12 men) physically healthy young adults (age = 21.57 ± 3.95 years, height = 171.60 ± 11.03 cm, weight = 72.96 ± 16.18 kg, body mass index = 24.53 ± 3.7). All participants completed 12 supervised balance-training sessions over 4 weeks. Each session consisted of a combination of dynamic unstable-surface tasks that incorporated a BOSU ball and lasted about 30 minutes. Static balance from an instrumented force plate, dynamic balance as measured via the Star Excursion Balance Test, and ankle force production in all 4 cardinal planes of motion as measured with a handheld dynamometer before and after the intervention. Selected static postural-control outcomes, dynamic postural control, and ankle force production in all planes of motion improved (P < .05). However, no differences between the progression styles were observed (P > .05) for any of the outcome measures. A 4-week balance-training program consisting of dynamic unstable-surface exercises on a BOSU ball improved dynamic postural control and ankle force production in healthy young adults. These results suggest that an error-based balance-training program is comparable with but not superior to a repetition-based balance-training program in improving postural control and ankle force production in healthy young adults.

  15. Characterization of flexure hinges for the French watt balance experiment

    NASA Astrophysics Data System (ADS)

    Pinot, Patrick; Genevès, Gérard

    2014-08-01

    In the French watt balance experiment, the translation and rotation functions must have no backlash, no friction, nor the need for lubricants. In addition errors in position and movement must be below 100 nm. Flexure hinges can meet all of these criteria. Different materials, profile shapes and machining techniques have been studied. The flexure pivots have been characterized using three techniques: 1) an optical microscope and, if necessary, a SEM to observe the surface inhomogeneities; 2) a mass comparator to determine the bending stiffness of unloaded pivots; 3) a loaded beam oscillating freely under vacuum to study the dynamic behavior of loaded pivots.

  16. Elevation and mass change of the Echaurren Norte Glacier (Central Andes, Chile) from 1955 to 2015.

    NASA Astrophysics Data System (ADS)

    Farías, David; Vivero, Sebastián; Casassa, Gino; Seehaus, Thorsten; Braun, Matthias H.

    2017-04-01

    The Echaurren Norte Glacier (33°34'S 70°07'W) is a small mountain glacier located at the upper Maipo basin, approximately 80 km to Santiago de Chile. The glacier has the longest surface mass balance record in South America (1975 to 2016). The measurements are carried out by DGA (water directory of Chile) using the direct glaciological method. The surface mass balance show continuous negative values, but exceptional positive mass balances were identified during ENSO periods. The aim of our study is complement the in-situ observations on Echaurren Norte Glacier with the geodetic mass balance measurements for the period 1955 to 2015. Our database comprises digital elevation models (DEM) from historical cartography based on aerial photographs (1955), SRTM (2000) and Lidar data. In addition, we mapped changes in glacier extent using aerial photography and multi-mission satellite data. TanDEM-X (2012-2015) and SRTM data will be used to investigate surrounding glaciers that have not such extensive and detailed coverage as Echaurren Norte Glacier. The aerial photographs from 1955 were scanned from the original negative using a photogrammetric scanner and processed on a digital photogrammetric workstation (DPW) and georeferenced with the aid of GCPs derived from the Lidar dataset. The TanDEM-X data was processed using differential interferometry using SRTM C-band DEM as reference. Differences resulting from X- and C-band penetration are considered comparing X- and C-band SRTM data. All DEMs were laterally and vertically co-registered to each other. Error assessment was done over stable ground. Our preliminary results indicate an elevation change of -42.2 m ± 4 m (1955-2015) for Echaurren Norte Glacier. The estimated averaged annual mass balance is -0.59 m water equivalent for the period 1955-2015 using a density of 0.85 kg/cm3 for volume to mass conversion. Significant changes of the surface cover were identified, with a considerable increase of the debris cover, in particular in the medial zone of the glacier with a layer approximately 0.35 m of thickness (2009-2015).

  17. The effects of error augmentation on learning to walk on a narrow balance beam.

    PubMed

    Domingo, Antoinette; Ferris, Daniel P

    2010-10-01

    Error augmentation during training has been proposed as a means to facilitate motor learning due to the human nervous system's reliance on performance errors to shape motor commands. We studied the effects of error augmentation on short-term learning of walking on a balance beam to determine whether it had beneficial effects on motor performance. Four groups of able-bodied subjects walked on a treadmill-mounted balance beam (2.5-cm wide) before and after 30 min of training. During training, two groups walked on the beam with a destabilization device that augmented error (Medium and High Destabilization groups). A third group walked on a narrower beam (1.27-cm) to augment error (Narrow). The fourth group practiced walking on the 2.5-cm balance beam (Wide). Subjects in the Wide group had significantly greater improvements after training than the error augmentation groups. The High Destabilization group had significantly less performance gains than the Narrow group in spite of similar failures per minute during training. In a follow-up experiment, a fifth group of subjects (Assisted) practiced with a device that greatly reduced catastrophic errors (i.e., stepping off the beam) but maintained similar pelvic movement variability. Performance gains were significantly greater in the Wide group than the Assisted group, indicating that catastrophic errors were important for short-term learning. We conclude that increasing errors during practice via destabilization and a narrower balance beam did not improve short-term learning of beam walking. In addition, the presence of qualitatively catastrophic errors seems to improve short-term learning of walking balance.

  18. Development of a new instrument for direct skin friction measurements

    NASA Technical Reports Server (NTRS)

    Vakili, A. D.; Wu, J. M.

    1986-01-01

    A device developed for the direct measurement of wall shear stress generated by flows is described. Simple and symmetric in design with optional small moving mass and no internal friction, the features employed in the design eliminate most of the difficulties associated with the traditional floating element balances. The device is basically small and can be made in various sizes. Vibration problems associated with the floating element skin friction balances were found to be minimized due to the design symmetry and optional damping provided. The design eliminates or reduces the errors associated with conventional floating element devices: such as errors due to gaps, pressure gradient, acceleration, heat transfer, and temperature change. The instrument is equipped with various sensing systems and the output signal is a linear function of the wall shear stress. Dynamic measurements could be made in a limited range and measurements in liquids could be performed readily. Measurement made in the three different tunnels show excellent agreement with data obtained by the floating element devices and other techniques.

  19. Pre-Test Assessment of the Upper Bound of the Drag Coefficient Repeatability of a Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.; L'Esperance, A.

    2017-01-01

    A new method is presented that computes a pre{test estimate of the upper bound of the drag coefficient repeatability of a wind tunnel model. This upper bound is a conservative estimate of the precision error of the drag coefficient. For clarity, precision error contributions associated with the measurement of the dynamic pressure are analyzed separately from those that are associated with the measurement of the aerodynamic loads. The upper bound is computed by using information about the model, the tunnel conditions, and the balance in combination with an estimate of the expected output variations as input. The model information consists of the reference area and an assumed angle of attack. The tunnel conditions are described by the Mach number and the total pressure or unit Reynolds number. The balance inputs are the partial derivatives of the axial and normal force with respect to all balance outputs. Finally, an empirical output variation of 1.0 microV/V is used to relate both random instrumentation and angle measurement errors to the precision error of the drag coefficient. Results of the analysis are reported by plotting the upper bound of the precision error versus the tunnel conditions. The analysis shows that the influence of the dynamic pressure measurement error on the precision error of the drag coefficient is often small when compared with the influence of errors that are associated with the load measurements. Consequently, the sensitivities of the axial and normal force gages of the balance have a significant influence on the overall magnitude of the drag coefficient's precision error. Therefore, results of the error analysis can be used for balance selection purposes as the drag prediction characteristics of balances of similar size and capacities can objectively be compared. Data from two wind tunnel models and three balances are used to illustrate the assessment of the precision error of the drag coefficient.

  20. Y-balance test: a reliability study involving multiple raters.

    PubMed

    Shaffer, Scott W; Teyhen, Deydre S; Lorenson, Chelsea L; Warren, Rick L; Koreerat, Christina M; Straseske, Crystal A; Childs, John D

    2013-11-01

    The Y-balance test (YBT) is one of the few field expedient tests that have shown predictive validity for injury risk in an athletic population. However, analysis of the YBT in a heterogeneous population of active adults (e.g., military, specific occupations) involving multiple raters with limited experience in a mass screening setting is lacking. The primary purpose of this study was to determine interrater test-retest reliability of the YBT in a military setting using multiple raters. Sixty-four service members (53 males, 11 females) actively conducting military training volunteered to participate. Interrater test-retest reliability of the maximal reach had intraclass correlation coefficients (2,1) of 0.80 to 0.85 with a standard error of measurement ranging from 3.1 to 4.2 cm for the 3 reach directions (anterior, posteromedial, and posterolateral). Interrater test-retest reliability of the average reach of 3 trails had an intraclass correlation coefficients (2,3) range of 0.85 to 0.93 with an associated standard error of measurement ranging from 2.0 to 3.5cm. The YBT showed good interrater test-retest reliability with an acceptable level of measurement error among multiple raters screening active duty service members. In addition, 31.3% (n = 20 of 64) of participants exhibited an anterior reach asymmetry of >4cm, suggesting impaired balance symmetry and potentially increased risk for injury. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.

  1. Systematic study of error sources in supersonic skin-friction balance measurements

    NASA Technical Reports Server (NTRS)

    Allen, J. M.

    1976-01-01

    An experimental study was performed to investigate potential error sources in data obtained with a self-nulling, moment-measuring, skin-friction balance. The balance was installed in the sidewall of a supersonic wind tunnel, and independent measurements of the three forces contributing to the balance output (skin friction, lip force, and off-center normal force) were made for a range of gap size and element protrusion. The relatively good agreement between the balance data and the sum of these three independently measured forces validated the three-term model used. No advantage to a small gap size was found; in fact, the larger gaps were preferable. Perfect element alignment with the surrounding test surface resulted in very small balance errors. However, if small protrusion errors are unavoidable, no advantage was found in having the element slightly below the surrounding test surface rather than above it.

  2. Growth monitoring and control in complex medium: a case study employing fed-batch penicillin fermentation and computer-aided on-line mass balancing.

    PubMed

    Mou, D G; Cooney, C L

    1983-01-01

    To broaden the practicality of on-line growth monitoring and control, its application in fedbatch penicillin fermentation using high corn steep liquor (CSL) concentration (53 g/L) is demonstrated. By employing a calculation method that considers the vagaries of CSL consumption, overall and instantaneous carbon-balancing equations are successfully used to calculate, on-line, the cell concentration and instantaneous specific growth rate in the penicillin production phase. As a consequence, these equations, together with a feedback control strategy, enable the computer control of glucose feed and maintenance of the preselected production-phase growth rate with error less than 0.002 h(-1).

  3. Intra-Rater and Inter-Rater Reliability of the Balance Error Scoring System in Pre-Adolescent School Children

    ERIC Educational Resources Information Center

    Sheehan, Dwayne P.; Lafave, Mark R.; Katz, Larry

    2011-01-01

    This study was designed to test the intra- and inter-rater reliability of the University of North Carolina's Balance Error Scoring System in 9- and 10-year-old children. Additionally, a modified version of the Balance Error Scoring System was tested to determine if it was more sensitive in this population ("raw scores"). Forty-six…

  4. Discrete conservation properties for shallow water flows using mixed mimetic spectral elements

    NASA Astrophysics Data System (ADS)

    Lee, D.; Palha, A.; Gerritsma, M.

    2018-03-01

    A mixed mimetic spectral element method is applied to solve the rotating shallow water equations. The mixed method uses the recently developed spectral element histopolation functions, which exactly satisfy the fundamental theorem of calculus with respect to the standard Lagrange basis functions in one dimension. These are used to construct tensor product solution spaces which satisfy the generalized Stokes theorem, as well as the annihilation of the gradient operator by the curl and the curl by the divergence. This allows for the exact conservation of first order moments (mass, vorticity), as well as higher moments (energy, potential enstrophy), subject to the truncation error of the time stepping scheme. The continuity equation is solved in the strong form, such that mass conservation holds point wise, while the momentum equation is solved in the weak form such that vorticity is globally conserved. While mass, vorticity and energy conservation hold for any quadrature rule, potential enstrophy conservation is dependent on exact spatial integration. The method possesses a weak form statement of geostrophic balance due to the compatible nature of the solution spaces and arbitrarily high order spatial error convergence.

  5. Comparative Effects of Different Balance-Training–Progression Styles on Postural Control and Ankle Force Production: A Randomized Controlled Trial

    PubMed Central

    Cuğ, Mutlu; Duncan, Ashley; Wikstrom, Erik

    2016-01-01

    Context:  Despite the effectiveness of balance training, the exact parameters needed to maximize the benefits of such programs remain unknown. One such factor is how individuals should progress to higher levels of task difficulty within a balance-training program. Yet no investigators have directly compared different balance-training–progression styles. Objective:  To compare an error-based progression (ie, advance when proficient at a task) with a repetition-based progression (ie, advance after a set amount of repetitions) style during a balance-training program in healthy individuals. Design:  Randomized controlled trial. Setting:  Research laboratory. Patients or Other Participants:  A total of 28 (16 women, 12 men) physically healthy young adults (age = 21.57 ± 3.95 years, height = 171.60 ± 11.03 cm, weight = 72.96 ± 16.18 kg, body mass index = 24.53 ± 3.7). Intervention(s):  All participants completed 12 supervised balance-training sessions over 4 weeks. Each session consisted of a combination of dynamic unstable-surface tasks that incorporated a BOSU ball and lasted about 30 minutes. Main Outcome Measure(s):  Static balance from an instrumented force plate, dynamic balance as measured via the Star Excursion Balance Test, and ankle force production in all 4 cardinal planes of motion as measured with a handheld dynamometer before and after the intervention. Results:  Selected static postural-control outcomes, dynamic postural control, and ankle force production in all planes of motion improved (P < .05). However, no differences between the progression styles were observed (P > .05) for any of the outcome measures. Conclusions:  A 4-week balance-training program consisting of dynamic unstable-surface exercises on a BOSU ball improved dynamic postural control and ankle force production in healthy young adults. These results suggest that an error-based balance-training program is comparable with but not superior to a repetition-based balance-training program in improving postural control and ankle force production in healthy young adults. PMID:26878257

  6. Comparison of Static and Dynamic Balance in Female Collegiate Soccer, Basketball, and Gymnastics Athletes

    PubMed Central

    Bressel, Eadric; Yonker, Joshua C; Kras, John; Heath, Edward M

    2007-01-01

    Context: How athletes from different sports perform on balance tests is not well understood. When prescribing balance exercises to athletes in different sports, it may be important to recognize performance variations. Objective: To compare static and dynamic balance among collegiate athletes competing or training in soccer, basketball, and gymnastics. Design: A quasi-experimental, between-groups design. Independent variables included limb (dominant and nondominant) and sport played. Setting: A university athletic training facility. Patients or Other Participants: Thirty-four female volunteers who competed in National Collegiate Athletic Association Division I soccer (n = 11), basketball (n = 11), or gymnastics (n = 12). Intervention(s): To assess static balance, participants performed 3 stance variations (double leg, single leg, and tandem leg) on 2 surfaces (stiff and compliant). For assessment of dynamic balance, participants performed multidirectional maximal single-leg reaches from a unilateral base of support. Main Outcome Measure(s): Errors from the Balance Error Scoring System and normalized leg reach distances from the Star Excursion Balance Test were used to assess static and dynamic balance, respectively. Results: Balance Error Scoring System error scores for the gymnastics group were 55% lower than for the basketball group (P = .01), and Star Excursion Balance Test scores were 7% higher in the soccer group than the basketball group (P = .04). Conclusions: Gymnasts and soccer players did not differ in terms of static and dynamic balance. In contrast, basketball players displayed inferior static balance compared with gymnasts and inferior dynamic balance compared with soccer players. PMID:17597942

  7. Quantifying point source emissions with atmospheric inversions and aircraft measurements: the Aliso Canyon natural gas leak as a tracer experiment

    NASA Astrophysics Data System (ADS)

    Gourdji, S.; Yadav, V.; Karion, A.; Mueller, K. L.; Kort, E. A.; Conley, S.; Ryerson, T. B.; Nehrkorn, T.

    2017-12-01

    The ability of atmospheric inverse models to detect, spatially locate and quantify emissions from large point sources in urban domains needs improvement before inversions can be used reliably as carbon monitoring tools. In this study, we use the Aliso Canyon natural gas leak from October 2015 to February 2016 (near Los Angeles, CA) as a natural tracer experiment to assess inversion quality by comparison with published estimates of leak rates calculated using a mass balance approach (Conley et al., 2016). Fourteen dedicated flights were flown in horizontal transects downwind and throughout the duration of the leak to sample CH4 mole fractions and collect meteorological information for use in the mass-balance estimates. The same CH4 observational data were then used here in geostatistical inverse models with no prior assumptions about the leak location or emission rate and flux sensitivity matrices generated using the WRF-STILT atmospheric transport model. Transport model errors were assessed by comparing WRF-STILT wind speeds, wind direction and planetary boundary layer (PBL) height to those observed on the plane; the impact of these errors in the inversions, and the optimal inversion setup for reducing their influence was also explored. WRF-STILT provides a reasonable simulation of true atmospheric conditions on most flight dates, given the complex terrain and known difficulties in simulating atmospheric transport under such conditions. Moreover, even large (>120°) errors in wind direction were found to be tolerable in terms of spatially locating the leak rate within a 5-km radius of the actual site. Errors in the WRF-STILT wind speed (>50%) and PBL height have more negative impacts on the inversions, with too high wind speeds (typically corresponding with too low PBL heights) resulting in overestimated leak rates, and vice-versa. Coarser data averaging intervals and the use of observed wind speed errors in the model-data mismatch covariance matrix are shown to help reduce the influence of transport model errors, by averaging out compensating errors and de-weighting the influence of problematic observations. This study helps to enable the integration of aircraft measurements with other tower-based data in larger inverse models that can reliably detect, locate and quantify point source emissions in urban areas.

  8. A new skin friction balance and selected measurements

    NASA Technical Reports Server (NTRS)

    Vakili, A. D.

    1992-01-01

    A new skin friction balance with moving belt has been developed for measurement of the surface shear stress component in the direction of belt motion. The device is described in this paper with typical measurement results. This instrument is symmetric in design with small moving mass negligible internal friction. It is 3.8 cm high, 3.8 cm long and 2.1 cm wide, with the sensing surface 0.7 cm wide and 1.5 cm long, and it can be made in various sizes. The unique design of this instrument has reduced some of the errors associated with conventional floating-element balances. The instrument can use various sensing systems and the output signal is a linear function of the wall shear stress. Measurements show good agreement with data obtained by the floating element balances and flat plate prediction techniques. Dynamic measurements have been made in a limited range. The overall uncertainty of measurement is estimated to be +/- 2 percent.

  9. Quaternary glaciation and hydrologic variation in the South American tropics as reconstructed from the Lake Titicaca drilling project

    NASA Astrophysics Data System (ADS)

    Fritz, Sherilyn C.; Baker, Paul A.; Seltzer, Geoffrey O.; Ballantyne, Ashley; Tapia, Pedro; Cheng, Hai; Edwards, R. Lawrence

    2007-11-01

    A 136-m-long drill core of sediments was recovered from tropical high-altitude Lake Titicaca, Bolivia-Peru, enabling a reconstruction of past climate that spans four cycles of regional glacial advance and retreat and that is estimated to extend continuously over the last 370,000 yr. Within the errors of the age model, the periods of regional glacial advance and retreat are concordant respectively with global glacial and interglacial stages. Periods of ice advance in the southern tropical Andes generally were periods of positive water balance, as evidenced by deeper and fresher conditions in Lake Titicaca. Conversely, reduced glaciation occurred during periods of negative water balance and shallow closed-basin conditions in the lake. The apparent coincidence of positive water balance of Lake Titicaca and glacial growth in the adjacent Andes with Northern Hemisphere ice sheet expansion implies that regional water balance and glacial mass balance are strongly influenced by global-scale temperature changes, as well as by precessional forcing of the South American summer monsoon.

  10. Thermal Behaviors and Their Correlations of Mg(BH4)2-Contained Explosives

    NASA Astrophysics Data System (ADS)

    Yue, Yue; Chen, Liping; Peng, Jinhua

    2018-01-01

    In order to explore the effect of metal hydride on energetic materials' thermal behaviors and their correlations, we studied the heats of combustion and detonation of RDX, TNT, and Mg(BH4)2-containing explosives both theoretically and experimentally. The results showed that Mg(BH4)2 can significantly improve the energy of explosive. As the mass fraction of Mg(BH4)2 increases, the combustion heat of composite explosives increases gradually, while the combustion efficiency decreases. When its mass fraction is about 30%, the theoretical heats of detonation of RDX/Mg(BH4)2 and TNT/Mg(BH4)2 reach maximum, which are 7418.47 and 7032.46 kJ/kg, respectively. When we compared the errors between calculation and experimental values, we found that L-C method is more accurate in calculating oxygen-enriched and oxygen-balanced explosives, and that minimum free energy method is more suitable for seriously negative oxygen-balanced explosive. For single explosive, there are three kinds of relationships between heat of combustion and detonation according to the oxygen balance. For Mg(BH4)2-containing explosives, the relationship is in accordance with Boltzmann function.

  11. Consistent interannual changes in glacier mass balance and their relationship with climate variation on the periphery of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wang, Qiuyu; Yi, Shuang; Sun, Wenke

    2018-07-01

    Different observations regarding glacier mass balance on the Tibetan Plateau remain at odds with one another. Combining satellite gravity data with laser altimetry, we estimated consistent interannual changes in glacier mass in the Nyenchen Tanglha (NT), Himalaya (HM) and Pamir-Karakoram (PK) ranges. Reconciled mass budgets and their one standard deviation errors are presented for each subregion. The total for NT, HM and PK is -23 ± 5 Gt yr-1 based on satellite gravity and -20 ± 6 Gt yr-1 based on laser altimetry over the period 2003-2008. Over a longer temporal span (2003-2015), the rates of glacier mass loss decreased towards the northwest, with values of -0.89 ± 0.15, -0.78 ± 0.11 and -0.11 ± 0.05 mwe yr-1 (metre water-equivalent change) for the NT, HM and PK, respectively. However, at shorter time intervals there have also been periods of accumulation. For example, the PK glaciers gained mass over 2003-2005 and 2009-2011, mainly owing to high precipitation. Glaciers in the HM and NT had more severe mass losses than those in the PK, especially in 2009 and 2012. Owing, perhaps, to their unique glacier accumulation regimes, only if low temperature and high precipitation occur in the same year do glaciers in the HM and NT gain mass or even stop losing mass. These interannual fluctuations and accelerating losses in the PK and HM glaciers suggest that mass changes are not well described by rate alone.

  12. Comparing joint kinematics and center of mass acceleration as feedback for control of standing balance by functional neuromuscular stimulation.

    PubMed

    Nataraj, Raviraj; Audu, Musa L; Triolo, Ronald J

    2012-05-06

    The purpose of this study was to determine the comparative effectiveness of feedback control systems for maintaining standing balance based on joint kinematics or total body center of mass (COM) acceleration, and assess their clinical practicality for standing neuroprostheses after spinal cord injury (SCI). In simulation, controller performance was measured according to the upper extremity effort required to stabilize a three-dimensional model of bipedal standing against a variety of postural disturbances. Three cases were investigated: proportional-derivative control based on joint kinematics alone, COM acceleration feedback alone, and combined joint kinematics and COM acceleration feedback. Additionally, pilot data was collected during external perturbations of an individual with SCI standing with functional neuromuscular stimulation (FNS), and the resulting joint kinematics and COM acceleration data was analyzed. Compared to the baseline case of maximal constant muscle excitations, the three control systems reduced the mean upper extremity loading by 51%, 43% and 56%, respectively against external force-pulse perturbations. Controller robustness was defined as the degradation in performance with increasing levels of input errors expected with clinical deployment of sensor-based feedback. At error levels typical for body-mounted inertial sensors, performance degradation due to sensor noise and placement were negligible. However, at typical tracking error levels, performance could degrade as much as 86% for joint kinematics feedback and 35% for COM acceleration feedback. Pilot data indicated that COM acceleration could be estimated with a few well-placed sensors and efficiently captures information related to movement synergies observed during perturbed bipedal standing following SCI. Overall, COM acceleration feedback may be a more feasible solution for control of standing with FNS given its superior robustness and small number of inputs required.

  13. Comparing joint kinematics and center of mass acceleration as feedback for control of standing balance by functional neuromuscular stimulation

    PubMed Central

    2012-01-01

    Background The purpose of this study was to determine the comparative effectiveness of feedback control systems for maintaining standing balance based on joint kinematics or total body center of mass (COM) acceleration, and assess their clinical practicality for standing neuroprostheses after spinal cord injury (SCI). Methods In simulation, controller performance was measured according to the upper extremity effort required to stabilize a three-dimensional model of bipedal standing against a variety of postural disturbances. Three cases were investigated: proportional-derivative control based on joint kinematics alone, COM acceleration feedback alone, and combined joint kinematics and COM acceleration feedback. Additionally, pilot data was collected during external perturbations of an individual with SCI standing with functional neuromuscular stimulation (FNS), and the resulting joint kinematics and COM acceleration data was analyzed. Results Compared to the baseline case of maximal constant muscle excitations, the three control systems reduced the mean upper extremity loading by 51%, 43% and 56%, respectively against external force-pulse perturbations. Controller robustness was defined as the degradation in performance with increasing levels of input errors expected with clinical deployment of sensor-based feedback. At error levels typical for body-mounted inertial sensors, performance degradation due to sensor noise and placement were negligible. However, at typical tracking error levels, performance could degrade as much as 86% for joint kinematics feedback and 35% for COM acceleration feedback. Pilot data indicated that COM acceleration could be estimated with a few well-placed sensors and efficiently captures information related to movement synergies observed during perturbed bipedal standing following SCI. Conclusions Overall, COM acceleration feedback may be a more feasible solution for control of standing with FNS given its superior robustness and small number of inputs required. PMID:22559852

  14. The mean sea surface height and geoid along the Geosat subtrack from Bermuda to Cape Cod

    NASA Astrophysics Data System (ADS)

    Kelly, Kathryn A.; Joyce, Terrence M.; Schubert, David M.; Caruso, Michael J.

    1991-07-01

    Measurements of near-surface velocity and concurrent sea level along an ascending Geosat subtrack were used to estimate the mean sea surface height and the Earth's gravitational geoid. Velocity measurements were made on three traverses of a Geosat subtrack within 10 days, using an acoustic Doppler current profiler (ADCP). A small bias in the ADCP velocity was removed by considering a mass balance for two pairs of triangles for which expendable bathythermograph measurements were also made. Because of the large curvature of the Gulf Stream, the gradient wind balance was used to estimate the cross-track component of geostrophic velocity from the ADCP vectors; this component was then integrated to obtain the sea surface height profile. The mean sea surface height was estimated as the difference between the instantaneous sea surface height from ADCP and the Geosat residual sea level, with mesoscale errors reduced by low-pass filtering. The error estimates were divided into a bias, tilt, and mesoscale residual; the bias was ignored because profiles were only determined within a constant of integration. The calculated mean sea surface height estimate agreed with an independent estimate of the mean sea surface height from Geosat, obtained by modeling the Gulf Stream as a Gaussian jet, within the expected errors in the estimates: the tilt error was 0.10 m, and the mesoscale error was 0.044 m. To minimize mesoscale errors in the estimate, the alongtrack geoid estimate was computed as the difference between the mean sea level from the Geosat Exact Repeat Mission and an estimate of the mean sea surface height, rather than as the difference between instantaneous profiles of sea level and sea surface height. In the critical region near the Gulf Stream the estimated error reduction using this method was about 0.07 m. Differences between the geoid estimate and a gravimetric geoid were not within the expected errors: the rms mesoscale difference was 0.24 m rms.

  15. A variable acceleration calibration system

    NASA Astrophysics Data System (ADS)

    Johnson, Thomas H.

    2011-12-01

    A variable acceleration calibration system that applies loads using gravitational and centripetal acceleration serves as an alternative, efficient and cost effective method for calibrating internal wind tunnel force balances. Two proof-of-concept variable acceleration calibration systems are designed, fabricated and tested. The NASA UT-36 force balance served as the test balance for the calibration experiments. The variable acceleration calibration systems are shown to be capable of performing three component calibration experiments with an approximate applied load error on the order of 1% of the full scale calibration loads. Sources of error are indentified using experimental design methods and a propagation of uncertainty analysis. Three types of uncertainty are indentified for the systems and are attributed to prediction error, calibration error and pure error. Angular velocity uncertainty is shown to be the largest indentified source of prediction error. The calibration uncertainties using a production variable acceleration based system are shown to be potentially equivalent to current methods. The production quality system can be realized using lighter materials and a more precise instrumentation. Further research is needed to account for balance deflection, forcing effects due to vibration, and large tare loads. A gyroscope measurement technique is shown to be capable of resolving the balance deflection angle calculation. Long term research objectives include a demonstration of a six degree of freedom calibration, and a large capacity balance calibration.

  16. Gaussian Process Model for Antarctic Surface Mass Balance and Ice Core Site Selection

    NASA Astrophysics Data System (ADS)

    White, P. A.; Reese, S.; Christensen, W. F.; Rupper, S.

    2017-12-01

    Surface mass balance (SMB) is an important factor in the estimation of sea level change, and data are collected to estimate models for prediction of SMB on the Antarctic ice sheet. Using Favier et al.'s (2013) quality-controlled aggregate data set of SMB field measurements, a fully Bayesian spatial model is posed to estimate Antarctic SMB and propose new field measurement locations. Utilizing Nearest-Neighbor Gaussian process (NNGP) models, SMB is estimated over the Antarctic ice sheet. An Antarctic SMB map is rendered using this model and is compared with previous estimates. A prediction uncertainty map is created to identify regions of high SMB uncertainty. The model estimates net SMB to be 2173 Gton yr-1 with 95% credible interval (2021,2331) Gton yr-1. On average, these results suggest lower Antarctic SMB and higher uncertainty than previously purported [Vaughan et al. (1999); Van de Berg et al. (2006); Arthern, Winebrenner and Vaughan (2006); Bromwich et al. (2004); Lenaerts et al. (2012)], even though this model utilizes significantly more observations than previous models. Using the Gaussian process' uncertainty and model parameters, we propose 15 new measurement locations for field study utilizing a maximin space-filling, error-minimizing design; these potential measurements are identied to minimize future estimation uncertainty. Using currently accepted Antarctic mass balance estimates and our SMB estimate, we estimate net mass loss [Shepherd et al. (2012); Jacob et al. (2012)]. Furthermore, we discuss modeling details for both space-time data and combining field measurement data with output from mathematical models using the NNGP framework.

  17. Reassessment of the mass balance of the Abbot and Getz sectors of West Antarctica

    NASA Astrophysics Data System (ADS)

    Chuter, Stephen; Martín-Español, Alba; Wouters, Bert; Bamber, Jonathan

    2017-04-01

    Large discrepancies exist in mass balance estimates for the Getz and Abbot drainage basins, primarily due to previous poor knowledge of ice thickness at the grounding line, poor coverage by previous altimetry missions and signal leakage issues for GRACE. This is particularly the case for the Abbot region, where previously there have been contrasting positive ice sheet basin elevation rates from altimetry and negative mass budget estimates. Large errors arise when using ice thickness measurements derived from ERS-1 and/or ICESat altimetry data due to poor track spacing, 'loss of lock' issues near the grounding line and the complex morphology of these shelves, requiring fine resolution to derive robust and accurate elevations close to the grounding line. This was exemplified with the manual adjustments of up to 100 m required at the grounding line during the creation of Bedmap2. However, the advent of CryoSat-2 with its unique orbit and SARIn mode of operation has overcome these issues and enabled the determination of ice shelf thickness at a much higher accuracy than possible from previous satellites, particularly within the grounding zone. We present a reassessment of mass balance estimates for the 2007-2009 epoch using improved CryoSat-2 ice thicknesses. We find that CryoSat-2 ice thickness estimates are systematically thinner by 30% and 16.5% for the Abbot and Getz sectors respectively. Our new mass balance estimate of 8 ± 6 Gt yr-1for the Abbot region resolves the previous discrepancy with altimetry. Over the Getz region, the new mass balance estimate of 7.56 ± 16.6 Gt yr-1is in better agreement with other geodetic techniques. We also find there has been an increase in grounding line velocity of up to 20% since the 2007-2009 epoch, coupled with mean ice sheet thinning rates of -0.67 ± 0.13 m yr-1 derived from CryoSat-2 in fast flow regions. This is in addition to mean snowfall trends of -0.33 m yr-1w.e. since 2006. This suggests the onset of a dynamic instability in the region and the possibility of grounding line retreat, driven by both surface processes and ice dynamics.

  18. Feedback loops and temporal misalignment in component-based hydrologic modeling

    NASA Astrophysics Data System (ADS)

    Elag, Mostafa M.; Goodall, Jonathan L.; Castronova, Anthony M.

    2011-12-01

    In component-based modeling, a complex system is represented as a series of loosely integrated components with defined interfaces and data exchanges that allow the components to be coupled together through shared boundary conditions. Although the component-based paradigm is commonly used in software engineering, it has only recently been applied for modeling hydrologic and earth systems. As a result, research is needed to test and verify the applicability of the approach for modeling hydrologic systems. The objective of this work was therefore to investigate two aspects of using component-based software architecture for hydrologic modeling: (1) simulation of feedback loops between components that share a boundary condition and (2) data transfers between temporally misaligned model components. We investigated these topics using a simple case study where diffusion of mass is modeled across a water-sediment interface. We simulated the multimedia system using two model components, one for the water and one for the sediment, coupled using the Open Modeling Interface (OpenMI) standard. The results were compared with a more conventional numerical approach for solving the system where the domain is represented by a single multidimensional array. Results showed that the component-based approach was able to produce the same results obtained with the more conventional numerical approach. When the two components were temporally misaligned, we explored the use of different interpolation schemes to minimize mass balance error within the coupled system. The outcome of this work provides evidence that component-based modeling can be used to simulate complicated feedback loops between systems and guidance as to how different interpolation schemes minimize mass balance error introduced when components are temporally misaligned.

  19. Suboptimal schemes for atmospheric data assimilation based on the Kalman filter

    NASA Technical Reports Server (NTRS)

    Todling, Ricardo; Cohn, Stephen E.

    1994-01-01

    This work is directed toward approximating the evolution of forecast error covariances for data assimilation. The performance of different algorithms based on simplification of the standard Kalman filter (KF) is studied. These are suboptimal schemes (SOSs) when compared to the KF, which is optimal for linear problems with known statistics. The SOSs considered here are several versions of optimal interpolation (OI), a scheme for height error variance advection, and a simplified KF in which the full height error covariance is advected. To employ a methodology for exact comparison among these schemes, a linear environment is maintained, in which a beta-plane shallow-water model linearized about a constant zonal flow is chosen for the test-bed dynamics. The results show that constructing dynamically balanced forecast error covariances rather than using conventional geostrophically balanced ones is essential for successful performance of any SOS. A posteriori initialization of SOSs to compensate for model - data imbalance sometimes results in poor performance. Instead, properly constructed dynamically balanced forecast error covariances eliminate the need for initialization. When the SOSs studied here make use of dynamically balanced forecast error covariances, the difference among their performances progresses naturally from conventional OI to the KF. In fact, the results suggest that even modest enhancements of OI, such as including an approximate dynamical equation for height error variances while leaving height error correlation structure homogeneous, go a long way toward achieving the performance of the KF, provided that dynamically balanced cross-covariances are constructed and that model errors are accounted for properly. The results indicate that such enhancements are necessary if unconventional data are to have a positive impact.

  20. Surface Mass Balance of the Columbia Glacier, Alaska, 1978 and 2010 Balance Years

    USGS Publications Warehouse

    O'Neel, Shad

    2012-01-01

    Although Columbia Glacier is one of the largest sources of glacier mass loss in Alaska, surface mass balance measurements are sparse, with only a single data set available from 1978. The dearth of surface mass-balance data prohibits partitioning of the total mass losses between dynamics and surface forcing; however, the accurate inclusion of calving glaciers into predictive models requires both dynamic and climatic forcing of total mass balance. During 2010, the U.S. Geological Survey collected surface balance data at several locations distributed over the surface of Columbia Glacier to estimate the glacier-wide annual balance for balance year 2010 using the 2007 area-altitude distribution. This report also summarizes data collected in 1978, calculates the 1978 annual surface balance, and uses these observations to constrain the 2010 values, particularly the shape of the balance profile. Both years exhibit balances indicative of near-equilibrium surface mass-balance conditions, and demonstrate the importance of dynamic processes during the rapid retreat.

  1. Measurements of the toroidal torque balance of error field penetration locked modes

    DOE PAGES

    Shiraki, Daisuke; Paz-Soldan, Carlos; Hanson, Jeremy M.; ...

    2015-01-05

    Here, detailed measurements from the DIII-D tokamak of the toroidal dynamics of error field penetration locked modes under the influence of slowly evolving external fields, enable study of the toroidal torques on the mode, including interaction with the intrinsic error field. The error field in these low density Ohmic discharges is well known based on the mode penetration threshold, allowing resonant and non-resonant torque effects to be distinguished. These m/n = 2/1 locked modes are found to be well described by a toroidal torque balance between the resonant interaction with n = 1 error fields, and a viscous torque inmore » the electron diamagnetic drift direction which is observed to scale as the square of the perturbed field due to the island. Fitting to this empirical torque balance allows a time-resolved measurement of the intrinsic error field of the device, providing evidence for a time-dependent error field in DIII-D due to ramping of the Ohmic coil current.« less

  2. Greenland Ice Sheet Mass Balance

    NASA Technical Reports Server (NTRS)

    Reeh, N.

    1984-01-01

    Mass balance equation for glaciers; areal distribution and ice volumes; estimates of actual mass balance; loss by calving of icebergs; hydrological budget for Greenland; and temporal variations of Greenland mass balance are examined.

  3. Changes in ice dynamics along the northern Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Seehaus, Thorsten; Marinsek, Sebastian; Cook, Alison; Van Wessem, Jan-Melchior; Braun, Matthias

    2017-04-01

    The climatic conditions along the Antarctic Peninsula have undergone considerable changes during the last 50 years. A period of pronounced air temperature rise, increasing ocean temperatures as well as changes in the precipitation pattern have been reported by various authors. Consequently, the glacial systems showed changes including widespread retreat, surface lowering as well as variations in flow speeds. During the last decades numerous ice shelves along the Antarctic Peninsula retreated, started to break-up or disintegrated completely. The loss of the buttressing effect caused tributary glaciers to accelerate with increasing ice discharge along the Antarctic Peninsula. Quantification of the mass changes is still subject to considerable errors although numbers derived from the different methods are converging. The aim is to study the reaction of glaciers at the northern Antarctic Peninsula to the changing climatic conditions and the readjustments of tributary glaciers to ice shelf disintegration, as well as to better quantify the ice mass loss and its temporal changes. We analysed time series of various satellite sensors (ERS-1/2 SAR, ENVISAT ASAR, RADARSAT-1, ALOS PALSAR, TerraSAR-X/TanDEM-X, ASTER, Landsat) to detect changes in ice dynamics of 74 glacier basins along the northern Antarctic Peninsula (<65°). Intensity feature tracking techniques were applied on data stacks from different SAR satellites over the last 20 years to infer temporal trends in glacier surface velocities. In combination with ice thickness reconstructions and modeled climatic mass balance fields regional imbalances were calculated. Variations in ice front position were mapped based on optical and SAR satellite data sets. Along the west coast of the northern Antarctic Peninsula an increase in flow speeds by 40% between 1992 and 2014 was observed, whereas glaciers on the east side (north of former Prince-Gustav Ice Shelf) showed a strong deceleration. Nearly all former ice shelf tributaries showed similar reactions to ice shelf disintegration, with a significant acceleration and frontal retreat after ice shelf break-up and a subsequent deceleration and front stabilization. In total an ice discharge of 17.93±6.22 Gt/a was estimated for the study region in the period 2010-2014. Regional mass balance estimates indicate nearly balanced mass budgets in the period 1992-1996 and positive imbalances in more recent years (2010-2014), dominated by the clearly positive mass balances along the west coast due to high climatic mass balances. The detailed multi-mission time series analysis of glacier changes supports the interpretation of the ongoing processes in this region and allows multi temporal imbalance estimates.

  4. Development and evaluation of virtual refrigerant mass flow sensors for fault detection and diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Woohyun; Braun, J.

    Refrigerant mass flow rate is an important measurement for monitoring equipment performance and enabling fault detection and diagnostics. However, a traditional mass flow meter is expensive to purchase and install. A virtual refrigerant mass flow sensor (VRMF) uses a mathematical model to estimate flow rate using low-cost measurements and can potentially be implemented at low cost. This study evaluates three VRMFs for estimating refrigerant mass flow rate. The first model uses a compressor map that relates refrigerant flow rate to measurements of inlet and outlet pressure, and inlet temperature measurements. The second model uses an energy-balance method on the compressormore » that uses a compressor map for power consumption, which is relatively independent of compressor faults that influence mass flow rate. The third model is developed using an empirical correlation for an electronic expansion valve (EEV) based on an orifice equation. The three VRMFs are shown to work well in estimating refrigerant mass flow rate for various systems under fault-free conditions with less than 5% RMS error. Each of the three mass flow rate estimates can be utilized to diagnose and track the following faults: 1) loss of compressor performance, 2) fouled condenser or evaporator filter, 3) faulty expansion device, respectively. For example, a compressor refrigerant flow map model only provides an accurate estimation when the compressor operates normally. When a compressor is not delivering the expected flow due to a leaky suction or discharge valve or other internal fault, the energy-balance or EEV model can provide accurate flow estimates. In this paper, the flow differences provide an indication of loss of compressor performance and can be used for fault detection and diagnostics.« less

  5. Development of a compound-specific isotope analysis method for acetone via 2,4-dinitrophenylhydrazine derivatization.

    PubMed

    Wen, Sheng; Feng, Yanli; Wang, Xinming; Sheng, Guoying; Fu, Jiamo; Bi, Xinhui

    2004-01-01

    A novel method has been developed for compound-specific isotope analysis for acetone via DNPH (2,4-dinitrophenylhydrazine) derivatization together with combined gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Acetone reagents were used to assess delta13C fractionation during the DNPH derivatization process. Reduplicate delta13C analyses were designed to evaluate the reproducibility of the derivatization, with an average error (1 standard deviation) of 0.17 +/- 0.05 per thousand, and average analytical error of 0.28 +/- 0.09 per thousand. The derivatization process introduces no isotopic fractionation for acetone (the average difference between the predicted and analytical delta13C values was 0.09 +/- 0.20 per thousand, within the precision limits of the GC/C/IRMS measurements), which permits computation of the delta13C values for the original underivatized acetone through a mass balance equation. Together with further studies of the carbon isotopic effect during the atmospheric acetone-sampling procedure, it will be possible to use DNPH derivatization for carbon isotope analysis of atmospheric acetone. Copyright (c) 2004 John Wiley & Sons, Ltd.

  6. An Algebraic Approach to Guarantee Harmonic Balance Method Using Gröbner Base

    NASA Astrophysics Data System (ADS)

    Yagi, Masakazu; Hisakado, Takashi; Okumura, Kohshi

    Harmonic balance (HB) method is well known principle for analyzing periodic oscillations on nonlinear networks and systems. Because the HB method has a truncation error, approximated solutions have been guaranteed by error bounds. However, its numerical computation is very time-consuming compared with solving the HB equation. This paper proposes an algebraic representation of the error bound using Gröbner base. The algebraic representation enables to decrease the computational cost of the error bound considerably. Moreover, using singular points of the algebraic representation, we can obtain accurate break points of the error bound by collisions.

  7. Regional GRACE-based estimates of water mass variations over Australia: validation and interpretation

    NASA Astrophysics Data System (ADS)

    Seoane, L.; Ramillien, G.; Frappart, F.; Leblanc, M.

    2013-04-01

    Time series of regional 2°-by-2° GRACE solutions have been computed from 2003 to 2011 with a 10 day resolution by using an energy integral method over Australia [112° E 156° E; 44° S 10° S]. This approach uses the dynamical orbit analysis of GRACE Level 1 measurements, and specially accurate along-track K Band Range Rate (KBRR) residuals (1 μm s-1 level of error) to estimate the total water mass over continental regions. The advantages of regional solutions are a significant reduction of GRACE aliasing errors (i.e. north-south stripes) providing a more accurate estimation of water mass balance for hydrological applications. In this paper, the validation of these regional solutions over Australia is presented as well as their ability to describe water mass change as a reponse of climate forcings such as El Niño. Principal component analysis of GRACE-derived total water storage maps show spatial and temporal patterns that are consistent with independent datasets (e.g. rainfall, climate index and in-situ observations). Regional TWS show higher spatial correlations with in-situ water table measurements over Murray-Darling drainage basin (80-90%), and they offer a better localization of hydrological structures than classical GRACE global solutions (i.e. Level 2 GRGS products and 400 km ICA solutions as a linear combination of GFZ, CSR and JPL GRACE solutions).

  8. Quantifying catchment water balances and their uncertainties by expert elicitation

    NASA Astrophysics Data System (ADS)

    Sebok, Eva; Refsgaard, Jens Christian; Warmink, Jord J.; Stisen, Simon; Høgh Jensen, Karsten

    2017-04-01

    The increasing demand on water resources necessitates a more responsible and sustainable water management requiring a thorough understanding of hydrological processes both on small scale and on catchment scale. On catchment scale, the characterization of hydrological processes is often carried out by calculating a water balance based on the principle of mass conservation in hydrological fluxes. Assuming a perfect water balance closure and estimating one of these fluxes as a residual of the water balance is a common practice although this estimate will contain uncertainties related to uncertainties in the other components. Water balance closure on the catchment scale is also an issue in Denmark, thus, it was one of the research objectives of the HOBE hydrological observatory, that has been collecting data in the Skjern river catchment since 2008. Water balance components in the 1050 km2 Ahlergaarde catchment and the nested 120 km2 Holtum catchment, located in the glacial outwash plan of the Skjern catchment, were estimated using a multitude of methods. As the collected data enables the complex assessment of uncertainty of both the individual water balance components and catchment-scale water balances, the expert elicitation approach was chosen to integrate the results of the hydrological observatory. This approach relies on the subjective opinion of experts whose available knowledge and experience about the subject allows to integrate complex information from multiple sources. In this study 35 experts were involved in a multi-step elicitation process with the aim of (1) eliciting average annual values of water balance components for two nested catchments and quantifying the contribution of different sources of uncertainties to the total uncertainty in these average annual estimates; (2) calculating water balances for two catchments by reaching consensus among experts interacting in form of group discussions. To address the complex problem of water balance closure, the water balance was separated into five components: precipitation, evapotranspiration, surface runoff, recharge and subsurface outflow. During the study, experts first participated in individual interviews where they gave their opinion on the probability distribution of their water balance component of interest. The average annual values and uncertainty of water balance components and catchment-scale water balances were obtained at a later stage by reaching consensus during group discussions. The obtained water balance errors for the Ahlergaarde catchment and the Holtum catchment were -5 and -62 mm/yr, respectively, with an uncertainty of 66 and 86 mm/yr, respectively. As an advantage of the expert elicitation, drawing on the intuitive experience and capabilities of experts to assess complex, site-specific problems, not only the uncertainty of the water balance error was quantified, but the uncertainty of individual water balance components as well.

  9. Improving the precision of our ecosystem calipers: a modified morphometric technique for estimating marine mammal mass and body composition.

    PubMed

    Shero, Michelle R; Pearson, Linnea E; Costa, Daniel P; Burns, Jennifer M

    2014-01-01

    Mass and body composition are indices of overall animal health and energetic balance and are often used as indicators of resource availability in the environment. This study used morphometric models and isotopic dilution techniques, two commonly used methods in the marine mammal field, to assess body composition of Weddell seals (Leptonychotes weddellii, N = 111). Findings indicated that traditional morphometric models that use a series of circular, truncated cones to calculate marine mammal blubber volume and mass overestimated the animal's measured body mass by 26.9±1.5% SE. However, we developed a new morphometric model that uses elliptical truncated cones, and estimates mass with only -2.8±1.7% error (N = 10). Because this elliptical truncated cone model can estimate body mass without the need for additional correction factors, it has the potential to be a broadly applicable method in marine mammal species. While using elliptical truncated cones yielded significantly smaller blubber mass estimates than circular cones (10.2±0.8% difference; or 3.5±0.3% total body mass), both truncated cone models significantly underestimated total body lipid content as compared to isotopic dilution results, suggesting that animals have substantial internal lipid stores (N = 76). Multiple linear regressions were used to determine the minimum number of morphometric measurements needed to reliably estimate animal mass and body composition so that future animal handling times could be reduced. Reduced models estimated body mass and lipid mass with reasonable accuracy using fewer than five morphometric measurements (root-mean-square-error: 4.91% for body mass, 10.90% for lipid mass, and 10.43% for % lipid). This indicates that when test datasets are available to create calibration coefficients, regression models also offer a way to improve body mass and condition estimates in situations where animal handling times must be short and efficient.

  10. A global perspective of the limits of prediction skill based on the ECMWF ensemble

    NASA Astrophysics Data System (ADS)

    Zagar, Nedjeljka

    2016-04-01

    In this talk presents a new model of the global forecast error growth applied to the forecast errors simulated by the ensemble prediction system (ENS) of the ECMWF. The proxy for forecast errors is the total spread of the ECMWF operational ensemble forecasts obtained by the decomposition of the wind and geopotential fields in the normal-mode functions. In this way, the ensemble spread can be quantified separately for the balanced and inertio-gravity (IG) modes for every forecast range. Ensemble reliability is defined for the balanced and IG modes comparing the ensemble spread with the control analysis in each scale. The results show that initial uncertainties in the ECMWF ENS are largest in the tropical large-scale modes and their spatial distribution is similar to the distribution of the short-range forecast errors. Initially the ensemble spread grows most in the smallest scales and in the synoptic range of the IG modes but the overall growth is dominated by the increase of spread in balanced modes in synoptic and planetary scales in the midlatitudes. During the forecasts, the distribution of spread in the balanced and IG modes grows towards the climatological spread distribution characteristic of the analyses. The ENS system is found to be somewhat under-dispersive which is associated with the lack of tropical variability, primarily the Kelvin waves. The new model of the forecast error growth has three fitting parameters to parameterize the initial fast growth and a more slow exponential error growth later on. The asymptotic values of forecast errors are independent of the exponential growth rate. It is found that the asymptotic values of the errors due to unbalanced dynamics are around 10 days while the balanced and total errors saturate in 3 to 4 weeks. Reference: Žagar, N., R. Buizza, and J. Tribbia, 2015: A three-dimensional multivariate modal analysis of atmospheric predictability with application to the ECMWF ensemble. J. Atmos. Sci., 72, 4423-4444.

  11. 14 CFR 23.659 - Mass balance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Mass balance. 23.659 Section 23.659 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Surfaces § 23.659 Mass balance. The supporting structure and the attachment of concentrated mass balance...

  12. 14 CFR 23.659 - Mass balance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Mass balance. 23.659 Section 23.659 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Surfaces § 23.659 Mass balance. The supporting structure and the attachment of concentrated mass balance...

  13. Investigating ice cliff evolution and contribution to glacier mass-balance using a physically-based dynamic model

    NASA Astrophysics Data System (ADS)

    Buri, Pascal; Miles, Evan; Ragettli, Silvan; Brun, Fanny; Steiner, Jakob; Pellicciotti, Francesca

    2016-04-01

    Supraglacial cliffs are a surface feature typical of debris-covered glaciers, affecting surface evolution, glacier downwasting and mass balance by providing a direct ice-atmosphere interface. As a result, melt rates can be very high and ice cliffs may account for a significant portion of the total glacier mass loss. However, their contribution to glacier mass balance has rarely been quantified through physically-based models. Most cliff energy balance models are point scale models which calculate energy fluxes at individual cliff locations. Results from the only grid based model to date accurately reflect energy fluxes and cliff melt, but modelled backwasting patterns are in some cases unrealistic, as the distribution of melt rates would lead to progressive shallowing and disappearance of cliffs. Based on a unique multitemporal dataset of cliff topography and backwasting obtained from high-resolution terrestrial and aerial Structure-from-Motion analysis on Lirung Glacier in Nepal, it is apparent that cliffs exhibit a range of behaviours but most do not rapidly disappear. The patterns of evolution cannot be explained satisfactorily by atmospheric melt alone, and are moderated by the presence of supraglacial ponds at the base of cliffs and by cliff reburial with debris. Here, we document the distinct patterns of evolution including disappearance, growth and stability. We then use these observations to improve the grid-based energy balance model, implementing periodic updates of the cliff geometry resulting from modelled melt perpendicular to the ice surface. Based on a slope threshold, pixels can be reburied by debris or become debris-free. The effect of ponds are taken into account through enhanced melt rates in horizontal direction on pixels selected based on an algorithm considering distance to the water surface, slope and lake level. We use the dynamic model to first study the evolution of selected cliffs for which accurate, high resolution DEMs are available, and then apply the model to the entirety of Lirung and Langtang glaciers to quantify the total contributions of cliffs to glacier mass balance. Observations and model results suggest a strong dependency of the cliffs' life cycle on supraglacial ponds, as the water body keeps the cliff geometry constant through a combination of backwasting and calving at the bottom and maintenance of steep slopes in the lowest sections. The absence of ponds causes the progressive flattening of the cliff, which finally leads to complete disappearance. Modelled volume losses from May to October 2013 range from 2650 to 9415 m3 w.e., in agreement with the estimates with the SfM-approach. Mean error of modelled elevation within the cliff outline ranges from -1.3 to 0.6m. This work sheds light on mechanisms of cliffs' changes by quantifying them for the first time with a physically-based, dynamic model, and presents the first complete estimate of the relevance of supraglacial ice-cliffs to total glacier mass-balance for two distinct glaciers.

  14. Probability based hydrologic catchments of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Hudson, B. D.

    2015-12-01

    Greenland Ice Sheet melt water impacts ice sheet flow dynamics, fjord and coastal circulation, and sediment and biogeochemical fluxes. Melt water exiting the ice sheet also is a key term in its mass balance. Because of this, knowledge of the area of the ice sheet that contributes melt water to a given outlet (its hydrologic catchment) is important to many ice sheet studies and is especially critical to methods using river runoff to assess ice sheet mass balance. Yet uncertainty in delineating ice sheet hydrologic catchments is a problem that is rarely acknowledged. Ice sheet catchments are delineated as a function of both basal and surface topography. While surface topography is well known, basal topography is less certain because it is dependent on radar surveys. Here, I a present a Monte Carlo based approach to delineating ice sheet catchments that quantifies the impact of uncertain basal topography. In this scheme, over many iterations I randomly vary the ice sheet bed elevation within published error bounds (using Morlighem et al., 2014 bed and bed error datasets). For each iteration of ice sheet bed elevation, I calculate the hydraulic potentiometric surface and route water over its path of 'steepest' descent to delineate the catchment. I then use all realizations of the catchment to arrive at a probability map of all major melt water outlets in Greenland. I often find that catchment size is uncertain, with small, random perturbations in basal topography leading to large variations in catchments size. While some catchments are well defined, others can double or halve in size within published basal topography error bars. While some uncertainty will likely always remain, this work points to locations where studies of ice sheet hydrology would be the most successful, allows reinterpretation of past results, and points to where future radar surveys would be most advantageous.

  15. A new mathematical model for nitrogen gas production with special emphasis on the role of attached growth media in anammox hybrid reactor.

    PubMed

    Tomar, Swati; Gupta, Sunil Kumar

    2015-11-01

    The present study emphasised on the development of new mathematical models based on mass balance and stoichiometry of nitrogen removal in anammox hybrid reactor (AHR). The performance of AHR at varying hydraulic retention times (HRTs) and nitrogen loading rates (NLRs) revealed that nitrogen removal efficiency (NRE) increases with increase in HRT and was found optimal (89 %) at HRT of 2 days. Mass balance of nitrogen revealed that major fraction (74.1 %) of input nitrogen is converted into N2 gas followed by 11.2 % utilised in biomass synthesis. Attached growth media (AGM) in AHR contributed to an additional 15.4 % ammonium removal and reduced the sludge washout rate by 29 %. This also enhanced the sludge retention capacity of AHR and thus minimised the formation of nitrate in the treated effluent, which is one of the bottlenecks of anammox process. Process kinetics was also studied using various mathematical models. The mass balance model derived from total nitrogen was found most precise and predicted N2 gas with least error (1.68 ± 4.44 %). Model validation for substrate removal kinetics dictated comparatively higher correlation for Grau second-order model (0.952) than modified Stover-Kincannon model (0.920). The study concluded that owing to features of high biomass retention, less nitrate formation and consistently higher nitrogen removal efficiency, this reactor configuration is techno-economically most efficient and viable. The study opens the door for researchers and scientists for pilot-scale testing of AHR leading to its wide industrial application.

  16. 14 CFR 29.659 - Mass balance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Mass balance. 29.659 Section 29.659... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Rotors § 29.659 Mass balance. (a) The rotor... flutter at any speed up to the maximum forward speed. (b) The structural integrity of the mass balance...

  17. 14 CFR 27.659 - Mass balance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Mass balance. 27.659 Section 27.659... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Rotors § 27.659 Mass balance. (a) The rotors... flutter at any speed up to the maximum forward speed. (b) The structural integrity of the mass balance...

  18. 14 CFR 27.659 - Mass balance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Mass balance. 27.659 Section 27.659... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Rotors § 27.659 Mass balance. (a) The rotors... flutter at any speed up to the maximum forward speed. (b) The structural integrity of the mass balance...

  19. 14 CFR 29.659 - Mass balance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Mass balance. 29.659 Section 29.659... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Rotors § 29.659 Mass balance. (a) The rotor... flutter at any speed up to the maximum forward speed. (b) The structural integrity of the mass balance...

  20. 14 CFR 29.659 - Mass balance.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Rotors § 29.659 Mass balance. (a) The rotor and blades must be mass balanced as necessary to— (1) Prevent excessive vibration; and (2) Prevent... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Mass balance. 29.659 Section 29.659...

  1. 14 CFR 27.659 - Mass balance.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Rotors § 27.659 Mass balance. (a) The rotors and blades must be mass balanced as necessary to— (1) Prevent excessive vibration; and (2) Prevent... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Mass balance. 27.659 Section 27.659...

  2. 14 CFR 29.659 - Mass balance.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Rotors § 29.659 Mass balance. (a) The rotor and blades must be mass balanced as necessary to— (1) Prevent excessive vibration; and (2) Prevent... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Mass balance. 29.659 Section 29.659...

  3. 14 CFR 27.659 - Mass balance.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Rotors § 27.659 Mass balance. (a) The rotors and blades must be mass balanced as necessary to— (1) Prevent excessive vibration; and (2) Prevent... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Mass balance. 27.659 Section 27.659...

  4. 14 CFR 27.659 - Mass balance.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Rotors § 27.659 Mass balance. (a) The rotors and blades must be mass balanced as necessary to— (1) Prevent excessive vibration; and (2) Prevent... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Mass balance. 27.659 Section 27.659...

  5. 14 CFR 29.659 - Mass balance.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Rotors § 29.659 Mass balance. (a) The rotor and blades must be mass balanced as necessary to— (1) Prevent excessive vibration; and (2) Prevent... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Mass balance. 29.659 Section 29.659...

  6. Instance Analysis for the Error of Three-pivot Pressure Transducer Static Balancing Method for Hydraulic Turbine Runner

    NASA Astrophysics Data System (ADS)

    Weng, Hanli; Li, Youping

    2017-04-01

    The working principle, process device and test procedure of runner static balancing test method by weighting with three-pivot pressure transducers are introduced in this paper. Based on an actual instance of a V hydraulic turbine runner, the error and sensitivity of the three-pivot pressure transducer static balancing method are analysed. Suggestions about improving the accuracy and the application of the method are also proposed.

  7. Empirical mass-loss rates for 25 O and early B stars, derived from Copernicus observations

    NASA Technical Reports Server (NTRS)

    Gathier, R.; Lamers, H. J. G. L. M.; Snow, T. P.

    1981-01-01

    Ultraviolet line profiles are fitted with theoretical line profiles in the cases of 25 stars covering a spectral type range from O4 to B1, including all luminosity classes. Ion column densities are compared for the determination of wind ionization, and it is found that the O VI/N V ratio is dependent on the mean density of the wind and not on effective temperature value, while the Si IV/N V ratio is temperature-dependent. The column densities are used to derive a mass-loss rate parameter that is empirically correlated against the mass-loss rate by means of standard stars with well-determined rates from IR or radio data. The empirical mass-loss rates obtained are compared with those derived by others and found to vary by as much as a factor of 10, which is shown to be due to uncertainties or errors in the ionization fractions of models used for wind ionization balance prediction.

  8. Mass balancing of hollow fan blades

    NASA Technical Reports Server (NTRS)

    Kielb, R. E.

    1986-01-01

    A typical section model is used to analytically investigate the effect of mass balancing as applied to hollow, supersonic fan blades. A procedure to determine the best configuration of an internal balancing mass to provide flutter alleviation is developed. This procedure is applied to a typical supersonic shroudless fan blade which is unstable in both the solid configuration and when it is hollow with no balancing mass. The addition of an optimized balancing mass is shown to stabilize the blade at the design condition.

  9. Extended use of Kinesiology Tape and Balance in Participants with Chronic Ankle Instability.

    PubMed

    Jackson, Kristen; Simon, Janet E; Docherty, Carrie L

    2016-01-01

    Participants with chronic ankle instability (CAI) have been shown to have balance deficits related to decreased proprioception and neuromuscular control. Kinesiology tape (KT) has been proposed to have many benefits, including increased proprioception. To determine if KT can help with balance deficits associated with CAI. Cohort study. Research laboratory. Thirty participants with CAI were recruited for this study. Balance was assessed using the Balance Error Scoring System (BESS). Participants were pretested and then randomly assigned to either the control or KT group. The participants in the KT group had 4 strips applied to the foot and lower leg and were instructed to leave the tape on until they returned for testing. All participants returned 48 hours later for another BESS assessment. The tape was then removed, and all participants returned 72 hours later to complete the final BESS assessment. Total BESS errors. Differences between the groups occurred at 48 hours post-application of the tape (mean difference = 4.7 ± 1.4 errors, P < .01; 95% confidence interval = 2.0, 7.5) and at 72 hours post-removal of the tape (mean difference = 2.3 ± 1.1 errors, P = .04; 95% confidence interval = 0.1, 4.6). The KT improved balance after it had been applied for 48 hours when compared with the pretest and with the control group. One of the most clinically important findings is that balance improvements were retained even after the tape had been removed for 72 hours.

  10. DEVELOPMENT OF A CONTAMINANT TRANSPORT AND FATE MASS BALANCE CALIBRATION MODEL FOR LAKE MICHIGAN MASS BALANCE PROJECT (LMMBP)

    EPA Science Inventory

    Lake Michigan Mass Balance Project (LMMBP) was initiated to directly support the development of a lakewide management plan (LaMP) for Lake Michigan. A mass balance modeling approach is proposed for the project to addrss the realtionship between sources of toxic chemicals and thei...

  11. Remote Sensing of Cryosphere: Estimation of Mass Balance Change in Himalayan Glaciers

    NASA Astrophysics Data System (ADS)

    Ambinakudige, Shrinidhi; Joshi, Kabindra

    2012-07-01

    Glacial changes are an important indicator of climate change. Our understanding mass balance change in Himalayan glaciers is limited. This study estimates mass balance of some major glaciers in the Sagarmatha National Park (SNP) in Nepal using remote sensing applications. Remote sensing technique to measure mass balance of glaciers is an important methodological advance in the highly rugged Himalayan terrain. This study uses ASTER VNIR, 3N (nadir view) and 3B (backward view) bands to generate Digital Elevation Models (DEMs) for the SNP area for the years 2002, 2003, 2004 and 2005. Glacier boundaries were delineated using combination of boundaries available in the Global land ice measurement (GLIMS) database and various band ratios derived from ASTER images. Elevation differences, glacial area, and ice densities were used to estimate the change in mass balance. The results indicated that the rate of glacier mass balance change was not uniform across glaciers. While there was a decrease in mass balance of some glaciers, some showed increase. This paper discusses how each glacier in the SNP area varied in its annual mass balance measurement during the study period.

  12. An eleven-year record of mass balance of Brewster Glacier, New Zealand, determined using a geostatistical approach

    NASA Astrophysics Data System (ADS)

    Cullen, N. J.; Anderson, B.; Sirguey, P. J.; Stumm, D.; Mackintosh, A.; Conway, J. P.; Horgan, H. J.; Dadic, R.; Fitzsimons, S.; Lorrey, A.

    2016-12-01

    Recognizing the scarcity of glacier mass balance data in the Southern Hemisphere, a mass balance measurement program was started at Brewster Glacier in 2004. Evolution of the measurement regime over the 11 years of data recorded means there are differences in the spatial density of data obtained. To ensure the temporal integrity of the dataset a new, geostatistical approach has been developed to calculate mass balance. Spatial co-variance between elevation and snow depth has enabled a digital elevation model to be used in a co-kriging approach to develop a snow depth index (SDI). By capturing the observed spatial variability in snow depth, the SDI is a more reliable predictor than elevation and is used to adjust each year of measurements consistently despite variability in sampling spatial density. The SDI also resolves the spatial structure of summer balance better than elevation. Co-kriging is used again to spatially interpolate a derived mean summer balance index using SDI as a co-variate, which yields a spatial predictor for summer balance. A similar approach is also used to create a predictor for annual balance, which allows us to revisit years where summer balance was not obtained. The average glacier-wide surface winter, summer and annual mass balances over the period 2005-2015 are 2484, -2586, and -102 mm w.e., respectively, with changes in summer balance explaining most of the variability in annual balance. On the whole, there is good agreement between our ELA and AAR values and those derived from the end-of-summer snowline (EOSS) program, though discrepancies in some years cannot be fully accounted for. A mass balance map of Brewster Glacier in an equilibrium state, which by definition has a glacier-wide mass balance equal to zero (a balanced-budget), is used to calculate values of ELA (1923 ±25 m) and AAR (0.40) representative of the observational period. The relationships between mass balance and ELA/AAR are explored, demonstrating they are mostly linear. On average, the mass balance gradients are found to be equal to 14.5 and 7.4 mm we m-1 in the ablation and accumulation zones, respectively. However, there is considerable variability in the gradients from year to year, as well as variability between different elevation bands. The largest variability in the mass balance gradient is observed in the ablation zone.

  13. An ultra-accurate numerical method in the design of liquid phononic crystals with hard inclusion

    NASA Astrophysics Data System (ADS)

    Li, Eric; He, Z. C.; Wang, G.; Liu, G. R.

    2017-12-01

    The phononics crystals (PCs) are periodic man-made composite materials. In this paper, a mass-redistributed finite element method (MR-FEM) is formulated to study the wave propagation within liquid PCs with hard inclusion. With a perfect balance between stiffness and mass in the MR-FEM model, the dispersion error of longitudinal wave is minimized by redistribution of mass. Such tuning can be easily achieved by adjusting the parameter r that controls the location of integration points of mass matrix. More importantly, the property of mass conservation in the MR-FEM model indicates that the locations of integration points inside or outside the element are immaterial. Four numerical examples are studied in this work, including liquid PCs with cross and circle hard inclusions, different size of inclusion and defect. Compared with standard finite element method, the numerical results have verified the accuracy and effectiveness of MR-FEM. The proposed MR-FEM is a unique and innovative numerical approach with its outstanding features, which has strong potentials to study the stress wave within multi-physics PCs.

  14. Effects of meteorological models on the solution of the surface energy balance and soil temperature variations in bare soils

    NASA Astrophysics Data System (ADS)

    Saito, Hirotaka; Šimůnek, Jiri

    2009-07-01

    SummaryA complete evaluation of the soil thermal regime can be obtained by evaluating the movement of liquid water, water vapor, and thermal energy in the subsurface. Such an evaluation requires the simultaneous solution of the system of equations for the surface water and energy balance, and subsurface heat transport and water flow. When only daily climatic data is available, one needs not only to estimate diurnal cycles of climatic data, but to calculate the continuous values of various components in the energy balance equation, using different parameterization methods. The objective of this study is to quantify the impact of the choice of different estimation and parameterization methods, referred together to as meteorological models in this paper, on soil temperature predictions in bare soils. A variety of widely accepted meteorological models were tested on the dataset collected at a proposed low-level radioactive-waste disposal site in the Chihuahua Desert in West Texas. As the soil surface was kept bare during the study, no vegetation effects were evaluated. A coupled liquid water, water vapor, and heat transport model, implemented in the HYDRUS-1D program, was used to simulate diurnal and seasonal soil temperature changes in the engineered cover installed at the site. The modified version of HYDRUS provides a flexible means for using various types of information and different models to evaluate surface mass and energy balance. Different meteorological models were compared in terms of their prediction errors for soil temperatures at seven observation depths. The results obtained indicate that although many available meteorological models can be used to solve the energy balance equation at the soil-atmosphere interface in coupled water, vapor, and heat transport models, their impact on overall simulation results varies. For example, using daily average climatic data led to greater prediction errors, while relatively simple meteorological models may significantly improve soil temperature predictions. On the other hand, while models for the albedo and soil emissivity had little impact on soil temperature predictions, the choice of the atmospheric emissivity models had a greater impact. A comparison of all the different models indicates that the error introduced at the soil atmosphere interface propagates to deeper layers. Therefore, attention needs to be paid not only to the precise determination of the soil hydraulic and thermal properties, but also to the selection of proper meteorological models for the components involved in the surface energy balance calculations.

  15. Reliability and Construct Validity of Limits of Stability Test in Adolescents Using a Portable Forceplate System.

    PubMed

    Alsalaheen, Bara; Haines, Jamie; Yorke, Amy; Broglio, Steven P

    2015-12-01

    To examine the reliability, convergent, and discriminant validity of the limits of stability (LOS) test to assess dynamic postural stability in adolescents using a portable forceplate system. Cross-sectional reliability observational study. School setting. Adolescents (N=36) completed all measures during the first session. To examine the reliability of the LOS test, a subset of 15 participants repeated the LOS test after 1 week. Not applicable. Outcome measurements included the LOS test, Balance Error Scoring System, Instrumented Balance Error Scoring System, and Modified Clinical Test for Sensory Interaction on Balance. A significant relation was observed among LOS composite scores (r=.36-.87, P<.05). However, no relation was observed between LOS and static balance outcome measurements. The reliability of the LOS composite scores ranged from moderate to good (intraclass correlation coefficient model 2,1=.73-.96). The results suggest that the LOS composite scores provide unique information about dynamic postural stability, and the LOS test completed at 100% of the theoretical limit appeared to be a reliable test of dynamic postural stability in adolescents. Clinicians should use dynamic balance measurement as part of their balance assessment and should not use static balance testing (eg, Balance Error Scoring System) to make inferences about dynamic balance, especially when balance assessment is used to determine rehabilitation outcomes, or when making return to play decisions after injury. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  16. Remote Sensing based modelling of Annual Surface Mass Balances of Chhota Shigiri Glacier, Western Himalayas, India

    NASA Astrophysics Data System (ADS)

    Chandrasekharan, Anita; Ramsankaran, Raaj

    2017-04-01

    The current study aims at modelling glacier mass balances over Chhota Shigiri glacier (32.28o N; 77.58° E) in Himachal Pradesh, India using the Equilibrium Line Altitude (ELA) gradient approach proposed by Rabatel et al. (2005). The model requires yearly ELA, average mass balance and mass balance gradient to estimate annual mass balance of a glacier which can be obtained either through field measurements or remote sensing observations. However, in view of the general scenario of lack of field data for Himalayan glaciers, in this study the model has been applied only using the inputs derived through multi-temporal satellite remote sensing observations thus eliminating the need for any field measurements. Preliminary analysis show that the obtained results are comparable with the observed field mass balance. The results also demonstrate that this approach with remote sensing inputs has potential to be used for glacier mass balance estimations provided good quality multi-temporal remote sensing dataset are available.

  17. Investigating sea level rise due to global warming in the teaching laboratory using Archimedes’ principle

    NASA Astrophysics Data System (ADS)

    Hughes, Stephen; Pearce, Darren

    2015-11-01

    A teaching laboratory experiment is described that uses Archimedes’ principle to precisely investigate the effect of global warming on the oceans. A large component of sea level rise is due to the increase in the volume of water due to the decrease in water density with increasing temperature. Water close to 0 °C is placed in a beaker and a glass marble hung from an electronic balance immersed in the water. As the water warms, the weight of the marble increases as the water is less buoyant due to the decrease in density. In the experiment performed in this paper a balance with a precision of 0.1 mg was used with a marble 40.0 cm3 and mass of 99.3 g, yielding water density measurements with an average error of -0.008 ± 0.011%.

  18. Considerations affecting the additional weight required in mass balance of ailerons

    NASA Technical Reports Server (NTRS)

    Diehl, W S

    1937-01-01

    This paper is essentially a consideration of mass balance of ailerons from a preliminary design standpoint, in which the extra weight of the mass counterbalance is the most important phase of the problem. Equations are developed for the required balance weight for a simple aileron and this weight is correlated with the mass-balance coefficient. It is concluded the location of the c.g. of the basic aileron is of paramount importance and that complete mass balance imposes no great weight penalty if the aileron is designed to have its c.g. inherently near to the hinge axis.

  19. A summary of the Planck constant determinations using the NRC Kibble balance

    NASA Astrophysics Data System (ADS)

    Wood, B. M.; Sanchez, C. A.; Green, R. G.; Liard, J. O.

    2017-06-01

    We present a summary of the Planck constant determinations using the NRC watt balance, now referred to as the NRC Kibble balance. The summary includes a reanalysis of the four determinations performed in late 2013, as well as three new determinations performed in 2016. We also present a number of improvements and modifications to the experiment resulting in lower noise and an improved uncertainty analysis. As well, we present a systematic error that had been previously unrecognized and we have quantified its correction. The seven determinations, using three different nominal masses and two different materials, are reanalysed in a manner consistent with that used by the CODATA Task Group on Fundamental Constants (TGFC) and includes a comprehensive assessment of correlations. The result is a Planck constant of 6.626 070 133(60)  ×10-34 Js and an inferred value of the Avogadro constant of 6.022 140 772(55)  ×1023 mol-1. These fractional uncertainties of less than 10-8 are the smallest published to date.

  20. Error field detection in DIII-D by magnetic steering of locked modes

    DOE PAGES

    Shiraki, Daisuke; La Haye, Robert J.; Logan, Nikolas C.; ...

    2014-02-20

    Optimal correction coil currents for the n = 1 intrinsic error field of the DIII-D tokamak are inferred by applying a rotating external magnetic perturbation to steer the phase of a saturated locked mode with poloidal/toroidal mode number m/n = 2/1. The error field is detected non-disruptively in a single discharge, based on the toroidal torque balance of the resonant surface, which is assumed to be dominated by the balance of resonant electromagnetic torques. This is equivalent to the island being locked at all times to the resonant 2/1 component of the total of the applied and intrinsic error fields,more » such that the deviation of the locked mode phase from the applied field phase depends on the existing error field. The optimal set of correction coil currents is determined to be those currents which best cancels the torque from the error field, based on fitting of the torque balance model. The toroidal electromagnetic torques are calculated from experimental data using a simplified approach incorporating realistic DIII-D geometry, and including the effect of the plasma response on island torque balance based on the ideal plasma response to external fields. This method of error field detection is demonstrated in DIII-D discharges, and the results are compared with those based on the onset of low-density locked modes in ohmic plasmas. Furthermore, this magnetic steering technique presents an efficient approach to error field detection and is a promising method for ITER, particularly during initial operation when the lack of auxiliary heating systems makes established techniques based on rotation or plasma amplification unsuitable.« less

  1. Comparative glacio-climatological analysis of mass balance variability along the geographical margin of Europe

    NASA Astrophysics Data System (ADS)

    Lehoczky, Annamária; Kern, Zoltán; Pongrácz, Rita

    2014-05-01

    Glacio-climatological studies recognise glacier mass balance changes as high-confident climate indicators. The climatic sensitivity of a glacier does not simply depend on regional climate variability but also influenced via large- and mesoscale atmospheric circulation patterns. This study focuses on recent changes in the mass balance using records from three border regions of Europe, and investigates the relationships between the seasonal mass balance components, regional climatic conditions, and distant atmospheric forcing. Since glaciers in different macro-climatological conditions (i.e., mid-latitudes or high-latitudes, dry-continental or maritime regions) may present strongly diverse mass balance characteristics, the three analysed regions were selected from different glacierised macroregions (using the database of the World Glacier Monitoring Service). These regions belong to the Caucasus Mountains (Central Europe macroregion), the Polar Ural (Northern Asia macroregion), and Svalbard (Arctic Islands macroregion). The analysis focuses on winter, summer, and annual mass balance series of eight glaciers. The climatic variables (atmospheric pressure, air temperature, precipitation) and indices of teleconnection patterns (e.g., North Atlantic Oscillation, Pacific Decadal Oscillation) are used from the gridded databases of the University of East Anglia, Climatic Research Unit and the National Oceanic and Atmospheric Administration, National Center for Environmental Prediction. However, the period and length of available mass balance data in the selected regions vary greatly (the first full record is in 1958, Polar Ural; the last is in 2010, Caucasus Mountains), a comparative analysis can be carried out for the period of 1968-1981. Since glaciers from different regions respond to large- and mesoscale climatic forcings differently, and because the mass balance of glaciers within a region often co-vary, our specific objectives are (i) to examine the variability and the integrative climatic signal in the averaged mass balance records of the selected regions; (ii) to analyse the possible coupling between the mass balance and climatic variables, including the dominant patterns of Northern Hemisphere climate variability; and (iii) to compare the main characteristics of the three regions. Furthermore, (iv) a short discussion is given considering the significant decreasing trend of the cumulative annual mass balances in every region under the detected climatic changes in the second half of the 20th century. Preliminary results suggest that the strongest teleconnection links could be between winter mass balance and winter NAO for the Polar Ural (r=0.46, p<0.05), and between annual mass balance and PDO for Svalbard (r=-0.43, p<0.05). Neither seasonal, nor annual mass balance records showed significant correlation with any of the examined circulation indices for the Caucasus.

  2. Maternal dietary intake during pregnancy and offspring body composition: The Healthy Start Study.

    PubMed

    Crume, Tessa L; Brinton, John T; Shapiro, Allison; Kaar, Jill; Glueck, Deborah H; Siega-Riz, Anna Maria; Dabelea, Dana

    2016-11-01

    Consistent evidence of an influence of maternal dietary intake during pregnancy on infant body size and composition in human populations is lacking, despite robust evidence in animal models. We sought to evaluate the influence of maternal macronutrient intake and balance during pregnancy on neonatal body size and composition, including fat mass and fat-free mass. The analysis was conducted among 1040 mother-offspring pairs enrolled in the prospective prebirth observational cohort: the Healthy Start Study. Diet during pregnancy was collected using repeated 24-hour dietary recalls (up to 8). Direct measures of body composition were obtained using air displacement plethysmography. The National Cancer Institute measurement error model was used to estimate usual dietary intake during pregnancy. Multivariable partition (nonisocaloric) and nutrient density (isocaloric) linear regression models were used to test the associations between maternal dietary intake and neonatal body composition. The median macronutrient composition during pregnancy was 32.2% from fat, 15.0% from protein, and 47.8% from carbohydrates. In the partition multivariate regression model, individual macronutrient intake values were not associated with birthweight or fat-free mass, but were associated with fat mass. Respectively, 418 kJ increases in total fat, saturated fat, unsaturated fat, and total carbohydrates were associated with 4.2-g (P = .03), 11.1-g (P = .003), 5.9-g (P = .04), and 2.9-g (P = .02) increases in neonatal fat mass, independent of prepregnancy body mass index. In the nutrient density multivariate regression model, macronutrient balance was not associated with fat mass, fat-free mass, or birthweight after adjustment for prepregnancy body mass index. Neonatal adiposity, but not birthweight, is independently associated with increased maternal intake of total fat, saturated fat, unsaturated fat, and total carbohydrates, but not protein, suggesting that most forms of increased caloric intake contribute to fetal fat accretion. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Evaluation of Second-Level Inference in fMRI Analysis

    PubMed Central

    Roels, Sanne P.; Loeys, Tom; Moerkerke, Beatrijs

    2016-01-01

    We investigate the impact of decisions in the second-level (i.e., over subjects) inferential process in functional magnetic resonance imaging on (1) the balance between false positives and false negatives and on (2) the data-analytical stability, both proxies for the reproducibility of results. Second-level analysis based on a mass univariate approach typically consists of 3 phases. First, one proceeds via a general linear model for a test image that consists of pooled information from different subjects. We evaluate models that take into account first-level (within-subjects) variability and models that do not take into account this variability. Second, one proceeds via inference based on parametrical assumptions or via permutation-based inference. Third, we evaluate 3 commonly used procedures to address the multiple testing problem: familywise error rate correction, False Discovery Rate (FDR) correction, and a two-step procedure with minimal cluster size. Based on a simulation study and real data we find that the two-step procedure with minimal cluster size results in most stable results, followed by the familywise error rate correction. The FDR results in most variable results, for both permutation-based inference and parametrical inference. Modeling the subject-specific variability yields a better balance between false positives and false negatives when using parametric inference. PMID:26819578

  4. Opportunities and Challenges in Enhancing Value of Annual Glacier Mass Balance Monitoring Examples from Western North America

    NASA Astrophysics Data System (ADS)

    Pelto, M. S.

    2017-12-01

    Alpine glacier mass balance is the most accurate indicator of glacier response to climate and with retreat of alpine glaciers is one of the clearest signals of global climate change. Completion of long term, representative and homogenous mass balance field measurement of mass balance, compiled by WGMS, is a key climate data record. To ensure a monitoring program remains vital and funded local collaboration and connecting the research to local societal impacts is crucial. Working with local partners in collecting and providing the right data is critical whether their interest is in hydropower, irrigation, municipal supply, hazard reduction and/or aquatic ecosystems. The expansion of remote sensing and modeling capability provides both a challenge to continued relevance and an opportunity for field mass balance programs to expand relevance. In modelling studies of both glacier mass balance and glacier runoff transient balance data has equivalent value with annual balance data, for both calibration runs and as an input variable. This increases the utility of mid-season field observations. Remote sensing provides repeat imagery that often identifies the AAR and transient snowline of a glacier. For runoff assessment understanding the specific percent of glacier surface area that is glacier ice, older firn, and retained snowpack from the previous winter at frequent intervals during the melt season is vital since each region has a different melt factor. A denser field observation network combined with this imagery can provide additional point balance values of ablation that complement the mass balance record. Periodic measurement of mass balance at a denser network using GPR, LIDAR, TLS or probing is required to better understand long term point balance locations and is important at end of the melt season not just beginning, and has value mid-season for modelling. Applications of each of utility of field mass balance observations will be illustrated.

  5. GIA models with composite rheology and 3D viscosity: effect on GRACE mass balance in Antarctica

    NASA Astrophysics Data System (ADS)

    van der Wal, Wouter; Whitehouse, Pippa; Schrama, Ernst

    2014-05-01

    Most Glacial Isostatic Adjustment (GIA) models that have been used to correct GRACE data for the influence of GIA assume a radial stratification of viscosity in the Earth's mantle (1D viscosity). Seismic data in Antarctica indicate that there are large viscosity variations in the horizontal direction (3D viscosity). The purpose of this research is to determine the effect of 3D viscosity on GIA model output, and hence mass balance estimates in Antarctica. We use a GIA model with 3D viscosity and composite rheology in combination with ice loading histories ICE-5G and W12a. From comparisons with uplift and sea-level data in Fennoscandia and North America three preferred viscosity models are selected. For two of the 3D viscosity models the maximum gravity rate due to ICE-5G forcing is located over the Ronne-Filchner ice shelf. This is in contrast with the results obtained using a 1D model, in which the maximum gravity rate due to ICE-5G forcing is always located over the Ross ice shelf. This demonstrates that not all 3D viscosity models can be approximated with a 1D viscosity model. Using CSR release 5 GRACE data from February 2003 to June 2013 mass balance estimates for the three preferred viscosity models are -131 to -171 Gt/year for the ICE-5G model, and -48 to -57 Gt/year for the W12a model. The range due to Earth model uncertainty is larger than the error bar for GRACE (10 Gt/year), but smaller than the range resulting from the difference in ice loading histories.

  6. 40 CFR 1045.730 - What ABT reports must I send to EPA?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... volumes for the model year with a point of retail sale in the United States, as described in § 1045.701(j...) Show that your net balance of emission credits from all your participating families in each averaging... errors mistakenly decreased your balance of emission credits, you may correct the errors and recalculate...

  7. 40 CFR 1051.730 - What ABT reports must I send to EPA?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the model year with a point of retail sale in the United States, as described in § 1051.701(d). For... following additional information: (1) Show that your net balance of emission credits in each averaging set... that errors mistakenly decreased your balance of emission credits, you may correct the errors and...

  8. Soil moisture assimilation using a modified ensemble transform Kalman filter with water balance constraint

    NASA Astrophysics Data System (ADS)

    Wu, Guocan; Zheng, Xiaogu; Dan, Bo

    2016-04-01

    The shallow soil moisture observations are assimilated into Common Land Model (CoLM) to estimate the soil moisture in different layers. The forecast error is inflated to improve the analysis state accuracy and the water balance constraint is adopted to reduce the water budget residual in the assimilation procedure. The experiment results illustrate that the adaptive forecast error inflation can reduce the analysis error, while the proper inflation layer can be selected based on the -2log-likelihood function of the innovation statistic. The water balance constraint can result in reducing water budget residual substantially, at a low cost of assimilation accuracy loss. The assimilation scheme can be potentially applied to assimilate the remote sensing data.

  9. Mass Balance of a Maritime Glacier on the Southeast Tibetan Plateau and Its Climatic Sensitivity

    NASA Astrophysics Data System (ADS)

    Yang, W.

    2014-12-01

    Based on glacio-meteorological measurements and mass-balance stake records during the five-year period of 2005-2010 on the southeast Tibetan Plateau, an energy-mass balance model was applied to study the surface mass balance of the Parlung No. 94 Glacier, as well as its response to regional climate conditions. The primary physical parameters involved in the model were locally calibrated by using relevant glacio-meteorological datasets. The good agreement between the snowpack height/mass balance simulations and the in-situ measurements available from a total of 12 monitoring stakes over this glacier confirmed the satisfactory performance of the energy-mass balance model. Results suggested that the recent state of the Parlung No. 94 Glacier was far removed from the 'ideal' climatic regime leading to zero mass balance, with its annual mass balance of approximately -0.9 m w.e. during 2005-2010. Climatic sensitivity experiments were also carried out to interpret the observed mass-balance changes, and the experiments demonstrated that the maritime glaciers concerned herein were theoretically more vulnerable to ongoing climate warming on the Tibetan Plateau than potential changes in the amount of precipitation. A plausible causal explanation for the recent glacier shrinkage in this region was concerned with the increasing air temperature. Moreover, both the mass balance simulations and the field measurements indicated that the mass accumulation over this maritime glacier occurred primarily in the boreal spring. Such "spring-accumulation type" glaciers are presumed to be distributed mainly within a narrow wedge-shaped region along the Brahmaputra River. Climatic sensitivities of the glacier mass balanceare also found to be closely linked to the regional precipitation seasonality that is simultaneously modulated by various atmospheric circulation patterns, such as the southern westerlies, the Bay of Bengal vortex in the spring season and the Indian monsoon in the summer season.

  10. Trends in ice sheet mass balance, 1992 to 2017

    NASA Astrophysics Data System (ADS)

    Shepherd, A.; Ivins, E. R.; Smith, B.; Velicogna, I.; Whitehouse, P. L.; Rignot, E. J.; van den Broeke, M. R.; Briggs, K.; Hogg, A.; Krinner, G.; Joughin, I. R.; Nowicki, S.; Payne, A. J.; Scambos, T.; Schlegel, N.; Moyano, G.; Konrad, H.

    2017-12-01

    The Ice Sheet Mass Balance Inter-Comparison Exercise (IMBIE) is a community effort, jointly supported by ESA and NASA, that aims to provide a consensus estimate of ice sheet mass balance from satellite gravimetry, altimetry and mass budget assessments, on an annual basis. The project has five experiment groups, one for each of the satellite techniques and two others to analyse surface mass balance (SMB) and glacial isostatic adjustment (GIA). The basic premise for the exercise is that individual ice sheet mass balance datasets are generated by project participants using common spatial and temporal domains to allow meaningful inter-comparison, and this controlled comparison in turn supports aggregation of the individual datasets over their full period. Participation is open to the full community, and the quality and consistency of submissions is regulated through a series of data standards and documentation requirements. The second phase of IMBIE commenced in 2015, with participant data submitted in 2016 and a combined estimate due for public release in 2017. Data from 48 participant groups were submitted to one of the three satellite mass balance technique groups or to the ancillary dataset groups. The individual mass balance estimates and ancillary datasets have been compared and combined within the respective groups. Following this, estimates of ice sheet mass balance derived from the individual techniques were then compared and combined. The result is single estimates of ice sheet mass balance for Greenland, East Antarctica, West Antarctica, and the Antarctic Peninsula. The participants, methodology and results of the exercise will be presented in this paper.

  11. Pyrometer with tracking balancing

    NASA Astrophysics Data System (ADS)

    Ponomarev, D. B.; Zakharenko, V. A.; Shkaev, A. G.

    2018-04-01

    Currently, one of the main metrological noncontact temperature measurement challenges is the emissivity uncertainty. This paper describes a pyrometer with emissivity effect diminishing through the use of a measuring scheme with tracking balancing in which the radiation receiver is a null-indicator. In this paper the results of the prototype pyrometer absolute error study in surfaces temperature measurement of aluminum and nickel samples are presented. There is absolute error calculated values comparison considering the emissivity table values with errors on the results of experimental measurements by the proposed method. The practical implementation of the proposed technical solution has allowed two times to reduce the error due to the emissivity uncertainty.

  12. Mass balance computation in SAGUARO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, B.L.; Eaton, R.R.

    1986-12-01

    This report describes the development of the mass balance subroutines used with the finite-element code, SAGUARO, which models fluid flow in partially saturated porous media. Derivation of the basic mass storage and mass flux equations is included. The results of the SAGUARO mass-balance subroutine, MASS, are shown to compare favorably with the linked results of FEMTRAN. Implementation of the MASS option in SAGUARO is described. Instructions for use of the MASS option are demonstrated with the three sample cases.

  13. Evaluation of methods for measuring particulate matter emissions from gas turbines.

    PubMed

    Petzold, Andreas; Marsh, Richard; Johnson, Mark; Miller, Michael; Sevcenco, Yura; Delhaye, David; Ibrahim, Amir; Williams, Paul; Bauer, Heidi; Crayford, Andrew; Bachalo, William D; Raper, David

    2011-04-15

    The project SAMPLE evaluated methods for measuring particle properties in the exhaust of aircraft engines with respect to the development of standardized operation procedures for particulate matter measurement in aviation industry. Filter-based off-line mass methods included gravimetry and chemical analysis of carbonaceous species by combustion methods. Online mass methods were based on light absorption measurement or used size distribution measurements obtained from an electrical mobility analyzer approach. Number concentrations were determined using different condensation particle counters (CPC). Total mass from filter-based methods balanced gravimetric mass within 8% error. Carbonaceous matter accounted for 70% of gravimetric mass while the remaining 30% were attributed to hydrated sulfate and noncarbonaceous organic matter fractions. Online methods were closely correlated over the entire range of emission levels studied in the tests. Elemental carbon from combustion methods and black carbon from optical methods deviated by maximum 5% with respect to mass for low to medium emission levels, whereas for high emission levels a systematic deviation between online methods and filter based methods was found which is attributed to sampling effects. CPC based instruments proved highly reproducible for number concentration measurements with a maximum interinstrument standard deviation of 7.5%.

  14. Bilateral improvements in lower extremity function after unilateral balance training in individuals with chronic ankle instability.

    PubMed

    Hale, Sheri A; Fergus, Andrea; Axmacher, Rachel; Kiser, Kimberly

    2014-01-01

    Bilateral improvements in postural control have been reported among individuals with acute lateral ankle sprains and individuals with chronic ankle instability (CAI) when only the unstable ankle is rehabilitated. We do not know if training the stable ankle will improve function on the unstable side. To explore the effects of a unilateral balance-training program on bilateral lower extremity balance and function in individuals with CAI when only the stable limb is trained. Cohort study. University clinical research laboratory. A total of 34 volunteers (8 men, 26 women; age = 24.32 ± 4.95 years, height = 167.01 ± 9.45 cm, mass = 77.54 ± 23.76 kg) with CAI were assigned to the rehabilitation (n = 17) or control (n = 17) group. Of those, 27 (13 rehabilitation group, 14 control group) completed the study. Balance training twice weekly for 4 weeks. Foot and Ankle Disability Index (FADI), FADI Sport (FADI-S), Star Excursion Balance Test, and Balance Error Scoring System. The rehabilitation and control groups differed in changes in FADI-S and Star Excursion Balance Test scores over time. Only the rehabilitation group improved in the FADI-S and in the posteromedial and anterior reaches of the Star Excursion Balance Test. Both groups demonstrated improvements in posterolateral reach; however, the rehabilitation group demonstrated greater improvement than the control group. When the groups were combined, participants reported improvements in FADI and FADI-S scores for the unstable ankle but not the stable ankle. Our data suggest training the stable ankle may result in improvements in balance and lower extremity function in the unstable ankle. This further supports the existence of a centrally mediated mechanism in the development of postural-control deficits after injury, as well as improved postural control after rehabilitation.

  15. Electrochemical degradation of trichloroacetic acid in aqueous media: influence of the electrode material.

    PubMed

    Esclapez, M D; Díez-García, M I; Sàez, V; Bonete, P; González-García, José

    2013-01-01

    The electrochemical degradation of trichloroacetic acid (TCAA) in water has been analysed through voltammetric studies with a rotating disc electrode and controlled-potential bulk electrolyses. The influence of the mass-transport conditions and initial concentration of TCAA for titanium, stainless steel and carbon electrodes has been studied. It is shown that the electrochemical reduction of TCAA takes place prior to the massive hydrogen evolution in the potential window for all electrode materials studied. The current efficiency is high (> 18%) compared with those normally reported in the literature, and the fractional conversion is above 50% for all the electrodes studied. Only dichloroacetic acid (DCAA) and chloride anions were routinely detected as reduction products for any of the electrodes, and reasonable values of mass balance error were obtained. Of the three materials studied, the titanium cathode gave the best results.

  16. Glacier modeling in support of field observations of mass balance at South Cascade Glacier, Washington, USA

    USGS Publications Warehouse

    Josberger, Edward G.; Bidlake, William R.

    2010-01-01

    The long-term USGS measurement and reporting of mass balance at South Cascade Glacier was assisted in balance years 2006 and 2007 by a new mass balance model. The model incorporates a temperature-index melt computation and accumulation is modeled from glacier air temperature and gaged precipitation at a remote site. Mass balance modeling was used with glaciological measurements to estimate dates and magnitudes of critical mass balance phenomena. In support of the modeling, a detailed analysis was made of the "glacier cooling effect" that reduces summer air temperature near the ice surface as compared to that predicted on the basis of a spatially uniform temperature lapse rate. The analysis was based on several years of data from measurements of near-surface air temperature on the glacier. The 2006 and 2007 winter balances of South Cascade Glacier, computed with this new, model-augmented methodology, were 2.61 and 3.41 mWE, respectively. The 2006 and 2007 summer balances were -4.20 and -3.63 mWE, respectively, and the 2006 and 2007 net balances were -1.59 and -0.22 mWE. PDF version of a presentation on the mass balance of South Cascade Glacier in Washington state. Presented at the American Geophysical Union Fall Meeting 2010.

  17. Method of Calibrating a Force Balance

    NASA Technical Reports Server (NTRS)

    Parker, Peter A. (Inventor); Rhew, Ray D. (Inventor); Johnson, Thomas H. (Inventor); Landman, Drew (Inventor)

    2015-01-01

    A calibration system and method utilizes acceleration of a mass to generate a force on the mass. An expected value of the force is calculated based on the magnitude and acceleration of the mass. A fixture is utilized to mount the mass to a force balance, and the force balance is calibrated to provide a reading consistent with the expected force determined for a given acceleration. The acceleration can be varied to provide different expected forces, and the force balance can be calibrated for different applied forces. The acceleration may result from linear acceleration of the mass or rotational movement of the mass.

  18. Land motion due to 20th century mass balance of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Kjeldsen, K. K.; Khan, S. A.

    2017-12-01

    Quantifying the contribution from ice sheets and glaciers to past sea level change is of great value for understanding sea level projections into the 21st century. However, quantifying and understanding past changes are equally important, in particular understanding the impact in the near-field where the signal is highest. We assess the impact of 20th century mass balance of the Greenland Ice Sheet on land motion using results from Kjeldsen et al, 2015. These results suggest that the ice sheet on average lost a minimum of 75 Gt/yr, but also show that the mass balance was highly spatial- and temporal variable, and moreover that on a centennial time scale changes were driven by a decreasing surface mass balance. Based on preliminary results we discuss land motion during the 20th century due to mass balance changes and the driving components surface mass balance and ice dynamics.

  19. Measuring air-water interfacial area for soils using the mass balance surfactant-tracer method.

    PubMed

    Araujo, Juliana B; Mainhagu, Jon; Brusseau, Mark L

    2015-09-01

    There are several methods for conducting interfacial partitioning tracer tests to measure air-water interfacial area in porous media. One such approach is the mass balance surfactant tracer method. An advantage of the mass-balance method compared to other tracer-based methods is that a single test can produce multiple interfacial area measurements over a wide range of water saturations. The mass-balance method has been used to date only for glass beads or treated quartz sand. The purpose of this research is to investigate the effectiveness and implementability of the mass-balance method for application to more complex porous media. The results indicate that interfacial areas measured with the mass-balance method are consistent with values obtained with the miscible-displacement method. This includes results for a soil, for which solid-phase adsorption was a significant component of total tracer retention. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Annual and seasonal mass balances of Chhota Shigri Glacier (benchmark glacier, Western Himalaya), India

    NASA Astrophysics Data System (ADS)

    Mandal, Arindan; Ramanathan, Alagappan; Farooq Azam, Mohd; Wagnon, Patrick; Vincent, Christian; Linda, Anurag; Sharma, Parmanand; Angchuk, Thupstan; Bahadur Singh, Virendra; Pottakkal, Jose George; Kumar, Naveen; Soheb, Mohd

    2015-04-01

    Several studies on Himalayan glaciers have been recently initiated as they are of particular interest in terms of future water supply, regional climate change and sea-level rise. In 2002, a long-term monitoring program was initiated on Chhota Shigri Glacier (15.7 square km, 9 km long, 6263-4050 m a.s.l.) located in Lahaul and Spiti Valley, Himachal Pradesh, India. This glacier lies in the monsoon-arid transition zone (western Himalaya) and is a representative glacier in Lahaul and Spiti Valley. While annual mass balances have been measured continuously since 2002 using the glaciological method, seasonal scale observations began in 2009. The annual and seasonal mass balances were then analyzed along with meteorological conditions in order to understand the role of winter and summer balances on annual glacier-wide mass balance of Chhota Shigri glacier. During the period 2002-2013, the glacier experienced a negative glacier-wide mass balance of -0.59±0.40 m w.e. a-1 with a cumulative glaciological mass balance of -6.45 m w.e. Annual glacier-wide mass balances were negative except for four years (2004/05, 2008/09, 2009/10 and 2010/11) where it was generally close to balanced conditions. Equilibrium line altitude (ELA) for steady state condition is calculated as 4950 m a.s.l. corresponding to an accumulation area ratio (AAR) of 62% using annual glacier-wide mass balance, ELA and AAR data between 2002 and 2013. The winter glacier-wide mass balance between 2009 and 2013 ranges from a maximum value of 1.38 m w.e. in 2009/10 to a minimum value of 0.89 in 2012/13 year whereas the summer glacier-wide mass balance varies from the highest value of -0.95 m w.e. in 2010/11 to the lowest value of -1.72 m w.e. in 2011/12 year. The mean vertical mass balance gradient between 2002 and 2013 was 0.66 m w.e. (100 m)-1 quite similar to Alps, Nepalese Himalayas etc. Over debris covered area, the gradients are highly variable with a negative mean value of -2.15 m w.e. (100 m)-1 over 2002-2013 observation period. The negative gradients can be explained by the thickness of debris cover that increases with decrease in altitude, thus protecting the glacier more efficiently at lower altitudes. Mass balance is strongly dependent on debris cover, exposure (solar radiation) and the shading effect of surrounding steep slopes.

  1. Can weighing lysimeter ET represent surrounding field ET well enough to test flux station measurements of daily and sub-daily ET?

    USDA-ARS?s Scientific Manuscript database

    Weighing lysimeters and neutron probes are two tools used to determine the change in soil water storage that is needed to solve for evapotranspiration (ET) using the soil water balance equation. Errors in the soil water balance due to errors in determination of precipitation and irrigation are commo...

  2. An error bound for a discrete reduced order model of a linear multivariable system

    NASA Technical Reports Server (NTRS)

    Al-Saggaf, Ubaid M.; Franklin, Gene F.

    1987-01-01

    The design of feasible controllers for high dimension multivariable systems can be greatly aided by a method of model reduction. In order for the design based on the order reduction to include a guarantee of stability, it is sufficient to have a bound on the model error. Previous work has provided such a bound for continuous-time systems for algorithms based on balancing. In this note an L-infinity bound is derived for model error for a method of order reduction of discrete linear multivariable systems based on balancing.

  3. Effect of body mass index and fat mass on balance force platform measurements during a one-legged stance in older adults.

    PubMed

    Pereira, Camila; Silva, Rubens A da; de Oliveira, Marcio R; Souza, Rejane D N; Borges, Renata J; Vieira, Edgar R

    2018-05-01

    The purpose of this study was to evaluate the impact of body mass index (BMI) and fat mass on balance force platform measurements in older adults. The sample consisted of 257 participants who were stratified into four groups by BMI: low weight, normal weight, pre-obesity and obesity. For fat mass variables, older individuals were classified into low and high-fat mass. All groups investigated performed three trials of one-legged stance balance on a force platform. Center of pressure (COP) domain parameters were computed from the mean across trials. Analysis of variance results revealed no significant interactions for groups and sexes for all COP parameters. Comparable balance results were found for BMI and fat groups for all COP parameters. A statistical effect (P < 0.05) was only reported for sex differences for COP parameters, regardless of BMI and fat mass variables. Overall, women presented better balance than men. In conclusion, BMI and fat mass do not seem to influence the balance of older adults during a one-leg stance task.

  4. Stochastic weighted particle methods for population balance equations with coagulation, fragmentation and spatial inhomogeneity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kok Foong; Patterson, Robert I.A.; Wagner, Wolfgang

    2015-12-15

    Graphical abstract: -- Highlights: •Problems concerning multi-compartment population balance equations are studied. •A class of fragmentation weight transfer functions is presented. •Three stochastic weighted algorithms are compared against the direct simulation algorithm. •The numerical errors of the stochastic solutions are assessed as a function of fragmentation rate. •The algorithms are applied to a multi-dimensional granulation model. -- Abstract: This paper introduces stochastic weighted particle algorithms for the solution of multi-compartment population balance equations. In particular, it presents a class of fragmentation weight transfer functions which are constructed such that the number of computational particles stays constant during fragmentation events. Themore » weight transfer functions are constructed based on systems of weighted computational particles and each of it leads to a stochastic particle algorithm for the numerical treatment of population balance equations. Besides fragmentation, the algorithms also consider physical processes such as coagulation and the exchange of mass with the surroundings. The numerical properties of the algorithms are compared to the direct simulation algorithm and an existing method for the fragmentation of weighted particles. It is found that the new algorithms show better numerical performance over the two existing methods especially for systems with significant amount of large particles and high fragmentation rates.« less

  5. Re-assessing Present Day Global Mass Transport and Glacial Isostatic Adjustment From a Data Driven Approach

    NASA Astrophysics Data System (ADS)

    Wu, X.; Jiang, Y.; Simonsen, S.; van den Broeke, M. R.; Ligtenberg, S.; Kuipers Munneke, P.; van der Wal, W.; Vermeersen, B. L. A.

    2017-12-01

    Determining present-day mass transport (PDMT) is complicated by the fact that most observations contain signals from both present day ice melting and Glacial Isostatic Adjustment (GIA). Despite decades of progress in geodynamic modeling and new observations, significant uncertainties remain in both. The key to separate present-day ice mass change and signals from GIA is to include data of different physical characteristics. We designed an approach to separate PDMT and GIA signatures by estimating them simultaneously using globally distributed interdisciplinary data with distinct physical information and a dynamically constructed a priori GIA model. We conducted a high-resolution global reappraisal of present-day ice mass balance with focus on Earth's polar regions and its contribution to global sea-level rise using a combination of ICESat, GRACE gravity, surface geodetic velocity data, and an ocean bottom pressure model. Adding ice altimetry supplies critically needed dual data types over the interiors of ice covered regions to enhance separation of PDMT and GIA signatures, and achieve half an order of magnitude expected higher accuracies for GIA and consequently ice mass balance estimates. The global data based approach can adequately address issues of PDMT and GIA induced geocenter motion and long-wavelength signatures important for large areas such as Antarctica and global mean sea level. In conjunction with the dense altimetry data, we solved for PDMT coefficients up to degree and order 180 by using a higher-resolution GRACE data set, and a high-resolution a priori PDMT model that includes detailed geographic boundaries. The high-resolution approach solves the problem of multiple resolutions in various data types, greatly reduces aliased errors from a low-degree truncation, and at the same time, enhances separation of signatures from adjacent regions such as Greenland and Canadian Arctic territories.

  6. Engine balance apparatus and accessory drive device

    NASA Technical Reports Server (NTRS)

    Egleston, Robert W. (Inventor)

    2002-01-01

    A balancing mechanism for an engine that has a rotating crankshaft and reciprocating pistons. The balancing mechanism comprises a primary balance mass assembly non-rotatably and removably affixed to the crankshaft. The primary mass assembly comprises a primary mass affixed to a primary hub portion and a primary cap portion removably affixed to the primary hub portion to clamp a portion of the crankshaft therebetween. A secondary balance mass assembly may be rotatably and removably supported on the crankshaft. A driver assembly is affixed to the crankshaft to cause the secondary balance mass to rotate in a direction that is opposite to the direction in which the crank shaft is rotating. The driver assembly may include auxiliary gears configured to transport rotary power to auxiliary components. The gears are readily detachable from the apparatus to facilitate inspection and repair operations.

  7. Surface melt dominates Alaska glacier mass balance

    USGS Publications Warehouse

    Larsen Chris F,; Burgess, E; Arendt, A.A.; O'Neel, Shad; Johnson, A.J.; Kienholz, C.

    2015-01-01

    Mountain glaciers comprise a small and widely distributed fraction of the world's terrestrial ice, yet their rapid losses presently drive a large percentage of the cryosphere's contribution to sea level rise. Regional mass balance assessments are challenging over large glacier populations due to remote and rugged geography, variable response of individual glaciers to climate change, and episodic calving losses from tidewater glaciers. In Alaska, we use airborne altimetry from 116 glaciers to estimate a regional mass balance of −75 ± 11 Gt yr−1 (1994–2013). Our glacier sample is spatially well distributed, yet pervasive variability in mass balances obscures geospatial and climatic relationships. However, for the first time, these data allow the partitioning of regional mass balance by glacier type. We find that tidewater glaciers are losing mass at substantially slower rates than other glaciers in Alaska and collectively contribute to only 6% of the regional mass loss.

  8. Modelled and observed mass balance of Rikha Samba Glacier, Nepal, Central Himalaya

    NASA Astrophysics Data System (ADS)

    Gurung, T. R.; Kayastha, R. B.; Fujita, K.; Sinisalo, A. K.; Stumm, D.; Joshi, S.; Litt, M.

    2016-12-01

    Glacier mass balance variability has an implication for the regional water resources and it helps to understand the response of glacier to climate change in the Himalayan region. Several mass balance studies have been started in the Himalayan region since 1970s, but they are characterized by frequent temporal gaps and a poor spatial representatively. This study aims at bridging the temporal gaps in a long term mass balance series of the Rikha Samba glacier (5383 - 6475 m a.s.l.), a benchmark glacier located in the Hidden Valley, Mustang, Nepal. The ERA Interim reanalysis data for the period 2011-2015 is calibrated with the observed meteorological variables from an AWS installed near the glacier terminus. We apply an energy mass balance model, validated with the available in-situ measurements for the years 1998 and 2011-2015. The results show that the glacier is shrinking at a moderate negative mass balance rate for the period 1995 to 2015 and the high altitude location of Rikha Samba also prevents a bigger mass loss compared to other small Himalayan glaciers. Precipitation from July to January and the mean air temperature from June to October are the most influential climatic parameters of the annual mass balance variability of Rikha Samba glacier.

  9. A Simple Model Predicting Individual Weight Change in Humans

    PubMed Central

    Thomas, Diana M.; Martin, Corby K.; Heymsfield, Steven; Redman, Leanne M.; Schoeller, Dale A.; Levine, James A.

    2010-01-01

    Excessive weight in adults is a national concern with over 2/3 of the US population deemed overweight. Because being overweight has been correlated to numerous diseases such as heart disease and type 2 diabetes, there is a need to understand mechanisms and predict outcomes of weight change and weight maintenance. A simple mathematical model that accurately predicts individual weight change offers opportunities to understand how individuals lose and gain weight and can be used to foster patient adherence to diets in clinical settings. For this purpose, we developed a one dimensional differential equation model of weight change based on the energy balance equation is paired to an algebraic relationship between fat free mass and fat mass derived from a large nationally representative sample of recently released data collected by the Centers for Disease Control. We validate the model's ability to predict individual participants’ weight change by comparing model estimates of final weight data from two recent underfeeding studies and one overfeeding study. Mean absolute error and standard deviation between model predictions and observed measurements of final weights are less than 1.8 ± 1.3 kg for the underfeeding studies and 2.5 ± 1.6 kg for the overfeeding study. Comparison of the model predictions to other one dimensional models of weight change shows improvement in mean absolute error, standard deviation of mean absolute error, and group mean predictions. The maximum absolute individual error decreased by approximately 60% substantiating reliability in individual weight change predictions. The model provides a viable method for estimating individual weight change as a result of changes in intake and determining individual dietary adherence during weight change studies. PMID:24707319

  10. Normal aging increases postural preparation errors: Evidence from a two-choice response task with balance constraints.

    PubMed

    Verrel, Julius; Lisofsky, Nina; Kühn, Simone; Lindenberger, Ulman

    2016-02-01

    Correlational studies indicate an association between age-related decline in balance and cognitive control, but these functions are rarely addressed within a single task. In this study, we investigate adult age differences in a two-choice response task with balance constraints under three levels of response conflict. Sixteen healthy young (20-30 years) and 16 healthy older adult participants (59-74 years) were cued symbolically (letter L vs. R) to lift either the left or the right foot from the floor in a standing position. Response conflict was manipulated by task-irrelevant visual stimuli showing congruent, incongruent, or no foot lift movement. Preparatory weight shifts (PWS) and foot lift movements were recorded using force plates and optical motion capture. Older adults showed longer response times (foot lift) and more PWS errors than younger adults. Incongruent distractors interfered with performance (greater response time and PWS errors), but this compatibility effect did not reliably differ between age groups. Response time effects of age and compatibility were strongly reduced or absent in trials without PWS errors, and for the onset of the first (erroneous) PWS in trials with preparation error. In addition, in older adults only, compatibility effects in the foot lift task correlated significantly with compatibility effects in the Flanker task. The present results strongly suggest that adult age differences in response latencies in a task with balance constraints are related to age-associated increases in postural preparation errors rather than being an epiphenomenon of general slowing. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Insight into glacier climate interaction: reconstruction of the mass balance field using ice extent data

    NASA Astrophysics Data System (ADS)

    Visnjevic, Vjeran; Herman, Frédéric; Licul, Aleksandar

    2016-04-01

    With the end of the Last Glacial Maximum (LGM), about 20 000 years ago, ended the most recent long-lasting cold phase in Earth's history. We recently developed a model that describes large-scale erosion and its response to climate and dynamical changes with the application to the Alps for the LGM period. Here we will present an inverse approach we have recently developed to infer the LGM mass balance from known ice extent data, focusing on a glacier or ice cap. The ice flow model is developed using the shallow ice approximation and the developed codes are accelerated using GPUs capabilities. The mass balance field is the constrained variable defined by the balance rate β and the equilibrium line altitude (ELA), where c is the cutoff value: b = max(βṡ(S(z) - ELA), c) We show that such a mass balance can be constrained from the observed past ice extent and ice thickness. We are also investigating several different geostatistical methods to constrain spatially variable mass balance, and derive uncertainties on each of the mass balance parameters.

  12. Quantification of seasonal to annual mass balances from glacier surface albedo derived from optical satellite images, application on 30 glaciers in the French Alps for the period 2000-2015.

    NASA Astrophysics Data System (ADS)

    Davaze, Lucas; Rabatel, Antoine; Arnaud, Yves; Sirguey, Pascal; Six, Delphine; Letreguilly, Anne; Dumont, Marie

    2017-04-01

    Increasing the number of glaciers monitored for surface mass balance is very challenging, especially using laborious methods based on in situ data. Complementary methods are therefore required to quantify the surface mass balance of unmonitored glaciers. The current study relies on the so-called albedo method, based on the analysis of albedo maps retrieved from optical satellite imagery acquired since 2000 by the MODIS sensor, onboard of TERRA satellite. Recent studies performed on single glaciers in the French Alps, the Himalayas or the Southern Alps of New Zealand revealed substantial relationships between summer minimum glacier-wide surface albedo and annual mass balance, because this minimum surface albedo is directly related to accumulation-area ratio and the equilibrium-line altitude. On the basis of 30 glaciers located in the French Alps where annual surface mass balance are available, our study conducted on the period 2000-2015 confirms the robustness and reliability of the relationship between the summer minimum surface albedo and the annual surface mass balance. At the seasonal scale, the integrated summer surface albedo is significantly correlated with the summer mass balance of the six glaciers seasonally surveyed. For the winter season, four of the six glaciers showed a significant correlation when linking the winter surface mass balance and the integrated winter surface albedo, using glacier-dependent thresholds to filter the albedo signal. Sensitivity study on the computed cloud detection algorithm revealed high confidence in retrieved albedo maps. These results are promising to monitor both annual and seasonal glacier-wide surface mass balances of individual glaciers at a regional scale using optical satellite images.

  13. Quantifying Tropical Glacier Mass Balance Sensitivity to Climate Change Through Regional-Scale Modeling and The Randolph Glacier Inventory

    NASA Astrophysics Data System (ADS)

    Malone, A.

    2017-12-01

    Quantifying mass balance sensitivity to climate change is essential for forecasting glacier evolution and deciphering climate signals embedded in archives of past glacier changes. Ideally, these quantifications result from decades of field measurement, remote sensing, and a hierarchy modeling approach, but in data-sparse regions, such as the Himalayas and tropical Andes, regional-scale modeling rooted in first principles provides a first-order picture. Previous regional-scaling modeling studies have applied a surface energy and mass balance approach in order to quantify equilibrium line altitude sensitivity to climate change. In this study, an expanded regional-scale surface energy and mass balance model is implemented to quantify glacier-wide mass balance sensitivity to climate change for tropical Andean glaciers. Data from the Randolph Glacier Inventory are incorporated, and additional physical processes are included, such as a dynamic albedo and cloud-dependent atmospheric emissivity. The model output agrees well with the limited mass balance records for tropical Andean glaciers. The dominant climate variables driving interannual mass balance variability differ depending on the climate setting. For wet tropical glaciers (annual precipitation >0.75 m y-1), temperature is the dominant climate variable. Different hypotheses for the processes linking wet tropical glacier mass balance variability to temperature are evaluated. The results support the hypothesis that glacier-wide mass balance on wet tropical glaciers is largely dominated by processes at the lowest elevation where temperature plays a leading role in energy exchanges. This research also highlights the transient nature of wet tropical glaciers - the vast majority of tropical glaciers and a vital regional water resource - in an anthropogenic warming world.

  14. Determination of Interannual to Decadal Changes in Ice Sheet Mass Balance from Satellite Altimetry

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Busalacchi, Antonioa J. (Technical Monitor)

    2001-01-01

    A major uncertainty in predicting sea level rise is the sensitivity of ice sheet mass balance to climate change, as well as the uncertainty in present mass balance. Since the annual water exchange is about 8 mm of global sea level equivalent, the +/- 25% uncertainty in current mass balance corresponds to +/- 2 mm/yr in sea level change. Furthermore, estimates of the sensitivity of the mass balance to temperature change range from perhaps as much as - 10% to + 10% per K. Although the overall ice mass balance and seasonal and inter-annual variations can be derived from time-series of ice surface elevations from satellite altimetry, satellite radar altimeters have been limited in spatial coverage and elevation accuracy. Nevertheless, new data analysis shows mixed patterns of ice elevation increases and decreases that are significant in terms of regional-scale mass balances. In addition, observed seasonal and interannual variations in elevation demonstrate the potential for relating the variability in mass balance to changes in precipitation, temperature, and melting. From 2001, NASA's ICESat laser altimeter mission will provide significantly better elevation accuracy and spatial coverage to 86 deg latitude and to the margins of the ice sheets. During 3 to 5 years of ICESat-1 operation, an estimate of the overall ice sheet mass balance and sea level contribution will be obtained. The importance of continued ice monitoring after the first ICESat is illustrated by the variability in the area of Greenland surface melt observed over 17-years and its correlation with temperature. In addition, measurement of ice sheet changes, along with measurements of sea level change by a series of ocean altimeters, should enable direct detection of ice level and global sea level correlations.

  15. The mass balance of the ice plain of Ice Stream B and Crary Ice Rise

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert

    1993-01-01

    The region in the mouth of Ice Stream B (the ice plain) and that in the vicinity of Crary Ice Rise are experiencing large and rapid changes. Based on velocity, ice thickness, and accumulation rate data, the patterns of net mass balance in these regions were calculated. Net mass balance, or the rate of ice thickness change, was calculated as the residual of all mass fluxes into and out of subregions (or boxes). Net mass balance provides a measure of the state of health of the ice sheet and clues to the current dynamics.

  16. A hybrid machine learning model to estimate nitrate contamination of production zone groundwater in the Central Valley, California

    NASA Astrophysics Data System (ADS)

    Ransom, K.; Nolan, B. T.; Faunt, C. C.; Bell, A.; Gronberg, J.; Traum, J.; Wheeler, D. C.; Rosecrans, C.; Belitz, K.; Eberts, S.; Harter, T.

    2016-12-01

    A hybrid, non-linear, machine learning statistical model was developed within a statistical learning framework to predict nitrate contamination of groundwater to depths of approximately 500 m below ground surface in the Central Valley, California. A database of 213 predictor variables representing well characteristics, historical and current field and county scale nitrogen mass balance, historical and current landuse, oxidation/reduction conditions, groundwater flow, climate, soil characteristics, depth to groundwater, and groundwater age were assigned to over 6,000 private supply and public supply wells measured previously for nitrate and located throughout the study area. The machine learning method, gradient boosting machine (GBM) was used to screen predictor variables and rank them in order of importance in relation to the groundwater nitrate measurements. The top five most important predictor variables included oxidation/reduction characteristics, historical field scale nitrogen mass balance, climate, and depth to 60 year old water. Twenty-two variables were selected for the final model and final model errors for log-transformed hold-out data were R squared of 0.45 and root mean square error (RMSE) of 1.124. Modeled mean groundwater age was tested separately for error improvement in the model and when included decreased model RMSE by 0.5% compared to the same model without age and by 0.20% compared to the model with all 213 variables. 1D and 2D partial plots were examined to determine how variables behave individually and interact in the model. Some variables behaved as expected: log nitrate decreased with increasing probability of anoxic conditions and depth to 60 year old water, generally decreased with increasing natural landuse surrounding wells and increasing mean groundwater age, generally increased with increased minimum depth to high water table and with increased base flow index value. Other variables exhibited much more erratic or noisy behavior in the model making them more difficult to interpret but highlighting the usefulness of the non-linear machine learning method. 2D interaction plots show probability of anoxic groundwater conditions largely control estimated nitrate concentrations compared to the other predictors.

  17. The Automated Assessment of Postural Stability: Balance Detection Algorithm.

    PubMed

    Napoli, Alessandro; Glass, Stephen M; Tucker, Carole; Obeid, Iyad

    2017-12-01

    Impaired balance is a common indicator of mild traumatic brain injury, concussion and musculoskeletal injury. Given the clinical relevance of such injuries, especially in military settings, it is paramount to develop more accurate and reliable on-field evaluation tools. This work presents the design and implementation of the automated assessment of postural stability (AAPS) system, for on-field evaluations following concussion. The AAPS is a computer system, based on inexpensive off-the-shelf components and custom software, that aims to automatically and reliably evaluate balance deficits, by replicating a known on-field clinical test, namely, the Balance Error Scoring System (BESS). The AAPS main innovation is its balance error detection algorithm that has been designed to acquire data from a Microsoft Kinect ® sensor and convert them into clinically-relevant BESS scores, using the same detection criteria defined by the original BESS test. In order to assess the AAPS balance evaluation capability, a total of 15 healthy subjects (7 male, 8 female) were required to perform the BESS test, while simultaneously being tracked by a Kinect 2.0 sensor and a professional-grade motion capture system (Qualisys AB, Gothenburg, Sweden). High definition videos with BESS trials were scored off-line by three experienced observers for reference scores. AAPS performance was assessed by comparing the AAPS automated scores to those derived by three experienced observers. Our results show that the AAPS error detection algorithm presented here can accurately and precisely detect balance deficits with performance levels that are comparable to those of experienced medical personnel. Specifically, agreement levels between the AAPS algorithm and the human average BESS scores ranging between 87.9% (single-leg on foam) and 99.8% (double-leg on firm ground) were detected. Moreover, statistically significant differences in balance scores were not detected by an ANOVA test with alpha equal to 0.05. Despite some level of disagreement between human and AAPS-generated scores, the use of an automated system yields important advantages over currently available human-based alternatives. These results underscore the value of using the AAPS, that can be quickly deployed in the field and/or in outdoor settings with minimal set-up time. Finally, the AAPS can record multiple error types and their time course with extremely high temporal resolution. These features are not achievable by humans, who cannot keep track of multiple balance errors with such a high resolution. Together, these results suggest that computerized BESS calculation may provide more accurate and consistent measures of balance than those derived from human experts.

  18. Local topography increasingly influences the mass balance of a retreating cirque glacier

    USGS Publications Warehouse

    Florentine, Caitlyn; Harper, Joel T.; Fagre, Daniel B.; Moore, Johnnie; Peitzsch, Erich H.

    2018-01-01

    Local topographically driven processes – such as wind drifting, avalanching, and shading – are known to alter the relationship between the mass balance of small cirque glaciers and regional climate. Yet partitioning such local effects from regional climate influence has proven difficult, creating uncertainty in the climate representativeness of some glaciers. We address this problem for Sperry Glacier in Glacier National Park, USA, using field-measured surface mass balance, geodetic constraints on mass balance, and regional climate data recorded at a network of meteorological and snow stations. Geodetically derived mass changes during 1950–1960, 1960–2005, and 2005–2014 document average mass change rates during each period at −0.22 ± 0.12, −0.18 ± 0.05, and −0.10 ± 0.03 m w.e. yr−1, respectively. A correlation of field-measured mass balance and regional climate variables closely (i.e., within 0.08 m w.e. yr−1) predicts the geodetically measured mass loss from 2005 to 2014. However, this correlation overestimates glacier mass balance for 1950–1960 by +1.20 ± 0.95 m w.e. yr−1. Our analysis suggests that local effects, not represented in regional climate variables, have become a more dominant driver of the net mass balance as the glacier lost 0.50 km2 and retreated further into its cirque.

  19. Global optimization method based on ray tracing to achieve optimum figure error compensation

    NASA Astrophysics Data System (ADS)

    Liu, Xiaolin; Guo, Xuejia; Tang, Tianjin

    2017-02-01

    Figure error would degrade the performance of optical system. When predicting the performance and performing system assembly, compensation by clocking of optical components around the optical axis is a conventional but user-dependent method. Commercial optical software cannot optimize this clocking. Meanwhile existing automatic figure-error balancing methods can introduce approximate calculation error and the build process of optimization model is complex and time-consuming. To overcome these limitations, an accurate and automatic global optimization method of figure error balancing is proposed. This method is based on precise ray tracing to calculate the wavefront error, not approximate calculation, under a given elements' rotation angles combination. The composite wavefront error root-mean-square (RMS) acts as the cost function. Simulated annealing algorithm is used to seek the optimal combination of rotation angles of each optical element. This method can be applied to all rotational symmetric optics. Optimization results show that this method is 49% better than previous approximate analytical method.

  20. Results of the Lake Michigan Mass Balance Project: Atrazine Modeling Report

    EPA Science Inventory

    This report covers an overview of chemical properties, measurements in air and water, model construct and assumptions, and results of mathematical mass balance modeling of the herbicide atrazine in the Lake Michigan basin. Within the context of the mass balance, an overview of a...

  1. Engine balance apparatus and accessory drive device

    NASA Technical Reports Server (NTRS)

    Brogdon, James William (Inventor); Gill, David Keith (Inventor)

    2000-01-01

    A balancing mechanism for an engine that has a rotating crankshaft and reciprocating pistons such as those engines used in automobiles, aircrafts, boats, piston-driven compressors, piston-driven slider crank mechanisms, etc. The present balancing mechanism may comprise a first balance mass non-rotatably affixed to the crankshaft and a second balance mass rotatably supported on the crankshaft. A driver assembly is affixed to crankshaft to cause the second balance mass to rotate in a direction that is opposite to the direction in which the crank shaft is rotating. The driver assembly may include auxiliary gears configured to transport rotary power to auxiliary components.

  2. Dynamical adjustment of Scandinavian glacier mass-balance time series

    NASA Astrophysics Data System (ADS)

    Bonan, D.; Christian, J. E.; Christianson, K. A.

    2017-12-01

    Glacier mass wastage is often cited as one of the most visible manifestations of anthropogenic climate change. Annual glacier mass-balance is related to local climate and atmospheric circulation, as it is defined as the yearly sum of accumulation and ablation—processes that are strongly influenced by year-to-year fluctuations in precipitation and temperature. Glacier response to a climatic trend can, however, be masked by internal variability in atmospheric circulation, and by non-climatic factors (such as topographic control, wind deposition, and incident solar radiation). Thus, unambiguous attribution of a negative glacier mass-balance trend to anthropogenic forcing remains challenging. Maritime glacier mass-balance records may be especially difficult to interpret due to the high winter balances from decadal-scale climate oscillations and the relatively short time series. Here we examine the influence of climate and atmospheric circulation variability on 14 Norwegian glaciers that span 20° of latitude, from southern Norway to Svalbard. We use dynamical adjustment—a statistical method based on partial least squares regression—to identify the components of variability within the mass-balance records that are associated with the time-varying sea level pressure (SLP) and sea surface temperature (SST) fields. We find that 30-50% of the variance in the winter mass-balance records of the glaciers in southern Norway is explained by using sea level pressure as a predictor. The leading SLP predictor pattern mimics the spatial signature of the North Atlantic Oscillation (NAO), indicating that winter balance is strongly influenced by the NAO. Moreover, the adjusted mass-balance records indicate a geographic trend: the southern Norwegian glaciers have significant negative trends in the summer balance that remain negative after adjustment, while the more northern glaciers have negative winter balance trends that only become significant after adjustment. We look into anthropogenic warming to explain the trends after dynamical adjustment.

  3. An Empirical Mass Function Distribution

    NASA Astrophysics Data System (ADS)

    Murray, S. G.; Robotham, A. S. G.; Power, C.

    2018-03-01

    The halo mass function, encoding the comoving number density of dark matter halos of a given mass, plays a key role in understanding the formation and evolution of galaxies. As such, it is a key goal of current and future deep optical surveys to constrain the mass function down to mass scales that typically host {L}\\star galaxies. Motivated by the proven accuracy of Press–Schechter-type mass functions, we introduce a related but purely empirical form consistent with standard formulae to better than 4% in the medium-mass regime, {10}10{--}{10}13 {h}-1 {M}ȯ . In particular, our form consists of four parameters, each of which has a simple interpretation, and can be directly related to parameters of the galaxy distribution, such as {L}\\star . Using this form within a hierarchical Bayesian likelihood model, we show how individual mass-measurement errors can be successfully included in a typical analysis, while accounting for Eddington bias. We apply our form to a question of survey design in the context of a semi-realistic data model, illustrating how it can be used to obtain optimal balance between survey depth and angular coverage for constraints on mass function parameters. Open-source Python and R codes to apply our new form are provided at http://mrpy.readthedocs.org and https://cran.r-project.org/web/packages/tggd/index.html respectively.

  4. Evapotranspiration: Mass balance measurements compared with flux estimation methods

    USDA-ARS?s Scientific Manuscript database

    Evapotranspiration (ET) may be measured by mass balance methods and estimated by flux sensing methods. The mass balance methods are typically restricted in terms of the area that can be represented (e.g., surface area of weighing lysimeter (LYS) or equivalent representative area of neutron probe (NP...

  5. Steady state phosphorus mass balance model during hemodialysis based on a pseudo one-compartment kinetic model.

    PubMed

    Leypoldt, John K; Agar, Baris U; Akonur, Alp; Gellens, Mary E; Culleton, Bruce F

    2012-11-01

    Mathematical models of phosphorus kinetics and mass balance during hemodialysis are in early development. We describe a theoretical phosphorus steady state mass balance model during hemodialysis based on a novel pseudo one-compartment kinetic model. The steady state mass balance model accounted for net intestinal absorption of phosphorus and phosphorus removal by both dialysis and residual kidney function. Analytical mathematical solutions were derived to describe time-dependent intradialytic and interdialytic serum phosphorus concentrations assuming hemodialysis treatments were performed symmetrically throughout a week. Results from the steady state phosphorus mass balance model are described for thrice weekly hemodialysis treatment prescriptions only. The analysis predicts 1) a minimal impact of dialyzer phosphorus clearance on predialysis serum phosphorus concentration using modern, conventional hemodialysis technology, 2) variability in the postdialysis-to-predialysis phosphorus concentration ratio due to differences in patient-specific phosphorus mobilization, and 3) the importance of treatment time in determining the predialysis serum phosphorus concentration. We conclude that a steady state phosphorus mass balance model can be developed based on a pseudo one-compartment kinetic model and that predictions from this model are consistent with previous clinical observations. The predictions from this mass balance model are theoretical and hypothesis-generating only; additional prospective clinical studies will be required for model confirmation.

  6. Remote Sensing Estimates of Glacier Mass Balance Changes in the Himalayas of Nepal

    NASA Astrophysics Data System (ADS)

    Ambinakudige, S.; Joshi, K.

    2011-12-01

    Mass balance changes of glaciers are important indicators of climate change. There are only 30 'reference' glaciers in the world that have continuous mass balance data with world glacier monitoring service since 1976. Especially, Himalayan glaciers are conspicuously absent from global mass balance records. This shows the urgent need for mass balance data for glaciers throughout the world. In this study, we estimated mass balance of some major glaciers in the Sagarmatha National Park (SNP) in Nepal using remote sensing applications. The SNP is one of the densest glaciated regions in the Himalayan range consisting approximately 296 glacial lakes. The region has experienced several glacial lake outburst floods (GLOFs) in recent years, causing extensive damage to local infrastructure and loss of human life. In general, mass balance is determined at seasonal or yearly intervals. Because of the rugged and difficult terrain of the Himalayan region, there are only a few field based measurements of mass balance available. Moreover, there are only few cases where the applications of remote sensing methods were used to calculate mass balance of the Himalayan glaciers due to the lack of accurate elevation data. Studies have shown that estimations of mass balance using remote sensing applications were within the range of field-based mass balance measurements from the same period. This study used ASTER VNIR, 3N (nadir view) and 3B (backward view) bands to generate Digital Elevation Models (DEMs) for the SNP area. 3N and 3B bands generate an along track stereo pair with a base-to-height (B/H) ratio of about 0.6. Accurate measurement of ground control points (GCPs), their numbers and distribution are important inputs in creating accurate DEMs. Because of the availability of topographic maps for this area, we were able to provide very accurate GCPs, in sufficient numbers and distribution. We created DEMs for the years 2002, 2003, 2004 and 2005 using ENVI DEM extraction tool. Bands 3N and 3B were used as left and right images respectively in the process of creating the DEM. Minimum elevation in these images was 1500m and maximum elevation was 8550m. Coordinates and elevation values from topographic maps in the non-glaciated region were used as GCPs while creating absolute DEMs. Considering the high terrain of the study area, we used large number of GCPs, tie points, higher windows search area, and high terrain parameters to improve DEM accuracy. Since these images were acquired in September, the accumulation area was clearly visible. The Global land ice measurement (GLIMS) database which is maintained at the National Snow and Ice Data Center (NSIDC) was used to delineate glacier boundaries. The differences between the elevations in consecutive years in the accumulation area were calculated using raster calculator. The total elevation differences were then multiplied by the area to estimate the change in volume. Density of ice used in mass balance calculation was 900kg per sq. meters. The result indicated that while there was a decrease in mass balance of some glaciers, some showed an increase in mass balance during the study period. The study helped to develop a data on mass balance change in some major glaciers in the Himalayas.

  7. At-line process analytical technology (PAT) for more efficient scale up of biopharmaceutical microfiltration unit operations.

    PubMed

    Watson, Douglas S; Kerchner, Kristi R; Gant, Sean S; Pedersen, Joseph W; Hamburger, James B; Ortigosa, Allison D; Potgieter, Thomas I

    2016-01-01

    Tangential flow microfiltration (MF) is a cost-effective and robust bioprocess separation technique, but successful full scale implementation is hindered by the empirical, trial-and-error nature of scale-up. We present an integrated approach leveraging at-line process analytical technology (PAT) and mass balance based modeling to de-risk MF scale-up. Chromatography-based PAT was employed to improve the consistency of an MF step that had been a bottleneck in the process used to manufacture a therapeutic protein. A 10-min reverse phase ultra high performance liquid chromatography (RP-UPLC) assay was developed to provide at-line monitoring of protein concentration. The method was successfully validated and method performance was comparable to previously validated methods. The PAT tool revealed areas of divergence from a mass balance-based model, highlighting specific opportunities for process improvement. Adjustment of appropriate process controls led to improved operability and significantly increased yield, providing a successful example of PAT deployment in the downstream purification of a therapeutic protein. The general approach presented here should be broadly applicable to reduce risk during scale-up of filtration processes and should be suitable for feed-forward and feed-back process control. © 2015 American Institute of Chemical Engineers.

  8. Contribution of directly connected and isolated impervious areas to urban drainage network hydrographs

    NASA Astrophysics Data System (ADS)

    Seo, Y.; Choi, N.-J.; Schmidt, A. R.

    2013-05-01

    This paper addresses the mass balance error observed in runoff hydrographs in urban watersheds by introducing assumptions regarding the contribution of infiltrated rainfall from pervious areas and isolated impervious area (IIA) to the runoff hydrograph. Rainfall infiltrating into pervious areas has been assumed not to contribute to the runoff hydrograph until Hortonian excess rainfall occurs. However, mass balance analysis in an urban watershed indicates that rainfall infiltrated to pervious areas can contribute to direct runoff hydrograph, thereby offering an explanation for the long hydrograph tail commonly observed in runoff from urban storm sewers. In this study, a hydrologic analysis based on the width function is introduced, with two types of width functions obtained from both pervious and impervious areas, respectively. The width function can be regarded as the direct interpretation of the network response. These two width functions are derived to obtain distinct response functions for directly connected impervious areas (DCIA), IIA, and pervious areas. The results show significant improvement in the estimation of runoff hydrographs and suggest the need to consider the flow contribution from pervious areas to the runoff hydrograph. It also implies that additional contribution from flow paths through joints and cracks in sewer pipes needs to be taken into account to improve the estimation of runoff hydrographs in urban catchments.

  9. Contribution of directly connected and isolated impervious areas to urban drainage network hydrographs

    NASA Astrophysics Data System (ADS)

    Seo, Y.; Choi, N.-J.; Schmidt, A. R.

    2013-09-01

    This paper addresses the mass balance error observed in runoff hydrographs in urban watersheds by introducing assumptions regarding the contribution of infiltrated rainfall from pervious areas and isolated impervious area (IIA) to the runoff hydrograph. Rainfall infiltrating into pervious areas has been assumed not to contribute to the runoff hydrograph until Hortonian excess rainfall occurs. However, mass balance analysis in an urban watershed indicates that rainfall infiltrated to pervious areas can contribute directly to the runoff hydrograph, thereby offering an explanation for the long hydrograph tail commonly observed in runoff from urban storm sewers. In this study, a hydrologic analysis based on the width function is introduced, with two types of width functions obtained from both pervious and impervious areas, respectively. The width function can be regarded as the direct interpretation of the network response. These two width functions are derived to obtain distinct response functions for directly connected impervious areas (DCIA), IIA, and pervious areas. The results show significant improvement in the estimation of runoff hydrographs and suggest the need to consider the flow contribution from pervious areas to the runoff hydrograph. It also implies that additional contribution from flow paths through joints and cracks in sewer pipes needs to be taken into account to improve the estimation of runoff hydrographs in urban catchments.

  10. A simple technique for continuous measurement of time-variable gas transfer in surface waters

    USGS Publications Warehouse

    Tobias, Craig R.; Bohlke, John Karl; Harvey, Judson W.; Busenberg, Eurybiades

    2009-01-01

    Mass balance models of dissolved gases in streams, lakes, and rivers serve as the basis for estimating wholeecosystem rates for various biogeochemical processes. Rates of gas exchange between water and the atmosphere are important and error-prone components of these models. Here we present a simple and efficient modification of the SF6 gas tracer approach that can be used concurrently while collecting other dissolved gas samples for dissolved gas mass balance studies in streams. It consists of continuously metering SF6-saturated water directly into the stream at a low rate of flow. This approach has advantages over pulse injection of aqueous solutions or bubbling large amounts of SF6 into the stream. By adding the SF6 as a saturated solution, we minimize the possibility that other dissolved gas measurements are affected by sparging and/or bubble injecta. Because the SF6 is added continuously we have a record of changing gas transfer velocity (GTV) that is contemporaneous with the sampling of other nonconservative ambient dissolved gases. Over a single diel period, a 30% variation in GTV was observed in a second-order stream (Sugar Creek, Indiana, USA). The changing GTV could be attributed in part to changes in temperature and windspeed that occurred on hourly to diel timescales.

  11. Continent-Wide Estimates of Antarctic Strain Rates from Landsat 8-Derived Velocity Grids and Their Application to Ice Shelf Studies

    NASA Astrophysics Data System (ADS)

    Alley, K. E.; Scambos, T.; Anderson, R. S.; Rajaram, H.; Pope, A.; Haran, T.

    2017-12-01

    Strain rates are fundamental measures of ice flow used in a wide variety of glaciological applications including investigations of bed properties, calculations of basal mass balance on ice shelves, application to Glen's flow law, and many other studies. However, despite their extensive application, strain rates are calculated using widely varying methods and length scales, and the calculation details are often not specified. In this study, we compare the results of nominal and logarithmic strain-rate calculations based on a satellite-derived velocity field of the Antarctic ice sheet generated from Landsat 8 satellite data. Our comparison highlights the differences between the two commonly used approaches in the glaciological literature. We evaluate the errors introduced by each code and their impacts on the results. We also demonstrate the importance of choosing and specifying a length scale over which strain-rate calculations are made, which can have large local impacts on other derived quantities such as basal mass balance on ice shelves. We present strain-rate data products calculated using an approximate viscous length-scale with satellite observations of ice velocity for the Antarctic continent. Finally, we explore the applications of comprehensive strain-rate maps to future ice shelf studies, including investigations of ice fracture, calving patterns, and stability analyses.

  12. Investigating the role of background and observation error correlations in improving a model forecast of forest carbon balance using four dimensional variational data assimilation.

    NASA Astrophysics Data System (ADS)

    Pinnington, Ewan; Casella, Eric; Dance, Sarah; Lawless, Amos; Morison, James; Nichols, Nancy; Wilkinson, Matthew; Quaife, Tristan

    2016-04-01

    Forest ecosystems play an important role in sequestering human emitted carbon-dioxide from the atmosphere and therefore greatly reduce the effect of anthropogenic induced climate change. For that reason understanding their response to climate change is of great importance. Efforts to implement variational data assimilation routines with functional ecology models and land surface models have been limited, with sequential and Markov chain Monte Carlo data assimilation methods being prevalent. When data assimilation has been used with models of carbon balance, background "prior" errors and observation errors have largely been treated as independent and uncorrelated. Correlations between background errors have long been known to be a key aspect of data assimilation in numerical weather prediction. More recently, it has been shown that accounting for correlated observation errors in the assimilation algorithm can considerably improve data assimilation results and forecasts. In this paper we implement a 4D-Var scheme with a simple model of forest carbon balance, for joint parameter and state estimation and assimilate daily observations of Net Ecosystem CO2 Exchange (NEE) taken at the Alice Holt forest CO2 flux site in Hampshire, UK. We then investigate the effect of specifying correlations between parameter and state variables in background error statistics and the effect of specifying correlations in time between observation error statistics. The idea of including these correlations in time is new and has not been previously explored in carbon balance model data assimilation. In data assimilation, background and observation error statistics are often described by the background error covariance matrix and the observation error covariance matrix. We outline novel methods for creating correlated versions of these matrices, using a set of previously postulated dynamical constraints to include correlations in the background error statistics and a Gaussian correlation function to include time correlations in the observation error statistics. The methods used in this paper will allow the inclusion of time correlations between many different observation types in the assimilation algorithm, meaning that previously neglected information can be accounted for. In our experiments we compared the results using our new correlated background and observation error covariance matrices and those using diagonal covariance matrices. We found that using the new correlated matrices reduced the root mean square error in the 14 year forecast of daily NEE by 44 % decreasing from 4.22 g C m-2 day-1 to 2.38 g C m-2 day-1.

  13. Myths and methodologies: Making sense of exercise mass and water balance.

    PubMed

    Cheuvront, Samuel N; Montain, Scott J

    2017-09-01

    What is the topic of this review? There is a need to revisit the basic principles of exercise mass and water balance, the use of common equations and the practice of interpreting outcomes. What advances does it highlight? We propose use of the following equation as a way of simplifying exercise mass and water balance calculations in conditions where food is not consumed and waste is not excreted: ∆body mass - 0.20 g/kcal -1  = ∆body water. The relative efficacy of exercise drinking behaviours can be judged using the following equation: percentage dehydration = [(∆body mass - 0.20 g kcal -1 )/starting body mass] × 100. Changes in body mass occur because of flux in liquids, solids and gases. This knowledge is crucial for understanding metabolism, health and human water needs. In exercise science, corrections to observed changes in body mass to estimate water balance are inconsistently applied and often misinterpreted, particularly after prolonged exercise. Although acute body mass losses in response to exercise can represent a close surrogate for body water losses, the discordance between mass and water balance equivalence becomes increasingly inaccurate as more and more energy is expended. The purpose of this paper is briefly to clarify the roles that respiratory water loss, gas exchange and metabolic water production play in the correction of body mass changes for fluid balance determinations during prolonged exercise. Computations do not include waters of association with glycogen because any movement of water among body water compartments contributes nothing to water or mass flux from the body. Estimates of sweat loss from changes in body mass should adjust for non-sweat losses when possible. We propose use of the following equation as a way of simplifying the study of exercise mass and water balance: ∆body mass - 0.20 g kcal -1  = ∆body water. This equation directly controls for the influence of energy expenditure on body mass balance and the approximate offsetting equivalence of respiratory water loss and metabolic water production on body water balance. The relative efficacy of exercise drinking behaviours can be judged using the following equation: percentage dehydration = [(∆body mass - 0.20 g kcal -1 )/starting body mass] × 100. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  14. Correlation of Head Impacts to Change in Balance Error Scoring System Scores in Division I Men's Lacrosse Players.

    PubMed

    Miyashita, Theresa L; Diakogeorgiou, Eleni; Marrie, Kaitlyn

    Investigation into the effect of cumulative subconcussive head impacts has yielded various results in the literature, with many supporting a link to neurological deficits. Little research has been conducted on men's lacrosse and associated balance deficits from head impacts. (1) Athletes will commit more errors on the postseason Balance Error Scoring System (BESS) test. (2) There will be a positive correlation to change in BESS scores and head impact exposure data. Prospective longitudinal study. Level 3. Thirty-four Division I men's lacrosse players (age, 19.59 ± 1.42 years) wore helmets instrumented with a sensor to collect head impact exposure data over the course of a competitive season. Players completed a BESS test at the start and end of the competitive season. The number of errors from pre- to postseason increased during the double-leg stance on foam ( P < 0.001), tandem stance on foam ( P = 0.009), total number of errors on a firm surface ( P = 0.042), and total number of errors on a foam surface ( P = 0.007). There were significant correlations only between the total errors on a foam surface and linear acceleration ( P = 0.038, r = 0.36), head injury criteria ( P = 0.024, r = 0.39), and Gadd Severity Index scores ( P = 0.031, r = 0.37). Changes in the total number of errors on a foam surface may be considered a sensitive measure to detect balance deficits associated with cumulative subconcussive head impacts sustained over the course of 1 lacrosse season, as measured by average linear acceleration, head injury criteria, and Gadd Severity Index scores. If there is microtrauma to the vestibular system due to repetitive subconcussive impacts, only an assessment that highly stresses the vestibular system may be able to detect these changes. Cumulative subconcussive impacts may result in neurocognitive dysfunction, including balance deficits, which are associated with an increased risk for injury. The development of a strategy to reduce total number of head impacts may curb the associated sequelae. Incorporation of a modified BESS test, firm surface only, may not be recommended as it may not detect changes due to repetitive impacts over the course of a competitive season.

  15. Using bioprocess stoichiometry to build a plant-wide mass balance based steady-state WWTP model.

    PubMed

    Ekama, G A

    2009-05-01

    Steady-state models are useful for design of wastewater treatment plants (WWTPs) because they allow reactor sizes and interconnecting flows to be simply determined from explicit equations in terms of unit operation performance criteria. Once the overall WWTP scheme is established and the main system defining parameters of the individual unit operations estimated, dynamic models can be applied to the connected unit operations to refine their design and evaluate their performance under dynamic flow and load conditions. To model anaerobic digestion (AD) within plant-wide WWTP models, not only COD and nitrogen (N) but also carbon (C) fluxes entering the AD need to be defined. Current plant-wide models, like benchmark simulation model No 2 (BSM2), impose a C flux at the AD influent. In this paper, the COD and N mass balance steady-state models of activated sludge (AS) organics degradation, nitrification and denitrification (ND) and anaerobic (AD) and aerobic (AerD) digestion of wastewater sludge are extended and linked with bioprocess transformation stoichiometry to form C, H, O, N, chemical oxygen demand (COD) and charge mass balance based models so that also C (and H and O) can be tracked through the whole WWTP. By assigning a stoichiometric composition (x, y, z and a in C(x)H(y)O(z)N(a)) to each of the five main influent wastewater organic fractions and ammonia, these, and the products generated from them via the biological processes, are tracked through the WWTP. The model is applied to two theoretical case study WWTPs treating the same raw wastewater (WW) to the same final sludge residual biodegradable COD. It is demonstrated that much useful information can be generated with the relatively simple steady-state models to aid WWTP layout design and track the different products exiting the WWTP via the solid, liquid and gas streams, such as aerobic versus anaerobic digestion of waste activated sludge, N loads in recycle streams, methane production for energy recovery and green house gas (CO(2), CH(4)) generation. To reduce trial and error usage of WWTP simulation software, it is recommended that they are extended to include pre-processors based on mass balance steady-state models to assist with WWTP layout design, unit operation selection, reactor sizing, option evaluation and comparison and wastewater characterization before dynamic simulation.

  16. Mass balance model parameter transferability on a tropical glacier

    NASA Astrophysics Data System (ADS)

    Gurgiser, Wolfgang; Mölg, Thomas; Nicholson, Lindsey; Kaser, Georg

    2013-04-01

    The mass balance and melt water production of glaciers is of particular interest in the Peruvian Andes where glacier melt water has markedly increased water supply during the pronounced dry seasons in recent decades. However, the melt water contribution from glaciers is projected to decrease with appreciable negative impacts on the local society within the coming decades. Understanding mass balance processes on tropical glaciers is a prerequisite for modeling present and future glacier runoff. As a first step towards this aim we applied a process-based surface mass balance model in order to calculate observed ablation at two stakes in the ablation zone of Shallap Glacier (4800 m a.s.l., 9°S) in the Cordillera Blanca, Peru. Under the tropical climate, the snow line migrates very frequently across most of the ablation zone all year round causing large temporal and spatial variations of glacier surface conditions and related ablation. Consequently, pronounced differences between the two chosen stakes and the two years were observed. Hourly records of temperature, humidity, wind speed, short wave incoming radiation, and precipitation are available from an automatic weather station (AWS) on the moraine near the glacier for the hydrological years 2006/07 and 2007/08 while stake readings are available at intervals of between 14 to 64 days. To optimize model parameters, we used 1000 model simulations in which the most sensitive model parameters were varied randomly within their physically meaningful ranges. The modeled surface height change was evaluated against the two stake locations in the lower ablation zone (SH11, 4760m) and in the upper ablation zone (SH22, 4816m), respectively. The optimal parameter set for each point achieved good model skill but if we transfer the best parameter combination from one stake site to the other stake site model errors increases significantly. The same happens if we optimize the model parameters for each year individually and transfer these combinations to the other year. We show that multi-site and multi-year analyses are crucial before extrapolating ablation modeling to larger glacier areas. So far tested surface albedo schemes and respective parameterizations can obviously not satisfyingly reproduce the dynamics of glacier surface conditions at our study site and new solutions to the problem have to be explored.

  17. Evaluation of recent GRACE monthly solution series with an ice sheet perspective

    NASA Astrophysics Data System (ADS)

    Horwath, Martin; Groh, Andreas

    2016-04-01

    GRACE monthly global gravity field solutions have undergone a remarkable evolution, leading to the latest (Release 5) series by CSR, GFZ, and JPL, to new series by other processing centers, such as ITSG and AIUB, as well as to efforts to derive combined solutions, particularly by the EGSIEM (European Gravity Service for Improved Emergency Management) project. For applications, such as GRACE inferences on ice sheet mass balance, the obvious question is on what GRACE solution series to base the assessment. Here we evaluate different GRACE solution series (including the ones listed above) in a unified framework. We concentrate on solutions expanded up to degree 90 or higher, since this is most appropriate for polar applications. We empirically assess the error levels in the spectral as well as in the spatial domain based on the month-to-month scatter in the high spherical harmonic degrees. We include empirical assessment of error correlations. We then apply all series to infer Antarctic and Greenland mass change time series and compare the results in terms of apparent signal content and noise level. We find that the ITSG solutions show lowest noise level in the high degrees (above 60). A preliminary combined solution from the EGSIEM project shows lowest noise in the degrees below 60. This virtue maps into the derived ice mass time series, where the EGSIEM-based results show the lowest noise in most cases. Meanwhile, there is no indication that any of the considered series systematically dampens actual geophysical signals.

  18. Mass balance approaches for estimating the intestinal absorption and metabolism of peptides and analogues: theoretical development and applications

    NASA Technical Reports Server (NTRS)

    Sinko, P. J.; Leesman, G. D.; Amidon, G. L.

    1993-01-01

    A theoretical analysis for estimating the extent of intestinal peptide and peptide analogue absorption was developed on the basis of a mass balance approach that incorporates convection, permeability, and reaction. The macroscopic mass balance analysis (MMBA) was extended to include chemical and enzymatic degradation. A microscopic mass balance analysis, a numerical approach, was also developed and the results compared to the MMBA. The mass balance equations for the fraction of a drug absorbed and reacted in the tube were derived from the general steady state mass balance in a tube: [formula: see text] where M is mass, z is the length of the tube, R is the tube radius, Pw is the intestinal wall permeability, kr is the reaction rate constant, C is the concentration of drug in the volume element over which the mass balance is taken, VL is the volume of the tube, and vz is the axial velocity of drug. The theory was first applied to the oral absorption of two tripeptide analogues, cefaclor (CCL) and cefatrizine (CZN), which degrade and dimerize in the intestine. Simulations using the mass balance equations, the experimental absorption parameters, and the literature stability rate constants yielded a mean estimated extent of CCL (250-mg dose) and CZN (1000-mg dose) absorption of 89 and 51%, respectively, which was similar to the mean extent of absorption reported in humans (90 and 50%). It was proposed previously that 15% of the CCL dose spontaneously degraded systematically; however, our simulations suggest that significant CCL degradation occurs (8 to 17%) presystemically in the intestinal lumen.(ABSTRACT TRUNCATED AT 250 WORDS).

  19. Structural redundancy of data from wastewater treatment systems. Determination of individual balance equations.

    PubMed

    Spindler, A

    2014-06-15

    Although data reconciliation is intensely applied in process engineering, almost none of its powerful methods are employed for validation of operational data from wastewater treatment plants. This is partly due to some prerequisites that are difficult to meet including steady state, known variances of process variables and absence of gross errors. However, an algorithm can be derived from the classical approaches to data reconciliation that allows to find a comprehensive set of equations describing redundancy in the data when measured and unmeasured variables (flows and concentrations) are defined. This is a precondition for methods of data validation based on individual mass balances such as CUSUM charts. The procedure can also be applied to verify the necessity of existing or additional measurements with respect to the improvement of the data's redundancy. Results are given for a large wastewater treatment plant. The introduction aims at establishing a link between methods known from data reconciliation in process engineering and their application in wastewater treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Miniature Piezoelectric Macro-Mass Balance

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Trebi-Ollennu, Ashitey; Bonitz, Robert G.; Bar-Cohen, Yoseph

    2010-01-01

    Mass balances usually use a strain gauge that requires an impedance measurement and is susceptible to noise and thermal drift. A piezoelectric balance can be used to measure mass directly by monitoring the voltage developed across the piezoelectric balance, which is linear with weight or it can be used in resonance to produce a frequency change proportional to the mass change (see figure). The piezoelectric actuator/balance is swept in frequency through its fundamental resonance. If a small mass is added to the balance, the resonance frequency shifts down in proportion to the mass. By monitoring the frequency shift, the mass can be determined. This design allows for two independent measurements of mass. Additionally, more than one sample can be verified because this invention allows for each sample to be transported away from the measuring device upon completion of the measurement, if required. A piezoelectric actuator, or many piezoelectric actuators, was placed between the collection plate of the sampling system and the support structure. As the sample mass is added to the plate, the piezoelectrics are stressed, causing them to produce a voltage that is proportional to the mass and acceleration. In addition, a change in mass delta m produces a change in the resonance frequency with delta f proportional to delta m. In a microgravity environment, the spacecraft could be accelerated to produce a force on the piezoelectric actuator that would produce a voltage proportional to the mass and acceleration. Alternatively, the acceleration could be used to force the mass on the plate, and the inertial effects of the mass on the plate would produce a shift in the resonance frequency with the change in frequency related to the mass change. Three prototypes of the mass balance mechanism were developed. These macro-mass balances each consist of a solid base and an APA 60 Cedrat flextensional piezoelectric actuator supporting a measuring plate. A similar structure with 3 APA 120 Cedrat flextensional piezoelectric actuators spaced equidistantly at 120 degrees supporting the plate and a softer macro balance with an APA 150 actuator/sensor were developed. These flextensional actuators were chosen because they increase the sensitivity of the actuator to stress, allow the piezoelectric to be pre-stressed, and the piezoelectric element is a stacked multilayer actuator, which has a considerably lower input impedance than a monolithic element that allows for common instruments (e.g., input impedance of 10 megohms) to measure the voltage without rapidly discharging the charge/voltage on the piezoelectric actuator.

  1. Comparison of hydrological and GRACE-based excitation functions of polar motion in the seasonal spectral band

    NASA Astrophysics Data System (ADS)

    Nastula, J.; Kolaczek, B.; Salstein, D. A.

    2008-04-01

    Understanding changes in the global balance of the Earths angular momentum due to the mass redistribution of geophysical fluids is needed to explain the observed polar motion. The impact of continental hydrologic signals, from land water, snow, and ice, on polar motion excitation (hydrological angular momentum-HAM), is still inadequately known. Although estimates of HAM have been made from several models of global hydrology based upon the observed distribution of surface water, snow, and soil moisture, the relatively sparse observation network and the presence of errors in the data and the geophysical fluid models preclude a full understanding of the HAM influence on polar motion variations. Recently the GRACE mission monitoring Earths time variable gravity field has allowed us to determine the mass term of polar motion excitation functions and compare them with the mass term derivable as a residual from the geodetic excitation functions and geophysical fluid motion terms on seasonal time scales. Differences between these mass terms in the years 2004 - 2005.5 are still on the order of 20 mas. Besides the overall mass excitation of polar motion comparisons with GRACE (RL04-release), we also intercompare the non-atmospheric, non-oceanic signals in the mass term of geodetic polar motion excitation with hydrological excitation of polar motion.

  2. A MASS BALANCE OF SURFACE WATER GENOTOXICITY IN PROVIDENCE RIVER (RHODE ISLAND USA)

    EPA Science Inventory

    White and Rasmussen (Mutation Res. 410:223-236) used a mass balance approach to demonstrate that over 85% of the total genotoxic loading to the St. Lawrence River at Montreal is non-industrial. To validate the mass balance approach and investigate the sources of genotoxins in sur...

  3. Groundwater recharge estimation in semi-arid zone: a study case from the region of Djelfa (Algeria)

    NASA Astrophysics Data System (ADS)

    Ali Rahmani, S. E.; Chibane, Brahim; Boucefiène, Abdelkader

    2017-09-01

    Deficiency of surface water resources in semi-arid area makes the groundwater the most preferred resource to assure population increased needs. In this research we are going to quantify the rate of groundwater recharge using new hybrid model tack in interest the annual rainfall and the average annual temperature and the geological characteristics of the area. This hybrid model was tested and calibrated using a chemical tracer method called Chloride mass balance method (CMB). This hybrid model is a combination between general hydrogeological model and a hydrological model. We have tested this model in an aquifer complex in the region of Djelfa (Algeria). Performance of this model was verified by five criteria [Nash, mean absolute error (MAE), Root mean square error (RMSE), the coefficient of determination and the arithmetic mean error (AME)]. These new approximations facilitate the groundwater management in semi-arid areas; this model is a perfection and amelioration of the model developed by Chibane et al. This model gives a very interesting result, with low uncertainty. A new recharge class diagram was established by our model to get rapidly and quickly the groundwater recharge value for any area in semi-arid region, using temperature and rainfall.

  4. Mass-balance modelling of Ak-Shyirak massif Glaciers, Inner Tian Shan

    NASA Astrophysics Data System (ADS)

    Rets, Ekaterina; Barandun, Martina; Belozerov, Egor; Petrakov, Dmitry; Shpuntova, Alena

    2017-04-01

    Tian Shan is a water tower of Central Asia. Rapid and accelerating glacier downwasting is typical for this region. Study sites - Sary-Tor glacier and Glacier No.354 are located in Ak-Shyirak massif, Naryn headwaters. Sary-Tor was chosen as representative for Ak-Shyirak (Ushnurtsev, 1991; Oledeneniye TianShanya, 1995) for direct mass-balance measurements in 1985-1991. Glacier No.354 was an object of direct mass-balance measurements for 2011-2016. An energy-balance distributed A-Melt model (Rets et al, 2010) was used to reconstruct mass-balance for the glaciers for 2003-2015. Verification of modelingresults showed a good reproduction of direct melting measurements data on ablation stakes and mass loss according to geodetic method. Modeling results for Glacier No. 354 were compared to different modeling approach: distributed accumulation and temperature-index melt (Kronenberg et al, 2016)

  5. Accurate optical vector network analyzer based on optical single-sideband modulation and balanced photodetection.

    PubMed

    Xue, Min; Pan, Shilong; Zhao, Yongjiu

    2015-02-15

    A novel optical vector network analyzer (OVNA) based on optical single-sideband (OSSB) modulation and balanced photodetection is proposed and experimentally demonstrated, which can eliminate the measurement error induced by the high-order sidebands in the OSSB signal. According to the analytical model of the conventional OSSB-based OVNA, if the optical carrier in the OSSB signal is fully suppressed, the measurement result is exactly the high-order-sideband-induced measurement error. By splitting the OSSB signal after the optical device-under-test (ODUT) into two paths, removing the optical carrier in one path, and then detecting the two signals in the two paths using a balanced photodetector (BPD), high-order-sideband-induced measurement error can be ideally eliminated. As a result, accurate responses of the ODUT can be achieved without complex post-signal processing. A proof-of-concept experiment is carried out. The magnitude and phase responses of a fiber Bragg grating (FBG) measured by the proposed OVNA with different modulation indices are superimposed, showing that the high-order-sideband-induced measurement error is effectively removed.

  6. A new parametric method to smooth time-series data of metabolites in metabolic networks.

    PubMed

    Miyawaki, Atsuko; Sriyudthsak, Kansuporn; Hirai, Masami Yokota; Shiraishi, Fumihide

    2016-12-01

    Mathematical modeling of large-scale metabolic networks usually requires smoothing of metabolite time-series data to account for measurement or biological errors. Accordingly, the accuracy of smoothing curves strongly affects the subsequent estimation of model parameters. Here, an efficient parametric method is proposed for smoothing metabolite time-series data, and its performance is evaluated. To simplify parameter estimation, the method uses S-system-type equations with simple power law-type efflux terms. Iterative calculation using this method was found to readily converge, because parameters are estimated stepwise. Importantly, smoothing curves are determined so that metabolite concentrations satisfy mass balances. Furthermore, the slopes of smoothing curves are useful in estimating parameters, because they are probably close to their true behaviors regardless of errors that may be present in the actual data. Finally, calculations for each differential equation were found to converge in much less than one second if initial parameters are set at appropriate (guessed) values. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Fluctuations of a Temperate Mountain Glacier in Response to Climate Change

    NASA Astrophysics Data System (ADS)

    Bachmann, M.; Bidlake, W.

    2012-12-01

    Glacier mass balance is a fundamental parameter for understanding and predicting the evolution of glaciers on the landscape in response to climate change. The USGS Ice and Climate Project (ICP) continues to extend the longest-running USGS benchmark glacier mass-balance record at South Cascade Glacier, Washington. Due to the importance of South Cascade Glacier data sets for glaciological and climate research, ICP is releasing decades-old previously unpublished glacier surface and bed maps, mass balance data at individual sites, ice velocity data, and an updated ice inventory for the surrounding basin. The complete record includes a pre-Industrial Revolution reconstruction of the glacier and seasonal mass balance measurements for the past 54 years (1958-2012). Since 2000, the glacier has experienced four of the five most negative summer balances and two of the largest positive accumulation years, indicating that the glacier is continuing to respond to recent warming and precipitation changes. Recently, ICP has developed a temperature-index glacier melt model that extrapolates daily accumulation and melt rates from intermittent field observations based on regional meteorological data, and an expert system for mass balance that captures the strengths of both measurement and modeling for assessing mass balance. The models have been successfully calibrated at South Cascade Glacier, where ample observations are available, but are designed to be used with as few or as many glaciological field data as are available for a given ice mass.

  8. Improving Estimates of Greenland Ice Sheet Surface Mass Balance with Satellite Observations

    NASA Astrophysics Data System (ADS)

    Briggs, K.

    2016-12-01

    Mass losses from the Greenland Ice Sheet have been accelerating over recent years (e.g. McMillan et al., 2016; Velicogna et al., 2014). This acceleration has predominantly been linked to increasing rates of negative surface mass balance, and in particular, increasing ice surface melt rates (e.g. McMillan et al., 2016; Velicogna et al., 2014). At the ice sheet scale, SMB is assessed using SMB model outputs, which in addition to enabling understanding of the origin of mass balance signals, are required as ancillary data in mass balance assessments from altimetry and the mass budget method. Due to the importance of SMB for mass balance over Greenland and the sensitivity of mass balance assessments to SMB model outputs, high accuracy of these models is crucial. A critical limiting factor in SMB modeling is however, a lack of in-situ data that is required for model constraint and evaluation. Such data is limited in time and space due to inherent logistical and financial constraints. Remote sensing datasets, being spatially extensive and relatively densely sampled in both space and time, do not suffer such constraints. Here, we show satellite observations of Greenland SMB. McMillan, M., Leeson, A., Shepherd, A., Briggs, K., Armitage, T. W.K., Hogg, A., Kuipers Munneke, P., van den Broeke, M., Noël, B., van de Berg, W., Ligtenberg, S., Horwath, M., Groh, A. , Muir, A. and Gilbert, L. 2016. A high resolution record of Greenland Mass Balance. Geophysical Research Letters. 43, doi:10.1002/2016GL069666 Velicogna, I., Sutterley, T. C. and van den Broeke, M. R. 2014. Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data. Geophysical Research Letters. 41, 8130-8137, doi:10.1002/2014GL061052

  9. Use of the Nintendo Wii Balance Board for Studying Standing Static Balance Control: Technical Considerations, Force-Plate Congruency, and the Effect of Battery Life.

    PubMed

    Weaver, Tyler B; Ma, Christine; Laing, Andrew C

    2017-02-01

    The Nintendo Wii Balance Board (WBB) has become popular as a low-cost alternative to research-grade force plates. The purposes of this study were to characterize a series of technical specifications for the WBB, to compare balance control metrics derived from time-varying center of pressure (COP) signals collected simultaneously from a WBB and a research-grade force plate, and to investigate the effects of battery life. Drift, linearity, hysteresis, mass accuracy, uniformity of response, and COP accuracy were assessed from a WBB. In addition, 6 participants completed an eyes-closed quiet standing task on the WBB (at 3 battery life levels) mounted on a force plate while sway was simultaneously measured by both systems. Characterization results were all associated with less than 1% error. R 2 values reflecting WBB sensor linearity were > .99. Known and measured COP differences were lowest at the center of the WBB and greatest at the corners. Between-device differences in quiet stance COP summary metrics were of limited clinical significance. Lastly, battery life did not affect WBB COP accuracy, but did influence 2 of 8 quiet stance WBB parameters. This study provides general support for the WBB as a low-cost alternative to research-grade force plates for quantifying COP movement during standing.

  10. Development of a second generation torsion balance based on a spherical superconducting suspension

    NASA Astrophysics Data System (ADS)

    Hammond, Giles D.; Speake, Clive C.; Matthews, Anthony J.; Rocco, Emanuele; Peña-Arellano, Fabian

    2008-02-01

    This paper describes the development of a second generation superconducting torsion balance to be used for a precision measurement of the Casimir force and a short range test of the inverse square law of gravity at 4.2K. The instrument utilizes niobium (Nb) as the superconducting element and employs passive damping of the parasitic modes of oscillation. Any contact potential difference between the torsion balance and its surroundings is nulled to within ≈50mV by applying known DC biases and fitting the resulting parabolic relationship between the measured torque and the applied voltage. A digital proportional-integral-derivative servo system has been developed and characterized in order to control the azimuthal position of the instrument. The angular acceleration and displacement noise are currently limited by the capacitive sensor at the level 3×10-8rads-2/√Hz and 30nm/√Hz at 100mHz. The possibility of lossy dielectric coatings on the surface of the torsion balance test masses is also investigated. Our measurements show that the loss angles δ are (1.5±2.3)×10-4 and (2.0±2.2)×10-4 at frequencies of 5 and 10mHz, respectively. These values of loss are not significant sources of error for measurements of the Casimir force using this experimental setup.

  11. Development of a second generation torsion balance based on a spherical superconducting suspension.

    PubMed

    Hammond, Giles D; Speake, Clive C; Matthews, Anthony J; Rocco, Emanuele; Peña-Arellano, Fabian

    2008-02-01

    This paper describes the development of a second generation superconducting torsion balance to be used for a precision measurement of the Casimir force and a short range test of the inverse square law of gravity at 4.2 K. The instrument utilizes niobium (Nb) as the superconducting element and employs passive damping of the parasitic modes of oscillation. Any contact potential difference between the torsion balance and its surroundings is nulled to within approximately 50 mV by applying known DC biases and fitting the resulting parabolic relationship between the measured torque and the applied voltage. A digital proportional-integral-derivative servo system has been developed and characterized in order to control the azimuthal position of the instrument. The angular acceleration and displacement noise are currently limited by the capacitive sensor at the level 3x10(-8) rad s(-2)/ squarerootHz and 30 nm/ squarerootHz at 100 mHz. The possibility of lossy dielectric coatings on the surface of the torsion balance test masses is also investigated. Our measurements show that the loss angles delta are (1.5+/-2.3)x10(-4) and (2.0+/-2.2)x10(-4) at frequencies of 5 and 10 mHz, respectively. These values of loss are not significant sources of error for measurements of the Casimir force using this experimental setup.

  12. Calculating distributed glacier mass balance for the Swiss Alps from RCM output: Development and testing of downscaling and validation methods

    NASA Astrophysics Data System (ADS)

    Machguth, H.; Paul, F.; Kotlarski, S.; Hoelzle, M.

    2009-04-01

    Climate model output has been applied in several studies on glacier mass balance calculation. Hereby, computation of mass balance has mostly been performed at the native resolution of the climate model output or data from individual cells were selected and statistically downscaled. Little attention has been given to the issue of downscaling entire fields of climate model output to a resolution fine enough to compute glacier mass balance in rugged high-mountain terrain. In this study we explore the use of gridded output from a regional climate model (RCM) to drive a distributed mass balance model for the perimeter of the Swiss Alps and the time frame 1979-2003. Our focus lies on the development and testing of downscaling and validation methods. The mass balance model runs at daily steps and 100 m spatial resolution while the RCM REMO provides daily grids (approx. 18 km resolution) of dynamically downscaled re-analysis data. Interpolation techniques and sub-grid parametrizations are combined to bridge the gap in spatial resolution and to obtain daily input fields of air temperature, global radiation and precipitation. The meteorological input fields are compared to measurements at 14 high-elevation weather stations. Computed mass balances are compared to various sets of direct measurements, including stake readings and mass balances for entire glaciers. The validation procedure is performed separately for annual, winter and summer balances. Time series of mass balances for entire glaciers obtained from the model run agree well with observed time series. On the one hand, summer melt measured at stakes on several glaciers is well reproduced by the model, on the other hand, observed accumulation is either over- or underestimated. It is shown that these shifts are systematic and correlated to regional biases in the meteorological input fields. We conclude that the gap in spatial resolution is not a large drawback, while biases in RCM output are a major limitation to model performance. The development and testing of methods to reduce regionally variable biases in entire fields of RCM output should be a focus of pursuing studies.

  13. Detection and Use of Load and Gage Output Repeats of Wind Tunnel Strain-Gage Balance Data

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.

    2017-01-01

    Criteria are discussed that may be used for the detection of load and gage output repeats of wind tunnel strain-gage balance data. First, empirical thresholds are introduced that help determine if the loads or electrical outputs of a pair of balance calibration or check load data points match. A threshold of 0.01 percent of the load capacity is suggested for the identification of matching loads. Similarly, a threshold of 0.1 microV/V is recommended for the identification of matching electrical outputs. Two examples for the use of load and output repeats are discussed to illustrate benefits of the implementation of a repeat point detection algorithm in a balance data analysis software package. The first example uses the suggested load threshold to identify repeat data points that may be used to compute pure errors of the balance loads. This type of analysis may reveal hidden data quality issues that could potentially be avoided by making calibration process improvements. The second example uses the electrical output threshold for the identification of balance fouling. Data from the calibration of a six-component force balance is used to illustrate the calculation of the pure error of the balance loads.

  14. Geodetic reanalysis of annual glaciological mass balances (2001-2011) of Hintereisferner, Austria

    NASA Astrophysics Data System (ADS)

    Klug, Christoph; Bollmann, Erik; Galos, Stephan Peter; Nicholson, Lindsey; Prinz, Rainer; Rieg, Lorenzo; Sailer, Rudolf; Stötter, Johann; Kaser, Georg

    2018-03-01

    This study presents a reanalysis of the glaciologically obtained annual glacier mass balances at Hintereisferner, Ötztal Alps, Austria, for the period 2001-2011. The reanalysis is accomplished through a comparison with geodetically derived mass changes, using annual high-resolution airborne laser scanning (ALS). The grid-based adjustments for the method-inherent differences are discussed along with associated uncertainties and discrepancies of the two methods of mass balance measurements. A statistical comparison of the two datasets shows no significant difference for seven annual, as well as the cumulative, mass changes over the 10-year record. Yet, the statistical view hides significant differences in the mass balance years 2002/03 (glaciological minus geodetic records = +0.92 m w.e.), 2005/06 (+0.60 m w.e.), and 2006/07 (-0.45 m w.e.). We conclude that exceptional meteorological conditions can render the usual glaciological observational network inadequate. Furthermore, we consider that ALS data reliably reproduce the annual mass balance and can be seen as validation or calibration tools for the glaciological method.

  15. Simulating ice thickness and velocity evolution of Upernavik Isstrøm 1849-2012 by forcing prescribed terminus positions in ISSM

    NASA Astrophysics Data System (ADS)

    Haubner, Konstanze; Box, Jason E.; Schlegel, Nicole J.; Larour, Eric Y.; Morlighem, Mathieu; Solgaard, Anne M.; Kjeldsen, Kristian K.; Larsen, Signe H.; Rignot, Eric; Dupont, Todd K.; Kjær, Kurt H.

    2018-04-01

    Tidewater glacier velocity and mass balance are known to be highly responsive to terminus position change. Yet it remains challenging for ice flow models to reproduce observed ice margin changes. Here, using the Ice Sheet System Model (ISSM; Larour et al. 2012), we simulate the ice velocity and thickness changes of Upernavik Isstrøm (north-western Greenland) by prescribing a collection of 27 observed terminus positions spanning 164 years (1849-2012). The simulation shows increased ice velocity during the 1930s, the late 1970s and between 1995 and 2012 when terminus retreat was observed along with negative surface mass balance anomalies. Three distinct mass balance states are evident in the reconstruction: (1849-1932) with near zero mass balance, (1932-1992) with ice mass loss dominated by ice dynamical flow, and (1998-2012), when increased retreat and negative surface mass balance anomalies led to mass loss that was twice that of any earlier period. Over the multi-decadal simulation, mass loss was dominated by thinning and acceleration responsible for 70 % of the total mass loss induced by prescribed change in terminus position. The remaining 30 % of the total ice mass loss resulted directly from prescribed terminus retreat and decreasing surface mass balance. Although the method can not explain the cause of glacier retreat, it enables the reconstruction of ice flow and geometry during 1849-2012. Given annual or seasonal observed terminus front positions, this method could be a useful tool for evaluating simulations investigating the effect of calving laws.

  16. M-071 critical data analysis

    NASA Technical Reports Server (NTRS)

    Hegsted, D. M.

    1975-01-01

    A prototype balance study was conducted on earth prior to the balance studies conducted in Skylab itself. Collected were daily dietary intake data of 6 minerals and nitrogen, and fecal and urinary outputs on each of three astronauts. Essential statistical issues show what quantities need to be estimated and establish the scope of inference associated with alternative variance estimates. The procedures for obtaining the final variability due both to errors of measurement and total error (total = measurement and biological variability) are exhibited.

  17. Bilateral Improvements in Lower Extremity Function After Unilateral Balance Training in Individuals With Chronic Ankle Instability

    PubMed Central

    Hale, Sheri A.; Fergus, Andrea; Axmacher, Rachel; Kiser, Kimberly

    2014-01-01

    Context: Bilateral improvements in postural control have been reported among individuals with acute lateral ankle sprains and individuals with chronic ankle instability (CAI) when only the unstable ankle is rehabilitated. We do not know if training the stable ankle will improve function on the unstable side. Objective: To explore the effects of a unilateral balance-training program on bilateral lower extremity balance and function in individuals with CAI when only the stable limb is trained. Design: Cohort study. Setting: University clinical research laboratory. Patients or Other Participants: A total of 34 volunteers (8 men, 26 women; age = 24.32 ± 4.95 years, height = 167.01 ± 9.45 cm, mass = 77.54 ± 23.76 kg) with CAI were assigned to the rehabilitation (n = 17) or control (n = 17) group. Of those, 27 (13 rehabilitation group, 14 control group) completed the study. Intervention(s): Balance training twice weekly for 4 weeks. Main Outcome Measure(s): Foot and Ankle Disability Index (FADI), FADI Sport (FADI-S), Star Excursion Balance Test, and Balance Error Scoring System. Results: The rehabilitation and control groups differed in changes in FADI-S and Star Excursion Balance Test scores over time. Only the rehabilitation group improved in the FADI-S and in the posteromedial and anterior reaches of the Star Excursion Balance Test. Both groups demonstrated improvements in posterolateral reach; however, the rehabilitation group demonstrated greater improvement than the control group. When the groups were combined, participants reported improvements in FADI and FADI-S scores for the unstable ankle but not the stable ankle. Conclusions: Our data suggest training the stable ankle may result in improvements in balance and lower extremity function in the unstable ankle. This further supports the existence of a centrally mediated mechanism in the development of postural-control deficits after injury, as well as improved postural control after rehabilitation. PMID:24568231

  18. Use of Numerical Groundwater Model and Analytical Empirical Orthogonal Function for Calibrating Spatiotemporal pattern of Pumpage, Recharge and Parameter

    NASA Astrophysics Data System (ADS)

    Huang, C. L.; Hsu, N. S.; Hsu, F. C.; Liu, H. J.

    2016-12-01

    This study develops a novel methodology for the spatiotemporal groundwater calibration of mega-quantitative recharge and parameters by coupling a specialized numerical model and analytical empirical orthogonal function (EOF). The actual spatiotemporal patterns of groundwater pumpage are estimated by an originally developed back propagation neural network-based response matrix with the electrical consumption analysis. The spatiotemporal patterns of the recharge from surface water and hydrogeological parameters (i.e. horizontal hydraulic conductivity and vertical leakance) are calibrated by EOF with the simulated error hydrograph of groundwater storage, in order to qualify the multiple error sources and quantify the revised volume. The objective function of the optimization model is minimizing the root mean square error of the simulated storage error percentage across multiple aquifers, meanwhile subject to mass balance of groundwater budget and the governing equation in transient state. The established method was applied on the groundwater system of Chou-Shui River Alluvial Fan. The simulated period is from January 2012 to December 2014. The total numbers of hydraulic conductivity, vertical leakance and recharge from surface water among four aquifers are 126, 96 and 1080, respectively. Results showed that the RMSE during the calibration process was decreased dramatically and can quickly converse within 6th iteration, because of efficient filtration of the transmission induced by the estimated error and recharge across the boundary. Moreover, the average simulated error percentage according to groundwater level corresponding to the calibrated budget variables and parameters of aquifer one is as small as 0.11%. It represent that the developed methodology not only can effectively detect the flow tendency and error source in all aquifers to achieve accurately spatiotemporal calibration, but also can capture the peak and fluctuation of groundwater level in shallow aquifer.

  19. An alternative to the balance error scoring system: using a low-cost balance board to improve the validity/reliability of sports-related concussion balance testing.

    PubMed

    Chang, Jasper O; Levy, Susan S; Seay, Seth W; Goble, Daniel J

    2014-05-01

    Recent guidelines advocate sports medicine professionals to use balance tests to assess sensorimotor status in the management of concussions. The present study sought to determine whether a low-cost balance board could provide a valid, reliable, and objective means of performing this balance testing. Criterion validity testing relative to a gold standard and 7 day test-retest reliability. University biomechanics laboratory. Thirty healthy young adults. Balance ability was assessed on 2 days separated by 1 week using (1) a gold standard measure (ie, scientific grade force plate), (2) a low-cost Nintendo Wii Balance Board (WBB), and (3) the Balance Error Scoring System (BESS). Validity of the WBB center of pressure path length and BESS scores were determined relative to the force plate data. Test-retest reliability was established based on intraclass correlation coefficients. Composite scores for the WBB had excellent validity (r = 0.99) and test-retest reliability (R = 0.88). Both the validity (r = 0.10-0.52) and test-retest reliability (r = 0.61-0.78) were lower for the BESS. These findings demonstrate that a low-cost balance board can provide improved balance testing accuracy/reliability compared with the BESS. This approach provides a potentially more valid/reliable, yet affordable, means of assessing sports-related concussion compared with current methods.

  20. Glacier mass-balance fluctuations in the Pacific Northwest and Alaska, USA

    USGS Publications Warehouse

    Josberger, E.G.; Bidlake, W.R.; March, R.S.; Kennedy, B.W.

    2007-01-01

    The more than 40 year record of net and seasonal mass-balance records from measurements made by the United States Geological Survey on South Cascade Glacier, Washington, and Wolverine and Gulkana Glaciers, Alaska, shows annual and interannual fluctuations that reflect changes in the controlling climatic conditions at regional and global scales. As the mass-balance record grows in length, it is revealing significant changes in previously described glacier mass-balance behavior, and both inter-glacier and glacier-climate relationships. South Cascade and Wolverine Glaciers are strongly affected by the warm and wet maritime climate of the northeast Pacific Ocean. Their net balances have generally been controlled by winter accumulation, with fluctuations that are strongly related to the Pacific Decadal Oscillation (PDO). Recently, warm dry summers have begun to dominate the net balance of the two maritime glaciers, with a weakening of the correlation between the winter balance fluctuations and the PDO. Non-synchronous periods of positive and negative net balance for each glacier prior to 1989 were followed by a 1989-2004 period of synchronous and almost exclusively negative net balances that averaged -0.8 m for the three glaciers.

  1. Are nonsymmetric balanced configurations of four equal masses virtual or real?

    NASA Astrophysics Data System (ADS)

    Chenciner, Alain

    2017-11-01

    Balanced configurations of N point masses are the configurations which, in a Euclidean space of high enough dimension, i. e., up to 2( N - 1), admit a relative equilibrium motion under the Newtonian (or similar) attraction. Central configurations are balanced and it has been proved by Alain Albouy that central configurations of four equal masses necessarily possess a symmetry axis, from which followed a proof that the number of such configurations up to similarity is finite and explicitly describable. It is known that balanced configurations of three equal masses are exactly the isosceles triangles, but it is not known whether balanced configurations of four equal masses must have some symmetry. As balanced configurations come in families, it makes sense to look for possible branches of nonsymmetric balanced configurations bifurcating from the subset of symmetric ones. In the simpler case of a logarithmic potential, the subset of symmetric balanced configurations of four equal masses is easy to describe as well as the bifurcation locus, but there is a grain of salt: expressed in terms of the squared mutual distances, this locus lies almost completely outside the set of true configurations (i. e., generalizations of triangular inequalities are not satisfied) and hence could lead most of the time only to the bifurcation of a branch of virtual nonsymmetric balanced configurations. Nevertheless, a tiny piece of the bifurcation locus lies within the subset of real balanced configurations symmetric with respect to a line and hence has a chance to lead to the bifurcation of real nonsymmetric balanced configurations. This raises the question of the title, a question which, thanks to the explicit description given here, should be solvable by computer experts even in the Newtonian case. Another interesting question is about the possibility for a bifurcating branch of virtual nonsymmetric balanced configurations to come back to the domain of true configurations.

  2. Assessing streamflow sensitivity to variations in glacier mass balance

    USGS Publications Warehouse

    O'Neel, Shad; Hood, Eran; Arendt, Anthony; Sass, Louis

    2014-01-01

    The purpose of this paper is to evaluate relationships among seasonal and annual glacier mass balances, glacier runoff and streamflow in two glacierized basins in different climate settings. We use long-term glacier mass balance and streamflow datasets from the United States Geological Survey (USGS) Alaska Benchmark Glacier Program to compare and contrast glacier-streamflow interactions in a maritime climate (Wolverine Glacier) with those in a continental climate (Gulkana Glacier). Our overall goal is to improve our understanding of how glacier mass balance processes impact streamflow, ultimately improving our conceptual understanding of the future evolution of glacier runoff in continental and maritime climates.

  3. A 1 kg Mass Comparator Using Flexure-Strip Suspensions: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Quinn, T. J.; Speake, C. C.; Davis, R. S.

    1986-01-01

    This paper describes the design and construction of a novel form of equal-arm balance. The balance has been designed to study the performance of flexure strips for use as pivots in a 1 kg mass comparator working at the highest accuracy. The beam of the balance is servo controlled using optical detection of angular position and electromagnetic control. Small mass differences are measured in terms of the differences in the servo currents required to reproduce the same position of the beam. Preliminary results using this prototype balance indicate that an accuracy in mass comparison of about 5 parts in 1010 can be achieved.

  4. Estimates of Ice Sheet Mass Balance from Satellite Altimetry: Past and Future

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    A major uncertainty in predicting sea level rise is the sensitivity of ice sheet mass balance to climate change, as well as the uncertainty in present mass balance. Since the annual water exchange is about 8 mm of global sea level equivalent, the 20% uncertainty in current mass balance corresponds to 1.6 mm/yr in sea level change. Furthermore, estimates of the sensitivity of the mass balance to temperature change range from perhaps as much as - 10% to + 10% per K. A principal purpose of obtaining ice sheet elevation changes from satellite altimetry has been estimation of the current ice sheet mass balance. Limited information on ice sheet elevation change and their implications about mass balance have been reported by several investigators from radar altimetry (Seasat, Geosat, ERS-1&2). Analysis of ERS-1&2 data over Greenland for 7 years from 1992 to 1999 shows mixed patterns of ice elevation increases and decreases that are significant in terms of regional-scale mass balances. Observed seasonal and interannual variations in ice surface elevation are larger than previously expected because of seasonal and interannUal variations in precipitation, melting, and firn compaction. In the accumulation zone, the variations in firn compaction are modeled as a function of temperature leaving variations in precipitation and the mass balance trend. Significant interannual variations in elevation in some locations, in particular the difference in trends from 1992 to 1995 compared to 1995 to 1999, can be explained by changes in precipitation over Greenland. Over the 7 years, trends in elevation are mostly positive at higher elevations and negative at lower elevations. In addition, trends for the winter seasons (from a trend analysis through the average winter elevations) are more positive than the corresponding trends for the summer. At lower elevations, the 7-year trends in some locations are strongly negative for summer and near zero or slightly positive for winter. These observations also demonstrate the potential for relating the variability in mass balance to changes in precipitation, temperature, and melting. Beginning in January 2002, NASA's ICESat laser altimeter mission will provide significantly better elevation accuracy and spatial coverage to 86E latitude and to the margins of the ice sheets.

  5. Forecasting Glacier Evolution and Hindcasting Paleoclimates In Light of Mass Balance Nonlinearities

    NASA Astrophysics Data System (ADS)

    Malone, A.; Doughty, A. M.; MacAyeal, D. R.

    2016-12-01

    Glaciers are commonly used barometers of present and past climate change, with their variations often being linked to shifts in the mean climate. Climate variability within a unchanging mean state, however, can produce short term mass balance and glacier length anomalies, complicating this linkage. Also, the mass balance response to this variability can be nonlinear, possibly impacting the longer term state of the glacier. We propose a conceptual model to understand these nonlinearities and quantify their impacts on the longer term mass balance and glacier length. The relationship between mass balance and elevation, i.e. the vertical balance profile (VBP), illuminates these nonlinearities (Figure A). The VBP, given here for a wet tropical glacier, is piecewise, which can lead to different mass balance responses to climate anomalies of similar magnitude but opposite sign. We simulate the mass balance response to climate variability by vertically (temperature anomalies) and horizontally (precipitation anomalies) transposing the VBP for the mean climate (Figure A). The resulting anomalous VBP is the superposition of the two translations. We drive a 1-D flowline model with 10,000 years of anomalous VBPs. The aggregate VBP for the mean climate including variability differs from the VBP for the mean climate excluding variability, having a higher equilibrium line altitude (ELA) and a negative mass balance (Figure B). Accordingly, the glacier retreats, and the equilibrium glacier length for the aggregate VBP is the same as the mean length from the 10,000 year flowline simulation (Figure C). The magnitude of the VBP shift and glacier retreat increases with greater temperature variability and larger discontinuities in the VBP slope. These results highlight the importance of both the climate mean and variability in determining the longer term state of the glacier. Thus, forecasting glacier evolution or hindcasting past climates should also include representation of climate variability.

  6. Water, Ice, and Meteorological Measurements at South Cascade Glacier, Washington, Balance Years 2004 and 2005

    USGS Publications Warehouse

    Bidlake, William R.; Josberger, Edward G.; Savoca, Mark E.

    2007-01-01

    Winter snow accumulation and summer snow and ice ablation were measured at South Cascade Glacier, Washington, to estimate glacier mass-balance quantities for balance years 2004 and 2005. The North Cascade Range in the vicinity of South Cascade Glacier accumulated smaller than normal winter snowpacks during water years 2004 and 2005. Correspondingly, the balance years 2004 and 2005 maximum winter snow balances of South Cascade Glacier, 2.08 and 1.97 meters water equivalent, respectively, were smaller than the average of such balances since 1959. The 2004 glacier summer balance (-3.73 meters water equivalent) was the eleventh most negative during 1959 to 2005 and the 2005 glacier summer balance (-4.42 meters water equivalent) was the third most negative. The relatively small winter snow balances and unusually negative summer balances of 2004 and 2005 led to an overall loss of glacier mass. The 2004 and 2005 glacier net balances, -1.65 and -2.45 meters water equivalent, respectively, were the seventh and second most negative during 1953 to 2005. For both balance years, the accumulation area ratio was less than 0.05 and the equilibrium line altitude was higher than the glacier. The unusually negative 2004 and 2005 glacier net balances, combined with a negative balance previously reported for 2003, resulted in a cumulative 3-year net balance of -6.20 meters water equivalent. No equal or greater 3-year mass loss has occurred previously during the more than 4 decades of U.S. Geological Survey mass-balance measurements at South Cascade Glacier. Accompanying the glacier mass losses were retreat of the terminus and reduction of total glacier area. The terminus retreated at a rate of about 17 meters per year during balance year 2004 and 15 meters per year during balance year 2005. Glacier area near the end of balance years 2004 and 2005 was 1.82 and 1.75 square kilometers, respectively. Runoff from the basin containing the glacier and from an adjacent nonglacierized basin was gaged during all or parts of water years 2004 and 2005. Air temperature, wind speed, precipitation, and incoming solar radiation were measured at selected locations on and near the glacier.

  7. Recent Changes in Ices Mass Balance of the Amundsen Sea Sector

    NASA Astrophysics Data System (ADS)

    Sutterley, T. C.; Velicogna, I.; Rignot, E. J.; Mouginot, J.; Flament, T.; van den Broeke, M. R.; van Wessem, M.; Reijmer, C.

    2014-12-01

    The glaciers flowing into the Amundsen Sea Embayment (ASE) sector of West Antarctica were confirmed in the Ice Sheet Mass Balance Inter-comparison Exercise (IMBIE) to be the dominant contributors to the current Antarctic ice mass loss, and recently recognized to be undergoing marine ice sheet instability. Here, we investigate their regional ice mass balance using a time series of satellite and airborne data combined with model output products from the Regional Atmospheric and Climate Model (RACMO). Our dataset includes laser altimetry from NASA's ICESat-1 satellite mission and from Operation IceBridge (OIB) airborne surveys, satellite radar altimetry data from ESA's Envisat mission, time-variable gravity data from NASA/DLR's GRACE mission, surface mass balance products from RACMO, ice velocity from a combination of international synthetic aperture radar satellites and ice thickness data from OIB. We find a record of ice mass balance for the ASE where all the analyzed techniques agree remarkably in magnitude and temporal variability. The mass loss of the region has been increasing continuously since 1992, with no indication of a slow down. The mass loss during the common period averaged 91 Gt/yr and accelerated 20 Gt/yr2. In 1992-2013, the ASE contributed 4.5 mm global sea level rise. Overall, our results demonstrate the synergy of multiple analysis techniques for examining Antarctic Ice Sheet mass balance at the regional scale. This work was performed at UCI and JPL under a contract with NASA.

  8. DtaRefinery: a software tool for elimination of systematic errors from parent ion mass measurements in tandem mass spectra datasets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petyuk, Vladislav A.; Mayampurath, Anoop M.; Monroe, Matthew E.

    2009-12-16

    Hybrid two-stage mass spectrometers capable of both highly accurate mass measurement and MS/MS fragmentation have become widely available in recent years and have allowed for sig-nificantly better discrimination between true and false MS/MS pep-tide identifications by applying relatively narrow windows for maxi-mum allowable deviations for parent ion mass measurements. To fully gain the advantage of highly accurate parent ion mass meas-urements, it is important to limit systematic mass measurement errors. The DtaRefinery software tool can correct systematic errors in parent ion masses by reading a set of fragmentation spectra, searching for MS/MS peptide identifications, then fitting a model that canmore » estimate systematic errors, and removing them. This results in a new fragmentation spectrum file with updated parent ion masses.« less

  9. Overview of Ice-Sheet Mass Balance and Dynamics from ICESat Measurements

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay

    2010-01-01

    The primary purpose of the ICESat mission was to determine the present-day mass balance of the Greenland and Antarctic ice sheets, identify changes that may be occurring in the surface-mass flux and ice dynamics, and estimate their contributions to global sea-level rise. Although ICESat's three lasers were planned to make continuous measurements for 3 to 5 years, the mission was re-planned to operate in 33-day campaigns 2 to 3 times each year following failure of the first laser after 36 days. Seventeen campaigns were conducted with the last one in the Fall of 2009. Mass balance maps derived from measured ice-sheet elevation changes show that the mass loss from Greenland has increased significantly to about 170 Gt/yr for 2003 to 2007 from a state of near balance in the 1990's. Increased losses (189 Gt/yr) from melting and dynamic thinning are over seven times larger'than increased gains (25 gt/yr) from precipitation. Parts of the West Antarctic ice sheet and the Antarctic Peninsula are losing mass at an increasing rate, but other parts of West Antarctica and the East Antarctic ice sheet are gaining mass at an increasing rate. Increased losses of 35 Gt/yr in Pine Island, Thwaites-Smith, and Marie-Bryd.Coast are more than balanced by gains in base of Peninsula and ice stream C, D, & E systems. From the 1992-2002 to 2003-2007 period, the overall mass balance for Antarctica changed from a loss of about 60 Gt/yr to near balance or slightly positive.

  10. Comparison of Highly Resolved Model-Based Exposure ...

    EPA Pesticide Factsheets

    Human exposure to air pollution in many studies is represented by ambient concentrations from space-time kriging of observed values. Space-time kriging techniques based on a limited number of ambient monitors may fail to capture the concentration from local sources. Further, because people spend more time indoors, using ambient concentration to represent exposure may cause error. To quantify the associated exposure error, we computed a series of six different hourly-based exposure metrics at 16,095 Census blocks of three Counties in North Carolina for CO, NOx, PM2.5, and elemental carbon (EC) during 2012. These metrics include ambient background concentration from space-time ordinary kriging (STOK), ambient on-road concentration from the Research LINE source dispersion model (R-LINE), a hybrid concentration combining STOK and R-LINE, and their associated indoor concentrations from an indoor infiltration mass balance model. Using a hybrid-based indoor concentration as the standard, the comparison showed that outdoor STOK metrics yielded large error at both population (67% to 93%) and individual level (average bias between −10% to 95%). For pollutants with significant contribution from on-road emission (EC and NOx), the on-road based indoor metric performs the best at the population level (error less than 52%). At the individual level, however, the STOK-based indoor concentration performs the best (average bias below 30%). For PM2.5, due to the relatively low co

  11. Sensitivity of annual mass balance gradient and Hypsometry to the changing climate: the case of Dokriani Glacier, central Himalaya, India

    NASA Astrophysics Data System (ADS)

    Pratap, B.

    2015-12-01

    The glacier mass balance is undelayed, unfiltered and direct method to assess the impact of climate change on the glaciers. Many studies suggest that some of the Himalayan glaciers have lost their mass at an increased rate during the past few decades. Furthermore, the mass balance gradient and hypsometric analysis are important to understand the glacier response towards climatic perturbations. Our long term in-situ monitoring on the Dokriani Glacier provides great insights to understand the variability in central Himalayan glaciers. We report the relationship between glacier hypsometry and annual mass balance gradient (12 years) to understand the glacier's response towards climate change. Dokriani Glacier in the Bhagirathi basin is a small (7 km2) NNW exposed glacier in the western part of central Himalaya, India. The study analysed the annual balance, mass balance gradient and length changes observed during first decade of 21st century (2007-2013) and compare with the previous observations of 1990s (1992-2000). A large spatial variability in the mass balance gradients of two different periods has been observed. The equilibrium-line altitude (ELA) was fluctuated between 5000 and 5100 m a.s.l. and the derived time averaged ELA (ELAn) and balance budget ELA (ELA0) were 5075 and 4965 m a.s.l respectively during 1992-2013. The observed time-averaged accumulation-area ratio (AARn) and balance budget AAR (AAR0) were 0.67 and 0.72 respectively during 1992-2013. The higher value of AAR comprises due to flat and broader accumulation area (4.50 km2) of the glacier. Although, having larger accumulation area, the glacier has faced strong mass wasting with average annual ablation of -1.82 m w.e. a-1 in the ablation zone as compare to residual average annual accumulation of 0.41 m w.e. a-1. Based on the annual mass balance series (12 years) Dokriani Glacier has continuous negative annual balances with monotonically negative cumulative mass loss of -3.86 m w.e with the average loss of -0.32 m w.e a-1. Dokriani Glacier also showed continues recession from 1992 to present. Snout was ascended 95 m a.s.l. from an elevation of 3870 m a.s.l. in 1992 to an elevation of 3965 m a.s.l. in 2013. The progressive retreat of the glacier affects its extension and volume and covered by continuous enhancement of debris in the lower ablation zone.

  12. Analysis of Seasonal Variability in Gulf of Alaska Glacier Mass Balance using GRACE

    NASA Astrophysics Data System (ADS)

    Arendt, A. A.; Luthcke, S. B.; Oneel, S.; Gardner, A. S.; Hill, D. F.

    2011-12-01

    Mass variations of glaciers in Alaska/northwestern Canada must be quantified in order to assess impacts on ecosystems, human infrastructure, and global sea level. Here we combine Gravity Recovery and Climate Experiment (GRACE) observations with a wide range of satellite and field data to investigate drivers of these recent changes, with a focus on seasonal variations. Our central focus will be the exceptionally high mass losses of 2009, which do not correlate with weather station temperature and precipitation data, but may be linked to ash fall from the March 31, 2009 eruption of Mt. Redoubt. The eruption resulted in a significant decrease in MODIS-derived surface albedo over many Alaska glacier regions, and likely contributed to some of the 2009 anomalous mass loss observed by GRACE. We also focus on the Juneau and Stikine Icefield regions that are far from the volcanic eruption but experienced the largest mass losses of any region in 2009. Although rapid drawdown of tidewater glaciers was occurring in southeast Alaska during 2009, we show these changes were probably not sufficiently widespread to explain all of the GRACE signal in those regions. We examine additional field and satellite datasets to quantify potential errors in the climate and GRACE fields that could result in the observed discrepancy.

  13. Simple Forest Canopy Thermal Exitance Model

    NASA Technical Reports Server (NTRS)

    Smith J. A.; Goltz, S. M.

    1999-01-01

    We describe a model to calculate brightness temperature and surface energy balance for a forest canopy system. The model is an extension of an earlier vegetation only model by inclusion of a simple soil layer. The root mean square error in brightness temperature for a dense forest canopy was 2.5 C. Surface energy balance predictions were also in good agreement. The corresponding root mean square errors for net radiation, latent, and sensible heat were 38.9, 30.7, and 41.4 W/sq m respectively.

  14. Rates and time scales of clay-mineral formation by weathering in saprolitic regoliths of the southern Appalachians from geochemical mass balance

    Treesearch

    Jason R. Price; Michael A. Velbel; Lina C. Patino

    2005-01-01

    Rates of clay formation in three watersheds located at the Coweeta Hydrologic Laboratory, western North Carolina, have been determined from solute flux-based mass balance methods. A system of mass balance equations with enough equations and unknowns to allow calculation of secondary mineral formation rates as well as the more commonly determined primary-...

  15. Diagnosing the decline in climatic mass balance of glaciers in Svalbard over 1957-2014

    NASA Astrophysics Data System (ADS)

    Ims Østby, Torbjørn; Vikhamar Schuler, Thomas; Ove Hagen, Jon; Hock, Regine; Kohler, Jack; Reijmer, Carleen H.

    2017-01-01

    Estimating the long-term mass balance of the high-Arctic Svalbard archipelago is difficult due to the incomplete geodetic and direct glaciological measurements, both in space and time. To close these gaps, we use a coupled surface energy balance and snow pack model to analyse the mass changes of all Svalbard glaciers for the period 1957-2014. The model is forced by ERA-40 and ERA-Interim reanalysis data, downscaled to 1 km resolution. The model is validated using snow/firn temperature and density measurements, mass balance from stakes and ice cores, meteorological measurements, snow depths from radar profiles and remotely sensed surface albedo and skin temperatures. Overall model performance is good, but it varies regionally. Over the entire period the model yields a climatic mass balance of 8.2 cm w. e. yr-1, which corresponds to a mass input of 175 Gt. Climatic mass balance has a linear trend of -1.4 ± 0.4 cm w. e. yr-2 with a shift from a positive to a negative regime around 1980. Modelled mass balance exhibits large interannual variability, which is controlled by summer temperatures and further amplified by the albedo feedback. For the recent period 2004-2013 climatic mass balance was -21 cm w. e. yr-1, and accounting for frontal ablation estimated by Błaszczyk et al.(2009) yields a total Svalbard mass balance of -39 cm w. e. yr-1 for this 10-year period. In terms of eustatic sea level, this corresponds to a rise of 0.037 mm yr-1. Refreezing of water in snow and firn is substantial at 22 cm w. e. yr-1 or 26 % of total annual accumulation. However, as warming leads to reduced firn area over the period, refreezing decreases both absolutely and relative to the total accumulation. Negative mass balance and elevated equilibrium line altitudes (ELAs) resulted in massive reduction of the thick (> 2 m) firn extent and an increase in the superimposed ice, thin (< 2 m) firn and bare ice extents. Atmospheric warming also leads to a marked change in the thermal regime, with cooling of the glacier mid-elevation and warming in the ablation zone and upper firn areas. On the long-term, by removing the thermal barrier, this warming has implications for the vertical transfer of surface meltwater through the glacier and down to the base, influencing basal hydrology, sliding and thereby overall glacier motion.

  16. Comparison of SOC estimates and uncertainties from aerosol chemical composition and gas phase data in Atlanta

    NASA Astrophysics Data System (ADS)

    Pachon, Jorge E.; Balachandran, Sivaraman; Hu, Yongtao; Weber, Rodney J.; Mulholland, James A.; Russell, Armistead G.

    2010-10-01

    In the Southeastern US, organic carbon (OC) comprises about 30% of the PM 2.5 mass. A large fraction of OC is estimated to be of secondary origin. Long-term estimates of SOC and uncertainties are necessary in the evaluation of air quality policy effectiveness and epidemiologic studies. Four methods to estimate secondary organic carbon (SOC) and respective uncertainties are compared utilizing PM 2.5 chemical composition and gas phase data available in Atlanta from 1999 to 2007. The elemental carbon (EC) tracer and the regression methods, which rely on the use of tracer species of primary and secondary OC formation, provided intermediate estimates of SOC as 30% of OC. The other two methods, chemical mass balance (CMB) and positive matrix factorization (PMF) solve mass balance equations to estimate primary and secondary fractions based on source profiles and statistically-derived common factors, respectively. CMB had the highest estimate of SOC (46% of OC) while PMF led to the lowest (26% of OC). The comparison of SOC uncertainties, estimated based on propagation of errors, led to the regression method having the lowest uncertainty among the four methods. We compared the estimates with the water soluble fraction of the OC, which has been suggested as a surrogate of SOC when biomass burning is negligible, and found a similar trend with SOC estimates from the regression method. The regression method also showed the strongest correlation with daily SOC estimates from CMB using molecular markers. The regression method shows advantages over the other methods in the calculation of a long-term series of SOC estimates.

  17. Modular Battery Charge Controller

    NASA Technical Reports Server (NTRS)

    Button, Robert; Gonzalez, Marcelo

    2009-01-01

    A new approach to masterless, distributed, digital-charge control for batteries requiring charge control has been developed and implemented. This approach is required in battery chemistries that need cell-level charge control for safety and is characterized by the use of one controller per cell, resulting in redundant sensors for critical components, such as voltage, temperature, and current. The charge controllers in a given battery interact in a masterless fashion for the purpose of cell balancing, charge control, and state-of-charge estimation. This makes the battery system invariably fault-tolerant. The solution to the single-fault failure, due to the use of a single charge controller (CC), was solved by implementing one CC per cell and linking them via an isolated communication bus [e.g., controller area network (CAN)] in a masterless fashion so that the failure of one or more CCs will not impact the remaining functional CCs. Each micro-controller-based CC digitizes the cell voltage (V(sub cell)), two cell temperatures, and the voltage across the switch (V); the latter variable is used in conjunction with V(sub cell) to estimate the bypass current for a given bypass resistor. Furthermore, CC1 digitizes the battery current (I1) and battery voltage (V(sub batt) and CC5 digitizes a second battery current (I2). As a result, redundant readings are taken for temperature, battery current, and battery voltage through the summation of the individual cell voltages given that each CC knows the voltage of the other cells. For the purpose of cell balancing, each CC periodically and independently transmits its cell voltage and stores the received cell voltage of the other cells in an array. The position in the array depends on the identifier (ID) of the transmitting CC. After eight cell voltage receptions, the array is checked to see if one or more cells did not transmit. If one or more transmissions are missing, the missing cell(s) is (are) eliminated from cell-balancing calculations. The cell-balancing algorithm is based on the error between the cell s voltage and the other cells and is categorized into four zones of operation. The algorithm is executed every second and, if cell balancing is activated, the error variable is set to a negative low value. The largest error between the cell and the other cells is found and the zone of operation determined. If the error is zero or negative, then the cell is at the lowest voltage and no balancing action is needed. If the error is less than a predetermined negative value, a Cell Bad Flag is set. If the error is positive, then cell balancing is needed, but a hysteretic zone is added to prevent the bypass circuit from triggering repeatedly near zero error. This approach keeps the cells within a predetermined voltage range.

  18. A semi-immersive virtual reality incremental swing balance task activates prefrontal cortex: a functional near-infrared spectroscopy study.

    PubMed

    Basso Moro, Sara; Bisconti, Silvia; Muthalib, Makii; Spezialetti, Matteo; Cutini, Simone; Ferrari, Marco; Placidi, Giuseppe; Quaresima, Valentina

    2014-01-15

    Previous functional near-infrared spectroscopy (fNIRS) studies indicated that the prefrontal cortex (PFC) is involved in the maintenance of the postural balance after external perturbations. So far, no studies have been conducted to investigate the PFC hemodynamic response to virtual reality (VR) tasks that could be adopted in the field of functional neurorehabilitation. The aim of this fNIRS study was to assess PFC oxygenation response during an incremental and a control swing balance task (ISBT and CSBT, respectively) in a semi-immersive VR environment driven by a depth-sensing camera. It was hypothesized that: i) the PFC would be bilaterally activated in response to the increase of the ISBT difficulty, as this cortical region is involved in the allocation of attentional resources to maintain postural control; and ii) the PFC activation would be greater in the right than in the left hemisphere considering its dominance for visual control of body balance. To verify these hypotheses, 16 healthy male subjects were requested to stand barefoot while watching a 3 dimensional virtual representation of themselves projected onto a screen. They were asked to maintain their equilibrium on a virtual blue swing board susceptible to external destabilizing perturbations (i.e., randomizing the forward-backward direction of the impressed pulse force) during a 3-min ISBT (performed at four levels of difficulty) or during a 3-min CSBT (performed constantly at the lowest level of difficulty of the ISBT). The center of mass (COM), at each frame, was calculated and projected on the floor. When the subjects were unable to maintain the COM over the board, this became red (error). After each error, the time required to bring back the COM on the board was calculated (returning time). An eight-channel continuous wave fNIRS system was employed for measuring oxygenation changes (oxygenated-hemoglobin, O2Hb; deoxygenated-hemoglobin, HHb) related to the PFC activation (Brodmann Areas 10, 11 and 46). The results have indicated that the errors increased between the first and the second level of difficulty of the ISBT, then decreased and remained constant; the returning time progressively increased during the first three levels of difficulty and then remained constant. During the CSBT, the errors and the returning time did not change. In the ISBT, the increase of the first three levels of difficulty was accompanied by a progressive increase in PFC O2Hb and a less consistent decrease in HHb. A tendency to plateau was observable for PFC O2Hb and HHb changes in the fourth level of difficulty of the ISBT, which could be partly explained by a learning effect. A right hemispheric lateralization was not found. A lower amplitude of increase in O2Hb and decrease in HHb was found in the PFC in response to the CSBT with respect to the ISBT. This study has demonstrated that the oxygenation increased over the PFC while performing an ISBT in a semi-immersive VR environment. These data reinforce the involvement of the PFC in attention-demanding balance tasks. Considering the adaptability of this virtual balance task to specific neurological disorders, the absence of motion sensing devices, and the motivating/safe semi-immersive VR environment, the ISBT adopted in this study could be considered valuable for diagnostic testing and for assessing the effectiveness of functional neurorehabilitation. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Exploring the Variable Sky with Linear. 1. Photometric Recalibration with the Sloan Digital Sky Survey

    DTIC Science & Technology

    2011-12-01

    encoded as a 64-bit integer number theta_2massd Distance in arcsec from the 2MASS source J 2MASS J-band magnitude JErr 2MASS J-band magnitude error H... 2MASS H-band magnitude HErr 2MASS H-band magnitude error K 2MASS K-band magnitude KErr 2MASS K-band magnitude error jh 2MASS J−H color (corrected for...extinction, j − h = (J − 0.327rExt) − (H − 0.209rExt)) hk 2MASS H−K color (corrected for extinction, h− k = (H − 0.209rExt) − (K − 0.133rExt)) jk

  20. Reliability of System Identification Techniques to Assess Standing Balance in Healthy Elderly

    PubMed Central

    Maier, Andrea B.; Aarts, Ronald G. K. M.; van Gerven, Joop M. A.; Arendzen, J. Hans; Schouten, Alfred C.; Meskers, Carel G. M.; van der Kooij, Herman

    2016-01-01

    Objectives System identification techniques have the potential to assess the contribution of the underlying systems involved in standing balance by applying well-known disturbances. We investigated the reliability of standing balance parameters obtained with multivariate closed loop system identification techniques. Methods In twelve healthy elderly balance tests were performed twice a day during three days. Body sway was measured during two minutes of standing with eyes closed and the Balance test Room (BalRoom) was used to apply four disturbances simultaneously: two sensory disturbances, to the proprioceptive and the visual system, and two mechanical disturbances applied at the leg and trunk segment. Using system identification techniques, sensitivity functions of the sensory disturbances and the neuromuscular controller were estimated. Based on the generalizability theory (G theory), systematic errors and sources of variability were assessed using linear mixed models and reliability was assessed by computing indexes of dependability (ID), standard error of measurement (SEM) and minimal detectable change (MDC). Results A systematic error was found between the first and second trial in the sensitivity functions. No systematic error was found in the neuromuscular controller and body sway. The reliability of 15 of 25 parameters and body sway were moderate to excellent when the results of two trials on three days were averaged. To reach an excellent reliability on one day in 7 out of 25 parameters, it was predicted that at least seven trials must be averaged. Conclusion This study shows that system identification techniques are a promising method to assess the underlying systems involved in standing balance in elderly. However, most of the parameters do not appear to be reliable unless a large number of trials are collected across multiple days. To reach an excellent reliability in one third of the parameters, a training session for participants is needed and at least seven trials of two minutes must be performed on one day. PMID:26953694

  1. Model Reduction for Control System Design

    NASA Technical Reports Server (NTRS)

    Enns, D. F.

    1985-01-01

    An approach and a technique for effectively obtaining reduced order mathematical models of a given large order model for the purposes of synthesis, analysis and implementation of control systems is developed. This approach involves the use of an error criterion which is the H-infinity norm of a frequency weighted error between the full and reduced order models. The weightings are chosen to take into account the purpose for which the reduced order model is intended. A previously unknown error bound in the H-infinity norm for reduced order models obtained from internally balanced realizations was obtained. This motivated further development of the balancing technique to include the frequency dependent weightings. This resulted in the frequency weighted balanced realization and a new model reduction technique. Two approaches to designing reduced order controllers were developed. The first involves reducing the order of a high order controller with an appropriate weighting. The second involves linear quadratic Gaussian synthesis based on a reduced order model obtained with an appropriate weighting.

  2. Kinetic modeling on CO₂ capture using basic oxygen furnace slag coupled with cold-rolling wastewater in a rotating packed bed.

    PubMed

    Chang, E-E; Chen, Tse-Lun; Pan, Shu-Yuan; Chen, Yi-Hung; Chiang, Pen-Chi

    2013-09-15

    In this study, direct and indirect carbonation of basic oxygen furnace slag (BOFS) coupled with cold-rolling wastewater (CRW) was carried out via a rotating packed bed (RPB). The solid products were qualitatively characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) and quantitatively analyzed with thermogravimetric analysis (TGA). The leachate was analyzed with inductively coupled plasma-optical emission spectroscopy (ICP-OES). The results indicate that the maximum achievable carbonation conversion (MACC) of BOFS was 90.7%, corresponding to a capture capacity of 0.277 g CO₂/g of BOFS, by direct carbonation with CRW under a rotation speed of 750 rpm at 30 °C for 20 min. In addition, CO₂ mass balance among the gas, liquid, and solid phases within an RPB was well-developed, with an error less than 10%, to confirm the actual CO₂ capture capacity of BOFS with precision and accuracy. Furthermore, a reaction kinetic model based on mass balance was established to determine the reaction rate constant for various liquid agents (CRW and pure water). It was concluded that co-utilization of alkaline wastes including BOFS and CRW via the RPB is a novel approach for both enhancing CO₂ capture capacity and reducing the environmental impacts of alkaline wastes. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Comparing top-down and bottom-up estimates of methane emissions across multiple U.S. oil and gas basins provides insights into national O&G emissions, mitigation strategies, and research priorities

    NASA Astrophysics Data System (ADS)

    Lyon, D. R.; Alvarez, R.; Zavala Araiza, D.; Hamburg, S.

    2017-12-01

    We develop a county-level inventory of U.S. anthropogenic methane emissions by integrating multiple data sources including the Drillinginfo oil and gas (O&G) production database, Environmental Protection Agency (EPA) Greenhouse Gas Reporting Program, a previously published gridded EPA Greenhouse Gas Inventory (Maasakkers et al 2016), and recent measurements studies of O&G pneumatic devices, equipment leaks, abandoned wells, and midstream facilities. Our bottom-up estimates of total and O&G methane emissions are consistently lower than top-down, aerial mass balance estimates in ten O&G production areas. We evaluate several hypotheses for the top-down/bottom-up discrepancy including potential bias of the aerial mass balance method, temporal mismatch of top-down and bottom-up emission estimates, and source attribution errors. In most basins, the top-down/bottom-up gap cannot be explained fully without additional O&G emissions from sources not included in traditional inventories, such as super-emitters caused by malfunctions or abnormal process conditions. Top-down/bottom-up differences across multiple basins are analyzed to estimate the magnitude of these additional emissions and constrain total methane emissions from the U.S. O&G supply chain. We discuss the implications for mitigating O&G methane emissions and suggest research priorities for increasing the accuracy of future emission inventories.

  4. Impacts of invasive earthworms on soil mercury cycling: Two mass balance approaches to an earthworm invasion in a northern Minnesota forest

    Treesearch

    Sona Psarska; Edward A. Nater; Randy Kolka

    2016-01-01

    Invasive earthworms perturb natural forest ecosystems that initially developed without them, mainly by consuming the forest floor (an organic rich surficial soil horizon) and by mixing the upper parts of the soil. The fate of mercury (Hg) formerly contained in the forest floor is largely unknown. We used two mass balance approaches (simple mass balance and geochemical...

  5. Ten years of preanalytical monitoring and control: Synthetic Balanced Score Card Indicator

    PubMed Central

    López-Garrigós, Maite; Flores, Emilio; Santo-Quiles, Ana; Gutierrez, Mercedes; Lugo, Javier; Lillo, Rosa; Leiva-Salinas, Carlos

    2015-01-01

    Introduction Preanalytical control and monitoring continue to be an important issue for clinical laboratory professionals. The aim of the study was to evaluate a monitoring system of preanalytical errors regarding not suitable samples for analysis, based on different indicators; to compare such indicators in different phlebotomy centres; and finally to evaluate a single synthetic preanalytical indicator that may be included in the balanced scorecard management system (BSC). Materials and methods We collected individual and global preanalytical errors in haematology, coagulation, chemistry, and urine samples analysis. We also analyzed a synthetic indicator that represents the sum of all types of preanalytical errors, expressed in a sigma level. We studied the evolution of those indicators over time and compared indicator results by way of the comparison of proportions and Chi-square. Results There was a decrease in the number of errors along the years (P < 0.001). This pattern was confirmed in primary care patients, inpatients and outpatients. In blood samples, fewer errors occurred in outpatients, followed by inpatients. Conclusion We present a practical and effective methodology to monitor unsuitable sample preanalytical errors. The synthetic indicator results summarize overall preanalytical sample errors, and can be used as part of BSC management system. PMID:25672466

  6. Understanding Satellite-based Monthly-to-Seasonal Reservoir Outflow Estimation as a function of Hydrologic Controls

    NASA Astrophysics Data System (ADS)

    Bonnema, M.; Sikder, M. S.; Hossain, F.; Chen, X.; Miao, Y.; Lee, H.

    2015-12-01

    Growing population and increased demand for water in developing nations is causing an increase in dam construction in these regions. Entities and stakeholders downstream of dams experience drastically altered river flows. When rivers cross international boundaries, these downstream stakeholders often have little knowledge of upstream reservoir operation practices. Satellite remote sensing in the form of radar altimetry and multi-sensor precipitation products can be used as a way to provide downstream stakeholders with the upstream information needed to make important water management decisions. This study uses a mass balance between three hydraulic controls, precipitation induced inflow, evaporation, and reservoir storage change, to estimate reservoir outflow at a monthly time scale. Two reservoirs were examined in differing regions of the world, the Hungry Horse Reservoir in a mountainous region in northwest U.S. and the Kaptai Reservoir in a low-lying, forested region of Bangladesh. It was found that this mass balance method estimated the outflow of Kaptai Reservoir with reasonable skill when compared with observed flows. The estimation of outflow from Hungry Horse Reservoir was similarly skillful for outflows in winter and fall months, but summer and spring outflow estimates had high errors due to snowmelt effects. Furthermore, it was found that the important hydrologic controls for reservoir outflow estimation at the monthly time scale differs between the two reservoirs, with precipitation induced inflow being the most important control for the Kaptai Reservoir and storage change being the most important for Hungry Horse Reservoir. In both cases, a standard energy balance approach of evaporation estimation appeared to have little effect on the accuracy of outflow estimation.

  7. Flexible reserve markets for wind integration

    NASA Astrophysics Data System (ADS)

    Fernandez, Alisha R.

    The increased interconnection of variable generation has motivated the use of improved forecasting to more accurately predict future production with the purpose to lower total system costs for balancing when the expected output exceeds or falls short of the actual output. Forecasts are imperfect, and the forecast errors associated with utility-scale generation from variable generators need new balancing capabilities that cannot be handled by existing ancillary services. Our work focuses on strategies for integrating large amounts of wind generation under the flex reserve market, a market that would called upon for short-term energy services during an under or oversupply of wind generation to maintain electric grid reliability. The flex reserve market would be utilized for time intervals that fall in-between the current ancillary services markets that would be longer than second-to-second energy services for maintaining system frequency and shorter than reserve capacity services that are called upon for several minutes up to an hour during an unexpected contingency on the grid. In our work, the wind operator would access the flex reserve market as an energy service to correct for unanticipated forecast errors, akin to paying the generators participating in the market to increase generation during a shortfall or paying the other generators to decrease generation during an excess of wind generation. Such a market does not currently exist in the Mid-Atlantic United States. The Pennsylvania-New Jersey-Maryland Interconnection (PJM) is the Mid-Atlantic electric grid case study that was used to examine if a flex reserve market can be utilized for integrating large capacities of wind generation in a lowcost manner for those providing, purchasing and dispatching these short-term balancing services. The following work consists of three studies. The first examines the ability of a hydroelectric facility to provide short-term forecast error balancing services via a flex reserve market, identifying the operational constraints that inhibit a multi-purpose dam facility to meet the desired flexible energy demand. The second study transitions from the hydroelectric facility as the decision maker providing flex reserve services to the wind plant as the decision maker purchasing these services. In this second study, methods for allocating the costs of flex reserve services under different wind policy scenarios are explored that aggregate farms into different groupings to identify the least-cost strategy for balancing the costs of hourly day-ahead forecast errors. The least-cost strategy may be different for an individual wind plant and for the system operator, noting that the least-cost strategy is highly sensitive to cost allocation and aggregation schemes. The latter may also cause cross-subsidies in the cost for balancing wind forecast errors among the different wind farms. The third study builds from the second, with the objective to quantify the amount of flex reserves needed for balancing future forecast errors using a probabilistic approach (quantile regression) to estimating future forecast errors. The results further examine the usefulness of separate flexible markets PJM could use for balancing oversupply and undersupply events, similar to the regulation up and down markets used in Europe. These three studies provide the following results and insights to large-scale wind integration using actual PJM wind farm data that describe the markets and generators within PJM. • Chapter 2 provides an in-depth analysis of the valuable, yet highly-constrained, energy services multi-purpose hydroelectric facilities can provide, though the opportunity cost for providing these services can result in large deviations from the reservoir policies with minimal revenue gain in comparison to dedicating the whole of dam capacity to providing day-ahead, baseload generation. • Chapter 3 quantifies the system-wide efficiency gains and the distributive effects of PJM's decision to act as a single balancing authority, which means that it procures ancillary services across its entire footprint simultaneously. This can be contrasted to Midwest Independent System Operator (MISO), which has several balancing authorities operating under its footprint. • Chapter 4 uses probabilistic methods to estimate the uncertainty in the forecast errors and the quantity of energy needed to balance these forecast errors at a certain percentile. Current practice is to use a point forecast that describes the conditional expectation of the dependent variable at each time step. The approach here uses quantile regression to describe the relationship between independent variable and the conditional quantiles (equivalently the percentiles) of the dependent variable. An estimate of the conditional density is performed, which contains information about the covariate relationship of the sign of the forecast errors (negative for too much wind generation and positive for too little wind generation) and the wind power forecast. This additional knowledge may be implemented in the decision process to more accurately schedule day-ahead wind generation bids and provide an example for using separate markets for balancing an oversupply and undersupply of generation. Such methods are currently used for coordinating large footprints of wind generation in Europe.

  8. Glacier mass balance and its potential impacts in the Altai Mountains over the period 1990-2011

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Enomoto, Hiroyuki; Ohata, Tetsuo; Kitabata, Hideyuki; Kadota, Tsutomu; Hirabayashi, Yukiko

    2017-10-01

    The Altai Mountains contain 1281 glaciers covering an area of 1191 km2. These glaciers have undergone significant changes in glacial length and area over the past decade. However, mass changes of these glaciers and their impacts remain poorly understood. Here we present surface mass balances of all glaciers in the region for the period 1990-2011, using a glacier mass-balance model forced by the outputs of a regional climate model. Our results indicate that the mean specific mass balance for the whole region is about -0.69 m w.e. yr-1 over the entire period, and about 81.3% of these glaciers experience negative net mass balance. We detect an accelerated wastage of these glaciers in recent years, and marked differences in mass change and its sensitivity to climate change for different regions and size classes. In particular, higher mass loss and temperature sensitivity are observed for glaciers smaller than 0.5 km2. In addition to temperature rise, a decrease in precipitation in the western part of the region and an increase in precipitation in the eastern part likely contribute to significant sub-region differences in mass loss. With significant glacier wastage, the contribution of all glaciers to regional water resources and sea-level change becomes larger than before, but may not be a potential threat to human populations through impacts on water availability.

  9. Evaluating Students' Conceptual Understanding of Balanced Equations and Stoichiometric Ratios Using a Particulate Drawing

    ERIC Educational Resources Information Center

    Sanger, Michael J.

    2005-01-01

    A total of 156 students were asked to provide free-response balanced chemical equations for a classic multiple-choice particulate-drawing question first used by Nurrenbern and Pickering. The balanced equations and the number of students providing each equation are reported in this study. The most common student errors included a confusion between…

  10. Mass-conservative reconstruction of Galerkin velocity fields for transport simulations

    NASA Astrophysics Data System (ADS)

    Scudeler, C.; Putti, M.; Paniconi, C.

    2016-08-01

    Accurate calculation of mass-conservative velocity fields from numerical solutions of Richards' equation is central to reliable surface-subsurface flow and transport modeling, for example in long-term tracer simulations to determine catchment residence time distributions. In this study we assess the performance of a local Larson-Niklasson (LN) post-processing procedure for reconstructing mass-conservative velocities from a linear (P1) Galerkin finite element solution of Richards' equation. This approach, originally proposed for a-posteriori error estimation, modifies the standard finite element velocities by imposing local conservation on element patches. The resulting reconstructed flow field is characterized by continuous fluxes on element edges that can be efficiently used to drive a second order finite volume advective transport model. Through a series of tests of increasing complexity that compare results from the LN scheme to those using velocity fields derived directly from the P1 Galerkin solution, we show that a locally mass-conservative velocity field is necessary to obtain accurate transport results. We also show that the accuracy of the LN reconstruction procedure is comparable to that of the inherently conservative mixed finite element approach, taken as a reference solution, but that the LN scheme has much lower computational costs. The numerical tests examine steady and unsteady, saturated and variably saturated, and homogeneous and heterogeneous cases along with initial and boundary conditions that include dry soil infiltration, alternating solute and water injection, and seepage face outflow. Typical problems that arise with velocities derived from P1 Galerkin solutions include outgoing solute flux from no-flow boundaries, solute entrapment in zones of low hydraulic conductivity, and occurrences of anomalous sources and sinks. In addition to inducing significant mass balance errors, such manifestations often lead to oscillations in concentration values that can moreover cause the numerical solution to explode. These problems do not occur when using LN post-processed velocities.

  11. Monitoring southwest Greenland's ice sheet melt with ambient seismic noise.

    PubMed

    Mordret, Aurélien; Mikesell, T Dylan; Harig, Christopher; Lipovsky, Bradley P; Prieto, Germán A

    2016-05-01

    The Greenland ice sheet presently accounts for ~70% of global ice sheet mass loss. Because this mass loss is associated with sea-level rise at a rate of 0.7 mm/year, the development of improved monitoring techniques to observe ongoing changes in ice sheet mass balance is of paramount concern. Spaceborne mass balance techniques are commonly used; however, they are inadequate for many purposes because of their low spatial and/or temporal resolution. We demonstrate that small variations in seismic wave speed in Earth's crust, as measured with the correlation of seismic noise, may be used to infer seasonal ice sheet mass balance. Seasonal loading and unloading of glacial mass induces strain in the crust, and these strains then result in seismic velocity changes due to poroelastic processes. Our method provides a new and independent way of monitoring (in near real time) ice sheet mass balance, yielding new constraints on ice sheet evolution and its contribution to global sea-level changes. An increased number of seismic stations in the vicinity of ice sheets will enhance our ability to create detailed space-time records of ice mass variations.

  12. Re-analysis of Alaskan benchmark glacier mass-balance data using the index method

    USGS Publications Warehouse

    Van Beusekom, Ashely E.; O'Nell, Shad R.; March, Rod S.; Sass, Louis C.; Cox, Leif H.

    2010-01-01

    At Gulkana and Wolverine Glaciers, designated the Alaskan benchmark glaciers, we re-analyzed and re-computed the mass balance time series from 1966 to 2009 to accomplish our goal of making more robust time series. Each glacier's data record was analyzed with the same methods. For surface processes, we estimated missing information with an improved degree-day model. Degree-day models predict ablation from the sum of daily mean temperatures and an empirical degree-day factor. We modernized the traditional degree-day model and derived new degree-day factors in an effort to match the balance time series more closely. We estimated missing yearly-site data with a new balance gradient method. These efforts showed that an additional step needed to be taken at Wolverine Glacier to adjust for non-representative index sites. As with the previously calculated mass balances, the re-analyzed balances showed a continuing trend of mass loss. We noted that the time series, and thus our estimate of the cumulative mass loss over the period of record, was very sensitive to the data input, and suggest the need to add data-collection sites and modernize our weather stations.

  13. Precision diet formulation to improve performance and profitability across various climates: Modeling the implications of increasing the formulation frequency of dairy cattle diets.

    PubMed

    White, Robin R; Capper, Judith L

    2014-03-01

    The objective of this study was to use a precision nutrition model to simulate the relationship between diet formulation frequency and dairy cattle performance across various climates. Agricultural Modeling and Training Systems (AMTS) CattlePro diet-balancing software (Cornell Research Foundation, Ithaca, NY) was used to compare 3 diet formulation frequencies (weekly, monthly, or seasonal) and 3 levels of climate variability (hot, cold, or variable). Predicted daily milk yield (MY), metabolizable energy (ME) balance, and dry matter intake (DMI) were recorded for each frequency-variability combination. Economic analysis was conducted to calculate the predicted revenue over feed and labor costs. Diet formulation frequency affected ME balance and MY but did not affect DMI. Climate variability affected ME balance and DMI but not MY. The interaction between climate variability and formulation frequency did not affect ME balance, MY, or DMI. Formulating diets more frequently increased MY, DMI, and ME balance. Economic analysis showed that formulating diets weekly rather than seasonally could improve returns over variable costs by $25,000 per year for a moderate-sized (300-cow) operation. To achieve this increase in returns, an entire feeding system margin of error of <1% was required. Formulating monthly, rather than seasonally, may be a more feasible alternative as this requires a margin of error of only 2.5% for the entire feeding system. Feeding systems with a low margin of error must be developed to better take advantage of the benefits of precision nutrition. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Mass Spectral Library Quality Assurance by Inter-Library Comparison

    NASA Astrophysics Data System (ADS)

    Wallace, William E.; Ji, Weihua; Tchekhovskoi, Dmitrii V.; Phinney, Karen W.; Stein, Stephen E.

    2017-04-01

    A method to discover and correct errors in mass spectral libraries is described. Comparing across a set of highly curated reference libraries compounds that have the same chemical structure quickly identifies entries that are outliers. In cases where three or more entries for the same compound are compared, the outlier as determined by visual inspection was almost always found to contain the error. These errors were either in the spectrum itself or in the chemical descriptors that accompanied it. The method is demonstrated on finding errors in compounds of forensic interest in the NIST/EPA/NIH Mass Spectral Library. The target list of compounds checked was the Scientific Working Group for the Analysis of Seized Drugs (SWGDRUG) mass spectral library. Some examples of errors found are described. A checklist of errors that curators should look for when performing inter-library comparisons is provided.

  15. Mass Spectral Library Quality Assurance by Inter-Library Comparison

    PubMed Central

    Wallace, W.E.; Ji, W.; Tchekhovskoi, D.V.; Phinney, K.W.; Stein, S.E.

    2017-01-01

    A method to discover and correct errors in mass spectral libraries is described. Comparing across a set of highly curated reference libraries compounds that have the same chemical structure quickly identifies entries that are outliers. In cases where three or more entries for the same compound are compared the outlier as determined by visual inspection was almost always found to contain the error. These errors were either in the spectrum itself or in the chemical descriptors that accompanied it. The method is demonstrated on finding errors in compounds of forensic interest in the NIST/EPA/NIH Mass Spectral Library. The target list of compounds checked was the Scientific Working Group for the Analysis of Seized Drugs (SWGDRUG) mass spectral library. Some examples of errors found are described. A checklist of errors that curators should look for when performing inter-library comparisons is provided. PMID:28127680

  16. Modeling Sediment Detention Ponds Using Reactor Theory and Advection-Diffusion Concepts

    NASA Astrophysics Data System (ADS)

    Wilson, Bruce N.; Barfield, Billy J.

    1985-04-01

    An algorithm is presented to model the sedimentation process in detention ponds. This algorithm is based on a mass balance for an infinitesimal layer that couples reactor theory concepts with advection-diffusion processes. Reactor theory concepts are used to (1) determine residence time of sediment particles and to (2) mix influent sediment with previously stored flow. Advection-diffusion processes are used to model the (1) settling characteristics of sediment and the (2) vertical diffusion of sediment due to turbulence. Predicted results of the model are compared to those observed on two pilot scale ponds for a total of 12 runs. The average percent error between predicted and observed trap efficiency was 5.2%. Overall, the observed sedimentology values were predicted with reasonable accuracy.

  17. Bayesian inference of ice thickness from remote-sensing data

    NASA Astrophysics Data System (ADS)

    Werder, Mauro A.; Huss, Matthias

    2017-04-01

    Knowledge about ice thickness and volume is indispensable for studying ice dynamics, future sea-level rise due to glacier melt or their contribution to regional hydrology. Accurate measurements of glacier thickness require on-site work, usually employing radar techniques. However, these field measurements are time consuming, expensive and sometime downright impossible. Conversely, measurements of the ice surface, namely elevation and flow velocity, are becoming available world-wide through remote sensing. The model of Farinotti et al. (2009) calculates ice thicknesses based on a mass conservation approach paired with shallow ice physics using estimates of the surface mass balance. The presented work applies a Bayesian inference approach to estimate the parameters of a modified version of this forward model by fitting it to both measurements of surface flow speed and of ice thickness. The inverse model outputs ice thickness as well the distribution of the error. We fit the model to ten test glaciers and ice caps and quantify the improvements of thickness estimates through the usage of surface ice flow measurements.

  18. A Smartphone Inertial Balance

    ERIC Educational Resources Information Center

    Barrera-Garrido, Azael

    2017-01-01

    In order to measure the mass of an object in the absence of gravity, one useful tool for many decades has been the inertial balance. One of the simplest forms of inertial balance is made by two mass holders or pans joined together with two stiff metal plates, which act as springs.

  19. The Physics of Toppling and Regaining Balance during a Pirouette.

    PubMed

    Lott, Melanie B; Laws, Kenneth L

    2012-12-01

    One of the most common movements in dance is a turn around a vertical axis with one supporting foot on the floor--a pirouette. If the pirouette is not performed with the body on balance, it is not considered successful. Dancers are often taught to perform successful pirouettes by beginning the movement on balance and then keeping the body in that configuration, as opposed to correcting for an imbalance with small adjustments during the turn. Many, even advanced, dancers have significant difficulty performing more than two or three turns in a pirouette before losing balance, despite continued trial and error efforts to improve. To describe the mechanics of toppling and control of toppling during a pirouette, a theoretical model of a dancer in standard pirouette position was created, and an experimental study of real dancers performing pirouettes was conducted. Body segment parameters for the model (mass, length, etc.) were based on anatomical data and adjusted for sex, total body mass, and height. The principal moments of inertia were determined for several hypothetical dancers, and rigid body equations of motion numerically solved to express topple angle vs. time. When dancers reach too large a topple angle, they are forced to compensate by either hopping on the supporting foot in an attempt to regain balance or terminating the turn. The angle at which dancers lose stability and feel inclined to hop (θmax) was determined experimentally through a video analysis of nine intermediate to advanced ballet dancers' pirouettes (8 female, 1 male; 16 ± 2.3 years of age). The dancers hopped on the supporting foot after the body reached an average angle of 9.3 ± 1.9° from the vertical. With an average spin rate of 1.7 rev/s, it was found that a "rigid body" dancer (male or female) would need to begin the pirouette displaced less than one degree from the vertical in order to perform more than a double pirouette before reaching θmax. The results of this study demonstrate the difficulty of achieving many rotations when the body is held rigidly, whereas dancers may have success in consistently performing more pirouettes if they are taught strategies for regaining balance while turning.

  20. Performance of high school male athletes on the Functional Movement Screen™.

    PubMed

    Smith, Laura J; Creps, James R; Bean, Ryan; Rodda, Becky; Alsalaheen, Bara

    2017-09-01

    (1) Describe the performance of the Functional Movement Screen™ (FMS™) by reporting the proportion of adolescents with a score of ≤14 and the frequency of asymmetries in a cross-sectional sample; (2) explore associations between FMS™ to age and body mass, and explore the construct validity of the FMS™ against common postural stability measures; (3) examine the inter-rater and test-retest reliability of the FMS™ in adolescents. Cross-sectional. Field-setting. 94 male high-school athletes. The FMS™, Y-Balance Test (YBT) and Balance Error Scoring System (BESS). The median FMS™ composite score was 16 (9-21), 33% of participants scored below the suggested injury risk cutoff composite score of ≤14, and 62.8% had at least one asymmetry. No relationship was observed between the FMS™ to common static/dynamic balance tests. The inter-rater reliability of the FMS™ composite score suggested good reliability (ICC = 0.88, CI 95%:0.77, 0.94) and test-retest reliability for FMS™ composite scores was good with ICC = 0.83 (CI 95%:0.56, 0.95). FMS™ results should be interpreted cautiously with attention to the asymmetries identified during the screen, regardless of composite score. The lack of relationship between the FMS™ and other balance measures supports the notion that multiple screening tests should be used in order to provide a comprehensive picture of the adolescent athlete. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Uncertainties in the Antarctic Ice Sheet Contribution to Sea Level Rise: Exploration of Model Response to Errors in Climate Forcing, Boundary Conditions, and Internal Parameters

    NASA Astrophysics Data System (ADS)

    Schlegel, N.; Seroussi, H. L.; Boening, C.; Larour, E. Y.; Limonadi, D.; Schodlok, M.; Watkins, M. M.

    2017-12-01

    The Jet Propulsion Laboratory-University of California at Irvine Ice Sheet System Model (ISSM) is a thermo-mechanical 2D/3D parallelized finite element software used to physically model the continental-scale flow of ice at high resolutions. Embedded into ISSM are uncertainty quantification (UQ) tools, based on the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA) software. ISSM-DAKOTA offers various UQ methods for the investigation of how errors in model input impact uncertainty in simulation results. We utilize these tools to regionally sample model input and key parameters, based on specified bounds of uncertainty, and run a suite of continental-scale 100-year ISSM forward simulations of the Antarctic Ice Sheet. Resulting diagnostics (e.g., spread in local mass flux and regional mass balance) inform our conclusion about which parameters and/or forcing has the greatest impact on century-scale model simulations of ice sheet evolution. The results allow us to prioritize the key datasets and measurements that are critical for the minimization of ice sheet model uncertainty. Overall, we find that Antartica's total sea level contribution is strongly affected by grounding line retreat, which is driven by the magnitude of ice shelf basal melt rates and by errors in bedrock topography. In addition, results suggest that after 100 years of simulation, Thwaites glacier is the most significant source of model uncertainty, and its drainage basin has the largest potential for future sea level contribution. This work is performed at and supported by the California Institute of Technology's Jet Propulsion Laboratory. Supercomputing time is also supported through a contract with the National Aeronautics and Space Administration's Cryosphere program.

  2. Influence of Forecast Accuracy of Photovoltaic Power Output on Capacity Optimization of Microgrid Composition under 30 min Power Balancing Control

    NASA Astrophysics Data System (ADS)

    Sone, Akihito; Kato, Takeyoshi; Shimakage, Toyonari; Suzuoki, Yasuo

    A microgrid (MG) is one of the measures for enhancing the high penetration of renewable energy (RE)-based distributed generators (DGs). If a number of MGs are controlled to maintain the predetermined electricity demand including RE-based DGs as negative demand, they would contribute to supply-demand balancing of whole electric power system. For constructing a MG economically, the capacity optimization of controllable DGs against RE-based DGs is essential. By using a numerical simulation model developed based on a demonstrative study on a MG using PAFC and NaS battery as controllable DGs and photovoltaic power generation system (PVS) as a RE-based DG, this study discusses the influence of forecast accuracy of PVS output on the capacity optimization. Three forecast cases with different accuracy are compared. The main results are as follows. Even with no forecast error during every 30 min. as the ideal forecast method, the required capacity of NaS battery reaches about 40% of PVS capacity for mitigating the instantaneous forecast error within 30 min. The required capacity to compensate for the forecast error is doubled with the actual forecast method. The influence of forecast error can be reduced by adjusting the scheduled power output of controllable DGs according to the weather forecast. Besides, the required capacity can be reduced significantly if the error of balancing control in a MG is acceptable for a few percentages of periods, because the total periods of large forecast error is not so often.

  3. Application of GRACE to the assessment of model-based estimates of monthly Greenland Ice Sheet mass balance (2003-2012)

    NASA Astrophysics Data System (ADS)

    Schlegel, Nicole-Jeanne; Wiese, David N.; Larour, Eric Y.; Watkins, Michael M.; Box, Jason E.; Fettweis, Xavier; van den Broeke, Michiel R.

    2016-09-01

    Quantifying the Greenland Ice Sheet's future contribution to sea level rise is a challenging task that requires accurate estimates of ice sheet sensitivity to climate change. Forward ice sheet models are promising tools for estimating future ice sheet behavior, yet confidence is low because evaluation of historical simulations is challenging due to the scarcity of continental-wide data for model evaluation. Recent advancements in processing of Gravity Recovery and Climate Experiment (GRACE) data using Bayesian-constrained mass concentration ("mascon") functions have led to improvements in spatial resolution and noise reduction of monthly global gravity fields. Specifically, the Jet Propulsion Laboratory's JPL RL05M GRACE mascon solution (GRACE_JPL) offers an opportunity for the assessment of model-based estimates of ice sheet mass balance (MB) at ˜ 300 km spatial scales. Here, we quantify the differences between Greenland monthly observed MB (GRACE_JPL) and that estimated by state-of-the-art, high-resolution models, with respect to GRACE_JPL and model uncertainties. To simulate the years 2003-2012, we force the Ice Sheet System Model (ISSM) with anomalies from three different surface mass balance (SMB) products derived from regional climate models. Resulting MB is compared against GRACE_JPL within individual mascons. Overall, we find agreement in the northeast and southwest where MB is assumed to be primarily controlled by SMB. In the interior, we find a discrepancy in trend, which we presume to be related to millennial-scale dynamic thickening not considered by our model. In the northwest, seasonal amplitudes agree, but modeled mass trends are muted relative to GRACE_JPL. Here, discrepancies are likely controlled by temporal variability in ice discharge and other related processes not represented by our model simulations, i.e., hydrological processes and ice-ocean interaction. In the southeast, GRACE_JPL exhibits larger seasonal amplitude than predicted by the models while simultaneously having more pronounced trends; thus, discrepancies are likely controlled by a combination of missing processes and errors in both the SMB products and ISSM. At the margins, we find evidence of consistent intra-annual variations in regional MB that deviate distinctively from the SMB annual cycle. Ultimately, these monthly-scale variations, likely associated with hydrology or ice-ocean interaction, contribute to steeper negative mass trends observed by GRACE_JPL. Thus, models should consider such processes at relatively high (monthly-to-seasonal) temporal resolutions to achieve accurate estimates of Greenland MB.

  4. Mass and surface energy balance of A.P. Olsen ice cap, NE Greenland, from observations and modeling (1995-2011)

    NASA Astrophysics Data System (ADS)

    Hillerup Larsen, S.; Citterio, M.; Hock, R. M.; Ahlstrom, A. P.

    2012-12-01

    The A.P. Olsen Ice Cap (74.6 N, 21.5 W) in NE Greenland covers an area of 295 km2, is composed by two domes, of which the western is the largest, and spans an elevation range between 200 and 1450 m a.s.l. In this study we calculate the 2008-2011 annual glacier mass balance based on in situ observations, we model the surface energy balance over the same period, and we reconstruct annual glacier mass balance since 1995. We use GlacioBasis Monitoring Programme observations from a network of 15 ablation stakes and three automatic weather stations (AWS) at 600 m (ca. 100 m higher than the terminus) and at 840 m on the main glacier outlet of the western dome, and at 1430 m in the accumulation area. Accumulation is measured every year in springtime by snow radar surveys calibrated with manual probing and density profiles from snow pits. GlacioBasis data start in 2008, but a longer time series starting in 1995 is available from a weather station at 44 m a.s.l. close to Zackenberg Research Station, ca. 30 km further west. Shorter data series from three more AWS on land at 145 m, 410 m and 1283 m a.s.l. are used to estimate monthly average temperature lapse rates outside of the glacier boundary layer, and to detect the occurrence of temperature inversions. The surface energy mass balance is dominated by the radiative fluxes. We discuss the effect of shadows from the valley sides over parts of the tongue, especially early and late in the melt season when the sun is lower over the horizon, and analyze the modeled mass balance sensitivity to a 1 °C temperature increase. A temperature index model driven by the 1995-2008 time series and calibrated using post-2008 glacier mass balance measurements shows large interannual variability, with 5 of the most negative mass balance years of the entire 1995-2011period occurring between 2003 and 2008. In particular during 2008 the glacier experienced almost no net accumulation over the entire elevation range. This matches 2008 mass balance observations at Freya Glacier on Clavering Island, ca. 40 km SW of A.P. Olsen (WGMS Gl. Mass Bal. Bull. n. 11, 2011).

  5. A 350-year reconstruction of the response of south Cascade Glacier to interannual and interdecadal climatic variability

    Treesearch

    Kailey W. Marcinkowski; David L. Peterson

    2015-01-01

    Mountain hemlock growth chronologies were used to reconstruct the mass balance of South Cascade Glacier, an alpine glacier in the North Cascade Range of Washington State. The net balance reconstruction spans 350 years, from 1659 to 2009. Summer and winter balances were reconstructed for 1346–2009 and 1615–2009, respectively. Relationships between mass balance and...

  6. Estimation of Catchment Transit Time in Fuji River Basin by using an improved Tank model

    NASA Astrophysics Data System (ADS)

    Wenchao, M.; Yamanaka, T.; Wakiyama, Y.; Wang, P.

    2013-12-01

    As an important parameter that reflects the characteristics of catchments, the catchment transit time (CTT) has been given much more widely attentions especially in recent years. The CTT is defined as the time water spends travelling through a catchment to the stream network [1], and it describes how catchments retain and release water and solutes and thus control geochemical and biogeochemical cycling and contamination persistence [2]. The objectives of the present study are to develop a new approach for estimating CTT without prior information on such TTD functions and to apply it to the Fuji River basin in the Central Japan Alps Region. In this study, an improved Tank model was used to compute mean CTT and TTD functions simultaneously. It involved water fluxes and isotope mass balance. Water storage capacity in the catchment, which strongly affects CTT, is reflected in isotope mass balance more sensitively than in water fluxes. A model calibrated with observed discharge and isotope data is used for virtual age tracer computation to estimate CTT. This model does not only consider the hydrological data and physical process of the research area but also reflects the actual TTD with considering the geological condition, land use and the other catchment-hydrological conditions. For the calibration of the model, we used river discharge record obtained by the Ministry of Land, Infrastructure and Transportation, and are collecting isotope data of precipitation and river waters monthly or semi-weekly. Three sub-catchments (SC1~SC3) in the Fuji River basin was selected to test the model with five layers: the surface layer, upper-soil layer, lower-soil layer, groundwater aquifer layer and bedrock layer (Layer 1- Layer 5). The evaluation of the model output was assessed using Nash-Sutcliffe efficiency (NSE), root mean square error-observations standard deviation ratio (RSR), and percent bias (PBIAS). Using long time-series of discharge records for calibration, the simulated discharge basically satisfied requirements of reproducing water fluxes and their balance, while improvements in parameter estimations relating to isotope mass balance is necessary. Water balance and isotopes balance have been exercised in abundant simulations by using Mont-Carlo method, and the optimal parameters combination generated reliable result. Later, we figured out the temporal-variant MTT as well as the degree of influence that brought by precipitation event, where the results showed inverse relationship between precipitation amount and MTT value. Reference: [1] Jeffrey. J. McDonnell, Kevin J. McGuire, Aggarwal, P., et al. 2010. How old is stream water? Open questions in catchment transit time conceptualization, modeling and analysis. Hydro. Process. 24, 1745-1754. [2] Kevin J. McGuire, Jeffrey J. McDonnell. 2006. A review and evaluation of transit time modeling. Journal of Hydrology. 330, 543-563.

  7. 50 years of mass balance observations at Vernagtferner, Eastern Alps

    NASA Astrophysics Data System (ADS)

    Braun, Ludwig; Mayer, Christoph

    2016-04-01

    The determination and monitoring of the seasonal and annual glacier mass balances of Vernagtferner, Austria, started in 1964 by the Commission of Glaciology, Bavarian Academy of Sciences. Detailed and continuous climate- and runoff measurements complement this mass balance series since 1974. Vernagtferner attracted the attention of scientists since the beginning of the 17th century due to its rapid advances and the resulting glacier lake outburst floods in the Ötztal valley. This is one reason for the first photogrammetric survey in 1889, which was followed by frequent topographic surveys, adding up to more than ten digital elevation models of the glacier until today. By including the known maximum glacier extent at the end of the Little Ice Age in 1845, the geodetic glacier volume balances cover a time span of almost 170 years. The 50 years of glacier mass balance and 40 years of water balance in the drainage basin are therefore embedded in a considerably longer period of glacier evolution, allowing an interpretation within an extended frame of climatology and ice dynamics. The direct mass balance observations cover not only the period of alpine-wide strong glacier mass loss since the beginning of the 1990s. The data also contain the last period of glacier advances between 1970 and 1990. The combination of the observed surface mass exchange and the determined periodic volumetric changes allows a detailed analysis of the dynamic reaction of the glacier over the period of half a century. The accompanying meteorological observations are the basis for relating these reactions to the climatic changes during this period. Vernagtferner is therefore one of the few glaciers in the world, where a very detailed glacier-climate reaction was observed for many decades and can be realistically reconstructed back to the end of the Little Ice Age.

  8. How good are the Garvey-Kelson predictions of nuclear masses?

    NASA Astrophysics Data System (ADS)

    Morales, Irving O.; López Vieyra, J. C.; Hirsch, J. G.; Frank, A.

    2009-09-01

    The Garvey-Kelson relations are used in an iterative process to predict nuclear masses in the neighborhood of nuclei with measured masses. Average errors in the predicted masses for the first three iteration shells are smaller than those obtained with the best nuclear mass models. Their quality is comparable with the Audi-Wapstra extrapolations, offering a simple and reproducible procedure for short range mass predictions. A systematic study of the way the error grows as a function of the iteration and the distance to the known masses region, shows that a correlation exists between the error and the residual neutron-proton interaction, produced mainly by the implicit assumption that V varies smoothly along the nuclear landscape.

  9. The Effects of Comprehensive Warm-Up Programs on Proprioception, Static and Dynamic Balance on Male Soccer Players

    PubMed Central

    Daneshjoo, Abdolhamid; Mokhtar, Abdul Halim; Rahnama, Nader; Yusof, Ashril

    2012-01-01

    Purpose The study investigated the effects of FIFA 11+ and HarmoKnee, both being popular warm-up programs, on proprioception, and on the static and dynamic balance of professional male soccer players. Methods Under 21 year-old soccer players (n = 36) were divided randomly into 11+, HarmoKnee and control groups. The programs were performed for 2 months (24 sessions). Proprioception was measured bilaterally at 30°, 45° and 60° knee flexion using the Biodex Isokinetic Dynamometer. Static and dynamic balances were evaluated using the stork stand test and Star Excursion Balance Test (SEBT), respectively. Results The proprioception error of dominant leg significantly decreased from pre- to post-test by 2.8% and 1.7% in the 11+ group at 45° and 60° knee flexion, compared to 3% and 2.1% in the HarmoKnee group. The largest joint positioning error was in the non-dominant leg at 30° knee flexion (mean error value = 5.047), (p<0.05). The static balance with the eyes opened increased in the 11+ by 10.9% and in the HarmoKnee by 6.1% (p<0.05). The static balance with eyes closed significantly increased in the 11+ by 12.4% and in the HarmoKnee by 17.6%. The results indicated that static balance was significantly higher in eyes opened compared to eyes closed (p = 0.000). Significant improvements in SEBT in the 11+ (12.4%) and HarmoKnee (17.6%) groups were also found. Conclusion Both the 11+ and HarmoKnee programs were proven to be useful warm-up protocols in improving proprioception at 45° and 60° knee flexion as well as static and dynamic balance in professional male soccer players. Data from this research may be helpful in encouraging coaches or trainers to implement the two warm-up programs in their soccer teams. PMID:23251579

  10. Energy balance and runoff modelling of glaciers in the Kongsfjord basin in northwestern Svalbard

    NASA Astrophysics Data System (ADS)

    Kohler, J.; Pramanik, A.; van Pelt, W.

    2016-12-01

    Glaciers and ice caps cover 36,000 Km2 or 60% of the land area of the Svalbard archipelago. Roughly 60% of the glaciated area drains to the ocean through tidewater glacier fronts. Runoff from tidewater glaciers is posited to have a significant impact on fjord circulation and thereby on fjord ecosystems. Ocean circulation modelling underway in the Kongsfjord system requires specification of the freshwater amounts contributed by both tidewater and land-terminating glaciers in its basin. The total basin area of Kongsfjord is 1850 km2. We use a coupled surface energy-balance and firn model (Van Pelt et al. 2015) to calculate mass balance and runoff from the Kongsfjord glaciers for the period 1969-2015. Meteorological data from the nearby station at Ny-Ålesund is used for climate forcing in the model domain, with mass balance data at four glaciers in the Kongsfjord watershed used to calibrate model parameters. Precipitation and temperature lapse rates are adjusted on the study glaciers through repeated model runs at mass balance stake locations to match observed and modelled surface mass balance. Long-term discharge measurement at two sites in this region are used to validate the modelled runoff. Spatial and temporal evolution of melt, refreezing and runoff are analyzed, along with the vertical evolution of subsurface conditions. Reference: Van Pelt, W.J.J. & J. Kohler. 2015. Modelling the long-term mass balance and firn evolution of glaciers around Kongsfjorden, Svalbard. J. Glaciol, 61(228), 731-744. Glaciers and ice caps cover 36,000 Km2 or 60% of the land area of the Svalbard archipelago. Roughly 60% of the glaciated area drains to the ocean through tidewater glacier fronts. Runoff from tidewater glaciers is posited to have a significant impact on fjord circulation and thereby on fjord ecosystems. Ocean circulation modelling underway in the Kongsfjord system requires specification of the freshwater amounts contributed by both tidewater and land-terminating glaciers in its basin. The total basin area of Kongsfjord is 1850 km2. We use a coupled surface energy-balance and firn model (Van Pelt et al. 2015) to calculate mass balance and runoff from the Kongsfjord glaciers for the period 1969-2015. Meteorological data from the nearby station at Ny-Ålesund is used for climate forcing in the model domain, with mass balance data at four glaciers in the Kongsfjord watershed used to calibrate model parameters. Precipitation and temperature lapse rates are adjusted on the study glaciers through repeated model runs at mass balance stake locations to match observed and modelled surface mass balance. Long-term discharge measurement at two sites in this region are used to validate the modelled runoff. Spatial and temporal evolution of melt, refreezing and runoff are analyzed, along with the vertical evolution of subsurface conditions. Reference: Van Pelt, W.J.J. & J. Kohler. 2015. Modelling the long-term mass balance and firn evolution of glaciers around Kongsfjorden, Svalbard. J. Glaciol, 61(228), 731-744.

  11. GAMA/G10-COSMOS/3D-HST: the 0 < z < 5 cosmic star formation history, stellar-mass, and dust-mass densities

    NASA Astrophysics Data System (ADS)

    Driver, Simon P.; Andrews, Stephen K.; da Cunha, Elisabete; Davies, Luke J.; Lagos, Claudia; Robotham, Aaron S. G.; Vinsen, Kevin; Wright, Angus H.; Alpaslan, Mehmet; Bland-Hawthorn, Joss; Bourne, Nathan; Brough, Sarah; Bremer, Malcolm N.; Cluver, Michelle; Colless, Matthew; Conselice, Christopher J.; Dunne, Loretta; Eales, Steve A.; Gomez, Haley; Holwerda, Benne; Hopkins, Andrew M.; Kafle, Prajwal R.; Kelvin, Lee S.; Loveday, Jon; Liske, Jochen; Maddox, Steve J.; Phillipps, Steven; Pimbblet, Kevin; Rowlands, Kate; Sansom, Anne E.; Taylor, Edward; Wang, Lingyu; Wilkins, Stephen M.

    2018-04-01

    We use the energy-balance code MAGPHYS to determine stellar and dust masses, and dust corrected star formation rates for over 200 000 GAMA galaxies, 170 000 G10-COSMOS galaxies, and 200 000 3D-HST galaxies. Our values agree well with previously reported measurements and constitute a representative and homogeneous data set spanning a broad range in stellar-mass (108-1012 M⊙), dust-mass (106-109 M⊙), and star formation rates (0.01-100 M⊙yr-1), and over a broad redshift range (0.0 < z < 5.0). We combine these data to measure the cosmic star formation history (CSFH), the stellar-mass density (SMD), and the dust-mass density (DMD) over a 12 Gyr timeline. The data mostly agree with previous estimates, where they exist, and provide a quasi-homogeneous data set using consistent mass and star formation estimators with consistent underlying assumptions over the full time range. As a consequence our formal errors are significantly reduced when compared to the historic literature. Integrating our CSFH we precisely reproduce the SMD with an interstellar medium replenishment factor of 0.50 ± 0.07, consistent with our choice of Chabrier initial mass function plus some modest amount of stripped stellar mass. Exploring the cosmic dust density evolution, we find a gradual increase in dust density with lookback time. We build a simple phenomenological model from the CSFH to account for the dust-mass evolution, and infer two key conclusions: (1) For every unit of stellar mass which is formed 0.0065-0.004 units of dust mass is also formed. (2) Over the history of the Universe approximately 90-95 per cent of all dust formed has been destroyed and/or ejected.

  12. Modeled and measured glacier change and related glaciological, hydrological, and meteorological conditions at South Cascade Glacier, Washington, balance and water years 2006 and 2007

    USGS Publications Warehouse

    Bidlake, William R.; Josberger, Edward G.; Savoca, Mark E.

    2010-01-01

    Winter snow accumulation and summer snow and ice ablation were measured at South Cascade Glacier, Washington, to estimate glacier mass balance quantities for balance years 2006 and 2007. Mass balances were computed with assistance from a new model that was based on the works of other glacier researchers. The model, which was developed for mass balance practitioners, coupled selected meteorological and glaciological data to systematically estimate daily mass balance at selected glacier sites. The North Cascade Range in the vicinity of South Cascade Glacier accumulated approximately average to above average winter snow packs during 2006 and 2007. Correspondingly, the balance years 2006 and 2007 maximum winter snow mass balances of South Cascade Glacier, 2.61 and 3.41 meters water equivalent, respectively, were approximately equal to or more positive (larger) than the average of such balances since 1959. The 2006 glacier summer balance, -4.20 meters water equivalent, was among the four most negative since 1959. The 2007 glacier summer balance, -3.63 meters water equivalent, was among the 14 most negative since 1959. The glacier continued to lose mass during 2006 and 2007, as it commonly has since 1953, but the loss was much smaller during 2007 than during 2006. The 2006 glacier net balance, -1.59 meters water equivalent, was 1.02 meters water equivalent more negative (smaller) than the average during 1953-2005. The 2007 glacier net balance, -0.22 meters water equivalent, was 0.37 meters water equivalent less negative (larger) than the average during 1953-2006. The 2006 accumulation area ratio was less than 0.10, owing to isolated patches of accumulated snow that endured the 2006 summer season. The 2006 equilibrium line altitude was higher than the glacier. The 2007 accumulation area ratio and equilibrium line altitude were 0.60 and 1,880 meters, respectively. Accompanying the glacier mass losses were retreat of the terminus and reduction of total glacier area. The terminus retreated at a rate of about 13 meters per year during balance year 2006 and at a rate of about 8 meters per year during balance year 2007. Glacier area near the end of balance years 2006 and 2007 was 1.74 and 1.73 square kilometers, respectively. Runoff from the basin containing the glacier and from an adjacent nonglacierized basin was gaged during all or parts of water years 2006 and 2007. Air temperature, wind speed, precipitation, and incoming solar radiation were measured at selected locations on and near the glacier. Air-temperature over the glacier at a height of 2 meters generally was less than at the same altitude in the air mass away from the glacier. Cooling of the air by the glacier increased systematically with increasing ambient air temperature. Empirically based equations were developed to estimate 2-meter-height air temperature over the glacier at five sites from site altitude and temperature at a non-glacier reference site.

  13. Benchmarking NLDAS-2 Soil Moisture and Evapotranspiration to Separate Uncertainty Contributions

    NASA Technical Reports Server (NTRS)

    Nearing, Grey S.; Mocko, David M.; Peters-Lidard, Christa D.; Kumar, Sujay V.; Xia, Youlong

    2016-01-01

    Model benchmarking allows us to separate uncertainty in model predictions caused 1 by model inputs from uncertainty due to model structural error. We extend this method with a large-sample approach (using data from multiple field sites) to measure prediction uncertainty caused by errors in (i) forcing data, (ii) model parameters, and (iii) model structure, and use it to compare the efficiency of soil moisture state and evapotranspiration flux predictions made by the four land surface models in the North American Land Data Assimilation System Phase 2 (NLDAS-2). Parameters dominated uncertainty in soil moisture estimates and forcing data dominated uncertainty in evapotranspiration estimates; however, the models themselves used only a fraction of the information available to them. This means that there is significant potential to improve all three components of the NLDAS-2 system. In particular, continued work toward refining the parameter maps and look-up tables, the forcing data measurement and processing, and also the land surface models themselves, has potential to result in improved estimates of surface mass and energy balances.

  14. Benchmarking NLDAS-2 Soil Moisture and Evapotranspiration to Separate Uncertainty Contributions

    PubMed Central

    Nearing, Grey S.; Mocko, David M.; Peters-Lidard, Christa D.; Kumar, Sujay V.; Xia, Youlong

    2018-01-01

    Model benchmarking allows us to separate uncertainty in model predictions caused by model inputs from uncertainty due to model structural error. We extend this method with a “large-sample” approach (using data from multiple field sites) to measure prediction uncertainty caused by errors in (i) forcing data, (ii) model parameters, and (iii) model structure, and use it to compare the efficiency of soil moisture state and evapotranspiration flux predictions made by the four land surface models in the North American Land Data Assimilation System Phase 2 (NLDAS-2). Parameters dominated uncertainty in soil moisture estimates and forcing data dominated uncertainty in evapotranspiration estimates; however, the models themselves used only a fraction of the information available to them. This means that there is significant potential to improve all three components of the NLDAS-2 system. In particular, continued work toward refining the parameter maps and look-up tables, the forcing data measurement and processing, and also the land surface models themselves, has potential to result in improved estimates of surface mass and energy balances. PMID:29697706

  15. Benchmarking NLDAS-2 Soil Moisture and Evapotranspiration to Separate Uncertainty Contributions.

    PubMed

    Nearing, Grey S; Mocko, David M; Peters-Lidard, Christa D; Kumar, Sujay V; Xia, Youlong

    2016-03-01

    Model benchmarking allows us to separate uncertainty in model predictions caused by model inputs from uncertainty due to model structural error. We extend this method with a "large-sample" approach (using data from multiple field sites) to measure prediction uncertainty caused by errors in (i) forcing data, (ii) model parameters, and (iii) model structure, and use it to compare the efficiency of soil moisture state and evapotranspiration flux predictions made by the four land surface models in the North American Land Data Assimilation System Phase 2 (NLDAS-2). Parameters dominated uncertainty in soil moisture estimates and forcing data dominated uncertainty in evapotranspiration estimates; however, the models themselves used only a fraction of the information available to them. This means that there is significant potential to improve all three components of the NLDAS-2 system. In particular, continued work toward refining the parameter maps and look-up tables, the forcing data measurement and processing, and also the land surface models themselves, has potential to result in improved estimates of surface mass and energy balances.

  16. Mass-balance approach for assessing nitrate flux intidal wetlands -- lessons learned

    EPA Science Inventory

    Field experiments were carried out in 2010 and 2011 to assess the nitrate balance in a small tidal slough located in the Yaquina Estuary, Oregon. In 2010 we used a whole-slough, mass-balance approach, while a smaller scale, flume-like experiment in a tidal channel with a dense ...

  17. Improving the XAJ Model on the Basis of Mass-Energy Balance

    NASA Astrophysics Data System (ADS)

    Fang, Yuanhao; Corbari, Chiara; Zhang, Xingnan; Mancini, Marco

    2014-11-01

    Introduction: The Xin'anjiang(XAJ) model is a conceptual model developed by the group led by Prof. Ren-Jun Zhao, which takes the pan evaporation as one of its input and then computes the effective evapotranspiration (ET) of the catchment by mass balance. Such scheme can ensure a good performance of discharge simulation but has obvious defects, one of which is that the effective ET is spatially-constant over the computation unit, neglecting the spatial variation of variables that influence the effective ET and therefore the simulation of ET and SM by the XAJ model, comparing with discharge, is less reliable. In this study, The XAJ model was improved to employ both energy and mass balance to compute the ET following the energy-mass balance scheme of FEST-EWB. model.

  18. Improving the XAJ Model on the Basis of Mass-Energy Balance

    NASA Astrophysics Data System (ADS)

    Fang, Yuanghao; Corbari, Chiara; Zhang, Xingnan; Mancini, Marco

    2014-11-01

    The Xin’anjiang(XAJ) model is a conceptual model developed by the group led by Prof. Ren-Jun Zhao, which takes the pan evaporation as one of its input and then computes the effective evapotranspiration (ET) of the catchment by mass balance. Such scheme can ensure a good performance of discharge simulation but has obvious defects, one of which is that the effective ET is spatially-constant over the computation unit, neglecting the spatial variation of variables that influence the effective ET and therefore the simulation of ET and SM by the XAJ model, comparing with discharge, is less reliable. In this study, The XAJ model was improved to employ both energy and mass balance to compute the ET following the energy-mass balance scheme of FEST-EWB. model.

  19. Mass, energy and material balances of SRF production process. Part 2: SRF produced from construction and demolition waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2014-11-01

    In this work, the fraction of construction and demolition waste (C&D waste) complicated and economically not feasible to sort out for recycling purposes is used to produce solid recovered fuel (SRF) through mechanical treatment (MT). The paper presents the mass, energy and material balances of this SRF production process. All the process streams (input and output) produced in MT waste sorting plant to produce SRF from C&D waste are sampled and treated according to CEN standard methods for SRF. Proximate and ultimate analysis of these streams is performed and their composition is determined. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. By mass balance means the overall mass flow of input waste material stream in the various output streams and material balances mean the mass flow of components of input waste material stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. The results from mass balance of SRF production process showed that of the total input C&D waste material to MT waste sorting plant, 44% was recovered in the form of SRF, 5% as ferrous metal, 1% as non-ferrous metal, and 28% was sorted out as fine fraction, 18% as reject material and 4% as heavy fraction. The energy balance of this SRF production process showed that of the total input energy content of C&D waste material to MT waste sorting plant, 74% was recovered in the form of SRF, 16% belonged to the reject material and rest 10% belonged to the streams of fine fraction and heavy fraction. From the material balances of this process, mass fractions of plastic (soft), paper and cardboard, wood and plastic (hard) recovered in the SRF stream were 84%, 82%, 72% and 68% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC) and rubber material was found in the reject material stream. Streams of heavy fraction and fine fraction mainly contained non-combustible material (such as stone/rock, sand particles and gypsum material). Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Mass, energy and material balances of SRF production process. Part 1: SRF produced from commercial and industrial waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2014-08-01

    This paper presents the mass, energy and material balances of a solid recovered fuel (SRF) production process. The SRF is produced from commercial and industrial waste (C&IW) through mechanical treatment (MT). In this work various streams of material produced in SRF production process are analyzed for their proximate and ultimate analysis. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. Here mass balance describes the overall mass flow of input waste material in the various output streams, whereas material balance describes the mass flow of components of input waste stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. A commercial scale experimental campaign was conducted on an MT waste sorting plant to produce SRF from C&IW. All the process streams (input and output) produced in this MT plant were sampled and treated according to the CEN standard methods for SRF: EN 15442 and EN 15443. The results from the mass balance of SRF production process showed that of the total input C&IW material to MT waste sorting plant, 62% was recovered in the form of SRF, 4% as ferrous metal, 1% as non-ferrous metal and 21% was sorted out as reject material, 11.6% as fine fraction, and 0.4% as heavy fraction. The energy flow balance in various process streams of this SRF production process showed that of the total input energy content of C&IW to MT plant, 75% energy was recovered in the form of SRF, 20% belonged to the reject material stream and rest 5% belonged with the streams of fine fraction and heavy fraction. In the material balances, mass fractions of plastic (soft), plastic (hard), paper and cardboard and wood recovered in the SRF stream were 88%, 70%, 72% and 60% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC), rubber material and non-combustibles (such as stone/rock and glass particles), was found in the reject material stream. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Calibrating a surface mass-balance model for Austfonna ice cap, Svalbard

    NASA Astrophysics Data System (ADS)

    Schuler, Thomas Vikhamar; Loe, Even; Taurisano, Andrea; Eiken, Trond; Hagen, Jon Ove; Kohler, Jack

    2007-10-01

    Austfonna (8120 km2) is by far the largest ice mass in the Svalbard archipelago. There is considerable uncertainty about its current state of balance and its possible response to climate change. Over the 2004/05 period, we collected continuous meteorological data series from the ice cap, performed mass-balance measurements using a network of stakes distributed across the ice cap and mapped the distribution of snow accumulation using ground-penetrating radar along several profile lines. These data are used to drive and test a model of the surface mass balance. The spatial accumulation pattern was derived from the snow depth profiles using regression techniques, and ablation was calculated using a temperature-index approach. Model parameters were calibrated using the available field data. Parameter calibration was complicated by the fact that different parameter combinations yield equally acceptable matches to the stake data while the resulting calculated net mass balance differs considerably. Testing model results against multiple criteria is an efficient method to cope with non-uniqueness. In doing so, a range of different data and observations was compared to several different aspects of the model results. We find a systematic underestimation of net balance for parameter combinations that predict observed ice ablation, which suggests that refreezing processes play an important role. To represent these effects in the model, a simple PMAX approach was included in its formulation. Used as a diagnostic tool, the model suggests that the surface mass balance for the period 29 April 2004 to 23 April 2005 was negative (-318 mm w.e.).

  2. Knock probability estimation through an in-cylinder temperature model with exogenous noise

    NASA Astrophysics Data System (ADS)

    Bares, P.; Selmanaj, D.; Guardiola, C.; Onder, C.

    2018-01-01

    This paper presents a new knock model which combines a deterministic knock model based on the in-cylinder temperature and an exogenous noise disturbing this temperature. The autoignition of the end-gas is modelled by an Arrhenius-like function and the knock probability is estimated by propagating a virtual error probability distribution. Results show that the random nature of knock can be explained by uncertainties at the in-cylinder temperature estimation. The model only has one parameter for calibration and thus can be easily adapted online. In order to reduce the measurement uncertainties associated with the air mass flow sensor, the trapped mass is derived from the in-cylinder pressure resonance, which improves the knock probability estimation and reduces the number of sensors needed for the model. A four stroke SI engine was used for model validation. By varying the intake temperature, the engine speed, the injected fuel mass, and the spark advance, specific tests were conducted, which furnished data with various knock intensities and probabilities. The new model is able to predict the knock probability within a sufficient range at various operating conditions. The trapped mass obtained by the acoustical model was compared in steady conditions by using a fuel balance and a lambda sensor and differences below 1 % were found.

  3. A 30-year record of surface mass balance (1966-95) and motion and surface altitude (1975-95) at Wolverine Glacier, Alaska

    USGS Publications Warehouse

    Mayo, Lawrence R.; Trabant, Dennis C.; March, Rod S.

    2004-01-01

    Scientific measurements at Wolverine Glacier, on the Kenai Peninsula in south-central Alaska, began in April 1966. At three long-term sites in the research basin, the measurements included snow depth, snow density, heights of the glacier surface and stratigraphic summer surfaces on stakes, and identification of the surface materials. Calculations of the mass balance of the surface strata-snow, new firn, superimposed ice, and old firn and ice mass at each site were based on these measurements. Calculations of fixed-date annual mass balances for each hydrologic year (October 1 to September 30), as well as net balances and the dates of minimum net balance measured between time-transgressive summer surfaces on the glacier, were made on the basis of the strata balances augmented by air temperature and precipitation recorded in the basin. From 1966 through 1995, the average annual balance at site A (590 meters altitude) was -4.06 meters water equivalent; at site B (1,070 meters altitude), was -0.90 meters water equivalent; and at site C (1,290 meters altitude), was +1.45 meters water equivalent. Geodetic determination of displacements of the mass balance stake, and glacier surface altitudes was added to the data set in 1975 to detect the glacier motion responses to variable climate and mass balance conditions. The average surface speed from 1975 to 1996 was 50.0 meters per year at site A, 83.7 meters per year at site B, and 37.2 meters per year at site C. The average surface altitudes were 594 meters at site A, 1,069 meters at site B, and 1,293 meters at site C; the glacier surface altitudes rose and fell over a range of 19.4 meters at site A, 14.1 meters at site B, and 13.2 meters at site C.

  4. Mass measurement errors of Fourier-transform mass spectrometry (FTMS): distribution, recalibration, and application.

    PubMed

    Zhang, Jiyang; Ma, Jie; Dou, Lei; Wu, Songfeng; Qian, Xiaohong; Xie, Hongwei; Zhu, Yunping; He, Fuchu

    2009-02-01

    The hybrid linear trap quadrupole Fourier-transform (LTQ-FT) ion cyclotron resonance mass spectrometer, an instrument with high accuracy and resolution, is widely used in the identification and quantification of peptides and proteins. However, time-dependent errors in the system may lead to deterioration of the accuracy of these instruments, negatively influencing the determination of the mass error tolerance (MET) in database searches. Here, a comprehensive discussion of LTQ/FT precursor ion mass error is provided. On the basis of an investigation of the mass error distribution, we propose an improved recalibration formula and introduce a new tool, FTDR (Fourier-transform data recalibration), that employs a graphic user interface (GUI) for automatic calibration. It was found that the calibration could adjust the mass error distribution to more closely approximate a normal distribution and reduce the standard deviation (SD). Consequently, we present a new strategy, LDSF (Large MET database search and small MET filtration), for database search MET specification and validation of database search results. As the name implies, a large-MET database search is conducted and the search results are then filtered using the statistical MET estimated from high-confidence results. By applying this strategy to a standard protein data set and a complex data set, we demonstrate the LDSF can significantly improve the sensitivity of the result validation procedure.

  5. The Temporal Dynamics of Terrestrial Organic Matter Transfer to the Oceans: Initial Assessment and Application

    DTIC Science & Technology

    2007-06-01

    2.2.4 A QUALITATIVE VIEW OF OC CYCLING 44 2.2.5 COUPLED ISOTOPE MASS BALANCE CALCULATIONS 47 2.3 CONCLUSIONS 56 ACKNOWLEDGEMENTS 57 REFERENCES 58...METHODS 71 3.2 RESULTS & DISCUSSION 73 3.2.1 CHRONOLOGY DEVELOPMENT 73 3.2.2 ELEMENTAL AND ISOTOPIC PROFILES 77 3.2.3 MASS BALANCE CALCULATIONS 80 3.3...2005). Within this framework, isotopic mass balance calculations used to assess the fractional abundance of modem and ancient OC (Blair et al., 2003

  6. Global carbon - nitrogen - phosphorus cycle interactions: A key to solving the atmospheric CO2 balance problem?

    NASA Technical Reports Server (NTRS)

    Peterson, B. J.; Mellillo, J. M.

    1984-01-01

    If all biotic sinks of atmospheric CO2 reported were added a value of about 0.4 Gt C/yr would be found. For each category, a very high (non-conservative) estimate was used. This still does not provide a sufficient basis for achieving a balance between the sources and sinks of atmospheric CO2. The bulk of the discrepancy lies in a combination of errors in the major terms, the greatest being in a combination of errors in the major terms, the greatest being in the net biotic release and ocean uptake segments, but smaller errors or biases may exist in calculations of the rate of atmospheric CO2 increase and total fossil fuel use as well. The reason why biotic sinks are not capable of balancing the CO2 increase via nutrient-matching in the short-term is apparent from a comparison of the stoichiometry of the sources and sinks. The burning of fossil fuels and forest biomass releases much more CO2-carbon than is sequestered as organic carbon.

  7. Uncertainty Propagation in OMFIT

    NASA Astrophysics Data System (ADS)

    Smith, Sterling; Meneghini, Orso; Sung, Choongki

    2017-10-01

    A rigorous comparison of power balance fluxes and turbulent model fluxes requires the propagation of uncertainties in the kinetic profiles and their derivatives. Making extensive use of the python uncertainties package, the OMFIT framework has been used to propagate covariant uncertainties to provide an uncertainty in the power balance calculation from the ONETWO code, as well as through the turbulent fluxes calculated by the TGLF code. The covariant uncertainties arise from fitting 1D (constant on flux surface) density and temperature profiles and associated random errors with parameterized functions such as a modified tanh. The power balance and model fluxes can then be compared with quantification of the uncertainties. No effort is made at propagating systematic errors. A case study will be shown for the effects of resonant magnetic perturbations on the kinetic profiles and fluxes at the top of the pedestal. A separate attempt at modeling the random errors with Monte Carlo sampling will be compared to the method of propagating the fitting function parameter covariant uncertainties. Work supported by US DOE under DE-FC02-04ER54698, DE-FG2-95ER-54309, DE-SC 0012656.

  8. Skylab water balance analysis

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1977-01-01

    The water balance of the Skylab crew was analyzed. Evaporative water loss using a whole body input/output balance equation, water, body tissue, and energy balance was analyzed. The approach utilizes the results of several major Skylab medical experiments. Subsystems were designed for the use of the software necessary for the analysis. A partitional water balance that graphically depicts the changes due to water intake is presented. The energy balance analysis determines the net available energy to the individual crewman during any period. The balances produce a visual description of the total change of a particular body component during the course of the mission. The information is salvaged from metabolic balance data if certain techniques are used to reduce errors inherent in the balance method.

  9. A LEGO Watt balance: An apparatus to determine a mass based on the new SI

    NASA Astrophysics Data System (ADS)

    Chao, L. S.; Schlamminger, S.; Newell, D. B.; Pratt, J. R.; Seifert, F.; Zhang, X.; Sineriz, G.; Liu, M.; Haddad, D.

    2015-11-01

    A global effort to redefine our International System of Units (SI) is underway, and the change to the new system is expected to occur in 2018. Within the newly redefined SI, the present base units will still exist but be derived from fixed numerical values of seven reference constants. In particular, the unit of mass (the kilogram) will be realized through a fixed value of the Planck constant h. A so-called watt balance, for example, can then be used to realize the kilogram unit of mass within a few parts in 108. Such a balance has been designed and constructed at the National Institute of Standards and Technology. For educational outreach and to demonstrate the principle, we have constructed a LEGO tabletop watt balance capable of measuring a gram-level masses to 1% relative uncertainty. This article presents the design, construction, and performance of the LEGO watt balance and its ability to determine h.

  10. Simulation of substrate degradation in composting of sewage sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Jun; Gao Ding, E-mail: gaod@igsnrr.ac.c; Chen Tongbin

    2010-10-15

    To simulate the substrate degradation kinetics of the composting process, this paper develops a mathematical model with a first-order reaction assumption and heat/mass balance equations. A pilot-scale composting test with a mixture of sewage sludge and wheat straw was conducted in an insulated reactor. The BVS (biodegradable volatile solids) degradation process, matrix mass, MC (moisture content), DM (dry matter) and VS (volatile solid) were simulated numerically by the model and experimental data. The numerical simulation offered a method for simulating k (the first-order rate constant) and estimating k{sub 20} (the first-order rate constant at 20 {sup o}C). After comparison withmore » experimental values, the relative error of the simulation value of the mass of the compost at maturity was 0.22%, MC 2.9%, DM 4.9% and VS 5.2%, which mean that the simulation is a good fit. The k of sewage sludge was simulated, and k{sub 20}, k{sub 20s} (first-order rate coefficient of slow fraction of BVS at 20 {sup o}C) of the sewage sludge were estimated as 0.082 and 0.015 d{sup -1}, respectively.« less

  11. Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB) Process Flow Diagram Mass Balance Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KLEM, M.J.

    2000-05-11

    The purpose of these calculations is to develop the material balances for documentation of the Canister Storage Building (CSB) Process Flow Diagram (PFD) and future reference. The attached mass balances were prepared to support revision two of the PFD for the CSB. The calculations refer to diagram H-2-825869.

  12. Evaluation of seasonal and spatial variations of lumped water balance model sensitivity to precipitation data errors

    NASA Astrophysics Data System (ADS)

    Xu, Chong-yu; Tunemar, Liselotte; Chen, Yongqin David; Singh, V. P.

    2006-06-01

    Sensitivity of hydrological models to input data errors have been reported in the literature for particular models on a single or a few catchments. A more important issue, i.e. how model's response to input data error changes as the catchment conditions change has not been addressed previously. This study investigates the seasonal and spatial effects of precipitation data errors on the performance of conceptual hydrological models. For this study, a monthly conceptual water balance model, NOPEX-6, was applied to 26 catchments in the Mälaren basin in Central Sweden. Both systematic and random errors were considered. For the systematic errors, 5-15% of mean monthly precipitation values were added to the original precipitation to form the corrupted input scenarios. Random values were generated by Monte Carlo simulation and were assumed to be (1) independent between months, and (2) distributed according to a Gaussian law of zero mean and constant standard deviation that were taken as 5, 10, 15, 20, and 25% of the mean monthly standard deviation of precipitation. The results show that the response of the model parameters and model performance depends, among others, on the type of the error, the magnitude of the error, physical characteristics of the catchment, and the season of the year. In particular, the model appears less sensitive to the random error than to the systematic error. The catchments with smaller values of runoff coefficients were more influenced by input data errors than were the catchments with higher values. Dry months were more sensitive to precipitation errors than were wet months. Recalibration of the model with erroneous data compensated in part for the data errors by altering the model parameters.

  13. Kinetics of inactivation and dilution effects on the mass balance of fungal phytopathogens in anaerobic digesters.

    PubMed

    Plöchl, Matthias; Heiermann, Monika; Rodemann, Bernd; Bandte, Martina; Büttner, Carmen

    2014-01-15

    Knowledge of fate and behavior of plant pathogens in the biogas production chain is limited and hampers the estimation and evaluation of the potential phytosanitary risk if digestate is spread on arable land as a fertilizer. Therefore, simulation is an appropriate tool to demonstrate the effects which influence the steady state of pathogen infected plant material in both digesters and digestate. Simple approaches of kinetics of inactivation and mass balances of infected material were carried out considering single-step as well as two-step digestion. The simulation revealed a very fast to fast reduction of infected material after a singular feeding, reaching a cutback to less than 1% of input within 4 days even for D90-values of 68 h. Steady state mass balances below input rate could be calculated with D90-values of less than 2 h at a continuous hourly feeding. At higher D90-values steady state mass balances exceed the input rate but are still clearly below the sum of input mass. Dilution further decreases mass balances to values 10(-5) to 10(-6) Mg m(-3) for first-step digestion and 10(-8) to 10(-9) for second-step. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Active balance system and vibration balanced machine

    NASA Technical Reports Server (NTRS)

    White, Maurice A. (Inventor); Qiu, Songgang (Inventor); Augenblick, John E. (Inventor); Peterson, Allen A. (Inventor)

    2005-01-01

    An active balance system is provided for counterbalancing vibrations of an axially reciprocating machine. The balance system includes a support member, a flexure assembly, a counterbalance mass, and a linear motor or an actuator. The support member is configured for attachment to the machine. The flexure assembly includes at least one flat spring having connections along a central portion and an outer peripheral portion. One of the central portion and the outer peripheral portion is fixedly mounted to the support member. The counterbalance mass is fixedly carried by the flexure assembly along another of the central portion and the outer peripheral portion. The linear motor has one of a stator and a mover fixedly mounted to the support member and another of the stator and the mover fixedly mounted to the counterbalance mass. The linear motor is operative to axially reciprocate the counterbalance mass.

  15. Between-Day Reliability of Pre-Participation Screening Components in Pre-Professional Ballet and Contemporary Dancers.

    PubMed

    Kenny, Sarah J; Palacios-Derflingher, Luz; Owoeye, Oluwatoyosi B A; Whittaker, Jackie L; Emery, Carolyn A

    2018-03-15

    Critical appraisal of research investigating risk factors for musculoskeletal injury in dancers suggests high quality reliability studies are lacking. The purpose of this study was to determine between-day reliability of pre-participation screening (PPS) components in pre-professional ballet and contemporary dancers. Thirty-eight dancers (35 female, 3 male; median age; 18 years; range: 11 to 30 years) participated. Screening components (Athletic Coping Skills Inventory-28, body mass index, percent total body fat, total bone mineral density, Foot Posture Index-6, hip and ankle range of motion, three lumbopelvic control tasks, unipedal dynamic balance, and the Y-Balance Test) were conducted one week apart. Intra-class correlation coefficients (ICCs: 95% confidence intervals), standard error of measurement, minimal detectable change (MDC), Bland-Altman methods of agreement [95% limits of agreement (LOA)], Cohen's kappa coefficients, standard error, and percent agreements were calculated. Depending on the screening component, ICC estimates ranged from 0.51 to 0.98, kappa coefficients varied between -0.09 and 0.47, and percent agreement spanned 71% to 95%. Wide 95% LOA were demonstrated by Foot Posture Index-6 (right: -6.06, 7.31), passive hip external rotation (right: -9.89, 16.54), and passive supine turnout (left: -15.36, 17.58). The PPS components examined demonstrated moderate to excellent relative reliability with mean between-day differences less than MDC, or sufficient percent agreement, across all assessments. However, due to wide 95% limits of agreement, the Foot Posture Index-6 and passive hip range of motion are not recommended for screening injury risk in pre-professional dancers.

  16. Large-scale retrospective evaluation of regulated liquid chromatography-mass spectrometry bioanalysis projects using different total error approaches.

    PubMed

    Tan, Aimin; Saffaj, Taoufiq; Musuku, Adrien; Awaiye, Kayode; Ihssane, Bouchaib; Jhilal, Fayçal; Sosse, Saad Alaoui; Trabelsi, Fethi

    2015-03-01

    The current approach in regulated LC-MS bioanalysis, which evaluates the precision and trueness of an assay separately, has long been criticized for inadequate balancing of lab-customer risks. Accordingly, different total error approaches have been proposed. The aims of this research were to evaluate the aforementioned risks in reality and the difference among four common total error approaches (β-expectation, β-content, uncertainty, and risk profile) through retrospective analysis of regulated LC-MS projects. Twenty-eight projects (14 validations and 14 productions) were randomly selected from two GLP bioanalytical laboratories, which represent a wide variety of assays. The results show that the risk of accepting unacceptable batches did exist with the current approach (9% and 4% of the evaluated QC levels failed for validation and production, respectively). The fact that the risk was not wide-spread was only because the precision and bias of modern LC-MS assays are usually much better than the minimum regulatory requirements. Despite minor differences in magnitude, very similar accuracy profiles and/or conclusions were obtained from the four different total error approaches. High correlation was even observed in the width of bias intervals. For example, the mean width of SFSTP's β-expectation is 1.10-fold (CV=7.6%) of that of Saffaj-Ihssane's uncertainty approach, while the latter is 1.13-fold (CV=6.0%) of that of Hoffman-Kringle's β-content approach. To conclude, the risk of accepting unacceptable batches was real with the current approach, suggesting that total error approaches should be used instead. Moreover, any of the four total error approaches may be used because of their overall similarity. Lastly, the difficulties/obstacles associated with the application of total error approaches in routine analysis and their desirable future improvements are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Inertial Mass

    ERIC Educational Resources Information Center

    King, Kenneth P.

    2007-01-01

    The inertial balance is one device that can help students to quantify the quality of inertia--a body's resistance to a change in movement--in more generally understood terms of mass. In this hands-on activity, students use the inertial balance to develop a more quantitative idea of what mass means in an inertial sense. The activity also helps…

  18. Statistically optimal estimation of Greenland Ice Sheet mass variations from GRACE monthly solutions using an improved mascon approach

    NASA Astrophysics Data System (ADS)

    Ran, J.; Ditmar, P.; Klees, R.; Farahani, H. H.

    2018-03-01

    We present an improved mascon approach to transform monthly spherical harmonic solutions based on GRACE satellite data into mass anomaly estimates in Greenland. The GRACE-based spherical harmonic coefficients are used to synthesize gravity anomalies at satellite altitude, which are then inverted into mass anomalies per mascon. The limited spectral content of the gravity anomalies is properly accounted for by applying a low-pass filter as part of the inversion procedure to make the functional model spectrally consistent with the data. The full error covariance matrices of the monthly GRACE solutions are properly propagated using the law of covariance propagation. Using numerical experiments, we demonstrate the importance of a proper data weighting and of the spectral consistency between functional model and data. The developed methodology is applied to process real GRACE level-2 data (CSR RL05). The obtained mass anomaly estimates are integrated over five drainage systems, as well as over entire Greenland. We find that the statistically optimal data weighting reduces random noise by 35-69%, depending on the drainage system. The obtained mass anomaly time-series are de-trended to eliminate the contribution of ice discharge and are compared with de-trended surface mass balance (SMB) time-series computed with the Regional Atmospheric Climate Model (RACMO 2.3). We show that when using a statistically optimal data weighting in GRACE data processing, the discrepancies between GRACE-based estimates of SMB and modelled SMB are reduced by 24-47%.

  19. Quantitative analysis of the radiation error for aerial coiled-fiber-optic distributed temperature sensing deployments using reinforcing fabric as support structure

    NASA Astrophysics Data System (ADS)

    Sigmund, Armin; Pfister, Lena; Sayde, Chadi; Thomas, Christoph K.

    2017-06-01

    In recent years, the spatial resolution of fiber-optic distributed temperature sensing (DTS) has been enhanced in various studies by helically coiling the fiber around a support structure. While solid polyvinyl chloride tubes are an appropriate support structure under water, they can produce considerable errors in aerial deployments due to the radiative heating or cooling. We used meshed reinforcing fabric as a novel support structure to measure high-resolution vertical temperature profiles with a height of several meters above a meadow and within and above a small lake. This study aimed at quantifying the radiation error for the coiled DTS system and the contribution caused by the novel support structure via heat conduction. A quantitative and comprehensive energy balance model is proposed and tested, which includes the shortwave radiative, longwave radiative, convective, and conductive heat transfers and allows for modeling fiber temperatures as well as quantifying the radiation error. The sensitivity of the energy balance model to the conduction error caused by the reinforcing fabric is discussed in terms of its albedo, emissivity, and thermal conductivity. Modeled radiation errors amounted to -1.0 and 1.3 K at 2 m height but ranged up to 2.8 K for very high incoming shortwave radiation (1000 J s-1 m-2) and very weak winds (0.1 m s-1). After correcting for the radiation error by means of the presented energy balance, the root mean square error between DTS and reference air temperatures from an aspirated resistance thermometer or an ultrasonic anemometer was 0.42 and 0.26 K above the meadow and the lake, respectively. Conduction between reinforcing fabric and fiber cable had a small effect on fiber temperatures (< 0.18 K). Only for locations where the plastic rings that supported the reinforcing fabric touched the fiber-optic cable were significant temperature artifacts of up to 2.5 K observed. Overall, the reinforcing fabric offers several advantages over conventional support structures published to date in the literature as it minimizes both radiation and conduction errors.

  20. The effect of primary sedimentation on full-scale WWTP nutrient removal performance.

    PubMed

    Puig, S; van Loosdrecht, M C M; Flameling, A G; Colprim, J; Meijer, S C F

    2010-06-01

    Traditionally, the performance of full-scale wastewater treatment plants (WWTPs) is measured based on influent and/or effluent and waste sludge flows and concentrations. Full-scale WWTP data typically have a high variance which often contains (large) measurement errors. A good process engineering evaluation of the WWTP performance is therefore difficult. This also makes it usually difficult to evaluate effect of process changes in a plant or compare plants to each other. In this paper we used a case study of a full-scale nutrient removing WWTP. The plant normally uses presettled wastewater, as a means to increase the nutrient removal the plant was operated for a period by-passing raw wastewater (27% of the influent flow). The effect of raw wastewater addition has been evaluated by different approaches: (i) influent characteristics, (ii) design retrofit, (iii) effluent quality, (iv) removal efficiencies, (v) activated sludge characteristics, (vi) microbial activity tests and FISH analysis and, (vii) performance assessment based on mass balance evaluation. This paper demonstrates that mass balance evaluation approach helps the WWTP engineers to distinguish and quantify between different strategies, where others could not. In the studied case, by-passing raw wastewater (27% of the influent flow) directly to the biological reactor did not improve the effluent quality and the nutrient removal efficiency of the WWTP. The increase of the influent C/N and C/P ratios was associated to particulate compounds with low COD/VSS ratio and a high non-biodegradable COD fraction. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Sediment source apportionment in Laurel Hill Creek, PA, using Bayesian chemical mass balance and isotope fingerprinting

    USGS Publications Warehouse

    Stewart, Heather; Massoudieh, Arash; Gellis, Allen C.

    2015-01-01

    A Bayesian chemical mass balance (CMB) approach was used to assess the contribution of potential sources for fluvial samples from Laurel Hill Creek in southwest Pennsylvania. The Bayesian approach provides joint probability density functions of the sources' contributions considering the uncertainties due to source and fluvial sample heterogeneity and measurement error. Both elemental profiles of sources and fluvial samples and 13C and 15N isotopes were used for source apportionment. The sources considered include stream bank erosion, forest, roads and agriculture (pasture and cropland). Agriculture was found to have the largest contribution, followed by stream bank erosion. Also, road erosion was found to have a significant contribution in three of the samples collected during lower-intensity rain events. The source apportionment was performed with and without isotopes. The results were largely consistent; however, the use of isotopes was found to slightly increase the uncertainty in most of the cases. The correlation analysis between the contributions of sources shows strong correlations between stream bank and agriculture, whereas roads and forest seem to be less correlated to other sources. Thus, the method was better able to estimate road and forest contributions independently. The hypothesis that the contributions of sources are not seasonally changing was tested by assuming that all ten fluvial samples had the same source contributions. This hypothesis was rejected, demonstrating a significant seasonal variation in the sources of sediments in the stream.

  2. Interior structures and tidal heating in the TRAPPIST-1 planets

    NASA Astrophysics Data System (ADS)

    Barr, Amy C.; Dobos, Vera; Kiss, László L.

    2018-05-01

    Context. With seven planets, the TRAPPIST-1 system has among the largest number of exoplanets discovered in a single system so far. The system is of astrobiological interest, because three of its planets orbit in the habitable zone of the ultracool M dwarf. Aims: We aim to determine interior structures for each planet and estimate the temperatures of their rock mantles due to a balance between tidal heating and convective heat transport to assess their habitability. We also aim to determine the precision in mass and radius necessary to determine the planets' compositions. Methods: Assuming the planets are composed of uniform-density noncompressible materials (iron, rock, H2O), we determine possible compositional models and interior structures for each planet. We also construct a tidal heat generation model using a single uniform viscosity and rigidity based on each planet's composition. Results: The compositions for planets b, c, d, and e remain uncertain given the error bars on mass and radius. With the exception of TRAPPIST-1c, all have densities low enough to indicate the presence of significant H2O. Planets b and c experience enough heating from planetary tides to maintain magma oceans in their rock mantles; planet c may have surface eruptions of silicate magma, potentially detectable with next-generation instrumentation. Tidal heat fluxes on planets d, e, and f are twenty times higher than Earth's mean heat flow. Conclusions: Planets d and e are the most likely to be habitable. Planet d avoids the runaway greenhouse state if its albedo is ≳0.3. Determining the planet's masses within 0.1-0.5 Earth masses would confirm or rule out the presence of H2O and/or iron. Understanding the geodynamics of ice-rich planets f, g, and h requires more sophisticated modeling that can self-consistently balance heat production and transport in both rock and ice layers.

  3. Mass, energy and material balances of SRF production process. Part 3: solid recovered fuel produced from municipal solid waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2015-02-01

    This is the third and final part of the three-part article written to describe the mass, energy and material balances of the solid recovered fuel production process produced from various types of waste streams through mechanical treatment. This article focused the production of solid recovered fuel from municipal solid waste. The stream of municipal solid waste used here as an input waste material to produce solid recovered fuel is energy waste collected from households of municipality. This article presents the mass, energy and material balances of the solid recovered fuel production process. These balances are based on the proximate as well as the ultimate analysis and the composition determination of various streams of material produced in a solid recovered fuel production plant. All the process streams are sampled and treated according to CEN standard methods for solid recovered fuel. The results of the mass balance of the solid recovered fuel production process showed that 72% of the input waste material was recovered in the form of solid recovered fuel; 2.6% as ferrous metal, 0.4% as non-ferrous metal, 11% was sorted as rejects material, 12% as fine faction and 2% as heavy fraction. The energy balance of the solid recovered fuel production process showed that 86% of the total input energy content of input waste material was recovered in the form of solid recovered fuel. The remaining percentage (14%) of the input energy was split into the streams of reject material, fine fraction and heavy fraction. The material balances of this process showed that mass fraction of paper and cardboard, plastic (soft) and wood recovered in the solid recovered fuel stream was 88%, 85% and 90%, respectively, of their input mass. A high mass fraction of rubber material, plastic (PVC-plastic) and inert (stone/rock and glass particles) was found in the reject material stream. © The Author(s) 2014.

  4. Prevalence of neurocognitive and balance deficits in collegiate aged football players without clinically diagnosed concussion.

    PubMed

    Mulligan, Ivan; Boland, Mark; Payette, Justin

    2012-07-01

    Prospective cohort. To identify the prevalence of neurocognitive and balance deficits in collegiate football players 48 hours following competition. Neurocognitive testing, balance assessments, and subjective report of symptoms are a commonly used test battery in examining athletes when concussion is suspected. Previous literature suggests many concussions go unreported. Little research exists examining the prevalence of neurocognitive or balance deficits in athletes who do not report concussion-like symptoms to a health care provider. Forty-five Division IA collegiate football players participated in this study. Preseason baseline scores using the Balance Error Scoring System, the Immediate Post-Concussion Assessment and Cognitive Testing, and the Postconcussion Symptom Scale were compared to posttest results obtained 48 hours following a game. Prevalence of symptoms was analyzed and reported. Thirty-two (71%) of the 45 athletes tested demonstrated at least 1 deficit in either the Postconcussion Symptom Scale, Balance Error Scoring System, or at least 1 composite score of the Immediate Post-Concussion Assessment and Cognitive Testing. Nineteen of the 32 subjects demonstrated a change in 2 or more categories of neurocognitive and balance function. In a cohort of football players tested 48 hours following their last game of the season, who did not seek medical attention related to a concussion, a significant number demonstrated limitations in neurocognitive and balance performance, suggesting that further research may need to be performed to improve recognition of an athlete's deficits and to improve the ability to assess concussion. Differential diagnosis/symptom prevalence, level 3b.

  5. Measuring Two Decades of Ice Mass Loss using GRACE and SLR

    NASA Astrophysics Data System (ADS)

    Bonin, J. A.; Chambers, D. P.

    2016-12-01

    We use Satellite Laser Ranging (SLR) to extend the time series of ice mass change back in time to 1994. The SLR series is of far lesser spatial resolution than GRACE, so we apply a constrained inversion technique to better localize the signal. We approximate the likely errors due to SLR's measurement errors combined with the inversion errors from using a low-resolution series, then estimate the interannual mass change over Greenland and Antarctica.

  6. Thermal performances of vertical hybrid PV/T air collector

    NASA Astrophysics Data System (ADS)

    Tabet, I.; Touafek, K.; Bellel, N.; Khelifa, A.

    2016-11-01

    In this work, numerical analyses and the experimental validation of the thermal behavior of a vertical photovoltaic thermal air collector are investigated. The thermal model is developed using the energy balance equations of the PV/T air collector. Experimental tests are conducted to validate our mathematical model. The tests are performed in the southern Algerian region (Ghardaïa) under clear sky conditions. The prototype of the PV/T air collector is vertically erected and south oriented. The absorber upper plate temperature, glass cover temperature, air temperature in the inlet and outlet of the collector, ambient temperature, wind speed, and solar radiation are measured. The efficiency of the collector increases with increase in mass flow of air, but the increase in mass flow of air reduces the temperature of the system. The increase in efficiency of the PV/T air collector is due to the increase in the number of fins added. In the experiments, the air temperature difference between the inlet and the outlet of the PV/T air collector reaches 10 ° C on November 21, 2014, the interval time is between 10:00 and 14:00, and the temperature of the upper plate reaches 45 ° C at noon. The mathematical model describing the dynamic behavior of the typical PV/T air collector is evaluated by calculating the root mean square error and mean absolute percentage error. A good agreement between the experiment and the simulation results is obtained.

  7. Watt and joule balances

    NASA Astrophysics Data System (ADS)

    Robinson, Ian A.

    2014-04-01

    The time is fast approaching when the SI unit of mass will cease to be based on a single material artefact and will instead be based upon the defined value of a fundamental constant—the Planck constant—h . This change requires that techniques exist both to determine the appropriate value to be assigned to the constant, and to measure mass in terms of the redefined unit. It is important to ensure that these techniques are accurate and reliable to allow full advantage to be taken of the stability and universality provided by the new definition and to guarantee the continuity of the world's mass measurements, which can affect the measurement of many other quantities such as energy and force. Up to now, efforts to provide the basis for such a redefinition of the kilogram were mainly concerned with resolving the discrepancies between individual implementations of the two principal techniques: the x-ray crystal density (XRCD) method [1] and the watt and joule balance methods which are the subject of this special issue. The first three papers report results from the NRC and NIST watt balance groups and the NIM joule balance group. The result from the NRC (formerly the NPL Mk II) watt balance is the first to be reported with a relative standard uncertainty below 2 × 10-8 and the NIST result has a relative standard uncertainty below 5 × 10-8. Both results are shown in figure 1 along with some previous results; the result from the NIM group is not shown on the plot but has a relative uncertainty of 8.9 × 10-6 and is consistent with all the results shown. The Consultative Committee for Mass and Related Quantities (CCM) in its meeting in 2013 produced a resolution [2] which set out the requirements for the number, type and quality of results intended to support the redefinition of the kilogram and required that there should be agreement between them. These results from NRC, NIST and the IAC may be considered to meet these requirements and are likely to be widely debated prior to a decision on redefinition. The CCM had already recognized that agreement was close and has set in place a process whereby redefinition can take place by 2018. The final decision will be in the hands of the Conférence Générale des Poids et Mesures (CGPM) but the results reported here should aid a positive decision. Figure 1. Figure 1. Results from recent measurements of the Planck constant. The reference for the results h 90 is derived from the conventional values of the Josephson constant K J-90 and the von Klitzing constant R K-90. The factor of ten improvement in uncertainty of the NRC watt balance result, over that achieved by the same apparatus at NPL a few years earlier, can be understood as a factor of five improvement arising from the elimination of an effect discovered at NPL that could not be eliminated before shipment to Canada and a factor of two arising from the considerable improvements made by NRC. Once the kilogram has been redefined, the watt and joule balances will complete their transitions from instruments that are primarily of interest to the electrical community for determining the SI electrical units from the mechanical units, to the principal methods by which an individual National Measurement Institute (NMI) can make an independent determination of the SI unit of mass and thereby contribute to the maintenance of national and international mass scales. This special issue gives an introduction to the diversity of techniques which are required for the operation of watt and joule balances. However it does not contain a review of existing balances; this was a deliberate decision, as a number of such review papers have been published in the past five years [3-7] and it was felt that it was not yet time for another. The first technique considered is that of gravimetry; the watt balance measures the weight Mg of a mass M , and to convert the measured weight into a mass, the value of the acceleration due to gravity g must be known, at the time of the weighing and at the centre of gravity of the mass. The paper by Liard and his co-authors at NRC describes how they have made this essential measurement. The accuracy of the watt balance may also depend on the alignment of the apparatus. Two papers deal with this important issue. The first, by Sanchez and his co-authors at NRC, shows that their balance is insensitive to a range of alignments and concentrates on the essential alignments that contribute directly to the overall uncertainty of the apparatus. Thomas and his co-authors at LNE describe their technique for reducing uncertainties in their watt balance by aligning its coil in the field of the magnet to minimize both horizontal forces and torques about horizontal axes. The search for discrepancies between the results from watt balances has encouraged researchers to consider possible error mechanisms arising from the secondary electrical interactions between the coil of a watt balance and other parts of the apparatus. Researchers from INRIM have two such papers: one considering magnetic interactions and the other considering electrostatic interactions. It is essential that such investigations are carried out: both to prove that the problems are understood and for the guidance of those building the next generation of watt and joule balances. The next four papers describe aspects of the construction of watt balances. The BIPM watt balance group describe the principles behind their simultaneous measurement scheme for a watt balance. The balance that they are constructing can also be used in the conventional two-phase mode and their paper describes the relative advantages and disadvantages of the two modes of operation. In a watt balance there are some advantages to precise vertical movement of the coil. The METAS group describe the two mechanisms that they have tested to achieve such motion and give the reasons for the choice of mechanism for use in the balance that they are constructing. The KRISS watt balance group are in the initial phases of the design and construction of a watt balance and their paper provides valuable information on the design that they are building. The design of the main magnet of a watt balance is critical to its successful operation, and an important assumption of watt balance operation is that the field of the magnet in moving mode is equivalent to that in weighing mode. Sutton and Clarkson from MSL describe a novel magnet which is designed to address this issue. The international prototype of the kilogram is kept in air but, after redefinition, the best realizations of the mass unit will be in vacuum. In their paper Berry and Davidson from NPL describe progress in techniques which relate mass measured in vacuum to that measured in air. Such techniques will be essential for making the results of watt and joule balance measurements available to science and industry. Both the NIST and NPL Mark II (NRC) watt balances use knife edges to act as the pivots for the beam. Knife edges suffer from hysteresis which can produce systematic offsets during weighing. In their paper Choi (KRISS) and Robinson (NPL) describe the analysis of this problem using both finite element (FEM) techniques and a stand-alone balance designed for testing knife edges. The last two papers deal with the possible future of the watt balance technique. The BIPM simultaneous measurement scheme for the watt balance was originally conceived for operation at cryogenic temperatures with a superconducting coil. In their paper de Mirandes and her co-authors describe initial work on the principles of this superconducting variant of the BIPM watt balance and concentrate on the characteristics of the superconducting coil in comparison with those of a normal coil. The final paper is a good example of serendipity in which Kibble (Independent Consultant) was designing novel watt balances based on seismometer suspensions and Robinson (NPL) had derived a set of general expressions, which are required for a watt balance to be immune to a range of common misalignments but also lead to the design of watt balances with a range of coil motions. The combination of these techniques has led to the novel watt balance designs which are described. Finally I would like to thank: the editor of Metrologia and the editorial staff of IOP Publishing, the referees who have responded rapidly to requests and have kept the issue on schedule, and the authors who have taken the time to provide a range of papers showing the breadth of the work required to build and operate watt or joule balances. References [1] Andreas B et al 2011 Determination of the Avogadro constant by counting the atoms in a 28Si crystal Phys. Rev. Lett. 106 030801 [2] BIPM 2013 Report of the 14th Meeting of the CCM Sèvres pp 34-7 [3] Steiner R 2013 History and progress on accurate measurements of the Planck constant Rep. Prog. Phys. 76 016101 [4] Stock M 2013 Watt balance experiments for the determination of the Planck constant and the redefinition of the kilogram Metrologia 50 R1-16 [5] Li S, Han B, Li Z and Lan J 2012 Precisely measuring the Planck constant by electromechanical balances Measurement 45 1-13 [6] Eichenberger A, Genevès G and Gournay P 2009 Determination of the Planck constant by means of a watt balance Eur. Phys. J. Spec. Top. 172 363-83 [7] Robinson I A 2009 Toward the redefinition of the kilogram: measurements of Planck's constant using watt balances IEEE Trans. Instrum. Meas. 58 942-8

  8. Isostasy for Geoscience Labs.

    ERIC Educational Resources Information Center

    Diecchio, Richard Joseph

    1995-01-01

    Presents simple laboratory experiments to help students understand the principle of buoyancy and mass balance. Buoyancy experiments can simulate lithospheric mass balance, crustal loading and unloading, and can be used to model differences between the oceanic and continental lithosphere. (MKR)

  9. Correction

    NASA Astrophysics Data System (ADS)

    2014-09-01

    An error was made in the spelling of the name of Mark Abbott, who was quoted in the news article "Earth observation plan looks toward balancing U.S. federal priorities," published in the 19 August 2014 issue of Eos (95(33), 295-296, doi:10.1002/2014EO330003). Eos regrets the error.

  10. Effective reinforcement learning following cerebellar damage requires a balance between exploration and motor noise.

    PubMed

    Therrien, Amanda S; Wolpert, Daniel M; Bastian, Amy J

    2016-01-01

    Reinforcement and error-based processes are essential for motor learning, with the cerebellum thought to be required only for the error-based mechanism. Here we examined learning and retention of a reaching skill under both processes. Control subjects learned similarly from reinforcement and error-based feedback, but showed much better retention under reinforcement. To apply reinforcement to cerebellar patients, we developed a closed-loop reinforcement schedule in which task difficulty was controlled based on recent performance. This schedule produced substantial learning in cerebellar patients and controls. Cerebellar patients varied in their learning under reinforcement but fully retained what was learned. In contrast, they showed complete lack of retention in error-based learning. We developed a mechanistic model of the reinforcement task and found that learning depended on a balance between exploration variability and motor noise. While the cerebellar and control groups had similar exploration variability, the patients had greater motor noise and hence learned less. Our results suggest that cerebellar damage indirectly impairs reinforcement learning by increasing motor noise, but does not interfere with the reinforcement mechanism itself. Therefore, reinforcement can be used to learn and retain novel skills, but optimal reinforcement learning requires a balance between exploration variability and motor noise. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  11. Effective reinforcement learning following cerebellar damage requires a balance between exploration and motor noise

    PubMed Central

    Therrien, Amanda S.; Wolpert, Daniel M.

    2016-01-01

    Abstract See Miall and Galea (doi: 10.1093/awv343 ) for a scientific commentary on this article. Reinforcement and error-based processes are essential for motor learning, with the cerebellum thought to be required only for the error-based mechanism. Here we examined learning and retention of a reaching skill under both processes. Control subjects learned similarly from reinforcement and error-based feedback, but showed much better retention under reinforcement. To apply reinforcement to cerebellar patients, we developed a closed-loop reinforcement schedule in which task difficulty was controlled based on recent performance. This schedule produced substantial learning in cerebellar patients and controls. Cerebellar patients varied in their learning under reinforcement but fully retained what was learned. In contrast, they showed complete lack of retention in error-based learning. We developed a mechanistic model of the reinforcement task and found that learning depended on a balance between exploration variability and motor noise. While the cerebellar and control groups had similar exploration variability, the patients had greater motor noise and hence learned less. Our results suggest that cerebellar damage indirectly impairs reinforcement learning by increasing motor noise, but does not interfere with the reinforcement mechanism itself. Therefore, reinforcement can be used to learn and retain novel skills, but optimal reinforcement learning requires a balance between exploration variability and motor noise. PMID:26626368

  12. Theoretical investigation on the mass loss impact on asteroseismic grid-based estimates of mass, radius, and age for RGB stars

    NASA Astrophysics Data System (ADS)

    Valle, G.; Dell'Omodarme, M.; Prada Moroni, P. G.; Degl'Innocenti, S.

    2018-01-01

    Aims: We aim to perform a theoretical evaluation of the impact of the mass loss indetermination on asteroseismic grid based estimates of masses, radii, and ages of stars in the red giant branch (RGB) phase. Methods: We adopted the SCEPtER pipeline on a grid spanning the mass range [0.8; 1.8] M⊙. As observational constraints, we adopted the star effective temperatures, the metallicity [Fe/H], the average large frequency spacing Δν, and the frequency of maximum oscillation power νmax. The mass loss was modelled following a Reimers parametrization with the two different efficiencies η = 0.4 and η = 0.8. Results: In the RGB phase, the average random relative error (owing only to observational uncertainty) on mass and age estimates is about 8% and 30% respectively. The bias in mass and age estimates caused by the adoption of a wrong mass loss parameter in the recovery is minor for the vast majority of the RGB evolution. The biases get larger only after the RGB bump. In the last 2.5% of the RGB lifetime the error on the mass determination reaches 6.5% becoming larger than the random error component in this evolutionary phase. The error on the age estimate amounts to 9%, that is, equal to the random error uncertainty. These results are independent of the stellar metallicity [Fe/H] in the explored range. Conclusions: Asteroseismic-based estimates of stellar mass, radius, and age in the RGB phase can be considered mass loss independent within the range (η ∈ [0.0,0.8]) as long as the target is in an evolutionary phase preceding the RGB bump.

  13. A Simple Watt Balance for the Absolute Determination of Mass

    ERIC Educational Resources Information Center

    Quinn, Terry; Quinn, Lucas; Davis, Richard

    2013-01-01

    A watt balance is an electromechanical device that allows a mass to be determined in terms of measurable electrical and mechanical quantities, themselves traceable to the fundamental constants of physics. International plans are well advanced to redefine the unit of mass, the kilogram, in terms of a fixed numerical value for the Planck constant. A…

  14. Mass Balance. Operational Control Tests for Wastewater Treatment Facilities. Instructor's Manual [and] Student Workbook.

    ERIC Educational Resources Information Center

    Carnegie, John W.

    This module describes the process used to determine solids mass and location throughout a waste water treatment plant, explains how these values are used to determine the solids mass balance around single treatment units and the entire system, and presents calculations of solids in pounds and sludge units. The instructor's manual contains a…

  15. Modelling the contribution of supraglacial ice cliffs to the mass-balance of glaciers in the Langtang catchment, Nepalese Himalaya

    NASA Astrophysics Data System (ADS)

    Buri, P.; Steiner, J. F.; Miles, E.; Ragettli, S.; Pellicciotti, F.

    2017-12-01

    Supraglacial cliffs are typical surface features of debris-covered glaciers worldwide, affecting surface evolution, and mass balance by providing a direct ice-atmosphere interface where melt rates can be very high. As a result, ice cliffs act as windows of energy transfer from the atmosphere to the ice, and enhance melt and mass losses of otherwise insulated ice. However, their contribution to glacier mass balance has never been quantified at the glacier scale, and all inference has been obtained from upscaling results of point-scale models or observations at select individual cliffs. Here we use a 3D, physically-based backwasting model to estimate the volume losses associated with the melting and backwasting of supraglacial ice cliffs for the entire debris-covered glacier area of the Langtang catchment. We estimate mass losses for the 2014 melt season and compare them to recent values of glacier mass balance determined from geodetic and numerical modelling approached. Cliff outlines and topography are derived from high-resolution stereo SPOT6-imagery from April 2014. Meteorological data to force the model are provided by automatic weather stations on- and off-glacier within the valley. The model simulates ice cliff backwasting by considering the cliff-atmosphere energy-balance, reburial by debris and the effects of adjacent ponds. In the melt season of 2014, cliffs' distribution and patterns of mass losses vary considerably from glacier to glacier, and we relate rates of volume loss to both glaciers' and cliffs' characteristics. Only cliffs with a northerly aspect account for substantial losses. Uncertainty in our estimates is due to the quality of the stereo DEM, uncertainties in the cliff delineation and the fact that we use a conservative approach to cliff delineation and discard very small cliffs and those for which uncertainty in topography is high. Despite these uncertainties, our work presents the first estimate of the importance of supraglacial ice-cliffs to total glacier mass-balance, and shows that the volume lost by backwasting of ice cliffs is a non-negligible term in the total glacier mass balance of debris-covered glaciers, providing a partial explanation of the higher-than-expected mass losses of debris-covered glaciers of High Mountain Asia.

  16. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016

    NASA Astrophysics Data System (ADS)

    Brun, Fanny; Berthier, Etienne; Wagnon, Patrick; Kääb, Andreas; Treichler, Désirée

    2017-09-01

    High Mountain Asia hosts the largest glacier concentration outside the polar regions. These glaciers are important contributors to streamflow in one of the most populated areas of the world. Past studies have used methods that can provide only regionally averaged glacier mass balances to assess the glacier contribution to rivers and sea level rise. Here we compute the mass balance for about 92% of the glacierized area of High Mountain Asia using time series of digital elevation models derived from satellite stereo-imagery. We calculate a total mass change of -16.3 +/- 3.5 Gt yr-1 (-0.18 +/- 0.04 m w.e. yr-1) between 2000 and 2016, which is less negative than most previous estimates. Region-wide mass balances vary from -4.0 +/- 1.5 Gt yr-1 (-0.62 +/- 0.23 m w.e. yr-1) in Nyainqentanglha to +1.4 +/- 0.8 Gt yr-1 (+0.14 +/- 0.08 m w.e. yr-1) in Kunlun, with large intra-regional variability of individual glacier mass balances (standard deviation within a region ~0.20 m w.e. yr-1). Specifically, our results shed light on the Nyainqentanglha and Pamir glacier mass changes, for which contradictory estimates exist in the literature. They provide crucial information for the calibration of the models used for projecting glacier response to climatic change, as these models do not capture the pattern, magnitude and intra-regional variability of glacier changes at present.

  17. Assessment of fat and lean mass by quantitative magnetic resonance: a future technology of body composition research?

    PubMed

    Bosy-Westphal, Anja; Müller, Manfred J

    2015-09-01

    For the assessment of energy balance or monitoring of therapeutic interventions, there is a need for noninvasive and highly precise methods of body composition analysis that are able to accurately measure small changes in fat and fat-free mass (FFM). The use of quantitative magnetic resonance (QMR) for measurement of body composition has long been established in animal studies. There are, however, only a few human studies that examine the validity of this method. These studies have consistently shown a high precision of QMR and only a small underestimation of fat mass by QMR when compared with a 4-compartment model as a reference. An underestimation of fat mass by QMR is also supported by the comparison between measured energy balance (as a difference between energy intake and energy expenditure) and energy balance predicted from changes in fat mass and FFM. Fewer calories were lost and gained as fat mass compared with the value expected from measured energy balance. Current evidence in healthy humans has shown that QMR is a valid and precise method for noninvasive measurement of body composition. Contrary to standard reference methods, such as densitometry and dual X-ray absorptiometry, QMR results are independent of FFM hydration. However, despite a high accuracy and a low minimal detectable change, underestimation of fat mass by QMR is possible and limits the use of this method for quantification of energy balance.

  18. High-resolution DEMs for High-mountain Asia: A systematic, region-wide assessment of geodetic glacier mass balance and dynamics

    NASA Astrophysics Data System (ADS)

    Shean, D. E.; Arendt, A. A.; Osmanoglu, B.; Montesano, P.

    2017-12-01

    High Mountain Asia (HMA) constitutes the largest glacierized region outside of the Earth's polar regions. Although available observations are limited, long-term records indicate sustained regional glacier mass loss since 1850, with increased loss in recent decades. Recent satellite data (e.g., GRACE, ICESat-1) show spatially variable glacier mass balance, with significant mass loss in the Himalaya and Hindu Kush and slight mass gain in the Karakoram. We generated 4000 high-resolution digital elevation models (DEMs) from sub-meter commercial stereo imagery (DigitalGlobe WorldView/GeoEye) acquired over glaciers in High-mountain Asia from 2002-present (mostly 2013-present). We produced a regional 8-m DEM mosaic for 2015 and estimated 15-year geodetic mass balance for 40000 glaciers larger than 0.1 km2. We are combining with other regional DEM sources to systematically document the spatiotemporal evolution of glacier mass balance for the entire HMA region. We also generated monthly to interannual DEM and velocity time series for high-priority sites distributed across the region, with >15-20 DEMs available for some locations from 2010-present. These records document glacier dynamics, seasonal snow accumulation/redistribution, and processes that affect glacier mass balance (e.g., ice-cliff retreat, debris cover evolution). These efforts will provide basin-scale assessments of snow/ice melt runoff contributions for model cal/val and downstream water resources applications. We will continue processing all archived and newly available commercial stereo imagery for HMA, and will release all DEMs through the HiMAT DAAC.

  19. Nonlinear method for including the mass uncertainty of standards and the system measurement errors in the fitting of calibration curves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickles, W.L.; McClure, J.W.; Howell, R.H.

    1978-01-01

    A sophisticated non-linear multiparameter fitting program has been used to produce a best fit calibration curve for the response of an x-ray fluorescence analyzer to uranium nitrate, freeze dried, 0.2% accurate, gravimetric standards. The program is based on unconstrained minimization subroutine, VA02A. The program considers the mass values of the gravimetric standards as parameters to be fit along with the normal calibration curve parameters. The fitting procedure weights with the system errors and the mass errors in a consistent way. The resulting best fit calibration curve parameters reflect the fact that the masses of the standard samples are measured quantitiesmore » with a known error. Error estimates for the calibration curve parameters can be obtined from the curvature of the Chi-Squared Matrix or from error relaxation techniques. It has been shown that non-dispersive x-ray fluorescence analysis of 0.1 to 1 mg freeze-dried UNO/sub 3/ can have an accuracy of 0.2% in 1000 sec.« less

  20. Use of a non-linear method for including the mass uncertainty of gravimetric standards and system measurement errors in the fitting of calibration curves for XRFA freeze-dried UNO/sub 3/ standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickles, W.L.; McClure, J.W.; Howell, R.H.

    1978-05-01

    A sophisticated nonlinear multiparameter fitting program was used to produce a best fit calibration curve for the response of an x-ray fluorescence analyzer to uranium nitrate, freeze dried, 0.2% accurate, gravimetric standards. The program is based on unconstrained minimization subroutine, VA02A. The program considers the mass values of the gravimetric standards as parameters to be fit along with the normal calibration curve parameters. The fitting procedure weights with the system errors and the mass errors in a consistent way. The resulting best fit calibration curve parameters reflect the fact that the masses of the standard samples are measured quantities withmore » a known error. Error estimates for the calibration curve parameters can be obtained from the curvature of the ''Chi-Squared Matrix'' or from error relaxation techniques. It was shown that nondispersive XRFA of 0.1 to 1 mg freeze-dried UNO/sub 3/ can have an accuracy of 0.2% in 1000 s.« less

  1. 12 CFR 205.15 - Electronic fund transfer of government benefits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Account balance. The means by which the consumer may obtain information concerning the account balance... history or other account information, under paragraph (c) of this section, in which the error is first... consumer for use in initiating an electronic fund transfer of government benefits from an account, other...

  2. Feasibility of Self-Reflection as a Tool to Balance Clinical Reasoning Strategies

    ERIC Educational Resources Information Center

    Sibbald, Matthew; de Bruin, Anique B. H.

    2012-01-01

    Clinicians are believed to use two predominant reasoning strategies: system 1 based pattern recognition, and system 2 based analytical reasoning. Balancing these cognitive reasoning strategies is widely believed to reduce diagnostic error. However, clinicians approach different problems with different reasoning strategies. This study explores…

  3. Methods for recalibration of mass spectrometry data

    DOEpatents

    Tolmachev, Aleksey V [Richland, WA; Smith, Richard D [Richland, WA

    2009-03-03

    Disclosed are methods for recalibrating mass spectrometry data that provide improvement in both mass accuracy and precision by adjusting for experimental variance in parameters that have a substantial impact on mass measurement accuracy. Optimal coefficients are determined using correlated pairs of mass values compiled by matching sets of measured and putative mass values that minimize overall effective mass error and mass error spread. Coefficients are subsequently used to correct mass values for peaks detected in the measured dataset, providing recalibration thereof. Sub-ppm mass measurement accuracy has been demonstrated on a complex fungal proteome after recalibration, providing improved confidence for peptide identifications.

  4. Modelling distributed mountain glacier volumes: A sensitivity study in the Austrian Alps

    NASA Astrophysics Data System (ADS)

    Helfricht, Kay; Huss, Matthias; Fischer, Andrea; Otto, Jan Christoph

    2017-04-01

    Knowledge about the spatial ice thickness distribution in glacier covered mountain regions and the elevation of the bedrock underneath the glaciers yields the basis for numerous applications in geoscience. Applications include the modelling of glacier dynamics, natural risk analyses and studies on mountain hydrology. Especially in recent times of accelerating and unprecedented changes of glacier extents, the remaining ice volume is of interest regarding future glacier and sea level scenarios. Subglacial depressions concern because of their hazard potential in case of sudden releases of debris or water. A number of approaches with different level of complexity have been developed in the past years to infer glacier ice thickness from surface characteristics. Within the FUTURELAKES project, the ice thickness estimation method presented by Huss and Farinotti (2012) was applied to all glaciers in the Austrian Alps based on glacier extents and surface topography corresponding to the three Austrian glacier inventories (1969 - 1997 - 2006) with the aim to predict size and location of future proglacial lakes. The availability of measured ice thickness data and a time series of glacier inventories of Austrian glaciers, allowed carrying out a sensitivity study of the key parameter, the apparent mass balance gradient. First, the parameters controlling the apparent mass balance gradient of 58 glaciers where calibrated glacier-wise with the aim to minimize mean deviations and mean absolute deviations to measured ice thickness. The results were analysed with respect to changes of the mass balance gradient with time. Secondly, we compared the observed to modelled ice thickness changes. For doing so, glacier-wise as well as regional means of mass balance gradients have been used. The results indicate that the initial values for the apparent mass balance gradient have to be adapted to the changing conditions within the four decades covered by the glacier inventories. The gradients flatten from the first to last inventory. This is consistent with the decreasing deviation between glaciological and geodetical glacier mass balance when a period with negative mass balances results in decreasing ice dynamics. The comparison of mean ice thickness changes between the Inventories reveals the effect of changes in glacier mass transport in addition to changes in glacier area and topography. 93% of the mean observed ice thickness change could be reproduced using the glacier-wise optimized mass balance gradients. More than 85% of mean ice thickness change was calculated from modelled ice thickness distributions with inventory mean optimized mass balance gradients. The ratio decreases to 60% the same parameters for all three glacier inventories and can be attributed to changes in glacier extent. Thus, the actual glacier mass turnover has to be considered to model glacier volumes based on glacier topography more realistically. Huss, M., and D. Farinotti (2012), Distributed ice thickness and volume of all glaciers around the globe, J. Geophys. Res., 117, F04010, doi:10.1029/2012JF002523.

  5. On-field study of anaerobic digestion full-scale plants (part I): an on-field methodology to determine mass, carbon and nutrients balance.

    PubMed

    Schievano, Andrea; D'Imporzano, Giuliana; Salati, Silvia; Adani, Fabrizio

    2011-09-01

    The mass balance (input/output mass flows) of full-scale anaerobic digestion (AD) processes should be known for a series of purposes, e.g. to understand carbon and nutrients balances, to evaluate the contribution of AD processes to elemental cycles, especially when digestates are applied to agricultural land and to measure the biodegradation yields and the process efficiency. In this paper, three alternative methods were studied, to determine the mass balance in full-scale processes, discussing their reliability and applicability. Through a 1-year survey on three full-scale AD plants and through 38 laboratory-scale batch digesters, the congruency of the considered methods was demonstrated and a linear equation was provided that allows calculating the wet weight losses (WL) from the methane produced (MP) by the plant (WL=41.949*MP+20.853, R(2)=0.950, p<0.01). Additionally, this new tool was used to calculate carbon, nitrogen, phosphorous and potassium balances of the three observed AD plants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Investigation on Glacier Thinning in Baspa, Western Himalaya.

    NASA Astrophysics Data System (ADS)

    S, P.; Kulkarni, A. V.; Bhushan, S.

    2017-12-01

    Mass balance studies are important to assess the state of glaciers. Previously, numerous field investigations have been carried out in Baspa basin to measure mass balance. However, mass balance data from field are limited to a small number of glaciers and for short durations. Therefore, this study uses geodetic mass balance technique to evaluate the mass loss at decadal scale. Geodetic method involves differencing Digital Elevation Model (DEM) from different years to obtain change in glacier elevation, which will be subsequently used to evaluate mass balance. This study derives mass balance from 2000 to 2014 for 16 glaciers covering a total area of 70 Sq Km. The study uses Shuttle Radar Topography Mission (SRTM) DEM for year 2000 and DEM for year 2014 was derived from Cartosat-1 stereo pair using photogrammetric principles. A Differential Global Positioning System (DGPS) survey was conducted in Baspa basin at different elevation zones to collect Ground Control Points (GCP) with millimeters accuracy. These GCP were used to derive Cartosat DEM. Various corrections were applied before differencing the two DEMs. They were co-registered using an analytical approach to account for horizontal shift. Corrections were also applied to remove the bias due to satellite acquisition geometry. SRTM DEM was acquired in February when the study area was covered by seasonal snow, whereas, Cartosat data was acquired during the ablation season. As the season of data acquisition varies for the two DEM, we have corrected for the bias that could be caused due to seasonal snow. Snowfall data from a meteorological station in the Baspa valley and a local precipitation gradient were used to determine the seasonal snow depth. Further, corrections were applied to account for the bias due to radar penetration in SRTM DEM. Then, the elevation changes were determined by subtracting the two DEMs to estimate mass balance. The figure below shows the change in glacier elevation. These results will be validated with field estimates. This investigation, after validation, will be an important addition in understanding changes in Himalayan glaciers.

  7. Studying the Effects of Amazonian Land Cover Change on Glacier Mass Balance in the Tropical Andes

    NASA Astrophysics Data System (ADS)

    Mark, B. G.; Fernandez, A.; Gabrielli, P.; Montenegro, A.; Postigo, J.; Hellstrom, R. A.

    2017-12-01

    Recent research has highlighted several ongoing environmental changes occurring across Tropical South America, including Andean glacier retreat, drought, as well as changes in land-use and land-cover. As the regional climate of the area is mostly characterized by land-ocean interactions, the atmospheric convection in the Amazon, and the effect of the Andes on circulation patterns, it follows that changes in one of those regions may affect the other. Most scholars who have studied the causes of tropical glaciers' fluctuations have not analyzed the linkages with changes in the Amazon with the same attention paid to the influence of Pacific sea surface temperature. Here we study the response of glacier surface mass balance in the Cordillera Blanca, Peru (10°S), to a scenario where the Amazonian rainforest is replaced by savannas. We ran climatic simulations at 2-km spatial resolution utilizing the Weather Research and Forecasting (WRF) model considering two scenarios: (a) control (CRTL), with today's rainforest extent; and (b) land cover change (LCC), where all the rainforest was replaced by savanna. WRF output was in turn ingested into a glacier energy and mass balance (GEMB) model that we validate by reconstructing both the accumulated mass balance from available observations, and the altitudinal distribution of mass balance in the region. Seasonal comparison between CRTL and LCC scenarios indicates that forest replacement by savanna results in more positive glacier mass balance. This shift to more positive mass balance contrasts with a (WRF) modeled rise in the elevation of the freezing line (0°C) between 30 to 120 m for the LCC scenario. Our results are surprising because most previous studies have shown that reducing Amazon forest cover diminishes rainfall and increases temperature, suggesting that glaciers should lose mass. We hypothesize and discuss implications of possible land-atmospheric processes that might drive this tropical glacier response to Amazonian forest change, including: the large-scale influence of Amazonian albedo change on the interaction between the Walker and Hadley cells and the effect of mountain meteorology dynamics.

  8. Neutrino masses and cosmological parameters from a Euclid-like survey: Markov Chain Monte Carlo forecasts including theoretical errors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Audren, Benjamin; Lesgourgues, Julien; Bird, Simeon

    2013-01-01

    We present forecasts for the accuracy of determining the parameters of a minimal cosmological model and the total neutrino mass based on combined mock data for a future Euclid-like galaxy survey and Planck. We consider two different galaxy surveys: a spectroscopic redshift survey and a cosmic shear survey. We make use of the Monte Carlo Markov Chains (MCMC) technique and assume two sets of theoretical errors. The first error is meant to account for uncertainties in the modelling of the effect of neutrinos on the non-linear galaxy power spectrum and we assume this error to be fully correlated in Fouriermore » space. The second error is meant to parametrize the overall residual uncertainties in modelling the non-linear galaxy power spectrum at small scales, and is conservatively assumed to be uncorrelated and to increase with the ratio of a given scale to the scale of non-linearity. It hence increases with wavenumber and decreases with redshift. With these two assumptions for the errors and assuming further conservatively that the uncorrelated error rises above 2% at k = 0.4 h/Mpc and z = 0.5, we find that a future Euclid-like cosmic shear/galaxy survey achieves a 1-σ error on M{sub ν} close to 32 meV/25 meV, sufficient for detecting the total neutrino mass with good significance. If the residual uncorrelated errors indeed rises rapidly towards smaller scales in the non-linear regime as we have assumed here then the data on non-linear scales does not increase the sensitivity to the total neutrino mass. Assuming instead a ten times smaller theoretical error with the same scale dependence, the error on the total neutrino mass decreases moderately from σ(M{sub ν}) = 18 meV to 14 meV when mildly non-linear scales with 0.1 h/Mpc < k < 0.6 h/Mpc are included in the analysis of the galaxy survey data.« less

  9. Dynamic balance in children with attention-deficit hyperactivity disorder and its relationship with cognitive functions and cerebellum.

    PubMed

    Goetz, Michal; Schwabova, Jaroslava Paulasova; Hlavka, Zdenek; Ptacek, Radek; Surman, Craig Bh

    2017-01-01

    Attention-deficit hyperactivity disorder (ADHD) is linked to the presence of motor deficiencies, including balance deficits. The cerebellum serves as an integrative structure for balance control and is also involved in cognition, including timing and anticipatory regulation. Cerebellar development may be delayed in children and adolescents with ADHD, and inconsistent reaction time is commonly seen in ADHD. We hypothesized that dynamic balance deficits would be present in children with ADHD and they would correlate with attention and cerebellar functions. Sixty-two children with ADHD and no other neurological conditions and 62 typically developing (TD) children were examined with five trials of the Phyaction Balance Board, an electronic balancing platform. Cerebellar clinical symptoms were evaluated using an international ataxia rating scale. Conners' Continuous Performance Test was used to evaluate patterns of reaction. Children with ADHD had poorer performance on balancing tasks, compared to TD children ( P <0.001). They exhibited significantly greater sway amplitudes than TD children ( P <0.001) in all of the five balancing trials. The effect size of the difference between the groups increased continuously from the first to the last trial. Balance score in both groups was related to the variation in the reaction time, including reaction time standard error ( r =0.25; P =0.0409, respectively, r =0.31; P =0.0131) and Variability of Standard Error ( r =0.28; P =0.0252, respectively, r =0.41; P <0.001). The burden of cerebellar symptoms was strongly related to balance performance in both groups ( r =0.50, P <0.001; r =0.49, P =0.001). This study showed that ADHD may be associated with poor dynamic balance control. Furthermore, we showed that maintaining balance correlates with neuropsychological measures of consistency of reaction time. Balance deficits and impaired cognitive functioning could reflect a common cerebellar dysfunction in ADHD children.

  10. Dynamic balance in children with attention-deficit hyperactivity disorder and its relationship with cognitive functions and cerebellum

    PubMed Central

    Goetz, Michal; Schwabova, Jaroslava Paulasova; Hlavka, Zdenek; Ptacek, Radek; Surman, Craig BH

    2017-01-01

    Background Attention-deficit hyperactivity disorder (ADHD) is linked to the presence of motor deficiencies, including balance deficits. The cerebellum serves as an integrative structure for balance control and is also involved in cognition, including timing and anticipatory regulation. Cerebellar development may be delayed in children and adolescents with ADHD, and inconsistent reaction time is commonly seen in ADHD. We hypothesized that dynamic balance deficits would be present in children with ADHD and they would correlate with attention and cerebellar functions. Methods Sixty-two children with ADHD and no other neurological conditions and 62 typically developing (TD) children were examined with five trials of the Phyaction Balance Board, an electronic balancing platform. Cerebellar clinical symptoms were evaluated using an international ataxia rating scale. Conners’ Continuous Performance Test was used to evaluate patterns of reaction. Results Children with ADHD had poorer performance on balancing tasks, compared to TD children (P<0.001). They exhibited significantly greater sway amplitudes than TD children (P<0.001) in all of the five balancing trials. The effect size of the difference between the groups increased continuously from the first to the last trial. Balance score in both groups was related to the variation in the reaction time, including reaction time standard error (r =0.25; P=0.0409, respectively, r =0.31; P=0.0131) and Variability of Standard Error (r =0.28; P=0.0252, respectively, r =0.41; P<0.001). The burden of cerebellar symptoms was strongly related to balance performance in both groups (r =0.50, P<0.001; r =0.49, P=0.001). Conclusion This study showed that ADHD may be associated with poor dynamic balance control. Furthermore, we showed that maintaining balance correlates with neuropsychological measures of consistency of reaction time. Balance deficits and impaired cognitive functioning could reflect a common cerebellar dysfunction in ADHD children. PMID:28356743

  11. Linear and nonlinear response of a rotating tokamak plasma to a resonant error-field

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Richard

    2014-09-01

    An in-depth investigation of the effect of a resonant error-field on a rotating, quasi-cylindrical, tokamak plasma is preformed within the context of constant-ψ, resistive-magnetohydrodynamical theory. General expressions for the response of the plasma at the rational surface to the error-field are derived in both the linear and nonlinear regimes, and the extents of these regimes mapped out in parameter space. Torque-balance equations are also obtained in both regimes. These equations are used to determine the steady-state plasma rotation at the rational surface in the presence of the error-field. It is found that, provided the intrinsic plasma rotation is sufficiently large, the torque-balance equations possess dynamically stable low-rotation and high-rotation solution branches, separated by a forbidden band of dynamically unstable solutions. Moreover, bifurcations between the two stable solution branches are triggered as the amplitude of the error-field is varied. A low- to high-rotation bifurcation is invariably associated with a significant reduction in the width of the magnetic island chain driven at the rational surface, and vice versa. General expressions for the bifurcation thresholds are derived and their domains of validity mapped out in parameter space.

  12. Detailed Uncertainty Analysis for Ares I Ascent Aerodynamics Wind Tunnel Database

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J.; Hanke, Jeremy L.; Walker, Eric L.; Houlden, Heather P.

    2008-01-01

    A detailed uncertainty analysis for the Ares I ascent aero 6-DOF wind tunnel database is described. While the database itself is determined using only the test results for the latest configuration, the data used for the uncertainty analysis comes from four tests on two different configurations at the Boeing Polysonic Wind Tunnel in St. Louis and the Unitary Plan Wind Tunnel at NASA Langley Research Center. Four major error sources are considered: (1) systematic errors from the balance calibration curve fits and model + balance installation, (2) run-to-run repeatability, (3) boundary-layer transition fixing, and (4) tunnel-to-tunnel reproducibility.

  13. A mass balance model to estimate the rate of composting, methane oxidation and anaerobic digestion in soil covers and shallow waste layers.

    PubMed

    Rafiee, Reza; Obersky, Lizanne; Xie, Sihuang; Clarke, William P

    2017-05-01

    Although CH 4 oxidation in landfill soil covers is widely studied, the extent of composting and CH 4 oxidation in underlying waste layers has been speculated but not measured. The objective of this study was to develop and validate a mass balance model to estimate the simultaneous rates of anaerobic digestion (r AD ), CH 4 oxidation (r OX ) and composting (r COM ) in environments where O 2 penetration is variable and zones of aerobic and anaerobic activity are intermingled. The modelled domain could include, as an example, a soil cover and the underlying shallow waste to a nominated depth. The proposed model was demonstrated on a blend of biogas from three separate known sources of gas representing the three reaction processes: (i) a bottle of laboratory grade 50:50% CH 4 :CO 2 gas representing anaerobic digestion biogas; (ii) an aerated 250mL bottle containing food waste that represented composting activity; and (iii) an aerated 250mL bottle containing non-degradable graphite granules inoculated with methanotrophs and incubated with CH 4 and O 2 to represent methanotrophic activity. CO 2 , CH 4 , O 2 and the stable isotope 13 C-CO 2 were chosen as the components for the mass balance model. The three reaction rates, r (=r AD , r OX , r COM ) were calculated as fitting parameters to the overdetermined set of 4mass balance equations with the net flux of these components from the bottles q (= [Formula: see text] , [Formula: see text] , [Formula: see text] and [Formula: see text] ) as inputs to the model. The coefficient of determination (r 2 ) for observed versus modelled values of r were 1.00, 0.97, 0.98 when the stoichiometry of each reaction was based on gas yields measured in the individual bottles and q was calculated by summing yields from the three bottles. r 2 deteriorated to 0.95, 0.96, 0.87 when using an average stoichiometry from 11 incubations of each of the composting and methane oxidation processes. The significant deterioration in the estimation of r COM showed that this output is highly sensitive to the evaluated stoichiometry coefficients for the reactions. r 2 deteriorated further to 0.86, 0.77, 0.74 when using the average stoichiometry and experimental measurement of the composition and volume of the blended biogas to determine q. This was primarily attributed to average errors of 8%, 7%, 11% and 14% in the measurement of [Formula: see text] , [Formula: see text] , [Formula: see text] and [Formula: see text] relative to the measurement of the same quantities from the individual bottles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Mass Property Measurements of the Mars Science Laboratory Rover

    NASA Technical Reports Server (NTRS)

    Fields, Keith

    2012-01-01

    The NASA/JPL Mars Science Laboratory (MSL) spacecraft mass properties were measured on a spin balance table prior to launch. This paper discusses the requirements and issues encountered with the setup, qualification, and testing using the spin balance table, and the idiosyncrasies encountered with the test system. The final mass measurements were made in the Payload Hazardous Servicing Facility (PHSF) at Kennedy Space Center on the fully assembled and fueled spacecraft. This set of environmental tests required that the control system for the spin balance machine be at a remote location, which posed additional challenges to the operation of the machine

  15. The Martian climate: Energy balance models with CO2/H2O atmospheres

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.

    1985-01-01

    Coupled equations are developed for mass and heat transport in a seasonal Mars model with condensation and sublimation of CO2 at the polar caps. Topics covered include physical considerations of planetary as mass and energy balance; effects of phase changes at the surface on mass and heat flux; atmospheric transport and governing equations; and numerical analysis.

  16. Water vapor mass balance method for determining air infiltration rates in houses

    Treesearch

    David R. DeWalle; Gordon M. Heisler

    1980-01-01

    A water vapor mass balance technique that includes the use of common humidity-control equipment can be used to determine average air infiltration rates in buildings. Only measurements of the humidity inside and outside the home, the mass of vapor exchanged by a humidifier/dehumidifier, and the volume of interior air space are needed. This method gives results that...

  17. Measurement of precipitation using lysimeters

    NASA Astrophysics Data System (ADS)

    Fank, Johann; Klammler, Gernot

    2013-04-01

    Austria's alpine foothill aquifers contain important drinking water resources, but are also used intensively for agricultural production. These groundwater bodies are generally recharged by infiltrating precipitation. A sustainable water resources management of these aquifers requires quantifying real evapotranspiration (ET), groundwater recharge (GR), precipitation (P) and soil water storage change (ΔS). While GR and ΔS can be directly measured by weighable lysimeters and P by separate precipitation gauges, ET is determined by solving the climatic water balance ET = P GR ± ΔS. According to WMO (2008) measurement of rainfall is strongly influenced by precipitation gauge errors. Most significant errors result from wind loss, wetting loss, evaporation loss, and due to in- and out-splashing of water. Measuring errors can be reduced by a larger area of the measuring gaugés surface and positioning the collecting vessel at ground level. Modern weighable lysimeters commonly have a surface of 1 m², are integrated into their typical surroundings of vegetation cover (to avoid oasis effects) and allow scaling the mass change of monolithic soil columns in high measuring accuracy (0.01 mm water equivalent) and high temporal resolution. Thus, also precipitation can be quantified by measuring the positive mass changes of the lysimeter. According to Meissner et al. (2007) also dew, fog and rime can be determined by means of highly precise weighable lysimeters. Furthermore, measuring precipitation using lysimeters avoid common measuring errors (WMO 2008) at point scale. Though, this method implicates external effects (background noise, influence of vegetation and wind) which affect the mass time series. While the background noise of the weighing is rather well known and can be filtered out of the mass time series, the influence of wind, which blows through the vegetation and affects measured lysimeter mass, cannot be corrected easily since there is no clear relation between wind speeds and the measured outliers of lysimeter mass. Moreover, the influence of wind seems to be varying for different lysimeters. At the agricultural test site Wagna, Austria, two precipitation gauges in high temporal resolution (weighing-recording gauge and tipping-bucket gauge; both 200 cm² surface; measuring height 1.5 m) are installed. Furthermore, mass time series of various lysimeters cultivated with different vegetation is also available for the same location. Appropriate methods to compensate the influence of wind on measuring precipitation using lysimeters are investigated and results between the different measuring devices are compared. Results show that precipitation measured with lysimeters is generally higher, especially compared to the weighing-recording gauge. In addition it is detected that also the data interval of lysimeter mass time series used for quantifying precipitation (e.g., 1 day, 1 hour, 30 minutes, 10 minutes) is a crucial factor and influences the result. Summarizing, the potential of using highly precise weighable lysimeters for measuring precipitation at the point scale is rather high. However, methods used to compensate external effects on lysimeter weighing have to be enhanced for a global application of using lysimeters as precipitation gauges. Meissner, R., J. Seeger, H. Rupp, M. Seyfarth & H. Borg, 2007: Measurement of dew, fog, and rime with a high-precision gravitation Lysimeter. J. Plant Nutr. Soil Sci. 2007, 170, p. 335-344. WMO (World Meteorological Organization), 2008. Guide to Meteorological Instruments and Methods of Observation. WMO-No. 8, 140 pp.

  18. Improving traditional balancing methods for high-speed rotors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ling, J.; Cao, Y.

    1996-01-01

    This paper introduces frequency response functions, analyzes the relationships between the frequency response functions and influence coefficients theoretically, and derives corresponding mathematical equations for high-speed rotor balancing. The relationships between the imbalance masses on the rotor and frequency response functions are also analyzed based upon the modal balancing method, and the equations related to the static and dynamic imbalance masses and the frequency response function are obtained. Experiments on a high-speed rotor balancing rig were performed to verify the theory, and the experimental data agree satisfactorily with the analytical solutions. The improvement on the traditional balancing method proposed in thismore » paper will substantially reduce the number of rotor startups required during the balancing process of rotating machinery.« less

  19. The unbalanced signal measuring of automotive brake drum

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Dong; Ye, Sheng-Hua; Zhang, Bang-Cheng

    2005-04-01

    For the purpose of the research and development of automatic balancing system by mass removing, the dissertation deals with the measuring method of the unbalance signal, the design the automatic balance equipment and the software. This paper emphases the testing system of the balancer of automotive brake drum. The paper designs the band-pass filter product with favorable automatic follow of electronic product, and with favorable automatic follow capability, filtration effect and stability. The system of automatic balancing system by mass removing based on virtual instrument is designed in this paper. A lab system has been constructed. The results of contrast experiments indicate the notable effect of 1-plane automatic balance and the high precision of dynamic balance, and demonstrate the application value of the system.

  20. Mountain glaciers vs Ice sheet in Greenland - learning from a new monitoring site in West Greenland

    NASA Astrophysics Data System (ADS)

    Abermann, Jakob; van As, Dirk; Wacker, Stefan; Langley, Kirsty

    2017-04-01

    Only 5 out of the 20.000 peripheral glaciers and ice caps surrounding Greenland are currently monitored due to logistical challenges and despite their significance for sea level rise. Large spatial coast-to-icesheet mass and energy balance gradients limit simple upscaling methods from ice-sheet observations, which builds the motivation for this study. We present results from a new mass and energy balance time series at Qasigiannguit glacier (64°09'N; 51°21'W) in Southwest Greenland. Inter-annual variability is discussed and the surface energy balance over two summers is quantified and a ranking of the main drivers performed. We find that short-wave net radiation is by far the most dominant energy source during summer, followed by similar amounts of net longwave radiation and sensible heat, respectively. We then relate these observations to synchronous measurements at similar latitude on an outlet glacier of the ice sheet a mere 100 km away. We find very pronounced horizontal surface mass balance gradients, with generally more positive values closer to the coast. We conclude that despite minor differences of atmospheric parameters (i.e. humidity, radiation, and temperature) the main reason for the strongly different signal is a pronounced winter precipitation gradient that translates in a different duration of ice exposure and through that an albedo gradient. Modelled energy balance gradients converted into mass changes show good agreement to measured surface mass balance gradients and we explore a latitudinal signal of these findings.

  1. New GRACE-Derived Storage Change Estimates Using Empirical Mode Extraction

    NASA Astrophysics Data System (ADS)

    Aierken, A.; Lee, H.; Yu, H.; Ate, P.; Hossain, F.; Basnayake, S. B.; Jayasinghe, S.; Saah, D. S.; Shum, C. K.

    2017-12-01

    Estimated mass change from GRACE spherical harmonic solutions have north/south stripes and east/west banded errors due to random noise and modeling errors. Low pass filters like decorrelation and Gaussian smoothing are typically applied to reduce noise and errors. However, these filters introduce leakage errors that need to be addressed. GRACE mascon estimates (JPL and CSR mascon solutions) do not need decorrelation or Gaussian smoothing and offer larger signal magnitudes compared to the GRACE spherical harmonics (SH) filtered results. However, a recent study [Chen et al., JGR, 2017] demonstrated that both JPL and CSR mascon solutions also have leakage errors. We developed a new postprocessing method based on empirical mode decomposition to estimate mass change from GRACE SH solutions without decorrelation and Gaussian smoothing, the two main sources of leakage errors. We found that, without any post processing, the noise and errors in spherical harmonic solutions introduced very clear high frequency components in the spatial domain. By removing these high frequency components and reserve the overall pattern of the signal, we obtained better mass estimates with minimum leakage errors. The new global mass change estimates captured all the signals observed by GRACE without the stripe errors. Results were compared with traditional methods over the Tonle Sap Basin in Cambodia, Northwestern India, Central Valley in California, and the Caspian Sea. Our results provide larger signal magnitudes which are in good agreement with the leakage corrected (forward modeled) SH results.

  2. Modeling Complex Equilibria in ITC Experiments: Thermodynamic Parameters Estimation for a Three Binding Site Model

    PubMed Central

    Le, Vu H.; Buscaglia, Robert; Chaires, Jonathan B.; Lewis, Edwin A.

    2013-01-01

    Isothermal Titration Calorimetry, ITC, is a powerful technique that can be used to estimate a complete set of thermodynamic parameters (e.g. Keq (or ΔG), ΔH, ΔS, and n) for a ligand binding interaction described by a thermodynamic model. Thermodynamic models are constructed by combination of equilibrium constant, mass balance, and charge balance equations for the system under study. Commercial ITC instruments are supplied with software that includes a number of simple interaction models, for example one binding site, two binding sites, sequential sites, and n-independent binding sites. More complex models for example, three or more binding sites, one site with multiple binding mechanisms, linked equilibria, or equilibria involving macromolecular conformational selection through ligand binding need to be developed on a case by case basis by the ITC user. In this paper we provide an algorithm (and a link to our MATLAB program) for the non-linear regression analysis of a multiple binding site model with up to four overlapping binding equilibria. Error analysis demonstrates that fitting ITC data for multiple parameters (e.g. up to nine parameters in the three binding site model) yields thermodynamic parameters with acceptable accuracy. PMID:23262283

  3. Development of the ECLSS Sizing Analysis Tool and ARS Mass Balance Model Using Microsoft Excel

    NASA Technical Reports Server (NTRS)

    McGlothlin, E. P.; Yeh, H. Y.; Lin, C. H.

    1999-01-01

    The development of a Microsoft Excel-compatible Environmental Control and Life Support System (ECLSS) sizing analysis "tool" for conceptual design of Mars human exploration missions makes it possible for a user to choose a certain technology in the corresponding subsystem. This tool estimates the mass, volume, and power requirements of every technology in a subsystem and the system as a whole. Furthermore, to verify that a design sized by the ECLSS Sizing Tool meets the mission requirements and integrates properly, mass balance models that solve for component throughputs of such ECLSS systems as the Water Recovery System (WRS) and Air Revitalization System (ARS) must be developed. The ARS Mass Balance Model will be discussed in this paper.

  4. Mercury mass balance in Lake Michigan--the knowns and unknowns

    EPA Science Inventory

    LM2-Mercury, a mercury mass balance model, was developed to simulate and evaluate the transport, fate, and biogeochemical transformations of mercury in Lake Michigan. The model simulates total suspended solids (TSS), disolved organic carbon (DOC), and total, elemental, divalent, ...

  5. Composition of Meridiani Hematite-rich Spherules: A Mass-Balance Mixing-Model Approach

    NASA Astrophysics Data System (ADS)

    Jolliff, B. L.; Athena Science Team

    2005-03-01

    A mass-balance model using APXS data and microscopic images indicates that the composition of spherules ("blueberries"), found at the Meridiani site by the Mars Exploration Rover Opportunity and thought to be concretions, contain ~45-60 wt% hematite.

  6. Limitations of the paraxial Debye approximation.

    PubMed

    Sheppard, Colin J R

    2013-04-01

    In the paraxial form of the Debye integral for focusing, higher order defocus terms are ignored, which can result in errors in dealing with aberrations, even for low numerical aperture. These errors can be avoided by using a different integration variable. The aberrations of a glass slab, such as a coverslip, are expanded in terms of the new variable, and expressed in terms of Zernike polynomials to assist with aberration balancing. Tube length error is also discussed.

  7. Violating Conventional Wisdom in Multiple Choice Test Construction

    ERIC Educational Resources Information Center

    Taylor, Annette Kujawski

    2005-01-01

    This research examined 2 elements of multiple-choice test construction, balancing the key and optimal number of options. In Experiment 1 the 3 conditions included a balanced key, overrepresentation of a and b responses, and overrepresentation of c and d responses. The results showed that error-patterns were independent of the key, reflecting…

  8. Comparison of Uninjured and Concussed Adolecent Athletes on the Concussion Balance Test (COBALT).

    PubMed

    Massingale, Shelly; Alexander, Amy; Erickson, Steven; McQueary, Elizabeth; Gerkin, Richard; Kisana, Haroon; Silvestri, Briana; Schodrof, Sarah; Nalepa, Bryce; Pardini, Jamie

    2018-06-01

    Dizziness and balance problems are common symptoms following sports-related concussion (SRC). Most sports require high-level balance skills that integrate the sensory inputs used for balance. Thus, a comprehensive assessment of postural control following SRC is recommended as an integral part of evaluation and management of the injury. The purpose of this exploratory study was to examine performance differences between uninjured and concussed athletes on the Concussion Balance Test (COBALT), as well as complete preliminary analyses of criterion-related validity and reliability of COBALT. COBALT is an 8 condition test developed for both preseason and postinjury assessment using force plate technology to measure sway velocity under dynamic postural conditions that challenge the vestibular system. Retrospective COBALT data obtained through chart review for 132 uninjured athletes and 106 concussed age-matched athletes were compared. All uninjured athletes were able to complete the assessment, compared with only 55% of concussed athletes. Concussed athletes committed significantly more errors than uninjured athletes. Sway velocity for concussed athletes was higher (worse) than that for uninjured athletes on 2 conditions in COBALT. By examining an athlete's ability to complete the protocol, error rate, and sway velocity on COBALT postinjury, the clinician can identify balance function impairment, which may help the medical team develop a more targeted treatment plan, and provide objective input regarding recovery of balance function following SRC.Video Abstract available for more insights from the authors (see Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A204).

  9. Study of Annual Mass Balance (2011-2013) of Rikha Samba Glacier, Hidden Valley, Mustang, Nepal

    NASA Astrophysics Data System (ADS)

    Gurung, S.; Bhattrai, B. C.; Kayastha, R. B.; Stumm, D.; Joshi, S.; Mool, P. K.

    2016-12-01

    lthough Himalayan glaciers are of particular interest interms of future water supplies, regional climate changes, and sea-level rises, little is known about them due to lack of reliable and consistent data. There is a need for monitoring these glaciers to bridge this knowledge gap and to provide field measurements necessary to calibrate and validate the results from different remote sensing operations. Therefore, glaciological observations have been carried out by the Cryosphere Monitoring Project (CMP) since September 2011 on Rikha Samba Glacier in Hidden valley, Mustang district in western Nepal in order to study its annual mass balance. This paper presents the first results of that study. There are 10 glaciers in Hidden Valley, named G1, G2, G3, up to G10. Of these, G5 is the Rikha Samba Glacier, which has the largest area (5.37 km2) in this valley and the highest and lowest altitudes (6,476 and 5,392 m a.s.l., respectively). The glacier mass balance discussed in this paper was calculated using the glaciological method and the equilibrium line altitude (ELA).The glacier showed a negative annual point mass balance along the longitudinal profile of its lower part from September 10, 2011 to October 3, 2012. Stake measurements from October 4, 2012 to September 30, 2013 indicated a negative areal average of annual mass balance -0.088±0.019 m w.e. for the whole glacier. Based on these observations, the ELA of the Rikha Samba Glacier is estimated at 5,800 m a.s.l. in 2013. This negative balance may be due to rising air temperatures in the region, which have been incrementally rising since 1980 accompanied by little or no significant increase in precipitation in that period. The negative mass balance confirms the general shrinking trend of the glacier.

  10. Optimized balance rehabilitation training strategy for the elderly through an evaluation of balance characteristics in response to dynamic motions

    PubMed Central

    Jung, HoHyun; Chun, Keyoung Jin; Hong, Jaesoo; Lim, Dohyung

    2015-01-01

    Balance is important in daily activities and essential for maintaining an independent lifestyle in the elderly. Recent studies have shown that balance rehabilitation training can improve the balance ability of the elderly, and diverse balance rehabilitation training equipment has been developed. However, there has been little research into optimized strategies for balance rehabilitation training. To provide an optimized strategy, we analyzed the balance characteristics of participants in response to the rotation of a base plate on multiple axes. Seven male adults with no musculoskeletal or nervous system-related diseases (age: 25.5±1.7 years; height: 173.9±6.4 cm; body mass: 71.3±6.5 kg; body mass index: 23.6±2.4 kg/m2) were selected to investigate the balance rehabilitation training using customized rehabilitation equipment. Rotation of the base plate of the equipment was controlled to induce dynamic rotation of participants in the anterior–posterior, right-diagonal, medial–lateral, and left-diagonal directions. We used a three-dimensional motion capture system employing infrared cameras and the Pedar Flexible Insoles System to characterize the major lower-extremity joint angles, center of body mass, and center of pressure. We found statistically significant differences between the changes in joint angles in the lower extremities in response to dynamic rotation of the participants (P<0.05). The maximum was greater with anterior–posterior and medial–lateral dynamic rotation than with that in other directions (P<0.05). However, there were no statistically significant differences in the frequency of center of body mass deviations from the base of support (P>0.05). These results indicate that optimizing rotation control of the base plate of balance rehabilitation training equipment to induce anterior–posterior and medial–lateral dynamic rotation preferentially can lead to effective balance training. Additional tests with varied speeds and ranges of angles of base plate rotation are expected to be useful as well as an analysis of the balance characteristics considering a balance index that reflects the muscle activity and cooperative characteristics. PMID:26508847

  11. Assessment and Rehabilitation of Central Sensory Impairments for Balance in mTBI

    DTIC Science & Technology

    2016-10-01

    place; 95% complete. ● Purchasing and testing software of Opals ; awaiting release of newer, updated sensor from APDM to determine need for more sensors...2016. ● Develop new algorithm to automatically quantify head movements from Opal sensor; 100% complete 23-Sep-2016. ● Set up and test gait paradigm...Interaction in Balance (mCTSIB), Modified Balance Error Scoring System (mBESS) and walking tests, subjects wear five Opal inertial sensors (APDM, Inc

  12. Research developing closed loop roll control for magnetic balance systems

    NASA Technical Reports Server (NTRS)

    Covert, E. E.; Haldeman, C. W.

    1981-01-01

    Computer inputs were interfaced to the magnetic balance outputs to provide computer position control and data acquisition. The use of parameter identification of a means of determining dynamic characteristics was investigated. The thyraton and motor generator power supplies for the pitch and yaw degrees of freedom were repaired. Topics covered include: choice of a method for handling dynamic system data; applications to the magnetic balance; the computer interface; and wind tunnel tests, results, and error analysis.

  13. 78 FR 11705 - Self-Regulatory Organizations; NASDAQ OMX PHLX LLC; Notice of Filing of Proposed Rule Change...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... losses and reduce the corresponding large wind-falls. However, to maintain the appropriate balance, the... help market participants better manage their risk by addressing the situation where, under current... review. Certain more substantial errors may fall under the category of a catastrophic error, for which a...

  14. LINKING GREAT WATERSHEDS WITH LAKE MICHIGAN: THE LAKE MICHIGAN MASS BALANCE STUDY

    EPA Science Inventory

    An overview of the Lake Michigan Mass Balance Study -- which is focusing on atrazine, PCBs, nutrients, suspended solids, trans-nonachlor, and mercury. The relative contribution of contaminants to Lake Michigan will be examined for all major watersheds in the basin. - - - Further ...

  15. LAKE MICHIGAN MASS BALANCE STUDY: PROGNOSIS FOR PCBS

    EPA Science Inventory

    The Lake Michigan Mass Balance Study was conducted to measure and model nutrients, atrazine, PCBs, trans-nonachlor, and mercury to gain a better understanding of the transport and fate of these substances within the system and to aid managers in the environmental decision-making ...

  16. CHEMICAL MASS BALANCE MODEL: EPA-CMB8.2

    EPA Science Inventory

    The Chemical Mass Balance (CMB) method has been a popular approach for receptor modeling of ambient air pollutants for over two decades. For the past few years the U.S. Environmental Protection Agency's Office of Research and Development (ORD) and Office of Air Quality Plannin...

  17. Effects of postexercise ice-water and room-temperature water immersion on the sensory organization of balance control and lower limb proprioception in amateur rugby players: A randomized controlled trial.

    PubMed

    Chow, Gary C C; Yam, Timothy T T; Chung, Joanne W Y; Fong, Shirley S M

    2017-02-01

    This single-blinded, three-armed randomized controlled trial aimed to compare the effects of postexercise ice-water immersion (IWI), room-temperature water immersion (RWI), and no water immersion on the balance performance and knee joint proprioception of amateur rugby players. Fifty-three eligible amateur rugby players (mean age ± standard deviation: 21.6 ± 2.9 years) were randomly assigned to the IWI group (5.3 °C), RWI group (25.0 °C), or the no immersion control group. The participants in each group underwent the same fatigue protocol followed by their allocated recovery intervention, which lasted for 1 minute. Measurements were taken before and after the fatigue-recovery intervention. The primary outcomes were the sensory organization test (SOT) composite equilibrium score (ES) and the condition-specific ES, which were measured using a computerized dynamic posturography machine. The secondary outcome was the knee joint repositioning error. Two-way repeated measures analysis of variance was used to test the effect of water immersion on each outcome variable. There were no significant within- and between-group differences in the SOT composite ESs or the condition-specific ESs. However, there was a group-by-time interaction effect on the knee joint repositioning error. It seems that participants in the RWI group had lower errors over time, but those in the IWI and control groups had increased errors over time. The RWI group had significantly lower error score than the IWI group at postintervention. One minute of postexercise IWI or RWI did not impair rugby players' sensory organization of balance control. RWI had a less detrimental effect on knee joint proprioception to IWI at postintervention.

  18. Effects of postexercise ice-water and room-temperature water immersion on the sensory organization of balance control and lower limb proprioception in amateur rugby players

    PubMed Central

    Chow, Gary C.C.; Yam, Timothy T.T.; Chung, Joanne W.Y.; Fong, Shirley S.M.

    2017-01-01

    Abstract Background: This single-blinded, three-armed randomized controlled trial aimed to compare the effects of postexercise ice-water immersion (IWI), room-temperature water immersion (RWI), and no water immersion on the balance performance and knee joint proprioception of amateur rugby players. Methods: Fifty-three eligible amateur rugby players (mean age ± standard deviation: 21.6 ± 2.9 years) were randomly assigned to the IWI group (5.3 °C), RWI group (25.0 °C), or the no immersion control group. The participants in each group underwent the same fatigue protocol followed by their allocated recovery intervention, which lasted for 1 minute. Measurements were taken before and after the fatigue-recovery intervention. The primary outcomes were the sensory organization test (SOT) composite equilibrium score (ES) and the condition-specific ES, which were measured using a computerized dynamic posturography machine. The secondary outcome was the knee joint repositioning error. Two-way repeated measures analysis of variance was used to test the effect of water immersion on each outcome variable. Results: There were no significant within- and between-group differences in the SOT composite ESs or the condition-specific ESs. However, there was a group-by-time interaction effect on the knee joint repositioning error. It seems that participants in the RWI group had lower errors over time, but those in the IWI and control groups had increased errors over time. The RWI group had significantly lower error score than the IWI group at postintervention. Conclusion: One minute of postexercise IWI or RWI did not impair rugby players’ sensory organization of balance control. RWI had a less detrimental effect on knee joint proprioception to IWI at postintervention. PMID:28207546

  19. The balanced mind: the variability of task-unrelated thoughts predicts error monitoring

    PubMed Central

    Allen, Micah; Smallwood, Jonathan; Christensen, Joanna; Gramm, Daniel; Rasmussen, Beinta; Jensen, Christian Gaden; Roepstorff, Andreas; Lutz, Antoine

    2013-01-01

    Self-generated thoughts unrelated to ongoing activities, also known as “mind-wandering,” make up a substantial portion of our daily lives. Reports of such task-unrelated thoughts (TUTs) predict both poor performance on demanding cognitive tasks and blood-oxygen-level-dependent (BOLD) activity in the default mode network (DMN). However, recent findings suggest that TUTs and the DMN can also facilitate metacognitive abilities and related behaviors. To further understand these relationships, we examined the influence of subjective intensity, ruminative quality, and variability of mind-wandering on response inhibition and monitoring, using the Error Awareness Task (EAT). We expected to replicate links between TUT and reduced inhibition, and explored whether variance in TUT would predict improved error monitoring, reflecting a capacity to balance between internal and external cognition. By analyzing BOLD responses to subjective probes and the EAT, we dissociated contributions of the DMN, executive, and salience networks to task performance. While both response inhibition and online TUT ratings modulated BOLD activity in the medial prefrontal cortex (mPFC) of the DMN, the former recruited a more dorsal area implying functional segregation. We further found that individual differences in mean TUTs strongly predicted EAT stop accuracy, while TUT variability specifically predicted levels of error awareness. Interestingly, we also observed co-activation of salience and default mode regions during error awareness, supporting a link between monitoring and TUTs. Altogether our results suggest that although TUT is detrimental to task performance, fluctuations in attention between self-generated and external task-related thought is a characteristic of individuals with greater metacognitive monitoring capacity. Achieving a balance between internally and externally oriented thought may thus aid individuals in optimizing their task performance. PMID:24223545

  20. Changing pattern of ice flow and mass balance for glaciers discharging into the Larsen A and B embayments, Antarctic Peninsula, 2011 to 2016

    NASA Astrophysics Data System (ADS)

    Rott, Helmut; Abdel Jaber, Wael; Wuite, Jan; Scheiblauer, Stefan; Floricioiu, Dana; Melchior van Wessem, Jan; Nagler, Thomas; Miranda, Nuno; van den Broeke, Michiel R.

    2018-04-01

    We analysed volume change and mass balance of outlet glaciers on the northern Antarctic Peninsula over the periods 2011 to 2013 and 2013 to 2016, using high-resolution topographic data from the bistatic interferometric radar satellite mission TanDEM-X. Complementary to the geodetic method that applies DEM differencing, we computed the net mass balance of the main outlet glaciers using the mass budget method, accounting for the difference between the surface mass balance (SMB) and the discharge of ice into an ocean or ice shelf. The SMB values are based on output of the regional climate model RACMO version 2.3p2. To study glacier flow and retrieve ice discharge we generated time series of ice velocity from data from different satellite radar sensors, with radar images of the satellites TerraSAR-X and TanDEM-X as the main source. The study area comprises tributaries to the Larsen A, Larsen Inlet and Prince Gustav Channel embayments (region A), the glaciers calving into the Larsen B embayment (region B) and the glaciers draining into the remnant part of the Larsen B ice shelf in Scar Inlet (region C). The glaciers of region A, where the buttressing ice shelf disintegrated in 1995, and of region B (ice shelf break-up in 2002) show continuing losses in ice mass, with significant reduction of losses after 2013. The mass balance numbers for the grounded glacier area of region A are -3.98 ± 0.33 Gt a-1 from 2011 to 2013 and -2.38 ± 0.18 Gt a-1 from 2013 to 2016. The corresponding numbers for region B are -5.75 ± 0.45 and -2.32 ± 0.25 Gt a-1. The mass balance in region C during the two periods was slightly negative, at -0.54 ± 0.38 Gt a-1 and -0.58 ± 0.25 Gt a-1. The main share in the overall mass losses of the region was contributed by two glaciers: Drygalski Glacier contributing 61 % to the mass deficit of region A, and Hektoria and Green glaciers accounting for 67 % to the mass deficit of region B. Hektoria and Green glaciers accelerated significantly in 2010-2011, triggering elevation losses up to 19.5 m a-1 on the lower terminus during the period 2011 to 2013 and resulting in a mass balance of -3.88 Gt a-1. Slowdown of calving velocities and reduced calving fluxes in 2013 to 2016 coincided with years in which ice mélange and sea ice cover persisted in proglacial fjords and bays during summer.

  1. In-Situ Mass Balance Measurements and Morphology Study of Patsio Glacier, Himachal Pradesh, Western Himalaya

    NASA Astrophysics Data System (ADS)

    Angchuk, T.; AL, R.; Mandal, A.; Soheb, M.; Bahuguna, I. M.; Singh, V.; Linda, A.

    2016-12-01

    The present ongoing study is oriented to do the detailed study of the Patsio glacier which is in the Bhaga Basin, Lahaul, Himachal Pradesh. Patsio glacier is a compound valley glacier survived by two prominent tributaries namely Eastern and Western. The two tributaries are facing opposite to each other. The Western tributary facing almost eastward shows higher melting as compared to Eastern tributary facing northwest. This is probably due to solar radiation and sunshine hour, as Western tributary receives high solar radiation and for longer duration. A series of supraglacial lakes which were connected to each other through supra channels were observed on the upper part of the ablation zone at an altitude range of 5100 m and 5300 m amsl. A dead ice covered with thick debris was observed below the current terminus. Despite the large variability of the mass balance in the different seasons Patsio glacier annual balance for the year 2012-2013 was found to be 0.04 ± 0.40 m w.e. the low values signifies that glacier has lost significant amount of mass in recent past and now it is near to the equilibrium state. Seasonal mass balance of Patsio glacier has shown wide range of variability in the mass balances. Patsio glacier receives most of the accumulation during the winter months and duration is long whereas, ablation season is short but quite significant. Monthly and daily variation has depicted that peak ablation months are July and August. The daily ablation in the month of August 2013 was found to be around 5 cm per day, probably due to air temperature. To have a clear picture of the meteorological parameters and its relation with glacier an AWS has set up on the Patsio glacier at an altitude of 5050 m amsl in June 2014. Seasonal mass balance gradients show that gradient was high during the early and late ablation seasons as compared to peak ablation season. The mass balance for the year 2010-2011 was slightly positive.

  2. Metabolite-balancing techniques vs. 13C tracer experiments to determine metabolic fluxes in hybridoma cells.

    PubMed

    Bonarius, H P; Timmerarends, B; de Gooijer, C D; Tramper, J

    The estimation of intracellular fluxes of mammalian cells using only mass balances of the relevant metabolites is not possible because the set of linear equations defined by these mass balances is underdetermined. In order to quantify fluxes in cyclic pathways the mass balance equations can be complemented with several constraints: (1) the mass balances of co-metabolites, such as ATP or NAD(P)H, (2) linear objective functions, (3) flux data obtained by isotopic-tracer experiments. Here, these three methods are compared for the analysis of fluxes in the primary metabolism of continuously cultured hybridoma cells. The significance of different theoretical constraints and different objective functions is discussed after comparing their resulting flux distributions to the fluxes determined using 13CO2 and 13C-lactate measurements of 1 - 13C-glucose-fed hybridoma cells. Metabolic fluxes estimated using the objective functions "maximize ATP" and "maximize NADH" are relatively similar to the experimentally determined fluxes. This is consistent with the observation that cancer cells, such as hybridomas, are metabolically hyperactive, and produce ATP and NADH regardless of the need for these cofactors. Copyright 1998 John Wiley & Sons, Inc.

  3. Gulkana Glacier, Alaska-Mass balance, meteorology, and water measurements, 1997-2001

    USGS Publications Warehouse

    March, Rod S.; O'Neel, Shad

    2011-01-01

    The measured winter snow, maximum winter snow, net, and annual balances for 1997-2001 in the Gulkana Glacier basin are determined at specific points and over the entire glacier area using the meteorological, hydrological, and glaciological data. We provide descriptions of glacier geometry to aid in estimation of conventional and reference surface mass balances and descriptions of ice motion to aid in the understanding of the glacier's response to its changing geometry. These data provide annual estimates for area altitude distribution, equilibrium line altitude, and accumulation area ratio during the study interval. New determinations of historical area altitude distributions are given for 1900 and annually from 1966 to 2001. As original weather instrumentation is nearing the end of its deployment lifespan, we provide new estimates of overlap comparisons and precipitation catch efficiency. During 1997-2001, Gulkana Glacier showed a continued and accelerated negative mass balance trend, especially below the equilibrium line altitude where thinning was pronounced. Ice motion also slowed, which combined with the negative mass balance, resulted in glacier retreat under a warming climate. Average annual runoff augmentation by glacier shrinkage for 1997-2001 was 25 percent compared to the previous average of 13 percent, in accordance with the measured glacier volume reductions.

  4. Application of a Physics-Based Stabilization Criterion to Flight System Thermal Testing

    NASA Technical Reports Server (NTRS)

    Baker, Charles; Garrison, Matthew; Cottingham, Christine; Peabody, Sharon

    2010-01-01

    The theory shown here can provide thermal stability criteria based on physics and a goal steady state error rather than on an arbitrary "X% Q/mC(sub P)" method. The ability to accurately predict steady-state temperatures well before thermal balance is reached could be very useful during testing. This holds true for systems where components are changing temperature at different rates, although it works better for the components closest to the sink. However, the application to these test cases shows some significant limitations: This theory quickly falls apart if the thermal control system in question is tightly coupled to a large mass not accounted for in the calculations, so it is more useful in subsystem-level testing than full orbiter tests. Tight couplings to a fluctuating sink causes noise in the steady state temperature predictions.

  5. Estimation of blade airloads from rotor blade bending moments

    NASA Technical Reports Server (NTRS)

    Bousman, William G.

    1987-01-01

    A method is developed to estimate the blade normal airloads by using measured flap bending moments; that is, the rotor blade is used as a force balance. The blade's rotation is calculated in vacuum modes and the airloads are then expressed as an algebraic sum of the mode shapes, modal amplitudes, mass distribution, and frequency properties. The modal amplitudes are identified from the blade bending moments using the Strain Pattern Analysis Method. The application of the method is examined using simulated flap bending moment data that have been calculated for measured airloads for a full-scale rotor in a wind tunnel. The estimated airloads are compared with the wind tunnel measurements. The effects of the number of measurements, the number of modes, and errors in the measurements and the blade properties are examined, and the method is shown to be robust.

  6. Technical Note: Introduction of variance component analysis to setup error analysis in radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuo, Yukinori, E-mail: ymatsuo@kuhp.kyoto-u.ac.

    Purpose: The purpose of this technical note is to introduce variance component analysis to the estimation of systematic and random components in setup error of radiotherapy. Methods: Balanced data according to the one-factor random effect model were assumed. Results: Analysis-of-variance (ANOVA)-based computation was applied to estimate the values and their confidence intervals (CIs) for systematic and random errors and the population mean of setup errors. The conventional method overestimates systematic error, especially in hypofractionated settings. The CI for systematic error becomes much wider than that for random error. The ANOVA-based estimation can be extended to a multifactor model considering multiplemore » causes of setup errors (e.g., interpatient, interfraction, and intrafraction). Conclusions: Variance component analysis may lead to novel applications to setup error analysis in radiotherapy.« less

  7. Variability in Annual and Average Mass Changes in Antarctica from 2004 to 2009 using Satellite Laser Altimetry

    NASA Astrophysics Data System (ADS)

    Babonis, G. S.; Csatho, B. M.; Schenk, A. F.

    2016-12-01

    We present a new record of Antarctic ice thickness changes, reconstructed from ICESat laser altimetry observations, from 2004-2009, at over 100,000 locations across the Antarctic Ice Sheet (AIS). This work generates elevation time series at ICESat groundtrack crossover regions on an observation-by-observation basis, with rigorous, quantified, error estimates using the SERAC approach (Schenk and Csatho, 2012). The results include average and annual elevation, volume and mass changes in Antarctica, fully corrected for glacial isostatic adjustment (GIA) and known intercampaign biases; and partitioned into contributions from surficial processes (e.g. firn densification) and ice dynamics. The modular flexibility of the SERAC framework allows for the assimilation of multiple ancillary datasets (e.g. GIA models, Intercampaign Bias Corrections, IBC), in a common framework, to calculate mass changes for several different combinations of GIA models and IBCs and to arrive at a measure of variability from these results. We are able to determine the effect these corrections have on annual and average volume and mass change calculations in Antarctica, and to explore how these differences vary between drainage basins and with elevation. As such, this contribution presents a method that compliments, and is consistent with, the 2012 Ice sheet Mass Balance Inter-comparison Exercise (IMBIE) results (Shepherd 2012). Additionally, this work will contribute to the 2016 IMBIE, which seeks to reconcile ice sheet mass changes from different observations,, including laser altimetry, using a different methodologies and ancillary datasets including GIA models, Firn Densification Models, and Intercampaign Bias Corrections.

  8. Improving Simulated Soil Moisture Fields Through Assimilation of AMSR-E Soil Moisture Retrievals with an Ensemble Kalman Filter and a Mass Conservation Constraint

    NASA Technical Reports Server (NTRS)

    Li, Bailing; Toll, David; Zhan, Xiwu; Cosgrove, Brian

    2011-01-01

    Model simulated soil moisture fields are often biased due to errors in input parameters and deficiencies in model physics. Satellite derived soil moisture estimates, if retrieved appropriately, represent the spatial mean of soil moisture in a footprint area, and can be used to reduce model bias (at locations near the surface) through data assimilation techniques. While assimilating the retrievals can reduce model bias, it can also destroy the mass balance enforced by the model governing equation because water is removed from or added to the soil by the assimilation algorithm. In addition, studies have shown that assimilation of surface observations can adversely impact soil moisture estimates in the lower soil layers due to imperfect model physics, even though the bias near the surface is decreased. In this study, an ensemble Kalman filter (EnKF) with a mass conservation updating scheme was developed to assimilate the actual value of Advanced Microwave Scanning Radiometer (AMSR-E) soil moisture retrievals to improve the mean of simulated soil moisture fields by the Noah land surface model. Assimilation results using the conventional and the mass conservation updating scheme in the Little Washita watershed of Oklahoma showed that, while both updating schemes reduced the bias in the shallow root zone, the mass conservation scheme provided better estimates in the deeper profile. The mass conservation scheme also yielded physically consistent estimates of fluxes and maintained the water budget. Impacts of model physics on the assimilation results are discussed.

  9. Dual-mass vibratory rate gyroscope with suppressed translational acceleration response and quadrature-error correction capability

    NASA Technical Reports Server (NTRS)

    Clark, William A. (Inventor); Juneau, Thor N. (Inventor); Lemkin, Mark A. (Inventor); Roessig, Allen W. (Inventor)

    2001-01-01

    A microfabricated vibratory rate gyroscope to measure rotation includes two proof-masses mounted in a suspension system anchored to a substrate. The suspension has two principal modes of compliance, one of which is driven into oscillation. The driven oscillation combined with rotation of the substrate about an axis perpendicular to the substrate results in Coriolis acceleration along the other mode of compliance, the sense-mode. The sense-mode is designed to respond to Coriolis accelerationwhile suppressing the response to translational acceleration. This is accomplished using one or more rigid levers connecting the two proof-masses. The lever allows the proof-masses to move in opposite directions in response to Coriolis acceleration. The invention includes a means for canceling errors, termed quadrature error, due to imperfections in implementation of the sensor. Quadrature-error cancellation utilizes electrostatic forces to cancel out undesired sense-axis motion in phase with drive-mode position.

  10. Global modeling of land water and energy balances. Part I: The land dynamics (LaD) model

    USGS Publications Warehouse

    Milly, P.C.D.; Shmakin, A.B.

    2002-01-01

    A simple model of large-scale land (continental) water and energy balances is presented. The model is an extension of an earlier scheme with a record of successful application in climate modeling. The most important changes from the original model include 1) introduction of non-water-stressed stomatal control of transpiration, in order to correct a tendency toward excessive evaporation: 2) conversion from globally constant parameters (with the exception of vegetation-dependent snow-free surface albedo) to more complete vegetation and soil dependence of all parameters, in order to provide more realistic representation of geographic variations in water and energy balances and to enable model-based investigations of land-cover change; 3) introduction of soil sensible heat storage and transport, in order to move toward realistic diurnal-cycle modeling; 4) a groundwater (saturated-zone) storage reservoir, in order to provide more realistic temporal variability of runoff; and 5) a rudimentary runoff-routing scheme for delivery of runoff to the ocean, in order to provide realistic freshwater forcing of the ocean general circulation model component of a global climate model. The new model is tested with forcing from the International Satellite Land Surface Climatology Project Initiative I global dataset and a recently produced observation-based water-balance dataset for major river basins of the world. Model performance is evaluated by comparing computed and observed runoff ratios from many major river basins of the world. Special attention is given to distinguishing between two components of the apparent runoff ratio error: the part due to intrinsic model error and the part due to errors in the assumed precipitation forcing. The pattern of discrepancies between modeled and observed runoff ratios is consistent with results from a companion study of precipitation estimation errors. The new model is tuned by adjustment of a globally constant scale factor for non-water-stressed stomatal resistance. After tuning, significant overestimation of runoff is found in environments where an overall arid climate includes a brief but intense wet season. It is shown that this error may be explained by the neglect of upward soil water diffusion from below the root zone during the dry season. With the exception of such basins, and in the absence of precipitation errors. It is estimated that annual runoff ratios simulated by the model would have a root-mean-square error of about 0.05. The new model matches observations better than its predecessor, which has a negative runoff bias and greater scatter.

  11. An Analysis of Mass Balance of Chilean Glaciers

    NASA Astrophysics Data System (ADS)

    Ambinakudige, S.; Tetteh, L.

    2013-12-01

    Glaciers in Chile range from very small glacierets found on the isolated volcanoes of northern Chile to the 13,000 sq.km Southern Patagonian Ice Field. Regular monitoring of these glaciers is very important as they are considered as sensitive indicators of climate change. Millions of people's lives are dependent on these glaciers for fresh water and irrigation purpose. In this study, mass balances of several Chilean glaciers were estimated using Aster satellite images between 2007 and 2012. Highly accurate DEMs were created with supplementary information from IceSat data. The result indicated a negative mass balance for many glaciers indicating the need for further monitoring of glaciers in the Andes.

  12. Quantifying Contaminant Mass for the Feasibility Study of the DuPont Chambers Works FUSRAP Site - 13510

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Carl; Rahman, Mahmudur; Johnson, Ann

    2013-07-01

    The U.S. Army Corps of Engineers (USACE) - Philadelphia District is conducting an environmental restoration at the DuPont Chambers Works in Deepwater, New Jersey under the Formerly Utilized Sites Remedial Action Program (FUSRAP). Discrete locations are contaminated with natural uranium, thorium-230 and radium-226. The USACE is proposing a preferred remedial alternative consisting of excavation and offsite disposal to address soil contamination followed by monitored natural attenuation to address residual groundwater contamination. Methods were developed to quantify the error associated with contaminant volume estimates and use mass balance calculations of the uranium plume to estimate the removal efficiency of the proposedmore » alternative. During the remedial investigation, the USACE collected approximately 500 soil samples at various depths. As the first step of contaminant mass estimation, soil analytical data was segmented into several depth intervals. Second, using contouring software, analytical data for each depth interval was contoured to determine lateral extent of contamination. Six different contouring algorithms were used to generate alternative interpretations of the lateral extent of the soil contamination. Finally, geographical information system software was used to produce a three dimensional model in order to present both lateral and vertical extent of the soil contamination and to estimate the volume of impacted soil for each depth interval. The average soil volume from all six contouring methods was used to determine the estimated volume of impacted soil. This method also allowed an estimate of a standard deviation of the waste volume estimate. It was determined that the margin of error for the method was plus or minus 17% of the waste volume, which is within the acceptable construction contingency for cost estimation. USACE collected approximately 190 groundwater samples from 40 monitor wells. It is expected that excavation and disposal of contaminated soil will remove the contaminant source zone and significantly reduce contaminant concentrations in groundwater. To test this assumption, a mass balance evaluation was performed to estimate the amount of dissolved uranium that would remain in the groundwater after completion of soil excavation. As part of this evaluation, average groundwater concentrations for the pre-excavation and post-excavation aquifer plume area were calculated to determine the percentage of plume removed during excavation activities. In addition, the volume of the plume removed during excavation dewatering was estimated. The results of the evaluation show that approximately 98% of the aqueous uranium would be removed during the excavation phase. The USACE expects that residual levels of contamination will remain in groundwater after excavation of soil but at levels well suited for the selection of excavation combined with monitored natural attenuation as a preferred alternative. (authors)« less

  13. High-precision measurement of variations in calcium isotope ratios in urine by multiple collector inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Morgan, J.L.L.; Gordon, G.W.; Arrua, R.C.; Skulan, J.L.; Anbar, A.D.; Bullen, T.D.

    2011-01-01

    We describe a new chemical separation method to isolate Ca from other matrix elements in biological samples, developed with the long-term goal of making high-precision measurement of natural stable Ca isotope variations a clinically applicable tool to assess bone mineral balance. A new two-column procedure utilizing HBr achieves the purity required to accurately and precisely measure two Ca isotope ratios (44Ca/42Ca and 44Ca/43Ca) on a Neptune multiple collector inductively coupled plasma mass spectrometer (MC-ICPMS) in urine. Purification requirements for Sr, Ti, and K (Ca/Sr > 10000; Ca/Ti > 10000000; and Ca/K > 10) were determined by addition of these elements to Ca standards of known isotopic composition. Accuracy was determined by (1) comparing Ca isotope results for samples and standards to published data obtained using thermal ionization mass spectrometry (TIMS), (2) adding a Ca standard of known isotopic composition to a urine sample purified of Ca, and (3) analyzing mixtures of urine samples and standards in varying proportions. The accuracy and precision of δ44/42Ca measurements of purified samples containing 25 μg of Ca can be determined with typical errors less than ±0.2‰ (2σ).

  14. Medication errors: definitions and classification

    PubMed Central

    Aronson, Jeffrey K

    2009-01-01

    To understand medication errors and to identify preventive strategies, we need to classify them and define the terms that describe them. The four main approaches to defining technical terms consider etymology, usage, previous definitions, and the Ramsey–Lewis method (based on an understanding of theory and practice). A medication error is ‘a failure in the treatment process that leads to, or has the potential to lead to, harm to the patient’. Prescribing faults, a subset of medication errors, should be distinguished from prescription errors. A prescribing fault is ‘a failure in the prescribing [decision-making] process that leads to, or has the potential to lead to, harm to the patient’. The converse of this, ‘balanced prescribing’ is ‘the use of a medicine that is appropriate to the patient's condition and, within the limits created by the uncertainty that attends therapeutic decisions, in a dosage regimen that optimizes the balance of benefit to harm’. This excludes all forms of prescribing faults, such as irrational, inappropriate, and ineffective prescribing, underprescribing and overprescribing. A prescription error is ‘a failure in the prescription writing process that results in a wrong instruction about one or more of the normal features of a prescription’. The ‘normal features’ include the identity of the recipient, the identity of the drug, the formulation, dose, route, timing, frequency, and duration of administration. Medication errors can be classified, invoking psychological theory, as knowledge-based mistakes, rule-based mistakes, action-based slips, and memory-based lapses. This classification informs preventive strategies. PMID:19594526

  15. Probing the Spatio-Temporal Characteristics of Temporal Aliasing Errors and their Impact on Satellite Gravity Retrievals

    NASA Astrophysics Data System (ADS)

    Wiese, D. N.; McCullough, C. M.

    2017-12-01

    Studies have shown that both single pair low-low satellite-to-satellite tracking (LL-SST) and dual-pair LL-SST hypothetical future satellite gravimetry missions utilizing improved onboard measurement systems relative to the Gravity Recovery and Climate Experiment (GRACE) will be limited by temporal aliasing errors; that is, the error introduced through deficiencies in models of high frequency mass variations required for the data processing. Here, we probe the spatio-temporal characteristics of temporal aliasing errors to understand their impact on satellite gravity retrievals using high fidelity numerical simulations. We find that while aliasing errors are dominant at long wavelengths and multi-day timescales, improving knowledge of high frequency mass variations at these resolutions translates into only modest improvements (i.e. spatial resolution/accuracy) in the ability to measure temporal gravity variations at monthly timescales. This result highlights the reliance on accurate models of high frequency mass variations for gravity processing, and the difficult nature of reducing temporal aliasing errors and their impact on satellite gravity retrievals.

  16. THE LAKE MICHIGAN MASS BALANCE PROJECT: QUALITY ASSURANCE PLAN FOR MATHEMATICAL MODELLING

    EPA Science Inventory

    This report documents the quality assurance process for the development and application of the Lake Michigan Mass Balance Models. The scope includes the overall modeling framework as well as the specific submodels that are linked to form a comprehensive synthesis of physical, che...

  17. 40 CFR 1065.307 - Linearity verification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... measurement (such as a scale, balance, or mass comparator) at the inlet to the fuel-measurement system. Use a... nitrogen. Select gas divisions that you typically use. Use a selected gas division as the measured value.... (9) Mass. For linearity verification for gravimetric PM balances, use external calibration weights...

  18. Great Lakes water quality scenario models: Operational feasibility -Lake Michigan Mass Balance models

    EPA Science Inventory

    An overview of the Lake Michigan Mass Balance models were provided (eutrophication/nutrients, atrazine, mercury, and PCBs) with emphasis on the PCB model post-audit and forecast for Lake Trout. Provided were modeling construct, model description, and primary results. An assessm...

  19. REVIEW OF VOLATILE ORGANIC COMPOUND SOURCE APPORTIONMENT BY CHEMICAL MASS BALANCE. (R826237)

    EPA Science Inventory

    The chemical mass balance (CMB) receptor model has apportioned volatile organic compounds (VOCs) in more than 20 urban areas, mostly in the United States. These applications differ in terms of the total fraction apportioned, the calculation method, the chemical compounds used ...

  20. OVERVIEW AND STATUS OF LAKE MICHIGAN MASS BALANCE MODELLING PROJECT

    EPA Science Inventory

    With most of the data available from the Lake Michigan Mass Balance Project field program, the modeling efforts have begun in earnest. The tributary and atmospheric load estimates are or will be completed soon, so realistic simulations for calibration are beginning. A Quality Ass...

  1. ATMOSPHERIC MERCURY DEPOSITION TO LAKE MICHIGAN DURING THE LAKE MICHIGAN MASS BALANCE STUDY

    EPA Science Inventory

    Wet and dry mercury (Hg) deposition were calculated to Lake Michigan using a hybrid receptor modeling framework. The model utilized mercury monitoring data collected during the Lake Michigan Mass Balance Study and the Atmospheric Exchange Over Lakes and Oceans Study together w...

  2. A POLLUTION REDUCTION METHODOLOGY FOR CHEMICAL PROCESS SIMULATORS

    EPA Science Inventory

    A pollution minimization methodology was developed for chemical process design using computer simulation. It is based on a pollution balance that at steady state is used to define a pollution index with units of mass of pollution per mass of products. The pollution balance has be...

  3. Multi-year analysis of distributed glacier mass balance modelling and equilibrium line altitude on King George Island, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Falk, Ulrike; López, Damián A.; Silva-Busso, Adrián

    2018-04-01

    The South Shetland Islands are located at the northern tip of the Antarctic Peninsula (AP). This region was subject to strong warming trends in the atmospheric surface layer. Surface air temperature increased about 3 K in 50 years, concurrent with retreating glacier fronts, an increase in melt areas, ice surface lowering and rapid break-up and disintegration of ice shelves. The positive trend in surface air temperature has currently come to a halt. Observed surface air temperature lapse rates show a high variability during winter months (standard deviations up to ±1.0 K (100 m)-1) and a distinct spatial heterogeneity reflecting the impact of synoptic weather patterns. The increased mesocyclonic activity during the wintertime over the past decades in the study area results in intensified advection of warm, moist air with high temperatures and rain and leads to melt conditions on the ice cap, fixating surface air temperatures to the melting point. Its impact on winter accumulation results in the observed negative mass balance estimates. Six years of continuous glaciological measurements on mass balance stake transects as well as 5 years of climatological data time series are presented and a spatially distributed glacier energy balance melt model adapted and run based on these multi-year data sets. The glaciological surface mass balance model is generally in good agreement with observations, except for atmospheric conditions promoting snow drift by high wind speeds, turbulence-driven snow deposition and snow layer erosion by rain. No drift in the difference between simulated mass balance and mass balance measurements can be seen over the course of the 5-year model run period. The winter accumulation does not suffice to compensate for the high variability in summer ablation. The results are analysed to assess changes in meltwater input to the coastal waters, specific glacier mass balance and the equilibrium line altitude (ELA). The Fourcade Glacier catchment drains into Potter cove, has an area of 23.6 km2 and is glacierized to 93.8 %. Annual discharge from Fourcade Glacier into Potter Cove is estimated to q ¯ = 25±6 hm3 yr-1 with the standard deviation of 8 % annotating the high interannual variability. The average ELA calculated from our own glaciological observations on Fourcade Glacier over the time period 2010 to 2015 amounts to 260±20 m. Published studies suggest rather stable conditions of slightly negative glacier mass balance until the mid-1980s with an ELA of approx. 150 m. The calculated accumulation area ratio suggests dramatic changes in the future extent of the inland ice cap for the South Shetland Islands.

  4. Analysis of a GRACE Global Mascon Solution for Gulf of Alaska Glaciers

    NASA Technical Reports Server (NTRS)

    Arendt, Anthony; Luthcke, Scott B.; Gardner, Alex; O'Neel, Shad; Hill, David; Moholdt, Geir; Abdalati, Waleed

    2013-01-01

    We present a high-resolution Gravity Recovery and Climate Experiment (GRACE) mascon solution for Gulf of Alaska (GOA) glaciers and compare this with in situ glaciological, climate and other remote-sensing observations. Our GRACE solution yields a GOA glacier mass balance of -6511 Gt a(exp.-1) for the period December 2003 to December 2010, with summer balances driving the interannual variability. Between October/November 2003 and October 2009 we obtain a mass balance of -6111 Gt a(exp. -1) from GRACE, which compares well with -6512 Gt a(exp. -1) from ICESat based on hypsometric extrapolation of glacier elevation changes. We find that mean summer (June-August) air temperatures derived from both ground and lower-troposphere temperature records were good predictors of GRACE-derived summer mass balances, capturing 59% and 72% of the summer balance variability respectively. Large mass losses during 2009 were likely due to low early melt season surface albedos, measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) and likely associated with the 31 March 2009 eruption of Mount Redoubt, southwestern Alaska. GRACE data compared well with in situ measurements atWolverine Glacier (maritime Alaska), but poorly with those at Gulkana Glacier (interior Alaska). We conclude that, although GOA mass estimates from GRACE are robust over the entire domain, further constraints on subregional and seasonal estimates are necessary to improve fidelity to ground observations.

  5. Analysis of a GRACE global mascon solution for Gulf of Alaska glaciers

    USGS Publications Warehouse

    Arendt, Anthony; Luthcke, Scott; Gardner, Alex; O'Neel, Shad; Hill, David; Moholdt, Geir; Abdalati, Waleed

    2013-01-01

    We present a high-resolution Gravity Recovery and Climate Experiment (GRACE) mascon solution for Gulf of Alaska (GOA) glaciers and compare this with in situ glaciological, climate and other remote-sensing observations. Our GRACE solution yields a GOA glacier mass balance of –65 ± 11 Gt a–1 for the period December 2003 to December 2010, with summer balances driving the interannual variability. Between October/November 2003 and October 2009 we obtain a mass balance of –61 ± 11 Gt a–1 from GRACE, which compares well with –65 ± 12 Gt a–1 from ICESat based on hypsometric extrapolation of glacier elevation changes. We find that mean summer (June–August) air temperatures derived from both ground and lower-troposphere temperature records were good predictors of GRACE-derived summer mass balances, capturing 59% and 72% of the summer balance variability respectively. Large mass losses during 2009 were likely due to low early melt season surface albedos, measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) and likely associated with the 31 March 2009 eruption of Mount Redoubt, southwestern Alaska. GRACE data compared well with in situ measurements at Wolverine Glacier (maritime Alaska), but poorly with those at Gulkana Glacier (interior Alaska). We conclude that, although GOA mass estimates from GRACE are robust over the entire domain, further constraints on subregional and seasonal estimates are necessary to improve fidelity to ground observations.

  6. Mass balance approaches to understanding evolution of dripwater chemistry

    NASA Astrophysics Data System (ADS)

    Fairchild, I. J.; Baker, A.; Andersen, M. S.; Treble, P. C.

    2015-12-01

    Forward and inverse modelling of dripwater chemistry is a fast-developing area in speleothem science. Such approaches can incorporate theoretical, parameterized or observed relationships between forcing factors and water composition, but at the heart is mass balance: a fundamental principle that provides important constraints. Mass balance has been used in speleothem studies to trace the evolution of dissolved inorganic carbon and carbon isotopes from soil to cave, and to characterize the existence and quantification of prior calcite precipitation (PCP) based on ratios of Mg and Sr to Ca. PCP effects can dominate slow drips, whereas fast drips are more likely to show a residual variability linked to soil-biomass processes. A possible configuration of a more complete mass balance model is illustrated in the figure. Even in humid temperate climates, evapotranspiration can be 50% of total atmospheric precipitation leading to substantially raised salt contents and there can be significant exchange with biomass. In more arid settings, at least seasonal soil storage of salts is likely. Golgotha Cave in SW Australia is in a Mediterranean climate with a strong summer soil moisture deficit. The land surface is forested leading to large ion fluxes related to vegetation. There are also periodic disturbances related to fire. Mass balance approaches have been applied to an 8-year monitoring record. Inter-annual trends of elements coprecipitated in speleothems from fast drips are predicted to be dominated by biomass effects.

  7. A reconciled estimate of ice-sheet mass balance.

    PubMed

    Shepherd, Andrew; Ivins, Erik R; A, Geruo; Barletta, Valentina R; Bentley, Mike J; Bettadpur, Srinivas; Briggs, Kate H; Bromwich, David H; Forsberg, René; Galin, Natalia; Horwath, Martin; Jacobs, Stan; Joughin, Ian; King, Matt A; Lenaerts, Jan T M; Li, Jilu; Ligtenberg, Stefan R M; Luckman, Adrian; Luthcke, Scott B; McMillan, Malcolm; Meister, Rakia; Milne, Glenn; Mouginot, Jeremie; Muir, Alan; Nicolas, Julien P; Paden, John; Payne, Antony J; Pritchard, Hamish; Rignot, Eric; Rott, Helmut; Sørensen, Louise Sandberg; Scambos, Ted A; Scheuchl, Bernd; Schrama, Ernst J O; Smith, Ben; Sundal, Aud V; van Angelen, Jan H; van de Berg, Willem J; van den Broeke, Michiel R; Vaughan, David G; Velicogna, Isabella; Wahr, John; Whitehouse, Pippa L; Wingham, Duncan J; Yi, Donghui; Young, Duncan; Zwally, H Jay

    2012-11-30

    We combined an ensemble of satellite altimetry, interferometry, and gravimetry data sets using common geographical regions, time intervals, and models of surface mass balance and glacial isostatic adjustment to estimate the mass balance of Earth's polar ice sheets. We find that there is good agreement between different satellite methods--especially in Greenland and West Antarctica--and that combining satellite data sets leads to greater certainty. Between 1992 and 2011, the ice sheets of Greenland, East Antarctica, West Antarctica, and the Antarctic Peninsula changed in mass by -142 ± 49, +14 ± 43, -65 ± 26, and -20 ± 14 gigatonnes year(-1), respectively. Since 1992, the polar ice sheets have contributed, on average, 0.59 ± 0.20 millimeter year(-1) to the rate of global sea-level rise.

  8. Responsiveness of performance-based outcome measures for mobility, balance, muscle strength and manual dexterity in adults with myotonic dystrophy type 1.

    PubMed

    Kierkegaard, Marie; Petitclerc, Émilie; Hébert, Luc J; Mathieu, Jean; Gagnon, Cynthia

    2018-02-28

    To assess changes and responsiveness in outcome measures of mobility, balance, muscle strength and manual dexterity in adults with myotonic dystrophy type 1. A 9-year longitudinal study conducted with 113 patients. The responsiveness of the Timed Up and Go test, Berg Balance Scale, quantitative muscle testing, grip and pinch-grip strength, and Purdue Pegboard Test was assessed using criterion and construct approaches. Patient-reported perceived changes (worse/stable) in balance, walking, lower-limb weakness, stair-climbing and hand weakness were used as criteria. Predefined hypotheses about expected area under the receiver operating characteristic curves (criterion approach) and correlations between relative changes (construct approach) were explored. The direction and magnitude of median changes in outcome measures corresponded with patient-reported changes. Median changes in the Timed Up and Go test, grip strength, pinch-grip strength and Purdue Pegboard Test did not, in general, exceed known measurement errors. Most criterion (72%) and construct (70%) approach hypotheses were supported. Promising responsiveness was found for outcome measures of mobility, balance and muscle strength. Grip strength and manual dexterity measures showed poorer responsiveness. The performance-based outcome measures captured changes over the 9-year period and responsiveness was promising. Knowledge of measurement errors is needed to interpret the meaning of these longitudinal changes.

  9. Energy expenditure in obesity associated with craniopharyngioma

    PubMed Central

    Shah, Rachana; Tershakovec, Andy M.; Zemel, Babette S.; Sutton, Leslie N.; Grimberg, Adda; Moshang, Thomas

    2010-01-01

    Background and purpose Obesity is a common yet incompletely understood complication of childhood craniopharyngioma. We hypothesized that craniopharyngioma is associated with specific defects in energy balance compared to obese control children. Methods Eleven craniopharyngioma patients were recruited for a study on body composition and energy balance. Eight subjects were obese. The obese craniopharyngioma patients had a mean age (±SD) of 11.2±1.7 years. The average body mass index z score was 2.33 (±0.32). A previously studied group of obese children (BMI z score 2.46±0.46) served as controls. Resting energy expenditure (REE) was determined by indirect calorimetry and body composition by dual energy X-ray absorptiometry in all children. Results Obese craniopharyngioma patient subjects had increased mean (±standard error) fat-free mass compared to obese controls (57%±0.88 % vs 50.0%±0.87%, p=0.02). The obese craniopharyngioma patients had a 17% lower REE compared to values expected from the World Health Organization equation (1,541±112.6 vs 1,809±151.8 kcal; p=0.01). In contrast, the obese control children had measured REE within 1% of predicted (1,647±33.2 vs. 1,652±40.2; p=0.8). In a linear regression model, REE remained significantly lower than predicted after controlling for FFM. Conclusions Lower REE may be a factor contributing to obesity in children with craniopharyngioma. Further study is needed into the mechanisms for reduced energy expenditure in patients with craniopharyngioma. PMID:20107994

  10. Influence of Slope-Scale Snowmelt on Catchment Response Simulated With the Alpine3D Model

    NASA Astrophysics Data System (ADS)

    Brauchli, Tristan; Trujillo, Ernesto; Huwald, Hendrik; Lehning, Michael

    2017-12-01

    Snow and hydrological modeling in alpine environments remains challenging because of the complexity of the processes affecting the mass and energy balance. This study examines the influence of snowmelt on the hydrological response of a high-alpine catchment of 43.2 km2 in the Swiss Alps during the water year 2014-2015. Based on recent advances in Alpine3D, we examine how snow distributions and liquid water transport within the snowpack influence runoff dynamics. By combining these results with multiscale observations (snow lysimeter, distributed snow depths, and streamflow), we demonstrate the added value of a more realistic snow distribution at the onset of melt season. At the site scale, snowpack runoff is well simulated when the mass balance errors are corrected (R2 = 0.95 versus R2 = 0.61). At the subbasin scale, a more heterogeneous snowpack leads to a more rapid runoff pulse originating in the shallower areas while an extended melting period (by a month) is caused by snowmelt from deeper areas. This is a marked improvement over results obtained using a traditional precipitation interpolation method. Hydrological response is also improved by the more realistic snowpack (NSE of 0.85 versus 0.74), even though calibration processes smoothen out the differences. The added value of a more complex liquid water transport scheme is obvious at the site scale but decreases at larger scales. Our results highlight not only the importance but also the difficulty of getting a realistic snowpack distribution even in a well-instrumented area and present a model validation from multiscale experimental data sets.

  11. Evaluation of the predicted error of the soil moisture retrieval from C-band SAR by comparison against modelled soil moisture estimates over Australia

    PubMed Central

    Doubková, Marcela; Van Dijk, Albert I.J.M.; Sabel, Daniel; Wagner, Wolfgang; Blöschl, Günter

    2012-01-01

    The Sentinel-1 will carry onboard a C-band radar instrument that will map the European continent once every four days and the global land surface at least once every twelve days with finest 5 × 20 m spatial resolution. The high temporal sampling rate and operational configuration make Sentinel-1 of interest for operational soil moisture monitoring. Currently, updated soil moisture data are made available at 1 km spatial resolution as a demonstration service using Global Mode (GM) measurements from the Advanced Synthetic Aperture Radar (ASAR) onboard ENVISAT. The service demonstrates the potential of the C-band observations to monitor variations in soil moisture. Importantly, a retrieval error estimate is also available; these are needed to assimilate observations into models. The retrieval error is estimated by propagating sensor errors through the retrieval model. In this work, the existing ASAR GM retrieval error product is evaluated using independent top soil moisture estimates produced by the grid-based landscape hydrological model (AWRA-L) developed within the Australian Water Resources Assessment system (AWRA). The ASAR GM retrieval error estimate, an assumed prior AWRA-L error estimate and the variance in the respective datasets were used to spatially predict the root mean square error (RMSE) and the Pearson's correlation coefficient R between the two datasets. These were compared with the RMSE calculated directly from the two datasets. The predicted and computed RMSE showed a very high level of agreement in spatial patterns as well as good quantitative agreement; the RMSE was predicted within accuracy of 4% of saturated soil moisture over 89% of the Australian land mass. Predicted and calculated R maps corresponded within accuracy of 10% over 61% of the continent. The strong correspondence between the predicted and calculated RMSE and R builds confidence in the retrieval error model and derived ASAR GM error estimates. The ASAR GM and Sentinel-1 have the same basic physical measurement characteristics, and therefore very similar retrieval error estimation method can be applied. Because of the expected improvements in radiometric resolution of the Sentinel-1 backscatter measurements, soil moisture estimation errors can be expected to be an order of magnitude less than those for ASAR GM. This opens the possibility for operationally available medium resolution soil moisture estimates with very well-specified errors that can be assimilated into hydrological or crop yield models, with potentially large benefits for land-atmosphere fluxes, crop growth, and water balance monitoring and modelling. PMID:23483015

  12. Characterization and Modeling of a Control Moment Gyroscope

    DTIC Science & Technology

    2015-03-26

    parallel, and angular directions [16]. The rotor is powered by a brushless DC motor rated to 557.9 mN-m (4.938 in-lbf) [4]. The motor has Hall effect ...mass balance installed on rotor housing Gimbal Balancing Test Procedures. To evaluate the effectiveness of the mass balance, the gimbal was tested...in which the rotor is running The vehicle-level model test (Section 4.9) predicts the effects of CMG gear lash on overall vehicle performance. Gear

  13. Influence of Persistent Wind Scour on the Surface Mass Balance of Antarctica

    NASA Technical Reports Server (NTRS)

    Das, Indrani; Bell, Robin E.; Scambos, Ted A.; Wolovick, Michael; Creyts, Timothy T.; Studinger, Michael; Fearson, Nicholas; Nicolas, Julien P.; Lenaerts, Jan T. M.; vandenBroeke, Michiel R.

    2013-01-01

    Accurate quantification of surface snow accumulation over Antarctica is a key constraint for estimates of the Antarctic mass balance, as well as climatic interpretations of ice-core records. Over Antarctica, near-surface winds accelerate down relatively steep surface slopes, eroding and sublimating the snow. This wind scour results in numerous localized regions (< or = 200 sq km) with reduced surface accumulation. Estimates of Antarctic surface mass balance rely on sparse point measurements or coarse atmospheric models that do not capture these local processes, and overestimate the net mass input in wind-scour zones. Here we combine airborne radar observations of unconformable stratigraphic layers with lidar-derived surface roughness measurements to identify extensive wind-scour zones over Dome A, in the interior of East Antarctica. The scour zones are persistent because they are controlled by bedrock topography. On the basis of our Dome A observations, we develop an empirical model to predict wind-scour zones across the Antarctic continent and find that these zones are predominantly located in East Antarctica. We estimate that approx. 2.7-6.6% of the surface area of Antarctica has persistent negative net accumulation due to wind scour, which suggests that, across the continent, the snow mass input is overestimated by 11-36.5 Gt /yr in present surface-mass-balance calculations.

  14. Research concerning the balancing of a plane mechanism

    NASA Astrophysics Data System (ADS)

    Bădoiu, D.; Petrescu, M. G.; Antonescu, N. N.; Toma, G.

    2018-01-01

    By statically balancing of the plane mechanisms and especially those functioning at high speeds is being pursued the decrease of the value of the resultant force of all inertia forces that work on the component elements, thus obtaining a significant decrease in vibrations and shocks during the functioning. On the other hand, the existence of balancing masses which ensure the balancing of the mechanism leads to increased gauge and its mass. In this paper are presented some possibilities of statically balancing a plane mechanism which is composed of three independent contours. First is analyzed the case when the mechanism is totally balanced. Then a solution is proposed for a partial balancing of the mechanism based on the balancing of the first harmonic of the inertia force developed in a piston of the mechanism. Finally, are presented some simulation results concerning the variation of the value of the resultant inertia force during a cinematic cycle when the mechanism is unbalanced and when it is partially balanced. Also, it is analyzed the variation of the motor moment when the mechanism is unbalanced and when is totally and partially balanced.

  15. Type I and Type II error concerns in fMRI research: re-balancing the scale

    PubMed Central

    Cunningham, William A.

    2009-01-01

    Statistical thresholding (i.e. P-values) in fMRI research has become increasingly conservative over the past decade in an attempt to diminish Type I errors (i.e. false alarms) to a level traditionally allowed in behavioral science research. In this article, we examine the unintended negative consequences of this single-minded devotion to Type I errors: increased Type II errors (i.e. missing true effects), a bias toward studying large rather than small effects, a bias toward observing sensory and motor processes rather than complex cognitive and affective processes and deficient meta-analyses. Power analyses indicate that the reductions in acceptable P-values over time are producing dramatic increases in the Type II error rate. Moreover, the push for a mapwide false discovery rate (FDR) of 0.05 is based on the assumption that this is the FDR in most behavioral research; however, this is an inaccurate assessment of the conventions in actual behavioral research. We report simulations demonstrating that combined intensity and cluster size thresholds such as P < 0.005 with a 10 voxel extent produce a desirable balance between Types I and II error rates. This joint threshold produces high but acceptable Type II error rates and produces a FDR that is comparable to the effective FDR in typical behavioral science articles (while a 20 voxel extent threshold produces an actual FDR of 0.05 with relatively common imaging parameters). We recommend a greater focus on replication and meta-analysis rather than emphasizing single studies as the unit of analysis for establishing scientific truth. From this perspective, Type I errors are self-erasing because they will not replicate, thus allowing for more lenient thresholding to avoid Type II errors. PMID:20035017

  16. Independent effects of adding weight and inertia on balance during quiet standing

    PubMed Central

    2012-01-01

    Background Human balance during quiet standing is influenced by adding mass to the body with a backpack, with symmetrically-applied loads to the trunk, or with obesity. Adding mass to the body increases both the weight and inertia of the body, which theoretically could provide counteracting effects on body dynamics and balance. Understanding the independent effects of adding weight and inertia on balance may provide additional insight into human balance that could lead to novel advancements in balance training and rehabilitation. Therefore, the purpose of this study was to investigate the independent effects of adding weight and inertia on balance during quiet standing. Methods Sixteen normal-weight young adult participants stood as still as possible on a custom-built backboard apparatus under four experimental conditions: baseline, added inertia only, added weight only, and added inertia and weight. Results Adding inertia by itself had no measurable effect on center of pressure movement or backboard movement. Adding weight by itself increased center of pressure movement (indicated greater effort by the postural control system to stand as still as possible) and backboard movement (indicating a poorer ability of the body to stand as still as possible). Adding inertia and weight at the same time increased center of pressure movement but did not increase backboard movement compared to the baseline condition. Conclusions Adding inertia and adding weight had different effects on balance. Adding inertia by itself had no effect on balance. Adding weight by itself had a negative effect on balance. When adding inertia and weight at the same time, the added inertia appeared to lessen (but did not eliminate) the negative effect of adding weight on balance. These results improve our fundamental understanding of how added mass influences human balance. PMID:22507125

  17. Independent effects of adding weight and inertia on balance during quiet standing.

    PubMed

    Costello, Kerry Elizabeth; Matrangola, Sara Louise; Madigan, Michael Lawrence

    2012-04-16

    Human balance during quiet standing is influenced by adding mass to the body with a backpack, with symmetrically-applied loads to the trunk, or with obesity. Adding mass to the body increases both the weight and inertia of the body, which theoretically could provide counteracting effects on body dynamics and balance. Understanding the independent effects of adding weight and inertia on balance may provide additional insight into human balance that could lead to novel advancements in balance training and rehabilitation. Therefore, the purpose of this study was to investigate the independent effects of adding weight and inertia on balance during quiet standing. Sixteen normal-weight young adult participants stood as still as possible on a custom-built backboard apparatus under four experimental conditions: baseline, added inertia only, added weight only, and added inertia and weight. Adding inertia by itself had no measurable effect on center of pressure movement or backboard movement. Adding weight by itself increased center of pressure movement (indicated greater effort by the postural control system to stand as still as possible) and backboard movement (indicating a poorer ability of the body to stand as still as possible). Adding inertia and weight at the same time increased center of pressure movement but did not increase backboard movement compared to the baseline condition. Adding inertia and adding weight had different effects on balance. Adding inertia by itself had no effect on balance. Adding weight by itself had a negative effect on balance. When adding inertia and weight at the same time, the added inertia appeared to lessen (but did not eliminate) the negative effect of adding weight on balance. These results improve our fundamental understanding of how added mass influences human balance.

  18. Baseline Establishment Using Virtual Environment Traumatic Brain Injury Screen (VETS)

    DTIC Science & Technology

    2015-06-01

    indicator of mTBI. Further, these results establish a baseline data set, which may be useful in comparing concussed individuals. 14. SUBJECT TERMS... Concussion , mild traumatic brain injury (mTBI), traumatic brain injury (TBI), balance, Sensory Organization Test, Balance Error Scoring System, center of...43 5.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . 44 Appendix A Military Acute Concussion Evaluation 47

  19. California's Snow Gun and its implications for mass balance predictions under greenhouse warming

    NASA Astrophysics Data System (ADS)

    Howat, I.; Snyder, M.; Tulaczyk, S.; Sloan, L.

    2003-12-01

    Precipitation has received limited treatment in glacier and snowpack mass balance models, largely due to the poor resolution and confidence of precipitation predictions relative to temperature predictions derived from atmospheric models. Most snow and glacier mass balance models rely on statistical or lapse rate-based downscaling of general or regional circulation models (GCM's and RCM's), essentially decoupling sub-grid scale, orographically-driven evolution of atmospheric heat and moisture. Such models invariably predict large losses in the snow and ice volume under greenhouse warming. However, positive trends in the mass balance of glaciers in some warming maritime climates, as well as at high elevations of the Greenland Ice Sheet, suggest that increased precipitation may play an important role in snow- and glacier-climate interactions. Here, we present a half century of April snowpack data from the Sierra Nevada and Cascade mountains of California, USA. This high-density network of snow-course data indicates that a gain in winter snow accumulation at higher elevations has compensated loss in snow volume at lower elevations by over 50% and has led to glacier expansion on Mt. Shasta. These trends are concurrent with a region-wide increase in winter temperatures up to 2° C. They result from the orographic lifting and saturation of warmer, more humid air leading to increased precipitation at higher elevations. Previous studies have invoked such a "Snow Gun" effect to explain contemporaneous records of Tertiary ocean warming and rapid glacial expansion. A climatological context of the California's "snow gun" effect is elucidated by correlation between the elevation distribution of April SWE observations and the phase of the Pacific Decadal Oscillation and the El Nino Southern Oscillation, both controlling the heat and moisture delivered to the U.S. Pacific coast. The existence of a significant "Snow Gun" effect presents two challenges to snow and glacier mass balance modeling. Firstly, the link between amplification of orographic precipitation and the temporal evolution of ocean-climate oscillations indicates that prediction of future mass balance trends requires consideration of the timing and amplitude of such oscillations. Only recently have ocean-atmosphere models begun to realistically produce such temporal variability. Secondly, the steepening snow mass-balance elevation-gradient associated with the "Snow Gun" implies greater spatial variability in balance with warming. In a warming climate, orographic processes at a scale finer that the highest resolution RCM (>20km grid) become increasingly important and predictions based on lower elevations become increasingly inaccurate for higher elevations. Therefore, thermodynamic interaction between atmospheric heat, moisture and topography must be included in downscaling techniques. In order to demonstrate the importance of the thermodynamic downscaling in mass balance predictions, we nest a high-resolution (100m grid), coupled Orographic Precipitation and Surface Energy balance Model (OPSEM) into the RegC2.5 RCM (40 km grid) and compare results. We apply this nesting technique to Mt. Shasta, California, an area of high topography (~4000m) relative to its RegCM2.5 grid elevation (1289m). These models compute average April snow volume under present and doubled-present Atmospheric CO2 concentrations. While the RegCM2.5 regional model predicts an 83% decrease in April SWE, OPSEM predicts a 16% increase. These results indicate that thermodynamic interactions between the atmosphere and topography at sub- RCM grid resolution must be considered in mass balance models.

  20. Non-stationary (13)C-metabolic flux ratio analysis.

    PubMed

    Hörl, Manuel; Schnidder, Julian; Sauer, Uwe; Zamboni, Nicola

    2013-12-01

    (13)C-metabolic flux analysis ((13)C-MFA) has become a key method for metabolic engineering and systems biology. In the most common methodology, fluxes are calculated by global isotopomer balancing and iterative fitting to stationary (13)C-labeling data. This approach requires a closed carbon balance, long-lasting metabolic steady state, and the detection of (13)C-patterns in a large number of metabolites. These restrictions mostly reduced the application of (13)C-MFA to the central carbon metabolism of well-studied model organisms grown in minimal media with a single carbon source. Here we introduce non-stationary (13)C-metabolic flux ratio analysis as a novel method for (13)C-MFA to allow estimating local, relative fluxes from ultra-short (13)C-labeling experiments and without the need for global isotopomer balancing. The approach relies on the acquisition of non-stationary (13)C-labeling data exclusively for metabolites in the proximity of a node of converging fluxes and a local parameter estimation with a system of ordinary differential equations. We developed a generalized workflow that takes into account reaction types and the availability of mass spectrometric data on molecular ions or fragments for data processing, modeling, parameter and error estimation. We demonstrated the approach by analyzing three key nodes of converging fluxes in central metabolism of Bacillus subtilis. We obtained flux estimates that are in agreement with published results obtained from steady state experiments, but reduced the duration of the necessary (13)C-labeling experiment to less than a minute. These results show that our strategy enables to formally estimate relative pathway fluxes on extremely short time scale, neglecting cellular carbon balancing. Hence this approach paves the road to targeted (13)C-MFA in dynamic systems with multiple carbon sources and towards rich media. © 2013 Wiley Periodicals, Inc.

  1. 40 CFR 1065.307 - Linearity verification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... different flow rates. Use a gravimetric reference measurement (such as a scale, balance, or mass comparator... the gas-division system to divide the span gas with purified air or nitrogen. Select gas divisions... PM balance, m max refers to the typical mass of a PM filter. (ii) For linearity verification of...

  2. MODELLING SEDIMENT TRANSPORT FOR THE LAKE MICHIGAN MASS BALANCE PROJECT

    EPA Science Inventory

    A sediment transport model is one component of the overall ensemble of models being developed for the Lake Michigan Mass Balance. The SEDZL model is being applied to simulate the fine-grained sediment transport in Lake Michigan for the 1982-1983 and 1994-1995 periods. Model perf...

  3. AN OVERVIEW OF THE LAKE MICHIGAN MASS BALANCE MODELING PROJECT: BACKGROUND, ACCOMPLISHMENTS, AND FUTURE WORK

    EPA Science Inventory

    Modeling associated with the Lake Michigan Mass Balance Project (LMMBP) is being conducted using WASP-type water quality models to gain a better understanding of the ecosystem transport and fate of polychlorinated biphenyls (PCBs), atrazine, mercury, and trans-nonachlor in Lake M...

  4. POLLUTION BALANCE: A NEW METHODOLOGY FOR MINIMIZING WASTE PRODUCTION IN MANUFACTURING PROCESSES.

    EPA Science Inventory

    A new methodolgy based on a generic pollution balance equation, has been developed for minimizing waste production in manufacturing processes. A "pollution index," defined as the mass of waste produced per unit mass of a product, has been introduced to provide a quantitative meas...

  5. 40 CFR 98.246 - Data reporting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... values are not to be used in the mass balance calculation. (11) If you determine carbon content or... use the mass balance methodology in § 98.243(c), you must report the information specified in... of petrochemical produced, names of other products, and names of carbon-containing feedstocks. (3...

  6. 40 CFR 98.246 - Data reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... values are not to be used in the mass balance calculation. (11) If you determine carbon content or... use the mass balance methodology in § 98.243(c), you must report the information specified in... of petrochemical produced, names of other products, and names of carbon-containing feedstocks. (3...

  7. 40 CFR 98.246 - Data reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... values are not to be used in the mass balance calculation. (11) If you determine carbon content or... use the mass balance methodology in § 98.243(c), you must report the information specified in... of petrochemical produced, names of other products, and names of carbon-containing feedstocks. (3...

  8. MICHTOX: A MASS BALANCE AND BIOACCUMULATION MODEL FOR TOXIC CHEMICALS IN LAKE MICHIGAN

    EPA Science Inventory

    MICHTOX is a toxic chemical mass balance and bioaccumulation model for Lake Michigan. It was developed for USEPA's Region V in support of the Lake Michigan Lake-wide Management Plan (LaMP) to provide guidance on expected water quality improvements in response to critical pollutan...

  9. MASS BALANCE MODELLING OF PCBS IN THE FOX RIVER/GREEN BAY COMPLEX

    EPA Science Inventory

    The USEPA Office of Research and Development developed and applies a multimedia, mass balance modeling approach to the Fox River/Green Bay complex to aid managers with remedial decision-making. The suite of models were applied to PCBs due to the long history of contamination and ...

  10. Mountain Glaciers and Ice Caps

    USGS Publications Warehouse

    Ananichheva, Maria; Arendt, Anthony; Hagen, Jon-Ove; Hock, Regine; Josberger, Edward G.; Moore, R. Dan; Pfeffer, William Tad; Wolken, Gabriel J.

    2011-01-01

    Projections of future rates of mass loss from mountain glaciers and ice caps in the Arctic focus primarily on projections of changes in the surface mass balance. Current models are not yet capable of making realistic forecasts of changes in losses by calving. Surface mass balance models are forced with downscaled output from climate models driven by forcing scenarios that make assumptions about the future rate of growth of atmospheric greenhouse gas concentrations. Thus, mass loss projections vary considerably, depending on the forcing scenario used and the climate model from which climate projections are derived. A new study in which a surface mass balance model is driven by output from ten general circulation models (GCMs) forced by the IPCC (Intergovernmental Panel on Climate Change) A1B emissions scenario yields estimates of total mass loss of between 51 and 136 mm sea-level equivalent (SLE) (or 13% to 36% of current glacier volume) by 2100. This implies that there will still be substantial glacier mass in the Arctic in 2100 and that Arctic mountain glaciers and ice caps will continue to influence global sea-level change well into the 22nd century.

  11. Towards a balanced social psychology: causes, consequences, and cures for the problem-seeking approach to social behavior and cognition.

    PubMed

    Krueger, Joachim I; Funder, David C

    2004-06-01

    Mainstream social psychology focuses on how people characteristically violate norms of action through social misbehaviors such as conformity with false majority judgments, destructive obedience, and failures to help those in need. Likewise, they are seen to violate norms of reasoning through cognitive errors such as misuse of social information, self-enhancement, and an over-readiness to attribute dispositional characteristics. The causes of this negative research emphasis include the apparent informativeness of norm violation, the status of good behavior and judgment as unconfirmable null hypotheses, and the allure of counter-intuitive findings. The shortcomings of this orientation include frequently erroneous imputations of error, findings of mutually contradictory errors, incoherent interpretations of error, an inability to explain the sources of behavioral or cognitive achievement, and the inhibition of generalized theory. Possible remedies include increased attention to the complete range of behavior and judgmental accomplishment, analytic reforms emphasizing effect sizes and Bayesian inference, and a theoretical paradigm able to account for both the sources of accomplishment and of error. A more balanced social psychology would yield not only a more positive view of human nature, but also an improved understanding of the bases of good behavior and accurate judgment, coherent explanations of occasional lapses, and theoretically grounded suggestions for improvement.

  12. Linear and Nonlinear Response of a Rotating Tokamak Plasma to a Resonant Error-Field

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Richard

    2014-10-01

    An in-depth investigation of the effect of a resonant error-field on a rotating, quasi-cylindrical, tokamak plasma is preformed within the context of resistive-MHD theory. General expressions for the response of the plasma at the rational surface to the error-field are derived in both the linear and nonlinear regimes, and the extents of these regimes mapped out in parameter space. Torque-balance equations are also obtained in both regimes. These equations are used to determine the steady-state plasma rotation at the rational surface in the presence of the error-field. It is found that, provided the intrinsic plasma rotation is sufficiently large, the torque-balance equations possess dynamically stable low-rotation and high-rotation solution branches, separated by a forbidden band of dynamically unstable solutions. Moreover, bifurcations between the two stable solution branches are triggered as the amplitude of the error-field is varied. A low- to high-rotation bifurcation is invariably associated with a significant reduction in the width of the magnetic island chain driven at the rational surface, and vice versa. General expressions for the bifurcation thresholds are derived, and their domains of validity mapped out in parameter space. This research was funded by the U.S. Department of Energy under Contract DE-FG02-04ER-54742.

  13. The GRACE Mission: Meeting the Technical Challenges

    NASA Technical Reports Server (NTRS)

    Davis, E. S.; Dunn, C. E.; Stanton, R. H.; Thomas, J. B.

    2000-01-01

    The Gravity Recovery and Climate Experiment (GRACE) Mission is scheduled for launch in June 2001. Within the first year of the GRACE Mission, the project has a minimum science requirement to deliver a new model of the Earth's static geoid with an error of less than 1 cm to spherical harmonic degree seventy (70). However, the performance of the GRACE Mission is designed to exceed this minimum requirement by a factor of 25 or more. For spherical harmonic degrees of up to 40, we expect to improve the current knowledge of the gravity field by one thousand (1000x). The GRACE Mission uses the satellite-to-satellite tracking (SST) technique. The twin GRACE satellites are the instruments that measure the nonuniformities in the Earth's gravity field. Nonuniformities in the gravity field cause the relative distance between the centers-of-mass of the two satellites to vary as they fly over the Earth. Atmospheric drag is the largest non-gravitational disturbing force. Drag is measured and will be used to correct changes in the satellite-to-satellite range measured by an SST microwave link. The microwave link will measure changes in the range between the two GRACE satellites with an error approaching 1 micron. We will discuss how these instrumentation requirements affect the configuration, the mass balance, the thermal control and the aerodynamic design of the satellites, and the design of the microwave SST link and the accelerometer. Finally, the question of how noise in these components limits the overall accuracy of the gravity models will be addressed.

  14. Eye Accommodation, Personality, and Autonomic Balance.

    DTIC Science & Technology

    1979-11-01

    Wenger and Ellington, 1943, and by a technique introduced by Porges, 1976), refractive error (measured by dark focus, near and far points using a...focus, near and far points using a polarized vernier optometer), and introversion - extraversion (Eysenck Personality Inventory introversion...Porges, 1976), refractive error (measured by dark focus, near and far points using a polarized vernier optometer), and introversion - extraversion

  15. Gravity results from Pioneer 10 Doppler data. [during Jupiter encounter

    NASA Technical Reports Server (NTRS)

    Anderson, J. D.; Null, G. W.; Wong, S. K.

    1974-01-01

    Two-way Doppler data received from Pioneer 10 during its encounter with Jupiter have been analyzed, and preliminary results have been obtained on the mass and the gravity field of Jupiter and on the masses of the four Galilean satellites. The ratios of the masses of the satellites to the mass of Jupiter are approximately 0.00004696 for Io, 0.00002565 for Europa, 0.00007845 for Ganymede, and 0.00005603 for Callisto (all error estimates presented in this paper are standard errors; those for Pioneer 10 represent our evaluation of the real errors as distinguished from formal errors). The ratio of the mass of the sun to the mass of the Jupiter system is about 1047.342, which is in good agreement with recent determinations from the motions of asteroids. The second- and fourth-degree zonal harmonic coefficients in the gravity field of Jupiter are 0.014720 and -0.00065, respectively, based on an equatorial planetary radius of 71,400 km, and the derived dynamical oblateness is 0.0647 at the same radius. The Pioneer 10 data are consistent with the assumption that Jupiter is in hydrostatic equilibrium at all levels.

  16. Construction of a new watt balance with the goal to realize the kilogram in the US

    NASA Astrophysics Data System (ADS)

    Schlamminger, Stephan; Haddad, Darine; Seifert, Frank; Chao, Leon; Newell, David; Pratt, Jon

    2015-04-01

    A watt balance is a mechanical device that compares mechanical power to electrical power. Since electrical power is measured using quantum physics by employing the Josephson effect and the Quantum Hall effect, electrical power can be measured as a product of a known factor, two frequencies, and the Planck constant h. Mechanical power is given by mgv , where m is the mass of a weight, g the local acceleration, and v the velocity. Hence, the watt balance provides a link between mass and Planck's constant. Currently several watt balances worldwide are employed to measure h. A redefinition of the international system of units (SI) is currently in discussion and may become reality as early as 2018. In the new SI, the numerical value of the Planck constant will be fixed and the watt balance is a means to realize the unit of mass. Researchers at NIST are preparing for a new SI and we have started in 2011 with plans to design a new watt balance capable of realizing the kilogram with relative uncertainties of a few parts in 108. Construction of the new watt balance has started in 2014. In my talk, I will show some of the latest results achieved with this apparatus.

  17. Development of a mass balance model for estimating PCB export from the lower Fox River to Green Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velleux, M.; Endicott, D.

    A mass balance approach was used to model contaminant cycling in the lower Fox River from the DePere Dam to Green Bay. The objectives of this research were (1) to estimate present contaminant export from the Fox River to Green Bay, and (2) to quantify contaminant transport and fate pathways in the lower river for the study period. Specifically, a model describing the transport, fate, and export of chlorides, total suspended solids, total PCBs, and six PCB congeners for the lower Fox River was developed. Field data collected as part of the U.S. Environmental Protection Agency's Green Bay Mass Balancemore » Study were used to calibrate the model. Model results suggest that the transport of inplace pollutants significantly contributed to the cumulative export of total PCBs over this period. Estimated total PCB transport in the Fox River during 1989 increased 60% between the dam and river mouth due to the resuspension of lower river sediments. Total suspended solids and PCB predictions are most sensitive to particle transport parameters, particularly the settling and resuspension velocities. The significant components of the total PCB mass balance are import (loading over the DePere Dam), settling, resuspension, and export to Green Bay. Volatilization, porewater transport, and point source input were not significant to the mass balance. Present point source discharges to the river are not significant total PCB sources, collectively contributing less than 6 kg of PCB to the river during the mass balance period.« less

  18. Dynamic Method for Identifying Collected Sample Mass

    NASA Technical Reports Server (NTRS)

    Carson, John

    2008-01-01

    G-Sample is designed for sample collection missions to identify the presence and quantity of sample material gathered by spacecraft equipped with end effectors. The software method uses a maximum-likelihood estimator to identify the collected sample's mass based on onboard force-sensor measurements, thruster firings, and a dynamics model of the spacecraft. This makes sample mass identification a computation rather than a process requiring additional hardware. Simulation examples of G-Sample are provided for spacecraft model configurations with a sample collection device mounted on the end of an extended boom. In the absence of thrust knowledge errors, the results indicate that G-Sample can identify the amount of collected sample mass to within 10 grams (with 95-percent confidence) by using a force sensor with a noise and quantization floor of 50 micrometers. These results hold even in the presence of realistic parametric uncertainty in actual spacecraft inertia, center-of-mass offset, and first flexibility modes. Thrust profile knowledge is shown to be a dominant sensitivity for G-Sample, entering in a nearly one-to-one relationship with the final mass estimation error. This means thrust profiles should be well characterized with onboard accelerometers prior to sample collection. An overall sample-mass estimation error budget has been developed to approximate the effect of model uncertainty, sensor noise, data rate, and thrust profile error on the expected estimate of collected sample mass.

  19. Validity and reliability of the Nintendo Wii Balance Board to assess standing balance and sensory integration in highly functional older adults.

    PubMed

    Scaglioni-Solano, Pietro; Aragón-Vargas, Luis F

    2014-06-01

    Standing balance is an important motor task. Postural instability associated with age typically arises from deterioration of peripheral sensory systems. The modified Clinical Test of Sensory Integration for Balance and the Tandem test have been used to screen for balance. Timed tests present some limitations, whereas quantification of the motions of the center of pressure (CoP) with portable and inexpensive equipment may help to improve the sensitivity of these tests and give the possibility of widespread use. This study determines the validity and reliability of the Wii Balance Board (Wii BB) to quantify CoP motions during the mentioned tests. Thirty-seven older adults completed three repetitions of five balance conditions: eyes open, eyes closed, eyes open on a compliant surface, eyes closed on a compliant surface, and tandem stance, all performed on a force plate and a Wii BB simultaneously. Twenty participants repeated the trials for reliability purposes. CoP displacement was the main outcome measure. Regression analysis indicated that the Wii BB has excellent concurrent validity, and Bland-Altman plots showed good agreement between devices with small mean differences and no relationship between the difference and the mean. Intraclass correlation coefficients (ICCs) indicated modest-to-excellent test-retest reliability (ICC=0.64-0.85). Standard error of measurement and minimal detectable change were similar for both devices, except the 'eyes closed' condition, with greater standard error of measurement for the Wii BB. In conclusion, the Wii BB is shown to be a valid and reliable method to quantify CoP displacement in older adults.

  20. Modelling the water balance of a precise weighable lysimeter for short time scales

    NASA Astrophysics Data System (ADS)

    Fank, Johann; Klammler, Gernot; Rock, Gerhard

    2015-04-01

    Precise knowledge of the water fluxes between the atmosphere and the soil-plant system and the percolation to the groundwater system is of great importance for understanding and modeling water, solute and energy transfer in the atmosphere-plant-soil-groundwater system. Weighable lysimeters yield the most precise and realistic measures for the change of stored water volume (ΔS), Precipitation (P) which can be rain, irrigation, snow and dewfall and evapotranspiration (ET) as the sum of soil evaporation, evaporation of intercepted water and transpiration. They avoid systematic errors of standard gauges and class-A pans. Lysimeters with controlled suction at the lower boundary allow estimation of capillary rise (C) and leachate (L) on short time scales. Precise weighable large scale (surface >= 1 m2) monolithic lysimeters avoiding oasis effects allow to solve the water balance equation (P - ET - L + C ± ΔS = 0) for a 3D-section of a natural atmosphere-plant-soil-system for a certain time period. Precision and accuracy of the lysimeter measurements depend not only on the precision of the weighing device but also on external conditions, which cannot be controlled or turned off. To separate the noise in measured data sets from signals the adaptive window and adaptive threshold (AWAT) filter (Peters et al., 2014) is used. The data set for the years 2010 and 2011 from the HYDRO-lysimeter (surface = 1 m2, depth = 1 m) in Wagna, Austria (Klammler and Fank, 2014) with a resolution of 0,01 mm for the lysimeter scale and of 0,001 mm for the leachate tank scale is used to evaluate the water balance. The mass of the lysimeter and the mass of the leachate tank is measured every two seconds. The measurements are stored as one minute arithmetic means. Based on calculations in a calibration period from January to May 2010 with different widths of moving window the wmax - Parameter for the AWAT filter was set to 41 minutes. A time series for the system mass ('upper boundary') of the lysimeter has been calculated by adding lysimeter mass and the leachate tank mass for every minute. Based on the resolution of the scales and an evaluation of noise in periods without precipitation and evaporation a dmin-value of 0.002 to filter the leachate tank measurements and a dmin-value of 0.012 was used to filter the lysimeter weight data and the upper boundary data. A mandatory requirement for the quantification of P or ET from lysimeter measurements is that in a reasonably small time interval, either P or ET is negligible. With this assumption, every increase in upper boundary data is interpreted as P. Every increase of seepage mass is interpreted as L, every decrease as C. ΔS is evaluated from filtered lysimeter mass. ET is calculated using the water balance equation. The evaluation results are given as water balance components time series on a minute scale. P measured with the lysimeter for the two years 2010 and 2011 is 105 % of precipitation measured with a standard tipping bucket gauge 100 m beside the lysimeter. While P during the summer season (April to September) is very close to standard precipitation measurement, P during the winter season is more than 120 % of tipping bucket precipitation. Meissner et al. (2007) showed that P includes precipitation of dewfall and rime. A detailed evaluation of the HYDRO-Lysimeter in Wagna showed, that precipitation in the night and not recognized with the standard tipping bucket (interpreted as dew or rime) is about 1 % of P, the highest monthly sums (> 1 mm) are recognized from August to November. Klammler, G. and Fank, J.: Determining water and nitrogen balances for beneficial management practices using lysimeters at Wagna test site (Austria). Science of the Total Environment 499 (2014) 448-462. Meissner, R., Seeger, J., Rupp, H., Seyfarth, M., and Borg, H.: Measurement of dew, fog, and rime with a high-precision gravitation lysimeter, J. Plant Nutr. Soil Sci. 2007, 170, 335-344. Peters, A., Nehls, T., Schonsky, H., and Wessolek, G.: Separating precipitation and evapotranspiration from noise - a new filter routine for high-resolution lysimeter data. Hydrol. Earth Syst. Sci., 18, 1189-1198, 2014.

  1. Analysis of operator splitting errors for near-limit flame simulations

    NASA Astrophysics Data System (ADS)

    Lu, Zhen; Zhou, Hua; Li, Shan; Ren, Zhuyin; Lu, Tianfeng; Law, Chung K.

    2017-04-01

    High-fidelity simulations of ignition, extinction and oscillatory combustion processes are of practical interest in a broad range of combustion applications. Splitting schemes, widely employed in reactive flow simulations, could fail for stiff reaction-diffusion systems exhibiting near-limit flame phenomena. The present work first employs a model perfectly stirred reactor (PSR) problem with an Arrhenius reaction term and a linear mixing term to study the effects of splitting errors on the near-limit combustion phenomena. Analysis shows that the errors induced by decoupling of the fractional steps may result in unphysical extinction or ignition. The analysis is then extended to the prediction of ignition, extinction and oscillatory combustion in unsteady PSRs of various fuel/air mixtures with a 9-species detailed mechanism for hydrogen oxidation and an 88-species skeletal mechanism for n-heptane oxidation, together with a Jacobian-based analysis for the time scales. The tested schemes include the Strang splitting, the balanced splitting, and a newly developed semi-implicit midpoint method. Results show that the semi-implicit midpoint method can accurately reproduce the dynamics of the near-limit flame phenomena and it is second-order accurate over a wide range of time step size. For the extinction and ignition processes, both the balanced splitting and midpoint method can yield accurate predictions, whereas the Strang splitting can lead to significant shifts on the ignition/extinction processes or even unphysical results. With an enriched H radical source in the inflow stream, a delay of the ignition process and the deviation on the equilibrium temperature are observed for the Strang splitting. On the contrary, the midpoint method that solves reaction and diffusion together matches the fully implicit accurate solution. The balanced splitting predicts the temperature rise correctly but with an over-predicted peak. For the sustainable and decaying oscillatory combustion from cool flames, both the Strang splitting and the midpoint method can successfully capture the dynamic behavior, whereas the balanced splitting scheme results in significant errors.

  2. Analysis of operator splitting errors for near-limit flame simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Zhen; Zhou, Hua; Li, Shan

    High-fidelity simulations of ignition, extinction and oscillatory combustion processes are of practical interest in a broad range of combustion applications. Splitting schemes, widely employed in reactive flow simulations, could fail for stiff reaction–diffusion systems exhibiting near-limit flame phenomena. The present work first employs a model perfectly stirred reactor (PSR) problem with an Arrhenius reaction term and a linear mixing term to study the effects of splitting errors on the near-limit combustion phenomena. Analysis shows that the errors induced by decoupling of the fractional steps may result in unphysical extinction or ignition. The analysis is then extended to the prediction ofmore » ignition, extinction and oscillatory combustion in unsteady PSRs of various fuel/air mixtures with a 9-species detailed mechanism for hydrogen oxidation and an 88-species skeletal mechanism for n-heptane oxidation, together with a Jacobian-based analysis for the time scales. The tested schemes include the Strang splitting, the balanced splitting, and a newly developed semi-implicit midpoint method. Results show that the semi-implicit midpoint method can accurately reproduce the dynamics of the near-limit flame phenomena and it is second-order accurate over a wide range of time step size. For the extinction and ignition processes, both the balanced splitting and midpoint method can yield accurate predictions, whereas the Strang splitting can lead to significant shifts on the ignition/extinction processes or even unphysical results. With an enriched H radical source in the inflow stream, a delay of the ignition process and the deviation on the equilibrium temperature are observed for the Strang splitting. On the contrary, the midpoint method that solves reaction and diffusion together matches the fully implicit accurate solution. The balanced splitting predicts the temperature rise correctly but with an over-predicted peak. For the sustainable and decaying oscillatory combustion from cool flames, both the Strang splitting and the midpoint method can successfully capture the dynamic behavior, whereas the balanced splitting scheme results in significant errors.« less

  3. Monitoring the variations of the oxygen transfer rate in a full scale membrane bioreactor using daily mass balances.

    PubMed

    Racault, Y; Stricker, A-E; Husson, A; Gillot, S

    2011-01-01

    Oxygen transfer in biological wastewater treatment processes with high sludge concentration, such as membrane bioreactor (MBR), is an important issue. The variation of alpha-factor versus mixed liquor suspended solids (MLSS) concentration was investigated in a full scale MBR plant under process conditions, using mass balances. Exhaustive data from the Supervisory Control And Data Acquisition (SCADA) and from additional online sensors (COD, DO, MLSS) were used to calculate the daily oxygen consumption (OC) using a non-steady state mass balance for COD and total N on a 24-h basis. To close the oxygen balance, OC has to match the total oxygen transfer rate (OTRtot) of the system, which is provided by fine bubble (FB) diffusers in the aeration tank and coarse bubbles (CB) in separate membrane tanks. First assessing OTR(CB) then closing the balance OC = OTRtot allowed to calculate OTR(FB) and to fit an exponential relationship between OTR(FB) and MLSS. A comparison of the alpha-factor obtained by this balance method and by direct measurements with the off-gas method on the same plant is presented and discussed.

  4. Validation of a stereo camera system to quantify brain deformation due to breathing and pulsatility.

    PubMed

    Faria, Carlos; Sadowsky, Ofri; Bicho, Estela; Ferrigno, Giancarlo; Joskowicz, Leo; Shoham, Moshe; Vivanti, Refael; De Momi, Elena

    2014-11-01

    A new stereo vision system is presented to quantify brain shift and pulsatility in open-skull neurosurgeries. The system is endowed with hardware and software synchronous image acquisition with timestamp embedding in the captured images, a brain surface oriented feature detection, and a tracking subroutine robust to occlusions and outliers. A validation experiment for the stereo vision system was conducted against a gold-standard optical tracking system, Optotrak CERTUS. A static and dynamic analysis of the stereo camera tracking error was performed tracking a customized object in different positions, orientations, linear, and angular speeds. The system is able to detect an immobile object position and orientation with a maximum error of 0.5 mm and 1.6° in all depth of field, and tracking a moving object until 3 mm/s with a median error of 0.5 mm. Three stereo video acquisitions were recorded from a patient, immediately after the craniotomy. The cortical pulsatile motion was captured and is represented in the time and frequency domain. The amplitude of motion of the cloud of features' center of mass was inferior to 0.8 mm. Three distinct peaks are identified in the fast Fourier transform analysis related to the sympathovagal balance, breathing, and blood pressure with 0.03-0.05, 0.2, and 1 Hz, respectively. The stereo vision system presented is a precise and robust system to measure brain shift and pulsatility with an accuracy superior to other reported systems.

  5. A comparison of methods for deriving solute flux rates using long-term data from streams in the mirror lake watershed

    USGS Publications Warehouse

    Bukaveckas, P.A.; Likens, G.E.; Winter, T.C.; Buso, D.C.

    1998-01-01

    Calculation of chemical flux rates for streams requires integration of continuous measurements of discharge with discrete measurements of solute concentrations. We compared two commonly used methods for interpolating chemistry data (time-averaging and flow-weighting) to determine whether discrepancies between the two methods were large relative to other sources of error in estimating flux rates. Flux rates of dissolved Si and SO42- were calculated from 10 years of data (1981-1990) for the NW inlet and Outlet of Mirror Lake and for a 40-day period (March 22 to April 30, 1993) during which we augmented our routine (weekly) chemical monitoring with collection of daily samples. The time-averaging method yielded higher estimates of solute flux during high-flow periods if no chemistry samples were collected corresponding to peak discharge. Concentration-discharge relationships should be used to interpolate stream chemistry during changing flow conditions if chemical changes are large. Caution should be used in choosing the appropriate time-scale over which data are pooled to derive the concentration-discharge regressions because the model parameters (slope and intercept) were found to be sensitive to seasonal and inter-annual variation. Both methods approximated solute flux to within 2-10% for a range of solutes that were monitored during the intensive sampling period. Our results suggest that errors arising from interpolation of stream chemistry data are small compared with other sources of error in developing watershed mass balances.

  6. Biological Productivity from an Oxygen Mass Balance in the subarctic North Pacific

    NASA Astrophysics Data System (ADS)

    Giesbrecht, K. E.; Hamme, R. C.

    2008-12-01

    Biological productivity is an important process controlling the export of carbon into the deep ocean and thus influencing the earth's climate. An O2 mass balance of the upper ocean can estimate this export of organic carbon if the physical processes affecting the O2 concentrations are accounted for. This can be accomplished by measuring the dissolved O2/Ar ratio, because their similar physical properties allow us to consider Ar an 'abiotic' O2 analogue. Here we present a two-year data set of O2/N2/Ar ratio measurements collected at Station Papa and along Line P in 2007/08. Line P, situated in the subarctic North Pacific, is a series of oceanographic stations running from the southwest tip of Vancouver Island to Station Papa (50°N, 145°W), one of the oldest deep-ocean time series in existence which is located in the High-Nutrient/Low-Chlorophyll (HNLC) region of the subarctic gyre. Current cruises along Line P run three times per year, typically in February, June and August. The dissolved gas ratios are measured using a stable isotope mass spectrometer and oxygen concentrations by titration. In a simple steady state, we equate biological O2 production to diffusive gas exchange, using the O2/Ar ratio to normalize the physical component of the oxygen signal and calculate the net biological oxygen production. Diffusive gas exchange is calculated using a wind speed parameterization. Preliminary estimates of the net biological production in the mixed layer at Station Papa for 2007 are calculated at 30.9 and 14.0 mmol C m-2 d- 1 for June and August respectively, both exhibiting mixed layer O2/Ar supersaturations. The O2/Ar undersaturation in the mixed layer for February 2007 suggests net respiration at that time. The wind speed parameterization of diffusive gas exchange is the major source of error for this method. We plan to refine our productivity calculation to account for vertical mixing and also by measuring rates of production using a number of different methods, so that we may determine if the values obtained converge on a result. Future investigations to obtain a better-constrained estimate of the biological carbon export in this region by measuring Nitrogen and Carbon uptake rates in the euphotic zone using dual, stable isotope tracer 15N/13C incubations in addition to the oxygen mass balance will be discussed.

  7. Effects of stinger axial dynamics and mass compensation methods on experimental modal analysis

    NASA Astrophysics Data System (ADS)

    Hu, Ximing

    1992-06-01

    A longitudinal bar model that includes both stinger elastic and inertia properties is used to analyze the stinger's axial dynamics as well as the mass compensation that is required to obtain accurate input forces when a stinger is installed between the excitation source, force transducer, and the structure under test. Stinger motion transmissibility and force transmissibility, axial resonance and excitation energy transfer problems are discussed in detail. Stinger mass compensation problems occur when the force transducer is mounted on the exciter end of the stinger. These problems are studied theoretically, numerically, and experimentally. It is found that the measured Frequency Response Function (FRF) can be underestimated if mass compensation is based on the stinger exciter-end acceleration and can be overestimated if the mass compensation is based on the structure-end acceleration due to the stinger's compliance. A new mass compensation method that is based on two accelerations is introduced and is seen to improve the accuracy considerably. The effects of the force transducer's compliance on the mass compensation are also discussed. A theoretical model is developed that describes the measurement system's FRD around a test structure's resonance. The model shows that very large measurement errors occur when there is a small relative phase shift between the force and acceleration measurements. These errors can be in hundreds of percent corresponding to a phase error on the order of one or two degrees. The physical reasons for this unexpected error pattern are explained. This error is currently unknown to the experimental modal analysis community. Two sample structures consisting of a rigid mass and a double cantilever beam are used in the numerical calculations and experiments.

  8. The physical basis of glacier volume-area scaling

    USGS Publications Warehouse

    Bahr, D.B.; Meier, M.F.; Peckham, S.D.

    1997-01-01

    Ice volumes are known for only a few of the roughly 160,000 glaciers worldwide but are important components of many climate and sea level studies which require water flux estimates. A scaling analysis of the mass and momentum conservation equations shows that glacier volumes can be related by a power law to more easily observed glacier surface areas. The relationship requires four closure choices for the scaling behavior of glacier widths, slopes, side drag and mass balance. Reasonable closures predict a volume-area scaling exponent which is consistent with observations, giving a physical and practical basis for estimating ice volumes. Glacier volume is insensitive to perturbations in the mass balance scaling, but changes in average accumulation area ratios reflect significant changes in the scaling of both mass balance and ice volume. Copyright 1997 by the American Geophysical Union.

  9. A Reconciled Estimate of Ice-Sheet Mass Balance

    NASA Technical Reports Server (NTRS)

    Shepherd, Andrew; Ivins, Erik R.; Geruo, A.; Barletta, Valentia R.; Bentley, Mike J.; Bettadpur, Srinivas; Briggs, Kate H.; Bromwich, David H.; Forsberg, Rene; Galin, Natalia; hide

    2012-01-01

    We combined an ensemble of satellite altimetry, interferometry, and gravimetry data sets using common geographical regions, time intervals, and models of surface mass balance and glacial isostatic adjustment to estimate the mass balance of Earth's polar ice sheets. We find that there is good agreement between different satellite methods-especially in Greenland and West Antarctica-and that combining satellite data sets leads to greater certainty. Between 1992 and 2011, the ice sheets of Greenland, East Antarctica, West Antarctica, and the Antarctic Peninsula changed in mass by -142 plus or minus 49, +14 plus or minus 43, -65 plus or minus 26, and -20 plus or minus 14 gigatonnes year(sup -1), respectively. Since 1992, the polar ice sheets have contributed, on average, 0.59 plus or minus 0.20 millimeter year(sup -1) to the rate of global sea-level rise.

  10. Center of mass perception and inertial frames of reference.

    PubMed

    Bingham, G P; Muchisky, M M

    1993-11-01

    Center of mass perception was investigated by varying the shape, size, and orientation of planar objects. Shape was manipulated to investigate symmetries as information. The number of reflective symmetry axes, the amount of rotational symmetry, and the presence of radial symmetry were varied. Orientation affected systematic errors. Judgments tended to undershoot the center of mass. Random errors increased with size and decreased with symmetry. Size had no effect on random errors for maximally symmetric objects, although orientation did. The spatial distributions of judgments were elliptical. Distribution axes were found to align with the principle moments of inertia. Major axes tended to align with gravity in maximally symmetric objects. A functional and physical account was given in terms of the repercussions of error. Overall, judgments were very accurate.

  11. Using a dry electrode EEG device during balance tasks in healthy young-adult males: Test-retest reliability analysis.

    PubMed

    Collado-Mateo, Daniel; Adsuar, Jose C; Olivares, Pedro R; Cano-Plasencia, Ricardo; Gusi, Narcis

    2015-01-01

    The analysis of brain activity during balance is an important topic in different fields of science. Given that all measurements involve an error that is caused by different agents, like the instrument, the researcher, or the natural human variability, a test-retest reliability evaluation of the electroencephalographic assessment is a needed starting point. However, there is a lack of information about the reliability of electroencephalographic measurements, especially in a new wireless device with dry electrodes. The current study aims to analyze the reliability of electroencephalographic measurements from a wireless device using dry electrodes during two different balance tests. Seventeen healthy male volunteers performed two different static balance tasks on a Biodex Balance Platform: (a) with two feet on the platform and (b) with one foot on the platform. Electroencephalographic data was recorded using Enobio (Neuroelectrics). The mean power spectrum of the alpha band of the central and frontal channels was calculated. Relative and absolute indices of reliability were also calculated. In general terms, the intraclass correlation coefficient (ICC) values of all the assessed channels can be classified as excellent (>0.90). The percentage standard error of measurement oscillated from 0.54% to 1.02% and the percentage smallest real difference ranged from 1.50% to 2.82%. Electroencephalographic assessment through an Enobio device during balance tasks has an excellent reliability. However, its utility was not demonstrated because responsiveness was not assessed.

  12. Nitrate Removal in Two Relict Oxbow Urban Wetlands: A 15N Mass-balance Approach

    EPA Science Inventory

    A 15N-tracer method was used to quantify nitrogen (N) removal processes in two relict oxbow wetlands located adjacent to the Minebank Run restored stream reach in Baltimore County (Maryland, USA) during summer 2009 and early spring 2010. A mass-balance approach was used to determ...

  13. LM-3: A High-resolution Lake Michigan Mass Balance Water Quality Model

    EPA Science Inventory

    This report is a user’s manual that describes the high-resolution mass balance model known as LM3. LM3 has been applied to Lake Michigan to describe the transport and fate of atrazine, PCB congeners, and chloride in that system. The model has also been used to model eutrophicat...

  14. When Equal Masses Don't Balance

    ERIC Educational Resources Information Center

    Newburgh, Ronald; Peidle, Joseph; Rueckner, Wolfgang

    2004-01-01

    We treat a modified Atwood's machine in which equal masses do not balance because of being in an accelerated frame of reference. Analysis of the problem illuminates the meaning of inertial forces, d'Alembert's principle, the use of free-body diagrams and the selection of appropriate systems for the diagrams. In spite of the range of these…

  15. Lake Michigan Mass Balance Study Post Audit: Integrated, Multi-media PCB Modeling and Forecasting for Lake Trout

    EPA Science Inventory

    The Lake Michigan (LM) Mass Balance Study was conducted to measure and model polychlorinated biphenyls (PCBs) and other anthropogenic substances to gain a better understanding of the transport, fate, and effects of these substances within the system and to aid managers in the env...

  16. Lake Michigan Mass Balance Study Post Audit: Integrated, Multi-media PCB Modeling and Forecasting for Lake Trout, Presentation

    EPA Science Inventory

    The Lake Michigan (LM) Mass Balance Study was conducted to measure and model polychlorinated biphenyls (PCBs) and other anthropogenic substances to gain a better understanding of the transport, fate, and effects of these substances within the system and to aid managers in the env...

  17. Children Balance Theories and Evidence in Exploration, Explanation, and Learning

    ERIC Educational Resources Information Center

    Bonawitz, Elizabeth Baraff; van Schijndel, Tessa J. P.; Friel, Daniel; Schulz, Laura

    2012-01-01

    We look at the effect of evidence and prior beliefs on exploration, explanation and learning. In Experiment 1, we tested children both with and without differential prior beliefs about balance relationships (Center Theorists, mean: 82 months; Mass Theorists, mean: 89 months; No Theory children, mean: 62 months). Center and Mass Theory children who…

  18. Comparison of tropical and subtropical glacier surface energy balance in Africa and South America

    NASA Astrophysics Data System (ADS)

    Nicholson, L.; Prinz, R.; Kinnard, C.; Mölg, T.; Winkler, M.; Kaser, G.

    2010-05-01

    Tropical glaciers exist only at high altitude, and meteorological and surface energy balance studies of these glaciers can tell us much about the conditions and changes occurring in the mid troposphere. Understanding the surface energy balance and resultant mass balance regime of tropical glaciers is prerequisite to predicting glacier evolution, and future meltwater contributions to local hydrological resources, in response to future climate scenarios. Tropical glacier mass balance variability is strongly linked to precipitation and, via this, to multi-annual climate oscillations such as ENSO and IOZM, so it is useful to understand what role these differing regional influences play in comparison to the similarities imposed by the overarching tropical climate conditions and seasonality. New surface energy balance and mass balance data is available from Lewis glacier (Kenya, 0°09' S; 37°18' E), and here we use an energy and mass balance model to determine the surface energy flux characteristics at this site through a wet and dry season. Results are compared with those from Kersten glacier (Tanzania, 3°04' S; 37°21' E) to understand how conditions at these two glaciers compare and thus what coherent and contrasting climatic information glaciological records from these two sites can be expected to deliver. Meteorological data available from glacier stations on Antizana (Ecuador, 0°25' S; 78°09' W), Artesonraju (Peru, 8°28' S; 77°38' W) Zongo (Bolivia, 16°39' S; 67°47' W) and Guanaco (Chile, 29°20' S; 70°00' W) glaciers in South America offer the opportunity to examine how the surface fluxes and seasonal variability of the energy balance compares to those of the African glaciers. We include the extra-tropical Chilean example for comparison with the similarly high altitude, cold ice of Kersten glacier.

  19. Asia High Mountain Glacier Mass Balance

    NASA Astrophysics Data System (ADS)

    Shum, C. K.; Su, X.; Shang, K.; Cogley, J. G.; Zhang, G.; Howat, I. M.; Braun, A.; Kuo, C. Y.

    2015-12-01

    The Asian High Mountain encompassing the Qinghai-Tibetan Plateau has the largest glaciated regions in the world outside of Greenland and Antarctica. The Tibetan Plateau is the source or headwater of many major river systems, which provide water resources to more than a billion people downstream. The impact of climate change on the Tibetan Plateau physical processes, including mountain glacier wastage, permafrost active layer thickening, the timing and the quantity of the perennial snowpack melt affecting upstream catchments, river runoffs, land-use, have significant effects on downstream water resources. Exact quantification of the Asian High Mountain glacier wastage or its mass balance on how much of the melt water contributes to early 21st century global sea-level rise, remain illusive or the published results are arguably controversial. The recent observed significant increase of freshwater storage within the Tibetan Plateaus remains a limitation to exactly quantify mountain glacier wastage. Here, we provide an updated estimate of Asia high mountain glacier mass balance using satellite geodetic observations during the last decade, accounting for the hydrologic and other processes, and validated against available in situ mass balance data.

  20. Glaciers and ice caps outside Greenland

    USGS Publications Warehouse

    Sharp, Marin; Wolken, G.; Burgess, D.; Cogley, J.G.; Copland, L.; Thomson, L.; Arendt, A.; Wouters, B.; Kohler, J.; Andreassen, L.M.; O'Neel, Shad; Pelto, M.

    2015-01-01

    Mountain glaciers and ice caps cover an area of over 400 000 km2 in the Arctic, and are a major influence on global sea level (Gardner et al. 2011, 2013; Jacob et al. 2012). They gain mass by snow accumulation and lose mass by meltwater runoff. Where they terminate in water (ocean or lake), they also lose mass by iceberg calving. The climatic mass balance (Bclim, the difference between annual snow accumulation and annual meltwater runoff) is a widely used index of how glaciers respond to climate variability and change. The total mass balance (ΔM) is defined as the difference between annual snow accumulation and annual mass losses (by iceberg calving plus runoff).

  1. Do we need long term terrestrial glacier mass balance monitoring for the future?

    NASA Astrophysics Data System (ADS)

    Slupetzky, H.

    2003-04-01

    Beginning with the International Geophysical Year 1958 and followed by other initiatives for world wide glacier observations such as the International Hydrological Decade, a distinctive increase of glacier research such as mass balance measurements was initiated. Some of the long term observations are not interrupted since then. However, because of various problems more and more of the long term series had to be given up. Is it possible to fully switch to air- and spaceborne techniques for glacier monitoring? For the mass balance series (and others glaciological series) we have by far not reached the length of meteorological records. There is an increasing need of longlasting observations for modelling and validation of remote-sensing of snow and ice. On Stubacher Sonnblick Kees, a small slope glacier (1,5 km2), in the Eastern Alps, Hohe Tauern, Province of Salzburg, a mass balance program is carried out. The mass balance has been measured for 39 years, with some extrapolations back to 1959, providing a record of 44 years. The glacier lost 12 Mio.m3 from 1964 to 2002, but had a period of mass gain between 1965 and 1981 of 9,8 Mio m3; since 1982 20,5 Mio m3 were lost. On another small glacier in the same area, the Oedenwinkel Kees, the mass gain period and the reaction of the glacier has been surveyed annualy showing a "kinematic wave". Some comperative measurements have been done on the Cathedral Massif Glacier, B.C., Canada 1977 to 1979 and 1998 and by using data from Storglaciaeren, Sweden, to evaluate the AAR ratio to estimate the net mas balances. There are some substantial reasons to carry on with direct mass balance measurements and not to interrupt or even abandon long series. There has been a great effort to sustain long term series. There is a great demand for new international initiatives to ensure the continuation of the world wide terrestrial glacier monitoring net. On Stubacher Sonnblickkees, it can be expected that the glacier will disappear within the next 60 to 80 years due to the global warming. So, a very new aspect arises: If the area now covered by the glacier is deglaciated and the base topography is known accurately, then it will be very interesting to observe a potential reglaciation in the future. Future glaciologists will much appreciate to use all the previously gathered results and it will be exciting to compare the polarity of the dual processes of mass gain, reconstution and advance of a glacier and the mass loss, shrinking and receding of the glacier.

  2. Impact of SCBA size and firefighting work cycle on firefighter functional balance.

    PubMed

    Kesler, Richard M; Deetjen, Grace S; Bradley, Faith F; Angelini, Michael J; Petrucci, Matthew N; Rosengren, Karl S; Horn, Gavin P; Hsiao-Wecksler, Elizabeth T

    2018-05-01

    Slips, trips and falls are leading causes of fireground injuries. A functional balance test (FBT) was used to investigate the effects of self-contained breathing apparatus (SCBA) size and design, plus firefighting work cycle. During the FBT, subjects walked along a narrow platform and turned in defined spaces, with and without an overhead obstacle. Thirty firefighters wore three varying-sized standard SCBAs and a low-profile prototype SCBA during three simulated firefighting work/rest cycles. Firefighters were tested pre- and post-firefighting activity (one bout, two bouts with a 5-min break, or back-to-back bouts with no break). Subjects committed more errors and required longer completion times with larger SCBAs. Use of the prototype SCBA lead to lower times and fewer errors. Performing a second bout of firefighting increased completion time. Firefighters need to consider how SCBA and amount of physical activity on the fireground may influence balance in order to reduce the risk of injury. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Split torque transmission load sharing

    NASA Technical Reports Server (NTRS)

    Krantz, T. L.; Rashidi, M.; Kish, J. G.

    1992-01-01

    Split torque transmissions are attractive alternatives to conventional planetary designs for helicopter transmissions. The split torque designs can offer lighter weight and fewer parts but have not been used extensively for lack of experience, especially with obtaining proper load sharing. Two split torque designs that use different load sharing methods have been studied. Precise indexing and alignment of the geartrain to produce acceptable load sharing has been demonstrated. An elastomeric torque splitter that has large torsional compliance and damping produces even better load sharing while reducing dynamic transmission error and noise. However, the elastomeric torque splitter as now configured is not capable over the full range of operating conditions of a fielded system. A thrust balancing load sharing device was evaluated. Friction forces that oppose the motion of the balance mechanism are significant. A static analysis suggests increasing the helix angle of the input pinion of the thrust balancing design. Also, dynamic analysis of this design predicts good load sharing and significant torsional response to accumulative pitch errors of the gears.

  4. Multi-decadal mass balance series of three Kyrgyz glaciers inferred from modelling constrained with repeated snow line observations

    NASA Astrophysics Data System (ADS)

    Barandun, Martina; Huss, Matthias; Usubaliev, Ryskul; Azisov, Erlan; Berthier, Etienne; Kääb, Andreas; Bolch, Tobias; Hoelzle, Martin

    2018-06-01

    Glacier surface mass balance observations in the Tien Shan and Pamir are relatively sparse and often discontinuous. Nevertheless, glaciers are one of the most important components of the high-mountain cryosphere in the region as they strongly influence water availability in the arid, continental and intensely populated downstream areas. This study provides reliable and continuous surface mass balance series for selected glaciers located in the Tien Shan and Pamir-Alay. By cross-validating the results of three independent methods, we reconstructed the mass balance of the three benchmark glaciers, Abramov, Golubin and Glacier no. 354 for the past 2 decades. By applying different approaches, it was possible to compensate for the limitations and shortcomings of each individual method. This study proposes the use of transient snow line observations throughout the melt season obtained from satellite optical imagery and terrestrial automatic cameras. By combining modelling with remotely acquired information on summer snow depletion, it was possible to infer glacier mass changes for unmeasured years. The model is initialized with daily temperature and precipitation data collected at automatic weather stations in the vicinity of the glacier or with adjusted data from climate reanalysis products. Multi-annual mass changes based on high-resolution digital elevation models and in situ glaciological surveys were used to validate the results for the investigated glaciers. Substantial surface mass loss was confirmed for the three studied glaciers by all three methods, ranging from -0.30 ± 0.19 to -0.41 ± 0.33 m w.e. yr-1 over the 2004-2016 period. Our results indicate that integration of snow line observations into mass balance modelling significantly narrows the uncertainty ranges of the estimates. Hence, this highlights the potential of the methodology for application to unmonitored glaciers at larger scales for which no direct measurements are available.

  5. Novel parametric reduced order model for aeroengine blade dynamics

    NASA Astrophysics Data System (ADS)

    Yuan, Jie; Allegri, Giuliano; Scarpa, Fabrizio; Rajasekaran, Ramesh; Patsias, Sophoclis

    2015-10-01

    The work introduces a novel reduced order model (ROM) technique to describe the dynamic behavior of turbofan aeroengine blades. We introduce an equivalent 3D frame model to describe the coupled flexural/torsional mode shapes, with their relevant natural frequencies and associated modal masses. The frame configurations are identified through a structural identification approach based on a simulated annealing algorithm with stochastic tunneling. The cost functions are constituted by linear combinations of relative errors associated to the resonance frequencies, the individual modal assurance criteria (MAC), and on either overall static or modal masses. When static masses are considered the optimized 3D frame can represent the blade dynamic behavior with an 8% error on the MAC, a 1% error on the associated modal frequencies and a 1% error on the overall static mass. When using modal masses in the cost function the performance of the ROM is similar, but the overall error increases to 7%. The approach proposed in this paper is considerably more accurate than state-of-the-art blade ROMs based on traditional Timoshenko beams, and provides excellent accuracy at reduced computational time when compared against high fidelity FE models. A sensitivity analysis shows that the proposed model can adequately predict the global trends of the variations of the natural frequencies when lumped masses are used for mistuning analysis. The proposed ROM also follows extremely closely the sensitivity of the high fidelity finite element models when the material parameters are used in the sensitivity.

  6. Ice-sheet mass balance and climate change.

    PubMed

    Hanna, Edward; Navarro, Francisco J; Pattyn, Frank; Domingues, Catia M; Fettweis, Xavier; Ivins, Erik R; Nicholls, Robert J; Ritz, Catherine; Smith, Ben; Tulaczyk, Slawek; Whitehouse, Pippa L; Zwally, H Jay

    2013-06-06

    Since the 2007 Intergovernmental Panel on Climate Change Fourth Assessment Report, new observations of ice-sheet mass balance and improved computer simulations of ice-sheet response to continuing climate change have been published. Whereas Greenland is losing ice mass at an increasing pace, current Antarctic ice loss is likely to be less than some recently published estimates. It remains unclear whether East Antarctica has been gaining or losing ice mass over the past 20 years, and uncertainties in ice-mass change for West Antarctica and the Antarctic Peninsula remain large. We discuss the past six years of progress and examine the key problems that remain.

  7. Mass Balance Modelling of Saskatchewan Glacier, Canada Using Empirically Downscaled Reanalysis Data

    NASA Astrophysics Data System (ADS)

    Larouche, O.; Kinnard, C.; Demuth, M. N.

    2017-12-01

    Observations show that glaciers around the world are retreating. As sites with long-term mass balance observations are scarce, models are needed to reconstruct glacier mass balance and assess its sensitivity to climate. In regions with discontinuous and/or sparse meteorological data, high-resolution climate reanalysis data provide a convenient alternative to in situ weather observations, but can also suffer from strong bias due to the spatial and temporal scale mismatch. In this study we used data from the North American Regional Reanalysis (NARR) project with a 30 x 30 km spatial resolution and 3-hour temporal resolution to produce the meteorological forcings needed to drive a physically-based, distributed glacier mass balance model (DEBAM, Hock and Holmgren 2005) for the historical period 1979-2016. A two-year record from an automatic weather station (AWS) operated on Saskatchewan Glacier (2014-2016) was used to downscale air temperature, relative humidity, wind speed and incoming solar radiation from the nearest NARR gridpoint to the glacier AWS site. An homogenized historical precipitation record was produced using data from two nearby, low-elevation weather stations and used to downscale the NARR precipitation data. Three bias correction methods were applied (scaling, delta and empirical quantile mapping - EQM) and evaluated using split sample cross-validation. The EQM method gave better results for precipitation and for air temperature. Only a slight improvement in the relative humidity was obtained using the scaling method, while none of the methods improved the wind speed. The later correlates poorly with AWS observations, probably because the local glacier wind is decoupled from the larger scale NARR wind field. The downscaled data was used to drive the DEBAM model in order to reconstruct the mass balance of Saskatchewan Glacier over the past 30 years. The model was validated using recent snow thickness measurements and previously published geodetic mass balance estimates.

  8. South Cascade (USA/North Cascades)

    USGS Publications Warehouse

    Bidlake, William R.

    2011-01-01

    The U.S. Geological Survey has closely monitored this temperate mountain glacier since the late 1950s. During 1958-2007, the glacier retreated about 0.7 km and shrank in area from 2.71 to 1.73 km2, although part of the area change was due to separation of contributing ice bodies from the main glacier. Maximum and average glacier thicknesses are about 170 and 80 m, respectively. Year-to-year variations of snow accumulation amounts on the glacier are largely attributable to the regional maritime climate and fluctuating climate conditions of the North Pacific Ocean. Long-term-average precipitation is about 4500 mm and most of that falls as snow during October through May. Average annual air temperature at 1,900 m altitude (the approximate ELA0) was estimated to be 1.6°C during 2000-2009. Mass balances are computed yearly by the direct glaciological method. Mass balances measured at selected locations are used in an interpolation and extrapolation procedure that computes the mass balance at each point in the glacier surface altitude grid. The resulting mass balance grid is averaged to obtain glacier mass balances. Additionally, the geodetic method has been applied to compute glacier net balances in 1970, 1975, 1977, 1979-80, and 1985-97. Winter snow accumulation on the glacier during 2007/08 and 2008/09 was larger than the long-term (1959-2009) average. The 2007/08 preliminary summer balance (-3510 mm w.e.) was slightly more negative than the long-term average and this yielded a preliminary 2007/08 net balance (-290 mm w.e.), which was less negative than the average for the period of record (-600 mm w.e.). Summer 2009 was uncommonly warm and the preliminary 2008/09 summer balance (-4980 mm w.e.) was more negative than any on record for the glacier. The 2008/09 glacier net balance (-1860 mm w.e.) was among the 10 most negative for the period of net balance record (1953-2009). Material presented here is preliminary in nature and presented prior to final review. These data and information are provided with the understanding that they are not guaranteed to be correct or complete. Users are cautioned to consider carefully the provisional nature of these data and information before using them for decisions that concern personal or public safety or the conduct of business that involves substantial monetary or operational consequences. Conclusions drawn from, or actions undertaken on the basis of, such data and information are the sole responsibility of the user.

  9. [Conversion methods of freshwater snail tissue dry mass and ash free dry mass].

    PubMed

    Zhao, Wei-Hua; Wang, Hai-Jun; Wang, Hong-Zhu; Liu, Xue-Qin

    2009-06-01

    Mollusk biomass is usually expressed as wet mass with shell, but this expression fails to represent real biomass due to the high calcium carbonate content in shells. Tissue dry mass and ash free dry mass are relatively close to real biomass. However, the determination process of these two parameters is very complicated, and thus, it is necessary to establish simple and practical conversion methods for these two parameters. A total of six taxa of freshwater snails (Bellamya sp., Alocinma longicornis, Parafossarulus striatulus, Parafossarulus eximius, Semisulcospira cancellata, and Radix sp.) common in the Yangtze Basin were selected to explore the relations of their five shell dimension parameters, dry and wet mass with shells with their tissue dry mass and ash free dry mass. The regressions of the tissue dry mass and ash free dry mass with the five shell dimension parameters were all exponential (y = ax(b)). Among them, shell width and shell length were more precise (the average percentage error between observed and predicted value being 22.0% and 22.5%, respectively) than the other three parameters in the conversion of dry mass. Wet mass with shell could be directly converted to tissue dry mass and ash free dry mass, with an average percentage error of 21.7%. According to the essence of definition and the errors of conversion, ash free dry mass would be the optimum parameter to express snail biomass.

  10. Monitoring and analysis of combined sewer overflows, Riverside and Evanston, Illinois, 1997-99

    USGS Publications Warehouse

    Waite, Andrew M.; Hornewer, Nancy J.; Johnson, Gary P.

    2002-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, collected and analyzed flow data in combined sewer systems in Riverside and Evanston, northeastern Illinois, from March 1997 to December 1999. Continuous 2- and 5-minute stage and velocity data were collected during surcharged and nonsurcharged conditions at 12 locations. Mass balances were calculated to determine the volume of water flowing through the tide-gate openings to the Des Plaines River and the North Shore Channel and to determine the volume of water flowing past the sluice gate to the deep tunnel. The sewer systems consist of circular pipes ranging in diameter from 0.83 feet to 10.0 feet, elliptical siphon pipes, ledges, and tide and sluice gates. Pipes were constructed of either brick and mortar or concrete, and ranged from having smooth surfaces to rough, pitted and crumbling surfaces. One pipe was noticeably affected by water infiltration from saturated ground. During data analysis, many assumptions were necessary because of the complexity of the flow data and sewer-system configurations. These assumptions included estimating the volume of water entering an interceptor sewer at the ''Gage Street pipe'' at Riverside, the effect of infiltration on the ''brick pipe'' at Riverside, and the minimum velocity required for the meter to make an accurate velocity determination. Other factors affecting the analysis of flow data included possible non-instrumented sources of inflow, and backwater conditions in some pipes, which could have caused error in the data analysis. Variations of these assumptions potentially could cause appreciable changes to the final massbalance calculations. Mass-balance analysis at Riverside indicated a total inflow volume into chamber 3 of approximately 721,000 cubic feet (ft3) during April 22-26, 1999. Outflow volume to the Des Plaines River at Riverside through the tide gate was approximately 132,000 ft3; outflow volume to the deep tunnel through the sluice gate was approximately 267,000 ft3. The mass-balance analysis at Evanston indicated a total inflow volume into chamber 3 of approximately 5,970,000 ft3 during April 21-26, 1999. The outflow volume to the North Shore Channel through the tide gates at Evanston was approximately 2,920,000 ft3; outflow volume to the deep tunnel through the sluice gates was approximately 3,050,000 ft3.

  11. Estimating actual evapotranspiration for forested sites: modifications to the Thornthwaite Model

    Treesearch

    Randall K. Kolka; Ann T. Wolf

    1998-01-01

    A previously coded version of the Thornthwaite water balance model was used to estimate annual actual evapotranspiration (AET) for 29 forested sites between 1900 and 1993 in the Upper Great Lakes area. Approximately 8 percent of the data sets calculated AET in error. Errors were detected in months when estimated AET was greater than potential evapotranspiration. Annual...

  12. Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakeman, J.D., E-mail: jdjakem@sandia.gov; Wildey, T.

    2015-01-01

    In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the physical discretization error and the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity of the sparse grid. Utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchicalmore » surplus based strategies. Throughout this paper we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.« less

  13. The challenges in defining and measuring diagnostic error.

    PubMed

    Zwaan, Laura; Singh, Hardeep

    2015-06-01

    Diagnostic errors have emerged as a serious patient safety problem but they are hard to detect and complex to define. At the research summit of the 2013 Diagnostic Error in Medicine 6th International Conference, we convened a multidisciplinary expert panel to discuss challenges in defining and measuring diagnostic errors in real-world settings. In this paper, we synthesize these discussions and outline key research challenges in operationalizing the definition and measurement of diagnostic error. Some of these challenges include 1) difficulties in determining error when the disease or diagnosis is evolving over time and in different care settings, 2) accounting for a balance between underdiagnosis and overaggressive diagnostic pursuits, and 3) determining disease diagnosis likelihood and severity in hindsight. We also build on these discussions to describe how some of these challenges can be addressed while conducting research on measuring diagnostic error.

  14. Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates

    DOE PAGES

    Jakeman, J. D.; Wildey, T.

    2015-01-01

    In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity. We show that utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this papermore » we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.« less

  15. Basin-scale heterogeneity in Antarctic precipitation and its impact on surface mass variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fyke, Jeremy; Lenaerts, Jan T. M.; Wang, Hailong

    Annually averaged precipitation in the form of snow, the dominant term of the Antarctic Ice Sheet surface mass balance, displays large spatial and temporal variability. Here we present an analysis of spatial patterns of regional Antarctic precipitation variability and their impact on integrated Antarctic surface mass balance variability simulated as part of a preindustrial 1800-year global, fully coupled Community Earth System Model simulation. Correlation and composite analyses based on this output allow for a robust exploration of Antarctic precipitation variability. We identify statistically significant relationships between precipitation patterns across Antarctica that are corroborated by climate reanalyses, regional modeling and icemore » core records. These patterns are driven by variability in large-scale atmospheric moisture transport, which itself is characterized by decadal- to centennial-scale oscillations around the long-term mean. We suggest that this heterogeneity in Antarctic precipitation variability has a dampening effect on overall Antarctic surface mass balance variability, with implications for regulation of Antarctic-sourced sea level variability, detection of an emergent anthropogenic signal in Antarctic mass trends and identification of Antarctic mass loss accelerations.« less

  16. Basin-scale heterogeneity in Antarctic precipitation and its impact on surface mass variability

    DOE PAGES

    Fyke, Jeremy; Lenaerts, Jan T. M.; Wang, Hailong

    2017-11-15

    Annually averaged precipitation in the form of snow, the dominant term of the Antarctic Ice Sheet surface mass balance, displays large spatial and temporal variability. Here we present an analysis of spatial patterns of regional Antarctic precipitation variability and their impact on integrated Antarctic surface mass balance variability simulated as part of a preindustrial 1800-year global, fully coupled Community Earth System Model simulation. Correlation and composite analyses based on this output allow for a robust exploration of Antarctic precipitation variability. We identify statistically significant relationships between precipitation patterns across Antarctica that are corroborated by climate reanalyses, regional modeling and icemore » core records. These patterns are driven by variability in large-scale atmospheric moisture transport, which itself is characterized by decadal- to centennial-scale oscillations around the long-term mean. We suggest that this heterogeneity in Antarctic precipitation variability has a dampening effect on overall Antarctic surface mass balance variability, with implications for regulation of Antarctic-sourced sea level variability, detection of an emergent anthropogenic signal in Antarctic mass trends and identification of Antarctic mass loss accelerations.« less

  17. Recent advances in thermal desorption-gas chromatography-mass spectrometery method to eliminate the matrix effect between air and water samples: application to the accurate determination of Henry's law constant.

    PubMed

    Kim, Yong-Hyun; Kim, Ki-Hyun

    2014-05-16

    Accurate values for the Henry's law constants are essential to describe the environmental dynamics of a solute, but substantial errors are recognized in many reported data due to practical difficulties in measuring solubility and/or vapor pressure. Despite such awareness, validation of experimental approaches has scarcely been made. An experimental approach based on thermal desorption-gas chromatography-mass spectrometery (TD-GC-MS) method was developed to concurrently allow the accurate determination of target compounds from the headspace and aqueous samples in closed equilibrated system. The analysis of six aromatics and eight non-aromatic oxygenates was then carried out in a static headspace mode. An estimation of the potential bias and mass balance (i.e., sum of mass measured individually from gas and liquid phases vs. the mass initially added to the system) demonstrates compound-specific phase dependency so that the best results are obtained by aqueous (less soluble aromatics) and headspace analysis (more soluble non-aromatics). Accordingly, we were able to point to the possible sources of biases in previous studies and provide the best estimates for the Henry's constants (Matm(-1)): benzene (0.17), toluene (0.15), p-xylene (0.13), m-xylene (0.13), o-xylene (0.19), styrene (0.27); propionaldehyde (9.26), butyraldehyde (6.19), isovaleraldehyde (2.14), n-valeraldehyde (3.98), methyl ethyl ketone (10.5), methyl isobutyl ketone (3.93), n-butyl acetate (2.41), and isobutyl alcohol (22.2). Copyright © 2014 Elsevier B.V. All rights reserved.

  18. 20 years of mass balances on the Piloto glacier, Las Cuevas river basin, Mendoza, Argentina

    NASA Astrophysics Data System (ADS)

    Leiva, J. C.; Cabrera, G. A.; Lenzano, L. E.

    2007-10-01

    Climatic changes of the 20th century have altered the water cycle in the Andean basins of central Argentina. The most visible change is seen in the mountain glaciers, with loss of part of their mass due to decreasing thickness and a substantial recession in the last 100 years. This paper briefly describes the results of glacier mass balance research since 1979 in the Piloto Glacier at the Cajón del Rubio, in the headwaters of Las Cuevas River, presenting new results for the period 1997-2003. Very large interannual variability of net annual specific balance is evident, due largely to variations in winter snow accumulation, with a maximum net annual value of + 151 cm w.e. and a minimum value of - 230 cm w.e. Wet El Niño years are normally associated with positive net annual balances, while dry La Niña years generally result in negative balances. Within the 24-year period, 67% of the years show negative net annual specific balances, with a cumulative mass balance loss of - 10.50 m water equivalent (w.e.). Except for exceptions normally related to El Niño events, a general decreasing trend of winter snow accumulation is evident in the record, particularly after 1992, which has a strong effect in the overall negative mass balance values. The glacier contribution to Las Cuevas River runoff is analysed based on the Punta de Vacas River gauge station for a hypothetical year without snow precipitation (YWSP), when the snowmelt component is zero. Extremely dry years similar to a YWSP have occurred in 1968-1969, 1969-1970 and 1996-1997. The Punta de Vacas gauge station is located 62 km downstream from Piloto Glacier, and the basin contains 3.0% of uncovered glacier ice and 3.7% of debris-covered ice. The total glacier contribution to Las Cuevas River discharge is calculated as 82 ± 8% during extremely dry years. If glacier wastage continues at the present trend as observed during the last 2 decades, it will severely affect the water resources in the arid central Andes of Argentina.

  19. Error analysis and new dual-cosine window for estimating the sensor frequency response function from the step response data

    NASA Astrophysics Data System (ADS)

    Yang, Shuang-Long; Liang, Li-Ping; Liu, Hou-De; Xu, Ke-Jun

    2018-03-01

    Aiming at reducing the estimation error of the sensor frequency response function (FRF) estimated by the commonly used window-based spectral estimation method, the error models of interpolation and transient errors are derived in the form of non-parameter models. Accordingly, window effects on the errors are analyzed and reveal that the commonly used hanning window leads to smaller interpolation error which can also be significantly eliminated by the cubic spline interpolation method when estimating the FRF from the step response data, and window with smaller front-end value can restrain more transient error. Thus, a new dual-cosine window with its non-zero discrete Fourier transform bins at -3, -1, 0, 1, and 3 is constructed for FRF estimation. Compared with the hanning window, the new dual-cosine window has the equivalent interpolation error suppression capability and better transient error suppression capability when estimating the FRF from the step response; specifically, it reduces the asymptotic property of the transient error from O(N-2) of the hanning window method to O(N-4) while only increases the uncertainty slightly (about 0.4 dB). Then, one direction of a wind tunnel strain gauge balance which is a high order, small damping, and non-minimum phase system is employed as the example for verifying the new dual-cosine window-based spectral estimation method. The model simulation result shows that the new dual-cosine window method is better than the hanning window method for FRF estimation, and compared with the Gans method and LPM method, it has the advantages of simple computation, less time consumption, and short data requirement; the actual data calculation result of the balance FRF is consistent to the simulation result. Thus, the new dual-cosine window is effective and practical for FRF estimation.

  20. A mathematical model for the interactive behavior of sulfate-reducing bacteria and methanogens during anaerobic digestion.

    PubMed

    Ahammad, S Ziauddin; Gomes, James; Sreekrishnan, T R

    2011-09-01

    Anaerobic degradation of waste involves different classes of microorganisms, and there are different types of interactions among them for substrates, terminal electron acceptors, and so on. A mathematical model is developed based on the mass balance of different substrates, products, and microbes present in the system to study the interaction between methanogens and sulfate-reducing bacteria (SRB). The performance of major microbial consortia present in the system, such as propionate-utilizing acetogens, butyrate-utilizing acetogens, acetoclastic methanogens, hydrogen-utilizing methanogens, and SRB were considered and analyzed in the model. Different substrates consumed and products formed during the process also were considered in the model. The experimental observations and model predictions showed very good prediction capabilities of the model. Model prediction was validated statistically. It was observed that the model-predicted values matched the experimental data very closely, with an average error of 3.9%.

  1. Applying an orographic precipitation model to improve mass balance modeling of the Juneau Icefield, AK

    NASA Astrophysics Data System (ADS)

    Roth, A. C.; Hock, R.; Schuler, T.; Bieniek, P.; Aschwanden, A.

    2017-12-01

    Mass loss from glaciers in Southeast Alaska is expected to alter downstream ecological systems as runoff patterns change. To investigate these potential changes under future climate scenarios, distributed glacier mass balance modeling is required. However, the spatial resolution gap between global or regional climate models and the requirements for glacier mass balance modeling studies must be addressed first. We have used a linear theory of orographic precipitation model to downscale precipitation from both the Weather Research and Forecasting (WRF) model and ERA-Interim to the Juneau Icefield region over the period 1979-2013. This implementation of the LT model is a unique parameterization that relies on the specification of snow fall speed and rain fall speed as tuning parameters to calculate the cloud time delay, τ. We assessed the LT model results by considering winter precipitation so the effect of melt was minimized. The downscaled precipitation pattern produced by the LT model captures the orographic precipitation pattern absent from the coarse resolution WRF and ERA-Interim precipitation fields. Observational data constraints limited our ability to determine a unique parameter combination and calibrate the LT model to glaciological observations. We established a reference run of parameter values based on literature and performed a sensitivity analysis of the LT model parameters, horizontal resolution, and climate input data on the average winter precipitation. The results of the reference run showed reasonable agreement with the available glaciological measurements. The precipitation pattern produced by the LT model was consistent regardless of parameter combination, horizontal resolution, and climate input data, but the precipitation amount varied strongly with these factors. Due to the consistency of the winter precipitation pattern and the uncertainty in precipitation amount, we suggest a precipitation index map approach to be used in combination with a distributed mass balance model for future mass balance modeling studies of the Juneau Icefield. The LT model has potential to be used in other regions in Alaska and elsewhere with strong orographic effects for improved glacier mass balance modeling and/or hydrological modeling.

  2. Sensitivity of glacier mass balance and equilibrium line altitude to climatic change on King George Island, Antarctic Peninsula.

    NASA Astrophysics Data System (ADS)

    Falk, Ulrike; Lopez, Damian; Silva-Busso, Adrian

    2017-04-01

    The South Shetland Islands are located at the northern tip of the Antarctic Peninsula which is among the fastest warming regions on Earth. Surface air temperature increases (ca. 3 K in 50 years) are concurrent with retreating glacier fronts, an increase in melt areas, ice surface lowering and rapid break-up and disintegration of ice shelves. Observed surface air temperature lapse rates show a high variability during winter months (standard deviations up to ±1.0 K/100 m), and a distinct spatial heterogeneity reflecting the impact of synoptic weather patterns especially during winter glacial mass accumulation periods. The increased mesocyclonic activity during the winter time in the study area results in intensified advection of warm, moist air with high temperatures and rain, and leads to melt conditions on the ice cap, fixating surface air temperatures to the melting point. The impact on winter accumulation results in even more negative mass balance estimates. Six years of glaciological measurements on mass balance stake transects are used with a glacier melt model to assess changes in melt water input to the coastal waters, glacier surface mass balance and the equilibrium line altitude. The average equilibrium line altitude (ELA) calculated from own glaciological observations for KGI over the time period 2010 - 2015 amounts to ELA=330±100 m. Published studies suggest rather stable condition slightly negative glacier mass balance until the mid 80's with an ELA of approx. 150 m. The calculated accumulation area ratio suggests rather dramatic changes in extension of the inland ice cap for the South Shetland Islands until an equilibrium with concurrent climate conditions is reached.

  3. Quantifying ice loss in the eastern Himalayas since 1974 using declassified spy satellite imagery

    NASA Astrophysics Data System (ADS)

    Maurer, Joshua M.; Rupper, Summer B.; Schaefer, Joerg M.

    2016-09-01

    Himalayan glaciers are important natural resources and climate indicators for densely populated regions in Asia. Remote sensing methods are vital for evaluating glacier response to changing climate over the vast and rugged Himalayan region, yet many platforms capable of glacier mass balance quantification are somewhat temporally limited due to typical glacier response times. We here rely on declassified spy satellite imagery and ASTER data to quantify surface lowering, ice volume change, and geodetic mass balance during 1974-2006 for glaciers in the eastern Himalayas, centered on the Bhutan-China border. The wide range of glacier types allows for the first mass balance comparison between clean, debris, and lake-terminating (calving) glaciers in the region. Measured glaciers show significant ice loss, with an estimated mean annual geodetic mass balance of -0.13 ± 0.06 m w.e. yr-1 (meters of water equivalent per year) for 10 clean-ice glaciers, -0.19 ± 0.11 m w.e. yr-1 for 5 debris-covered glaciers, -0.28 ± 0.10 m w.e. yr-1 for 6 calving glaciers, and -0.17 ± 0.05 m w.e. yr-1 for all glaciers combined. Contrasting hypsometries along with melt pond, ice cliff, and englacial conduit mechanisms result in statistically similar mass balance values for both clean-ice and debris-covered glacier groups. Calving glaciers comprise 18 % (66 km2) of the glacierized area yet have contributed 30 % (-0.7 km3) to the total ice volume loss, highlighting the growing relevance of proglacial lake formation and associated calving for the future ice mass budget of the Himalayas as the number and size of glacial lakes increase.

  4. Body mass, energy intake, and water consumption of rats and humans during space flight

    NASA Technical Reports Server (NTRS)

    Wade, C. E.; Miller, M. M.; Baer, L. A.; Moran, M. M.; Steele, M. K.; Stein, T. P.

    2002-01-01

    Alteration of metabolism has been suggested as a major limiting factor to long-term space flight. In humans and primates, a negative energy balance has been reported. The metabolic response of rats to space flight has been suggested to result in a negative energy balance. We hypothesized that rats flown in space would maintain energy balance as indicated by maintenance of caloric intake and body mass gain. Further, the metabolism of the rat would be similar to that of laboratory-reared animals. We studied the results from 15 space flights lasting 4 to 19 d. There was no difference in average body weight (206 +/- 13.9 versus 206 +/- 14.8 g), body weight gain (5.8 +/- 0.48 versus 5.9 +/- 0.56 g/d), caloric intake (309 +/- 21.0 versus 309 +/- 20.1 kcal/kg of body mass per day), or water intake (200 +/- 8.6 versus 199 +/- 9.3 mL/kg of body mass per day) between flight and ground control animals. Compared with standard laboratory animals of similar body mass, no differences were noted. The observations suggested that the negative balance observed in humans and non-human primates may be due to other factors in the space-flight environment.

  5. Nuclear binding energy using semi empirical mass formula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ankita,, E-mail: ankitagoyal@gmail.com; Suthar, B.

    2016-05-06

    In the present communication, semi empirical mass formula using the liquid drop model has been presented. Nuclear binding energies are calculated using semi empirical mass formula with various constants given by different researchers. We also compare these calculated values with experimental data and comparative study for finding suitable constants is added using the error plot. The study is extended to find the more suitable constant to reduce the error.

  6. Chiral extrapolation of the leading hadronic contribution to the muon anomalous magnetic moment

    NASA Astrophysics Data System (ADS)

    Golterman, Maarten; Maltman, Kim; Peris, Santiago

    2017-04-01

    A lattice computation of the leading-order hadronic contribution to the muon anomalous magnetic moment can potentially help reduce the error on the Standard Model prediction for this quantity, if sufficient control of all systematic errors affecting such a computation can be achieved. One of these systematic errors is that associated with the extrapolation to the physical pion mass from values on the lattice larger than the physical pion mass. We investigate this extrapolation assuming lattice pion masses in the range of 200 to 400 MeV with the help of two-loop chiral perturbation theory, and we find that such an extrapolation is unlikely to lead to control of this systematic error at the 1% level. This remains true even if various tricks to improve the reliability of the chiral extrapolation employed in the literature are taken into account. In addition, while chiral perturbation theory also predicts the dependence on the pion mass of the leading-order hadronic contribution to the muon anomalous magnetic moment as the chiral limit is approached, this prediction turns out to be of no practical use because the physical pion mass is larger than the muon mass that sets the scale for the onset of this behavior.

  7. Active vibration and balance system for closed cycle thermodynamic machines

    NASA Technical Reports Server (NTRS)

    Augenblick, John E. (Inventor); Peterson, Allen A. (Inventor); White, Maurice A. (Inventor); Qiu, Songgang (Inventor)

    2004-01-01

    An active balance system is provided for counterbalancing vibrations of an axially reciprocating machine. The balance system includes a support member, a flexure assembly, a counterbalance mass, and a linear motor or an actuator. The support member is configured for attachment to the machine. The flexure assembly includes at least one flat spring having connections along a central portion and an outer peripheral portion. One of the central portion and the outer peripheral portion is fixedly mounted to the support member. The counterbalance mass is fixedly carried by the flexure assembly along another of the central portion and the outer peripheral portion. The linear motor has one of a stator and a mover fixedly mounted to the support member and another of the stator and the mover fixedly mounted to the counterbalance mass. The linear motor is operative to axially reciprocate the counterbalance mass. A method is also provided.

  8. Development, calibration, and sensitivity analyses of a high-resolution dissolved oxygen mass balance model for the northern Gulf of Mexico

    EPA Science Inventory

    A high-resolution dissolved oxygen mass balance model was developed for the Louisiana coastal shelf in the northern Gulf of Mexico. GoMDOM (Gulf of Mexico Dissolved Oxygen Model) was developed to assist in evaluating the impacts of nutrient loading on hypoxia development and exte...

  9. SOURCE APPORTIONMENT OF PM 2.5 AND CARBON IN SEATTLE USING CHEMICAL MASS BALANCE AND POSITIVE MATRIX FACTORIZATION

    EPA Science Inventory

    Three years of PM2.5 speciated data were collected and chemically analyzed using the IMPROVE protocol at the Beacon Hill site in Seattle. The data were analyzed by the Chemical Mass Balance Version 8 (CMB8) and Positive Matrix Factorization (PMF) source apportionment models. T...

  10. EVIDENCE OF FEED CONTAMINATION DUE TO SAMPLE HANDLING AND PREPARATION DURING A MASS BALANCE STUDY OF DIOXINS IN LACTATING COWS IN BACKGROUND CONDITIONS

    EPA Science Inventory

    In 1997, the United States (US) Environmental Protection Agency (EPA) conducted a mass balance study of polychlorinated dibenzo-p-dioxins (CDDs) and dibenzofurans (CDFs) in lactating cows in background conditions. The field portion of the study occurred at the US Department of A...

  11. DEVELOPMENT, CALIBRATION AND APPLICATION OF A CONTAINMENT TRANSPORT AND FATE MASS BALANCE MODEL IN LAKE MICHIGAN, LM2

    EPA Science Inventory

    The Lake Michigan Mass Balance Project (LMMBP) was initiated to support the development of a Lake Wide Management Plan (LaMP) for Lake Michigan. As one of the models in the LMMBP modeling framework, the Level 2 Lake Michigan containment transport and fate (LM2) model has been dev...

  12. Model Construct and Calibration of an Integrated Water Quality Model (LM2-Toxic) for the Lake Michigan Mass Balance Project

    EPA Science Inventory

    The Lake Michigan Mass Balance Project (LMMBP) is a part of the Enhanced Monitoring Plan (EMP) for Lake Michigan (McCarty, et al., 2006). PCBs (polychlorinated biphenyls) were one of the targeted pollutants studied in the project. As one of the components in the overall LMMBP mod...

  13. A Simplified Model of Human Alcohol Metabolism That Integrates Biotechnology and Human Health into a Mass Balance Team Project

    ERIC Educational Resources Information Center

    Yang, Allen H. J.; Dimiduk, Kathryn; Daniel, Susan

    2011-01-01

    We present a simplified human alcohol metabolism model for a mass balance team project. Students explore aspects of engineering in biotechnology: designing/modeling biological systems, testing the design/model, evaluating new conditions, and exploring cutting-edge "lab-on-a-chip" research. This project highlights chemical engineering's impact on…

  14. DOCUMENTATION FOR THE GRIDDED HOURLY ATRAZINE EMISSIONS DATA SET FOR THE LAKE MICHIGAN MASS BALANCE STUDY: A FINAL CONTRACT REPORT

    EPA Science Inventory

    In order to develop effective strategies for toxics management, the Great Lakes National Program Office (GLNPO) of the United States Environmental Protection Agency (U.S. EPA), in 1994, launched an ambitious five year program to conduct a mass balance study of selected toxics p...

  15. Systematic Approach to Calculate the Concentration of Chemical Species in Multi-Equilibrium Problems

    ERIC Educational Resources Information Center

    Baeza-Baeza, Juan Jose; Garcia-Alvarez-Coque, Maria Celia

    2011-01-01

    A general systematic approach is proposed for the numerical calculation of multi-equilibrium problems. The approach involves several steps: (i) the establishment of balances involving the chemical species in solution (e.g., mass balances, charge balance, and stoichiometric balance for the reaction products), (ii) the selection of the unknowns (the…

  16. Dependence of Dynamic Modeling Accuracy on Sensor Measurements, Mass Properties, and Aircraft Geometry

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    The NASA Generic Transport Model (GTM) nonlinear simulation was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of identified parameters in mathematical models describing the flight dynamics and determined from flight data. Measurements from a typical flight condition and system identification maneuver were systematically and progressively deteriorated by introducing noise, resolution errors, and bias errors. The data were then used to estimate nondimensional stability and control derivatives within a Monte Carlo simulation. Based on these results, recommendations are provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using additional flight conditions and parameter estimation methods, as well as a nonlinear flight simulation of the General Dynamics F-16 aircraft, were compared with these recommendations

  17. What Drives Saline Circulation Cells in Coastal Aquifers? An Energy Balance for Density-Driven Groundwater Systems

    NASA Astrophysics Data System (ADS)

    Harvey, C. F.; Michael, H. A.

    2017-12-01

    We formulate the energy balance for coastal groundwater systems and apply it to: (1) Explain the energy driving offshore saline circulation cells, and; (2) Assess the accuracy of numerical simulations of coastal groundwater systems. The flow of fresh groundwater to the ocean is driven by the loss of potential energy as groundwater drops from the elevation of the inland watertable, where recharge occurs, to discharge at sea level. This freshwater flow creates an underlying circulation cell of seawater, drawn into coastal aquifers offshore and discharging near shore, that adds to total submarine groundwater discharge. The saline water in the circulation cell enters and exits the aquifer through the sea floor at the same hydraulic potential. Existing theory explains that the saline circulation cell is driven by mixing of fresh and saline without any additional source of potential or mechanical power. This explanation raises a basic thermodynamic question: what is the source of energy that drives the saline circulation cell? Here, we resolve this question by building upon Hubbert's conception of hydraulic potential to formulate an energy balance for density-dependent flow and salt transport through an aquifer. We show that, because local energy dissipation within the aquifer is proportional to the square of the groundwater velocity, more groundwater flow may be driven through an aquifer for a given energy input if local variations in velocity are smoothed. Our numerical simulations of coastal groundwater systems show that dispersion of salt across the fresh-saline interface spreads flow over larger volumes of the aquifer, smoothing the velocity field, and increasing total flow and submarine groundwater discharge without consuming more power. The energy balance also provides a criterion, in addition to conventional mass balances, for judging the accuracy of numerical solutions of non-linear density-dependent flow problems. Our results show that some numerical simulations of saline circulation converge to excellent balances of both mass and energy, but that other simulations may poorly balance energy even after converging to a good mass balance. Thus, the energy balance can be used to identify incorrect simulations that pass convential mass balance criteria for accuracy.

  18. Two decades of ice melt reconstruction in Greenland and Antarctica from time-variable gravity

    NASA Astrophysics Data System (ADS)

    Talpe, M.; Nerem, R. S.; Lemoine, F. G.

    2014-12-01

    In this study, we present a record of ice-sheet melt derived from space-borne gravity that spans over two decades—beyond the time-frame of the GRACE mission. GRACE fields are merged with conventional tracking data (SLR/DORIS) spanning 1992 to the present. They are provided as weekly global fields of degree and order five without C50 and S50 but with C61 and S61. Their multi-decade timespan complements the monthly fields of GRACE of degree and order 60 that start in 2003 and will end when the GRACE mission terminates. The two datasets are combined via an empirical orthogonal function analysis, whereby the conventional tracking data temporal modes are obtained by fitting the SLR/DORIS coefficients to the GRACE spatial modes via linear least squares. Combining those temporal modes with GRACE spatial modes yields the reconstructed global gravity fields. The error budget of the reconstructions is composed of three components: the SLR/DORIS covariances, the errors estimated from the assumption that GRACE spatial modes can be mapped over the SLR/DORIS timeframe, and the covariances from the least squares fit applied to obtain the SLR/DORIS temporal modes. The reconstructed surface mass changes in Greenland and Antarctica, predominantly captured in the first mode, show a rate of mass loss that is increasing since 1992. The trend of mass changes in Greenland over various epochs match with an overarching study assembling altimetry, gravimetry, and interferometry estimates of ice-sheet balance over a 1992-2011 time-frame [Shepherd et al., 2012]. Antarctica shows a trend that is different because of updated GIA models [A et al., 2013] compared to the other studies. We will also show regional mass changes over various other basins, as well as the influence of each SLR/DORIS coefficient on the reconstructions. The consistency of these results underscores the possibility of using low-resolution SLR/DORIS time-variable gravity solutions as a way to continuously monitor the behavior of the polar ice-sheets in the absence of GRACE. Shepherd, A., et al. (2012), Science 338, 1183. A, G., J. Wahr, and S. Zhong (2013), GJI 192, 557.

  19. Modeling GIA at the Gulf of Mexico and environs: a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Caron, L.; Ivins, E. R.; Larour, E. Y.; Adhikari, S.

    2017-12-01

    The massive amount of new data that constrain global mass changes that are derived from space missions, such as JASON, ENVISat, ICEsat, GRACE time series coupled to GNSS determined vertical land motion (VLM), have revolutionized our understanding of near real-time changes in water storage, sea-level rise (SLR) and ice mass balance on decadal time scales. In order to better interpret these data sets, however, background secular signals need to be removed if a mass conserving reconstruction of ongoing changes in surface mass can be accurately determined with appropriate error statistics. Among the major contaminants of measurements is the signal due to the growth and collapse of the great ice sheets during the last glacial cycle, a phenomenon known as Glacial Isostatic Adjustment (GIA). Linear trends in VLM, gravity and tide-gauge measurements of local sea-level may be removed by using GIA models. The major caveat for GIA models is that no reliable error statistic comes with the correction. Consequently, the community struggles to establish a consensus about GIA model predictions. A formal calculation of the uncertainty in the prediction is logically an absolute corner stone for quantifying the degree of knowledge we have about this phenomenon. GIA uncertainty should be incorporated and propagated into the uncertainty estimates for any scientific results that employ geodetic measurements that also contain the GIA signature. We propose a new method based on model ensembles and Bayesian framework to provide statistical characterization of the present-day GIA signal. Through more than 30,000 forward models, our approach explores the range of possible solutions by varying jointly the Earth properties, such as the mantle rheology and structure, and the ice loading history. Our inversion is constrained by 459 GNSS stations (with trends accurate to less than 0.5 mm/yr) that cover non-tectonic North America, Europe and Antarctica, as well as 11451 paleo sea level records with a global distribution spanning through the last 35kyr. We reinterpret VLM and SLR measurements at the Gulf of Mexico with new correction along with one sigma uncertainties derived from our probability distributions.

  20. Spray automated balancing of rotors: Methods and materials

    NASA Technical Reports Server (NTRS)

    Smalley, Anthony J.; Baldwin, Richard M.; Schick, Wilbur R.

    1988-01-01

    The work described consists of two parts. In the first part, a survey is performed to assess the state of the art in rotor balancing technology as it applies to Army gas turbine engines and associated power transmission hardware. The second part evaluates thermal spray processes for balancing weight addition in an automated balancing procedure. The industry survey reveals that: (1) computerized balancing equipment is valuable to reduce errors, improve balance quality, and provide documentation; (2) slow-speed balancing is used exclusively, with no forseeable need for production high-speed balancing; (3) automated procedures are desired; and (4) thermal spray balancing is viewed with cautious optimism whereas laser balancing is viewed with concern for flight propulsion hardware. The FARE method (Fuel/Air Repetitive Explosion) was selected for experimental evaluation of bond strength and fatigue strength. Material combinations tested were tungsten carbide on stainless steel (17-4), Inconel 718 on Inconel 718, and Triballoy 800 on Inconel 718. Bond strengths were entirely adequate for use in balancing. Material combinations have been identified for use in hot and cold sections of an engine, with fatigue strengths equivalent to those for hand-ground materials.

  1. Evaluation of Nintendo Wii Balance Board as a Tool for Measuring Postural Stability After Sport-Related Concussion.

    PubMed

    Merchant-Borna, Kian; Jones, Courtney Marie Cora; Janigro, Mattia; Wasserman, Erin B; Clark, Ross A; Bazarian, Jeffrey J

    2017-03-01

    Recent changes to postconcussion guidelines indicate that postural-stability assessment may augment traditional neurocognitive testing when making return-to-participation decisions. The Balance Error Scoring System (BESS) has been proposed as 1 measure of balance assessment. A new, freely available software program to accompany the Nintendo Wii Balance Board (WBB) system has recently been developed but has not been tested in concussed patients. To evaluate the feasibility of using the WBB to assess postural stability across 3 time points (baseline and postconcussion days 3 and 7) and to assess concurrent and convergent validity of the WBB with other traditional measures (BESS and Immediate Post-Concussion Assessment and Cognitive Test [ImPACT] battery) of assessing concussion recovery. Cohort study. Athletic training room and collegiate sports arena. We collected preseason baseline data from 403 National Collegiate Athletic Association Division I and III student-athletes participating in contact sports and studied 19 participants (age = 19.2 ± 1.2 years, height = 177.7 ± 8.0 cm, mass = 75.3 ± 16.6 kg, time from baseline to day 3 postconcussion = 27.1 ± 36.6 weeks) who sustained concussions. We assessed balance using single-legged and double-legged stances for both the BESS and WBB, focusing on the double-legged, eyes-closed stance for the WBB, and used ImPACT to assess neurocognition at 3 time points. Descriptive statistics were used to characterize the sample. Mean differences and Spearman rank correlation coefficients were used to determine differences within and between metrics over the 3 time points. Individual-level changes over time were also assessed graphically. The WBB demonstrated mean changes between baseline and day 3 postconcussion and between days 3 and 7 postconcussion. It was correlated with the BESS and ImPACT for several measures and identified 2 cases of abnormal balance postconcussion that would not have been identified via the BESS. When accompanied by the appropriate analytic software, the WBB may be an alternative for assessing postural stability in concussed student-athletes and may provide additional information to that obtained via the BESS and ImPACT. However, verification among independent samples is required.

  2. Sampling with poling-based flux balance analysis: optimal versus sub-optimal flux space analysis of Actinobacillus succinogenes.

    PubMed

    Binns, Michael; de Atauri, Pedro; Vlysidis, Anestis; Cascante, Marta; Theodoropoulos, Constantinos

    2015-02-18

    Flux balance analysis is traditionally implemented to identify the maximum theoretical flux for some specified reaction and a single distribution of flux values for all the reactions present which achieve this maximum value. However it is well known that the uncertainty in reaction networks due to branches, cycles and experimental errors results in a large number of combinations of internal reaction fluxes which can achieve the same optimal flux value. In this work, we have modified the applied linear objective of flux balance analysis to include a poling penalty function, which pushes each new set of reaction fluxes away from previous solutions generated. Repeated poling-based flux balance analysis generates a sample of different solutions (a characteristic set), which represents all the possible functionality of the reaction network. Compared to existing sampling methods, for the purpose of generating a relatively "small" characteristic set, our new method is shown to obtain a higher coverage than competing methods under most conditions. The influence of the linear objective function on the sampling (the linear bias) constrains optimisation results to a subspace of optimal solutions all producing the same maximal fluxes. Visualisation of reaction fluxes plotted against each other in 2 dimensions with and without the linear bias indicates the existence of correlations between fluxes. This method of sampling is applied to the organism Actinobacillus succinogenes for the production of succinic acid from glycerol. A new method of sampling for the generation of different flux distributions (sets of individual fluxes satisfying constraints on the steady-state mass balances of intermediates) has been developed using a relatively simple modification of flux balance analysis to include a poling penalty function inside the resulting optimisation objective function. This new methodology can achieve a high coverage of the possible flux space and can be used with and without linear bias to show optimal versus sub-optimal solution spaces. Basic analysis of the Actinobacillus succinogenes system using sampling shows that in order to achieve the maximal succinic acid production CO₂ must be taken into the system. Solutions involving release of CO₂ all give sub-optimal succinic acid production.

  3. Quantifying groundwater discharge through fringing wetlands to estuaries: Seasonal variability, methods comparison, and implications for wetland-estuary exchange

    USGS Publications Warehouse

    Tobias, C.R.; Harvey, J.W.; Anderson, I.C.

    2001-01-01

    Because groundwater discharge along coastal shorelines is often concentrated in zones inhabited by fringing wetlands, accurately estimating discharge is essential for understanding its effect on the function and maintenance of these ecosystems. Most previous estimates of groundwater discharge to coastal wetlands have been temporally limited and have used only a single approach to estimate discharge. Furthermore, groundwater input has not been considered as a major mechanism controlling pore-water flushing. We estimated seasonally varying groundwater discharge into a fringing estuarine wetland using three independent methods (Darcy's Law, salt balance, and Br- tracer). Seasonal patterns of discharge predicted by both Darcy's Law and the salt balance yielded similar seasonal patterns with discharge maxima and minima in spring and early fall, respectively. They differed, however, in the estimated magnitude of discharge by two- to fourfold in spring and by 10-fold in fall. Darcy estimates of mean discharge ranged between -8.0 and 80 L m-2 d-1, whereas the salt balance predicted groundwater discharge of 0.6 to 22 L m-2 d-1. Results from the Br- tracer experiment estimated discharge at 16 L m-2 d-t, or nearly equal to the salt balance estimate at that time. Based upon the tracer test, pore-water conductivity profiles, and error estimates for the Darcy and salt balance approaches, we concluded that the salt balance provided a more certain estimate of groundwater discharge at high flow (spring). In contrast, the Darcy method provided a more reliable estimate during low flow (fall). Groundwater flushing of pore water in the spring exported solutes to the estuary at rates similar to tidally driven surface exchange seen in previous studies. Based on pore-water turnover times, the groundwater-driven flux of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and NH4+ to the estuary was 11.9, 1.6, and 1.3 g C or g N m-2 wetland for the 90 d encompassing peak spring discharge. Groundwater-induced flushing of the wetland subsurface therefore represents an important mechanism by which narrow fringing marshes may seasonally relieve salt stress and export material to adjacent water masses.

  4. Reliability, Validity, and Minimal Detectable Change of Balance Evaluation Systems Test and Its Short Versions in Older Cancer Survivors: A Pilot Study.

    PubMed

    Huang, Min H; Miller, Kara; Smith, Kristin; Fredrickson, Kayle; Shilling, Tracy

    2016-01-01

    Cancer is primarily a disease of older adults. About 77% of all cancers are diagnosed in persons aged 55 years and older. Cancer and its treatment can cause diverse sequelae impacting body systems underlying balance control. No study has examined the psychometric properties of balance assessment tools in older cancer survivors, presenting a significant challenge in the selection of outcome measures for clinicians treating this fast-growing population. This study aimed to determine the reliability, validity, and minimal detectable change (MDC) of the Balance Evaluation System Test (BESTest), Mini-Balance Evaluation Systems Test (Mini-BESTest), and Brief-Balance Evaluation Systems Test (Brief-BESTest) in community-dwelling older cancer survivors. This study was a cross-sectional design. Twenty breast and 8 prostate cancer survivors participated [age (SD) = 68.4 (8.13) years]. The BESTest and Activity-specific Balance Confidence (ABC) Scale were administered during the first session. Scores of Mini-BESTest and Brief-BESTest were extracted on the basis of the scores of BESTest. The BESTest was repeated within 1 to 2 weeks by the same rater to determine the test-retest reliability. For the analysis of the inter-rater reliability, 21 participants were randomly selected to be evaluated by 2 raters. A primary rater administered the test. The 2 raters independently and concurrently scored the performance of the participants. Each rater recorded the ratings separately on the scoring sheet. No discussion among the raters was allowed throughout the testing. Intraclass correlation coefficients (ICCs), standard error of measurement, minimal detectable change (MDC), and Bland-Altman plots were calculated. Concurrent validity of these balance tests with the ABC Scale was examined using the Spearman correlation. The BESTest, Mini-BESTest, and Brief-BESTest had high test-retest (ICC = 0.90-0.94) and interrater reliability (ICC = 0.86-0.96), small standard error of measurement (0.86-2.47 points), and MDC (2.39-6.86 points). The Bland-Altman plot revealed no systematic errors. The scores of BESTest, Mini-BEST, and Brief-BEST were correlated significantly with those of ABC Scale (P < .01), supporting their concurrent validity. The BESTest, Mini-BESTest, and Brief-BESTest showed high interrater and test-retest reliability, and excellent concurrent validity with the ABC Scale for community-dwelling cancer survivors aged 55 years and older who had completed cancer treatments for at least 3 months. Future studies are necessary to determine the predictive values for determining fall risks using balance assessment tools in older cancer survivors. Clinicians can utilize the BESTest and its short versions to evaluate balance problems in community-dwelling older cancer survivors and apply the established MDC to assess the intervention outcomes.

  5. Testing the equivalence principle in the field of the Earth: Particle physics at masses below 1 μeV\\?

    NASA Astrophysics Data System (ADS)

    Adelberger, E. G.; Stubbs, C. W.; Heckel, B. R.; Su, Y.; Swanson, H. E.; Smith, G.; Gundlach, J. H.; Rogers, W. F.

    1990-11-01

    A sensitive, systematic search for feeble, macroscopic forces arising from the exchange of hypothetical ultra-low-mass bosons was made by observing the differential acceleration of two different test body pairs toward two different sources. Our differential accelerometer-a highly symmetric, continuously rotating torsion balance-incorporated several innovations that effectively suppressed systematic errors. All known sources of systematic error were demonstrated to be negligible in comparison to our fluctuating errors which are roughly 7 times larger than the fundamental limit set by the fact that we observe an oscillator at room temperature with a given damping time. Our 1σ limits on the horizontal differential acceleration of Be/Al or Be/Cu test body pairs in the field of the Earth, Δa⊥=(2.1+/-2.1)×10-11 cm s-2 and Δa⊥=(0.8+/-1.7)×10-11 cm s-2, respectively, set improved bounds on Yukawa interactions mediated by bosons with masses ranging between mbc2~=3×10-18 and mbc2~=1×10-6 eV. For example, our constraints on infinite-range vector interactions with charges of B and of B-L are roughly 10 and 2 times more sensitive than those obtained by Roll, Krotkov, and Dicke using the field of the Sun. Furthermore we set stringent constraints down to λ=1 m, while those of solar experiments are weak for λ<1 AU. In terms of the weak equivalence principle in the field of the Earth, our 1σ result corresponds to mi/mg(Cu)-mi/mg(Be)=(0.2+/-1.0)×10-11. Our results also yield stringent constraints on the nonsymmetric gravitation theory of Moffat and on the anomalous acceleration of antimatter in proposed ``quantum gravity'' models, and have implications for lunar-ranging tests of the strong equivalence principle. Our 1σ limit on the differential acceleration of Be/Al test body pairs toward a 1.5 Mg Pb laboratory source, Δa=(-0.15+/-1.31)×10-10 cm s-2, provides constraints on Yukawa interactions with ranges down to 10 cm, and on interactions whose charge is B-2L.

  6. Enhancing the calculation accuracy of performance characteristics of power-generating units by correcting general measurands based on matching energy balances

    NASA Astrophysics Data System (ADS)

    Shchinnikov, P. A.; Safronov, A. V.

    2014-12-01

    General principles of a procedure for matching energy balances of thermal power plants (TPPs), whose use enhances the accuracy of information-measuring systems (IMSs) during calculations of performance characteristics (PCs), are stated. To do this, there is the possibility for changing values of measured and calculated variables within intervals determined by measurement errors and regulations. An example of matching energy balances of the thermal power plants with a T-180 turbine is made. The proposed procedure allows one to reduce the divergence of balance equations by 3-4 times. It is shown also that the equipment operation mode affects the profit deficiency. Dependences for the divergence of energy balances on the deviation of input parameters and calculated data for the fuel economy before and after matching energy balances are represented.

  7. Small Body GN and C Research Report: G-SAMPLE - An In-Flight Dynamical Method for Identifying Sample Mass [External Release Version

    NASA Technical Reports Server (NTRS)

    Carson, John M., III; Bayard, David S.

    2006-01-01

    G-SAMPLE is an in-flight dynamical method for use by sample collection missions to identify the presence and quantity of collected sample material. The G-SAMPLE method implements a maximum-likelihood estimator to identify the collected sample mass, based on onboard force sensor measurements, thruster firings, and a dynamics model of the spacecraft. With G-SAMPLE, sample mass identification becomes a computation rather than an extra hardware requirement; the added cost of cameras or other sensors for sample mass detection is avoided. Realistic simulation examples are provided for a spacecraft configuration with a sample collection device mounted on the end of an extended boom. In one representative example, a 1000 gram sample mass is estimated to within 110 grams (95% confidence) under realistic assumptions of thruster profile error, spacecraft parameter uncertainty, and sensor noise. For convenience to future mission design, an overall sample-mass estimation error budget is developed to approximate the effect of model uncertainty, sensor noise, data rate, and thrust profile error on the expected estimate of collected sample mass.

  8. Development of an air flow thermal balance calorimeter

    NASA Technical Reports Server (NTRS)

    Sherfey, J. M.

    1972-01-01

    An air flow calorimeter, based on the idea of balancing an unknown rate of heat evolution with a known rate of heat evolution, was developed. Under restricted conditions, the prototype system is capable of measuring thermal wattages from 10 milliwatts to 1 watt, with an error no greater than 1 percent. Data were obtained which reveal system weaknesses and point to modifications which would effect significant improvements.

  9. Identifying Students' Misconceptions in Writing Balanced Equations for Dissolving Ionic Compounds in Water and Using Multiple-Choice Questions at the Symbolic and Particulate Levels to Confront These Misconceptions

    ERIC Educational Resources Information Center

    Naah, Basil M.

    2012-01-01

    Students who harbor misconceptions often find chemistry difficult to understand. To improve teaching about the dissolving process, first semester introductory chemistry students were asked to complete a free-response questionnaire on writing balanced equations for dissolving ionic compounds in water. To corroborate errors and misconceptions…

  10. Spectral optimization for measuring electron density by the dual-energy computed tomography coupled with balanced filter method.

    PubMed

    Saito, Masatoshi

    2009-08-01

    Dual-energy computed tomography (DECT) has the potential for measuring electron density distribution in a human body to predict the range of particle beams for treatment planning in proton or heavy-ion radiotherapy. However, thus far, a practical dual-energy method that can be used to precisely determine electron density for treatment planning in particle radiotherapy has not been developed. In this article, another DECT technique involving a balanced filter method using a conventional x-ray tube is described. For the spectral optimization of DECT using balanced filters, the author calculates beam-hardening error and air kerma required to achieve a desired noise level in electron density and effective atomic number images of a cylindrical water phantom with 50 cm diameter. The calculation enables the selection of beam parameters such as tube voltage, balanced filter material, and its thickness. The optimized parameters were applied to cases with different phantom diameters ranging from 5 to 50 cm for the calculations. The author predicts that the optimal combination of tube voltages would be 80 and 140 kV with Tb/Hf and Bi/Mo filter pairs for the 50-cm-diameter water phantom. When a single phantom calibration at a diameter of 25 cm was employed to cover all phantom sizes, maximum absolute beam-hardening errors were 0.3% and 0.03% for electron density and effective atomic number, respectively, over a range of diameters of the water phantom. The beam-hardening errors were 1/10 or less as compared to those obtained by conventional DECT, although the dose was twice that of the conventional DECT case. From the viewpoint of beam hardening and the tube-loading efficiency, the present DECT using balanced filters would be significantly more effective in measuring the electron density than the conventional DECT. Nevertheless, further developments of low-exposure imaging technology should be necessary as well as x-ray tubes with higher outputs to apply DECT coupled with the balanced filter method for clinical use.

  11. Mass load estimation errors utilizing grab sampling strategies in a karst watershed

    USGS Publications Warehouse

    Fogle, A.W.; Taraba, J.L.; Dinger, J.S.

    2003-01-01

    Developing a mass load estimation method appropriate for a given stream and constituent is difficult due to inconsistencies in hydrologic and constituent characteristics. The difficulty may be increased in flashy flow conditions such as karst. Many projects undertaken are constrained by budget and manpower and do not have the luxury of sophisticated sampling strategies. The objectives of this study were to: (1) examine two grab sampling strategies with varying sampling intervals and determine the error in mass load estimates, and (2) determine the error that can be expected when a grab sample is collected at a time of day when the diurnal variation is most divergent from the daily mean. Results show grab sampling with continuous flow to be a viable data collection method for estimating mass load in the study watershed. Comparing weekly, biweekly, and monthly grab sampling, monthly sampling produces the best results with this method. However, the time of day the sample is collected is important. Failure to account for diurnal variability when collecting a grab sample may produce unacceptable error in mass load estimates. The best time to collect a sample is when the diurnal cycle is nearest the daily mean.

  12. Test-retest reliability and minimal detectable change of two simplified 3-point balance measures in patients with stroke.

    PubMed

    Chen, Yi-Miau; Huang, Yi-Jing; Huang, Chien-Yu; Lin, Gong-Hong; Liaw, Lih-Jiun; Lee, Shih-Chieh; Hsieh, Ching-Lin

    2017-10-01

    The 3-point Berg Balance Scale (BBS-3P) and 3-point Postural Assessment Scale for Stroke Patients (PASS-3P) were simplified from the BBS and PASS to overcome the complex scoring systems. The BBS-3P and PASS-3P were more feasible in busy clinical practice and showed similarly sound validity and responsiveness to the original measures. However, the reliability of the BBS-3P and PASS-3P is unknown limiting their utility and the interpretability of scores. We aimed to examine the test-retest reliability and minimal detectable change (MDC) of the BBS-3P and PASS-3P in patients with stroke. Cross-sectional study. The rehabilitation departments of a medical center and a community hospital. A total of 51 chronic stroke patients (64.7% male). Both balance measures were administered twice 7 days apart. The test-retest reliability of both the BBS-3P and PASS-3P were examined by intraclass correlation coefficients (ICC). The MDC and its percentage over the total score (MDC%) of each measure was calculated for examining the random measurement errors. The ICC values of the BBS-3P and PASS-3P were 0.99 and 0.97, respectively. The MDC% (MDC) of the BBS-3P and PASS-3P were 9.1% (5.1 points) and 8.4% (3.0 points), respectively, indicating that both measures had small and acceptable random measurement errors. Our results showed that both the BBS-3P and the PASS-3P had good test-retest reliability, with small and acceptable random measurement error. These two simplified 3-level balance measures can provide reliable results over time. Our findings support the repeated administration of the BBS-3P and PASS-3P to monitor the balance of patients with stroke. The MDC values can help clinicians and researchers interpret the change scores more precisely.

  13. Firn Thickness Changes (1982-2015) Driven by SMB from MERRA-2, RACMO2.3, ERA-Int and AVHRR Surface Temperature and the Impacts to Greenland Ice Sheet Mass Balance

    NASA Astrophysics Data System (ADS)

    Li, J.; Medley, B.; Neumann, T.; Smith, B. E.; Luthcke, S. B.; Zwally, H. J.

    2016-12-01

    Surface mass balance (SMB) data are essential in the derivation of ice sheet mass balance. This is because ice sheet mass change consists of short-term and long-term variations. The short-term variations are directly given by the SMB data. For altimetry based ice sheet mass balance studies, these short-term mass changes are converted to firn thickness changes by using a firn densification-elevation model, and then the variations are subtracted from the altimetry measurements to give the long-term ice thickness changes that are associated with the density of ice. So far various SMB data sets such as ERA-Interim, RACMO and MERRA are available and some have been widely used in large number of ice sheet mass balance studies. However theses data sets exhibit the clear discrepancies in both random and systematic manner. In this study, we use our time dependent firn densification- elevation model, driven by the SMB data from MERRA-2, RACMO2.3 and ERA-Int for the period of 1982-2015 and the temperature variations from AVHRR for the same period to examine the corresponding firn thickness variations and the impacts to the mass changes over the Greenland ice sheet. The model was initialized with the1980's climate. Our results show that the relative smaller (centimeter level) differences in the firn thickness driven by the different data set occur at the early stage (1980's) of the model run. As the time progressing, the discrepancies between the SMB data sets accumulate, and the corresponding firn thickness differences quickly become larger with the value > 2m at the end of the period. Although the overall rates for the whole period driven by each of the three data sets are small ranging -0.2 - 0.2 cm a-1 (-3.0-2.7 Gt a-1), the decadal rates can vary greatly with magnitude > 3 cm a-1 and the impact to the Greenland mass change exceeds 30 Gt a-1.

  14. Spatial and Temporal Antarctic Ice Sheet Mass Trends, Glacio-Isostatic Adjustment, and Surface Processes from a Joint Inversion of Satellite Altimeter, Gravity, and GPS Data

    NASA Technical Reports Server (NTRS)

    Martin-Espanol, Alba; Zammit-Mangion, Andrew; Clarke, Peter J.; Flament, Thomas; Helm, Veit; King, Matt A.; Luthcke, Scott B.; Petrie, Elizabeth; Remy, Frederique; Schon, Nana; hide

    2016-01-01

    We present spatiotemporal mass balance trends for the Antarctic Ice Sheet from a statistical inversion of satellite altimetry, gravimetry, and elastic-corrected GPS data for the period 2003-2013. Our method simultaneously determines annual trends in ice dynamics, surface mass balance anomalies, and a time-invariant solution for glacio-isostatic adjustment while remaining largely independent of forward models. We establish that over the period 2003-2013, Antarctica has been losing mass at a rateof -84 +/- 22 Gt per yr, with a sustained negative mean trend of dynamic imbalance of -111 +/- 13 Gt per yr. West Antarctica is the largest contributor with -112 +/- 10 Gt per yr, mainly triggered by high thinning rates of glaciers draining into the Amundsen Sea Embayment. The Antarctic Peninsula has experienced a dramatic increase in mass loss in the last decade, with a mean rate of -28 +/- 7 Gt per yr and significantly higher values for the most recent years following the destabilization of the Southern Antarctic Peninsula around 2010. The total mass loss is partly compensated by a significant mass gain of 56 +/- 18 Gt per yr in East Antarctica due to a positive trend of surface mass balance anomalies.

  15. The Influence of Intensifying Irrigation on Glacier Mass Balances in High Mountain Asia

    NASA Astrophysics Data System (ADS)

    de Kok, R.; Tuinenburg, O.; Bonekamp, P. N. J.; Immerzeel, W. W.

    2017-12-01

    Melt water from snow and glaciers in High Mountain Asia provide a major source of water for millions of inhabitants in the downstream low lying plains. This densely populated region also hosts some of the largest areas of irrigated land in the world. Not only is the water from High Mountain Asia important as a source of irrigation water, the irrigation itself might also change the regional, and even global, climate by increasing atmospheric moisture and by cooling the surface through evapotranspiration. We explore the effect of irrigation in the region on the synoptic climate patterns in High Mountain Asia using the WRF regional climate model. By studying the changes in the energy balance, temperatures and precipitation, we assess how the changes in irrigation patterns may have contributed to the observed trends in mountain climates and associated glacier mass balances. Initial results show that the intensifying irrigation during the last decades causes an increase in summer snowfall in the mountains in Central Karakoram and Kunlun Shan, which are the regions where slight positive mass balances have been observed in recent years. A moisture tracking model confirms that the irrigated areas are a significant moisture source for summer precipitation in High Mountain Asia. These results thus suggest that irrigation may significantly influence glaciers in High Mountain Asia, especially in the regions of observed anomalous mass balance.

  16. Calibrating First-Order Strong Lensing Mass Estimates in Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Reed, Brendan; Remolian, Juan; Sharon, Keren; Li, Nan; SPT Clusters Cooperation

    2018-01-01

    We investigate methods to reduce the statistical and systematic errors inherent to using the Einstein Radius as a first-order mass estimate in strong lensing galaxy clusters. By finding an empirical universal calibration function, we aim to enable a first-order mass estimate of large cluster data sets in a fraction of the time and effort of full-scale strong lensing mass modeling. We use 74 simulated cluster data from the Argonne National Laboratory in a lens redshift slice of [0.159, 0.667] with various source redshifts in the range of [1.23, 2.69]. From the simulated density maps, we calculate the exact mass enclosed within the Einstein Radius. We find that the mass inferred from the Einstein Radius alone produces an error width of ~39% with respect to the true mass. We explore an array of polynomial and exponential correction functions with dependence on cluster redshift and projected radii of the lensed images, aiming to reduce the statistical and systematic uncertainty. We find that the error on the the mass inferred from the Einstein Radius can be reduced significantly by using a universal correction function. Our study has implications for current and future large galaxy cluster surveys aiming to measure cluster mass, and the mass-concentration relation.

  17. Sensing the bed-rock movement due to ice unloading from space using InSAR time-series

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Amelung, F.; Dixon, T. H.; Wdowinski, S.

    2014-12-01

    Ice-sheets in the Arctic region are retreating rapidly since late 1990s. Typical ice loss rates are 0.5 - 1 m/yr at the Canadian Arctic Archipelago, ~ 1 m/yr at the Icelandic ice sheets, and several meters per year at the edge of Greenland ice sheet. Such load decreasing causes measurable (several millimeter per year) deformation of the Earth's crust from Synthetic Aperture Radar Interferometry (InSAR). Using small baseline time-series analysis, this signal is retrieved after noises such as orbit error, atmospheric delay and DEM error being removed. We present results from Vatnajokull ice cap, Petermann glacier and Barnes ice cap using ERS, Envisat and TerraSAR-X data. Up to 2 cm/yr relative radar line-of-sight displacement is detected. The pattern of deformation matches the shape of ice sheet very well. The result in Iceland was used to develop a new model for the ice mass balance estimation from 1995 to 2010. Other applications of this kind of technique include validation of ICESat or GRACE based ice sheet model, Earth's rheology (Young's modulus, viscosity and so on). Moreover, we find a narrow (~ 1km) uplift zone close to the periglacial area of Petermann glacier which may due to a special rheology under the ice stream.

  18. On the primary variable switching technique for simulating unsaturated-saturated flows

    NASA Astrophysics Data System (ADS)

    Diersch, H.-J. G.; Perrochet, P.

    Primary variable switching appears as a promising numerical technique for variably saturated flows. While the standard pressure-based form of the Richards equation can suffer from poor mass balance accuracy, the mixed form with its improved conservative properties can possess convergence difficulties for dry initial conditions. On the other hand, variable switching can overcome most of the stated numerical problems. The paper deals with variable switching for finite elements in two and three dimensions. The technique is incorporated in both an adaptive error-controlled predictor-corrector one-step Newton (PCOSN) iteration strategy and a target-based full Newton (TBFN) iteration scheme. Both schemes provide different behaviors with respect to accuracy and solution effort. Additionally, a simplified upstream weighting technique is used. Compared with conventional approaches the primary variable switching technique represents a fast and robust strategy for unsaturated problems with dry initial conditions. The impact of the primary variable switching technique is studied over a wide range of mostly 2D and partly difficult-to-solve problems (infiltration, drainage, perched water table, capillary barrier), where comparable results are available. It is shown that the TBFN iteration is an effective but error-prone procedure. TBFN sacrifices temporal accuracy in favor of accelerated convergence if aggressive time step sizes are chosen.

  19. Effects of Hip Strengthening on Neuromuscular Control, Hip Strength, and Self-Reported Functional Deficits in Individuals With Chronic Ankle Instability.

    PubMed

    Smith, Brent I; Curtis, Denice; Docherty, Carrie L

    2018-06-12

    Deficits in ankle and hip strength and lower-extremity postural control are associated with chronic ankle instability (CAI). Following strength training, muscle groups demonstrate increased strength. This change is partially credited to improved neuromuscular control, and many studies have investigated ankle protocols for subjects with CAI. The effects of isolating hip musculature in strength training protocols in this population are not well understood. To examine the effects of hip strengthening on clinical and self-reported outcomes in patients with CAI. Prospective randomized controlled clinical trial. Athletic training facility. Twenty-six participants with CAI (12 males and 14 females; age = 20.9 [1.5] y, height = 170.0 [12.7] cm, and mass = 77.5 [17.5] kg) were randomly assigned to training or control groups. Participants completed either 4 weeks of supervised hip strengthening (resistance bands 3 times a week) or no intervention. Participants were assessed on 4 clinical measures (Star Excursion Balance Test in the anterior, posteromedial, and posterolateral directions; Balance Error Scoring System; hip external rotation strength; and hip abduction strength) and a patient-reported measure (the Foot and Ankle Ability Measure activities of daily living and sports subscales) before and after the 4-week training period. The training group displayed significantly improved posttest measures compared with the control group for hip abduction strength (training: 446.3 [77.4] N, control: 314.7 [49.6] N, P < .01); hip external rotation strength (training: 222.1 [48.7] N, control: 169.4 [34.6] N, P < .01); Star Excursion Balance Test reach in the anterior (training: 93.1% [7.4%], control: 90.2% [7.9%], P < .01), posteromedial (training: 96.3% [8.9%], control: 88.0% [8.8%], P < .01), and posterolateral (training: 95.4% [11.1%], control: 86.6% [9.6%], P < .01) directions; Balance Error Scoring System total errors (training: 9.9 [6.3] errors, control: 21.2 [6.3] errors, P < .01); and the Foot and Ankle Ability Measure-sports score (training: 88.0 [12.6], control: 84.8 [10.9], P < .01). Improved clinical and patient-reported outcomes in the training group suggest hip strengthening is beneficial in the management and prevention of recurrent symptoms associated with CAI.

  20. Estimation of groundwater discharge and associated chemical fluxes into Poyang Lake, China: approaches using stable isotopes (δD and δ18O) and radon

    NASA Astrophysics Data System (ADS)

    Liao, Fu; Wang, Guangcai; Shi, Zheming; Cheng, Guoqiang; Kong, Qingmin; Mu, Wenqing; Guo, Liang

    2018-05-01

    Poyang Lake is the largest freshwater lake in China and is well known for its ecological and economic importance. Understanding the contribution of groundwater to Poyang Lake is important for the lake's protection and management. In this study, stable isotopes (δD and δ18O), 222Rn measurements, and corresponding models (222Rn and 18O mass balance models) were employed to evaluate the groundwater discharge and associated chemical inputs to Poyang Lake. The results showed that the distribution of δ18O in the lake water reflects the groundwater discharge into the lake. The groundwater discharge estimated using the 222Rn mass balance model was in reasonable agreement with the groundwater discharge derived from the 18O mass balance model. The 222Rn mass balance model showed that the groundwater discharge rate was 24.18 ± 6.85 mm/d with a groundwater discharge flux of (2.24 ± 0.63) × 107 m3/d, which accounts for 6.52-11.14% of river-water input in the Poyang Lake area. The groundwater discharge flux estimated using the 18O mass balance model was 3.17 × 107 m3/d, and the average groundwater discharge rate was 26.62 mm/d. The estimated groundwater discharge was used to estimate the associated chemical fluxes. It was found that groundwater-derived heavy metals such as iron and manganese are potential threats to the lake ecological system because of their large inputs from groundwater discharge.

Top